
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

OpenSocial Network Programming

Introduction . xvii

Chapter 1: Social Network Programming . 1

Chapter 2: Introduction to OpenSocial . 55

Chapter 3: Gadget XML and Gadget API . 87

Chapter 4: JavaScript API . 111

Chapter 5: OpenSocial RESTful API . 169

Chapter 6: Programming Fundamentals . 221

Chapter 7: Sample Applications . 235

Chapter 8: Performance, Scalability, and Monetization . 277

Chapter 9: OpenSocial Templates, Markup, and Emerging Technologies 325

Index . 375

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

OpenSocial

Network Programming

Lynne Grewe

Wiley Publishing, Inc.

www.allitebooks.com

http://www.allitebooks.org

OpenSocial Network Programming
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-44222-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data:

Grewe, Lynne, 1965-
OpenSocial network programming / Lynne Grewe.

p. cm.
Includes index.
ISBN 978-0-470-44222-7 (paper/website)

1. Online social networks — Computer software. 2. Online social networks — Design.
3. Application program interfaces (Computer software) I. Title.

HM742.G74 2009
006.7’54 — dc22

2009001915

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ, 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Web site is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Web site may provide
or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. OpenSocial is a trademark of Google, Inc. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.allitebooks.com

www.wiley.com
http://www.allitebooks.org

To my family, Ben, Allen, and Jake, thank you for sharing this life and love with me.
To my best friend and mother, Joyce, thank you for all of your love and support.

To my father, Larry, and brother, Jeff, thanks for believing in me.

www.allitebooks.com

http://www.allitebooks.org

About the Author
Lynne Grewe, Ph.D., is founder and director of ILab at California State University East Bay, where she
as a professor in Computer Science. She created the first class in a university to teach social network
programming, using the platforms of OpenSocial, Facebook, and others. Previously, she worked at IBM
as a media specialist. She received her Ph.D. in Electrical and Computer Engineering from Purdue. She
has collaborated with numerous companies in social networking. She has published in professional
journals and presented at many conferences and symposiums. Lynne has contacts in industry that are
spearheading social network platforms and including Sun, Yahoo!, and Google. She is also a leader in the
community developing personalization/socialization of the social network experience and is a member
of the OpenSocial foundation.

www.allitebooks.com

http://www.allitebooks.org

Credits
Executive Editor
Carol Long

Development Editor
Kevin Shafer

Technical Editor
Ken Walton

Production Editor
Liz Britten

Copy Editor
Kim Cofer
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stamford

Proofreader
Josh Chase (Word One)

Indexer
J & J Indexing

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I would like to thank a number of people for helping me create the best book possible. Thank you to
Kevin Shafer, my development editor at Wiley, who with his considerable experience made this book
shine. Thank you to Carol Long, executive acquisitions editor at Wiley, a great editor who guided me
through the process. Also, thanks to the Wiley publishing team, including Sara Shlaer and Kirk Bateman.

A special thanks to Ken Walton, director of business development and chief software architect at Klick-
Nation, who served as technical editor and spent many hours reviewing the book, making suggestions,
and helping to ensure that there are no errors.

I also interviewed a number of people to create this book and want to thank the following for their
invaluable assistance:

Ken Walton, director of business development and chief software architect, KlickNation

Cody Simms, Yahoo!, senior director, Yahoo! platforms

Prakash Narayan, Zembly

Jia Shen, CTO and founder, RockYou

Lan LiaBraaten, Sara Jew-lim, Jan Penner, Google

David Young, Slide

Paul Linder, platform architect, hi5

Rod Boothby, vice president, Joyent

Ali Partovi, CEO, iLike

Vikas Gupta, cofounder/CEO, Jambool

Charlene Li, emerging technologies and coauthor of ‘‘Groundswell’’

Kevin Chou, CEO, Watercooler

Rhett Mcnulty, COO, Shopit

Stefano Pochet, Nealab Technologies, Freebar

Jeff Roberto, Friendster

Gina Olsen, imeem

Pieter De Schepper, Netlog

www.allitebooks.com

http://www.allitebooks.org

Contents

Introduction xvii

Chapter 1: Social Network Programming 1

Social Network Platforms 2

MySpace 2

hi5 5

orkut 7

Friendster 8

imeem 9

Freebar 9

Netlog 11

Yahoo! 12

Other Networks 14

Social Network Applications 14

Application Discovery 15

Application Installation 16

Application Appearance 17

Control of Applications 25

Making Applications Social and Viral 29

Application Goals 29

Growth 30

Engagement 30

Good Look and Feel 32

Dynamic Evolution 32

Self Expression 32

Social Exposure 33

Relationship Building 33

Real-World Problem Solving 33

Application Trends 33

Reach (General Appeal) Applications 35

Vertical (Targeted) Applications 36

Template-Based Application Development 36

Brand Applications 39

Destination Applications 39

Contents

Longer Engagement 39

Use of Media 39

Internationalization 41

Self Expression 43

Partnering 43

Virtual Currencies, Goods, and Points 43

Mobile Applications 45

Increased Use of Social Data 45

Increased Use of Application Data 46

Viral Channels and Features 46

Social Network Identity 48

Marketing — The Next Step 50

Retention 53

Tips for Good Application Development 53

Summary 54

Chapter 2: Introduction to OpenSocial 57

OpenSocial History 57

OpenSocial Architecture 59

Client-Based API 60

Server-Based API 61

Application Architecture 65

Sample Application 66

OpenSocial Data Formats 67

JSON 67

Atom 68

XML 68

Application Deployment 69

MySpace Deployment 69

hi5 Deployment 76

orkut Deployment 77

Netlog Deployment 80

imeem Deployment 80

Friendster Deployment 82

Freebar Deployment 85

What You Need to Get Started 85

Summary 88

Chapter 3: Gadget XML and Gadget API 89

Gadget XML 89

Gadget API 97

x

Contents

Core Gadget API 97

Feature-Specific Gadget API 104

Multiple Views 109

Changing Views Dynamically 111

Lifecycle Support 111

Summary 112

Chapter 4: JavaScript API 113

A Simple Application in OpenSocial 113

OpenSocial API Features 117

People 118

ViewerData Example 119

GetFriends Example 121

Info Example 124

IdSpec 124

Activities 132

Messages — Email and Notifications 133

Activity Posting (Updates) 136

Invitations to Install 139

Persistence 141

Information Storage 142

Information Retrieval 142

Detail of OpenSocial JavaScript API 146

Summary 170

Chapter 5: OpenSocial RESTful API 169

Getting to Know REST 169

Purely RESTful Architecture 171

RESTful-RPC Hybrid Architecture 171

Looking at an Example of REST 171

OpenSocial RESTful Server-Side Programming 173

Completely Server-Based OpenSocial RESTful API Application 173

Hybrid OpenSocial JavaScript and RESTful API Application 175

OpenSocial RESTful Application Architecture 175

OpenSocial REST Authorization and Authentication (OAuth) 176

OAuth Steps 177

OAuth Parameters 179

OAuth Requests 179

OAuth Signing Requests 180

OAuth Tokens (the Response) 181

OAuth in PHP 181

xi

Contents

HTTP Errors 195

OpenID 195

Key Cache and Token Management 195

OAuth Libraries 196

What You Need 196

hi5 Authentication Scheme 196

OpenSocial RESTful API Details 198

OpenSocial REST Request Construction 198

OpenSocial REST API Specification 200

Data Formatting and Atom/AtomPub 203

HTTP Method Type 210

OpenSocial REST Response 211

What You Need 212

OpenSocial REST Application Deployment 212

HTTP Status Codes 213

OpenSocial REST Support Discovery 213

OpenSocial Security with the REST API 216

OpenSocial REST API Future 216

OpenSocial RPC Protocol 216

Summary 219

Chapter 6: Programming Fundamentals 223

Application Testing 223

Front-End GUI Design Tips 224

Navigation Tabs 224

Look and Feel 226

Social Network-Specific Looks 227

External Resources 228

Caching Issues 230

POST Request 231

Signed Request 232

Performance Improvement Using Preload 234

Capabilities Inquiry 234

Action Requests and Permissions 234

Summary 235

Chapter 7: Sample Applications 235

Person/People Applications 235

Requesting a Maximum Number of Friends 236

Using Multiple Requests for Friends 236

Requesting Only Friends Who Have the Application Installed 237

xii

Contents

Producing a Paginated Friends List 238

Using Pronouns 239

Creating a Friend Selector 241

Testing If Two Users Are Friends 243

Finding Top Friends Who Have the Application Installed 244

Friends of Friends 246

Communications Applications 246

Making Signed Requests 247

Creating Minimessages 249

Creating Gadget Message Bundles 250

Using Message and Activity Templates 251

Using Message Summaries 254

Using Media Items in Activities 254

Clearing AppData 258

Understanding Environment — Support and Domain 259

Handling Errors 262

Container Compliance and NOT_IMPLEMENTED 262

Checking and Asking for Permissions 263

Working with Container-Specific Extensions 264

hi5 Lifecycle Extension 265

DataRequest Extension 266

Fields Extension 266

hi5 Template Library 266

Using Internationalization, Localization, and Globalization 267

Using Flash Media 271

Option 1: Using the Gadget API 271

Option 2: Using the SWFObject JavaScript Library 272

More Configuration Options 273

Container Support 274

JavaScript Tools for Applications 274

Summary 275

Chapter 8: Performance, Scalability, and Monetization 279

Understanding Scalability and Performance 280

Defining Scalability 280

Using Scalability Metrics 281

Performance Problem Areas 282

Scaling Up or Out 282

Understanding Architecture 282

Understanding Subsystems 284

Web Server 285

Application Server 285

xiii

Contents

Load Balancing 286

Caching 286

Content Delivery Networks (CDNs) 292

Understanding Hosting Solutions 292

What They’re Saying about Hosting Solutions 294

Amazon Web Services (AWS) 294

Joyent 300

Other Hosting Solutions 301

Case Studies 301

Understanding Database Issues 302

Distributed Systems (Scale Out) 303

Database Sharding 303

Understanding Redundancy 304

Using Monitoring 304

Understanding Software Design 305

Language Choice 307

Versioning 307

OpenSocial Performance Tuning 308

Minimizing the Number of HTTP Requests 308

Batching Multiple Requests 308

Using OpenSocial AppData as a Container Cache 309

Reducing the Number of DNS Lookups 309

Reducing the Number of Files 309

Turning on the Persistence Feature in a Web Server 309

Compressing Content Using GZIP 310

‘‘Minifying” JavaScript 310

Using CSS in a Header 310

Locating JavaScript at the Bottom 311

Caching versus Requests for External Files (JavaScript, CSS) 311

Flushing a Server Response 311

Monitoring Client Code Performance 311

Preloading OpenSocial Content 313

Achieving Good Load Times 314

Using OpenSocial get from Cache 314

Using CSS Image Sprites 314

Using Analytics 314

Google Analytics 315

Yahoo! Web Analytics 317

Sometrics 318

Social Network-Provided 318

Using Scalable User Interface Design 318

Making the Most of User/System Support 319

xiv

Contents

Monetization 320

Advertising 320

Affiliate Programs 321

Partnering 322

Virtual Goods and Virtual Currency 322

Real Goods and Micropayments/Micro-Transactions 323

Monetization Case Studies 323

Summary 325

Chapter 9: OpenSocial Templates, Markup, and Emerging Technologies 325

OpenSocial Templates Standard 325

Requiring a Feature 326

Understanding Basic Template Construction and Use 327

Naming Templates 328

Using Expressions in Templates 329

Using Variables and Passing Data to a Template 330

Calling Templates with Parameters 331

Using the repeat Attribute for Looping 332

Using Conditional Tests 332

Localization with Templates 332

Using a Separate Definition File for Templates 333

OpenSocial Markup Language 334

OpenSocial Data Pipelining 345

OpenSocial Template Examples 350

OpenSocial Proxied Content 352

OpenSocial Client Libraries 353

Yahoo! Open Strategy 353

Y!OS Architecture 354

Yahoo! User Profiles 355

Yahoo! User Updates 355

Yahoo! Applications (YAP) 356

YAP Application Development Steps 360

YAP OpenSocial Application Development 361

Yahoo! Query Language 364

Understanding the Yahoo! User Interface (YUI) 365

Using Yahoo! Markup Language (YML) 365

Y!OS Application Examples 366

iWidgets 367

Zembly 368

Understanding the Zembly Application Structure 369

Understanding a Zembly Service 370

Understanding a Zembly Widget 371

xv

Contents

Understanding a Zembly Snippet 371

Understanding a Zembly Key Chain 371

Creating an OpenSocial Application in Zembly 371

Publishing an Application 373

Creating Your Own Service 373

Summary 374

Index 375

xvi

I n t roduc t ion

OpenSocial is a new and exciting platform that allows you to create and deploy social networking appli-
cations on multiple networks, including MySpace, hi5, imeem, Friendster, Netlog, orkut, and more. It
is an alternative to the single-container Facebook-only API used by Facebook. This book teaches you
step by step how to create viral and engaging social network applications using OpenSocial. Also dis-
cussed are front-end and back-end issues, how to make money with social network applications, and
marketing strategies. This book also features new emerging technologies that let you ‘‘mash/mix’’ a
social application.

Who This Book Is For
The primary target audience of this book is programmers interested in state-of-the-art social network
programming with OpenSocial. While a brief introduction to JavaScript is provided, some familiarity
with it and Web development is ideal. The parts of this book dealing with a discussion of social applica-
tions and emerging technologies are appropriate for the broader audience of tech-savvy social network
users who want to easily make their own applications.

What This Book Covers
This book gives a programmer a well-rounded education in the creation of applications for the most
popular social networks using OpenSocial. What sets this book apart from others in social network
application development is that it shows you how to develop applications for more than one platform,
featuring OpenSocial in a ‘‘write once, deploy to many social networks’’ fashion. In addition, the book
features a discussion of how to make viral, social applications, and discusses issues surrounding both
front-end and back-end needs. Finally, this book is unique in that it also includes a discussion of some
emerging platforms that allow even non-programmers to create applications.

Some of the highlights of this book include the following:

Learning the OpenSocial API

Understanding the OpenSocial architecture, including both client (JavaScript API) and server
(RESTful) APIs

Learning how to develop OpenSocial applications (including deployment on multiple platforms)

Learning about front-end and back-end solutions

Discovering marketing and monetization ideas

Learning about emerging technologies

Introduction

How This Book Is Structured
Following is a breakdown of the contents of this book:

Chapter 1: Social Network Programming — This chapter provides an overview of some of the
most popular social network platforms from a user’s perspective. Next, the chapter discusses
what a social network application is, and how applications can be found in different platforms
and controlled. This chapter also provides an overview of some of the most popular techniques
used in creating both ‘‘social’’ and ‘‘viral’’ applications. Tips and tricks from industry experts are
provided.

Chapter 2: Introduction to OpenSocial — This chapter discusses OpenSocial as an open API
for social network development that is meant for use in multiple social network platforms. This
chapter also discusses the basic anatomy (architecture) of OpenSocial. Here, you will also learn
about OpenSocial data formats. The chapter concludes with an examination of how to deploy it
on multiple containers (social networks).

Chapter 3: Gadget XML and Gadget API — This chapter provides an examination of the Gadget
XML and Gadget API specifications.

Chapter 4: OpenSocial API — This chapter provides an in-depth discussion of the OpenSocial
JavaScript API, with numerous code samples.

Chapter 5: OpenSocial RESTful API — This chapter examines the new OpenSocial RESTful API,
which allows server-side programs to access OpenSocial data directly.

Chapter 6: Programming Fundamentals — This chapter examines some of the fundamental con-
cepts you should know when working with an OpenSocial application.

Chapter 7: Sample Applications — This chapter shows how to create applications that feature
different social hooks.

Chapter 8: Performance, Scalability, and Monetization — This chapter discusses scalability,
and provides tips on maximizing this important characteristic of OpenSocial applications. The
discussion examines the inner components making up an application, as well as a variety of
available hosting solutions. The chapter examines how to fine-tune applications for better per-
formance, as well as how to maximize the benefits of a scalable design. The chapter concludes
with a look at how to use your application to make money.

Chapter 9: OpenSocial Templates, Markup, and Emerging Technologies — This chapter exam-
ines the OpenSocial Templates standard, OpenSocial proxied content, OpenSocial client libraries,
and other emerging technologies.

What You Need to Use This Book
This book assumes that you are a user of social networks and have an account on one or more networks
(such as MySpace or hi5). Having an understanding of JavaScript and basic Web development technolo-
gies is ideal. Finally, as described in the book, to create and deploy your own application, you will need
an account on an appropriate server.

Conventions
To help you get the most from the text and keep track of what’s happening, a number of conventions are
used throughout the book.

xviii

www.allitebooks.com

http://www.allitebooks.org

Introduction

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

New terms and important words are highlighted like this when they are introduced.

Keyboard strokes are shown like this: Ctrl+A.

Filenames, URLs, and code within the text are shown like this: persistence.properties.

Code is shown in two different ways:

New and important code is highlighted in code examples with a gray background.

The gray highlighting is not used for code that’s less important in the
present context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for downloading at http://www.wrox.com. Once at the site, simply locate the book’s title (either by using
the Search box, or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-44222-7.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.aspx
to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books (such as a spelling mistake
or faulty piece of code), we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration and, at the same time, you will be helping us provide even
higher-quality information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
(including links to each book’s errata) is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot ‘‘your’’ error on the Book Errata page, go to www.wrox.com/contact/techsupport

.shtml and complete the form there to send us the error you have found. We’ll check the information

xix

Introduction

and, if appropriate, post a message to the book’s errata page, and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies, as well as to interact
with other readers and technology users. The forums offer a subscription feature to email you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, as well as your fellow readers, are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use, and click Agree.

3. Complete the required information to join, as well as provide any optional information you
wish, and click Submit.

4. You will receive an email with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the ‘‘Subscribe to this Forum’’ icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xx

Social Network
Programming

The most recent explosive growth on the World Wide Web (WWW) is social networking. Social net-
working allows you to make and connect to friends in unique and fun ways, in what are known
as build communities. Consider the explosive growth of social networks such as MySpace and Face-
book in the United States. This new paradigm of Web use is taking hold not only in the U.S., but
also worldwide. Social networks are considered the new interface, the new transaction process of
the WWW in large part because of the concept behind the word ‘‘social,’’ and its implementation
through the development and use of social network applications. This book provides you with the
skills necessary to create dynamic, viral, engaging applications for multiple platforms.

This book provides the programmer and (in the case of mash-up and authoring technologies) the
casual or beginning tech-savvy person with the necessary knowledge to enable them to create their
own social network applications.

Not all social networks allow third-party organizations or individuals to create social network
applications. This capability really emerged with the Facebook API, which is why you see so
many applications on Facebook.

Most recently, a new standard has emerged called OpenSocial. It was spear-headed by Google to be
an Open Source multi-container (network) solution. It was explicitly created to allow developers to
create applications that could be deployed on multiple social networks (containers), unlike the pre-
vious Facebook-only API. This is a powerful idea, because it provides the capability to create once
and deploy to many. OpenSocial has the added advantage of being Open Source, which enables
developers to take lead roles in how it will evolve. Many of the most popular social networks such
as MySpace, hi5, Friendster, and others, are now supporting OpenSocial as the standard for appli-
cation development. New social networks are signing on rapidly. New OpenSocial applications are
being generated for these containers every day.

To create successful social networking applications, a developer must understand how each
social network is run, and how users utilize these networks and their applications. This chapter

Chapter 1: Social Network Programming

reviews a number of OpenSocial container networks from a user’s perspective. These interfaces
can (and do) change, and what is shown in this discussion reflects the state as of this writing.
However, even with changes, you will notice many of the same utilities and similar user interface (UI)
features.

This chapter also examines good application goals, and shows you some application trends. You will
learn about the most effective viral channels and application features. Later in this chapter, you will learn
about marketing strategies and the important topic of user retention. This chapter concludes with some
tips for good application development.

Social Network Platforms
Today, there are many social networks, and more are being created every day. The biggest players change
frequently, depending on the country. Following are a few of the most popular social networks:

MySpace

hi5

orkut

Friendster

imeem

Freebar

Netlog

Linkedin

Facebook

While many of these networks are general, some have targeted audiences. For example, LinkedIn is used
mostly for professional networking. imeem is targeted (centered?) around music, artists, producers, and
consumers.

Now, let’s take a brief look at some of the most popular social networks.

MySpace
MySpace is one of the earliest and most successful social networks in existence, often billed as the most
popular social network. It has been around since 2003/2004, and its user demographics include a large
percentage of U.S. teenagers. Fox Interactive Media has owned MySpace since 2005.

The Internet marketing research firm, comScore, compiles and provides marketing data and services to
many of the largest Internet-based companies. In the United States, Fox is ranked fifth, above Facebook’s
number 16 in comScore’s measure of the number of unique visitors. In terms of OpenSocial, MySpace was
one of the initial launch partners, and offered its MySpace Developer Platform that supported OpenSocial
in 2007. For many English-based applications, you will want to deploy your OpenSocial application on
MySpace because of the sheer size of the potential audience.

Figure 1-1 shows the main interface, referred to in OpenSocial as the ‘‘home’’ view. This is seen by a typ-
ical MySpace user and consists of an upper navigation bar, followed by three vertical sections populated

2

Chapter 1: Social Network Programming

with boxed areas, each containing specific utilities. The left column is dominated by an image of the user
and details about the user, followed by a listing of currently installed applications. The middle column
contains MySpace-controlled utilities such as ‘‘Status and Mood’’ (both yours and your friends’), ‘‘Friend
Updates’’ (what your friends are doing), ‘‘Bulletin Space,’’ and ‘‘Friend Spaces’’ (listing of friends). The
far right column on the main interface displays installed applications running in this ‘‘home’’ view. You
have access to some of these items through OpenSocial. For example, OpenSocial allows an application to
get the current status of a person. Knowing where and how users on a network might use this feature can
be important for your application. Becoming intimately familiar with a network from a user’s perspective
is critical.

Figure 1-1: MySpace main user interface ‘‘‘‘home’’ view’’

The main MySpace navigation bar (which remains on most pages) contains the following links:

Home takes you to the main (’’home’’) view shown in Figure 1-1.

Mail takes you to the interface that lets you send and receive messages with others on MySpace

Profile contains the information the user chooses to ‘‘share’’ with friends and others on the net-
work. The ‘‘Tom’’ user profile is provided to everyone as a friend when you join MySpace.

3

Chapter 1: Social Network Programming

Friends shows both current friends and ways to find new friends.

Music shows media pages delivered by MySpace (much like the media you see at the Yahoo!
Web site).

More displays a series of MySpace-sponsored applications, as shown in Figure 1-2.

Figure 1-2: More applications

sponsored by MySpace

As users add more information, applications, and friends, their profiles grow in size. But, regardless
of the amount, the information is divided into categories showing information about the user on the
left-hand side of the profile page (such as interests, details, schools, networking, and so on). On the right
side of the profile page are categories for Blurbs, Friends’ Comments, and Friend Space. Also featured on
the profile are user-added applications that are deployed to run in the ‘‘profile’’ view. When users decide
to add an application, they can determine if it appears in their profile or not.

Later in this chapter, you will learn about the size limitations of applications on different views for all of
the social networks, including MySpace. It is important to keep these restrictions in mind when develop-
ing your application.

4

Chapter 1: Social Network Programming

hi5
Launched in 2003, hi5 is one of the world’s largest social networks, ranked as a top 20 Web site globally,
and the number 1 social network in 25 countries across Latin America, Europe, Asia, and Africa. Accord-
ing to comScore, more than 56 million individuals every month visit hi5, which is currently available in
27 language options. Recently, hi5 experienced one of the fastest growth rates of social networks. hi5 is a
privately held company, headquartered in San Francisco, California.

Figure 1-3 shows the main interface (or ‘‘home’’ view) seen by a typical hi5 user. Note that this interface
consists of an upper navigation bar, as well as three vertical sections populated with boxed areas, each
containing specific utilities.

Figure 1-3: hi5 main user interface (‘‘home’’ view)

The main navigation bar that appears on most pages seen by the user has links for Home (home view),
Profile (profile view), Friends (listing of friends), Messages, and Groups (user and friend’s groups sub-
scribed to). The left column is dominated by an image of and details about the user. The middle column
contains such hi5-controlled utilities as ‘‘Find Friends.’’ The far-right column features a list of installed
applications.

As shown in Figure 1-4, a user profile page has a secondary navigation bar that provides links to elements
such as Profile (profile info), Photos (photo albums), Scrapbook (where you and your friends can make
postings), Journal (where you can make journal entries and share with friends), Groups (that is, topical
groups of which users can be members), Friends (that is, a list of a user’s friends), Developer (this is
present if the user has registered as a developer, and links to main development page), and Applications
(currently installed applications, a link to a gallery, featured applications, and so on). Underneath this
navigation bar is the current user profile data, with the current applications installed that run in ‘‘profile’’
view appearing beneath the navigation bar.

5

Chapter 1: Social Network Programming

Figure 1-4: Profile in hi5

6

Chapter 1: Social Network Programming

Of particular interest in a user’s hi5 profile is the Applications link on the navigation bar. Clicking this
link takes you to a page that first displays hi5-featured applications, followed by a list of applications
currently installed. Featured applications can be determined by factors such as applications most recently
installed by a user’s friends.

orkut
orkut was founded in 2004 and, as of this writing, has more than 50 communities, with more than 37
million total members and nearly 1.3 million daily visitors. The majority of users are from Brazil, followed
by smaller minorities in India and United States, as well as (to a much lesser degree) a handful of other
countries. The large majority of users are in the age bracket of 18-30 years old.

Figure 1-5 shows the main interface (‘‘home’’ view) that consists of an upper navigation bar, and, under-
neath the navigation bar, three vertical sections populated with boxed areas that contain links to specific
utilities.

Figure 1-5: orkut ‘‘home’’ page

The main navigation bar provides links for Home (home view), Profile (profile view), Scrapbook (user
postings such as twitters or blogs), Friends (listing of friends), and Communities (user-joined communi-
ties).

The left column on the ‘‘home’’ page shows an image of the user, followed by details about the user. A
list of currently installed applications appears below the user profile information. The middle column
provides information about the user’s status, people who have visited the user’s profile, and more. The
right column contains a list of friends and communities a user belongs to.

7

Chapter 1: Social Network Programming

Friendster
Launched in 2002, Friendster was one of the earliest social networks, appearing on the scene even before
MySpace. With more than 80 million members worldwide, Friendster is a leading global online social net-
work that is popular in Asia. Like hi5, Friendster is experiencing a good growth rate. In 2008, Friendster
announced plans for users in some Asian countries to be eligible to subscribe to ‘‘Friendster Text Alerts,’’
which are Short Message Service (SMS) text messages users can receive on mobile phones to notify them
of friend requests, new messages, and more. This is an intriguing possible new arena of contact for social
networking applications. Friendster is headquartered in San Francisco, California.

Figure 1-6 shows the main interface (‘‘home’’ view) of Friendster that consists of an upper navigation
bar, and, underneath the navigation bar, two vertical sections populated with areas that contain links to
specific utilities.

Figure 1-6: Friendster’s main interface, ‘‘home’’ view

The main navigation bar that appears on most pages seen by the user has links for Home (home view),
My Profile (profile view), My Apps (currently installed applications), My Connections (friends, groups,
and so on), Explore (people, photos, video, and so on), and Search.

8

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: Social Network Programming

The large left column below the navigation bar shows the user’s image, followed by information about
Friends, Groups, and so on. The smaller right column also features My Friends, Bulletins, and some
advertising.

imeem
Launched in 2004, imeem is an example of a targeted social network, meaning that it has a specific interest
or targeted audience. In this case, imeem is focused on providing users with the capability to interact by
watching, posting, and sharing all kinds of digital media, particularly music. Unlike YouTube (which
concentrates on the sharing of video), imeem has the look and feel of ‘‘traditional’’ social networks like
MySpace, but is focused around music and media. Like all of the other social networks mentioned thus
far, imeem generates revenue through advertising, but also generates income by providing the capability
for users to subscribe to additional services. imeem has reported more than 25 million visitors per month,
with more than 65,000 new users every day. imeem is a privately held company, headquartered in San
Francisco, California.

As of this writing, imeem was allowing applications only to run in a sandbox (meaning that the appli-
cations are not available for installation and use by general users). However, because imeem is one of
the larger ‘‘targeted’’ social networks and provides different challenges for application development,
it is worth mentioning here. imeem does have plans to deploy live in the near future, and details will
be posted on imeem’s Web site (www.imeem.com). imeem also currently offers a REST-like Web service
that developers may use to access some data. Currently, imeem supports OpenSocial 0.7, but, with the
RESTful API that is part of OpenSocial 0.8, it is expected that this functionality will be subsumed by
OpenSocial 0.8 when imeem supports it.

Figure 1-7 shows imeem’s main interface (‘‘home’’ view) that consists of an upper main navigation bar,
with a second navigation bar positioned directly below. Three vertical sections underneath the navigation
bars are populated with boxed areas that contain specific utilities.

The main navigation bar that appears on most pages seen by the user has links for Home (home view),
Music, Video, Playlists, and Community. The second menu bar changes with the page being viewed. For
example, on the Home page shown in Figure 1-7, the second menu bar deals with user-related issues
such as messages and uploads of media. A user profile page, on the other hand, would have a secondary
navigation bar with links for elements such as Profile (profile info), Playlists, Music, Video, Photos,
Games, Blog, Friends, Groups, and, in the case of developers, Applications.

Unlike the other social networks, there is no discernible trend to the organization of the utilities in the
three columns appearing below imeem’s navigation bars. However, the columns feature similar kinds of
utilities, such as Friend Status Updates, Friend Updates, and information about the user being featured
on the page. In addition to these, there are media-related utilities such as ‘‘Media Tracker’’ and ‘‘Artists
I am a Fan of.’’ imeem includes a number of media-related and music-related utilities for such tasks as
the creation and sharing of music playlists. Applications that use this kind of social media would be
well-suited to imeem users.

Freebar
A number of predominately non-English or foreign-based social networks such as IDtail, YiQi, Hyves,
Mail.ru, and Freebar are now OpenSocial containers. Freebar, a social network in Italy, is a newer
player. It sprang out of a local Web community site focused regionally on Naples, Italy. Freebar now has

9

Chapter 1: Social Network Programming

approximately 500,000 members, predominately from Italy. Freebar is self-described as being
youth-oriented, and has physical presence at youth-oriented events in Italy. As one of the first supporters
of OpenSocial in Europe, Freebar is hoping to attract developers and new users alike with interesting
application offers. Even though Freebar is a smaller beginning network, application developers may take
advantage of Freebar’s new evolution in an emerging market.

Figure 1-7: imeem’s home page

Figure 1-8 shows Freebar’s main interface (‘‘home’’ view) that primarily consists of an upper naviga-
tion bar. A unique feature of Freebar is a list of people who have visited the user profile, called the

10

Chapter 1: Social Network Programming

user’s ‘‘space.’’ This is similar to a feature seen on the LinkedIn professional social network. The main
navigation bar takes the user to My.Space (the user profile page), Chat, Video, Forums, and Friends.

Figure 1-8: Freebar’s main interface (the ‘‘home’’ view)

The user’s profile page can be accessed by clicking on the My.Space link. The other pages are very similar
in nature (like the Friends page) to what you see in other networks.

Netlog
Netlog is one of the leading European social networks. Netlog is self-described as being specifically
targeted at European youth. It has been developed by Netlog NV, based in Ghent, Belgium. Netlog is
currently available in 20 languages, and has more than 35 million members throughout Europe. Because
of the ethnic diversity in Europe, Netlog supports many different languages, as evidenced on the opening
page shown to new visitors to the site. As shown in Figure 1-9, this page queries the visitor for a preferred
language. Netlog is newer to OpenSocial, and, as of this writing, has recently begun its support for
applications. Because of its large user base, it will likely become a desirable container for application
deployment.

Figure 1-10 shows the main interface for a user on Netlog. At the top of the page is a main naviga-
tion bar, with a secondary bar present on most main pages. The main navigation bar includes links to
Explore (media, events, applications), Manage (your info, your profile, your applications, and so on),
Logs (notifications and news about your friends, clans/groups, and so on), Messages (a mail Inbox),
Friends (requests, add friends, and so on), and Settings (such as privacy, and so on). Netlog relies heavily
on the secondary navigation bars, where the user clicks on the Application’s link once at the main user’s
profile page in order to see applications being used.

The column layout appearing below these navigation bars includes such familiar utilities as Video, Blogs,
News, New Users, and so on.

11

Chapter 1: Social Network Programming

Yahoo!
As one of the largest Web companies, Yahoo! has been around since the mid-1990s. It has recently
announced the creation of the Yahoo! Open strategy, called Y!OS. This opens up Yahoo!’s social infras-
tructure with a set of unifying APIs for social application development. Part of this is a unifying experi-
ence for the user, much like a social network. Following are some of the services that Yahoo! is integrating
under Y!OS:

Yahoo! Music

Flickr

Yahoo! Search (search monkey)

del.icio.us

Yahoo! Shopping

YUI (Yahoo! User Interface)

Yahoo! Maps

Yahoo! Messenger

Yahoo! Travel

Yahoo! Answers

Yahoo! Mail

Yahoo! Blueprint Platform (Mobile applications)

Yahoo! Contacts (Yahoo! Address book)

Figure 1-9: Netlog’s entrance page for new users,

querying the user for a language preference

12

Chapter 1: Social Network Programming

Figure 1-10: Netlog’s main interface page

13

Chapter 1: Social Network Programming

Extending to 233 countries, Yahoo! has more than 500 million monthly users, and 180 billion monthly
page views. These are impressive numbers for an application developer to possibly leverage.

A main feature of Y!OS for the application developer is the Yahoo! Application Platform called YAP.
Chapter 9 provides more details on this and other emerging technologies.

Other Networks
Other networks are involved with OpenSocial, many of which are in the beginning stages of OpenSocial
support and are not yet live. The OpenSocial Web site (http://code.google.com/apis/opensocial
/gettingstarted.html) provides a current listing of all the supporting networks. Now that you are
familiar with available social networks on the Web, let’s get a broad perspective of applications that can
be developed for deployment on these containers.

Social Network Applications
A social network application is, as the name suggests, an application created and deployed on a social net-
work, often by third-party developers. You may see this term in reference to applications that, while not
on a social network, have social interactions. This book refers to these more generically as social applica-
tions. Some of the existing APIs used to create social interactions outside of a pure social network such as
Google Friend Connect are not covered in this book. Chapter 9 discusses the Yahoo! Open Strategy (Y!OS)
platform that can be used outside of a social network. In addition, OpenSocial REST (a topic examined
later in the book) can be used outside of the social network application. Your imagination is the limit for
what a social network application can do. Many different kinds of applications exist today. If you were to
browse a list of available applications, you most likely would see categories such as Entertainment/Fun,
Shopping, Sports, Financial, Travel, and more. These types of categories are not standardized between
networks. There are thousands of applications available on MySpace and hi5, and, within each category,
there may be many kinds of applications.

For example, consider the category of Money/Finance. In this category, you might see applications that
track current stock prices, help you to maintain your personal finances, help you trade stock with others,
help you create fictional portfolios, or help you loan money to friends.

In the category of Entertainment, you would most likely see many diverse applications. There are applica-
tions such as iLike that rates what music/media you like, and shares this with friends. Another example,
‘‘Kiss’’ by KlickNation, lets you virtually ‘‘kiss’’ users of the application.

The goals of an application can be varied. In the beginning stages of social network application develop-
ment, many of the applications were designed for a general audience, and simple (if not often silly) in
nature. Today, the trend seems to be leaning toward applications that are not meant to solely be popular
(or viral), but also have retention and long-term use with more complex and longer interactions. Applica-
tions involving music/media, business, and education are examples of this mold. One example currently
under development is an application named ‘‘USpeak,’’ that is being created for learning ‘‘social’’ foreign
languages.

A social application may be considered at its best when it is literally ‘‘social.’’ This means the application
has and encourages interaction between fellow friends and users of the application. It may also use social
data. There are many ways that an application can achieve this, as will be discussed later in this chapter.

14

Chapter 1: Social Network Programming

While it is true you could create a social network application that has no social interactions, it would not
really be social. Throughout this book, you will learn how to make truly social applications for the most
popular social networks.

Let’s lay some groundwork, however, by examining how users find and install applications, as well as
how social applications are controlled by networks.

Application Discovery
How users can find and then install your application is important. To a large extent, each network con-
trols this. On most networks, ‘‘finding’’ an application can be done via the following operations:

Browsing a subject/category index

Searching through the use of keywords

Being invited by a friend

Viewing application on a user’s profile

Using a feed posting

Using network-sponsored applications

Using a New Application index

Using a Most Popular Application index

Using direct marketing (such as through email)

Using Web site postings

Using cross-application marketing

Using paid advertisements

Using purchased installments

Figure 1-11 shows a browsing index on hi5. Note that each network will have its own categorizations.
Although there is no standard, networks do share many similar categories. When you create and register
your application with a network, you are usually able to signify what category (or categories) your
application belongs to. As you will see in Chapter 2, you are often limited to a few selections.

You may search for an application by using a simple search interface that allows you to enter a search
term. Ranking of search results is done differently for each network; Figure 1-12 shows an example from
hi5. The search algorithms take into account metrics such as the number of active (daily) users, the num-
ber of installs, keyword matching, recent application updates, and so on, when returning search results.

In addition to the category index, some networks offer ‘‘popular’’ or ‘‘new application’’ listings in search
return lists. Popularity is often determined by the number of active users. New applications are typically
listed with more recent appearing first, and, after some network-specific amount of time, being removed
from the list.

Users are often introduced to a new application through an invitation by a friend. Most networks and
applications allow users to create a personalized message with the invitation. Application developers
should keep this personalization feature in mind. Another well-used feature of friend invitations is

15

Chapter 1: Social Network Programming

the creation of a graphic depicting the friend, or, better yet, something personalized to send with the
invitation. Anything you can do to entice the user to install your application is a good idea.

Figure 1-11: hi5

browsing index

Notifications of what your friend is doing offer another way to spread the word about a new application.
This is one of the more intriguing ways to introduce new users to your application. Think of it as using
‘‘peer pressure.’’ What teenager doesn’t want to use an application when he or she sees friends using
it? Let’s face it, this works even with non-teenagers. The posting of notifications about friend usage of
an application is a great way to use feeds to market the application. Some networks even have built-in
facilities to allow users to invite friends to use any of the applications they have installed.

A new trend is for networks to sponsor applications at the top of the search return list (as you some-
times see when using Yahoo! and Google search engines). Having your work as a developer become a
network-sponsored application is another way to gain exposure for your efforts. Where and how spon-
sored applications appear on each network is different. They can appear in news feeds and search results.
They can also appear as cross-application advertising — an arrangement under which you are not
paying the network, but instead the application owner or the advertising provider the application has
registered with.

Later in this chapter, you will learn about some options for this and other kinds of marketing for the
discovery of applications.

Application Installation
On most networks, a user must actively choose to install an application before he or she can use it. Direct
application contact by a non-user of the application is generally not allowed on social networks. There

16

Chapter 1: Social Network Programming

can be exceptions to this. For example, orkut currently allows users to land on a ‘‘canvas’’ page of a
non-installed application and view it.

Figure 1-12: Results for searching on ‘‘kiss’’ for applications on hi5

Like many modern Web applications, the installation of a social network application is relatively painless.
Because social networks are often very concerned about the user’s level of trust, installation usually
involves a stage where permissions are asked from the user to allow the application to ‘‘do’’ or ‘‘access’’
various elements related to the user’s account. These typically include where the application appears on
the user’s pages, and how the application can contact the user. These options can be different on each
social network.

After an application has been added by a user, it will appear in the user’s pages. That appearance is
controlled by the social network platform, as well as selected options the user made during application
installation. Let’s take a look at a few popular social networks, and how applications appear within them.

Application Appearance
Once an application is installed, it can appear in multiple places in a user’s account.. The location of an
application within the interface is different on each social network, and can possibly be influenced by user

17

Chapter 1: Social Network Programming

permission/account settings. As part of its ‘‘GUI design,’’ a network will often designate an area where
installed applications are listed for a user. Figure 1-13 and Figure 1-14 show how the iLike application
is displayed in different views on a MySpace user’s account. Typically, when creating an application,
you can associate with it a logo that also appears in the user pages. Let’s take a look at how a number of
popular networks designate application appearance.

Figure 1-13: iLike application listed in ‘‘canvas’’ view on MySpace

Figure 1-14: iLike application

listed ‘‘profile’’ view on MySpace

18

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: Social Network Programming

OpenSocial applications can appear in three interfaces (called views) on a social network user’s pages,
including the following:

‘‘Canvas’’ view — This view is defined as a ‘‘full-screen’’ running of an application. Of course, it
will be still inside of the wrapper of the social network interface, but it takes up a large percent-
age of the interface.

‘‘Home’’ view — This view is when the application runs on the main/home interface the user
sees typically when logging into the network. Most often, this will be reduced in size compared
to the ‘‘canvas’’ view.

‘‘Profile’’view — This is the view when the application is running on the user’s profile page. Like
the ‘‘home’’ view, this is typically some smaller percentage of this page.

While these are the most common views, OpenSocial allows container’s to create container-specific views.
Table 1-1 shows the size restrictions for different views for a number of the OpenSocial social networks.
Exceptions and additions to these three views are noted.

Check the container’s developer documentation for possible changes in these numbers. Chapter 2 shows
how to create an OpenSocial application that deploys to different views (pages).

Table 1-1: Application Size Specifications for Different Views on Different Networks

Social Network ‘‘Home’’ View ‘‘Canvas’’ View ‘‘Profile’’ View Other

MySpace Width = 290
pixels

Width = 960
pixels

Left-hand
column: Width =

300 pixels; Height
= you set*

Preview/Profile
page

Height = you set* Height = you set* Right-hand
column: Width =

430 pixels; Height
= you set*

Directory Listing

hi5 Not supported Width = 956
pixels

Width = 456
pixels

Preview view:
Width = 620
pixels

Height = you set Height = you set Height = you set

orkut Not supported Width = 835
pixels

Width = 543
pixels

‘‘Preview’’ view:
400 pixels by 400
pixels maximum
(currently uses a
screen shot)

Height = 600
pixels

Height = 280
pixels up to 500
pixels

Directory Listing

Continued

19

Chapter 1: Social Network Programming

Table 1-1: Application Size Specifications for Different Views on Different Networks
(continued)

Social Network ‘‘Home’’ View ‘‘Canvas’’ View ‘‘Profile’’ View Other

Friendster Not supported Not specified;
default is 500
pixels; suggested
100%

Not specified;
suggested 100%

imeem Not supported Width = 865
pixels

Width = 550
pixels

Preview view:
Width = 635
pixels

Height = 2000
pixels

Height = 2000
pixels

Height = 2000
pixels

Freebar Not supported Width = 1002
pixels

Not supported;
future support.

Height = you set

Netlog Not supported Width = 1000
pixels

Width = 490
pixels

∗Recommendations are given on the container’s developer documentation.

Let’s take a look at a few specific networks, and how the appearance of applications is handled in each.

MySpace Application Appearance

An application appears in the different locations in MySpace user pages. When a user first logs in to
the user’s home page (the ‘‘home’’ view), the page displays a list of all applications. For MySpace, the
application can appear directly as a ‘‘box’’ space in the user’s profile, as seen with the iLike application in
the lower-left of Figure 1-15. As you can see, this can take up a lot of real estate, which means that friends
and others will see the application immediately when viewing this user’s profile. The user typically has
the capability to simply remove the application or hide it.

A user can see a brief description of your application in the MySpace directory listing. This brief descrip-
tion can launch to the application’s profile. When you create an application on MySpace, it has its own
profile associated with it. This is sometimes called the ‘‘preview’’ view in other containers. This is where
a user will find out information about your application. You can customize the look of your profile, but
this is what the user will see before installing your application. This application profile is where you
might have user forums or reviews/comments about your application. Another item on your applica-
tion’s profile is ‘‘friends lists.’’ No size constraints are published on MySpace, and the profile may take
up the width and remaining length of the page.

An application may run on an area of the ‘‘home’’ view called the User Home Page Module. It is located
in a column and is limited to a smaller width (300 pixels, with height determined by developer, as
reflected in Table 1-1). You can use this application to serve simply as a link to a ‘‘canvas’’-sized appli-
cation, or you can choose to run a version in this smaller space. This space is more ‘‘inward facing,’’

20

Chapter 1: Social Network Programming

meaning that it is seen only by the user. Hence, it would be ideal for applications that are more utilitarian
or communications-oriented.

Figure 1-15: The iLike music application running on the lower-left column of the user’s profile

21

Chapter 1: Social Network Programming

An application launched on MySpace in ‘‘canvas’’ view is given a large space (960 pixels wide, as indi-
cated in Table 1-1). The height of an application is up to you, but MySpace recommends not going beyond
the page length. In practice, many applications require users to vertically scroll (sometimes because of
poor design).

In ‘‘profile’’ view, applications can appear in either the left or right column. Applications in the left
column are 300 pixels wide, and in the right column are 430 pixels wide, with the height up to the devel-
oper. MySpace’s determination of which profile location (left or right) an application will appear in has
changed over time.

Most applications take advantage of appearing on multiple views. This results in really long ‘‘home’’
and ‘‘profile’’ pages that can annoy users. As you add more and more applications, they may get lost
in an ‘‘overlong’’ mess. Users have the option of removing applications from all or some of their pages
to control this clutter. It seems there is no self-censoring when it comes to reducing the number of page
views an application appears on. Recently, MySpace, orkut, and others have tested out limiting the
number of applications that appear in ‘‘home’’ and ‘‘profile’’ views. For example, MySpace (for a brief
time) tried limiting the number of applications listed on the ‘‘home’’ view. In some cases, these changes
have been revoked, and other containers are still experimenting with this.

hi5 Application Appearance

As shown in Figure 1-16, hi5 lists currently installed applications while in ‘‘home’’ view, but the applica-
tions cannot be run from this view. hi5 only allows applications to run in ‘‘profile’’ and ‘‘canvas’’ views.
As shown in Table 1-1, the ‘‘canvas’’ view is defined to be 956 pixels wide, with the height up to the
discretion of the developer. The profile view has a width of 456 pixels, with the height again determined
by the developer.

Figure 1-16: hi5 Application listing only on ‘‘home’’ view

hi5 has also defined a ‘‘preview’’ view/page. Similar to the application profile page in MySpace, this is
a page that allows potential users of an application to find out more about it. Included with the listing
of the application on this page is a preview link that a user may click to yield the preview view. The
preview page is 620 pixels wide, with the height being determined by the developer. However, it is best
to stay within page length.

22

Chapter 1: Social Network Programming

orkut Application Appearance

As shown in Figure 1-17, Orkut gives a list of currently installed applications when the user is in the
‘‘home’’ view. However, orkut only allows applications to run in the ‘‘profile’’ and ‘‘canvas’’ views.
As shown in Table 1-1, the ‘‘canvas’’ view on orkut is defined to be 835 pixels wide by 600 pixels high
(default). The profile view on orkut is 543 pixels wide by 280 pixels high (default).

Figure 1-17: orkut ‘‘home’’ view only has

application listings

orkut’s application directory provides a concise view of an application using a title, thumbnail image
(120 pixels wide, 60 pixels tall) and brief text description (maximum of 300 characters). Most containers
use the 120 x 60 size for thumbnail images, but a few containers vary from this (for example,. Friendster
at 75 x 75 and MySpace at 64 x 64).

Similar to hi5, orkut also uses a ‘‘preview’’ view/page currently defined as a screen shot. This is a page
that allows potential users of an application to click a link to find out more about application.

Friendster Application Appearance

Unlike many networks, Friendster does not provide a list of user-installed applications from the ‘‘home’’
page. Instead, the user clicks a MyApps link from the main navigation bar to be taken to the MyApps
page, where the installed applications are displayed, as shown in Figure 1-18. The user may click on the
name of an application appearing in this list to run the application in ‘‘canvas’’ view. Also, the user may
click on the Share button to invite others to share the application, or click on the Edit button to change
permissions for the application (including deleting it). Also, on this page, a user can view invitations
from others to use an application, as well as track invitations that have been sent.

If the application has implemented a ‘‘preview’’ view, a View link appears on the listing page, and when
clicked, will yield a short description (and logo) of the application. Friendster also allows applications to
run on a user’s profile. This runs in the left-hand column of the profile page (after user details).

23

Chapter 1: Social Network Programming

Figure 1-18: Friendster’s MyApps page for a user

Table 1-1 provides details for size specifications in all of the various Friendster views.

imeem Application Appearance

imeem is an example of a network that has only sandbox access. This means that only developers can see
and run their applications, which are not yet ‘‘live’’ for general users.

imeem currently has support to run in both the ‘‘canvas’’ and ‘‘profile’’ views. As shown in Table 1-1, the
‘‘canvas’’ view for imeem is defined to be 865 pixels wide and up to 2000 pixels high. The profile view is
550 pixels wide and up to 2000 pixels high.

imeem also supports an ‘‘about page,’’ which is similar to MySpace’s application profile page or the
preview pages found in other networks. This is controlled as the ‘‘preview’’ view in OpenSocial. The size
of this page is 635 pixels wide and up to 2000 pixels high.

Freebar Application Appearance

Currently, the only way to reach applications a user has installed on the Freebar network is through the
‘‘Applications’’ link under the ‘‘Extra’’ box located on a user’s ‘‘home’’ page. This takes you to a page
in ‘‘canvas’’ view, as shown in Figure 1-19. Since Freebar has just recently gone live with its OpenSocial
support, the interface is rather simple. This page lists all applications — those that are installed and
those that are not. The only way to distinguish whether an application has been installed is to look at the
link next to the Application listing. If it says ‘‘View,’’ the application is installed. If it says ‘‘Install,’’ then
the application obviously must be installed. Notice in Figure 1-19 that the first application, ‘‘Billardo,’’ is
not installed, but the ‘‘Ping-Pong’’ application is installed. Clicking on ‘‘View’’ launches a ‘‘canvas’’ view
of the Application.

Netlog Application Appearance

As of the writing of this book, Netlog, is currently in a beta version for applications. Previously, Netlog
only offered sandbox support.

To reach an application listing, you must first click the Explore link from the main navigation bar, which
provides you with a secondary menu under the main Explore link. From this secondary menu, you click

24

Chapter 1: Social Network Programming

Applications, and the resulting screen is divided into divisions for Top and New applications. From this
listing, you can select an application to install.

Figure 1-19: Application listing showing both uninstalled and installed applications on Freebar

Once the application is installed, you can access it by clicking Manage from the main navigation bar, and
then clicking Applications from the secondary menu. From the resulting page shown in Figure 1-20, you
can elect to add the application to the user’s profile.

Control of Applications
In addition to the control of an application imposed by the social network, the user and the developer
also exert control on an application. Each can control different aspects of an application.

Network Control

Social networks limit applications in a number of ways, including the following:

The capability to contact users

The capability to contact non-users

Where an application appears in the interface

Through a myriad of facilities effecting communications and data access

25

Chapter 1: Social Network Programming

Figure 1-20: Netlog’s user’s application page

How this is accomplished is, unfortunately, not uniform, and is specific to the social network. Some-
times these services are even disabled. These controls are among the things that often change with social
networks.

More specifically, the social network can control applications in the following ways:

Controlling options through application setup

Enforcing user-specified permission settings

Using browsing indices and associated keyword searches

Limiting ‘‘canvas’’ screen space

Limiting access to user data

Limiting (or preventing) access to non-user data

Limiting the use of messaging, notifications, and other communication options

Limiting the number of invitations you can send

Enforcing the network’s ‘‘Terms of Use Policy,’’ including those pertaining to language and
objectionable content

Limiting data storage (when provided)

Limiting media access

Limiting client-side technologies

Implementing an approval process for application development and application content/media

Each container is different in how it controls an application. These policies are sometimes not published,
and may often change. Because of this, developers must continually educate themselves on the changes

26

Chapter 1: Social Network Programming

in any network’s application policies. For example, orkut has a limit on activity streams of one update
per day, per application, per user.

The first stage of network control comes in the registration of an application. Commonly, this will include
limitations on the name of the application, logo used, terms of use, information about pages, as well as
the application URL configuration. Chapter 2 provides more detail for different networks.

Placement of an application in browsing indices (as well as placement in returned search results) is
determined differently for each network. Each network has different browsable categories. Among the
attributes that should be considered is the information given at registration time (such as the application
category).

Chapter 4 discusses how different networks support and limit access to social data through the JavaScript
(OpenSocial) API. Besides differences between versions of OpenSocial, the greatest difference is in the
implementation of optional OpenSocial data fields.

Terms of use policies are enforced by each network. How this is done is proprietary for each network.
However, there have been cases of applications being removed because of violations of these policies.
Some of the container rules are motivated by applications that seemingly ‘‘scam’’ users into recommen-
dations and other operations.

Checking the terms of use for applications is critical for any developer, and the terms are unique
to the network platform. For example, the MySpace Web site provides a complete list of
rules for developers that include what an application must do and what it must not do. (See
http://developer.myspace.com/community/myspace/applicationguidelines.aspx for complete
information.)

In addition to Web pages documenting current social network application policies, some social
networks (including MySpace) sponsor a forum on the topic. (For a MySpace example, see
http://developer.myspace.com/Community/forums/45.aspx.) This is a good place to post questions,
or even make requests.

Typically, if an application is in violation of a social network’s terms of use and guidelines for
stated policies, the developer will be notified and have some time to fix the problem. Rules
surrounding notification are different for each network. The social network may also, under
certain conditions, impose certain sanctions on the developer and the application. Again, using
MySpace as an example, specific remedies are outlined for developers to correct violations (see
http://developer.myspace.com/Community/blogs/devteam/archive/2008/08/21/when-good-apps-

go-bad.aspx for complete details.)

Limitations on all forms of communications such as messages, postings to feeds, and notifications are set
for applications, and are network-specific. When this limit is exceeded, further requests are refused until
the limitation (typically an elapsed time period) is no longer true. Unfortunately, these rules do change,
and developer’s must read the network’s current policies on these issues. Each network also limits the
number of invitations an application can send out per user in a fixed amount of time.

Some other forms of network limitation include if and how an application can access network media,
and the amount of data storage given an application (when it exists). Additionally, there can be control
on the kind of output your application is allowed to give.

27

Chapter 1: Social Network Programming

User Control

A user can control applications in the following ways:

Installation and removal

Setting permissions at installation time

Changing permissions

Reporting on application

Upon installation of an application, the user may set the original permissions associated with the applica-
tion. The user may also have the capability to alter these permission settings after installation, as shown
in Figure 1-21. Basic user actions such as installation and removal can be tracked by your application.
This is done through the recently added OpenSocial lifecycle support, which is discussed in more detail
in Chapter 3.

Figure 1-21: A MySpace user’s list of applications, where applications can be

removed, and permissions changed

Users can also influence the success of an application via reporting and voting on it. A user can report
an application to the network for things such as the application not working properly, infringements
on conditions of use, or the use of objectionable material. Each network has policies to investigate these
reports, and network responses can include removal of an application.

28

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: Social Network Programming

Developer Control

Developers control their applications simply by how they code and deploy them. It is interesting to note
that through the simple act of deployment, the developer can determine how the application appears in
a network, and how it is found.

Now that you are familiar with social networks (containers) and have a broad understanding of applica-
tions that can be deployed to these, let drill down a bit to see what distinguishes a good social network
application from one that is not as successful.

Making Applications Social and Viral
Of primary interest to social network application developers is making an application viral and social. A
viral application is one that is ‘‘wildly’’ popular. A distinctive feature of social network applications is that
they can experience an explosive user growth rate in very short time periods. Another kind of application
might take weeks and months to achieve a sizable user base, but a social application can expand its user
base in a matter of days (and sometimes hours). This is exciting, but can also be challenging.

There is no uniform metric for viral growth. It is a relative concept. Regardless of the numerous formulas
that ‘‘experts’’ apply, viral growth is related directly to the user growth rate. Following are some of the
common metrics used in the calculation of viral growth:

Average number of invitations a user will send out in a given time period

Retention rate equals the percentage of users lost (application is uninstalled) in a time period

Capacity equals the total number of potential users (with the maximum being the number of
network members, or it can be less, and based on demographics)

Invite conversion rate equals the percentage of invitees who accept

The reality is that each of these metrics is not constant, but instead each changes over the life of an appli-
cation. Modeling the viral nature of your application involves tracking all of this information from the
birth of the application.

Both new and experienced social network application developers must also answer the question of how
to make their applications social. The goal is to create engaging interactions between users. Interactions
may be between friends or other application users, possibly people outside of the application, or even the
encompassing social network. Interactions can be specific to the function of the application. For example,
in the iLike application, you get to share what you like with other friends and users.

Application Goals
The failure of application development often is the result of not defining and understanding an applica-
tion’s objectives. Following are good goals to consider when developing your application:

Growth

Engagement

29

Chapter 1: Social Network Programming

Good look and feel

Dynamic evolution

Self expression

Social exposure

Relationship building

Real-world problem solving

Let’s take a look at each of these application objectives.

Growth
Growth is defined as building a user base. Without this, your application is dead. Having an application
go viral is often a desired goal. The definition of viral growth should vary greatly by the application
purpose and intended audience. Techniques to achieve this goal are a main focus of this chapter, and
discussed throughout.

Engagement
Engagement is defined as the holding of attention and the participation of an application user with the
application, other users (through the application), or the ‘‘brand’’ of the application. What you want is
early engagement with your application. Across social networks, there is a tendency for a user to try a
new application, and then quickly remove it (or no longer use it). Applications such as these obviously
lack early engagement.

As an application developer, what you must focus on is how you can achieve these different aspects of
engagement early — say, in a 1-minute time period. To make this time period the most effective, you
might consider the following:

Clearly demonstrate purpose of the application

Show appropriately interesting content, tying it to friends and other related groups, if possible.

Make the initial interface simple

On the first interface, allow some form of ‘‘ownership’’/capability of a user to start to use the
application, and customize it to his or her needs

Highlight identity of the application through logo placement

Pay attention to the responsiveness in the loading of the application, and in response to user
interactions

The term ‘‘engagement’’ has been defined in a number of important ways, and may be achieved by
the developer through many different means. Let’s take a quick look the following ways to achieve
engagement:

Distribution

Exposure

Attentiveness

30

Chapter 1: Social Network Programming

Communication

Persuasion

Response

The key to engagement is all about making it relevant to the user.

Distribution

Distribution is an aspect of engagement dealing with the loyalty a user has to an application. This can
be measured by the regularity a user visits. Sometimes this is called the ‘‘stickiness’’ of an application.
Measuring this is important, and there are many tools available to accomplish this, including Google
and Yahoo analytics, as well as sites such as Quantcast (www.quantcast.com). Another way to measure
loyalty is through the concept of subscriptions and renewals, which can be appropriate for some kinds of
applications.

Exposure

One measure of exposure is through ‘‘completion,’’ meaning that a user uses an application to its ‘‘com-
pletion.’’ For example, in a gaming application, this could mean finishing a game. Other measures of
exposure include how long an application is used, and if users recommend it. You should design your
application for increased exposure, which can be accomplished through direction of use, incentives, and
recommendation opportunities. For example, you might offer users ‘‘virtual currency’’ in your appli-
cation if they recommend it to their friends. In the case of direction of use, you might again offer an
incentive if users reach a level of ‘‘play’’ or ‘‘use’’ in the application.

Attentiveness

Attentiveness describes the concentration a user applies with each of his or her senses when using an
application. It also relates to the quality of thought used to think about the information users are pro-
cessing. A direct measure of this, also related to exposure, is how long a user uses an application. For
example, one way that you could increase the attentiveness of your users would be to introduce dynamic
and changing content.

Communication

Communication is a type of engagement where users are actively involved in communicating ‘‘within’’
and ‘‘about’’ the application. Communications ‘‘within’’ the application could include the sending of
media/widgets to others. Communication ‘‘about’’ the application might be sending messages to friends
or others about the application or the use of it. Creating a comment wall or review board are some
options. Other possibilities for communication include pokes, simple gestures, instant messaging, and
direct email.

Persuasion

Persuasion is really an aspect of communication whereby the user of the application is endorsing the
application to friends or others. This could be accomplished directly through messages, or invitations
generated from the application. Indirectly, it might be through the placement of an application on a
user’s profile.

31

Chapter 1: Social Network Programming

Response

Response in this context indicates a direct interaction with the application. This is a measure of active use
(as opposed to inactive observation) of the application. Increased response means increased exposure of
an application, which introduces the important possibility of interactions.

Good Look and Feel
Look and feel describes the main appearance and interactive features in an application’s interface. In social
network applications, you see two basic trends with regard to look and feel: those that look like the
social network interface, and those that do not.

A developer may design an application to look like a social network interface (for example, MySpace
or hi5) to create consistency, potential ease of use, and perhaps greater trustworthiness (because it may
appear to the user as though the social network might ‘‘own’’ this application).

The choice to use a different look from the social network creates a stronger sense of application identity.
This look can be directed toward the targeted audience, and may be more appropriate for the content of
the application.

Dynamic Evolution
Dynamic evolution addresses both the concept of the application experience being interactive (dynamic),
as well as changing over time (evolution). Regardless of the purpose of the application, incorporating
built-in ways for the user to interact is crucial for engagement. Having interchanges that are social in
nature (such as involving friends) is ideal.

A static application (one that does not evolve over time) will often quickly lose its user base. The nature
of the application will sometimes determine the timetable over which changes are made, as well as what
changes are made. Some applications can change weekly, and, in little ways, possibly on a daily basis.
Change can be a result of the changing social graph. Change can result from friends’ actions, new content,
or as a result of altering application functionality. This is discussed in more detail later in this chapter in
the section, ‘‘Retention.’’

Self Expression
Self expression can take many forms in social networks. It can also be present in different locations (page
views) on a network. For example, there is the profile page that represents each user. Also there are
communications postings (for example, status lines) that serve self expression. Selection of a user’s friends
and a user’s friend’s expression can be considered part of the user’s own self expression. So, applications
that feature these elements allow for greater self expression in a social context.

The nature of the application (such as some of the graffiti drawing applications) allow for content devel-
opment as a means of self expression. Another example is gifting in applications. Direct communication
of preferences through recommendations and references are another form of self expression implemented
in social applications. Some may consider self expression equivalent to a user ‘‘showing off.’’ With this
definition, anything that promotes the user in a public way is desirable.

32

Chapter 1: Social Network Programming

Social Exposure
A good way to make an application viral is through social exposure, which is the direct use of a user’s
personal social graph (their friends and friends’ friends). For example, an application can show a user
what his or her friends who are using this application have recently done, or are currently doing.
This kind of social activity stream is a great driver of retention and exposure engagement within an
application.

Going beyond friends and reaching further into the social graph to friends of friends can be appro-
priate for some applications, and can be a means of advancing both engagement and growth. Within
the confines of the application, this can introduce users to new potential friends, and possibly increase
interactions within the application.

Relationship Building
Besides looking at a user’s own social graph, an application can try to link unrelated users by such things
as common interests or usage of the application as a means to build relationships. Shared interests can
come directly from user-generated data in the application, or may come from user profile data (if accessi-
ble to the application). Creating new relationships (and possibly groups and communities) will increase
loyalty (that is, distribution engagement) and retention.

Real-World Problem Solving
Many of the first social network applications were fun, but were considered by many to be silly and
with little purpose. One particular way of building retention in your application is to have it solve some
real-world problem. There are lots of possibilities in each application domain. For example, in your
application, you could include aspects of project management, event management, shopping, recom-
mendations, education, communications, content creation and distribution, information management,
and sharing.

Application Trends
The importance of current and emerging trends is that they show where current and future innovation
is headed. Trends at best can reflect user desires and needs. Trends often appeal to the public. You want
your application to achieve these goals. Studying trends, and picking ones that work for your application,
is part of a good application-development design strategy.

This section presents some of the current and emerging social network application trends. Later in this
chapter, the concept of retention is examined in more detail. While not the opposite of ‘‘trendy,’’ retention
is a good (or better) goal.

A recent report by Morgan Stanley (see http://www.socialtimes.com/2008/04/social-applications-
are-the-hottest-trend for complete details) on Internet trends compared two of the top social net-
works, and came to the conclusion that one was achieving a greater user growth rate because of the
following attributes:

Ads being less intrusive

Early newsfeed use and personalization

33

Chapter 1: Social Network Programming

Simple/concise user interface

Feature friend information

Personalized ads

Mobile phone capabilities

These are trends you might consider for your own social application.

Figure 1-22 shows a breakdown of the most popular application categories to date on MySpace. This was
compiled by adding up the total install numbers from the top 10 applications in each of the 23 application
categories on MySpace. Some major applications (mostly games) are counted in multiple categories.

Figure 1-22: MySpace application trends (number of users by application category)

What the chart in Figure 1-22 doesn’t show you is that a few applications are really dominating the
numbers in the most popular categories. Figure 1-23 shows the numbers for the top 10 applications in the
most popular ‘‘Fun Stuff’’ category.

While the focus of this book is on OpenSocial, because the Facebook application platform has been
around longer, it is important to look at application trends on Facebook. A great site to check out is
Adonomoics (http://adonomics.com/), which offers Facebook analytics. In particular, that site shows

34

Chapter 1: Social Network Programming

rankings of companies involved in application development on Facebook. Looking at the applications
from some of the more successful companies can give you ideas for successful formulas.

Figure 1-23: User numbers for the top 10 applications in the ‘‘Fun Stuff’’

MySpace category

There is an ongoing discussion in the developer community regarding application purpose — that is,
creating applications ‘‘solely’’ for entertainment or creating ‘‘useful’’ applications. Many critics of the
social network application business say that most (or all) of the applications produced are ‘‘silly’’ and of
no purpose. It is true that there are a number of applications that can fit this mold. Also, it is true that
statistics show that there is a lifetime to these (and, perhaps, all) applications. But, does this make them
unviable as a business model? Some developers say ‘‘yes,’’ and others say ‘‘no.’’ What developers agree
on is that an application must be engaging to users, and this is the one common trait that all applications
must have.

Let’s take a look at some different trends in terms of application development. (There is no implied
importance to the order in which they are examined.)

Reach (General Appeal) Applications
Some companies (in particular many with longer histories, such as application developers RockYou and
Slide) have developed a number of wide-reaching, general-appeal applications. These are applications
built for reach, which is the concept of trying to gain the most users spread across demographics and
interests. Many of these applications have simple premises, and are based on simple messaging.

The advantage of these kinds of applications is that they have the largest potential market. The disadvan-
tage is that often, in their general appeal, these applications may have a shorter lifespan because users

35

Chapter 1: Social Network Programming

may quickly lose interest. One argument made by developers who prefer this kind of application is that
the application can be made quickly, and can quickly become viral because of ease of use.

Some of the simpler applications of this genre are often criticized as being silly. But, as pointed out in the
article, ‘‘Silly is Serious Business’’ by Keith Rabois, Vice President of Strategy & Business Development
at Slide (see http://voices.allthingsd.com/20080513/silly-is-serious-business), statistics can
support ‘‘silly’’ or entertaining as good business. Rabois provides a number of examples where more
entertaining media is the preference for the general audience. For example, he points out that during the
recent United States Presidential campaign broadcasts, shows such as American Idol and Dancing with the
Stars had the greatest audience. This definitely points to the fact that ‘‘entertaining’’ is important, but,
given a choice of different forms of entertainment, would silly always rule?

Not all applications that fall into this category are simple. A good example of this are the ‘‘profile pimp-
ing’’ applications that let users develop and share graphics such as slide shows.

Vertical (Targeted) Applications
A number of developers are finding users by targeting a specific category. A couple of great examples of
this are iLike (which targets music) and Flixster (which targets movies).

Watercooler describes itself as the world’s largest television and sports community. It is distributed
across multiple social networks (for example, MySpace, Facebook, hi5, and so on). The Watercooler
applications like ‘‘Pittsburgh Steeler Fans’’ and ‘‘Boston Red Sox Fans’’ (Figure 1-24) concentrate
on sports. There are also the ‘‘Addicted to X’’ applications that focus on different television shows
(Figure 1-25). Much of the content in these applications is generated by the users. The application
provides effective tools for the user to report on this kind of subject.

Applications in this category focus on people who have specific likes, rather than trying to build
wide-reaching applications. There is a lot of potential growth in vertical markets, as well as some
interesting associated revenue streams.

Template-Based Application Development
This paradigm of application development surrounds the idea of creating a ‘‘template’’ application that
can then be used to more quickly generate a series of applications. It is based on the idea that many basic
applications will have many of the same features and needs, as well as similar interfaces. Some companies
have used this formula to create the simple entertainment-oriented (‘‘silly’’) applications previously
mentioned. Others are using them to create applications that are for targeted (vertical) markets.

Slide is an example of a company that has been known to create a series of successful (viral) applica-
tions that have a template construction falling in the simpler entertainment category. These applications
(denoted by developers as ‘‘throw a sheep’’ applications) are what the social network applications indus-
try owes (to a great extent) its birth and boom to.

More recently, there are examples of developers creating template-based applications for vertical mar-
kets. For example, according to Adonomics.com (http://adonomics.com) Watercooler has produced
more than 600 applications, and most of them are fan-oriented applications. A large number of these
fan-oriented applications are focused on sports teams and television shows. Vikas Gupta, CEO of Water-
cooler, has described Watercooler as being the ‘‘ESPN or MTV for the social network generation.’’

36

Chapter 1: Social Network Programming

Currently, Watercooler applications for both television shows and sporting events have set and similar
formats. Translating this to the social network world can make sense for the user.

Figure 1-24: Watercooler’s Boston Red Sox ‘‘fan’’ application

37

Chapter 1: Social Network Programming

Figure 1-25: Watercooler’s Grey’s Anatomy TV Show ‘‘fan’’ application

38

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: Social Network Programming

Brand Applications
There are two definitions of brand-based applications. The first is to take an already existing brand and
create an application around it. The application can be used to direct traffic to an external Web site, or
used to create an awareness/advertisement vehicle. A number of applications (such as ‘‘Local Picks’’ by
TripAdvisor) fit this description.

Developers must be careful not to abuse any of the trademark or intellectual property rules governing
the use of brands. Developing a brand-based application should only be done in agreement with the
company that owns the brand.

To understand the consequences of not following this tenet, you need to look no further than the famous
lawsuit filed by Hasbro, Inc., over the Facebook application called ‘‘Scrabulous.’’ This application was
based on Hasbro’s ‘‘Scrabble’’ game. As a consequence of the lawsuit, this application (much to the
dismay of users) is currently no longer available, although there is an associated Web site. The final
outcome of this lawsuit is still pending. This should serve as a warning regarding use of brands in an
unauthorized fashion. Many believe Hasbro (which eventually developed its own application) should
have purchased the ‘‘Scrabulous’’ application.

The second kind of ‘‘brand-based’’ application is discussed next as ‘‘destination’’ applications.

Destination Applications
Related to the concept of ‘‘branding’’ is what is referred to as the destination application. This kind of
application goes beyond the simple use of a developer brand name (that is, a developer name/company
such as RockYou or Slide). Instead, the application itself serves as a brand, and is a ‘‘destination,’’ mean-
ing that it has a higher-level of interactivity and resident features. Destination applications may have
greater user response, retention, and longer life spans than the simpler ‘‘entertainment’’ applications.
But, on the whole, whether they will be more viral remains to be seen.

iLike is an example of this kind of application. The name of the application, the company, and the sup-
porting Web site are all called iLike. The name is self-descriptive, and has become a brand for sharing
with friends and other users media that a user likes.

Longer Engagement
To achieve longer periods of user engagement, applications typically provide real services to users —
they solve real-world problems. A number of emerging examples come to mind. The previously men-
tioned iLike is one. The ‘‘real’’ service provided by iLike is the discovery, sharing, and purchase of music.
iLike has gone through a number of iterations (something discussed later in this chapter in the section,
‘‘Retention’’). The current version of iLike is much more engaging than the initial version in terms of user
attentiveness and user response. Figure 1-26 shows the 2007 version of iLike, and Figure 1-27 shows the
current version of iLike.

Use of Media
The use of media can be a smart idea that can attract and keep users, or, when done poorly (such as
when producing long load times), kill your application. MySpace is experiencing significant growth in

39

Chapter 1: Social Network Programming

its media-related utilities, and ranked with YouTube, Live.com, and Facebook as a leader in the vol-
ume of videos viewed (see http://www.socialtimes.com/2008/04/social-applications-are-the-

hottest-trend). This could imply that applications featuring graphics, video, and other media will be
popular (at least on MySpace).

Figure 1-26: Initial/launch version of iLike

40

Chapter 1: Social Network Programming

Figure 1-27: Current version of iLike with many more features, including navigation bars

A certain percentage of these types of applications are based on Flash, and many of these use ActionScript
(a Flash programming language) for interactive capabilities. This is a popular way to bring higher-end
game-like graphics interactions into an application. Most browsers already have installed the plug-in
for Flash and, if not, it is readily available. Many of the issues with compression and faster load and
run-times that you encounter with heavy graphics applications are handled well by the Flash player.

The ‘‘Maffia new’’ application by I-Jet is an example of combining media, storytelling, role playing, and
gaming. This application is Flash-based and provides more realistic graphics, as shown in Figure 1-28. In
the ‘‘Maffia new’’ application, the user becomes part of a clan. The role-playing in these kinds of games
is addictive to users, and the applications experience a high user attentiveness and response.

Internationalization
The Morgan Stanley report mentioned previously (http://www.socialtimes.com/2008/04/social-
applications-are-the-hottest-trend) discusses trends in international markets. According to this
report, in the list of top ten technology, media, and telecom user countries, the United States and China
are now tied for the top slot. New additions to the list include India, Brazil, and Russia. Japan, Germany,
France, and Italy also are part of the top ten. This report also shows the largest growth rate for Internet use
coming from China, India, Russia, Brazil, and Asian/Pacific countries, followed by other European and
Latin American countries. While the U.S. still has the largest user base, it has one of the smaller growth
rates. Internationalization is about expanding your application into these emerging (and fast-growing)
markets.

41

Chapter 1: Social Network Programming

Figure 1-28: ‘‘Maffia new’’ application features role-playing and gaming

If you are considering mobile applications, China occupies the top slot, followed by the United States,
in mobile phone subscriptions. The list of top countries also includes Russia, India, Brazil, and Japan,
ahead of the top European countries of Germany, Italy, and the United Kingdom. Indonesia, Mexico, and
Turkey rank ahead of France and Spain in number of mobile users.

These statistics might give you an idea why the internationalization of your applications could be a
smart idea, and could make your application viral by spreading its popularity across international net-
works. Unlike the Facebook API, OpenSocial can provide the capability to create applications on different
containers that have large audiences in (and identify with) these countries.

Following are some tips that might guide you in your application development strategy:

To capture local markets, have different applications that are language-specific (and maybe func-
tionally specific)

Keep smaller markets in English

KlickNation’s ‘‘Kiss’’ application has been developed for both the English-speaking and
Spanish-speaking markets. A part of KlickNation’s strategy is to reach out to networks that have
strong representation in other countries. As KlickNation’s first viral applications, ‘‘Kiss’’ experienced
its initial success on the hi5 network, which has a strong presence in Spanish-speaking Latin America.
According to VP of Business Development Ken Walton, KlickNation is looking to become ‘‘the developer
of applications in OpenSocial like Slide/Rock You is on Facebook.’’ KlickNation developed its Spanish
version of ‘‘Kiss’’ using OpenSocial message bundling, its own knowledge of Spanish, and Google
translation services.

42

Chapter 1: Social Network Programming

Self Expression
A popular feature of many applications is the exploitation of self expression, which basically means that
the application has a strong sense of representing the user. This can be ‘‘showing off’’ or ‘‘looking good’’
to fellow friends, or it can have a deeper meaning of ‘‘representing me.’’

RockYou has a number of applications that heavily feature self expression. For example, users of Rock-
You’s ‘‘SlideShows’’ application can create slideshows for friends and others to view. Initially, the
application will load any pictures you have in your portfolio that you have uploaded to your social
network account. This slide show will appear on your profile, ‘‘dressing up’’ the user’s profile for others
to see. RockYou’s ‘‘GlitterText’’ application is another application that adds a ‘‘show off’’ element to a
user’s profile.

Partnering
Partnering is a primarily about business relationships and leverage. The idea here is that an application
will partner with a non-social application or business to achieve more functionality or services, or provide
a branding experience. A good example of this is the iLike application. iLike has partnered with both
iTunes and Rhapsody. With iTunes, users are able to purchase individual songs. iLike has partnered
with Rhapsody to provide iLike application users with the capability to subscribe to music. An initial
number of downloads (25) will be free and, after that, the user can subscribe to the Rhapsody service.
This provides a monetary stream for iLike, as well as content and more services for its users. This is a
win-win situation.

Often, the partnering can be less direct, and can be for marketing rather than sales. For example, Jambool
(an application development company) teamed up with Health.com and created the ‘‘Send Good Karma’’
application (Figure 1-29). The application allows users to send ‘‘happiness,’’ ‘‘good health,’’ and other
‘‘good karma’’ wishes. If users want to send some special ‘‘health’’ karma, they are directed to become a
member of Health.com first.

Watercooler has partnered with some of the large television networks such as ABC, NBC, and CBS in
the creation of its ‘‘Addicted to TV_X’’ applications. Watercooler is sometimes even able to offer its users
full-length episodes of the television show. Watercooler is paid by the television networks to offer this
service.

Virtual Currencies, Goods, and Points
Another trend is that of virtual currencies, goods, and points. This capability in applications has led to
increasingly viral growth rates. More importantly, it seems there may be a trend for these applications to
have higher percentages of active daily users.

Applications such as ‘‘Friends for Sale’’ and ‘‘Owned’’ feature this capability. Users have described
the feature as ‘‘addictive.’’ The drive to perform some operation to get virtual currencies, goods,
or points that then enable a user do more in an application seems to be a successful pattern for
extended use.

43

Chapter 1: Social Network Programming

Figure 1-29: ‘‘Send Good Karma’’ application by Jambool partnered with

Health.com

The ‘‘Send Good Karma’’ application described previously uses this feature in what are called ‘‘jPoints,’’
as shown in Figure 1-30. The application developer, Jambool, also does cross-marketing with other appli-
cations it owns by advertising them as applications that use the same virtual point system.

Figure 1-30: The ‘‘Send Good Karma’’ application uses virtual points

called jPoints

44

Chapter 1: Social Network Programming

Virtual goods can be important to an application in a number of ways, including revenue streams, user
response, and viral growth rates. Here are some examples:

Alexey Kostarev, head producer at I-Jet and producer of the ‘‘New Maffia’’ application, says 80
percent of his company’s revenue stream comes from virtual gifting.

Facebook (the longest-running container offering ‘‘virtual gifting’’) has been reported to generate
more than $35 million annually from the gifting feature (see http://facereviews.com/2008

/09/02/facebook-virtual-gifts-make-big-bucks)

Virtual gifting has been a popular trend for some applications. The applications charge small amounts
of money (called micro-transactions) for these virtual gifts that users can send friends. Why do people do
this? A common response from developers has been that people don’t mind spending small amounts
of real money to make their friends feel good. Even though the gift is not real, the thought is, and the
recipient might value it more knowing that the giver spent real money on it.

Mobile Applications
One of the biggest possible future trends will be penetration into the mobile world. Recently, MySpace
announced that it was partnering with Research in Motion (RIM) to develop an integrated MySpace
Mobile experience customized for RIM’s BlackBerry smartphones. The new ‘‘MySpace for BlackBerry’’
application will be fully optimized to deliver rich content and data to users on the go. Similar agreements
are being made with Apple’s iPhone. This may signal a future for mobile social network applications.

Increased Use of Social Data
It is only natural that, as applications on social networks evolve, they will begin to use social data in more
elaborate and unique ways. A number of developers are currently experimenting with this to evolve their
applications.

Besides the traditional ‘‘see what my friend X is doing’’ functionality, applications could leverage pro-
file/person data about its users. For example, you could use the data to recommend new applications
that users might like, based on where they live, or on their interests.

Following are some ideas on how to use social data:

Recommendation for new applications that match a user’s interests or location

Based on a user’s demographics, suggest new friends using application

Feature certain content based on user data

If you serve your own advertising, do so based on user data or application use

Offer features in the application based on user demographics or use

Many of these ideas are not trivial, and represent ongoing areas of research in computer science. They
often involve techniques used in such areas as pattern recognition and artificial intelligence.

45

Chapter 1: Social Network Programming

For example, Watercooler uses cross-application marketing by making recommendations about new
applications by retrieving favorite television show information stored in a user’s profile, which is a com-
mon source of user data on many social networks.

Increased Use of Application Data
In the context of this discussion, the term application data here is user-generated content and data inside
of the application. Some applications store very little application data. However, a recent trend has been
to allow users to create lots of data, and for the application to store (and then share) this data on return
visits to the application. Also, applications share this information among users. Of course, the kind of
data you capture will be specific to your application.

Viral Channels and Features
When developers refer to viral channels, they are talking about using the ‘‘social hooks’’ that each con-
tainer offers its applications. Many of these channels are the same across social networks. However,
there are some that are unique, and it is important to remember that networks regulate these channels
differently.

There is the perception that, as the number of applications increases, the usefulness of these social hooks
is waning. An advantage for the OpenSocial developer is that, because it is a new platform with new
social networks signing on, the usefulness of social hooks is greater.

Some social hooks you may consider include the following:

Profile View

Feeds (news)

Messaging

Requests/Notifications

Invitations (encourage more than 1 friend)

Profile Data Access

Name

Age

Gender

Interests

Location

Work

Education

TV, Movies, Music, Books, Video, Images

Status

Languages

46

Chapter 1: Social Network Programming

Marital Status, Looking For, Sexual Orientation

Children

Body Type

Smoker, Drinker

Occupation, Income

Religion

Ethnicity

Web sites

Public/private profiles? (public link to Web site from LinkedIn)

Photo Albums

Music, Video

Friends Access

Group Access

Scrapbook

Journal

Interviews with a number of developers regarding how to make an application viral have revealed the
following interesting tips to consider:

Containers that allow users to send friends a lot of messages from applications tend to have more
viral applications.

Containers that allow friends to send a lot of messages from applications can lead to the percep-
tion of ‘‘spamming’’ and potentially be viewed as a turn-off.

Use of social hooks is important, but the inherent application features and engagement are more
important.

Networks with tight social networks (meaning people don’t have lots of remotely related
friends) lead to better-quality friends and better longevity for applications.

Networks with loose social networks can create viral applications more quickly.

Networks with less services will allow this functionality to be represented by applications, and
applications can grow more quickly.

Networks with more services make it more difficult to create a viral application.

Networks with many applications make it more difficult to create viral applications (or even find
them).

Require users to invite a number of people (for example, 10) before they can use or view some
feature of the application.

Give the user multiple opportunities to invite others. (You could even do this on every page
view, but in different ways, with different incentives.)

Specific invite messages and specific notifications give better results than general messages.

47

Chapter 1: Social Network Programming

Use address book importers to invite friends and friend selectors. Select all the friends, and make
it easy (for example, have a link ‘‘invite 15 friends,’’ so that user only must click the link).

Feature user-generated content and sharing.

In addition to these viral channels, some social features can help make your application viral. Some
of these will be specific to the purpose of your application. There are some that can be used in many
applications, including the following:

My content (user can see his or her content)

Friends content

Quizzes

Posts/bulletin boards

Voting and Most Popular (on user-developed content)

Trivia games

Dedicate X (dedicate something to a friend)

Virtual gifting

Buy virtual goods/currency

Blogs

Joining group of users within of application users

Social Network Identity
Understanding the identity of a social network is important. It allows you to make decisions about what
applications would be popular. There are many ways to classify a network. The demographics of its
audience is one. You can find some statistics offered by the social networks themselves.

There are numerous third-party organizations such as ComScore, Compete, and Alexa, that can give
you network statistics. Alexa (www.alexa.com) recently published statistics regarding traffic on MySpace,
broken down by domain as follows:

viewmorepics.myspace.com: 28%

profile.myspace.com: 18%

messaging.myspace.com: 17%

home.myspace.com: 7%

comment.myspace.com: 5%

myspace.com: 5%

friends.myspace.com: 5%

bulletins.myspace.com: 4%

collect.myspace.com: 2%

profileedit.myspace.com: 1%

48

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: Social Network Programming

vids.myspace.com: 1%

blog.myspace.com: 1%

editprofile.myspace.com: 1%

browseusers.myspace.com: 1%

searchservice.myspace.com: 1%

Other Web sites: 3%

(See Alexa for recent changes to these figures.)

These numbers might suggest that applications dealing with pictures, profiles, and messaging would be
very successful.

There are research organizations that conduct studies to track and predict information about a social
network’s identity. One way to measure this identity is by its perception. These kinds of metrics should
be carefully considered, since they can give you (as an application developer) some possible directions.
Figure 1-31 shows a graphic produced from a study by Faber Novel (http://fabernovel.com) that looks
at a few social Web sites (including MySpace, LinkedIn, and Facebook). As you can see, the graphic places
the sites on a scale of ‘‘user identity’’ (from ‘‘fantasized’’ to ‘‘real’’) and on the scale of ‘‘user exposure’’
(from ‘‘public exposition’’ to ‘‘qualitative contents’’).

Figure 1-31: Research looks at comparing some Social Sites based on user identity and

exposure

Figure 1-31 suggests that MySpace (in terms of ‘‘user-exposure’’) has a larger public audience, and (in
terms of ‘‘user-identity’’) is more fantasy-oriented when compared to the the LinkedIn network. LinkedIn
is placed on the opposite side of the chart, with a ‘‘user-exposure’’ of a smaller audience, but with a

49

Chapter 1: Social Network Programming

‘‘user-identity’’ representing more real and qualitative contacts. Most people would probably agree with
this assessment. This could mean that applications that are fantasy-based would be more successful on
MySpace than on LinkedIn.

Another consideration in defining the identity of a network is the applications currently on the network
themselves. Let’s look at some quick statistics concerning applications and a few social networks:

MySpace:

More than 50 million application installs, with more than 20 million users

More than 30 percent growth across all metrics (according to MySpace, without clarifica-
tion of ‘‘metrics’’)

More than 2,500 applications

hi5:

More than 66 million application installs

More than 68 percent of users use applications

More than 1,800 applications

Friendster:

More than 12 million users adding applications

500,000 application installs each day

More than 500 applications certified

More than 2,000 developers

Marketing — The Next Step
One way to feed a growing application is through effective marketing. Marketing can be used as an
engagement tool with current users. Marketing can also be used at the beginning stages of application
life. There are many applications on most social networks. Expecting users to find yours through simple
browsing or search may not be sufficient. Marketing your application can bring new users to it. Some
marketing strategies are free, and others will require a budget. Your creativity is the limit, but let’s take a
look at some possibilities.

First, when you design applications, treat your application’s viral channels as marketing vehicles. Design-
ing your application with this in mind can lead you toward growth.

One example of using viral channels for marketing is to offer incentives to your users to invite friends.
The incentive can be in the form of virtual goods, virtual cash, or some extended application features.

The ‘‘Maffia new’’ application uses two kinds of incentives to get users to invite their friends. As shown
in Figure 1-32, the application offers the incentive of virtual money that can be used in the game. The
application also offers incentives to users to invite new friends via a direct link into the game by becoming
someone important, a ‘‘Maffia Boss.’’

50

Chapter 1: Social Network Programming

Figure 1-32: Maffia new application uses virtual currency as an incentive

to invite friends

An emerging practice in applications is to direct users through a transaction that requires them to invite
friends. For example, in the RockYou ‘‘Likeness’’ application, after taking a quiz to determine likeness
when users click the Submit button, they are requested to invite friends as the next step in this transaction.

Unfortunately, many networks are limiting even more the use of these viral channels. For example,
with the recent perception of application ‘‘spam’’ (too many messages from applications), smaller
messaging limits have been set on networks. Some networks such as MySpace are currently not
allowing applications to offer incentives (say, give virtual points) for users messaging others. User
postings to the MySpace announcement (see http://developer.myspace.com/Community/blogs

/devteam/archive/2008/05/20/new-app-guidelines-must-read.aspx) reflect a lot of negative
feedback over this issue. Users like incentives. What this means for your application is that you must
pay attention to the frequent changes in network policies.

A number of companies provide marketing services for applications. An example is SocialMedia, an
advertising company focused on social networks and their applications. SocialMedia allows developers
to set the price they want to pay for a click. This pricing is used in a real-time auction, and you can check
out the live bids. SocialMedia describes this service as a way ‘‘to inject your app with thousands of core
targeted users and help you transform them into a million total users.’’

Check out the interesting ‘‘viral calculator’’ they have at SocialMedia.com. For example, they calcu-
late that, if you have a budget of $200, and each user will only refer your application to 1 other user,
and this happens for 4 levels of referral, you will gain 4,000 users. With the same $200, if your refer-
ral rate is 1.25 and you have 4 levels of referral, you will gain 9,007 users. If cost is an issue, there
are some newer companies that offer their marketing services in exchange for advertisement on your
application.

Another model presented by OfferPal is a ‘‘new App Install program.’’ The program comes in three
available payment terms:

Cost-Per-Click — The Cost-Per-Click program is like SocialMedia’s program.

Cost-Per-Install — In the Cost-Per-Install program, you pay only for installed users. The price is
typically higher than the Cost-Per-Click rate.

Free Click Exchange — The Free Click Exchange program guarantees a qualified click to your
install page for every click you deliver to other apps within the network.

51

Chapter 1: Social Network Programming

Another marketing strategy is direct cross-application advertising. You could make agreements directly
with other application developers, advertising one another’s applications. Once you have more than one
application, you can do your own cross-application.

As an example of self cross-advertising, Jambool uses its ‘‘Reach’’ application called ‘‘Share Good Karma’’
with a large user base to create larger audiences for their new ‘‘Who’s the cutest baby?’’ and ‘‘Ski Results’’
applications. Both of these new applications are intended for vertical markets. Jambool wants to build
communities around these new applications, and, hence, also extend the complexity and user response
and attentiveness.

Another possibility is to purchase ‘‘sponsored application’’ status with a network. This is similar to being
a sponsored site at a search engine such as Google or Yahoo!.

If your budget allows, you can opt to pay for direct marketing. The expense of these services will usually
be out of bounds for beginning applications or developers. It is best used in ‘‘branding’’ attempts.

Direct marketing via email is another possibility. Best results are achieved when the mailings are targeted
toward your intended demographic. As with all forms of marketing, you must be careful not to annoy
and lose potential users.

Another less-evasive scheme is to maintain a company/developer Web site that is advertised on all of
your applications. This can be a form of self cross-application marketing.

Indirect marketing schemes such as postings and blogs can be effective. You might even create your
own blog about your application. Some developers have created video and uploaded it to YouTube and
other media sites. Another option is using Twitter. The genuineness of these postings can be a question,
however. People like blogs and postings.

Following are a couple of services for blogs and email that you might consider:

Blogs — Blogger (http://www.blogger.com), World Press (http://www.worldpress
.org/blogs.htm), Yahoo360 (http://360.yahoo.com), TypePad (http://www.typepad.com)

Email Marketing — Constant Contact (http://www.constantcontact.com/index.jsp), Email
Labs (http://www.emaillabs.com), JangoMail (http://www.jangomail.com), Exact Target
(http://email.exacttarget.com)

Partnering is a form of co-marketing, but not necessarily with another application. For example a tra-
ditional (non-Web) company may partner with you. Recall the example of the ‘‘Share Good Karma’’
application and Health.com discussed previously.

Promotions you run in your application can also grow your user base. These might be in the form of a
giveaway or lottery. It could be something more virtual, like being featured, in the application if you have
invited many friends. You should check out a network’s application guidelines before using this strategy.

A final technique to consider is sponsorship. This can go both ways. A company may decide to sponsor
your application. This could include featuring you on its Web site and other forms of communications to
the company’s user base. Getting this kind of sponsorship requires building a relationship and sharing
common business objectives. Another form of sponsorship is where your application sponsors an event,
person, or product. Examples of this are common in event-oriented applications such as iLike.

52

Chapter 1: Social Network Programming

A vast number of applications are not marketed beyond the use of viral channels. This includes many
successful applications. A number of the larger developer companies are proud of not spending any
money on marketing.

If you do choose to use some kind of marketing strategy, don’t make the mistake of not tracking the
results. This way you can tell into which strategy to invest more time and money.

Retention
Applications with lots of installs are great, but if you don’t have good daily active use numbers, your
application won’t monetize and will quickly die. The best way to retain your users is through continual
re-invention of your application.

Following are a few of the ways you can evolve your applications:

New content

Interface changes

New functionality

New viral channels

Increased exposure of user and friend data

Increased use of social data

Increased use of user-generated content

New marketing strategies (for example, seed to new audiences)

Reach out to users who are fans of you application (if you have access)

Rewards (for example, advanced features for most active users)

Introduce (or advance) gaming elements for example, user versus user, collecting,
role-playing/assignment (super user)

Feature user-generated content

Develop user-to-user sharing and communications

Quickly launch on new containers

Provide a ranking/rating mechanism

You should monitor your retention rates from the beginning — that is, upon deployment. Problems
with retention, even as you are having viral growth, can be detected. Making changes to your retention
strategy is important. If you are tracking retention (that is, the loss of users), then when you try a new
retention idea, you can monitor if it was successful.

Tips for Good Application Development
You should put into practice a number of general application development tips that also apply to social
network application development. These include making your application robust, making explicit

53

Chapter 1: Social Network Programming

requests, testing, and performance enhancements. Performance enhancements are tackled later in this
book. For now, let’s consider some forward-looking pointers on how these issues are handled in OpenSo-
cial application development.

Robustness includes checking for errors and handling exceptions. Even when you have code that is cor-
rect, situations can happen in the containers that will return incorrect results (even temporarily). If your
code does not handle these unexpected situations, it will fail. Your users will be upset. Unfortunately,
container problems do arise, and you must be diligent in expecting these errors. Checking for null data
(even if the container should give you back results) is an example of good exception handling.

The following OpenSocial tools will come in handy:

Built-in methods — Built-in methods in OpenSocial classes such as hadError()are good to use
when making data requests. A useful message for debugging possible container problems is
the getErrorMessage() method in OpenSocial (which is discussed in more detail in Chapter
4). Another similarly useful method in OpenSocial is getErrorCode().

Optional features — OpenSocial has some optional features that will be detailed in Chapter 4. It
is important when making applications in OpenSocial for multiple containers to check for sup-
port. This can be done in your program or via inquiry.

Explicit requests — Because OpenSocial has optional features, whenever you make requests for
data, you must be explicit in what you are requesting. For example, if you want to find out the
name and age of a user, you must explicitly ask for this information. In OpenSocial, parame-
ters such as opensocial.DataRequest.PeopleRequestFields.PROFILE_DETAILS can be used to
explicitly request information. These are explored in more detail in Chapter 4.

The issues dealing with performance and hosting your applications are discussed in detail in Chapter 8.
These back-end issues are critical if your application gains momentum and becomes viral. It’s important
even for smaller audiences when you want good user experience, and if you have a lot of media and data
requests.

Another important issue to making ‘‘good’’ (well, in terms of money) applications is monetization.
This chapter has touched upon a few trends in this area (specifically, virtual goods and partnering),
but Chapter 8 looks into this area in a bit more detail.

Summary
This chapter began with a discussion of social network programming and described where OpenSocial
fits in. As part of this, a number of OpenSocial containers were reviewed. Next, the topics of application
discovery, installation, appearance and control were covered.

The remaining parts of this chapter focused on good application design and tips. This included the
definition of application goals, viral channels and concluded with marketing and retention techniques.

Chapter 2 examines the history and architecture of OpenSocial, the architecture of an application, data
formats supported by OpenSocial, and the deployment of applications.

54

Introduction to OpenSocial

OpenSocial is an exciting platform that allows you to create and deploy social networking applica-
tions on multiple networks. It is an alternative to the Facebook API that Facebook uses. This chapter
begins the process of teaching you step-by-step how to create viral social network applications
using OpenSocial.

OpenSocial is the newest platform for social network development. It is unique in that it was created
for use with multiple social networks (called containers), and also has the added benefit of being an
Open Source application. This is a great boon for the developer, who can write once and deploy
many times. OpenSocial is, in fact, designed to ease deployment of a single application to multiple
social networks.

OpenSocial is a standard that is evolving and, hence, has different versions. It is true that not all of
the social networks supporting OpenSocial support the latest version, and some of these differences
are explored in this chapter. You will learn how to create a simple application that uses social data,
and is based on OpenSocial’s JavaScript API. This application will be used in the next few chapters,
so it is important to become acquainted with it here. You will learn how to deploy this application
on multiple containers, including MySpace and hi5. This chapter continues the discussion of how
different OpenSocial containers vary in handling applications. This chapter also includes a tour of
resources available to the OpenSocial developer.

Let’s begin by taking a look at the evolution of OpenSocial.

OpenSocial History
OpenSocial was initiated by Google, and has been rumored to be a response to the success of
Facebook. It was launched as an Open Source project, and is hosted on Google’s code repository.
For the 2007 launch, a number of companies signed on, including Friendster, hi5, MySpace,
imeem, Hyves, Engage.com, Orkut, Ning, Plaxo, LinkedIn, SalesForce.com, Oracle, XING, and
more. Yahoo! and other companies have also signed on to support OpenSocial, and others continue
to do so.

Chapter 2: Introduction to OpenSocial

When an OpenSocial application is available to a network’s users, it is said to be running as ‘‘live for
all users.’’ Not all partners have live OpenSocial containers, but many do, and others have announced
upcoming support. As new versions of OpenSocial are rolled out, containers stagger in their support.
Also, new containers will typically launch in what is called open sandbox access, which means that only
developers can run the applications.

OpenSocial was launched to the public with version 0.5 in December 2007. Subsequent versions have
included the following:

Version 0.6, released in December 2007

Version 0.7 (considered by many to be the first truly functional version) released on February 4,
2008

Version 0.8, released on May 28, 2008

Version 0.9, portions approved as of the writing of this book

Table 2-1 shows the list of containers and their support of OpenSocial.

Table 2-1: Social Networks OpenSocial Support*

Social Network OpenSocial Version Support

hi5 0.8 Live for all users

LinkedIn 0.8 Live for all users

Netlog 0.8 Live for all users

MySpace 0.8 Live for all users

Webon 0.8 Live for all users

XiaoNei 0.8 Live for all users

Yahoo! 0.8 Live for all users

51.com 0.7 Live for all users

FanBox 0.7 Live for all users

Freebar 0.7 Live for all users

Friendster 0.7 Live for all users

Hyves 0.7 Live for all Users

IDtail 0.7 Live for all users

Mail.ru 0.7 Live for all users

Continued

56

Chapter 2: Introduction to OpenSocial

Table 2-1: Social Networks OpenSocial Support* (continued)

Social Network OpenSocial Version Support

Ning 0.7 Live for all isers

orkut 0.7 Live for all users

YiQi 0.7 Live for all users

lokalisten 0.8 Open sandbox access

iGoogle 0.8 Open sandbox access

imeem 0.7 Open sandbox access

Viadeo 0.7 Open sandbox access

CityIN 0.7 Application review required

Tianya 0.7 Under development

Plaxo Pulse 0.5 White-listed apps available for users

∗See http://wiki.opensocial.org/index.php?title=Main_Page#Container_Information for any

changes to this list.

An Open Source project called Shindig has been developed to enable social networks to more easily
create their own containers. Shindig is an implementation of the OpenSocial specifications, and has the
support of Google and other companies involved in container creation.

If a social network wants to host OpenSocial applications, it must implement the OpenSocial specifica-
tion, and one way to accomplish this is by using Shindig. The social network must connect its backend
to the OpenSocial Server Provider Interface (SPI) that is part of Shindig. Through the OpenSocial SPI, an
OpenSocial application can access and create social data and activities, hence gaining access to the social
network’s back-end social data.

See http://incubator.apache.org/shindig for more detailed information about Shindig.

OpenSocial Architecture
The overall architecture of your social network application extends beyond your own code. It involves
the client (Web browser), and the container (social network) itself. All social networks require that they
directly serve the client, as shown in Figure 2-1. This means that when the client makes calls to your
externally hosted code, the social network makes calls to your application, and those results can, in turn,
be ‘‘filtered’’ by the social network before being delivered to the client.

Your social network application may be hosted on multiple external servers, or even hosted on the con-
tainer. Depending on how you implement your application, an authentication process may be necessary.

57

Chapter 2: Introduction to OpenSocial

Social Network

Social Network
Application

Figure 2-1: The social

network-to-application

architecture

With OpenSocial version 0.8, there are now two OpenSocial APIs:

Client-based API — Relying on the client-based JavaScript technology, the OpenSocial JavaScript
API (sometimes simply called the OpenSocial API) was the first API that evolved from OpenSo-
cial’s initial release. It involves making calls using an OpenSocial JavaScript API.

Server-based API — New since the release of OpenSocial 0.8 in 2008, the server-based RESTful
API first went live with the hi5 social network. This allows developers to create applications
with their own server-based technology, which enables developers to write applications that are
hosted on a server and make direct calls to the container. Developers can write a server-based
application in any language (including PHP, Python, Java, RUBY, Perl, and many others), pro-
viding, of course, that the developer’s server supports these languages.

Client-Based API
Figure 2-2 shows the transactional model of a completely client-based OpenSocial JavaScript API
application. In this model, the entire application is developed with XML, HTML, and JavaScript.
For some social networks, it is possible to host the application on the container. In other cases, the
application may be preloaded/cached by the container. If the application does not need to make any
further calls to the application server, the transactional model only involves the client and social network
server(s).

Social
Network

Client

OpenSocial
JavaScript

Figure 2-2: Completely ‘‘client-based’’

OpenSocial JavaScript API application

58

Chapter 2: Introduction to OpenSocial

Developers of some applications may want to store and retrieve their own application data. In these
cases, developers utilize persistency as defined in the OpenSocial JavaScript API. If the developer chooses
to use persistency, the transactional model still resembles Figure 2-2. The model still only involves the
client and social network server(s), and, thus, is still a completely client-based OpenSocial JavaScript API
application.

Developers may also want to store the data on their own database, or, perhaps, need other resources and
services on their server(s). Figure 2-3 shows the transactional model for this scenario. Here, the applica-
tion’s server is introduced to support these external needs. In this model, resources (such as services and
server-side programs) are invoked to support the application. Thus, this type of a client-based OpenSocial
JavaScript application model could be described as one with server-side application support.

Social
Network

Application
Server

4

1

2

3

Client

OpenSocial
JavaScript

Figure 2-3: Client-based OpenSocial

JavaScript application with server-side

application support

Another possibility is that the application needs other external services not owned by the developer.
An example of this might be an application developed for the yelp container (www.yelp.com), a site
featuring user reviews and recommendations. The yelp API enables developers to include yelp data.
This application would make calls to the yelp server with the third-party yelp API, as shown in
Figure 2-4. This transactional model represents a variation of the client-based OpenSocial JavaScript
application with server-side application support.

Server-Based API
The server-side API comes in three flavors:

Those for a non-social network application

Those for a social network application

Those that are a hybrid

Some OpenSocial RESTful server-based applications are not gadgets, and are not deployed on the host
container, but do use social data. (A gadget is a widget made by Google developers that gives users
interesting and dynamic content that can be placed in any Web page.) These are often called completely

59

Chapter 2: Introduction to OpenSocial

server-based OpenSocial RESTful API non-social networking applications. Rather than using the OpenSocial
JavaScript API, these applications utilize the newer OpenSocial RESTful API, which enables a server-side
program to get social data directly from the social network. Such completely OpenSocial RESTful API
applications are not social network applications, but could be a server program or a gadget operating
within an external Web page.

Social
Network

Application
Server

External
Service

1

2

3

Client

OpenSocial
JavaScript

Ext. App Calls

Figure 2-4: Variation in the client-based

OpenSocial JavaScript application with

server-side application

Let’s consider a hypothetical application dealing with Flixster (www.flixter.com), a movie site. When a
user views or rates a movie on the Flixter Web site, the user may want to post an activity stream to the
user’s MySpace account saying, for example, ‘‘Lynne rated StarWars with Flixter.’’ Flixster would want
to do this from its server, because this would be triggered by the user rating action at the Flixter site.
To do this, Flixster would need access to MySpace’s OpenSocial data. This is a good example where the
OpenSocial RESTful API could be used.

Figure 2-5 shows the transactional model of the completely server-based OpenSocial RESTful non-social
networking application. Note that this example includes a client (the user) that, when connecting
to the social network (for example, MySpace) at a later time, sees the resultant activity stream. It
is true that some OpenSocial RESTful API applications may not involve any client on the social
network.

With OpenSocial 0.9, developers may create a completely server-based OpenSocial RESTful API social
network application that is deployed on a social network. This is discussed more in Chapter 9. This is
very much like the model currently employed by the Facebook API. Here, when the client requests a page
where the application appears, a message sent to the social network invokes a URL of the server-based
application. This application (which is hosted on the developer’s server) makes calls directly to the social
network using the OpenSocial RESTful API. The response is then delivered to the social network, which,
in turn, integrates it and delivers it to the client.

60

Chapter 2: Introduction to OpenSocial

Social
Network

Application
Server

5

4- later

3

2

1

Client

OpenSocial
RESTful

Figure 2-5: Hypothetical Flixster

OpenSocial RESTful application

Figure 2-6 shows the transactional model for this scenario. Currently, there is no support for this on
any OpenSocial container. It will require the container to allow developers a new form of application
deployment that involves the specification of this callback URL. In this case, all of the OpenSocial calls
are between the application’s server and the social network directly. The client is not involved in making
these transactions.

Social
Network

Application
Server

4

3

12
Client

OpenSocial
RESTful

Figure 2-6: Completely server-based OpenSocial RESTful API

social network application

Developers may also create a hybrid client/server OpenSocial application. In this scenario, an OpenSocial
JavaScript API social network application would make calls to a server-based OpenSocial REST API pro-
gram via the OpenSocial JavaScript makeRequest method. This is similar to what is shown in Figure 2-3.
However, as shown in Figure 2-7, the server application can make direct calls to the social network using
the RESTful API. As will be explained in Chapter 6, it is possible to pass the OpenSocial data through the
makeRequest to a server program. This can be more efficient (as will be examined in Chapter 8).

In the hybrid case, the response might include the generation of new client-side OpenSocial RESTful
calls and other JavaScript code that are triggered by future user actions. It is possible in some instances
where the server application may dynamically determine its social data needs and, hence, need to
make OpenSocial RESTful calls. This could be a way of dynamically generating your client-side
event-handling code.

61

Chapter 2: Introduction to OpenSocial

Social
Network

Application
Server

4

1

6

2

3

4

Client

OpenSocial
JavaScript

OpenSocial
RESTful

Figure 2-7: Hybrid client/server

OpenSocial application, with both

OpenSocial JavaScript client code and

RESTful server-based code

Related to the hybrid case is the use of IFrames (from ‘‘Inline Frames’’). In particular, developers sep-
arate different content into different IFrames. Sometimes these are called ‘‘widgets’’ or ‘‘IFrame apps’’.
Each IFrame can be used to dynamically display part of the application and respond separately to user
requests. The client code can get OpenSocial data using the JavaScript APIs, and then pass it back to the
server-side program for a particular IFrame. Or, a server-side program can make OpenSocial REST calls
directly.

Following is an example of an application that has an IFrame and is passed OpenSocial data. This is
different in that the IFrame doesn’t send back HTML to the client, but displays it and accepts user inter-
action. It is a way to modularize transactions and can improve performance. For example, the entire
application interface is not updated; only the part that is affected. However, the developer can place the
entire application interface in a single IFrame.

<iframe id="myframe" width="400" height="400" frameborder="0"></iframe>

 ...more html ...

<script type=’text/javascript’>
//call to pass viewerID (some OpenSocial data)
document.getElementById(’myframe’).src = "http://U.com/u.php?id="+ viewerID;

</script>

In this example, some HTML is present that contains an IFrame that later (in a JavaScript block) sets the
content of the IFrame associated with the output of a server-side program (u.php) that is passed some
OpenSocial data.

The development of a client-based social network application using the OpenSocial JavaScript API is
covered in Chapter 4. Chapter 5 discusses how to create server-based applications using the OpenSocial
RESTful API.

62

Chapter 2: Introduction to OpenSocial

Application Architecture
A social network application based on the OpenSocial JavaScript API can be viewed as a layered object,
as shown in Figure 2-8. As you can see, an outer layer specifies the application as a Google gadget using
XML. The inner content is the content of the application, and consists typically of HTML, JavaScript,
CSS, and other content. This content can be in-line, or can be loaded from externally located content (for
example, externally stored JavaScript code, or some kind of media such as a Flash movie).

OpenSocial
Container

Content–

HTML,

XML Gadget

Open Social
Application

Data

Data

Asynchronous
Communications

Figure 2-8: OpenSocial application layers and

asynchronous communications with OpenSocial container

The JavaScript API can implement the following:

Application-specific functionality — Supports application functions and interactions, and can
make calls to other resources.

OpenSocial API calls — Supports requests from your application to the social network to get
data, store data, and do ‘‘social’’ operations (such as messages, invites, and so on).

Gadget API calls — Recall that your OpenSocial application is actually a gadget. Developers may
use this API to enable an application to control its presence in the social network, invoke external
resources, load external media, and more.

OpenSocial client-based applications use the OpenSocial JavaScript API to make queries to the container
in an asynchronous manner for most of its calls, as shown in Figure 2-8. Most of the OpenSocial methods
do not directly return data. Instead, the application must request this data, and then, at some later time,
the container will return the results to a callback function in the application.

The returned response object from a request is an instance of opensocial.DataResponse. A single
DataRequest object can have multiple request objects added to it. An application may make several
such requests during its session with a user, but can also choose to batch or group requests at one time
(for improved performance). For example, a request might be to get the user’s name or a user’s list of
friends. The class for making requests is opensocial.DataRequest. (All of the classes and methods in

63

Chapter 2: Introduction to OpenSocial

the OpenSocial JavaScript API begin with the namespace opensocial.) The application then sends this
request using the send method of the DataRequest class.

Once a container receives a DataRequest, it goes through all of the requests associated with it, and
processes each request. In the case of multiple requests, it creates a batched response. Containers should
process the requests in serial order. For example, if you have a storage followed by a retrieval of a piece of
information, the newly stored information should be returned. Similarly, if the request is first a retrieval
followed by a storage operation, the old information will be returned before the new information is
stored.

Sample Application
OpenSocial is built upon what Google calls social gadgets, which are represented by XML files. (XML, of
course, is a language that is used to describe data with sets of tags called elements.) Listing 2-1 shows the
code for a ‘‘Hello World’’ OpenSocial application using version 0.8 of the OpenSocial JavaScript API.

Listing 2-1: Simple OpenSocial ‘‘Hello World’’ Application
<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="Hello World!">
<Require feature="opensocial-0.8"/>

</ModulePrefs>
<Content type="html">
<![CDATA[

Hello, world!
]]>

</Content>
</Module>

Let’s go through this code line by line:

<?xml version="1.0" encoding="UTF-8" ?> — This indicates that you have an XML file.

<Module> — This declares that this is a gadget.

<ModulePrefs title="Hello World!"> — This is the gadget information.

<Require feature="opensocial-0.8" /> — This indicates that you are using OpenSocial API
version 0.8.

<Content type="html"> — This indicates that the gadget will be delivered as HTML. OpenSo-
cial containers recommend this content type.

<![CDATA[— This contains the contents of the gadget, including HTML, CSS, and JavaScript.
This is similar the body tag of an HTML page.

Everything except the ‘‘Hello, world!" string is XML code that defines the application as a gadget. The
structure of this XML language comes directly from Google gadgets, and is examined in detail later in
this chapter.

To be able to run the OpenSocial ‘‘Hello World’’ application, you must place it on a server and then reg-
ister the application with the desired social network(s). Figure 2-9 shows the ‘‘Hello, world’’ application
profile running on the hi5 container.

64

Chapter 2: Introduction to OpenSocial

Figure 2-9: ‘‘Hello World’’ application

deployed in hi5

OpenSocial Data Formats
As a developer, it is important that you are aware of a number of data formats used in OpenSocial
(including JSON, Atom, and XML), and it is important that you know how to use them. Let’s first get
acquainted with the basics surrounding these top three formats. Included in an examination of the
JavaScript (OpenSocial) API in Chapter 4 is a discussion of when these formats are used.

JSON
JavaScript Object Notation (JSON) is a format that was created as a language-independent way to repre-
sent structured data. Because it is text-based, it is easy to read. JSON serializes its data using JavaScript.
Because of these attributes, it has been used for Web applications, and has been adopted by OpenSocial
as one of its data formats.

JSON can be used to format the following kinds of data:

Number

Boolean

Null

String

Object

Array

All data is given a JSON representation using either collections or ordered lists. Collections are sets of
(name,value) pairs. JavaScript serializes these collections (or ordered lists) via JavaScript literals. For
example, an object is represented as a collection of zero or more (name,value) pairs. An array is repre-
sented as an ordered sequence of zero or more values.

This serialization process has made the use of JSON popular in Web applications because it is able (in
a serial fashion) to transmit the data over the Internet. One place JSON is used is in Ajax programming
as an alternative to XML. JSON is a good fit with OpenSocial because it represents data with JavaScript
literals. OpenSocial JavaScript can easily use this format, saving it to a JavaScript variable in the program.
There is the added advantage that the overhead of JSON is less than XML.

JSON is used as a format for data coming from the social network to your program. This way, it is
independent of the social network’s underlying data representations that will change depending on

65

Chapter 2: Introduction to OpenSocial

the individual container (network). Similarly, you can create JSON data and send it in a request to the
OpenSocial container.

To find out more about JSON go to http:///www.json.org.

Let’s look at an example. Say that you have a Dog object that contains the attributes name, age, and owner

(itself an object). Listing 2-2 shows what the JSON representation of such a Dog object.

Listing 2-2: JSON Representation of a Dog Object
{

"name": "Butch",
"age": 5,
"owner": {

"name": "Lynne",
"city": "SF",
"state": "CA"

},
"likes": "bones"

}

Chapter 4 discusses some of the JavaScript (OpenSocial) API calls that use JSON-formatted data.
In OpenSocial, the Core Gadget API supports parsing of JSON via the gadgets.json object. The
gadgets.json.parse method takes JSON and returns a JavaScript object. Another alternative is to
use the JavaScript function eval, but for OpenSocial applications, the use of the gadgets method is
recommended. The gadgets.json.stringify takes JavaScript and turns it into a JSON string.

Atom
A format used in the OpenSocial RESTful API is Atom. (Chapter 5 provides more in-depth coverage of
the RESTful API.) Atom is a form of XML that describes information as feeds. The Atom format has been
used on the Web to represent and deliver data such as Weblogs (blogs) and news to Web sites and clients.

The root element of an Atom-formatted data set is the <feed> element, which can contain a number of
<entry> elements. Each entry is like an item in a Web feed. You will see more examples of the Atom
format in Chapter 5.

XML
As you have learned, XML is a language that is used to describe data with sets of tags called elements.
There are a number of basic rules that define XML as a standard, including stipulations such as the
following:

Elements are case-sensitive

Elements must come in pairs (that is, have an ending tag)

The actual tags/elements are defined by the application of XML. Chapter 3 discusses XML specifications
used in OpenSocial API.

See http://xml.org for a complete discussion of the XML standard.

66

Chapter 2: Introduction to OpenSocial

Application Deployment
The application deployment process is unique to each container. The following discussion shows you
how to deploy an OpenSocial JavaScript application on each of the more popular social networks that
support OpenSocial, including MySpace, hi5, orkut, imeem, Friendster, and Netlog.

Latter in this book, the ‘‘Hello World’’ application is extended to get OpenSocial user and friend infor-
mation, called the ‘‘Friend Finder’’ application. This basic application will be used in the following
demonstration of application deployment.

With all of the social networks, you must have your own account. You must also go through a process of
registering as a developer.

MySpace Deployment
Deployment on MySpace is a simple process. Begin by going to developer.myspace.com and registering
as a developer. Once you have done this, you may build a new application. Click the ‘‘build’’ link and
you will see the interface used to create a new application, as shown in Figure 2-10.

Figure 2-10: In MySpace’s form for creating a new application, the information is used to create what

MySpace calls an ‘‘application account’’

67

Chapter 2: Introduction to OpenSocial

In MySpace, an ‘‘application account’’ is created for each new application. You will be automatically
listed as the developer, and also as a friend of this account. However, you must specify a unique email
for the application. This cannot be the email you have used to create your personal developer account.
Once you have set up an application account, you can go to your main developer page by directing your
browser to http://developer.myspace.com. If you click on the My Apps link, you will be directed to
the interface shown in Figure 2-11, which allows you to do the following:

Edit applications

Create new applications

Delete applications

Add/remove developers

Publish your application

Figure 2-11: Main MySpace Developer Platform page

Click the Edit Details link appearing at the bottom of the My Applications interface shown in
Figure 2-11. You will then see an interface used for entering application attributes and details, as shown
in Figure 2-12. The following is the information captured:

Main App and Category/Language Settings — This can be changed for each unique language you
support.

Language — Application language (for example, English)

Gallery Description — A brief description of the application

Small Icon/Large Icon — URLS to small and large application icons

Installable — Indicates if you want your application to be able to be installed by users

Primary and Secondary Category — Categories used to list applications in indices

Callback URLs — These are invoked during install or uninstall:

Install — Indicates that this is invoked when the application is installed. You can specify a
program to keep track of this event, or to offer other first-time instructions to users.

68

Chapter 2: Introduction to OpenSocial

Uninstall — Indicates that this is invoked when a application is uninstalled. You might
want to invoke a program that records this event, but you might also want to offer an
enticement to lure the user back.

OAuth Settings — These deal with the use of OAuth in MySpace:

OAuth Consumer Key — Used for signing (authentication).

OAuth Consumer Secret — Used for signing (authentication).

External Site Settings — These are for externally hosted applications:

External URL — URL of the external application.

External Domain — Domain of external application.

Other — Whatever MySpace might want (currently, age appropriateness).

You have two options with MySpace to specify the application code: hosting your code on MySpace or
externally hosting it. If you host externally, much of this information will be filled in automatically, but
you have the option of altering it.

Hosting on MySpace

Developers are provided an option to host their OpenSocial application code on MySpace. This may
mean that you host all of your code on MySpace, or it can mean that you host the main application there,
but also refer to externally located code files and other resources.

Figure 2-13 shows MySpace’s Applicaton Builder interface that allows the developer to directly specify
the application code for MySpace hosting. When you save the application source code, MySpace
will then store and host this code. You can then return to the Application Builder to change your
code.

MySpace’s Application Builder lets you specify different code for each of the Canvas, Profile, and Home
pages provided for MySpace applications. If you choose to only enter in the Canvas and Home page
surfaces, this will mean that your application will not be displayed on the user’s Profile page.

When you specify the code, you do not specify the Gadget XML, but rather only the content. Much of
the Gadget XML element information (such as icons, application names, lifecycle support, and so on)
is provided in the information you filled out in the MySpace application settings interface shown in
Figure 2-12. Hence, for the ‘‘Friend Finder’’ application, only the content that was shown in Listing 2-1
should be entered. If you make the mistake of giving the complete XML application, you will get a
deployment error when you try to save it.

MySpace’s Application Builder requires that you specify the following application information through
its Edit App Information interface:

Application title

Gallery description

Primary category

69

Chapter 2: Introduction to OpenSocial

Figure 2-12: MySpace interface to specify application settings

70

Chapter 2: Introduction to OpenSocial

Figure 2-13: MySpace’s Application Builder interface for specifying MySpace hosted code

Uploading Code from an External Server

You can choose to ‘‘host’’ the code yourself on some external server, and then specify its URL, sim-
ply uploading the code. Figure 2-14 shows the MySpace Upload Application XML interface where you
specify the URL to your externally hosted XML code. Unlike the MySpace hosting option, developers
will make changes to code on their servers and need to re-upload the code for MySpace to accept the
changes.

Figure 2-14: You can specify code as an externally provided XML application, but note that MySpace

does not support all of the Google Gadget XML specification

71

Chapter 2: Introduction to OpenSocial

MySpace requires developers to follow the Google Gadet XML specification with the following
stipulations.

The following applies to <Content>:

preferredHeight

Specifies the initial height desired for the surface.

If not provided, then the height attribute from <ModulePrefs> element is used.

Minimum value is 20.

Maximum value is 1000.

If the preferredHeight is specified multiple times for the same view/surface, then the last
one takes precedence.

Only one <ModulePrefs> is recognized. If multiple ModulePrefs elements are provided, the first one is
used, and the rest are ignored. Following are other restrictions:

title

The short name associated with the application.

This attribute is required to create/update an application.

Minimum length is 1 character.

Maximum length is 64 characters.

Must use only the following characters: a-z, A-Z, 0-9, ‘, &, !, ., -, _, ?, [space].

Must start with a letter.

description

A short description of the application, used for display in the Gallery.

This attribute is required to create/update an application.

Minimum length is 1 character.

Maximum length is 256 characters.

Must use only the following characters: a-z, A-Z, 0-9, ‘, &, !, ., -, _, ?, [space].

thumbnail

The URL of the thumbnail image associated with the gadget. This is displayed in the App
Gallery, and the App Profile page.

Must point to a valid .gif, .png, or .jpg file.

Image dimensions must be 64 x 64 pixels.

File size must be less than 300KB.

Image will be pulled in and hosted by MySpace.

72

Chapter 2: Introduction to OpenSocial

height

Indicates the preferred height (in pixels) for the content.

This is optional, and the default is to use the default rendering height for the view surface.

Minimum value is 20.

Maximum value is 1000.

Attributes not recognized:

title_url

author

author_email

screenshot

directory_title

author_affiliation

author_location

author_photo

author_aboutme

author_quote

author_link

show_stats

show_in_directory

string

width (the width is set based on the surface selected)

category

category2

singleton (applications can only appear once per surface anyway)

render_inline

scaling

scrolling

The <Icon> element is recognized, and only the type attribute is not recognized.

The <Locale> element is recognized, and only the language_direction attribute is not recognized.

As mentioned previously, when you create an application in MySpace, the container actually creates an
account for the application. One option you should take advantage of is the creation of an application
profile. As you can see in Figure 2-15, the options for an application profile are different from a user’s
profile. Ensure that you fill out all of the appropriate information in the ‘‘About’’ section. This is what

73

Chapter 2: Introduction to OpenSocial

users will see when they want information about your application (for example, prior to an install).
HTML is accepted, and Figure 2-16 shows the results.

Figure 2-15: Ensure that you specify information for the ‘‘About’’ section in the application’s

MySpace profile

Figure 2-16: MySpace ‘‘Friend Finder’’ About

information as viewed by a user

hi5 Deployment
After you have set up your user account on hi5, you must register as a developer. Go to
http://www.hi5networks.com/developer/getstarted.html and follow the Add hi5 Developer
Application link. After this, you will be launched into a page where you can create a new application, as
shown in Figure 2-17.

74

Chapter 2: Introduction to OpenSocial

Figure 2-17: Creating a new application in hi5 by

simply entering in the URL of the externally hosted

OpenSocial XML file

Creating an application involves simply giving the URL to your externally hosted application. This is sim-
ilar to MySpace’s Upload Application XML option. The XML must contain more information than what
was previously shown in Listing 2-1. For example, in Listing 2-1, you specified in the ModulePrefs tag the
title of the application, a description of the application, and author information. The other tags define the
version of OpenSocial that the application uses, as well as information about the height of the application.

hi5 requires that the title attribute of the <ModulePrefs> element must be specified. In addition, the
author_email attribute must be equal to the developer account email address.

Figure 2-18 shows the main developer page on hi5. Figure 2-19 shows the ‘‘Friend Finder’’ application
running in the developer sandbox in a ‘‘canvas’’ view. From the main developer page, and from the hi5
sandbox page, you can do the following:

Specify the application URL

Add more developers

Preview or run in ‘‘canvas’’ mode

View statistics

Remove the application

Refresh (forced when code is revised, and may not occur immediately)

View application source

View application in different languages

Register to get hi5 language translations (Chapter 7 has more on internationalization)

Submit the application for publication

Note the Reload App link near the top of Figure 2-19. The reload feature is important, and you will use
it often as you are developing and changing your code. It will refresh the code, even in the sandbox,
because hi5 caches it.

orkut Deployment
orkut directs you to its ‘‘Sandbox Signup’’ (http://sandbox.orkut.com/SandboxSignup.aspx) to enroll
as a developer. All that is required is your name, email address (the one you used when getting your
user account), and the name of your company. Once you sign up, you have the capability to deploy
applications on orkut.

75

Chapter 2: Introduction to OpenSocial

Figure 2-18: hi5’s main Developer page, where you can see your applications

Figure 2-19: hi5 Developer page running the ‘‘Friend Finder’’ application (‘‘canvas’’ view) in the hi5

sandbox

To reach the interface for deploying and working on your applications, you must go to the
http://sandbox.orkut.com page after you log in. Note that when you log in, you will initially be in the
‘‘production’’ orkut machine at http://orkut.com .

Once on the ‘‘sandbox’’ orkut machine, you can reach the interface for deploying applications on orkut
by clicking the ‘‘edit’’ link in the Apps area of your Home page for your orkut account. As shown in
Figure 2-20, the interface is similar to hi5’s, and only the application URL must be specified. From this

76

Chapter 2: Introduction to OpenSocial

interface, you will also find a list of applications you have deployed and installed (including installed
applications not owned by you). From this interface you can do the following:

Set permission for your application by clicking on the ‘‘manage’’ link next to it

Remove your application using the ‘‘trash can’’ icon

Run your application by clicking on its name

Figure 2-20: Deploying the ‘‘Friend Finder’’ application on orkut

Unlike hi5, there are no direct links in the interface to submit or reload your application. Once you are
finished with the editing of your application, you can submit it to orkut by following the link from
orkut’s developer information page, leading to the http://www.orkut.com/Main#AppDirectorySubmit
.aspx URL.

orkut caches your application even in the sandbox (before submitting it). Obviously, you will want to
make changes to your XML file. To force a reload, you use ‘‘by-pass cache’’ (bpc) feature. You can simply
add ‘‘bpc=1" to the URL of your running application to force a reload.

For example, let’s say that you are viewing the following:

http://sandbox.orkut.com/Main#Application.aspx?uid=XX&appId=YY

You would then go to the address bar of your browser and add the ‘‘bpc=1" to the end of the URL, thus
yielding the following:

http://sandbox.orkut.com/Main#Application.aspx?uid=XX&appId=YY&bpc=1

Other users of your application will not see the changes you have made until orkut automatically
refreshes your application, which is usually done in one hour.

This bypass technique only reloads the cached XML, but not any externally referenced JavaScript or calls
to external programs. You must use your browser to delete all cached files (such as JavaScript files) to see
the new JavaScript. Figure 2-21 shows the dialog box for the Internet Explorer browser that enables you
to delete these files. The location and look of this delete option will vary with browser and version.

77

Chapter 2: Introduction to OpenSocial

Figure 2-21: Dialog box in Internet Explorer that

you use to remove files so that they are refreshed

with new ones

Netlog Deployment
Netlog allows developers to test their application in a sandbox, but, unlike the other containers dis-
cussed thus far (hi5, orkut, and MySpace), you do not deploy it. Instead, each time you want to test your
application, you must go to the developer page (http://en.netlog.com/go/developer/opensocial/
sandbox=1) shown in Figure 2-22. In this sense, Netlog provides more of a testing console. In this inter-
face, you only have the option to update the code, and to change the view.

Once you have decided to go public with your application, you must fill out the developer contact form
at the main developer Web site (http://en.netlog.com/go/developer/contact).

imeem Deployment
To deploy on imeem, go to http://www.imeem.com/developers and you will see the main developer
control page. This is called the ‘‘developer dashboard,’’ and is shown in Figure 2-23. From imeem’s
‘‘developer dashboard,’’ you can do the following:

Manage information about an application

Create new applications

Check application status

Delete an application

Run an application in ‘‘canvas’’ and ‘‘profile’’ views

See an ‘‘About’’ application page.

78

Chapter 2: Introduction to OpenSocial

Figure 2-22: Netlog provides a simple interface for testing your Opensocial XML application

Figure 2-23: The imeem developer dashboard

Figure 2-24 shows imeem’s interface to create a new application. You must enter the application name,
category, email address, developers, and description. Also, you will specify if you are creating an appli-
cation hosted off of or on imeem. So, like MySpace, you can host your code on imeem.

Figure 2-25 shows imeem’s interface to host the application on imeem. You have the option to either enter
in the code manually, or to upload an XML file to the imeem server. In the manual entry interface, you

79

Chapter 2: Introduction to OpenSocial

have tabs for the Canvas, Profile, and About pages. In the OpenSocial XML option (to upload an XML
file), the interface only asks for the URL to your hosted XML file. Note that you only enter in the content
and no Gadget XML elements in the edit space. This is similar to the MySpace-hosted code-creation
process.

Figure 2-24: Imeem’s interface to create a new application

Friendster Deployment
Friendster’s developer site is located at http://www.friendster.com/developer. You reach the interface
shown in Figure 2-26 by clicking on the link called ‘‘Get API key.’’ You must enter the name of the appli-
cation, platform (OpenSocial), and the URL to your XML file. Notice that this interface has a drop-down

80

Chapter 2: Introduction to OpenSocial

box that you use to specify the platform type. OpenSocial appears as an available option in the list, but
Friendster supports other kinds of application APIs as well. Under Optional Information, the developer
specifies the Category, if the application can be added to a Friendster Profile, and the URL starting with
http://widgets.friendster.com/ that the application is viewable from.

Figure 2-25: imeem allows you to host code on its server

Once you have deployed your application, you can proceed to the interface shown in Figure 2-27 by
clicking the ‘‘Manage Apps’’ link. This interface enables you to do the following:

Change the application settings

Run the application

Delete the application

Submit the application to the gallery (publish)

81

Chapter 2: Introduction to OpenSocial

Figure 2-26: Friendster’s interface for creating applications

Figure 2-27: Friendster’s interface for managing applications

82

Chapter 2: Introduction to OpenSocial

When you click the Test App link shown at the bottom of Figure 2-27, you are taken to an interface
that asks you to install the application. This is the same interface you see when installing published
applications. After this, the application appears in your account pages in the same way published appli-
cations do.

Note Friendster requires that you specify the following XML elements for an application:

description

thumbnail

icon

author_email

The thumbnail should be 75 pixels by 75 pixels, and the icon should be 16 pixels by 16 pixels.

Freebar Deployment
Freebar has two options for development. One is running it in Freebar’s sandbox. This is not deploy-
ment, but you must re-enter in the URL of your XML application each time you wish to test it (similar to
Netlog’s sandbox). Freebar’s sandbox can be reached at http://www.new.freebar.com/applications/
developerzone. This sandbox testing tool lets you alter the application view.

Another option is to upload the URL of your externally hosted XML application. You can reach this
interface at http://www.new.freebar.it/applications/developer/index. From this interface, you can
do the following:

Publish your application

Run your application

What You Need to Get Started
To create an OpenSocial application, you must have the following:

Application code

Server-to-host application (with database if necessary)

Developer accounts on each social network/container to which you will deploy your application

Recall from the discussion earlier in this chapter that some containers offer data storage and even appli-
cation hosting.

Table 2-2 provides some additional resources you might find helpful as you develop your OpenSocial
applications.

83

Chapter 2: Introduction to OpenSocial

Table 2-2: Additional Resources

Resource Description Items

OpenSocial Web site
(http://www.code.google
.com/opensocial)

This is the main resource of
all things OpenSocial.

Javscript API documentation

RESTful API documentation

orkut (Google social network)
development guide

Google Group on OpenSocial

OpenSocial Developer Forum
to share problems/solutions
(http://groups.google
.com/group/opensocial)

Issue Tracker to report and
track bugs, make feature
requests and register to
receive updates about specific
reports (http://code.google
.com/p/opensocial-

resources/)

Wiki to work collaboratively
on documentation
(http://code.google.com/
p/opensocial-resources/);
code examples provided
(http://code.google.com/
p/opensocial-resources/

wiki/SampleApps)

OpenSocial Blog (http://www
.opensocialapis.blogspot

.com)

This is the main blog for
OpenSocial developers. You
can see what other
developers are doing, see
problems and solutions, as
well as events that are
going on

Continued

84

Chapter 2: Introduction to OpenSocial

Table 2-2: Additional Resources (continued)

Resource Description Items

OpenSocial Foundation Web
site (http://www.opensocial
.org)

This is the home for a
non-profit organization. This
is another site similar to the
one hosted on Google in that
it contains documentation. It
was jointly proposed by
Yahoo!, MySpace, and
Google. It is the main
organization tasked to
perform open development
of the OpenSocial standard.

API documentation

Container Developer Forums Forums hosted by and about
individual social networks

MySpace (http://developer
.myspace.com/community/

forums/)

orkut (http://groups
.google.com/group/

opensocial-orkut and
http://orkutdeveloper

.blogspot.com/)

hi5 (http://www.hi5.com/
friend/group/2364084

--Hi5%2BPlatform%

2BDevelopment--front

-html)

Friendster
(http://www.friendster
.com/group/tabmain.php?

gid=977483)

Ning (http://developer
.ning.com/forum/

topic/listForCategory?

categoryId=1185512

%3ACategory%3A4646)

Plaxo
(http://groups.google
.com/group/opensocial

-plaxo)

Continued

85

Chapter 2: Introduction to OpenSocial

Table 2-2: Additional Resources (continued)

Resource Description Items

IRC
(http://www.irc.freenode
.net/opensocial)

Chat where you can get quick
help with others online.

OpenSocial Wiki
(http://wiki.opensocial
.org)

OpenSocial wiki

OpenSocial Directory
(http://www
.opensocialdirectory.org)

An Open Source site that
shares and rates OpenSocial
applications.

Summary
This chapter started with a brief history of OpenSocial, and then examined a number of OpenSocial
architectures. You were introduced to your first OpenSocial application. You learned about OpenSocial
data formats and about the deployment of OpenSocial onto a number of containers. Concluding this
chapter was a breakdown of what you need to create OpenSocial applications, and a list of resources
available to you.

Chapter 3 focuses on Gadget XML and API a key part of the OpenSocial standard. This includes some
code examples, such as the specification of multiple views and lifecycle support.

86

Gadget XML
and Gadget API

An OpenSocial application is actually a gadget that can include both Gadget XML tags and Gadget
API calls. In the example shown in Chapter 2 (Listing 2-1), the content is a simple ‘‘Hello, world!’’
message, and the Gadget XML code makes up the rest. Gadgets are not used exclusively in OpenSo-
cial, but they are also used to create HTML and JavaScript applications that can be embedded in
Web pages and other applications supporting the Gadget standard.

This chapter examines both the Gadget XML specification and the Gadget API.

For more information about (and updates to) Google’s documentation of gadgets, see
http://code.google.com/apis/gadgets.

Gadget XML
An OpenSocial JavaScript application is defined by using the Google Gadget XML. In this sense,
an OpenSocial application is an XML gadget. As an XML specification, it is comprised of elements
and their attributes. One XML language you may be familiar with is XHTML, which is an XML
specification of the HTML scripting language. Similarly, Gadget XML is an XML scripting language
for the specification of gadgets.

As you saw in the ‘‘Hello World’’ code example in Chapter 2 (Listing 2-1), the first tag in
OpenSocial gadgets is <Module>, which denotes an XML document’s root element. It is similar to
the <html> tag you have in an XHTML document. Inside of <Module>, you define gadgets using the
following elements:

ModulePrefs — Used to define a gadget and related attributes.

UserPrefs — Specifies user preferences. This is optional.

Content — Provides application content to the gadget.

Chapter 3: Gadget XML and Gadget API

Table 3-1 shows the attributes and sub-elements for these three main elements. Most of the attributes
are optional, but this can depend on the social network to which you are deploying your application.
Unfortunately, not all elements and attributes are recognized by most social networks, and some con-
tainers may place restrictions on them. (Chapter 6 dives into more detail surrounding social network
restrictions.)

Table 3-1: Detail for Gadget XML

Element Sub-element Attribute Description Example

ModulePrefs Author Name of author. author="L. Grewe"

author_email Email to contact
author.

author_email=

"myEmail@yahoo

.com"

author_

affiliation

Organization
with which the
author is
affiliated. Not all
social networks
support this.

author_

affiliation="Your

Company"

author_location Author’s location. author_location=

"SF, CA"

Description A short
application
description.

description=

"Track your

Friends"

Height Preferred height
(in pixels).

height = "200"

Screenshot Gadget screen
shot URL, in png

(preferred), jpg,
or gif format.
Width = 280
pixels; Height =

height of gadget.

Screenshot="

http://U.com/

FindFriends.htm"

title Application name
(short).

title ="Friend

Finder"

title_url Title that can link
to this URL. Can
be used to link to
an external site.

Title_url =

"http://

myFriendFinder

.com"

Continued

88

Chapter 3: Gadget XML and Gadget API

Table 3-1: Detail for Gadget XML (continued)

Element Sub-element Attribute Description Example

Icon Sub-element of
the ModulePrefs

element used to
specify an
application icon
(an image that is
16 pixels x 16
pixels).

<Icon>http://

UServer.com/icon

.gif</Icon>

mode Use to specify
base64-encoded
image (instead of
a URL).

<Icon

mode="base64"

type="image/png">

base64 encoded

data</Icon>

Locale Specifies
gadget-supported
locals. Optional,
and you can have
multiple locales.

<Locale lang="en"

country="us" />

<Locale lang="ja"

country="jp" />

lang Specifies the
language.

country Specifies the
country.

language_

direction

Specified as
right-to-left
("rtl") or
left-to-right
("ltr").

<Locale language_

direction=

"rtl" />

Link A container-
specific link. Can
be used to
support
application
lifecycle events.

Following are
examples of lifecycle
event notification:

<link rel="event"

Continued

89

Chapter 3: Gadget XML and Gadget API

Table 3-1: Detail for Gadget XML (continued)

Element Sub-element Attribute Description Example

href="http://U

.com/letmeknow"

method="POST/>
<link rel=

"event.addapp"

href="http://U

.com/add" />

<link rel="event

.removeapp"

href="http://U

.com/remove" />

rel Value that
triggers a
lifecycle event
(required).

href URL (required).

method POST or GET. GET
is default.

Optional feature Optional feature
declaration.
Where you
specify the
feature.

<Optional

feature="

shareable-

prefs"/>

Preload Container is to
get data from an
external source
during gadget
loading.
Response/data is
directly placed
(inline). New
data will be
available when
the gadget is run,
which improves
performance.

<Preload

href=http://U

.com/doit.xml />

Continued

90

Chapter 3: Gadget XML and Gadget API

Table 3-1: Detail for Gadget XML (continued)

Element Sub-element Attribute Description Example

You can do different
preloads for
different views:

<Preload

href=http://U

.com/doit.xml"

views="profile"

/>

href URL of data to
preload.

Require feature Required gadget
feature
declaration where
you specify the
feature.

<Require feature=

"opensocial-

0.8" />

<Require

feature="dynamic-

height" />

UserPref User-specific
data. Can have
multiple
instances.

<UserPref

name="zipcode"

display_name=

"Zip"

default_value="

32920">

name User preference
name.

display_name Name to display
to the user.

Continued

91

Chapter 3: Gadget XML and Gadget API

Table 3-1: Detail for Gadget XML (continued)

Element Sub-element Attribute Description Example

datatype Data type of
preference, which
can be the
following:

See EnumValue for
examples.

string (default)

bool

enum

hidden

list

location

required true or false
(default is false)

required="true"

default_value Sets the default. default_value="

32920"

EnumValue Enumerates a set
of possible values
(Enum) for a user
preference.

<UserPref name="

level"

display_name="

Level"

datatype="enum"

default_value="

1">

<EnumValue

value="1"

display_value="

Beginning"/>

<EnumValue

value="3"

display_value="

Average"/>

Continued

92

Chapter 3: Gadget XML and Gadget API

Table 3-1: Detail for Gadget XML (continued)

Element Sub-element Attribute Description Example

<EnumValue

value="3"

display_value="

Advanced"/>

</UserPref>

value Value.

display_value Defines what is
displayed to user.

Content Contains the
content of the
application.

<Content>

. . . here it is

</Content>

type "html" (default)
or "url"

<Content

type="url"

href=http://U.

com/doit.xml>

</Content>

href If type is url, this
is the actual URL
to the external
content.

view Specifies what
view is applied to
the content.
Views include the
following:

See the section,
‘‘Multiple Views,’’
later in this chapter
for examples and
discussion.

profile (user
Profile page)

canvas (full view
running, default
view)

Continued

93

Chapter 3: Gadget XML and Gadget API

Table 3-1: Detail for Gadget XML (continued)

Element Sub-element Attribute Description Example

profile.left

(when there is a
left location on
the Profile page)

profile.right

(when there is a
left location on
the Profile page)

home (user Home
page)

all (all of these)

<![CDATA[]]> An escape block
(allows for
non-XML to be
inside an XML
file).

<Content

type="html">

<![CDATA[

YOUR HTML here...

]]>

</Content>

Let’s create a revised version of the OpenSocial ‘‘Hello World’’ application shown previously in Chapter
2, Listing 2-1. For this version, let’s include more Gadget XML elements to define the application. Listing
3-1 shows the addition of a few ModulePrefs attributes and an Icon element.

Listing 3-1: Extension of the ‘‘Hello World’’ Application with ModulePrefs

<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="Hello World!" description="Hello World"
title_url="http://www.hi5.com" author="L. Grewe"
author_email="findme@yahoo.com" author_affiliation="iLab"
author_location="Bay Area, CA"
thumbnail="http://Me.com/Logo.png">

<Icon>http://Me.com/Logo-16x16.png</Icon>
<Require feature="opensocial-0.8"/>

94

Chapter 3: Gadget XML and Gadget API

</ModulePrefs>

<Content type="html">
<![CDATA[

Hello, world!
]]>

</Content>
</Module>

Now, let’s take a look at the second half of the gadget specification, the Gadget API.

Gadget API
When a container supports OpenSocial, it also supports the corresponding version of the Google Gadget
API. The Gadget API is available for use in your applications in addition to Gadget XML. This section
examines a number of the Gadget API objects and methods.

For complete details about and updates for the Gadget API, see http://code.google.com/

apis/gadgets/docs/reference.

All of the objects in the Gadget API start with the gadgets object. Hence, when you are looking at
OpenSocial code and see gadgets.*, you know this comes from the Google Gadget API.

The Gadget API is split up into two parts:

The Core API

The Feature-Specific API

Core Gadget API
For a container to be compliant with OpenSocial (and subsumed gadget) specifications, it must sup-
port and provide the Core API. This means that a developer does not need to require this API. (See
the description of the <Require> sub-element of the <ModulePrefs> Gadget XML element shown in
Table 3-2). Instead, the API should be automatically included when you include the following line in
your gadget:

<Require feature="opensocial-X.X" />

Table 3-2 shows most of the Core Gadget API, along with examples. These consist of the following main
objects:

gadgets.io

gadgets.json

gadgets.util

gadgets.Prefs

Chapter 2 provides more detail about JavaScript Object Notation (JSON), which is a data format used on
the Web.

95

Chapter 3: Gadget XML and Gadget API

Table 3-2: Detail of Gadget Core API

Object Method/Variable Description Example

gadgets.io Allows for
remote/external
resource access.

makeRequest static

makeRequest(url,

callback,

opt_params) gets
content from a URL
and passes it to the
callback function.

var params = {};

This uses an
asynchronous scheme
to request and it
automatically passes
the response (at a later
time) to the callback
function.

params[gadgets.io

.RequestParameters

.CONTENT_TYPE] =

gadgets.io

.ContentType.JSON;

gadgets.io

.makeRequest

("http://U.com",

response, params);

//results passed to

response function

function

response(obj) {

//obj.txt has the

returned response

data

}

ContentType.* Static objects that
represent the following
different kinds of data:

params[gadgets.io

.RequestParameters

.CONTENT_TYPE] =

gadgets.io

.ContentType.JSON;

Continued

96

Chapter 3: Gadget XML and Gadget API

Table 3-2: Detail of Gadget Core API (continued)

Object Method/Variable Description Example

gadgets.io

.ContentType.JSON

returns JSON.

//using to set

content of type of

parameters will

latter use to make a

data request.

gadgets.io

.ContentType.DOM

returns DOM for
fetching XML.

gadgets.io

.ContentType.FEED

returns JSON for RSS
feed.

gadgets.io

.ContentType.TEXT

used for HTML.

gadgets.json Translations to and
from JSON objects.

Parse static Object

parse(text) takes a
JSON string and
returns a JavaScript
object.

greetings = gadgets

.json.parse(gadgets

.util.unescapeString

(json));

Stringify static String

stringify(o) takes
JavaScript object o and
turns it into a JSON
String.

myGiftString =

gadgets.json

.stringify(Gift[2]);

//the JavaScript

object that is stored

in Gift[2] is

converted to a String

myGiftString

gadgets.util Nice utility functions.

Continued

97

Chapter 3: Gadget XML and Gadget API

Table 3-2: Detail of Gadget Core API (continued)

Object Method/Variable Description Example

escapeString static String

escapeString(str)

escapes the input as
follows:

gadgets.util

.escapeString(the_

string);

newline (\n, Unicode
code point 10)

carriage return
(\r, Unicode 13)

double quote
(’’, Unicode 34)

ampersand
(&, Unicode 38)

single quote
(’, Unicode 39)

left angle bracket
(<, Unicode 60)

right angle bracket
(>, Unicode 62)

backslash
(\, Unicode 92)

line separator
(Unicode 8232)

paragraph separator
(Unicode 8233)

unescapeString String

unescapeString(str)

‘‘unescapes’’ what
escapeString did.

greetings = gadgets

.json.parse(gadgets

.util.unescapeString

(json));

//json is a JSON

string we got back

from a data request.

Continued

98

Chapter 3: Gadget XML and Gadget API

Table 3-2: Detail of Gadget Core API (continued)

Object Method/Variable Description Example

registerOnLoad

Handler

static

registerOnLoad

Handler(callback) is
used to register a
callback function that is
invoked when the
gadget application is
loaded.

gadgets.util

.registerOnLoad

Handler(cf);

//function called at

load time

function cf() {

.your code

}

hasFeature static Boolean

hasFeature(feature)

tells if a container
supports a feature.

// Add a media item

link if supported for

hi5

if(gadgets.util

.hasFeature(’hi5’)

&& opensocial

.getEnvironment()

.supportsField

(opensocial

.Environment.

ObjectType.ACTIVITY_

MEDIA_ITEM,

hi5.ActivityMedia

ItemField.LINK)) {

mediaItem.setField

(hi5.ActivityMedia

ItemField.LINK,

viewer.getField

(opensocial.Person

.Field.

PROFILE_URL));

}

Continued

99

Chapter 3: Gadget XML and Gadget API

Table 3-2: Detail of Gadget Core API (continued)

Object Method/Variable Description Example

// code from hi5

sample code see

//http://www

.hi5networks.com/

platform/wiki/

SampleCode

gadgets.Prefs Class used to get
information about user,
such as
internationalization
(the country and
language of user).

getLang or getCountry String getCountry()

or String getLang()
gets Country and
Language of the user.

var prefs = new

gadgets.Prefs();

var name = prefs

.getString("name");

var lang = prefs

.getLang();

//later in code

createMyAppActivity

(viewer, lang);

Particularly worth noting in Table 3-2 is the gadgets.io.makeRequest method. It is used to invoke
remote applications and resources on remote servers. It returns results to the container, which, in turn,
delivers them to the client. In OpenSocial JavaScript applications, you should use the makeRequest

method to do the following:

Generate HTTP requests (both GET and POST methods)

Return the server response in a variety of formats

Send OpenSocial data to the remote server application

Support a form of signed requests

Chapter 6 discusses makeRequest in more detail, including code examples.

Let’s modify the ‘‘Hello world’’ example using the gadgets.io.registerOnLoadHandler method to
call a function that learns about the user’s language via gadgets.Prefs.getLang. Listing 3-2 shows this
code. The function init() is registered to run when the application is loaded. The init() function is the

100

Chapter 3: Gadget XML and Gadget API

one that uses the Gadget API to learn the user’s language, and simply displays this information back to
the user.

Listing 3-2: Extension of the ‘‘Hello World’’ with Core Gadget API to Learn User’s

Language
<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="Hello World!" description="Hello World"
title_url="http://www.hi5.com" author="L. Grewe"
author_email="findme@yahoo.com" author_affiliation="iLab"
author_location="Bay Area, CA"
thumbnail="http://Me.com/Logo.png">

<Icon>http://Me.com/Logo-16x16.png</Icon>
<Require feature="opensocial-0.8"/>

</ModulePrefs>
<Content type="html">
<![CDATA[

Hello World!

<div id="greeting" style="background: red;">

</div>

<script>
// Call the init function onLoad
gadgets.util.registerOnLoadHandler(init);

// function to learn user’s language and display it.
function init() {

var lang = "Not Known ";
try{

var prefs = new gadgets.Prefs();
lang = prefs.getLang();

if (lang == null)
document.getElementById(’greeting’).innerHTML = "lang is

null"
else

document.getElementById(’greeting’).innerHTML = "lang is " + lang;
}catch (e) {

document.getElementById(’greeting’).innerHTML =
"exception";}

}
</script>

]]>

</Content>
</Module>

In addition to the Gadget API calls, you should note the exception handling introduced in Listing 3-2.
Because containers can experience problems, and (as you will later learn) may handle optional fea-
tures differently, you should get in the practice of performing exception handling and error checking

101

Chapter 3: Gadget XML and Gadget API

within your code. Some developers choose to try to re-execute (multiple times) a failed code block before
responding differently in case the container is having a (very) temporary problem.

Feature-Specific Gadget API
The other part of the Gadget API is the Feature-Specific Gadget API. Unlike the Core Gadget API, to
use the Feature-Specific API, you must require the desired features in your Gadget XML by using
the <Require> element. When doing this, parts of the Feature-Specific API are grouped into different
‘‘features.’’ Following are the Feature-Specific API objects that are currently part of the OpenSocial spec-
ification, as well as their corresponding ‘‘features’’:

gadgets.views — Views

gadgets.window — Window

gadgets.skins — Skins

gadgets.flash — Flash

gadgets.MiniMessage — Minimessage

gadgets.Tab — Tabs

gadgets.TabSet — Tabs

gadgets.pubsub — Publishing (Subscribing)

gadgets.rpc — RPC

While most of these ‘‘features’’ have a one-to-one correspondence with the gadgets.* objects listed
before, in the case of gadgets.windows, the functionality is split between the ‘‘dynamic-height’’ feature
and the ‘‘settitle’’ feature. So, to use the methods of the gadgets.windows object dealing with height of
your application, your XML file must require it as follows:

<Require feature="dynamic-height"/>.

Table 3-3 details some of the commonly used objects that are part of the Feature-Specific Gadget API
used in OpenSocial.

Table 3-3: Detail of Feature-Specific Gadget API

Objects Method/Variable Description Example

gadgets.views View operations. See the
section, ‘‘Multiple Views,’’
later in this chapter for details
on views, and how to set via
Gadget XML.

ViewType static object CANVAS results
in full ‘‘screen’’ mode.

if (type == gadgets

.views.ViewType

.CANVAS)

static object HOME results in
a smaller view, run on
home page.

Continued

102

Chapter 3: Gadget XML and Gadget API

Table 3-3: Detail of Feature-Specific Gadget API (continued)

Objects Method/Variable Description Example

static object PREVIEW

results in a preview
view of the application.

static object PROFILE

results in a smaller
view, run on profile
page.

Containers can also
define additional views.

getSupportedViews static Map

<gadgets.views

.ViewType, String,

gadgets.views.View>

var params = {};

getSupportedViews()

gets
container-supported
views.

params[gadgets.io

.RequestParameters

.CONTENT_TYPE] =

gadgets.io

.ContentType.JSON;

Note that each
gadgets.view.View is
keyed by its name.

gadgets.io

.makeRequest("http:

//U.com", response,
params);

getCurrentView static

gadgets.views.View

getCurrentView() gets
current application
view.

if(gadgets.views

.getCurrentView()

.getName() ==

"canvas")

{ //do canvas view

stuff }

Continued

103

Chapter 3: Gadget XML and Gadget API

Table 3-3: Detail of Feature-Specific Gadget API (continued)

Objects Method/Variable Description Example

requestNavigateTo static

requestNavigateTo

(view, opt_params,

opt_ownerId) tries to
navigate and bring up
the indicated
application view. You
can pass parameters
(opt_params) for
optional container
support. opt_owerid
gives the owner of the
page navigating to,
with optional container
support. The default is
the current owner.

gadgets.views

.requestNavigateTo(

new

gadgets.views.View(

‘canvas’));

//created a canvas

view with no

//parameters to pass

and owner of page //is

current owner.

gadgets.window Window-related issues.

adjustHeight static

adjustHeight() or
static

adjustHeight(height)

adjusts the height of
window the gadget is
inside of to the height
specified in pixels. If no
height is specified, it
adjusts to the gadget
content.

// Call this method to

adjust the app’s

IFrame height if

necessary

gadgets.window

.adjustHeight();

See the getViewport

Dimensions method for
another example.

Continued

104

Chapter 3: Gadget XML and Gadget API

Table 3-3: Detail of Feature-Specific Gadget API (continued)

Objects Method/Variable Description Example

getViewport

Dimensions

static Object

getViewport

Dimensions()

gets information about
the dimensions
available for your
gadget.

var height = gadgets

.window

.getViewport

Dimensions()

.height;

gadgets.window

.adjustHeight

(height);

gadgets.skins Establishes the look
and feel of a container
(for example, font color
and background).

getProperty static String

getProperty

(propertyKey)

retrieves the value of
the Property. See
gadgets.skins

.Property.

var bgcolor = gadgets

.skins.getProperty

(gadgets.skins

.Property.BG_COLOR);

//use bgcolor to set

the background of

some document element

to this color

Property Specifies possible skin
properties, including
the following:

See the previous
example.

static object

ANCHOR_COLOR —
link color used

static object

BG_COLOR — gadget
background color

static object

BG_IMAGE — gadget
background image

Continued

105

Chapter 3: Gadget XML and Gadget API

Table 3-3: Detail of Feature-Specific Gadget API (continued)

Objects Method/Variable Description Example

static object

FONT_COLOR — gadget
font color

gadgets.flash Deals with Flash files.
See discussion in
Chapter 7 on issues
with this.

embedFlash static Boolean

embedFlash(swfUrl,

swfContainer,

swfVersion,

opt_params) lets you
embed Flash files.

See discussion in
Chapter 7 for details.

Listing 3-3 shows how the ‘‘Hello World’’ application can be modified to add the feature of dynamically
adjusting the height of the application using the gadgets.window.adjustHeight method.

Listing 3-3: Extension of the ‘‘Hello World’’ Application to Adjust the Height of the

Application

<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="Hello World!" description="Hello World"
title_url="http://www.hi5.com" author="L. Grewe"
author_email="findme@yahoo.com" author_affiliation="iLab"
author_location="Bay Area, CA"
thumbnail="http://Me.com/Logo.png">

<Icon>http://Me.com/Logo-16x16.png</Icon>

<Require feature="dynamic-height"/>
<Require feature="opensocial-0.8" />

</ModulePrefs>
<Content type="html">
<![CDATA[

Hello World!

<script>
// Call the init function onLoad
gadgets.util.registerOnLoadHandler(init);

function init() {
gadgets.window.adjustHeight(50);

}

106

Chapter 3: Gadget XML and Gadget API

</script>
]]>

</Content>
</Module>

Multiple Views
In Chapter 1, you learned about how different networks allow applications to appear. OpenSocial refers
to this as the view of an application. A view is the page (or area of a page) on a social network where
your application can appear. For example, in MySpace, an application can be viewed on the user’s
Home page, Profile page, and in a Canvas page. Let’s take a look at how you specify the view in your
application.

You may want your application to appear on all of the possible views, or only some. You may want your
content to vary depending on the view. OpenSocial allows all of these possibilities through the <Content>
tag that is part of the Google Gadget XML specification.

You can have more than one <Content> element in your OpenSocial XML application. The view attribute
of the <Content> tag allows you to specify what views the contained content will apply to. All <Content>
sections should be at the same level in the document tree. For example, to create different content
for the ‘‘profile’’ and ‘‘canvas’’ views, you would use something similar to the XML code shown in
Listing 3-4.

Listing 3-4: Application with Contents for ‘‘Profile’’ View and for the ‘‘Canvas’’ View
<?xml version="1.0" encoding="UTF-8" ?>
<Module>

<ModulePrefs title="View Silly Example">
<Require feature="opensocial-0.8" />

</ModulePrefs>
<Content type="html" view="profile">
<![CDATA[
<h1>Profile Content</h1>

]]>
</Content>
<Content type="html" view="canvas">
<![CDATA[
<h1>Canvas Content</h1>

]]>
</Content>

</Module>

Consider some other possibilities and their associated meanings:

<Content views="canvas, home"> — This means the contained content will be displayed for
both ‘‘canvas’’ and ‘‘home’’ views.

<Content> — This will be the default content displayed for all views not specified with a
<Content views="XX"> tag.

Only <Content views="profile"> — If this is the only content tag in your XML application, it
means that the application will only be shown in the user’s profile and not other possible views.

107

Chapter 3: Gadget XML and Gadget API

Listing 3-5 shows an example that uses multiple content tags.

Listing 3-5: Application Directing the Content to Different Views
<?xml version="1.0" encoding="UTF-8" ?>
<Module>

<ModulePrefs title="Another Simple Views Example">
<Require feature="opensocial-0.8" />

</ModulePrefs>

<Content type="html" view="home">
<![CDATA[
<h1>Home</h1>

]]>
</Content>

<Content type="html" view="profile">
<![CDATA[
<h1>Profile</h1>

]]>
</Content>

<Content type="html" view="canvas">
<![CDATA[
<h1>Canvas</h1>

]]>
</Content>

<Content type="html" view="canvas,profile">
<![CDATA[
I am in both the canvas and profile view but, NOT in the home view.

]]>
</Content>

<Content type="html">
<![CDATA[

I am in any view that is not specified. (the preview view)
]]>

</Content>

</Module>

The output of the code in Listing 3-5 is as follows for the different views:

‘‘Home’’ view:

<h1>Home</h1>

‘‘Profile’’ view:

<h1>Profile</h1>
I am in both the canvas and profile view but, NOT in the home view.

108

Chapter 3: Gadget XML and Gadget API

‘‘Canvas’’ view:

<h1>Canvas</h1>
I am in both the canvas and profile view but, NOT in the home view.

‘‘Preview’’ view:

I am in any view that is not specified. (the preview view)

Changing Views Dynamically
Sometimes you may want to redirect the user from one view to another. This can be useful when your
application is transitioning from a typically smaller ‘‘profile’’ view to a ‘‘canvas’’ view. This can be done
by using the gadgets.views.navigateTo method of the Gadget API.

Let’s modify the code in Listing 3-5 to have a link in the ‘‘preview’’ content that will take the user to a
‘‘canvas’’ view.

<input type="button" value="Canvas"
onclick="var views =gadgets.views.getSupportedViews();

gadgets.views.requestNavigateTo(views["canvas"]);">

Lifecycle Support
The lifecycle for an application involves the idea of stages of existence between an application and a user.
Lifecycle stages include the following:

Application not yet installed

Application in use

Application removed

Application is being recommended (invite)

Application has a change in policy

It is useful for an application developer to know when an application changes stage. OpenSocial provides
support for this in what is known as lifecyle events, which are events leading to the transition from one
stage to another. The lifecycle events include the following:

addapp — Application installation

removeapp — Application removal

invite — A user is being invited to add the application from another user

When the <Link> element is used in the Gadget XML, OpenSocial allows the developer to specify a URL
for each kind of event. This URL will be invoked when the event occurs. You should have your link point
to a program that records this information, but you may also choose to do further actions.

109

Chapter 3: Gadget XML and Gadget API

When the registered URL program is invoked by the container with a lifecycle event, it will pass appro-
priate data. For example, when the application is installed, it will pass an id attribute, which is the user
ID of the installer. Optionally, there is a from attribute the container may support that has the values of
"invite", "gallery", and "external", letting you know where the user originated from.

Listing 3-6 shows the sample ‘‘Hello World’’ application that adds <Link> elements to track when the
application is installed and removed.

Listing 3-6: Extension of the ‘‘Hello World’’ Application to Include Lifecycle Support
<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="Hello World!" description="Hello World"
title_url="http://www.hi5.com" author="L. Grewe"
author_email="findme@yahoo.com" author_affiliation="iLab"
author_location="Bay Area, CA"
thumbnail="http://Me.com/Logo.png">

<Icon>http://Me.com/Logo-16x16.png</Icon>
<Require feature="opensocial-0.8"/>
<Link rel="event.addapp" href="http://me.com/recordAppadded">
<Link rel="event.removeapp" href="http://me.com/AppRemoved">

</ModulePrefs>

<Content type="html">
<![CDATA[

Hello, world!
]]>

</Content>
</Module>

Summary
This chapter started with a brief history of OpenSocial, and then examined a number of OpenSocial
architectures. You were introduced to your first OpenSocial application, and, with it, you learned how to
use the Gadget XML and Gadget APIs. This chapter went into greater detail on how to create multiple
views for your application. You also learned about lifecycle support.

Chapter 4 takes a closer look at the OpenSocial API, including the Person, the Persistence and the Activity
API components.

110

JavaScript API

The JavaScipt API provides access to user and friend data, as well as providing the capability to
share this data and create activities. The OpenSocial API addresses the following three functional
areas:

People

Activities

Persistence

This chapter begins by walking you through the development of a simple application that uses
social data and is based on OpenSocial’s JavaScript API. After examining this sample application,
the chapter takes a detailed look at the structure of the OpenSocial JavaScript API and its commu-
nications procedures.

A Simple Application in OpenSocial
In Chapter 2, you learned how OpenSocial applications (at their most basic level) are based
on the OpenSocial JavaScript API, and how they are XML files (gadgets) containing content
encoded with HTML and CSS. This section goes through the development of a simple application
that uses the OpenSocial Javascript API to access some social data. Chapter 2 introduced
simple application called ‘‘Hello, world,’’ which didn’t make any calls while loading the JavaScript
(OpenSocial) API. Let’s now create a simple application that makes use of social data. This
application, called ‘‘Friend Finder,’’ presents a user with a list of friends after giving a personalized
greeting to the user.

As you learned in Chapter 2, when deploying an application, one of the differences between
containers (social networks) is whether or not the application is hosted by the container. Often
times, when this is the case, you will not need to explicitly load the JavaScript (OpenSocial) API,
as was done in the previous ‘‘Hello, world’’ application.

Chapter 4: JavaScript API

To facilitate ease in deployment, let’s separate the new ‘‘Friend Finder’’ application into two files: an XML
gadget file and a separate JavaScript file. While it is possible to have inline JavaScript inside the XML file,
let’s separate it for clarity. This will make the most sense as your code grows beyond the trivial stage.

Listing 4-1 shows the XML gadget file and Listing 4-2 shows the JavaScript file for the new ‘‘Friend
Finder’’ application.

Listing 4-1: XML (Gadget) File for the ‘‘Friend Finder’’ Application

FriendFinder.xml

<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="Friend Finder" description="Friend tracker"
title_url="http://FriendFinder.com" author="L. Grewe"
author_email="ff@yahoo.com"
author_affiliation="iLab" author_location="Bay Area, CA"
thumbnail="http://UServer/Logo.PNG">

<Icon>http://UServer/Logo_16_16.PNG</Icon>
<Require feature="dynamic-height"/>
<Require feature="opensocial-0.8"/>

</ModulePrefs>
<Content type="html">
<![CDATA[

<div id=’heading’></div>
<hr size="1px" />
<div id=’main’></div>
<hr>
<div id=’friends’></div>

<script src="http://UServer/FriendFinder.js"></script>

<script>
init();

</script>
]]>

</Content>
</Module>

Listing 4-2: JavaScript Code for the ‘‘Friend Finder’’ Application

FriendFinder.js
var os;
var dataReqObj;
var html = ‘’;
var heading = ‘’;
var friends_html = ‘’;

function init() {

dataReqObj = opensocial.newDataRequest();

112

Chapter 4: JavaScript API

var viewerReq = dataReqObj.newFetchPersonRequest(opensocial.IdSpec.
PersonId.VIEWER);

dataReqObj.add(viewerReq, ‘viewer’);
var idspec = opensocial.newIdSpec({"userId": "VIEWER",

"groupID" : "FRIENDS"});
viewerReq = dataReqObj.newFetchPeopleRequest(idspec);
dataReqObj.add(viewerReq, ‘viewerFriends’);

dataReqObj.send(onLoadViewerResponse);

}

function onLoadViewerResponse(data) {

var viewer = data.get(’viewer’).getData();
heading = ‘Hello, ‘ + viewer.getDisplayName();
var thumb = viewer.getField(opensocial.Person.Field.THUMBNAIL_URL);
var profile = viewer.getField(opensocial.Person.Field.PROFILE_URL);

document.getElementById(’heading’).innerHTML = heading;
document.getElementById(’main’).innerHTML = html;

var viewer_friends = data.get(’viewerFriends’).getData();

friends_html = ‘My Friends are, ‘ ;
friends_html = friends_html + ‘’;

viewer_friends.each(function(person) {
friends_html = friends_html+ ‘’ + person.getDisplayName() +

‘’;
});

friends_html = friends_html + ‘’;

document.getElementById(’friends’).innerHTML = friends_html;

}

FriendFinder.xml contains some simple HTML that invokes the init() method in the JavaScript file.
Let’s look at the details of the init() method:

dataReqObj = opensocial.newDataRequest(); — This creates a new DataRequest. object,
which is the object in OpenSocial that is used to request social data.

viewerReq = dataReqObj.newFetchPersonRequest(opensocial.IdSpec.PersonId.VIEWER););
— This creates a request to fetch the current viewer‘s information.

dataReqObj.add(viewerReq,’viewer’); — This adds the request just created.

var idspec = opensocial.newIdSpec({"userId": "VIEWER", "groupID" : "FRIENDS"});

viewerReq = dataReqObj.newFetchPeopleRequest(idspec); — This creates a request to fetch
the current viewer’s friends.

113

Chapter 4: JavaScript API

dataReqObj.add(viewerReq, ‘viewerFriends’); — This adds the friends request and asso-
ciates it with the string key ‘viewerFriends’.

dataReqObj.send(onLoadViewerResponse); — This sends the current request object and reg-
isters the method onLoadViewerResponse as the callback function. (This is invoked when the
container has finished processing the request.)

The datReqObj object in the init method is an instance of the DataRequest object in the OpenSocial API.
It is important to understand that invoking the send method on this object turns into a call to the con-
tainer (social network), which returns the results in JavaScript Object Notation (JSON) format. The JSON
format is converted via OpenSocial to a JavaScript object called DataResponse that is received by the
onLoadViewerResponse method. These kinds of asynchronous calls are at the heart of many OpenSocial
interactions. As you will see shortly, one of the characteristics of the JavaScript (OpenSocial) API is that
it is asynchronous.

You should batch the data you want into a single DataRequest. The results are
returned via a single DataResponse. Batching as much as you can into a single call
will make your application perform better, resulting in a better user experience.

The onLoadViewerResponse method does the bulk of the work in this sample application. Let’s look at it
in detail. The object data it receives is an instance of the OpenSocial DataResponse object.

The following lines of code get the viewer data and store it in the viewer variable. The name of the
viewer (viewer), the thumbail URL (thumb), and profile URL (profile) are stored in the respective
variables.

viewer = data.get(’viewer’).getData();
heading = ‘Hello, ‘ + viewer.getDisplayName();
thumb = viewer.getField(opensocial.Person.Field.THUMBNAIL_URL);
profile = viewer.getField(opensocial.Person.Field.PROFILE_URL);

The following line sets the HTML (associated with the HTML div) with an ID heading to a personalized
greeting using the name of the viewer.

document.getElementById(’heading’).innerHTML = heading;

From the DataResponse object, the following code gets the viewer’s friends. The get method returns an
OpenSocial ResponseItem object. Recall that in the request made, the data is associated with the string
key ‘viewerFriends’, and this key is used to retrieve the response information. The getData method of
the ResponseItem object retrieves the data associated with this response. What is returned is the generic
JavaScript object.

viewer_friends = data.get(’viewerFriends’).getData();

The following code constructs a list of the viewer’s friends by cycling through them using the each

statement in JavaScript, meaning that, for each person found in the friend’s response, the code grabs the
name and makes it an element in a list.

114

Chapter 4: JavaScript API

friends_tml = ‘My Friends are, ‘ ;
friends_html = friends_html + ‘’;
viewer_friends.each(function(person) {
friends_html = friends_html + ‘’ + person.getDisplayName() + ‘’;
});
friends_html = friends_html + ‘’

The following line sets the HTML (associated with the div) with an ID ‘heading’ to the friends list.

document.getElementById(’friends’).innerHTML = friends_html;

Figure 4-1 shows this simple ‘‘Friend Finder’’ application running in MySpace. You will learn how to
retrieve and create many other kinds of social data later in this chapter.

Figure 4-1: Simple ‘‘Friend Finder’’

application deployed on MySpace

Now that you have seen the JavaScript API in action, let’s take a deeper look at what this important
collection of tools actual entails.

OpenSocial API Features
To understand the OpenSocial JavaScript API, you should first become familiar with some common
features seen throughout. This section discusses a few, including the following:

Data type creation

Asynchronous communications

Naming conventions

A common criticism about JavaScript is the fact that it lacks a strong sense of data type. While it could be
argued that this allows for greater freedom in programming, it also creates greater difficulties when han-
dling data exchanges such as those needed by OpenSocial (between the container and the application). In

115

Chapter 4: JavaScript API

an attempt to avoid problems, OpenSocial is written as if JavaScript were strongly typed. To assist with
this, a number of static data fields are defined. A couple of examples are opensocial.Activity.Field

and opensocial.Message.Field. Other examples are the opensocial.BodyType.* fields used to repre-
sent the string data returned when requesting the user’s body type.

Another OpenSocial API characteristic is that many of the API calls use asynchronous communications
in the form of a full asynchronous callback methodology. For example, this is seen when requesting user
data.

All of the OpenSocial methods and classes are under the opensocial.* namespace. When containers
create their own OpenSocial extensions, they are required to follow a specific naming structure that
mimics the opensocial.* naming convention. For example, if the hi5 container is to be compliant
when creating extensions to the opensocial.Person.Field.* values, hi5 must name them as
hi5.Person.Field.new_FieldName.

A number of methods in OpenSocial take sets of optional parameters. They are indicated with
the prefix opt_ in their names. For example, opt_params appears as the third argument of the
newMediaItem(mimeType, url, opt_params) method. The opt_params seen in such OpenSocial methods
is a kind of map/hash that associates parameter names (keys) with values. For example, the opt_params

in the newMediaItem method is a map keyed with opensocial.MediaItem.Field.* keys.

People
Users and friends are represented as a Person object in OpenSocial. There are three kinds of people in
OpenSocial:

Owner — This is the person who owns the account and has installed your applica-
tion. Depending on container support, this can be specified with the string ‘OWNER’,
opensocial.DataRequest.PersonId.OWNER, or opensocial.IdSpec.PersonId.OWNER. The
latter is the accepted standard for the latest version of OpenSocial. (Check the version you are
programming to.)

Viewer — A viewer is a person logged in to the social network who can be viewing either that
person’s own page that has your application on it, or another user’s page that has your appli-
cation on it. Depending on container support, this can be specified with the string ‘VIEWER’,
opensocial.DataRequst.PersonId.VIEWER, or opensocial.IdSpec.PersonId.VIEWER. (The lat-
ter is the latest version of OpenSocial.)

Friends — Friends appear in the social network as either the owner or viewer.

Depending on the container’s support of OpenSocial (and version), these people can be signified as
follows for the latest OpenSocial version:

Via an opensocial.IdSpec object

For earlier versions of OpenSocial, you would use the following:

Predefined strings (’OWNER’, ‘VIEWER’, ‘OWNER_FRIENDS’, ‘VIEWER_FRIENDS)

The opensocial.DataRequest.PersonId.* field

The opensocial.IdSpec.PersonId.* fields

116

Chapter 4: JavaScript API

In some examples in this book, a simple string representation will be used. Keep in
mind that you will need to make substitutions as appropriate. See the section,
‘‘IdSpec,’’ later in this chapter for details on use.

An application can get information about any of these persons through the following two-step process:

1. Request data:

a. Create DataRequest object by calling opensocial.newDataRequest.

b. For each request you wish to make, create it using one of the opensocial.new* meth-
ods.

c. For each piece of data you want to request, add a request via DataRequest

.add(request).

d. Make a request by registering the callback function, DataRequest.send(callback).

2. Create a callback function to receive data:

a. Once a container gets the request and it is processed, the callback function will
be executed. It will be passed the opensocial.DataResponse object that contains
the response data of the processed request. In the following code example, the
DataResponse object is received as a parameter to the callback function, and is called
dataResponse:

function callback(dataResponse) {

//process the response data
}

ViewerData Example
Let’s create an example that first gets the viewer’s ID, display name, profile link, and thumbnail image.
Then let’s display this information. Listing 4-3 shows the JavaScript to achieve this.

Listing 4-3: ViewerData.Js Code to Request and Display Basic Viewer Data

var dataReqObj;
var heading = ‘’;

//function called initially in XML file, this makes data request
//for viewer
function init() {

//Create Data Request
dataReqObj = opensocial.newDataRequest();

//depending of version of OpenSocial, viewer reference changes
var viewerReq = dataReqObj.newFetchPersonRequest

(opensocial.IdSpec.PersonId.VIEWER);

Continued

117

Chapter 4: JavaScript API

Listing 4-3: ViewerData.Js Code to Request and Display Basic Viewer Data (continued)

dataReqObj.add(viewerReq, ‘viewer’);

//Send Data Request
dataReqObj.send(onLoadViewerResponse);

}

//Callback function to process Viewer data requested.
function onLoadViewerResponse(data) {

var viewer;

//retrieve data associated with viewer request.
try{

viewer = data.get(’viewer’).getData();
}catch(err){

heading = ‘Error ‘ + err.description;
alert (heading);}

//Setup html to return to display viewer basic info
try{

heading = ‘Hello, ‘ + viewer.getDisplayName();
var thumb =

viewer.getField(opensocial.Person.Field.THUMBNAIL_URL);
var profile =

viewer.getField(opensocial.Person.Field.PROFILE_URL);

heading = heading + ‘<img src="’
+ thumb

+ ‘">’;
} catch(err){

heading = ‘Error ‘ + err.description;
alert(heading);}

//Display results inside XML document at the div
//element with id heading
document.getElementById(’heading’).innerHTML = heading;

}

Figure 4-2 shows the result of running the application in Listing 4-3. The user’s name, along with a
thumbnail image (linked to the user’s profile URL), is shown.

Figure 4-2: ViewerData

application gets basic

viewer information

118

Chapter 4: JavaScript API

Unfortunately, the newness of social network programming and OpenSocial means that all of the con-
tainers do not support the OpenSocial standard with complete compliance. This simple coding example
can illustrate how this can take place. Listing 4-3 will work on the majority of social networks, including
hi5, Friendster, imeem, and so on. However, as of this writing, it does not function on MySpace.

Listing 4-4 shows the necessary code substitutions for the dataReqObj.add and the related
data.get(’viewer’).getData() calls in Listing 4-3 to work on Myspace. While both code samples
should work for the currently supported version of OpenSocial in MySpace, hi5, and so on, they do not.
This is one of the challenges in coding with new technologies like OpenSocial.

Listing 4-4: Code Changes from Listing 4-3 to Work in Current MySpace Container

//replace dataReqObj.add(viewerReq, ‘viewer’);

dataReqObj.add(viewerReq); //WORKS ONLY FOR MYSPACE

//replace viewer = data.get(’viewer’).getData();

viewer = data.get(opensocial.DataRequest.PersonId.VIEWER)
.getData();

If you code something and it is not working, there are some things you can try.
Deploy and run it on other OpenSocial containers. Look in the social network’s
online documentation to see if your code is supported. And, finally, post to the
social network’s developer forum a description of the problem (it may be a
container problem).

The viewer data for some networks will only be returned if the viewer is an installed user of the appli-
cation. Unfortunately, the newness of social network programming and OpenSocial means that all of the
containers do not offer the same support. In orkut, for example, the viewer returned will be null. Your
program should anticipate this case.

One possible alternative is to direct the viewer to a page to install the application. Most containers will
allow you to direct the viewer to an install page if users try to take some action in your application.
Another solution may be to present some alternative content that will be necessarily less personal to the
viewer.

In any case, you should provide some content and functionality to non-installed viewers to entice them
to install your application.

GetFriends Example
Another class of Person in OpenSocial is the friend. A common need of many applications is getting a
user’s friend list. This may be an integral part of the application (such as in a gaming tool or communica-
tions tool), but it is also used for the prolific ‘‘invite your friend’’ option to use the application.

119

Chapter 4: JavaScript API

Listing 4-5 expands on the previous ViewerData example to display a drop-down box containing the list
of the viewer’s friends. As before, this request is made through an opensocial.DataRequest object and
the ‘VIEWER_FRIENDS’ data will also be requested.

Listing 4-5: GetFriends.Js Code to Request and Display a Drop-down List of Viewer’s

Friends

var dataReqObj; var heading = ‘’;
var friends_html;
var TheFriends=new Array();

//function called initially in XML file, this makes data request
//for friend.
function init() {

//Create Data Request
dataReqObj = opensocial.newDataRequest();

//create viewer request
var viewerReq = dataReqObj.newFetchPersonRequest(opensocial.IdSpec.

PersonId.VIEWER);
dataReqObj.add(viewerReq, ‘viewer’);

// create friends of viewer request

var idspec = opensocial.newIdSpec({"userId": "VIEWER",

"groupID" : "FRIENDS"});

viewerReq = dataReqObj.newFetchPeopleRequest(idspec);

dataReqObj.add(viewerReq, ‘viewerFriends’);

//Send Data Request
dataReqObj.send(onLoadViewerResponse);

}

//Callback function to process Viewer data requested.
function onLoadViewerResponse(data) {

var viewer;

//retrieve data associated with viewer request.
try{

viewer = data.get(’viewer’).getData();
}catch(err){

heading = ‘Error ‘ + err.description;
alert (heading);}

//Set up html to return to display viewer basic info
try{
var thumb = viewer.getField(opensocial.Person.Field.THUMBNAIL_URL);
var profile = viewer.getField(opensocial.Person.Field.PROFILE_URL);

heading = heading + ‘<img src="’ + thumb +
‘">’;

120

Chapter 4: JavaScript API

} catch(err){
heading = ‘Error ‘ + err.description;
alert(heading);}

document.getElementById(’heading’).innerHTML = heading;

//Get Friends Information

var viewer_friends = data.get(’viewerFriends’).getData();

friends_html = ‘Your Friend , ‘ ;

friends_html = friends_html + ‘<select id=select_friend

onchange="getFriendStatus();">’;

viewer_friends.each(function(person) {

friends_html = friends_html + ‘<option value=’ +

person.getId() + ‘>’

+ person.getDisplayName() + ‘</option>’;

TheFriends[person.getId()] = person;

});

friends_html = friends_html + ‘</select>’;

document.getElementById(’friends’).innerHTML = friends_html;

}

The bold text in Listing 4-5 is what is needed to request and display the friend information. The first
line to note is dataReqObj.newFetchPeopleRequest(’VIEWER_FRIENDS’), which sets up the request for
the viewer’s friends. Later, in the callback function, the data.get(’viewerFriends’).getData() call
retrieves the related list of friends. The remainder of the highlighted code cycles through this list and
generates a drop-down HTML list, and then associates it with a <div> element with ID ‘friends’ in the
OpenSocial XML. Figure 4-3 shows the results of running this application.

Figure 4-3: GetFriends

application

Listing 4-5 contains has some exception handling, but you can do more testing than this. As shown in the
following code snippet, testing is done to confirm not only that the friends data was received, but also
that there is at least one friend. If this is not the case, the code returns false. Note that the code uses the
size() method of the OpenSocial Collections instance stored in viewer_friends.

if (!data || data.hadError() || data.get(’viewer_friends’).hadError())
{ return false; } // Error retrieving data

121

Chapter 4: JavaScript API

//Later in code........................ .
var viewer_friends = data.get(’viewer_friends’).getData();
if (viewer_friends.size() < 1) {

{ return false; } // No friends with the app

If a user has a lot of friends, you may want to limit the number of friends you request at one time. You
can create a paginated list, if needed. The following code snippet shows how to ask for 10 of the owner’s
friends, starting at the 30th friend:

var params = {};
params[opensocial.DataRequest.PeopleRequestFields.MAX] = 10;
params[opensocial.DataRequest.PeopleRequestFields.FIRST] = 30;

var req = opensocial.newDataRequest();
req.add(req.newFetchPeopleRequest(opensocial.DataRequest.Group.OWNER_FRIENDS,

params), "friends");

req.send(callBackFunction);

Info Example
It may seem somewhat counter-intuitive for the Object-Oriented Programming (OOP) coder, but when
making a request for a person, you are only given very basic information about the person (such as the
person’s name and a profile URL). To get extended information about a person, you must specifically
create a set of additional parameters specifying the additional information you want. You do this at
request time. Only the information you requested will be sent to you.

When you consider that these transactions are going back and forth across the Internet from the program
to the social network, this can be a performance hit, and you want to be able to only get the information
you need. An application may only want to know the name and status of a person. To force a retrieval of
the entire set of information about that person would take up unnecessary time.

Table 5-1 shows the list of fields you can request about a person in OpenSocial. These have
changed over the different versions of OpenSocial, but are enumerated here as static objects of the
opensocial.Person.Field class. Many of these social data fields are optional for support in OpenSocial.
Each social network has chosen to support different fields. Table 4-1 shows support for these fields for a
few networks. The support for these fields can change frequently for a container; refer to the container’s
developer documentation for current support.

If you really need a person’s data and it is currently not supported by a container,
don’t hesitate to contact the container and request this support. Many containers are
supportive of developers needs, and have responded by adding desired
functionality.

IdSpec
Some OpenSocial API calls require an instance of the opensocial.IdSpec object. An IdSpec represents a
specification of IDs. An example of this is ‘’VIEWER’ and ‘VIEWER FRIENDS’. Another example could be
‘OWNER’.

122

Chapter 4: JavaScript API

Table 4-1: opensocial.Person.Field.* Fields Used to Request Social Data

Field Type/Meaning Freebar
Support

imeem
Support

orkut
Support

Netlog
Support

ABOUT_ME String Yes Yes

ACTIVITIES Array of strings Yes

ADDRESSES Array of
opensocial.Address

Yes Yes

AGE Number Yes Yes Yes

BODY_TYPE Specified as
opensocial.BodyType

BOOKS Array of strings Yes

CARS Array of strings

CHILDREN String

CURRENT_LOCATION opensocial.Address

DATE_OF_BIRTH DATE object Yes

DRINKER opensocial.Enum object
with keys from
opensocial.Enum.Drinker

EMAILS Array of opensocial.Email

ETHNICITY String

FASHION String Yes

FOOD Array of strings Yes

GENDER opensocial.Enum object
with keys from
opensocial.Enum.Gender

Yes Yes Yes Yes

HAPPIEST_WHEN String

HAS_APP Boolean

HEROES Array of strings

HUMOR String Yes

ID String Yes Yes Yes Yes

Continued

123

Chapter 4: JavaScript API

Table 4-1: opensocial.Person.Field.* Fields Used to Request Social Data (continued)

Field Type/Meaning Freebar
Support

imeem
Support

orkut
Support

Netlog
Support

INTERESTS Array of strings Yes Yes

JOB_INTERESTS String

JOBS Array of
opensocial.Organization

LANGUAGES_SPOKEN Array of strings (format ISO
639-1 codes)

Yes Yes

LIVING_ARRANGEMENT String Yes

LOOKING_FOR String Yes

MOVIES Array of strings Yes

MUSIC Array of strings Yes Yes

NAME opensocial.Name Yes Yes

NETWORK_PRESENCE String

NICKNAME String Yes Yes

PETS String

PHONE_NUMBERS Array of opensocial.Phone

POLITICAL_VIEWS String Yes

PROFILE_SONG opensocial.Url Yes Yes

PROFILE_URL String Yes Yes Yes Yes

PROFILE_VIDEO opensocial.Url

QUOTES Array of strings

RELATIONSHIP_STATUS String Yes Yes

RELIGION String

ROMANCE String Yes

SCARED_OF String

Continued

124

Chapter 4: JavaScript API

Table 4-1: opensocial.Person.Field.* Fields Used to Request Social Data (continued)

Field Type/Meaning Freebar
Support

imeem
Support

orkut
Support

Netlog
Support

SCHOOLS Array of
opensocial.Organization

SEXUAL_ORIENTATION String Yes

SMOKER opensocial.Enum object
with keys from
opensocial.Enum.Smoker

SPORTS Array of strings Yes

STATUS String Yes

TAGS Array of strings

THUMBNAIL_URL String Yes Yes Yes Yes

TIME_ZONE String

TURN_OFFS Array of strings Yes

TURN_ONS Array of strings Yes

TV_SHOWS Array of strings Yes

URLS Array of opensocial.Url Yes

An instance of this object is created by passing to the constructor a parameter map using the fields in
opensocial.IdSpec.Field.* as keys to set up the IdSpec object. These fields include the following:

GROUP_ID — This represents the group of people represented by the IdSpec. This can either be
‘FRIENDS’ or ‘SELF’.

NETWORK_DISTANCE — This parameter is an integer and represents the number of jumps in a
social graph that two people can be apart and still be in the same group. Note a number here of
1 would indicate direct friendship.

USER_ID — This can be a singular or an array of strings representing a user’s unique ID. For the
singular case, ‘OWNER’, ‘VIEWER’, or an OpenSocial ID string are acceptable.

You could use the following code snippet to create an IdSpec that represents an owner and friends:

params[opensocial.IdSpec.Field.USER_ID] = opensocial.IdSpec.PersonId.OWNER;
params[opensocial.IdSpec.Field.GROUP_ID] = ‘FRIENDS’;

var myIdSpec = opensocial.newIdSpec(params);

125

Chapter 4: JavaScript API

Another option is to run the application shown in Listing 4-6, which requests all of the social data for the
viewer and prints it out in a table.

Listing 4-6: PersonData.Js to Request a Suite of User Data and Display as a Table

var os;
var dataReqObj;
var html = ‘’;
var heading = ‘’;
var friends_html = ‘’;
var TheFriends = new Array();
var viewer = ‘’;

function init() {

dataReqObj = opensocial.newDataRequest();

//construct list of profile data you want about the user
var param = {};

param[opensocial.DataRequest.PeopleRequestFields.PROFILE_DETAILS] =
[opensocial.Person.Field.MOOD,
opensocial.Person.Field.ABOUT_ME,
opensocial.Person.Field.AGE,
opensocial.Person.Field.ACTIVITIES,
opensocial.Person.Field.ADDRESSES,
opensocial.Person.Field.BODY_TYPE,
opensocial.Person.Field.BOOKS,
opensocial.Person.Field.CARS,
opensocial.Person.Field.CHILDREN,
opensocial.Person.Field.CURRENT_LOCATION,
opensocial.Person.Field.DATE_OF_BIRTH,
opensocial.Person.Field.DRINKER,
opensocial.Person.Field.EMAILS,
opensocial.Person.Field.ETHNICITY,
opensocial.Person.Field.FASHION,
opensocial.Person.Field.FOOD,
opensocial.Person.Field.GENDER,
opensocial.Person.Field.HAPPIEST_WHEN,
opensocial.Person.Field.HAS_APP,
opensocial.Person.Field.HEROES,
opensocial.Person.Field.HUMOR, opensocial.Person.Field.ID,
opensocial.Person.Field.INTERESTS,
opensocial.Person.Field.JOB_INTERESTS,
opensocial.Person.Field.JOBS,
opensocial.Person.Field.LANGUAGES_SPOKEN,
opensocial.Person.Field.LIVING_ARRANGEMENT,
opensocial.Person.Field.LOOKING_FOR,
opensocial.Person.Field.MOVIES,
opensocial.Person.Field.MUSIC,
opensocial.Person.Field.NAME,
opensocial.Person.Field.NETWORK_PRESENCE,

126

Chapter 4: JavaScript API

opensocial.Person.Field.NICKNAME,
opensocial.Person.Field.PETS,
opensocial.Person.Field.PHONE_NUMBERS,
opensocial.Person.Field.POLITICAL_VIEWS,
opensocial.Person.Field.PROFILE_SONG,
opensocial.Person.Field.PROFILE_VIDEO,
opensocial.Person.Field.PROFILE_URL,
opensocial.Person.Field.QUOTES,
opensocial.Person.Field.RELATIONSHIP_STATUS,
opensocial.Person.Field.RELIGION,
opensocial.Person.Field.ROMANCE,
opensocial.Person.Field.SCARED_OF,
opensocial.Person.Field.SCHOOLS,
opensocial.Person.Field.SEXUAL_ORIENTATION,
opensocial.Person.Field.SMOKER,
opensocial.Person.Field.SPORTS,
opensocial.Person.Field.STATUS,
opensocial.Person.Field.TAGS,
opensocial.Person.Field.THUMBNAIL_URL,
opensocial.Person.Field.TIME_ZONE,
opensocial.Person.Field.TURN_OFFS,
opensocial.Person.Field.TURN_ONS,
opensocial.Person.Field.TV_SHOWS,
opensocial.Person.Field.URLS];

var viewerReq =
dataReqObj.newFetchPersonRequest(opensocial.IdSpec.
PersonId.VIEWER , param);

dataReqObj.add(viewerReq, ‘viewer’);
dataReqObj.send(onLoadViewerResponse);

}

function onLoadViewerResponse(data) {
try{

viewer = data.get(’viewer’).getData();
heading = ‘Hello, ‘ + viewer.getDisplayName();
var thumb = viewer.getField(opensocial.Person.Field.THUMBNAIL_URL);
var profile = viewer.getField(opensocial.Person.Field.PROFILE_URL);
heading = ‘Hello, ‘ + viewer.getDisplayName();
heading = heading + ‘

<img src="’ + thumb +
‘">’;

}catch(err){alert(err);}

//setup table for User info
heading = heading + ‘<table border=2 width="800">

<tr valign="top">’;

//get user ABOUT me
heading = heading + ‘<td>’;

Continued

127

Chapter 4: JavaScript API

Listing 4-6: PersonData.Js to Request a Suite of User Data and Display as a Table

(continued)

heading = heading + ‘
 About= ‘;
try{

var About = viewer.getField(opensocial.
Person.Field.ABOUT_ME);

if(About == null)
heading = heading + ‘ None available’;

else
heading = heading + ‘
’ + About;

} catch(err){alert(err); heading = heading + ‘NOT SUPPORTED’; }
heading = heading + ‘</td> ‘;

//get user AGE
heading = heading + ‘<td>’;
heading = heading + ‘
 Age= ‘;
try{

var Age = viewer.getField(opensocial.Person.Field.AGE);
if (Age == null)

heading = heading + ‘ None available’;
else

heading = heading + ‘
’ + ‘Age= ‘ + Age;
} catch(err){alert(err); heading = heading + ‘NOT SUPPORTED’; }
heading = heading + ‘</td> ‘;

//get user ACTIVITIES
heading = heading + ‘<td>’;
heading = heading + ‘
’ + ‘Activities: ‘ ;
try{

var Activities = viewer.getField(opensocial.Person.Field.ACTIVITIES);
if (Activities == null)

heading = heading + ‘ None available’;
for(x in Activities){

heading = heading + ‘
 Activity’ + x +
‘ = ‘ +Activities[x];}

}catch(e2) {alert(e2); heading = heading + ‘NOT SUPPORTED’;}
heading = heading + ‘</td>’;

//get user Address
heading = heading + ‘<td>’;
heading = heading + ‘
 Addresses= ‘;

try{
var Addresses = viewer.getField(opensocial.Person.Field.ADDRESSES);
if (Addresses == null)

heading = heading + ‘ None available’;

128

Chapter 4: JavaScript API

for(x in Addresses){
heading = heading + ‘
 Address ‘ + x + ‘
’;
heading = heading +

Addresses[x].getField(opensocial.Address.Field.REGION);
heading = heading +

Addresses[x].getField(opensocial.Address.Field.COUNTRY);
}

}catch(e2) {alert(e2); heading = heading + ‘ NOT SUPPORTED’;}
heading = heading + ‘</td>’;

//get user BODY Type
heading = heading + ‘<td>’;
heading = heading + ‘
 Body Type= ‘;
try{

var Body_TYPE = viewer.getField(opensocial.Person.Field.BODY_TYPE);
if(Body_TYPE == null)

heading = heading + ‘ None available’;
else {

heading = heading + ‘
’ + ‘Body Type: ‘;
heading = heading + ‘
’ + ‘Build= ‘ +

Body_TYPE.getField(opensocial.BodyType.Field.BUILD);
heading = heading + ‘
’ + ‘Eye color= ‘ +

Body_TYPE.getField(opensocial.BodyType.Field.EYE_COLOR);
heading = heading + ‘
’ + ‘Hair color= ‘ +

Body_TYPE.getField(opensocial.BodyType.Field.HAIR_COLOR);
heading = heading + ‘
’ + ‘Height= ‘ +

Body_TYPE.getField(opensocial.BodyType.Field.Height);
heading = heading + ‘
’ + ‘Weight= ‘ +

Body_TYPE.getField(opensocial.BodyType.Field.WEIGHT);
}

}catch(e){alert(e); heading = heading + ‘ NOT SUPPORTED’;}
heading = heading + ‘</td>’;

//get MORE data for ROW 1

//end of row
heading = heading + ‘</tr>’;

//end of Table
heading = heading + ‘</table>’;
document.getElementById(’heading’).innerHTML = heading;
document.getElementById(’main’).innerHTML = html;

}

Figure 4-4 shows the results of running the code in Listing 4-6.

129

Chapter 4: JavaScript API

Figure 4-4: PersonData example running on Friendster

Activities
Broadly defined, activities in a social network are any form of communication or information-sharing. In
OpenSocial, activities can include the following:

Direct emails to users

Notifications

User updates (and hence friends updates)

Requests to install an application (invitations)

Creating activities is a great way in OpenSocial to advertise your application. OpenSocial provides the
developer with the capability to request the creation of these items through its API. Let’s take a look at

130

Chapter 4: JavaScript API

how to do a number of these activities. Note that the containers do control how many of these activities
you can create, per user of your application, per day. These restrictions change frequently, and the social
network’s developer documentation should provide details.

Messages — Email and Notifications
A useful feature of OpenSocial is the capability to send messages to your users. OpenSocial does
this through the opensocial.requestSendMessage method. You must first create an instance of a
message object using the opensocial.newMessage method. There are different kinds of messages
that can be created as specified by the opensocial.Message.Field.TYPE. These are enumerated in
opensocial.Message.Type, and include the following:

EMAIL — This is a direct email to the user.

NOTIFICATION — This is a notification that can appear in different locations on different social
networks. Notifications are like short ‘‘message/requests’’ or ‘‘status’’ lines related to the appli-
cation and user. Notifications can appear under the heading ‘‘Requests’’ in the user’s home page.

PRIVATE_MESSSAGE — This is a private message, only seen by the user.

PUBLIC_MESSAGE — This is a public message seen by the users and possibly others.

The message itself is specified by the setting a number of parameters associated with the fields in
opensocial.Message.Field.*, including the following:

BODY — This contains the body of the message.

BODY_ID — This uses gadget message templates, and specifies the ID of the template to apply.

TITLE — This is the title of the message

TITLE_ID — This uses gadget message templates, and specifies the ID of the template to apply.

TYPE — This indicates the kind of message to create.

Email Message Example

Listing 4-7 (XML) and Listing 4-8 (JavaScript) show the code used to create a simple application that,
when a button is clicked, will generate a new email message.

Listing 4-7: EmailMessage.xml Application with Button to Trigger Email Creation

<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="Email Message" description="Email
Message Test" >

<Require feature="opensocial-0.8"/>
</ModulePrefs>
<Content type="html">

<![CDATA[

<div id=’heading’></div>
<hr size="1px"/>

Continued

131

Chapter 4: JavaScript API

Listing 4-7: EmailMessage.xml Application with Button to Trigger Email Creation

(continued)

<div id=’main’></div>
<hr/>
<div id=’message’> </div>

<input type="button" value="create message" onclick="createMessage();">

<script src="http://U.com/EmailMessage.js"></script>

<script> init(); </script>
]]>

</Content>
</Module>

Listing 4-8: EmailMessage.js Application to Create Email Message from ‘‘Viewer’’ to

‘‘Owner’’

var os;
var dataReqObj;
var html = ‘’;
var heading = ‘’;
var viewer;
var owner;

function init() {

dataReqObj = opensocial.newDataRequest();

var viewerReq = dataReqObj.newFetchPersonRequest(opensocial.IdSpec.
PersonId.VIEWER);

dataReqObj.add(viewerReq, ‘viewer’);

var viewerReq = dataReqObj.newFetchPersonRequest
(opensocial.IdSpec.PersonId.OWNER);

dataReqObj.add(viewerReq, ‘owner’);

dataReqObj.send(onLoadViewerResponse);
}

function onLoadViewerResponse(data) {
try{

viewer = data.get(’viewer’).getData();
}catch(err)
{ alert (err); }

try{
owner = data.get(’owner’).getData();

}catch(err)
{ alert (err); }

132

Chapter 4: JavaScript API

heading = ‘Hello, ‘ + viewer.getDisplayName();
document.getElementById(’heading’).innerHTML = heading;

}

//create an message grabbing viewer and owner first
function createMessage(){

if(viewer == null)
{ document.getElementById(’message’).innerHTML =

"viewer is null";
return;}

makeMessage(viewer, owner);
}

//create an message from v to o
function makeMessage(v, o){
try{

var opts = {};

opts[opensocial.Message.Field.TITLE] =
v.getDisplayName() + "’s message to "
+ o.getDisplayName() + "!!!!";

//setup type of message EMAIL
opts[opensocial.Message.Field.TYPE] = opensocial.Message.Type.EMAIL;

var body = v.getDisplayName() + " says hello to "
+ o.getDisplayName() +
" using the Message application";

var message = opensocial.newMessage(body, opts);

opensocial.requestSendMessage(o.getId(), message, messageMade);

}catch(e) { alert(e); }
}

function messageMade(){
document.getElementById(’message’).innerHTML = "message was made";

}

Figure 4-5 shows the results of running the applications in Listing 4-7 and Listing 4-8.

Notification Example

Notifications are another type of message you can create. Not all social networks support notifications.
The only change to the code shown in Listing 4-7 and Listing 4-8 (the EmailMessage example) is the
specification of the type when creating a message, as shown here:

//setup type of message Notification
opts[opensocial.Message.Field.TYPE] = opensocial.Message.Type.NOTIFICATION;

133

Chapter 4: JavaScript API

Figure 4-5: Email created from EmailMessage

application

Activity Posting (Updates)
OpenSocial has a class called opensocial.Activity that is a posting to an activity stream on the social
network. A common appearance of these streams is under the title of ‘‘updates.’’ In hi5, this appears in a
user’s profile.

An activity is represented in OpenSocial with the opensocial.Activity class. It can be created using
opensocial.newActivity and takes a set of parameters keyed off of the opensocial.Activity.Field.*

values. These include the following:

APP_ID — Application ID of the application creating the activity.

BODY — (Optional) This is a longer version of the activity information.

BODY_ID — This uses gadget message templates, and specifies the ID of the template to apply.

EXTERNAL_ID — (Optional) Additional string/ID that application can generate.

ID — This is the identifier used to represent this activity.

MEDIA_ITEMS — Indicates if media items are created and associated with an activity.

POSTED_TIME — Gives the time (in milliseconds) when activity created.

PRIORITY — This is the priority (scale 0 to 1), compared to other activities from this application.

STREAM_FAVICON_URL — This is the URL for the icon representing all application activities.

STREAM_SOURCE_URL — This is the URL for the source of the activity.

STREAM_TITLE — This is the title of the source of the activity.

STREAM_URL — This is the stream’s URL.

TEMPLATE_PARAMS — This is a set of (key-value) pairs relating to the activity.

TITLE — This is the activity’s title.

TITLE_ID — This uses gadget message templates, and specifies the ID of the template to apply.

URL — This gives the URL related to an activity.

USER_ID — This is the ID of the user who ‘‘owns’’ this activity.

134

Chapter 4: JavaScript API

Listing 4-9 shows the JavaScript necessary to create an activity using an XML file similar to the one
shown in Listing 4-7. As with the email example shown earlier in this chapter, this application has a
simple interface with a button the user clicks to trigger the creation of an activity.

Listing 4-9: ActivityCreate.js Code Creating an Activity

var os;
var dataReqObj;
var html = ‘’;
var heading = ‘’;
var viewer;
var owner;

function init() {
dataReqObj = opensocial.newDataRequest();

var viewerReq =
dataReqObj.newFetchPersonRequest(opensocial.
IdSpec.PersonId.VIEWER);

dataReqObj.add(viewerReq, ‘viewer’);
var viewerReq =

dataReqObj.newFetchPersonRequest(opensocial.
IdSpec.PersonId.OWNER);

dataReqObj.add(viewerReq, ‘owner’);

dataReqObj.send(onLoadViewerResponse);
}

function onLoadViewerResponse(data) {
try{

viewer = data.get(’viewer’).getData();
}catch(err)

{ alert(err); }

try{
owner = data.get(’owner’).getData();

}catch(err)
{ alert(err); }

}

//create an activity grabbing viewer and owner first
function createActivity(){

makeActivity(viewer, owner);
}

//create an activity to viewer from owner
function makeActivity(v, o){
try{

var opts = {};

opts[opensocial.Activity.Field.TITLE] =

Continued

135

Chapter 4: JavaScript API

Listing 4-9: ActivityCreate.js Code Creating an Activity (continued)

v.getDisplayName() + " viewed " +
o.getDisplayName() + "’s profile with

the Activity application";

opts[opensocial.Activity.Field.STREAM_FAVICON_URL] =
"http://U.com /Logo_16_16.PNG";

var activity = opensocial.newActivity(opts);

opensocial.requestCreateActivity(activity,
opensocial.CreateActivityPriority.HIGH,

activityMade);
}catch(e) { alert(e); }

}

function activityMade(){
document.getElementById(’activity’).innerHTML =

"activity was made";
}

Figure 4-6 shows the results in hi5 and the corresponding activity. The activity stream here is located in
the user’s profile.

Figure 4-6: Activity created using application code in Listing 4-9

Activities are limited by containers. For example, orkut allows one activity per user of an application per
day. hi5 limits it to two activities per user per application per day.

orkut also precludes overlapping text being included in the title and body. A good tip when
creating information for the body or title is to not overuse the user’s name. Instead, look up
opensocial.Person.Field.GENDER to help you with customizing a message. Here is an example of an
awkward message:

"Lynne Grewe used Friend Finder to track Lynne Grewe’s Friends"

Here is a better message using the gender information:

"Lynne Grewe used Friend Finder to track her Friends"

136

Chapter 4: JavaScript API

An even better message would be one that is more specific such as:

"Lynne Grewe tracked J. Aphelin on Friend Finder"

Invitations to Install
Providing users with the capability to invite their friends to use your application is an essen-
tial (important) function. OpenSocial creates invitations to one or more users by using the
opensocial.requestShareApp method that takes the following parameters:

recipients — This is an individual’s ID or an array of IDs. These are the users to whom the
invitation will be sent.

reason — This is an instance of the opensocial.Message class. It represents the reason for the
invitation. The container may govern this in the creation of the invitation message.

callback — (Optional) This is called when the invitation has been sent by the container.

params — (Optional) This is a set of (key,value) pairs (a map) that contains requests about
redirection for users when they make or receive invitations.

The last optional parameter can be used to direct the user when either the invitation is sent, or an
invitation is accepted. The options are keyed using the value in opensocial.NavigationParamters

.DesitinationType as follows:

RECIPIENT_DESTINATION — This is the location to redirect a user to when the user gets an invi-
tation.

VIEWER_DESTINATION — This is the location to redirect a user after the user sends an invitation.

Listing 4-10 shows the JavaScript code to create a user invitation. The init() method of this code is run
at load time, making necessary person data requests that are used to set up an interface to allow the user
to select a friend to invite.

Listing 4-10: Invite.js Application to Allow Users to Select a Friend and Send an

Invitation

var os;
var dataReqObj;
var html = ‘’;
var heading = ‘’;
var friends_html = ‘’;
var friend;
var viewer;
var owner;

function init() {

dataReqObj = opensocial.newDataRequest();

Continued

137

Chapter 4: JavaScript API

Listing 4-10: Invite.js Application to Allow Users to Select a Friend and Send an

Invitation (continued)

var viewerReq = dataReqObj.newFetchPersonRequest(’VIEWER’);
dataReqObj.add(viewerReq, ‘viewer’);
var viewerReq = dataReqObj.newFetchPersonRequest(’OWNER’);
dataReqObj.add(viewerReq, ‘owner’);
viewerReq = dataReqObj.newFetchPeopleRequest(’VIEWER_FRIENDS’);
dataReqObj.add(viewerReq, ‘viewerFriends’);
dataReqObj.send(onLoadViewerResponse);

}

function onLoadViewerResponse(data) {
try{

viewer = data.get(’viewer’).getData();
}catch(err)
{

heading = ‘Error2 ‘ + err.description;
alert (heading);

}

try{
owner = data.get(’owner’).getData();

}catch(err)
{

heading = ‘Error2 ‘ + err.description;
alert (heading);

}

heading = ‘Hello, ‘ + viewer.getDisplayName();
var thumb = viewer.getField(opensocial.

Person.Field.THUMBNAIL_URL);
var profile = viewer.getField(opensocial.

Person.Field.PROFILE_URL);

document.getElementById(’heading’).innerHTML = heading;
var viewer_friends = data.get(’viewerFriends’).getData();

try{
friends_html = ‘Invite a friend
’;
friends_html = friends_html + ‘<select id=friend>’;

viewer_friends.each(function(person) {
friends_html = friends_html +

‘<option value=’ + person.getId() +
‘>’ + person.getDisplayName() + ‘</option>’;

});
friends_html = friends_html + ‘</select>’;

} catch(err)
{ friends_html =’Problem finding friends’;

alert(friends_html);

138

Chapter 4: JavaScript API

}

document.getElementById(’friends’).innerHTML = friends_html;

}

//create an message grabbing viewer and owner first
function invite(){

//get the friend that you want to invite
var i = document.getElementById("friend");
var id_selected = i.selectedIndex;
friend = document.getElementById(’friend’).options[id_selected].value;

try{
var reason_body = viewer.getDisplayName() + " is inviting

you to use the
\"Invite\" Applciation!";

document.getElementById(’message’).innerHTML = reason_body;

var reason_message = opensocial.newMessage(reason_body);

//create invitation
opensocial.requestShareApp(friend,reason_message, inviteDone);

}catch(e) {alert(e);}
}

function inviteDone(){
document.getElementById(’message’).innerHTML =

"Invite has been sent to " + friend;
}

Persistence
Persistence is the reading and writing of application data stored on the container. Collectively, OpenSocial
functions used to read and write this data are referred to as the Persistence API. Social networks place
limits on their support of the OpenSocial Persistence API. For example, some networks limit the amount
of storage per user per application. Only text information can be stored.

This can mean that the Persistence API will not solve all of your data needs. Even though some of the
containers suggest that using the Persistence API will reduce latency, this may not always be true, and
is a function of many issues (including the amount of data, kind of data, and what operations you need
to perform on the data). Using the Persistence API for some or all of your application’s data storage and
retrieval needs can be a good decision.

OpenSocial models the storage and retrieval of data using a (key-value) association. It is a simpler
model than that used by traditional relational databases. Only strings can be used for both the keys
and values, but recall that the Gadgets API lets you convert JavaScript objects to strings, and vice versa.

139

Chapter 4: JavaScript API

However, storage of media items is not feasible with this service as it would take too much time to
translate media objects to strings and the reverse for use.

Information Storage
You can utilize the Persistence API to store data by using the newUpdatePersonAppDataRequest method
of the DataRequest class. This method takes the following parameters:

id — This is the ID of the person you have associated the data with. Currently, only the
VIEWER’s ID is allowed.

key — This is a made-up key you want to associate with this data for storage and future
retrieval. Only alphanumeric characters (A-Z, a-z, 0-9), _ (underscore), - (dash), and . (period)
are allowed in the key.

value — This is the data to be stored. Only text is allowed.

This method is used to store new items, as well as to update values.

Information Retrieval
You can utilize the Persistence API to retrieve data by using the newFetchPersonAppDataRequestmethod
of the DataRequest class. This method takes the following parameters:

idSpec — This is an instance of OpenSocial.IdSpec or predefined user fields.

keys — This is either an array of keys, or an individual key, of the data to be retrieved. A key is
represented by a string, and should have been used previously in a storage request.

This method maps each user in the idSpec given to the data retrieved. In other words, the data retrieved
for each user specified in idSpec is itself a ‘‘map’’ that maps the keys to the individual data elements
retrieved.

Listing 4-11 shows the JavaScript for the ‘‘Friend Blurb’’ application. This application allows a user to
create a blurb dedicated to a friend. The blurb is a short line of text.

Listing 4-11: Persistence.js Program Using OpenSocial Persistence to Store Data

var os;
var dataReqObj;
var html = ‘’;
var heading = ‘’;
var friends_html = ‘’;
var friend;
var viewer;
var viewer_friends;

//request viewer and friends
function init() {

//request viewer and friends

140

Chapter 4: JavaScript API

dataReqObj = opensocial.newDataRequest();
var viewerReq = dataReqObj.newFetchPersonRequest(’VIEWER’);
dataReqObj.add(viewerReq, ‘viewer’
viewerReq = dataReqObj.newFetchPeopleRequest(’VIEWER_FRIENDS’);
dataReqObj.add(viewerReq, ‘viewerFriends’);
dataReqObj.send(onLoadViewerResponse);

}

//callback function the gets viewer and friends data
//creates interface and calls function to get persistent data
function onLoadViewerResponse(data) {

try{
viewer = data.get(’viewer’).getData();

}catch(err)
{ alert (err);}

heading = ‘Hello, ‘ + viewer.getDisplayName();
var thumb = viewer.getField(opensocial.

Person.Field.THUMBNAIL_URL);
var profile = viewer.getField(opensocial.

Person.Field.PROFILE_URL);

document.getElementById(’heading’).innerHTML = heading;
document.getElementById(’main’).innerHTML = html;

viewer_friends = data.get(’viewerFriends’).getData();

try{
friends_html = ‘Blurb a friend
 To: ‘;
friends_html = friends_html + ‘<select id=friend>’;

viewer_friends.each(function(person) {
friends_html = friends_html + ‘<option value=’ +

person.getId() + ‘>’ +
person.getDisplayName() + ‘</option>’;

});
friends_html = friends_html + ‘</select>’;

} catch(err)
{ alert (err);}

document.getElementById(’friends’).innerHTML = friends_html;
getAllAppData();

}

//Create the blurb and Store it using OpenSocial Persistence
function doit(){

//get the friend that you want to invite
var i = document.getElementById("friend");
var id_selected = i.selectedIndex;
friend = document.getElementById(’friend’).options[id_selected].value;

Continued

141

Chapter 4: JavaScript API

Listing 4-11: Persistence.js Program Using OpenSocial Persistence to Store Data

(continued)

//get the blurb to send to the friend
var blurb = document.getElementById(’blurb’).value;

try{
if(viewer == null)
{ document.getElementById(’message’).innerHTML =

"viewer is null";
return;}

//create data app storage
dataReqObj = opensocial.newDataRequest();
//use the friend id as the key for new app data
//associated with viewer
dataReqObj.add(dataReqObj.newUpdatePersonAppDataRequest("VIEWER", friend,

blurb), ‘set_data’);
dataReqObj.send(appDataDone);

}catch(e) {alert(e);}
}

//callback when app data is set
function appDataDone(data){

if(data.get(’set_data’).hadError())
{ document.getElementById(’message_sent’).innerHTML =

"Data was NOT stored";
return; }

getAllAppData(); //refresh current apps
return;

}

//Request all App data for the Viewer, all keys(friend ids,
//indicates blurbs
//to friends) uses OpenSocial Persistence support
function getAllAppData(){

//setup idSpec parameter
var idSpec = opensocial.newIdSpec({"userId" : "VIEWER",

"groupId" : "SELF"});

dataReqObj = opensocial.newDataRequest();

//Fetch ALL the keys-data
dataReqObj.add(dataReqObj.newFetchPersonAppDataRequest

("VIEWER", "*"),

142

Chapter 4: JavaScript API

‘get_data’);
dataReqObj.send(getAllAppDataDone);

}

//populate the interface when first loading the app with all
//app data stored for this user.
function getAllAppDataDone(data){

if(data.get(’get_data’).hadError())
{ document.getElementById(’message_recieved’).innerHTML =

"Data was NOT retrieved for initial population";
return; }

var got_data = data.get(’get_data’).getData();
var get_blurbs = "";
var the_blurb;

//retrieve data stored for each friend
try{

viewer_friends.each(function(person) {
the_blurb = got_data[viewer.getId()][person.getId()];
if(the_blurb != null)

get_blurbs = get_blurbs + "To: " + person.
getDisplayName() + " (" +
person.getId() +") -- " + the_blurb + "
";

});
} catch(err)

{ alert(err); }

document.getElementById(’message_recieved’).innerHTML =
"Current Blurbs:
" +
get_blurbs + "<hr>
";

}

Figure 4-7 shows the result of running the application in Listing 4-11.

Figure 4-7: The ‘‘Friend Blurb’’

application

When the user submits a new blurb, the application executes the doit function, which uses OpenSocial’s
newUpdatePersonAppDataRequest method to store the blurb. The choice of the key in this case is the
friend’s ID. The application lets the user store only one unique blurb for each friend. When the application

143

Chapter 4: JavaScript API

loads, it calls the getAllAppData function, which retrieves any blurbs previously created and displays
them to the user using the newFetchPersonAppDataRequest method. In addition to being stored, new
blurbs also cause the interface to update.

Detail of OpenSocial JavaScript API
Table 4-2 details the OpenSocial API. For ease of use, it is presented in tabular format with descriptions.
Examples are sprinkled throughout, but a few coding examples here augment examples presented in this
and subsequent chapters.

Table 4-2: OpenSocial API Detail

Objects Method/Variable Description

Opensocial This is the main object, namespace, for all
of the OpenSocial API.

getEnvironment() Obtains the Environment associated with
your application. Returns
opensocial.Environment.

hasPermission(p) Tells if application has permission.
Returns a Boolean.Parameters include p

(an instance of opensocial.Permission).

newActivity() Creates a new instance of
opensocial.Activity. Returns
opensocial.Activity. Parameters
specifying the activity include items such
as title, body, and more. See the section,
‘‘Activities,’’ earlier in this chapter.

newDataRequest() Creates a new instance of the
DataRequest class with which to make
data requests. Returns
opensocial.DataRequest. For example,
dataReqObj =

opensocial.newDataRequest();.

newIdSpec() Creates a new instance of the
DataRequest class with which to make
data requests. Returns
opensocial.IdSpec.

Continued

144

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

newMediaItem() Creates a media item. Returns
opensocial.MediaItem. Parameters
include mt (type of media, specified by
opensocial.MediaItem.Field.*), url
(location of media, a string), and
opt_params (optional parameters
specifying additional fields). For example,
var myVideo =

opensocial.newMediaItem

(opensocial.MediaItem.Field.VIDEO,

"http://U.com/Video.mpg").

newMessage() Creates a new message. Returns
opensocial.Message. Parameters include
body (string, message) and opt_params

(optional parameters, keyed with
opensocial.Message.Field.*).

newNavigational

Parameters()

Redirects the user. See the
requestShareApp() method. Returns
opensocial.NavagationalParameters.
Parameters include p (parameter map
keyed with opensocial

.NavagationalParameters.Field.*

values that specify where to navigate to
and when).

requestCreateActivity() Makes a request to the container to create
the activity. Parameters include activity

(instance of opensocial.Activity), p
(priority, specified by opensocial

.CreateActivityPriority.HIGH or LOW),
and opt_callback (optional callback
function to be called when activity is
created).

requestPermission() Requests permission from user.
Parameters include permissions

(instance of opensocial.Permission),
reason (string displayed to user when
asking for this permission), and
opt_callback (optional callback function
to be called when permission request is
completed; this function receives an
instance of opensocial.ResponseItem; if
there is an associated error, it means that
the permission was denied).

Continued

145

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

requestSendMessage() Requests a message be sent to user(s).
Parameters include users (a user ID or
array of IDs [strings] or a group reference;
also supports ‘VIEWER’, ‘OWNER’,
‘VIEWER_FRIENDS’, ‘OWNER_FRIENDS’),
message (instance of
opensocial.Message), opt_callback
(optional callback function to be called
when request is completed), and
opt_params (instance of
opensocial.NavigationParameters that
tells where to redirect user when request
has been made/accepted).

requestShareApp() Invites user(s) to install the application.
Parameters include users (a user ID or
array of IDs [strings] or a group reference;
also supports ‘VIEWER’, ‘OWNER’,
‘VIEWER_FRIENDS’, ‘OWNER_FRIENDS’),
reason (string displayed to user in invite),
opt_callback (optional callback function
to be called when request is completed),
and opt_params (instance of
opensocial.NavigationParameters that
tells where to redirect user when request
made/accepted).

opensocial.Activity Class used to represent an activity. See
the section, ‘‘Activities’’, earlier in this
chapter.

getField() Gets the field information for the activity.
Returns a string, the value associated with
the key for this activity. Parameters
include key (specifies what information to
get about an activity; will be one of the
fields from opensocial.Activity

.Field.*, such as BODY) and opt_params

(map of optional parameters; currently
only key is dealing with escape type; keys
of map are specified by
opensocial.DataRequest

.DataRequestFields.*; ESCAPE_TYPE is
currently the only field).

Continued

146

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

getId() Gets the ID of the activity. Returns a
string.

setField() Sets the Field associated with the key to
the value. Parameters include key (key
specified by the
opensocial.Activity.Field.*, such as
BODY) and value (a string, the value to
associate with the key).

opensocial

.Activity.Field

Class that lists the possible fields
associated with an activity.

APP_ID A string, this is the ID of the application
associated with the activity.

BODY A string, this is the body of the activity.
Allowed HTML tags include <a>, ,
<i>, .

BODY_ID A string, this is the ID of a template
message specified in Gadget XML.

EXTERNAL_ID A string, this is the optional additional ID.

ID A string, this is the ID of the activity.

MEDIA_ITEMS This is an array of opensocial.MediaItem
objects. Each represents a different media
item associated with the activity.

POSTED_TIME A string, this is the time when the activity
was posted.

PRIORITY A number between 0 and 1, this is the
relative priority when compared to other
activities.

STREAM_FAVICON_URL A string, this is the URL to the stream’s
icon.

STREAM_SOURCE_URL A string, this is the URL to the stream’s
source.

STREAM_TITLE A string, this is the stream title.

STREAM_URL A string, this is the URL of the stream.

Continued

147

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

TEMPLATE_PARAMS Mapping of (key, value) pairs
associated with the activity. Examples
include the display name for the person,
the ID, and so on.

TITLE A string, this is the title of the activity.
Allowed HTML tags include <a>, ,
<i>, .

TITLE_ID A string, this is the ID of the template
message specified in Gadget XML.

URL A string, this is the URL used for activity
representation.

USER_ID A string, this is the ID of a user associated
with the activity.

opensocail.Address Class that represents all addresses.

getField() Gets the value associated with the
Address key. Parameters include key

(specified as one of the
opensocial.Address.Field.* values)
and opt_params (optional parameterss
represented as a map
<opensocail.DataRequestFields.*,

object>; ESCAPE_TYPE is currently the
only field).

opensocial.Address

.Field

Gives the possible fields associated with
an address.

COUNTRY A string, this is a country.

EXTENDED_ADDRESS A string, when an extended street
address.

LATITUDE A number, this is a latitude.

LOCALITY A string, this is a locality.

LONGITUDE A number, this is a longitude.

PO_BOX A string, this is a Post Office box.

POSTAL_CODE A string, this is a postal (ZIP) code.

Continued

148

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

REGION A string, this is a region.

STREET_ADDRESS A string, this is a street address.

TYPE A string, this is a category associated with
Address (for example, house, work).

UNSTRUCTURED_ADDRESS A string, this is a complete address in
unstructured format.

opensocial.BodyType Class that deals with a user’s body
information.

getField() Gets the value associated with the
BodyType key. Parameters include key

(specified as one of the
opensocial.BodyType.Field.* values)
and opt_params (optional parameterss
represented as a map
<opensocail.DataRequestFields.*,

object>; ESCAPE_TYPE is currently the
only field).

opensocial.BodyType

.Field

Class that gives the possible fields
associated with a BodyType. Container
support is optional.

BUILD A string, this is build information.

EYE_COLOR A string, this is eye color.

HAIR_COLOR A string, this is hair color.

HEIGHT A number, this is height (in meters).

WEIGHT A number, this is weight (in kilograms).

opensocial.Collection Common collection data structure used in
OpenSocial to represent multiple items.

as Array() Gets the collection as an array. Returns an
array of objects.

each() Cycles through collection items and
performs function f on each one.
Parameters include f (function to execute
on each collection item).

Continued

149

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

getById() Retrieves the item associated with the ID
in the collection. Returns the item
associated with id or null if none found.
Parameters include id (ID to find).

getOffset() If this collection is inside a larger set, it
will return the offset of its occurrence.
Returns the number of offset.

getTotalSize() Determines the size of the larger set this
collection belongs to. Returns a number.

size() Determines the size of the collection.
Returns a number, size.

opensocial

.CreateActivityPriority

Class that deals with the priority of an
activity.

HIGH This indicates ‘‘high priority.’’ Container
should create the activity even when
container must seek user permission.

LOW This indicates ‘‘low priority.’’ Container
will not create the activity if the user has
not granted permission to create activities.

opensocial.DataRequest Class that is used to represent all data
requests in OpenSocial (such as,
opensocial.newDataRequest();).

add() Used to add requests to an
opensocial.DataRequest object. You can
add more than one request. Parameters
include req (a request item object) and
opt_key (a key with which to associate
the request; used in retrieval;
optional).

Following is an example:

var viewerReq = dataReqObj

.newFetchPersonRequest(’VIEWER’);

dataReqObj.add(viewerReq, ‘viewer’);

Continued

150

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

newFetchActivities

Request()

Used to create a request item to fetch
activities associated with a user or users.
You will add this to a DataRequest object.
When processed, it will return a collection
of opensocial.Activity objects.
Parameters include idSpec (user ID or
array of user IDs) and opt_params

(mapping of opensocial.DataRequest
.ActivityRequestFields; not currently
used).

newFetchPeopleRequest() Used to create a request item to fetch
People. You will add to a DataRequest

object. When processed, this will return a
collection of opensocial.Person objects.
Parameters include idSpec (user ID or
array of user IDs) and opt_params

(mapping of opensocial.DataRequest
.PeopleRequestFields).

newFetchPersonApp

DataRequest()

Used to create a request item to fetch
application data stored on the container
and associated with a user.aRequest

object. When processed, this will return a
collection of opensocial.Person
objects. Parameters include idSpec (user
ID or array of user IDs) and opt_params

(mapping of opensocial
.DataRequest.PeopleRequestFields).

Following is an example:

viewerReq = dataReqObj

.newFetchPersonRequest();

dataReqObj.add(viewerReq,

‘viewerFriends’);

newFetchPersonRequest() Used to create a request item to fetch a
Person. When processed, this will return
opensocial.Person objects. Parameters
include id (user ID; can also use
opensocial.DataRequest.PersonId.*

fields or opensocial.IdSpec.PersonId.*
fields to indicate ‘VIEWER’ or ‘OWNER’)
and opt_params (mapping of opensocial
.DataRequest.PeopleRequestFields).

Continued

151

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

Following is an example:

viewerReq = dataReqObj

.newFetchPersonRequest(opensocial

.IdSpec.PersonId.VIEWER);

dataReqObj.add(viewerReq,

‘viewerFriends’);

newRemovePersonApp

DataRequest()

Removes from the container’s
persistence-supported storage the data
associated with the keys for a user.
Parameters include id (user ID that data
is associated with) and key (string or
array of strings; the key[s] associated with
[key,value] pairs stored for the user that
should be removed).

newUpdatePersonApp

DataRequest()

Creates or updates a new data entry in the
container’s persistence-supported storage.
Parameters include id (user ID that data
is associated with) and key (the key of the
[key,value] pair that is the data to be
stored; may contain alphanumeric
characters, - [dash], . [dot], and _
[underscore]).

send() Sends the DataRequest to the container.
Parameters include opt_callback

(optional, callback function that is called
when request has been processed by
container).

opensocial.DataRequest

.DataRequestFields

Class that deals with data request fields.

ESCAPE_TYPE Deals with how to escape data related to a
person. The default is HTML_ESCAPE.

opensocial.DataRequest

.FilterType

Class that deals with filters for person
requests.

ALL This indicates all friends.

HAS_APP This indicates only friends that have the
application installed.

Continued

152

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

TOP_FRIENDS This indicates only friends defined by
user as ‘‘top’’ friends.

opensocial.DataRequest

.PeopleRequestFields

Class that enumerates all of the fields
associated with creating People data
requests.

FILTER This is the filter type (default ALL). This
must be one of
opensocial.DataRequest.FilterType.

FILTER_OPTIONS This indicates the filter options given as a
map <string, object>.

FIRST This is used in paginating. It indicates the
index of the first item to fetch.

MAX This is the maximum number of items to
fetch in a request.

PROFILE_DETAILS This specifies what user profile data to
get. It is specified as an array of
opensocial.Person.Field.* keys. By
default, it will always include
opensocial.Person.Field.ID, NAME,
THUMBNAIL_URL.

SORT_ORDER This sorts the returned items. The default
is TOP_FRIENDS sorting. Specified as an
opensocial.DataRequest.SortOrder.*

field.

opensocial.DataRequest

.SortOrder

Class that specifies possible sorting
techniques.

NAME This indicates to sort by name.

TOP_FRIENDS This indicates to sort by top friends.

opensocial.DataResponse Class that represents a returned response
from a data request.

get() Retrieves the value associated with the
key. Returns opensocial.ResponseItem.
Parameters include key (a specified key
you want to retrieve data for).

Continued

153

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

getErrorMessage() Returns an error message (as a string) if it
exists.

hadError() Indicates if an error occurred in the
request. Returns a Boolean.

opensocial.Email Class that represents an email.

getField() Gets the value associated with the Email

key. Parameters include key (specified as
one of the opensocial.Email.Field.*

values) and opt_params (optional
parameters represented as a map
<opensocial.DataRequest

.DataRequest.Fields, object>).

opensocial.Email.Field Class that details fields associated with an
email.

ADDRESS A string, this is the email address.

TYPE A string, this is the category of email (for
example, work, home, and so on).

opensocial.Enum Class that represents enum objects.

getDisplayValue() Returns the value (as a string) of this
enum.

getKey() Returns the enum key, which must be an
opensocial.Enum.CLASS.* field.

opensocial.Enum.Drinker Class that gives enum keys associated with
opensocial.Person.Field.Drinker.

HEAVILY An object, this indicates a heavy drinker.

NO An object, this indicates no drinking.

OCCASIONALLY An object, this indicates an occasional
drinker.

QUIT An object, this indicates that the person
has quit drinking.

QUITTING An object, this indicates the user is in the
process of quitting.

Continued

154

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

REGULARLY An object, this indicates the user drinks
on regular basis.

SOCIALLY An object, this indicates the user is a
social drinker.

YES An object, this indicates that the user
drinks.

opensocial.Enum.Gender Class that gives enum keys associated with
opensocial.Person.Field.Gender.

FEMALE An object, this indicates a female.

MALE An object, this indicates a male.

Opensocial.Enum

.LookingFor

Class that gives enum keys associated with
opensocial.Person.Field.LookingFor.

ACTIVIY_PARTNERS An object, this indicates the user is
looking for people to do activities with.

DATING An object, this indicates the user is
looking to date.

FRIENDS An object, this indicates the user is
looking for friends.

NETWORKING An object, this indicates the user is
looking to network.

RANDOM An object, this indicates the user is
looking at random.

RELATIONSHIP An object, this indicates the user is
looking for a relationship.

opensocial.Enum.Presence Class that gives enum keys associated with
opensocial.Person.Field

.NetworkPresence.

AWAY An object, this indicates the user is
currently not ‘‘in.’’

CHAT An object, this indicates the user is
chatting.

DND An object, this indicates a ‘‘Do Not
Disturb.’’

Continued

155

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

OFFLINE An object, this indicates the user is
currently offline.

ONLINE An object, this indicates the user is
currently online.

XA An object, this indicates an extended
away.

opensocial.Enum.Smoker Class that gives enum keys associated with
opensocial.Person.Field.Smoker.

HEAVILY An object, this indicates that user is a
heavy smoker.

NO An object, this indicates no smoking.

OCCASIONALLY An object, this indicates that user is an
occasional smoker.

QUIT An object, this indicates that user has quit
smoking.

QUITTING An object, this indicates that user is in the
process of quitting.

REGULARLY An object, this indicates that user smokes
on regular basis.

SOCIALLY An object, this indicates that user is a
social smoker.

YES An object, this indicates that user smokes.

opensocial.Environment Class that specifies the application
environment.

getDomain() Gets the current domain of the container
for example, hi5.com). Returns a string.

supportsField() Indicates if a field is supported by the
container for the object. Returns a
Boolean. Parameters include objectType

(indicated by field in opensocial

.Environment.ObjectType.*) and
fieldName (field to check).

Continued

156

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

opensocial.Environment

.ObjectType

Class that details fields related to
Environment. Used to query if the
container has support for them.

ACTIVITY Used to query Activity support

ADDRESS Used to query Address support

BODY_TYPE Used to query Body type support

EMAIL Used to query Email support

FILTER_TYPE Used to query Filter support

MEDIA_ITEM Used to query Media Item support

MESSAGE Used to query Message support

MESSAGE_TYPE Used to query Message Type support

NAME Used to query Name support

ORGANIZATION Used to query Organization support

PERSON Used to query Person support

PHONE Used to query Phone number support

SORT_ORDER Used to query Sort Order support

URL Used to query URL support

opensocial.EscapeType Class that indicates how escaping can be
applied to person data.

HTML_ESCAPE An object, this indicates to HTML escape
data used.

NONE An object, this indicates no escaping done.

opensocial.IdSpec Class that represents an ID specification.

getField() Gets the value associated with the IdSpec

key. Parameters include key (specified as
one of the opensocial.IdSpec.Field.*

values) and opt_params (optional
parameters represented as a map
<opensocial.DataRequest.DataRequest

.Fields, object>).

Continued

157

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

setField() Sets the Field associated with the key to
the value. Parameters include key (key
specified by the opensocial.IdSpec

.Field.* such as GROUP_ID) and value (a
string that is the value to associate with
the key).

opensocial.IdSpec.Field Class that gives fields associated with an
IdSpec.

GROUP_ID A string, this represents a group of people
in IdSpec. Can be either ‘FRIENDS’ or
‘SELF’.

NETWORK_DISTANCE A number, this integer indicates the
number of jumps in a social graph that
two people can be considered to be part of
this group.

USER_ID A string or array of strings, this indicates
a user ID or array of IDs.

opensocial.IdSpec

.PersonId

Class that lists predefined person IDs.

OWNER An object, this represents the ‘‘owner’’ of
the application.

VIEWER An object, this represents the ‘‘viewer’’ of
the application.

opensocial.MediaItem Class that represents a media item.

getField() Gets the value associated with the
MediaItem key. Parameters include key

(specified as one of the
opensocial.MediaItem.Field.* values)
and opt_params (optional parameters
represented as a map <opensocial

.DataRequest.DataRequest.Fields,

object>).

setField() Sets the Field associated with the key to
the value. Parameters include key (key
specified by the
opensocial.MediaItem.Field.*, such as
URL) and value (the value to associate
with the key).

Continued

158

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

opensocial.MediaItem

.Field

Class that details fields related to
opensocial.MediaItem.

MIME_TYPE A string, this is the type of MIME media
type.

TYPE opensocial.MediaItem.Type.*

field-indicated type.

URL A string, this is the location of the media
item.

opensocial.MediaItem

.Type

Class that details types of media items.

AUDIO An object, this indicates an audio type of
media.

IMAGE An object, this indicates an image type of
media.

VIDEO An object, this indicates an video type of
media.

opensocial.Message Class that represents a message.

getField() Gets the value associated with the
Message key. Parameters include key

(specified as one of the
opensocial.Message.Field.* values)
and opt_params (optional params
represented as a map <opensocial

.DataRequest.DataRequest.Fields,

object>).

setField() Sets the Field associated with the key to
the value. Parameters include key (key
specified by the
opensocial.Message.Field.*, such as
URL) and value (the value to associate
with the key).

opensocial.Message.Field Class that details fields associated with
messages.

Continued

159

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

BODY An object, this is the body of message.

BODY_ID A string, this is the ID of a template
message specified in Gadget XML.

TITLE A string, this is the title of the message.

TITLE_ID A string, this is the ID of a template
message specified in Gadget XML.

TYPE A title given as a field in
opensocial.Message.Type.*.

opensocial.Message.Type Class that details the types of messages.

EMAIL An object, this indicates an email message.

NOTIFICATION An object, this indicates a notification.

PRIVATE_MESSAGE An object, this kind of message is only
seen by the user.

PUBLIC_MESSAGE An object, this kind of message is seen by
the public.

opensocial.Name.Field Class that details information dealing
with names.

ADDITIONAL_NAME A string representing additional name.

FAMILY_NAME A string representing last name.

GIVEN_NAME A string representing first name.

HONORIFIC_PREFIX A string representing prefix, i.e. Dr.

HONORIFIC_SUFFIX A string representing suffix, i.e. PhD.

UNSTRUCTURED A string representing an unstructured
version of the name.

opensocial

.NavigationParameters

Class that represents navigation
parameters used to direct users after
requests.

Continued

160

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

getField() Gets the value associated with the
Navigational Parameter key. Parameters
include key (specified as one of the
opensocial.NavagationParameters

.Field.* values) and opt_params

(optional parameters represented as a
map <opensocial.DataRequest

.DataRequest.Fields, object>).

setField() Sets the Field associated with the key to
the value. Parameters include key (key
specified by the opensocial

.NavagationParameters.Field.*, such
as URL) and value (the value to associate
with the key).

opensocial

.NavigationParameters

.DestinationType

Class that lists types of destinations for
navigation parameters.

RECIPIENT_DESTINATION An object, this indicates the destination of
the recipient.

VIEWER_DESTINATION An object, this indicates the destination of
a viewer.

opensocial

.NavigationParameters

.Field

Class that details fields associated with
navigation parameters.

OWNER A string, this is the owner ID.

PARAMETERS This is optional, and is a list of parameters
passed with navigation to a new view.

VIEW This specifies the view to which to
navigate.

opensocial.Organization Class that represents an organization.

getField Gets the value associated with the
Organization key. Parameters include
key (specified as one of the opensocial

.Organization.Field.* values) and
opt_params (optional parameters
represented as a map <opensocial

.DataRequest.DataRequest.Fields,

object>).

Continued

161

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

opensocial.Organization

.Field

Class that lists fields associated with an
Organization. All fields are optional.

ADDRESS This is an opensocial.Address instance.

DESCRIPTION This is a string.

END_DATE A date, this indicates the last date a
person stopped being part of an
organization. Null indicates the user is
still a member.

FIELD A string, this indicates the ‘‘field’’ the
organization is in.

NAME This is a string.

SALARY A string, this indicates how much money
the user gets paid.

START_DATE A date, this indicates the user’s start date.

SUB_FIELD A string, if it exists, the sub-field of an
organization.

TITLE A string, this is the user’s title in the
organization.

WEBPAGE This is a string.

opensocial.Permission Class that represents a permission.

VIEWER Permission to get viewer access.

opensocial.Person Class that represents a person.

getDisplayName() Retrieves the person’s name.

getField Gets the value associated with the Person

key. Parameters include key (specified as
one of the opensocial.Person.Field.*

values) and opt_params (optional
parameters represented as a map
<opensocial.DataRequest

.DataRequest.Fields, object>).

getId() Returns the Person ID. Returns a string.

Continued

162

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

isOwner() Tells if this person is the owner. Returns a
Boolean.

isViewer() Tells if this person is the viewer. Returns
a Boolean.

opensocial.Person.Field Class that lists information fields for a
person. These fields are optional for
containers.

ABOUT_ME String representing info about user.

ACTIVITIES Array of strings, representing activities.

ADDRESSES Array of opensocial.Address objects,
representing user’s addresses.

AGE Number representing age.

BODY_TYPE opensocial.BodyType instance,
representing user’s body type.

BOOKS This is an array of strings representing
books user likes/read.

CARS Array of strings, representing user’s cars
(or likes).

CURRENT_LOCATION opensocial.Address instance
representing current location.

DATE_OF_BIRTH This is a Date object representing date of
birth.

DRINKER Specified in opensocial.Enum using keys
in opensocial.Enum.Drinker.*,

indicates user’s drinking preference.

EMAILS Array of opensocial.Email objects.

ETHNICITY String, user’s ethnicity.

FASHION String, about user fashion preferences.

FOOD Array of strings, inidicating user’s
opinions/likes on food.

Continued

163

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

GENDER Gender specified in opensocial.Enum

using keys in
opensocial.Enum.GENDER.*.

HAPPIEST_WHEN String telling about when user is happy.

HAS_APP Boolean, indicates if user has application
installed.

HEROES Array of strings indicating user’s heroes.

HUMOR String related to humor.

ID String representing user’s unique ID.

INTERESTS Array of strings, representing user’s
interests.

JOB_INTERESTS String, indicates user’s job interests.

JOBS Array of opensocial.Organization
objects, indicates places of user
employment.

LANGUAGES_SPOKEN Array of strings (ISO 639-1 codes),
indicating languages spoken.

LIVING_ARRANGEMENT String, indicating user’s living
arrangments.

LOOKING_FOR This is specified in opensocial.Enum

using keys in
opensocial.Enum.LookingFor.*.,
indicates thinks user is looking for (esp. in
reference to meeting new people).

MOVIES Array of strings, representing movie
interest.

MUSIC Array of strings, representing music
interest.

NAME opensocial.Name instance, indicates
user’s name.

NICKNAME String, gives user’s nickname.

PETS String, gives info on user’s pets.

Continued

164

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

PHONE_NUMBERS Array of opensocial.Phone objects,
representing user’s phone numbers.

POLITICAL_VIEWS String, indicates user’s political opinions.

PROFILE_SONG opensocial.URL instance, URL to song
used on user’s profile.

PROFILE_URL String, URL to user’s profile.

PROFILE_VIDEO opensocial.URL instance, URL to user’s
video on profile.

QUOTES Array of strings, represents quotes
provided by user.

RELATIONSHIP_STATUS String, represents user’s relationship
status.

RELIGION String, represents user’s religion.

ROMANCE String, represents users opinions on
romance.

SCARED_OF String, what user is scared of.

SCHOOLS Array of opensocial.Organization
objects, schools user attended.

SEXUAL_ORIENTATION String, user’s sexual orientation.

SMOKER This is specified in opensocial.Enum

using keys in
opensocial.Enum.Smoker.*. Represents
user’s smoking preference.

SPORTS Array of strings, user’s sports
information.

STATUS String, user’s status line.

TAGS Array of strings, tags representing
interests or tags related to user.

THUMBNAIL_URL String, URL to thumbnail image of user.

TIME_ZONE This is expressed in minutes, the
difference between Greenwich Mean Time
(GMT) and user’s time.

Continued

165

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

TURN_OFFS Array of strings, user’s list of turn offs.

TURN_ONS Array of strings, user’s list of turn ons.

TV_SHOWS Array of strings, user’s list of shows they
watch or comments on shows.

URLS Array of opensocial.Url objects,
represents user’s URLs.

opensocial.Phone Class that deals with a phone.

getField() Gets the value associated with the Phone

key. Parameters include key (specified as
one of the opensocial.Phone.Field.*

values) and opt_params (optional
parameters represented as a map
<opensocial.DataRequest

.DataRequest.Fields, object>).

opensocial.Phone.Field Class that provides information about a
phone.

NUMBER A string, this indicates the phone number.

TYPE A string, a label, this indicates a category
for the phone.

opensocial.ResponseItem Class that represents a response item from
a DataResponse.

getData() Retrieves the response data.

getErrorCode() Retrieves any Error code if an error
occurred. Defined in
opensocial.ResponseItem.Error.
Returns an
opensocial.ResponseItem.Error.*

code.

getErrorMessage() Retrieves an error message, if an error
occurred. Returns a string.

getOriginalDataRequest() Gets the data request that generated this
response. Returns an
opensocial.DataRequest object.

Continued

166

Chapter 4: JavaScript API

Table 4-2: OpenSocial API Detail (continued)

Objects Method/Variable Description

hadError() Tells if an error occurred. Returns a
Boolean.

opensocial.ResponseItem

.Error

Class that lists possible errors in creating
a response (servicing a request).

BAD_REQUEST An object, this indicates an invalid
request.

FORBIDDEN An object, this indicates that an
application is not allowed to make this
request.

INTERNAL_ERROR An object, this indicates an internal
container error.

LIMIT_EXCEEDED An object, this indicates an application
has exceeded the limit on the number of
these kinds of requests.

NOT_IMPLEMENTED An object, this indicates a container does
not support this request.

UNAUTHORIZED An object, this indicates an application is
not authorized for this request.

opensocial.Url Class representing a URL.

getField() Gets the value associated with the Url

key. Parameters include key (specified as
one of the opensocial.Url.Field.*

values) and opt_params (optional
parameters represented as a map
<opensocial.DataRequest

.DataRequest.Fields, object>).

opensocial.Url.Field Class detailing fields in an
opensocial.Url.

ADDRESS A string, this indicates a URL address.

LINK_TEXT A string, this indicates link text.

TYPE A string, this indicates a type or label.

167

Chapter 4: JavaScript API

Summary
This chapter began with the creation of the ‘‘Friend Finder’’ application, which uses OpenSocial API calls
to get the viewer’s name and friend list. You then learned about the common features in the OpenSocial
JavaScript API. This was followed by a fairly detailed discussion of the main components involving Peo-
ple, Activities, and Persistence. A number of simple applications were discussed. This chapter concluded
with a detailed listing of the OpenSocial JavaScript API.

Chapter 5 delves into an examination of the newer RESTful API.

168

OpenSocial RESTful API

The OpenSocial RESTful API is a server-based API alternative to the previously discussed
client-based OpenSocial JavaScript API. This chapter begins with an introduction to Represen-
tational State Transfer (REST), and this is followed by a discussion of the OpenSocial RESTful
application architecture. Next, the chapter examines the OAuth authentication scheme. Finally,
details of the OpenSocial RESTful API are provided, along with detailed examples.

Getting to Know REST
REST originated from Roy Fielding’s 2000 doctoral dissertation at the University of California,
Irvine (Architectural Styles and the Design of Network-Based Software Architectures). REST describes
a software model that follows a set of ‘‘REST’’ principles that you’ll learn about shortly. REST is
designed for effective interactions and data delivery in a distributed hypermedia system.

An interpretation of REST is that of a Web-centric software system that transmits data over HTTP
using HTTP methods to represent application-specific requests. In reality, the definition of REST is
not specific to the Internet, nor does it require the use of HTTP. But it is based on Internet architec-
tural concepts. The use of REST in Internet systems is its most commonly seen interpretation, and
the one the discussions in this chapter focus on.

It is possible to create a system using HTTP for data requests that are non-RESTful, meaning they do
not adhere to REST principles. An example of this is a number of self-declared REST Web services
that are not very RESTful.

REST is based on the concept of making software that interfaces to other systems much in the
way humans use the Internet. This is accomplished through the use of a browser, but under this,
exchanges take place using HTTP.

Chapter 5: OpenSocial RESTful API

REST architecture has the following properties:

Client-server — based — This allows for system needs to be demarcated across client and server
subsystems. This can separate the user interface from data-storage issues, yielding greater inter-
face portability. Another benefit is that the resulting server needs are not complicated by user
interfaces, and this greater simplicity can lead to easier scalability and performance enhance-
ment.

Stateless — This simplifies storage needs as compared to stateful architectures. It means that
each request must possess all of the necessary information. Clients must keep track of any state
information. This again simplifies the server needs, which can result in easier scalability and
performance enhancements. One disadvantage of stateless architectures is that there can be an
increase in the information that is repeatedly sent in requests.

Cache-enabled — The concept of a cache is the use of large banks of memory to store data. Com-
pared to database retrievals, cache retrievals are significantly faster. The REST architecture calls
for the inclusion of cache response constraints, which means that the response data must be
labeled as either cacheable or non-cacheable. When the response data is labeled cacheable, the client
may cache this and use it as a response for future requests. Advantages here are that future
requests can be served directly from the client cache. The potential problem is that the cache data
may be outdated.

Uniform interface — This constrains all interfaces to be uniform between system components.
This improves understandability and separates implementations from interfaces. To achieve uni-
form interfaces, REST uses constraints on resource identification, resource manipulation through
representations, self-descriptive messages, and hypermedia (as the engine of application
state).

A main concept within REST is a resource, which is defined by the following properties:

A resource can represent application data, application state, or application function.

A resource is addressed with a unique, universal syntax.

A resource can be ‘‘transferred’’ using a uniform interface that includes a set of well-defined
operations and a set of content types.

REST is a resource-oriented architecture. As you have just learned, a resource can represent not only a
function but also a state and data. A request for a resource can be segmented into two parts:

Resource method request — This represents the operation that is being requested on the remote
server.

Resource scoping information — This can include the data to operate on and/or directions about
the part of the data to operate on.

Consider searching at Google (http://google.com) using a Web browser. When you type in a search for
the term ‘‘RESTful,’’ the browser is directed to the following URL request:

http://www.google.com/search?source=ig&hl=en&rlz=1G1GGLQ_ENUS279&=&q=
RESTful&btnG=Google+Search.

170

Chapter 5: OpenSocial RESTful API

In this case, the method information is requested by the HTTP GET method. The scoping information is
search?source=ig&hl=en&rlz=1G1GGLQ_ENUS279&=&q=RESTful&btnG=Google+Search.

Let’s look at using the Yahoo! (http://yahoo.com) search engine and search for ‘‘RESTful’’. The follow-
ing URL request is created:

http://search.yahoo.com/search?p=RESTful&fr=yfp-t-501&toggle=1&cop=mss&ei=UTF-8

In this case, the method information is represented in the URL as http://search.yahoo.com/search

and the scoping information is p=RESTful&fr=yfp-t-501&toggle=1&cop=mss&ei=UTF-8. This request
also is using the HTTP GET method type.

There are some differences in the Google and Yahoo! approaches to a RESTful resource request in the
placement of the method request and scoping information. Using a description of RESTful architectures
by Leonard Richardson, Sam Ruby, and David Heinemeier Hansson in their book, RESTful Web Ser-
vices (Sebastopol, California: O’Reilly Media, 2007), these differences are reflected in what they call a
‘‘RESTful architecture’’ or a ‘‘REST-RPC Hybrid architecture.’’ For better understanding, both types of
REST resource calls are detailed next. However, many people in industry consider both implementations
simply RESTful.

Purely RESTful Architecture
In a ‘‘purely’’ RESTful architecture the resource method information is always specified by an HTTP
method, including GET, PUT, POST, DELETE, and so on. At first, this may seem very limiting. However,
consider the previous Google example where GET represents well the concept of search (or ‘‘give me’’).

The scoping information must be part of the URL and cannot be embedded in the body of the HTTP
request (as is the case in SOAP and other RPC-based architectures).

RESTful-RPC Hybrid Architecture
In this case, the resource method is not represented by the HTTP method type. Rather, it is part of the
scoping information and inserted in the URL.

Like the purely RESTful architecture, the scoping information is part of the URL, and cannot be embed-
ded in the HTTP request.

Looking at an Example of REST
By definition, your REST program will be running on your own server. There are many programming
languages that could be used to create a REST program. Typically, a Web-oriented language should be
chosen. But there are many possibilities, including PHP, Python, Java, ASP, and more.

Listing 5-1 shows some simple PHP code that is a generic REST program. It uses the Client URL library
(curl), an optional package in PHP. The curl library allows PHP programs to connect and communi-
cate to servers via a number of protocols, including HTTP. It supports different HTTP method types,
including GET, POST, and PUT.

171

Chapter 5: OpenSocial RESTful API

Listing 5-1: Simple PHP REST Program Making a Request for an HTML Resource

<?php
//REST resource requests via GET , resource is a static html
$ch = curl_init("http:UServer.com /test.html");

//leave options to have response go to standard output
curl_setopt($ch, CURLOPT_HEADER, 0);

//execute the REST request
curl_exec($ch);

//close the cURL session
curl_close($ch);
?>

For more information about the curl library, see http://us2.php.net/manual/en/book.curl.php.

Using curl, a simple unauthenticated REST request takes the following steps:

1. Build a REST request by initializing a curl session with a designated request URL.

2. Set up any options associated with the session (zero or more).

3. Execute the REST request.

4. Close the curl session.

In Listing 5-1, the first line of code, $ch = curl_init("URL"), initializes a curl session with the desig-
nated URL. This points to a static HTML page. The next thing needed is to set up the session with options.
This can include setting the method type, which, by default, is GET. This is done in the second line of code
with the curl_setopt function. Specifically, this line of code says to not include header information in
the output. Finally, the REST request is executed through a curl_exec function call. Finally, the program
ends the curl session through the curl_close function.

REST Resources

The following are good resources to expand your knowledge of REST:

Roy Fielding, Architectural Styles and the Design of Network-based Software
Architectures, University of California, Irvine, 2000. (http://www.ics.uci
.edu/∼fielding/pubs/dissertation/top.htm).

Roy Fielding and Richard Taylor, ‘‘Principled Design of the Modern Web
Architecture’’ (PDF), ACM Transactions on Internet Technology (TOIT) (New
York: Association for Computing Machinery) 2(2): 115–150, 2002.

C. Pautasso, O. Zimmermann, and F. Leymann, ‘‘RESTful Web Services vs.
Big Web Services: Making the Right Architectural Decision.’’ International
World Wide Web Conference 2008 (Beijing, China).

172

Chapter 5: OpenSocial RESTful API

OpenSocial RESTful Server-Side Programming
A server-side API like the OpenSocial REST API is important to have as a programming alternative to
the client-side OpenSocial JavaScript API. As discussed in Chapter 2, these options can lead to different
transactional models. During a discussion with Kevin Chou, CEO at Watercooler, a social network appli-
cation development company, he stressed that Watercooler develops server-based applications because
their applications are media-intensive. Using the OpenSocial REST API can make it easier to build such
media-based applications.

Up to now, this book has concentrated on developing client-side applications using the OpenSocial
JavaScript API. As you have learned, it is possible through the Gadget API (makeRequest) or through
Ajax to invoke server-side programs and resources. Social network applications using server-side pro-
grams facilitate the following:

Access — This means the capability for the program to execute on a developer’s server, allowing
access to other functionality and data (databases) on this server.

Performance — This is improved performance, especially when dynamic content is developed.

Work in language of choice — This means the capability to implement possibly more complex
code bases in languages other than JavaScript that offer richer OOP and other functionalities.

Let’s consider an example of a social network application that manages events and projects. Let’s say
that the application has a rich and large database in which to store information that each user creates and
shares with fellow ‘‘friends/colleagues’’ through the application. Because of the type or amount of data
(or simply for ownership), the developer will want to store this data in the developer’s own database,
rather than using the persistence feature of the OpenSocial JavaScript API.

However, this means that every time the application needs to get or alter data, the application must
make requests to the external database. Database access is often a performance bottleneck for many Web
systems. This is aggravated even more by the fact that the application must make these requests through
the Web each time. If, instead, the application were server-based and resident on the same network as
the database, these calls would be much less expensive. To further improve performance, the developer
could employ caching schemes (such as memcache) that typically require programming languages beyond
JavaScript. This is just one of the many scenarios that require server-based application programming.

In Chapter 2, you learned about different OpenSocial architectures, including two transactional models
using the OpenSocial RESTful API: a ‘‘completely ‘server-based’ OpenSocial RESTful API application,’’
and a ‘‘hybrid client/server OpenSocial social network application’’ (using both OpenSocial JavaScript
and RESTful APIs).

Completely Server-Based OpenSocial RESTful

API Application
There are two possible interpretations of what constitutes a ‘‘completely OpenSocial RESTful API appli-
cation.’’ One is where the client works with the application, and the interface is completely on an external
Web site. This means that the social network is only used to get (or set) social data about the user. The
user-application experience takes place (for the most part) outside of the social network, on the external
Web site.

173

Chapter 5: OpenSocial RESTful API

An example of this could be a ‘‘social data aggregator’’ application. This application takes social data
from more than one social network and aggregates it for the user and application purpose. RockYou
has created an external Web site that lets users experience this for a ‘‘slideshow’’ application. Figure 5-1
shows the RockYou slideshow application hosted on its Web site (http://rockyou.com). This application
lets users access their photos stored on a number of social networks they may belong to.

Figure 5-1: RockYou slideshow application

Another possibility is where the ‘‘completely OpenSocial RESTful API application’’ has created new
user social data updates, activities, or messages that appear inside the social network, in addition to
possibly inside the external Web site. User social data, activities, and messages are visible in a social
network outside of an application, through the main social network’s user interface. The hypothetical
Flixter example discussed in Chapter 2 is an example of this. Here, the server-side OpenSocial RESTful
application posts to the user’s social network activity stream information about a new movie rating the
user did on the Flixster Web site.

The last kind of ‘‘completely OpenSocial RESTful API application’’ entails the serving of a social network
application completely from the server side without any OpenSocial JavaScript. This transactional model
is shown in Figure 5-2. This is currently not supported by social networks, but there is ongoing discussion
in the OpenSocial community aimed at providing support for it. This model most reflects how application
programming for Facebook is done.

174

Chapter 5: OpenSocial RESTful API

Social
Network

Client

Application
Server

OpenSocial
RESTful

4

1

2

3

Figure 5-2: A ‘‘completely OpenSocial

RESTful’’ social network application from

the server

Hybrid OpenSocial JavaScript and RESTful API Application
Currently, to create a social network application that uses the RESTful API, it must be a ‘‘hybrid’’
OpenSocial application. This means that the OpenSocial JavaScript API must also be used to minimally
create an XML gadget application that calls the external OpenSocial RESTful API application through a
gadgets.io.makeRequest call. Currently, this is the only way the OpenSocial RESTful API can be used
in an application deployed on a social network.

OpenSocial RESTful Application Architecture
Server-based applications can communicate directly with a social network (container) in a
language-independent way using the OpenSocial RESTful API. It is not based on being a gadget
but rather on how Web systems most often interact — through resource access and operations on them.
More specifically, as a RESTful API, the OpenSocial REST API is defined on top of the HTTP protocol,
and uses the standard HTTP methods (GET, POST, PUT, DELETE, and so on).

As shown in Figure 5-3, the architecture of an OpenSocial REST application can be broken into the fol-
lowing three main subcomponents:

Authorization (or authentication, as shown in Figure 5-3)

Discovery

RESTful resource request and processing

Keep in mind that requests are coming from a server program not owned by the social network, and also
(unlike the OpenSocial JavaScript application) are not invoked by the user directly. OpenSocial requires
that the program go through a process of authorization (or authentication). Once completed, this allows
the program to make secure OpenSocial REST requests directly to the social network container. Every
request will have the appropriate authentication information associated with it. You will learn more
about authorization and authentication shortly.

175

Chapter 5: OpenSocial RESTful API

OpenSocial REST application

Authentication

Discovery

RESTful resource
request & processing

OAuth plus?

XRDS

OpenSocial
REST API

Figure 5-3: OpenSocial REST application

components

Discovery is the process of the OpenSocial RESTful program detecting what services are offered by the
social network. The OpenSocial REST API uses the Extensible Resource Descriptor Sequence (XRDS) pro-
tocol to convey this information. Generally speaking, XRDS is a form of XML used to discover resource
information and metadata. A social network is required to declare which OpenSocial REST API features
it supports via a discovery document formatted in XRDS-Simple, a constrained version of XRDS. The
social network must provide developers with a URL to this document. Later, this chapter explains in
detail the discovery process and provides an example.

The final component of an OpenSocial REST application is the use of the OpenSocial REST API to make
REST resource calls. You have access to many of the same types of data seen in the OpenSocial JavaScript
API. Later in this chapter, you will learn more about the API in detail and see some coding examples.

OpenSocial REST Authorization

and Authentication (OAuth)
Authorization is the process of granting access to a resource — for example, the social network granting
access to social data to an application. Authentication is the process of confirming the identity of an appli-
cation, the container, or the user (or some combination thereof). When your OpenSocial REST application
makes a request to the social network, application authorization is required, which involves a stage of
application authentication. When these requests involve a user, user authentication is also required.

Most commonly, this involves the user first logging in to the social network and then providing a login
and password. The application can then request an ‘‘authentication token’’ for this user. This can take
place when the user launches the application. The application then will use this token when making
requests.

Let’s consider an example scenario where a Web site called ‘‘Print a Photo Album’’ allows a user to set
up a photo album for printing. As part of this, the ‘‘Print a Photo Album’’ site provides the user with the
capability to get photos from an album located on the MySpace container. To do this, the ‘‘Print a Photo
Album’’ program uses an authorization and authentication protocol known as OAuth to request access

176

Chapter 5: OpenSocial RESTful API

from MySpace. The ‘‘Print a Photo Album’’ site redirects the user to the MySpace Web site, where the
user logs in and confirms that the requested access is acceptable. MySpace then passes an OAuth token
to the ‘‘Print a Photo Album’’ site, which can use this OAuth token for each request to MySpace.

OAuth was created for service providers that have Web APIs requiring authorization for some or all of its
functions. For this example application, the social network is the service provider. In OAuth terminology,
the application is called a consumer. For OAuth to be compliant with OAuth documentation, these OAuth
terms will be used throughout the ensuing discussions.

OAuth has the following properties:

It is secure for users.

It is easy to implement.

A consumer (application) does not have access to user passwords.

It is Open Source.

It provides optional OpenID support.

A service provider (social network) can choose the type of authentication (that is, the encryption
standard).

It tests that the consumer (application) is in possession of a consumer secret and key, as well as a
token and token secret.

OAuth does not offer the protection against eavesdropping that SSL does.

OAuth Steps
Following are the steps followed by OAuth:

1. The consumer asks the service provider for an ‘‘OAuth request token.’’

2. The service provider returns an ‘‘OAuth request token.’’

3. The consumer redirects the user to the service provider site with the ‘‘OAuth (unauthorized)
request token.’’ The user is now sent to the server provider ‘‘login’’ page, where the user logs
in and grants access.

4. The service provider redirects the user back to the consumer page with an‘‘OAuth (autho-
rized) request token.’’

5. The consumer asks the service provider for ‘‘OAuth access token,’’ giving the ‘‘OAuth
(authorized) request token.’’

6. The service provider takes the ‘‘OAuth (authorized) request token’’ and exchanges it for an
‘‘OAuth access token.’’

7. The consumer stores the ‘‘OAuth access token’’ and uses it to make a request to the ser-
vice provider for user-related resources. The service provider gets a request for user-related
resources, validates the ‘‘OAuth Access Token,’’ gets the user-related resources, and returns
them. The consumer gets the user-related resources, stores them, and displays them for the
user to use.

177

Chapter 5: OpenSocial RESTful API

Figure 5-4 illustrates these steps.

Consumer

1

2

3

4

5

6

Service Provider

Request-
Request Token

User - Redirect
for Authentication

Request-
Access Token

Process API
Call

Repeated
7

API Calls w/
Access Token

Grant-
Request Token

User Auth.
Redirect Back

Grant-
Access Token

Figure 5-4: OAuth steps

As an example, let’s specify the OAuth steps for the ‘‘Print a Photo Album’’ scenario:

1. ‘‘Print a Photo Album’’ (the consumer) sends a POST request to the MySpace (the service
provider) URL for an ‘‘OAuth request token.’’ As part of this request, ‘‘Print a Photo Album’’
sends its shared secret key.

2. MySpace returns an ‘‘OAuth (unauthorized) request token.’’

3. ‘‘Print a Photo Album’’ redirects the user to the MySpace authorization interface. The user
logs in to MySpace and grants ‘‘Print a Photo Album’’ access to use its photos.

4. MySpace redirects the user back to ‘‘Print a Photo Album’’ with an ‘‘OAuth (authorized)
request token.’’

5. ‘‘Print a Photo Album’’ receives the ‘‘OAuth (authorized) request token’’ and asks Myspace
for an ‘‘OAuth access token,’’ passing the ‘‘OAuth (authorized) request token.’’

6. MySpace takes the ‘‘OAuth (authorized) request token,’’ creates an ‘‘OAuth access token,’’
and returns it.

7. ‘‘Print a Photo Album’’ gets and stores the ‘‘OAuth access token.’’ Then it requests access
to the user’s photos on MySpace, sending the ‘‘OAuth Access Token’’ with the request.
MySpace gets the request for user’s photos, validates the ‘‘OAuth access token,’’ gets the
user’s photos, and returns them. ‘‘Print a Photo Album’’ gets the user’s photos, stores them,
and displays them for user selection in the photo-album-building process.

178

Chapter 5: OpenSocial RESTful API

OAuth Parameters
Following are the parameters in OAuth, along with their meanings:

oauth_consumer_key — This is assigned during consumer (application) registration by the ser-
vice provider (social network) and is used to identify a consumer.

oauth_token — This is given by the service provider, and represents both request and access
type tokens.

oauth_token_secret — This is given by the service provider, and is used for both request and
access tokens.

oauth_signature — All requests from the consumer to the service provider must be signed
using the oauth_signature_method. This is the actual resulting signature. The signature will be
verified by the service provider.

oauth_signature_method — This specifies the signature protocol the consumer selected from
the set the service provider stipulated.

oauth_timestamp — This gives the time, typically specified as the number of seconds since
January 1, 1970, 00:00:00 GMT.

oauth_nonce — This is a random string used to uniquely identify a request with a given times-
tamp.

oauth_version — This is the version of OAuth.

The following parameter is optional (but typical):

oauth_consumer_secret — This is assigned during consumer registration by the service
provider, and is used to identify a consumer.

All parameters are encoded via URL encoding (also called percent encoding).

OAuth Requests
Following are the four basic requests in OAuth that a consumer (application) makes to a service
provider (social network). When making a request, the consumer must create a signature to be stored in
oauth_signature that is sent with the other request information. (The signing process is discussed in
the next section.)

1. Initial (unauthorized) request token request

The request contains the parameters oauth_consumer_key, oauth_signature_method,
oauth_signature, oauth_timestamp, oauth_nonce, and oauth_version (optional).

The signature uses the parameters oauth_consumer_key and oauth_consumer_secret.

2. Authorized request token request via user authorization

This is the HTTP GET request to the service provider’s user authorization URL.

The request contains the parameters oauth_token and oauth_callback.

179

Chapter 5: OpenSocial RESTful API

3. Access token request giving the authorized request token

The request contains the parameters oauth_consumer_key, oauth_token,
oauth_signature_method, oauth_signature, oauth_timestamp, oauth_nonce,
and oauth_version (optional).

The signature uses the parameters oauth_token_secret (from authorized request
token), auth_consumer_key, and oauth_consumer_secret.

4. API (REST) request using access token

The request contains the parameters oauth_consumer_key, oauth_token,
oauth_signature_method, oauth_signature, oauth_timestamp, oauth_nonce,
and oauth_version (optional).

The signature uses oauth_token_secret (from the access token), auth_consumer_key,
and oauth_consumer_secret.

All of the OAuth request parameters can be sent in one of the following ways:

Via an HTTP authorization header — Use URL encoding for names and values, separated by =

with each name/value pair separated by a comma. Following is an example:

Authorization: OAuth realm="http://sp.example.com/",
oauth_consumer_key="0685bd9184jfhq22",
oauth_token="ad180jjd733klru7",
oauth_signature_method="HMAC-SHA1",
oauth_signature="wOJIO9A2W5mFwDgiDvZbTSMK%2FPY%3D",
oauth_timestamp="137131200",
oauth_nonce="4572616e48616d6d65724c61686176",
oauth_version="1.0"

Via an HTTP POST request body parameters — This is done with content-type=application/

x-www-form-urlencoded.

Via a parameters added to URL query — Append to the URL query the name/value pairs sepa-
rated by &.

OAuth Signing Requests
Every request from the consumer to the service provider must be signed. This involves the encoding of
the oauth_consumer_secret and oauth_token_secret (when it exists) parameters together. The service
provider stipulates the signature method(s) that it supports, and the consumer must use one from this set.

OAuth defines the support of HMAC-SHA1, RSA-SHA1, and plain text as signature methods that can be
used. The service provider typically chooses to support one or all of these methods. However, the OAuth
protocol does allow service providers to implement their own methods.

The signature method that is being used is represented in the oauth_signature_method parameter. The
many OAuth libraries provide support for creating signatures using all three of the OAuth-supported
signature methods (HMAC-SHA1, RSA-SHA1, and plain text). Once the consumer has produced a sig-
nature, it will be stored in the oauth_signature parameter.

180

Chapter 5: OpenSocial RESTful API

OAuth Tokens (the Response)
The service provider will return an HTTP response when the consumer requests a token. The token infor-
mation is sent in the HTTP response body. The parameters are oauth_token and oauth_token_secret.
Here is an example:

oauth_token=ab3cd9j4ks73hf7g&oauth_token_secret=xyz4992k83j47x0b

OAuth in PHP
This section covers OAuth in PHP. This library is provided free for use from Andy Smith, and can be
found at http://oauth.googlecode.com/svn/code/php. This section details the classes in this library,
and their uses.

OAuthConsumer

This class is used to create a representation of the consumer. Listing 5-2 shows how its constructor takes
as its first two parameters oauth_consumer_key and consumer_secret, which were assigned when the
application was registered with the service provider. The third parameter of the constructor is the call-
back URL of the application, given during registration.

Listing 5-2: OAuthConsumer Class

class OAuthConsumer {/*{{{*/
public $key;
public $secret;

function __construct($key, $secret, $callback_url=NULL) {/*{{{*/
$this->key = $key;
$this->secret = $secret;
$this->callback_url = $callback_url;

}/*}}}*/
}/*}}}*/

OAuthToken

This class is used to represent both request and access tokens. The actual token is represented by the key
variable and its secret (the oauth_token_secret) by the secret variable. The constructor takes the key
and secret as parameter values. The only methods for this class involve getting a string containing the
token value and its secret. Listing 5-3 shows the code for the OAuthToken class.

Listing 5-3: OAuthToken Class

class OAuthToken {/*{{{*/
// access tokens and request tokens
public $key;
public $secret;

Continued

181

Chapter 5: OpenSocial RESTful API

Listing 5-3: OAuthToken Class (continued)

/**
* key = the token
* secret = the token secret
*/
function __construct($key, $secret) {/*{{{*/
$this->key = $key;
$this->secret = $secret;

}/*}}}*/

/**
* generates the basic string serialization of a token that a server
* would respond to request_token and access_token calls with
*/
function to_string() {/*{{{*/
return "oauth_token=" . OAuthUtil::urlencodeRFC3986($this->key) .

"&oauth_token_secret=" . OAuthUtil::urlencodeRFC3986($this->secret);
}/*}}}*/

function __toString() {/*{{{*/
return $this->to_string();

}/*}}}*/
}/*}}}*/

OAuthRequest

This class represents an OAuth request. This class contains the private data elements of an HTTP URL,
method type (GET, PUT, POST), and request parameters. This class has a number of methods, including the
following:

_construct — This is the constructor method and takes the request method type, URL, and
parameters.

from_request — This method creates a new request based on your server configurations (for
example, whether you are using HTTP or HTTPS protocols). The newly created request (an
instance of the OAuthRequest) is returned from this function.

set_parameter — This sets a parameter in the request.

get_parameter — This retrieves a parameter in the request.

get_signature_base_string — This returns the request as a string comprising the URL and
parameters with request method type. Each parameter is URL-encoded and chained together
with &.

to_postdata — This constructs the parameters as POST data.

sign_request — This creates the oauth_signature_method and oauth_signature parameter
values.

generate_nonce — Creates and returns a nonce value. (Nonce is a random string, unique for a
timestamp.)

Listing 5-4 shows the code for the OAuthRequest class.

182

Chapter 5: OpenSocial RESTful API

Listing 5-4: OAuthRequest Class

class OAuthRequest {/*{{{*/
private $parameters;
private $http_method;
private $http_url;
// for debug purposes
public $base_string;
public static $version = ‘1.0’;

function __construct($http_method, $http_url, $parameters=NULL) {/*{{{*/
@$parameters or $parameters = array();
$this->parameters = $parameters;
$this->http_method = $http_method;
$this->http_url = $http_url;

}/*}}}*/

/**
* attempt to build up a request from what was passed to the server
*/

public static function from_request($http_method=NULL, $http_url=NULL,
$parameters=NULL) {/*{{{*/

$scheme = (!isset($_SERVER[’HTTPS’]) || $_SERVER[’HTTPS’] != "on") ?
‘http’ : ‘https’;

@$http_url or $http_url = $scheme . ‘://’ . $_SERVER[’HTTP_HOST’] .
$_SERVER[’REQUEST_URI’];

@$http_method or $http_method = $_SERVER[’REQUEST_METHOD’];

$request_headers = OAuthRequest::get_headers();

// let the library user override things however they’d like, if they
// know which parameters to use then go for it, for example
// XMLRPC might want to do this
if ($parameters) {

$req = new OAuthRequest($http_method, $http_url, $parameters);
}
// next check for the auth header, we need to do some extra stuff
// if that is the case, namely suck in the parameters from GET or POST
// so that we can include them in the signature
else if (@substr($request_headers[’Authorization’], 0, 5) == "OAuth") {

$header_parameters =
OAuthRequest::split_header($request_headers[’Authorization’]);

if ($http_method == "GET") {
$req_parameters = $_GET;

}
else if ($http_method = "POST") {
$req_parameters = $_POST;

}
$parameters = array_merge($header_parameters, $req_parameters);
$req = new OAuthRequest($http_method, $http_url, $parameters);

}
else if ($http_method == "GET") {

Continued

183

Chapter 5: OpenSocial RESTful API

Listing 5-4: OAuthRequest Class (continued)

$req = new OAuthRequest($http_method, $http_url, $_GET);
}
else if ($http_method == "POST") {

$req = new OAuthRequest($http_method, $http_url, $_POST);
}
return $req;

}/*}}}*/

/**
* pretty much a helper function to set up the request
*/
public static function from_consumer_and_token($consumer, $token,

$http_method, $http_url, $parameters=NULL) {/*{{{*/
@$parameters or $parameters = array();
$defaults = array("oauth_version" => OAuthRequest::$version,

"oauth_nonce" => OAuthRequest::generate_nonce(),
"oauth_timestamp" => OAuthRequest::generate_timestamp(),
"oauth_consumer_key" => $consumer->key);

$parameters = array_merge($defaults, $parameters);

if ($token) {
$parameters[’oauth_token’] = $token->key;

}
return new OAuthRequest($http_method, $http_url, $parameters);

}/*}}}*/

public function set_parameter($name, $value) {/*{{{*/
$this->parameters[$name] = $value;

}/*}}}*/

public function get_parameter($name) {/*{{{*/
return $this->parameters[$name];

}/*}}}*/

public function get_parameters() {/*{{{*/
return $this->parameters;

}/*}}}*/

/**
* Returns the normalized parameters of the request
*
* This will be all (except oauth_signature) parameters,
* sorted first by key, and if duplicate keys, then by
* value.
*
* The returned string will be all the key=value pairs
* concated by &.
*
* @return string
*/
public function get_signable_parameters() {/*{{{*/
// Grab all parameters
$params = $this->parameters;

184

Chapter 5: OpenSocial RESTful API

// Remove oauth_signature if present
if (isset($params[’oauth_signature’])) {

unset($params[’oauth_signature’]);
}

// Urlencode both keys and values
$keys = array_map(array(’OAuthUtil’, ‘urlencodeRFC3986’),

array_keys($params));
$values = array_map(array(’OAuthUtil’, ‘urlencodeRFC3986’),

array_values($params));
$params = array_combine($keys, $values);

// Sort by keys (natsort)
uksort($params, ‘strnatcmp’);

// Generate key=value pairs
$pairs = array();
foreach ($params as $key=>$value) {

if (is_array($value)) {
// If the value is an array, it’s because there are multiple
// with the same key, sort them, then add all the pairs
natsort($value);
foreach ($value as $v2) {

$pairs[] = $key . ‘=’ . $v2;
}

} else {
$pairs[] = $key . ‘=’ . $value;

}
}

// Return the pairs, concated with &
return implode(’&’, $pairs);

}/*}}}*/

/**
* Returns the base string of this request
*
* The base string defined as the method, the URL
* and the parameters (normalized), each url-encoded
* and the concated with &.
*/

public function get_signature_base_string() {/*{{{*/
$parts = array(

$this->get_normalized_http_method(),
$this->get_normalized_http_url(),
$this->get_signable_parameters()

);

$parts = array_map(array(’OAuthUtil’, ‘urlencodeRFC3986’), $parts);

return implode(’&’, $parts);
}/*}}}*/

/**

Continued

185

Chapter 5: OpenSocial RESTful API

Listing 5-4: OAuthRequest Class (continued)

* just uppercases the http method
*/
public function get_normalized_http_method() {/*{{{*/
return strtoupper($this->http_method);

}/*}}}*/

/**
* parses the url and rebuilds it to be
* scheme://host/path
*/
public function get_normalized_http_url() {/*{{{*/
$parts = parse_url($this->http_url);

// FIXME: port should handle according to
// http://groups.google.com/group/
// oauth/browse_thread/thread/1b203a51d9590226
$port = (isset($parts[’port’]) && $parts[’port’] != ‘80’) ? ‘:’ .

$parts[’port’] : ‘’;
$path = (isset($parts[’path’])) ? $parts[’path’] : ‘’;

return $parts[’scheme’] . ‘://’ . $parts[’host’] . $port . $path;
}/*}}}*/

/**
* builds a url usable for a GET request
*/
public function to_url() {/*{{{*/
$out = $this->get_normalized_http_url() . "?";
$out .= $this->to_postdata();
return $out;

}/*}}}*/

/**
* builds the data one would send in a POST request
*/
public function to_postdata() {/*{{{*/
$total = array();
foreach ($this->parameters as $k => $v) {

$total[] = OAuthUtil::urlencodeRFC3986($k) . "=" .
OAuthUtil::urlencodeRFC3986($v);

}
$out = implode("&", $total);
return $out;

}/*}}}*/

/**
* builds the Authorization: header
*/
public function to_header() {/*{{{*/
$out =’"Authorization: OAuth realm="",’;
$total = array();
foreach ($this->parameters as $k => $v) {

if (substr($k, 0, 5) != "oauth") continue;

186

Chapter 5: OpenSocial RESTful API

$out .= ‘,’ . OAuthUtil::urlencodeRFC3986($k) . ‘="’ .
OAuthUtil::urlencodeRFC3986($v) . ‘"’;

}
return $out;

}/*}}}*/

public function __toString() {/*{{{*/
return $this->to_url();

}/*}}}*/

public function sign_request($signature_method, $consumer,
$token) {/*{{{*/

$this->set_parameter("oauth_signature_method",
$signature_method->get_name());

$signature = $this->build_signature($signature_method,
$consumer, $token);

$this->set_parameter("oauth_signature", $signature);
}/*}}}*/

public function build_signature($signature_method,
$consumer, $token) {/*{{{*/

$signature = $signature_method->build_signature($this,
$consumer, $token);

return $signature;
}/*}}}*/

/**
* util function: current timestamp
*/

private static function generate_timestamp() {/*{{{*/
return time();

}/*}}}*/

/**
* util function: current nonce
*/

private static function generate_nonce() {/*{{{*/
$mt = microtime();
$rand = mt_rand();

return md5($mt . $rand); // md5s look nicer than numbers
}/*}}}*/

/**
* util function for turning the Authorization: header into
* parameters, has to do some unescaping
*/

private static function split_header($header) {/*{{{*/
// this should be a regex
// error cases: commas in parameter values
$parts = explode(",", $header);
$out = array();
foreach ($parts as $param) {

Continued

187

Chapter 5: OpenSocial RESTful API

Listing 5-4: OAuthRequest Class (continued)

$param = ltrim($param);
// skip the "realm" param, nobody ever uses it anyway
if (substr($param, 0, 5) != "oauth") continue;

$param_parts = explode("=", $param);

// rawurldecode() used because urldecode() will turn a "+" in the
// value into a space
$out[$param_parts[0]] = rawurldecode(substr($param_parts[1], 1, -1));

}
return $out;

}/*}}}*/

/**
* helper to try to sort out headers for people
* who aren’t running apache
*/
private static function get_headers() {/*{{{*/
if (function_exists(’apache_request_headers’)) {

// we need this to get the actual Authorization: header
// because Apache tends to tell us it doesn’t exist
return apache_request_headers();

}
// otherwise we don’t have apache and are just going to have to hope
// that $_SERVER actually contains what we need
$out = array();
foreach ($_SERVER as $key => $value) {

if (substr($key, 0, 5) == "HTTP_") {
// this is chaos, basically it is just there to capitalize the first
// letter of every word that is not an initial HTTP and strip HTTP
// code from przemek
$key = str_replace(" ", "-", ucwords(strtolower(str_replace("_", " ",

substr($key, 5)))));
$out[$key] = $value;

}
}
return $out;

}/*}}}*/
}/*}}}*/

OAuthSignatureMethod

This is the base class used to check a signature. The single method of this class is check_signature,
which takes the following parameters:

$request — This is an instance of the OAuthRequest class.

$consumer — This is an instance of the OAuthConsumer class.

$token — This is an instance of the OAuthToken class.

$signature — This a string representing a signature.

188

Chapter 5: OpenSocial RESTful API

Listing 5-5 shows this class.

Listing 5-5: OAuthSignatureMethod Class

class OAuthSignatureMethod {/*{{{*/
public function check_signature(&$request, $consumer, $token, $signature) {
$built = $this->build_signature($request, $consumer, $token);
return $built == $signature;

}
}/*}}}*/

From this class, subclasses are generated that implement specific signature methods such as
HMAC-SHA1 or RSA-SHA1. The RSA-SHA1 subclass is shown in Listing 5-6.

Listing 5-6: OAuthSignatureMethod_RSA_SHA1

class OAuthSignatureMethod_RSA_SHA1 extends OAuthSignatureMethod {/*{{{*/
public function get_name() {/*{{{*/
return "RSA-SHA1";

}/*}}}*/

protected function fetch_public_cert(&$request) {/*{{{*/
// not implemented yet, ideas are:
// (1) do a lookup in a table of trusted certs keyed off of consumer
// (2) fetch via http using a url provided by the requester
// (3) some sort of specific discovery code based on request
//
// either way should return a string representation of the certificate
throw Exception("fetch_public_cert not implemented");

}/*}}}*/

protected function fetch_private_cert(&$request) {/*{{{*/
// not implemented yet, ideas are:
// (1) do a lookup in a table of trusted certs keyed off of consumer
//
// either way should return a string representation of the certificate
throw Exception("fetch_private_cert not implemented");

}/*}}}*/

public function build_signature(&$request, $consumer, $token) {/*{{{*/
$base_string = $request->get_signature_base_string();

// Fetch the private key cert based on the request
$cert = $this->fetch_private_cert($request);

//Pull the private key ID from the certificate
$privatekeyid = openssl_get_privatekey($cert);

//Check the computer signature against the one passed in the query
$ok = openssl_sign($base_string, $signature, $privatekeyid);

//Release the key resource

Continued

189

Chapter 5: OpenSocial RESTful API

Listing 5-6: OAuthSignatureMethod_RSA_SHA1 (continued)

openssl_free_key($privatekeyid);

return base64_encode($signature);
} /*}}}*/

public function check_signature(&$request, $consumer, $token,
$signature) {/*{{{*/

$decoded_sig = base64_decode($signature);

$base_string = $request->get_signature_base_string();

// Fetch the public key cert based on the request
$cert = $this->fetch_public_cert($request);

//Pull the public key ID from the certificate
$publickeyid = openssl_get_publickey($cert);

//Check the computer signature against the one passed in the query
$ok = openssl_verify($base_string, $decoded_sig, $publickeyid);

//Release the key resource
openssl_free_key($publickeyid);

return $ok == 1;
} /*}}}*/

}/*}}}*/

This class signs requests with the application’s RSA private key and the signature base string. Verification
of a signature is done with the application’s RSA public key. The signature base string is constructed by
joining (with an &) the HTTP request method type with the URL, the normalized request parameters
shortened by name.

The class in this listing is an ‘‘interface’’ class that is meant to be extended. Methods that currently throw
exceptions should be overridden. This class has the following methods defined:

fetch_public_cert — This method should be overridden, and should retrieve the service
provider’s public certificate. Note that these certificates can change, and the developer must
appropriately update this information.

fetch_public_cert — This method should be overridden, and should retrieve the service
provider’s private certificate.

build_signature — This method creates a signature using the RSA methodology.

check_signature — This method checks the validity of the signature passed in the request.

OAuth PHP Example

To better understand the process involved in OAuth, let’s look at an example application using OAuth.
The following test code gets a request token. With this token, it then requests and gets an access token. It
then finally makes an API request using this access token. The steps in this program are as follows:

190

Chapter 5: OpenSocial RESTful API

1. Create instances of OAuthConsumer.

2. Set up signature method type.

3. Create instance of OAuthRequest to serve as a request from this consumer to the service
provider to ask for a request token.

4. From OAuthRequest, generate a URL and use it to make an HTTP request; using
HTTPRequest, make the request.

5. Get the response from the service provider and parse it to get the oauth_token and
oauth_token_secret data representing the request token. Create an instance of the
OAuthToken class using this data.

6. Redirect the user to the service provider ‘‘user authorization endpoint’’ URL, passing the
parameters of oauth_token and oauth_callback.

7. Get back from server the authorized oauth_token.

8. Request an access token.

9. Use the access token to make API calls.

Note that an ‘‘endpoint URL’’ represents the URL address of a resource.

Listing 5-7 shows this example code, which is a modification of the code found at http://oauth
.googlecode.com/svn/code/php/example/, and is free for use.

Listing 5-7: Simple PHP Test Program That Exercises OAuth

<?php
require_once("common.inc.php");
$access_token, $request_token;
$sig_methods = array();

//URL endpoints
$base_url = "http://api.msyspace.com";
$request_token_url="http://api.myspace.com/request_token";
$access_token_url="http://api.myspace.com/access_token";
$user_authorize_url ="http://api.myspace.com/authorize";

//consumer key and secret
$key = "http://www.myspace.com/426949207"; //myspace assigned

//when registered
$secret = "1eb60898a9fa435683f34413ebe079e6";

//if request has token info grab it.
$token = @$_GET[’oauth_token’];
$token_secret = @$_GET[’oauth_token_secret’];

//Step 1 - create consumer
$test_consumer = new OAuthConsumer($key, $secret, NULL);

//Step 2 - initialize signature method

Continued

191

Chapter 5: OpenSocial RESTful API

Listing 5-7: Simple PHP Test Program That Exercises OAuth (continued)

$sig_method = new OAuthSignatureMethod_HMAC_SHA1();

//program called with different options
$option = @$_GET[’select’];

//Option can be to request a request_token or access_token or
// access_token with option specifying the token_secret
if($option == "request_token")
{ //Step 3&4

$url = generate_token(’http://api.myspace.com/request_token’, $token,
$token_secret);

$response = make_request($url);
//Step 5 – get token
get_token_from_response($response);
//Step 6 - redirect user to get authorized token
//should return to this program with the option of "access_token"
redirect_user($token, $token_secret, $user_authorize_url);

}
else
{ //Step 7 – this is where the callback from

//User Authorization will come
$token_secret = urldecode($option);
//Step 8 – request access token
$url = generate_token(’http://api.myspace.com/access_token’, $token,

$token_secret);
$response = make_request($url);

get_token_from_response($response);

//generate access token object
$acc_token = new OAuthToken($token, $token_secret);

//Step 9 - create YOUR REST API calls, URL and Method ($url, $meth)
makeAPI_calls($acc_token, $url, $meth);

}

//general function that request a token at the url $req_url, passing
// for the request of an authorized token the already existing
// unauthorized token of $token and $token_secret
function generate_token($req_url, $token, $token_secret) {

global $key,$secret;
$consumer = new OAuthConsumer($key, $secret, NULL);
$oAuthtoken = new OAuthToken($token, $token_secret);

$request = new OAuthRequest(’GET’,$req_url, NULL);
$request = $request->from_consumer_and_token($consumer,$oAuthtoken,

‘GET’,$req_url,NULL);

$signature = new OAuthSignatureMethod_HMAC_SHA1($request,
$consumer, $oAuthtoken);

192

Chapter 5: OpenSocial RESTful API

$request->sign_request($signature, $consumer, $oAuthtoken);
$url_for_token = $request->to_url(); /* The actual URL

to get a token */
return $url_for_token;

}

//Utility function to make a request to $url and return response
function make_request($url)
{

$request =& new HTTP_Request($url);
if(!PEAR::isError($request->sendRequest())) {

$response = $request->getResponseBody();
}
else { $response="error: ".$request->getResponseCode(); }

return $response;
}

//function to parse $response to get token and its secret
// store them in the global variables of $token and $token_secret
function get_token_from_response($response)
{

//response in url-encoded format oauth_token=
// XXX&oauth_token_secret=YYYY get the token from response
$arr = split("&", urldecode($response));
$a = split("=", $arr[0],2);
$token = $a[1];
//get the token secret from response
$a = split("=", $arr[1],2);
$token_secret = $a[1];

}

//function to redirect to user authenticaton endpoing $url
// passing in the unauthorized token and callbackURL (with token_secret as
//option).
function redirect_user($token, $token_secret, $url) {

//STEP 6 - redirect user to server provider’s
//user authentication endpoint
$url = $url."?oauth_token=".urlencode($token);
$url = $url.

"&oauth_callback=http://U.com/
thisprogram.php?select=".urlencode($token_secret);

$delay = "0"; // 0 second delay

echo ‘<meta http-equiv="refresh" content="’.$delay.’;url=’.$url.’">’;
}

//function to make API calls using access token $acc_token to REST URL $url,
//method i type is $meth
function makeAPI_calls($acc_token, $url, $meth)

Continued

193

Chapter 5: OpenSocial RESTful API

Listing 5-7: Simple PHP Test Program That Exercises OAuth (continued)

{
//MYSPACE ReST call for user
$consumer = new OAuthConsumer($key, $secret, NULL);

//Configure restdd

$api_call = OAuthRequest::from_consumer_and_token($consumer,
$acc_token, $meth, $url);

$signature = new OAuthSignatureMethod_HMAC_SHA1($api_call,
$consumer, $acc_token);

$api_call->sign_request($signature, $consumer, $acc_token);

//Step 10 - make API call request using access token,
//uses PHP cURL library
$url = $api_call->to_url();
$response = make_request($url);

//process the result as you wish
print($response);

}
?>

Following are the URLs constructed for the main OAuth requests that result from running the code in
Listing 5-7 on MySpace, which supports the use of OAuth for its proprietary REST API.

Note that the following URLs should appear all on one line.

1. Request token request (initial):

http://api.msyspace.com/
request_token?oauth_version=
1.0&oauth_nonce=27a0b5b24ecadf1546155fec809d1ad1&oauth_timestamp=
1225775995&oauth_consumer_key=http%3A%2F%2Fwww.myspace.com%2F426949207
&oauth_signature_method=HMAC-SHA1&oauth_signature=
awDDBhRIwy22fJ73PmaW%2BhpKvL8%3D

2. Response (raw) from Step 1:

oauth_token=0WNpJ2xudna2Wut8jXSj2ZJPunaA0aZUg4v%2Frviy
CGipJiDyHZCN3FXMhy59fTWNb3x5KfyPhF0GW8rC0zzqvg%3D%3D
&oauth_token_secret=
0f77234a29c5473fb00d07aa5cff59f6

3. Authorized request token request via redirection to user authorization URL:

http://api.myspace.com/request_token?oauth_version=1.0&oauth_nonce=
d41d3ae96f7101133c8d4e75245591e4&oauth_timestamp=
1226193187&oauth_consumer_key=
http%3A%2F%2Fwww.myspace.com%2F426949207&oauth_token=
l0OJsEcD9IWxzFb5%2Fw52v0J606CLICLjIsNrtv15x7gN%2FOuyqSLtv5Wi5

194

Chapter 5: OpenSocial RESTful API

AuOvA871wzPl4dikMn7Mv6nixU24A%3D%3D&oauth_signature_method=
HMAC-SHA1&oauth_signature=8p%2Bc6fW4tQs7nLbRD0RVpEBQqu0%3D

4. Access token request:

http://api.myspace.com/access_token?oauth_version=1.0&oauth_nonce=
cf5e944f330c16dd5af230720924efd4&oauth_timestamp=
1226218131&oauth_consumer_key=
http%3A%2F%2Fwww.myspace.com%2F426949207&oauth_token=
EZSx7EdynZlxK5kwQgb9kLxyYobqz70Vok2aGScLEHqlTcQBWIfi
TzTpRnLKNm%2B919RqP9DAFe593zPG4MT9mw%3D%3D&oauth_signature_method=
HMAC-SHA1&oauth_signature=MrGBV9nfTa2bZJbXG0TYlWkyK6I%3D

5. Response (raw) from Step 4:

oauth_token=hW0aVH6hVNbz8AQqq0C3vSAj8KiD8dQAemMh%2Fse
Kuxk6gShqeQSneerEwSzpZSjPyTnm23gFgEmjmUus5k2YMsGiydh
EY0pz4Ku00RfEVZ8%3D&oauth_token_secret=
bb485134af3e4507be9f3e37c3ed6600

HTTP Errors
When a service provider responds to OAuth requests, a number of HTTP errors are possible. Understand-
ing them and having the application respond appropriately is important. Here are few of the possible
HTTP errors and their meanings:

400: Bad Request — Causes for this error include unsupported parameter(s), missing required
parameters, an unsupported signature method, or a duplicate OAuth parameter.

401: Unauthorized — Causes for this error include an invalid token, an expired token, an
unauthorized request token, an invalid consumer key, a signature that doesn’t match, an invalid
nonce, or a used nonce.

404: Not Found — Causes for this error include an invalid URL used for making the request.

405: Method Not Allowed — This means this method is not allowed.

OpenID
OpenID is a protocol developed for the creation of a single ID for a user that can be used on multiple
Web sites. The use of OpenID is supported in OAuth as an optional feature.

See http://openid.net for further details.

Key Cache and Token Management
Managing tokens is also important. Both request and access tokens granted to an application will have an
expiration time. A typical lifetime is 24 hours. This means that you can cache and use this token for up to
24 hours. Rewriting your code to first look in the cache for a token associated with a user, and only going
through the OAuth process when the token is expired, can be more efficient. You can store in the cache
the expiration information for each token. However, when using cached tokens, the application should
always handle exceptions of the token being expired, and consequently request a new token.

195

Chapter 5: OpenSocial RESTful API

See http://blog.springenwerk.com/2008/04/poor-man-php-key-cache-for-orkut-oauth

.html for sample code that implements a simple key cache.

OAuth Libraries
To use OAuth, you must get the library for the programming language you are using. The first site to
check out is http://oauth.net/code. Current language support can be found at the following:

C# — http://oauth.googlecode.com/svn/code/csharp

ColdFusion — http://oauth.googlecode.com/svn/code/coldfusion

Java — http://oauth.googlecode.com/svn/code/java/core

JavaScript — http://oauth.googlecode.com/svn/code/javascript

.NET — http://code.google.com/p/oauth-dot-net

Perl — http://oauth.googlecode.com/svn/code/php

PHP — http://oauth.googlecode.com/svn/code/php

Python — http://oauth.googlecode.com/svn/code/python/oauth

Ruby — http://oauth.rubyforge.org

What You Need
To incorporate OAuth into your OpenSocial REST API, you need the following:

The OAuth library for your programming language

The authorization URLs provided by the service provider, and information on authorization
options that includes the following:

The user authorization endpoint

The request token endpoint

The access token endpoint

The accepted request methods (GET, POST, PUT)

The signature method(s)

The specification of any OAuth-extended parameters (not part of OAuth, but required or
optional parameters specified by the service provider)

The specification of request and access token expirations

You must register your application with the service provider. This typically involves minimally spec-
ifying a callback URL for the application, a description, and a developer email address. In return, you
should get the oauth_consumer_key and oauth_consumer_secret.

hi5 Authentication Scheme
Currently, the only social network that supports OpenSocial REST is hi5, although orkut is about to
release its support. Unfortunately, hi5 is not completely compliant in that it does not use OAuth as its

196

Chapter 5: OpenSocial RESTful API

API and user authorization/authentication protocol. Instead, it uses its own proprietary scheme. This
section discusses how to use this scheme. hi5 developer contacts have indicated that they have plans to
support OAuth in the near future.

Check hi5’s developer forum to see what authentication protocol it is currently
supporting before using the code in this section.

hi5 has a simpler scheme than the OAuth protocol. There is no signing of requests. Simply, an application
must request a token for use. This token should be passed as the Hi5AuthToken parameter value in all
subsequent OpenSocial REST calls. The token expires in one day, except for notifications, where it is good
for four hours of use.

Following are the steps for the hi5 scheme:

1. For the Hi5AuthToken request, you must provide API key (assigned by hi5 when the
application is registered), a username (the login of the user), and a password (the
password of the user). This will typically involve a user login process. The endpoint is
http://api.hi5.com/auth/plain. You must also make a POST request.

2. For the OpenSocial REST request, you must pass the Hi5AuthTokenRequest parameter.

Following is some example code in PHP:

<?php
//requests via GET the user data
$ch = curl_init("http://api.hi5.com/social/rest/people/

291445554/@self?format=xm
l&Hi5AuthToken=od3sA9cGSsXsPDYPx9_mlw..

:PCb4L2uyjnWKDSzOGQ3-pCjycmaZ_OShH__SayUP
IDaMOFtxkstdnKxL0FrZ3hdeqgdwUGBDRS1a-2CCLnRuj-UG3qplZgNgQE4LU6JB8ak.");
$fp = fopen("hi5.txt", "w");

curl_setopt($ch, CURLOPT_FILE, $fp);
curl_setopt($ch, CURLOPT_HEADER, 0);

curl_exec($ch);
curl_close($ch);
fclose($fp);
?>

Execution of this code will yield the resulting response (when I am the user and it is formatted for read-
ability):

<response>
<empty>false</empty>
<entry>

<key>entry</key>
<value>
<accounts/><activities/><addresses/><books/><cars/>

197

Chapter 5: OpenSocial RESTful API

<displayName>Lynne Grewe</displayName>
<emails/><food/><heroes/>
<id>291445554</id>
<ims/><interests/>
<isOwner>false</isOwner>
<isViewer>false</isViewer>
<languagesSpoken/><lookingFor/>
<movies/><music/>
<name>

<familyName>Grewe</familyName>
<formatted>Lynne Grewe</formatted>
<givenName>Lynne</givenName>

</name>
<organizations/><phoneNumbers/>
<photos>

<ListFieldImpl>
<type>thumbnail</type>
<value>http://photos1.hi5.com/0044/8335/920/

jm323sua825920-01.jpg</value>
</ListFieldImpl>

</photos>
<quotes/><sports/><tags/>
<thumbnailUrl>http://photos1.hi5.com/0034/825/920/jm3sua82592021.jpg
</thumbnailUrl>
<turnOffs/><turnOns/><tvShows/>
<updated>Mon Nov 03 21:55:12 PST 2008</updated>
<urls/>

</value>
</entry>
</response>

OpenSocial RESTful API Details
Following are the steps your application takes to use the OpenSocial REST API:

1. Get API authorization from the service provider using OAuth. This yields an oauth_token

and oauth_token_secret.

2. Make an OpenSocial REST API request using OAuth token information.

3. Process the OpenSocial REST response.

OAuth authorization was discussed earlier in this chapter. Let’s now examine the details of how to set
up an OpenSocial REST API request, and what an OpenSocial REST API response looks like.

OpenSocial REST Request Construction
Creating an OpenSocial REST call involves the construction of a URL (referred to here as the OpenSocial
REST URL), the specification of the HTTP method type, and setting up any required data and parameters.
The construction of the OpenSocial REST URL, as well as the specification of the HTTP method type for
the different API ‘‘requests,’’ will be discussed shortly. Let’s first take a look at the setup of required data
and parameters.

198

Chapter 5: OpenSocial RESTful API

As part of your creating an OpenSocial REST request, the OAuth standards (or whatever authentication
protocol the social network is using) should be followed to create a signature that is sent as a request
parameter. Hence, the data parameters to be sent as part of the OpenSocial REST request include not
only OAuth parameters but also query parameters and REST method-specific parameters.

OAuth Parameters

When working with OAuth parameters, keep in mind the following:

A request contains the parameters oauth_consumer_key, oauth_token, oauth_signature_
method, oauth_signature, oauth_timestamp, oauth_nonce, and oauth_version (optional)

A signature uses oauth_token_secret (from the access token), auth_consumer_key, and
oauth_consumer_secret

Table 5-1 shows the query parameters.

Table 5-1: Query Parameters

Query Parameter Meaning

count={count} Requests the size for a paged collection (that is, a collection the user may
‘‘page’’ through). If not specified, the service provider chooses this.

filterBy={field} Returns entries in a collection filtered by the field.

filterOp={op} Specifies the operation (op) to use in filtering a collection. The default is
contains. Other possibilities include equals, startsWith, and present.

filterValue={v} The value to use in filtering. For example, you could use
filterBy=name&filterOp=startsWith&filterValue=Lynne.

format={format} This represents the format. Possibilities include atom, json, and xml. The
default is xml. For example, you could use format=xml.

fields={-join|,|field} This lists the fields to be included in members of a collection. If none is
specified, the service provider determines what fields to return. For
example, this may be used when asked for a ‘‘nickname’’ to be given for
each person in a collection of people.

networkDistance={d} (Optional) Distance refers to how many ‘‘hops’’ away a person is from
another to be part of the ‘‘group.’’ For example, you could ask for friends
of friends.

sortBy={field} This sorts returned items by the field.

sortOrder={o} This specifies how to sort. Possibilities include ascending or descending.

startIndex={s} This starts an index into a paged collection.

updatedSince={d} This tells the service provider to only return items whose date is equal or
more recent than d.

199

Chapter 5: OpenSocial RESTful API

OpenSocial REST API Specification
The OpenSocial REST API, for the most part, mirrors the OpenSocial JavaScript API in capability. Specif-
ically, an application can make requests related to the following:

People

Groups

Activities

AppData

Messaging (optional)

For each category of API request listed here, there is a series of requests your application can construct.
For example, with regard to People, the application can retrieve not only user data but also data about
friends. Each specific API request is created by building the OpenSocial REST URL, as follows:

OpenSocial REST URL = "Base URL" + "REST API Specific URL Pattern"

The "Base URL" is the base URL the service provider provides for all OpenSocial REST calls. It is possible
that this base URL is not the same for all OpenSocial REST calls, but, typically, it will be a constant. For
example, on hi5, the "Base URL" is http://api.hi5.com/social/rest for all OpenSocial REST requests.

The "REST API Specific URL Pattern" will be the ‘‘extension’’ of the URL to specify the specific
REST API call the application is making. For example, to get the user’s Person data, the "REST

API Specific URL Pattern" will be /people/@me/@self. Thus, for hi5, the complete URL will be
http://api.hi5.com/social/rest/people/@me/@self.

Each of the five main types of requests is detailed in the following sections. In addition to the "REST API

Specific URL Pattern" specification, the HTTP method types supported will be described, along with
any API-specific data that is sent.

Before looking at each category, it is important to note some common constructs used in specifying
the "REST API Specific URL Pattern". A commonly used construct is the {guid}, which stands for
the container-specific global user identifier (GUID). This is the user’s ID. The predefined symbol @me
indicates the user of the application (the OAuth authenticated user). The next constructor is referred to
as the selector and specifies the person or group of people related to the user. When used, the selector is
typically set to one of the following:

@self — This indicates the user.

@all — This indicates to select all of the related contacts.

@friends — This indicates to select from the set of all related contacts only the ones that are the
user.

User-defined local group name — This is used to specify a group of contacts.

People

A main category of social data deals with people. Just as in the JavaScript API, the OpenSocial REST API
gives a program access to this information. Table 5-2 shows examples of URL patterns for People data
that an application can construct.

200

Chapter 5: OpenSocial RESTful API

Table 5-2: URL Patterns for People

URL_Pattern Samples Meaning

/people/{guid}/@all All people connected to the user specified by guid. An example is
http://api.hi5.com/social/rest/people/123456/@all.

/people/{guid}/@friends All the friends of the user specified by guid.

/people/{guid}/{groupid} All the people connected to user (guid) in the group specified by ID
groupid.

/people/{guid}/@all/{pid} Information about person with ID pid as ‘‘seen’’ by the user (guid).

/people/{guid}/@self Information about the user with ID guid.

/people/@me/@self Information about the user represented in Authentication (OAuth)
credentials — the ‘‘requestor.’’

/people/@supportedFields A list of people fields supported by the service provider.

/people/{guid}/@deleted (Optional) A list of people connected with the user (guid) who have
been deleted.

Note that the standard data that should be returned for a person from a container includes id, name,
and thumbnailURL. The OpenSocial REST API allows containers to specify through its XRDS-Simple
discovery document the exact form of the URL patterns that can differ from the ones given here. The
ones shown in Table 5-2 are suggested URL patterns. Look at the container’s developer forum and its
XRDS document for variations from these and the supported list.

The standard method type indicated by the patterns shown in Table 5-2 is GET. However, there
is support for the creation of a new friend by using the method type of POST for the URL pattern
/people/{guid}/@friends. Note that the implementation of this and any of the REST calls is optional,
as long as the service provider responds that it is not supported. It is still considered OpenSocial REST
compliant. See the documentation for each container for the current list of supported calls. For example,
as of this writing, hi5 supports GET operations, but not PUT or POST for people REST API calls.

Groups

‘‘Groups’’ is another category of REST API calls and involves group-related requests. Table 5-3 shows
the URL pattern for groups.

Table 5-3: URL Patterns for Groups

URL_Pattern Samples Meaning

/groups/{guid} All of the groups of which the user (guid) is a member

For hi5, a group request would look like http://api.hi5.com/social/rest/groups/12345.

201

Chapter 5: OpenSocial RESTful API

Activities

‘‘Activities’’ are defined as postings to activity streams on the social network. You may choose to have
your program get activity information, or create a new activity. In the case of getting the activity infor-
mation, the method type will be GET. In the case of creating a new activity, the method type will be POST.
Table 5-4 shows the URL patterns for activities.

Table 5-4: URL Patterns for Activities

URL_Pattern Samples Meaning

/activities/{guid}/@self Activities associated with user (guid)

/activities/{guid}/@self/{appid} Activities generated by the application (with ID appid) for
the user (guid)

/activities/{guid}/@friends Friends’ activities (friends of user guid)

/activities/{guid}/@friends Friends’ activities generated by the application (friends of
user guid)

/activities/{guid}/{groupid} Activities for people in a group with ID groupid, that
belongs to user (guid)

/activities/{guid}/{groupid}/

{appid}

Activities generated by the application (with ID appid) for
people in a group with ID groupid, that belongs to user
(guid)

/activities/{guid}/@self/{appid}/

{activityid}

A specific activity object identified by activityid that is
generated by the application (appid) and belongs to user
(guid)

/activities/@supportedFields List of activity fields supported by the service provider

Note that the @app token can be used for an appid to indicate the currently requesting application. Again,
the @me token can be used to indicate the user for the guid.

AppData

The final kind of OpenSocial REST request involves the retrieval or storage of application data. Recall that
OpenSocial supports persistence through the storage of what is called ‘‘AppData,’’ which are name/value
pairs. Table 5-5 shows example URL patterns for this category.

Note that the predefined element of @app can be used to indicate the application making the REST
request.

Messaging

This is an optional resource that OpenSocial containers can choose to support. It allows messages to be
sent to a user from another user. The method type supported here is PUT, to create a message. Table 5-6
shows the URL pattern for messaging.

202

Chapter 5: OpenSocial RESTful API

Table 5-5: URL Patterns for AppData

URL_Pattern Samples Meaning

/appdata/{guid}/@self/{appid} All application data associated with the user (guid) for the
application with ID appid

/appdata/{guid}/@self/@app All application data associated with the user (guid) for the
application making this request

/appdata/{guid}/@friends/{appid} All application data associated with the user’s friends for
the application with ID appid, where the user’s ID is guid

/appdata/{guid}/@self/{appid}?

fields=status

Only the application data named status that is associated
with the user (guid) and application (appid)

Table 5-6: URL Pattern for Groups

URL_Pattern Sample, for Messaging Meaning

/messages/{guid}/outbox/{msgid} Message with ID msgid owned by the current user (guid)

In this case, the message data itself must contain a list of recipients. This API request will place the mes-
sage in the Outbox of the user (guid). The service provider can choose to apply filters and enforcement
of its mail policies in sending the mail from the user’s Outbox.

Data Formatting and Atom/AtomPub
Data will be sent either in the response or the request. When making a POST or PUT request,
resource-specific data will be sent. For example, when the program asks to create an activity, the
program must send the activity data with the request. In the case of a response, most of the REST API
requests will yield data (for example, when asking for user or friend data). This section describes how
data is formatted in the OpenSocial REST API.

OpenSocial REST data can be represented in JSON, XML, or Atom formats. OpenSocial service providers
must support all of these options, but can also provide their own additional data representations.

Following are the kinds of data the OpenSocial REST API supports:

Person

Group

Activity

AppData

Message (Optional)

203

Chapter 5: OpenSocial RESTful API

Let’s take a look at some JSON, XML, and Atom examples for each data type.

Person Data

Person data is used to represent any person, including the user. First, let’s look at a JSON representation:

{
"id" : "container.com:12345",
"displayName" : "Lynne",
"name" : {"unstructured" : "Lynne Grewe"},
"gender" : "female"

}

The sample Person data in XML format would be as follows:

<person xmlns="http://ns.opensocial.org/2008/opensocial">
<id>container.com:12345</id>
<displayName>Lynne</displayName>
<name>
<unstructured>Lynne Grewe</unstructured>

</name>
<gender>female</gender>

</person>

Finally, a sample Atom representation would be as follows:

<entry xmlns="http://www.w3.org/2005/Atom">
<content type="application/xml">
<person xmlns="http://ns.opensocial.org/2008/opensocial">

<name>
<unstructured>Lynne Grewe</unstructured>

</name>
<gender>female</gender>

</person>
</content>
<title/>
<updated>2009-02-03T13:30:02Z</updated>
<author/>
<id>urn:guid:container.com:12345</id>

</entry>

A number of fields can be specified about a person. The service provider must always return the person

id and displayName fields. Other fields are optional, and it is up to the service provider to choose what it
will support. All of the fields listed for the OpenSocial JavaScript Person object are supported for fields,
including aboutMe, activities, bodyType, books, cars, children, currentLocation, drinker, ethnicity,
fashion, food, happiestWhen, heroes, humor, interests, jobInterests, languages, languagesSpoken,
livingArrangement, lookingFor, movies, music, pets, politicalviews, profileSong, profileVideo,
quotes, relationshipStatus, religion, romance, scaredOf, sexualOrientation, smoker, sports,
status, turnOffs, turnOns, and tvShows.

Table 5-7 shows the new fields for the OpenSocial REST API (in addition to those supplied by the
OpenSocial JavaScript API).

204

Chapter 5: OpenSocial RESTful API

Table 5-7: Individual Person Fields

Person Field Meaning

accounts* A list of user accounts

Addresses A list of user addresses

Anniversary A wedding anniversary date

Birthday Date of birth

Connected Boolean value indicating if user and this person have an established
bidirectionally asserted connection on the container’s service. The meaning of
this connection can be container-specific but can include direct friends.

displayName Person’s name that is used for display

emails* Email addresses

Gender Gender. Possible values might be male, female, or undisclosed

Id Unique person ID on this social network

ims* Instant message addresses

Name Name, separated into components (such as given name, first name)

Nickname Casual name

Note Notes about the person

organizations* Current and/or past organizations to which the user belongs

phoneNumbers* A list of user phone numbers

photos* URL of user’s photos

Published Date person was added (for example, to the user’s friend list)

preferredUsename Preferred username.

relationships* Bidirectionally asserted relationships, established between user and this
person (for example, friends, contact, and so on)

tags* User-defined category label

updated Latest date person information was updated

urls* Person-specified URLs

utcOffset Person’s time zone specified as offset from UTC

∗These fields can contain multiple instances. In these cases, the following subfields are possible:

value — The actual value of the field

type — Takes values work, home, or other
primary — This takes the value true if this is the primary instance; otherwise, it is false.

205

Chapter 5: OpenSocial RESTful API

The account data that can be returned for a person gives account details. An account is described with
the subfields specified in Table 5-8.

Table 5-8: Subfields for Person accounts field

Account Field Meaning

Domain Domain for this account

username User’s username

Userid User’s ID

The Addresses field has the subfields specified in Table 5-9.

Table 5-9: Subfields for Person Addresses Field

Address Field Meaning

formatted The full address

streetAddress The street address

Locality The name of the city (or similar)

Region The name of the state (or similar)

postalCode The ZIP code (or similar)

country The name of the country

The Name field has the subfields specified in Table 5-10.

Table 5-10: Subfields for Person Name field

Name Field Meaning

Formatted Full name with middle initial, titles, and so on.

familyName Last name

givenName First name

middleName Middle name

honorificPrefix Title (for example, ‘‘Mr.’’, ‘‘Dr.’’, and so on)

honorificSuffix Honorable title (for example, ‘‘PhD’’ in ‘‘John Doe, PhD’’)

206

Chapter 5: OpenSocial RESTful API

The organization data that can be returned for a person describes either current or past organizations the
person is associated with. An organization is described with the subfields specified in Table 5-11.

Table 5-11: Subfields for organizations

Organization Field Meaning

Name Name of organization

department Department in the organization

Title Person’s title within the organization

Type Relates the organization to the person (for example, ‘‘job’’, ‘‘school’’)

startDate Date when the person joined the organization

endDate Date when the person left the organization

Location Location of the organization

description Description of what the person does (or did) in the organization

Group Data

Group data is used to represent a group. First, let’s look at a JSON representation:

{
"id" : "container.com: 8389/friends",
"title" : "The Group",

}

The sample Group data in XML format would be as follows:

<group xmlns="http://ns.opensocial.org/2008/opensocial">
<id>container.com:8389/friends</id>
<title>The Group</title>

</group>

Finally, the Atom representation would be as follows:

<entry xmlns="http://www.w3.org/2005/Atom">
<link rel="alternate" href="http://container.com/

people/container.com:8389/@friends" />
<title>The Group</title>
<updated>2009-02-03T13:30:02Z</updated>
<id>urn:guid:container.com: 8389/friends</id>

</entry>

Activity Data

Activity data is used to represent an activity in an activity stream. First, let’s look at a JSON repre-
sentation:

207

Chapter 5: OpenSocial RESTful API

{
"id" : "http://contianer.com/activities/container.com:/self/af1234",
"title" : "Title of Activity",
"updated" : "2009-12-12T21:35:07.266Z",
"body" : "info about your activity",
"bodyId" : "3333",
"url" : "http://container.com/activity/feeds/.../af1234",
"userId" : "example.org:34KJDCSKJN2HHF0DW20394"

}

The sample Activity data in XML format would be as follows:

<activity xmlns="http://ns.opensocial.org/2008/opensocial">
<id>http://container.com/activities/container.com:1234/self/af1234</id>
<title> Title of Activity </title>
<updated>2009-12-12T21:35:07.266Z</updated>
<body> info about your activity </body>
<bodyId>3333</bodyId>
<url>http://container.com/activity/feeds/.../af1234</url>
<userId>container.com:1234</userId>

</activity>

Finally, the Atom representation would be as follows:

<entry xmlns="http://www.w3.org/2005/Atom">
<category term="status"/>
<id>http://container.com/activities/container.com:1234/self/af1234</id>
<title> Title of Activity </title>
<summary> info about your activity </summary>
<updated>2009-12-12T21:35:07.266Z</updated>
<link rel="self" type="application/atom+xml"

href="http://container.com/activity/feeds/.../af1234"/>
<author><uri>urn:guid:container.com:1234</uri></author>
<content>
<activity xmlns="http://ns.opensocial.org/2008/opensocial">

<bodyId>1234</bodyId>
</activity>

</content>
</entry>

All of the fields listed for the OpenSocial JavaScript activity object are supported for activity fields in the
OpenSocial REST API. These include: appId, body, bodyId, externalId, id, mediaItems, postedTime,
priority, streamFaviconUrl, streamSourceUrl, streamTitle, streamUrl, templateParams, title, url,
and userId.

AppData Data

Application data (AppData) is used in OpenSocial’s service provider-sponsored persistence support.
Application data is defined as sets of name/value pairs. First, let’s look at a sample JSON representation:

{
"status" : "good",
"last_status" : "2009-02-03T10:30:02Z"

}

208

Chapter 5: OpenSocial RESTful API

The sample AppData in XML format would be as follows:

<appdata xmlns="http://ns.opensocial.org/2008/opensocial">
<entry>
<key>status</key>
<value>good</value>

</entry>
<entry>
<key>last_status</key>
<value>2009-02-03T10:30:02Z</value>

</entry>
</appdata>

Finally, the Atom representation would be as follows:

<entry xmlns="http://www.w3.org/2005/Atom">
<content type="text/xml">
<appdata xmlns="http://opensocial.org/2008/opensocial">

<status>good</status>
<last_status>2009-02-03T10:30:02Z</last_status>

</appdata>
</content>
<title/>
<updated>2009-02-03T10:30:02Z</updated>
<author><url>urn:guid:container.com:1234</url></author>
<id>urn:guid:container.com:1234</id>

</entry>

It is also possible to have a collection of application data elements. In this case, the following will be the
XML format:

{
"entry" : {
"container.com:1234" : {"status" : "good",

"last_status" : "2009-02-03T10:30:02Z " },
"container.com:6789" : {"status" : "ok",

"last_status" : "2008-11-17T08:30:03Z" }
}

}

The Atom format for a collection of application data elements looks like this:

<feed xmlns="http://www.w3.org/2005/Atom>
<id>...</id>
<title>...</title>
<entry>
<content type="text/xml">

<appdata>
<status>good</status>
<last_status>"2009-02-03T10:30:02Z"</last_status>

</appdata>
</content>
<title/>

209

Chapter 5: OpenSocial RESTful API

<updated>2008-11-17T08:30:03Z</updated>
<author><url>urn:guid:container.com:1234 /url></author>
<id>urn:guid:container.com:1234</id>

</entry>
<entry>
<content type="text/xml">

<appdata>
<status>ok</status>
<last_status>"2008-11-17T08:30:03Z"</last_status>

</appdata>
</content>
<title/>
<updated>2008-11-17T08:30:03Z </updated>
<author><url>uurn:guid:container.com:6789</url></author>
<id>urn:guid:container.com:6789</id>

</entry>
</entry>

Messaging Data

Messaging data is used to represent a message from one user to another (or others). Currently, the
OpenSocial REST API only gives the format using ATOM. It should have a representation with XML
and JSON syntax similar to the other data types presented earlier.

<entry xmlns="http://www.w3.org/2005/Atom"
xmlns:osapi="http://opensocial.org/2008/opensocialapi">

<osapi:recipient>container.com:3842</osapi:recipient>
<osapi:recipient>container.com:5389</osapi:recipient>
<title>You have an invitation from Lynne</title>
<id>{msgid}</id>
<link rel="alternate" href="http://container.com/invites/{msgid}"/>
<content>

Click here
to review your invitation.

</content>
</entry>

Note that {msgid} is a message ID. This should be generated by your application and should be
globally unique. If you do not want to generate the message ID, the application can do a POST to
/messages/{guid}/outbox and let the service provider generate the message ID. Remember that
messaging is an optional feature of OpenSocial REST.

HTTP Method Type
In addition to the construction of the URL, the selection of the HTTP method type is a part of building
the OpenSocial REST request. The following HTTP methods are supported:

GET — This means to retrieve (for example, to get person data).

PUT — This means to update.

POST — This means to create.

DELETE — This means to destroy.

210

Chapter 5: OpenSocial RESTful API

If the application is restricted and cannot use PUT or DELETE, the application can represent these opera-
tions as a POST operation with an additional X-HTTP-Method_Override header parameter set to the value
(PUT or DELETE). For example, to represent a PUT request using this idea, the following is the request
header that would be generated:

POST /... HTTP/1.1
...
X-HTTP-Method-Override: PUT

OpenSocial REST Response
The format of the returned response to an OpenSocial REST request is, by default, JSON, unless specified
differently in the OpenSocial REST request query parameter format. In the case of either JSON or XML,
the root element is response, and must contain the following subelements:

startIndex — This specifies the index of the first returned item. This is useful when paging
results (see request query parameters shown earlier in this chapter in Table 5-1). Typically, this
will have value of 0 (unless controlling through request query parameters).

itemsPerPage — This is the number of items per page in the response. Typically, this will be
equal to the count request query parameter detailed in Table 5-1 (unless the service provider has
imposed restrictions).

totalResults — This is the number of total possible items if no startIndex or count query
parameters have been specified.

entry — This represents the returned item(s). When multiple items are present, this entry ele-
ment will contain an array of items.

Following is a generic example using the JSON format:

{
"startIndex" : 1
"itemsPerPage" : 10
"totalResults" : 100,
"entry" : [{...first item...}, {...second item...} ...] }

The following code shows a specific example from hi5 when the user data was requested using XML
format. This request is for only the ‘‘standard’’ user data. No additional fields were requested. This is
hi5’s interpretation of what ‘‘standard’’ user data means.

<response>
<empty>false</empty>
<entry>
<key>entry</key>
<value>

<accounts/><activities/><addresses/><books/><cars/>
<displayName>Lynne Grewe</displayName>
<emails/><food/><heroes/>
<id>39244</id>
<ims/><interests/>
<isOwner>false</isOwner>
<isViewer>false</isViewer>

211

Chapter 5: OpenSocial RESTful API

<languagesSpoken/><lookingFor/><movies/><music/>
<name>

<familyName>Grewe</familyName>
<formatted>Lynne Grewe</formatted>
<givenName>Lynne</givenName>

</name><organizations/>
<phoneNumbers/>
<photos>

<ListFieldImpl>
<type>thumbnail</type>
<value>http://photos1.hi5.com/0e44/82/930/

jm8sua82592001.jpg</value>
</ListFieldImpl>

</photos>
<quotes/><sports/><tags/>

<thumbnailUrl>http://photos1.hi5.com/0044/825/920/jm8sua8259201.jpg
</thumbnailUrl>

<turnOffs/><turnOns/><tvShows/>
<updated>Tue Nov 04 16:03:56 PST 2009</updated>
<urls/>

</value>
</entry>
</response>

What You Need
You need to know the following information to be able to use the OpenSocial REST API:

OAuth endpoints and specifications (see the earlier discussion in the section ‘‘OpenSocial REST
Authorization and Authentication (OAuth)’’ for details)

OAuth policies concerning token expiration

OpenSocial REST API endpoint(s)

Supported request methods (GET, POST, and so on).

The service provider’s OpenSocial discovery document, or documentation of supported
OpenSocial REST calls and optional features or extensions

Most of this information should be provided by the service provider within its discovery document.
The format of this document is detailed later in this chapter in the section ‘‘OpenSocial REST Support
Discovery.’’ However, social networks may choose to supply this information in other ways, including
on their developer Web pages.

OpenSocial REST Application Deployment
If you recall the transactional models involving OpenSocial REST that were introduced in Chapter 2,
you’ll remember the hybrid case where an OpenSocial JavaScript application is deployed that commu-
nicates through makeRequest to the server-side OpenSocial REST program. In this case, the OpenSocial
JavaScript application will be deployed, but not the server-based OpenSocial REST program.

212

Chapter 5: OpenSocial RESTful API

In the case of the ‘‘purely REST (non-social network) application’’ transactional model, a server-side
application has its interface on the developer’s Web site. There is no social network application. However,
the use of OAuth (or, in the case of hi5, the use of token technology) requires that the REST application
have an API key. As of this writing, this means that a ‘‘dummy’’ social network application must be
created on the service provider to obtain an API key for use in the OpenSocial REST program.

HTTP Status Codes
OpenSocial REST involves repeated HTTP request-and-response transactions. Your application must
handle the possible HTTP response status codes appropriately. Following are some of the possible error
codes and their meanings:

400: Bad Request — This may be the result of an invalid request URL, an invalid HTTP header,
an invalid HTTP body, or an unsupported parameter.

401: Unauthorized — This may be the result of missing OAuth authorization information, or the
fact that the user specified in OAuth information is not authorized for this request.

403: Forbidden — This may be the result of the service provider refusing the request, even if the
authorization information is valid.

404: Not Found — This may be the result of the request URL not being valid.

405: Method Not Allowed — This may be the result of this method not being not allowed.

409: Conflict — This may be the result of some conflict with the current state of resource
requested. The response body should contain information that allows the user to recognize
the problem. One example might be that the application is trying to create an activity, and the
maximum number per user per day has been exceeded.

500: Internal Server error — This may be the result of a number of server-induced problems.

501: Not Implemented — This may the result of the request not being supported by the service
provider, even though the request is valid.

OpenSocial REST Support Discovery
The process of discovery involves the following steps:

1. The program (or ‘‘client’’) makes a request for the URL supplied by the service provider
in the discovery document. The HTTP request is of method type GET, and has the Accept:

application/xrds+xml header parameter value, which says that the program will accept as
a response an XRDS document in XML.

2. The service provider responds with either the XRDS document in XML, or the
X-XRDS-Location header parameter set to the location of the XRDS document.

3. The program (or ‘‘client’’) will either ‘‘read’’ in the document, or go to the location and read
in the document. It then parses the XML to get the service information.

The actual ‘‘version’’ of XRDS that OpenSocial uses is XRDS-Simple, which is a simpler and more con-
strained XRDS version. XRDS-Simple was created out of work on the OAuth protocol used in OpenSocial.

213

Chapter 5: OpenSocial RESTful API

An XRDS-Simple document defines and maps together the following elements:

Resource — This is a service or document that is provided by the service provider.

Endpoint — This is the URL address of a resource.

The following are the XML elements that are used in XRDS-Simple documents:

<XRDS> — This is the root element that contains one or more XRD elements. The XRDS element
must define the namespace in the form <XRDS xmlns="xri://$xrds">.

<XRD> — This is used to group related Service elements together. It must include the
version and xlmns (namespace) attributes. Other attributes can include xlmns:simple (which
specifies the XRDS-Simple extensions) and xlmns:os (which is an OpenSocial extension
attribute). If there is more than one XRD element in the document, each must be identified
uniquely with the xlmns:id attribute. This must contain the child element <Type> in the form
<Type>xri://$xrds*simple</Type>. This element can contain the <Expires> element to specify
the expiration of the XRD element.

<Service> — This provides a mapping between a resource description and endpoint. Keep the
following in mind when using this element:

priority — This is an optional attribute.

<Type> — The <Service> element must include at least one of either <Type> or
<MediaType> child elements. Zero or more <Type> child elements can be included. The
<Type> child element provides an absolute URL that describes the resource and how it
should be used.

<MediaType> — The <Service> element must include at least one of either <Type> or
<MediaType> child elements. Zero or more <MediaType> child elements can be included.
The <MediaType> child element gives the content media type.

<URI> — The <Service> element can have zero or more <URI> child elements. This is the
URI (URL) of the endpoint. This is the URI you use to access the resource. Most often, you
will have this element. However, if this element is missing (which is compliant), the URI is
still accessible, although not in this document, but rather in some other way (for example,
the service provider lists it on its Web site or in the developer forum).

<os:URI-Template> — The <Service> element can have zero or more
<os:URI-Template> child elements. This is an alternative to the URI. Here, the URI
is given in template form. This is an OpenSocial extension tag of XRDS-Simple.

<LocalID> — The <Service> element can have zero or more <LocalID> child elements.
The <LocalID> child element gives an ID for this mapping of a resource to an endpoint. It
has an optional parameter of priority.

Listing 5-8 provides an example XRDS-Simple discovery document that an OpenSocial container might
return.

Listing 5-8: A Sample XRDS-Simple Discovery Document

<XRDS xmlns="xri://$xrds">
<XRD xmlns:simple="http://xrds-simple.net/core/1.0" xmlns="xri:

214

Chapter 5: OpenSocial RESTful API

//$XRD*($v*2.0)" xmlns:os="http://ns.opensocial.org/
2008/opensocial" version="2.0">

<Type>xri://$xrds*simple</Type>
<Service>

<Type>http://ns.opensocial.org/2008/opensocial/people</Type>
<os:URI-Template>

http://CONTAINER.com/people/{guid}/{selector}{-prefix|/|pid}
</os:URI-Template>

</Service>
<Service>

<Type>http://ns.opensocial.org/2008/opensocial/groups</Type>
<os:URI-Template>http://container.com/groups/

{guid}</os:URI-Template>
</Service>
<Service>

<Type>http://ns.opensocial.org/2008/opensocial/activities</Type>
<os:URI-Template>

http://container.com/activities/{guid}/{appid}/{selector}
</os:URI-Template>

</Service>
<Service>

<Type>http://ns.opensocial.org//2008/opensocial/appdata</Type>
<os:URI-Template>

http://container.com/appdata/{guid}/{appid}/{selector}
</os:URI-Template>

</Service>
<Service>

<Type>http://ns.opensocial.org//2008/opensocial/messages</Type>
<os:URI-Template>

http://container.com/messages/{guid}/{selector}
</os:URI-Template>

</Service>
</XRD>

</XRDS>

As you can see, the document starts out with a single XRDS root element tag that contains a single XRD ele-
ment for OpenSocial support descriptions. Following this is a series of five <Service> elements defining
(in order) how the container supports the OpenSocial REST API requests:

/opensocial/people — This deals with all People API requests.

/opensocial/groups — This deals with all Group API requests.

/opensocial/activities — This deals with all Activity API requests.

/opensocial/appdata — This deals with all AppData API requests.

/opensocial/messages — This deals with all Message API requests.

Note that each Service endpoint is declared with an os:URI-Template instead of simple URI.
This is because each Service type is declared via its Type element as a class of OpenSocial API
requests. Note that the nature of the request is such that it begins with the generic container endpoint
http://CONTAINER.com (which is common) and is followed by the rest of the URI used to make up the
specific endpoint. For example, http://CONTAINER.com/group/{guid} is the endpoint URI (template)
used for group API requests.

215

Chapter 5: OpenSocial RESTful API

Resources for XRDS Simple

The following are useful resources to learn more about XRDS-Simple:

http://xrds-simple.net/core/1.0/

http://www.hueniverse.com/hueniverse/2008/03/putting-xrds-si.html

http://en.wikipedia.org/wiki/XRDS

OpenSocial Security with the REST API
A service provider must support OAuth to authorize an application’s access to making OpenSocial REST
requests. This provides one level of security. However, OAuth is not a secure communications mecha-
nism, meaning it does not provide encryption or message body integrity checking. OpenSocial suggests
that containers use SSL for this kind of security.

For security, OAuth tokens have a limited lifetime. The service provider determines its policy for this. A
typical lifetime will span from hours to a day. Check the service provider’s documentation to determine
its token lifetime policy. For example, hi5 gives a 24-hour lifetime for its tokens.

OpenSocial REST API Future
The next version of OpenSocial will provide support for social network applications developed solely
with the REST API. The specification for social network application registration with a URL (like the
callback URL for Facebook applications) will be supported. Hence, the social networks will need to
support a new form of deployment.

This support will be crucial for some companies that have problems with the overhead of using
makeRequst to access server-side programs.

OpenSocial RPC Protocol
A new third OpenSocial ‘‘API’’ is similar to the OpenSocial REST API. The OpenSocial RPC Protocol
defines an RPC-based structure to perform requests from a server-side program, rather than RESTful
calls.

It is similar to the OpenSocial REST API in that it does the following:

Makes calls to the service provider from a server-side program.

Performs authentication through OAuth.

Uses HTTP status codes.

Uses JSON and XML data formats for the social data.

216

Chapter 5: OpenSocial RESTful API

It differs from the OpenSocial REST API in the following ways:

HTTP is not used to represent the method request but is instead inside the request data.

All elements are represented with JSON and XML (not Atom).

Batching is required.

The discovery of service is done differently.

Let’s consider the example of requesting information about a user. With the OpenSocial REST API, the
request will be to the following URL using the GET HTTP request type:

http://container.com/people/@me/@self

Note that the http://container.com represents a generic endpoint, and the actual endpoint for each
social network will be different. The equivalent OpenSocial RPC call would be as follows:

http://container.com/rpc?method=people.get&id=myself&userid=
@me&groupid=@self

Again, the http://container.com represents a generic endpoint, and the actual endpoint for each social
network will be different. This URL places the resource request (specified by people.get) in the request
data, along with the scoping information (id=myself&userid=@me&groupid=@self).

Multiple (batched) requests are created by passing them as data in the format of a JSON array. The
following listing shows the actual POST request asking for both the user and the user’s friends:

POST /rpc HTTP/1.1
Host: Userver.com
Authorization: <1st Auth token>
Content-Type: application/json
[

{
"method" : "people.get",
"id" : "me"

},
{
"method" : "people.get",
"id" : "myFriends",
"params: {

"groupid" : "@friends",
"auth" : "<2nd Auth token>"

}
}

]

The following is a potential response from the service provider:

HTTP/1.x 207 Multi-Status
Content-Type: application/json
[

217

Chapter 5: OpenSocial RESTful API

{
"id" : "me,
"result" : {

"id" : "container.com:34KJDCSKJN2HHF0DW20394",
"name" : { "unstructured" : "Lynne Grewe"},
"gender" : "female"

}
},
{
"id" : "myFriends"
"error" : {

"code" : 401
}

}
]

Notice how the IDs in the two JSON objects in the response correspond to those in the requests. The
first request was successful, and returned the basic information about the user, Lynne Grewe. In this
hypothetical example, the second request was denied by the service provider because of the user access
control settings (or service provider policies).

Here are a few more OpenSocial RPC requests:

Friend request (/people/@me/@friends REST call):

http://container.com/rpc?method=people.get&id=myfriends&userid=
@me&groupid=@friends

AppData request (PUT to /appdata/@me/@self/YourAppID REST call):

http://container.com/rpc?method=appdata.update&id=appdataID&appId=
YourAppID&data.status=good&data.lastStatus=2009-12-03T19:00:00Z

The values data.* are part of the data JSON object that represents the application data you are
trying to store. In this case, it represents the following JSON object:

data : {
status : good,
lastStatus : "2009-12-03T19:00:00Z"

}

Friend (PUT) request (PUT to /people/@me/@friends REST call), creating a friend relationship
between user and another user (with ID = AA332288)

http://container.com/rpc?method=people.create&id=createFriend&userId=@me&
groupId=@friends&person.id=container.com:AA332288

Notice in these examples that the name of the resource being requested is represented by the method
parameter, and has the following general form:

method = <service-name>.<operation>

218

Chapter 5: OpenSocial RESTful API

The service names are identical to the names used in the REST API, and are documented in the
opensocial namespace. The operation is defined as follows:

get — Equivalent of REST GET

create — Equivalent of REST PUT

post — Equivalent of REST POST

delete — Equivalent of REST DELETE

See http://www.opensocial.org/Technical-Resources/opensocial-spec-v081/

rpc-protocol for further details on the RPC protocol.

Summary
This chapter began with a general description of REST, including a REST example in PHP. The discussion
continued with an examination of why a server-based application alternative is important. This was
followed by a discussion of the OpenSocial REST transactional models.

You learned about the architecture of an OpenSocial REST application. Authorization/authentication was
revealed to involve OAuth for OpenSocial-compliant REST service providers. A current modification of
this for the hi5 network was presented.

You then learned about the details of the OpenSocial REST API, including a few code examples. You
learned about HTTP status codes (OpenSocial REST supporting protocol), as well as OpenSocial REST
support discovery.

This chapter concluded with a glimpse of the OpenSocial RPC protocol, a third ‘‘API’’ that offers an RPC
style, server-side API with some things in common with the OpenSocial REST API.

Chapter 6 covers more advanced uses of OpenSocial and targeted application development.

219

Programming Fundamentals

This chapter examines some of the fundamental concepts you should know when working with
an OpenSocial application. You will learn about testing your applications. This chapter then takes
a first look at front-end and back-end issues, including a discussion of front-end GUI issues for
OpenSocial applications. You will also learn how to make requests for external resources, how to
inquire about a container’s capabilities, and the basics of application testing.

Application Testing
Testing any Web program is not simple, and it becomes more complex for social network appli-
cations that are controlled by the container. The nature of your application and use of external
resources are some of the factors that will influence how you may test your application. This section
focuses on general application testing.

Unfortunately, the testing facilities that are provided don’t include a set of ‘‘test’’ friends. So, the
first recommendation is to recruit a bunch of fellow developers to act as friends. If you are a sole
developer, then you can create a series of ‘‘dummy’’ user accounts that can be used as friends, and
use these accounts to test how the application interacts within a social graph. Many times, you
must make these friends developers of the application in order to install the application within the
accounts. Also, you are typically limited to only being able to make a friend a developer of your
application.

One of the first difficulties that new developers typically encounter is the issue of caching. Obvi-
ously, in the development and testing phases of application development, you are changing your
code a lot and don’t want the container to cache your application. Unfortunately, most contain-
ers do cache, even in sandbox/testing mode. So, you must be aware of this, and must know how
to work around it. Earlier in this chapter, you learned a bit about how to reload your application
within different containers.

Chapter 6: Programming Fundamentals

Many of your errors in development will be HTML or JavaScript errors. For HTML, there are a number
of good validators, including the W3.org validator you can find at http://validator.w3.org. For CSS,
you can use the W3.org validator found at http://jigsaw.w3.org/css-validator.

You can find a number of JavaScript syntax checkers on the Web. The future of OpenSocial may include
moving to a form of JavaScript called CAJA. CAJA is a Google-sponsored project aimed at ‘‘sanitizing’’
JavaScript for improved security and creating limitations (for Facebook developers, think FBJS). You can
find out more about CAJA at http://code.google.com/p/google-caja and find a CAJA test bed where
you can paste your code for validation at http://cajadores.com/demos/testbed.

Some containers provide development tools for testing code. For example, MySpace offers an ‘‘OpenSo-
cial Tool/Harness’’ located at http://developer.myspace.com/modules/apis/pages/opensocialtool
.aspx, which lets developers load code and run it in a self-contained environment that does not affect
MySpace users.

Related to testing is the tracking of your user data. Commonly referred to as analytics, this can show
you where you need to improve your application. Chapter 8 discusses analytic options and provides
examples. Another very useful tool for debugging JavaScript is Firebug (a Firefox plug-in), which is
discussed in Chapter 8 for use in performance monitoring.

Front-End GUI Design Tips
When coming up with the GUI design for your application, you should consider a number of items,
including the following:

Views — In which views will your application run?

Application (display) size — Typically, width is controlled, while height is variable.

Title — You must set an appropriate title.

Navigation tabs — If you use tabs from the Gadget API, you can make a clean interface for
navigation.

Look and feel — This includes colors and backgrounds, as well as logo design.

Media — This includes Flash and other types of media.

Earlier in this book, you learned about views and the parameters on how to set the height and title.
You will learn more about the use of media in applications in Chapter 7. So, let’s now take a look at the
other items for consideration in the previous list, using navigation tabs and the look and feel of your
application.

Navigation Tabs
Navigation tabs are a common GUI element used in applications. Navigation tabs are a useful tool for
developers to use to make an application look more integrated with a social network. Navigation tabs
also enable you to give your application a professional look.

Listing 6-1 shows a modification of the ‘‘Friend Finder’’ application that creates navigation tabs on the
main interface, one called Find Friends and one called Invite (used to invite friends to install the ‘‘Friend
Finder’’ application).

222

Chapter 6: Programming Fundamentals

Listing 6-1: ‘‘Friend Finder’’ XML with New Tabs in the GUI

FriendFinder.xml

<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="Friend Finder" description="Friend tracker"
title_url="http://FriendFinder.com" author="L. Grewe"
author_email="ff@yahoo.com"
author_affiliation="iLab" author_location="Bay Area, CA"
thumbnail="http://UServer/Logo.PNG">

<Icon>http://UServer/Logo_16_16.PNG</Icon>
<Require feature="dynamic-height"/>
<Require feature="opensocial-0.8"/>

</ModulePrefs>
<Content type="html">
<![CDATA[

<div id=’heading’></div>
<hr size="1px" />
<div id=’main’></div>
<hr>
<div id=’friends’></div>

<script src="http://UServer/FriendFinder.js"></script>

<script>
var tabs;
var display = true;
function guiSetup() {

var container;
params = {};
params[’callback’] = callback;

tabs = new gadgets.TabSet();
container = tabs.addTab(’Find Friends’, params);
container = tabs.addTab(’Invite’, params);
init();

}

function callback() {
if (tabs.getSelectedTab().getName() == "Find Friends")

init();
else

invite_friends();
}

function invite_friends(){
document.getElementById(’heading’).innerHTML = "Invite Friends";
document.getElementById(’friends’).innerHTML = "
coming soon...";

}

Continued

223

Chapter 6: Programming Fundamentals

Listing 6-1: ‘‘Friend Finder” XML with New Tabs in the GUI (continued)

gadgets.util.registerOnLoadHandler(guiSetup);
</script>

]]>

</Content>
</Module>

As you can see, the XML code in Listing 6-1 still uses the FriendFinder.js you learned about in Chapter
4 (see Listing 4-2), and adds to it the following three inline JavaScript functions:

guiSetup

invite_friends

callback

The following line of code in the new JavaScript registers the guiSetup function to execute when the
application is loaded:

gadgets.util.registerOnLoadHandler(guiSetup)

The guiSetup function creates an instance of gadgets.TabSet, assigning it to the variable tabs. Two tabs
are created, the Find Friends and Invite tabs, as shown in Figure 6-1. For each tab, the function callback

is registered to handle the tab-selection event. The callback function tests to see which tab was selected
and, based on this, changes the content the user sees.

Figure 6-1: ‘‘Friend Finder’’ application with new

tabs

Look and Feel
You should consider the following when designing the look and feel of your application:

Background color

Font type and color

224

Chapter 6: Programming Fundamentals

Icon design

Layout

Media and ad placement

Navigation design

Following are some of the many factors that can influence your decisions about the look and feel of your
application:

User base demographics

Ease of use

Application genre

Application purpose and function

When creating a design, try to adhere to these design tenants:

Repetition — Repeat visual elements throughout application. For example, place the logo on
each ‘‘page’’ of the application.

Contrast — Add visual excitement, and draw the user’s attention to important areas.

Proximity — Group related items together.

Alignment — Align elements vertically or horizontally together for clarity.

Fast load times — Use heavyweight media only as necessary.

Browser safe — Choose browser-safe colors. Design and test your application on multiple
browsers.

Social Network-Specific Looks
Some social networks provide application developers with styles and tips for GUI design. This can
include CSS and JavaScript files.

hi5 offers developers a template library written in JavaScript that lets you create shortcuts
to some of the social data and features with a markup-like specification. Check out http://www
.hi5networks.com/platform/wiki/hi5TemplateLibraryDocumentation for details. Since
the next version of OpenSocial is scheduled to have this feature, this will not be examined in
detail here.

Friendster provides developers with a set of styles used on Friendster GUI elements such as tabs, notifi-
cations, and buttons. The styles are located at http://images.friendster.com/css/app_styles.css,
which you can link in your XML file. The file http://www.friendster.com/developer/styles

/app_styles.html gives examples of how to use these styles.

Listing 6-2 shows how to use Friendster tab styles in the ‘‘Friend Finder’’ application XML code.
Figure 6-2 shows the result.

225

Chapter 6: Programming Fundamentals

Listing 6-2: Friendster-Styled Tabs for the ‘‘Friend Finder’’ Application

<link rel="stylesheet" type="text/css" href="http://images.friendster.com/cs
s/app_styles.css"/>

<script src="http://puzzle.mcs.csueastbay.edu/∼grewe/OpenSocial/hi5/TabSet/Frie
ndFinder.js"></script>

<div class="tabModuleTabs clearfixLt">
<div class="tab selected">

Find Friends
<div class="plug"></div>

</div>

<div class="tab">
Invite

</div>

</div>
<div class="tabModuleContent boxcontent">

<div id=’heading’></div>
<hr size="1px"/>
<div id=’main’></div>
<hr >

<div id=’friends’></div>
<div id=’friend_status’> </div>

</div>

Figure 6-2: Friendster-styled version of the

tabbed ‘‘Friend Finder’’ application

External Resources
Chapter 2 discussed different OpenSocial architectures, including the client-based OpenSocial model.
That discussion focused primarily on the application as a completely client-based OpenSocial model. Also
touched upon in that discussion was an extended version of this model, referred to as the client-based
OpenSocial application with server-side support. In this model, the OpenSocial JavaScript code makes
a request to invoke a server-side resource. The request from the client-side OpenSocial JavaScript is

226

Chapter 6: Programming Fundamentals

handled by the social network container, which, in turn, requests the server-side resource. Results
returned from the server go to the social network, which then returns it to the client.

OpenSocial facilitates calls to external resources through its gadgets.io.makeRequest method. This
method takes two required arguments, and a third optional argument:

gadgets.io.makeRequest(url, callback, parameters)

This optional argument can be broken down as follows:

url — This is the URL of the external resource.

callback — This is the name of the function that serves as the asynchronous callback function.

parameters — (Optional) This is a list of parameters specified in static fields of
gadgets.io.ReqeustParameters.

Listing 6-3 shows a modification of the ‘‘Friend Finder’’ application that uses the simplest invocation of
makeRequest, without any parameters.

Listing 6-3: Friend Finder Application with Call to External Resource Using

makeRequest

FriendFinder.xml

<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="Friend Finder" description="Friend tracker"
title_url="http://FriendFinder.com" author="L. Grewe"
author_email="ff@yahoo.com"
author_affiliation="iLab" author_location="Bay Area, CA"
thumbnail="http://UServer/Logo.PNG">

<Icon>http://UServer/Logo_16_16.PNG</Icon>
<Require feature="dynamic-height"/>
<Require feature="opensocial-0.8"/>

</ModulePrefs>
<Content type="html">
<![CDATA[

<div id=’heading’></div>
<hr size="1px"/>
<div id=’main’></div>
<hr >
<div id=’friends’></div>
<div id=’friend_status’> </div>

<script src="http://UServer/FriendFinder.js"></script>

<script>
var url = http://UServer/doit;
gadget.io.makeRequest(url, callback);

Continued

227

Chapter 6: Programming Fundamentals

Listing 6-3: Friend Finder Application with Call to External Resource Using

makeRequest (continued)

function callback(response) {

document.getElementById(’friend_status’).innerHTML = response.text;
}

</script>

]]>

</Content>
</Module>

Listing 6-4 shows the format of the response received by the callback function, which is a JavaScript
object.

Listing 6-4: Form of the JavaScript Object Received by Callback Function

{
data : the_data_parsed_when_appropriate
errors : any_error_if_occurred
text : raw_text_output returned
oauthApprovalUrl : if_OAuth_Response
oauthError : if_OAuth_Response
oauthErrorText : if_OAuth_Error

}

In Listing 6-3, the value associated with text in the response object was used. This is great for plain text
or HTML content. The value associated with data is used when the response contains parsed data. For
example, through the parameters attribute in makeRequest, you can request response data in JSON or
DOM format. In these cases, the data value (instead of the text value) should be used. The errors value
is useful in debugging request problems. The oauth* values are only used in signed requests, which are
discussed in detail later in this chapter.

Caching Issues
When calling makeRequest, the container can choose to cache the results. This is done in an attempt to
reduce latency, thus improving performance. Containers typically keep their cache for 1 hour. If the
remote content changes, or if you are executing a dynamic program, you will not want to have the con-
tainer cache the results. There are a number of possible solutions for this problem.

One option is for your server to return content with HTTP headers that have the values of Cache-Control
or Expires or Last-Modified specified. The container should support these header variables
appropriately.

Another solution is to use gadgets.io.RequestParameters.REFRESH_INTERVAL as a parameter to your
makeRequest call. If you want no caching, you can set the interval to 0. Otherwise, it represents the
number of seconds before refreshing. Listing 6-5 shows an example of this.

228

Chapter 6: Programming Fundamentals

Listing 6-5: Setting REFRESH_INTERVAL as a Parameter to makeRequest

var parameters = {};
parameters[gadgets.io.RequestParameters.REFRESH_INTERVAL] = 0;
//setother parameters you want
gadgets.io.makeRequest(url, callback, paramters);

Another solution involves appending a new dummy parameter, cacheMe, to the URL with a unique
value for each call. Because the URL is unique with each makeRequest call, the container cannot use any
cached results. This is shown in Listing 6-6.

Listing 6-6: Appending a Random Number to the URL to Avoid Caching

var random_number = generate_random();
var newURL = url + "&cacheME=" +random_number;
gadgets.io.makeRequest(newURL, callback, parameters);

POST Request
The standard method type of a makeRequest request is GET. This can be set to any one of the following:

POST

GET

PUT

DELETE

HEAD

POST is a method that encrypts the data that is sent. In this case, the parameter option will include
encrypted data, as shown in Listing 6-7.

Listing 6-7: Setting POST to Include Encrypted Data

//create data you are going to send via POST request
//typically this would be done in a dynamic way
var myUser = {

name : "Lynne",
app_userid : 7329

}

var =http://U.com/doit;

//setup POST request via parameters
var parameters = {};
parameters[gadgets.io.RequestParameters.METHOD]

= gadgets.io.MethodType.POST; parameters
[gadgets.io.RequestParameters.POST_DATA]
= gadgets.io.encodeValues(myUser);

gadgets.io.makeRequest(url, callback, paramters);

229

Chapter 6: Programming Fundamentals

Signed Request
If security is a concern, one solution is to sign requests to external resources. Creating a signed request
makes the container verify the user’s identity (the client making the request) to your external resource
program. Let’s first take a look at what the developer must do to create a signed request, and then discuss
what the container does.

Developer Steps

To make a signed request, you need to follow these steps:

1. Get a signed key from each container to which you will deploy your application.

2. Create your makeRequest call with the authorization type set.

3. Add functionality in your server-side program to authenticate the makeRequest call. Handle
errors appropriately in response construction.

The following parameter should be set for making a signed request:

gadgets.io.RequestParameters.AUTHORIZATION

This parameter can take on one of the following values:

gadgets.io.AuthorizationType.NONE

gadgets.io.AuthorizationType.SIGNED

gadgets.io.AuthorizationType.OAUTH

Listing 6-8 shows the code necessary to create a signed request (of type SIGNED).

Listing 6-8: Signed makeRequest Call

var =http://U.com/doit;

//setup SIGNED request via parameters
var parameters = {};
parameters[gadgets.io.RequestParameters.AUTHORIZATION] =

gadgets.io.AuthorizationType.SIGNED;

gadgets.io.makeRequest(url, callback, paramters);

Note that the response object received by the callback function (see Listing 6-4) in the case of OAuth
signed requests may now have values associated with the oauth* fields with the following meanings:

oauthApprovalUrl — This means that the user will need to visit this URL to give permission to
the gadget for this request.

oauthError — If an OAuth error occurs, this gives a status code.

oauthErrorText — This is the description of a problem, if one occurred with OAuth.

230

Chapter 6: Programming Fundamentals

What the Container Does

Before the container forwards the client’s request to the external application, the container must validate
the user. This information is passed on to the application via the following added request parameters:

opensocial_viewer_id — This is the ID of the person making the request (client).

opensocial_owner_id — This is the ID of the owner.

opensocial_app_url — This is the URL of the requesting application (the container).

opensocial_instance_id — (Optional) This is used when you can have multiple instances in
a container. Together with opensocial_app_url, it makes a unique identifier for application in
the container.

opensocial_app_id — (Optional) This is the unique ID assigned to your application by a
container.

xoauth_public_key — (Optional) The container may choose to give the public key used in
signing the request. The container may require developers to get this in non-programmatic
ways.

Containers will take the request and these additional parameters, and then sign the request and forward
it to the external resource URL provided. Notice that a few of the parameters listed here are optional.
Containers can choose if and how to implement the process. For example, orkut will send a unique
opensocial_app_id, whereas MySpace sends a unique consumer key in an oauth_consumer-key request
parameter instead.

Containers are required to either send the public key to the developer, or to provide in its developer
documentation a well-publicized site from which to get it. Following is a typical location for this on a
container:

https://containerhost/opensocial/certificates/xoauth_public_keyvalue

Note that the commonname attribute of the certificate containing the key should be the hostname of the
container, and should match the oauth_consumer_key request parameter.

What Your Server-Side Code Needs

The external resource program must be able to use the signature information to get the request, as well as
the associated parameters to process the request. The external program must verify that the container’s
signature is correct. Another item to validate is the timestamp. The external application should check to
ensure that the timestamp on the request is recent. OpenSocial recommends that the timestamp be within
a 10-minute span (plus or minus 5 minutes) from the current time.

The optional parameters of oauth_consumer_key and xoauth_public_key can be used to determine
when a container has updated its certificates. It is good practice to create a separate program to check for
new certificates, download them, and set up a ‘‘certificate cache’’ that your external resource applications
can share.

Chapter 5 provides an example of a server-side PHP program that uses OAuth for authentication.

231

Chapter 6: Programming Fundamentals

Performance Improvement Using Preload
Because of the number of steps involved in the makeRequest process, as well as the possible resulting
latency, making these requests should be something done in a limited, only-as-needed, fashion. Perfor-
mance can be improved by preloading external resources. This is done via the <Preload> Gadget XML
tag, as shown in Listing 6-9.

Listing 6-9: Gadget XML Preload Element Used to Load External Resource and Inline

Results

<Preload
href="http://U.com/doit.xml"
views="profile" />

The code in Listing 6-9 will place the results in the same location as the tag in the Gadget XML, thus
inlining the results. This will be performed at gadget load time, and this data will be available during
gadget execution.

Note that an optional attribute to the <Preload> tag is authz. If authz="signed" or
authz= "oauth" is specified, it tells the container to prepare a signed request for
processing the preload.

Capabilities Inquiry
As mentioned, OpenSocial has some optional features that containers may or may not choose to imple-
ment. In addition, some social networks may not be fully compliant. It is important to know how to
dynamically inquire about the OpenSocial capabilities on the container.

You can use the gadgets.util.hasFeature method discussed earlier in this chapter to query the
container about what features it supports. Similarly, you can use the openSocial.Environment

.supportsFields method to see if an OpenSocial field is support by the container.

One interesting fact is that, as long as a container implements all of the OpenSocial
JavaScript methods, it can be technically compliant, providing that it returns an
opensocial.ResponseItem.NOT_IMPLEMENTED for methods it has not really
implemented.

Action Requests and Permissions
Action requests are requests made to users seeking their approval for some action your application tries
to take. The container will automatically handle the request and process the user response for any neces-
sary permission. These requests can be specific to the container and its application regulations.

232

Chapter 6: Programming Fundamentals

For example, when your application wants to create an activity through opensocial

.requestCreateActivity, this can trigger the container to request permission. Other methods that might
trigger user approval include opensocial.requestPermission, opensocial.requestSendMessage,
and opensocial.requestShareApp.

As a developer, you must keep in mind that a user (and, consequently, the container) can deny these
requests, and your application should respond appropriately.

Summary
In this chapter, you learned about application testing and front-end issues. This included code samples
to produce gadget navigation tabs and container-specific looks.

You learned how to request external resources, as well as about the issues of caching and making signed
requests. This was followed by a quick tip on performance enhancement via preloading. (Performance
will be discussed in great detail in Chapter 8).

The chapter concluded with a discussion about capabilities inquiry, action requests, and permissions.
Chapter 7 covers more advanced examples of uses of OpenSocial and targeted application development.

233

Sample Applications

This chapter provides code for a number of sample applications that feature important elements
needed by many applications. These examples include application elements related to the following:

Person/people

Communications

AppData

Environment (support and domain)

Compliance testing

Error handling

Permissions

Container-specific extensions

Internationalization, localization, and globalization

Flash media

Person/People Applications
This section provides a selection of code that produces useful application features dealing
with a Person and/or People. This discussion includes code for the following:

Requesting a maximum number of friends

Using multiple requests for friends

Requesting only friends who have the application installed

Producing a paginated friend list

Using pronouns

Creating a friend selector

Chapter 7: Sample Applications

Testing if two users are friends

Finding top friends who have the application installed

Friends of friends

Requesting a Maximum Number of Friends
Some OpenSocial containers (such as orkut) limit the default number of returned friends from a friend
request (for example, 20). In this case, the request can be modified to ask for a maximum number of
friends using the MAX parameter, as shown in Listing 7-1. The maximum can be any integer number, and
in Listing 7-1, it is set to 50. The actual number of friends retrieved (a user can have less than 50 friends)
is the output of this code snippet.

Listing 7-1: Requesting a Maximum Number of Friends

function makerequest() {
var req = opensocial.newDataRequest();
var param = {};
param[opensocial.DataRequest.PeopleRequestFields.MAX] = 50;

var idspec = opensocial.newIdSpec(
{ "userId" : "OWNER", "groupId" : "FRIENDS" });

var Req = dataReqObj.newFetchPeopleRequest(idspec, param);
req.add(Req, ‘req’);

req.send(getresponse);
};

function getresponse(data) {
output(data.get("req").getData().size());

};

makerequest();

Using Multiple Requests for Friends
Often, the you may only want the application to get a defined set of friends at a time, rather than retriev-
ing all of them. This can be done via OpenSocial JavaScript calls using the opensocial.DataRequest

.PeopleRequestFields.FIRST parameter (which represents the index of the first friend to retrieve),
along with the MAX parameter. By setting these parameters and updating the FIRST parameter for each
call (thus, keeping track of the friends currently retrieved), multiple calls can be performed to retrieve
the friends in batches. Listing 7-2 shows code that recursively makes calls to get 10 friends at a time until
all the friends are requested.

Listing 7-2: Multiple Requests for Friends

var flag_no_more_friends = false;
var index = 0;
var max = 10;

function makerequest(i) {

236

Chapter 7: Sample Applications

var req = opensocial.newDataRequest();
var param = {};
param[opensocial.DataRequest.PeopleRequestFields.FIRST] = i;
param[opensocial.DataRequest.PeopleRequestFields.MAX] = max;
var idspec = opensocial.newIdSpec(

{ "userId" : "VIEWER", "groupId" : "FRIENDS" });
var Req = dataReqObj.newFetchPeopleRequest(idspec, param);
req.add(Req, ‘req’);

req.send(getresponse);
};

function getresponse(data) {
var num = data.get("req").getData().size();

output(num + " more friends");
gadgets.window.adjustHeight();
if(num < max)

flag_no_more_friends = true;

index = index + num;

if(flag_no_more_friends == false)
paginatefriends();

};

function paginatefriends(){
makerequest(index);

};

paginatefriends();

Requesting Only Friends Who Have the Application

Installed
One common operation that many applications need to make is the retrieval of only friends who have
currently installed the application. This can be used to populate application information such as ‘‘friend’s
app data.’’ Certainly, the application can be written to retrieve the current friend list (of those with the
application installed) from a database or AppData storage. However, a better way to do this is by apply-
ing a filter in the OpenSocial request for friends to limit the return to only those who have the application
installed. This requires that the OpenSocial container provides support for the HAS_APP Person field.

Listing 7-3 shows code that requests only the friends who have this application installed. For testing
purposes, the output is the number of friends who currently have the application.

Listing 7-3: Requesting Only Friends Who Have the Application Installed

function makerequest() {
var req = opensocial.newDataRequest();
var param = {};
param[opensocial.DataRequest.PeopleRequestFields.MAX] = 50;
param[opensocial.DataRequest.PeopleRequestFields.FILTER] =

Continued

237

Chapter 7: Sample Applications

Listing 7-3: Requesting Only Friends Who Have the Application Installed (continued)

opensocial.DataRequest.FilterType.HAS_APP;

var idspec = opensocial.newIdSpec(
{ "userId" : "OWNER", "groupId" : "FRIENDS" });

var Req = req.newFetchPeopleRequest(idspec, param);
req.add(Req, ‘req’);
req.send(getresponse);

};

function getresponse(data) {
output(data.get("req").getData().size() + " friends have this app");

};

makerequest();

Producing a Paginated Friends List
A common need is to page through a set of user’s friends. This is important because some users can have
hundreds of friends. Listing 7-4 shows code that implements the pagination of a friends list. The results
are shown in Figure 7-1.

Listing 7-4: Paginating a Friends List

<Content type="html">
<![CDATA[

Here it is
<div id=’friends’> me the friends </div>

<script>
var first = 1;
var max = 2;
var perPage;
var friends_html;

function init(){
var param = {};
param[opensocial.DataRequest.PeopleRequestFields.FIRST] = first;
param[opensocial.DataRequest.PeopleRequestFields.MAX] = max;

var dataReqObj = opensocial.newDataRequest();
var viewerReq = dataReqObj.newFetchPersonRequest(’VIEWER’);

dataReqObj.add(viewerReq, ‘viewer’);

var idspec = opensocial.newIdSpec(
{ "userId" : "VIEWER", "groupId" : "FRIENDS" });

238

Chapter 7: Sample Applications

var Req = dataReqObj.newFetchPeopleRequest(idspec);
dataReqObj.add(Req, ‘friends’);

dataReqObj.send(onLoadViewerResponse);
}

function onLoadViewerResponse(data){
var viewer_friends = data.get(’friends’).getData();

friends_html = "Select a friend:
 ";
perPage = 0;
viewer_friends.each(function(person) {

friends_html = friends_html + ‘’ +
person.getDisplayName() + ‘’;
perPage++;

});
friends_html = friends_html + ‘’;
friends_html = friends_html + ‘<input type=submit onclick

="movePage(-1)" value="Prev" />’;
friends_html = friends_html + ‘<input type=submit onclick

="movePage(1)" value="Next"/>’;
document.getElementById(’friends’).innerHTML = friends_html;

}

function movePage(delta) {
first = first + (delta * perPage);
if(first < 0)

first = 1;
init();

}

init();
</script>

]]>
</Content>

Figure 7-1:

Paginated

friends list

Using Pronouns
A common need in social applications is to refer to a user by an appropriate pronoun (for example, ‘‘he’’
or ‘‘she’’). Always using the person’s name can be awkward, such as repeatedly saying, ‘‘Lynne does X’’

239

Chapter 7: Sample Applications

or ‘‘Lynne is Y.’’ For more natural-sounding language, it is sometimes better to say, ‘‘She does X’’ or ‘‘She
is Y.’’

This requires the use of the gender information referenced by opensocial.Person.Field.GENDER. Listing
7-5 shows the application code necessary to query for this information to produce and use a gender-based
pronoun in the creation of a message in the viewer’s ‘‘ABOUT_ME’’ profile information.

Listing 7-5: Using Gender Information to Create a Gender-Specific Pronoun

<Content type="html">
<![CDATA[

<style>
#content_div {height: 800px; width: 800px; overflow: scroll; }

</style>

<div id="content_div">

<div id=’info’> </div>
</div>

<script>
var pronoun = "";

function init(){
var param = {};

//set up request to contain GENDER and ABOUT_ME fields
param[opensocial.DataRequest.PeopleRequestFields.PROFILE_DETAILS] =

[opensocial.Person.Field.GENDER,
opensocial.Person.Field.ABOUT_ME];

var dataReqObj = opensocial.newDataRequest();
var viewerReq = dataReqObj.newFetchPersonRequest(’VIEWER’, param);
dataReqObj.add(viewerReq, ‘viewer’);

dataReqObj.send(onLoadViewerResponse);
}

function onLoadViewerResponse(data){
var viewer = data.get(’viewer’).getData();

//get gender and create pronoun
var gender = viewer.getField(opensocial.Person.Field.GENDER);
if(gender == opensocial.Enum.Gender.MALE)

pronoun = "He";
else if(gender == opensocial.Enum.Gender.FEMALE)

pronoun = "She";
else

pronoun = viewer.getDisplayName();

240

Chapter 7: Sample Applications

var the_message = viewer.getDisplayName() +
" is the currently viewing this app

";

the_message = the_message + pronoun +
" has the following About info:
"+

viewer.getField(opensocial.Person.Field.ABOUT_ME);

document.getElementById(’info’).innerHTML = the_message;
}

init();
</script>

]]>
</Content>

The following is the output of this program. Notice how the ‘‘She’’ pronoun is used:

Lynne Grewe is currently viewing this app

She has the following About info:
Looking to connect to other professionals in the Web and media world.
Currently working in social network development and media processing.

Creating a Friend Selector
Being able to select friends to whom you can send messages or invitations is a common element in many
applications. Listing 7-6 shows code that produces a form containing a scrollable and selectable list of
the viewer’s friends. Both the Thumbnail_URL and the friend’s name are used in the construction of the
selector.

Listing 7-6: Friend Selector Application Code

<Content type="html">
<![CDATA[

<style>
#content_div {width: 600px; margin:10px 0pt 0pt 20px;}

</style>

<div id="content_div">
<div id=’friends’> </div>

</div>

<script>
var outter_html = ‘<div style="float:left; width: 120px; height:

140px;">’;

var support_html = "";
var support;

Continued

241

Chapter 7: Sample Applications

Listing 7-6: Friend Selector Application Code (continued)

//function to requrest viewer’s friends
function init(){

var dataReqObj = opensocial.newDataRequest();
var idspec = opensocial.newIdSpec(

{ "userId" : "VIEWER", "groupId" : "FRIENDS" });
var Req = dataReqObj.newFetchPeopleRequest(idspec);
dataReqObj.add(Req, ‘viewerFriends’);
dataReqObj.send(onLoadViewerResponse);

}

//function that gets response of viewer’s friends and constructs selector
function onLoadViewerResponse(data) {

var viewer_friends = data.get(’viewerFriends’).getData();
var friends_html = ‘Select Friends’ ;
friends_html = friends_html + ‘<form onsubmit="submitFriends(this);

return false;">’;
friends_html = friends_html + ‘<div style="margin: 20px 0pt 0pt 20px;

height: 275px; overflow-y: scroll; overflow-x: hidden;">’

//populate <div> tag - 1 for each friend with
//an label/image and checkbox
viewer_friends.each(function(person) {
friends_html = friends_html + outter_html;
friends_html = friends_html +

‘<label style="background: transparent url(’;
friends_html = friends_html +

person.getField(opensocial.Person.Field.THUMBNAIL_URL);
friends_html = friends_html +

‘) no-repeat scroll 0pt 0pt; display: block; height: 100px;
width: 100px; -moz-background-clip: -moz-initial;
-moz-background-origin: -moz-initial;
-moz-background-inline-policy: -moz-initial;" for="icon_61"/>’;

friends_html = friends_html + ‘<div style="padding-top: 5px;">’;
friends_html = friends_html + ‘<input id="’ + person.getId() +

‘" type="checkbox" style="margin: 0pt; padding: 0pt;" value="’ +
person.getId() + ‘" name="friend_selected"/>’;

friends_html = friends_html +
‘<label style="padding: 0pt; font-weight: normal; font-size: 9pt;
color: rgb(59, 89, 152); cursor: pointer;" for="icon_61">’;

friends_html = friends_html + person.getDisplayName() + ‘</label>’;
friends_html = friends_html + ‘</div></div>’;

});
friends_html = friends_html +
‘</div><input style="background: rgb(255,100,0);" type="submit"> </form>’;

document.getElementById(’friends’).innerHTML = friends_html;
}

242

Chapter 7: Sample Applications

init();
</script>

]]>
</Content>

Figure 7-2 shows the results of running the code in Listing 7-6. Note that the code for submission of the
form is not shown. It is left for the developer to decide what to do with the list of selected friends.

Figure 7-2: Friend selector

Testing If Two Users Are Friends
Unfortunately, there is no immediate method call you can use to determine if two users are friends. To
do this, the application must retrieve one of the user’s set of friends and cycle through it to see if the other
user is in this list. Listing 7-7 shows code that performs this task.

Listing 7-7: Testing If Owner and Viewer Are Friends

<Content type="html">
<![CDATA[

<style>
#content_div {height: 800px; width: 800px; overflow: scroll; }

</style>

<div id="content_div">

<div id=’message’> </div>
</div>

<script>

Continued

243

Chapter 7: Sample Applications

Listing 7-7: Testing If Owner and Viewer Are Friends (continued)

function init(){
var dataReqObj = opensocial.newDataRequest();
var Req = dataReqObj.newFetchPersonRequest(’VIEWER’);
dataReqObj.add(Req, ‘viewer’);

Req = dataReqObj.newFetchPersonRequest(’OWNER’);
dataReqObj.add(Req, ‘owner’);

//get owner’s friends
var idspec = opensocial.newIdSpec(

{ "userId" : "OWNER", "groupId" : "FRIENDS" });

Req = dataReqObj.newFetchPeopleRequest(idspec);
dataReqObj.add(Req, ‘ownerFriends’);

dataReqObj.send(onLoadViewerResponse);
}

function onLoadViewerResponse(data){
var owner = data.get(’owner’).getData();
var friends = data.get(’ownerFriends’).getData();
var viewer = data.get(’viewer’).getData();
var areFriends = false;
friends.each(function(person) {

if(owner.getId() == person.getId())
{ areFriends = true; }

});
var html = owner.getDisplayName() + " and " +

viewer.getDisplayName() + "are " ;
if(areFriends == false)

html = html + "not ";

html = html + "friends.";

document.getElementById(’message’).innerHTML = html;
}

init();
</script>

]]>
</Content>

Finding Top Friends Who Have the Application Installed
‘‘Top friends’’ is a concept in some social networks that allows users to select their ‘‘best’’ (or ‘‘top’’)
friends. It may be useful for an application to exploit this feature. Listing 7-8 shows code that retrieves
‘‘top friends’’ who have the application installed. This is done via the parameter associated with the
opensocial.DataRequest.PeopleRequestFields.FILTER key. As shown in Listing 7-8, this parameter
is passed to the newFetchPeopleRequest method.

244

Chapter 7: Sample Applications

Listing 7-8: Filtering a Friends Request by Top_Friends and by HAS_APP

<Content type="html">
<![CDATA[

<style>
#content_div {height: 800px; width: 800px; overflow: scroll; }

</style>

<div id="content_div">

<div id=’message’> </div>
</div>

<script>

function init(){
var dataReqObj = opensocial.newDataRequest();
var Req = dataReqObj.newFetchPersonRequest(’VIEWER’);
dataReqObj.add(Req, ‘viewer’);

//get all friends
var idspec = opensocial.newIdSpec({ "userId" : "VIEWER",

"groupId" : "FRIENDS" });
Req = dataReqObj.newFetchPeopleRequest(idspec);
dataReqObj.add(Req, ‘viewerFriends’);

//get top friends who have app installed

var param = {};
param[opensocial.DataRequest.PeopleRequestFields.FILTER] =

[opensocial.DataRequest.FilterType.TOP_FRIENDS,
opensocial.DataRequest.FilterType.HAS_APP];

Req = dataReqObj.newFetchPeopleReuest(idspec, param);
dataReqObj.add(Req, ‘topViewerFriends’);

dataReqObj.send(onLoadViewerResponse);
}
function onLoadViewerResponse(data){

var friends = data.get(’viewerFriends’).getData();
var topFriends = data.get(’topViewerFriends’).getData();
var hasAppFriends = data.get(’hasAppViewerFriends’).getData();
var viewer = data.get(’viewer’).getData();

var html = ‘All Friends :
’;
friends.each(function(person) {

html += ‘’ + person.getDisplayName() + ‘’;
});
html += ‘
<hr>’;

Continued

245

Chapter 7: Sample Applications

Listing 7-8: Filtering a Friends Request by Top_Friends and by HAS_APP (continued)

html += ‘Top Friends w/App :
’;
topFriends.each(function(person) {

html += ‘’ + person.getDisplayName() + ‘’;
});
html += ‘
<hr>’;

document.getElementById(’message’).innerHTML = html;
}

init();
</script>

]]>
</Content>

Friends of Friends
A useful feature in an application would be to find friends of friends. This is possible in OpenSocial with
the Opensocial.IdSpec.Field.NETWORK_DISTANCE field of the IdSpec class. As of the writing of this
book, no containers support this field. Regardless, Listing 7-9 shows a code snippet that demonstrates
how to use this feature, which will hopefully be supported in the future.

Listing 7-9: How to Request an Owner’s Friends of Friends

var idspec = opensocial.newIdSpec({ "userId" : "OWNER", "groupId" : "FRIENDS" });

//set the field for Network distance = 0 means same person, 1 means friend
// and 2 is friend of friend.
idspec.setField(opensocial.IdSpec.Field.NETWORK_DISTANCE, 2);
var req = opensocial.newDataRequest();

req.add(req.newFetchPeopleRequest(idspec), "get_friends");
req.send(response);

Communications Applications
This section provides a selection of code that produces useful application features dealing with commu-
nications. This discussion includes code for the following:

Making signed requests

Creating minimessages

Creating gadget message bundles

Using message and activity templates

Using message summaries

Using media items in activities

246

Chapter 7: Sample Applications

Making Signed Requests
Chapter 6 discussed the concept of creating a signed request from a client to the application’s server-side
program. Listing 7-10 shows the complete client-side OpenSocial JavaScript program necessary, and List-
ing 7-11 shows a PHP server-side program that accepts and validates the signed request. The OpenSocial
XML application calls makeSignedRequest()in Listing 7-10, which constructs a signed makeRequest that
is sent to the server code in Listing 7-11. The base of this software is given by http://OpenSocial.org.
It is part of the OAuth software base and is freely available.

Listing 7-10: Client-Side JavaScript Code to Make a Signed Request

function makeSignedRequest() {

var params = {};
params[gadgets.io.RequestParameters.AUTHORIZATION] =

gadgets.io.Authorization.Type.SIGNED;
params[gadgets.io.RequestParameters.CONTENT_TYPE] =

gadgets.io.ContentType.JSON;
var url = "http://U.com/fetchme.php";
gadgets.io.makeRequest(url, response, params);

};

function response(ret) {
printf(ret.data);

var html = [ret.data.validated, "
",
"oauth_consumer_key: ", ret.data.query.oauth_consumer_key, "
",
"oauth_nonce: ", ret.data.query.oauth_nonce, "
",
"oauth_signature: ", ret.data.query.oauth_signature, "
",
"oauth_signature_method: ", "oauth_timestamp: ",

ret.data.query.oauth_timestamp, "
",
"oauth_token: ", ret.data.query.oauth_token, "
",
"opensocial_appid: ", ret.data.query.opensocial_appid, "
",
"opensocial_ownerid: ", ret.data.query.opensocial_ownerid, "
",
"xoauth_signature_publickey: ", ret.data.query.xoauth_signature_publickey]

.join("");

printf(html);
};

Listing 7-11: PHP Server-Side Code to Accept and Verify a Signed Request

<?php
require(’OAuth.php’);

class OrkutSignatureMethod extends OAuthSignatureMethod_RSA_SHA1 {
protected function fetch_public_cert(&$request) {
return <<<EOD

Continued

247

Chapter 7: Sample Applications

Listing 7-11: PHP Server-Side Code to Accept and Verify a Signed Request (continued)

-----BEGIN CERTIFICATE-----
MIIDHzCCAoigAwIBAgIQZMuxK+KKS5wF/rjXp3z/KTANBgkqhkiG9w0BAQUFADCB
hzELMAkGA1UEBhMCWkExIjAgBgNVBAgTGUZPUiBURVNUSU5HIFBVUlBPU0VTIE9O
TFkxHTAbBgNVBAoTFFRoYXd0ZSBDZXJ0aWZpY2F0aW9uMRcwFQYDVQQLEw5URVNU
IFRFU1QgVEVTVDEcMBoGA1UEAxMTVGhhd3RlIFRlc3QgQ0EgUm9vdDAeFw0wODAz
MjYwMDEyMDdaFw0wODA0MTYwMDEyMDdaMIGuMRcwFQYDVQQKEw5oaTVtb2R1bGVz
LmNvbTEZMBcGA1UECxMQRG9tYWluIFZhbGlkYXRlZDE7MDkGA1UECxMyR28gdG8g
aHR0cHM6Ly93d3cudGhhd3RlLmNvbS9yZXBvc2l0b3J5L2luZGV4Lmh0bWwxIjAg
BgNVBAsTGVRoYXd0ZSBTU0wxMjMgY2VydGlmaWNhdGUxFzAVBgNVBAMTDmhpNW1v
ZHVsZXMuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCZgdrYsECeGO/Y
srDfaO/vIyMq7+DYdAmImzwg35wnti3Dr3B6kS6OeRiBAIUTvdZXX3XitJFxVlDF
H/PbRimm0d3eQvSfW3+0xIhF9C3E9QFj6LWBz6bBlh5p0pSXygAZ9AXR1OMM2lDR
R9hwQp1YVjzJk3hYW2qD591auROQvwIDAQABo2MwYTAMBgNVHRMBAf8EAjAAMB0G
A1UdJQQWMBQGCCsGAQUFBwMBBggrBgEFBQcDAjAyBggrBgEFBQcBAQQmMCQwIgYI
KwYBBQUHMAGGFmh0dHA6Ly9vY3NwLnRoYXd0ZS5jb20wDQYJKoZIhvcNAQEFBQAD
gYEABdPtdX56mPwSfPMzgSLH7RueLZi5HXqW2krojWsOv3VFnayQKuzXdy5DZrMY
/tI2AUPXicvBW3GjTfSKmUNvsOXUIC8az3K3iTs1KKekUaidLRlaRZIO0FVEJH5u
gO9HqAcXxrx99/3agvAVTKAFBFJtiWD1i1LkYeqKrPQOPo8=
-----END CERTIFICATE-----
EOD;

}
}

//Build a request object from the current request
$request = OAuthRequest::from_request(null, null, array_merge($_GET, $_POST));

//Initialize the new signature method
$signature_method = new OrkutSignatureMethod();

//Check the request signature
@$signature_valid = $signature_method->check_signature($request, null, null,

$_GET["oauth_signature"]);

printf("after call");

}catch(Exception $e){printf("exception is" + $e->getMessage());}

//Build the output object
$payload = array();
if ($signature_valid == true) {

$payload["validated"] = "Success! The data was validated";
} else {

$payload["validated"] = "This request was spoofed";
}

//Add extra parameters to help debugging
$payload["query"] = array_merge($_GET, $_POST);
$payload["rawpost"] = file_get_contents("php://input");

//Return the response as JSON
printf(json_encode($payload));

?>

248

Chapter 7: Sample Applications

Note that the certificate in the PHP code in Listing 7-11 is specific to the container delivering the request.
This code should be expanded to test for the container being targeted, and deliver the appropriate certifi-
cate. It is further recommended that the application does not ‘‘inline’’ the certificate.

Creating Minimessages
The gadgets.MiniMessage Gadget API class can be used to create messages inside of the gadget. Some
possible uses of this are for status messages, information/promotional messages, and possibly for han-
dling errors.

Listing 7-12 contains the code that creates a ‘‘dismissible minimessage,’’ which is shown in Figure 7-3.
The ‘‘minimessage’’ Gadget API must be explicitly referenced in the <Require feature="minimessage">

line seen in the <ModulePref> tag. The creation of the minimessage is done in the makeMessage function.
By default, the minimessage will appear at the top of the application, as shown in Figure 7-3. Notice the
‘‘X’’ in the upper-right of the message. This is to allow the user to ‘‘dismiss’’ the message.

Listing 7-12: A Simple Dismissible Minimessage

<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="MiniMessage" description="MiniMessage" >
<Require feature="dynamic-height"/>
<Require feature="opensocial-0.7"/>
<Require feature="minimessage"/>

</ModulePrefs>
<Content type="html">
<![CDATA[

<style>
#content_div {height: 800px; width: 800px; overflow: scroll; }

</style>

<div id="content_div">
Main Application Content

<div id=’minimessage’> </div>
<div id=’message’> </div>
</div>

<script>

function init(){
dataReqObj = opensocial.newDataRequest();
var Req = dataReqObj.newFetchPersonRequest(’VIEWER’);
dataReqObj.add(Req, ‘viewer’);
dataReqObj.send(onLoadViewerResponse);

}
function onLoadViewerResponse(data){

var viewer = data.get(’viewer’).getData();
var mess = viewer.getDisplayName() +

Continued

249

Chapter 7: Sample Applications

Listing 7-12: A Simple Dismissible Minimessage (continued)

" --New Video feature launching next week!--";
makeMessage(mess);

}
function makeMessage(mess){

//create minimessage
var miniMessage = new gadgets.MiniMessage();

//make a dismissible message
// default location is at the top of the application
var html = miniMessage.createDismissibleMessage(mess);

}

init();
</script>

]]>
</Content>

Figure 7-3: Simple dismissible minimessage used for promotional information

Additionally, the developer can create timed messages (which disappear after so many seconds)
or static messages (which cannot be dismissed by the user, but only via the gadgets.MiniMessage

.dismissMessage(mini_message_object) application Gadget API call).

Creating Gadget Message Bundles
A useful concept when working with gadgets is that of message bundles. If you are repeatedly
using a message or message format in an application, a message bundle can be created for it and
called in the application wherever it is needed. This supports both reusability and GUI design
consistency.

More than one message can be created for an application and bundled together into a message bundle.
Specific application uses of message bundles can be found later in this chapter in the sections ‘‘Using
Message and Activity Templates’’ and ‘‘Internationalization, Localization, and Globalization.’’

Message bundles and the messages they contain are defined with the gadget tags <messagebundle>

and <msg>, respectively. They are typically stored in a separate XML file. The following is an
example:

<messagebundle>
<msg name="greeting">

Friend Findertrack your friends now!
</msg>
<msg name="Item1">

250

Chapter 7: Sample Applications

Track
</msg>
<msg name="Item2">

Invite
</msg>

</messagebundle>

The messages stored in a message bundle (that is, in an external XML file) are brought into an application
via the <Locale> subelement of the <ModulePref> tag in the gadget specification, as shown in Listing 7-
13. The message named greeting is referenced with the special __MSG_ gadget substitution variable as
__MSG_greeting__.

Listing 7-13: External Message Bundle and Reference to the Message Greeting

<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="Message Bundle" description="Message Bundle" >

<Require feature="dynamic-height"/>
<Require feature="opensocial-0.8"/>
<Locale messages="http://U.com/messagebundle.xml"/>

</ModulePrefs>
<Content type="html">
<![CDATA[

<style>
#content_div {height: 800px; width: 800px; overflow: scroll; }

</style>

<div id="content_div">
<div id=’message’> </div>
__MSG_greeting__.

</div>

]]>
</Content>

</Module>

Alternatively, messages can be accessed via the gadget class gadgets.Prefs as follows:

var prefs = new gadgets.Prefs();
prefs.getMsg("greeting");

Using Message and Activity Templates
Both activities and messages can be created using message bundles. This is done via the parameter fields
of TITLE_ID and BODY_ID, which are used when creating the message or activity. The code shown in
Listing 7-14 demonstrates how to create an email message using a message bundle that contains a <msg

name="title"> and a <msg name="body">, both stored in the external message bundle XML file named
messagebundle.xml.

251

Chapter 7: Sample Applications

Listing 7-14: Creating a Message with a Message Bundle

<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="Message Template" description="Message Template" >
<Require feature="dynamic-height"/>
<Require feature="opensocial-0.8"/>
<Locale messages="http://U.com/messagebundle.xml"/>

</ModulePrefs>
<Content type="html">
<![CDATA[

<style>
#content_div {height: 800px; width: 800px; overflow: scroll; }

</style>

<div id="content_div">

<div id=’message’> </div>
__MSG_greeting__.
<input type=button value="create message" onclick="makeMessage();">
</div>

<script>
var viewer, owner;

function init(){
dataReqObj = opensocial.newDataRequest();
var Req = dataReqObj.newFetchPersonRequest(’VIEWER’);
dataReqObj.add(Req, ‘viewer’);

Req = dataReqObj.newFetchPersonRequest(’OWNER’);
dataReqObj.add(Req, ‘owner’);
dataReqObj.send(onLoadViewerResponse);

}
function onLoadViewerResponse(data){

owner = data.get(’owner’).getData();
viewer = data.get(’viewer’).getData();

}

function makeMessage(){
if(viewer == null || owner == null) return;
//setup Prefs object to grab the message bundle info
var prefs = new gadgets.Prefs();
var opts = {};
opts[opensocial.Message.Field.TITLE_ID] = ‘title’;
opts[opensocial.Message.Field.BODY_ID] = ‘body’;

//set up type of message
opts[opensocial.Message.Field.TYPE] = opensocial.Message.Type.EMAIL;

252

Chapter 7: Sample Applications

var body = viewer.getDisplayName() + " says hello to " +
owner.getDisplayName() + " using the Message application";

var message = opensocial.newMessage(body, opts);

opensocial.requestSendMessage(owner.getId(), message, messageMade);
}

function messageMade(d){
document.getElementById(’message’).innerHTML = "message done";

}

init();
</script>

]]>
</Content>

</Module>

It is possible to also ‘‘inline’’ the message bundle in the <Locale> tag. For activities, another option is to
add template parameters so that variables can be used in the construction of the actual message. This is
done with the TEMPLATE_PARAMS parameter. Both of these features are illustrated in the following code
snippet:

<ModulePrefs>
<Locale>

<messagebundle>
<msg name="title ">

${Viewer} used Friend Finder
</msg>

</messagebundle>
</Locale>
</ModulePrefs>

<script>
var viewer;

var template_params = {
‘Viewer’: viewer

};

//set up parameters to construct the Activity
var params = {};
params[opensocial.Activity.Field.TITLE_ID] = title;
params[opensocial.Activity.Field.TEMPLATE_PARAMS] = template_params;

Unfortunately, a number of containers do not support the use of the TITLE_ID and BODY_ID fields. In this
case, message bundles can still be used, but instead of associating the message’s or activity’s TITLE_ID
and BODY_ID fields, you would associate the messages with the TITLE and BODY fields directly. This is

253

Chapter 7: Sample Applications

demonstrated in the following code snippet for a message where the <msg> tags used are named title

and body:

var prefs = new gadgets.Prefs();

var the_title = prefs.getMsg("title");
var the_body = prefs.getMsg("body");
opts[opensocial.Message.Field.TITLE_ID] = the_title;
opts[opensocial.Message.Field.BODY_ID] = the_body;

Using Message Summaries
Containers have limits on the number of activities per user per day that can be created from an appli-
cation. Related to this is the fact that some containers summarize activities. They do this by creating
‘‘activity summaries,’’ which involves the condensing of multiple activity postings to one activity. This
reduces the number of activities displayed and can reduce visual clutter.

It is possible to use message bundles to suggest summaries to containers. Activity summaries will sum-
marize around a key in a key/value pair. The message created for summarization should have an ID =

"messageID of main template":"key", as shown in the following examples:

<messagebundle>
<msg name="VIDEO:Director">
${Subject.Count} friends have suggested listening to videos by ${Director}

</msg>
<msg name="VIDEO:Title">
${Title} has been watched by ${Subject.Count} friends</msg>

</messagebundle>

Using Media Items in Activities
Adding media can enrich and make activity postings more interesting. This is a good technique to use to
attract new users to an application. Recall that activity streams are often seen as ‘‘updates’’ by friends.

OpenSocial supports the creation of audio, image, and video media items. More than one media item
can be included in an activity. However, some containers restrict this, as well as the type of media items
allowed in an activity. Check out the container-specific developer documentation for current rules.

OpenSocial creates new media items with the opensocial.newMediaItem method. The resulting media
item can be placed in an array of media items that can then be passed as an optional parameter when
creating the activity. Listing 7-15 shows how to accomplish this. In this code, a media item is created that
is associated with an image URL.

Listing 7-15: Creating a Media Item Associated with an Activity

<Content type="html">
<![CDATA[

<style>
#content_div {height: 800px; width: 800px; overflow: scroll; }

</style>

254

Chapter 7: Sample Applications

<div id="content_div">

<div id=’activityGUI’>

<input type=button value="send smiley update"
onclick="makeActivityMedia(’http://puzzle.mcs.csueastbay.edu/
∼grewe/OpenSocial/hi5/ActivityMediaItems/smiley.jpg’);">

<div id=’activity’></div>
</div>
</div>

<script>

var viewer;
var owner;

function makeActivityMedia(ImageURL){
var opts = new Array();

//make activity title using viewer and owner names
opts[opensocial.Activity.Field.TITLE] = viewer.getDisplayName() +

" is sending " + owner.getDisplayName + " a smile";
var mediaItems = new Array();

//setup media Item related to acitivy
var media_param = {};
media_param[opensocial.MediaItem.Field.TYPE] =

[opensocial.MediaItem.Field.IMAGE];
var mediaItem = opensocial.newMediaItem("text/jpeg", ImageURL, media_param);

// Add a media item link if supported
if(gadgets.util.hasFeature(’hi5’) && opensocial.getEnvironment().

supportsField(opensocial.Environment.ObjectType.ACTIVITY_MEDIA_ITEM,
hi5.ActivityMediaItemField.LINK))

{
mediaItem.setField(hi5.ActivityMediaItemField.LINK,

viewer.getField(opensocial.Person.Field.PROFILE_URL));
}

mediaItems.push(mediaItem);
opts[opensocial.Activity.Field.MEDIA_ITEMS] = mediaItems;

//create activity
var activity = opensocial.newActivity(opts);

//activity request
opensocial.requestCreateActivity(activity,

opensocial.CreateActivityPriority.HIGH, activityMade);
}

Continued

255

Chapter 7: Sample Applications

Listing 7-15: Creating a Media Item Associated with an Activity (continued)

function activityMade(){
document.getElementById(’activity’).innerHTML = "activity was made";

}

//setup request for viewer and owner – used in activity info
function init(){

dataReqObj = opensocial.newDataRequest();
var Req = dataReqObj.newFetchPersonRequest(’VIEWER’);
dataReqObj.add(Req, ‘viewer’);

Req = dataReqObj.newFetchPersonRequest(’OWNER’);
dataReqObj.add(Req, ‘owner’);

//get owner’s friends
var idspec = opensocial.newIdSpec(

{ "userId" : "OWNER", "groupId" : "FRIENDS" });
Req = dataReqObj.newFetchPeopleRequest(idspec);
dataReqObj.add(Req, ‘ownerFriends’);

dataReqObj.send(onLoadViewerResponse);
}

function onLoadViewerResponse(data){

owner = data.get(’owner’).getData();
var friends = data.get(’ownerFriends’).getData();
viewer = data.get(’viewer’).getData();

}

init();
</script>

]]>
</Content>

</Module>

Unfortunately, a number of containers do not support media items, and the alternative is to create HTML
inside the activity title or body. Listing 7-16 shows how to create the same effect using this workaround.
Figure 7-4 shows the results on orkut, a container that currently does not support media items.

Listing 7-16: Using HTML as an Alternative to a Media Item

<Content type="html">
<![CDATA[

<style>

256

Chapter 7: Sample Applications

#content_div {height: 800px; width: 800px; overflow: scroll; }
</style>

<div id="content_div">

<div id=’activityGUI’>
<input type=button value="send smiley"

onclick="makeActivityMedia(’http://U.com/smiley.jpg);">
<div id=’activity’></div>

</div>
</div>

<script>

var viewer;
var owner;

function makeActivityMedia(ImageURL){
document.getElementById(’activity’).innerHTML = "hi";
var opts = new Array();
opts[opensocial.Activity.Field.TITLE] = viewer.getDisplayName() +

" it’s Smiley time :";
opts[opensocial.Activity.Field.BODY] = viewer.getDisplayName() +

" is making a smile <img src=\"
" + ImageURL + "\">";

var activity = opensocial.newActivity(opts);

opensocial.requestCreateActivity(activity,
opensocial.CreateActivityPriority.HIGH,
activityMade);

}

function activityMade(status){

if (status.hadError())
{

alert("Error creating activity.");
}
else
{

alert("Activity successfully created.");
}

}

function init(){
dataReqObj = opensocial.newDataRequest();
var Req = dataReqObj.newFetchPersonRequest(’VIEWER’);

Continued

257

Chapter 7: Sample Applications

Listing 7-16: Using HTML as an Alternative to a Media Item (continued)

dataReqObj.add(Req, ‘viewer’);

Req = dataReqObj.newFetchPersonRequest(’OWNER’);
dataReqObj.add(Req, ‘owner’);

//get owner’s friends
var idspec = opensocial.newIdSpec(

{ "userId" : "OWNER", "groupId" : "FRIENDS" });
Req = dataReqObj.newFetchPeopleRequest(idspec);
dataReqObj.add(Req, ‘ownerFriends’);

dataReqObj.send(onLoadViewerResponse);
}
function onLoadViewerResponse(data){

owner = data.get(’owner’).getData();
var friends = data.get(’ownerFriends’).getData();
viewer = data.get(’viewer’).getData();

}
init();
</script>

]]>
</Content>

Figure 7-4: Using HTML in the body of the activity to

insert an image

Clearing AppData
Recall that a feature of OpenSocial is persistence storage of AppData via the opensocial.DataRequest

.newUpdatePersonAppDataRequest(id,key,value) method. This data can also be removed using the
opensocial.DataRequest.newRemovePersonAppDataRequest(id,keys) method, as shown in the fol-
lowing code snippet that removes the data associated with the viewer and key="theKey":

var Req = opensocial.newDataRequest();
Req.add(

Req.newRemovePersonAppDataRequest("VIEWER", "theKey"),
"clear_data");

Req.send(callback_function);

The following code clears data associated with keys k1, k2, k3, and k4:

req.add(
req.newRemovePersonAppDataRequest("VIEWER", ["k1", "k2", "k3", "k4"]),
"clear_data");

258

Chapter 7: Sample Applications

To clear all data associated with the viewer, use the following code:

req.add(
req.newRemovePersonAppDataRequest("VIEWER", "*"),
"clear_data")

Understanding Environment — Support and

Domain
OpenSocial allows an application to test for container support using the opensocial.Environment object
that can be obtained through the opensocial.getEnvironment() method call. The returned container’s
Environment object can be queried for support through its supportsField method, which can test for
support for fields related to the following:

Activity

Address

BodyType

Email

Filter_Type

MediaItem

Message

MessageType

Name

Organization

Person

Phone

Sort_Order

URL

The supportsField method takes two parameters: the opensocial.Environment.ObjectType.* value
and the corresponding field support value. For example, if you are testing the opensocial.Environmnet

.ObjectType.Person object, then opensocial.Person.Field.NAME is one of the many opensocial

.Person.Field.* fields that can be checked for support.

The other method of this Environment class that is useful is the getDomain method that will return a
string representing the container’s domain. This can be used when requesting container-specific resources
or developing a container-specific GUI.

Listing 7-17 shows sample code that tests a few environment features. In this code, the domain is
retrieved, as well as testing for various Email, Address and Person fields for support. Figure 7-5 shows
the results of running this code on orkut.

259

Chapter 7: Sample Applications

Listing 7-17: Environment Support and Domain Example Code

<Content type="html">
<![CDATA[

<style>
#content_div {height: 800px; width: 800px; overflow: scroll; }

</style>

<div id="content_div">

<div id=’domain’> </div>
<hr>
<div id=’support’> </div>
</div>

<script>
var support_html = "";
var support;

function init(){

//get the environment
var e = opensocial.getEnvironment();

//get domain like "hi5.com"
var domain = e.getDomain();
document.getElementById(’domain’).innerHTML = "Domain is " + domain;

//test for support of different fields
//email support for person data
support = e.supportsField(opensocial.Environment.ObjectType.EMAIL,

opensocial.Email.Field.ADDRESS);
support_html = support_html + " Email-Address : " + support + "";

//longitude support for address
support = e.supportsField(opensocial.Environment.ObjectType.ADDRESS,

opensocial.Address.Field.LONGITUDE);
support_html = support_html + " Address-Longitude: " + support + "";
//country support for address
support = e.supportsField(opensocial.Environment.ObjectType.ADDRESS,

opensocial.Address.Field.COUNTRY);
support_html = support_html + " Address-Country: " + support + "";

//About_me support for person
support = e.supportsField(opensocial.Environment.ObjectType.PERSON,

opensocial.Person.Field.ABOUT_ME);
support_html = support_html + " Person- ABOUT_ME: " + support + "";

//GENDER support for person
var support = e.supportsField(opensocial.Environment.ObjectType.PERSON,

260

Chapter 7: Sample Applications

opensocial.Person.Field.GENDER);
support_html = support_html + " Person- GENDER: " + support + "";

//person email support for person
var support = e.supportsField(opensocial.Environment.ObjectType.PERSON,

opensocial.Person.Field.EMAILS);
support_html = support_html + " Person- Emails: " + support + "";

support_html = support_html + "";
document.getElementById(’support’).innerHTML = support_html;

}

init();
</script>

]]>
</Content>

Domain is orkut.com

Email-Address : false
Address-Longitude: true
Address-Country: true
Person-ABOUT_ME: true
Person-GENDER: true
Person-Emails: false

Figure 7-5: Application testing

for environment support

Using the Environment object and its supportsField method to check for container support are both
highly recommended options. Another possibly quicker (but more static) option is to test for the domain
the application is running on and hard-code logic for each domain as necessary. This requires that the
application be altered each time a container changes its support. The following code snippet shows how
this is structured:

if (MySpace) {
...

} else if (hi5) {
...

} else if (orkut) {
...

} else {
...
}

While this may not be a great option, and doesn’t respond to container changes, it is still commonly seen
in application code.

261

Chapter 7: Sample Applications

Handling Errors
Expecting errors and handling them is important in creating robust code. An application can use the
hadError() and getErrorMessage() methods, as shown in the following generic OpenSocial code inside
a callback function. Note that "req" is the key associated with the request.

function response(data) {
if (!data.hadError()) {

...
} else if (data.get("req").hadError()) {

alert(data.get("req").getErrorMessage());
} else {

alert("An unknown error occurred");
}

};

In the previous code, note that the getErrorMessage() call returns container-specific messages. While
showing these messages is useful for debugging, it is not a great interface for users when things are
failing.

Alternatively, the application can test for the kind of error using the getErrorCode() method, as shown
in the following code:

function response(data) {
if (!data.hadError()) {

...
} else if (data.get("req").hadError()) {

switch (data.get("req").getErrorCode()) {
case opensocial.ResponseItem.Error.BAD_REQUEST:
...
break;

case opensocial.ResponseItem.Error.INTERNAL_ERROR:
...
break;

}
} else {

...

Table 7-1 shows examples of error codes in OpenSocial, their meanings, and suggestions on how to
handle each.

Container Compliance and NOT_IMPLEMENTED
One interesting point regarding OpenSocial compliance is that a container may be considered com-
pliant even if it does not implement a documented OpenSocial API method, as long as the container
returns a NOT_IMPLEMENTED error code. This can be returned to any kind of callback function from a
request.

262

Chapter 7: Sample Applications

Table 7-1: OpenSocial Error Codes

Error Code Meaning How to Handle

opensocial.ResponseItem

.Error.FORBIDDEN

The application can never have
access to this data.

This means the application should
not request this. Need to change the
code.

opensocial.ResponseItem

.Error.INTERNAL_ERROR

Server problem (not having to
do with the application).

Notify the user to make the request
again, or to reload. The message to
the user should indicate that there
is a problem with the container (not
the application).

opensocial.ResponseItem

.Error.LIMIT_EXCEEDED

Over quota (for example, the
application is trying to send too
many messages or post too many
times to any activity stream).

Depending on the exact regulations
on the item, the application can tell
the user that in X days/minutes, the
user can make this request again.

opensocial.ResponseItem

.Error.NOT_IMPLEMENTED

No container support. The application must either present
an alternative or simply skip over
this element.

opensocial.ResponseItem

.Error.UNAUTHORIZED

The gadget does not have access
to this data.

The application could alternatively
request authorization.

So, it becomes very important to always test for the error code NOT_IMPLEMENTED before proceeding.
Some of the methods that register such callback functions include the following:

requestCreateActivity

requestPermission

requestSendMessage

requestShareApp

Checking and Asking for Permissions
Currently, there is only one permission field, opensocial.Permission.VIEWER, which is used to deter-
mine whether an application can have/get access to viewer data. Remember, a viewer may not neces-
sarily have the application installed. The viewer may be viewing the application from someone else’s
profile.

263

Chapter 7: Sample Applications

An application can test to see if a viewer has this permission by using the hasPermission method as
follows:

var permission = opensocial.hasPermission(opensocial.Permission.VIEWER);

The value of permission will be true if the application has access to the viewer data, and false

otherwise. This application can ask for permission using the requestPermission method, as shown
in the following code snippet. The first parameter of this method specifies the kind of permission
(opensocial.Permission.VIEWER). The second parameter is a string used in the prompt for permission.
The third is a callback function. This callback function will be called once the permission request process
is finished. Rather than calling the callback function, the container can choose to reload the application
from scratch.

function response(data) {
if (!data.hadError()) {

...
} else if (data.get("req").hadError()) {

switch (data.get("req").getErrorCode()) {
case opensocial.ResponseItem.Error.UNAUTHORIZED:

opensocial.requestPermission([opensocial.Permission.VIEWER],
"give application access to your data", callback_function);

break;
case opensocial.ResponseItem.Error.INTERNAL_ERROR:

...
break;

}
} else {

...
}

If the callback function is invoked, it will be passed an opensocial.ResponseItem object. The error code
will be set on this Response object if there were any problems. If there were no problems, this means that
all permissions were granted. Following is a possible callback function:

function callback_function(data) {

if(data.hadError() == true){
switch(data.getErrorCode()){

case opensocial.ResponseItem.Error.UNAUTHORIZED:
//viewer has denied access
//can handle as wish . . . tell user can not run application

break;
}

}
}

Working with Container-Specific Extensions
OpenSocial allows containers to provide their own container-specific extensions. But what about the
‘‘write once deploy many’’ idea? The answer is complex. Some social networks have very different
purposes than others. Consider the imeem (which is heavily focused on media) or LinkedIn (which

264

Chapter 7: Sample Applications

surrounds professional networking) containers. The needs of these social networks and applications
focused on their specialties will be very different, and even the latest version of OpenSocial may not
fulfill these needs. So, it is a good thing that OpenSocial allows for these extensions.

If developers are careful, they can still adhere to the ‘‘write once and deploy many’’ philosophy. It may
mean that extended capabilities in the application only exist on the container(s) that have the supporting
OpenSocial extensions. However, if the application really is specialized and uses specialized extensions
extensively, then it really isn’t (at least not in its fullest functionality) for every container.

hi5 Lifecycle Extension
Following is some code that creates a media item (an image) for an activity. (Listing 7-15 contains the
complete code.)

var opts = [], items = [];
var mediaItem = opensocial.newActivityMediaItem(

opensocial.Activity.MediaItem.Type.IMAGE, "http://imageurl");

items.push(mediaItem);
opts[opensocial.Activity.Field.MEDIA_ITEMS] = items;
var activity = opensocial.newActivity(opts);
opensocial.requestCreateActivity(activity,opensocial.CreateActivityPriority.HIGH);

This code will work on all compliant OpenSocial containers. However, hi5 has added the capability of
associating a link with this media item. This is a hi5 extension, and it is coded as follows:

mediaItem.setField(
hi5.ActivityMediaItemField.LINK, "http://linkurl");

This code will only work on hi5. The application can test if it is on hi5 with the following boldfaced
modifications:

var opts = [], items = [];
var mediaItem = opensocial.newActivityMediaItem(

opensocial.Activity.MediaItem.Type.IMAGE, "http://imageurl");
if (gadgets.util.hasFeature(’hi5’)) {

mediaItem.setField(hi5.ActivityMediaItemField.LINK,"http://linkurl");
}

items.push(mediaItem);
opts[opensocial.Activity.Field.MEDIA_ITEMS] = items;
var activity = opensocial.newActivity(opts);
opensocial.requestCreateActivity(activity,opensocial.CreateActivityPriority.HIGH);

The application must include the hi5 extension code using the <Optional> subelement of the
<ModulePref> tag. For example, to include the hi5 optional feature called the ‘‘hi5-lifecycle,’’ the XML
additions must be made. The following code shows how this is done for the ‘‘hi5-lifecycle’’ extension
(changes appear in boldface):

<?xml version="1.0" encoding="UTF-8" ?>
<Module>

<ModulePrefs title="Optional features are fun">
<Require feature="opensocial-0.7" />

265

Chapter 7: Sample Applications

<Optional feature="hi5-lifecycle">

<Param name="installPingUrl"

value="http://myserver/install"/>

<Param name="removePingUrl"

value="http://myserver/uninstall"/>

</Optional>

</ModulePrefs>
...

</Module>

DataRequest Extension
DataRequest is one of the OpenSocial classes that have been extended. As an example, MySpace allows
an application to request photos associated with a viewer, as shown in the following code snippet:

function request() {
var request = container.newDataRequest();
var photoReq = MyOpenSpace.DataRequest.newFetchPhotosRequest(

opensocial.DataRequest.PersonId.VIEWER);
request.add(photoReq, ‘photos’);
request.send(response);

};

Fields Extension
The fields associated with a Person are another common container extension. MySpace has extended it to
use its own specially defined fields like MOOD, HEADLINE, and DESIRE_TO_MEET as follows:

var opt_params = {};
opt_params[opensocial.DataRequest.PeopleRequestFields.PROFILE_DETAILS] =

[MyOpenSpace.Person.Field.MOOD,
MyOpenSpace.Person.Field.HEADLINE,
MyOpenSpace.Person.Field.DESIRE_TO_MEET];

hi5 Template Library
The hi5.template library is a browser-side, JavaScript library that enables the fusion of JavaScript data
and logic with HTML. It simplifies writing applications by providing a message resource tag as follows:

<os:message key="resource" />

See http://www.hi5networks.com/developer/2008/07/hi5-providing-library-

for-temp.html for details.

Chapter 9 discusses OpenSocial templates, which formalize this concept as an OpenSocial standard. It is
recommended that the developer follow this standard over the hi5-only template library. The OpenSocial
Templates standard is developed (as is all of OpenSocial) by a consortium of people and companies like
hi5. In this case, hi5 led the way by providing this concept in its hi5 extension first, before OpenSocial
templates even existed.

266

Chapter 7: Sample Applications

Using Internationalization, Localization, and

Globalization
Internationalization and localization are terms that are frequently used (as synonyms) to mean that an
application is set up to adapt to different regions and languages. Specifically, localization is the pro-
cess of loading into the application different locale-specific text and elements. Sometimes the terms are
mashed together into a numeronym called i18n and L10n. Another term used to indicate this process is
globalization.

Localization is important because many social networks have a broad international user base. Some
networks predominately have users from non-English-speaking countries. In these cases, localizing to
include these languages and cultures is critical.

Developers commonly create the translated text via human experts or rely on the results of running the
text through translation programs.

Developers can use a number of ways to achieve localization, including the use of message bundles
(introduced earlier in this chapter). Message bundles make it easy to localize an application’s text
without introducing language-specific application logic. This is the case because message bundles
can be associated with specific locales. An application can have as many message bundles as
it wishes.

Following are the localization steps for using message bundles in an OpenSocial application:

1. Create the application.

2. For any text that should be translated in the application, represent it with a message in an
English-based message bundle.

3. Translate the English-based message bundle to each language (or country) to be supported.

4. Modify the application Gadget XML to reference these new message bundles.

Message bundles can be ‘‘inlined’’ in the application XML, or, as discussed earlier in this chapter, it can be
placed in a separate XML file. In the latter case, the naming convention suggested for the XML message
bundle file is A_B.xml, where A is the language code and B is the country code. Thus, en_ALL.xml would
be the name of the English-based message bundle file for all English-speaking countries, and de_ALL.xml

would be the German-based message bundle file.

The following code snippet shows how to use the <Locale> tag to associate the different message bundle
files with the appropriate language:

<ModulePrefs title="__MSG_title__" description="__MSG_desc__">
<Require feature="opensocial-0.7"/>
<Locale messages="http://U.com /ALL_ALL.xml"/>
<Locale lang="en" messages="http://U.com/en_ALL.xml"/>
<Locale lang="es" messages="http://U.com/es_ALL.xml"/>

</ModulePrefs>

267

Chapter 7: Sample Applications

In this example, notice that the default file used for all locales not specified is ALL_ALL.xml. If, in addition
to language, the country should be specified, this can be done with the country attribute shown in the
following line for U.S. (not U.K.) based English:

<Locale lang="en" country="US" messages="http://U.com/en_US_ALL.xml"/>

Following is another alternative with the same meaning:

<Locale lang="en-US" country="US" messages="http://U.com/en_US_ALL.xml"/>

It is possible to specify a default message bundle that is used when the country does not correspond to
any of the country-specific message bundles of that language. The following shows how this is done for
English:

<Locale lang=="en" messages="http://U.com/ en_ALL.xml"/>
<Locale lang="en" country="US" messages="http://U.com/en_US_ALL.xml"/>

Now, it becomes a simple matter of using the messages in the message bundle for text and other content
in the application. For example, suppose the following represents the en_ALL.xml file:

<?xml version="1.0" encoding="utf-8" ?>
<messagebundle>

<msg name="title">Friend Finder</msg>
<msg name="info1">Track</msg>
<msg name="info2">Invite</msg>

</messagebundle>

This can be used inside of the application content as follows:

<div id="main_content">

<h1>__MSG_title__</h1>
<table><tr><td>__MSG_info1__</td><td>__MSG_info2__</td> </tr></table>

</div>

Figure 7-6 shows the results of running this when English is the user’s language, and Figure 7-7 shows
results when Spanish is the user’s language.

Track

Friend Finder
Invite

Figure 7-6: Application

using English message

bundle

268

Chapter 7: Sample Applications

Siga

Buscador del Amigo

Invite

Figure 7-7: Application using Spanish

message bundle

A useful application for translation of message bundles, i18n, can be found at http://code.google
.com/p/osi18ntool/download/list. This desktop application is shown in Figure 7-8. The results of
translating the previous message bundle will yield the following Spanish message bundle:

<?xml version="1.0" encoding="utf-8" ?>
<messagebundle>

<msg name=’title’><![CDATA[Buscador de amigos]]></msg>
<msg name=’info1’><![CDATA[Pista]]></msg>
<msg name=’info2’><![CDATA[Invitar]]></msg>

</messagebundle>

Figure 7-8: Gadgets i18n tool for translation of message bundles

269

Chapter 7: Sample Applications

Note that the translation is different from what is seen in Figure 7-7, which uses a different translation
online service. The Gadgets i18n tool is easy to use because you provide a message bundle in one lan-
guage, and it returns a message bundle in the specified language or can do all languages at once. Given
the discrepancies between language translation services, it can make sense to have a human language
expert confirm the translations. Consider the famous automobile example of the ‘‘Nova,’’ which had to
belatedly change its name for the Spanish-speaking countries where this translates to ‘‘it doesn’t go.’’

Another useful translation service is provided by hi5 (see http://www.hi5networks.com/developer

/2008/09/translation-service-for-openso.html). Figure 7-9 shows the hi5 developer interface and
the ‘‘languages’’ tab that provides translation of application message bundles.

Figure 7-9: hi5 message bundle translation service

In the case of a hybrid OpenSocial application, the client application can send (via the gadgets

.io.makeRequest call) information about the user’s language and country code as parameters.
Localization can be done on the server program or the response can use message bundles again. The
following code shows how to build these request parameters:

var prefs = new gadgets.Prefs();
var country = prefs.getCountry();
var lang = prefs.getLang();

var requestUrl = ‘http://example.com/hello/getGreeting.php?’ + ‘country=’ + country
+ ‘&lang=’ + lang;

gadgets.io.makeRequest(requestUrl, callback);

If the budget and schedule do not allow for localization, English is the best ‘‘universal’’ language for
application development. However, there are cases (such as for the container YiQi.com) where this will
most likely not be sufficient, and even developer information is not available in English.

270

Chapter 7: Sample Applications

Localization Resources

Following are some localization resources to check out:

http://code.google.com/apis/gadgets/docs/i18n.html

http://code.google.com/p/opensocial-resources/wiki

/OrkutLocalization

http://www.hi5networks.com/platform/wiki/Internationalization

http://wiki.opensocial.org/index.php?title=Localizing_OpenSocial_

applications

http://www.hi5networks.com/developer/2008/09/translation-service-

for-openso.html

http://wiki.opensocial.org/index.php?title=Gadgets_i18n_Tool

Using Flash Media
Using media in an application is a great way to increase an application’s installed base and retention.
Flash is a very popular kind of interactive media. Some developers create applications almost entirely
using Flash.

A couple of possibilities to embed Flash in an application include the use of the gadget API, and the
alternative use of an additional JavaScript library.

Option 1: Using the Gadget API
The Gadget API (which is part of the OpenSocial standard) includes support for embedding Flash files.
Specifically, the gadgets.flash.embedFlash method can be used to embed a Flash document into the
Document Object Model (DOM) tree of the XML application. Listing 7-18 shows a simple application that
uses this method call.

Listing 7-18: Application with Gadget Embedded Flash

<div id=’heading’></div>
<hr size="1px"/>
<div id=’movie’> </div>

<script>
var swfUrl = http://UServer.com/UFlash.swf;
gadgets.flash.embedFlash(swfUrl, "movie",

{id: flexAppId, width: 500, height: 500 });
</script>

271

Chapter 7: Sample Applications

The swfUrl variable is the URL to the externally hosted Flash file. The embedFlash method takes the
following parameters in order: the URL to the Flash file, the ID of the DOM element into which to embed
the Flash movie, and other optional parameters.

Option 2: Using the SWFObject JavaScript Library
Unfortunately, not all the OpenSocial containers support the gadgets.flash object. For example,
neither MySpace nor hi5 currently support it. If this is the case, you can use the solution pre-
sented here that utilizes the SWFObject JavaScript library. This is a free-for-use library found at
http://code.google.com/p/swfobject. Listing 7-19 shows an OpenSocial XML application that uses
this library to embed a Flash file.

Listing 7-19: XML Application Embedding Flash with the SWFObject Library

<div id=’heading’></div>
<hr size="1px"/>
<div id=’main’></div>
<hr>

<script src="http://UServer.com/swfobject.js"></script>
<script type="text/javascript">

swfobject.registerObject("movie", "9.0.0", "expressInstall.swf");
</script>

<div>
<object id=’movie’ classid=

"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
width="780" height="420">

<param name="movie" value="http://UServer.com/UFlash.swf" />
<object type="application/x-shockwave-flash"

data="http://UServer.com/UFlash.swf"
width="780" height="420">

</object>
</object>

</div>

The code in Listing 7-19 can be broken up into the following steps:

1. Load the SWFObject JavaScript Library:

<script src="http://UServer.com/swfobject.js"></script>

This code loads the SWFObject JavaScript library, which must be uploaded to the developer’s
server.

2. Embed the Flash content:

<object id=’movie’ classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
width="780" height="420">

<param name="movie" value="http://UServer.com/UFlash.swf" />
<object type="application/x-shockwave-flash"

272

Chapter 7: Sample Applications

data="http://UServer.com/UFlash.swf" width="780"
height="420">

</object>
</object>

The following are the required attributes of the object tags shown in this code:

classid — The outer object element only. The value is always clsid:D27CDB6E-
AE6D-11cf-96B8-444553540000.

type — The inner object element only. The value is always application/x-

shockwave-flash.

data — The inner object element only. This defines the URL of a SWF file.

width — Both object elements. This defines the width of a SWF file.

height — Both object elements. This defines the height of a SWF file.

The listed param element is required and specifies the following:

movie — The outer object element only. This defines the URL of a SWF file.

3. Register the Flash content with the SWFObject library:

<script type="text/javascript">
swfobject.registerObject("movie", "9.0.0", "expressInstall.swf");

</script>

The first parameter of the registerObject method is the ID in the markup of the object
associated with the Flash content. The last parameter is optional and is used to activate
the Adobe Express Install application (http://www.adobe.com/cfusion/knowledgebase
/index.cfm?id=6a253b75). It specifies the URL of the express install SWF file. Express
Install displays a standardized Flash plug-in download dialog instead of the appli-
cation Flash content when the required plug-in version is not available. A default
expressInstall.swf file is packaged with the library. It also contains the corresponding
expressInstall.fla and AS files (in the SRC directory) to allow developers to create their
own custom Express Install experience.

More Configuration Options
There are additional attributes and parameters that are useful in creating a custom Flash experience. For
the Object element, these include id, name, class, and align.

In addition, the following are optional Flash-specific param elements (see http://www.adobe.com

for more details on Flash): play, loop, menu, quality, scale, align, wmode, bgcolor, base,
swliveconnect, flashvars, devicefont, allowscriptaccess, seamlesstabbing, allowfullscreen, and
allownetworking.

273

Chapter 7: Sample Applications

You may want to consider adding alternative content inside of the Object element.
If the Flash plug-in is not supported, this alternative content will be displayed.
Here is an example:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
width="780" height="420">

<param name="movie" value="http://UServer.com/UFlash.swf" />

<object type="application/x-shockwave-flash"
data="http://UServer.com/UFlash.swf" width="780"
height="420">

<p>Alternative content</p>
</object>

</object>

Container Support
Social Networks sometimes require a review process for Flash content before allowing it to be used in an
application. Sometimes this is true even during development, before submission for publication. This is
the case for hi5, but not the case for MySpace. Unfortunately, this information is not documented. Should
you have a problem with Flash or other media appearing, take advantage of the developer forums for
the social network and inquire if there is a review process.

JavaScript Tools for Applications
Two JavaScript items, Dojo (a toolkit) and Coderunner (an OpenSocial JavaScript testing application),
can be useful in creating OpenSocial JavaScript applications.

The Dojo Toolkit is an Open Source JavaScript toolkit with a set of tools for DOM manipulation, Ajax,
animations, event and keyboard normalizations, Localization (i18n), and Accessibility (a11y). It is also
lightweight and free for use. Check out http://sitepen.com/labs/guides/?guide=DojoQuickStart

for details.

Coderunner is an application in orkut that you can install to test OpenSocial JavaScript calls (see
http://opensocial-resources.googlecode.com/svn/samples/coderunner/trunk/index.html).
Figure 7-10 shows Coderunner running some OpenSocial JavaScript code.

274

Chapter 7: Sample Applications

Figure 7-10: CodeRunner running live OpenSocial JavaScript code in orkut’s sandbox

Summary
This chapter covered a number of application features that are important and common in many applica-
tions. The discussion examined a number of person-related functionalities (such as the friend selector),
as well as communication-related functionalities (such as the creation of messages, signed requests, and
media items). Other topics of discussion included testing for support, error handling, container-specific
extensions, internationalization, and, finally, the inclusion of media.

Chapter 8 discusses OpenSocial Templates and Markup Language and takes a quick look at emerging
OpenSocial-related platforms.

275

Performance, Scalability,
and Monetization

This chapter explores performance, scalability and monetization issues. A phrase I often repeat
to my student developers is ‘‘just do it.’’ It is a mantra I believe in. However, this doesn’t mean
that you shouldn’t plan and think about the future. It does mean that you can sometimes become
overly concerned about issues such as performance and scalability, issues that remain throughout
all lifecycle stages of a system.

There are a number of ‘‘funny’’ stories about developers who have released already successful
social network applications, with hundreds of thousands of users running around to buy more
hardware to meet the demands of the new social network applications. What you can learn from
this is that there will always be times when you must respond quickly, and that an application will
always have performance and scalability problems. Smart developers will understand this from the
beginning, and, as budget and time allow, create their social network applications with performance
and scalability in mind.

The discussions in this chapter delve into the following topics:

Scalability and performance — What are they? How do you measure performance and
scalability?

Architecture — The discussions that follow explore single to ‘‘N’’ layers of an architecture.

Important subsystems — These are architecture components. The discussions examine both
necessary and optional components used for improving performance and scalability.

Case studies — Throughout this chapter, you will see examples of what social network
application developers are doing to make well-performing and scalable architectures.

Hosting solutions — These include shared server, host providers, cluster computing, and
private dedicated servers.

Chapter 8: Performance, Scalability, and Monetization

Database issues — You will learn about general database issues, including scaling up or scaling
out. You will also learn a bit about database sharding.

Monitoring — This can help with issues of scaling. (For example, you can add more servers and
other hardware upgrades, or simply focus on source code improvement.)

Redundancy — This is used for performance, reliability, and backup.

Software design — When examining software design, topics discussed here include design,
modularity, file loading, language choice, and versioning software.

OpenSocial performance tuning — How can you improve the performance of your OpenSocial
code?

Analytics — This discussion examines how to track your users and how they use your
application.

Scalable user interface design — You will learn how interface design can grow with the applica-
tion’s changing operations.

User/system support — This discussion delves into handling user’s requests, comments, and bug
reports. This is a great place to get ideas for future revisions.

Monetization — This is a discussion of how to make money, related services, and providers.

Understanding Scalability and Performance
To ‘‘scale a Web system’’ means to change (usually by increasing) the ‘‘size’’ or ‘‘capacity’’ of the system
or its individual components. Scalability is a measure of how much the system can be changed (and
sometimes at what cost). Typically, systems are scaled (up) to improve performance.

Performance has been defined by a number of metrics that include the following:

Throughput — This is defined as the number of requests per second.

Efficiency — This is the work rate of system processors.

Delay — This represents the delay in delivering a response.

Response time — This represents the average response time.

Quality of service and user experience/satisfaction — This is represented by both qualitative and
quantitative measures of the level of service or user satisfaction.

Some of these metrics (such as ‘‘user experience/satisfaction’’) can be rather esoteric. In this discus-
sion, the throughput (number of processed requests per second) will be used as the primary measure
of performance.

Defining Scalability
Many scalability metrics look at the exchange of improved performance for the entailed cost of scaling.
While there is no one best metric to be used, let’s look at the work published by Prasad Jogalekar and
Murray Woodside on scalability (see ‘‘Evaluating the Scalability of Distributed Systems,’’ IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 11, No. 6, June 2000), where they define a scalability metric

278

Chapter 8: Performance, Scalability, and Monetization

that compares the ‘‘productivity’’ (defined as a performance-cost metric) between two differently scaled
systems by calculating the ratio of their productivities. Productivity is defined as the ‘‘valued delivered
per second’’ divided by ‘‘the cost per second.’’ Value delivered is defined as a product of the throughput
and the average ‘‘value’’ of each response, which is a function of the quality of service.

Using this information, the following equations can be derived:

Productivity (@scale i) = Value / Cost;

Value = Throughput * Value_Response (Quality_of_Service)

Scalability (scale i&j) = Productivity(@scale i) / Productivity(@scale j)

While there are arguably many good metrics for measuring performance and scalability, these capture
the essence of the goal — to scale for better performance, while understanding the cost. When consider-
ing cost, you should not only take into account the purchase of any hardware or software, but also factor
in the configuration and maintenance cost and/or usage costs (when you are purchasing services). The
Value_Response metric and Quality_of_Service metric can encompass delay measures, availability mea-
sures, probability of timeouts, data loss, and system failures. Jogalekar and Woodside use the following
simple metric for Value_Response:

Value_Response (@scale i) = 1/ (1+ T(i)/T)

T(i) = Average response time at scale i

T = Target (ideal) response time

This metric of Value_Response will approach 1 as the average response time approaches 0. It will have a
smaller value approaching 0 as the average response time becomes larger (to infinity).

The goal is to have the highest value possible for a given scale. Jogalekar and Woodside suggest calculat-
ing the productivity for each scale you are considering. Using these values, you can then select where it
makes the most sense to currently scale. Look at their work for an analysis where they define the level of
scale i as representing the number of database processors and replicas.

Using Scalability Metrics
Having theoretical formulations like the ones just discussed can provide some tips on scaling. However,
the reality is often different, and many times practitioners depend on their own experiences and case
studies or anecdotal information to make scaling decisions. Another approach (which is more feasible
when paying for use, instead of purchasing owned resources) is to do benchmarking tests, or simply ‘‘just
try it out.’’ For example, the developer examines a part of the Web system (say, database retrieval) and
measures how throughput is improved when increasing the scale (such as adding more database servers).
This can be expensive, so I suggest first understanding the costs involved and potential performance
increase.

If cost turns out to be reasonable, a developer might decide to scale up. However, with scaling comes
additional resources, added management, and unexpected failures. So, unless performance is a problem,
leave it alone (a philosophy often described in the adages, ‘‘Don’t fix something that isn’t broken,’’ or
‘‘Keep it simple stupid’’).

279

Chapter 8: Performance, Scalability, and Monetization

Performance Problem Areas
This chapter provides tips for improving performance, as well as handling a number of performance
problems. Before getting into details, let’s establish that many performance bottlenecks are related to one
of the following issues:

Application server response time

Database server response time

Later discussions in this chapter focus on architectural decisions that make a big impact on performance.
In addition, this chapter covers other scalability issues related to source code development and perfor-
mance ‘‘tuning.’’

Scaling Up or Out
When considering scaling options, developers talk about the two paradigms of scale up (also known
as vertical scaling) and scale out (also known as horizontal scaling). ‘‘Scaling up’’ is the replacement of a
resource with a single, better-performing resource. An example is replacing a server with one that has
additional memory, more processors, and increased processor speeds. ‘‘Scaling out’’ is the replacement
of a set of N resources with N + K resources. An example is replacing one database with four database
servers.

Understanding Architecture
Web system architecture involves the conceptual design and implementation of the components in a Web
system. The simplest Web system for a social network application is none. Recall that it is possible to host
an OpenSocial JavaScript application on some of the social networks (or containers). If the application
has no need for back-end services (such as database storage), then this is sufficient.

OpenSocial REST applications are, by definition, always server-side. Many OpenSocial JavaScript appli-
cations will have proprietary data for which the simple OpenSocial persistence service will not suffice.
In this case, server-side storage and retrieval is needed. Also, many applications have business logic that
the developer wants to have on the server side (rather than on the client side) for a variety of reasons,
including the following:

Ownership

Performance

Security

A good architecture is important for successfully running applications. It becomes critical when an appli-
cation goes viral. Sometimes, developers start out using a shared single-server environment. In this case,
the server must handle all requests and provide presentation, business logic, and data logic not only for
your application(s) but also for others sharing the server. This is fine as a learning environment, but, with
the growth of a user base, it can quickly become a performance problem.

Minimally, at the beginning, your architecture should consist of a Web server and a database server.
However, this is usually not enough as applications go viral. Later in this chapter, you’ll see case studies

280

Chapter 8: Performance, Scalability, and Monetization

that show how other developers or companies have solved this problem. The main focus of the current
discussion is how to architect multiple servers into well-performing and scalable systems.

When creating the architecture for a Web system that serves a social network application(s), the following
should be taken into consideration:

Number of users (requests)

Budget and costs

Performance

Scalability

Maintenance

Reliability

Backup

A common concept of application logic is separate presentation, business, and data services and logic.
A common description for this is a three-layer architecture (using a model-view-controller, or MVC,
framework).

The Presentation layer is the part of the application that is responsible for constructing presentation infor-
mation that involves the creation of a user interface. The Business layer is the ‘‘computational’’ layer,
where operations on data are performed to achieve application logic and are returned to the Presenta-
tion layer logic. The Data layer is responsible for all storage and retrieval data operations, and typically
involves a database(s).

Another conceptual architecture separates the system into an Application/Client layer, a Middleware
layer, and an Infrastructure layer. There are some similarities with the Presentation-Business-Data model.
The Application/Client layer is composed of the technology and software components that directly serve
the client. The Middleware layer focuses on services to the client that utilize the Infrastructure layer.
Following are some examples of Middleware layer services:

Authentication

Authorization

Encryption

Communications (via sockets, and so on)

Database pooling

Messaging

HTTP/Web services

The Infrastructure layer represents the physical equipment, data, and resources used in the system.
Examples of Infrastructure layer components include the following:

Database

Proxies

281

Chapter 8: Performance, Scalability, and Monetization

Load balancing

Security (for example, firewalls)

Operating system and server configuration

While these are conceptual models of architecture, they often translate into modularization of software
and partitioning of hardware to handle each layer separately.

Another useful separation for improved performance is to have separate layers for static versus dynamic
Web/application content. Developers may serve up Static layer content with a ‘‘lighter-weight’’ Web
server or cache.

As for the Dynamic layer content (sometimes called the Application layer), developers also commonly
separate it (the Infrastructure layer) into two separate layers: a stateless layer and a persistence (stateful)
layer. If there is a separate stateless application layer, it can be infinitely scalable.

There is no single standard methodology for developing Web system architectures. This can be
approached in many different ways, focusing on data-driven, user-driven, or function-driven method-
ologies. Software engineering principles of requirements analysis and design can be employed. An
example of a more formalized method for Web system architecture is the Open Group Architectural
Framework (TOGAF) Method (see http://www.opengroup.org/architecture/togaf8-doc/arch).

The next few sections of this chapter delve deeper into Web system design. First, let’s take a look at
a treatment of the necessary (for example, Web server) and optional (for example, caching) subsystems.
Issues of performance and scalability are highlighted. Later, you’ll learn about the roles of current hosting
solutions and databases in architecture design.

Understanding Subsystems
Figure 8-1 shows a generic Web system architecture that has a number of commonly used subsystems.
The first layer’s components are called Front-end Scalers. The purpose of the Front-end Scaler(s) is to
distribute requests for improved performance. Requests can be sent to the Web servers, or directed to the
application servers supporting the separation of dynamic and static content. The Front-end Scaler(s) can
have an embedded cache for fast retrieval, and can involve the following subsystems:

Load balancer(s)

Proxy servers

Caching/Squid

Connection pooling to back-end machines

Rounding out the design in Figure 8-1 are sets of Web and application servers, a caching layer, and
database layer.

The following discussions examine each of the components in Figure 8-1, and provide information about
current products as appropriate. (The discussion of database issues appears later in this chapter.)

282

Chapter 8: Performance, Scalability, and Monetization

Web Server

App Server

Web Server

App Server

Database Database Database Database

Web Server

Front-end Scalers

App Server

Web Server

App Server

Caching

Figure 8-1: Generic Web system architecture with multiple layers and

components

Web Server
Web servers are machines that run a program that accepts HTTP requests from clients and, in return,
gives an HTTP response.

There are a number of commercial Web servers on the market. Go to http://en.wikipedia.org/

wiki/Comparison_of_web_servers for a comparison of some of them.

Many developers use Apache as their Web server for both dynamic and static content. Apache is Open
Source and free. It is considered by many a good, general-purpose Web server, and many large Web sites
use it. It currently is the most used Web server on the Internet. Apache can be extended in a number
of ways through additional modules. For example, Apache can be extended to serve as an application
server with support from modules such as mod_perl and mod_python.

Apache can serve as a reverse proxy with the mod_proxy module. (Proxy servers are examined in more
detail later in this chapter.) In conjunction with this, the mod_cache module can be configured to be a
caching proxy. (Caching is also discussed in more detail later in this chapter.)

Because Apache supports a number of services, it can also be more than is required and slower
than desired. This is particularly true if what are requested are static documents. An alternative is a
lightweight Web server such as lighttpd, which uses less memory and has a lighter CPU load. It has been
often used for delivering not only static content but also media-heavy, large content. lighttpd can also be
used as a load balancer and reverse proxy (both of which are discussed later in this chapter). Another
server, Nginx (discussed later in this chapter), can also serve as a faster performing Web server.

Application Server
There are many dynamic application engines/environments a developer can use for serving dynamic
(Web) requests. Each application server program supports a particular language, such as PHP, Python,
Perl (PerCGI), Java (J2EE), and so on. Installation and configuration of the application server software

283

Chapter 8: Performance, Scalability, and Monetization

is specific to the application server software chosen, and the developer should follow the corresponding
documentation.

Load Balancing
As more servers are added (via replication, which is discussed later in this chapter in the section, ‘‘Dis-
tributed Systems (Scale Out)’’) to handle performance needs, some mechanism must be used to direct
incoming traffic among the multiple (replicated) servers. This is the job of a load balancer, which can be a
piece of software and/or hardware. For improved speed, hardware-implemented load balancers should
be used, and these can involve switches for fast routing.

There are a number of products available, and each has its own algorithm for determining how to direct
the incoming requests. For directing traffic among a set of Web servers, a common technique used is
called round robin rotation. This technique directs incoming requests (in a rotational order) to the servers
in its pool. For example, if there are three servers, A, B, and C, the first request goes to A, the next to B,
and the third to C, with the fourth request going back to A.

Another algorithm employed is random selection. In this case, the traffic is directed to a ‘‘randomly’’
selected server.

These are simple and fast algorithms. Some load balancers consider the load and response time of each of
the servers in determining where to pass the request. The load balancer must quickly make its decision
about routing a request to avoid adding too much delay in its processing.

More complicated configurations with load balancers are possible. For example, the balancer can be set
up in an asymmetric fashion so that some servers receive more traffic than others. Another possibil-
ity is an ‘‘on-demand’’ setup, where more servers are dynamically brought into the pool as the traffic
increases. There are even some load balancers that let you create script programs to be used for the traffic
distribution.

An intelligent load balancer attempts to determine which server is least loaded, and route the request
to the server most likely to be able to handle the request quickly. Following are a few things to consider
when selecting a load balancer:

High-quality software load balancers are more expensive than the round-robin variety.

Hardware-based load balancers are, in general, more expensive than software load balancers.

A concept related to load balancing, partitioning, is the splitting up of different application information
and services into clusters or groups of servers and/or storage. For example, one set of servers could deal
with messaging operations. Another set of servers could process application business logic. Intelligent
load balancers can then direct traffic to a cluster of servers, as well as to a particular server in this cluster,
based on the request information.

Caching
Caching is the process of storing requested information in special-purpose memory for fast retrieval.
Retrieving information from cache is significantly faster than database retrieval or an application creating
a response. Depending on the amount of data, caching can be many times faster. A caching ‘‘system’’ can

284

Chapter 8: Performance, Scalability, and Monetization

be implemented to facilitate different architecture layers. It can be used to store static content, such as
static Web pages or Web content. Caching can be used to store commonly requested database items. It
can also be used to store even the results of dynamic application programs. In this case, the cache content
will have a more limited lifetime, and will be refreshed more frequently.

Caching improves performance by reducing response latency. It also diminishes server loads and reduces
network traffic. A Web cache stores copies of documents passing through it; subsequent requests may be
satisfied from the cache if certain conditions are met.

For the social network application, caching can be done at the client, the social network container, the
proxy server (front end) and at back-end servers. Social network application developers can control how
(and if) caching is done on their servers. Also, developers can directly make requests regarding caching
on the social network container. For OpenSocial REST applications, developers can send directives (via
HTTP headers, and so on) for client caching.

In the case of the client, content will be stored in the cache of the user’s machine. The client cache is often
called the user agent cache, and is set up and managed by the user’s Web browser (or user agent). Users
have the capability through the browser’s controls to clear the cache and, in some cases, to disable it.

Server caching can be implemented at different stages and in different ways, including the following:

Proxy server (forward proxy cache or Web cache)

Reverse proxy server

Database cache

Distributed cache

Performance improvements from cache are limited by the size of the cache and number of cache servers.
Pre-fetching is the anticipation and placing into cache responses to requests that are likely to happen in
the future. Pre-fetching can increase the hit rate and, hence, improve the performance of using caches.
Common use patterns can predict what items will be needed and, hence, pre-fetched.

Cache and HTTP Headers

While caching on the server and client are great ways to improve performance, it must be used with care
so that stale content is not retrieved. The following HTTP headers involve caching and are important to
remember when making requests to systems that use cache:

IF-Modified-Since — This means do not send a response if not modified since this date/time.

Pragma no-cache — This means do not return a response from cache.

Last-Modified — This gives a date/time when last modified.

Client caching can make a huge difference. For example, when visiting a popular site that has been cached
by a browser, it can load in less than a second. By comparison, when visiting the same page after cache
has been cleared, it can take more than 2 seconds to load. (The exact times will vary, of course, based on
traffic conditions, the client machine, and other issues.) What is important in this anecdotal information
is the number of times faster the site with caching loads compared to the same client in similar network
conditions.

285

Chapter 8: Performance, Scalability, and Monetization

The use of HTTP headers can help control how caching is done on a client. The following HTTP headers
pertain to caching on the client:

Expires — This HTTP header is set to a date when content is no longer good. This tells the
client cache how long the content is good for. After the time specified, the client will forward the
request on to the server, instead of retrieving the item from its cache. A problem with Expires

is that the server and client must have the same synchronized date, or problems may occur. For
static content, this should be set to a far future date. For dynamic content, this can be used if you
know the date the dynamic content will next change. For example, this would be the case if it is
the application policy to load in new messages at the same time each day.

Cache-Control — This HTTP header provides more options than Expires for setting
cache-related specifications. You can use the following header values:

max-age=second — Sets the maximum time content as good. This is like Expires header.

public — Sets authenticated responses as cacheable (the default is uncacheable).

no-cache — Like Expires, this means submit requests to the server.

must-revalidate — Even in special situations (allowed in HTTP), the client must adhere
to specifications of the Cache-Control header.

See http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9 for more details.

The following is an example of a Cache-Control header:

Cache-Control: max-age=3600, must-revalidate

Check out http://www.mnot.net/cacheability for a tool that can assist you in figuring out how
cacheable an application’s responses are.

Other techniques can be used for avoiding the cache when desired. One not uncommon technique is cre-
ating request URLs that have appended to them random strings that do not affect the content requested
but are treated as requests that are unique from what currently is cached.

Proxy Server

The general definition of a proxy server is a server that accepts requests, possibly filters them, and then
passes them on to another server. The purpose of proxy servers typically relates to security but can also
involve caching. In the latter case, they are called caching proxy servers. When these servers are focused
only on Internet traffic, they are called Web proxy caching servers and are implementations of Web cache.
Another name for this kind of Web cache is a forward proxy cache.

Reverse Proxy Server

A reverse proxy server is a server that receives all requests for a set of servers. The reverse proxy server
should be physically close to its servers for fast forwarding. Other names for the reverse proxy server
include the following:

Gateway cache

Surrogate cache

Web accelerator

286

Chapter 8: Performance, Scalability, and Monetization

Reverse proxy servers are used for load balancing. A Web accelerator can improve performance by caching
content and, thus, service incoming requests readily.

The difference between a (forward) proxy server and a reverse proxy server is that a forward proxy server
is set up so that it is ‘‘closer’’ to a set of clients, and services these clients by caching information. In this
case, the forward proxy server serves a limited number of clients. The reverse proxy takes the opposite
tact and is set up close to the servers. The reverse proxy is intended to serve an unlimited number of
clients for a limited number of Web servers.

A Web accelerator (reverse proxy server) designed for heavy content delivery is Varnish
(http://varnish.projects.linpro.no), and the provider claims that it is faster than Squid
(which is discussed shortly). It is Open Source, free software. Varnish is designed as a high-performance
caching reverse proxy, unlike Squid, which is a forward proxy that can be configured as a reverse proxy.

While a reverse proxy server sits in front of Web servers (as represented by the Front-end Scalers shown
in Figure 8-1), receives all requests, and dispatches them to one of a set of Web servers routed through
the proxy server, it can also handle the request itself. The reverse proxy server can direct requests for
static data to different servers than requests from the dynamic application.

Multiple Cache

Multiple cache servers can be managed using protocols such as Internet Cache Protocol (ICP) and Hyper
Text Caching Protocol (HTCP). ICP is a lightweight protocol used to find the most appropriate location
to get something from the cache when multiple cache servers are used. HTPC discovers, manages, and
queries an HTTP cache. Covering this in detail is outside of the scope this book, but the following are
some resources to check out:

ICP documentation — http://tools.ietf.org/html/rfc2186

Application of ICP to Web caching — http://tools.ietf.org/html/rfc2187

HTCP — http://www.htcp.org

Following are a few of the servers that use ICP or HTPC:

Squid server — Squid is an Open Source (forward) proxy server and Web cache. As an Open
Source project, it is free for use. Squid supports not only HTTP but also FTP and other protocols
(such as SSL and HTTPS). Although a forward proxy server, Squid can also be configured to
run as a reverse proxy server. For more details on Squid, see http://www.squid-cache.org and
http://www.visolve.com/squid/whitepapers/reverseproxy.php.

Microsoft Internet Security and Acceleration (ISA) server — ISA server is an edge security gateway
that is described as offering both security and fast access to applications (application server)
and data. ISA supports both scaling out and scaling up. It is now supported on hardware
virtualization.

Cisco Content Delivery Engine/System — These are both hardware and software solutions pro-
vided by Cisco for content ingest, storage, caching, personalization, and streaming functionality.

Distributed Cache

Memcached is a general-purpose, distributed memory-caching system that is used by some large Web
sites, including YouTube, Digg, Twitter, and Slashdot. It creates one global cache distributed across a

287

Chapter 8: Performance, Scalability, and Monetization

number of servers. A common use is to improve performance of dynamic database-driven Web sites by
caching data to reduce the number of the database retrievals. Memcached is free for use.

Memcached is supported in a number of languages. APIs can be found at http://www.danga.com/
memcached/apis.bml.

Memcached works as follows:

1. Memcached creates a large hash table distributed across multiple machines.

2. When the table is full, subsequent inserts cause older data to be removed in least recently
used (LRU) order.

3. Applications using Memcached put Memcached requests into application code and, if it fails
to retrieve the item, the application code then makes a call to the database.

Memcached is implemented using two-layer hashing as follows:

The first layer sends a request to a Memcached server it finds by hashing the key onto a list of
virtual buckets, each one representing a Memcached server.

The second layer (at each of the distributed Memcached servers) uses a hash table to store the
data.

Listing 8-1 shows application code that services a request to retrieve data. First, Memcahced is tried, and
if this fails, the request passes to the database.

Listing 8-1: Memcached Pseudo Code to Get Data

function retrieve_data (int userid) {
value = memcached_fetch("userrow:" + userid); //try to get from memcached
if (!value) { //if not in cache then must do database call

value = db_select("SELECT * FROM users WHERE userid = ?", userid);
memcached_add("userrow:" + userid, value); //ask to store in cache

//key is userid .
}

return result;
}

Listing 8-2 shows the application code that performs a request to store data. Here, both the database and
Memcached are updated.

Listing 8-2: Memcached Pseudo Code to Store Data

function store_data(int userid, string dbString) {
value = db_execute(dbString);
if (value) {

d = createUserDataFromDBString(dbString);
memcached_set("userrow:" + userid, d);

}
}

288

Chapter 8: Performance, Scalability, and Monetization

When using Memcached, set the expiration for every Memcached record created. This is done through
the Time to Live (TTL) parameter. When this expires, Memcached will return a ‘‘404: Not Found’’ error
code. This ensures that a cache record will not be used after its expiration.

Memcached can be used not only to cache database records but also for application requests, as shown
in the next discussion regarding Nginx.

Nginx

There are a number of products that combine components previously discussed. One such sys-
tem, Nginx, is rapidly gaining popularity. It combines a reverse proxy server with cache (see
http://wiki.codemongers.com/Main and http://nginx.net). Nginx comes preloaded with Mem-
cached, which means that requests can bypass the application server and be served directly from cache.
KlickNation and others have successfully used Nginx to improve performance. Some companies report
increases such as a 400 percent throughput increase (for example, from 400 requests per second to 1,600
requests per second).

There are caching modules available for Apache (http://code.google.com/p/modmemcachecache)
and lighttpd (http://trac.lighttpd.net/trac/wiki/Docs). However, they require additional
setup and configuration, whereas this feature is standard in Nginx. Like lighttpd, the mem-
ory footprint and resource usage is lower (as compared to Apache). A number of sites (see
http://wiki.codemongers.com/Main) have reported that Nginx is now more popular than lighttpd.

Nginx works when it gets a request by first querying the cache. If it does not find the item, it will
respond with a ‘‘404: Not Found’’ error code. This error can be caught, and then a redirect is made to
the application server to process the request. Also, the application should return a response and send
it to Memcached to be stored for future retrieval. Following is an example of the configuration used to
do this:

upstream appserver {server 127.0.0.1:9010;}
server {

location / {
set $memcached_key $uri;
memcached_pass 127.0.0.1:11211;
error_page 404 = @dynamic_request;

}
location = @dynamic_request {

proxy_pass appserver;
}

The following points help explain this script:

memcached_key is the key that Nginx will query Memcached with. Here, the Nginx variable $uri

is used.

If the resource is not found (404 in the code sample) in Memcached, the request (via
@dynamic_request) is passed on to your application server at appserver, which, in turn, should
return a response.

Some developers have also used Nginx for serving (and caching) static content, finding that using it
results in such fast delivery that as users increase, the bottleneck becomes a server’s I/O capacity before
maxing out memory or CPU usage on a server.

289

Chapter 8: Performance, Scalability, and Monetization

Content Delivery Networks (CDNs)
For a heavy-content application, using a Content Delivery Network (CDN) can improve performance.
A CDN is a set of computers networked across the Internet that work together to deliver content to end
users. The improved performance from using a CDN is achieved through placement of servers closer to
the clients. In this way, the clients can be more quickly served, and there is less traffic on the developer’s
network backbone. This design is sometime referred to as edge server placement.

CDNs advertise themselves as a commercially available set of grid computers purposed to serve and
store heavy-demand data. Typically, this is served out of memory. Some providers include Akamai,
Limelight Networks (LLNW), and CDNetworks. The number of servers (nodes) making up a CDN varies,
depending on the architecture, with some reaching thousands of nodes with tens of thousands of servers.
There is a trend for larger Web sites with heavy-data needs to build their own CDNs.

Some of the CDNs not only offer content storage but are also application service providers (ASPs) which
means that they host applications. One such provider is Akamai. Akamai will host all kinds of content,
including HTML, CSS, audio, graphics, animation, and video that mirrors the content at the customer
servers. When a client accesses the customer’s site, content can be delivered from a nearby Akamai server
instead of from the customer’s site. The Akamai server is automatically picked depending on the type of
content and the client’s Internet (network) location.

This frees up resources on the customer’s network and produces a fast response time to the client. In
addition to static content caching, Akamai provides application services that (because of being nearby to
the client location) can accelerate dynamic content delivery. Akamai hosts J2EE-compliant applications
and streaming media, among other applications.

Note that S3 (an Amazon storage solution) shouldn’t be confused with a CDN. It is
not a distributed caching service, and it doesn’t have global locations like a CDN
does. S3 will be discussed later in this chapter in the section ‘‘Hosting Solutions.’’

Understanding Hosting Solutions
The range of possible solutions for hosting a social network application includes the following:

Shared hosting

Collocated hosting

Unmanaged leased dedicated hosting

Managed dedicated hosting

Cloud computing hosting

Internal/owned/proprietary hosting

Shared hosting is sharing a server with other customers. This is okay as a learning environment but not
something that can be used for serious application hosting. This is a starting point for many beginning
developers that they will quickly outgrow when their applications start to experience some success. If the

290

Chapter 8: Performance, Scalability, and Monetization

application takes up too many resources, the shared-server administrator will often ask the developer to
find a better solution. Another drawback of using shared servers is that these servers are controlled by
the provider, and getting special software installed may not be possible.

Collocated hosting means the developer purchases a host, and it is placed on a network by the hosting
provider. The network (and hopefully redundant power supply) is supplied by the hosting provider.
Sometimes server management will be offered.

Unmanaged leased dedicated hosting is the similar to collocated hosting, but, in this case, you are leasing the
machine. In addition, no management of the servers is given, and because of this lack of support, this is
generally not a good solution for social network application developers.

Managed dedicated hosting means that the provider also manages the servers. Both models, where you
lease, as well as where you provide, the server are available, but the former (leasing) is more typical. Sup-
port can be variable among managed hosting providers, and can include uptime monitoring, hardware
warranties, security updates, and more. Of the options mentioned so far, this can be a viable solution for
part of (or all) your hosting needs.

Cloud computing is a set of computers on the Internet that form a ‘‘cloud,’’ which are used in concert
to provide computing resources. Grid computing is often associated with cloud computing, and it is a
topic of discussion later in this chapter. Cloud computing is considered by many to be a new computing
paradigm that excels above other Web-hosting solutions. The provider will manage the computing cloud
resources, networks, and so on, and the developer pays for use of the system. Companies such as Amazon
and Joyent provide cloud computing resources, and are commonly used by social network application
developers.

The last form of hosting solutions is the owned/proprietary system solution, where the developer owns all of
the computers/servers and the network. This means a larger initial capital outlay that will not be feasible
for most startup organizations. Hosting solutions that allow developers to rent the use of resources to
host their applications do not require this large initial investment, nor do developers have to have staff
to maintain the hardware.

For the leased hosting solutions, resource use is typically rented by the hour and/or by the amount of
storage and number of transfers. Benefits of this model are the access to scalable resources a developer
could not initially afford and the capability to expand resource use dynamically as demand rises. The
hosting providers can have hundreds or thousands of machines, typically consisting of commodity hard-
ware that will change frequently. As users of these systems, developers do not need to care about their
changing configuration and maintenance, only that performance and scalability needs are met.

In general, renting resources (like renting a car) can be more expensive in the long run. However, when
factoring in the reduced personnel, it can still be economical. For ‘‘smaller’’ organizations, it can be the
only viable alternative. That being said, a number of large companies use managed or cloud hosting
solutions.

Some developers may only use external (systems they don’t own and/or manage) hosting solutions for
part of their systems. An example of this is using external hosting only for large-volume content storage
and delivery, but maintaining developer-owned application servers and other resources. In this hybrid
solution, it may make sense to retain the most frequently requested (for example, top 10 percent of)
resources on the developer’s own servers (preferably with caching).

291

Chapter 8: Performance, Scalability, and Monetization

The reason is that, for these limited resources (which will have a high percentage of use), the developer
will not have to pay for the transfer fees from the hosting provider. Not only can this save significant
money, but also performance will be improved if the frequently used objects are stored in cache, or
efficiently retrieved. This kind of cost analysis will be highly dependent on application needs. Going to
the trouble of having a hybrid system will usually mean that you have a very popular application, or are
in the business of creating a number of applications.

With this additional complexity, there are some benefits such as redundancy — that is, if a hosting
provider is down, your application can write to your proprietary storage. But, this means writing your
code with these fail-safes built in.

What They’re Saying about Hosting Solutions
Developers are using all kinds of solutions. I interviewed a number of developers at an OpenSocial event,
and here are some the trends and comments regarding the topic of hosting solutions:

Popular hosting providers (in no order) are Amazon and Joyent. More recently, some developers
are trying out Google App Engine.

The free account provided by Joyent is popular, especially with new developers.

Developers find there is a difference among the hosting providers in costs for their application
architecture configuration needs.

No consensus has evolved on what provider is the best in terms of service. However, some
providers (such as Amazon, Joyent, and App Engine) provide cloud/cluster computing support
that is different from other more traditional ‘‘managed server’’ providers.

Here are some tips to consider when looking at different hosting solutions:

Understand what kind of hosting the provider is offering (shared server, collocated, managed,
cloud computing, and so on).

Consider the scalability limitations. What is the size of the available resources?

What support exactly (free, fee-based) is provided? How do you reach the support staff? How
qualified are the employees?

What are the costs? Look at different scenarios so that you know what you are getting into.

Look for data centers that have redundant power sources and redundant connectivity.

Look at security — both physical and network.

As for connectivity, how many lines are being offered? What is the typical utilization (meaning
what bandwidth is left for you to use)?

Know what the bandwidth limitations are and what happens if the application exceeds them.

How do former and current customers rate them?

Amazon Web Services (AWS)
Amazon Web Services (AWS) is Amazon’s Web-hosting solution, which provides access to a number of
developer services using the HTTP, REST, and SOAP protocols. Let’s take a look at a few services useful

292

Chapter 8: Performance, Scalability, and Monetization

for hosting social network applications that AWS provides — Elastic Compute Cloud (EC2), Elastic Block
Store (EBS), Simple Storage Server (S3), and CloudFront.

Elastic Compute Cloud (EC2)

EC2 allows developers to rent computer resources for hosting their applications in a cloud computing
environment. EC2 provides the use of a large number of machines that a developer utilizes by creating a
desired number of ‘‘virtual machines’’ (server instances). Each virtual machine can be configured to con-
tain developer-specified software. A developer can create and remove server instances as performance
demands. These new server instances can be brought online in seconds/minutes, and truly make the
application scalable. This is where the term ‘‘elastic’’ comes from.

After creating an EC2 account, a developer has the capability to set up (virtual) server instances. Ama-
zon will allocate resources (such as CPU, memory, and instance storage through the specification of
‘‘instance type,’’ which will be discussed shortly). Other resources (such as network and disk subsys-
tems) are shared among instances (possibly including ones owned by other customers). Shared resources
are distributed equally among similar ‘‘instance types’’ with higher-performing ‘‘instance types’’ getting
a higher amount of shared resources.

EC2 instance types are currently classified as standard instance types and high CPU instance types.

Standard instance types have the following specifications:

Small Instance (Default) — 1.7GB of memory, 1 EC2 Compute Unit (1 virtual core with 1 EC2
Compute Unit), 160GB of instance storage, 32-bit platform, I/O performance is moderate

Large Instance — 7.5GB of memory, 4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute
Units each), 850GB of instance storage, 64-bit platform, I/O performance is high

Extra Large Instance — 15GB of memory, 8 EC2 Compute Units (4 virtual cores with 2 EC2 Com-
pute Units each), 1690GB of instance storage, 64-bit platform, I/O performance is high

High CPU instance types have the following specifications:

High-CPU Medium Instance — 1.7GB of memory, 5 EC2 Compute Units (2 virtual cores with 2.5
EC2 Compute Units each), 350GB of instance storage, 32-bit platform

High-CPU Extra Large Instance — 7GB of memory, 20 EC2 Compute Units (8 virtual cores with
2.5 EC2 Compute Units each), 1690GB of instance storage, 64-bit platform

Developers should decide on what kind of instance(s) to use based on resource needs and budget. One
idea is to try out the different instance types to see how they perform for an application — in essence,
doing a benchmark test. Amazon recommends standard instances for most general-purpose applications,
and high-CPU instances for compute-intensive applications.

In addition to choosing what type of instance(s) to use, developers will set up each instance with a
software configuration determined in advance. A software configuration is represented by an Amazon
Machine Image (AMI). The desired architecture will designate the number of instances and which AMI
to install on each. Recall the generic architecture used (with some variations) by many developers with
high-use popular applications shown in Figure 8-1. In reference to Figure 8-1, AMIs must be generated
to represent the Web servers, application servers, and database servers.

293

Chapter 8: Performance, Scalability, and Monetization

An AMI specifies the operating system, machine configuration, libraries, and service programs, in
addition to developer application-specific content and programs. Amazon provides a number of pre-
configured template images that can be used as a starting point. You should use one of these templates
and customize it to create your own AMI.

Amazon provides the following options in terms of operating systems:

Red Hat Enterprise Linux

Windows Server 2003

OpenSolaris

Oracle Enterprise Linux

openSUSE Linux

Ubuntu Linux

Fedora

Gentoo Linux

Debian

Amazon provides the following database software options:

Oracle 11g

Microsoft SQL Server Standard 2005

MySQL Enterprise

Microsoft SQL Server Express

Amazon provides the following batch-processing software options:

Hadoop

Condor

Open MPI

Amazon provides the following Web server software options:

Apache HTTP

IIS/ASP.Net

Amazon provides the following application server software options:

Java Application Server

JBoss Enterprise Application Platform

Support for a number of languages (PHP, Perl, Python, and more)

Ruby on Rails

294

Chapter 8: Performance, Scalability, and Monetization

There are many other kinds of software provided for use by Amazon, as detailed on its Web site. For
example, the following video-encryption and streaming software is available:

Wowza Media Server Pro

Windows Media Server

There are a number of good articles at the EC2 Web site that show, step by step, how to use its services.
The following steps outline the basic steps to use the EC2 service:

1. Create accounts on EC2 and S3. (S3 will be discussed shortly.)

2. Create an AMI for each kind of server instance needed.

3. Upload the AMI(s) into Amazon S3. S3 is Amazon’s storage service, and Amazon will create
new virtual machine instances from AMI(s) stored there.

4. Set up security and network access.

5. Select multiple locations, if desired.

6. Choose the appropriate instance type(s) and operating systems. ‘‘Start’’ instances (each asso-
ciated with an AMI).

7. Monitor (as desired) instances using Web service APIs.

8. Determine (if desired) persistent block storage.

9. Developer will be billed for resource use.

Details for setting up your account, creating AMIs, and creating instances are covered at
http://docs.amazonwebservices.com/AWSEC2/2007-03-01/GettingStartedGuide. Another
article to look at is one dedicated to using Amazon for Facebook social network application development
at http://developer.amazonwebservices.com/connect/entry.jspa?entryID=1044. As of this
writing, there is not yet an equivalent for OpenSocial, but the tips are easily translated for OpenSocial.

Sign up for Amazon Web Services at http://amazon.com/ec2. In addition to a login and password, you
will be given both an Access Key ID with Access Key Secret and an X.509 certificate.

When making a request to the Amazon system, the access identifiers are used as identification for the
requestor. Any authenticated requests must be signed by including a ‘‘signature’’ calculated by using
the pair of public/private access identifiers. AWS supports the use of its Access Key information and the
X.509 certificate as follows:

AWS Access Key Identifiers are used to calculate HMAC-SHA1 request signatures, and these are
included in query, REST, and SOAP requests.

X.509 certificates can be used as an alternative to the Access Key Identifiers for authentication
of requests. This certificate can be generated by Amazon when you set up your account, but
you may also upload a certificate of your own. You can use X.509 certificates only with SOAP
requests.

Never give out this information to third parties. Keep it in a private, protected location.

295

Chapter 8: Performance, Scalability, and Monetization

Grid/Cluster Computing

An advantage of the Amazon EC2 cloud computing service (as well as some other hosting providers that
offer cloud computing) is that they can be set up to do a form of ‘‘parallel’’ computing referred to as grid
or cluster computing. This actively uses a set number of server instances in EC2 to resolve a single task in
a parallel distributed fashion. One of the software packages offered by Amazon for use in the creation of
AMIs is Hadoop, which can be used to implement grid computing solutions.

Hadoop is based on running a map/reduce algorithm with a distributed file system. Hadoop can be used
to take care of instance failure and perform data replication.

See http://hadoop.apache.org/core for more details on Hadoop.

Elastic Block Store

Elastic Block Store (EBS) gives persistence storage to Amazon EC2 instances that currently can range
from 1GB to 1TB. It is designed to provide better latency and throughput than the storage in the Amazon
EC2 instances, and is why a developer may want to use it over the storage on an EC2 instance.

An EBS volume can only be used by one EC2 instance, but multiple volumes can be used by one EC2
instance. This storage persists independently from the life of an instance. An EBS is used like a hard
drive with its own file system.

One use of the Amazon EBS is to place data across multiple volumes to increase access throughput (like
a distributed file system). If an instance fails, the EBS volume that was associated with it can be assigned
to another working instance. This provides a form of fail-safe information storage.

Simple Storage Server

Amazon Simple Storage Server (S3) is a storage service that is used by EC2, but it can also be used inde-
pendently. It is used by a number of Web sites to store and serve static content. It is reported by many
developers to be a highly scalable, fast, and reasonably priced solution. Data objects in S3 are currently
defined as ranging from 1 byte to 5GB, and S3 can (theoretically) store as many objects as desired. Both
REST and SOAP are used to store, retrieve, and delete data objects.

Note that S3 shouldn’t be confused with a CDN. It is not a distributed caching service, and it doesn’t
have global locations like a CDN does.

A nice Web client for accessing S3 is the Firefox add-on called S3Firefox Organizer or S3Fox (see
https://addons.mozilla.org/en-US/firefox/addon/3247). S3Fox Organizer helps you organize/
manage/store your files on Amazon S3.

CloudFront

Amazon CloudFront is a newer Amazon service that enables developers to deliver content using a global
network of edge servers. This is a type of CDN. Like CDNs, CloudFront is used to deliver content quickly
to the user by locating servers near the user (called edge servers).

CloudFront works as follows:

1. Use Amazon S3 (bucket) to store original files.

296

Chapter 8: Performance, Scalability, and Monetization

2. Using an Amazon CloudFront API call, register the S3 bucket to a CloudFront
‘‘distribution.’’

3. Use domain name of the ‘‘distribution’’ (for example, me.cloudfront.net) to reference all of
the content files.

4. When a client makes a request to a ‘‘distribution’’ domain name (for example,
me.cloudfront.net), the call will be automatically routed by Amazon to the nearest
edge server.

Currently, Amazon has edge servers in the United States, Europe, Hong Kong, and Japan.

For more information about CloudFront, see http://aws.amazon.com/cloudfront.

Pricing Summary

Following is a breakdown of Amazon pricing information as of this writing. Payment is a function of the
instance type, the hours of use (rounding up partial hours), and the bandwidth use (data transfer).

Amazon EC2 running Linux/UNIX:

$0.10 per small instance (m1.small) instance-hour (or partial hour)

$0.40 per large instance (m1.large) instance-hour (or partial hour)

$0.80 per extra large instance (m1.xlarge) instance-hour (or partial hour)

$0.20 per high-CPU medium instance (c1.medium) instance-hour (or partial hour)

$0.80 per high-CPU extra large instance (c1.xlarge) instance-hour (or partial hour)

Elastic IP Addresses:

$0.01 per non-attached Elastic IP address per complete hour

$0.00 per Elastic IP address remap (first 100 remaps/month)

$0.10 per Elastic IP address remap (additional remap/month over 100)

Elastic Block Store:

$0.10 per GB-month of provisioned storage

$0.10 per 1 million I/O requests

$0.15 per GB-month of snapshot data stored

$0.01 per 1,000 PUT requests (when saving a snapshot)

$0.01 per 10,000 GET requests (when loading a snapshot)

Data Transfer:

$0.10 per GB Internet data transfer (all data transfer into Amazon EC2)

$0.17 per GB Internet data transfer (first 10TB/month data transfer out of Amazon EC2)

$0.13 per GB Internet data transfer (next 40TB/month data transfer out of Amazon EC2)

297

Chapter 8: Performance, Scalability, and Monetization

$0.11 per GB Internet data transfer (next 100TB/month data transfer out of Amazon EC2)

$0.10 per GB Internet data transfer (data transfer out of Amazon EC2/month over 150TB)

$0.01 per GB regional data transfer (in/out between Availability Zones or when using pub-
lic IP or Elastic IP addresses)

Data transferred between Amazon EC2 instances in the same Availability Zone using private IP addresses
is free of charge. Data transferred between Amazon EC2 and Amazon S3-Europe will be charged as
Internet data transfer. Data transferred between Amazon EC2 and Amazon S3-US, Amazon SDB, and
Amazon SQS is free of charge. All other charges for these services will still apply.

Usage for other Amazon Web services is billed separately from Amazon EC2.

Using Amazon’s cost calculator (see http://calculator.s3.amazonaws.com/calc5.html), a single
high-CPU medium Linux/UNIX instance with 100GB data transfer in and out can be used for a month
(720 hours) for $171. Change this to a high-CPU extra large Linux/UNIX instance, and the monthly fee
becomes $603.

Payment for S3 storage varies by size range and is calculated on a monthly basis. For example, as of this
writing, it is currently $0.15 per GB up to the first 50TB per month. Rates for additional storage become
cheaper and are tiered by storage ranges. Charges are also associated with transferring data in and out of
S3. Currently, the data transfer in rate is $0.10 per GB. The rate for transferring data out is $0.17 per GB
for the first 10TB per month, and becomes cheaper for additional transfers. Note that there is no charge
for transfers between EC2 and S3.

When using S3 to deliver content, various HTTP requests will be used. The charge for HTTP GET requests
is $0.01 per 10,000 requests. The charge for HTTP PUT, COPY, and POST requests is $0.01 per 1,000 requests.
There is no charge for delete requests.

Using the Amazon calculator (see http://calculator.s3.amazonaws.com/calc5.html), you can see
that it costs $44 a month for 100GB storage with 100GB transferred in, 100GB transferred out, 100,000
PUT/LIST requests, and 1,000,000 other requests.

Joyent
Joyent is another popular hosting solution for social network application developers. Like Amazon,
Joyent provides a cloud computing environment with a similar kind of pricing model.

Joyent’s cloud consists of a set of what it calls Joyent Accelerators, which are virtualized servers. Joyent
provides hardware for load balancing, storage, and database support. Like Amazon, Joyent offers pre-
configured accounts. Some of the application software supported includes PHP, Ruby on Rails, Python,
and Java.

Joyent has partnered with Sun and does provide OpenSolaris systems. Unlike Amazon, Joyent provides
real storage instead of remote storage (for example, S3). This can mean that, if a virtualized server goes
down, a new virtualized server can be up and running within seconds.

One reason for Joyent’s popularity is the offer of a free account for six months. This account includes the
use of two quad-core Intel Xeon processor servers, guaranteed 64 percent of the CPU, 256MB RAM, 10GB
storage, and no bandwidth metering.

298

Chapter 8: Performance, Scalability, and Monetization

Other Hosting Solutions
A new and emerging hosting provider is Google through Google App Engine, a service launched in 2008.
See http://code.google.com/appengine for details about this service.

Case Studies
This section presents a few case studies illustrating architecture decisions made by social network appli-
cation developers. (Many thanks should be offered to each of the parties interviewed who provided this
information.) Learning how developers working with different-sized user bases, budgets, and resources
design their systems for serving social network applications is a great way to plan for growth.

RockYou (Jia Shen, Founder)

RockYou started out on shared server, but it didn’t work out. The company moved to managed hosting.
Following are some key RockYou characteristics worth noting:

Number of servers — As of this writing, RockYou was running on 400 boxes.

Layering — Their rule to live by is, ‘‘Keep separate your Application layer and your Persistence
layer.’’ The Application layer must be state free (to keep persistence separate, not here). Thus, the
Application layer is infinitely scalable. They use a federated Database layer, with the database
sharded off with a user ID. (Database sharding is discussed in detail later in this chapter.)

Load balancing — This is accomplished with separation of static and dynamic content requests.

Web server — RockYou uses Apache, with PHP.

Database server — RockYou uses MySQL.

Caching — RockYou uses Memcached at the front end.

KlickNation (Ken Walton, Cofounder)

The hosting provider for KlickNation is Joyent. Following are some key
characteristics:

Application layer — KlickNation uses PHP.

Load balancing — KlickNation uses clustered, load-balanced Apache servers for dynamic con-
tent and distributed Nginx servers for static content.

Web server — KlickNation uses Apache and Nginx.

Database server — KlickNation uses a dedicated MySQL server.

Caching — KlickNation uses caching (for example, via Nginx).

Jambool (Vikas Guptas, Founder)

Jambool uses leased computers (Amazon S3) for static media serving. Following are some key
characteristics:

Number of servers — Jambool uses 16 boxes.

299

Chapter 8: Performance, Scalability, and Monetization

Layering — Jambool uses an Application layer, Service layer, and Database layers. For the
Application layer, they use four servers utilizing Ruby with a thin layer of rails, as well as
lighttpd. For the Service layer, they have three servers using distributed Ruby. For the Database
Layer, they use five servers with MySQL, with a few servers used as database slaves.

Load balancing — Load balancing includes a separation of static and dynamic content requests.

Web server — Jambool uses lightttpd, Apache, with PHP.

Caching — Jambool uses four servers with Memcached at the front end.

Slide

Slide has servers located in Los Angeles, San Francisco, and Virginia. Following are some key
characteristics:

Number of servers — Slide uses more than 300 boxes.

Layering — Slide uses Application and Database layers, with Akamai CDN and caching.
Their 64 general-purpose, Web/application servers run Apache on Linux, and PHP. They use
42 database servers running MySQL.

Caching — Slide uses 256 high-performance servers, with lots of memory, and Flash delivery.

Watercooler (Kevin Chou, Founder)

Following are some key characteristics pertaining to Watercooler:

Layering — Watercooler uses Application and Data layers with caching, scaling up (but not out).
The Application layer consists of seven servers. The Web server runs Apache with PHP. Water-
cooler uses four heavy-duty database servers running MySQL.

Streaming — Watercooler allows partners to stream and hosts content for them.

Caching — Caching is in front of the database and front end.

Understanding Database Issues
As an application stores more data (that is, user-generated content), having a good distributed database
design can be critical for performance. Following are a few fundamental ways to improve performance:

Use a caching layer before the database (for example, Memcached).

Scale up by upgrading database servers. Increase CPUs’ capability, increase memory, increase
storage, and upgrade database software.

Scale out (for example, with distributed databases).

Architectural shifts (for example, database sharding).

While distributed databases and good database design are topics too extensive to cover within the scope
of this book, the following discussions do highlight a few ideas to consider.

If the budget allows, a developer should minimally choose to have a separate database server (and, hence,
a separate Database layer). This will make the Database layer independent, and allow for scaling (both
up and out).

300

Chapter 8: Performance, Scalability, and Monetization

Distributed Systems (Scale Out)
A distributed database is a single, ‘‘logical’’ database that is spread across a set of database servers. Dis-
tributed databases are a means of scaling out a Database layer. Distributing databases is a way of
improving performance. For example, having data in close proximity to its requestor will yield faster
results.

Following are some different approaches to creating distributed databases:

Replication — Copies of data are distributed to different servers (sites). The advantage of repli-
cation is that it is a straightforward and relatively simple technique. Also, replication supports
reliability in that, if one server is down, the replicated data is available at another server. If the
replicated nodes are placed in the network near their clients, this can also reduce network traf-
fic. The disadvantage of this model is that updates must take place on all replicated servers, thus
increasing processing time for this operation. A form of replication related to ‘‘master/slave’’
database replication is the use of some (one) database for writing and others for retrieval. This
can be useful because writing generally takes more time than a retrieval.

Horizontal partitioning — Different rows of a table go to different servers (sites). The main con-
cept behind horizontal partitioning is that the rows in one server are located near the clients who
will need them, thus improving performance. A problem with horizontal partitioning is that it
can have poorer performance when accessing data across partitions.

Vertical partitioning — Different columns of a table go to different servers (sites). Vertical parti-
tioning has the same benefits and disadvantages as horizontal partitioning.

Hybrid — These are combinations of the preceding.

Database Sharding — Data is denormalized by grouping user-related data together.

Database Sharding
Database sharding is a different form of partitioning a ‘‘logical’’ database based on grouping data that is
used together. Such a grouping of data ‘‘used together’’ is called a shard.

For example, consider creating an application that has an interface showing a user’s profile. In this case,
it would make sense to group together all of that user’s profile data on one shard. This is an example
of a typical sharding criterion based on grouping user data. With this criterion, the data belonging to a
set of X users will be stored in ‘‘shard 1,’’ and the next data belonging to a set of X users in ‘‘shard 2,’’
and so on.

Partitioning into shards can be done using any criteria, even timestamps. The goal is to group data by
how it is used. Unlike traditional databases, with sharding, the data is denormalized. In the example
application that serves a user’s profile data, for sharding, this requires only one request to one shard. By
comparison, in a traditional database, a number of requests to different servers must take place. For such
cases, sharding can significantly improve performance.

Data sharding is a new concept, and there are no exact guidelines for determining sharding criteria. There
is no requirement that all the data that can be used together must be in the same shard (and it may not
be possible). For example, with the user criterion, one shard could contain a user’s messages, whereas
another shard could contain the same user’s entire profile data. Improved performance also comes from

301

Chapter 8: Performance, Scalability, and Monetization

the fact that there is no need to perform many database joins to get a set of data (that is, all of a user’s
messages) because they can be stored and retrieved as one shard object.

A difficulty with database sharding takes place when the data in a shard outgrows the resources of its
server. It must be split, and how to do that efficiently is problematic. This is referred to as the problem of
rebalancing.

Another issue is that programmers may be familiar with traditional databases and SQL for making
queries, but not be familiar with database sharding. Some of the largest barriers to using shards occur
when forming sharding criteria, coupled with the fact that there are few people who have experience
with database shards. This also translates into fewer resources and tools (almost none) available for
the developer interested in implementing database shards. Even with these drawbacks, a number of
companies utilize database sharding, including Flickr and RockYou.

Resources for Database Sharding

The following articles are a good place to learn more about database sharding:

http://lifescaler.com/2008/04/database-sharding-unraveled-part-i,
http://lifescaler.com/2008/04/database-sharding-unraveled-part-ii,
and http://lifescaler.com/2008/06/database-sharding-unraveled-

part-iii

http://www.codefutures.com/weblog/database-sharding/labels/

Database%20Sharding.html

http://www.codefutures.com/database-sharding/

http://www.datacenterknowledge.com/archives/2007/04/27/database-

sharding-helps-high-traffic-sites

http://lethargy.org/∼jesus/archives/95-Partitioning-vs.-Federation-

vs.-Sharding.html

Understanding Redundancy
Redundancy is the duplication of an important component (for example, servers or services) that is system
critical. The term ‘‘critical’’ can relate to loss of information, but also to good performance. Cloning is a
technique that is used to replicate services or servers.

There are two basic kinds of cloning: shared disk and nothing shared. In the shared disk cloning, the clones
share storage. The shared disk cloning is more difficult but can be useful for heavy-update databases.

Using Monitoring
There are a number of free software packages that monitor a networked system. Monitoring software can
create graphs and present statistics on how various subsystems/components of a system are performing.
This can tell you where improvements need to be made. Check out the following:

Cacti — http://cacti.net

302

Chapter 8: Performance, Scalability, and Monetization

Multi Router Traffic Grapher (MRTG) — http://oss.oetiker.ch/mrtg

PRTG Traffic Grapher — http://www.paessler.com/prtg

To test client-based software (such as OpenSocial JavaScript code), a good tool is the Firefox plug-in called
Firebug. Firebug not only can be used for monitoring but also to directly edit and debug live JavaScript,
HTML, and CSS.

Firebug is free for use and is popular with JavaScript programmers. Figure 8-2 shows the main interface
for Firebug when viewing a hi5 crossword application. Firebug has separate tab interfaces for HTML,
CSS, Script, and DOM.

For more information about Firebug, see http://getfirebug.com.

Figure 8-2: Firebug running on crossword social network application

Understanding Software Design
Good software design is necessary for achieving system performance and scalability. The following
discussion provides some tips for creating a good design, selecting a language, and taking advantage of
versioning support.

The process of designing software is a main topic in software engineering. The following are included in
the steps and processes for creating good software:

Requirements engineering — This includes techniques often used to understand application
requirements and document them.

Design — This includes techniques used for the design of software. This is often object oriented,
and includes techniques such as waterfall, spiral, extreme programming, and many others.

Implementation — This covers the tools used when creating software, deployment, and
versioning.

303

Chapter 8: Performance, Scalability, and Monetization

Testing — This includes techniques to test applications, including concepts such unit testing,
regression testing, black-box testing, and more.

Maintenance — This includes ideas behind maintaining software, tracking bugs, user feedback,
and more.

The reality is that many developers and companies do not formalize their development process. A num-
ber of good textbooks are available if you are interested in learning more about software engineering.
This discussion concentrates on more informal tips, guidelines, and suggestions.

Given the inherent social nature of a social networking application, most experienced developers of these
applications stress how important it is to understand your users. Once developers determine the target
audience of their applications, a software engineering technique called role playing can be useful in devel-
oping use cases for an application. This leads naturally to interface design and operation specifications.
Some developers even go through the effort of describing different target users by creating personas
(see http://en.wikipedioa.org/wiki/Personas). A tip I give to my students is to have co-developers,
friends, and family try to ‘‘use’’ a mockup of the application and give suggestions. Refining the use case
before implementation can save you from a redesign and reimplementation later.

In addition to role playing and persona building, meeting with other developers can be helpful in
building an application design. There are a number of OpenSocial ‘‘meetups’’ and social network
programming-related ‘‘meetups’’ that have frequent (monthly) meetings. Check out http://meetup.com
for some ‘‘meetups’’ in your area. In addition, a number of the social networks host meetings, and some
are virtual.

If your company does not have a formal documentation process, you should minimally consider using
the following tools:

Use versioning software, project maintenance software, and/or a wiki to document the
software-creation process.

There are many Unified Modeling Language (UML) tools available, and some are free for use.
Create use-case diagrams with them. Some of these tools are now integrated with development
tools and can be used to generate even initial code. Often, these design-to-development tools are
for object-oriented languages such as Java, C# , and so on.

If you are planning to develop a number of applications, it may make sense to invest in the creation
of an application infrastructure. This entails the development of services, libraries, and/or packages that
modularize commonly needed functionality. This can be formalized with a Web service layer so that
these main server-based Web services/applications can be called from any language.

With an OpenSocial hybrid client-server application, the developer must decide what application logic to
implement on the client and what logic will reside on the server. The best balance is highly dependent on
the application’s purpose and data needs. It is possible to have the client side make many and repeated
calls to the server program, which would contain the bulk of the application logic, or vice versa. Issues
of performance and scalability should be of concern in making these choices. Many developers might
suggest that keeping as much logic as possible on the client could improve performance and scalability.
Other developers who have data-heavy applications (especially media-heavy ones) might suggest that
server-side programs are superior.

304

Chapter 8: Performance, Scalability, and Monetization

Language Choice
Choosing the right language for creating an application should be a function of the application needs and
how well the language can fulfill them. However, you should also use a language that the development
team will be familiar with. If the development team only knows PHP, then choosing Java as the language
may not be the wisest decision.

With the current container support of OpenSocial, some of the application logic must be developed in
JavaScript using the OpenSocial JavaScript API. If the application has server-side programs, or is an
OpenSocial REST server application, then a server-side programming language must be used. Almost
any programming language that supports basic HTTP requests can be used. The most popular lan-
guages include PHP, Java, Python, ASP, Ruby, and C#. However, many other languages can be used
(for example, C++, C, and Perl).

Some languages will need additional modules, interpreters, or containers in which to run. These will
mean additional maintenance. Some of these language containers have additional features that can
improve performance. For example, the Sun Java System Web Server not only includes support for Java
but also performs load balancing, and includes a reverse proxy module.

If speed is critical, compiled software generally will be faster. The only way to know is to perform a
benchmark test to compare different languages. Another resource for anecdotal feedback on language
performance is fellow developers through forums or ‘‘meetups.’’

Following are language choices for some social network application development companies:

iLike — Ruby on Rails, MySQL, with AWS for static content

KlickNation — PHP, MySQL

I-Jet Media Inc — Flash, Python, PHP

Jambool — Ruby, MySQL

Watercooler — PHP, MySQL

Versioning
Version control software enables the developer to manage multiple versions of an application. Typically,
versions are indicated by a changing version number. Having access to previous versions allows for quick
reversion to a previous code base, which is useful for a quick response to new software failures. It is also
helpful for working with multi-developer teams, and supports collaboration through code ‘‘check-in’’
and ‘‘check-out’’ features.

Other useful features of version control software include version comparison, anonymous read access,
logging, and local update operation. Following are a couple of versioning systems to consider:

Subversion (also referred to as SVN)

Concurrent Version System (CVS) or OpenCVS

305

Chapter 8: Performance, Scalability, and Monetization

OpenSocial Performance Tuning
This section examines some general code performance-tuning ideas, as well as some specific OpenSocial
performance-tuning measures. Techniques to help improving performance include the following:

Caching

Minimizing the number of HTTP requests

Batching multiple requests

Using OpenSocial AppData as a container cache

Reducing the number of DNS lookups

Reducing the number of files

Turning on the persistence feature in a Web server

Compressing content using GZIP

Minifying JavaScript

Using CSS in a header

Locating JavaScript at the bottom

Caching versus requests for external files (JavaScript, CSS)

Flushing a server response

Monitoring client code performance

Preloading OpenSocial content

Achieving good load times

Using OpenSocial get from cache

Using CSS image sprites

Caching was discussed earlier in this chapter. Let’s take a more detailed look at the remaining techniques
in this list.

Minimizing the Number of HTTP Requests
Minimizing the number of HTTP requests can significantly improve performance. Nearly 90 percent
of the end-user response time on poorly designed applications is spent waiting for a response. One
way to minimize HTTP requests is through a simpler application design that has a smaller number of
components to load.

Batching Multiple Requests
In OpenSocial, the program can associate multiple requests with a single DataRequest object. This batch-
ing of requests will save significant time. Batching requests and sending them as early as possible will
improve performance.

306

Chapter 8: Performance, Scalability, and Monetization

Also consider not making the first request (if possible) one to create or update application data via new

updatePersonAppDataRequest. This operation takes more time than other API calls. In a similar fashion,
you should not call requestCreateActivity before other requests for the same reason.

Using OpenSocial AppData as a Container Cache
A common suggestion made by experienced developers is to use the OpenSocial AppData supported
by containers as a cache. Retrieving this data from the container is generally faster than making a call to
your server for it.

Reducing the Number of DNS Lookups
When a client receives a response with components such as images, external files, and so on referenced
in it, an HTTP request for each component must take place. These components will be specified by their
URLs. For each domain name in a URL not currently stored in the client’s DNS cache, the client must
contact a DSN to look up the associated IP address to form the HTTP request. If all of the response
components have different domains, this adds up to potentially a lot of DNS lookups, each adding to the
response time.

If possible, serving the response content from the same domain name will reduce the number of DNS
lookups. Unfortunately, there is a downside to reducing the number of unique hostnames. This reduction
will also reduce the number of parallel downloads the client will make. A client can download multiple
content items at the same time but has a limited number (for example, two) it will attempt to do from
the same hostname. More parallel downloads can improve performance. So, using the same hostname
to reduce DNS lookups will also restrict parallel downloads. Some developers suggest a balance, using
possibly two to six different hostnames for the response content.

Reducing the Number of Files
When downloading JavaScript, CSS, or other additional files, each file is a separate request. ‘‘Com-
pressing’’ the JavaScript into a single file (or even integrating it directly in your OpenSocial XML file)
can greatly improve performance. An article at http://yuiblog.com/blog/2007/01/04/performance-
research-part-2 by Tenni Theurer states that 40 percent to 60 percent of users come to site(s) with an
empty cache. For these users, it is critical that the developer design the application to load quickly by
reducing the number of files. Inlining of code into a single file, while improving speed, does also result
in less modularity, less reusability, and high maintenance costs.

Turning on the Persistence Feature in a Web Server
‘‘Keep Alive On’’ is an HTTP feature that can be set in a Web server’s configuration file. When turned on,
this means that multiple HTTP requests can be sent over the same TCP connection. This can save time by
avoiding repeated TCP setup and takedown operations. Apache documents turning this feature on can
improve latency up to 50 percent when multiple media requests result from an HTTP response.

See http://httpd.apache.org/docs/2.2/mod/core.html#keepalive for more details.

307

Chapter 8: Performance, Scalability, and Monetization

Compressing Content Using GZIP
Sending compressed (textual) data rather than uncompressed data can significantly reduce the client’s
time to receive this content. Compression reduces the size of the data. The tradeoff is that once received,
the data must be uncompressed by the client. A client can stipulate in its HTTP request Accept-Encoding
header the kind of compression it supports. The server then can choose to compress the response using
this format and must (in its header) return the type of compression used in the Content-Encoding header.
Reports of average GZIP reductions in size are 70 percent (but, this is dependent on the content). A large
percentage of Web traffic uses GZIP.

The following is the request header indicating that GZIP and deflate are supported by the client:

Accept-Encoding: gzip, deflate

The following is the response header indicating that GZIP was used to compress the response:

Content-Encoding: gzip

Currently, GZIP is one of the most commonly used compression standards, and is freely available.
When using an Apache Web server, GZIP is supported using either mod_gzip or mod_deflate mod-
ules (depending on Apache version). Once the module is configured, the response will automatically be
GZIPped by Apache and the Content-Encoding header set.

See http://httpd.apache.org/docs/2.0/mod/mod_deflate.html for details on the mod_deflate
module.

Compression can be applied to HTML, XML, scripts, CSS, and other text documents. Most media content
is already in a compressed format (that is, jpeg, png, mpeg) and should not be compressed again.

‘‘Minifying’’ JavaScript
This is the idea of removing comments and all unnecessary blank spaces in a JavaScript file. The goal is
to make it as small as possible, thus improving download speed and performance.

A good filtering program that does this is JSMin (see http://www.crockford.com/javascript/

jsmin.html). Another tool can be found at http://developer.yahoo.com/yui/compressor/. The
resulting JavaScript is called ‘‘minified JavaScript.’’

Another tool used not only for compacting but also for obfuscating code can be found at
http://dean.edwards.name/packer/.

Using CSS in a Header
Placing the CSS stylesheets in the HTTP Head section gives the illusion of the application loading faster.
This is because the application can load progressively, meaning that, as the content comes in, it is dis-
played. If the information (stylesheet) that styles this content is not loaded already, some browsers will
wait to load any content (to prevent possibly redrawing the content with aft-loaded styles). The actual
time to load the entire content is not different. It only seems faster to the user.

308

Chapter 8: Performance, Scalability, and Monetization

Locating JavaScript at the Bottom
When possible, it is best to place JavaScript code at the bottom of an application’s content (response).
This has to do with the fact that loading of scripts in a browser blocks parallel downloads. Recall that a
parallel download is where downloads of separate content (for example, image 1, file 2, and so on) occur at
the same time.

It is not always possible to place JavaScript at the bottom, especially if it is responsible for building the
interface dynamically through operations such as document.write.

Caching versus Requests for External Files

(JavaScript, CSS)
The benefit of putting all scripting code either in a single external file or even inline with the HTML (or
XML) is the reduction in the number of requests that must be made. A corollary to this is that placing
the script in a separate file can mean that it is cached by the client independently of the HTML/XML
document. This can be an advantage if other HTML/XML documents use this same script. It means that
they will not be loaded, and each HTML/XML document that references them externally rather than
inlining the code will be smaller and, hence, load faster.

Here there is a tradeoff between number of HTTP requests (that is, two, including an HTML/XML doc-
ument and a separate JavaScript file) and load size of the initial HTTP response document (that is, larger
when everything is in one file). If the scripting code is used by multiple documents, it can make sense to
keep them separate, hoping they will be cached by the client and, hence, not need an additional HTTP
request. If the application has only one HTML/XML document, then keeping it inline makes sense. This
is also the case when there are very few page views using the script.

This is the case for most OpenSocial applications, and a common tip seen on developer forums is the
inlining of script. That being said, if you look at the source of many applications, you will find external
JavaScript.

Flushing a Server Response
When a social network application makes a request to a server-side program, the user is waiting for
the response. Rather than make the user wait until the entire response is built, with some server-side
programming languages, you are able to flush the results. This will result in the client receiving the
partially built response, which it can work on as the server program continues building the rest of
the response.

In PHP, the function flush() can be invoked for this purpose. The benefit will be most evident on servers
that are very busy, or when the creation of the response takes a significant amount of time. Doing a flush
after the response headers are created is recommended. This will allow the client to fetch any referenced
CSS or JavaScript in the header while the body of the response is being created.

Monitoring Client Code Performance
An extension called YSlow integrates into Firebug and provides performance measurement on the appli-
cation. (Firebug was discussed previously in this chapter in the section ‘‘Monitoring.’’)

309

Chapter 8: Performance, Scalability, and Monetization

Check out http://developer.yahoo.com/yslow to get YSlow, and for further details.

Figure 8-3 shows the YSlow interface for running performance metrics on a well-known social network
application. A number of the poorer performance grades are contributed by the container and are not
application-specific. As a developer, you will need to go through each metric to see where you might
improve performance.

Figure 8-3: YSlow testing performance

of a hi5 deployed application

Figure 8-3 shows the ‘‘Reduce DNS lookups’’ metric. The greyed-out areas are the servers directly owned
by the application. Others are owned by the container hi5, while others are third-party services the
application uses. Recall that the previous tip on reducing DNS lookups suggested a small number of
unique hostnames in the two to six range. As you can see, there are more than this in this example,
yielding a mediocre grade for this metric. However, most of the lookups are from the container, which is
not something a developer can control.

YSlow evaluates performance on the following metrics:

Make fewer HTTP requests — ‘‘Fewer’’ means that the application can run faster.

Use a CDN — Suggests a need for a CDN. The score for this metric is computed by checking
the hostname of each content object requested against the list of known CDNs. YSlow lets you
register new CDN names if not in the default list.

310

Chapter 8: Performance, Scalability, and Monetization

Add an Expires header — This suggests a need to use Expires or Cache-Control headers.

Gzip Components — This provides a list of items not compressed using GZIP.

Put CSS at the top — This provides a list of CSS not appearing in the header.

Put JavaScript (JS) at the bottom — This lists JavaScript files not at the bottom of the response.

Avoid CSS expressions — CSS expressions is a browser-specific extension of CSS and takes time
to evaluate. Don’t use this, or use sparingly.

Minify JavaScript (JS) — See the previous discussion on how to ‘‘minify’’ the JavaScript.

Avoid redirects — This warns the developer against using redirects. Unless entirely necessary,
the use of redirects is a waste of the user’s time.

Remove duplicate scripts — This indicates multiple-loaded JavaScript files.

Some particularly useful features of YSlow’s Performance utitlity and Firebug’s Net utility include show-
ing the difference with cache and without, as well as showing the load times for different response
components.

Preloading OpenSocial Content
Preloading is the concept of loading content ahead of its use. Preloading can be done during client idle
time. Content that is often preloaded includes images, stylesheets, and scripts.

OpenSocial supports preloading through the Preload element of the Gadget XML ModulePref. The
following code preloads the XML file for the Profile view:

<Preload
href=http://U.com/doit.xml"
views="profile" />

Preloading can also be done for a makeRequest call. For example, in orkut, you can set a parameter in
the ModulePrefs element that tells orkut to make a signed request while the application is loaded. The
following is the OpenSocial JavaScript makeRequest call:

var params = {};
params[gadgets.io.RequestParameters.CONTENT_TYPE] =

gadgets.io.ContentType.JSON;
params[gadgets.io.RequestParameters.AUTHORIZATION] =

gadgets.io.AuthorizationType.SIGNED;
gadgets.io.makeRequest("http://U.com", response, params);

As an example, consider placing the following in the Gadget XML:

<ModulePrefs title="Demo Preloads" description="Demo Preloads">
<Require feature="opensocial-0.7" />
<Require feature="views" />
<Preload href="http://U.com" authz="signed" />

</ModulePrefs>

The response from U.com will be inline in the application HTML. When the makeRequest call is made, it
will use this content, rather than sending out an HTTP request.

311

Chapter 8: Performance, Scalability, and Monetization

Achieving Good Load Times
The following guidelines are given by Arne Roomann-Kurrik, Developer Programs, in the orkut Devel-
oper Forum with regard to loading times:

Good load times — ‘‘Canvas’’ view should be less than 5 seconds to load. ‘‘profile’’ view should
be less than 2 seconds to load.

Need Improvement — ‘‘Canvas’’ view experiencing 5 to 10 seconds to load, and ‘‘profile’’ view
experiencing 2 to 5 seconds to load, need improved load times.

Must Improve — ‘‘Canvas’’ view with more than 10 seconds to load, and ‘‘profile’’ view with
more than 5 seconds to load, must be improved.

Using OpenSocial get from Cache
Use the gadgets.io.getproxyUrl method to retrieve resources from cache before making requests to a
server-side program. This method will return the URL of the cached version.

The following JavaScript code takes the URL of an image on the developer’s Web site and, using the
getproxyUrl method, retrieves the cache location if it exists. (Otherwise, the original URL will be
returned.) The code uses this URL in an image tag. The cached version will be used instead, resulting in
one less HTTP request.

function getImage() {
Url = ‘http://U.com /image.jpg’;
cached = gadgets.io.getProxyUrl(Url);

html = [’’];
document.getElementById(’domId’).innerHTML = html.join(’’);

};

Using CSS Image Sprites
If an application has a significant number of images, the technique of image spriting (which combines all
of the image files into a single ‘‘sprite’’ file) can help with performance. Instead of performing a number
of requests to retrieve all of the images, only one request is needed to retrieve the ‘‘sprite’’ file.

See http://www.alistapart.com/articles/sprites for details on sprites.

Using Analytics
Analytics is the tracking of application users (and application requests) as they use the application. Ana-
lytics can point to some useful information, including the following:

Visit information

User demographics

Where users are losing interest (for example, what ‘‘application’’ pages they leave from)

Most popular content

312

Chapter 8: Performance, Scalability, and Monetization

There is a wide variety of analytic software available. The most popular analytic software used
by social network applications includes Google Analytics, Yahoo! Web Analytics, Sometrics, and
container-provided analytic software. Other popular Web analytic software systems include Urchin,
VisiStat, CoreMetrics, and FeedBurner. New companies are emerging, like Mixpanel.com, which is
geared toward social network applications.

Check out http://en.wikipedia.org/wiki/List_of_web_analytics_software for a list and
comparison of analytic software.

Google Analytics
Google Analytics is one of the most widely used Web analytic systems for social network applications. It
is free for use. After creating an account, you are given a tracking number and some JavaScript that you
can include in any Web page you wish to track.

Check out http://www.google.com/analytics for details on creating an account.

The following code is an example of the JavaScript that that Google delivers:

<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ?

"https://ssl." : "http://www.");
document.write(unescape("%3Cscript src=’" + gaJsHost +

"google-analytics.com/ga.js’ type=’text/javascript’%3E%3C/script%3E"));
</script>

<script type="text/javascript">
var pageTracker = _gat._getTracker("UA-XXXXXXX-Y");
pageTracker._trackPageview();

</script>

Once you add this to your code, it will take a fixed amount of time to start tracking (for example,
24 hours). Figure 8-4 shows the main interface for a registered Google Analytics Web profile (account).
The actual profile associated with the data in Figure 8-5 is a test social network application.

Information provided by Google Analytics is categorized as shown in the upper left of Figure 8-5. Infor-
mation that Google Analytics provides includes the following:

Visitor Tracking:

Statistics — This includes the number of visits, unique visitors, number of page-views,
average page-views, time on site, bounce rate, and new visits.

Visitor profile — This includes the language and network locations.

Browser profile — This includes the browser, operating system, screen colors (and resolu-
tion), Java support, and Flash version.

Map overlay of visitors — This shows the countries colored in.

Connection speed — This shows how long it took to connect.

Visitor loyalty — This includes a plot of visits in a time period.

313

Chapter 8: Performance, Scalability, and Monetization

Figure 8-4: Google Analytics main page for a Web profile

Recency — This includes trends in last-visit reporting.

Length of visit — This includes how long a visitor is on a site.

Depth of visit — This includes how many pages the visitor viewed.

Traffic Sources:

Top traffic sources — Top sources to direct traffic to your application.

Direct traffic info — Information about the direction to your application.

Referring sites — Sites that referred users to your application.

Keywords, adwords — Keywords or adwords in search portals used to refer to your appli-
cation.

Content:

Navigation analysis — Indicates navigation patterns.

Top content — Content most visited.

Content visitation statistics — Breakdown of different content and visitation numbers.

Goals:

Setup of goal conversions — A goal conversion is a Web site page that visitors reach once they
complete a series of actions (such as visiting other pages first).

314

Chapter 8: Performance, Scalability, and Monetization

Figure 8-5: Google Analytics details

Yahoo! Web Analytics
Yahoo! Web Analytics (http://web.analytics.yahoo.com) is built out of the acquisition of IndexTools.
The offering is similar to Google Analytics and is free. It also allows you to build reports and manage
monetization campaigns, merchandise reporting, cost analysis of ad campaigns, and more. (Monetization
is discussed in greater detail later in this chapter.)

315

Chapter 8: Performance, Scalability, and Monetization

Sometrics
Sometrics (http://sometrics.com) is a newly formed company that is offering analytics for social net-
work applications. In addition, Sometrics also gathers social data beyond traditional Web analytics.
Similarly to the systems previously discussed, it is free.

Social Network-Provided
It is becoming more common for social networks to provide analytic tools. An example of this is
hi5 Analytics (see http://www.hi5networks.com/developer/2008/07/historical-application-

statist.html). This is done through a REST API that has the following endpoints:

metrics/daily — These are daily statistics (but not unique views). This API call can take a
range of dates (less than 30 days).

metrics/dailyuniques — This gives daily statistics, only allowing for unique views.

metrics/total — These are statistics for the application since its launch.

The information provided includes the following:

Number of installs

Number of removes

Number of Profile view calls

Number of Preview view calls

Number of ‘‘canvas’’ view calls

Number of requests generated in response to application-generated emails and notifications

Number of API requests made by the application

Application notifications marked as spam

Requests to generate a friend update

Friend update requests fulfilled

Invite requests fulfilled

Application notification requests fulfilled

Much of this information is unique to a social network application and cannot be provided by general
Web analytic systems like Google Analytics.

Using Scalable User Interface Design
A scalable user interface is one that can grow and be altered with new application revisions without a major
redesign. This is difficult to achieve with a very long-lasting application. In some cases, making a radical
change in the interface can attract new interest and improve user satisfaction. Sometimes it is necessary
to include new functions. However, it can be a risky move (think ‘‘New Coke’’) and can end up turning
away loyal users.

316

Chapter 8: Performance, Scalability, and Monetization

Making a major change in the interface of an application may be a lot of work, and quite often can lead to
new bugs and application failures. A major redesign is certainly not something a developer would want
to have to do earlier in an application’s life.

To avoid this, you should design multiple versions of an application, scaling it back for the first. This
means considering all of the possible functionalities and corresponding GUI elements that are planned
for future versions before implementing the first version. Predetermine how these new functionalities
can fit into version 1’s interface. This may yield changes in the design of the first version’s interface but
will yield a more scalable interface.

When considering changes to a user interface, one technique employed by some developers is ‘‘A/B
(split) testing.’’ This is where both the current and new version of the software are offered in real time,
and tested for usability and performance. This can be a good exercise to do internally before rolling out a
new version, or even a small change.

Making the Most of User/System Support
A social network application’s customers are paramount. The application survives only if users return
(reflected in daily user numbers), and this means good user satisfaction. A great way to find out how an
application is performing is to give the users a way of contacting the developer. This could include bug
reporting, suggestions for future versions, and reports of inappropriate use by other users.

Using a support system is important to track these reports and resulting responses. Some different kinds
of software systems you might consider for handling these tasks include the following:

Bug-tracking software — For a list of some available systems, see http://www.dmoz.org/

Computers/Software/Configuration_Management/Bug_Tracking/.

Issue-tracking software — For a comparison of some systems, see http://en.wikipedia.org/

wiki/Comparison_of_issue_tracking_systems.

Minimally, you should regularly check the email account (registered with your application at deploy-
ment) for user (or container-generated) emails. Also, you should create a ‘‘fan account’’ on each social
network that the application is deployed on. An application ‘‘fan account’’ will have a profile telling
users about your application, and will host a discussion board for your users to share ideas about the
application with you and other users. It is also a good marketing tool to use when new versions of the
application are released, or other important application news is generated.

Many applications feature user-generated content. This opens up the door for user misuse of the appli-
cation through inappropriate content creation, spamming, violations of copyright, and more. With an
increasing numbers of users, the amount of content can become so large that it is impossible for a sole
developer to monitor.

Many Web sites (such as YouTube) and social networks (such as MySpace and Facebook) with this
problem handle it by allowing their users (and others affected) to report violations. A violation will
be investigated, and any proven violators will be dealt with (such as refusing services). Some social
networks (like MySpace) are now requiring applications with user-generated content to have a ‘‘report
abuse’’ functionality.

317

Chapter 8: Performance, Scalability, and Monetization

One company that has done a good job at structuring this for social network application is Watercooler,
which supports the idea of volunteer moderators from its user base with whom the company works
directly.

A simple way to search for potential moderators or to encourage reporting of violations is through the
application ‘‘fan page’’ discussed previously.

Monetization
Monetization means the process of making money from a social network application. This section exam-
ines some possibilities and shows (through case studies) what other developers are doing.

All of the monetization schemes that are in use today for general Web sites can be applied for a social
network application. Depending on the application and its audience, some of these techniques will be
successful; others will not be.

There is a significant debate centering around the fact that social networks (such as MySpace or Face-
book) monetize differently than search engines or portals (such as Google or Yahoo!). The hypothesis
surrounding some of the early numbers is that there is a difference between intent and interest. Intent is
what happens at Google or Yahoo! when a user, for example, types in ‘‘ski tickets’’ and the user intends
to make a purchase. However, interest is what happens when a MySpace user brings up a ski social net-
work application. The suggestion is that the ‘‘intent’’ user will click on ads and incentives more often
than the ‘‘interest’’ user.

Despite this dour viewpoint (yet to be proven), another (yet to be seen) viewpoint is that the rich social
data and the changing human interaction models on a social network will open up new avenues and
richer data to exploit for mapping users to a place they will ‘‘buy.’’

Some of the monetization techniques that social network applications employ include the following:

Advertising

Affiliate programs

Partnering

Virtual goods and currency

Real goods

Let’s take a look at these in more detail.

Advertising
Advertising is currently a popular way that applications are earning money. There are a number of Ad
Network companies in the business of trying to get developers to serve their ads, including the following
(in no particular order):

Google

Yahoo!

318

Chapter 8: Performance, Scalability, and Monetization

Offerpal

Social Media

Social Cash

Lookery

Zohark

AdChap

Cubics

Google and Yahoo! are long-time ad networks with which you may be familiar, and the others represent
newer companies, many of them targeted at the social network market. Offerpal, targeted at the social
Web, is a ‘‘managed offer network.’’

Each advertising provider has different revenue models, and some serve up different competing ads
using an auction model (for example, Google and Yahoo!).

Some offer Cost per Thousand (CPM, with ‘‘M’’ meaning the roman numeral for ‘‘thousand’’) page
impressions. Impression here means ‘‘viewing the advertising.’’

Another revenue model is that of Cost per Action (CPA), which can have different implementations,
including the following:

Cost per Click (CPC) — This is when the user actually clicks on the advertisement.

Cost per Lead (CPL) — This usually involves the user doing some form of a registration through
the advertisement.

Cost per Sale (CPS) — This can be a fixed fee or percentage of a user sale following the advertise-
ment on your application.

In general, CPM and many CPA revenues are fixed values. CPA ad rate is higher than the CPM rate.

Cost per Install marketing was discussed earlier in this book. The counterpart of Cost per Install mar-
keting is Pay per Install (PPI), where you are paid if someone installs an advertised application when
viewing an ad on your application. The advertised application can be another social network application,
or can be a non-social application.

Affiliate Programs
Affiliate advertising is a type of advertising in which an application directs users to another Web site.
There are a number of affiliate networks that connect social network application developers to affiliate
programs (for example, Amazon is a large one) that matches the goals of the application. These affiliate
networks also allow the developer (here called the affiliate) to track results and provide payments. It is
free for developers to join an affiliate network.

Following are some examples of direct affiliate programs and affiliate networks:

Amazon

eBay

319

Chapter 8: Performance, Scalability, and Monetization

Commission Junction

LinkShare

Millnic

Partnering
Partnerships can come in many forms but imply that the developer is working with a partnering cor-
poration. Goals may including branding, direct sales, directing traffic (such as affiliate advertising),
cross-advertising, and so on.

Some examples of previously discussed partnerships include the Send Good Karma application partner-
ing with Health.com and Watercooler partnering with media companies such as ABC to include ABC
content on applications. Both of these partnerships provide revenue streams for the social network appli-
cation. KlickNation has recently begun partnerships with companies whereby they license an application
on a monthly basis.

Virtual Goods and Virtual Currency
Virtual goods are ‘‘digital’’ goods that can be purchased, traded, and sent to other users through an appli-
cation. Virtual currency is the offering of virtual monies that can be spent to buy services (or virtual goods)
inside of an application. This is a new trend that has been used primarily in game-like social network
applications.

For example, a ‘‘war-game’’ application could offer a more powerful gun or additional ammunition that
can be purchased with a user’s virtual currency. Virtual currency is gained by either completing some
task or by purchasing it via a micro-transaction (a concept that is discussed in detail shortly). The task
completion could be inviting friends (which has a goal of making the application viral) or could involve
filling out an offer (that is, affiliate offer) that the developer is paid for completion. The micro-transaction
is a direct purchase and, hence, earns real money.

Example applications discussed earlier that use virtual currency are Send Good Karma, Friends for Sale,
and New Mafia. Send Good Karma uses the model of sending, a karma greeting (a virtual good). Friends
for Sale allows users to purchase friends using virtual currency. The New Mafia supports virtual currency
to purchase tools for its game-based application. The New Mafia site reports up to 80 percent of its
revenue comes from using virtual currency.

Offerpal is one of the companies that offers virtual currency services tied to offers. There are a number
of other emerging companies soon to offer services in this area. Offerpal suggests that serving advertise-
ments (via offers) for virtual currency is a way to promote it, and is a way to engage and monetize at the
same time. Offerpal suggests even advertising your virtual currency on other Web sites and other appli-
cations. Another suggestion is to send messages, activities, and emails feature virtual currency offers. At
the same time, a balance is needed. If too many virtual currency offers are given, they can start to feel like
spam to a user, and they can lose their value.

According CEO Anu Shukla (during a talk at Snap Summit, details of which can be found at
http://www.slideshare.net/rfop/slides-706362/), Offerpal offers the following statistics regarding
the use of virtual currency:

320

Chapter 8: Performance, Scalability, and Monetization

A 10–20 percent increase in return visits is experienced when virtual currency is offered for
logging in.

A 30 percent increase in user base growth rate is experienced when virtual currency is offered
for inviting friends.

A 20 times increase in user activity is experienced when virtual currency is offered for perform-
ing an activity or task.

$75 earned (on average) per 1,000 active daily users (compared to their figure of < $1 for
‘‘effective’’ CPM)

One challenge experienced by developers is how to extend the use of virtual currency outside of the
game-based (or virtual goods) applications.

Real Goods and Micropayments/Micro-Transactions
One option is to sell real goods. This will make sense if the products are closely aligned with the applica-
tion genre and audience. A good model of this is iLike, which sells access and downloads of music. Both
iLike and Watercooler have offered ticket sales to application-related events (music and sports).

Functionally, this will minimally mean having payment support. A new form of payment is called micro-
payment (through a micro-transaction), which is meant to be a small amount of money. The definition of
‘‘small’’ varies a lot in its implementation in social network applications. Prices can range from less than
$1 to $10–$20. This new trend (used primarily to monetize virtual goods and virtual currency schemes)
has created a number of new companies that offer these services, including the following:

PayPal

SpareChange

Chipin

Of these, PayPal is one of the most widely used.

One form of making micropayments is with mobile devices (phones). Here are a few companies offering
mobile micropayment services:

Zong

MobilCash

Surfpin

Another new trend is offering ‘‘payment card’’ that users can purchase at retail stores.

Monetization Case Studies
Table 8-1 provides details from a few case studies to show how some developers are monetizing their
applications. For each developer (company), featured techniques they are using are listed. This is not
necessarily an exhaustive listing of their monetization techniques, but represents techniques discussed
during interviews for this book.

321

Chapter 8: Performance, Scalability, and Monetization

Table 8-1: Monetization Case Study Details

Company Feature Techniques

Watercooler Advertising/partnering (traditional and targeted, sports advertising).

Media partnership (media-streaming revenue).

Real goods (ticket sales, merchandise sales — 10 percent of revenue).

RockYou Advertising (both CPM and CPI — 50/50).

Advertisement network provider. (Developed their own advertising network
based on their success with their own applications. Offers advertising network
services to other developers. See https://www.rockyouads.com/ams/partner/

marketing.)

Slide Max Levchin, Slide CEO, said, ‘‘Direct to consumer sales is what the next couple
years are going to be about. I just returned from Japan and Korea, where people
make billions of dollars selling virtual goods. Bringing that model from Asia
worldwide is a huge component of revenues for companies like Slide.’’ (See
Keynote Speech, Web 2.0.)

I-Jet Media
Inc.

Advertising (CPM — 10 percent of revenue).

Micro-transactions/virtual currency/virtual goods (100,000 virtual currency
equals $5, which, coupled with subscriptions, represents 90 percent of revenue).

Subscription (micro-transaction, at $15/month).

Offer-based advertising (CPM-based advertising).

Jambool Micro-transactions/virtual currency/virtual goods.

Partnering (drove more than 40,000 users to Health.com).

Donations (donated more than 2,000 to kiva.org from Send Good Karma
application).

KlickNation Advertising.

Subscription (micro-transaction at $4.99/month).

Mobile billing.

Licensing of applications.

ShopIt According to Rhet McNulty, COO, this is a ‘‘cross between MySpace and eBay.’’

Advertising network provider. (The purpose of the application is to provide a
peer-to-peer/commerce-based advertising network.)

322

Chapter 8: Performance, Scalability, and Monetization

Summary
This chapter focused on the issues of performance and scalability. First, the definitions of performance
and scalability were discussed, followed by a discussion of architectures and subsystems useful for
improving performance and scalability. The topics of caching and database design were highlighted.

Next, options for hosting solutions were described. Case studies of the ways that a number of important
social network application development companies are solving their hosting needs gave invaluable
insight into solving this problem in different ways.

This chapter also discussed the issues of software design and OpenSocial performance tuning. Finally,
scalable user interfaces, user support systems, and monetization techniques concluded the topics of this
chapter.

Chapter 9 discusses the important topic of OpenSocial templates and markup language, as well as intro-
ducing a number of emerging related technologies.

323

OpenSocial Templates,
Markup, and Emerging

Technologies

This chapter focuses on new and emerging technologies related to OpenSocial and social network
programming. The following technologies represent some new and exciting advances:

OpenSocial Templates Standard

OpenSocial Proxied Content

OpenSocial client libraries

Yahoo! Open Strategy (Y!OS)

iWidgets

Zembly

Let’s take a look at these in more detail.

OpenSocial Templates Standard
The recently announced OpenSocial Templates Standard allows developers (through markup and
scripting) to easily specify commonly needed application functionality and GUI elements. This
supports reusability and the sharing of developer-created markup. The OpenSocial Templates
Standard offers functionality similar to the Facebook Markup Language (FBML) used in Facebook
applications.

Chapter 9: Emerging Technologies

Following are just a few examples of what the OpenSocial Templates Standard can do:

Show a person

Create a friend/friend list

Work with tabs

Work with vertical and horizontal layouts

Work with lists

Work with navigation links

Without OpenSocial templates, these functionalities are produced via JavaScript, DOM manipulation,
and OpenSocial JavaScript API calls. With OpenSocial Templates, these functionalities are produced
more easily and concisely with markup and template scripts. As will be discussed later in this chapter,
the OpenSocial Templates Standard supports looping and conditional display, which creates unique
data-driven GUI elements.

The OpenSocial Templates Standard consists of the following three components:

OpenSocial Templates, Part 1 — This specifies how to create templates, and how to invoke/use
templates.

OpenSocial Markup Language, Part 2 — This markup language specification involves data
requests, as well as GUI elements and layout.

OpenSocial Data Pipelining, Part 3 — This provides a declarative syntax for defining the data the
container should provide.

In addition to these three components, the necessary extensions to an OpenSocial container (for example,
ShinDig) are given at http://wiki.opensocial-templates.org/index.php?title=OpenSocial_

Template_Prototype_Implementation.

Let’s start the discussion of OpenSocial templates with a look at how a simple ‘‘HelloWorld’’ template
can be constructed and used. Next, the discussion examines the use of expressions, variables, and con-
trol and looping statements in a template. This is followed by a discussion of the important topics of
OpenSocial Markup Language (OSML) and data pipelining. This section concludes with a number of
useful examples.

Requiring a Feature
To use OpenSocial templates and OSML, the developer must Require the corresponding feature as
highlighted in the following OpenSocial XML code:

<ModulePrefs title="Hello World">
<Require feature="opensocial-0.8"/>

<Require feature="opensocial-templates"/>

<Require feature="views"/>
</ModulePrefs>

326

Chapter 9: Emerging Technologies

Understanding Basic Template Construction and Use
OpenSocial templates are defined by a <script> block containing XML content that specifies the purpose
and function of the template. The <script> element defines the name of template and declares its type
as "text/os-template". The XML content of the script element can include HTML, CSS, OSML, and
other elements.

Listing 9-1 shows a very simple ‘‘Hello World’’ OpenSocial template. This is a silly template, but it is a
construct that makes learning the syntax of template construction easy.

Listing 9-1: ‘‘Hello World’’ OpenSocial Template

<script type="text/os-template">
<div style="font-size: 30px">Hello world!</div>

</script>

The template code in Listing 9-1 is placed inside of the OpenSocial XML application code, inlined, as
shown in Listing 9-2. The os.Container.processDocument()function compiles all of the templates in
the document and displays the results. Note that os is predefined as opensocial.template, and it is
specified in the required OpenSocial Templates JavaScript library.

Listing 9-2: ‘‘Hello World’’ OpenSocial Template in an OpenSocial XML Application

<?xml version="1.0" encoding="UTF-8" ?>
<Module>

<ModulePrefs title="Hello World">
<Require feature="opensocial-X.X"/>
<Require feature="opensocial-templates"/>
<Optional feature="content-rewrite">

<Param name="include-tags"></Param>
</Optional>

</ModulePrefs>
<Content type="html">
<![CDATA[

<! — OpenSocial Templates library load -->
<script type="text/javascript"

src="http://ostemplates-demo.appspot.com/ostemplates.js">
</script>

<! — inlined Hello World template -->
<script type="text/os-template">
<div style="font-size: 30px">Hello world!</div>
</script>

<script type="text/javascript">
function init() {

<! — request container to render all inlined templates -->
os.Container.processDocument();

}

gadgets.util.registerOnLoadHandler(init);

Continued

327

Chapter 9: Emerging Technologies

Listing 9-2: ‘‘Hello World’’ OpenSocial Template in an OpenSocial XML Application

(continued)

</script>
]]>

</Content>
</Module>

These inline templates must be copied in entirety at each place used in the OpenSocial application XML.
This is obviously not a reusable methodology, and it does not meet the objective of OpenSocial Templates.
In a moment, you will learn how to name a template and explicitly reference it (hence, making it more
reusable) at any desired place in the application.

A function call seen in OpenSocial template examples is opensocial.template.renderAll(), which
is similar to the os.Container.processDocument (recall os translates to opensocial.template). This
function renders all of the templates in the application. The renderAll function can take an optional
parameter that contains the data being ‘‘passed,’’ and is accessible to all the templates in the application
XML. Typically, calls to the OpenSocial JavaScript API will take place to obtain social data for use in the
templates. This function is called inside of the application XML, as shown in Listing 9-3.

Listing 9-3: Using opensocial.template.renderAll to Request Rendering of All

Templates

<script type="text/javascript">
//socialDataFromOpenSocialApiCall = OpenSocial API call;

opensocial.template.renderAll(socialDataFromOpenSocialApiCall);
</script>

Naming Templates
OpenSocial templates (unless used only once) are typically named as shown in Listing 9-4. This is simply
a matter of adding the name attribute to the <script> element. In this case, the name given to the template
is "myapp:HelloWorld".

Listing 9-4: Named ‘‘Hello World’’ OpenSocial Template

<script type="text/os-template" name="myapp:HelloWorld">
<div style="font-size: 20px">Hello world!</div>

</script>

Any name could be given, including simply "Hello". However, the structure of the name
"myapp:HelloWorld" is representative of the formula "namespace:template_name". If this for-
mula is followed, it is possible to create a custom OSML tag to represent the template. This will be
discussed later in this chapter in the section, ‘‘OpenSocial Markup Language,’’ and is an alternative way
of using named templates.

A named template can be explicitly referenced and used with the os.getTemplate and
template.RenderInto functions. Listing 9-5 shows an application that does this with the my:HelloWorld

template. Both of these functions are defined in the required OpenSocial Templates library
http://ostemplates-demo.appspot.com/ostemplates.js.

328

Chapter 9: Emerging Technologies

Listing 9-5: Using the Named ‘‘HelloWorld’’ Template

<?xml version="1.0" encoding="UTF-8" ?>
<Module>

<ModulePrefs title="Hello World">
<Require feature="opensocial-X.X"/>
<Require feature="opensocial-templates"/>
<Optional feature="content-rewrite">

<Param name="include-tags"></Param>
</Optional>

</ModulePrefs>
<Content type="html">
<![CDATA[

<! — OpenSocial Templates library load -->
<script type="text/javascript"

src="http://ostemplates-demo.appspot.com/ostemplates.js">
</script>

<! — inlined Hello World template -->
<script type="text/os-template" name="myapp:HelloWorld">
<div style="font-size: 20px">Hello world!</div>
</script>

<script type="text/javascript">
function init() {

<! — request container to get named template -->
var the_template = os.getTemplate(’myapp:HelloWorld’);
<! — render template into div tag below -->
template.renderInto(document.getElementById(’put_it_here’));

}

gadgets.util.registerOnLoadHandler(init);
</script>
<div id=’put_it_here’> </div>

]]>
</Content>

</Module>

The os.getTemplate(’X’) call requests that the container get the template named X. The
template.RenderInto(Y) call tells the container to associate the template output with the document
element Y.

Using Expressions in Templates
You can embed an expression in the XML content of the template definition. An expression is a piece of
‘‘code’’ that is evaluated to a string and inserted in place. The general syntax of an expression is ${Exp}.
The following snippet shows the use of the expression ${Viewer} to get the name of the viewer of the
application:

<div>Hello ${Viewer.Name}</div>

329

Chapter 9: Emerging Technologies

Developers can create their own expressions, as long as they follow the rules for JSP expressions. These
can be manipulated via comparisons and standard arithmetic functions, including the following:

${a + b} — This adds a to b.

${a – b} — This subtracts b from a.

${a lt b} — This tests if a is less than b.

${a and b} — This indicates that both a and b are true.

One exception to an expression being evaluated as a string is when it represents an object. For example,
${Viewer} will return the OpenSocial Viewer Person object.

Using Variables and Passing Data to a Template
A number of predefined variables in the OpenSocial Templates specification include the following:

${My} — This is used to access data passed via parameters to the template.

${Top} — This is used to access the data context passed into template rendering. This is the
content passed in via the JavaScript call of this template.

${Context} — This is used when processing templates and ‘‘cycling’’ through a set of items.
This has the following elements:

${Context.UniqueId} — This is the unique ID of the template currently being rendered.

${Context.Index} — This is the index of the item in set currently being rendered.

${Context.Count} — This is the number of items in the set being rendered via the repeat
tag.

${Cur} — This is the current item being rendered within a repeater.

The data coming into the template in its JavaScript invocation is accessible via the ${Top} variable. This
data must be either represented as a JSON object, or another object. In this manner, ${Top.Viewer.Name}
maps to data[’Viewer’][’Name’].

The following template code accesses the data associated with ViewerFriends via ${Top.

ViewerFriends} and cycles through the list using the repeat attribute. Each time it displays the
friends index in the list and the friend’s name.

<script type="text/os-template" name="myapp:HelloWorld">

<div repeat="${Top.ViewerFriends}">
${Cur.Name} is number ${Context.Index} out of ${Context.Count} Friends

</div>
</script>

The code in Listing 9-6 shows an OpenSocial application that has a JavaScript block that creates a vari-
able called data. This data variable contains a JSON object that is an array of friend’s names, called
ViewerFriends. Next, the application JavaScript calls the opensocial.template.processAll(data)

function, which associates data with all templates in the application. This means that when the inlined
template is processed, ${Top.ViewerFriends} accesses this array.

330

Chapter 9: Emerging Technologies

Listing 9-6: Associating the data Variable with All Templates and Accessing It

in a Template

<?xml version="1.0" encoding="UTF-8"?>
<Module>

<ModulePrefs title="Hello World" height="100">
<Require feature="opensocial-X.X"/>
<Require feature="opensocial-templates"/>

</ModulePrefs>
<Content type="html">
<![CDATA[

<script type="text/os-template">
<div repeat="${Top.ViewerFriends}">

${Cur.Name} is number ${Context.Index}
out of ${Context.Count} Friends

</div>
</script>

<script type="text/javascript">
var data = {

ViewerFriends: [
{ Name : ‘Lynne’},
{ Name : ‘Allen’},
{ Name : ‘Jake’},
{ Name : ‘Butch’}]

};
opensocial.template.processAll(data);

</script>

]]>
</Content>

</Module>

Calling Templates with Parameters
You can call a template by using parameters. Let’s modify the template in Listing 9-4 so that it takes
message and MessageStyle parameters, so that it no longer simply says Hello world!, but also displays
the new message. Template parameters can be specified as either attributes or subelements. Listing 9-7
shows the new code.

Listing 9-7: Modified ‘‘Hello World’’ Template That Uses Passed Parameters

<script type="text/os-template" name="myapp:HelloWorld">
<div style="color: ${My.MessageStyle.color}">
Your message is: ${My.message}</div>

</script>

<script type="text/os-template">
<myapp:HelloWorld message="Hello World">
<MessageStyle color="red"/>

</myapp>
</script>

331

Chapter 9: Emerging Technologies

The first script in the listing is the template definition, which uses the predefined variable ${My} to gain
access to the template’s parameters — in this case, the parameters named message and MessageStyle.

The second script block in Listing 9-7 shows how to call the new ‘‘HelloWorld’’ template with the two
parameters of message given as an attribute and MessageStyle as a subelement. This style of template
invocation will be discussed later in this chapter in the section ‘‘OpenSocial Markup Language.’’

In the template definition (first script), the ${My.X} reference will first look for an attribute
named X in the template call and, if it is not found, it will next look for a subelement named X. In
this way, ${My.message} will get the attribute message right away. However, the reference for
${My.MessageStyle.color} will first look for an attribute called MessageStyle, which it will not find,
and then next search for the MessageStyle element, which is given in the template call.

Using the repeat Attribute for Looping
A tag in a template can be executed multiple times, introducing looping that is based on the list contents
of an expression. This is achieved through the repeat attribute. Any tag in the OpenSocial template XML
content can have associated with it the repeat attribute that has a value equal to an expression containing
a set/list to loop over. The following template code from Listing 9-6 shows a common example where
the <div> tag has the repeat attribute:

<script type="text/os-template">
<div repeat="${Top.ViewerFriends}">

${Cur.Name} is number ${Context.Index} out of ${Context.Count} Friends
</div>

</script>

Using Conditional Tests
Tags in a template can be executed conditionally using the if attribute. This attribute can be associated
with any tag in the OpenSocial template XML content. The value is an expression that evaluates to the
Boolean values of either true or false. The tag will be executed only if the value is true. The following
is an example that executes the first div tag only if ViewerFriends contains at least one item. Otherwise,
the second div tag will be executed.

<script type="text/os-template">
<div if="${Context.Count > 0}" repeat="${Top.ViewerFriends}">

${Cur.Name} is number ${Context.Index} out of ${Context.Count} Friends
</div>
<div if="${Context.Count == 0}">

You have no friends
</div>

</script>

Localization with Templates
Templates perform localization (the use of language-specific text) on a per-language basis using the
gadget support of message bundles. Chapter 7 provides a more in-depth discussion about localization.

332

Chapter 9: Emerging Technologies

Using a Separate Definition File for Templates
In addition to the inlining of templates (as shown in the previous examples), it is possible to save them
in a separate external file. This provides ease of use, modularity, and reusability. The tradeoff is this will
be an additional file (and, hence, HTTP request) that will take additional time to load. However, because
most containers will cache this on the application’s behalf, this may not be an issue.

The following XML file has a generic structure:

<Templates xmlns:foo="http://foo.com/">
<Namespace prefix="foo" url="http://foo.com/"/>

<Style>
<!-- Set global CSS for your library here -->
.warning { color: red; }

</Style>

<JavaScript>
<!-- Define global functions for your library here -->
function usedByAllTemplates() { ... };

</JavaScript>

<!-- Template foo:bar -->
<Template tag="foo:bar">
<!-- Define markup for foo:bar here -->

</Template>

<! — "complex" Template tag foo:baz containing local CSS and JavaScript -->
<TemplateDef tag="foo:baz">
<Template> <!-- Define markup for foo:baz here --> </Template>
<Style> <!-- Set CSS for foo:baz here --> </Style>
<JavaScript>

<!-- Define functions for the foo:baz template here -->
function usedByFooBaz() { ... };

</JavaScript>
</TemplateDef>

</Templates>

The following XML tags are used to define the OpenSocial Templates XML file:

<Templates> — This represents the root elements of the XML file.

<NameSpace> — This is the tag defining the namespace to be used by all contained templates.

<Style> — This is the set of CSS styles (globally) used by all templates defined here.

<JavaScript> — This gets all of the JavaScript functions (globally) used by all templates
defined here.

<Template> — This contains the script block defining a (simple) template. There can be more
than one defined in the file.

<TemplateDef> — This contains a <Template> block defining the template, as well as addition-
ally used <Style> and <JavaScript> code. There can be more than one defined in the file.

333

Chapter 9: Emerging Technologies

Following is a specific example of an external OpenSocial Templates XML file:

<?xml version="1.0" encoding="UTF-8"?>
<Templates xmlns:os="http://opensocial.org/templates">

<Namespace prefix="os" url="http://opensocial.org/templates" />
<Style>
large-font: {

font-size: 30px;
}

</Style>
<Template name="os:HelloWorld">

<div style="large-font">Hello World!</div>
</Template>
<TemplateDef tag="os:ViewFriends">

<Style>
friend-font: {

font-size: 10px;
}

</Style>
<Template>

<div style="friend-font" repeat="${Top.ViewerFriends}">
${Cur.Name} is number ${Context.Index} out of

${Context.Count} Friends
</div>

</Template>
</TemplateDef>

</Templates

OpenSocial Markup Language
The OpenSocial Markup Language (OSML) is ‘‘Part 2’’ of the OpenSocial Templates Standard. OSML
is a language that consists of tag elements that have predefined purposes, either related to OpenSocial
data, or GUI elements that are commonly needed by developers. This will be a widely used part of the
OpenSocial Templates Standard.

All OSML tag elements must appear inside of a template <script> block in the OpenSocial XML appli-
cation <Content> block. In this sense, they are part of a template the developer constructs. Previous
discussions explained how to create a basic template. Thus, template creation is expanded through the
use of the OSML tags as part of the template content.

Let’s begin by creating a simple template that contains a single OSML tag to obtain information about the
owner of the application. This is done with the OSML tag <os:OwnerRequest>. Specifically, the ‘‘About’’
and ‘‘Books’’ information is requested.

<script type="text/os-data">
<os:OwnerRequest key="Owner" fields="about,books"/>

</script>

All OSML tags adhere to the following generic format:

<namespace:TagName attribute="value">Value</namespace:TagName>

334

Chapter 9: Emerging Technologies

The namespace indicates either of the following:

os — This indicates an OSML tag.

container — This indicates a container-specific markup tag.

The TagName is the name of the tag. Tables 9-1, 9-2, and 9-3 show current and proposed OSML tags. Each
tag can have a number of attribute/value pairs associated with it.

Table 9-1: OSML Standard Tags

Tag Meaning Example

<os:ActivitiesRequest> Requests activities (that is, requests
are made to
opensocial.DataRequest

.newFetchActivitiesRequest).
Returns an array of OpenSocial
Activity JSON objects. Required
attributes include key (string) and
userId (refers to a person, group of
people, comma-delimited set of IDs
to use with groupid, each- userid,
@me, @viewer, and @owner).
Optional attributes include groupId

(group of users, @self; with default
being a list in userId, and
@friends), activityIds
(comma-separated list of activity
IDs to retrieve), appid (application
ID, with the default being the
current ID), startPage (start,
int), count (number to get), and
filter (used to filter a request).

<os:ActivitiesRequest

key="ViewerActivities"

.userId="@viewer" />

//gets all the viewers

activities

<os:Badge> Displays information about a
person in the container style.
Required attributes include person

(person object).

My friends:

Continued

335

Chapter 9: Emerging Technologies

Table 9-1: OSML Standard Tags(continued)

Tag Meaning Example

<os:Badge

repeat="${Friends}"

person="${Cur}"/>

<os:DataRequest> Implements a
gadget.io.makeRequest call.
Returns arbitrary URL data.
Required attributes include key

(string) and href (valid URL to
send the request to; if it is not set, it
converts to an RPC call). Selected
optional attributes include format

(JSON or text format of returned
data, with the default being JSON),
method (type of request; for
example, get, post, with the default
being get), params (additional URL
parameters like "n1(v1&n2(v2")),
refreshInterval (time the
container can cache), and authz

(authentication type, such as none,
signed, oauth, with the default
being none). For more attributes,
see the online reference. Includes a
number of oauth parameters.

<os:Request

key="myData"

authz="signed"

method="get" href=

http://U.com/U.php?

command=

getit&userid=

${Owner.ID} />

//in another template

${myData.AppNickName}

your score is

${myData.score}

Continued

336

Chapter 9: Emerging Technologies

Table 9-1: OSML Standard Tags(continued)

Tag Meaning Example

<os:Get> Loads content from a URL and
inserts it. Required attributes
include href (URL of requested
HTML content).

${Viewer.Name}’s latest

news

<os:Get href=

"http://U.com/

newsHtml?uId=$

{viewer.appData.uId}"/>

<os:Name> Gets name associated with a person

object passed as person attribute.
Required attributes include person

(person object).

Hello <os:Name

person="${Viewer}"/>

<os:PeopleSelector> Can select (multiple) people from a
provided list. Used inside of an
HTML form. Required attributes
include group (an array of person
objects or DataContext key
referring to array of person
objects). Optional attributes include
inputName (the name of form input
element this creates that contains
selected ID(s) to be sent as form
data), multiple (true or false, to
allow selection of multiple people),
max (the maximum number allowed
to be selected), var (the name of
variable holding selected ID(s);
supports the use of a tag outside of
an HTML form), and onselect

(JavaScript function to call when
person is selected; will find
selections in contextVariable).

<form action=

"http://U.com/u.php "

method="POST">

Select your best friend

friend:

<os:PeopleSelector

group="$

{ViewerFriends}"

Continued

337

Chapter 9: Emerging Technologies

Table 9-1: OSML Standard Tags(continued)

Tag Meaning Example

multiple="false"

inputName="friend"/>

</form>

<os:PeopleRequest> Used to get information about a
group or list of people (can be even
one person with userid specified).
Returns an array of OpenSocial
person JSON objects. Required
attributes include key (string) and
userId (refers to a person, group of
people, comma-delimited set of IDs
to use with groupid, each- userid,
@me, @viewer, @owner). Optional
attributes include groupId (group
of users, @self with the default
being a list in userId, @friends),
startPage (start, int),
startIndex (start index, int),
count (number to get), and
filterBy (used to filter request).
See the online reference for other
attributes, including sortBy,
sortOrder, filterOp, and
filterValue.

<os:PeopleRequest

key="PagedFriends"

userId="@owner"

groupId="@friends"

startPage="3"

count="20"/>

<os:OwnerRequest> Used to retrieve owner information.
Returns an OpenSocial person
JSON object. Required attributes
include key (string). Optional
attributes include fields (set of
details to retrieve about the person,
separated by commas; for example,
name, about).

<os:OwnerRequest

key="owner"

fields="name,

birthday"/>

<os:ViewerRequest> Used to retrieve viewer
information. Returns an OpenSocial
person JSON object. Required
attributes include key (string).
Optional attributes include fields
(set of details to retrieve about the
person, separated by commas; for
example, name, about).

<os:ViewerRequest

key="viewer"

fields="name,

birthday"/>

338

Chapter 9: Emerging Technologies

Table 9-2: Possible Future OSML Tags

Tag Meaning Example

<os:Layout> Creates a layout or partitioning. Tag under construction.

<os:Link><os:A> Links (when clicked) related HTML
fetched from the server and
inserted into the DOM. Offers an
Ajax experience without JavaScript.
Attributes include url (URL to
retrieve), view (contents of a view
to retrieve), type (either ‘‘replace’’
or ‘‘insert’’ that stipulates how
retrieved content is placed), and
target (the ID of DOM element to
associate retrieved content to).

<os:A

url="http://U.com/info"

type="replace"

target="info_list"/>

<os:List> Creates a list in the style of the
container.

Tag under construction.

<os:PersonAppDataRequest> Implements same as call to
opensocial.dataReqeust.

newFetchPersonAppDataRequest.
Required attributes include key

(string) and idSpec (represents
person to request data for).
Optional attributes include keys

(comma-separated list of data keys
to retrieve — recall that AppData is
stored as key/value pairs; note that
* means ‘‘all data’’).

<os:Tabset> Creates a set of tabs. See <os:Tab>.

Creates a tab (inside a TabSet).
Required attributes include name

(name of tab). Optional attributes
include selected (Boolean, true if
tab is initially selected). Required
elements include <title> (tab title)
and <body> (contents of tab).

<os:Tabset>

Continued

339

Chapter 9: Emerging Technologies

Table 9-2: Possible Future OSML Tags(continued)

Tag Meaning Example

<os:Tab name="FF"

selected="true">

<title>Find Friends</title>

<body>

${Viewer.Name}

Find your Friends

</body>

</os:Tab>

<os:Tab name="Invite">

<title>Invite Friends</title>

<body>

<form

action="http://U.com/invite.php "

method="POST"

onsubmit="invite()">

<os:PeopleSelector

group="${ViewerFriends}"

multiple="true"

inputName="invite_list"/>

</form>

</body>

</os:Tab>

</os:Tabset>

<os:Zippy> Hidden text. Tag under construction.

340

Chapter 9: Emerging Technologies

Table 9-3: OSML Proposed Tags (Not Yet Part of Standard OSML)

Tag Meaning

<os:About-view> Creates an ‘‘about’’ view

<os:Ad> Creates an advertisement

<os:Button> Creates a button

<os:Collapsiblebox> Creates a GUI element with a collapsible area

<os:Datetime> Inserts date and time

<os:Dialog> Creates a dialog

<os:Form> Creates a form

<os:Friend-selector> Creates a selector with friends listed in it

<os:Google-analytics> Inserts Google Analytics

<os:Html> Outputs ‘‘unsanitized’’ HTML

<os:If-is-friends-with-viewer> Tests to see if friends with viewer

<os:Iframe> Creates an inline frame (known as an IFrame)

<os:Image> Inserts an image

<os:Locale> Associates language and message bundle for
internationalization

<os:Minimessage> Creates a message GUI element

<os:Msgbndl> Represents a message bundle

<os:Pram> Creates parameter value associations

<os:PrivateData> Makes content visible only to specified users

<os:Profile-pic> Inserts a profile picture of a person

<os:Redirect> Redirects a user

<os:Render> Renders specified template content

<os:Repeat> Provides a loop control mechanism

<os:Send-message> Executes an OpenSocial Send message

Continued

341

Chapter 9: Emerging Technologies

Table 9-3: OSML Proposed Tags (Not Yet Part of Standard OSML)(continued)

Tag Meaning

<os:Share-button> Creates an invite/share application

<os:Showperons> Displays a person in the style of the container

<os:Submit> Creates a Submit button

<os:Userloggedin> Tests to see if the current application user is logged in

<os:Toggle> Inserts a toggle

Following is another example OSML tag that will retrieve the name of the Viewer. In this case, the
attribute name is person and the value is a person JSON object associated with the viewer of the
application.

<os:Name person="${Viewer}"/>

Not all OSML tags deal with OpenSocial data. The following proposed tag creates a button GUI element:

<os:Button color="red">Click Me</os:Button>

The following is an example of a container-specific OSML tag where the namespace is yahoo:

<yahoo:SendMessage personId="1234">Hello there.</yahoo:SendMessage>

Specifying OSML as a Required Feature

To use OSML in an application, you must use Require feature to indicate that it is a required feature in
the gadget XML, as shown here:

<ModulePrefs title="Hello World">
<Require feature="opensocial-X.X"/>
<Require feature="osml"/>

</ModulePrefs>

Optionally, if the OpenSocial templates feature has been required, OSML is a subset and the following
will be sufficient:

<ModulePrefs title="Hello World">
<Require feature="opensocial-X.X"/>
<Require feature="opensocial-templates"/>

</ModulePrefs>

342

Chapter 9: Emerging Technologies

Accessing Social Data with Container-Specific Tags

As discussed previously, containers can create container-specific tags. Following are a few examples of
this:

<yahoo:maps>

<goog:YouTube>

<google:analytics>

Making Your Own OMSL Custom Tags

Developers can create a custom tag associated with a template they created and call it inside
of other templates in the same way OSML tags are used. The form of the tag created is
<namespace:templateName/>, where both the namespace and templateName are uniquely defined by the
developer. The namespace must be registered by the developer using the OpenSocial templates function
os.createNamespace(namespace, URL). The combination of the namespace with the URL is registered
with the container to make it unique. Typically, the developer’s URL domain should be specified.

In addition to this, each template for which the developer wishes to create a custom tag should have
the parameter tag="namespace:templateNameX" associated with the <script> element of the template
definition.

For example, if you want to register the namespace of myapp and the URL is http://www.U.com, this will
result in the function call shown in Listing 9-8. Notice that the first script in this listing is the template
that is named with the tag attribute myapp:HelloWorld. The resulting tag, <myapp:HelloWorld>, is used
in the second template of the listing.

Listing 9-8: XML Code to Have a Template Call the Named HelloWorld Template

<script type="text/os-template" tag="myapp:HelloWorld">
<div style="font-size: 20px">Hello world!</div>

</script>

<!-- Call named template -->
<script type="text/os-template">

<myapp:HelloWorld/>
</script>

<script type="text/javascript">
function init() {
<!-- Create a unique namespace -->
os.createNamespace(’myapp’, ‘http://www.U.com’);
os.Container.processDocument();

}
gadgets.util.registerOnLoadHandler(init);

</script>

343

Chapter 9: Emerging Technologies

OSML and Internationalization

Internationalization through the use of OSML has not been finalized, but two methods have been sug-
gested. The first is to have the developer handle internationalization, meaning it is separate from the
OpenSocial Templates Standard.

The second proposal involves the creation of an OSML tag, <os:Locale>, which borrows its syntax from
the gadget message bundles. Listing 9-9 shows the use of the <os:locale> tag, which takes as parameters
the lang and a reference to a <os:msgbndl> tag. This basically maps to the corresponding language mes-
sage via the <msg> element that has the translated version of the message. Listing 9-9 provides translation
to Spanish.

Listing 9-9: OSML Tag Used for Representation of a Spanish Message

<os:Locale lang="es" message="msgbundle_es"/>
<os:msgbndl id="msgbundle_es">
<msg name="WATCH_THIS_VIDEO">

${Owner}.name dijo ${Viewer}.name mirar este video
//means owner told viewer to watch this video

</msg>
</os:msgbndl>

<os:Locale>

Rendering Partial Content

Specific partial content of a template can be rendered through the use of the <os:Render> tag. The specific
content is referenced via the content parameter that has as a value of an element of this name in a
template. Listing 9-10 shows the how this tag is used to render separately the ‘‘title’’ and ‘‘body’’ elements
of a template.

Listing 9-10: Code Showing How to Render Content

<script type="text/os-template">
<myapp:Info>
<announce>Annoucement title</announce>
<announce_info>

<div>The latest announcement is XXXX</div>
<div>from <os:ShowPerson person="${Top.Viewer}"/></div>

</announce_info>
</myapp:Info>

</script>
<script type="text/os-template" name=

"myapp:Info">
<div class="box-title"><os:Render content=

"announce"/></div>
<div class="box-content"><os:Render content=

"announce_info"/></div>
</script>

344

Chapter 9: Emerging Technologies

Looping through a List of Items

The <os:Repeat> tag is used to loop through a set of items and, for each item, display the contents of the
tag. Listing 9-11 shows how this tag is used along with the previously discussed ${Context} and ${Cur}

template variables. The expression parameter contains the list of items.

Listing 9-11: Looping through a List of Friends

<os:Repeat expression="${ViewerFriends}">
<div>
Friend ${Context.Index} is ${Cur.Name}

</div>
</os:Repeat>

OpenSocial Data Pipelining
Some OSML tags are designed to deal with OpenSocial data requests. This part of the OpenSocial Tem-
plates Standard (discussed in ‘‘Part 3’’) is called data pipelining. What these tags offer is the declarative
(non-OpenSocial JavaScript API calls) request for OpenSocial data.

Listing 9-12 shows sample application code that uses tags to get OpenSocial data associated with the
application owner. The first template in this listing involves the OSML tag <os:OwnerRequest>, which
associates the variable ${Owner} defined by the value in the key parameter with the resulting Owner data.
The second template in this listing uses the variable ${Owner} to display the owner’s name.

Listing 9-12: Using <os:OwnerRequest> to Get Social Data via Markup

<Content type="html">
<script type="text/os-data">
<os:OwnerRequest key="Owner" fields="name, about, books/>

</script>
<script type="text/os-template">
<div>

Hello, ${Owner.name}. Welcome to our app.
</div>

</script>
</Content>

OpenSocial data pipelining deals with OpenSocial data access inside of templates. This section examines
the details surrounding data pipelining, including the following:

Data access (the opensocial.DataContext object)

Data conditional rendering (require and before attributes of the template <script> tag)

Listener for data changes (listen attribute of the template <script> tag)

Dynamic request for data (resendRequest)

345

Chapter 9: Emerging Technologies

Data Access

As discussed previously, data can be accessed as keys that are named in template data requests. One
example of this was the use of <os:OwnerRequest key="Owner"> and the variable ${Owner} in the code
in Listing 9-12. This data is actually stored in the opensocial.DataContext JavaScript object, and can be
equivalently accessed as opensocial.DataContext[’Owner’].

Similarly, the developer can access properties of a data object represented by a key, or access them
through the DataContext object as follows:

${key.property}

opensocial.DataContext[’key’].property

os.data.DataContext[’key’].property

The scope of a DataContext object is related to the view name specified in the gadget <Content> tag
containing the template. Hence, all templates in the same view share the same DataContext object, and
templates in different views do not. This is illustrated in Listing 9-13.

Listing 9-13: OpenSocial DataContext Containing View-Specific Data

<Content type="html" view="home,profile">
<script type="text/os-data">
<os:OwnerRequest key="Owner" />

</script>
</Content>

<Content type="html" view="home">
<script type="text/os-template">
<div>

Welcome ${Owner.NAME} to the application.
</div>

</script>
</Content>

<Content type="html" view="profile">
<script type="text/os-template">
<div>

${Owner.NAME}’s Profile is XXX
</div>

</script>
</Content>

Data can be placed in the DataContext object dynamically with the putDataSet method, which takes an
associated key and related data value. Listing 9-14 shows an example.

Listing 9-14: Dynamic Use of DataContext.putDataSet to Add Data

<script type="text/javascript">
//called when user selected a GUI element ,
//id is userid of a selected Friend
function selectFriend(id) {
var req = opensocial.newDataRequest();
req.add(req.newFetchPersonRequest(id, ‘Friend’);

346

Chapter 9: Emerging Technologies

req.send(function(data) {

//associate the key Friend with the corresponding Person Data.
//os.data.DataContext.putDataSet(’Friend’, data.get(’Friend’));

});
}

</script>

Similarly, the DataContext object has a getDataSet(’key’) method that retrieves the data associated
with the key. For example, the Friend key in Listing 9-14 can be retrieved as follows:

var the_friend = os.data.DataContext.getDataSet(’Friend’);

Data Conditional Rendering

A developer can specify the conditional rendering of a template based on data availability. For example,
a template that uses viewer OpenSocial data should not be rendered until this data is available. Recall
that data is either accessed through its key name or via the DataContext object.

Listing 9-15 shows the modification of the <script> tag to include the attribute require. This says that
the template will be rendered only if the data represented by the key ${Viewer} is available.

Listing 9-15: Template Conditionally Rendered Using the require Attribute

<script type="text/os-template" require="Viewer">
Welcome ${Viewer.Name}

</script>

If multiple data items are needed (for example, d1,d2,d3), this can be specified by a comma-delimited
list as follows:

<script type="text/os-template" require="d1,d2,d3" >

Another data conditional rendering attribute is before, which allows a template to be rendered only if
the data is not yet available. This is useful when the developer wishes to show some information while
waiting for data availability.

Listing 9-16 shows an example of this. When neither the application user (Viewer) nor the friends
(Friends) data is loaded, the ‘‘Loading up your information . . . ’’ string is displayed. When the Viewer

data is available, but not the Friends data, the ‘‘****, accessing your friends’ info’’ string is displayed.
Finally, when both Viewer and Friends data is available, it prints out ‘‘**** your friends are’’ followed
by the names of ‘‘****’s’’ friends.

Listing 9-16: Template Rendered If Data Not Available Using the before Attribute

<script type="text/os-template" before="Viewer">
Loading up your information...

</script>
<script type="text/os-template" before="Friends" require="Viewer">

${Viewer.Name}, accessing your friends’ info
</script>

Continued

347

Chapter 9: Emerging Technologies

Listing 9-16: Template Rendered If Data Not Available Using the before Attribute

(continued)

<script type="text/os-template" require="Viewer, Friends">
${Viewer.Name} your friends are

<div repeat="Friends">${Cur.Name}</div>

</script>

Listener for Data Changes

A developer can ‘‘register’’ a template as needed to be re-rendered when data changes using the listen

attribute of the <script> tag, as shown in Listing 9-17.

Listing 9-17: Re-Rendering of Template Based on the listen Attribute

<script type="text/os-template" require="Viewer, Friends">
${Viewer.displayName} select one of your friends:
<div repeat="Friends">
<button onclick="selectFriend(${id})" value="${displayName}"/>

</div>
</script>

//only rendered when Viewer and Friend both available
//and re-rendered when Friend changes value
<script type="text/os-template" require="Viewer, Friend"

listen="Friend">
${Friend.displayName} has been selected.

</script>

<script type="text/javascript">
//called when button clicked to get Friend data
function selectFriend(id) {
var req = opensocial.newDataRequest();
req.add(req.newFetchPersonRequest(id, ‘Friend’);
req.send(function(data) {

os.data.DataContext.putDataSet(’Friend’,
data.get(’Friend’));

});
}

//code to request Viewer and Friends
function init() {
//socialDataFromOpenSocialApiCall =
//OpenSocial API call to get viewer&friends;

opensocial.template.renderAll
(socialDataFromOpenSocialApiCall);

}

init();
</script>

348

Chapter 9: Emerging Technologies

The first template in the listing is rendered when both the Viewer and Friends data is available and
produces a set of buttons associated with the viewer’s friends. The last <script> block (a JavaScript
block) makes the calls to get the Viewer and Friends OpenSocial data. This JavaScript block also contains
a selectFriend function that is called when one of the ‘‘Friends’’ buttons is clicked. This will perform an
OpenSocial JavaScript call to get the selected Friends data. This change to the Friends data will trigger
the second template in the listing to execute (with the listen attribute), which will display information
about the selected friend.

Dynamic Request for Data

Developers can choose to resend a previously made data request by using the os.data.resendRequest

(’key’) method call. All requests made in a <Content> block are stored in the os.data.requests object
and are keyed by the data set key. Listing 9-18 shows an example that resends a request and gets back
new results.

Listing 9-18: Resend Request for Set of Friends Using os.data.resendRequest

<Content type="profile">
<!-- Data -->
<script type="text/os-data">
<os:FetchPeopleRequest key="Friends"/>
<os:OwnerRequest key="Viewer" id="VIEWER"/>
//initial request a dummy request, to be resent
//with a real id in the
//JavaScript function selectFriend

<os:OwnerRequest key="Friend" id="OWNER" profileDetails="ABOUT, BOOKS"/>
</script>

<script type="text/os-template" require="Viewer, Friends">
${Viewer.displayName} select one of your friends:
<div repeat="Friends">
<button onclick="selectFriend(${id})" value="${displayName}"/>

</div>
</script>

//only rendered when Viewer and Friend both available
//and re-rendered when Friend changes value
<script type="text/os-template" require="Viewer, Friend" listen="Friend">

${Friend.displayName} has been selected.
About them: ${Friend.About}

</script>

<script type="text/javascript">
//called when button clicked to get Friend data
function selectFriend(id) {

var request = os.data.requests[’Friend’];

request.setAttribute(’id’, id);
os.data.resendRequest(’Friend’);

Continued

349

Chapter 9: Emerging Technologies

Listing 9-18: Resend Request for Set of Friends Using os.data.resendRequest

(continued)

}

//code to render templates
function init() {

os.Container.processDocument();
}

init();
</script>

In this code, the first template contains a data request tag <os:FetchPeopleRequest> that has a key
value of Friends, as well as data requests for the Viewer, a request for Friends, and a Friend. The
JavaScript block invokes a selectFriend function when a friend is selected via a series of buttons. The
selectFriend button function uses the user ID of the friend to update the data request associated with
the key Friend. It resends this request with the os.data.resendRequest call.

OpenSocial Template Examples
Figures 9-1 and 9-2 show some samples of OpenSocial templates. Figure 9-1 shows a sample of an
OpenSocial template created by the program found at http://www.google.com/ig/sharetab?hl=en&

source=stb&stid=1089870573423015213654aa9d69edeba3fffa78919d579938c38. This program
installs OpenSocial Template samples on your iGoogle home page.

Figure 9-1: OpenSocial template example installed in the iGoogle home page

Figure 9-2 shows an example found at http://hosting.gmodules.com/ig/gadgets/file/

108987057342301521365/examples.html. A good emulator program can be found at
http://ostemplates-devapp.appspot.com/.

350

Chapter 9: Emerging Technologies

Figure 9-2: OpenSocial Template example from

http://hosting.gmodules.com

OpenSocial Templates Resources

The following are resources related to the OpenSocial Templates Standard:

Web site — http://opensocial-templates.org or http://ostemplates-

demo.appspot.com

Templates wiki — http://wiki.opensocial-templates.org/index.php?

title=Main_Page

Templates discussion group hosted on Yahoo! — http://tech.groups.

yahoo.com/group/os-templates

Templates specification — http://sites.google.com/a/opensocial.org/

opensocial/Technical-Resources/opensocial-templates-spec

Templates ‘‘cookbook’’ — http://ostemplates-demo.appspot.com/

cookbook.html

351

Chapter 9: Emerging Technologies

Information hosted on main OpenSocial wiki — http://wiki.opensocial.org/

index.php?title=OpenSocial_Templates

Demos/emulator — http://ostemplates-devapp.appspot.com and
http://hosting.gmodules.com/ig/gadgets/file/108987057342301521365/

examples.html

OpenSocial Proxied Content
In Chapter 2, you learned about the different OpenSocial transactional models, including the client-based
application, hybrid, and completely server-based application. OpenSocial Proxied Content refers to the
creation of an OpenSocial Social network application that is completely server-side. This is the transac-
tional model that is used for development of Facebook applications. In this case, the server-side program
generates the HTML (or content) that is returned to the container and integrated (proxied) for delivery to
the user. Data is passed to the program from the container via POST variables.

To create an OpenSocial Proxied Content application, the content tag of the OpenSocial XML file that is
deployed should resemble the following:

<Content href="http://U.com" >

In this case, the URL http://U.com points to a server-side developer program that receives the POST

request and generates the application output. The output can include OSML tags and templates. The
application can use OSML to efficiently indicate what data is to be sent to the server program, as shown
in the following example where the friends of the owner are sent:

<Content href="http://U.com" >
<os:PeopleRequest key="ownerFriends" userId="@owner" groupId=

"@friends" fields="name, aboutme">
</Content>

The following represents the shell of a PHP server-side program that is given in the Content href URL,
which receives the owner’s Friends data and returns some HTML:

<?php

//return any static html at the start
echo "<h1>Friend Finder App</h1>
";

//grab array of friends and pass into
//the variable $ownerFriends
$ownerFriends = $_POST[’ownerFriends’];

//cycle through friends for display in a list
echo "";
foreach($ownerFriends as $person) {

echo "" . $person["name"] . " says " . $person["aboutme"] . "";
}

?>

352

Chapter 9: Emerging Technologies

Check out http://wiki.opensocial.org/index.php?title=Proxied_Content for more details
on this subject.

Currently, orkut and hi5 (unofficially) are among the containers that support OpenSocial Proxied Con-
tent. Yahoo! Open Strategy (Y!OS) and Yahoo! Applications (YAP) also support OpenSocial Proxied
Content, as discussed later in this chapter.

OpenSocial Client Libraries
A new project sponsored by Google provides client libraries for the OpenSocial REST API. These can
be used in a developer’s server-side program, rather than having to create and parse OpenSocial REST
requests and responses. Basically, these provide a ‘‘wrapper’’ library for REST calls, and can make it
easier to create OpenSocial REST programs.

If you are familiar with Facebook, this is similar to the Facebook API libraries provided for PHP and, in
the past, for Java.

Following is an example of the OpenSocial PHP client library in use:

$client = $opensocial->os_client; //create instance of OpenSocialClient
$person = $client->people_getUserInfo($id); //where id is the user id

$the_profile_imgUrl = $person[’entry’][’thumbnailUrl’];
$name = $person[’entry’][’name’][’givenName’]’
echo ‘Welcome’. $name . ‘’;

In this code sample, os_client returns an instance of the OpenSocialClient class.

For more information about the PHP client library, OpenSocialClient.php, see
http://code.google.com/p/opensocial-php-client. For more information about the
Java client library, see http://code.google.com/p/opensocial-java-client.

Table 9-4 shows the current list of methods of the PHP OpenSocialClient class. These methods are trans-
lated inside the library code to the appropriate OpenSocial REST call. These methods also asynchronously
receive the results in JSON format, and return them to the PHP program invoking them.

Yahoo! Open Strategy
Y!OS, Yahoo! Open Strategy (Y!OS) entails the opening of Yahoo!’s social infrastructure to developers,
and allowing them to deploy applications hosted on their external Web sites, as well as applications on
Yahoo! This includes the development of OpenSocial applications, for which Yahoo! is a big supporter
and is member of the OpenSocial Foundation. Through Y!OS, Yahoo! is now an OpenSocial container.

What is unique and appealing about this new strategy is that it is the first real example of a portal becom-
ing explicitly social and allowing social application development. While Google and Yahoo! both have
had separate social networks (for example, Google’s orkut), neither has explicitly wrapped social net-
working concepts into its main portals. Yahoo! is inherently a social environment with a rich set of
services, so the explicitly social strategy of Y!OS is both intriguing and exciting. The massive audience
available to applications via Y!OS through its integration of the many Yahoo! platforms will create new
application opportunities.

353

Chapter 9: Emerging Technologies

Table 9-4: Methods of the PHP OpenSocialClient Class

Tag Meaning

people_getUserInfo Gets information about people. Can specify an array of user
IDs and fields (that is, the @self REST specification).

people_getFriendsInfo Gets friends and their information. Specify user ID whose
friends you wish and the fields array (that is, the @friends

REST specification).

people_getAllInfo Gets all information (that is, the @all REST specification).

people_getGroupFriends Gets a group of people. Has the group ID specification.

people_getMyInfo Gets user’s information (that is, the @me REST specification).
Has a fields array.

group_getUserGroups Gets groups associated with a user.

activity_getUserActivity Gets activities generated by the user (user ID specified).

activity_getFriendActivity Gets activities generated by a user’s friends.

appdata_getUserAppData Gets AppData of user for application. Specify user ID and
appid.

appdata_getFriendsAppData Gets AppData of friends for application. Specify user ID
and appid.

A big difference in Yahoo! Applications (YAP) from traditional social network applications is that Yahoo!
intends to allow developers to deploy applications to different platforms. So, an application can be
deployed to Yahoo! mail, the front page, sports, or the many other platforms. This is an exciting capability
that isn’t seen on traditional social networks.

Y!OS Architecture
Y!OS is presented by Yahoo! as the ‘‘rewiring’’ of Yahoo! to create a single social base of all of its
platforms (search, mail, Flickr, video, and so on), thereby creating an open framework for application
developers to get data from and put data not only into this social layer but also into Yahoo!’s
services/platforms.

Figure 9-3 shows a diagram of the Y!OS architecture. Across the top are the Yahoo! platforms, including
mail, front page, search, media, and partner sites. On the left is a single integration point called Yahoo!
Developer Network (YDN) for developers to use these platforms. Below the Yahoo! platforms is a single
cross-platform social layer, called the Social Platform. Above this is an Application Platform, which
now represents a single framework for developing applications. Finally, access to the individual Yahoo!
services is done with one Web service and the Yahoo! Query Language (YQL) layer.

354

Chapter 9: Emerging Technologies

Y!
MAIL

Y!
FRONT
PAGE

WEB SERVICES & QUERY LANGUAGE

APPLICATION PLATFORMYDN
One front door
for developers

SOCIAL PLATFORM

INFRASTRUCTURE

One mechanism
for accessing and
mashing data

One framework for
developing Apps

One social graph
and profile record

Global scalability,
replication and
storage

Y!
SEARCH

Y!
MEDIA

PARTNER
SITES

Figure 9-3: Y!OS architecture

Yahoo! Social Platform constructs include the following:

A single social directory

Contacts

User status

Updates

OpenSocial support

To produce a single Yahoo! Social Layer across all of its platforms, Yahoo! stipulates that users be rep-
resented with a Global User Identifier (GUID). An application can get information about a user with
reference to any Yahoo! platform using this GUID.

Yahoo! User Profiles
Yahoo! users can now create their own Yahoo! Profiles at http://profiles.yahoo.com. Figure 9-4 shows
a profile on Yahoo! that has many of the features seen on popular social networks. Part of the profile is
making connections to other users (friends). Yahoo! makes suggestions automatically based on how
a user uses Yahoo! services. For example, in Figure 9-4, suggestions are made based on who the user
is frequently emailing. This goes beyond the traditional ‘‘suggested friends’’ that social networks are
currently providing. Yahoo! will also look at other properties (such as Yahoo! Messenger) to provide
suggestions.

Yahoo! User Updates
Yahoo! user updates can be seen on a user’s profile and used in applications. User updates are created
as a function of all the Yahoo! platforms that are integrated under Y!OS. Users can choose what updates

355

Chapter 9: Emerging Technologies

to allow different connections/friends to see through privacy settings. So, even though the platforms are
integrated, a user can choose different settings for different platforms. Figure 9-5 shows a listing of all the
Yahoo! platforms for which a user can set permissions.

Check out Yahoo! Messenger and Yahoo! Tech (http://tech.yahoo.com) for links back to user’s
profiles.

Figure 9-4: Yahoo! Profile

Yahoo! Applications (YAP)
Development of applications is done using APIs that are part of the Yahoo! Application (YAP) platform.
Y!OS is about making Yahoo! social, and opening up data and APIs for application developers to create
applications both on and off of Yahoo!.

Applications in YAPs can be based on server-side programs, client-side technologies, or hybrids. The
client-side technology features OpenSocial JavaScript support. Other predominately feature technologies
include Yahoo! Markup Language (YML), and OAuth. Flash is also a client-side technology suggested
for application development.

Similar to other social networks, YAP (regardless of the technology used to implement them) can be
discovered via the YAP Gallery (under construction), user updates, and direct invitations.

If the application is hosted externally on a developer’s server, and makes calls directly to YAP on behalf
of a user, an authentication process using OAuth is necessary, as discussed in the OpenSocial REST API.
Yahoo! Senior Director Cody Smith says that support of OpenSocial REST is something that Y!OS is
planning in the future. At this point, the YAP proprietary REST services should be used. A PHP SDK is
currently provided to ease development.

356

Chapter 9: Emerging Technologies

Figure 9-5: Yahoo! platforms for which a

user can set update permissions

357

Chapter 9: Emerging Technologies

Understanding YAP Views

YAP currently supports two views:

Small view

Full view

The Small view is what can be deployed and embedded into the varied Yahoo! platforms. The Small view
is equivalent to the ‘‘profile’’ view in OpenSocial. As of this writing, the Small view must be static and
is hosted on Yahoo! Currently, the Small view consists only of HTML, YML, and inline CSS. This allows
for quick loading and caching. This is important for integration into Yahoo! platforms such as the Yahoo!
front page. The Small view is 300 pixels wide by 250 pixels high.

Yahoo!’s reasoning behind the bar of JavaScript in its Small view is the concern for security. Some discus-
sion of expanding the Small view with dynamic capabilities is ongoing.

A purpose of the Small view is to ‘‘launch’’ into a Full view version of the application. It is important
when creating the Small view to have this feature. While this is hosted and cached on Yahoo!, a devel-
oper can do periodic customization of the Small view by updating it programmatically with the YAP
SetSmallView (with the parameters guid and newYML) method (that is, from a server-side PHP pro-
gram). The Small view is first created, and then can be updated from the YDN application development
interface.

The Full view is meant as the main and currently only functioning view of the application. This is the
‘‘canvas’’ view in OpenSocial. Currently, YAP supports the latest OpenSocial JavaScript API version.
Recall that developers can also create non-OpenSocial applications, including Flash-based applications,
as well as hybrid or completely server-based applications. In either case, the Full view application is
hosted on the developer’s server.

The Full view (also called Application view) can be created as an OpenSocial JavaScript application in
‘‘canvas’’ view. Figure 9-6 shows the transactional model.

Server-side programs make calls directly to the YAP, and a YAP SDK must be downloaded. Currently,
an SDK for is available for PHP and for AS3 (Action Script, for Flash programming).

The Full view (‘‘canvas’’) is 760 pixels wide. It is embedded by Yahoo! to run inside of an IFrame. A
restriction on all applications (including OpenSocial JavaScript applications) is that they must use Caja
(which is a restricted form of JavaScript).

Using Caja

YAP takes all application responses and passes them through a Caja translator. Caja is an Open Source
project that translates JavaScript, HTML, and CSS input into a single JavaScript function with no free
variables. The goal of this translation (or ‘‘cajoling’’ of the code) is to prevent malicious attacks.

For more information on Caja in YAP, check out http://developer.yahoo.com/yap/guide/caja-
support.html.

358

Chapter 9: Emerging Technologies

BROWSER

APP
BASE

APP CODE HOSTED
ON DEVELOPER
ENVIRONMENT

io.datarequest
"Cajoled"
JS/HTML

3rd-party site

OAuth is
supported

YAHOO!
SOCIAL

PLATFORM

Profile

Connection

Updates

Status

APPLICATION
PLATFORM
ENGINES

io.makerequest

Support signing & OAuth

Figure 9-6: Transactional model for client-based Full view

application

Restrictions do apply on what JavaScript, HTML, and CSS is allowed. Following are some of the current
Caja restrictions enforced by YAP:

Cannot contain arbitrary ActiveX objects

Cannot use eval to get around the ActiveX restriction

Cannot use IFrames to get around the eval restriction

Cannot use document.write (although you can use innerHTML)

Must define global variables with var

Must include JavaScript and CSS inline in the application (response)

Full support for OpenSocial JavaScript

No support for other libraries (such as YUI, jQuery, and Prototype)

Cannot use obj.prototype and constructors except in a way that blocks some common
JavaScript idioms (that is, monkey-patching)

After the Caja translation has been performed, the resulting translated JavaScript is run in an IFrame and
does not have direct reference to DOM objects outside the frame. Some developers have noted that this
translation process leads to larger files, inefficiencies, and, of course, limitations on the function of the
JavaScript.

The biggest frustration for OpenSocial JavaScript developers will be learning Caja and understanding
its limitations. Debugging is also a challenge in that the output of Caja can yield unexpected results

359

Chapter 9: Emerging Technologies

that are difficult to trace. There is some discussion that looks forward to future YAP OpenSocial REST
applications as an easier way to develop applications for inexperienced Caja developers.

When you are debugging using Firebug, even if you do not see an error icon, look at
the Firebug console. Some run-time errors don’t raise exceptions but instead show
up as plain-text messages in the console, such as the one shown in the following
example:

Not readable: (Someclass).XXX

This means that the application is typically doing something not yet supported.

YAP Application Development Steps
The developer begins the process of creating an OpenSocial JavaScript YAP application by first creating
static HTML (with CSS or YML) for a Small view. The developer then creates a Full view OpenSocial
JavaScript XML application with all the code inline.

An important document that discusses application development issues on YAP is located at
http://developer.yahoo.com/yap/guide/yap-overview.html.

The following reflects the YAP application lifecycle stages shown in Figure 9-7:

Development — The developer specifies the Small and Full view code using the YAP developer
toolkit (available at http://developer.yahoo.com). This is accomplished by clicking on My
Projects, and creating an ‘‘Open Application.’’ You must provide the URL for the Full view and
the source for the Small view. Preview mode is available for both. Only the developer can view
or run the application.

Pushed Live — Using the developer toolkit, you can push ‘‘live’’ the application to allow the
application to be shared with others. This is meant for testing between a select set of users. The
application does not appear in the Yahoo! Application Gallery.

Published — Once published, the application appears in the Yahoo! Application Gallery.

Installed — The application is then installed in a ‘‘landing page’’ or platform such as Yahoo!
Profiles or Yahoo! Mail. The Small view of the application appears in the landing page. From the
Small view, the user can launch the Full view.

Running — When the user is using the Small or Full view of the application, YAP renders the
application inside of the containing page (platform/landing page, or Full view page).

Invest a little time using YML so as to create some feel of customization. Hopefully,
in the future, this can be replaced by OSML.

360

Chapter 9: Emerging Technologies

App
Stages:

Developer User

App Editor

Development Pushed Live Published Installed Running

My Yahoo!

Figure 9-7: YAP application lifecycles

A developer can return to existing applications either through the YDN, or directly at
http://apps.yahoo.com/myapps. The myapps page also has a list of featured applications that can
be installed and will eventually link to the Yahoo! Gallery. When an application is selected, it will run in
‘‘canvas’’ view and the URL will have the format http://apps.yahoo.com/-hIiPNp4o, where the last
part is the application ID.

YAP OpenSocial Application Development
YAP supports only part of the latest OpenSocial version (Gadget API calls). It does not support the
OpenSocial RESTful API or the Gadget XML definitions. The Full view Yahoo! application can have only
OpenSocial JavaScript API calls.

Check out http://developer.yahoo.com/yap/guide/yap-opensocial.html for updates on
YAP’s support of OpenSocial.

Currently, YAP supports the following fields:

Activity:

Only opensocial.CreateActivityPriority.LOW (not HIGH)

opensocial.Activity.Field.ID

opensocial.Activity.Field.TITLE

opensocial.Activity.Field.BODY

opensocial.Activity.Field.URL

opensocial.Activity.Field.USER_ID

opensocial.Activity.Field.POSTED_TIME

App Data:

Up to 1,024 bytes per key

Up to 1MB per application

361

Chapter 9: Emerging Technologies

Messages:

No support for either requestSendMessage or requestShareApp

Look at the YML tags <yml:message> and <yml:share> as alternatives.

Person:

opensocial.Person.Field.ID

opensocial.Person.Field.NAME

opensocial.Person.Field.THUMBNAIL_URL

opensocial.Name.UNSTRUCTURED

opensocial.Person.Field.PROFILE_URL

opensocial.Person.Field.ADDRESSES

opensocial.Address.UNSTRUCTURED_ADDRESS

opensocial.Person.Field.AGE

opensocial.Person.Field.GENDER

opensocial.Person.Field.TIME_ZONE (not available when fetching friends)

People request fields:

opensocial.DataRequest.PeopleRequestFields.FIRST

opensocial.DataRequest.PeopleRequestFields.MAX

No support for other PeopleRequest fields, including FILTER, PROFILE_DETAILS, and
SORT_ORDER. Treats them if set to value of ALL.

Gadget API:

All of the Core API, but not Preferences, Views, and Feature-Specific APIs.

Listing 9-19 shows a simple OpenSocial application stripped of its Gadget XML that is acceptable for
deployment on YAP. This application simply gets the viewer’s name and friends list. Figure 9-8 shows
the results of running this application in the YAP developer preview mode. This is done in a test Yahoo!
account that has one friend/connection.

Listing 9-19: OpenSocial JavaScript Application Acceptable for YAP (with Gadget

XML-Stripped)

<div id=’heading’></div>
<hr />
<div id=’main’></div>
<hr >
<div id=’friends’></div>
<div id=’friend_status’> </div>

362

Chapter 9: Emerging Technologies

<script>
var os;
var dataReqObj;
var os;
var html = ‘’;
var heading = ‘’;
var friends_html = ‘’;

function init() {
dataReqObj = opensocial.newDataRequest();
var viewerReq = dataReqObj.newFetchPersonRequest(’VIEWER’);
dataReqObj.add(viewerReq, ‘viewer’);

//get viewer’s friends
var idspec = opensocial.newIdSpec({ "userId" :

"VIEWER", "groupId" : "FRIENDS" });
var Req = dataReqObj.newFetchPeopleRequest(idspec);
dataReqObj.add(Req, ‘viewerFriends’);

//send request
dataReqObj.send(onLoadViewerResponse);

}

function onLoadViewerResponse(data) {

var viewer;

try{
viewer = data.get(’viewer’).getData();

}catch(err)
{

heading = ‘Error2 ‘ + err.description;
alert (heading);

}

heading = viewer.getDisplayName() + ‘, use Friend Finder
to find your Friends’;

document.getElementById(’heading’).innerHTML = heading;

var viewer_friends = data.get(’viewerFriends’).getData();
try{
friends_html = ‘Your Friends, ‘ ;
friends_html = friends_html + ‘’;

viewer_friends.each(function(person) {
friends_html = friends_html + ‘’ +
person.getDisplayName()

+ ‘’;
});
friends_html = friends_html + ‘’;

} catch(err)
{ friends_html =’Problem finding friends’;

Continued

363

Chapter 9: Emerging Technologies

Listing 9-19: OpenSocial JavaScript Application Acceptable for YAP (with Gadget

XML-Stripped) (continued)

alert(friends_html);
}

document.getElementById(’friends’).innerHTML = friends_html;
}

init();
</script>

Figure 9-8: OpenSocial application

running in YAP

Yahoo! Query Language
The Yahoo! Query Language (YQL) provides an application with access to Yahoo! platforms and their
data via an SQL-type language. If you are familiar with Facebook, this is similar to Facebook Query
Language (FQL). A big difference is that, with YQL, an application can make queries across Yahoo!
platforms. This functionality is something that is currently missing from OpenSocial.

Here are a few simple YQL examples:

SELECT * from web.search WHERE query="XXX" LIMIT 4

SELECT * FROM social.profiles WHERE guid = me

SELECT * FROM local.search(100) WHERE query="vegetarian"
AND city="Capitola" LIMIT 100 | sort(field=result.rating)

SELECT * from flickr.search WHERE query="puppy" LIMIT 3

YQL can be embedded in both OpenSocial JavaScript YAP applications and YAP server-side applications.
Listing 9-20 shows code from http://developer.yahoo.com/yql/. This code makes a client-side call to
query.yahooapis.com using a signed request to service the YQL REST request.

364

Chapter 9: Emerging Technologies

Listing 9-20: Client-Side Call to Perform an YQL Call

<script type="text/javascript">

var toQueryString = function(obj) {
var parts = [];
for(var each in obj) if (obj.hasOwnProperty(each)) {

parts.push(encodeURIComponent(each) + ‘=’
+ encodeURIComponent(obj[each]));

}
return parts.join(’&’);

};

var BASE_URI = ‘http://query.yahooapis.com/v1/yql’;
var runQuery = function(query, handler) {

gadgets.io.makeRequest(BASE_URI, handler, {
METHOD: ‘POST’,
POST_DATA: toQueryString({q: query, format: ‘json’}),
CONTENT_TYPE: ‘JSON’,
AUTHORIZATION: ‘OAuth’

});
};

runQuery("select * from geo.places where text=’SFO’", function(resp) {
document.getElementById(’results’).innerHTML =
gadgets.json.stringify(resp.data);

});

</script>

You can find a useful test console for YQL at http://developer.yahoo.com/yql/console/.

Understanding the Yahoo! User Interface (YUI)
The Yahoo! User Interface (YUI) is a JavaScript library that uses CSS to provide commonly needed user
interface elements. If is free and is provided by Yahoo! Unfortunately, as of this writing, it is not sup-
ported by the Caja restrictions and, hence, won’t be covered. Discussion of its inclusion in future YAP
Caja translation could merit learning it. Some commercial sites using YUI include LinkedIn, JetBlue,
Southwest.com, Slashdot.com, Target.com, and more.

Using Yahoo! Markup Language (YML)
The Yahoo! Markup Language (YML) is similar to OSML. Currently, Yahoo! only supports the use of
YML and HTML in its Small view applications. Hopefully, Yahoo! will support OSML in the Small
view in the future, since the company is involved in the development of OSML through the OpenSocial
Foundation.

Details of YML can be found at http://developer.yahoo.com/yap/yml/index.html.

365

Chapter 9: Emerging Technologies

YML offers many nice features like friend selectors, application sharing, messaging, and others. List-
ing 9-21 shows the modification of some of the HTML from Listing 9-19 to include these basic tags.
Figure 9-9 shows the results. As of this writing, sending messages and inviting others to use the appli-
cation are not supported with OpenSocial API calls. (The main restrictions in OpenSocial support were
noted previously.) So, developers will need to use these tags.

Listing 9-21: Modification of HTML to Add YML Tags

<div id=’friend_status’>
<yml:friend-selector />

Update your friend
<yml:message name="message-tag">
<input type="text" name="status" value="Doing fine :>">
<input type="submit" value="Update">
</yml:message>

<yml:share > <input type="submit" value="Share Freind Finder now!">
</yml:share>

</div>

Figure 9-9: Results of running

altered code from Listing 9-21

Y!OS Application Examples
Figure 9-10 shows a YAP application called Yahoo! Hot Stocks as it appears in Full view (‘‘canvas’’).
Figure 9-11 shows a YAP application called America Decides, also shown in Full view (‘‘canvas’’). Both
applications have common elements seen in social network applications deployed in networks such as
MySpace, hi5, and others.

These applications have both client-side and server-side components. Back-end hosting involves edge
hosting (CDN). Flash is a key component in both of these applications.

366

Chapter 9: Emerging Technologies

Figure 9-10: Yahoo! Hot Stocks YAP application shown in Full View (‘‘canvas’’)

iWidgets
iWidgets is a startup company that has created a drag-and-drop integrated development environment
(IDE) for social network application development. With iWidgets, a developer can create applications
for OpenSocial and Facebook. iWidgets is currently targeting brand companies (such as McDonald’s) to
make it easier for them to create social network applications.

A developer can also use iWidgets technology to create an application. It is free for use, but iWidgets
will put advertising on the ‘‘canvas’’ page (for which they collect revenue). This tool might be useful for
doing quick mock-up applications or applications for fee-based clients.

367

Chapter 9: Emerging Technologies

Figure 9-11: Yahoo!’s America Decides YAP application shown in Full View (‘‘canvas’’)

Zembly
Zembly is a new venture by Sun Microsystems, Inc. that serves as a destination and platform for devel-
opers to collaboratively build social applications, services, and widgets that are served from Zembly.
With Zembly, the developer can create OpenSocial applications, Facebook applications, and iPhone
applications. This takes the ‘‘write once, deploy many’’ philosophy of OpenSocial to a new level.

Another objective of Zembly is to create an environment that is more accessible to new programmers. It
achieves this through development of applications via a Web interface, as shown in Figure 9-12. It also
hosts applications for developers and publishes them to social networks such as MySpace. Some nice
features of the Web interface are items like code completion, syntax checking, and project management
(that is, history). A unique and powerful feature of Zembly is the finding and sharing of services and
snippets. A self-described catch-phrase to describe Zembly is the ‘‘Wikipedia of Social Networks.’’

The back end of Zembly includes Sun servers, MySQL, a GlassFish application server, Apache, Mem-
cached, and Java. All of this is hosted on www.network.com, Sun’s cloud computing infrastructure.

368

Chapter 9: Emerging Technologies

Zembly takes care of scaling and performance issues for your application automatically. Figure 9-12
shows an application running in Zembly. Figure 9-13 shows the underlying architecture Zembly provides
for the application.

Figure 9-12: A complex social network application created in Zembly

Currently, Zembly is offering its services for free. In the future, Zembly may possibly add Service Layer
Agreements, as well as have monetization and revenue-sharing agreements with developers.

Understanding the Zembly Application Structure
Currently, Zembly applications are created with a mixture of HTML, JavaScript, and CSS. They also
include predefined Zembly services, snippets, Web APIs, widgets, and more. JavaScript libraries have
been created for developers to use in their code for different social network platforms such as OpenSocial
and Facebook.

369

Chapter 9: Emerging Technologies

In the future, Zembly will be adding support for PHP and Python scripting. Developers can create new
services, snippets, and widgets for their own applications or to share with other developers.

Understanding a Zembly Service
A service is a back-end component that usually wraps some external Web service for applications that
developed and then hosted within Zembly. An example of a Zembly service is a ‘‘wrapper’’ service that
accesses the Flickr Web service. A Zembly service is created in JavaScript, and the developer defines the
parameters that Zembly uses to map to the external service’s REST requests. This mapping is done by
Zembly through the use of the developer-provided information in a set of Web interface documents and
the service’s discovery document. (Zembly internally parses all documents to WADL.)

Note: The user shard persistence

is in one of the MySQL databases.

When a request is received from

a user that isn't in the cache, the

user's shard info is retrieved from

the database.

The cache is also updated when

the load balancer initializes with

a request to get all users and their

shards.

Shards are created for every

100,000 users.

Load Balancer with
in-memory user-shard
mapping cache

Read static JSON files
from S3. These files get
updated after result
processing

S3

Single Storage Service

Amazon S3

myPicks Architecture

zembly adapters
call Pramati APIs

DNS-based load
balancing used for

choosing load balancer

Load Balancer with
in-memory user-shard
mapping cache

Web server

Web server

MySQL
Master

User DB

Slave

Main DB

Web server

Web server

MySQL
Master

User DB

Slave

Figure 9-13: Zembly’s architecture for the myPicks application in Figure 9-12

Currently, Zembly doesn’t support Web services that require a user login to post user-specific data or
to get user-specific data to an external Web service. As of this writing, a Zembly service can only post
application-specific data, not to a user account on the external service.

For example, the MySpace ‘‘mPicks US Election’’ application (which was developed and is hosted on
Zembly, and was shown in Figure 9-12) uses a Twitter service. In this case, the application uses this
Zembly-provided service by making Twitter posts to an application Twitter account (meaning a Twitter
account owned by the developer). The Zembly Twitter service has only two parameters — status (which
is the Twitter line the user enters that can be captured by an HTML form) and key.

370

Chapter 9: Emerging Technologies

Check out http://wiki.zembly.com/wiki/Getting_Started: ‘‘Creating a Widget Service’’ for
more details on how to create a service. Later in this chapter in the section, ‘‘Creating a Simple OpenSo-
cial Application in Zembly,’’ you will see how a Zembly service is incorporated into an application.

Understanding a Zembly Widget
A widget is a front-end component that typically has a GUI component and often will make calls to
back-end services. A widget is specific to a platform (for example, OpenSocial or Facebook). Widgets
allow for a kind of plug-and-play or drag-and-drop modularity. A widget will encompass both GUI
elements and their event handling.

Understanding a Zembly Snippet
Snippets are basically code snippets that can be inserted into the developer’s code. For an OpenSocial
application, these will be inserted in the JavaScript code. Snippets are typically used to encapsulate
commonly used business logic/processes.

Understanding a Zembly Key Chain
A developer’s key chain is a concept in Zembly that stores keys owned by the developer to external
sites. For example, to use a Web service represented by a Zembly service, the developer must obtain
a key from the external Web service (for example, Google Maps) and then register this in the Zembly
key chain.

When a developer creates a new service, it will commonly have as a parameter a key (because most exter-
nal services need authentication). Zembly handles the process of authentication using the developer’s key
when the service is created.

Creating an OpenSocial Application in Zembly
To create an OpenSocial application in Zembly, a developer must first secure an account. After get-
ting an account on Zembly, the developer will go to the ‘‘Create Something’’ pull-down list and choose
an OpenSocial application. The developer has the option to use preexisting templates, as shown in
Figure 9-14, or to create a blank OpenSocial application. A template has a preexisting layout and applica-
tion features. This can be a powerful tool to get up and running quickly. Limited selections are available,
but more will be available in the future.

At this point, the developer can choose to view or edit the following application elements:

CanvasWidget — This is the ‘‘canvas’’ view.

HomeWidget — This is the ‘‘home’’ view.

PreviewWidget — This is the ‘‘preview’’ view.

ProfileWidget — This is the ‘‘profile’’ view.

Create — This is used to create either a new widget or a new service.

Figure 9-15 shows the application-creation interface when the CanvasWidget (‘‘canvas’’ view) is selected.
It consists of an editing tab for HTML, CSS, and JavaScript. This has a feel similar to that of the editing
tabs available in the MySpace-hosted OpenSocial deployment option discussed earlier in the book.

371

Chapter 9: Emerging Technologies

Figure 9-14: Template choices given to developer when creating OpenSocial

applications in Zembly

Figure 9-15: Zembly’s interface for creating the ‘‘canvas’’ view of the OpenSocial

application

372

Chapter 9: Emerging Technologies

A potentially powerful feature offered in Zembly is the service finding and sharing feature. As shown
in Figure 9-16, there are currently 161 services that match the search for services under ‘‘Flickr.’’ After
selecting a service, the result will be the insertion of the JavaScript code necessary to incorporate the
service, as shown in the left side JavaScript editing screen of Figure 9-16. The developer must edit this
code to pass parameters to the service call, and edit the callback function to handle the response as
desired.

Figure 9-16: Zembly’s Service finding and sharing feature

Incorporation of snippets and widgets follows the same transaction as discussed for a service.

Publishing an Application
Publishing an Application on Zembly is simply a matter of clicking a Publish button. This action results
in the creation of a URL the developer can use in application deployment on the desired OpenSocial
container.

Creating Your Own Service
Developers can create their own services to support modularity, reusability, and the capability to be
shared with other developers. From the main application interface, the developer selects the creation of a

373

Chapter 9: Emerging Technologies

new service and is taken to the page shown in Figure 9-17. The developer can create as many parameters
as desired for the service via the Parameters tab on the right side of the interface. Then, the developer
must edit the JavaScript to build out the service. In this case, a service is being created to get the longitude
and latitude corresponding to a street address using Google’s GeoLocator Web service. The parameter
added is an ‘‘address,’’ as seen in the JavaScript code.

Figure 9-17: Zembly’s Web interface to create a new Service

The Zembly service-creation interface also allows a developer to ‘‘test drive’’ the service before it is
published.

Summary
OpenSocial is a powerful platform on which to develop social network applications. It allows the devel-
oper to create once and deploy to many OpenSocial containers, including MySpace, hi5, orkut, Netlog,
and many others. The list is growing.

OpenSocial is a very important standard, and many corporations have heavily invested in its progress.
This chapter highlighted some of the more recent important additions to OpenSocial, as well as some
intriguing new technologies like Y!OS and Zembly that feature OpenSocial.

374

In
d
e
x

Index

A
Accelerators, Joyent, 298

access, defined (server-side programming), 173

Access Key Identifiers, 295

action requests, 232–233

activities, 130–139

activity data, 207–208

activity posting, 134–137

creating, 135–136

invitations to install, 137–139

media items in, 254–258

messages, 131–134

REST requests and, 202

adjustHeight method, 104, 106

Adobe Express Install application, 273

advertising, 318–320

Akamai, 290

Amazon Machine Image (AMI), 293

Amazon Simple Storage Server (S3), 296

Amazon Web Services (AWS)

Amazon Simple Storage Server (S3), 296

basics, 295

CloudFront, 296–297

defined, 292–293

EBS, 296

Elastic Compute Cloud (EC2), 293–295

grid/cluster computing, 296

Joyent, 298

pricing, 297–298

analytics, 222, 312–316

AppData

clearing, 258–259

data support, 208–210

requests, 202

appearance, of applications, 17–20

application data, defined, 46

application infrastructures, 304

application servers, 283–284

Application/Client layer, 281

applications. See also specific applications

appearance of, 17–20

brand-based, 39

communication and, 31. See also communications

applications

control of. See control of applications

creating, 83–86

finding, 15–16

friend selector, 241–243

goals of. See goals of applications

identity of social networks, 48–50

improvement of, 53

installing, 16–17

JavaScript tools for, 274–275

making social and viral, 29

marketing, 50–53

person/people. See person/people applications

publishing (Zembly), 373

retaining users, 53

size for different views, 19–20

social network applications, defined, 14

testing, 78, 79, 221–222

tips for development of, 53–54

trends in. See trends in applications

viral channels and features, 46–48

Application Builder interface (MySpace), 69–71

Architectural Styles and the Design of Network-Based

Software Architectures, 169, 172

architecture

OpenSocial RESTful API, 175–176

REST, 170

RESTful/RESTful-RPC hybrid, 171

Web system, 280–282

Y!OS, 354–355

architecture of OpenSocial, 57–64

basics, 57–58, 63–64

client-based API, 58–59

server-based API, 58, 59–62

asynchronicity (OpenSocial JavaScript API),

114, 116

Atom, 66

attentiveness of application users, 31

attributes. See also specific attributes

Content element, 93–94

ModulePrefs element, 88–91

UserPrefs element, 91–93

authentication. See also OAuth (OpenSocial REST

authorization and authentication)

defined, 176

RESTful architecture and, 175

authorization. See also OAuth (OpenSocial REST

authorization and authentication)

defined, 176

RESTful architecture and, 175

authz, 232

AWS. See Amazon Web Services (AWS)

Base URL, calls and

B
Base URL, calls and, 200

batching requests

basics, 63–64

in code for Friend Finder, 114

multiple requests, 306–307

before attribute, 347–348

blog services, 52

blurbs, creating, 140–144

brand-based applications, 39

browsing indexes (hi5), 15–16

bug-tracking software, 317

build communities, defined, 1

bundles, message, 250–254

buttons for email creation,

131–132

C
Cache-Control HTTP header, 286

caching

basics, 284–289

issues, 228–229

vs. requests for external files, 309

CAJA, 222, 358–359

calls

Base URL and, 200

calling templates, 331–332

to external resources, 227–228

Gadget API, 63

opensocial.getEnvironment() method call,

259

os.data.resendRequest (‘key’) method call,

349–350

signed makeRequest calls, 230

YQL, 365

Canvas view

application with contents for, 107

basics, 19, 22

CanvasWidget, 371, 372

case studies

Jambool, 299–300, 322

KlickNation, 299, 322

monetization, 321–322

RockYou, 299, 322

ShopIt, 322

Slide, 300, 322

social network architecture, 299–300

Watercooler, 300, 322

CDNs (Content Delivery Networks), 290

certificate caches, 231

check
−

signature method (OAuth), 188

Chou, Kevin, 173, 300

Cisco Content Delivery Engine/System, 287

client code performance monitoring, 309–311

client libraries, 353

Client URL library (curl), 171, 172

client-based API (OpenSocial), 58–59

cloning, 302

cloud computing, 291

CloudFront, 296–297

code

hosting on MySpace, 69–71

performance monitoring, 309–311

for signed requests, 231

troubleshooting, 119

uploading from external servers,

71–74

Coderunner, 274–275

collections, defined, 65

collocated hosting, 291

communication engagement, 31

communications applications, 246–258

gadget message bundles, creating,

250–251

media items in activities, 254–258

message and activity templates,

251–254

message summaries, 254

minimessages, creating, 249–250

signed requests, creating, 247–249

configuring Flash media, 273–274

consumers, defined (OAuth), 176

containers

application testing and, 221

compliance, 262–263

defined, 55

inquiring about capabilities on, 232

signed requests and, 231

support of OpenSocial, 56–57

container-specific extensions, 264–266

Content Delivery Networks (CDNs),

290

Content element, 93–94

control of applications, 25–29

developer control, 29

network control, 25–27

user control, 28

Core Gadget API, 95–102

cost calculator (Amazon), 298

Cost per Action (CPA), 319

CSS

image sprites, 312

style sheets in headers, 308

curl. See Client URL library (curl)

currency, virtual, 320–321

custom tags (OSML), 343

D
data

accessing with tags (OSML), 343

including encrypted, 229

passing to templates, 330–331

support, 203

data (OpenSocial REST API)

activity, 207–208

AppData, 208–210

group, 207

messaging, 210

376

In
d
e
xexternal resources

person, 204

retrieving and storing, 202

data formats (OpenSocial), 65–66

data formatting (OpenSocial REST API),

203–210

activity data, 207–208

AppData data, 208–210

group data, 207

messaging data, 210

person data, 204–207

data pipelining, 345–350

data, getting via markup, 345

data access, 346–347

data conditional rendering, 347–348

dynamic request for data, 349–350

listener for data changes, 348–349

databases

database sharding, 301–302

design, 300–302

distributed, 301

DataContext objects, 346–347

DataRequest extension, 266

DataRequest object, 306

debugging

CAJA and, 359–360

errors value and, 228

Firebug and, 303, 360

getErrorMessage() method and,

54, 262

definition files for templates, 333–334

delay, defined, 278

deployment, 67–83

Freebar, 83

Friendster, 80–83

hi5, 74–75

imeem, 78–80

MySpace. See MySpace deployment

Netlog, 78

OpenSocial REST API, 212–213

orkut, 75–78

destination applications, 39

developer dashboard (imeem), 78–79

developers

control of applications, 29

signed requests and, 230

tips for developing applications, 53–54

development

YAP, 360–361

YAP OpenSocial applications,

361–364

discovery

OpenSocial RESTful API, 213–216

REST applications and, 175, 176

dismissible minimessage, 249–250

distributed cache, 287–289

distributed database systems, 300

distribution, defined, 31

DNS lookups, reducing number of, 307

Dojo Toolkit, 274

downloads. See also Web sites for downloading

parallel, 309

dynamic evolution of applications, 32

dynamic requests for data, 349–350

E
EC2 (Elastic Compute Cloud), 293–295

edge servers, 290, 296

efficiency, defined, 278

Elastic Block Store (EBS), 296

Elastic Compute Cloud (EC2), 293–295

elements. See also specific elements; sub-elements

Atom, 66

Gadget XML, 87–95

XML, 66

XRDS Simple documents, 214

email

example, 131–133

services for marketing, 52

embedFlash method, 272

encrypted data, including, 229

engagement of application users, 30–32

environment (support and domain), 259–261

Environment class, 259

error codes

HTTP, 213

OpenSocial, 263

error handling, 262–263

errors (HTTP), 195, 213

‘‘Evaluating the Scalability of Distributed Systems’’, 278

examples

activities, creating, 135–136

blurbs, creating, 140–144

buttons, to trigger email creation, 131–132

email messages, 131–133

Info, 122

notification, 133–134

OAuth in PHP, 190–195

people (GetFriends), 119–122

people (Info), 122

people (ViewerData), 117–119

PersonData, 130

templates, 350–352

Y!OS, 366–367

Expires HTTP header, 286

exposure of applications, 31

expressions

defined, 329

templates and, 329–330

Extensible Resource Descriptor Sequence (XRDS)

RESTful architecture and, 176

XRDS Simple, 213–216

extensions, container-specific, 264–266

external resources, 226–232

caching issues, 228–229

calls to, 227–228

POST request, 229

preload, 232

signed request, 230–231

377

Facebook

F
Facebook

application trends and, 34–35

gifting feature, 45

programming, 174–175

fans

fan accounts, 317

fan applications, 36–38

Feature-Specific Gadget API,

102–107

Fielding, Roy, 169, 172

fields

individual person fields, 205

to request about people, 123–125

subfields for organizations, 207

subfields for person fields, 206

YAP supported, 361–362

fields extension, 266

files, reducing number of, 307

Firebug, 303, 360

Flash media, 271–275

Flixster hypothetical application,

60–62

flushing server responses, 309

foreign-based social networks, 9–10

forward proxy cache, 286

Freebar

appearance of, 24

basics, 9–11

deployment, 83

Friend Blurb application, 140–143

Friend Finder

batching requests, 114

code for, 112–113

on hi5, 75, 76

makeRequest method, 227–228

on MySpace, 74

navigation tabs, 222–224

on orkut, 77

styled tabs, creating, 226

friends

defined, 116

friend selector application,

241–243

of friends, finding, 246

GetFriends example, 119–122

list of, paginating, 238–239

requesting, 236–238

testing if users are, 243–244

top friends, finding, 244–246

Friendster

appearance of, 23–24

basics, 8–9

deployment, 80–83

styled tabs, creating, 226

traffic on, 48–50

Full view (YAP), 358, 359, 366, 367, 368

future tags (OSML), 339–340

G
Gadget API

calls, 63

core gadget API, 95–102

Feature-Specific Gadget API, 102–107

using, 271–272

gadget message bundles, creating, 250–251

Gadget XML, 87–95

application stripped of, 362–363

defined, 87

elements and sub-elements, 87–95

file for Friend Finder, 112

OpenSocial JavaScript applications and, 87

preload element, 232

specifications, 71–72

gadgets

basics, 87

defined, 59

lifecycle support, 109–110

multiple views, 107–109

Gadgets i18n tool, 270

gadgets.flash object, 102, 106, 272

gadgets.io, 95–97

gadgets.io.getproxyUrl method, 312

gadgets.json, 95, 97

gadgets.MiniMessage Gadget API class, 249

gadgets.MiniMessage.dismissMessage application,

250

gadgets.Prefs, 95, 100

gadgets.skins object, 102, 105–106

gadgets.util, 95, 97–100

gadgets.util.hasFeature method, 232

gadgets.views object, 102–104

gadgets.window object, 102, 104–105

gender-specific pronouns, creating, 240–241

general appeal applications, 35–36

GET method, 229

getDomain method, 259

getErrorMessage method, 263

GetFriends, people example, 119–122

globalization, 267–271

goals of applications, 29–33

dynamic evolution, 32

engagement, 30–32

growth, 30

look and feel, 32

problem solving, 33

relationship building, 33

self expression, 32

social exposure, 33

goods, virtual, 320–321

Google

gadget documentation, 87

Google Analytics, 313–315

Google App Engine, 299

Google Gadget XML. See Gadget XML

greetings message, 251

grid computing, 291

grid/cluster computing, 296

grouping requests, 63–64

378

In
d
e
xJavaScript

groups

data groups, support of, 207

requests and, 201

growth of application use, 30

GUI design, 222–226

look and feel, 224–225

navigation tabs, 222–224

social-network specific looks, 225–226

{guid}, 200

Guptas, Vikas, 299

GZIP, compressing content with, 308

H
hadError() method, 263

Hadoop, 296

Hansson, David Heinemeier, 171

HAS
−

APP, 245–246

headers

CSS style sheets in, 308

HTTP, cache and, 285–286

height of applications, adjusting, 106–107

Hello World

with Core Gadget API, 101

height, adjusting, 106–107

including lifecycle support, 110

with ModulePrefs, 94–95

OpenSocial, 64–65

template, constructing, 326–329

template that uses passed parameters, 331

hi5

appearance of, 22

basics, 5–7

browsing index, 15–16

deployment, 74–75

lifecycle extension, 265–266

OAuth and, 196–197

support for OpenSocial REST, 196–198

template library, 225, 266

traffic on, 48–50

history of OpenSocial, 55–56

Home view, 19, 20–21

horizontal partitioning (distributed databases), 301

horizontal scaling, 280

hosting, on MySpace, 69–71

hosting solutions

AWS. See Amazon Web Services (AWS)

developer comments/trends, 292

Google App Engine, 299

types of, 290–292

Hot Stocks YAP application, 366, 367

HTML. See HyperText Markup Language (HTML)

HTTP. See HyperText Transfer Protocol (HTTP)

hybrid applications

client/server OpenSocial, 61–62

OpenSocial JavaScript and RESTful API, 175

Hyper Text Caching Protocol (HTCP), 287

HyperText Markup Language (HTML)

as alternative to media items, 256–258

HTML validators, 222

HyperText Transfer Protocol (HTTP)

errors (OAuth), 195

headers, cache and, 285–286

method type, 210–211

OAuth request parameters and, 180

OAuth tokens and, 181

requests, minimizing number of, 306

REST and, 169, 171, 175

status codes (OpenSocial REST API), 213

I
i18n and L10n, 267

ICP (Internet Cache Protocol), 287

IdSpec, 122–130

IdSpec class, 246

PersonData example, 130

social data, application requesting, 126–129

social data, fields to request, 123–125

if attribute, 332

IFrames, hybrid applications and, 62

I-Jet Media Inc., 322

iLike

length of engagement and, 39–40

on MySpace, 18

image spriting, 312

imeem

appearance of, 24

basics, 9

deployment, 78–80

Info example, 122

information

retrieving, 140–144

storing, 140

Infrastructure layer, 281

init() function, user languages and, 100–101

init() method, 113–114

installing

applications, 16–17

invitations to install, 137–139

instance types (EC2), 293

internationalization

basics, 267–271

marketing applications and, 41–42

OSML and, 344

Internet Cache Protocol (ICP), 287

Internet Security and Acceleration (ISA) server, 287

invitations to install, 137–139

issue-tracking software, 317

iWidgets, 367–368

J
Jambool case study, 299–300, 322

JavaScript. See also OpenSocial JavaScript API

CAJA and, 222

code, for Friend Finder, 112–113

code, locating at bottom, 309

minifying, 308

SWFObject JavaScript library, 272–273

379

JavaScript (continued)

JavaScript (continued)

tools for applications, 274–275

JavaScript Object Notation (JSON)

basics of, 65–66

REST responses and, 211–212

Jogalekar, Prasad, 278

Joyent, 298

JSMin filtering program, 308

JSON. See JavaScript Object Notation (JSON)

K
‘‘Keep Alive On’’ HTTP feature, 307

key cache (OAuth), 195

key chains (Zembly), 371

Kiss

internationalization and, 42

search on, 17

KlickNation case study, 299, 322

Kostarev, Alexey, 45

L
languages (computer). See also JavaScript; OpenSocial

Markup Language (OSML)

language support (OAuth), 196

work in language of choice, defined, 173

YML, 365–366

languages (spoken)

tag for Spanish messages, 344

user languages, 100–102

Levchin, Max, 322

Leymann, F., 172

libraries

client, 353

curl, 171, 172

hi5 template, 225, 266

OAuth, 196

SWFObject JavaScript, 272–273

lifecycles, support for, 109–110

lifecyle events, 109

lighttpd, 289

listen attribute, 348

listener, for data changes, 348–349

load balancing, 284

loading times, 312

localization

basics, 267–271

defined, 332

with templates, 332

longer engagement applications, 39

look and feel

of applications, 32

GUI design and, 224–225

social-network specific looks, 225–226

looping

repeat attribute for, 332

through lists, 345

M
Maffia new

use of media in, 41, 42

virtual currency and, 50–51

makeRequest method

caching and, 228

gadgets.io, 96, 100

refresh intervals, setting and, 229

simple invocation of, 227–228

managed dedicated hosting, 291

marketing applications, 50–53

McNulty, Rhet, 322

media

in applications, 39–41

HTML as alternative to, 256–258

using in activities, 254–258

meetups, 304

Memcached system, 287–289

messages

email message example, 131–133

gadget message bundles, 250–251

message and activity templates, 251–254

message bundles, 252–254

minimessages, 249–250

notification example, 133–134

as option, 202–203

summaries, 254

types of, 131

messaging data, 210

methods

Core Gadget API, 96–100

Feature-Specific API, 102–106

HTTP (OpenSocial REST requests), 210

OAuthRequest class, 182

OAuthSignatureMethod−RSA−SHA1 class, 190

OpenSocial, 144–167

optional parameters, 116

Y!OS, 354

metrics

performance, 278

scalability, 279

micropayments/micro-transactions, 321

Microsoft Internet Security and Acceleration (ISA) server,

287

micro-transactions, defined, 45

Middleware layer, 281

minified JavaScript, 308

minimessages, creating, 249–250

mobile applications, 45

ModulePrefs

attributes and sub-elements for, 88–91

defined, 87

Hello World with, 94–95

monetization, 318–322

monitoring client code performance, 309–311

monitoring software, 302–303

multiple cache servers, 287

multiple content tags, 108–109

multiple views (applications), 107–109

<myapp:HelloWorld> tag, 342

380

In
d
e
xOpenSocial REST API

MySpace

appearance of, 20–22

application trends and, 34

Application Builder interface, 69–71

basics, 2–4

rules for developers, 27

traffic on, 48–50

MySpace deployment, 67–74

code, uploading from external servers,

71–74

getting started, 67–69

hosting on MySpace, 69–71

N
<namespace:templateName/> tag, 342

naming

OpenSocial API and, 116

templates, 328–329

navigation tabs, 222–224

Netlog

appearance of, 24–25

basics, 11

deployment, 78

network control, 25–27

new App Install program, 51

newFetchPersonAppDataRequest method, 140

newUpdatePersonAppDataRequest method,

140, 143

Nginx, 289

non-RESTful, defined, 169

non-social networking applications, 59–62

NOT
−

IMPLEMENTED error code, 262–263

nothing shared cloning, 302

notification example, 133–134

O
OAuth (OpenSocial REST authorization and

authentication), 176–198

basics, 176–177

hi5 authentication scheme, 196–198

HTTP errors, 195

incorporating into OpenSocial REST API, 196

libraries, 196

OAuthSignatureMethod−RSA−SHA1, 189

OpenID, 195

parameters, 179

in PHP. See OAuth in PHP

requests, 179–180

signing requests, 180

simple PHP test program, 191–194

steps, 177–178

tokens, 181, 195

OAuth in PHP, 181–195

example, 190–195

OAuthConsumer, 181

OAuthRequest, 182–188

OAuthSignatureMethod, 188–190

OAuthToken, 181–182

objects

Core Gadget API, 95

Feature-Specific API objects, 102–106

OpenSocial, 144–167

received by callback function, 228

Offerpal, 320

onLoadViewerResponse method, 114

Open Group Architectural Framework (TOGAF) Method,

282

open sandbox access, defined, 53

OpenID (OAuth), 195

OpenSocial

AppData as container cache, 307

application sample, 64–65

applications, creating, 83–86

architecture. See architecture of OpenSocial

data formats, 65–66

deployment. See deployment; MySpace deployment

error codes, 263

get from cache, 312

history, 55–56

introduction to, 1, 55

object, 144–146

performance. See performance

programming. See OpenSocial programming

supporting networks, 14

tools, 54

OpenSocial JavaScript API, 111–168

activities. See activities

architecture, 63–64

basics, 58, 61

client-based API and, 58–59

details, 144–167

features, 115–116

Gadget XML and, 87

people. See people

persistence. See persistence

simple OpenSocial application, 111–115

OpenSocial Markup Language (OSML), 334–345

basics, 334–335

custom tags, 343

data access with tags, 343

future tags, 339–340

internationalization and, 344

looping through lists, 345

partial content, rendering, 344

proposed tags, 341–342

specifying as required feature, 342

standard tags, 335–338

OpenSocial programming, 221–233

action requests, 232–233

application testing, 221–222

external resources. See external resources

GUI design. See GUI design

inquiring about capabilities, 232

OpenSocial REST API

data formatting. See data formatting (OpenSocial REST

API)

deployment, 212–213

discovery, 213–216

future versions of, 216

381

OpenSocial REST API (continued)

OpenSocial REST API (continued)

HTTP status codes, 213

incorporating OAuth into, 196

vs. RPC protocol, 216–217

security, 216

specification, 200–203

using, 198, 212

OpenSocial RESTful API, 169–219

architecture, 175–176

authorization and authentication. See OAuth (OpenSocial

REST authorization and authentication)

basics, 60–62

data formatting. See data formatting (OpenSocial REST

API)

HTTP method type, 210–211

OpenSocial REST API specification, 200–203

responses, 211–212

REST basics, 169–172

REST request construction, 198–199

RPC protocol and, 216–219

server-side programming, 173–175

OpenSocial Tool/Harness, 222

opensocial.Activity class, 134

opensocial.Activity object, 146–147

opensocial.Activity.Field object, 147–148

opensocial.Address object, 148

opensocial.Address.Field object, 148–149

opensocial.BodyType object, 149

opensocial.BodyType.Field object, 149

opensocial.Collection object, 149–150

opensocial.CreateActivityPriority object, 150

opensocial.DataRequest object, 150–152

opensocial.DataRequest.DataRequestFields object, 152

opensocial.DataRequest.FilterType object, 152–153

opensocial.DataRequest.newUpdatePersonAppData

Request method, 258

opensocial.DataRequest.PeopleRequestFields object, 153

opensocial.DataRequest.PeopleRequestFields.FILTER key,

244

opensocial.DataRequest.PeopleRequestFields.FIRST

parameter, 236

opensocial.DataRequest.SortOrder object, 153

opensocial.DataResponse object, 153–154

opensocial.Email object, 154

opensocial.Email.Field object, 154

opensocial.Enum object, 154

opensocial.Enum.Drinker object, 154–155

opensocial.Enum.Gender object, 155

Opensocial.Enum.LookingFor object, 155

opensocial.Enum.Presence object, 155–156

opensocial.Environment object, 156

opensocial.Environment.ObjectType object, 157

opensocial.EscapeType object, 157

opensocial.getEnvironment() method call, 259

opensocial.IdSpec object, 157–158

opensocial.IdSpec.Field object, 158

Opensocial.IdSpec.Field.NETWORK
−

DISTANCE field,

246

opensocial.IdSpec.PersonId object, 158

opensocial.MediaItem object, 158

opensocial.MediaItem.Field object, 159

opensocial.MediaItem.Type object, 159

opensocial.Message object, 159

opensocial.Message.Field object, 159–160

opensocial.Message.Type object, 160

opensocial.Name.Field object, 160

opensocial.NavigationParameters object, 160–161

opensocial.NavigationParameters.DestinationType object,

161

opensocial.Organization object, 161

opensocial.Organization.Field object, 162

opensocial.Permission object, 162

opensocial.Person object, 162–163

opensocial.Person.Field object, 163–166

opensocial.Phone object, 166

opensocial.Phone.Field object, 166

opensocial.ResponseItem object, 166–167

opensocial.ResponseItem.Error object, 167

opensocial.template.renderAll Templates, 328

opensocial.Url object, 167

opensocial.Url.Field object, 167

optional parameters (OpenSocial methods), 116

ordered lists, defined, 65

orkut

appearance of, 23

basics, 7

deployment, 75–78

os.data.resendRequest (‘key’) method call, 349–350

os.getTemplate function, 328–329

<os:Locale> tag, 344

OSML. See OpenSocial Markup Language (OSML)

<os:OwnerRequest> tag, 345

<os:Render> tag, 344

<os:Repeat> tag, 345

owned/proprietary system solution, 291

owners

defined, 116

email message from viewers, 132–133

P
parallel downloads, 309

parameters

calling templates with, 331–332

OAuth, 179, 199

OAuthSignatureMethod, 188

opensocial.Message.Field.*, 131

opensocial.newActivity, 134

optional (OpenSocial methods), 116

request parameters for user validation, 231

partitioning, defined, 284

partnering, 43, 320

Pautasso, C, 172

people, 116–130

basics, 116–117

data, OpenSocial REST support of, 204–207

GetFriends example, 119–122

getting information about, 117

IdSpec. See IdSpec

Info example, 122

OpenSocial REST requests and, 200–201

382

In
d
e
xrequests

types of, 116

ViewerData example, 117–119

percent encoding (OAuth), 179

performance

defined (server-side programming), 173

improving with preload, 232

metrics, 278

monitoring client code, 309–311

problem areas, 280

performance tuning

AppData as container cache, 307

batching multiple requests, 306–307

caching, 309

client code performance, monitoring, 309–311

CSS style sheets in headers, 308

DNS lookups, reducing number of, 307

files, reducing number of, 307

flushing server responses, 309

GZIP and, 308

HTTP requests and, 306

image sprites, 312

JavaScript, minifying, 308

JavaScript code, locating at bottom, 309

loading times, 312

OpenSocial get from cache, 312

overview, 306

persistence feature in Web servers, 307

preloading content, 311

requests for external files, 309

permissions

asking for, 263–264

checking, 263–264

platforms for, 356, 357

programming and, 232–233

persistence, 139–144

defined, 139

information, retrieving, 140–144

information, storing, 140

in Web servers, 307

personas, creating, 304

PersonData example, 130

person/people applications, 235–246

friend selector application, 241–243

friends list, paginating, 238–239

friends of friends, finding, 246

multiple requests for friends, 236–237

pronouns, creating gender-specific, 240–241

requesting friends, 236, 237–238

testing users as friends, 243–244

top friends, finding, 244–246

PHP. See also OAuth in PHP

accepting/verifying signed requests, 247–248

REST program, 172

platforms, 2–14

Freebar, 9–11

Friendster, 8–9

hi5, 5–7

imeem, 9

MySpace, 2–4

Netlog, 11

orkut, 7

other networks, 14

for setting update permissions, 356, 357

Yahoo!, 12–14

Y!OS architecture and, 354–355

YQL and, 364

POST requests, 229

posting of activities, 134–137

pre-fetching, defined, 285

preloading

content, 311

improving performance with, 232

Presentation layers, 281

pricing, Amazon, 297–298

‘‘Principled Design of the Modern Web Architecture’’,

172

problem of rebalancing, 302

productivity, 279

Profile view

application with contents for, 107

basics, 19, 22

programming. See OpenSocial programming; social

network programming

pronouns, creating gender-specific,

240–241

properties

OAuth, 176

REST architecture, 170

proposed tags (OSML), 341–342

proxied content, 352–353

proxy servers, 286

publishing applications

defined, 81

Freebar, 83

Zembly, 373

Q
quality of service, defined, 278

query parameters (OAuth), 199

R
Rabois, Keith, 36

random selection algorithm, 284

reach applications, 35–36

real goods, 321

redundancy, 302

refresh intervals, setting, 229

registerOnLoadHandler method (gadgets.io), 99, 100

relationship building, 33

repeat attribute for looping, 332

replication, 301

Representational State Transfer (REST). See REST

requestPermission method, 264

requests

dynamic, for data, 349–350

for HTML resources (PHP REST), 172

OAuth, 179–180

OAuthRequest, 182–188

OAuthToken, 181–182

383

requests (continued)

requests (continued)

rendering templates, 328

REST request construction, 198–199

require attribute, 347

Require feature, 342

resources. See also Web sites for further information

REST, 170, 172

templates, 351–352

XRDS Simple, 216

response time, defined, 278

responses

OAuth, 181

OpenSocial REST requests and, 211–212

REST. See also OpenSocial REST API; OpenSocial RESTful

API

basics, 169–172

non-RESTful, defined, 169

‘‘REST API Specific URL Pattern’’, 200

RESTful API. See OpenSocial RESTful API

RESTful Web Services (O’Reilly Media, 2007), 171

‘‘RESTful Web Services vs. Big Web Services: Making the

Right Architectural Decision’’, 172

RESTful-RPC hybrid architecture, 171

retrieving data, 140–144, 202

reverse proxy servers, 286–287

Richardson, Leonard, 171

RockYou

case study, 299, 322

self expression and, 43

slideshow application, 174

role playing, 304

round robin rotation, 284

RPC protocol

vs. OpenSocial REST API, 216–219

RESTful/RESTful-RPC hybrid, 171

Ruby, Sam, 171

S
S3

Amazon Simple Storage Server, 296

S3Firefox Organizer, 296

sandboxes

open sandbox access, 53

running applications in, defined, 9

scalability

defining, 278–279

metrics, 279

scalable user interface design, 316–317

scaling up/out, 280

<script> tag, 347, 348

security (OpenSocial REST API), 216

selector, defined (OpenSocial REST API), 200

self expression

applications and, 43

in social networking, 32

Send Good Karma

jPoints, 44

partnering and, 43, 44, 320

virtual goods and, 320

serial order for request processing, 64

server-based API

OpenSocial, 58, 59–62

OpenSocial RESTful API, 173–175

servers

flushing server responses, 309

multiple cache, 287

persistence feature in Web servers, 307

proxy, 286

reverse proxy, 286–287

S3, 296

server-side code for signed requests, 231

server-side programming (OpenSocial RESTful API),

173–175

services

for blogs, 52

defined, 370

for email marketing, 52

finding and sharing, 373

Zembly, 370–374

sharding, database, 301–302

Share Good Karma, 52

shared disk cloning, 302

shared hosting, 290–291

Shen, Jia, 299

Shindig, 57

ShopIt case study, 322

Shukla, Anu, 320

signatures, checking, 188–190

signed requests, 230–231

signed requests, creating, 247–249

signing requests (OAuth), 180

‘‘Silly is Serious Business’’, 36

Simple Storage Server, Amazon (S3), 296

Slide case study, 300, 322

Small view (YAP), 358

Smith, Andy, 181

snippets (Zembly), 371

social data

application requesting, 126–129

fields requesting, 123–125

use of in applications, 45–46

social exposure, application growth and, 33

social gadgets, 64

social hooks, 46–48

social network programming

applications. See applications

identity of social networks, 48–50

platforms. See platforms

retaining users, 53

social networking

basics, 1–2

foreign-based networks, 9–10

social network-provided analytic tools,

316

software

analytic, 313

bug-tracking, 317

issue-tracking, 317

for monitoring, 302–303

version control, 305

384

In
d
e
xuploading code from external servers

software design

language choices, 305

overview, 303–304

versioning and, 305

Sometrics, 316

specifications

Google Gadget XML, 71–72

OpenSocial REST API, 200–203

Squid server, 287

standard tags (OSML), 335–338

storing data, 140–143, 202

styles for social networks, 225

subclasses of OAuthSignatureMethod Class, 189

sub-elements, 271–272

Content, 93–94

ModulePrefs, 88–91

OpenSocial REST response, 211

UserPrefs, 91–93

subfields

for organizations, 207

for person fields, 206

subsystems

application servers, 283–284

caching, 284–289

CDNs, 290

load balancing, 284

Web servers, 283

supportsField method, 259, 261

SWFObject JavaScript library, 272–273

swfUrl variable, 272

system support, 317–318

T
tables, social data displayed as, 126–130

tabs

navigation, 222–224

styled, 226

tag=”namespace:templateNameX” parameter, 343

tags

accessing data with (OSML), 343

adding (YML), 366

custom (OSML), 343

to define Templates XML file, 333

future (OSML), 339–340

multiple content, 108–109

proposed (OSML), 341–342

standard (OSML), 335–338

targeted applications, 36

targeted social networks, defined, 9

Taylor, Richard, 172

template-based application development, 36–38

template.RenderInto function, 328–329

templates

hi5 template library, 225, 266

message and activity, 251–254

Templates Standard, 325–352

basics, 325–326

calling with parameters, 331–332

conditional tests, 332

construction and use, 327–328

data pipelining. See data pipelining

definition files, 333–334

examples, 350–352

expressions and, 329–330

localization with, 332

naming templates, 328–329

OSML. See OpenSocial Markup Language (OSML)

repeat attribute for looping, 332

requiring features, 326

variables and passing data, 330–331

testing

applications, 221–222

GetFriends example, 121

tags in templates, 332

Theurer, Tenni, 307

three-layer architecture, 281

throughput, defined, 278

tokens (OAuth)

management of, 195

OAuthToken, 181–182

the response, 181

tools

analytic, 316

Dojo Toolkit, 274

Gadgets i18n, 270

JavaScript, 274–275

OpenSocial, 54

OpenSocial Tool/Harness, 222

for testing code, 222

UML, 304

trends in applications, 33–46

application data and, 46

basics, 33–35

brand-based applications, 39

destination applications, 39

internationalization, 41–42

longer engagement applications, 39

mobile applications, 45

partnering, 43

reach applications, 35–36

self expression, 43

social data and, 45–46

template-based development, 36–38

use of media, 39–41

vertical applications, 36

virtual currencies, goods and points, 43–45

U
Unified Modeling Language (UML) tools, 304

unmanaged leased dedicated hosting, 291

updates

Gadget API updates, 95

OpenSocial, 134–137

update permissions, 356, 357

Yahoo! users, 355

Y!OS users, 355–356

uploading code from external servers,

71–74

385

URL patterns (OpenSocial REST API)

URL patterns (OpenSocial REST API)

for activities, 202

for AppData, 203

for groups, 201, 203

for messaging, 202, 203

for people, 201

URLs

avoiding caching and, 229

OpenSocial REST, 198, 200

RESTful-RPC hybrid architecture and, 171

user agent cache, 285

UserPrefs

attributes and sub-elements for, 91–93

defined, 87

users

experience/satisfaction, defined, 278

request parameters for validating, 231

retaining, 53

user control of applications, 28

user ID (OpenSocial REST API), 200

user languages, 100–102

user profiles (Y!os), 355

user support, 317–318

user updates (Y!OS), 355–356

V
value delivered, defined, 279

variables

Core Gadget API, 96–100

Feature-Specific API, 102–106

OpenSocial (listed), 144–167

templates and, 330–331

Varnish Web accelerator, 287

version control software, 305

vertical applications, 36

vertical partitioning (distributed databases), 301

vertical scaling, 280

ViewerData people example, 117–119

viewers

defined, 116

email messages from, 132–133

views

changing dynamically, 109

defined, 107

directing content to different, 108–109

multiple, 107–109

of OpenSocial applications, 19–20

YAP, 358

viral applications, 29, 47–48

viral calculator, 51

viral channels, 46–48

virtual currency

Maffia new and, 50–51

virtual currencies, goods and points, 43–45, 320–321

virtual goods, 45, 320–321

virtual money, 50–51

W
Walton, Ken, 42, 299

Watercooler

applications, 36–38

case study, 300, 322

server-side programming and, 173

Web accelerator, 287

Web proxy caching servers, 286

Web servers, 283

Web sites, for downloading

Adobe Express Install application, 273

Coderunner JavaScript testing application, 274

Dojo Toolkit, 274

lighttpd, 289

Nginx, 289

Varnish Web accelerator, 287

Web sites for further information, 34

Amazon Web Services, 295

analytic software, 313

blogs, 84

bug-tracking software, 317

CAJA, 222, 358

client libraries, 353

CloudFront, 297

curl library, 172

database sharding, 302

developer page (MySpace), 68

extensions for OpenSocial containers, 326

forum on application policies, 27

Freebar deployment, 83

Friendster, 80, 225

Gadget API updates, 95

gadget documentation, 87

Google Analytics, 313

Google App Engine, 299

Hadoop, 296

hi5 Analytics, 316

hi5 developer application, 74–75

hi5 shortcuts to social data, 225

hi5 translation service, 270

HTCP, 287

ICP, 287

imeem deployment, 78

internationalization, 41

Internet trends, 33, 34

issue-tracking software, 317

JSON, 66

key cache, 196

localization resources, 272

meetups, 304

Memcached system, 288

MySpace, 27, 51

Netlog developer contract, 78

OAuth libraries, 196

OpenID, 195

OpenSocial, 14, 83–85

OpenSocial Templates library, 328

386

In
d
e
xZimmermann, O.

orkut, 75, 76, 77

proxied content, 353

RockYou slideshow, 174

rules for developers, 27

S3Firefox Organizer, 296

services, creating, 371

‘‘Silly is Serious Business’’, 36

software monitoring, 302–303

Sometrics, 316

sprites, 312

SWFObject JavaScript library, 272

templates, 350, 351–352

TOGAF Method, 282

user profiles, 355, 356

XRDS Simple, 216

Yahoo! Web Analytics, 315

YAP, 360, 361

YML, 365

Web system architecture, 280–283

widgets (Zembly), 371

Woodside, Murray, 278

X
X.509 certificates, 295

XML

elements in XRDS-Simple documents, 214

Friend Finder navigation tabs and, 223–224

gadget file for Friend Finder, 112

OpenSocial and, 66

XRDS. See Extensible Resource Descriptor Sequence

(XRDS)

Y
Y!OS. See Yahoo! Open Strategy (Y!OS)

Yahoo!

basics, 12–14

user profiles, 355

user updates, 355

Yahoo! Social Platform, 355

Yahoo! Applications (YAP)

application development, 361–364

basics, 356–357

CAJA, using, 358–359

development steps, 360–361

views, 358

Yahoo! Markup Language (YML),

365–366

Yahoo! Open Strategy (Y!OS), 353–367

architecture, 354–355

examples, 366–367

methods, 354

OpenSocial and, 353

user profiles, 355

user updates, 355–356

YAP basics, 356–360

YAP development steps, 360–361

YAP OpenSocial application development,

361–364

YML, 365–366

YQL, 364–365

YUI, 365

Yahoo! Query Language (YQL), 364–365

Yahoo! User Interface (YUI), 365

Yahoo! Web Analytics, 315

Yahoo!’s America Decides YAP application,

366, 368

YAP. See Yahoo! Applications (YAP)

yelp, 59

YML (Yahoo! Markup Language),

365–366

Y!OS. See Yahoo! Open Strategy (Y!OS)

YQL (Yahoo! Query Language), 364–365

YSlow extension, 309–311

YUI (Yahoo! User Interface), 365

Z
Zembly

application structure, 369–370

applications, publishing, 373

applications in, creating, 371–373

basics, 368–369

key chains, 371

services, 370–371, 373–374

snippets, 371

widgets, 371

Zimmermann, O., 172

387

Take your library
wherever you go.
Now you can access more than 200 complete Wrox books

online, wherever you happen to be! Every diagram, description,

screen capture, and code sample is available with your

subscription to the Wrox Reference Library. For answers when

and where you need them, go to wrox.books24x7.com and

subscribe today!

Programmer to Programmer

• ASP.NET
• C#/C++
• Database
• General
• Java
• Mac
• Microsoft Office

• .NET
• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in

our P2P forums

Wrox Online Library
Hundreds of our books are available online

through Books24x7.com

Wrox Blox
Download short informational pieces and

code to keep you up to date and out of

trouble!

Chapters on Demand
Purchase individual book chapters in pdf

format

Join the Community
Sign up for our free monthly newsletter at

newsletter.wrox.com

Browse
Ready for more Wrox? We have books and

e-books available on .NET, SQL Server, Java,

XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?

Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

	OpenSocial Network Programming
	Cover
	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Social Network Programming
	Social Network Platforms
	Social Network Applications
	Making Applications Social and Viral
	Application Goals
	Application Trends
	Viral Channels and Features
	Social Network Identity
	Marketing — The Next Step
	Retention
	Tips for Good Application Development
	Summary

	Chapter 2: Introduction to OpenSocial
	OpenSocial History
	OpenSocial Architecture
	Application Architecture
	Sample Application
	OpenSocial Data Formats
	Application Deployment
	What You Need to Get Started
	Summary

	Chapter 3: Gadget XML and Gadget API
	Gadget XML
	Gadget API
	Multiple Views
	Lifecycle Support
	Summary

	Chapter 4: JavaScript API
	A Simple Application in OpenSocial
	OpenSocial API Features
	People
	Activities
	Persistence
	Detail of OpenSocial JavaScript API
	Summary

	Chapter 5: OpenSocial RESTful API
	Getting to Know REST
	OpenSocial RESTful Server-Side Programming
	OpenSocial RESTful Application Architecture
	OpenSocial REST Authorization and Authentication (OAuth)
	OpenSocial RESTful API Details
	OpenSocial REST Application Deployment
	HTTP Status Codes
	OpenSocial REST Support Discovery
	OpenSocial Security with the REST API
	OpenSocial REST API Future
	OpenSocial RPC Protocol
	Summary

	Chapter 6: Programming Fundamentals
	Application Testing
	Front-End GUI Design Tips
	External Resources
	Capabilities Inquiry
	Action Requests and Permissions
	Summary

	Chapter 7 :Sample Applications
	Person/People Applications
	Communications Applications
	Clearing AppData
	Understanding Environment — Support and Domain
	Handling Errors
	Checking and Asking for Permissions
	Working with Container-Specific Extensions
	Using Internationalization, Localization, and Globalization
	Using Flash Media
	JavaScript Tools for Applications
	Summary

	Chapter 8: Performance, Scalability, and Monetization
	Understanding Scalability and Performance
	Understanding Architecture
	Understanding Subsystems
	Understanding Hosting Solutions
	Case Studies
	Understanding Database Issues
	Understanding Redundancy
	Using Monitoring
	Understanding Software Design
	OpenSocial Performance Tuning
	Using Analytics
	Using Scalable User Interface Design
	Making the Most of User/System Support
	Monetization
	Summary

	Chapter 9: OpenSocial Templates, Markup, and Emerging Technologies
	OpenSocial Templates Standard
	OpenSocial Proxied Content
	OpenSocial Client Libraries
	Yahoo! Open Strategy
	iWidgets
	Zembly
	Summary

	Index

