
www.allitebooks.com

http://www.allitebooks.org

Oracle APEX 4.2 Reporting

Learn how to build complex reporting solutions
using Oracle APEX

Vishal Pathak

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle APEX 4.2 Reporting

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1200813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-498-9

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Vishal Pathak

Reviewers
Dietmar Aust

Dimitri Gielis

Satishbabu Gunukula

Shivani Kadian

Alex Nuijten

Acquisition Editor
Edward Gordon

Lead Technical Editor
Neeshma Ramakrishnan

Technical Editors
Veena Pagare

Krishnaveni Nair

Vivek Pillai

Kapil Hemnani

Project Coordinators
Priyanka Goel

Arshad Sopariwala

Proofreader
Lesley Harrison

Indexers
Hemangini Bari

Priya Subramani

Graphics
Abhinash Sahu

Ronak Dhruv

Disha Haria

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Vishal Pathak is an IT professional with over six years of experience of working
in the BI space. He is specialized in Oracle APEX and integrating technologies on
a heterogeneous system. His skills include an array of technologies such as Oracle
APEX, Oracle BI Publisher, OBIEE, BPEL, PL/SQL, JEE, Jasper Reports, jQuery,
and HTML 5.

He has a degree in Electrical and Electronics Engineering from the Birla Institute
of Technology, Mesra.

He has worked with multinational giants such as TCS, Wipro, Capgemini, and CTS.
He has led and worked on many huge Business Intelligence implementations across
diverse industry sectors. Some of the major clients that he has worked with include
British Telecommunications, Uninor, Department of Social Services (LA DPSS),
Marriot and Sony DADC.

He is also a Sun Certified Java Programmer and an Oracle Certified Associate and
blogs about his technical thoughts at http://obiee-oracledb.blogspot.com.

He lives in India and he loves to trek frequently. Sitting in a secluded part of his
garden, thinking about the world and its numerous complexities, and appreciating
its beauty is one of his favorite activities.

I dedicate this book to my parents for standing by me all the time,
believing in my abilities and helping me build the right thought
process that enabled me to finish this noble task successfully. I thank
them for their love and wish to get the same for the rest of my life.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Dietmar Aust has been working as a freelance consultant in Germany, focusing
on Oracle Application Express since 2006. He started working with Oracle in 1997,
and spent three years as a consultant for Oracle in Germany. Since then, he helped
numerous leading companies in Germany to successfully deliver web-based
applications based on the Oracle product stack, including the Internet Application
Server, Oracle Portal, and Oracle Reports. He is an Oracle ACE and a regular presenter
at various Oracle conferences (ODTUG, OOW, DOAG). He conducts training classes
on APEX and had co-authored two books: Oracle APEX und Oracle XE in der Praxis
as well as Expert Oracle Application Express. In 2012 he co-founded the company,
JDD-Software (http://jdd-software.com) in order to build commercial software
products for the APEX developer.

You can reach him at http://www.opal-consulting.de, http://daust.blogspot.
com and http://jdd-software.com or via email: dietmar.aust@opal-consulting.
de.

Dimitri Gielis was born in 1978. He lives in Leuven, Belgium with his family. At an
early age, Dimitri started with computers (Apple II, IBM XT) and soon he knew he
would like to work with computers and especially with databases all his life. In 2000,
he began his career by working as a Consultant for Oracle Belgium, where he got in
touch with almost every Oracle product. His main expertise was in the database area,
but at the same time he was exposed to HTMLDB, which was renamed as Oracle
Application Express later on. From the very start, he liked the Oracle database and
APEX so much that he never stopped working with it. He then switched to another
company to create an Oracle team and do presales so that he could create and
manage Oracle Business Unit.

www.allitebooks.com

http://www.allitebooks.org

In 2007, he co-founded APEX Evangelists (http://www.apex-evangelists.com).
APEX Evangelists is a company, which specializes in providing training, development,
and consulting specifically for the Oracle Application Express products. On his blog
(http://dgielis.blogspot.com), he shares his thoughts and experiences about
Oracle, especially Oracle Application Express. He is a frequent presenter at OBUG
Connect, IOUG Collaborate, ODTUG Kaleidoscope, UKOUG conference, and Oracle
Open World. He likes to share his experience and meet other people. He's also
President of the OBUG (Oracle Benelux User Group) APEX SIG.

In 2008, he became an Oracle ACE Director. Oracle ACE Directors are known for
their strong credentials as Oracle community enthusiasts and advocates. In 2009,
he received the "APEX Developer of the year" award by the Oracle Magazine. In
2012, he was a part of the LA OTN Tour, where he presented various APEX topics.

You can contact Dimitri at dimitri.gielis@apex-evangelists.com.

Satishbabu Gunukula has over 13 years of experience in the IT Industry.
He has extensive experience in Oracle and SQLServer Database Technologies, and
specialized in high availability Solutions such as Oracle RAC, Data Guard, Grid
Control, SQLServer Cluster. He has master's degree in Computer Applications.
He has been honored with the prestigious Oracle ACE Award. He has experience
in a wide range of products such as Essbase, Hyperion, Agile, SAP Basis, MySQL,
Linux, Windows, SharePoint and Business Apps admin, and he has implemented
many business critical systems for Fortune 500, 1000 companies. He has reviewed
articles for SELECT Journal - the publication of IOUG and reviews books for Packt
Publishing. He is an active member in IOUG, Oracle RAC SIG, UKOUG, and OOW
and has published many articles and presentations. He shares his knowledge on
his websites http://www.oracleracexpert.com and http://www.sqlserver-
expert.com.

www.allitebooks.com

http://www.allitebooks.org

Shivani Kadian has been in the IT Industry from the last 10 years, primarily
working in the Business Intelligence and data warehousing field. She is an
experienced BI specialist with good exposure to solution architecting and
consulting using Oracle BI technologies.

She is currently working for Cognizant Technology solution as a Lead Architect
in the Oracle BI Center of Excellence and is responsible for providing OBIEE
consulting to various clients to do BI assessment, architecture roadmap, due
diligence, solution design and development of best practices and standards.

Alex Nuijten works as a senior consultant for Ordina Oracle Solutions in the
Netherlands. Besides his consultancy work, he conducts training classes, mainly
in SQL and PL/SQL. Alex has been a speaker at numerous international conferences,
such as ODTUG, Oracle Open World, UKOUG, IOUG, OUGF, and OGH and OBUG.
He was a part of the Nordic ACE Directors Tour in 2012.

He is also a frequent contributor at the Oracle Technology Network forum for
SQL and PL/SQL. He wrote many articles in Oracle-related magazines, and at
regular intervals he writes about Oracle Application Express and Oracle database
development on his blog "Notes on Oracle" (nuijten.blogspot.com). Alex is a
co-author of the book "Oracle APEX Best Practices" (published by Packt Publishing).
In August 2010, Alex was awarded the Oracle ACE Director membership.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Know Your Horse Before You Ride It 9

What is really new in the new avatar of APEX? 10
APEX configurations 12

APEX configuration using DAD 12
Internal mod_plsql configuration 13
External mod_plsql configuration 16

APEX Listener configuration 20
Installing APEX engine and Listener 21

Installing the APEX engine in the database 21
Creating a WebLogic domain and starting the servers 24
Setting the APEX Listener 25

Configuring and deploying APEX Listener on the WebLogic domain 26
Creating APEX workspace 28
Understanding the APEX URL 29

The protocol 29
The hostname and port number 29
The DAD name and web context 30
The f procedure 30
The application ID in the URL 30
The page number in the URL 31
Session management 31

The zero session ID 33
Request handling 34
Debugging 35

Error handling 37
TKPROF 38

Cache management 38

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Passing values and navigation 40
Making APEX printer friendly 41

Decoding the APEX page submissions 41
APEX behind the scenes 44
Other web interfaces 44
A pessimist's view of APEX 44

Cap of 200 page items 44
SQL Injection 45
Cross-site scripting 45

Summary 45
Chapter 2: Conventional Reporting in APEX 47

Creating database objects and installing the reference application 48
Implementing external table authentication 48
Displaying environment properties using the USERENV namespace 49
Displaying the CGI environment variables 50
Implementing a classic report search functionality 51
Enabling sorting and CSV download 53
Implementing group reports 53

Using the Break Formatting section in classic reports 53
Using JavaScript to modify a report 56
Using grouping sets and HTML formatting in a query 57

Additional methods of formatting 59
Highlighting the searched text in a report 59
Editing a template for additional formatting 60

Implementing a matrix report 62
Understanding the with clause 62
Understanding the Oracle 11g's pivot operator 63
Understanding string aggregation 64

Data highlighting using Dynamic Actions and jQuery 65
Advanced formatting using APEX templates 67
Understanding dynamic query region in APEX 68
Implementing hierarchical reports 69

Hierarchical reports with drilldown 69
Creating dynamic messages using substitution variables 71
Creating dynamic breadcrumbs for drill ups 71
Creating a report with hierarchical query 75
Creating a hierarchical report using the recursive with clause 75
Creating a tree based on hierarchical data 77

Understanding methods to upload files in APEX 78
Using DA to set page items and side effects of PPR 80

Table of Contents

[iii]

A workaround to the side effects of PPR 82
Using substitution variables for labels 83
Auto feeding one APEX item based on another 83
The method to upload files using WWV_FLOW_FILES 84

Understanding download methods 84
Download using APEX format mask 85
Download using developer-defined stored function 85
Download using APEX_UTIL.GET_BLOB_FILE_SRC 87
Download using p process 88

Implementing soft deletion with AJAX and APEX templates 88
DML operations and report filtering using DA, JavaScript,
and page processes 92

Filtering reports and logging values using Dynamic Actions 92
AJAX – a two-way communication between page process
and JavaScript 93

Implementing a tabular form 95
Creating a tabular form 95
Changing item type on user event 96

Implementing a master detail report and displaying
complex types 98

Displaying complex types and varray in a report 100
Implementing time series reports 101

Creating aggregation on a partitioned time dimension region 101
Time series analysis with analytical functions and time dimension 102

Using the query partition clause for data densification 103
Creating aggregations using the model clause 104

Implementing data-level security 105
Using VPD 105
Using query filters 106

Summary 107
Chapter 3: In the APEX Mansion – Interactive Reports 109

About the reference application 110
Important features of the interactive report 111

The Search functionality 111
Using the Select Columns feature of the Actions menu 112
Using the filtering feature of the Actions menu 112

Linking the interactive reports 113
Using the Rows per Page feature of the Actions menu 114

Customizing the number of rows in an IR 114
Using the formatting options of the Actions menu 115

Using Control Break 115

Table of Contents

[iv]

Using the Compute option 116
Using Chart in an IR 116

Using the Flashback feature of the Actions menu 116
Using the Save Report feature of the Actions menu 117
Using the Reset and Download features of the Actions menu 118

Configuring the Email functionality 118
Downloading in CSV and HTML formats 119
Downloading in PDF format 119

Using the Subscription feature of the Actions menu 119
Other configurable attributes of an IR 120

Using the Link Column section of the Report Attributes page 121
Using the Icon View section of the Report Attributes page 122
Using the Detail View section of the Report Attributes page 122
Using the Advanced section of the Report Attributes page 123
Using the Column Group section of the Report Attributes page 124

Using Dynamic Actions (DA) to add custom functions in the
Actions menu 125
Using CSS in IR 126

Formatting a column using another column 126
Using CSS in the page header to format APEX data 129

Changing the font color of alternate rows in APEX 129
Using a user-defined CSS class in APEX 130
Conditionally highlighting a column in IR using CSS and jQuery 130
Formatting an IR using a region query 130

Understanding the process of any customizations in IR 131
Using APEX views to create a classic report on saved IRs 133

Capturing report ID using JavaScript 133
Creating multiple IR on the same page 134
Authorizing user groups to view report columns 137
Creating Interactive Report Dashboard 138
Understanding Dynamic Interactive Reports 140

Using native PL/SQL table function approach and
conditional columns 141

Using parallel-enabled table functions 143
Unterstanding interface table function approach 145

Understanding the ODCITableDescribe function 149
Understanding the ODCITablePrepare function 149
Understanding the ODCITableStart function 150
Understanding the ODCITableFetch function 150
Understanding the ODCITableClose function 150

Understanding the collection approach 151
Summary 154

Table of Contents

[v]

Chapter 4: The Fairy Tale Begins – Advanced Reporting 155
About the reference application for this chapter 156
Using LDAP authentication 156

Process to get the necessary DN from JXplorer 158
Creating sparkline reports 160
Creating a report with slider 162
Creating HTML charts 164

Creating a bar chart using APEX's HTML chart functionality 164
Creating an APEX HTML chart 165
Displaying the top N and the bottom N rows in an HTML chart 165
Understanding the APEX HTML bar chart behind the scenes 166

Understanding self-generated HTML charts 166
Creating a report from XMLTYPE 168

Creating Google visualization charts 170
Creating Flash charts 171

Customizing an XML chart 171
Understanding Anychart options using a doughnut chart 173
Discussion on scatter and 3D stacked charts 174
Discussion on a gauge chart 174
Discussion on a gantt chart 174
Discussion on a candlestick chart 175
Creating Flash image maps 176

Creating a calendar 176
Creating a report with images 177
Creating a dialog box 179
Creating a context menu 181
Creating a wizard and using hierarchical queries and
regular expressions 182

Setting different validations for different parts of a page process 183
Summary 184

Chapter 5: Flight to Space Station: Advanced APEX 185
Creating HTML image maps 186

Server-side image maps 186
Client-side image maps 187

Creating PL/SQL Server Pages (PSP) 188
Understanding and using loadjava utility 189
Creating funnel charts using FusionCharts 191
Creating tag cloud 193
Creating plugins 194

Creating item and page process plugin 194

Table of Contents

[vi]

Creating DA plugin 198
Creating websheet application 200

Understanding datagrid 202
Understanding reports 202
Understanding the features of administration and view drop-downs 202
Understanding Websheet Help menu 203
Sharing websheets using ACL 204

Configuring the mail 205
Downloading APEX application without web server 211
Understanding Oracle OLAP cubes 211
Understanding Oracle's advanced queuing 215
Understanding other APEX features 216

Understanding locking and unlocking of pages and
team development 217
Understanding database object dependencies report 218
Understanding advisor 218
Understanding shortcuts 218
Understanding data loading wizard 218
Understanding application express views 219

Understanding background jobs in APEX 219
Knowing about important functions from the API 220

Knowing about the APEX API 220
Knowing about the database API 222

Summary 223
Chapter 6: Using PL/SQL Reporting Packages, Jasper,
and Eclipse BIRT 225

APEX reporting using PL/PDF and PL_FPDF 226
Process to create RTF, XLS, CSV, and HTML documents 228
APEX reporting using fop and Cocoon 231
Creating Jasper reports 235
Creating reports using Eclipse BIRT and integrating with APEX 244
Summary 252

Chapter 7: Integrating APEX with OBIEE 253
Understanding Oracle fusion management architecture 254
Understanding OBIEE 255

Understanding the BI Server component 256
Understanding the BI Presentation Server 258

Understanding Dashboards, analysis (answers), and filters 258
Understanding KPIs and KPI watchlist 261
Understanding Actions 262
Understanding OBIEE Mapviewer 263

Table of Contents

[vii]

Understanding strategy management 264
Configuring the Gmail SMTP server in OBIEE 265
Understanding agents 266

Integrating OBIEE with APEX 269
Integration using web services 269
Integration with APEX using Go URL 274

Integration using iFrames in APEX 275
Understanding BI Publisher 276

Creating and mailing reports in BI Publisher 277
Creating data model in BI Publisher 277
Using the BI Publisher's MS Word plugin to make rtf templates 282
Assembling the rtf template and data model together 283
Scheduling reports and e-mail delivery in BI Publisher 284
Creating barcode reports in BI Publisher 286
Dynamic BI Publisher 287

Integrating BI Publisher with APEX 290
Using convert servlet in Instance Settings 291
Integrating APEX with BI Publisher using web services 291
BI Publisher guest folder 292

Summary 294
Chapter 8: All About Web Services and Integrations 295

Understanding reports on web services and collections 296
Setting XML DB web services 297
Creating a report on native XML DB web services 298
Using XMLTable to parse a web service response 302
Using a native web service to return a collection of rows 303
Configuring RESTful web services using Resource Templates 307
Creating RESTful web services using Resource Templates 307
Parsing JSON objects and using MAKE_REST_REQUEST 309

Understanding and implementing BPEL 314
Configuring the General section 330
Configuring the Assignment section 330
Understanding Human workflows and Worklist 333

Integration with SAP crystal reports 337
Migrating from MS Access to APEX 339
Migrating from Oracle Forms and Reports 341
Integration with Google API 342
Integration with Oracle R Enterprise 350
Summary 354

Chapter 9: Performance Analysis 355
Tuning pointers for development 355

Using v() 355
Using the page and region caching 356
Understanding the weighted page performance of APEX 356

Table of Contents

[viii]

Using the #TIMING# substitution string 356
Choosing a pagination scheme 356
Tuning the like comparisons 357
Using the bind variables 359
Using materialized views 360
Using bulk operations 360
Using sequences 361
Understanding indexes 361

Understanding the bitmap index 361
Understanding the reverse key index 362
Ordering columns in an index 362

Using the with clause 362
Understanding partitioning strategies 363
Understanding anonymous blocks versus stored procedures 364
Using star transformation 364
Understanding clustering of tables 364
Understanding parallelism 365
Using code inlining 366
Understanding short circuit evaluation 366
Understanding PLSQL_CODE_TYPE 366
Using PL/SQL datatypes 366
Using HTML in SQL 367
Implementing XML PIVOT queries 367
Understanding denormalization 367
Understanding secure files, deduplication, and large object storage 368

Discussions on HTML, JavaScript, and client-side tools 369
Understanding image storage 369
Using browser-specific tools 369
Using minified JavaScript 370
Compressing HTML for better performance 370
APEX Listener parameters 370

Discussions on database tools for performance tuning 371
Using PL/SQL hierarchical profiler and DBMS_PROFILER 371
Understanding Data Guard 372
Understanding SGA result cache 373
Understanding SQL work areas 373
Using data compression 374
Understanding segment space problems 374
Understanding the Database Resource Manager 375
Understanding the SQL Access Advisor and SQL Tuning Advisor 375
Understanding temporary tablespace 375

Table of Contents

[ix]

Understanding SQL monitoring 376
Understanding DB_FILE_MULTIBLOCK_READ_COUNT 376
Understanding extended statistics 377
Understanding SQL Performance Analyzer 377
Understanding SQL Tuning Advisor 377
Understanding pinning in keep pool 378
Understanding Automatic Database Diagnostic Monitor (ADDM) 379
Understanding Automatic Workload Repository (AWR) 379
Understanding index-organized tables 380
Understanding row chaining and row migration 380
Understanding the clustering factor 381
Understanding the Active Session History report 382

Summary 382
Appendix 383

Steps to create PACKT_SCHEMA 383
SQL Injection 384

Dynamic SQL with concatenated variables 384
Assumption of formats and implicit conversions 386

Cross-site scripting 386
Database and web interaction in DAD and Listener configurations 389

The DAD configuration 389
The Listener configuration 390

APEX behind the scenes 391
Enabling auditing on the APEX_PUBLIC_USER schema 391
Switching off the auditing 391

Index 393

Preface
Oracle APEX, a 4GL rapid application development technology is gaining ground
in the application and reports development community. This is because of the
simplicity of architecture and the plethora of objectives that can be achieved with
minimum effort. So, when Packt contacted me to write a book that presents Oracle
APEX as a Business Intelligence and reporting solution, I had no second thoughts.

The book is stuffed with a number of examples that present the use of jQuery, CSS,
and APEX templates to solve some of the most vexing presentation problems and is
also laden with examples that demonstrate more decorated reports. The book is also
loaded with illustrations that showcase exotic queries and functions to use Oracle
database for your reporting requirements.

If we plan to use APEX for reporting then we generally have to integrate it with
some existing reporting system. Hence, this book extensively talks about some of
the most popular reporting solutions and their integration touch points with APEX.
The book also informs its readers about the strengths of each of these technologies.
This collective information can enable a reader to make an informed decision to
pick the tools which can serve as the extensions of APEX.

Writing this book has been a privilege. It made me think about some interesting
scenarios in which APEX can be employed. It helped me articulate and organize
my thoughts, gave me a new perspective and helped me understand the numerous
ways in which technologies can simplify the art of creation. This book is about
getting a newer outlook and evolving as a programmer.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

While we have a number of other books that talk about Oracle APEX, this one is
intended to show a full throttled demonstration of the tool. We dig into the various
possibilities with the product as early as Chapter 2, Conventional Reporting in APEX,
while discussing the all-important architecture and installation in Chapter 1, Know
Your Horse Before You Ride It. This book addresses most of the reporting requirements
using Oracle APEX and presents an application with every chapter so that the reader
can see the code in action. Instead of just introducing the features of APEX, it shows
the ways to use them for report creation.

While this book uses and occasionally directs you to Oracle documentation
from numerous places, it empowers you to do more and fills the gap between
understanding and implementation.

I must thank the whole team at Packt for being immensely supportive in the
process of writing this book, and for their valuable suggestions to make the
content easily comprehensible.

What this book covers
Chapter 1, Know Your Horse Before You Ride It, lays the foundation of understanding
the tool. A deep understanding of this chapter is vital to know the framework of
APEX. This chapter talks about the anatomy of APEX and enables the reader to set
up an environment.

Chapter 2, Conventional Reporting in APEX, is dedicated to ethnic reporting. The
reports introduced in this chapter exist as an out of the box feature of most reporting
technologies. This chapter presents ways and means to implement these known
reporting requirements in APEX.

Chapter 3, In the APEX Mansion – Interactive Reports, covers interactive reports in
detail. These reports let a user do a lot more with a report. The possible tasks include
highlighting, filtering, coloring, selecting columns, creating aggregates, and so on.
The chapter also introduces the visual delights such as Interactive Report Dashboard.
It deals with complex APEX issues such as putting multiple Interactive Reports in a
single page of APEX. It also talks about some advanced techniques to create dynamic
reports in APEX.

Chapter 4, The Fairy Tale Begins – Advanced Reporting, brings a different flavor to
reporting, and clients love this flavor. This chapter deals with images and all kinds of
animations along with advanced reporting features. This chapter helps you engineer
secret drilldown tunnels and magical mystical paths in APEX reports. This chapter is
the difference between an average reporting experience and a user friendly, visually
soothing, sensually appealing, and smooth reporting experience.

Preface

[3]

Chapter 5, Flight to Space Station – Advanced APEX, opens a new dimension to
conventional reporting. This chapter presents advanced reporting methods and also
shows the use the newest features of APEX 4.2 to standardize report development.
The world can exist without these, but merely existing is not fun.

Chapter 6, Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT, introduces us to
an array of technologies which can be used with APEX. These technologies include
PL/PDF, PL_FPDF, Apache fop, Apache cocoon, Eclipse BIRT, and Jasper Reports.

Chapter 7, Integrating APEX with OBIEE, presents the use of BI Publisher and OBIEE.
The chapter not only manifests the requirements which can be easily implemented in
these technologies but also talks about the integration of these technologies with APEX.
BI Publisher has been the most popular reporting engine and is integrated with most
enterprise solutions. It has been everybody's sweetheart because people do not have to
shell out a lot of cash for it. It produces pretty reports, the development environment
(MS Word can be used for creating templates) is familiar, and Oracle is coupling it with
everything else in the Oracle world. OBIEE, on the other hand, is the grand old lady of
BI world. It has been facilitating business examination since the beginning of modern
analytic culture.

Chapter 8, All About Web Services and Integrations, combines the best of every tool
to make an unbeatable machine. I adore this workshop. Some of the highlights
of this chapter include BPEL implementations with human workflows and their
use in APEX, integration with technologies such as Oracle R and Google API,
understanding various ways to create web services in APEX, and converting
Oracle forms to APEX.

Chapter 9, Performance Analysis, is focused on understanding various ways to fine
tune APEX applications for a good user experience. One can never have enough of
this. This chapter talks ways to tune and debug client-side code such as JavaScript.
It also talks about a number of pointers that can help in the development of better
APEX applications and finally it talks about the database tools that can help us
understand and fix performance bottlenecks.

Appendix, contains sections that are are not vital for understanding the concepts
of APEX reporting, but can boost your understanding of the way APEX functions.
It includes steps to create PACKT_SCHEMA, SQL Injection, and a talk about
database and web interaction in DAD and Listener configurations. This chapter
also helps you see the entire flow of commands which are responsible for the
generation of all pages in APEX.

Preface

[4]

What you need for this book
The following is a list of software that you will need to use this book. I wish to point
out that the book mostly talks about APEX, so in a typical scenario, you might not
need all these products. However, if you wish to master the art of using APEX with
almost everything that exists under then Sun, then I suggest that you download all
the following products:

• Oracle Database 11gR2
• Oracle APEX 4.2
• WebLogic
• Oracle APEX Listener 2.x
• jQuery
• Google Visualization API
• AnyChart (it is embedded in APEX)
• FusionCharts
• PL/PDF (2.7.0)
• PL_FPDF
• Apache FOP
• Apache Cocoon
• Jasper Reports
• Eclipse BIRT
• OBIEE 11.1.1.6
• BI Publisher 11.1.1.6
• JXplorer
• SoapUI
• BPEL
• SAP Crystal Reports
• Google Places API
• Oracle R Enterprise
• Oracle Analytic Workspace Manager
• MS Word (For BI Publisher templates)

Preface

[5]

Who this book is for
The book is intended for all those who believe that making technologies work in
harmony and using their strengths to meet the objectives is a potent challenge. This
book is for you if you wish to spring into the action of APEX development from the
time you hold this book in your hand. The book is designed for innovative architects
and enthusiastic developers.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

SELECT account_status
FROM dba_users
WHERE username = 'XDB';

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

{
var xmlhttp = new XMLHttpRequest();
xmlhttp.open("POST", "http://localhost:9704/xmlpserver/services/
PublicReportService_v11",true);
xmlhttp.setRequestHeader("Content-Type","text/xml; charset=utf-8");

Any command-line input or output is written as follows:

C:\ >java -jar <Directory holding apex.war>\apex.war configdir

Preface

[6]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
on the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[7]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Know Your Horse Before
You Ride It

The book presents Oracle Application Express (APEX), as a reporting solution.
Oracle APEX is a 4GL technology based on PL/SQL that helps in rapid application
development. It can easily be integrated with a number of reporting technologies
and also has extensive reporting functionalities of its own. We will talk about these
subjects in this book. In this chapter, we will see the practical details of APEX and try
to understand the process by which the APEX engine processes our requests. A clear
answer to this question will not only empower you to cook your own recipes in APEX
but will also make you more confident in the development process and will cut your
debugging time.

I wish to inform you that the code throughout the book has been tested
on Internet Explorer 9.0, so please work with Internet Explorer 9.0.

We will cover the following in this chapter:

• Advantages of APEX
• APEX web server configurations
• Installing APEX Listener on the WebLogic server and creating an

APEX workspace
• Understanding the APEX URL and having a brief look at session

management, cache management, and debugging
• Understanding APEX page submissions and using DB audit trail

to track APEX requests from the backend

Know Your Horse Before You Ride It

[10]

• Considering some of the lesser known alternatives of mod_plsql
• Zones of caution: The A pessimist's view of APEX section describes

the subjects about which an APEX developer should be cautious

What is really new in the new avatar of
APEX?
APEX (APplication EXpress) is a 4GL RAD tool and is it a true incarnation of its
name. Its strength lies in its architecture, which greatly minimizes the number of
layers in the enterprise solution and helps a developer to minimize his development
efforts by generating the façade and the layouts of the application on its own. It is
driven by a metadata repository which stores the necessary objects required for the
tool to function. This repository is stored in the database.

Some of the other advantages of APEX are:

• The developer does not have to explicitly code the underlying HTML
and CSS, and he can still get a glittering pretty application.

• The wizard-based development approach further simplifies
development efforts.

• Inherent grouping of logical elements helps to prevent the code
from becoming messy and error-prone.

• The approach of encapsulating the code in applications, pages, regions,
and items is intuitive because it is in sync with the final visible output.

• The fact that APEX is shipped along with all versions of the database
starting with 10gR2, and the fact that no external environment is required
for its development, makes it very cost effective.

• Since APEX sleeps in the database's house, its code is backed up with the
regular backup of the DB and there is always a possibility of rollback.

• APEX lets us design the lock for our house. The authentication and
authorization schemes can be custom-written, giving the developer all
opportunities to protect its brainchild. Integration with LDAP and Oracle
SSO is much easier in the newer versions. AJAX rhymes with APEX and
both in word and deed.

• APEX codes the layout for us but we can tinker with it if the need be.
• Entire business logic is written by the developer in PL/SQL so that all the

opportunities to code the best solution rest in the hands of the coder.

I could go on and on and I haven't even started on the newest features in APEX 4.x.

Chapter 1

[11]

Let me briefly pen the reasons for you to go for the newest avatar of APEX:

• Plugins: It opens a plethora of opportunities as it lets the development
community contribute in adding new features to the tool.

• Team development: Get a team and start playing. APEX gives you the
interface for the management of your development.

• Websheets: Developers, pack your bags. This feature lets the business users
design their own pages, and APEX does all the work from creation of DB
objects to making frontend reports for them.

• Dynamic actions: Why code when working on APEX? Create dynamic
actions, and APEX codes the JavaScript for you.

• RESTful web services: Rest is the new mantra in APEX. Send the HTTP
requests and get web service responses. All modern day web services
including those of Google and Yahoo can now be accessed using RESTful
web services.

• APEX now has ears: APEX Listener is a complete JEE approach of working
on APEX applications. It makes direct JDBC connections to the DB.

• Calendars: Playboy calendars will get tough competition from the pretty
APEX calendars. These are new kinds of reports that both the developers
and the end users love.

• Error Handling: To err is human, to present a user friendly statement for
the error is APEX.

Wait… there is more:

• Better bricks, better building: New improved items with features such as
auto complete.

• From papyrus to paper, from JavaScript to jQuery: Inbuilt jQuery lets you
do more with less code.

• Beauty lies in the eyes of the beholder and in the APEX charts: The newer
version has been fused with AnyChart 6—newer types of charts such as
gantt and maps are now available.

• Improved interactive report: Our very own interactive report from previous
versions has been improved.

• Our workshop gets a makeover: Application builder has a new glittery feel.
Items can be dragged-and-dropped from one place to another. Almost feels
like a small computer game.

• Advanced skin care: Improved and ameliorated themes and templates are
available now.

www.allitebooks.com

http://www.allitebooks.org

Know Your Horse Before You Ride It

[12]

APEX configurations
Apex needs a web server to fulfill web requests. We will dedicate the next few pages
to understanding each one of the possible web server configurations with APEX.

The following diagram shows the various types, and classification of APEX
configurations:

XMLDB HTTP ServerOHS
OAS
Native Apache

External mod_plsql Internal mod_plsql

Web Server Oracle Web Logic
Oracle Glassfish
OC4J

Apex Configurations

Apex using ListenerApex using DAD

APEX configuration using DAD
Under this section we will check out two configurations (external and internal
mod_plsql) of apex DAD.

DAD is Database Access Descriptor. DADs are the means of transporting HTTP
requests to the database. DADs have the authority to run under the privileges of a
schema configured at the time of their creation. Once authorized, a DAD becomes the
king of his fort and can execute any procedure in his kingdom. DADs can be created by
using mod_plsql. mod_plsql, formerly known as Oracle PL/SQL Cartridge or Oracle
Web Agent (OWA), has been the heart of APEX systems. mod_plsql, an extension
module of Apache HTTP server, converts the HTTP request to database queries and
vice versa. mod_plsql has a database connection pool which helps better performance.

mod_psql is also a part of SQL Developer and is used for the
OWA output pane that enables us to see the HTML output in
the SQL Worksheet.

The mod_plsql configurations are of two types:

• Internal mod_plsql – This configuration is internal to the Oracle database
and mod_plsql is a part of Embedded PLSQL Gateway (EPG)

Chapter 1

[13]

• External mod_plsql – This configuration of mod_plsql is external to the
database and can be done only using Apache-based web servers such as
native Apache, OHS, and OAS

The Oracle 11g installation, by default, creates a DAD called apex. The preinstalled
APEX in 11g is an internal mod_plsql configuration which uses, out of the box, the
embedded PL/SQL gateway and the ANONYMOUS schema. This DAD is authorized to
execute any procedure on which the ANONYMOUS schema has the execute privileges.

Internal mod_plsql configuration
Let me talk a little about the flow in this configuration. When a user opens the APEX
URL, a HTTP/HTTPS request is sent to the XML DB HTTP server which is a part of
XMLDB. This request then flows through EPG to mod_plsql. mod_plsql authorizes
the request using the wwv_flow_epg_include_modules.authorize procedure.
The APEX engine, in combination with the OWA web toolkit and user-defined stored
procedures and functions, generates the response HTML. Calls to the user-defined
functions and procedures are coded by the developer in the APEX application. Once
the response HTML has been generated, mod_plsql gives the response back to the user
using XMLDB HTTP server. I have drawn this process flow in the following diagram:

Client
Machine

HTTP request

HTTP response

XML
HTTP
Server

wwv_flow_epg
_include_modules.
authorize

mod_plsql
plugin Conn pool

OWA gives
HTML as
response

OWA packages
and PL/SQL
Web toolkit

APEX engine (includes
APEX pkgs, procs,
triggers, functs etc)

Stored application
procedures/functions/
packages

Calls coded
in APEX app

APEX
metadata
tables

Query for app
page, item etc info

1
2 3

4

5

6

7
89

10
1112

13 Embedded
PL/SQL
gateway

Oracle
database

XML
DB

Know Your Horse Before You Ride It

[14]

Now let us see the process to configure the XML DB HTTP server (also called
XMLDB protocol server), bundled with database, to work on port 8080.

The port on which the inbuilt XML HTTP server operates, can be configured using
the DBMS_XDB.sethttpport procedure as shown in the following screenshot:

The account status of the XDB schema should be OPEN. Check this using the
following SQL script:

SELECT account_status
FROM dba_users
WHERE username = 'XDB';

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Enter your XDB schema password (the XDB schema is created with database
installation) after opening the URL: http://<hostname>:8080. You should
be able to see the following page:

Chapter 1

[15]

Oracle XML DB protocol server maintains a shared pool of sessions, but these
connections are to handle the client web requests. Each protocol connection or client
request is associated with one session from the pool of the protocol server. After a
connection is closed, the session is put back into the shared pool and can be used to
serve later connections.

To enable the Oracle XML DB repository to use secure HTTP connections (HTTPS),
a DBA must configure the database accordingly. This configuration includes the
setting of the http2-port and http2-protocol parameters, enabling the HTTP
Listener to use SSL, and enabling the launching of the TCPS dispatcher. After
doing this, the DBA must restart the database and the Listener.

Now let us check the DADs configured in the EPG. To do this, we will first have to
compile the Chapter1 package in PACKT_SCHEMA. If you have not already created
PACKT_SCHEMA, the user may check the Steps to create PACKT_SCHEMA section of the
Appendix for the steps to do this. Execute the following command from SQLPLUS as
SYSDBA to create CHAPTER1 package.. Make sure that you are running SQLPLUS from
the directory that holds 4-98-9_01_chapter1.sql. Put PACKT_SCHEMA in the Enter
the schema in which you want to compile this code: prompt:

SQL> @4-98-9_01_chapter1

Now execute the following two statements:

SQL> set serveroutput on

SQL> exec packt_schema.chapter1.get_dad_list();

The output will list apex along with the other DADs configured in the EPG. Run the
following statement to find the configured database username for the apex DAD:

SQL> exec packt_schema.chapter1.chk_apex_dad_usr_nam();

You should get the output as shown in the following screenshot:

The Database and web interaction in DAD and Listener configurations section of the
Appendix demonstrates the process of creating a DAD and assigning privileges
to it. The demonstration also includes the use of this DAD for database and web
interaction. Principally, APEX does the exact same thing. The difference is that
APEX does it on a bigger scale.

Know Your Horse Before You Ride It

[16]

Using the configurations done in the DAD, the EPG determines the database
account to be used to fulfill the request, and authenticates the request based
on the request-validation-function attribute configured for the DAD.

The EPG configuration of any database can be found out by running the
following script:

<OracleHome>\RDBMS\ADMIN\epgstat.sql

You should get the output after running this script, as shown in the
following screenshot:

External mod_plsql configuration
Depending on the requirements, we can choose, from a number of possible server
combinations for external mod_plsql configuration. The possibilities are: Native
Apache, Oracle HTTP Server (OHS), Oracle Application Server (OAS), or OHS
+ WebLogic Server.

Let me now talk about the flow in this configuration and how it is different from
internal mod_plsql configuration. The only difference between external and internal
mod_plsql configuration is that the mod_plsql plugin is external in the external
configuration. So, if the EPG configuration (internal mod_plsql configuration) is a
perfect human, then external configuration is a human with its heart beating outside
the body. That may seem like a weird analogy, but that's what it is. Since mod_plsql is
a module of Apache HTTP server, and since OHS is based on Apache, and since OHS
is a component of OAS, both OHS and OAS can also be used for external mod_plsql
configuration. OHS also offers HTTP services in OFM (Oracle Fusion Middleware)
and can be configured in front of the WebLogic Server. So it is possible to configure
OHS + WebLogic and then use the mod_plsql in OHS for the DAD configuration.

Chapter 1

[17]

It is important to point out that WebLogic is certified to
host APEX Listener so the Listener configuration can be
another way to use WebLogic to access the APEX engine.

The following diagram shows the external mod_plsql configuration:

Client
Machine

HTTP request

HTTP response

Wwv_flow_epg
_include_modules
.authorize

mod_plsql
plugin Conn pool

OWA gives
HTML as
response

OWA packages
and PL/SQL
Web toolkit

APEX engine (includes
APEX pkgs, procs,
triggers, functs etc)

Stored application
procedures/functions/
packages

Calls coded
in APEX app

APEX
metadata
tables

Query for app
page, item etc info

1

2 3

4

5

6

78

910

11

Native Apache
or OAS or OHS

External Apache has configuration files called httpd.config and dads.conf.

dads.conf holds the name of the DAD of APEX. The dads.conf file has a virtual path
mentioned in the Location directive. The URL of external mod_plsql configuration
looks like the following:

http://<hostname>:<port>/<virtual_path_in_location_directive>/
f?p=app_id:page_no:session_id:Request:Debug:ClearCache:Params:ParamVa
lues:PrinterFriendly

Know Your Horse Before You Ride It

[18]

The following is a screenshot of a typical dads.conf file. Check out the similarities
between the dads.conf file and the attributes configured for EPG:

Directives such as PlsqlRequestValidationFunction (refer the previous
screenshot), which are allowed in the context of the Location directive, help us
configure the attributes which get configured in EPG using the dbms_epg package.
Note that the wwv_flow_epg_include_modules.authorize procedure is declared
as the validation function in the dads.conf file. The same function is also configured
as the value of the request-validation-function attribute of the apex DAD,
which is created along with the installation of Oracle 11g. We can check this out
using the following script:

SQL> exec packt_schema.chapter1.chk_apex_req_val_funct();

The wwv_flow_epg_include_modules.authorize procedure is called before
creating an APEX session. This function in turn calls the wwv_flow_epg_include_
mod_local function. The Gods of APEX have given you the freedom to invoke our
own procedures using the apex DAD. All functions on which the ANONYMOUS schema
have execute privileges, and have been declared in the wwv_flow_epg_include_
mod_local function, can be invoked using the DAD of apex. Let us now have a look
at the wwv_flow_epg_include_mod_local function:

create or replace function wwv_flow_epg_include_mod_local(
 procedure_name in varchar2)

Chapter 1

[19]

return boolean
is
begin
 --return false;
 if upper(procedure_name) in (
 '') then
 return TRUE;
 else
 return FALSE;
 end if;
end wwv_flow_epg_include_mod_local;

To invoke the procedures from apex DAD, comment the return false; statement
and mention the procedure name which you want to invoke using the apex DAD in
the in list of the if statement.

If you wish to call your own procedures in Listener configuration, then you can
configure the same in the defaults.xml file of the Listener. A demonstration of
calling a custom procedure in Listener configuration is shown in the The Listener
configuration section of Appendix.

Similarly, we can see that other attributes configured in the EPG DAD are also
configured in the external DAD configuration using the Location directive of
the dads.conf file. In the previous screenshot of dads.conf file, the directive
<Location> has /pls/apex as the virtual path. So you would have the following
URL for your apex DAD with this configuration file:

http://<hostname>:<port>/pls/apex/f?p=4550

You can configure more than one DAD in this configuration file
by using multiple <Location> directives.

Httpd.conf is another important character in the story. If dads.conf is a super hero,
then httpd.conf is super hero's brother and has got his own set of powers. It can
hide the trademark APEX URL by helping you set virtual hosts. The RewriteRule
directive in httpd.conf takes the concept of concealing the URL to a whole new
level. It lets you define patterns of characters and if the URL entered by the user
matches the pattern in this directive, then it will redirect to a page which is also
defined in the directive. So you can have any URL for APEX, define its pattern in
the RedirectRule directive, and then have your APEX application's URL as the
URL to which the server will redirect.

Know Your Horse Before You Ride It

[20]

APEX Listener configuration
We will be using the Listener configuration in all our discussions henceforth. This is
because the Listener is the latest fashion and everyone is talking about it. It is in line
with the whole architecture of database server and database Listener. The Listener is
Oracle's direction for the future.

We have already seen what mod_plsql can do, so let's look at Listener as well.

Listener is a JEE replacement of mod_plsql and performs all the functions of mod_
plsql. These include calling OWA and web toolkit functions to generate the HTML
for APEX pages and accepting client requests. Just like mod_plsql was maintaining
its connection pool, Listener also maintains a connection pool but it is a JDBC
connection pool. Its URL is similar to the EPG URL with the difference that the
apex DAD of EPG is replaced by apex web application context. So, it is important
to realize that the look of the URL might not have been affected, but the underlying
architecture is completely different. DADs are not used here at all. The configuration
files and the method of implementation of various features are also completely
different. For example, the validation function here is defined in the security.
requestValidationFunction parameter of the defaults.xml file. In case of EPG
configuration, it is defined in the EPG DAD attribute called request-validation-
function. In the case of external mod_plsql configuration, the validation function is
in the Location directive of the dads.conf file and the name of the directive holding
it is PlsqlRequestValidationFunction. Let's have a look at the architecture now:

Client
Machine

HTTP request

HTTP response JDBC Conn pool

OWA gives
HTML as
response

OWA packages
and PL/SQL
Web toolkit

APEX engine (includes
APEX pkgs, procs,
triggers, functs etc)

Stored application
procedures/functions/
packages

Calls coded
in APEX app

APEX
metadata
tables

Query for app
page, item etc info

1
2

3

4

5

67

89

WebLogic 11g or
Glassfish or OC4J

APEX
Listener

Chapter 1

[21]

The APEX Listener does not have Apache in any form, so it doesn't have mod_plsql.
In fact, APEX Listener is built for letting JEE-based web servers harness the powers
of APEX and to increase APEX's acceptability.

Installing APEX engine and Listener
Till now, we have discussed all possible configurations of APEX. This section is
dedicated to setting the APEX environment using the APEX Listener configuration
on the WebLogic Server. The assumption here is that you have Oracle database
11.1.0.6.0 or higher installed on your machine. If not, then get the installer from
http://www.oracle.com/technetwork/database/enterprise-edition/
downloads/index.html.

We will discuss the following in this section:

• Installing the APEX engine in the database
• Creating a WebLogic domain and starting the servers
• Setting the APEX Listener
• Creating the APEX workspace

Installing the APEX engine in the database
Perform the following steps for installing the APEX engine in the database:

1. Create a tablespace for APEX. Change the path of the data file according
to your machine:
CREATE TABLESPACE apex_tablespace datafile 'C:\Oracle11GDB\
oradata\orcl\oracle_apex_datafile.dbf'
SIZE 500 m
autoextend ON maxsize 500 m

2. If you are using an existing tablespace then use the following script to
check if sufficient space is available for APEX:
SQL> @4-98-9_01_chk_free_space_in_tablespace

275 MB of space is required in APEX tablespace and 100 MB of space is
required in the SYSTEM tablespace.
Besides this, 278 MB of space is required on the filesystem if we use
the English only download (apex_4.2_en.zip) and 935 MB of memory
is required if we use the full download (apex_4.2.zip).

www.allitebooks.com

http://www.allitebooks.org

Know Your Horse Before You Ride It

[22]

3. Run the following query to get the version of PL/SQL Web Toolkit.
This version should be greater than 10.1.2.0.6:
SELECT owa_util.get_version
FROM dual;

4. Go to the command prompt and silence the Listener. Enter the following
command in the command prompt:
lsnrctl stop

5. Check the Listener status:
lsnrctl status

You should get the following error messages in the console:

TNS-12541: TNS:no listener

 TNS-12560: TNS:protocol adapter error

 TNS-00511: No listener

6. Open the command prompt and navigate to the apex directory under
the directory in which apex_4.2.1_en.zip is unzipped.

7. Connect to SQLPLUS in this command prompt window as sysdba,
and execute the following command:
@apexins apex_tablespace apex_tablespace temp /i/

8. The previous script installs APEX. You should get the following message
after the installation is finished:

A logfile is created in the directory from which the installation was started
(the directory in which we unzipped apex_4.2.1_en.zip). The name format
of this log is installYYYY-MM-DD_HH24-MI-SS.log. This file will have the
following message:

Thank you for installing Oracle Application Express.
Oracle Application Express is installed in the APEX_040200 schema.

Chapter 1

[23]

9. Run the following query to validate the installation after connecting to the
database as sysdba. The status should be VALID:
SELECT status

FROM dba_registry

WHERE comp_id = 'APEX';

10. Run the following script after logging in as sysdba to set the password for
the ADMIN user. The ADMIN user will be used to create the APEX workspace
and for other admin activities. This script exists under <apex_4.1_en_
Unzipped_Location>/apex along with apexins.sql.
@apxchpwd

11. Restart the Listener. This is done in the command prompt and not in the
SQL prompt:
lsnrctl start

12. Unlock APEX_PUBLIC_USER and change its password after connecting as sys:
alter user APEX_PUBLIC_USER account unlock;

alter user APEX_PUBLIC_USER identified by new_password;

13. Run the following commands. This is to ensure that the password of
APEX_PUBLIC_USER does not expire every few days:

CREATE PROFILE

 apex_public_user_profile

LIMIT

 PASSWORD_LIFE_TIME UNLIMITED;

ALTER USER apex_public_user PROFILE apex_public_user_profile;

Know Your Horse Before You Ride It

[24]

Creating a WebLogic domain and starting the
servers
WebLogic will hold our APEX Listener. So, all the action will take place inside this. We
can create a domain that has an admin server, a node manager, and a managed server,
and configure the managed server to hold the APEX Listener. The managed server can
be controlled from the admin server using node manager. We will, however, create a
domain with just the Admin server. This reduces the memory requirement and suits
a desktop class installation. APEX Listener will be deployed on the Admin server.

The process described here is to install WebLogic—the generic version
of 11g on Windows 7 OS and it is assumed that the Oracle 11g database
is already installed on your Windows 7 box.

Perform the following steps for creating a WebLogic domain and starting the servers:

1. Download WebLogic 11g from http://www.oracle.com/technetwork/
middleware/ias/downloads/wls-main-097127.html.

2. Click on the Install button. The wizard will help you install WebLogic on
your machine.

3. Click on QuickStart in the newly installed program group of WebLogic and
then click on Getting started with Weblogic Server.

4. This will open Fusion Middleware Configuration Wizard. Select Create a
new weblogic domain in it, and click on Next.

5. Select Generate a domain configured automatically to support the
following products. The Basic weblogic server domain checkbox will be
checked by default. Do not select any other checkbox. Click on Next.

6. Give the name and location of the domain which you want to create. This
can be any fancy name. I gave apex_weblogic_domain. Fill these values and
click on Next.

7. Give the username and password for the administrator of this domain and
click on Next. My username is apex_weblogic_admin.

8. Select the Development mode radio button and select Sun SDK as the JDK.
9. Select the Administration Server checkbox.
10. If you want your Listener to listen on secured connections using HTTPS,

then select the SSL enabled checkbox and give the port number on which
this managed server will listen to HTTPS requests.

Chapter 1

[25]

If you do not want your APEX Listener to listen to HTTP requests, then do
not give a port number in the Listener port textbox. I have not opted for
HTTPS. Click on Next.

11. All set. Click on the Create button to create a domain for your APEX Listener.

To start the Admin server, go to WebLogic program group where you will
see your newly created domain. Get in it to find the link to start the Admin
server. Alternately, you could navigate to <MiddlewareWeblogicHome>\
user_projects\domains\apex_weblogic_domain\bin in command
prompt and execute:
startWebLogic

apex_weblogic_domain is the name of my domain in the previous path.
You should be able to see the following message after starting WebLogic
admin server:

Setting the APEX Listener
The prerequisites are:

• You should have Java 6 Update 20 JDK or higher. Go to command
prompt and write the following to check this:
C:\> Java -version

• You should have Java Servlet Specification 2.3 or higher, and WebLogic 11g
R1 certainly has it.

APEX Listener can work in standalone mode and can also be hosted on Glassfish
or OC4J or WebLogic. It uses Grizzly to build a scalable web server for itself in
standalone mode. Running Listener in standalone mode is not supported in a
production environment.

More info on Grizzly can be found at:

http://grizzly.java.net/

The HTTP server API of Grizzly can be found at:

https://grizzly.java.net/docs/2.3/apidocs/org/glassfish/grizzly/http/
server/HttpServer.html

Know Your Horse Before You Ride It

[26]

Grizzly can be embedded with other applications to provide HTTP services:

https://blogs.oracle.com/oleksiys/entry/grizzly_2_0_httpserver_api

Configuring and deploying APEX Listener on the
WebLogic domain

1. Go to the <Weblogic domain root directory>\config directory and
edit the config.xml file in it. Add the <enforce-valid-basic-auth-
credentials>false</enforce-valid-basic-auth-credentials>
tag just before the closing the </security-configuration> tag.
This is important for the Listener to function properly.

2. Execute the following command:
C:\> java -jar <path in which you unzipped the listener>\apex_
listener.2.0.1.64.14.25\apex.war

You will be prompted to enter the location of the configuration directory.
Your Listener configuration files will be stored in the directory which you
put here. You will also be prompted to put the database details and the
credentials of the APEX_PUBLIC_USER schema along with the credentials of
schema for RESTful service configuration. The following screenshot shows
the configuration when I executed the previous command:

Chapter 1

[27]

The jar command will work only if the Path environment variable
is set to the bin directory of your JDK. An example of bin directory is:
C:\Program Files\Java\jdk1.6.0_26\bin.

3. Start your WebLogic Admin server and open your WebLogic domain
console. The link for this is present in your WebLogic program menu
under your domain. It has the following form:
http://<hostname>:<port_number_of_admin_server>/console

4. Enter your WebLogic Admin credentials. You had created these in
step 7 of the Creating a WebLogic domain and starting the servers section.

5. Click on the Deployments link under Domain Structure panel on the
left-hand side of the console.

6. Click on Install and select apex.war. We had configured apex.war in step 2.
7. Select Install the deployment as an application radio button and click

on the Next button.
8. Install on the Admin server.
9. Select the following security model and click on the Next button:

Custom roles: Use roles that are defined in the administration console;
use policies that are defined in the deployment descriptor.

10. Keep the other default settings and click on Next, and then click on Finish.
11. Click on the Save button after everything is done.
12. Open the command prompt and run the following command. This will

generate a .war file called i.war that will help APEX to use static resources
such as images, logos, SWF, CSS, and JavaScript files which are necessary
for APEX to work.
C:\> java -jar <Directory in which listener is unzipped>\apex.war
static <Directory in which APEX is unzipped>\apex\images

Know Your Horse Before You Ride It

[28]

You should get an output as shown in the following screenshot:

13. The previous command will create i.war in the directory from which you
executed the command. I executed the command from the C:\Users\vishal
directory shown in the previous screenshot and got i.war in the same
directory. Install i.war just the way you did apex.war.

Creating APEX workspace
Perform the following step for creating APEX workspace:

1. Log in to the admin console using ADMIN as the username and INTERNAL as
the workspace. The password of the ADMIN user can be set using <Directory
in which APEX is unzipped>\apex\apxchpwd.sql. The URL for logging
in to the INTERNAL workspace is:
http://<host>:<port>/apex_weblogic/f:p=4550

2. Click on Manage Workspaces and create a new workspace. Name it PACKT_
WORKSPACE.

3. Select Yes in the Re-use existing schema? dropdown and put PACKT_SCHEMA
in the Schema Name text box. If you haven't created PACKT_SCHEMA yet, then
go the Steps to create PACKT_SCHEMA section in the Appendix to find the
steps of creating this schema.

4. Put PACKT_ADMIN in the Administrator Username textbox, set its password,
and put an e-mail address.

5. Click on the Create Workspace button to create the workspace.

You can also get a free test drive at http://apex.oracle.com. You can register here,
and Oracle gives you a workspace of your own.

Chapter 1

[29]

Understanding the APEX URL
The URL in APEX is related to sessions, debugging, caching, requesting actions, and
passing variables. The URL is also closely coupled with the architecture of APEX and
is dependent on the server configuration. So let's see it all.

Colons are a part of the URL and hold special meaning in the URL.
Hence, the values passed by the developer cannot contain colons.
We will see more on this in the Passing values and navigation section.

A typical URL is as follows http://<hostname>:<port>/dad_name_or_web_
context/f?p=app_id:page_no:session_id: Request:Debug:ClearCache:Param
s:ParamValues:PrinterFriendly.

Let's dissect this URL in the following sections.

The protocol
Consider the following example:

http://<hostname>:<port>/dad_name_or_web_context/f?p=app_id:page_
no:session_id:Request:Debug:ClearCache:Params:ParamValues:PrinterFrie
ndly

http is the protocol here. If the SSL (Secured Socket Layer) is enabled, then the
protocol will be https. The protocol depends on the web server configuration.

The hostname and port number
Consider the following link:

http://<hostname>:<port>/dad_name_or_web_context/f?p=app_id:page_
no:session_id:Request:Debug:ClearCache:Params:ParamValues:PrinterFrie
ndly

<port> in the previous URL is the port of your web server. Your web server
can be GlassFish, WebLogic, or OC4J if you are using APEX Listener. XMLBD
HTTP Protocol Server will be used if you are using EPG configuration. Native
Apache, OHS, OAS or OHS + WebLogic can be used if you are using external
mod_plsql configuration.

Know Your Horse Before You Ride It

[30]

The DAD name and web context
Consider the following link:

http://<hostname>:<port>/dad_name_or_web_context/f?p=app_id:page_
no:session_id:Request:Debug:ClearCache:Params:ParamValues:PrinterFrie
ndly

Previous versions of APEX used DAD, but APEX 4.x can also use APEX Listener.
The Database and web interaction in DAD and Listener configurations section of the
Appendix will boost your understanding of this part of the URL.

It contains:

• A discussion on the creation of a DAD and a demonstration of the use of that
DAD to do both database and web interaction. The mod_plsql configuration
of APEX also does the same thing but it does it on a bigger scale.

• A section on calling a custom function from the URL using the Listener
configuration.

The f procedure
Consider the following example:

http://<hostname>:<port>/dad_name/f?p=app_id:page_no:session_id:
Request:Debug:ClearCache:Params:ParamValues:PrinterFriendly

f in f?p is the name of a stored procedure and p is its argument. We can draw an
analogy between f and APPENDIX.DAD_PROC which is defined in the Database and
web interaction in DAD and Listener configurations section of the Appendix. f has a
single argument, that is, p while APPENDIX.DAD_PROC has val and redirect_url
as its arguments.

The application ID in the URL
Consider the following example:

http://<hostname>:<port>/dad_name/f?p=app_id:page_no:session_id:
Request:Debug:ClearCache:Params:ParamValues:PrinterFriendly

app_id in the above URL is the application ID of your application. We can hide the
application ID by using application alias, but the application ID will be exposed
when the user navigates between the pages. This also holds true for page number.
Permanent hiding of the app_id and page_id can be controlled only through the
web server.

Chapter 1

[31]

We can, however, use an application alias instead of our app_id value in the URL.
Our application alias should be unique in a workspace, and if two workspaces have
the same alias then the syntax of our URL will be like the following:

f?p=common_alias:page_alias_or_page_number:&APP_SESSION.&c=desired_
workspace

This makes sense since APEX should have a way to uniquely identify the desired
application. If two applications have same alias, then APEX will need the support
of our workspace name to find the application which it should present to us.

The page number in the URL
Consider the following example:

http://<hostname>:<port>/dad_name/f?p=app_id:page_no:session_id:
Request:Debug:ClearCache:Params:ParamValues:PrinterFriendly

page_no is the identifier to your APEX page. The name itself explains it all. It's the
page number; nothing more, nothing less. This can also be replaced by page alias.

Session management
Consider the following example:

http://<hostname>:<port>/dad_name/f?p=app_id:page_no:session_id:
Request:Debug:ClearCache:Params:ParamValues:PrinterFriendly

session_id is the APEX session ID and is very different from the DB session. Every
APEX page request is furnished by an existing or new DB connection. On every page
view request, APEX picks a database connection from the pool and then relinquishes it
soon after the request is fulfilled. If no connections are free, then a new DB connection
is created. The big guys, mod_plsql/Listener, take care of this connection pool.

APEX has some views to check the session activity. Apex_activity_log logs the
activity in APEX applications. Apex_workspace_activity_log is a view in the APEX
schema that helps us track every activity in APEX. The granularity of the log in this
view is page view. So, the setting and resetting of APEX items do not get logged,
but every page view does. This logging is done only for the applications which have
logging enabled. We can also check the WWV_FLOW_DATA table to see the state of our
items in some of our previous sessions. Flow_instance of this table holds our session
ID and flow_id holds our application ID.

www.allitebooks.com

http://www.allitebooks.org

Know Your Horse Before You Ride It

[32]

We can also click on the Session button in the developer toolbar of APEX to see
session states of various items.

To capture the session values of various items in your application, do one of
the following:

• :MY_ITEM – It can be used in SQL or PL/SQL. The item name cannot
be more than 30 characters long. Use :"MY_ITEM" if item name contains
special characters.

• You can also reference them as substitution strings, that is, as &MY_ITEM.
Again, if the name contains special characters, then you can use &"MY_ITEM".

• Substitution strings can be used in page template and region source.
Substitution strings are also sometimes referenced as #MY_ITEM#.

• If you are coding in PL/SQL, then you have the freedom to use V('MY_
ITEM') for getting the value of any item or NV('MY_NUMERIC_ITEM')
for getting the value of numeric items.

We can use the following query to check out the setting and resetting of items in the
development environment (flow_id = 4550) when we navigate from one page to
other to develop our code. This information can also be viewed using public APEX
views which expose APEX data for our use:

Select flow_instance, item_name, item_value_vc2, flow_id
From apex_040200.wwv_flow_data
Where flow_id = 4550

The session ID is created at login time and APEX preserves the sanctity of a user
session by continually verifying it against the value in the APEX session cookie
and the value of the session in the database.

Execute the following anonymous block from SQL Workshop to get a feel of
what the session cookie looks like:

BEGIN
 owa_util.print_cgi_env();
END;

Search for Cookie in the output. You might get something like the following
when you search for it:

Cookie = WWV_CUSTOM-F_1301809025994046_101=00C1A195B51BDAFDC8B2A3
C3E006DCC2; LOGIN_USERNAME_COOKIE=packt_admin; ORA_WWV_ATTRIBUTE_
PAGE=4495%2C%23COMMENTS; ORA_WWV_REMEMBER_UN=PACKT_ADMIN:PACKT_
WORKSPACE;

Chapter 1

[33]

The highlighted piece of code is the hashed session ID. We can match this hashed
session ID with the session_id_hashed column of the following query to get
the actual APEX session ID from the corresponding value of the id column of
the following query.

SELECT session_id_hashed,
 id,
 created_on
FROM apex_040200.wwv_flow_sessions$

For security reasons, APEX hashes the session ID and stores this hashed value in
session_id_hashed. This value is then passed in the cookie.

Session ID is our passport to know everything about the relation of this cookie to
our APEX session. Use apex_workspace_activity_log to know more:

SELECT *
FROM apex_workspace_activity_log
WHERE apex_session_id = '241352717594401'

More snooping can be done using the APEX_CUSTOM_AUTH.GET_COOKIE_PROPS and
APEX_CUSTOM_AUTH.GET_SESSION_ID_FROM_COOKIE procedures of the APEX API.
APEX_CUSTOM_AUTH.GET_SESSION_ID can help us get the session ID of the session
from which it is called. This value will match with the value in the URL.

There are many more procedures scattered all around the API to set
and get various properties of the session. Some examples of these
functions are: APEX_UTIL.SET_SESSION_LANG and APEX_UTIL.
SET_SESSION_TIME_ZONE.

The zero session ID
This is a novel step to increase the popularity of APEX among web applications
on the Internet. The success of a website hugely depends on its appearance in the
relevant search results. Google crawler and other bots do the laborious task of
crawling through various links on a website and bookmarking them so that they
can be presented to the user when related keywords are searched. Since the session
ID of APEX is a part of the URL and since it changes in every session, it is virtually
impossible to bookmark an APEX page. We can solve this problem in the following
three ways:

• Set a reverse proxy on the web server.

Know Your Horse Before You Ride It

[34]

• Create a PL/SQL function, have the redirection to the APEX URL from the
function, and call this function by setting the path-alias attribute of a DAD.
Know more about path aliasing from the following link:
http://docs.oracle.com/cd/E23943_01/portal.1111/e12041/concept.
htm#i1006110

• Use the zero session ID.

If an application that does not require authentication is opened with 0 in the
session ID place of the URL, APEX will internally generate a session ID, pass it
to the browser cookie, and use it to maintain the APEX session, but will show 0
as the session ID in the URL.

You can check this by enabling the audit trail. Follow the steps mentioned in the
Enabling auditing on the APEX_PUBLIC_USER schema section of the Appendix to
check the calls made to the web toolkit.

Now open your APEX development console with zero session ID. For example

http://localhost:7001/apex_weblogic/f?p=4550:1:0:::::

Now execute the 4-98-9_Appendix_check_calls_by_lsnr_2_web_toolkit script
from SQL Prompt after logging into the database using the SYSDBA user. This script
can be found in the code pack. You should be able to see nobody:3011100369646501
in the client_id column. The client_id column is a combination of user ID and
session ID. So, you see that the URL was opened with the 0 session ID but APEX
internally is maintaining an actual APEX session ID.

Execute the following script using SYSDBA to turn off the auditing:

SQL> @4-98-9_Appendix_disable_auditing

Request handling
Consider the following link:

http://<hostname>:<port>/dad_name/f?p=app_id:page_no:session_id:
Request:Debug:ClearCache:Params:ParamValues:PrinterFriendly

Request in the previous URL is to differentiate between the requests going from one
page to another page. Let's say we have a report which has links on every row to edit
the corresponding row and also to delete the record. Let's say we have another page
that handles both these requests. There should be a way to tell the drilldown page
that the user has requested to edit the row and not to delete it. Request in the URL
is a method to achieve this.

Chapter 1

[35]

Now every button in the application can set the value of Request to its own name.
So, when the user navigates from one page to another on the click of a button, this
part of the URL will hold the name of the clicked button. The value of Request can
be retrieved using any of the following:

• Substitution string: &REQUEST
• PL/SQL: V('REQUEST')
• Bind variable: :REQUEST

There are many functions in APEX's JavaScript API which set Request, for example,
apex.submit(pRequest) and apex.confirm(pMessage, pRequest). The following
function call submits the page, sets the value of REQUEST to NEW, and sets the value of
P1_ITEM to 555:

apex.submit({
request:"NEW",
set:{"P1_ITEM":555}});

G_REQUEST is a global variable in the APEX_APPLICATION package
which holds the most recent value.

Request value is also set when we call an OnDemand APEX process. Syntax is
f?p=application_id:page_id:session_id:APPLICATION_PROCESS=process_id.

The syntax gives a feeling that this is applicable only for application processes but it
works well for page OnDemand processes as well.

Debugging
Consider the following link:

http://<hostname>:<port>/dad_name/f?p=app_id:page_no:session_id:
Request:Debug:ClearCache:Params:ParamValues:PrinterFriendly

Debugging is never fun and can sometimes trouble you more than your
mother-in-law. So, it makes sense to learn a few things that will reduce the
time you spend with debugging.

Know Your Horse Before You Ride It

[36]

DEBUG is actually a flag. You will either see YES or NO in this place of the URL.
If the value is set to YES and if you have logged in using developer credentials, then
you will be able to see the debug log by clicking on the View Debug button in the
developer toolbar at the bottom of an APEX page. You can set the value of DEBUG by
clicking on the Debug button on the developer toolbar or by manually putting YES
in this part of the URL, and then loading the page. DEBUG gives you the divine eye
which lets you see what you otherwise might not. Use it when nothing makes sense
to you. Use it when you think APEX is drunk.

Ways to get the value of this flag:

• Short substitution string: &DEBUG
• PL/SQL: V('DEBUG')
• Bind variable: :DEBUG

But all this fun only happens if you have enabled debugging at the application level
if it is not already enabled. To do this, click on the Edit Definition link that appears
on the right pane under Shared Components and then select Yes in the Debugging
dropdown under the Properties section.

In APEX 4.2, debugging is enabled by default. The debug feature in APEX 4.x also
gives you a pretty cool graph. The debug report tells you about the processing time
for each step. You should store these messages in your own table if you want to
check the trends in the performance of APEX reports because the messages in APEX
log table age out after two weeks. The debugging messages are logged at log level 4
and can be queried by using the APEX_DEBUG_MESSAGES view.

There is a whole package in APEX called APEX_DEBUG_MESSAGE to give you more
freedom to use DEBUG. This package lets you log messages at different log levels.
A developer can put his messages too. Again, we can query to retrieve messages
of a certain log level. The package also has functions to clear the log messages.

We can use this package to capture the flow of control in our APEX application
since we can use this for logging messages in stored PL/SQL procedures and
functions as well.

The functions of this package are not affected by the application-level
debugging setting.

G_DEBUG is a global variable in the APEX_APPLICATION package which tells whether
DEBUG is enabled or not. APEX_PLUGIN_UTIL also has some functions such as APEX_
PLUGIN_UTIL.DEBUG_DYNAMIC_ACTION which let us debug Dynamic Actions, the
newest gig in APEX.

Chapter 1

[37]

Other functions such as APEX_PLUGIN_UTIL.DEBUG_PAGE_ITEM let us debug page
items. Now we can obviously check the value of an APEX item by clicking on the
session link in the developer toolbar. We also have functions such as APEX_PLUGIN_
UTIL.DEBUG_PROCESS, and APEX_PLUGIN_UTIL.DEBUG_REGION. These functions do
the job that their name suggests.

Debugging of JavaScript in your application is possible using tools
such as Firebug of Mozilla Firefox and Microsoft Script Debugger.
Similarly, debugging of Dynamic Actions is also a little different.
When the application debugging is on and the page is rendered
in the debug mode, JavaScript debugging tools such as Firebug
will show you information about timing of the firing of a Dynamic
Action, its name, and the action resulting in its execution.

It is also important to note that AJAX calls are not tracked by APEX's debugging
functionality. Since interactive reports make a lot of AJAX calls, most of the actions
performed on interactive reports are also not traceable using the debug functionality.
We can, however, call the procedures in APEX_DEBUG_MESSAGE to log messages inside
the processes called by AJAX calls. Some information about PPR or interactive report
AJAX calls can also be seen in browser script debugging tools. Similarly, flash charts
also offer very little scope for debugging.

Error handling
We can specify the name of a function in Error Handling Section of Application
Definition or in the Error Handling section in page attributes to declare a function
which will generate custom error messages. These places also let us specify the
display location of error messages.

The implementation of this function must be:

function <name of function> (
p_error in apex_error.t_error)
return apex_error.t_error_result

Apart from this, we also have the usual error and success display sections in page
processes. We also have an error message section in application processes.

The API documentation of APEX_ERROR can be found at http://docs.oracle.com/
cd/E37097_01/doc/doc.42/e35127/apex_error.htm. The documentation also
shows an example of the error-handling function.

Know Your Horse Before You Ride It

[38]

TKPROF
Consider the following link:

http://localhost:7003/apex_weblogic/f?p=105:1:416650869240101&p_
trace=YES

Add &p_trace=YES at the end of a page request to generate the trace for the
request. APEX drops the DB connection once a page request is fulfilled and
then takes an existing or a fresh connection to furnish a fresh page request.
Adding &p_tracle=YES turns on 10046 level trace and does it only for the
page request with which it is associated.

We can use the following procedure to find the name of the trace file in which
10046 level trace is written:

1. Run the following query to find the location in which all the trace files
exist on your database
SQL> select value from v$parameter where name = 'user_dump_
dest';

2. Put the following in the same page for which you want to get the trace:

select sys_context('userenv','sessionid') from dual;

Use the output of this in the Enter the session id from USERENV context in APEX:
prompt while executing the following script to get the trace filename:

SQL> @4-98-9_01_get_trace_file_name

Cache management
Consider the following link:

http://<hostname>:<port>/dad_name/f?p=app_id:page_no:session_id:
Request:Debug:ClearCache:Params:ParamValues:PrinterFriendly

We can edit the definitions of regions and pages to enable caches in them.
Application items are set and reset multiple times so the cache of these can
also be cleared.

Chapter 1

[39]

The ClearCache part of the URL is used to clear the session state of an item, all items
on a page, a group of pages, an application, or all applications. The page which makes
the request has to put the "right text" in this position in the URL to clear the cache. The
data for a cache is fetched directly from the WWV_FLOW_PAGE_CACHE table instead of the
actual execution of the code for the page. The following are the available options to
clear the cache:

• Put the name of an item in this part of the URL if you want to clear the value
of a particular item in the requested page.

• Put the page number in this part of the URL if you want to clear the state of
all items and any stateful process on a single page.

• Put a comma-separated list of pages in this part of the URL if you want
to clear the cache for a set of pages. The comma-separated list can include
collection names to be reset.

• Keyword RP resets regional pagination on the requested page.
• Keyword APP is a tsunami. It clears all pages and application level items

of an application.
• Keyword SESSION is apocalypse. It clears items associated with all

applications which have been used in the current session.

Please do not confuse this with the SESSION which we discussed
earlier. These two have different places in the URL and have
totally different meanings. If this is chalk, then that is cheese.

We can use a combination of the the previous options to have multiple effects. Let's
say that we want to render 10th page, reset its pagination and clear cache for page 11
and 12. Our URL in such a case will look like the following:

f?p=101:10:2141754341423301::NO:RP,11,12:::

APEX_UTIL has tons of functions for clearing cache. Some of the cache related
functions in this package are APEX_UTIL.CLEAR_PAGE_CACHE, APEX_UTIL.CLEAR_
USER_CACHE, APEX_UTIL.CACHE_PURGE_STALE, APEX_UTIL.CACHE_PURGE_BY_PAGE,
APEX_UTIL.CACHE_PURGE_BY_APPLICATION, APEX_UTIL.CACHE_GET_DATE_OF_
REGION_CACHE, and APEX_UTIL.CACHE_GET_DATE_OF_PAGE_CACHE.

Know Your Horse Before You Ride It

[40]

There are many more scattered all across the API to clear certain parts of the
application. An example of this can be APEX_COLLECTION.TRUNCATE_COLLECTION,
which clears a named collection.

Administrators can clear the cache by following the following steps:

Click on the arrow next to the Administration button on the top, select Manage
Services, select Application Cache present in the Manage Meta Data list on the
right side of the page.

This will take you to a list which will let you clear cache for pages and regions.

If you are still looking for more ways to clear the cache, then you can use the
Session State process for this. You can also use the Link section in Column
Attributes of either Classic or interactive reports to clear the cache. Calendar
regions also give this option.

Alright, I'm tired of writing about ways to clear cache but I will still keep listing.
Dynamic Actions, buttons, branches, lists, bread crumbs, and navigation bar entry,
can also be used for clearing cache. The Cache button on the developer toolbar lets
you manage cached regions and pages.

Apart from this, there is a relatively unsecure feature called browser-side cache. You
can enable this by going to the Browser Security section in Shared Components |
Security Attributes. Enabling this lets the browser store vital information and can lead
to security problems. Enabling this has also been known to create problems with pages
which have partial page refresh content. It is important to note the distinction between
this cache and the other cache which we have been talking about. Apart from this
paragraph, we have been talking about setting and resetting APEX server-side cache
while this one is browser-side cache.

Passing values and navigation
Consider the following link:

http://<hostname>:<port>/dad_name/f?p=app_id:page_no:session_id:
Request:Debug:ClearCache:Params:ParamValues:PrinterFriendly

This is the developer's playground Params:ParamValues is to let you set the items
in the application to certain values. Params is a comma-separated list of item names
whose values have to be set and ParamValues is a comma-separated list of values
of the corresponding item names.

Chapter 1

[41]

Colons are a part of the URL and hold special meaning in the URL. Hence the values
themselves cannot contain colons. If there is a possibility of item values containing
colons, then we should use translate or replace functions to encrypt the string so
that colons are removed from the values. We can then decrypt the encrypted string
at the destination page. If a value contains comma, then enclose the value within two
backward slashes. For example, \1,234\.

Some of the APEX API functions also let us set the session state of an item. One of
these functions is APEX_UTIL.SET_SESSION_STATE.

Making APEX printer friendly
Consider the following link:

http://<hostname>:<port>/dad_name/f?p=app_id:page_no:session_id:
Request:Debug:ClearCache:Params:ParamValues:PrinterFriendly

PrinterFriendly is a flag which when set to YES, renders the page in printer-
friendly mode. It tells whether the page is in printer-friendly mode or not.
We can get the value of this using V('PRINTER_FRIENDLY').

The G_PRINTER_FRIENDLY global variable in the APEX_APPLICATION package is
a flag, which tells whether the application is running in print view mode or not.

Decoding the APEX page submissions
Now that we understand the URL of APEX and have a broad understanding of the
tool, I want to get into the specifics. I want to talk a little about the mechanism used
by APEX to submit pages. This section tries to answer the following questions:

• How does APEX submit pages?
• How does a submit request flow from the browser to the APEX engine?
• How do HTML requests get converted to PL/SQL processing and how

the switching happens?

APEX creates an HTML form for any APEX page created by us. APEX items defined
by us become the various elements of the HTML form. The name of the APEX items
become the IDs of the HTML elements and these HTML elements are given any
name between p_t01 to p_t200 inclusive.

www.allitebooks.com

http://www.allitebooks.org

Know Your Horse Before You Ride It

[42]

For example, if we have an item named P2_REPORT_SEARCH in our APEX page,
if this item is a textbox and if this is our first page item, then APEX will generate
the following HTML for this APEX item:

<input type="text" id="P2_REPORT_SEARCH" name="p_t01" value=""
size="30" maxlength="2000" onkeypress="return submitEnter(this,event)"
class="text_field" />

The p_t01 to p_t200 range is reserved for page items excluding shuttles and
multiselects. Other APEX objects have other ranges of names. Now the big question
is, why couldn't APEX assign the names of items as the names of HTML elements?
The answer lies in the way in which APEX submits its pages.

The HTML form created by APEX is submitted using the HTTP POST method.
We can check this in the form action code at the bottom of this paragraph. The
HTML form generated by APEX has wwv_flow.accept in its action attribute. I am
sure that wwv_flow.accept is ringing some bells in your head. This looks like the
name of some APEX package and procedure. If you check the packages under the
APEX_040200 schema, you will see wwv_flow package and the accept procedure
in that package. The body of this package is wrapped but you can still check out
its specification. Now, every argument in the signature of wwv_flow.accept is
directly fed from the HTML form. The HTML name directly maps to the name of
the arguments in this procedure. So APEX has to assign the names of the arguments
of this procedure as the names of the elements in the HTML form (an APEX page),
otherwise the values submitted on the page cannot pass to the APEX engine. Hence,
the names of the APEX items cannot be assigned as the names of the HTML elements
generated for the items. The HTML element names have to be the names of the
arguments of the wwv_flow.accept procedure. This is the entry point of all foreign
values that get passed using forms. Let me show you the beginning of a typical
HTML form generated by APEX:

<form action="wwv_flow.accept" method="post" name="wwv_flow"
id="wwvFlowForm">

You should be able to find a similar string if you right-click on any APEX page
and check out the HTML page source.

Now, wwv_flow.accept is invoked, just the way procedure f of f?p is called from
the apex DAD/Web context. The Wwv_flow.accept is also a procedure just like f
and is called in a similar fashion. Both these functions are called using the apex DAD
/ web context but in case of f, its argument, that is, p is passed in the URL (passing
argument in the URL is called the HTTP GET method) and in case of wwv_flow.
accept, the arguments are passed from the form using the HTTP POST method.
Arguments passed using the HTTP POST method do not appear in the URL.

Chapter 1

[43]

Are you wondering that how does a mere mention of the name of a procedure in
the action attribute of a form direct the APEX engine to run the procedure and pass
values to its arguments? The answer lies in the fact that the action you mention in
the action attribute of a form is searched in the calling resource. Let us put this
statement to test.

Write the following HTML code in a plain text editor and save it on your desktop
as test.html:

 <html> <body>
<form action="dummy_accept" method="post">
 First name: <input type="text" name="p_dummy_item" />
 <input type="submit" value="Submit" />
</form>
</body> </html>

Now open test.html in your web browser and hit the Submit button.

What do you see? A Cannot display the Webpage message? This message is
generally not a good omen but in our case, this message is fine. We want to
see what is going on in the URL.

When you open test.html, your URL will be similar to C:\Users\acer\Desktop\
test.html and after hitting the submit button, test.html in the end of the URL
will change to dummy_accept. The URL will then look like C:\Users\acer\
Desktop\dummy_accept and you would get a Cannot display the Webpage message
because C:\Users\acer\Desktop\dummy_accept does not exist, that is, nothing
called dummy_accept exists on C:\Users\acer\Desktop. The important point to
note here is that the HTML page tried to search for dummy_accept (the value of
form action) in C:\Users\acer\Desktop. Similarly, a typical APEX URL is:

http://<host_name>:<port>/<dad_or_web_context>/f?p=blah,blah,blah

When you submit this APEX page, the HTML form in it is submitted and the
resource called is:

http://<host_name>:<port>/<dad_or_web_context>/wwv_flow.accept

The URL has wwv_flow.accept in the end because wwv_flow accept is the value
of form action in an APEX page.

The process of calling wwv_flow.accept from http://<host_name>:<port>/<dad_
or_web_context>/f?p=blah,blah,blah is similar to the call of C:\Users\acer\
Desktop\dummy_accept from C:\Users\acer\Desktop\test.html.

Know Your Horse Before You Ride It

[44]

APEX behind the scenes
Behind the scenes, APEX Listener / DAD calls web toolkit functions. These calls
can be seen by enabling the db audit trail on user configured in the APEX Listener
/ DAD. Since the APEX developer environment is also an APEX application,
these calls can be seen as soon as you open your console login page to log in to the
development environment. A point by point process to enable auditing and then see
these calls has been described in the APEX behind the scenes section of the Appendix.

More information on db audit trail can be found at http://docs.oracle.com/cd/
E11882_01/server.112/e10575/tdpsg_auditing.htm.

Other web interfaces
There are some less known relatives of mod_plsql, and this section plans to bring
these web interfaces to your notice.

Out of these, the most important one is Thoth Gateway. Thoth is an open source
interface which has been developed for IIS and performs almost the same functions
which mod_plsql does for the Apache servers. Since it is free, it can easily be
extended, whenever required.

DBPrism is a SourceForge's initiative to produce a JEE alternative to mod_plsql.
More info on DBPrism can be found at http://sourceforge.net/projects/
dbprism/.

Mod_owa is functionally similar to mod_plsql but does not share any common
code. While serious efforts have been made to use mod_owa for APEX applications,
its use is still not completely tested. More information on mod_owa can be found at
https://oss.oracle.com/projects/mod_owa/dist/documentation/modowa.htm.

A pessimist's view of APEX
Let's check out some of the most valid criticisms in the following sections.

Cap of 200 page items
As discussed in the Decoding the APEX page submissions section previously,
only 200 page items are possible on an APEX page.

Chapter 1

[45]

SQL Injection
This works like a charm. The only problem is that the charm does not work in
your favor.

SQL Injection is PL/SQL hacking and can be stopped to a large extent if proper
coding practices are followed. The attack is easy if your PL/SQL code contains
dynamic SQL, and the code is generated by concatenating variables to the dynamic
SQL string. Again, if your code assumes some implicit conversions and formats,
then an experienced hacker can change those assumed formats and demolish
your security like it was a deck of cards.

SQL Injection is of two types. Refer to SQL Injection section of the Appendix to see
a discussion about both of these types with a working example of one of the types
of SQL Injection and various ways to combat SQL Injection.

Cross-site scripting
Cross-site scripting is an attack by which hackers can bypass access controls such
as same origin policy of the target server, and hence access sensitive data using
client-side scripting such as JavaScript. Check out the Cross Site Scripting section
of the Appendix to see the same origin policy in action. You will find a piece of
code to use client-side scripting to access vital web resources of the same domain.
Cross-site scripting also uses similar code but the attack is from a different domain.

Summary
APEX is a sophisticated 4GL RAD development tool and is fun to work with. When
you have to do something as boring as work, then you better do it with something as
interesting as APEX. It lets you code where it makes sense to involve a human brain
and takes care of the layouts and themes.

This chapter presented the wiring of APEX and it also presented a step-by-step
process to install APEX engine and APEX Listener. The following chapters will
build on the concepts introduced in this chapter. The next chapter will talk about
using classic reports for all possible reporting requirements known to man. We
will blend classic reports with AJAX, jQuery and Dynamic Actions to orchestrate
the variety of uses of each one of these. We have a long road ahead and miles to
go before we sleep. It's time to have a short break and a glass of water before we
dive into the next chapter.

Conventional Reporting
in APEX

This chapter is dedicated to ethnic reporting. The reports introduced in this chapter
exist as an out-of-the-box feature of most reporting technologies.

This chapter will cover the following topics:

• Environment variables and the method to capture them.
• Various methods of implementing group reports in APEX.
• A number of methods to format a classic report. These are spread all

across the chapter.
• Methods to implementing matrix reports. These methods involve the

use of the with clause, the pivot operator, and substitution strings.
• Recursive methods to implement hierarchical reports. These are

implemented using the with clause, traditional hierarchical queries,
and also using APEX trees.

• Methods to download files in APEX. These methods include the use of
the download mask in APEX, the wpg_docload package, the apex_util
package, and using a combination of p procedure and APEX_FLOW_FILES.
We will also see a system to upload files.

• Slicing and dicing of a classic report using the traditional method and
using Dynamic Actions (DAs).

• Implementation of tabular forms and master detail reports.
• Implementing time series reports in APEX. This section demonstrates the

use of the query partition clause for data densification, the use of model
clause, and the use of analytical functions such as ratio_to_report,
lead, and lag. The section also talks about the windowing clause.

Conventional Reporting in APEX

[48]

Creating database objects and installing
the reference application
Let us start by creating the database objects and installing a reference application.
The reference application has all the implementations discussed in this chapter.
Check the Steps to create PACKT_SCHEMA section of the Appendix for the steps to
create PACKT_SCHEMA. Execute the following script to install the supporting objects
for the reference application after connecting as sysdba and enter PACKT_SCHEMA
in Enter the schema prompt:

SQL> @4-98-9_02_install_schema

Create a fresh SQL Plus session and execute the following from sysdba to create
the chapter2 package. This package is used in our reference application.

SQL> @4-98-9_02_chapter2

Execute the following statement from sysdba to check whether the installation is
successful or not. This statement should not return any records.

Select * from all_objects where owner='PACKT_SCHEMA' and status =
'INVALID';

Import the chapter 2 reference application (4-98-9_02_APEX_app_Chapter2.sql)
supplied with this book. The chapter 2 reference application uses external table
authentication. Let us understand it now.

Note that page 8 of the reference application talks about reports
based on web services. We will talk about this page in Chapter 8,
All About Web Services and Integrations, where we will learn about
creating web services and then look at the reports (the one on
page 8) based on those web services.
We can use SKING/SKING (in capitals) to log in to the reference
application.

Implementing external table authentication
Let us understand the process to implement external table authentication in APEX.
We will use the OEHR_EMPLOYEES table to present external table authentication.
Ideally, any password stored in the database should be encrypted. We can use the
DBMS_CRYPTO package for this. The following is the link to know more about the
DBMS_CRYPTO package:

http://docs.oracle.com/cd/E11882_01/appdev.112/e25788/d_crypto.htm

Chapter 2

[49]

The DBMS_CRYPTO package provides a range of algorithms for encryption. We can
also store the hash value of the password instead of storing the password itself.
When a user tries to log in, we can get the hash value of the password entered by
the user by using the DBMS_CRYPTO.Hash function, and compare it with the with
the hash value stored in the database to authenticate the user. Hashing password
is more secure, since it is a one-way road. We can get the hash value of a string,
but we cannot get the string from the hash value.

The Custom authentication scheme under Authentication Schemes in Shared
Components is used for authentication in the reference application. Let us
understand this scheme now. This scheme uses the chapter2.authenticate
function for authentication, and chapter2.sentry as the sentry function. The
sentry function is executed before any request (for example, opening of a page) is
made. If the sentry function returns false, then the session is marked as invalid.
The chapter2.authenticate function just checks that the values entered in the
username and password textboxes of the login page should match with any of the
values in the email column of the oehr_employees table. The chapter2.sentry
function compares value of v('APP_USER') and the email column of the oehr_
employees table. The page is displayed if these comparisons is successful.

Displaying environment properties using
the USERENV namespace
In this section, we will try to understand the code of the region that displays
information captured using the USERENV namespace. The USERENV namespace helps
in capturing a number of interesting properties of the underlying database session of
an APEX session. These properties include information such as current user session,
current SQL, and SID. A detailed list of attributes can be found at the following link:

http://docs.oracle.com/cd/E11882_01/server.112/e17118/functions184.
htm#g1513460

The following is a section of region source query for the USERENV Parameters
region of page 1 of the reference application. The query uses the sys_context
function and the USERENV namespace. Sys_context returns the value associated
with the context namespace. The context namespace in this place is USERENV.
The values returned by this query help in auditing and debugging. The entire
query is available in the reference application as follows:

select DBMS_SESSION.UNIQUE_SESSION_ID() UNIQUE_SESSION_ID, sys_
context('USERENV', 'CLIENT_IDENTIFIER') CLIENT_IDENTIFIER,

Conventional Reporting in APEX

[50]

sys_context('USERENV', 'SID') SID, sys_context('USERENV',
'STATEMENTID') STATEMENTID, sys_context('userenv','sessionid')
sessionid from dual

The output of the USERENV Parameters region is shown in the following screenshot:

The preceding query also uses the DBMS_SESSION package. The DBMS_SESSION
package has functions to clear and set contexts, and also has the UNIQUE_SESSION_ID
function, which returns a unique ID for every session connected to the database.
A list of subprograms in the DBMS_SESSION package can be found at http://docs.
oracle.com/cd/E11882_01/appdev.112/e10577/d_sessio.htm#i996747.

We can also create our own context namespace using the
CREATE CONTEXT statement.

Displaying the CGI environment variables
This section will discuss the code that will help us to capture the CGI environment
variables. The CGI Variables PL/SQL Dynamic Content region on page 1 of the
reference application holds the following anonymous PL/SQL block:

begin owa_util.print_cgi_env();end;

Chapter 2

[51]

We can see the output of this code in the preceding screenshot. This anonymous block
uses owa_util.print_cgi_env to display the CGI environment variables. The list of
variables is displayed as name-value pairs. If we feel that one of the variables can be
used in our code then we can capture the value of that variable using owa_util.get_
cgi_env('variable_name'). We can learn more about CGI variables from http://
docs.oracle.com/cd/E23943_01/portal.1111/e12041/concept.htm#i1006126.

Implementing a classic report search
functionality
We will dedicate this section to learn and implement classic report's search
functionality. Do the following while while using the classic report wizard:

• Select Yes in the Enable Search dropdown
• The Select Columns for Search shuttle appears, which allows selecting

columns that are needed for search. Select the desired columns in it. The
Select Columns for Search shuttle is highlighted in the screenshot below.

Use the following screenshot for your assistance:

Selecting the columns from the Select Columns for Search shuttle creates an
encapsulating select clause and where clause over the original query in the region
source. The original query appears in the from clause of the encapsulating query.
The where clause of the encapsulating query helps to filter the records based on our
search. The filtering mechanism uses the instr function to check the presence of
the search string in all the columns which were selected in the Select Columns for
Search shuttle.

www.allitebooks.com

http://www.allitebooks.org

Conventional Reporting in APEX

[52]

The shuttle has been highlighted in the preceding screenshot. I selected the JOB_
TITLE, DEPARTMENT_NAME, REGION_NAME and PRODUCT_NAME columns while creating
the Tabular Report region on page 2 of the reference application. The following code
shows these columns finally appearing in the encapsulating where clause:

where (instr(upper("JOB_TITLE"),upper(nvl(:P2_REPORT_SEARCH,"JOB_
TITLE"))) > 0 orinstr(upper("DEPARTMENT_NAME"),upper(nvl(:P2_
REPORT_SEARCH,"DEPARTMENT_NAME"))) > 0 orinstr(upper("REGION_
NAME"),upper(nvl(:P2_REPORT_SEARCH,"REGION_NAME"))) > 0
orinstr(upper("PRODUCT_NAME"),upper(nvl(:P2_REPORT_SEARCH,"PRODUCT_
NAME"))) > 0)

Apart from the encapsulating query, a new region called Search, a select list, a textbox,
and two buttons, a branch to reload the page on submission, a page process to reset
pagination, and a page process to clear cache are also created by APEX. P2_REPORT_
SEARCH, in the preceding where clause is actually the name of the textbox created by
APEX in the Search region. This textbox is underlined in the following screenshot.
When a user types something in the P2_REPORT_SEARCH textbox and clicks on the Go
button, the page is reloaded with the data filtered based on the value of P2_REPORT_
SEARCH. Note that the filter (where clause shared above) is such that all the rows will
be returned, if P2_REPORT_SEARCH does not have any value. The following screenshot
is an example of one such search shared for your convenience:

We will look at a different way of implementing
the same functionality when we talk about dynamic
reports in the next chapter.

Chapter 2

[53]

Enabling sorting and CSV download
The first screenshot in the preceding section shows the Column Heading Sorting
dropdown (highlighted with an arrow). Selecting Yes in this dropdown lets a user
sort on a column by clicking the heading of the column.

Similarly, the wizard also has the CSV output dropdown (highlighted with an arrow
in the first screenshot of the preceding section). We can select Yes in this dropdown
and put a text in the Link Label textbox to enable CSV download in an APEX report.

Implementing group reports
In group reports, data is grouped and shown as subtotals, and is then aggregated to
show a grand total. These reports can be implemented in APEX in the following ways:

• Using the Break Formatting section in classic reports
• Using grouping sets
• Using interactive reports. We will see this method in the next chapter.

Using the Break Formatting section in
classic reports
In this section, we will see a report which groups the data based on the PRODUCT_
NAME column and has a grand total of all employees at the end.

In the Report Attributes page of any classic report, checking the Sum checkbox
(highlighted in the following screenshot) of any column of the report which has
numeric data and putting No Breaks in the Break Columns dropdown of the
Break Formatting section gives an aggregated row at the bottom of the table.

Conventional Reporting in APEX

[54]

We can use the Report Sum Label textbox (highlighted in the second screenshot)
to give a label for the aggregated row.

Chapter 2

[55]

We get additional options if we select anything other than No Breaks in the Break
Columns dropdown. Let me talk a little about these options:

• No Breaks in the Break column dropdown and Repeat Headings in the
Break in Break Column Style dropdown: Selecting these options result
in small sections inside the report and the values of the first column in
the Column Attributes section in the Report Attributes page appear as
the headings of these smaller sections. One such value is highlighted in
the following screenshot. The rest of the columns are displayed in the
table as shown in the following screenshot:

Conventional Reporting in APEX

[56]

• First Column in the Break column dropdown and Repeat Headings in
the Break in Break Column Style dropdown: This gives us two levels
of aggregations as shown in the following screenshot:

Similarly, we would get three and four levels of aggregations if we select
First and Second Columns and First, Second and Third Column respectively
in the Break Columns textbox.

• Default Break Formatting in the Break Column Style dropdown: If we select
Default Break Formatting then the first column also appears as a column in
the table rather than appearing as the heading of the smaller sections.

We can use a combination of other options in the Break Formatting region to have a
custom display of the text that appears against the aggregated rows.

Using JavaScript to modify a report
We will now see the use of JavaScript to alter a few labels that are displayed with
aggregated rows. The method used here can be used to format anything over and
above the usual formatting options provided by APEX.

Chapter 2

[57]

We can format almost any part of our page using this technique; but in order
to maintain the simplicity of the code, we should first try the formatting options
provided by APEX. Go to the Region Definition page of the Tabular Report
region on second page of the reference application and go to the Header and
Footer section. You will find the following code there:

<script language = "Javascript">
var x=document.getElementsByTagName('td');
for(var i=0; i<x.length; i++)
 { if(x[i].className == 'data')
 { if(x[i].innerHTML.indexOf("Total per Product per Product")
!= -1)
 {x[i].innerHTML = 'Total per Product';}
 }}
</script>

The code first finds all the td tags on the page and stores them in variable x. It
then loops through these td elements and searches for className data, and then
searches for Total per Product per Product. After finding this string, the code is
replaced with Total per Product. We search for className data because
our template assigns this class to the data displayed in classic reports. We capture
the td elements because each value in a HTML table exists in a division called td.
Divisions exist inside table rows called tr, and tr exist under the table tag. So the
entire classic report is actually an HTML table formatted with CSS classes. To see
this arrangement, right-click on the HTML page that displays this report and view
the HTML source of the page. Search for Total per Product and you should be
able to see this arrangement.

Using grouping sets and HTML formatting in
a query
Our aim here is to create a grouped report using the grouping sets in SQL and to
demonstrate a method to format the output by generating the HTML tags in the SQL.

Refer to the region source of Tabular report using Grouping Sets region page 2 of the
reference application for this section. You will see the following query:

 SELECT
DECODE (job_title,NULL,DECODE(department_name,NULL,DECODE(product_
name,NULL,'Grand Total:','Total for '
 || product_name || ':'),'Total for '|| product_name
 || ' and '
 || department_name || ':'),product_name) AS "PRODUCT",

Conventional Reporting in APEX

[58]

 DECODE (job_title,NULL,'',"OEHR_DEPARTMENTS"."DEPARTMENT_
NAME") AS "DEPARTMENT", "OEHR_EMPLOYEES"."SALARY" AS "SALARY",
'' || "OEHR_JOBS"."JOB_TITLE" || '' AS
"JOB_TITLE",
COUNT(OEHR_EMPLOYEES.EMPLOYEE_ID) AS Totals, "OEHR_REGIONS"."REGION_
NAME" AS "REGION_NAME"
 FROM OEHR_PRODUCT_INFORMATION, OEHR_ORDER_ITEMS,
OEHR_ORDERS, OEHR_REGIONS, OEHR_COUNTRIES, OEHR_LOCATIONS, OEHR_
EMPLOYEES, OEHR_DEPARTMENTS, OEHR_JOBS
 WHERE OEHR_EMPLOYEES.JOB_ID =OEHR_JOBS.JOB_ID
AND EHR_EMPLOYEES.DEPARTMENT_ID=OEHR_DEPARTMENTS.DEPARTMENT_ID
 AND OEHR_DEPARTMENTS.LOCATION_ID=OEHR_LOCATIONS.LOCATION_ID
 AND OEHR_LOCATIONS.COUNTRY_ID=OEHR_COUNTRIES.COUNTRY_ID
 AND OEHR_COUNTRIES.REGION_ID=OEHR_REGIONS.REGION_ID
 AND OEHR_EMPLOYEES.EMPLOYEE_ID =OEHR_ORDERS.SALES_REP_ID
 AND OEHR_ORDERS.ORDER_ID=OEHR_ORDER_ITEMS.ORDER_ID
 AND OEHR_ORDER_ITEMS.PRODUCT_ID =OEHR_PRODUCT_INFORMATION.PRODUCT_ID
 AND (instr(upper(JOB_TITLE),upper(NVL(:P2_REPORT_SEARCH,JOB_
TITLE))) > 0 OR instr(upper(DEPARTMENT_
NAME),upper(NVL(:P2_REPORT_SEARCH,DEPARTMENT_NAME))) > 0 OR
instr(upper(REGION_NAME),upper(NVL(:P2_REPORT_SEARCH,REGION_
NAME))) > 0 OR instr(upper(PRODUCT_NAME),upper(NVL(:P2_
REPORT_SEARCH,PRODUCT_NAME))) > 0)
 GROUP BY grouping sets ((),(department_name,product_name),product_
name,(product_name,department_name,SALARY,region_name,job_title))
 order by product_name,department_name

The preceding query is more or less similar to the query of the Tabular Report
region. The difference is in the grouping sets and some extra decode statements.

Let's start from the highlighted part at the bottom of the query.

Grouping sets defines the sets for which we want to generate subtotals. In the
highlighted piece of code at the bottom of the preceding query, grouping set()
generates a grand total for the entire data set. Grouping set (department_
name,product_name) generates the total per department per product. product_
name generates the total per product. The final grouping set, that is, (product_name,
department_name, SALARY,region_name, job_title) is actually our detail level
which includes all the columns in the select statement except the ones on which
the aggregate function, that is, Count has been applied.

Let us now see the select clause. The HTML formatting generated by the query
can be used if we change the Display As dropdown to Standard Report Column.
Follow the given steps to notice this:

Chapter 2

[59]

1. Go to the Report Attributes page of this region.
2. Click on the pencil link next to the PRODUCT_NAME column in

Column Attributes and note that the value of the Display As dropdown
is Standard Report Column. The same had been done for the JOB_TITLE
column as well.

Let us now focus on the highlighted decode statement. Note that job_title,
department_name, and product_name have the not null constraints on them. Our
query only has equi-joins, so the only rows with null values for these columns will
be the rows displaying the aggregations. The highlighted decode statement in the
preceding query uses this fact to display a formatted custom text for various totals.

An easier way to identify the null values due to totaling is the grouping function.
This function accepts a single column name as an argument and returns 1 if the
null value is generated because of totaling. The GROUPING_ID function does a similar
thing but it accepts one of the sets as an argument. If your grouping sets are such
that they are generating duplicate subtotals for the same dimensions then you can
use the GROUP_ID function to identify these duplicates.

It is important to mention that you can use other Group by extensions such as
Rollup and Cube if you are interested in more levels of grouping.

Additional methods of formatting
This section introduces some more techniques to format the data in classic reports.
I again wish to point out that most of these techniques can be used in almost any
situation. The attempt is to introduce the various possible ways of formatting a
classic report.

Highlighting the searched text in a report
Let's look at the steps to highlight a searched text in APEX:

1. Run page 2 of the reference application and enter Public Relations in
the search box, and then click on the Go button as shown in the second
screenshot under the Implementing classic report search functionality section.

2. You would see that the report is filtered and the Public Relations keyword
is highlighted in the entire report region. While the filtering is done by the
query, as explained under the Implementing classic report search functionality
section, the highlighting is defined in the attributes of individual columns
in the report

Conventional Reporting in APEX

[60]

3. Go to the Column Attributes section in the Report Attributes page of
Tabular Report of the reference application, and click on the pencil icon
next to PRODUCT_NAME.

4. Go to the Column Formatting section and check out the Highlight Words
textbox. You will see &P2_REPORT_SEARCH. there , as shown in the
following screenshot. P2_REPORT_SEARCH is the name of the textbox item
in which you entered Public Relations. This arrangement results in the
highlighting of the Public Relations keyword as shown by the arrow mark in
the second screenshot under the Implementing classic report search functionality
section. You can certainly do a lot of formatting using CSS class, CSS style,
and HTML expression textboxes shown in the following screenshot:

If your logic of highlighting is complex, you can implement that in a
page process, generate a comma-separated list of the words that you
want to highlight and assign this list to a page item. You can then put
this item in the Highlight Words textbox of the Column Formatting
section. Note that putting a comma-separated list in the item will
fiddle with our search functionality, because of the way the where
clause of our region query is defined. This where clause was discussed
in Implementing classic report search functionality section. So change the
region query accordingly when you implement such a logic.

Editing a template for additional formatting
In this section, we will use a template and its attributes to implement the logic for
highlighting various parts of a report. The Tabular report using Grouping Sets
with edited Template region on page 2 of the reference application displays the
formatting of reports using templates.

Chapter 2

[61]

In this classic report region, the font type of all the totaled rows has been changed
to bold. Open Classic rollup report edited template of the reference application and
check and (underlined in the following screenshot) in Column Template 1
section. and are responsible for making the text bold.

We will now understand the process of applying Column Template 1 to only the
totaled rows and not to the rest of the data displayed in the report. Column Template
1 is executed when the condition in Column Template 1 Expression is met, otherwise
Column Template 2 is executed. The coded condition is :PRODUCT like '%Total%'
as shown in the preceding screenshot. It is discussed in the Using grouping sets and
HTML formatting in a query section that our query generates the texts for the totaled
rows in the PRODUCT column. We are doing a comparison with %Total%, because the
texts for all totaled rows will have Total in them.

This template is assigned to the Tabular report using Grouping Sets with edited
Template region on page 2 using the Layout and Pagination section of the Report
Attributes page.

Run page 2 of the reference application to see this entire code in action.

We have seen a few methods to format the output and will see
a few more in the coming sections. It is important to understand
that most requirements can be implemented in more than one
way. The objective here is to orchestrate all the possible ways
so that you can use them, wherever necessary.

Conventional Reporting in APEX

[62]

Implementing a matrix report
The major learning outcomes of this section are as follows:

• Creating matrix reports
• Understanding and using the with clause
• Understanding and using the pivot operator
• Understanding string aggregation techniques
• Data highlighting using CSS, jQuery, and Dynamic Actions
• Advanced formatting using APEX templates.
• Understanding and using the Dynamic Query region in APEX

Matrix reports also known as pivoted reports are helpful when we have a measure
to be sliced and diced on two or more dimensions. For example, let's say, we want to
know the count of people (measure) for every combination of shirt color (Dimension
1) and pant color (Dimension 2). A matrix report for this will look like the following:

Color
Apparel Green Yellow Blue
Pant 2 5 7
Shirt 7 0 7

We will now see the process to create one such matrix report in APEX. The tricky
part in matrix report is that the number of columns change according to the data.
In the preceding example, if the data had Red as the colour of a few pants or shirts
then we would have had an additional column. So creation of dynamic columns and
pivoting of the aggregates make a matix report different from traditional reports.
Before I dig in deeper, I wish to tell you the process that we are about to follow. We
will first have a look at the with clause to understand its importance in our report.
We will then try to get a hold of the pivot operator, which is the heart of generating
columns on the fly to create a matrix report. We will then have a look at some of the
string aggregation techniques. We are using string aggregation (listagg) to get a
comma-separated list of values which is assigned to an item (P3_EMPLOYEE_LIST).
This item is then used for creating a dynamic in clause of the pivot operator, and
for creating dynamic headings for the dynamic columns.

Understanding the with clause
If we use a sub query at multiple places in our query then we can give a name to that
sub query using the with clause, and then reference it at multiple places in a bigger
query. This helps to improve the readability and the performance of the query.

Chapter 2

[63]

The Matrix Report region of page 3 of the reference application uses the with clause.
The following query is pasted for your convenience:

WITH pivot_data AS (SELECT department_id, job_id, salary
 FROM oehr_employees)
 SELECT * FROM pivot_data
 PIVOT (SUM(salary) --List Clause
 FOR department_id -- For clause
 IN (&P3_EMPLOYEE_LIST.)); --Dynamic In Clause

The output of the query looks like the following:

Understanding the Oracle 11g's pivot operator
Let me talk a little about pivot operator. This has been used in the preceding query.
The basic function of a pivot query is to aggregate the data based on the function
written in its list clause and to transpose the rows of the aggregated result as
columns. The pivot operator has three clauses namely, the list clause, the for
clause, and the in clause. The list clause describes the aggregation functions
such as sum and avg. The for clause lists the columns which are to be grouped and
pivoted. The in clause lists the columns which will appear in the output. The only
trick in implementing a matrix report is to make a dynamic pivot in clause (IN
(&P3_EMPLOYEE_LIST.)), which we will cover in the next section. Note that we have
checked the Use Generic Column Names (parse query at runtime only) radio button
under the Region Source in the Source section of the Region Definition page of the
Matrix Report region. This is because the type and the number of columns generated
by this query will depend on the data and we cannot have a fixed number of columns.

You would see another method of making a dynamic in clause in the Implementing
XML Pivot queries section of Chapter 9, Performance Analysis.

Conventional Reporting in APEX

[64]

Understanding string aggregation
We are talking about string aggregation because we wish to create a comma-
separated list, which can not only help us in creating a dynamic in clause, but
also help us in creating dynamic headings for the columns generated by the
pivot operator. The following are the ways of performing string aggregations:

• Using the listagg function of Oracle 11g: We are using this method in
our matrix report. listagg lets us order the data and allows us to supply
a separator for the values in the list but does not allow us to use distinct.
The following is the query source of the P3_EMPLOYEE_LIST item of the
reference application:
select listagg(department_id,',') WITHIN GROUP (ORDER BY
department_id) from (select distinct department_id from oehr_
employees)

P3_EMPLOYEE_LIST is used in the region query to create a dynamic in clause.
The query is pasted in the Understanding the with clause section. We also use
P3_EMPLOYEE_LIST to create dynamic column headings. Go to the Report
Attributes section of the Matrix Report region of the reference application.
You would see that PL/SQL is selected in the Headings Type radio button.
You would find the following code in the Function returning colon
delimited headings section:
return 'Job list:'||replace(v('P3_EMPLOYEE_LIST'),',',':');

This creates dynamic column headings.

• Another method to do string aggregation is wm_concat. wm_concat allows
distinct, but produces only a comma-separated list and does not order the
result. The syntax is as follows:
select wm_concat(distinct job_id) from oehr_employees

• String concatenation can also be done using the collect function, but the
method requires the creation of a function and a type, and this involves
some complexity.

• Hierarchical queries also have the potential to be used for string aggregation.
We will discuss hierarchical queries in a short while.

Chapter 2

[65]

Data highlighting using Dynamic Actions
and jQuery
Now that we understand the working of matrix report, let us dedicate some time
to understand a few more methods to format a classic report. We can highlight data
using Dynamic Actions and jQuery. We will dedicate this section to understanding
the process.

Check out the Report dynamic action Dynamic Action on page 3 of the reference
application. Note that the value in the Event dropdown is set to Page Load. So this
Dynamic Action is executed as soon as the page loads. Let's now see the JavaScript
code, in the following screenshot, which is executed when the Dynamic Action
is performed:

Let's understand the code in the preceding screenshot. this.affectedElements
is a jQuery handle given by APEX to reference all the affected elements. Note that
jQuery Selector is selected in the Selection Type dropdown and we have entered
.data in the jQuery Selector textbox. This defines that our Affected Elements are
the ones which have the data class. Why have we picked .data? .data is used
because all the data in our classic report uses the data class. We want a handle on
these elements.

Conventional Reporting in APEX

[66]

How did we know that the data elements in classic reports use the data class?
Right-click on the APEX application page and select View Source. This shows the
HTML source of our APEX page. Search for data in it. You will see that the data
class is associated with all data elements, as shown in the following screenshot:

In the code of the first screenshot of this section, this.affectedElements gives
us a handle to an array of elements, and we use a map function to reach out to each
individual element that can be controlled by the this.affectedElements handle.
We retrieve the value of each element using $(this).html(), and set the color of
that element to red if the value is greater than 20000. The setting of the color is
done by using $(this).css({color: 'red'});.

$(this) is jQuery's method to reference the current element. html() and css()
are the functions referenced using the $(this) object. css() function is accepting
a JSON object, that is, {color: 'red'} as its argument.

We can see the changed color of data elements in the screenshot under the Understanding
the with clause section. Other jQuery handles apart from this.affectedElements are
this.triggeringElement, this.action, this.browserEvent, and this.data.

Alright, now we have seen that our Dynamic Action affects anything that has
data as its class. Now if we have multiple regions on our page and if we want our
highlighting effect to be limited to one region, then we are in a soup. The solution
is to create a copy of the template used for classic report regions, change the class
name in the copied template, and then assign this template to other regions on the
page. Since we would have changed the name of the class, the Dynamic Action will
not apply to the regions with a new template. Let's do it in the next section.

Note that we can also limit the number of elements affected by a jQuery
selector by choosing a more restrictive selector. The text has been
designed to present the use case of using altered APEX templates.

Chapter 2

[67]

Advanced formatting using APEX
templates
We now have to create a template that uses some other class for formatting data and
not the data class. This other class should have similar look and feel as the data class.
From my experience, I know that the Standard, Alternating Row Colors template
has a similar look and feel as a Standard template, so classes used in Standard,
Alternating Row Colors template can be used for our purpose. The dataalt class
is used in this template, and the .report-standards-alternatingrowcolors
td.dataalt class is defined at <directory_in_which_apex_4.1.1_en.zip_
is_unzipped>/apex/images/themes/theme_3/css/theme_4_0.css. Since the
definition of the data and dataalt classes are in the theme_4_0.css file, we don't
have to include any new CSS file in our APEX page. Now, we have to create a
new template and include the dataalt class in it. Matrix report template of the
reference application has the necessary changes in it. You would find class="report-
standard-alternatingrowcolors" (highlighted in the following screenshot) in the
Before Rows section.

Go to the Column Template 1 section and note that it has class="dataalt",
as shown in the following screenshot:

Conventional Reporting in APEX

[68]

The Matrix report changed template region uses Matrix report template, and Matrix
report template uses the dataalt class; so any Dynamic Action that uses the data
class will not affect the Matrix report changed template region.

Note that in the preceding screenshot we have used
in the Column Template 1 section of Matrix report template. Again, we can
conditionally apply this formatting within a report. Also note that in the preceding
screenshot, we have used :COL09 > 60000 in Column Template 1 Expression. This
ensures that is applied to those values of COL09, which
are greater than 60000.

Apart from the procedure described previously, you can have a look
at the APEX_CSS.ADD and APEX_CSS.ADD_FILE procedures of the
APEX API. These procedures let us add new CSS styles dynamically
and us can control the whole thing from PL/SQL blocks.

We have just seen the process to use a predefined CSS class in a template. We can also
write the definition of a class in a template. Check Template for matrix report with
self defined CSS in template in the reference application. Check the Before Rows
section. You will see CSS class definitions enclosed between the <STYLE> </STYLE>
tags. You can see the use of these classes (td.edited-td-template, th.edited-
th-template, table.edited-table-template) in the Column Heading Template,
Column Template 1, and Before Rows section. Template for matrix report with
self defined CSS in template is used in the Matrix report with self defined CSS in
template region in the reference application.

Understanding dynamic query region
in APEX
This section is an introduction to using dynamic queries in APEX reports. We
will look at advanced ways of developing dynamic reports in the next chapter.
This section is just to introduce the APEX's functionality of running dynamic
reports and to use it for matrix reports. Go to Region Source of Matrix Report
with dynamic query region of the reference application. The following screenshot
is of the same region source. Note that Region Source contains a PL/SQL block,
and this PL/SQL block returns the query that displays the report. The flexibility
of writing the query as a string in a PL/SQL block gives us the freedom to make
dynamic classic reports.

Chapter 2

[69]

Implementing hierarchical reports
The following are the major learning outcomes of this section:

• Creating hierarchical reports using drilldown links
• Dynamic messages using substitution variables
• Creating dynamic breadcrumbs for drill ups
• Understanding hierarchical queries and creating reports on them
• Creating a hierarchical report using the recursive with clause
• Creating a tree based on hierarchical data

Hierarchical reports with drilldown
Our aim is to introduce drilldowns in APEX and to use them for hierarchical
data reporting.

Check the Hierarchical reports with drilldown region on page 4 of the reference
application. The EMPLOYEE_ID column of the Hierarchical Report region has a link on
it. Let us now see the process of creating this link. Go to the Report Attributes page of
the region, and then click on the pencil icon next to the EMPLOYEE_ID column, which is
present under the Column Attributes section.

Conventional Reporting in APEX

[70]

Go to the Column Link section as shown in the following screenshot:

Note that we have #EMPLOYEE_ID# in Link Text. This ensures that we will have
employee IDs as link texts. We have selected Page in this Application in the Target
dropdown and 4 in the Page textbox. This ensures that page 4 (the same page on
which this region exists) will be reloaded whenever the user clicks on a link. We have
put P4_MANAGER_ID in the Name column and #EMPLOYEE_ID# in the Value column
of the Item 1 row. This ensures that the value (EMPLOYEE_ID) selected by the user
will be stored in the P4_MANAGER_ID item which is compared with the MANAGER_ID
column of the OEHR_EMPLOYEES table in the region query source. This comparison is
done by the following where clause:

"OEHR_EMPLOYEES"."MANAGER_ID" like '%' || :P4_MANAGER_ID || '%'

When the page loads for the first time, P4_MANAGER_ID is empty and the like operator
in the query results in displaying all the records. When any EMPLOYEE_ID is clicked,
the value of P4_MANAGER_ID is set, and the records returned are only those employees
whose manager is the person whose EMPLOYEE_ID has been clicked. Now these filtered
records have their own links and the drilling down can continue as long as we do not
reach the lowest possible node in the hierarchy chain.

Chapter 2

[71]

Creating dynamic messages using substitution
variables
We will now see the use of substitution variables for creating dynamic messages.
Go to the Report Attributes page of the Hierarchical reports with drilldown region
and note that we have the following in the When No Data Found Message text area:

The use of the &P4_MANAGER_ID. substitution variable ensures that a message with
the selected employee ID is displayed when a user clicks on the ID of employees
who do not have subordinates.

Creating dynamic breadcrumbs for drill ups
The drilldown hierarchical report (discussed in the Hierarchical reports with drilldown
section) has no mechanism to show which employee IDs were clicked by the user to
reach a particular level in the hierarchical chain. The user might have a requirement
of drilling upwards, but he does not have a mechanism to do this. We can solve this
problem by using dynamic breadcrumbs.

The traditional way of creating dynamic breadcrumbs is by using page items as
substitution variables in the breadcrumb entry. This use of substitution variable is
similar to the use of substitution variables in the When No Data Found Message text
area in the preceding section. This type of dynamic breadcrumb works if the number
of levels is fixed, and only the page number to which each breadcrumb entry refers
has to be dynamic. Our problem is that the depth of the levels is different in different
hierarchical chains and hence we cannot create a fixed number of breadcrumb entries.
Hierarchical chain stands for the chain from a particular employee to the top most
person in the organization. Clearly, the length of this chain will vary depending upon
the level of the person in question.

We will have to create breadcrumb entries on the fly when the user clicks on an
employee ID. We also have to destroy these entries as soon as the user moves on to a
different page, because a number of hierarchical chains are possible in a hierarchical
tree and the breadcrumbs used for one chain cannot be used for another.

Conventional Reporting in APEX

[72]

To solve this problem, we have created the Dynamic Breadcrumb region in page 4 of
the reference application. Note that the position of display of this region is such that it
appears in the same place where a usual breadcrumb would have appeared. Display
Point in the User Interface section of the Region Definition page is set to Page
Template Region Position 1 to get this done, as shown in the following screenshot:

Let's now understand the method to create dynamic breadcrumbs. I checked the
HTML generated for a usual breadcrumb and used it to get an idea of the kind of
HTML that I should programmatically create for our dynamic breadcrumbs. The
HTML of a usual breadcrumb is a good guide, because the CSS classes used for
formatting the breadcrumb can be used in dynamic breadcrumb to make the look
and feel consistent.

Let us look at the code to generate dynamic breadcrumbs. The anonymous PL/SQL
block, in the region source of the Dynamic Breadcrumb region does this for us, as
shown in the following code. It uses the htp.p procedure to transmit its HTML to
the client browser. Using sys.htp.p instead of htp.p is, however, better from
security point of view.

DECLARE
 l_vc_arr2 APEX_APPLICATION_GLOBAL.VC_ARR2;
 breadcrumbString varchar2(500);
BEGIN
htp.p('<div id="topbar"><div class="breadcrumb-region"><div
id="breadcrumbs"><ul class="breadcrumb-list">');
 If :P4_MANAGER_ID is null then
 htp.p('<li class="current">All employees');

 else
 htp.p('<li class="noncurrent"><a href="f?p=&APP_ID.:4:&APP_
SESSION.::NO::P4_MANAGER_ID:">All employees');
 end if;

SELECT *
INTO breadcrumbString

Chapter 2

[73]

FROM
 (SELECT SYS_CONNECT_BY_PATH(last_name||'('||employee_id||')', ':')
"Path"
 FROM oehr_employees
 WHERE employee_id = :P4_MANAGER_ID
 CONNECT BY NOCYCLE PRIOR employee_id = manager_id
 ORDER BY level DESC
)
WHERE rownum = 1;

l_vc_arr2 := APEX_UTIL.STRING_TO_TABLE(breadcrumbString);

 FOR z IN 2..l_vc_arr2.count LOOP
 If z = l_vc_arr2.count then
 htp.p('<li class="sep">›<li class="current">'||l_
vc_arr2(z)||'');
 else
 htp.p('<li class="sep">›<li class="noncurrent"><a
href="f?p=&APP_ID.:4:&APP_SESSION.::NO::P4_MANAGER_ID:'||REGEXP_
SUBSTR(l_vc_arr2(z),'[[:digit:]]+')||'">'||l_vc_arr2(z)||'');
 end if;
 END LOOP;
htp.p('</div><div class="clear"></div></div></div>');
Exception
When no_data_found then
null;
END;
If :P4_MANAGER_ID is null then
htp.p('<li class="current">All employees');

Let's understand this. Look at the first highlighted piece of code. If P4_MANAGER_ID is
null, that is, when the page is loaded, the breadcrumb starts with All employees and
it does not have a link on it. So, if you move your mouse pointer to All employees
in the breadcrumb region after the first load of the page, you will see that you cannot
click on it.

If however, the user has drilled down, then the All Employees link should be such
that it helps the user to see all the employees. This is done in the else part of the
first highlighted piece of the preceding code. We pass a null value to P4_MANAGER_ID
here, to achieve this.

Conventional Reporting in APEX

[74]

Let's now look at the second highlighted part of the preceding code. The first query
of the second highlighted piece of code returns all the rows that can be connected
by the manager-employee relationship defined in the connect by clause. We are
interested in only one chain, that is, the one from the employee in question to the
topmost person in the organization. This chain can be used for the breadcrumb.
Inner query returns the records such that the value of the level pseudo column is
the highest in the topmost row which has the desired chain. Hence we have WHERE
rownum = 1 in the outer query to get this topmost row. The chain is generated by
using the SYS_CONNECT_BY_PATH function. We have used the level pseudo column,
the SYS_CONNECT_BY_PATH function, CONNECT BY PRIOR, and NOCYCLE in this query.
NOCYCLE is helpful if our hierarchical data forms a loop. The CONNECT_BY_ISCYCLE
pseudo column shows the rows that have the data causing the loop.

Other important terms related to hierarchical queries are the
CONNECT BY LEVEL, START WITH, ORDER SIBLINGS BY,
CONNECT_BY_ROOT operator ,and the CONNECT_BY_ISLEAF
pseudo column.

Let's now look at the lower half of the second highlighted part of the code. APEX_
UTIL.STRING_TO_TABLE is used to convert the employee chain string to employee
chain PL/SQL table.

Finally, we use a for loop to generate the breadcrumb. The if statement, in the for
loop, ensures that a link is not generated on the last node of the breadcrumb chain.
Having a link on the last node of the breadcrumb does not make sense, because
clicking on such a link will bring the user back to the current page. Other nodes
in the chain have links and take the user to their respective levels. These links are
generated in the else part of the if-else statement.

The colon-separated values generated by the hierarchical query in the top half
of the second highlighted piece of code contains the last name of the manager
followed by his employee_id in brackets. Now, the drilling down or drilling up
works by setting the employee_id in P4_MANAGER_ID. So we have to extract the
employee ID from the value returned by the query. This is done by using regular
expressions in the else part of the if-else statement in the lower half of the
second highlighted piece of code.

Check out the working of the Dynamic Breadcrumb region in the reference
application.

Chapter 2

[75]

Creating a report with hierarchical query
This section presents the use of a hierarchical query to create a hierarchical report
in APEX. The Report with hierarchical query region is on one such hierarchical
query. While Hierarchical reports with drilldown gives the details of the immediate
subordinates of P4_MANAGER_ID, Report with hierarchical query gives the details of
P4_MANAGER_ID. The code is similar to the hierarchical query used in the Dynamic
Breadcrumb region. Following is a part of the query of Report with hierarchical
query region, shared for your reference:

select * from (SELECT "OEHR_EMPLOYEES"."EMPLOYEE_ID" as "EMPLOYEE_ID",
 "OEHR_EMPLOYEES"."FIRST_NAME" as "FIRST_NAME",
 "OEHR_EMPLOYEES"."LAST_NAME" as "LAST_NAME", SYS_CONNECT_BY_
PATH(last_name, '/') "Path"
 FROM oehr_employees
 WHERE employee_id = :P4_MANAGER_ID
 CONNECT BY NOCYCLE PRIOR employee_id = manager_id
order by level desc)
 where rownum = 1

Creating a hierarchical report using the
recursive with clause
The recursive with clause is another method to fetch hierarchical data. As the
name suggest, the definition of the with clause references itself to connect the
rows. The following is the query of the region source of Hierarchy with a
recursive With Clause:

with empl(employee_id, last_name, first_name,email,phone_number,hire_
date,salary,job_id, with_level) as (
select employee_id, last_name, first_name,email,phone_number,hire_
date,salary,job_id, 1 with_level
from oehr_employees
where employee_id = 100
 union all
 select e.employee_id, e.last_name, e.first_name, e.email, e.phone_
number, e.hire_date, e.salary, e.job_id, empl.with_level+1 with_level
from oehr_employees e, empl
where e.manager_id=empl.employee_id)
 search depth first by last_name set ordering_sequence
 cycle employee_id set is_cycle to '1' default '0'

Conventional Reporting in APEX

[76]

select replace(rpad(' ',2*(with_level-1)),' ',' ')||employee_
id||': '||last_name Names, first_name,email,phone_number,hire_
date,salary,job_id,ordering_sequence,is_cycle
 from empl
--order by is_cycle desc
--order by ordering_sequence

Let's do a dry run of this query. The first highlighted part of the query gives a row
from which the chain begins. This query plays the same role as START WITH in a usual
hierarchical query. We use where employee_id = 100 to identify the topmost row.
Note that the with_level column has 1 as its value. This symbolizes that the depth
of the row returned by the first highlighted part of the query is 1.

The whole fun lies in the where clause of the second highlighted part of the query.
This where clause compares the employee_id column of the row returned by the
first highlighted query (empl.employee_id) with the manager_id column of the
oehr_employees table (e.manager_id). Clearly, employees returned by the second
highlighted query will be the immediate subordinates of the employee_id column
returned by the first highlighted query. Now, check the formula in the with_level
column of the second highlighted query. It has empl.with_level+1. The level set
in the first select statement was 1, so the immediate subordinates get the level as
1 + 1=2. Note that this whole thing is defined inside the empl with clause. So, these
employees with level set to 2 can again be referenced using the empl. notation and
the where clause of the second highlighted part of the query recursively compares
these employee_id of the level 2 records with the oehr_employees table to get
the level 3 records. The process goes on to get the hierarchical result. The third
highlighted statement identifies the cycle in a recursive with clause.

When we compare nocycle of connect by and is_cycle of the recursive with
clause, we find that the recursive with clause repeats the problematic record. This
is because connect by has an eye on the future, it checks the children which it is
yet to display, while the recursive with clause looks back. It finds out about the
cycling only after it has processed a row.

You can also see the following code in the query:

search depth first by last_name set ordering_sequence

Using breadth first will give the result in parent-children order, while depth
first will show the rows of the same level together.

The syntax of breadth first is as follows:

search breadth first by last_name set ordering_sequence

Chapter 2

[77]

The result is displayed to the user is governed by the final select statement at the
bottom of the query.

We can sort the result set by using ordering_sequence and is_cycle in the order
by clause of the final select statement.

Also note replace(rpad(' ',2*(with_level-1)),' ',' ') in the
final select statement. This is done to indent the rows according to their levels.
The Display As dropdown of the Names column has been changed to Standard
Report Column for this code to be effective.

The following is the equivalent query in connect by:

select rpad(' ',2*(level-1))|| employee_id||': '|| last_name Names
 from oehr_employees
 start with employee_id = 100
 connect by nocycle prior employee_id= manager_id
 order siblings by last_name;

Note that the recursive with clause gives us the additional
power to sort the rows of the same level together.

Creating a tree based on hierarchical data
The following are the steps to create an APEX tree on hierarchical data:

1. Right-click on Regions and select Create from the menu.
2. Select Tree and click on Next.
3. Give a name to the region and select your preferred tree template.
4. Select PACKT_SCHEMA as the schema and OEHR_EMPLOYEES as

the table. If the hierarchical data requires the joining of multiple tables
then create a view and use it here. Click on Next.

5. Select EMPLOYEE_ID in the ID dropdown, MANAGER_ID in the Parent
ID dropdown, LAST_NAME in the Node Text dropdown, EMPLOYEE_
ID in the Start With dropdown, Based on Static Value in the Start Tree
dropdown, and enter 100 in the Start Value textbox.

Conventional Reporting in APEX

[78]

6. Click on Next.
7. The next step lets us code an optional where clause and an optional

order by siblings clause. Click on Next.
8. The next section is to make the Expand All and Collapse All buttons,

and to help us code the links on the leaves of the tree. Keep the defaults
and click on Next.

9. Click on Create Region.
10. This wizard does not let us code the NOCYCLE parameter, so we will have to

manually put it. Right-click on the newly created region and select Edit Tree.
Enter NOCYCLE before EMPLOYEE_ID in the Tree Query section, and then
click on Apply Changes.

11. The wizard generates HTML buttons. We can change them to template-based
buttons by editing them.

The Employee tree region in the reference application is an example of this type
of region.

Understanding methods to upload files
in APEX
We will dedicate the next few sections to understand the uploading of files. The
process of uploading as coded on page 5 of the reference application is as follows:

The user clicks on the UPDATE button. We have an UPDATE button on every row
of the report in page 5. Use the following screenshot for your assistance. Clicking on
this button sets the value of the P5_EMPLOYEE_ID page item to the selected employee
ID using the Update profiles Dynamic Action. The code that does this is discussed
in the Using DA to set page items and side effects of PPR section. The label of the P5_
FILEOBJECT item uses P5_EMPLOYEE_ID as a substitution variable. So the label of
P5_FILEOBJECT always has the selected employee ID in it. This code is discussed
in the Using substitution variables for labels section. The P5_FILEOBJECT file browse
item can now be used to select a file which we want to upload.

setFileName, the JavaScript function, written in the JavaScript section of the
page, executes as soon as a value is selected in the P5_FILEOBJECT page item.
setFileName automatically picks the file name and populates P5_FILE_NAME
page item. This is discussed in the Auto feeding one APEX item based on another
section. The user can then click on the Apply Changes button to upload the file.

Chapter 2

[79]

This will upload the selected file in the OEHR_EMPLOYEE_PROFILES table and will also
update the FILENAME column in the same table. The following screenshot is provided
for your guidance:

Uploading the file will generate three links, one each under the
Traditional Download, Download File, and Another Method To
Download columns. We will talk about these in the Understanding
download methods section.

We are able to upload our file, as discussed previously, and store the selected file
in OEHR_EMPLOYEE_PROFILES table because we had created an APEX form on the
OEHR_EMPLOYEE_PROFILES table on page 5 in the following way:

1. We created a blank page, named it Update profiles and gave 5 as its
page number.

2. We created a Form region and selected Form on a Table or View.
3. We then selected OEHR_EMPLOYEE_PROFILES in the Table / View

Name dropdown.
4. We kept the defaults in the next step of the wizard.
5. We then checked Select Primary Key Column(s) in the Primary Key

Type radio button group.
6. We selected EMPLOYEE_ID in the Primary Key Column 1 dropdown

and selected the Existing sequence radio button.
7. We selected OEHR_EMPLOYEE_PROFILES_SEQ in the Sequence

dropdown, and selected FILEOBJECT (Blob) and FILENAME (Varchar2)
in the Select Column(s) shuttle.

8. We selected No in Show Create Button and Show Delete Button
dropdowns. We enter 5 in the After Page Submit and Processing
Branch to Page and When Cancel Button Pressed Branch to this
Page textboxes, and then clicked on the Finish button.

Conventional Reporting in APEX

[80]

When the Apply Changes button is clicked after selecting of the file to be uploaded,
Process Row of OEHR_EMPLOYEE_PROFILES process (created by APEX because
of the form we created before) is triggered and it updates the row corresponding to
the chosen employee with the uploaded file and the name of the file. The process is
able to update the FILENAME and FILEOBJECT columns of OEHR_EMPLOYEE_PROFILES
with the values of the P5_FILE_NAME and P5_FILEOBJECT items, because the
database columns have been specified as the source of these items. The following
screenshot has been shared for your convenience:

We can also use the LOADBLOBFROMFILE and LOADCLOBFROMFILE
procedures of the DBMS_LOB package to upload files. Read more
about this procedure from http://docs.oracle.com/cd/
E11882_01/appdev.112/e10577/d_lob.htm.

Using DA to set page items and side effects
of PPR
The objective of this section is to understand the setting of the P5_EMPLOYEE_ID
item using the Update Profiles Dynamic Action. Let us first talk about the link
(UPDATE buttons) that invokes this DA.

Chapter 2

[81]

UPDATE buttons are under the Update profiles column in our report. Open the Slice
& Dice region of the Report Attributes page, and then click on the pencil icon next to
the Update profiles column. Go to the Column Link section. Note that we have set
 for the Link Text, URL set as the Target
and javascript:function(){} for the URL, as shown in the following screenshot:

We have put an empty JavaScript function as a link in order to force APEX to create
a link; a link that takes us to nowhere. The empty JavaScript function helps us to get
the hand cursor when the user moves his mouse over the link. The actual action fired
on the click of this link is defined by the Update Profiles Dynamic Action. Check out
the When section of the Update Profiles Dynamic Action.

Conventional Reporting in APEX

[82]

This Dynamic Action uses JQuery selector to identify the triggering HTML element.
The jQuery Selector textbox says that the Dynamic Action should be fired when any
of the td HTML elements with the LINK$02 header attribute is clicked. The headers
of the columns created by clicking on the Add Column Link in the Tasks panel on
the right hand side of the Report Attributes page of a report start with LINK$ and
our Update profiles column has the LINK$02 header. Check the HTML page source
of page 5 of the reference application to verify this. The following screenshot has
been pasted for your convenience:

Let us now see the JavaScript code that is executed by the Update Profiles DA,
which is as follows:

$(this.triggeringElement).siblings().each(function(i) {if (this.
headers == 'EMPLOYEE_ID') {
apex.submit({set:{'P5_EMPLOYEE_ID':this.innerText},showWait:true});
//$s('P5_EMPLOYEE_ID',this.innerText);
}});

Our goal is to get the EMPLOYEE_ID column of the row on which the user clicks and
set it in P5_EMPLOYEE_ID. To meet this objective, the preceding JavaScript code finds
the siblings of the triggering element. The triggering element is the link of the Update
Profiles column on which the user clicks. The siblings of the triggering element are
the other columns in the same row as the triggering element. We check these siblings
to find the one which has EMPLOYEE_ID as its header. We then capture the value of
this sibling and set P5_EMPLOYEE_ID using apex.submit. Now for this Dynamic
Action to work, we have to ensure that PPR has not been used on the page. We are
using PPR to navigate to different pages of the classic report and for soft deleting
a row (we will discuss soft deleting in the Implementing soft deletion with AJAX and
Apex templates section).

A workaround to the side effects of PPR
A workaround to our problem can be that we call apex.submit when the user clicks
on the UPDATE button instead of calling the Update Profiles DA. We will have to
put the following in the URL textbox of the Column Link section in the Column
Attributes page of the Update profiles column to make this work.

javascript:apex.submit({set:{'P5_EMPLOYEE_ID':#EMPLOYEE_
ID#},showWait:true});

Chapter 2

[83]

This code will set P5_EMPLOYEE_ID with the value of the EMPLOYEE_ID column of the
row on which the user clicks.

Another workaround to the multiple DA problem is selecting
Dynamic in the Event Scope dropdown of a DA. This will
ensure that whenever a PPR happens, the DA is applied
again to the "new" fields.

Using substitution variables for labels
We will now see the use of substitution variables for making dynamic labels. Have a
look at the label of P5_FILEOBJECT. You will see Upload file for employee number
&P5_EMPLOYEE_ID. in it. Here, &P5_EMPLOYEE_ID. is an item used as substitution
variable. This ensures that the label will change with the changing value of P5_
EMPLOYEE_ID.

Auto feeding one APEX item based on another
We will now see the method of extracting a value for one item based on the value
entered in another. Have a look at onChange="javascript:setFileName(this.
value);" in the HTML Form Element Attributes textbox of P5_FILEOBJECT. Any
change of value in the P5_FILEOBJECT item triggers setFileName. Have a look
at the definition of the setFileName function from the JavaScript section in the
page definition of page 5 of reference application. The following code is pasted
for your convenience:

function setFileName(p_big_file_name) {
$x('P5_FILE_NAME').value = p_big_file_name.substring(p_big_file_name.
lastIndexOf('\\')+1);}

The setFileName function has a single line of code which gets the value of the P5_
FILE_NAME textbox and sets the part of the string after the last backslash as the value
of P5_FILE_NAME. The user however has the freedom to update the P5_FILE_NAME
textbox if required.

Note that we use \\ to find the last backslash. We need two backslashes because
\ is used as an escape character in JavaScript, and hence an extra backslash is used
as an escape for the other backslash. Instead of using $x().value, we can also use
$s to assign a value to a page item.

Conventional Reporting in APEX

[84]

The method to upload files using
WWV_FLOW_FILES
I feel that this section deserves a place here since we are discussing ways to upload
files in APEX. Till now, we are using an approach where we create a form and
APEX creates all the necessary items and processes required for us to upload files.
We can, however, create our own File Browse... page item with the Storage Type
of TABLE WWV_FLOW_FILES. When we select a file in this item and submit the
page, the file selected in the item gets uploaded and we can access the file from
apex_application_files along with some other details such as file name, mime
type, and doc size. We can then use this file according to our own desires. Trying
this out is left as an exercise for the reader.

Understanding download methods
This section is dedicated to understanding various methods to download reports
in APEX. The following are the major learning outcomes of this section:

• Understanding the process to download using APEX format mask.
• Understanding the process to download using developer-defined,

stored procedure.
• Understanding the process to download using APEX_UTIL.GET_BLOB_FILE_

SRC.
• Understanding the process to download using the p procedure

Before we jump to understanding these methods, we will look at the following region
source query of the Slice & Dice region. This query holds the secrets of downloading
files using all the ways listed previously. We will talk about the various parts of this
query in a short while.

select "OEHR_EMPLOYEE_PROFILES"."EMPLOYEE_ID" as "EMPLOYEE_ID",
 "OEHR_EMPLOYEES"."FIRST_NAME" as "FIRST_NAME",
 "OEHR_EMPLOYEES"."LAST_NAME" as "LAST_NAME",
dbms_lob.getlength("OEHR_EMPLOYEE_PROFILES"."FILEOBJECT") as "Download
file",
 "OEHR_EMPLOYEE_PROFILES"."FILENAME" as "Traditional
download",
 HTF.ANCHOR(curl => APEX_UTIL.GET_BLOB_FILE_SRC(p_item_name
=> 'P5_FILEOBJECT', p_v1 => "OEHR_EMPLOYEE_PROFILES"."EMPLOYEE_ID",
p_content_disposition => 'attachment'),ctext => "OEHR_EMPLOYEE_
PROFILES"."FILENAME") as "Another method to download"
from OEHR_EMPLOYEES,OEHR_EMPLOYEE_PROFILES
where OEHR_EMPLOYEES.JOB_ID like nvl(:P5_JOB_FILTER,'%')

Chapter 2

[85]

and OEHR_EMPLOYEES.SALARY like nvl(:P5_SALARY_FILTER,'%')
and OEHR_EMPLOYEES.EMPLOYEE_ID = OEHR_EMPLOYEE_PROFILES.EMPLOYEE_ID
and OEHR_EMPLOYEES.DELETE_FLAG = 'N'

The like operator in the where clause is used to ensure that all records are displayed
when no filter is selected. We will talk about these filters in the DML operations and
report filtering using DA, JavaScript, and Page Processes section. The preceding query
uses dbms_lob.getlength, HTF.ANCHOR, APEX_UTIL.GET_BLOB_FILE_SRC and
"OEHR_EMPLOYEES"."DELETE_FLAG" = 'N'. Each one of these has a specific function
and we will talk about these one by one now. Let us start with dbms_lob.getlength
first in the next section.

Download using APEX format mask
We will check out the use of the APEX format mask to help us generate a link on a
blob column that can help us download the data in it. This format mask is as follows:

DOWNLOAD:Table Name:Column containing BLOB:Primary Key Column
1:Primary Key Column 2:MIME type Column:Filename Column:Last Update
Column:Character Set Column:Content Disposition:Download Text

The first four in the preceding format mask are necessary while the rest are optional.
If we use this format mask on a blob column, and if that column is passed as an
argument to dbms_lob.getlength in the region source query then APEX will generate
a link on the column that will let us download the blob. The Download file column
of the Slice & Dice region is one such column that has dbms_lob.getlength("OEHR_
EMPLOYEE_PROFILES"."FILEOBJECT") in the region source, and has DOWNLOAD:OEHR_
EMPLOYEE_PROFILES:FILEOBJECT:EMPLOYEE_ID::::::attachment:Profile as
the format mask in the Number / Date Format textbox of Column Attributes of the
Download file column.

Download using developer-defined stored
function
We will now have a look at a method by which we can define our own function that
can help us download the data in the blob columns. The link under the Traditional
Download column of page 5 of the reference application uses the download_file
procedure defined in the chapter2 package. When the user clicks on a link in the
Traditional Download column, the corresponding employee_id value of the link
is passed to the chapter2.download_file procedure by the following URL:

packt_schema.chapter2.download_file?p_employee_number=#EMPLOYEE_ID#

Conventional Reporting in APEX

[86]

This URL is present in the URL textbox of the Column Attributes of the Traditional
Download column.

Before you can start to download files using this method, you will have to put the
following entry in the defaults.xml file and restart WebLogic:

<entry key="security.inclusionList">apex, p, v, f, wwv_*,y*, c*,
PACKT_SCHEMA.*, packt_schema.*, apex_util.*</entry>

Note that the entry in defaults.xml is case sensitive.
So we have PACKT_SCHEMA.*, packt_schema.*, in it.

packt_schema.* in the preceding list helps us to call all procedures of packt_schema
from the URL. We will also have to give the following command:

grant execute on chapter2 to apex_public_user

Let us now look at the code of the packt_schema.chapter2.download_file
function, which is as follows:

PROCEDURE DOWNLOAD_FILE (p_employee_number number) IS
 l_length NUMBER; l_file_name VARCHAR2 (4000);
 l_file BLOB; l_ext VARCHAR2 (4000);
BEGIN
 SELECT fileobject, filename, DBMS_LOB.getlength (fileobject)
 INTO l_file, l_file_name, l_length
 FROM oehr_employee_profiles
 WHERE employee_id = p_employee_number;

 If INSTR (l_file_name, '.', -1, 1) > 0 then
 l_ext := SUBSTR (l_file_name, INSTR (l_file_name, '.', -1, 1) +
1);
 End if;

 IF (UPPER (l_ext) = 'PDF') THEN
 OWA_UTIL.mime_header ('application/pdf', FALSE);
 ELSIF (UPPER (l_ext) = 'DOC') THEN
 OWA_UTIL.mime_header ('application/msword', FALSE);
 ELSIF (UPPER (l_ext) = 'TXT') THEN
 OWA_UTIL.mime_header ('text/plain', FALSE);
 ELSIF (UPPER (l_ext) = 'HTML') THEN
 OWA_UTIL.mime_header ('text/html', FALSE);

Chapter 2

[87]

 ELSE
 owa_util.mime_header('application/octet', FALSE);
 END IF;
 HTP.p ('Content-length: ' || l_length);
 -- the filename will be used by the browser if the users does a save
as
 HTP.p ('Content-Disposition: attachment; filename="' || l_file_name
|| '"');
 OWA_UTIL.http_header_close;
 WPG_DOCLOAD.download_file (l_file);
END DOWNLOAD_FILE;

This procedure accepts an employee_id as an argument. This employee_id is used to
fetch the corresponding blob object, filename, and file size. We then find the extension
of the file by using SUBSTR. Based on the extension, we create the header for the
file. Once the header is set, we use the WPG_DOCLOAD.download_file procedure to
download the blob object.

Download using APEX_UTIL.GET_BLOB_
FILE_SRC
The APEX_UTIL package also has methods that can help us download our blob. Let us
see the process for this. The Another method to download column of the reference
application is an example of this method. Check the highlighted code in the query
shared in the Understanding download methods section. HTF.ANCHOR generates the
anchor tag which is basically the HTML code for displaying the hyperlink. The URL
to which the redirection should happen when a user clicks on this link is given by the
APEX_UTIL.GET_BLOB_FILE_SRC function. The arguments of this function are a page
item of File Browse... type, the value of the primary key, and text which says whether
the download should be inline or an attachment.

Another method of getting a file is the APEX_UTIL.GET_FILE function.
APEX_UTIL.DOWNLOAD_PRINT_DOCUMENT has four signatures and
is used to download reports. We have used APEX_UTIL.DOWNLOAD_
PRINT_DOCUMENT on page 4 of the reference application of Chapter 7,
Integrating APEX with OBIEE. APEX_UTIL.GET_PRINT_DOCUMENT is
another procedure that can be used for similar purposes.

Conventional Reporting in APEX

[88]

Download using p process
I want to talk about the p process, since I have been talking about the various ways
to download files from APEX. You won't find an implementation of this in the
reference application. Consider the following text as a to-do assignment. p, like f,
is a procedure of APEX. To use this for download, we will have to put p?n=#ID# in
the URL textbox of Column Attributes of a column and we will have to change the
storage type of the P5_FILEOBJECT item to Table WWV_FLOW_FILES. Only the
files uploaded after changing the storage type can be downloaded using this method.
You should already be familiar with the syntax of p?n=#ID#. Here, p is the procedure
and n is its argument. Now, n needs an ID. You can get this ID from the ID column
of APEX_APPLICATION_FILES. The file itself can also be retrieved from the BLOB_
CONTENT column of APEX_APPLICATION_FILES.

Note that you will not be able to see your file in APEX_
APPLICATION_FILES, if you are querying outside of your APEX
session. This is because of the way APEX_APPLICATION_FILES
is designed. Use the following query to view your data outside of
your session. Replace 107 with your application ID:

select id, name,filename from wwv_flow_file_
objects$ where flow_id = 107

This brings us to the end of the section in which we discussed various ways of
downloading a report. Let us now move on to understand soft Deletion with AJAX.

Implementing soft deletion with AJAX
and APEX templates
Soft deletion is done if we want to retain the record and the user wants to delete it.
In soft deletion, when a delete operation is triggered on a table by the user, a flag is
updated instead of deleting the record altogether. All queries on this table use the
flag column to display only the records for which the flag has not been set. The
query in the Slice & Dice region uses this flag ("OEHR_EMPLOYEES"."DELETE_FLAG"
= 'N') to display only the records which have not been deleted by the user.

Let us now understand the process of creating a link on a column to soft delete
a record. The AJAX emp delete column of the Slice & Dice region has <img
src="#IMAGE_PREFIX#del.gif" alt="APP_PROC_DELETE"> in Link Text, URL
in Target, and javascript:delEmployee(#EMPLOYEE_ID#); in URL of the
Column Link page, as shown in the following screenshot:

Chapter 2

[89]

#EMPLOYEE_ID# of javascript:delEmployee(#EMPLOYEE_ID#); passes the
EMPLOYEE_ID value of the row on which the user has clicked to the delEmployee
JavaScript function. Check out the delEmployee function definition in the JavaScript
section of the page definition of page 5. The same is shared in the following code for
your convenience:

function delEmployee(p_emp_id) {
var ajaxObject = new htmldb_Get(null, html_GetElement('pFlowId').
value, 'APPLICATION_PROCESS=Delete employee', $v('pFlowStepId'));
 ajaxObject.addParam('x02',p_emp_id);
var ajaxReturn = eval(ajaxObject.get()); ajaxObject = null;
/*$('#SLICE_AND_DICE').trigger('apexrefresh'); We can use this if we
set a static id for the region*/
$a_report_Split($x('report_SLICE_AND_DICE').region_id.substr(1),
'1_15_15',null);}

The delEmployee function gives an AJAX call to the Delete employee page process,
which soft deletes the row, that is, sets "OEHR_EMPLOYEES"."DELETE_FLAG" to 'Y'.

Conventional Reporting in APEX

[90]

I wish to point out that we can use the following syntax to call the page
process. process_id here is the name of the process. This syntax can
also be used in JavaScript by passing it as an argument to the window.
open function as follows:

f?p=application_id:page_id:session:APPLICATION_
PROCESS=process_id

The delEmployee JavaScript function passes the employee_id value to the
Delete employee page through the ajaxObject.addParam ('x02',p_emp_id);
function call. Note that we are setting x02 in this place. We will have to fetch the
corresponding variable in the Delete employee page process.

The following is the code of the Delete employee page process:

DECLARE l_emp_id NUMBER := wwv_flow.g_x02;
Begin
 update oehr_employees set delete_flag = 'Y' where employee_id = l_
emp_id;
--htp.p ('javascript:apex.submit({request:this.id,showWait:true});');
End;

Note that we are capturing the value passed by ajaxObject.addParam ('x02',p_
emp_id) using wwv_flow.g_x02. We are using g_x02 because we passed the value
using x02. You can see a commented htp.p statement in this page process. This
statement can be used to submit the page and hence refresh the region from the page
process itself. We don't need it because we have the partial page refresh mechanism
in place in the delEmployee JavaScript function. Let's see this now. The final
important piece of code in the delEmployee JavaScript function is as follows:

$a_report_Split($x('report_SLICE_AND_DICE').region_id.substr(1),
'1_15_15',null);

Before I talk about $a_report_Split, I want you to open the page 5 of the reference
application and right-click on the Next link at the bottom of the report, and then select
Copy Shortcut. Now paste this in a text editor. Until APEX 4.1 $a_report_Split
was used for report pagination. The function still exists for backward compatibility.
In APEX 4.2, apex.widget.report.paginate is used. So we can use apex.widget.
report.paginate as well instead of $a_report_Split. $a_report_Split needs the
region_id value of the region which has to be refreshed. To capture the region_id
value, we have put a static ID and we are using this static ID to get the region_id
value. You can see SLICE_AND_DICE in the Static ID textbox in the Region Definition
tab of the Slice & Dice region.

Chapter 2

[91]

The Slice & Dice region uses the Standard report template and we have tinkered
it a little to capture the region_id value of this region. Open the Standard report
template of the reference application and go to the Before Rows section. You will
see the following code in it:

id="report_#REGION_STATIC_ID#" region_id="#REGION_ID#"

Putting this in the template, generates an HTML which is similar to id="report_
SLICE_AND_DICE" region_id="R9573132397694942". Since report_SLICE_AND_
DICE is static for the region, so this can be used as a handle to get R9573132397694942.
We have precisely done this by putting $x('report_SLICE_AND_DICE').region_
id.substr(1) in the delEmployee JavaScript function. Substr is required because
$a_report_Split expects the region_id value without R prefixed to it. The second
argument of $a_report_Split, that is, '1_15_15' will show you the first 15 rows of
the report. So every delete will bring you to the first 15 records.

We can also implement partial page refresh by using $('#SLICE_AND_DICE').
trigger('apexrefresh');.

In the preceding example, we are capturing the region ID using templates. We can also
get the region ID by using the following query:

SELECT region_id, page_id, application_id
FROM apex_application_page_regions
WHERE static_id = 'SLICE_AND_DICE' /*Here SLICE_AND_DICE is your
static region id.*/

This brings us to the end of the soft delete section. Click on any link in the AJAX
emp delete column of the reference application to see soft deletion with partial
page refresh in action.

Conventional Reporting in APEX

[92]

DML operations and report filtering using
DA, JavaScript, and page processes
This section is dedicated to understand the following two methods of report filtering
and DML operations:

• Filtering report and logging user selection using Dynamic Actions.
• Filtering report and logging user selection using JavaScript and Page Process.

We will see Advanced AJAX and two way communication between page
process and JavaScript in this section.

We have two select lists, namely, P5_JOB_FILTER and P5_SALARY_FILTER on page
5 of the reference application. The first select list is a list of jobs and the second select
list is a list of salaries. We will now use P5_JOB_FILTER to see the filtering of a report
and logging of values using Dynamic Actions.

Filtering reports and logging values using
Dynamic Actions
This section is dedicated to using Dynamic Actions for submitting the page and
logging the values. Let's check it out. The Filter selected job id DA and the Ajax
using Dynamic Actions DA are fired when a value changes in P5_JOB_FILTER.
The Filter selected job id Dynamic Action submits the page. This results in the
setting of P5_JOB_FILTER with the selected value. Since the region source of the
Slice & Dice region uses P5_JOB_FILTER in the where clause, the report is filtered
with the value of P5_JOB_FILTER. We can see this filter in the query under the
Understanding download methods section. Have a look at the following screenshot
of the Filter selected job id Dynamic Action:

Chapter 2

[93]

The Ajax using Dynamic Actions Dynamic Action runs a PL/SQL code that logs
the value of P5_JOB_FILTER in CHAP2_P5_SLICE_AND_DICE_LOG.

We have filtered records and logged values using Dynamic Actions. There are
many more triggers of Dynamic Action and many more ways in which Dynamic
Actions can work. Exploring these is left to you as homework.

Let's now see the method to filter a report and log the selected value using
traditional methods.

AJAX – a two-way communication between
page process and JavaScript
In this section, we will see a method to use page processes and JavaScript to refresh
the page and to log values. The important thing to note here is that we having a two
way communication between the page process and the JavaScript function. Edit P5_
SALARY_FILTER and note that we have onChange="apex.submit({request:this.
id,showWait:true});insertInLogTable();" in HTML Form Element Attributes.

Conventional Reporting in APEX

[94]

In this code, we are invoking two JavaScript functions namely, apex.submit
and insertInLogTable, when the value in P5_SALARY_FILTER changes. apex.
submit is used here to just submit the page, but it can also be used to set any item.
showWait:true in apex.submit is used to show a cool progress bar when APEX is
submitting the page. The insertInLogTable is a JavaScript function and can be found
in the JavaScript section of Page Attributes. Here is the code for your convenience:

function insertInLogTable() {
var ajaxObject = new htmldb_Get(null, html_GetElement('pFlowId').
value, 'APPLICATION_PROCESS=INSERT_SALARY_IN_LOG_TABLE',
$v('pFlowStepId'));
 ajaxObject.addParam('x01',$v('P5_SALARY_FILTER'));
 var ajaxReturn = eval(ajaxObject.get());
 if (ajaxReturn)
 {
 for (var i=0; i<ajaxReturn.length; i++)
 {alert(ajaxReturn[i].data + ' ' + ajaxReturn[i].id);}
 }
 ajaxObject = null;
}

The insertInLogTable JavaScript function calls the INSERT_SALARY_IN_LOG_TABLE
page process using AJAX. The important thing to note here is that the page process is
returning data to the JavaScript function. This two way interaction can be used to do
a variety of things. The INSERT_SALARY_IN_LOG_TABLE page process (the following
code) returns all the employees whose salaries match with the salary selected in
P5_SALARY_FILTER. The final part of the insertInLogTable JavaScript function
discussed previously is used to display the array of returned values using the alert
JavaScript function. The following is the code for this INSERT_SALARY_IN_LOG_
TABLE page process:

DECLARE
 l_salary NUMBER := wwv_flow.g_x01;
 CURSOR my_cur (p_salary VARCHAR2) IS
 SELECT employee_id, last_name, rownum r
 FROM oehr_employees
 WHERE salary = p_salary;
BEGIN
 INSERT
 INTO CHAP2_P5_SLICE_AND_DICE_LOG VALUES
 (:P5_SALARY_FILTER ||' has been selected in the salary
filter');
 HTP.prn ('[') ;
 FOR c IN my_cur (l_salary) LOOP

Chapter 2

[95]

 HTP.prn (CASE WHEN c.r > 1 THEN ',' ELSE
NULL END
 || '{ id: "' || c.employee_id || '", data: "' || c.last_name || '"}'
) ;
 END LOOP;
 HTP.prn (']') ;
END;

In the INSERT_SALARY_IN_LOG_TABLE page process, wwv_flow.g_x01 is used to
capture the value passed from the insertInLogTable JavaScript. This code in
INSERT_SALARY_IN_LOG_TABLE, inserts into CHAP2_P5_SLICE_AND_DICE_LOG and
the rest of the code is to form the JSON name-value pair object that can be returned
to the calling JavaScript function. The HTP.prn facilitates this interaction between
JavaScript code and page process.

We have now reached the end of the section. Let's now move on to see tabular
forms in APEX.

Implementing a tabular form
The name tabular form says it all. We are talking about a table and a form. So the
entire table appears before us in editable format. We can use Column Attributes to
change the type of HTML element from textbox to any other input type according to
our convenience. I believe that this form arms us with all the tools necessary to cater
the requirements of editable tables. APEX has a good wizard which lets us create a
tabular form. I have quickly listed the steps I followed to create a tabular form.

Creating a tabular form
The following are the steps for creating a tabular form:

1. Create a new page.
2. Select Form as the page type, and then select Tabular Form.
3. Select the desired table (OEHR_EMPLOYEES).
4. Select all columns except DELETE_FLAG.
5. Select Update, Insert, and Delete as the Allowed Operations.
6. Select Yes in User Interface Defaults.
7. Select Primary Key Column(s) in Primary Key Type.

Conventional Reporting in APEX

[96]

8. Select 1. EMPLOYEE_ID (Number) in Primary Key Column.
9. Enter OEHR_EMPLOYEES_SEQ in Existing Sequence.
10. Select all columns as updatable.
11. Give the page number as 6 and choose your page name and region name.
12. Create all four buttons namely, Cancel, Submit, Delete, and Add Row.
13. Create the form.

This creates a long list of validations on each of the columns, multi row update
and multi row delete processes, branches, and a report. Page 6 of the reference
application has this form. After the page is created, we can do any number of
changes with the column types, the layouts, and other formatting.

Let me quickly introduce the next section to you. Our mission in the next section
is to create a tabular form which looks like a usual classic report, but when a user
clicks on any value of the report, the read-only value is replaced by a textbox with
the value in it. The user is then allowed to edit as many values as he likes. The user
is then allowed to commit the changed values on the click of the button.

Changing item type on user event
Our objective is to create a tabular form with HTML elements whose type changes
on the fly. Let me share the screenshot of the final result of this exercise with you,
which looks as follows:

The code has been tested using Internet Explorer 8.

Chapter 2

[97]

Note that the values Donald, Feeney, and DOCONNEL are editable. We will first
create a tabular report and then use a Dynamic Action to change the types of HTML
elements. Page 7 of the reference application has a usual tabular form of OEHR_
EMPLOYEES and we have selected EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, and
PHONE_NUMBER in the form. EMPLOYEE_ID is our primary key, so the wizard allowed
us to mention only the other four columns as updatable. We then went to the Column
Attributes section of each of the four editable columns and changed Display As from
Text Field to Display as Text(Saves State). We then created the DA to change cell
types DA to change cell types. Let me now explain the code of the DA to change cell
types DA.

In our Standard report template, the formatting of any data in the classic report is
done using a class called data. The DA to change cell types DA is fired when a user
clicks on any HTML element which has the data class as one of its attributes. The
code performing this is present in the When section of the DA. We have selected
jQuery Selector in the Selection Type dropdown and have put .data in the jQuery
Selector textbox to achieve this. Let me paste sample HTML which qualifies to be
the object of this Dynamic Action. Have a good look at the following code, because
I will use this to explain the JavaScript code that follows:

<td headers="LAST_NAME" class="data"><input type="hidden" name="f04"
value="King" /><label for="f04_0001" class="hideMeButHearMe">Last
Name</label>King</td>

Let's now get into the JavaScript code executed by the DA to change cell types DA.
The following code is pasted for your convenience:

var oldHTML = $(this.triggeringElement).html();
if (oldHTML.indexOf('type=text') == -1)
{
var lab = oldHTML.substr(oldHTML.indexOf('<LABEL'),oldHTML.indexOf('</
LABEL>')-oldHTML.indexOf('<LABEL')+8);
var name = $(this.triggeringElement).children().attr('name');
var id;
$(this.triggeringElement).children().each(function(i){if(this.id){id =
this.id;}});
var val = $(this.triggeringElement).children().attr('value');
$(this.triggeringElement).html(lab + '<INPUT id="'+id+'"
value="'+val+'" maxLength=2000 size=16 type=text name="' + name + '"
autocomplete="off">');
}

Conventional Reporting in APEX

[98]

As can be seen in the HTML code above this JavaScript code, the td element has
the data class. Since we had defined our jQuery Selector as anything that has the
data class, so $(this.triggeringElement) holds the handle to td, and $(this.
triggeringElement).html() returns the HTML encapsulated by the td tag.

The HTML that would have been returned by $(this.triggeringElement).
html() for the preceding sample code is as follows:

<input type="hidden" name="f04" value="King" /><label for="f04_0001"
class="hideMeButHearMe">Last Name</label>King</
span>

This value is stored in the oldHTML variable. Our strategy is to change the input
type of this HTML to text. The second line of JavaScript code is if (oldHTML.
indexOf('type=text') == -1). It ensures that the JavaScript is not executed if
the type of any data element has already been changed to text. The code following
this is an attempt to get the values of attributes such as name, value, and so on.
These values are used in the final line of the code to frame the new HTML.

If you wish to know the exact values that are captured in each of the variables then
use the alert JavaScript function to get the value of the variables as prompts.

I presented this example to demonstrate the amazing uses of Dynamic Action.
This method can also be used for conditional formatting.

It's important to mention about jqGrid in this place. jqGrid is a
JQuery based solution which can be used to implement similar
functions such as searching in tables and virtual scrolling. More
information on jqGrid can be found at http://www.trirand.
com/blog/jqgrid/jqgrid.html.

Implementing a master detail report and
displaying complex types
The name says it all. Let me explain how master detail report works in APEX.
This report is a combination of a classic report on the master table and a drilldown
child report, which shows one selected master record along with its child records.
All values in the child report are editable. However, if required we can obviously
tweak this master detail report in our own way. Before we do that, let's first create
and understand one master detail report.

Chapter 2

[99]

APEX assumes that a master detail report will be created on a set of tables which
are having parent-child relationship between them, and it creates the processes for
all kinds of DML operations, corresponding buttons, and a link between the master
and detail level.

Let's switch on to actually creating a master detail report. I have picked the oehr_
customers table as my master and the oehr_orders table as my child. We can create
a master detail report by selecting a new Master Detail Form from the Create Form
page of the wizard. The wizard lets us select the columns for both the master and the
detail reports. The wizard is also intelligent enough to use the foreign key relations
established at the database level to show only the relevant child tables to us after we
have selected a master table. If physical foreign key does not exist between the tables
of interest then APEX will expect us to code the relationship using the wizard.

The wizard lets us set the primary keys for both master and detail tables if we
select Select Primary Key Column(s) in the Define Primary Key step. Setting of the
primary key for the master table dictates the column value, which APEX will use to
link the master report with the detail report. APEX also uses this ID for any update
on the selected master record. The ID of the detail report is used for updating the
records of the detail table.

The Include master report? radio button in the Master Options step of the wizard
lets us specify whether we want a master report or not. If we select No in Include
master report radio button then the wizard will then only generate the detail report.

The wizard also lets us bifurcate the details page into two pages. The first page
would contain the items of the selected master record and the second page would
contain the detailed records for the selected master record. I find this bifurcation
clumsy, so I have opted for Edit detail as tabular form on same page.

Have a look at the master detail report created as an example on page 13 and page 14
of the reference application.

Conventional Reporting in APEX

[100]

Displaying complex types and varray in
a report
The Cust Address and Phone Numbers columns of the oehr_customers table are of
complex data types, so we have to put some extra effort to display these. Check the
definition of the OEHR_CUSTOMERS table to verify this. To deal with this situation, we
will have to tweak our query a little. Cust Address is actually a structure of native
data types, which together will form a user-defined data type. We can access each of
the native data type columns of this collection by individually. For example postal_
code can be accessed by the c.CUST_ADDRESS.postal_code syntax. The query in
the Customers Master Report region of page 13 of the reference application has
this in place. The following query is pasted for your convenience. Check the second
highlighted piece of the following code:

SELECT c.cust_first_name, c.cust_last_name, c.customer_id,
 c.CREDIT_LIMIT, c.CUST_EMAIL,
 (SELECT first_name || ' ' || last_name FROM oehr_employees
 WHERE employee_id = c.ACCOUNT_MGR_ID) Manager,
 listagg(p.column_value,',') WITHIN GROUP (ORDER BY cust_first_name)
"PHONE_NUMBERS",

 c.CUST_ADDRESS.street_address ||',' || c.CUST_ADDRESS.postal_code
||',' ||c.CUST_ADDRESS.city
 ||',' ||c.CUST_ADDRESS.state_province ||','
 ||c.CUST_ADDRESS.country_id Address

FROM "OEHR_CUSTOMERS" c, TABLE (c.PHONE_NUMBERS) p
GROUP BY c.cust_first_name, c.cust_last_name, c.customer_id,
 c.CREDIT_LIMIT, c.CUST_EMAIL, c.ACCOUNT_MGR_ID, c.CUST_ADDRESS.
street_address, c.CUST_ADDRESS.postal_code,
 c.CUST_ADDRESS.city, c.CUST_ADDRESS.state_province,
 c.CUST_ADDRESS.country_id
order by c.customer_id

phone_numbers column is a little different. It is actually a column containing a varray.
To display the values for this column we will have to use the table function. We will
discuss the table function again when we discuss advanced dynamic queries in the
next chapter. The table function accepts a collection of rows (either collection types
or ref cursors) and treats them as physical database tables. We are using the listagg
string aggregation function to aggregate the values returned by the table function.
Note the cross join between the c and p aliases. c.PHONE_NUMBERS is passed as an
argument to p so the join is actually been done by passing the argument in the third
highlighted piece of code.

This brings us to the end of master detail report. Let's now see reports related to
time series.

Chapter 2

[101]

Implementing time series reports
In this section, we will learn about some of the time series functions which help in
the development of analytical reports in APEX.

I have created OEHR_TIME_DIM for displaying some of the time series reports.
Most OLAP reports use a time dimension for analysis. The reports introduced
in this section are special because of their queries. This section is designed to
primarily display the quantum of analytical processing possible using SQL.

Creating aggregation on a partitioned time
dimension region
We have seen grouping sets in the Using grouping sets and HTML formatting in
a query section. Here we are going a step further by using the cube extension of
the group by clause. We will also see the use of some aggregation on partitioned
time dimension.

cube produces aggregation results of each combination of the columns. Go to page
9 of the reference application and see the region source query of the Aggregation
on partitioned time dimension region. The following query is pasted for your
convenience:

select DECODE(GROUPING(t.quarter_year)+GROUPING(o.order_mode)
 , 0, t.quarter_year
 , 1, DECODE(GROUPING(t.quarter_year),0,'Total for '||t.
quarter_year,'Total for '||o.order_mode)
 ,2 , 'Grand total'
) "Quarter", decode(GROUPING(t.quarter_
year)+GROUPING(o.order_mode),0, o.order_mode,null) "Order mode",
sum(order_total) "Sum of order amount",
TO_CHAR(100 * RATIO_TO_REPORT(SUM(order_total)) OVER (PARTITION BY
(GROUPING(o.order_mode) ||
 t.quarter_year)),'990D0') "% of contribution in a quarter"
from oehr_orders o, oehr_time_dim t where o.time_dim_id = t.time_dim_
id
group by cube(quarter_year,order_mode)
order by to_number(substr(t.quarter_year,4)),to_number(substr(t.
quarter_year,2,1)) o.order_mode

Conventional Reporting in APEX

[102]

The decode statements in this query are to display correct texts when the aggregated
rows are displayed. Note the use of the RATIO_TO_REPORT analytical function to show
the percentage contributions of each order_mode in a particular quarter. Also note
the use of oehr_time_dim. Note that the partitioning is done using a combination
of the quarter_year column and the order_mode column. Direct and online are
the only two order modes in the oehr_orders table. So the sum of percentages of
direct and online for every quarter will be 100. Therefore, by partitioning over a
combination of the quarter_year column and the order_mode column, we are able
to show the contributions by both the modes of receiving orders in any quarter. Some
analytical functions allow us to specify a rolling window using the windowing clause.
The ROWS and RANGE keywords can be used along with a specification of the set of
rows on which we want to apply the windowing clause. ROWS gives us the freedom to
apply our function on physical set of rows, while RANGE can be used for a logical set of
rows. Run page 9 of the reference application to see the preceding query in action.

Time series analysis with analytical functions
and time dimension
We will dedicate this section for doing time series analysis using analytical functions.
Have a look at the query of the region source of the Comparison of aggregations with
previous & next time periods region. The query is more or less similar to the query
of the Aggregation on partitioned time dimension region, but has the lead and lag
functions. These functions have been used to compare the values of one quarter relative
to other quarters. We have one dropdown each for selecting the number of months
to lead and the number of months to lag. Comparing the performance over time is an
important analytical business requirement and this region helps us achieve this.

Functions such as sum and avg, which are traditionally used with the group by
clause can also be used in the analytical form. In the analytical form, we can specify
different partition by clauses and hence have different windows of different
functions.

In the query of the Comparison of aggregations with previous & next time periods
region, we see that we are multiplying: P9_LAG_MONTHS by three for creating a column
with a lagging period, and similarly we are multiplying: P9_LEAD_MONTHS by three to
create a column for a leading period. So if a user selects 1 in the P9_LAG_MONTHS
dropdown, we create a lag of three rows because we assume that there will be one row
each for direct and online modes and another for quarter total in every quarter.

Chapter 2

[103]

So we have a total of three rows per quarter. So if we want to compare the values
of the previous quarter with the current quarter, we have to lag by three rows. Now,
when we say this, we assume that every quarter will have values for both direct
and online modes but this might not always be the case and our logic will fail then.
One way out of this trouble is to make sure that our table has data for every quarter
and for every mode. The other way is to densify data on the fly. We have done this
data densification in this query by using the query partition by clause.

Using the query partition clause for data
densification
This part is dedicated to understanding the process to dense the data on the fly.
This solves the problem discussed in the previous section. Have a look at the region
source of the Aggregation on partitioned time dim with data densification region.
The following query is shared for your convenience:

select DECODE(GROUPING(t.quarter_year)+GROUPING(o.order_mode)
 , 0, t.quarter_year
 , 1, DECODE(GROUPING(t.quarter_year),0,'Total for '||t.
quarter_year,'Total for '||o.order_mode)
 ,2 , 'Grand total'
) "Quarter", decode(GROUPING(t.quarter_
year)+GROUPING(o.order_mode),0, o.order_mode,null) "Order mode",
 nvl(sum(order_total),0) "Sum of order amount",
 TO_CHAR(100 * nvl(RATIO_TO_REPORT(SUM(order_total))
OVER (PARTITION BY (GROUPING(o.order_mode) ||
 t.quarter_year)),0),'990D0') "% of contribution in a Quarter"
from oehr_time_dim t LEFT OUTER JOIN
 oehr_orders o PARTITION BY (o.order_mode)
 ON (o.time_dim_id = t.time_dim_id)
 where t.dat < to_date('02-Aug-2000','dd-Mon-yyyy')
 group by cube(quarter_year,order_mode)
 order by to_number(substr(t.quarter_year,4)),to_
number(substr(t.quarter_year,2,1))

 , o.order_mode

Conventional Reporting in APEX

[104]

Focus on the highlighted part. The query partition by clause extends the
functionality of traditional outer joins. It performs the outer join with each partition
returned by the query partition clause rather than joining the whole table. We are
partitioning on o.order_mode, so we will have two partitions of the table, one for
direct and the other for online. The left outer join ensures that all the data is selected
for all the quarters, and the query partition clause ensures that the join of each quarter
happens with both the partitions; hence we get data for all quarters and all modes.

Some of the other functions which can be used in the analytical form and might
interest you are LAST_VALUE, FIRST_VALUE, RANK, DENSE_RANK, ROW_NUMBER, FIRST,
and LAST. LAST_VALUE and FIRST_VALUE can be used for handling null values. KEEP
FIRST can be used in conjugation with DENSE_RANK to apply aggregations on a set of
rows which have the first rank.

Creating aggregations using the model clause
The model clause is a whole school in itself. It lets us define rules, perform
aggregations, and much more. My example in the query of the Aggregations
using Model clause region on page 9 of the reference application is a very basic
one, and the attempt is to introduce the model clause to you. This clause can
however be used to perform much more complex calculations and is a powerful
tool in the hands of business intelligence developers. Let me share the following
query for your convenience:

select month_year, product_name,cnt_of_orders from (select
count(ord.order_id) as cnt_of_orders,
product_name,month_year
 from oehr_product_information prod_info,
 oehr_order_items ord_itm,
 oehr_orders ord,oehr_time_dim tim_dim
 where ord_itm.product_id = prod_info.product_id
 and ord.order_id = ord_itm.order_id
 and ord.time_dim_id = tim_dim.time_dim_id
 and prod_info.product_name in ('KB 101/EN','LaserPro 600/6/
BW','Screws <B.28.S>')
group by product_name, month_year)
model
dimension by (product_name, month_year)
measures (cnt_of_orders)
RULES
(upsert all cnt_of_orders[ANY,'Total'] =sum(cnt_of_orders)[cv(PRODUCT_
NAME),MONTH_YEAR],
upsert all cnt_of_orders[' Total','Grand'] =sum(cnt_of_orders)
[PRODUCT_NAME,MONTH_YEAR])
order by product_name desc,month_year

Chapter 2

[105]

In the region source of the Aggregations using Model clause region, we have an
inner query that generates three columns as its output. One of these three columns is
a measure, and the other two are the dimensions on which this measure can be sliced
and diced. Dimensions are specified by DIMENSION BY, and measures by MEASURES in
the highlighted part of the query. I have also written a few rules to demonstrate the
use of rules in the model clause. Upsert updates the value in the output if any row
matches the value specified in the corresponding rule. This makes it very powerful,
because we are able to display a value based on a rule which is different from the
original value without physically updating the table. The Any keyword matches any
value of the corresponding dimension (PRODUCT_NAME in this case). The Cv() function
is used to fetch the value from the left side of the expression. So the Any keyword
matches all the values of the product_name, and cv function picks the product name.
So this rule effectively says that the sum function should work for all the values of
product_name and should sum the output for every month_year. The second rule
helps us upsert the grand total value.

This more or less brings us to the end of the section where we saw the use of classic
reports to fulfill almost any business requirement. The next section will be focused
on data-level security.

Implementing data-level security
Data-level security essentially means that a user should not be able to see the records
which do not fall under the rights of his business role.

Using VPD
We will dedicate this section to understand the use of VPD for implementing
data-level security.

VPD is only available in the enterprise edition.

Open the VPD Report region on page 10 of the reference application and check
out the commented code in the region source. Execute this after logging in as SYS.
Note that we are creating CHAP2_VPD_OEHR_EMPLOYEES, so that other reports built
on OEHR_EMPLOYEES are not affected by the VPD policy.

Conventional Reporting in APEX

[106]

The commented code in the region source is as follows:

create table PACKT_SCHEMA.CHAP2_VPD_OEHR_EMPLOYEES as select * from
PACKT_SCHEMA.OEHR_EMPLOYEES

CREATE OR REPLACE FUNCTION chap2_data_lev_scrty_usng_vpd (
p_schema IN VARCHAR2 DEFAULT NULL,
p_object IN VARCHAR2 DEFAULT NULL)
RETURN VARCHAR2 AS
BEGIN
RETURN 'upper(email) = v(''APP_USER'')';
END;
--Dont grant execute on the above function to anyone

BEGIN DBMS_RLS.add_policy
(object_schema => 'PACKT_SCHEMA',
object_name => 'CHAP2_VPD_OEHR_EMPLOYEES',
policy_name => 'EMPLOYEE_VPD', function_schema => 'SYS',
policy_function => 'CHAP2_DATA_LEV_SCRTY_USNG_VPD',
statement_types => 'SELECT'); END;

Let us understand the chap2_data_lev_scrty_usng_vpd function now. chap2_
data_lev_scrty_usng_vpd returns 'upper(email) = v(''APP_USER'')'. This
string is appended to all queries which fall under the EMPLOYEE_VPD policy, and
hence all affected queries will filter out the records which belong to the currently
logged in user. Also note the use of v() in this place.

The uncommented code in the VPD Report region on page 10 is selecting from
CHAP2_VPD_OEHR_EMPLOYEES and only the record of the logged in user is displayed
when we view this page.

This example was just to demonstrate the process of creating a VPD. This mechanism
can obviously handle more complex scenarios.

Using query filters
We will now look at the approach of using query filters for implementing data
level security. The Data Level Security using Query Filters region of page 10 of
the reference application is probably the simplest of all regions we have seen so far.
It uses v('APP_USER') in its where clause and hence shows the records of only the
currently logged in user. So the net effect of this query and the VPD is the same.

Chapter 2

[107]

Summary
We saw a number of reports in this chapter and a majority of the reports
orchestrated here have been the classic reports. This attests the multiple utilities
of classic reports. We also saw some ways to highlight specific parts of the report.
We will take this highlighting exercise to a higher level in the next chapter and will
also try to understand some of the important features of interactive reports. Since
we will mostly be looking at the functionalities of APEX, it should be a lot lighter
than this one. Time for a break and see you soon in Chapter 3, In the APEX Mansion
– Interactive Reports.

In the APEX Mansion –
Interactive Reports

Welcome back. I hope that the last two chapters were informative and exciting.
Let me quickly summarize our learning till now. Chapter 1, Know Your Horse Before
You Ride It, was about the architecture and installation, while Chapter 2, Conventional
Reporting in APEX, spoke about classic reports and various experiments on them
to make them more useful. When it comes to usefulness, nothing can be as good as
Interactive Reports (IR). This is because of the ease with which an interactive report
can help us generate the reports for the most complex requirements and because of
its beautiful look.

An interactive report is a huge leap towards making APEX a good reporting tool.
The advantage of an IR not only lies in the fact that it lets us perform calculations
and conditional formatting without much effort, but it also lies in the fact that once
an IR is developed, a user can personalize an IR and save his modifications as a new
report for himself. So, a user can easily create a pie chart out of the columns in an
IR, and can also create some new columns which are based on the calculations of
existing columns. Again, these reports can be used to run flashback queries, which
can help us get a report on data which existed a few minutes back. We will see all
of this in a short while. I will dedicate a major portion of this chapter to show the
inbuilt features of IR, and will then move on to explain some advanced features
of APEX.

In the APEX Mansion – Interactive Reports

[110]

The following are the major learning outcomes of this chapter:

• Learning important features of an IR
• Linking IRs
• Learning about the configurations of the Icon View, Detail View,

Advanced, and Column Group sections
• A number of ways to create an IR using CSS
• A generic process to customize any IR
• Using APEX views to created links for various saved IRs
• Method to put multiple IRs on the same page
• Conditional report columns based on authorization and method to

create an Interactive Report Dashboard.
• Dynamic IR using the following:

 ° Collection approach
 ° The native table function approach: We will learn about both

pipelined and parallel enabled table functions
 ° Dynamic reporting using interface approach

Alright, let's start digging.

About the reference application
Before we start to understand the intricacies of IR, I suggest that you first install the
reference application for Chapter 3, In the APEX Mansion – Interactive Report, (4-98-
9_03_APEX_Chapter03.sql). The script to install the reference application also has
the code to install the supporting objects. The code has been tested using IE 8 so I
suggest that you use the same.

External table authentication that uses OEHR_EMPLOYEES is used in this chapter.
The authentication is dependent on the Chapter2 package. So, make sure that the
Chapter2 package (4-98-9_02_chapter2.sql) is compiled before running this
application. Check Chapter 2, Conventional reporting in APEX, to see how external
table authentication is set. I have saved a number of IR reports using the SKING
user so you will have to log in using SKING/SKING (all CAPITALS) to see these.

Chapter 3

[111]

Important features of the interactive
report
Let's first have a look at the out of the box features of APEX, and we will then
continue our quest to make things better.

The following is a screenshot of a typical IR. We will now talk about the Actions
menu and the Search functionality of IRs.

The Search functionality
The components that implement this feature include a drop-down menu to select
a column if we want to search only a single column, a text box to enter the string
to be searched, and a Go button to let us search for the entered text. These items
are highlighted in the previous screenshot.

There was a Search functionality in classic reports as well. In classic reports, APEX
had put an enveloping query to facilitate the search. In IRs, AJAX calls are made to
implement the functionality.

Let us now talk about the Actions menu. This menu is visible under the Actions
button in the previous screenshot.

In the APEX Mansion – Interactive Reports

[112]

Using the Select Columns feature of the
Actions menu
Select Columns is the first item in the Actions menu. It lets us select the columns
which we want to see in our report. We can select our desired columns, and save the
new report for ourselves or as a default report for everyone if we have the necessary
rights. Saving is done by clicking on the Save Report link in the Actions menu. If we
want to remove a column from the report, then we can either use Select Columns
for this, or we can click on the column's heading and we will get a button to do this.
The button to do this is underlined in the following screenshot.

Using the filtering feature of the Actions menu
Filter is the second item in the Actions menu as can be seen in the screenshot under
the Important features of the interactive report section. We can save a report with our set
of filters so that we see only the information in which we are interested, whenever
we log in. We can write a filter on a column by selecting the Column radio button
after selecting Filter from the Actions menu or can write a filter on the entire table by
selecting the Row radio button. These options can be seen in the following screenshot:

Chapter 3

[113]

When we select the Row radio button, APEX gives us a list of columns and operators
which can be used for framing a complex query. An example of the complex filter
on the IR on the first page of the reference application can be A = 2354 and C =
'direct'. We can also filter the records on a particular column by clicking on the
column heading. This option is highlighted in the screenshot under the Using the
Select Columns feature of the Actions menu section with an arrow.

Linking the interactive reports
We can pass the filter to other IRs using the URL. To do this, we will have to put
IR<Operator>_<COLUMN_ALIAS> in the item_names part of the URL and pass the
filter value in the item_values part of the URL.

For example:

• http://localhost:7001/apex/f?p=131:1:376742729106701::::IR_
ORDER_ID_4_AD_PRES:2458

• http://localhost:7001/apex/f?p=131:1:376742729106701::::IRLT_
ORDER_ID_4_AD_PRES:2400

The following is a list of valid operators:

• EQ: Equals (this is the default)
• NEQ: Not Equal to
• LT: Less than
• LTE: Less than or equal to
• GT: Greater Than
• GTE: Greater than or equal to
• LIKE: SQL Like operator
• N: Null
• NN: Not Null
• C: Contains
• NC: Not Contains

The default is EQ. The first example URL does not have the operator, precisely for
this reason.

We can also add an IR filter using APEX_UTIL.IR_FILTER.

In the APEX Mansion – Interactive Reports

[114]

Now if we wish to select rows which have specific texts in them, then we can use
IR_ROWFILTER as shown in the following example:

http://localhost:7001/apex/f?p=131:3:1545633467110601::NO::IR_
ROWFILTER:6000

If you ever have a requirement where you have to pass the filters saved by the user
in an IR to some other page, then you can make use of the APEX_APPLICATION_
PAGE_IR_COND view. There are many more IR views which might help you in similar
requirements. Run the following query using the SYS schema to get their names:

Select view_name from all_views where view_name like '%IR%' and owner
= 'APEX_040200'

Using the Rows per Page feature of the
Actions menu
Rows per Page is the third item in the screenshot under the Important features of the
interactive report section. It lets us select the number of rows we want in our report.
This control is there with the developer in classic reports. The developer can set this
in the Pagination section but the control has been passed to the user in IRs and has
been taken out of the Pagination section of the Report Attributes page.

Customizing the number of rows in an IR
The only trouble with the Rows per Page feature is that a user gets a limited
number of options for the number of rows per page. For example, what if the
requirement was to set 45 rows per page? The answer is to go back to the HTML
source for this section.

You should be able to see the following code in the HTML of any IR page:

<a href="javascript:gReport.search('SEARCH',1000)"
class="dhtmlSubMenuN" onmouseover="dhtml_CloseAllSubMenusL(this)"
title="1000"> 1000

This piece of code is responsible for showing the option to set 1000 rows per page
in the Actions menu. I pulled this out to show you that javascript:gReport.
search('SEARCH',1000) is called to set the number of rows to 1000. If your
requirement is to set the number of rows to 45, then you use javascript:gReport.
search('SEARCH',45), and call this on loading of a page or a button or any other
similar place. I have put this function in Execute when Page Loads section of page
definition of seventh page of the reference application to reduce the number of
rows per page to seven.

Chapter 3

[115]

Using the formatting options of the Actions
menu
Format is the fourth item in the screenshot under the Important features of the
interactive report section and is the best part of interactive reporting. Reporting is
all about organization of data such that the most important information stands out.
This section deals with ways and means to perform this organization. A screenshot
of this section is shown as follows:

Let us now talk about the available options in this section.

Using Control Break
Control Break is the second option in the Format menu. The screenshot of the
format menu is shown in the previous section. We had used APEX's internal
grouping feature in the Using the break formatting in classic reports section of Chapter
2, Conventional Reporting in APEX. IR lets the user to do this. Control Break lets the
user break the report into a number of groups with each group corresponding to one
distinct value of the column on which he is breaking. For example, if we use Control
Break on the order_mode column of the IR on the first page, then we will get two
groups because order_mode has only two distinct values. We can apply Control
Break on a column by clicking on the column heading as well. The screenshot of
this is shown as follows for your convenience:

In the APEX Mansion – Interactive Reports

[116]

Using the Compute option
Compute is the fourth option in the Format menu, and is a graphical way of putting
functions such as ABS, COS, and DECODE on our selected columns. This can also be
used to put format masks on the columns. So basically, if we want to add some
columns, do some string rearrangement of the columns, or any other manipulation,
then Compute will do it for us. When we create a computation, a new column is
created for us and our computation is applied to it. An example of a computation
on the IR of the first page can be TRUNC (D). Here D is the order_date column.
The new columns can be used just as we use the older ones.

Using Chart in an IR
Chart is the sixth option in the Format menu, and is by far the most exciting feature
of IR. It easily screens the complex architecture of the charts in APEX from the end
user. The user gets the freedom to build a visual treat from him. Available charting
options are horizontal and vertical charts, pie charts and line charts.

Using the Flashback feature of the Actions
menu
Flashback the fifth option in the Actions menu and is a very powerful feature.
We can see this option in the screenshot under the Important features of the interactive
report section. Let's say that an IR is developed on real-time data. A user notices a
surprising change in the data and he wants to reconfirm his observation by checking
out the previous data as well. The user can use this feature to check the data that
existed in the past. APEX uses Automatic Undo Management (AUM) system to
execute the flashback queries. The old data in any DML operation is stored by the
AUM system. Hence, before using this system, you must configure your database
for flashback technology. Refer the following documentation for more details:

http://docs.oracle.com/cd/E11882_01/appdev.112/e25518/adfns_
flashback.htm

Data from the flashback can be retrieved using the SELECT AS OF clause. We can
also use the flashback version query if we want to retrieve older data in some
time interval. Flashback transaction query is another method to get flashback
data. However, APEX uses the SELECT AS OF clause. We can get the query in the
Flashback AJAX call fired by APEX by running the following query by the SYS user:

select * from v$sql where instr(upper(SQL_FULLTEXT),'AS OF')>0

Chapter 3

[117]

You should get a query similar to the following if you carry out this test for the IR
on the first page of the reference application. Note that you will first have to use
the flashback feature in an IR for the query to appear in v$sql view:

select
 apxws_row_pk,
 "ORDER_ID_4_AD_PRES",
 "ORDER_MODE",
 "ORDER_DATE",
 "ORDER_TOTAL",
 count(*) over () as apxws_row_cnt
 from (
select * from (select b.ROWID apxws_row_pk, b.* from (select * from
(
select order_id order_id_4_ad_pres,order_id order_id_4_others ,order_
mode,order_date,order_total from oehr_orders
)) b) as of timestamp (systimestamp - to_number(:APXWS_MINS_
AGO)/1440) r
) r where rownum <= to_number(:APXWS_MAX_ROW_CNT)
 order by apxws_row_pk

Using the Save Report feature of the Actions
menu
Save Report is the sixth item in the screenshot under the Important features of the
interactive report section and let's us save a private, public, or alternate report
depending on our access rights. We can access our saved reports by going to the
Reports Attributes page of our IR and then clicking on the View Saved Report
Activity link in the Tasks panel on the right-hand side of the page. We can also
access saved reports by clicking on the Saved Reports tab next to the Report
Attributes tab. Save Public Report Authorization in the Search Bar section in the
Report Attributes page of an IR can be used to limit the set of users who can save
public reports.

Note that the default and alternate reports can be accessed by using the
following syntax:

f?p=&APP_ID.:&APP_PAGE_ID.:&APP_SESSION.:IR_REPORT_<REPORT_ALIAS>

Let's say we have certain page items which should only be displayed for some of the
public reports. We can do this conditional displaying by using IR_REPORT_<REPORT_
ALIAS>. We can use Request = Expression 1 in our condition section of the item
which we want to make conditional and put IR_REPORT_<REPORT_ALIAS> in the
Expression 1 textbox.

In the APEX Mansion – Interactive Reports

[118]

APEX puts a numeric report ID when an alternate or a default report is created.
We can replace this by some more meaningful IDs. This can be done in the Saved
Reports page of an IR report region.

The Saved Reports page of an IR report region can also be used to delete a
saved report. Deleting of saved reports can also be done using APEX_UTIL.IR_
DELETE_REPORT.

Using the Reset and Download features of the
Actions menu
Reset is the seventh item in the screenshot under the Important features of the
interactive report section and is used to reset the currently active report settings.
Resetting can also be done using the APEX_UTIL.IR_RESET procedure. Download
is the eighth item in the screenshot under the Important features of the interactive
report section and it gives us four download format options. Let's look at each
one of them now.

Configuring the Email functionality
We are talking about e-mail configuration, because e-mailing exists as one of
the options to download an IR. This e-mailing option will not work unless the
configuration described in this section is executed. Configuration of e-mail and
subscription functionality can be used in the following way:

1. Login in to the INTERNAL workspace using your admin credentials.
2. Go to the EMAIL section of Manage Instance from Instance Settings for

configuring this.
3. Put your SMTP mail server address, the port number, and your credentials

which will be used to send the mails.

Once this is done, you will be able to use the Email functionality and the Subscription
functionality. The Email functionality can be used to get the report immediately while
Subscription can be used to get mails on a fixed time of the day and on recurring basis.

We will have to check the desired file format checkbox in the Download section
of the Report Attributes page of an IR for the download link of the corresponding
format to be visible in the Actions menu. The Download section also lets us dictate
the filename of the downloaded file and lets us specify the separators of the CSV file
which is to be downloaded.

Chapter 3

[119]

Downloading in CSV and HTML formats
Apart from using APEX's feature to download an IR in the CSV and HTML format,
we can create our own download link for CSV and HTML formats by putting CSV
and HTMLD in the REQUEST section of the URL. So, a link for downloading the IR on
the first page of the reference application will look like the following:

http://localhost:7001/apex/f?p=131:1:376742729106701:CSV

If you want to create a button for CSV download, then put the following in its target:

f?p=&APP_ID.:&APP_PAGE_ID.:&SESSION.:CSV

Similarly a Target for HTML download will be f?p=&APP_ID.:&APP_PAGE_
ID.:&SESSION.:HTMLD.

Downloading in PDF format
PDF requires us to configure a PDF engine again. APEX does not have a PDF engine
of its own, but APEX Listener can be configured for report printing.. This PDF
configuration is also done in Instance Settings of the Manage Instance page after
logging in the INTERNAL workspace. We have to go to the Report Printing section
for this. Available options are Oracle APEX Listener, Oracle BI Publisher, and
External (Apache FOP). Once this section is configured, we can also use the Print
Attributes page of both IR and classic reports to get the reports in different formats.

Using the Subscription feature of the Actions
menu
Subscription is the last item in the screenshot under the Important features of the
interactive report section and this lets us schedule the delivery of reports by e-mail.
We can check the mail by logging in the INTERNAL workspace under Monitor
Activity. The mail log can also be queried from apex_040200.wwv_flow_mail_
log. We can access our subscriptions by going to the Reports Attributes page of
our IR and then clicking on the Manage Subscriptions link in the Tasks panel
on the right-hand side of the page.

Subscriptions can be deleted from the IR page or can be deleted using APEX_UTIL.
IR_DELETE_SUBSCRIPTION.

In the APEX Mansion – Interactive Reports

[120]

Other configurable attributes of an IR
Alright, now let's go to the Report Attributes page of the IR on the first page of the
reference application, and check out some of the other configurable attributes there.
If you go to the Search Bar section, you will see that you have a few textboxes such
as Button Template, Finder Image, and Actions Menu Image. These textboxes are
accompanied with a number of checkboxes which help in beautifying and customizing
the IR. A screenshot of these checkboxes is displayed as follows for your convenience:

This section dictates which IR features will be available to the users. The names of
most of these checkboxes clearly explain their purpose.

Chapter 3

[121]

Using the Link Column section of the Report
Attributes page
Go to the Link Column section of the Report Attributes page of the IR on the first
page of the reference application. Screenshot is shown as follows for your convenience:

This is IR's way of giving a drilldown. We can obviously use the Column Link
section of the Column Attributes page to create drilldowns, but APEX always
gives more than what we dream. If we select Link to Single Row View in the Link
Column dropdown, APEX will create a column with a pencil icon and will provide
a drilldown to a view which will exclusively shows the row on which we drill down.
We can obviously choose any other icon of our choice by editing the Link Icon
textbox. Run the first page and click on the pencil icon on any row of the IR to see the
single-row view. If we select Link to Custom Target in the Link Column dropdown,
APEX will allow us set our own drilldown. Note that we can use RIR and CIR in the
ClearCache textbox of the Link Column section of the Report Attributes page of
an IR and also of the Column Link section on the Column Attributes page of every
column in an IR. RIR is used to reset to the default IR (clear all filters and formats) on
the target page and CIR is used to clear all report settings.

RIR and CIR can also be used in the clearCache section of the URL. For example, if
we wish to clear all report settings on the third page using URL, we should use the
following URL:

http://localhost:7001/apex/f?p=131:3:551282089043201::NO:3,CIR:P3_
REPORT_ID:5833116732248613#

In the APEX Mansion – Interactive Reports

[122]

Using the Icon View section of the Report
Attributes page
If we select Yes in the Icon View Enabled dropdown of the Icon View section of
the Report Attributes page, APEX adds a link in the search bar to view the report
as icons. To view a report in this mode, we will have to have a query which has a
column for image source, a column for the label of the icon, and a column for the
target of the icon.

Using the Detail View section of the Report
Attributes page
The name does not quite say what it does. This view is APEX's method to let a
developer arrange the data furnished by a query in his own sweet way. You can
create wonders with this view, but you will need a good understanding of HTML
for that. The data returned by the query can be accessed by using the #COLUMN_
ALIAS# substitutions. For example, we can use <tr><td align="right">#ORDER_
ID_4_AD_PRES#</td></tr> in the For Each Row (Use #COLUMN_ALIAS#
substitutions) text area, the Before Rows section can have <TABLE>, and After
Rows can have </TABLE>. IR on the first page of the reference application has
the following code in this section:

<style type="text/css">
p {font-family:"Times New Roman";
background-color:#dddddd;
color:red;} </style> <p>#ORDER_MODE#</p>

Run the first page and click on the View Detail button next to the search bar to view
this code in action. The result is shown as follows and the View Detail button is
highlighted for your convenience:

Chapter 3

[123]

Using the Advanced section of the Report
Attributes page
Go to the Advanced section of the Report Attributes page of the IR on the first page
of the reference application. The following is a screenshot of this section:

Region Alias is to help us reference an IR region in our code. We can give a
unique alias to an IR using this textbox, and then use APEX_APPLICATION_PAGE_IR
to fetch the various attributes of the IR in our code. The alias must be unique within
the application.

Report ID Item is a very important feature of IR. It lets us set different default
views for different users. We can initially save a number of reports and then code
a page item to pick the report ID of one of those saved reports depending on the
user who has logged in. This page item which holds the ID of the report can then
be mentioned in this textbox to let the user view the selected report as his default
report. Report IDs can be retrieved from the apex_application_page_ir_rpt view.
This functionality can also be used to create a report on the saved reports of an IR.
We can use this functionality to give links to open different saved reports of an IR.
Run the third page of the reference application to see the classic report which has
links of different saved reports of the IR on the same page.

In the APEX Mansion – Interactive Reports

[124]

Using the Column Group section of the
Report Attributes page
Go to the Column Group section of the Report Attributes page of the IR on the
first page of the reference application. You will see the Numeric data column
group. Find the screenshot as follows:

We have grouped ORDER_ID_4_AD_PRES, ORDER_ID_4_OTHERS and
ORDER_TOTAL together in the Numeric data column group. The Column Group
section is used to group the columns in the single-row view. We can check out the
single-row view by running the first page and then clicking on the pencil icon in
any row of the IR on the first page. We will always be able to see only two of these
three columns because of the authorizations put on ORDER_ID_4_AD_PRES and
ORDER_ID_4_OTHERS. Find the following screenshot. Note that Order Id 4 Ad
Pres and Order Total are grouped together:

Chapter 3

[125]

Using Dynamic Actions (DA) to add
custom functions in the Actions menu
Now that we have a good idea about the functions and features of IRs in APEX,
it's time to get back to our mischief. We have extensively used DAs to customize
classic reports and now we will use DAs to customize magical IRs. We will use it
to add a new item in the Actions menu of an IR.

The process of doing this, however, remains the same. The first step is to view the
HTML source of the page. The first page of the reference application has Actions
menu. We just have to see the HTML code generated by APEX to render the Actions
menu and then code similar HTML using DAs. If you view the HTML source of the
first page, you should be able to find the following code:

<a href="javascript:gReport.dialog2('SHOW_COLUMN','COLUMN');"
class="dhtmlSubMenuN" onmouseover="dhtml_CloseAllSubMenusL(this)"
title="Select Columns">
Select Columns

This code is responsible for showing the Select Columns link in the Actions menu.
When we click on this link, a call to gReport.dialog2 is made.

We will create a similar HTML code to add a new link to the Actions menu.
We will keep the same classes so that the look and feel remains the same. Our
link will be a single element and will not have lists under it, so we do not need
onmouseover="dhtml_CloseAllSubMenusL(this)". Title is not required, so we
will remove it. The src attribute dictates the image which will be shown for our new
item of the Actions menu. I am putting #IMAGE_PREFIX#menu/pencil16x16.gif as
the src attribute. This is the same image that is displayed for the Link column. We
can also upload images in the Images section present in Supporting Components
and then use them. The text between /> and will appear next to the #IMAGE_
PREFIX#menu/pencil16x16.gif image in the menu.

Alright, now we have to get a handle on the Actions menu. The li code tag as
shown previously is prefixed with the following code in the HTML source:

<ul id="apexir_ACTIONSMENU" htmldb:listlevel="2" class="dhtmlSubMenu"
style="display:none;">

In the APEX Mansion – Interactive Reports

[126]

This tells us that apexir_ACTIONSMENU is the ID of the Action menu and we can
use this ID to get a handle on the menu. Now, we can write any JavaScript function
of our choice to be called from the Actions menu, but since my purpose is to only
show the process, I will use our old buddy, the alert function. Open the Adding
submenu to Actions menu DA in the first page of the reference application. The
code in this DA is as follows:

$('#apexir_ACTIONSMENU').prepend('<a href="javascript:alert(&
quot;Hello World");" class="dhtmlSubMenuN"><img src="#IMAGE_
PREFIX#menu/pencil16x16.gif"> Alert</
li>');

prepend is a standard jQuery function to prepend HTML text to some HTML
handle. is to add blank spaces between the image and the alert text so that
the formatting is proper. " is for double quotes. We cannot put " character
because it messes with the other " characters in the code.

The Adding submenu to Actions menu DA fires on Page Load. See the When section
of the DA for verifying this. The Adding submenu to Actions menu DA affects only
the master report region. The final result of this exercise is the following:

Using CSS in IR
Before I discuss the different ways of using CSS in an IR, I want to introduce you to
the technique of writing code in a CSS file and using the file in APEX pages. It is also
important to understand that the Actions menu can be used to handle many of the
business requirements handled here. The following section only serves the purpose
of informing you about the various possibilities to code in APEX.

Formatting a column using another column
The objective of this section is to format a column, based on another column of the
query of a region source. Let me first talk about the CSS files in APEX, because one
such CSS file is used in the query of region source.

Chapter 3

[127]

CSS code files can be uploaded under the Cascading Style Sheets section of Shared
Components, and then referencing these files in the APEX application can be done
by putting the following in page header or region header:

<link rel="stylesheet" href="#WORKSPACE_IMAGES#4-98-9_03_chapter3.css"
type="text/css" />

I have put the previous link tag code in the header section of the page 101 because it
will be the first page to execute since page 101 is my login page. CSS and JavaScript
files are cached by the browser as soon as they are referenced. So make sure that you
do not have references to a lot of these files in the login page because that will spoil
user experience as the user will have to wait for a longer time for the login page to
appear. If your application does not use an APEX login page, then you can put it
in page 0, because doing this will load your CSS file as soon as your application is
opened and hence you will be able to use the classes defined in it, everywhere in the
application. You can also put these references on individual pages in APEX. When
you put the previous code in your page or region header, your browser usually
stores your CSS file and can use any class defined in it whenever a reference is
made to any class in it. So, if you want to change certain attributes of a CSS class in
the standard APEX templates, and you want these changes to only apply to certain
places and not affect the application as a whole, then you should put the code in the
header of the target region or page. It is also important to note that putting CSS in
the page headers can increase the size of APEX pages, and hence increase the load
time of the page, which can hamper user experience. Again, code in the headers
might affect other regions which use the same class. If you are defining your own
class in the CSS file, then there is no risk since you would be coding the references
of these classes in only the necessary places, and the rest of the application will
work perfectly well.

A side effect of the browser storing the CSS file is that any change made to the
CSS file might not be reflected until we clear the temporary Internet files, since
the browser might be using the older version of the file. Browsers store the file
so that they don't have to load it on every page view. This storing improves the
performance. I have written few classes, which are responsible for formatting
the classic report on the third page of the reference application, in 4-98-9_03_
chapter3.css and I have uploaded it in Shared Components.

You can check the code in the 4-98-9_03_chapter3.css file by going to the
Cascading Style Sheets section of the Shared Components page. A section of
the 4-98-9_03_chapter3.css file is shown as follows for your convenience:

.new_pink_class {color: pink;}

.new_darkgoldenrod_class {color: #B8860B;}

.new_default_class {color: greenyellow;}

In the APEX Mansion – Interactive Reports

[128]

I have used the CSS classes, defined previously, in the REPORT_NAME column of the
classic report on the third page. I have added a column called css_class in the query
of the region source which returns the names of these CSS classes using a decode
function. This query of the region source is shown as follows for your convenience:

select report_id,
 coalesce(report_name, 'Primary Report') report_name,
 decode(report_name,'Group by report', 'new_pink_class', 'Report
with computation', 'new_blue_class', 'Flashback report', 'new_purple_
class', 'Report using Column Break', 'new_red_class', 'Report using
Column Break and Aggregation', 'new_orange_class', 'Column Filter',
'new_brown_class', 'Vertical bar chart', 'new_white_class', 'Row
filter', 'new_crimson_class', 'Pie chart', 'new_darkgoldenrod_class',
'Horizontal bar chart','new_darkred_class','Salary groups','new_gold_
class','new_default_class') css_class
 from apex_application_page_ir_rpt
 where application_id = :APP_ID and page_id = :APP_PAGE_ID
 and (status = 'PUBLIC' or
 (status = 'PRIVATE' and application_user = :APP_USER))
 and report_type != 'SESSION'

I have then used the css_class column in the Link Attributes section of the Column
Attributes page of the REPORT_NAME column. The same can be done in an IR as well.
We can also use the HTML Expression text area of the Column Attributes page of
both classic and interactive reports to use the column retuning CSS class names.

The classes defined in the CSS file can also be defined
in the region header.

APEX_CSS.ADD and APEX_CSS.ADD_FILE can also be used to add CSS content in an
APEX application.

If you are not able to see the rows of the classic report appearing in different colors,
then it means that your browser is not storing the CSS file. In this case, you should
put the definition of the CSS classes defined in 4-98-9_03_chapter3.css in the
header of the third page so that the CSS are available when the page is opened.

Putting the CSS code in the templates is also fine because the code in the region
remains neater this way.

Chapter 3

[129]

Using CSS in the page header to format APEX
data
It is important to understand that font-weight is just an example and the process
can be used for making any change to the display of pages in APEX. If you look at
the HTML source of the third page of the reference application, you will find that
apexir_WORKSHEET_DATA is the class of the HTML table of our IR. So, we can use
this class to get a handle on the entire region. We can use it to search for the required
element and add our formatting. For example, if we want to highlight the Salary
column, then we could put the following code in the Region Header text area in the
Headers and Footer section of the Region Definition page of the IR. You can see the
following code in action in the third page of the reference application:

<style>.apexir_WORKSHEET_DATA td[headers="SALARY"] {font-weight:
bold;}</style>

It is difficult to spot the highlighted text of the Salary column because all the data
of all the columns is highlighted due to the new_class class. We will talk about
new_class in the Using a user-defined CSS class in APEX section. Change the previous
code to the following. This will change the font color of the data in the Salary
column to red. The changed color can easily be spotted.

<style>.apexir_WORKSHEET_DATA td[headers="SALARY"] {color: red;}</
style>

Note that we aren't defining any new CSS class here. We are getting the handle on
a part of the APEX page and then using the handle to change the appearance of
various parts on the page.

The. character in the preceding code helps us get the handle of the element which
have apexir_WORKSHEET_DATA as their class. We then search for the td elements
which have SALARY as the value of their header attribute and change their property.

Changing the font color of alternate rows in APEX
I took the whole CSS thing a little too far and changed the font color of the td
elements, having even as the value of their class attribute, to green. You can see
this code in the Header and Footer section of the Features of IR region on the third
page of the reference application. The code is shown as follows for your convenience:

<style>.even td{color: green;}</style>

The important thing to note here is that we can change the attributes of a CSS class.
Here, all elements that use the even class are getting formatted and the even class is
a part of the APEX theme which we have chosen for our reports.

In the APEX Mansion – Interactive Reports

[130]

Using a user-defined CSS class in APEX
Another method of achieving formatting in APEX is by defining our own CSS class
and using it. We have the following code in the region header of the Features of IR
region of reference application. We have class = "new_class" in the Region HTML
table cell attributes textbox of the Attributes section of the Region Definition page.
The following definition of the class can be seen in the Header and Footer section of
the Features of IR region on the third page of the reference application:

<style>.new_class {font-weight: bold;}</style>

This code changes the font of all data elements in the IR to bold. Run the third page
to verify this.

Conditionally highlighting a column in IR
using CSS and jQuery
Now if we wish to highlight all orders with order_total greater than 50000, then
we put the following code in the IR footer region. This code can be found in the IR
of the first page and has also been shown as follows:

<script type="text/javascript">
$('td[headers="ORDER_TOTAL"]').each(function() {
 if ($(this).text() > 50000) {
 $(this).css('color','red');
 }});</script>

Formatting an IR using a region query
Another method in this series is to define a CSS class in the Header section of the
Region Definition page and to concatenate the column names in the query with the
CSS class name to produce conditional formatting. I have done this to change the
font color of the Finance values of the Department Name column. Go to the region
source of the Features of IR region and note that we are using decode(department_
name,'Finance',' ' || department_name
|| '', ' ' || department_name || ''). This decode
statement assigns finance_class to the rows which belong to the Finance
department. The definition of finance_class is in the Header and Footer section
of Features of IR region on the third page of the reference application. The code is
<style>.finance_class {color: blue;}</style>.

Chapter 3

[131]

Note that the value in the Display Text As dropdown has been changed to Standard
Report Column for the formatting to be effective. I, however, suggest that you refrain
from using this method because the users will have tremendous difficulty in framing
the right filters in the IR. If they set a filter on just the value, they will not get the
records because the value actually contains the class name as well. You will find this
problem when you create filters using the Actions menu on the report on the third
page of the reference application.

Understanding the process of any
customizations in IR
I intend to lay down a process to customize an IR by presenting an example:

1. Log in to the reference application using SKING/SKING and click on the
Features of IR tab.

2. Click on Row filter in the Reports on IR region. Note the icon next to
Saved Report = "Column Filter" on the page.
This icon will change by the end of this section. Screenshot is shown
as follows and the icon is highlighted for your convenience:

3. Move your mouse over this icon. You will see Delete Report as the tip.
This is our clue. We will search for Delete Report in the HTML source
and will then manipulate the HTML element containing Delete Report
as the value of one of its attributes.

4. Search the HTML source for Delete Report. I found this:
<img src="/i/ws/report_remove_20x18.gif" height="18" width="20"
title="Delete Report" alt="Delete Report" />

In the APEX Mansion – Interactive Reports

[132]

report_remove_20x18.gif is the highlighted icon in the previous
screenshot. Our task is to change this icon. We see that Delete Report
is a value of the alt attribute. We will use this to get a handle on the
img tag and change its src attribute to a new value.

5. Our target is to replace report_remove_20x18.gif with a different image.
I have picked trash_32.gif for this purpose. Place the following code in
either the region footer of the IR region or the page footer:
<script type="text/javascript">
$("img").each(function() {if($(this).attr("alt") == "Delete
Report"){$(this).attr("src","/i/ws/trash_32.gif");}});
</script>

In the preceding code, we first get all the handles of the img tag. We then filter the img
tag which has Delete Report in its alt attribute. Finally, we replace the value of the
src attribute by our desired value. I have placed it in the region footer of the Features
of IR region. We chose to put the JavaScript code in the footer and not in the header
because we are grabbing handles of the HTML tags in this JavaScript. These handles
will not be available until the page is loaded. So, this JavaScript has to be in the footer.
I have commented the code; you can uncomment it to see the effect. Refresh the third
page and note the changed icon next to Saved Report = "Column Filter". Screenshot
is shown as follows and the changed icon is highlighted for your convenience:

The key to any customization in an IR is to know the value of any one of the attribute
such as id, class, or alt of the target HTML element. APEX makes this work easier
by prepending apexir to the ids of a majority of the HTML elements in an IR. View
the page source of an IR and search for apexir. I suggest that you have a look at each
of these elements whose ID is prefixed with apexir. Doing this will give you a good
understanding of the organelles which together form an IR.

Chapter 3

[133]

Coding against the internal structures of APEX is a two-headed
sword. It can help to meet any requirement but can also create
problems post upgrading an APEX instance because the internal
structures of APEX might change in the newer versions.

Using APEX views to create a classic
report on saved IRs
In this section, we create a classic report that gives us links to access the saved
reports of an IR. We can query the information about saved reports from the
apex_application_page_ir_rpt view. This view holds the metadata of IR
reports. One row of this report corresponds to one of the saved IRs. Log in as
SKING/SKING and run the third page of the reference application. Screenshot
has been shown as follows and the heading of the classic report is highlighted
for your convenience:

The Reports on IR classic report lets us select one of our saved reports. Its function
is similar to the Reports dropdown. We are using the report_id column of apex_
application_page_ir_rpt to help us uniquely identify each saved report. We are
assigning this report_id value to a page item and this page item is put in the Report
ID Item textbox of the Advanced section of the Report Attributes page of the IR.
The entire query can be found in the Formatting an IR using region query section.

Capturing report ID using JavaScript
We can also capture the report IDs using the following JavaScript code:

<script type="text/javascript">
$("#apexir_SAVED_REPORTS").children().children().each(function() {
alert($(this).val());}); </script>

Here, I am using apexir_SAVED_REPORTS to get a handle on the report drop-down
list and I am then extracting the report IDs from the dropdown.

In the APEX Mansion – Interactive Reports

[134]

Creating multiple IR on the same page
In APEX 4.2, we can have only a single IR on one page. Let us outfox this problem.
The truth is, we can have only one IR on one APEX page and APEX won't let us
create more. So, we will have to create one IR each on two separate pages and then
put them together in one. This has been done in the reference application using
first and second pages. We have used the object HTML tag to get the report of the
second page on the first page. Report on the first page is a report on order_items
while that on the second page is on order_line_items. I wanted to create a master-
detail relation between the two reports, so I had to pass the order_id value from
the first page to the second page. We cannot use the usual column links to set some
page item because the report which we get on the first page, using the object
HTML tag, can only be affected by the data attribute of the object tag. So I am
using application items to set a link between the two pages. When the user clicks on
a link in the Order Id 4 Ad Pres or Order Id 4 Others column of the report on the
first page, we set the G_ORDER_ITEM application item and submit the first page. Since
we have set an application item, the newly set value is visible from the second page
as well. Hence, we can filter the records on the second page using G_ORDER_ITEM
without having the hassle of passing any value from the first page to the second
page. The final result looks like the following:

Chapter 3

[135]

Let us now see the process of creating this report using the following steps:

1. Create one IR on the first page and the other on the second page. Do not
create a tab or breadcrumb for the second page. Make sure that No is selected
in the Link to Single Row View dropdown in both the reports. I see that
One Level Tabs - Right Sidebar (optional / table-based) is the template of
my page. Make sure that you also have the same template, because we will
have to edit it in step 5.
Copy the queries of the region sources of the two IR's from the reference
application. The order_id column has been selected twice in the query
of the region source on the first page and I will reveal the reason for this
shortly. Query in the IR of the second page is again a simple query on
oehr_order_items. This query has a where clause that uses the G_ORDER_
ITEM application item.

2. Create the G_ORDER_ITEM application item.
3. We are now creating a meaningful report alias for our primary report. Right-

click on the report on the second page and select Edit Saved Reports. Put
IR_OEHR_ORDER_ITEMS in the Report Alias column and click on Apply
Changes. If you do not see anything when you select Edit Saved Reports,
then you will have to run the page and then select Save Report from the
Actions menu. You will have to select As Default Report Settings from the
Save dropdown. You will also have to select the Primary radio button and
then hit the Apply button. This will now show the default report when you
select Edit Saved Reports.
This report is the primary default report for the IR on the second page.
Using the same IR region, every user can customize the report in his way
and save his version of the report. So, many customized versions of an IR
can exist. Some of these can be public.

4. Create a new HTML region on the first page. Call it Detail report and put the
following as region source in it. Note the IR_REPORT_ prefix in IR_REPORT_
IR_OEHR_ORDER_ITEMS in the following code. Prefixing IR_REPORT_ to a
report alias lets us access the public report we created on the second page
as shown in the following snippet:
<object type="text/html" data="f?p=&APP_ID.:2:&APP_
SESSION.:IR_REPORT_IR_OEHR_ORDER_ITEMS::::" style="width:100%;
height:750px"></object>

In the APEX Mansion – Interactive Reports

[136]

This code will put the contents of the second page on the first page.
We can use substitution variables in the data attribute of the object tag.
So, we can perform some computation and put a report alias based on our
computation in a page item. We can then use this item as the substitution
variables in the data attribute to make our child report vary according to
certain conditions. The APEX_APPLICATION_PAGE_IR_RPT view can be used
to dynamically get report alias.

5. Go to Shared Components | Security Attributes and then go to the
Browser Security section in it. Select Allow from same Origin in the
Embed in Frames dropdown and click on Apply Changes.
We will now create a copy of our template. The aim is to create a copy of the
page template, edit the copied template, and apply it only on the second page.
This way, we get to customize one page without disturbing the look and feel of
the others. We are editing the template in order to remove tabs and other links
from the second page. We want to remove these things because the second
page is embedded in the first and we have these on the first page.

6. Go to Shared Components and create a copy of the One Level Tabs - Right
Sidebar (optional / table-based) template.
Edit the newly created template. Go to the Body section of it. Delete the
following from it:
<div id="header">
 <div id="logo">#LOGO##REGION_
POSITION_06#</div>
 #REGION_POSITION_07#
 <div id="navbar">
 <div class="app-user">#WELCOME_USER#</div>
 #NAVIGATION_BAR#
 #REGION_POSITION_08#
 </div> </div>
<div id="tabs">
 <div class="frame">
 <div class="bg">
 <div class="tab-holder">
 #TAB_CELLS#
 </div> </div> </div> </div>
<div id="topbar">#REGION_POSITION_01##REGION_POSITION_04#</div>

This code is responsible for showing the logged in username, the logout link,
and the bar that holds the tabs on the top of the page. We are embedding the
second page in the first page and we don't want these things to appear in the
embedded section on the first page.

Chapter 3

[137]

We should also remove the version number which appears at the bottom of
the page. For this, go the footer section and delete the following:
<div class="app-version">#APP_VERSION#</div>
 #REGION_POSITION_05#
</div>

7. Now apply this newly created template to the second page.

We can also use Dynamic Actions to remove these from our
page. We will examine the Dynamic Actions method when
we discuss Interactive Report Dashboard.

8. Go to the Report Attributes page of the report on the first page and click on
the ORDER_ID_4_AD_PRES column. Go to the Link section. Enter #ORDER_
ID_4_AD_PRES# in the Link Text textbox, select Page in this Application in
the Target dropdown, enter 1 in the Page textbox, G_ORDER_ITEM in the
Item 1 textbox, and #ORDER_ID_4_AD_PRES# in the corresponding Value
textbox. Follow a similar process for the ORDER_ID_4_OTHERS column
as well.
This step puts a link on the ORDER_ID_4_AD_PRES and ORDER_ID_4_
OTHERS columns and it sets the order_id value in G_ORDER_ITEM when
the user clicks on the link on any row.

All this work has been done in the reference application. Run the first page of the
reference application to see the result.

Authorizing user groups to view report
columns
The business problem which we will solve here is related to the rights of an individual
user. Let's say that we have a requirement where we want the users with AD_PRES
job_id to do fancy IR stuff such as highlighting, sorting and filtering on the order_id
column, and we do not want these features for other users. We can solve this business
problem by setting different authorizations on two columns which display the same
data. ORDER_ID_4_AD_PRES and ORDER_ID_4_OTHERS are the two such
columns in the reference application.

In the APEX Mansion – Interactive Reports

[138]

Let's now have a look at the CHAPTER3.AD_PRES_AUTHORIZATION function. This
function takes the user ID of the currently logged in user and returns true if the
job_id value is AD_PRES, otherwise it returns false. We have built an APEX
authorization called AD_PRES around this function. AD_PRES authorization is
responsible for passing the user ID of the currently logged in user to the CHAPTER3.
AD_PRES_AUTHORIZATION function. Note that we can use v('APP_USER') in
CHAPTER3.AD_PRES_AUTHORIZATION to get the value of the user ID. The use of
v('APP_USER') is costly because it leads to a lot of switches between the SQL and
the PL/SQL engine. This switching is primarily because v() is a PL/SQL function
and this function will be executed in an SQL statement to check the JOB_ID value
of the currently logged in user. So, passing the value is a lot better.

The AD_PRES authorization is used in the Security section of the Column Attributes
page of the ORDER_ID_4_AD_PRES column (the ORDER_ID_4_AD_PRES column is
in the Master report region of the first page of the reference application). The AD_PRES
authorization ensures that the ORDER_ID_4_AD_PRES column is only visible to the
person with the AD_PRES job_id. When we created the AD_PRES authorization scheme,
APEX created a {Not AD_PRES} scheme for us. You will not be able to see this scheme
listed in the Authorization Schemes section in the Shared Components page, but
you will be able to use it. This scheme has been used in the ORDER_ID_4_OTHERS
column. We have introduced a functional difference between the two columns by
unchecking all the checkboxes in the Allow Users To checkbox group present in the
Column Definition section of the Column Attributes page of the ORDER_ID_4_
OTHERS column. The screenshot has been shown as follows for your convenience:

This prevents the Non AD_PRES users from doing any IR activity such as highlighting
on the ORDER_ID_4_OTHERS column.

Creating Interactive Report Dashboard
Building on the concepts introduced to you till now, I have created an Interactive
Report Dashboard. Check the fourth page of the reference application to have
a feel of it. I have handpicked six of the eleven saved reports of the third page
and arranged them in different regions on the fourth page so that they look like
gadgets. Check the screenshot at the bottom of this section to get a feel of the
Interactive Report Dashboard. Let us now look at the code of one of the gadgets
in the Interactive Report Dashboard to understand the implementation. Open the
region definition of the Row filter region and go to the Source section. The code
has been shown as follows for your convenience:

Chapter 3

[139]

declare
l_row_fltr_rpt_id number;
begin
select report_id into l_row_fltr_rpt_id from apex_application_page_ir_
rpt where application_id = :APP_ID and page_id = 3 and report_name =
'Row filter' and report_type = 'PRIVATE';
htp.p('<object type="text/html" data="f?p=&APP_
ID.:3:&SESSION.::NO:3,CIR:P3_REPORT_ID:'||l_row_fltr_rpt_id|| '"
style="width:100%; height:290px"></object>');
end;

Let us now understand this code. The Htp.p function has been used to put an
HTML object on the browser. I am using apex_application_page_ir_rpt to
get the region IDs. Region ID, fetched from apex_application_page_ir_rpt,
is assigned to P3_REPORT_ID. The assignment is done using the URL which
appears in the data attribute of the HTML Object element.

Notice that each region on the fourth page only shows a report while the URL in
the region source is the URL of the third page. So ideally, each region on the fourth
page should show the entire third page. We are able to cut only the relevant section
of the third page because we have the replaceByRegionHTML DA on the third page
which replaces the HTML code of the page with the HTML of a region if the URL of
the window does not have :3: in it. This basically means that the DA will replace
the HTML of the third page with the HTML code of the required region when the
request comes from the fourth page. The code of this DA is shown as follows:

if ($u_SubString(window.location.href,":3:"))
return;
else
$('#wwvFlowForm').html($(this.triggeringElement).html());

We can also remove the Action menu and the search bar using the techniques
learned in this chapter.

Note that the gadgets in the dashboards are arranged in three columns and three
rows. The width of the columns have been changed by editing the Region Table
Attributes text area of the One Level Tabs - Right Sidebar (optional / table-based)
template. The height of every column is adjusted by putting the following code in
the page header:

<style>.rc-body {height: 300px;}</style>

In the APEX Mansion – Interactive Reports

[140]

Height and width of HTML object element which is inside the region source of the
PL/SQL region is adjusted using the style attribute in the htp.p function in the
region source. A screenshot of the Interactive Report Dashboard is shown as follows:

Understanding Dynamic Interactive
Reports
We had seen that we can make a dynamic classic report by picking Function
Returning SQL Query as the region source in the Dynamic query region in APEX
section of Chapter 2, Conventional Reporting in APEX. We do not have this liberty in
IRs, but we can use the table function using both native and interface approach
and APEX collections to create dynamic reports in IR.

Let us first talk about the table function. It accepts a collection or a ref cursor and
is used in the from clause of a query. The table function can be used as any other
physical table. Two important features associated with a table function are pipelining
and partitioning. We will see information about both of these in the coming sections.
Note the subtle point here. table() accepts a ref cursor or a collection as an argument.
We can define a stored function that returns either one of these and pass the function
as an arguement to table(). Until now, we have been referencing table() as table
function but the stored functions that return a collection or ref cursor are also often
called table functions.

Chapter 3

[141]

Using native PL/SQL table function approach
and conditional columns
In the native PL/SQL table function approach, we declare a table function to
return a collection (nested table or varray) by pipelining every row in the result.
I have used this in the fifth page of the reference application. The query in the
region source is:

select * from table(chapter3.ir_dynmc_rpt_ntv_aprch(:P5_TABLE_
NAME,decode(:P5_TABLE_NAME,'OEHR_ORDERS',:P5_CUSTOMER_ID,:P5_ORDER_
ID)));

Pipelining an output means that data is not cached and is delivered as soon as it is
generated. This also helps to save the memory as the entire result set does not have
to be cached anywhere.

Run the fifth page of the reference application. The dynamic query returns three
columns when the OEHR_ORDERS table is selected and returns two columns when
the OEHR_ORDER_ITEMS table is selected. The table function, however, is declared
to return a table of the chap3_ntv_aproch_tbl_type type. chap3_ntv_aproch_
tbl_type is an object of the chap3_ntv_aproch_type type and chap3_ntv_aproch_
type has three attributes.

So where do we hide the third attribute, that is, ORDER_MODE when OEHR_ORDER_
ITEMS is selected? We have made the Order Mode column conditional. The Order
Mode column is displayed only when OEHR_ORDERS is selected in the P5_TABLE_
NAME item. We can check this in the Conditions section of the Column Attributes
page of the Order Mode column. We can certainly have a different logic to hide
our column.

Collection approach uses a completely different logic to hide
the column. We will see collection approach in a short while.
In the collection approach, we feed null in the third attribute
of chap3_ntv_aproch_type when OEHR_ORDER_ITMES is
selected. We use it to frame a condition that the Order Mode
column should be displayed only when at least one value in
the column is not null.

In the APEX Mansion – Interactive Reports

[142]

The important point to understand here is that the chap3_ntv_aproch_type
type should have the maximum expected columns in the output. If under certain
conditions, some of the columns should not be displayed, then we can feed null
in those attributes and make the columns conditional in APEX.

The chapter3 package has the ir_dynmc_rpt_ntv_aprch function. As discussed
earlier, this function is used in the fifth page of the reference application. Let us
talk about it now. ir_dynmc_rpt_ntv_aprch returns the chap3_rprt_table_type
type by pipelining rows of the chap3_rprt_type type. The following is the code of
this function:

FUNCTION ir_dynmc_rpt_ntv_aprch
 (p_tab_name VARCHAR2, p_filter NUMBER)
 RETURN chap3_ntv_aproch_tbl_type PIPELINED
IS
 single_rec chap3_ntv_aproch_type := chap3_ntv_aproch_
type(NULL,NULL,NULL);
TYPE rc IS REF CURSOR;
 l_rc rc;
 l_oehr_orders constant VARCHAR2 (11 CHAR):= 'OEHR_ORDERS';
 l_query VARCHAR2 (100 CHAR);
 l_id NUMBER;
 l_price NUMBER;
 l_order_mode VARCHAR2(20 CHAR);
 BEGIN
 IF upper(p_tab_name) = l_oehr_orders THEN
 l_query := 'SELECT ORDER_ID, ORDER_TOTAL , ORDER_MODE
FROM oehr_orders
WHERE customer_id = :p_customer_id';
 ELSE
 l_query := 'SELECT ORDER_ITEM_ID, unit_price
FROM oehr_order_items WHERE ORDER_ID = :p_order_id';
 END IF;
 OPEN l_rc FOR l_query USING p_filter;
 LOOP
 IF upper(p_tab_name) = l_oehr_orders THEN
 FETCH l_rc INTO l_id, l_price, l_order_mode;
 single_rec := chap3_ntv_aproch_type (l_id, l_price, l_order_
mode);
 ELSE
 FETCH l_rc INTO l_id, l_price;
 single_rec := chap3_ntv_aproch_type (l_id, l_price, null);
 END IF;
 EXIT
 WHEN l_rc%NOTFOUND;
 PIPE ROW (single_rec);

Chapter 3

[143]

 END LOOP;
 CLOSE l_rc;
 RETURN;
END ir_dynmc_rpt_ntv_aprch;

Let us understand this code. We first create a cursor based on the input arguments.
We then run a loop and store every row returned by the cursor in single_rec
which is a variable of the chap3_ntv_aproch_type type. Every row in single_rec
is then pipelined to return the entire result set. Since ir_dynmc_rpt_ntv_aprch
returns a number of rows of the chap3_ntv_aproch_type type, ir_dynmc_rpt_
ntv_aprch is declared to return chap3_ntv_aproch_tbl_type which is a table of
the chap3_ntv_aproch_type type. ir_dynmc_rpt_ntv_aprch accepts the table
name and a filter value as its arguments. These arguments are passed to ir_dynmc_
rpt_ntv_aprch from the from clause of the query in the region source of the IR on
the fifth page. P5_TABLE_NAME is always passed and only one of P5_CUSTOMER_ID
or P5_ORDER_ID is passed to ir_dynmc_rpt_ntv_aprch. So, in any call to the table
function, only two of the three values are passed.

Using parallel-enabled table functions
Parallel execution means that the execution is distributed among a number
of slave processes which operate in parallel, and hence speed up the execution.
The partitioning approach used by a table function is declared in its specification.
In a partitioned table function, slave processes first do the partitioning and the
partitions are then executed by slave processes to retrieve data in the second step.

The following two conditions must be met for parallel execution to happen:

• The table function should have the PARALLEL_ENABLE clause in its declaration
• The function should accept at least one ref cursor as its argument and one of

these ref cursors should be specified with a partition by clause

chapter3.prllel_enbld_tbl_funct is one such function. This function is not
used in our APEX application, and there are better ways of fetching records from the
oehr_employees table, but this function is written to demonstrate parallel-enabled
table functions:

FUNCTION prllel_enbld_tbl_funct
 (p_cursor chapter3.emp_ref_cursor)
 RETURN chap3_prllel_enbl_tabl_typ PIPELINED
 PARALLEL_ENABLE (PARTITION p_cursor BY range (department_id)) is
 TYPE emp_tab_type IS TABLE OF oehr_employees%ROWTYPE;
 l_emp_tab emp_tab_type;

In the APEX Mansion – Interactive Reports

[144]

 BEGIN
 FETCH p_cursor BULK COLLECT INTO l_emp_tab;
 FOR i IN l_emp_tab.FIRST .. l_emp_tab.LAST loop
 PIPE ROW (chap3_prllel_enbl_typ(l_emp_tab(i).EMPLOYEE_ID,
 l_emp_tab(i).FIRST_NAME,l_emp_tab(i).LAST_NAME,
 l_emp_tab(i).EMAIL,l_emp_tab(i).PHONE_NUMBER,
 l_emp_tab(i).HIRE_DATE, l_emp_tab(i).JOB_ID,
 l_emp_tab(i).SALARY,l_emp_tab(i).COMMISSION_PCT,
 l_emp_tab(i).MANAGER_ID,l_emp_tab(i).DEPARTMENT_ID
));
 end loop;
 CLOSE p_cursor;
 RETURN;
 END prllel_enbld_tbl_funct;

Let me briefly talk about the bits of code involved in making this function work.
We have an object type called chap3_prllel_enbl_typ and a table of this type
called chap3_prllel_enbl_tabl_typ. p_cursor is of the chapter3.emp_ref_
cursor type. emp_tab_type is declared inside prllel_enbld_tbl_funct and is
a table of oehr_employees%rowtype. We created this table type so that we could
collect the entire dataset of the input cursor in a single shot using bulk collect.
prllel_enbld_tbl_funct then runs a for loop to fetch single row from l_emp_tab
and pipe the row object to the calling function.

bulk collect improves performance of DML statements.

We will be passing cursor (select * from oehr_employees) as an argument
to prllel_enbld_tbl_funct and will be collecting the rows of this cursor in
l_emp_tab which is of emp_tab_type, so emp_tab_type has to be a table of oehr_
employees%rowtype. prllel_enbld_tbl_funct returns chap3_prllel_enbl_tabl_
typ. prllel_enbld_tbl_funct range partitions the data based on department_id.

We can also hash partition the data. Range and hash can only be specified if we are
putting a list of columns in the partition by clause. We can also write ANY keyword
instead of a list of columns. If ANY is used, then the data is randomly partitioned
among slave processes.

We can check the output of this function using the following query:

SELECT * FROM TABLE(chapter3.prllel_enbld_tbl_funct(CURSOR
 (SELECT * FROM oehr_employees)))

Chapter 3

[145]

Unterstanding interface table function
approach
In the native approach, we created a type with attributes that match with the
columns of the select clause of our query. We then pipelined a set of rows of
this type. Now, if we do not know the columns in the select clause at the time of
development, then we cannot create a type and hence the query of native approach
cannot handle dynamic queries with different columns in the select clause. The
workaround is to conditionally display the columns. This has been presented to you
in the Native PL/SQL table function approach section. We will now see a method to use
the table function to handle dynamic queries that return different columns in the
select clause. This approach is called the interface approach.

In the interface approach, we create types at runtime. We call it the interface approach
because we implement the ODCITable interface. Interfaces are a set of function
declarations. Implementing the interface means that we create the function definitions
for the functions in the interface. The signature of the functions should match with the
declarations in the interface. The ODCITable interface has the six functions listed in the
following section in the order of their execution. These functions will be used in the
data retrieval process. Interface methods can be written in PL/SQL, Java, or C++.

ODCITableDescribe and ODCITablePrepare are optional to implement, but we
will have to implement them because we do not know the types and the number of
columns in our dynamic select statement. Let me first share the specification and
the body of the CHAP3_INTRFC_APROCH_TYP type:

create or replace TYPE CHAP3_INTRFC_APROCH_TYP AS OBJECT
 (dymc_rcrd_typ ANYTYPE ,
 STATIC FUNCTION ODCITableDescribe
 (p_dynmc_objct_tbl_typ OUT ANYTYPE,
 p_dynmic_imput_stmt IN VARCHAR2) RETURN NUMBER ,
 STATIC FUNCTION ODCITablePrepare
 (p_dymc_tbl_obj_scn_cntxt OUT CHAP3_INTRFC_APROCH_TYP,
 p_tf_info IN sys.ODCITabFuncInfo,
 p_dynmic_imput_stmt IN VARCHAR2) RETURN NUMBER ,
 STATIC FUNCTION ODCITableStart
 (p_dymc_tbl_obj_scn_cntxt IN OUT CHAP3_INTRFC_APROCH_TYP,
 p_dynmic_imput_stmt IN VARCHAR2) RETURN NUMBER ,
 MEMBER FUNCTION ODCITableFetch
 (self IN OUT CHAP3_INTRFC_APROCH_TYP,
 p_orcl_exptd_no_of_rows IN NUMBER,
 p_nxt_btch_of_rows OUT ANYDATASET) RETURN NUMBER ,

In the APEX Mansion – Interactive Reports

[146]

 MEMBER FUNCTION ODCITableClose
 (SELF IN CHAP3_INTRFC_APROCH_TYP) RETURN NUMBER);

create or replace TYPE BODY CHAP3_INTRFC_APROCH_TYP
AS
 STATIC FUNCTION ODCITableDescribe
 (p_dynmc_objct_tbl_typ OUT ANYTYPE,
 p_dynmic_imput_stmt IN VARCHAR2) RETURN NUMBER IS
 l_dynmc_objct_typ ANYTYPE;
BEGIN
 chapter3.g_cursor := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(chapter3.g_cursor, p_dynmic_imput_stmt, DBMS_SQL.
NATIVE);
 DBMS_SQL.DESCRIBE_COLUMNS2(chapter3.g_cursor, chapter3.g_col_cnt,
chapter3.g_descrip);
 DBMS_SQL.CLOSE_CURSOR(chapter3.g_cursor);
 ANYTYPE.BeginCreate(DBMS_TYPES.TYPECODE_OBJECT, l_dynmc_objct_typ
);
 FOR i IN 1 .. chapter3.g_col_cnt
 LOOP
 l_dynmc_objct_typ.AddAttr(chapter3.g_descrip(i).col_name,
 CASE
 WHEN chapter3.g_descrip(i).col_type IN (1,96,11,208) THEN
 DBMS_TYPES.TYPECODE_VARCHAR2
 WHEN chapter3.g_descrip(i).col_type = 2 THEN
 DBMS_TYPES.TYPECODE_NUMBER
 WHEN chapter3.g_descrip(i).col_type = 12 THEN
 DBMS_TYPES.TYPECODE_DATE
 END, chapter3.g_descrip(i).col_precision, chapter3.g_descrip(i).
col_scale, chapter3.g_descrip(i).col_max_len, chapter3.g_descrip(i).
col_charsetid, chapter3.g_descrip(i).col_charsetform);
 END LOOP;
 l_dynmc_objct_typ.EndCreate;
 ANYTYPE.BeginCreate(DBMS_TYPES.TYPECODE_TABLE, p_dynmc_objct_tbl_
typ);
 p_dynmc_objct_tbl_typ.SetInfo(NULL, NULL, NULL, NULL, NULL, l_
dynmc_objct_typ, DBMS_TYPES.TYPECODE_OBJECT, 0);
 p_dynmc_objct_tbl_typ.EndCreate();
 RETURN ODCIConst.Success;
END;
STATIC FUNCTION ODCITablePrepare
 (p_dymc_tbl_obj_scn_cntxt OUT CHAP3_INTRFC_APROCH_TYP,
 p_tf_info IN sys.ODCITabFuncInfo,

Chapter 3

[147]

 p_dynmic_imput_stmt IN VARCHAR2) RETURN NUMBER IS
 l_dummy_num NUMBER;
 l_type ANYTYPE;
 l_name VARCHAR2(30);
 l_typecode NUMBER;
BEGIN
 l_typecode := p_tf_info.rettype.GetAttrElemInfo(1, l_
dummy_num, l_dummy_num, l_dummy_num, l_dummy_num, l_dummy_num, l_type,
l_name);
 p_dymc_tbl_obj_scn_cntxt := CHAP3_INTRFC_APROCH_TYP(l_type);
 RETURN ODCIConst.Success;
END;
STATIC FUNCTION ODCITableStart
 (p_dymc_tbl_obj_scn_cntxt IN OUT CHAP3_INTRFC_APROCH_TYP,
 p_dynmic_imput_stmt IN VARCHAR2) RETURN NUMBER IS
 l_num_dummy NUMBER; l_type ANYTYPE; l_name VARCHAR2(30);
 l_typecode NUMBER;
BEGIN
 chapter3.g_cursor := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(chapter3.g_cursor, p_dynmic_imput_stmt, DBMS_SQL.
NATIVE);
 DBMS_SQL.DESCRIBE_COLUMNS2(chapter3.g_cursor, chapter3.g_col_cnt,
chapter3.g_descrip);
 FOR i IN 1 .. chapter3.g_col_cnt LOOP
 l_typecode := p_dymc_tbl_obj_scn_cntxt.dymc_rcrd_typ.
GetAttrElemInfo(i, l_num_dummy, l_num_dummy, l_num_dummy, l_num_
dummy, l_num_dummy, l_type, l_name);
 CASE l_typecode
 WHEN DBMS_TYPES.TYPECODE_VARCHAR2 THEN
 DBMS_SQL.DEFINE_COLUMN(chapter3.g_cursor, i, '', 32767);
 WHEN DBMS_TYPES.TYPECODE_NUMBER THEN
 DBMS_SQL.DEFINE_COLUMN(chapter3.g_cursor, i, CAST(NULL AS
NUMBER));
 WHEN DBMS_TYPES.TYPECODE_DATE THEN
 DBMS_SQL.DEFINE_COLUMN(chapter3.g_cursor, i, CAST(NULL AS DATE)
);
 END CASE;
 END LOOP;
 chapter3.g_execute := DBMS_SQL.EXECUTE(chapter3.g_cursor);
 RETURN ODCIConst.Success;
END;
MEMBER FUNCTION ODCITableFetch
 (self IN OUT CHAP3_INTRFC_APROCH_TYP,

In the APEX Mansion – Interactive Reports

[148]

 p_orcl_exptd_no_of_rows IN NUMBER,
 p_nxt_btch_of_rows OUT ANYDATASET) RETURN NUMBER IS
 l_get_val_4_varchar_col VARCHAR2(20);
 l_get_val_4_nmbr_col NUMBER; l_get_val_4_date_col DATE;
 l_name VARCHAR2(30); l_typecode NUMBER;
 l_attr_type ANYTYPE; l_num_dummy NUMBER;
BEGIN
 IF DBMS_SQL.FETCH_ROWS(chapter3.g_cursor) > 0 THEN
 ANYDATASET.BeginCreate(DBMS_TYPES.TYPECODE_OBJECT, self.dymc_
rcrd_typ, p_nxt_btch_of_rows);
 p_nxt_btch_of_rows.AddInstance();
 p_nxt_btch_of_rows.PieceWise();
 FOR i IN 1 .. chapter3.g_col_cnt LOOP
 l_typecode := self.dymc_rcrd_typ.GetAttrElemInfo(i, l_num_
dummy, l_num_dummy, l_num_dummy, l_num_dummy, l_num_dummy, l_attr_
type, l_name);
 CASE l_typecode
 WHEN DBMS_TYPES.TYPECODE_VARCHAR2 THEN
 DBMS_SQL.COLUMN_VALUE(chapter3.g_cursor, i, l_get_val_4_
varchar_col);
 p_nxt_btch_of_rows.SetVarchar2(l_get_val_4_varchar_col);
 WHEN DBMS_TYPES.TYPECODE_NUMBER THEN
 DBMS_SQL.COLUMN_VALUE(chapter3.g_cursor, i, l_get_val_4_nmbr_
col);
 p_nxt_btch_of_rows.SetNumber(l_get_val_4_nmbr_col);
 WHEN DBMS_TYPES.TYPECODE_DATE THEN
 DBMS_SQL.COLUMN_VALUE(chapter3.g_cursor, i, l_get_val_4_date_
col);
 p_nxt_btch_of_rows.SetDate(l_get_val_4_date_col);
 END CASE;
 END LOOP;
 p_nxt_btch_of_rows.EndCreate();
 END IF;
 RETURN ODCIConst.Success;
END;
MEMBER FUNCTION ODCITableClose
 (SELF IN CHAP3_INTRFC_APROCH_TYP) RETURN NUMBER IS
BEGIN
 DBMS_SQL.CLOSE_CURSOR(chapter3.g_cursor);
 RETURN ODCIConst.Success;
END;
END;

Chapter 3

[149]

Understanding the ODCITableDescribe function
The ODCITableDescribe function is executed at query-complication time. This
function is called when a dynamic query is fired for the first time. We created two
ANYTYPE objects namely, l_dynmc_objct_typ and p_dynmc_objct_tbl_typ in
the ODCITableDescribe function. Creation is done by the ANYTYPE.BeginCreate
procedure. We parse the dynamic query using DBMS_SQL to get information such
as precision and scale of the data types of the columns in the select clause. We
then execute DBMS_SQL.DESCRIBE_COLUMNS2 and we loop through each column info
returned by DBMS_SQL.DESCRIBE_COLUMNS2 and then add attributes to l_dynmc_
objct_typ. So we get an object (l_dynmc_objct_typ) that has attributes which
represent the columns of the input dynamic query. We then create p_dynmc_objct_
tbl_typ as a table of l_dynmc_objct_typ.

Understanding the ODCITablePrepare function
The ODCITablePrepare function is also executed only once per query. Just like
ODCITableDescribe(),ODCITablePrepare() is executed when the dynamic
query is fired for the first time. ODCITablePrepare has an OUT parameter of the
CHAP3_INTRFC_APROCH_TYP type. This type has been defined in the using clause of
chpater3.tbl_funct_intrfc_aproch. The p_tf_info.rettype.GetAttrElemInfo
function has a number of arguments. Apart from the first one, the rest are the OUT
arguments and out of all these arguments, we are only interested in l_type. Since
the rest are unnecessary, I fetch all the number type arguments in one variable called
l_dummy_num. This simplifies and shortens the code. l_type returned here is having
the attributes of l_dynmc_objct_typ and l_type is actually a variable of ANYTYPE.
This might be confusing but the interface is designed in such a way that p_tf_info
is a handle to get the attributes of the table type created in ODCITableDescribe, that
is, p_dynmc_objct_tbl_typ. Since p_dynmc_objct_tbl_typ is a table of l_dynmc_
objct_typ, so we are able to fetch it. The type of l_type is ANYTYPE because this
will let l_type capture any structure. We use l_type to create an object of CHAP3_
INTRFC_APROCH_TYP. We are able to do a casting from ANYTYPE to CHAP3_INTRFC_
APROCH_TYP because CHAP3_INTRFC_APROCH_TYP also has an ANYTYPE attribute
called dymc_rcrd_typ. Check the specification of CHAP3_INTRFC_APROCH_TYP to
verify this. This newly created object, p_dymc_tbl_obj_scn_cntxt, is called the
scan context. Scan context is created only when the dynamic query is fired for the
first time because ODCITablePrepare() is fired only when a dynamic query is fired
for the first time. On subsequent firing of the same query, the scan context created in
the first query execution is reused. This scan context is passed to ODCITableStart()
when ODCITableStart() is called at the beginning of the query execution.

In the APEX Mansion – Interactive Reports

[150]

Understanding the ODCITableStart function
The ODCITableStart function initiates the scan of the table function. We are
only interested in getting the l_typecode value. Look what is happening here.
We are parsing the dynamic query again. The parsing done in ODCITableDescribe
cannot be reused because ODCITableDescribe runs only when the dynamic query
is executed for the first time, and hence the parsed query will not be available in
subsequent calls. We are doing this parsing because we want to define the columns
that will appear in our select clause. This defining is done by DBMS_SQL.DEFINE_
COLUMN. Defining of columns lets Oracle know about the type of the columns it
should expect in the dynamic query. Our scan context was also created by parsing
the p_dynmic_imput_stmt variable and the same variable is again used in the
parsing here, so the output of the two parsing will be the same and hence we can use
the scan context to get typecode. Values of typecode correspond to the data type
of the columns of the dynamic SQL statement. So we have different cases for each
possible data types in dynamic SQL. Note that the code here can only handle the
number, varchar2, and date columns. If you anticipate your dynamic query to have
a column that returns timestamp value, then you will have to add an extra case for
timestamp in this place.

After defining the columns, we then execute the dynamic query using
DBMS_SQL.EXECUTE.

Another thing to note in this function is the use of variables defined in the chapter3
package, namely, chapter3.g_cursor, chapter3.g_col_cnt and chapter3.g_
descrip. We have to assign the returned values to variables in the package and
not some local variables in the function because we will need these variables in
ODCITableFetch() and local function variables in ODCITableStart will not be
visible in ODCITableFetch().

Understanding the ODCITableFetch function
This is the place where we fetch the data and put it in an ANYDATASET object.
Note that chapter3.tbl_funct_intrfc_aproch is also declared to return an
ANYDATASET object so it makes sense that ODCITableFetch() puts the data in the
ANYDATASET object. Retrieving of value is done by the DBMS_SQL.COLUMN_VALUE
procedure. Again, if you expect that your columns will not be of varchar2, date,
or number type, then you will have to put an extra case statements here.

Understanding the ODCITableClose function
This is to close chapter3.g_cursor which was opened in ODCITableStart.

Chapter 3

[151]

I have created an APEX page with an interactive report that uses chapter3.tbl_
funct_intrfc_aproch. I have hardcoded a select string but you could either store
your select query in a page item and use it in the interactive report region source
as a substitution variable, or could write a function returning a VARCHAR2 query
string and pass that function name as an argument to chapter3.tbl_funct_
intrfc_aproch.

A report on interface approach can be seen on the seventh page of the reference
application. The query in the region source is:

SELECT * FROM TABLE(chapter3.tbl_funct_intrfc_aproch('SELECT *
FROM oehr_employees'))

Understanding the collection approach
The collection approach is easier to implement the dynamic queries when compared
to the previous approaches. APEX has an entire API, and we will use it for our
advantage. APEX collections have a blob column, a clob column, a XMLTYPE column,
five date columns, six number columns including a sequence ID, 52 varchar2 columns
which include a column for MD5 check, and another for collection name. Data in these
columns can be manipulated using the APEX_COLLECTION API. Some of the important
functions in this API are APEX_COLLECTION.COLLECTION_EXISTS, APEX_COLLECTION.
CREATE_COLLECTION_FROM_QUERY, and APEX_COLLECTION.DELETE_COLLECTION.

To make the report dynamic, we have to make the report columns conditional
so that they are displayed only if the columns have data. This sixth page of the
reference application uses the collection approach. You can go to the Column
Attributes and note that the following query has been placed in the Conditions
section of the C001 column:

select c001 from apex_collections where collection_name = 'DYNAMIC_IR_
P6' and c001 is not null

Other columns also have the same condition with their own column names in the
query. I have hidden COLLECTION_NAME, SEQ_ID, CLOB001, BLOB001, XMLTYPE001,
and MD5_ORIGINAL columns. Headings are made more meaningful by using page
items as substitution variables. These page items are fed by the Feed Headers page
process. Page process can be used to synchronize column headings with the column
data. Note that I have created only two page items, namely P6_C001 and P6_C002,
for the headers. The number of items that should be created for headers should
be equal to the maximum number of expected columns in the result. The purpose
of P6_TABLE_NAME, P6_CUSTOMER_ID, and P6_ORDER_ID is the same as that of the
corresponding items on the fifth page.

In the APEX Mansion – Interactive Reports

[152]

It is interesting to note that if collections are used with the classic reports, and if
any column in a classic report did not have the header and data, then that column
would not have been displayed even if the Show checkbox for the column had been
checked. We can find the Show checkbox of a column in the Report Attributes page
of a report. I have checked this using theme 3 and the same might not happen in
other themes. If this does not work, then you can obviously make the whole thing
work by making the column conditional, just the way we are doing it in IR. I have
created one classic report on the sixth page which uses collection and shows only
the two columns which have header and data. Note that the column C003 is not
displayed even when the Show checkbox in the Report Attributes page for this
column is checked. Let us have a look at the Report Attributes page first. Note
that the heading is blank and Show checkbox is checked:

The output of the classic report is:

If we check the Show checkbox of all columns and if we prudently synchronize
the heading and column data, then we can create dynamic classic reports based on
collections without having to do the laborious work of putting conditions on every
column. It is important to note that we can set the headings using PL/SQL code in
classic reports so it is easy to synchronise it with the data and hence we do not have
to create page items for every column in a classic report in order to make the column
heading dynamic.

Chapter 3

[153]

The collection used in interactive and classic report on the sixth page is fed from
the Feed Collection process which runs On Load – Before Regions. So basically,
whenever any select list is changed, the page is loaded and Feed Collection is
executed On Load – Before Regions with the values of the select lists. The Feed
Collection process in turn calls chapter3.ir_dynmc_rpt_colction_aprch which
deletes DYNAMIC_IR_P6 if it already exists, and then creates a new one. The following
is the code for the Feed Collection page process and the chapter3.ir_dynmc_rpt_
colction_aprch procedure:

begin
If nvl(:P6_TABLE_NAME,'OEHR_ORDERS') = 'OEHR_ORDERS' then
chapter3.ir_dynmc_rpt_colction_aprch(nvl(:P6_TABLE_NAME,'OEHR_
ORDERS'),nvl(:P6_CUSTOMER_ID,101));
else
chapter3.ir_dynmc_rpt_colction_aprch(nvl(:P6_TABLE_NAME,'OEHR_ORDER_
ITEMS'),nvl(:P6_ORDER_ID,2366));
end if;
end;

PROCEDURE ir_dynmc_rpt_colction_aprch
 (p_tab_name VARCHAR2, p_filter NUMBER) IS
 l_oehr_orders constant VARCHAR2 (11 CHAR):= 'OEHR_ORDERS';
 l_query VARCHAR2 (100 CHAR);
 BEGIN
 IF upper(p_tab_name) = l_oehr_orders THEN
 l_query := 'SELECT ORDER_ID, ORDER_TOTAL
FROM oehr_orders WHERE customer_id = ' || p_filter;
 ELSE
 If p_filter - p_filter = 0 then
 l_query := 'SELECT ORDER_ITEM_ID, unit_price
FROM oehr_order_items WHERE ORDER_ID = ' || p_filter;
 End if;
 END IF;
IF APEX_COLLECTION.COLLECTION_EXISTS (
 p_collection_name => 'DYNAMIC_IR_P6') then
APEX_COLLECTION.DELETE_COLLECTION (
 p_collection_name => 'DYNAMIC_IR_P6');
end if;
APEX_COLLECTION.CREATE_COLLECTION_FROM_QUERY (
 p_collection_name => 'DYNAMIC_IR_P6',
 p_query => l_query);
END ir_dynmc_rpt_colction_aprch;

In the APEX Mansion – Interactive Reports

[154]

It is important to note that every APEX session will have its own DYNAMIC_IR_P6
collection and when chapter3.ir_dynmc_rpt_colction_aprch deletes the DYNAMIC_
IR_P6 collection, it deletes the one of the current APEX session. Again, when we fetch
the collection using the APEX_COLLECTIONS view, the collection of the current APEX
session is displayed. This whole arrangement ensures concurrency.

Since the loading of the DYNAMIC_IR_P6 collection happens On Load – Before
Regions, the collection is always ready for report regions to use.

Summary
We are standing at the end of Chapter 3, In the APEX Mansion – Interactive Reports,
and we have seen different ways and means to use interactive reports in this chapter.
We started this chapter with talking about some of the most important features of
IR. We then switched to a series of ways of formatting IRs. We used DAs to build a
dashboard with a number of gadgets in it. This was followed by coding a mechanism
to put multiple IR's on a page. The chapter ended with going through various ways to
generate dynamic IRs. The dynamic query techniques can also be used in our classic
reports. In fact, these techniques can be used is any place where we are writing a SQL
query. The next chapter will be about all the other reporting options in APEX. The
next chapter will be dedicated to discuss the features provided by APEX so expect to
get more results without spending a lot of time in doing manipulations. It's time for
a break, I will see you in Chapter 4, The Fairy Tale Begins – Advanced Reporting.

The Fairy Tale Begins –
Advanced Reporting

Let's rewind. We saw the architecture in the first chapter, classic reports in the
second, and interactive reports in the third. The first chapter was about laying the
foundation, the second one gave more visible output by using classic reports for
various purposes, and the third one took the whole thing a step further by letting
the user control a lot of things which were in the hands of the developer in classis
reports. This chapter talks about making pretty graphs and charts. The following
are the major learning outcomes of this chapter:

• LDAP (Lightweight Directory Access Protocol) Authentication and the
use of JXplorer for it.

• Creating sparkline charts.
• Creating a report with slider.
• Creating HTML charts using the APEX HTML chart functionality.

We will also see a method to generate HTML on our own. This chapter
will show a method of generating reports using the XMLDB query syntax

• Using Google visualization charts in APEX.
• Creating flash charts. This includes the creation of doughnut chart,

bar chart, line chart, gauge chart, gantt chart, scatter chart, candlestick
chart, and 3D stack chart.

• Creating HTML image maps and Flash image maps.

The Fairy Tale Begins – Advanced Reporting

[156]

• Creating calendars in APEX.
• Ways to create a report which displays images in a column.
• Creating dialog boxes in APEX using jQuery.
• Creating context menus in APEX using jQuery.
• Creating wizards and setting validations on page processes.

About the reference application for
this chapter
Install the reference application for this chapter (4-98-9_04_APEX_Chapter04.
sql). Install the supporting objects as well when you are prompted to do so, while
installing the application. I have created a new table called oehr_galaxy_corp and
have modified OEHR_TIME_DIM and oehr_employees. The changes have been made
so that the charts presented in this chapter make more sense. I have extensively used
DBMS_RANDOM to populate values. This package works like a charm if you have to
create a lot of records with different values. You can check out the Modification and
addition of a few objects script in Supporting Objects of this application to see the
use of the DBMS_RANDOM package.

To log in to the reference application of this chapter, you
would have to change the hostname, port, and DN in the
LDAP authentication scheme. We will discuss the place and
the process to so in the Using LDAP authentication section.

Using LDAP authentication
Since this is advanced reporting, let's start this chapter by talking about some
advanced ways of authenticating the user. Until now, we have only seen the
external table authentication scheme. We do not have to do any configuration
for APEX authentication scheme so we haven't dedicated a section to it. This
section will introduce LDAP authentication to you.

We are using WebLogic to host our APEX listener and WebLogic has an LDAP
server of its own. This LDAP server works on the admin server port. We can use
the same LDAP server to create some users for our application and also create an
authentication scheme based on this LDAP server. Let's see how it's done:

Chapter 4

[157]

1. Login to the WebLogic console (Typical URL: http://localhost:7001/
console) using your WebLogic admin credentials. Here 7001 is the port
on which the admin server is running.

2. Click on Security Realms present in the Domain Structure panel on the
left side of the page.

3. Click on myrealm and then click on the User and Groups tab.
4. Create a user here by clicking on the New button. Select the provider as

Default Authenticator. Enter the username and the password for this
new user.

5. Click on your domain name under Domain Structure, click on the Security tab
and then on Embedded LDAP. The first two textboxes are for the credentials
of the administrator of the embedded LDAP server. Set a password for the
admin user and click on the Save button. Restart WebLogic now.

Please note that Anonymous Bind Allowed should not
be checked because that will be a major security concern.

6. Now let's move on to the APEX part where we create a scheme for
use this new user. Go to the the LDAP Authentication scheme of
the reference application.

7. In the Settings section, Host is the hostname of our Weblogic admin server
or external LDAP server. Port is the port number of our admin server or the
external LDAP server. We can check whether an LDAP server is running on
a port and can check out its connectivity to the server by doing any one of
the following two tests:

 ° Using the ldapbind command on command prompt:
C:\> ldapbind -h localhost -p 7001 -D "cn=Admin" -w Admin

You should get a bind successful message.

 ° Enter ldap://localhost:7001/ on your browser. A dialog box
should open that lets you find users.

Replace localhost and 7001 with your ldap server host and port numbers.
If your LDAP server (embedded in WebLogic or external) uses SSL, then select
Yes in the Use SSL dropdown and configure a wallet for the APEX instance.

The Fairy Tale Begins – Advanced Reporting

[158]

8. Select Yes in the Use Exact Distinguished Name (DN) dropdown and put
your DN in the Distinguished Name (DN) String textbox. My DN looks
similar to the following:

uid=%LDAP_USER%,ou=people,ou=myrealm,dc=apex_weblogic_domain

Here, %LDAP_USER% is the place holder of the user ID, which is used to log in. myrealm
is the security realm in which I have created my user, apex_weblogic_domain is my
WebLogic domain. The DN mentioned here is used in a call to DBMS_LDAP.SIMPLE_
BIND_S, which synchronously authenticates to the directory server using the DN and
the password. We can use JXplorer (an open LDAP browser) to get the DN, which you
can then be used in your authentication scheme.

Process to get the necessary DN from
JXplorer
Perform the following steps to get the DN from JXplorer:

1. Download JXplorer. I had to download a patch as well which had a BAT
file which finally made JXplorer work. So I downloaded jxplorer-3.3.01-
windows-installer.exe and JXv3.2.2rc1deploy.zip. Install the .exe
file and unzip the zipped file. Open jxplorer.bat present in <directory
in which JXv3.2.2rc1deploy.zip is unzipped>\JXv3.2.2rc1deploy\
jxplorer.

2. Enter the hostname (localhost) and the port(7001).
3. Select LDAP v3 as the protocol.
4. Enter dc=apex_weblogic_domain as the Base DN value. Here, apex_

weblogic_domain is the domain in which APEX listener is installed.
5. Enter User + Password as the level.
6. Enter cn=Admin as the user DN value and the password which you had

set in step 5 of the above section. Click on Ok.
7. You should be able to see the following screen with your domain and

security realm:

Chapter 4

[159]

8. Now, right-click on the LDAP user you created and select Copy DN
as shown in the following screenshot. This DN can now be used in
authentication scheme in APEX.

9. Note that we have f?p=&APP_ID.:101 in the Session Not Valid section of
the authentication scheme. 101 is the login page of the application.

We can also use the following code for our LDAP authentication from a PL/SQL
block. I am using the admin user credentials of the LDAP server, but we can use
any other user as well with appropriate DN as follows:

declare
 l_retval pls_integer;
 l_session dbms_ldap.session;
begin
 l_session := dbms_ldap.init('localhost','7001');

The Fairy Tale Begins – Advanced Reporting

[160]

 l_retval := dbms_ldap.simple_bind_s(l_session, 'cn=Admin',
'abcd1111'); -- uid=APEX_USER,ou=people,ou=myrealm,dc=apex_weblogic_
domain
 dbms_output.put_line('Return value: ' || l_retval);
 dbms_output.put_line(DBMS_LDAP.SUCCESS);
 l_retval := dbms_ldap.unbind_s(l_session);
 exception when others
 then
 dbms_output.put_line ('Error:'||rawtohex(substr(l_session,1,8)));
 dbms_output.put_line('error: ' || sqlerrm||' '||sqlcode);
 l_retval := dbms_ldap.unbind_s(l_session);
end;
/

We can also have a look at some of the other functions in the DBMS_LDAP and
DBMS_LDAP_UTIL packages. Some of the important functions are dbms_ldap.
search_s, dbms_ldap.next_entry, dbms_ldap.next_entry, and dmbs_ldap
_util.get_user_dn.

APEX also has a package called APEX_LDAP, which is dedicated to LDAP. APEX_
CUSTOM_AUTH.GET_LDAP_PROPS obtains the LDAP attributes of the current
authentication scheme for the current application.

Creating sparkline reports
Let us now talk about Sparkline reports. Have a look at the screenshot at the bottom
of the section to get a feel of how a sparkline report looks. Page 1 of the reference
application has sparkline reports on it. This report has been tested on IE 8.

Sparkline reports are unique because they show the detail level info at the
parent level. For example, we can use sparklines if we wish to make a report on
the shares being traded in an exchange and we also wish to see the performance of
each individual share in the last month. In such a report, we can have a column of
sparkline which shows the performance of a share in the over one month and have
other columns that show other attributes of the share. So every row in the report
can correspond to a share and can have a sparkline column to list the performance
of the share over a period of a month.

The sparklines are created by the sparklines class which is defined in the jquery.
sparkline.min.js file. This file can be downloaded from http://archive.
plugins.jquery.com/project/sparklines, http://omnipotent.net/jquery.
sparkline/#s-download.

Chapter 4

[161]

You should be able to find the jquery.sparkline.min.js file when you click on
Static Files in Shared Components of the reference application.

Go to the Header text text area of the Header and Footer section of the page
definition of page 1 of the reference application. You should see a reference to the
jquery.sparkline.min.js file here. We have put the reference in the header of the
page so that the definition of the sparklines class is available before the loading of
the region. Note the use of the #WORKSPACE_IMAGES# substitution string references a
file uploaded in the application's workspace.

Go to the query in the region source of the Sparkline Report region on page 1 of the
reference application. The following is the code:

select oehr_ORDERs.order_id, listagg(unit_price,',') WITHIN GROUP
(order by order_item_id) "Price of Order items 1" from oehr_orders,
oehr_order_items where oehr_orders.order_id = oehr_order_items.order_
id group by oehr_orders.order_id

Note the use of the listagg function in the region source. Note the use of order
by in this function. The ordering is done on the order_id column which might not
be beneficial, but had this report been on the shares traded in an exchange then we
could have ordered the prices of each share by date, which would have helped a
user to understand the pattern of trading of each individual share while comparing
different shares.

Go to the Report Attributes tab of the Sparkline Report region on page 1 of the
reference application. Click on the Price Of Order Items 1 column and then go to
the Column Formatting section. You will find the following code in the HTML
Expression textbox under Column Formatting:

#Price
of Order items 1#

The preceding code along with the list of values in the region source query creates a
sparkline bar chart for us. Run page 1 of the reference application to see the code in
action.

Every type of sparkline graph has its own set of attributes, which can be controlled
to get a more customized graph. One of these attributes is sparkBarColor. We have
used this attribute to give different colors to line, bar, and discrete sparkline graphs.
We can also control the attributes of a sparkline from JavaScript by using jQuery.
The values of the attributes are passed as a JSON object. The syntax is as follows:

$('#<html_id_of_sparkline_column>').sparkline(myvalues, {
<attribute>:<value>});

The Fairy Tale Begins – Advanced Reporting

[162]

Note that the names of the attributes in the HTML syntax are different from the
names of the attributes in the jQuery and the JSON syntax. So if you have a working
piece of code in HTML and you try to use the same attribute name in jQuery then it
might not work.

Go to the Report Attributes tab of the Sparkline Report region and note that
Price of order items 2 and Price of Order items 3 are the column links. Both these
column links use #Price of Order items 1#. These three columns differ in the
sparkType attribute.

This more or less brings us to the end of the sparkline report. The sparkline report
looks as follows:

We will now talk about creating a report which has a column with a slider in it for
every row. The slider can be used to change the value and we can submit the report
to commit the changed value in the database.

Creating a report with slider
We will now talk about creating a report which has a column with a slider in it for
every row. The slider can be used to change the value and we can submit the report
to commit the changed value in the database.

Note that this report has been tested using IE 8. Like the previous section, this
section is also hugely dependent on jQuery. jQuery is embedded in APEX and
hence a lot of classes required for using the jQuery features are already there in
APEX. Go to the folder in which you had the _4.1.1_en.zip unzipped APEX
at the time of installation, and navigate to the following directory:

<directory in which apex_4.1.1_en.zip is unzipped>\apex\images\
libraries\jquery-ui\1.8\ui

You should be able to find jquery.ui.slider.js in it. We had given the path of the
<directory in which apex_4.1.1_en.zip is unzipped>\apex\images folder
while creating i.war, and i.war was deployed on WebLogic at the time of installation.
So the jquery.ui.slider.js file can be used by APEX. Have a look at some of the
other .js files in the same folder as these might be of use to you.

Chapter 4

[163]

Some of these such as jquery.effects.explode.js, jquery.effects.pulsate.js,
jquery.effects.shake.js, and jquery.effects.slide.js are really exciting.

Look at the Header Text text area of the Header and Footer section of the page
definition of page 3 to find out the method to reference the files present in i.war
in your application. The syntax is also shared below for your convenience:

<script type="text/javascript" src="/i/libraries/jquery-ui/1.8/ui/
minified/jquery.ui.slider.min.js"></script>

Information about the slider can be found at http://jqueryui.com/demos/slider/.

The slider has been implemented in page 3 of the reference application. We have
created a tabular form which lets us edit the values of the OEHR_EMPLOYEES table.
The salary column has a slider. I made the following choices in the wizard that
creates a tabular form:

1. I did not select EMPLOYEE_ID, DELETE_FLAG, DATE_OF_LEAVING and
COMMISSION_AMOUNT in the Identify Table or View and Columns section.

2. I selected Update, Insert, and Delete in the Allowed Operations dropdown.
3. I chose EMOPLYEE_ID as the primary key and OEHR_EMPLOYEES_SEQ in the

Defaults for Primary and Foreign Keys section, and selected all columns
to be updatable apart from FIRST_NAME and LAST_NAME in the Updateable
Columns section.

The magic is done by a little piece of code in the Region footer section of the Slider
region, which is as follows:

<script type="text/javascript">
$('[headers="SALARY"]').each(function() {
$(this).html($(this).html().replace("text","hidden"));
if ($(this).find($("input")).val() != "")
{ $(this).attr("style","width:200px;");
var default_value = $(this).find($("input")).val();
$(this).slider({ range: "min",min: 4000,max: 24000,value: default_value,
change: function (event,ui) {alert('new salary:' + ui.value); $(this).
find($("input")).val(ui.value);}
});}});
</script>

Starting from the top, [headers="SALARY"] gives us a handle to all the rows of the
SALARY column of the HTML table. The each function lets us perform operations on
each of these rows. We then hide the textbox of the salary column inside the each
function. Note that we cannot select Hidden in the Display As dropdown of the
Column Attributes page to hide the textboxes of the salary column, because doing
this will hide the entire column and we will not be able to capture the current value of
the salary.

The Fairy Tale Begins – Advanced Reporting

[164]

We need the current value of the salary to set the default position of the slider. We
then set the width attribute of the salary column to 200px. Now each td tag has an
input tag and a label tag. The salary value is inside the input tag. So we use the
find function to reach the input tag and then capture the current salary using the val
function. Finally we call the Slider function to put a slider with a minimum value of
4000, a maximum value of 24000 and a default value as the current salary.

When a user changes the value using the slider, the change should happen in the
HTML form element because the values of the HTML form are passed using the
wwv_flow.accept function to the APEX engine, which then takes the necessary
action (modifying the OEHR_EMPLOYEES table in this case). We have seen a small
paragraph about wwv_flow.accept in the Decoding APEX page submissions section
of Chapter 1, Know Your Horse Before You Ride It. Alright, so to make sure that the
change is passed to the form element, we use the input tag and then use the val
function to set its value. We have also put an alert box, so that the user knows
the exact salary which he has set for an employee. You can see the code in action
in page 3 of the reference application, as shown in the following screenshot:

Creating HTML charts
Before we move on to the more fancy Flash charts, let's first check out the other
charting options in APEX.

HTML charts are faster than Flash charts because of the simplicity of the architecture.
HTML charts are a combination of images, HTML, CSS, and JavaScript which
produce a chart. Let's see how it's done.

Creating a bar chart using APEX's HTML chart
functionality
While this subcategory falls under the broad category of charts which use HTML,
JavaScript, CSS, and images; this subcategory of HTML charts is relatively simple
because APEX does most of the work for us.

Chapter 4

[165]

Creating an APEX HTML chart
Create a new region, select Chart as the type of region and then select HTML5
Chart in the Chart Rendering dropdown. Enter the query for the chart. The query
should have three columns. The first one is for the link (we can have null here in the
Bar chart region on page 5 of the reference application, if we do not wish to have a
drilldown on the chart), the second column is for the label, and the third one is for
the value.

Most of the attributes under the query text area are self-explanatory. Axis dropdown
present in Chart Attributes page is a good option. It gives us the freedom to draw a
graph relative to a certain value in the series. Let's say that the last value in the series
is 40, and the Axis has been set to Last Value in Series then all the values which
are less than 40 will have their bars facing downwards and the length of the bars
will be proportional to the deviation of their value from 40. Similarly, values greater
than 40 will have their bars facing upwards and the length will be proportional to
the deviation form 40. The group of Summary check boxes in the Chart Attributes
page of an HTML5 Chart lets us list a few characteristics of the chart at the end of the
chart. The Bar chart region of page 5 of the reference application has an example of
this type of chart, which is as follows:

Displaying the top N and the bottom N rows in an
HTML chart
Go to the Chart Attributes page of the Bar chart region of page 5 of the reference
application. The Display textbox in the Chart Attributes page holds the value of
the maximum number of values that should appear on one page of the chart. We
can use this feature to our advantage if we wish to show the top N or the bottom N
rows, where N is any positive integer. We can have an order by clause in our query
and set the Display textbox to N. We can then set Pagination to No Pagination.
The wizard to create the region does not give the option to set Pagination, but we
can set Pagination by going to the Chart Attributes page. If the query is ordered in
ascending order then we get the bottom N, and if it is sorted in descending order we
get the top N records.

The Fairy Tale Begins – Advanced Reporting

[166]

Note that we will miss the summary section of the chart if we do this. We can
however add our own summary by writing the HTML in the Region Footer section.
Any calculation required in the Region Footer section can be done using standard
techniques of computation in APEX and the value of the computation can be fed to
a page item. The page item can then be used as a substitution variable in the Region
Footer section.

The Bar chart region on page 5 of the reference application uses this technique
 to display the total number of values. Run page 5 of the reference application
and look at the bottom of the Bar chart region to see this. Note that we also get
an option to choose the color of the bars on the Chart Attributes page. We can
draw both horizontal and vertical bar charts using an HTML chart.

Understanding the APEX HTML bar chart behind
the scenes
Behind the scenes, this subcategory of HTML charts makes very little use of JQuery
or JavaScript. The APEX engine has bars of different colors stored in it as GIF files.
You can check out these files in <directory in which apex_4.1.1_en.zip is
unzipped>\apex\images. You can check out green.gif in this directory. green.
gif is used to create a green bar in the chart. When you open this file, you will
probably not be able to see the bar. This is primarily because it is more a dot than a
bar. You will have to zoom in to see it. Similarly, there are .gif files for other bar
colors as well. Depending on the value of the bar, the height is set at runtime using
the height and width attribute of the img tag.

Understanding self-generated HTML charts
Taking a leaf out of APEX's book, we can create our own HTML charts; we can upload
images and associate them with our APEX application or with the workspace. We can
then create a PL/SQL region and use the htp.p procedure to send these images to the
browser. The heights of these images can be dynamically adjusted using HTML, just the
way APEX does it. Now, I must mention that we can achieve similar results using a SQL
query region as well. We have seen how we can use the HTML generated by a query in
formatting the results of the query, in Chapter 2, Conventional Reporting in APEX.

The Self generated HTML region on page 5 of the reference application uses this
technique. Let's look at the region source now, which is given in the following code:

declare
increment integer;
begin
htp.p(' <table class="css_n_html_chart">
 <tr>

Chapter 4

[167]

 <th>Department name</th>
 <th>Count of employees per department</th>
 </tr>');
for i in (select count(employee_id) cnt_of_emp_per_
dept,max(count(employee_id)) over () max_emp,min(count(employee_id))
over () min_emp, department_name from oehr_employees,oehr_departments
where oehr_employees.department_id = oehr_departments.department_id
and delete_flag = 'N' group by department_name) loop
increment := 200/(i.max_emp - i.min_emp);
 htp.p('<tr> <td>' || to_char(i.department_name) ||'</td><td><img
src="#WORKSPACE_IMAGES#value_bar.png" width="'||to_char(i.cnt_of_emp_
per_dept*increment)||'" height="15" />'|| to_char(i.cnt_of_emp_per_
dept) || ' </td> </tr> ');
end loop;
htp.p(' </table>');
end;

The region source starts with setting css_n_html_chart as the class of an HTML
table. This class is defined in 4-98-9_04_chapter4.css in the Cascading Style Sheet
section of the Shared Components tab. The only big use of this class is to set the color
attribute of the th (table header) to pink. Run page 5 of the reference application and
note that the color of the headers in the Self generated HTML region is pink, as shown
in the following screenshot:

You can have much more CSS in this place. My motive is just to show a possible
method of adding CSS to this type of region. Honestly, you can define classes in any
legal place such as templates, region and page headers, and so on, and then use the
class here. After declaring the table with a class, we add a few headers to the HTML.
This is followed by running a loop which generates the bars of different widths.
Note the syntax used to reference value_bar.png which has been uploaded in the
Images section of the Shared Components tab and has been associated with this
application's workspace.

The Fairy Tale Begins – Advanced Reporting

[168]

We can also achieve the same result using CSS instead of
using images. We can use CSS to create blocks of different
colors. This will also help to improve the performance.

Creating a report from XMLTYPE
The Report from XMLTYPE region on page 5 is not exactly a chart, but I wish to
bring it here because we are discussing the use of PL/SQL to generate HTML and
this region also does the same.

The syntax of this region might look a little unfamiliar, but that is only because we
have never used it till now in this book. We had a little dealing with XMLDB when
we were talking about the architecture of APEX, and we had a little natter about the
XML DB HTTP server which breathes in XML DB.

The basic theme behind this region is that XML DB can be used to generate XML
tags and an HTML page is also a set of tags, just that the tags in HTML hold special
meanings. Deducing the meaning of these tags is the job of the parser, so the generator
of these tags can be agnostic to the fact that the tags hold special meanings as long as
the right structure is generated. XML DB is a little religious about XML. It does not
forgive any mistake in the XML formation. The region source of XML DB is as follows:

Declare
XML_RETURN CLOB;
l_temp varchar2(32767);
Begin
select xmlquery('
<table class="report-standard">
<tr><th id="EMPLOYEE_ID" class="header">EMPLOYEE_ID</th><th
id="JOB_ID" class="header">JOB_ID</th><th id="FIRST_NAME"
class="header">FIRST_NAME</th><th id="LAST_NAME" class="header">LAST_
NAME</th><th id="EMAIL" class="header">EMAIL</th><th id="PHONE_
NUMBER" class="header">PHONE_NUMBER</th><th id="SALARY"
class="header">SALARY</th><th id="HIRE_DATE" class="header">HIRE_
DATE</th></tr>
{
for $i in ora:view("PACKT_SCHEMA","OEHR_EMPLOYEES")/ROW
order by $i/EMPLOYEE_ID descending
return
<tr class="highlight-row">
<td headers="EMPLOYEE_ID" class="data">{$i/EMPLOYEE_ID/text()}</td>
<td headers="JOB_ID" class="data">{$i/JOB_ID/text()}</td>

Chapter 4

[169]

<td headers="FIRST_NAME" class="data">{$i/FIRST_NAME/text()}</td>
<td headers="LAST_NAME" class="data">{$i/LAST_NAME/text()}</td>
<td headers="EMAIL" class="data">{$i/EMAIL/text()}</td>
<td headers="PHONE_NUMBER" class="data">{$i/PHONE_NUMBER/text()}</td>
<td headers="SALARY" class="data">{$i/SALARY/text()}</td>
<td headers="HIRE_DATE" class="data">{$i/HIRE_DATE/text()}</td>
</tr>
}
</table>
' returning content).getClobVal() into XML_RETURN from dual;
loop
if length(XML_RETURN) > 32767 then
l_temp:= substr(XML_RETURN,1,32767);
htp.p(l_temp);
XML_RETURN:= substr(XML_RETURN,length(l_temp)+1);
else
l_temp := XML_RETURN;
htp.p(l_temp);
exit;
end if;
end loop;
end;

In the preceding region source, we are using the CSS classes used in our APEX
theme to maintain the look and feel.

Let me first share the approach here. We are using the XMLQUERY function which
returns an XMLTYPE value. We are using the syntax for XML queries inside this
function. The getClobVal function is used to convert the XMLTYPE value to a CLOB.
This CLOB value is broken into pieces and fed to the htp.p function, which finally
puts it on the browser.

The else section of the If statement is to mark the exit of the loop. If the execution
reaches the else section then it means that we are in the final lap of displaying the
CLOB value. The final part of the CLOB value is sent to the browser using htp.p and
we then exit the loop.

Inside the XMLQUERY function, we start by the HTML table tag followed by a few
th tags. Each of these tags is for displaying a header of a column in the report.
This is followed by a loop which generates a single tr (table row) tag. order by
$i/EMPLOYEE_ID descending orders the result set in the descending order of
employee_id. $i/EMPLOYEE_ID/text() is used to have a tag for EMPLOYEE_ID
in the output HTML (XML).

The Fairy Tale Begins – Advanced Reporting

[170]

The following is a screenshot of a report:

This brings us to the end of HTML charts. I haven't added any frills to this section
but if you have to add any effects or animation then you know that CSS and JQuery
is the way to go.

Creating Google visualization charts
Before we discuss the Flash chart of AnyChart, it is worthwhile to have a look
at the charting option given by Google. I intend to present a small example of a
line chart using Google visualizations and I am sure that you can extrapolate the
technique to create other types of charts using this method. One big advantage
of Google visualizations is that it has some new type of charts, for example, area
charts. So if you are ever stuck in a place where Flash charts do not provide the
necessary charting option, and creating your own HTML chart is too tedious,
then Google visualization is the way to go.

Page 14 of the reference application creates the Google visualization line chart.
You would need an Internet connection for this because the libraries used for
these are stored on Google's server.

You can visit the following link for more information on Google visualization
charts:

https://developers.google.com/chart/interactive/docs/index

Chapter 4

[171]

The following is a screenshot of the chart from the reference application:

Creating Flash charts
AnyChart is a flexible Flash/JavaScript (HTML5) based charting solution which has
been tightly integrated with APEX.

Customizing an XML chart
The Chart Attributes page of a region based on AnyChart lets us set the properties
of the chart. Most of the attributes of the Chart Attributes page are self-explanatory,
so we don't need to discuss them here. We can use the Chart XML section to change
and customize certain properties of the chart. We have to set the value in the Use
Custom XML dropdown to Yes to edit the XML. Flipping the dropdown will show
us the default XML. Check the following link to know about the use of each tag of
the XML:

http://anychart.com/products/anychart/docs/xmlReference/index.html

The user guide can be found in the following link:

http://www.anychart.com/products/anychart/docs/users-guide/index.html

There are tons of configurable tags and I suggest that you have a good look at these,
so that you can twist and turn your charts and make them dance to your own tunes.
For example, you can enable the download of the Flash chart to an image file by
setting the path of a AnyChartPNGSaver.jsp file in the settings section of the XML.
You would have to package this JSP as a WAR file (web archive) and deploy it on the
WebLogic server.

The Fairy Tale Begins – Advanced Reporting

[172]

Once it is deployed, it can be used for printing the report as an image. Similarly,
we can also configure to print the region in a PDF file .You can download
AnyChartPNGSaver.jsp from the following link:

http://www.anychart.com/products/anychart/docs/users-guide/
SaveAsImage.html

Let us now look at an example of customizing the XML of a AnyChart region to
improve its usability. Logarithmic chart on page 15 of the reference application
showcases the massive difference in the usability by configuring certain parameters,
but configuring attributes is not just about usability, it's also about appearance and
animation. <scale type="Logarithmic" /> has been put in the <y_axis > tag in the
Custom XML text area of the Logrithmic chart changed scale region of page 15. This
changes the scale to a logarithmic scale and helps in better projection of the data. Data
values on x axis have also been customized. Run page 15 of the reference application
and note that the comma separating the thousands value is not appearing in the
Logrithmic chart changed scale region. We can also flash the 'scale is logarithmic'
message on the Logrithmic chart changed scale region of page 15, but I leave that
task to you.

I want to bring it to your notice that the order of the column in the
query in the Chart Series section of the Chart Attributes page of
a chart based on AnyChart is important. For example, the series
in a 2D doughnut chart should have the column holding the value
of the link, followed by the column holding the value of the label,
and finally the value column. So check out the query in the series
of every chart in page 2 of the reference application to find the
correct order.

Chapter 4

[173]

Understanding Anychart options using a
doughnut chart
We will now look at Doughnut chart of the reference application and use it as
an example to understand some more options of charts created using AnyChart.
Doughnut charts are used to show the percentage contribution of each of the values.
Go to the Chart Series page of the Doughnut chart region on page 2 of the reference
application. The important thing to note in Flash charts is the Maximum Rows textbox,
which is present at the bottom of the query for the series that generates the chart. If the
series has 20 records and we have put 17 in the Maximum Rows textbox, then the last
few values will be grouped together and labeled as Other so that the number of values
displayed remains 17. If we have a drilldown from the chart then we will not be able to
drill down from the Other value, because Other is actually a collection of values. Color
Scheme in the Chart Settings section on the Chart Attributes page has a set of seven
schemes, which can be used to change the appearance of the chart. We can define our
own scheme by selecting Custom in the Color Scheme dropdown.

The series of a doughnut chart should have three columns, the first one should be the
link text, the second one should be the label, and the third one should be the value.
APEX also gives us the freedom to write a function that returns a query, if we want
to generate the query dynamically. The dynamic query should, however, have the
same three columns in the same order.

In the Chart Series page, you will see an Action Link section. The Action Link
dropdown in the Action Link section has only two values and one of them has to
be selected. When Use Value of LINK Column is selected, then the Link column
value of the chart series is used as a link in drilling down from the chart. When Link
to Custom Target is selected then APEX lets you write any custom link which you
might want.

The reference application for this chapter shipped with the book, has
examples for bar charts, line charts, combination charts (bar and line
charts combined), gauge charts, gantt chart, candle stick chart, scatter
chart, 3D stacked chart, and logarithmic charts. Since the process to
create these charts is similar, a detailed discussion is not required. I
would however talk about the business requirements of some of the
less known chart types.

The Fairy Tale Begins – Advanced Reporting

[174]

Discussion on scatter and 3D stacked charts
Let me briefly say that scatter charts are a plot of points with respect to two metrics.
One metric is on the x axis while the other is on the y axis. Points are plotted on the
XY-quadrants depending on the value of the points on both these metrics.

A 3D stacked chart is a bar chart with segments in every bar. For example, we can
have a 3D stacked chart to show the total income of an employee and we can show
the bifurcation of the income as salary and commission by having two segments
in the bar. The first segment can stand for the salary and the second one can stand
for commission.

Discussion on a gauge chart
If you are dealing with the percentage of contributions to a bigger entity and one of
the special entities holds special meaning to you, then a doughnut graph might not
be able to do justice to you, since doughnut shows all the entities that make a bigger
entity and the bigger the contribution by an entity the more prominently it appears
in a doughnut chart. A gauge chart can be drawn exclusively for one single entity.
Gauge chart is the fourth chart on page 2, as shown in the following screenshot:

Discussion on a gantt chart
I must confess that I saw this chart for the first time when I was dealing with
informatica. Informatica has a number of workflows which are sequenced to
execute one after the other. So a gantt chart is displayed by the tool which creates
a workflow, which starts from the start time and ends at the end time. When this is
done for every workflow, we get a chart which shows the exact time of the starting
and stopping of all workflows. This helps us find the workflow which took the
longest duration and helps us discover the order of execution of the workflows.
Chart number five on page 2 of the reference application is a gantt chart.

Chapter 4

[175]

The reference for customizing the XML for this chart can be found in the following link:

http://anychart.com/products/anygantt/docs/xmlReference/index.html

The following is the screenshot of a gantt chart:

Discussion on a candlestick chart
Candlesticks are a more fancy way of showing data related to share trading. While
a typical line graph can show us the price of the share at any point of the day, be
it the beginning of the day or the end of the day over a period of time, candlestick
graphs show us four different properties of the share trading. Candlesticks show
us the opening price, the closing price, the highest value, and the lowest value of
the share every day over a period of time. This helps in better analysis in judging
the volatility and fluctuations of a particular share. Chart number seven on page 2
of the reference application is a candlestick chart. The following is the screenshot
of a candlestick chart:

The Fairy Tale Begins – Advanced Reporting

[176]

Creating Flash image maps
Anychart has a flash object that lets us create a Flash image map. We have an image
map of Europe in page 6 of the reference application. Our OEHR_EMPLOYEES table did
not have a lot of European countries, so I have used the decode statement to translate
other country names to European country names. You should be able see some data
for France and Ireland on the image map of the reference application as follows:

HTML image maps are similar to AnyChart image
maps in their functionality, but the limitation is the
limited number of shapes, and the effort required
to define the boundary of the typical nation using
HTML. HTML image maps are more helpful where
regular shapes are involved.HTML image maps are
discussed in the beginning of the next chapter.

Creating a calendar
Calendars in APEX are of two types, namely, Easy calendar and SQL calendar.
Enabling the Drag and Drop dropdown in the Easy calendar lets the user drag-
and-drop the data of one date to some other date. SQL calendar lets you write
an SQL statement which returns the display value, the primary key, and the
date on which the display value has to be attached on the calendar. An SQL
calendar has been created for your reference on page 7, which is as follows:

Chapter 4

[177]

Creating a report with images
Use the reference application of Chapter 2, Conventional Reports in APEX to upload
images instead of profiles in the OEHR_EMPLOYEE_PROFILES table. This table is
used for reporting in this section and only the rows which have some value in the
FILEOJBECT column are displayed in this report. If using the application of Chapter
2, Conventional Reporting in APEX is a lot of work then you can also use the exported
OEHR_EMPLOYEE_PROFILES file which has been shipped with this book. I use this
opportunity to introduce the DBMS_DATAPUMP package to you. The Expdp and impdp
utilities are close kin of this package. Apart from the exported file(OEHR_EMPLOYEE_
PROFILES.DMP), the code pack also has a bunch of four scripts. Two of these scripts
are used for exporting the data and two are used for importing. You obviously have
to use only the import scripts because I have attached shipped the exported file with
this chapter. Let me talk a little about these four scripts. 4-98-9_04_grants_for_
dbms_datapump_import.sql is executed after connecting to the sys schema. It gives
the necessary privileges to export the table. 4-98-9_04_export_emp_profiles_
table.sql does the export. It first creates a directory object and then uses the
dbms_datapump package to export data. 4-98-9_04_grants_for_dbms_datapump_
import.sql should be executed after connecting to the sys schema and it grants
the necessary privileges to the schema which has to import the table. 4-98-9_04_
import_emp_profiles_table.sql finally imports the table. This script has some
remapping in it. The metadata of the exported file has packt_schema as the schema
and APEX_1342511262016249 as the tablespace. Your tablespace and schema will be
different, so a remapping has to be done to make sure that the data is imported in the
right schema. The script prompts for the schema where the data has to be imported.
It also prompts for the default tablespace of this schema. You can get the default
tablespace using the following query:

select DEFAULT_TABLESPACE from dba_users where username = 'PACKT_
SCHEMA';

The Fairy Tale Begins – Advanced Reporting

[178]

You can know more about the dbms_datapump package from the following resource:

http://docs.oracle.com/cd/E18283_01/appdev.112/e16760/d_datpmp.htm

Page 9 of the reference application shows the various ways of displaying images
in APEX. We will talk about two techniques here. Let's first talk about the Another
method to download column of the Report with images region of page 9 of the
reference application. Go to the region source of the Report with images region,
which is as follows:

Select dbms_lob.getlength("OEHR_EMPLOYEE_
PROFILES"."FILEOBJECT") as "Download file",
HTF.IMG(curl => APEX_UTIL.GET_BLOB_FILE_SRC(p_item_name => 'P9_IMAGE_
ITEM', p_v1 => "OEHR_EMPLOYEE_PROFILES"."EMPLOYEE_ID", p_content_
disposition => 'inline'),cattributes=>'style="float:left;width:32px;he
ight:24px;"') as "Another method to download"
from "OEHR_EMPLOYEES" "OEHR_EMPLOYEES","OEHR_EMPLOYEE_PROFILES"
"OEHR_EMPLOYEE_PROFILES"
where "OEHR_EMPLOYEES"."EMPLOYEE_ID" = "OEHR_EMPLOYEE_
PROFILES"."EMPLOYEE_ID"
and "OEHR_EMPLOYEES"."DELETE_FLAG" = 'N'
and "OEHR_EMPLOYEE_PROFILES"."FILEOBJECT" is not null

Note that the APEX_UTIL.GET_BLOB_FILE_SRC procedure of APEX API is used
to display the Another method to download column. This method requires a file
browse item and P9_IMAGE_ITEM is for this purpose. HTF.IMG helps us in creating
an HTML img tag and we have set Standard Report Column in the Display As
dropdown of the Column Attributes page of the Another method to download
column, so that the img tag does not appear as text but as an image on the
APEX page. The style attribute is used in the above query to set the width and
height of the image. The Download file column on the other hand uses a totally
different technique. In this technique, the query source should not query the blob
column but should pass the column as an argument to the dbms_lob.getlength
procedure. The rest of the magic is done by the format mask. Now check out the
Number / Date Format column of the Column Attributes page of the Download
file column. It says IMAGE:OEHR_EMPLOYEE_PROFILES:FILEOBJECT:EMPLOYEE_
ID::::::attachment:Profile.

The general syntax of the format mask is: IMAGE:Table Name:Column
containing BLOB:Primary Key Column 1:Primary Key Column 2:MIME type
Column:Filename Column:Last Update Column:Character Set Column:Content
Disposition:Alt Text IMAGE in the beginning of the format is to tell APEX that we
wish to see the image and not a link to it. This is followed by the table name, and then
by the column which holds the blob image. We then have the primary key of the table
which holds the blob object. The next slots are respectively the second column of the
primary key of the table, the mime type, column containing the filename, last updated
date, character column set, content disposition, and the alt text.

Chapter 4

[179]

Let us talk about this format mask now. Images do not need the filename. Filename, in
the format mask, might be important if we wish to download the file using a link, but
not if we wish to see the file as an image. However, column containing the filename
still occupies a section in our download format so that the same format can be used to
download a file as well as to see it as an image. The same logic holds true for character
column set and content disposition. The last part, that is, alt text is used to fill the alt
attribute of the img tag of HTML that will be generated to display the image. If the last
updated date section has a column in it, then the HTTP header gets this value which
enables browsers to cache the blob object. This can result in significant performance
improvement depending on the size of the blob objects.

Creating a dialog box
When we click on some help text in APEX wizards, we get a dialog box which has
some meaningful info about the role of the corresponding item. Guess what, we can
create the same dialog box for our reports as well. Check page 10 of the reference
application and click on any one of the order IDs.

You will see that a dialog box opens which shows the order lines of all the order on
which you clicked. So, how did we do it?

Page 10 of the reference application actually has two regions. The Detail report
region has been given a static ID, called Detail, in the Attributes section of the
region definition page so that we can get a handle to this region, whenever required.

Go to the JavaScript section of page definition of page 10 of the reference application.
The code in the JavaScript section is as follows:

function openDialog (p_order_id)
{ var ajaxObject = new htmldb_Get(null, html_GetElement('pFlowId').
value, 'APPLICATION_PROCESS=Set P10_ORDER_ID', $v('pFlowStepId'));
 ajaxObject.addParam('x01',p_order_id); var ajaxReturn =
eval(ajaxObject.get());
 ajaxObject = null;$a_report_Split($x('Detail').region_id.substr(1),
'1_15_15',null);
$("#Detail").dialog("open");
}
 $.fx.speeds._default = 1000;
 $(function() {
 $("#Detail").dialog({
 autoOpen: false, width: 600, modal: true,
 open: function(event, ui){},beforeClose:
function(event, ui) {},
 closeOnEscape : true
 }); });

The Fairy Tale Begins – Advanced Reporting

[180]

It defines a JavaScript function called openDialog. This function accepts the
order_id value. It passes the same by an AJAX call to a page process which sets
the P10_ORDER_ID page item. We then get a handle to the Detail report region using
$x('Detail').region_id.substr(1). Note that we are able to get the handle
because we had defined Detail as the static id of the region. This handle is used
to refresh the report using the a_report_Split function. Since the Detail report
region uses P10_ORDER_ID, and since we have already set P10_ORDER_ID so the PPR
refreshes the report with the new value. We then use the jQuery's dialog function to
open the dialog. The openDialog JavaScript function defined by us ends here. The
rest of the code in the JavaScript section of page definition is outside the openDialog
JavaScript function and is hence executed on page load. Check out the autoOpen
attribute of the $("#Detail").dialog. This attribute prevents the dialog box from
opening when the page load although the $("#Detail") dialog itself is executed
on page load. The Open and beforeClose attributes are also important as they let
you define any custom operation of your choice based on the events on the dialog
box. modal: true part of the code dims the background. The result of the dialog
box region is shared in the following screenshot:

Note that the $("#Detail").dialog code which executes on page load is
also responsible for the magical disappearance of the Detail report region in
the parent page.

The preceding code has been tested in IE 8.

Chapter 4

[181]

Creating a context menu
This is another one of those features which has been borrowed from APEX
environment. When you right-click on any of the region in APEX, you will see a
menu which gives you options to perform different operations on the region. Similar
menus can be created in our application by using the context menus. I have used two
resources to create a context menu on page 11 of the reference application, which are
as follows:

http://archive.plugins.jquery.com/project/jqueryContextMenu

http://www.trendskitchens.co.nz/jquery/contextmenu/

The following screenshot of the context menu region is pasted for your convenience:

Let us now talk about the code of context menus. The Header text text area of the
Headers and Footers section of the page definition of page 11 has the following text:

<script type="text/javascript" src="#WORKSPACE_IMAGES#jquery.
contextmenu.r2.js"></script>

jquery.contextmenu.r2.js has been imported in the Static Files section under
Shared Components and has been associated with the application's workspace.
Hence we are able to reference jquery.contextmenu.r2.js using the #WORKSPACE_
IMAGES# substitution string. We have also created an HTML region which has a few
ul and li tags, which is as follows:

Right click to create items
 <div class="contextMenu" id="createItems">

 <li id="SelectList">Create select list
 <li id="TextBox">Create text box
 <li id="DateItem">Create date item

 </div>

The Fairy Tale Begins – Advanced Reporting

[182]

The classes used in this region source are defined in jquery.contextmenu.r2.js
and are an essential part of the architecture for creating context menus. Now come
to the Region Footer text area of the Context menu region, the code in this region
is as follows:

<script type="text/javascript">
 $('#menuCreateItems').contextMenu('createItems', {
 bindings: {
 'SelectList': function(t) {
 alert('\nAction was to Create a select list');
 },
 'TextBox': function(t) {
 alert('\nAction was Create a text box');
 },
 'DateItem': function(t) {
 alert('\nAction was to Create a date item ');
 }
 }
 });
</script>

The bindings attribute has a case for each li tag it sets, and the function to be used
when the user selects a particular item from the context menu. Each li tag becomes
an item in the context menu. The bindings attribute gets a handle on each li tag
using its id. Needless to say, we can have a PL/SQL region to generate this context
menu dynamically.

Creating a wizard and using hierarchical
queries and regular expressions
Let us now understand the process of creating wizards in APEX. When we create
a wizard, APEX creates pages for us and connects those pages with the Next and
Previous buttons. A wizard has been created for you in the reference application as
a sample and it spans over pages 12 and 13. The wizard in the reference application
lets you create a table. Page 12 can be used to enter the name of the table and then
you can use page 13 to define the columns of the table and their types. We could
have done the whole thing in a single page as well. The wizard for creating wizards
lets you create an some information region and it also lets you specify a region
template, which can be used for all the regions created by the wizard across all the
pages. I have, however, deleted the region created by the wizard on page 13 and
created one of my own. The region source uses APEX_ITEM.SELECT_LIST and apex_
item.text to dynamically create items based on the value entered by the user in the
P13_ITEM1 item. Note the use of hierarchical query to dynamically create the number
of rows depending on the value of P13_ITEM1.

Chapter 4

[183]

Note that you will have to press Enter (Return key) to submit the page after entering
a value in P13_ITEM1 text box. Submission of the page will generate a number of text
boxes according to the value entered in P13_ITEM1. The values in the dynamically
created items are fed to the Create table process on submit, which uses APEX_
APPLICATION.G_F01.COUNT to count and process the items for the creation of
the table. The Create table process page process is introducing the APEX_DEBUG_
MESSAGE package to you. This package lets you write your own log messages. Usually
custom tables are created for logging messages, but APEX_DEBUG_MESSAGE is a lot
cleaner and standardized way of doing the same thing. To use APEX_DEBUG_MESSAGE
we first have to mention the log level at which we will like to capture the messages
using the APEX_DEBUG_MESSAGE.ENABLE_DEBUG_MESSAGES procedure. The logging is
then finally done using the APEX_DEBUG_MESSAGE.LOG_LONG_MESSAGE procedure.

We also have regular expressions and REGEXP_LIKE in the Create table process to
make sure that the user enters valid oracle identifiers for column names. A similar
regular expression validation also exists on page 12 to make sure that a valid table
name is entered by the user.

Setting different validations for different parts
of a page process
Note the use of the raise_application_error function in the Process text area and
#SQLERRM_TEXT# in the Process Error Message text area of the Create table process.
Let's say that you want to have different validation messages for different parts of your
page process then you could use the raise_application_error function to raise an
error with your custom text in it, and then use #SQLERRM_TEXT# in the Process Error
Message text area to print this custom error message on the page.

The Fairy Tale Begins – Advanced Reporting

[184]

Summary
This chapter was dedicated to graphical reporting. We started this chapter with
LDAP authentication and then moved on to create sparkline charts. We saw how
we could merge the DML processing in APEX with sliders. We also had a look at
the various ways of creating HTML charts in APEX. This chapter also included a
report that used XMLDB query syntax for reporting. We then moved on to use the
freely available, exceptionally pretty, and easily usable Google Visualizations API
for creating charts in APEX. We also explored a different dimension of flash charts
using AnyChart. This was followed by different ways to show images as a report
column. We then started exploring jQuery for reporting and saw the use of jQuery
context menus and dialog boxes in APEX. We brought this chapter to an end by
creating a wizard and looking at a method to code validations on page processes
in APEX. The next chapter will be an extension to this and my attempt will be to
demonstrate a few things to beautify your application. See you in Chapter 5, Flight
to Space Station – Advanced APEX.

Flight to Space Station:
Advanced APEX

Let me begin this chapter from where I had left the previous one. This chapter
will introduce some of the things which were missed out of the previous chapter.
The following are the major learning outcomes from this chapter:

• Creating client side and server side HTML image maps
• PL/SQL server pages (PSP)
• Loadjava utility
• Understanding Oracle OLAP cubes
• Understanding APEX plugins
• Understanding Oracle advanced queuing
• Overview of APEX views, APEX advisor, data loading wizard,

and database object dependencies report
• Understanding the process for downloading APEX applications

using APEX utilities
• Understanding APEX websheets
• Understanding APEX shortcuts
• Understanding Resource Templates
• Using FusionCharts to create a funnel chart
• Understanding background jobs in APEX
• Creating tag clouds in APEX
• Brief discussion on some of the important PL/SQL packages
• The process to configure mail in APEX

Flight to Space Station: Advanced APEX

[186]

So there is a lot in our kitty. Before we begin, install the reference application
(4-98-9_05_chapter05.sql) for this chapter. The reference application uses
APEX authentication scheme.

Creating HTML image maps
In the previous chapter we saw a pretty Flash image. We will now have a look at
HTML image maps. HTML image maps can be used in places where basic shapes
are involved, as carving out complex shapes using HTML might be a bit tedious.
HTML image maps can be of the following two types:

• Server side image maps
• Client side image maps

We will have a look at these now.

Server-side image maps
In the server side image map, we put an image in the src attribute of the img tag
and set the ismap attribute of the img tag. The following is the code in the Server
side image map region on the first page of the reference application:

When the user clicks on the image, the coordinates of the point on which the user clicks
are appended to the target URL of the image as highlighted in the screenshot below.
If you click on the image in Server side image map region, you would get an alert as
shown in the next screenshot. This alert has been generated by <script type="text/
javascript"> javascript:alert(window.location); </script> code present
in the region Header and Footer section. If the user is not using a mouse then the
coordinates will be (0, 0).

Chapter 5

[187]

The coordinates have intentionally been appended to the end of the URL so that they
don't fiddle with the APEX URL. This is done by adding a number of colons in the
value of the href attribute in the previous code. We can collect the coordinates from
server side image maps and use them to create client side image maps.

Client-side image maps
In the client side image maps, the HTML source itself contains the code to make
a link out of certain portions of the image. We can mark a rectangular, circular or
polygonal region of an image as a link.

Check the code in the client side image map on the first page of the reference
application. A link on the rectangular part of an image has been created by the
following code:

<area shape="rect" coords="110,28,167,83" href=http://www.yahoo.com>

The arguments of the coords attribute are the coordinates of the top left corner
(110,28) and the bottom right corner (167,83) of the rectangle.

A link on the circular part of the image has been created by the following code:

<area shape="circle" coords="45,45,32" href="http://www.google.com">

The arguments of the coords attribute are the coordinates of the center of the circle
followed by its radius. Click on the circular and rectangular parts of the image in
Client side image map region and you will be redirected to google.com and yahoo.
com respectively. The following screenshot is provided for your convenience:

Takes us to
google.com

Takes us to
yahoo.com

Client side image map

A polygonal link on an image can be created using shape="poly" and passing the
pair of coordinates of all the end points of the polygon. A comma should be used
as the separator for a pair of coordinates and also as a separator of the X-coordinate
value from the Y-coordinate value of the same point.

Flight to Space Station: Advanced APEX

[188]

Creating PL/SQL Server Pages (PSP)
This section introduces PL/SQL Server Pages (PSPs) to you. PSPs are a mechanism of
writing PL/SQL and HTML code together to produce a webpage. APEX developers
can use this technology to their advantage. Coding in PSPs is more comfortable than
coding a stored procedure that does web interaction using the htp and htf packages.
If you have worked with Java then you will realize the similarity between PSP and
Java Server Pages (JSP). Just like Java and HTML can be coded in a JSP, both PL/SQL
and HTML can be coded in a PSP. Check out the following documentation for more
details:

http://docs.oracle.com/cd/E11882_01/appdev.112/e25518/adfns_psp.htm

The code pack contains show_emps.psp. This file serves the purpose of a readymade
example to check out the PSPs in action. You can put this file in the database using
the following command on the command line:

loadpsp -replace -user packt_schema/packt_schema "<Directory of show_
emps.psp>\show_emps.psp"

Note that the extension of the file has to be .psp.

On successful execution of the command you should get a message similar to the
following in the command prompt:

"D:\Work\Final code stack\Chapter 05\show_emps.psp": procedure "show_
employees" created.

The following is the code of the PSP:

<%@ page language="PL/SQL" %>
<%@ page contentType="text/html" %>
<%@ plsql procedure="show_employees" %>
<%-- This example displays the last name and first name of every
employee in the employees table. --%>
<%!
 CURSOR emp_cursor IS
 SELECT last_name, first_name
 FROM oehr_employees
 ORDER BY last_name;
%>
<html> <head> <meta http-equiv="Content-Type" content="text/html">
 <title>List of Employees</title> </head> <body TEXT="#000000"
 BGCOLOR="#FFFFFF">
 <h1>List of Employees</h1>

Chapter 5

[189]

 <table width="40%" border="1">
 <tr> <th align="left">Last Name</th>
 <th align="left">First Name</th> </tr>
 <% FOR emp_record IN emp_cursor LOOP %>
 <tr> <td> <%= emp_record.last_name %> </td>
 <td> <%= emp_record.first_name %> </td> </tr>
 <% END LOOP; %>
 </table></body></html>

After the successful execution of the command, you should be able to see show_
employees procedure in packt_schema. We have mentioned the name of the
procedure using plsql procedure directive in the PSP file. If we do not use plsql
procedure directive then Oracle assumes the name of the PSP file to be the name
of the PL/SQL procedure. The newly created show_employees procedure is a
translation of the code in show_emps.psp file. All PSP related syntax is replaced by
calls to PL/SQL web toolkit functions in the newly created procedure. We can now
call this procedure using DADs (Database Access Descriptors) or APEX Listener.
Check the Database and Web interaction in both DAD and Listener configurations section
of the Appendix to learn more about this topic.

Once the Listener/DAD has been configured, we can see the list of employees using
http://localhost:7001/apex/PACKT_SCHEMA.show_employees.

My defaults.xml has <entry key="security.inclusionList">apex, p, v,
f, wwv_*, y*, c*, PACKT_SCHEMA.*, packt_schema.*, apex_util.*</entry>
and my output looks like the following screenshot:

Understanding and using loadjava utility
loadjava is another command line utility like loadpsp. This utility is not widely
used and hence is not widely known. The utility can be used in situations where
we have to use a java class in APEX to meet the objective. Let us look at a simple
example of using a java class in a PL/SQL program.

Flight to Space Station: Advanced APEX

[190]

The hello_world.java file is a part of the code pack and contains a java class called
hello_world. Note that the name of the java class and the java file should match.
The hello_world class contains a static function called hello_world which returns
the Hello world string.

Open command prompt and get into the folder which holds hello_world.java
(supplied in the code pack) and run the following command:

javac hello_world.java

This will create hello_world.class file. A .class file is the byte code for the
Java virtual machine (JVM). We will upload this .class file, and our uploaded
.class file will be used by the inbuilt JVM of Oracle server. Run the following
command to upload the .class file as a database object on the Oracle server:

loadjava -user packt_schema/packt_schema "<Directory of hello_world.
class>\hello_world.class"

You can also compile the java class directly against the JVM of the
database server. I like this approach because this avoids version
problems. If the version of the JVM on your machine is higher
than the version of the JVM on the database server then there is a
possibility that a java class might compile in your machine but give
errors when it is executed on the database server. The following is
the syntax to compile the java class against the JVM of the database
server:

loadjava -user packt_schema/packt_schema "<Directory
of hello_world.class>\hello_world.java"

Oracle Java development is a whole big area and this small paragraph is just an
introduction to it. Check out the following documentation if you wish to sink deeper:

http://docs.oracle.com/cd/E18283_01/java.112/e10588/toc.htm

After creation of the class, a PL/SQL wrapper has to be created around the class
so that the code can be used in a PL/SQL program. The following code creates
the wrapper:

FUNCTION helloworld RETURN VARCHAR2 AS
 LANGUAGE JAVA NAME 'hello_world.hello_world () return java.lang.
String';

You can find this code in chapter05 package. chapter05 package is compiled in the
database at the time of the installation of your reference application.

Chapter 5

[191]

To test this wrapper, open sqlplus and connect using packt_schema and run the
following code:

Set serveroutput on
Exec dbms_output.put_line(chapter05.helloworld);

You should be able to see the Hello world string which is returned by the hello_
world.hello_world java function.

You might also want to check the DBMS_JAVA package which provides a library of
java related database functions. See the following URL:

http://docs.oracle.com/cd/E11882_01/java.112/e10588/appendixa.htm

Creating funnel charts using
FusionCharts
Just like AnyChart, FusionCharts also has a few products which can be used as
charting options and just like AnyChart, FusionChart is a flash charting option as
well. The best part is that just like Google Visualization API, FusionChart is free.
You can find more about FusionChart in the following place. The third page of
the reference application has a funnel chart created using FusionCharts:

http://www.fusioncharts.com/goodies/fusioncharts-free/

Let us now see the process of creating funnel charts using FusionCharts.

We will first have to download and unzip FusionChartsFree.zip. The Charts
folder in the unzipped contents has a bunch of .swf files. Different types of flash
charts have different .swf files. I uploaded FCF_Funnel.swf for funnel chart in the
Static Files section of the Shared Components of reference application. We also
have to upload the FusionCharts.js file from the JSClass folder to Static Files
section of the Shared Components.

Let us now talk a little about the code in Funnel chart region in third page of the
reference application. The following code is shared for your reference:

DECLARE
 l_xml_data VARCHAR2 (32767);
 l_width VARCHAR2 (10):='700'; l_height VARCHAR2(10):='565';
BEGIN
 l_xml_data := '<chart numberPrefix=''$''>';
 FOR i IN

Flight to Space Station: Advanced APEX

[192]

 (SELECT first_name,salary FROM oehr_employees WHERE rownum < 15) LOOP
 l_xml_data := l_xml_data || '<set name=''' || i.first_name || '''
value=''' || i.salary || ''' />';
END LOOP;
 l_xml_data := l_xml_data || '</chart>';
 HTP.p ('<div id="funnelChart" align="center"/><script
language="JavaScript" src="#WORKSPACE_IMAGES#FusionCharts.js"></script>
 <script type="text/javascript">
 var funnelChart = new FusionCharts("#WORKSPACE_IMAGES#FCF_Funnel.
swf", "funnelChartId", "' || l_width || '", "' || l_height || '", "1");
 funnelChart.setDataXML("' || l_xml_data || '");
 funnelChart.render("funnelChart");
 </script>');
END;

In this code, l_xml_data holds the XML data in the format in which FusionChart's
swf object expects. We then use HTP.p function to put some JavaScript code to the
browser. The JavaScript code starts by declaring FusionCharts.js as the source
of the JavaScript functions. The code then creates a JavaScript FusionCharts object
which accepts the .swf file along with some more attributes such as height and
width as arguments. This is followed by a call to setDataXML which binds the
XML data with the newly created object. Finally, the render function renders the
chart. FusionCharts.js and FCF_Funnel.swf have been associated with the
workspace and hence the use of the #WORKSPACE_IMAGES# substitution string in
the code. The following is a screenshot of our funnel chart:

Chapter 5

[193]

Creating tag cloud
Tag cloud is a fancy name given to something that is one of the basic features of
Oracle APEX. In the Implementing classic report search functionality section of Chapter
2, Conventional Reporting in APEX, we had seen that APEX puts an enveloping query
if we wish to enable the search functionality on a classic report region. In this search
functionality, the user has to put a text which is searched in the database. There might
be some scenarios where a user might want to get a list of options, one of which can
be selected to search. A tag cloud fills this gap by providing a list of options to search.
It is called a cloud because the list is often presented as a collection of links forming a
cloud-like shape instead of a list. The following is a screenshot of the tag cloud from
the reference application:

To create a tag cloud, we first need a report in which the selected string will be
searched. This report is more like a drilldown report. The cloud is created using a
PL/SQL region. You can find the sample code in the fourth page of the reference
application. The same has been shared for your convenience:

begin
 htp.p('<style type="text/css">A:hover {color: red;} </style>');
 for i in (SELECT LISTAGG(htf.anchor(ctext => first_name,curl =>
'f?p='||:APP_ID||':4:'||:APP_SESSION||'::::'||'P4_SEARCH:'||first_
name), ',') WITHIN GROUP (order by first_name) AS employees
 FROM (select first_name,mod(rownum,25) mod_rownum from oehr_
employees)
 GROUP BY
 mod_rownum) loop
 htp.p(i.employees);
 end loop;
end;

In this code, LISTAGG is used for string aggregation and htf.anchor is used for the
generation of the links. mod (rownum,25) is used to group the results such that the
tag cloud occupies a relatively smaller width on the screen. P4_SEARCH holds the
value which is selected by the user. For the sake of demonstration, let us assume
that the first names of the employees are tags.

Flight to Space Station: Advanced APEX

[194]

In a real world, you can store tags in a table and use those tag names instead of
employee first names. Note that my region query is comparing all columns of
employee table with the page item containing the selected first name value because
a tag is not generally associated with a column. It is a generic text and is searched in
the whole set of data. So even though, we realize that the first names will not result
in any match in the other columns, we are comparing them with the other columns
to show the process. This type of query will benefit from Oracle text indexes. Learn
more about Oracle text indexes from http://docs.oracle.com/cd/E11882_01/
text.112/e24436/whatsnew.htm.

We can also use JQuery to generate our tag clouds. Following is the link to explore
this option:

http://archive.plugins.jquery.com/node/3109

Creating plugins
We have used a lot of JQuery code and have tinkered with the APEX standard features
to attain our motives. What if you had many applications and all of these required the
same tinkering? The solution is called plugin. Plugins let you write a definition of an
item, region, process, dynamic action, authentication, or an authorization type. This
definition can then be plugged in any application and can be used as the standard
item or page or region or dynamic action, or authentication or authorization type.
Plugins are APEX's way of involving the developers in the tool enhancement process.
A repository of all plugins created by developers around the globe can be found at
http://apex.oracle.com/plugins.

To implement a plugin, you have to define a set of functions with predefined
signatures. These functions are called interface functions. The name of the
functions can be of your own choice but the argument list and the type of the
arguments must match with the predefined structure. This standardization
helps the APEX engine in processing a plugin.

Creating item and page process plugin
We will first see the process of creating item plugins. We will see two item plugins.
The first one (packt_render_text_box_item) just formats the appearance of the
item when it is displayed on an APEX page while the second one (packt_render_
text_box_item_improvd) is an improved plugin and it is capable of sending the
values entered in the item to the APEX engine.

Chapter 5

[195]

If you wish to define an item plugin, then the function that renders the item must
look like the following code:

function <name of function> (
 p_item in apex_plugin.t_page_item, p_plugin in apex_plugin.t_plugin,
p_value in varchar2, p_is_readonly in boolean, p_is_printer_friendly
in boolean)
 return apex_plugin.t_page_item_render_result

Similarly, if the item plugin uses Asynchronous JavaScript and XML (AJAX) to load
additional data, then the function that is executed on an AJAX call should look like
the following code:

function <name of function> (p_item in apex_plugin.t_page_item, p_
plugin in apex_plugin.t_plugin) return apex_plugin.t_page_item_ajax_
result

A function that performs a validation on the items of the item plugin type should
look like the following code:

function <name of function> (p_item in apex_plugin.t_page_item,
p_plugin in apex_plugin.t_plugin, p_value in varchar2) return apex_
plugin.t_page_item_validation_result

We can either define these functions in the PL/SQL region in the Source section
of the plugin itself or can have stored database functions and then mention those
function names in the plugin definition.

packt_render_text_box_item plugin in the reference application is an APEX item
plugin and the rendering function for this plugin has been put in chapter05 package.
The rendering function has htp.p('<input type="text" style="background-
color: #F00" />'); which displays a text box with a red background.

It is important to note that a plugin is your own baby. So, APEX will not do anything
to make your life easier if your plugin becomes a problem. For example, in our plugin,
we create an HTML text box with red background and APEX did just that for us but
how do we use this text box now? From the Decoding APEX page submissions discussion
in Chapter 1, Know Your Horse Before You Ride It, we know that APEX puts a system
generated value in the name attribute of the HTML tag generated for page items. This
value, in the name attribute, is used by wwv_flow.accept process. The name of the
APEX item becomes the id of the corresponding tag in HTML. wwv_flow.accept is
responsible for getting the values in the client side HTML page to the server side APEX
engine. So the big question is, in the case of our plugin item, who will do this job?

Flight to Space Station: Advanced APEX

[196]

The answer is that we have to do this. The good news is that we have APEX_PLUGIN
and APEX_PLUGIN_UTIL to help us do this. We can solve the problem of sending the
value of the HTML element to the APEX engine by using APEX_PLUGIN.GET_INPUT_
NAME_FOR_PAGE_ITEM. The packt_render_text_box_item_improvd plugin uses
this function. The rendering function of this plugin is chapter05.render_text_
box_item_improvd and we have the following code in it:

htp.p ('<tr><td><label for="'||p_item.name||'">'||p_item.name||'</
label></td>'||'<td><input type="text" style="background-color: #F00"
'||
 'name="'||APEX_PLUGIN.GET_INPUT_NAME_FOR_PAGE_ITEM (p_is_multi_value
=> false)||'"/></td></tr>);

Here p_item is a variable of type apex_plugin.t_page_item which is a part of the
signature of the interface function. Check APEX_PLUGIN and APEX_PLUGIN_UTIL
for some other important functions in the packages.

The second page of the reference section has the Log plugin value procedure which
logs the value of two page items namely, P2_PLUGIN_ITEM and P2_IMPROVED_
PLUGIN_ITEM. P2_PLUGIN_ITEM is created using packt_render_text_box_item
plugin and P2_IMPROVED_PLUGIN_ITEM is created using packt_render_text_box_
item_improvd plugin. Open the second page of the reference application, enter some
values in the Plugin Item and P2_IMPROVED_PLUGIN_ITEM text boxes and click
on the Submit button. Run the following query to see that the value of P2_PLUGIN_
ITEM is not captured while the value of P2_IMPROVED_PLUGIN_ITEM is captured:

select * from apex_debug_messages where application_id = 102 and page_
id = 2 and message_level = 5

Change the application_id if you have installed the reference application with a
different ID.

Let us now check out some of the other properties of item plugins. Open the packt_
render_text_box_item plugin from Shared Components | Plug-ins to make more
sense of the talk. If Is Visible Widget check box of Standard Attributes (highlighted
in the next screenshot) is checked, then we see an extra step in the Create Item
wizard that lets us enter certain attributes such as height and width of the item
based on the plugin.

Chapter 5

[197]

The visible attributes will depend on the checking of the checkboxes in the
Standard Attributes section and defining of attributes in the Custom Attributes
section of the plugin.

A plugin developer can create his own attributes in the Custom Attributes
section of a plugin. When we click on the Add Attribute button (highlighted in
the preceding screenshot), we are taken to a page that lets us define an attribute
for the plugin. Most of the fields in this page are self-explanatory. The Scope
drop-down list is important. If you select the scope as Component then you get to
set the attribute you are defining for every item that uses the plugin. If you select
the scope as Application then the attribute in question can only be defined once
per application. The values fed into the Custom Attributes, at the time of using
the plugin to create items, regions, and other such objects, can be accessed in the
plugin code. The interface functions of an item plugin have a variable of apex_
plugin.t_page_item type. A variable of apex_plugin.t_page_item type can be
used to get the value of custom attribute of an item created using an item plugin.
Let us say that the name of a variable of apex_plugin.t_page_item type is p_item.
The first custom attribute associated with the plugin can then be accessed using
p_item.attribute_01. Similarly, if we were creating a process type plugin then
we could access the first custom attributes using p_process.attribute_01 where
p_process is a variable of apex_plugin.t_process, and apex_plugin.t_process
is one of the arguments present in the interface for process plugins. The success
message defined at the time of creating a plugin can be accessed using p_process.
success_message. packt_da_plugin in the reference application has a custom
attribute and uses it in the interface functions. Let us talk about packt_da_
plugin now.

Flight to Space Station: Advanced APEX

[198]

Creating DA plugin
Dynamic action (DA) plugins are a little different than the other plugins because
the end task of a DA is to execute a JavaScript/JQuery code. So the operational
logic in case of a DA plugin is generally in a .js file while in case of other plugins,
the operational logic is in PL/SQL blocks.

We will do the following in this section. We will create a custom attribute and
capture its value in the rendering function (da_alert). We will then pass this
captured value to a JavaScript function (apex_alert) present in a .js file (da_
plugin.js). The code in this .js file will use this value and display it as a text
in an alert box. This process will help us understand most of the components
of a DA plugin.

Open packt_da_plugin DA and check out the following custom attributes
shown in the following screenshot:

Let us now understand the interface function (da_alert) code in the Source section
of packt_da_plugin DA.

function da_alert (
 p_dynamic_action in apex_plugin.t_dynamic_action,
 p_plugin in apex_plugin.t_plugin)
 return apex_plugin.t_dynamic_action_render_result
is
 l_attr1 varchar2(100) := p_dynamic_action.attribute_01;
 l_result apex_plugin.t_dynamic_action_render_result;
begin
 apex_javascript.add_library (p_name => 'da_plugin',
 p_directory =>p_plugin.file_prefix, p_version => null);
 l_result.javascript_function := 'packt_da_plugin.apex_alert';
 l_result.attribute_01 := l_attr1;
 return l_result;
end da_alert;

Chapter 5

[199]

The arguments of da_alert are according to the interface for the rendering function
of a DA. We capture the first attribute using p_dynamic_action.attribute_01.
The first attribute in our case is the attribute with Alert text label which is shown
in the previous screenshot. We assign its value to l_attr1 in the first highlighted
piece of the previous code. This is followed by the declaration of l_result. We
then use apex_javascript.add_library function to add da_plugin.js file. Every
plugin has its own files and the files can be accessed using the #PLUGIN_PREFIX#
substitution string. This string is defined in the File Prefix text box of the File section
of a plugin. Typical files which are uploaded are the CSS files, images, and JavaScript
files used in the plugin.

In a dynamic action type plugin the JavaScript function is put in a string and that
string is assigned to l_result.javascript_function in our rendering function.
Any properly escaped JavaScript code or a call to a JavaScript function can be
assigned to l_result.javascript_function. We are calling packt_da_plugin.
apex_alert JavaScript function here. This can be seen in the second highlighted
piece of the previous code. The definition of packt_da_plugin.apex_alert is in
da_plugin.js file. The da_plugin.js file has the following code:

packt_da_plugin={
 apex_alert:function()
 {alert(this.action.attribute01)}};

We are able to capture the value of the custom attribute in the JavaScript code of
da_plugin.js using this.action.attribute01. The value is passed to this.
action.attribute01 by assigning l_attr1 to l_result.attribute_01. Refer
to the previous code to verify this.

Handles such as this.affectedElements and this.browserEvent which are used
in a normal DA can also be used in DAs which are based on a plugin. The use of
handles such as this.affectedElements will obviously depend on whether you
have checked their corresponding check boxes in the Standard Attributes section
of the plugin page. If these checkboxes are not selected then a developer using the
plugin will not be able to use them.

Alert on load DA on the first page of the reference application uses packt_da_
plugin and displays an alert textbox when first page is executed. Edit Alert on load
DA and then click on the pencil icon under True Actions section. You would see
your custom attribute under Settings section. The text in this section is displayed
in the alert box when you run the first page of the reference application.

Flight to Space Station: Advanced APEX

[200]

Creating websheet application
This is the newest feature in APEX 4.x and warrants a deeper look. Websheets
empower the end user to create applications of their own. The metadata of the
websheets is stored in APEX generated tables which change according to the design
of the websheet. The end user on the other hand can be blissfully ignorant about
the complexities that lie underneath. A websheet application can be created in a
couple of clicks on the Create Application wizard unlike the traditional database
application wizard which expects you to mention the theme, the homepage, tabs,
and breadcrumbs. Once a websheet application is created, a developer can click on
the Edit Properties button to configure a few properties for the websheet.

Import the websheet reference application (4-98-9_05_chapter05_websheet.sql).
Select File Type as Websheet Application Export while importing the application.
The websheet reference application has an ACL for authorization. After importing
the reference websheet application, click on the Edit button of the application and
go to the Authorization section. Click on the Edit Access Control List button and
add the user ID of the admin user of your workspace.

Check out the Authentication section of the reference websheet application. A few
things missing in the Create Application wizard of a websheet are present here. If you
believe that your end user is PL/SQL educated, then you can select Yes in the Allow
SQL and PL/SQL drop-down of the SQL and PL/SQL section. After doing this, you
can select a list of objects which can be used by the end user to create his objects in the
application. This list of objects can be used to create reports in a websheet.

Before opening the websheet application, add ws* to security.inclusionList of
defaults.xml file as discussed in the Database interaction and Web interaction in both
DAD and Listener configuration section of the Appendix. Restart WebLogic after this.

Open the reference application of the websheet and check out the panel on the right
hand side of it. We will discuss the most important of these links now.

Chapter 5

[201]

Let us now have a deeper look at the set of controls shown in the previous screenshot.
Note that the New Report link is only available because we had edited the properties
of the websheet application and selected Yes in the Allow SQL and PL/SQL drop-
down. This selection also gets a new type of section which lets you write PL/SQL code
as source. We can see this PL/SQL section highlighted in the next screenshot. This PL/
SQL region can be used to fire owa web toolkit functions such as htp.p which will
display the section on the page.

The first two links (New Section and Edit Sections) in the preceding screenshot
can be used to create and edit sections in a websheet. The following are the possible
types of sections. The definition of the all the sections created by us can be found in
the APEX$_WS_WEBPG_SECTIONS table.

Flight to Space Station: Advanced APEX

[202]

If you are creating a Text section then you can click on the small black arrow to
reveal a whole set of tools to beautify your text. Refer the following screenshot:

Let us now look at the prominent features of websheets.

Understanding datagrid
A datagrid is an incredibly useful tool that has many interesting implementations.
You can either create a datagrid from scratch or can copy the data from a spreadsheet.
Spreadsheet data can be copied in a text area while creating a datagrid and APEX
will generate a report based on this data for you. Moreover, the report has most of the
features of interactive reports in it. The data in the websheet can be found in APEX$_
WS_ROWS table in packt_schema.

Understanding reports
The final link in the Control Panel group in the screenshot under Creating websheet
application section helps us to create a report. Report can either be a report on an SQL
query or can be reports on the objects which you might have selected in the SQL and
PL/SQL section while editing the properties of the websheet. This report is also an
interactive report.

Understanding the features of administration
and view drop-downs
Certain administrative tasks such as checking out the activity in the websheet
application, finding the properties set for the application can be done using the
Administration link on the top. The following screenshot of the menu under
the Administration link is given for you convenience:

Chapter 5

[203]

Similarly, the View menu (Refer the next screenshot) has a few functions to help
you track the activities done on the application such as viewing the different objects
created on the application, viewing the uploaded files, tags, notes, and page history.
Presentation Mode is to show the whole application without the widgets that create
objects. The feel of Presentation Mode is the same as that of any database application.

Understanding Websheet Help menu
A user can get help by clicking on the Help link (Refer the next screenshot) present
on the top of a websheet application.

Flight to Space Station: Advanced APEX

[204]

A good understanding of the things mentioned in the Help link is vital for the
development of websheet applications. The Application Content tab (Refer the next
screenshot) of the Help includes the markup syntax to add images to the websheet
application and the syntax to get the link of the reports, datagrids, and other objects
created in the application.

If we had to show an image on our websheet application, then we will first have to
upload the image in the Files section and the syntax for displaying the uploaded
image on the websheet can be found in the Markup Syntax tab of the Help link.
Check the Text section of the reference websheet application for an example of an
uploaded image.

Queries of datagrids have their own syntax. You can check queries for each of your
datagrids in this special syntax by going in the Data Grids tab of the Help link. You
can copy this and paste it in a Text section of your websheet to generate the same
datagrid. A sample of this technique can be seen in the Text section of the reference
websheet application.

The Access Control tab of the Help link gives considerable information on the
various levels of privileges in a websheet. Let us talk about privileges in websheets
and sharing them.

Sharing websheets using ACL
Websheets can be shared with multiple users. Let's see a process to do the same:

1. In the Application Builder, go to the websheet application and click on the
Edit Properties and then go to the Authorization section.

2. Click on the Edit Access Control List button and then click on the Create
Entry button.

3. Put PACKT_ADMIN as the user name and Administrator as the privilege and
then click on the Create button.

Chapter 5

[205]

4. Go back to the properties of the application and then select Custom in Access
Control List Type radio button and click on the Apply Changes button.

5. Run your websheet application and then click on the Administration link on
your Websheet application and select Access Control.

6. Click on Create Entry.
7. Enter the proposed user ID of the user with whom you wish to share

the websheet.
8. Select the Reader role in the radio button list.

A user with Reader privileges has only read-only access. A user with Contributor
privileges can read and edit while a user with Administrator privileges can create
ACLs and can delete the application.

Until this point, we have set the authorization of the new user but we also have to
set the authentication so that the user is able to log in. If we go to the Properties of
the reference application and then go to the Authentication tab of it, we will see
that Application Express Account authentication has been set for it. To enable a
websheet user to be authenticated, we have to create a workspace user. We can
obviously have other authentication mechanisms. We have already seen most of
them in the previous chapters.

Configuring the mail
At present, Oracle 11.2.0.2 Version is only available for Linux 64-bit OS and I am
doing all my installations on my personal Windows 7 laptop. So I am working on
Oracle 11.2.0.1.0. I am sure that when you will be reading this book, Oracle 11.2.0.2
will be available for windows as well.

To demonstrate the mail configuration, I wish to use a Gmail account. The Gmail
SMTP server accepts only SSL requests. UTL_SMTP of Oracle 11.2.0.1 cannot send
such requests but one of the 11.2.0.2 can. Following is a link to the documentation
which confirms this:

http://docs.oracle.com/cd/E11882_01/server.112/e22487/chapter1_2.htm

So, configuring Gmail on 11.2.0.2 will be a lot easier than it was at the time this book
was written, and you will probably be saved from all the extra hard work.

Flight to Space Station: Advanced APEX

[206]

In 11.2.0.2, the signature of open_connection function is different from the one
in 11.2.0.1.0. In 11.2.0.2, the function accepts a wallet path and it's password as
arguments. So we would basically have to create a wallet using Oracle's Wallet
Manager with Equifax Secure Certificate Authority trusted certificate in it. We
can get this certificate from http://www.geotrust.com/resources/root-
certificates/. We would then have to do a handshake by using utl_smtp.ehlo
function. We can then use utl_smtp.starttls which secures SMTP connection
using SSL/TLS. Finally, utl_smtp.auth can be used to authenticate against the
SMTP server.

I will use stunnel to create a SSL wrapper between the client (Oracle database server)
and the server (Gmail SMTP server). I must mention that the following website was a
great support in helping me configure the mail functionality:

http://monkeyonoracle.blogspot.in/2009/11/plsql-and-gmail-or-utlsmtp-
with-ssl.html

Check out the following link to know more about stunnel and to download it:

• https://www.stunnel.org/index.html

• https://www.stunnel.org/downloads/stunnel-4.54-installer.exe

Create the ACL to enable the network service to create a connection. Use the
following code for it:

begin
 dbms_network_acl_admin.create_acl (
 acl => 'gmail.xml', description => 'Normal Access',
 principal => 'CONNECT', is_grant => TRUE,
 privilege => 'connect', start_date => null,
 end_date => null);
end;
/
begin
 dbms_network_acl_admin.add_privilege (
 acl => 'gmail.xml', principal => 'PACKT_SCHEMA',
 is_grant => TRUE, privilege => 'connect',
 start_date => null, end_date => null)
end;
/
begin
 dbms_network_acl_admin.assign_acl (

Chapter 5

[207]

 acl => 'gmail.xml', host => 'localhost',
 lower_port => 1925, upper_port => 1925);
end;
/
commit;

Put the following code in stunnel.conf file. You can find stunnel.conf in the
folder in which you have installed stunnel:

; Use it for client mode
 client = yes
 [ssmtp]
 accept = 1925
 connect = smtp.gmail.com:465

By doing this, you have created an SMTP server on your local machine that operates
on port 1925. You can confirm this by the following command. The code in the
stunnel.conf file redirects this request to Gmail's SMTP server after wrapping
it in the SSL layer. Open stunnel before running the following command in the
command prompt:

telnet localhost 1925

We can now send the mails using the following code:

declare
 g_smtp_host varchar2 (256) := 'localhost';
 g_smtp_port pls_integer := 1925;
 l_conn utl_smtp.connection; nls_charset varchar2(255);
 p_sender varchar2 (255):= 'packt.apex@gmail.com';
 p_recipient varchar2 (255):= 'packt.apex@gmail.com';
 p_subject varchar2(255):='Hii';
 p_message varchar2 (255):= 'Hii';
 -- Write a MIME header
 procedure write_mime_header (
 p_conn in out nocopy utl_smtp.connection,
 p_name in varchar2, p_value in varchar2)
 is
 begin
 utl_smtp.write_data (p_conn,
 p_name || ': ' || p_value || utl_tcp.crlf);
 end;
 begin
 -- get characterset
 select value into nls_charset from nls_database_parameters

Flight to Space Station: Advanced APEX

[208]

 where parameter = 'NLS_CHARACTERSET';
 -- establish connection and authenticate
 l_conn := utl_smtp.open_connection (g_smtp_host, g_smtp_port);
 utl_smtp.ehlo(l_conn, 'any value');
 utl_smtp.command(l_conn, 'auth login');
 utl_smtp.command (l_conn,utl_encode.text_encode('packt.apex@gmail.
com', nls_charset, 1));
 utl_smtp.command(l_conn, utl_encode.text_encode('abcd1111', nls_
charset, 1));
 -- set from/recipient
 utl_smtp.command(l_conn, 'MAIL FROM: <'||p_sender||'>');
 utl_smtp.command(l_conn, 'RCPT TO: <'||p_recipient||'>');
 -- write mime headers
 utl_smtp.open_data (l_conn);
 write_mime_header (l_conn, 'Subject', p_subject);
 write_mime_header (l_conn, 'Content-Type', 'text/plain');
 utl_smtp.write_data (l_conn, utl_tcp.crlf);
 -- write message body
 utl_smtp.write_data (l_conn, p_message);
 utl_smtp.close_data (l_conn);
 -- end connection
 utl_smtp.quit (l_conn);
 exception
 when others then
 begin utl_smtp.quit(l_conn);
 exception when others then null; end;
 raise_application_error(-20000,'Failed to send mail due to the
following error: ' || sqlerrm);
 end;

This should successfully send the mails. We have dug the tunnel and any vehicle can
pass through it. We just saw an example of utl_smtp using the tunnel and now we
will see how apex_mail package can be used to deliver the mails using the tunnel.
We have to start by putting APEX_040200 in the ACL. Execute the following from a
sysdba account:

begin
 dbms_network_acl_admin.add_privilege (
 acl => 'gmail.xml', principal => 'APEX_040200',
 is_grant => TRUE, privilege => 'connect',
 start_date => null, end_date => null);
end;
commit;

Chapter 5

[209]

Note that Gmail requires that the all mail IDs be enclosed in angle brackets (second
highlighted piece of the previous code). The mail ID used for authentication is an
exception to this rule (first highlighted piece of the previous code).

APEX has an inbuilt mail feature and an APEX_MAIL package. We can use these only
if we configure the SMTP server in the Email section of the Instance Settings page
after logging in the INTERNAL workspace. The final configuration of email looks
like the following screenshot:

The Mail process on the fifth page of the reference application is a PL/SQL process
and uses APEX_MAIL.SEND package to send message. The following code is shared
for your convenience:

DECLARE
 l_id NUMBER; l_blob BLOB; l_filename varchar2(50);
 l_row_exists_flag integer: = 0;
BEGIN
 select count(1) into l_row_exists_flag from oehr_employee_profiles
where fileobject is not null and rownum = 1;
 IF l_row_exists_flag > 0 THEN
 select fileobject, filename into l_blob, l_filename from oehr_
employee_profiles where fileobject is not null and rownum = 1;
 l_id:= APEX_MAIL.SEND(
 p_to => '<myselfandyourself@gmail.com>',
 p_from => '<myselfandyourself@gmail.com>',
 p_subj => 'APEX_MAIL with attachment',
 p_body => 'Attachment in mail.',
 p_replyto => '<myselfandyourself@gmail.com>');
APEX_MAIL.ADD_ATTACHMENT(p_mail_id => l_id,

Flight to Space Station: Advanced APEX

[210]

 p_attachment => l_blob,
 p_filename => l_filename,
 p_mime_type => 'application/octet');
 commit;
 ELSE
 l_id:= APEX_MAIL.SEND(
 p_to => '<myselfandyourself@gmail.com>',
 p_from => '<myselfandyourself@gmail.com>',
 p_subj => 'APEX_MAIL without attachment',
 p_body => 'No attachments.',
 p_replyto => '<myselfandyourself@gmail.com>');
commit;
 END IF;
end;

Check the syntax of passing the arguments in the page process. Mail process
on the fifth page of the reference application uses a different technique. It uses the
Mail page process of APEX to send mail. Check the arguments of the process in the
reference application. A screenshot of the delivered mails can be seen as follows:

APEX_MAIL_QUEUE view shows the queued tasks that use the APEX internal mail
configuration and APEX_MAIL_LOG view shows the logs of these tasks. We can delete
the tasks from the mail queue by going to Manage Instance and then clicking on
the Mail Queue in APEX Administration. We can also trigger the mails in the mail
queue from the Manage Instance page.

Chapter 5

[211]

Downloading APEX application without
web server
We generally download APEX applications from the web server but honestly,
we put an extra layer in the process because the applications themselves are
stored in the database. Again there are situations where the web server of the
DEV environment goes down and you have to work on a critical CR. You can
either use a SQL developer to get your application or could use APEXExport
command line utility for this purpose.

Downloading an application from a SQL developer is straight forward. You have
to login to the schema which is the owner of the application and you will see an
Application Express link under the connection. You can expand the link to see the
application and then you can right-click on the desired application to export it.

The other way is to use the APEXExport command line utility which is as follows:

D:\My softwares\apex\utilities>java -classpath "C:\OracleProducts\
Oracle11GDatabase\product\11.2.0\dbhome_1\owb\wf\lib\ojdbc14.jar;D:\My
softwares\apex\utilities" oracle.apex.APEXExport

Executing the preceding command will give an output which will list the various
options which can be used with APEXExport. Note that the classpath argument
should have the ojdbc14.jar file and the apex\utilities folder. You have to get
into the apex\utilities folder to execute the previous command. You can find the
utilities folder in <Directory in which apex_4.1.1_en.zip is unzipped>/
apex/utilities.

We can use oracle.apex.APEXExportSplitter on an exported APEX file if we
wish to create subfolders for each component type.

Understanding Oracle OLAP cubes
We can use OLAP (online analytical processing) cubes for reporting instead of our
traditional relational tables. Let's see the process to create a cube and use it in APEX.
Oracle's OLAP engine is fused into the 11G Version of the database so the creation of
an OLAP cube only requires an Analytic Workspace Manager which gives the UI to
create an OLAP cube. A cube gives you a method to collect the measures of the same
dimensionality. The edges of a cube are dimensions. Multiple cubes in the same
analytical workspace may share a dimension. The order of the listing of dimensions
in a cube affects the performance.

Flight to Space Station: Advanced APEX

[212]

The first dimension in a cube has to be the one with fewest number of dimension
members. OLAP cubes can handle sparse data and we can compress them so that
I/O is minimized and hence performance is improved. Cubes in OLAP 11G come
with a new feature called cost-based aggregation. If the cube is compressed, then
we can specify a percentage amount and Oracle OLAP will pre-compute the most
costly aggregations based on our input. We can have stored (or base) measures and
calculated measures in a cube.

Execute the following statement as sysdba to give the necessary privileges to packt_
schema to create an analytic workspace:

GRANT create procedure, create session, create dimension, Create
materialized view, advisor, olap_user, olap_xs_admin, unlimited
tablespace to packt_schema;

Open Analytic Workspace Manager and create a workspace as shown in the
following screenshot:

Once we have defined an analytic workspace, we can start creating our dimensions.
We can create a REGION dimension and then create a hierarchy on top of this
dimension. In a REGION dimension, the highest level can be ALL REGIONS
followed by the COUNTRY level, and CITY can be the lowest level of the REGION_
HIERARCHY. We can also define a few attributes for the dimension. Once the
dimension is ready, we can map our physical tables to the analytical workspace
by getting into the Mappings section. With all these things in place, our analytic
workspace should look like the following screenshot:

Chapter 5

[213]

The stage is now set to create OLAP cubes using the available dimensions. When
we are creating a cube, we can check the Use Compression check box under the
Storage tab to compress the storage of the cube. Doing this significantly improves
the performance. If any dimension of the cube is sparse, then we can check the Sparse
check box of the dimension and OLAP will create a special index for the dimension
which will automatically manage sparsity. We can classify a dimension as sparse if a
large number of measure cells become null when we add this dimension to the model.
For example, the ratio of the amount of products bought by any one customer to the
total number of products in a supermarket will be small. So the product dimension
can be classified as sparse because adding the product dimension to the model will
result in a lot of measure columns as null. Precompute tab under the Aggregation
tab can be used to specify cost based aggregation percentage if we have chosen to
compress our cube. We can use this to direct OLAP to pre-compute the costliest
aggregations based on our input here. Finally we can create measures in the cube
and map our columns to the relational sources. OLAP cubes can also be represented
as cube organized materialized views that offer significant performance improvement
over traditional Materialized Views (MVs). The query rewrite feature automatically
converts the queries on the relational tables to cube MVs leading to significant
performance gains. These are particularly helpful in summary management of
BI applications.

Flight to Space Station: Advanced APEX

[214]

OLAP creates views for every cube. These views are visible in the AWM and can
be used to query cube data. PACKT_CUBE_VIEW, in the next screenshot, is one
such view:

Analytical workspace or cubes can be exported to Oracle Business Intelligence
Enterprise Edition (OIBEE) but to do that you will have to configure the OBIEE
plugin for AWM. More details on it, you can refer to the following link:

http://st-curriculum.oracle.com/obe/db/11g/r1/olap/biee/
createbieemetadata.htm

Chapter 5

[215]

The views of a cube present the measures and dimension attributes and typically no
aggregation is required on top of the data presented by these views since the data is
already summarized in the OLAP engine. A single query with different values in the
where clause can be used to get the data at different levels. Every OLAP hierarchy
and dimension view contains a LEVEL_NAME column. The value in this column is
the name of the OLAP hierarchy level object. By specifying a value for this column
in the where clause we can aggregate the data at the specified level of the hierarchy.
Since the queries on cubes can be executed using views we can easily use OLAP
cubes in APEX in both interactive and classic reports.

Please visit the following documents for more information:

• http://www.oracle.com/technetwork/database/options/olap/index.
html

• http://st-curriculum.oracle.com/obe/db/11g/r1/olap/cube/
buildicubes.htm

• http://st-curriculum.oracle.com/obe/db/11g/r1/olap/cube/
querycubes.htm

• http://st-curriculum.oracle.com/obe/db/11g/r1/olap/apex/
usingapex4olap.htm

DBMS_CUBE, DBMS_CUBE_LOG, and DBMS_CUBE_ADVISE package have been built to
assist you in dealing with OLAP cubes. You might want to check the functions and
procedures in them. DBMS_AW_STATS can be used to manage optimizer statistics for
cubes and dimensions.

Understanding Oracle's advanced
queuing
Oracle provides an advanced queuing functionality to enable the developers to do
asynchronous messaging. We will now try to understand advanced queues (AQs)
and will look at some of the packages which can help us use them in APEX. AQs
enable reliable communication among different systems with different workloads
in the enterprise and gives improved performance. Since AQs are built in the
database, they leverage all operational benefits of the database such as reliability
and scalability. The following are the two major terms associated with an AQ:

• Message: This is the message that one part of the enterprise wants to send
to another.

Flight to Space Station: Advanced APEX

[216]

• Message queues: Messages are stored in queues which are empowered with
all queuing functions like enqueue, dequeue and so on. These queues can
be of any type including ANYDATA data type. If you remember, we used this
ANYDATA to run dynamic queries from table function. ANYDATA almost does
the same function here by enabling the user to queue messages of different
data type in a single queue.

Message routing is possible using message attributes which can be transformed
using complex logic. Messages can either be persistent if the need is to store them
for a longer duration for audit purposes or can be transient. Security is ensured by
the granting of appropriate privileges to the users. Users can either have queue level
privileges or can be an administrator. A user becomes an AQ administrator if he/
she is granted aq_administrator_role role. AQ users have aq_user_role role
and have execute privileges on the queue. Execute privilege on the queue can be
granted using DBMS_AQADM.GRANT_QUEUE_PRIVILEGE. Privileges can be granted
by the DBA. Subscribers can be added using DBMS_AQADM.ADD_SUBSCRIBER and
the transformations of the messages can be done using DBMS_TRANSFORM.CREATE_
TRANSFORMATION. Queuing operations such as enqueuing and dequeuing can be
done using functions such as DBMS_AQ.ENQUEUE and DBMS_AQ.DEQUEUE. Message
queue propagation enables the user to put the message from one queue to another.
This propagation can either be a back ground job or can be executed on a need-by-
need basis.

To implement a queue, we must follow the given steps:

1. Create a type. This type will be the type of all our messages.
2. Create a queue table using DBMS_AQADM.CREATE_QUEUE_TABLE

and a queue using DBMS_AQADM.CREATE_QUEUE.
3. Start a queue using DBMS_AQADM.START_QUEUE.

Some of the packages, other than DBMS_AQADM, that may interest you are DBMS_AQ,
DBMS_AQELM, DBMS_AQIN, and DBMS_AQJMS. While DBMS_AQELM can be used for email
notification, DBMS_AQIN and DBMS_AQJMS can be used to provide secure access to
Oracle JMS interfaces. Read the following document for more details on AQ:

http://docs.oracle.com/cd/E11882_01/server.112/e11013/toc.htm

Understanding other APEX features
This book is focused on reporting and I haven't done justice to some of the interesting
features of APEX. I wish to dedicate this small section to such features; you can read
about these in more detail in the documentation, should you find them interesting.

Chapter 5

[217]

Understanding locking and unlocking of
pages and team development
If a team of developers are working on an application, then each developer can lock
the page on which he is working by the lock icon on the top right corner of the page.
If the lock on the page is up for grabs then the lock symbol will be open as shown in
the following screenshot:

If the lock has been acquired then the lock symbol will be locked as shown in the
following screenshot:

We can click on the Application Utilities button on an APEX page, and then click
on the Cross Page Utilities to get a link for Page Locks administration. The last link
in the following screenshot is for the Page Locks administration:

Another related concept is team development. We can click on the Team Development
menu on the top of our workspace to find a number of options for managing your
projects and bugs. These options are shown in the following screenshot:

Flight to Space Station: Advanced APEX

[218]

Understanding database object dependencies
report
Database object dependencies report is also an interesting feature as it lets us create
a checklist of all the objects used in an application. It lists all the dependent objects
of the current application but it does not list the objects used in your stored packages,
functions, and procedures.

Understanding advisor
The advisor utility suggests ways to improve your written code. For example, it names
the reports which should have a default order and items which should have a help text.

Understanding shortcuts
APEX shortcuts are a way of reducing code redundancy. Plugins also do the same
thing, but plugins can easily be put from one application to the other, while shortcuts
are local to an application and are a means of putting the same piece of code in
multiple places in the same application. A shortcut can be created for a PL/SQL code
or an image or an HTML code, or JavaScript. Obviously, CSS can also be bundled with
the HTML code. The link to create shortcuts can be seen in Shared Components.

Understanding data loading wizard
You can create a page of type Data Loading which will help you create a wizard
for loading data into the database. The page creation wizard that helps you create
a Data Loading page also gives you options of configuring lookup tables and
transformations. The Create page wizard results in the creation of four pages
instead of a single page. This set of four pages helps you load data with each page
corresponding to each step in the data loading process. You have a Data Loading
link in the Shared Components of an application. This link can be used to change
the Data Load Definition which includes transformation and lookups.

Chapter 5

[219]

Understanding application express views
APEX views are a great help. These views give more information about APEX
objects created by you. For example, APEX_APPLICATION_PAGE_FLASH5 lists the
information such as chart type, chart name, region ID, component signature, or
any other information that you might want about your charts. I suggest that you
have a look at these. These views are available in your APEX schema.

Understanding background jobs in APEX
Background jobs might be required to perform certain operations that are required
for the proper functioning of the application. These jobs can include tasks such as
triggering an ETL operation. The story of background jobs in APEX starts at APEX_
PLSQL_JOB package and ends with it. This package in turn calls DBMS_JOB which
actually does the job. Functions available in this package are SUBMIT_PROCESS,
UPDATE_JOB_STATUS, TIME_ELAPSED, JOBS_ARE_ENABLED and, PURGE_PROCESS.

DBMS_JOB has been superseded by DBMS_SCHEDULER which is the recommended
package to use these days. DBMS_SCHEDULER was introduced in 10G and has
a number of features such as job history and event based jobs. One important
distinction between DBMS_JOB and DBMS_SCHEDULER is that DBMS_SCHEDULER
performs an implicit commit while DBMS_JOB does not. This non committing feature
increases the usability of DBMS_JOB. DBMS_SCHEDULER in 11gR2 and has email job
notification as well. CREATE_FILE_WATCHER of DBMS_SCHEDULER procedure helps
you in consuming feeds which you might receive from other systems. It triggers
a job when a file arrives. DBMS_SCHEDULER.GET_FILE helps you fetch a file from a
folder on your machine and returns its contents in file_contents OUT parameter.
DBMS_SCHEDULER.PUT_FILE can be used to put a file on any system that does not
have Oracle database installed on it. Oracle remote scheduler agent should however
be there on such a system. UTL_FILE can be used for similar purposes but it will need
an Oracle installation. DBMS_SCHEDULER.CREATE_CHAIN can be used to create a chain
of programs. This is helpful if the output of one task is fed as an input to the other.

Before using other functions of APEX_PLSQL_JOB, execute APEX_PLSQL_JOB.JOBS_
ARE_ENABLED to find out whether job scheduling is enabled on the database or not.
APEX_PLSQL_JOB.SUBMIT_PROCESS returns a job ID when you create a job using
it. This job ID is useful to do all job related operations such as purging for the job.
Since you can call web services from PL/SQL procedures, you can use APEX's job
scheduling to trigger jobs in some other parts of the enterprise.

Flight to Space Station: Advanced APEX

[220]

Knowing about important functions from
the API
We will now talk about some of the important packages which can help you in the
development process. We haven't seen examples of the implementation of some of
these packages but I hope that this little discussion will give you a good idea about
the use of these packages. Let's begin.

Knowing about the APEX API
APEX_APPLICATION_INSTALL is built to give you a substitute to the usual UI install.
It lets you set the values like the application number which you usually set when
you are using the UI to install an application. I once used this package to install
one application multiple times in a workspace using a single export. All export files
in APEX 4.x contain reference to values set by this package. Values that can be set
include the owner schema, application id, workspace id, alias, and image prefix.

APEX_CSS can be used to include CSS files in the HTML generated by APEX. It
can also be used to put CSS code in the HTML page. The fact that this is a PL/SQL
package gives you the freedom to call it form almost anywhere in your application.
Its close brother is APEX_JAVASCRIPT package which lets you put JavaScript code in
your application using PL/SQL.

APEX_CUSTOM_AUTH deals with APEX session management. Procedures like DEFINE_
USER_SESSION can be used for creating a session ID for a user. GET_COOKIE_PROPS
helps you find out the properties of the cookies associated with APEX session
management. GET_LDAP_PROPS helps you get the properties of the current LDAP
session (if LDAP security is used). This package also has a number of procedures to
get various properties of a session such as the session ID and the user name. Login
procedure does the authentication and registers an APEX session for you. Logout
does the opposite.

APEX_ERROR can be used to give more teeth to your error handling mechanisms.
ADD_ERROR can be used to add your own error to an existing error stack. The package
has its own result type that lets you bundle all error related information in a single
structure.

Chapter 5

[221]

If you are one of those who believe, that logging into the INTERNAL workspace for
admin related tasks like creating workspace, setting the email, and printing server
configurations is a lot of work then APEX_INSTANCE_ADMIN package is for you. ADD_
SCHEMA procedure can be used to add a schema to an existing workspace, workspaces
can be created using ADD_WORKSPACE, email and printing server configurations can
be set by using SET_PARAMETER function. Check the following link to find the list of
parameters that can be set:

http://docs.oracle.com/cd/E37097_01/doc/doc.42/e35127/apex_instance.htm

The package also has procedures to remove schemas, applications, and saved
interactive reports.

The APEX_ITEM package can be used to dynamically create most of the items you
see in the Create Item page wizard.

APEX_MAIL is built on top of UTL_SMTP and is used for sending mails. It provides
easier procedures and functions to do tasks which can also be done using UTL_SMTP.
Procedures and functions include ADD_ATTACHMENT, and SEND. PUSH_QUEUE is
another method which can be used to send all the unsent messages which exist in
APEX_MAIL_LOG table. These mails also include the mails send by APEX mail page
processes and the mails generated on account of the subscriptions in APEX such
as those of interactive reports. Similarly, APEX_LDAP has been built to simplify the
process of extracting information stored in an LDAP server. You can get the same
information using DBMS_LDAP and DBMS_LDAP_UTIL as well.

APEX_LANG is to facilitate the translation of text from one language to the other.

If you are thinking about creating a plugin then you should first have a deep and
good look at APEX_PLUGIN and APEX_PLUGIN_UTIL packages. Every function in
these packages is unique in its own way and has a very specific purpose in the
plugin creation process.

APEX_UI_DEFAULT_UPDATE lets you set some default values in the APEX
development environment and might help you save some development time.

APEX_UTIL is by far the most useful package for an APEX developer. DOWNLOAD_
PRINT_DOCUMENT and GET_PRINT_DOCUMENT are two very important functions
for report printing. These functions need template (rtf or xsl-fo) and your data
to generate a report. You will however have to pass the URI of a printing engine
which will do the processing.

Flight to Space Station: Advanced APEX

[222]

You can store the report query and layout in your Shared Components as well, if
you do not have them as BLOBs or CLOBs. dbms_xmlgen.getxml comes in handy
while using these two functions because it lets you convert the data returned by your
query to an XML. APEX_UTIL has many procedures and these procedures do not fall
in any single category. My humble suggestion is to go through this package, because
the functions in this package will ease of your development workload and you will
spend lesser time in reinventing the wheel. The same suggestion applies for the
JavaScript API of APEX.

Knowing about the database API
Change data capture systems load data in the data warehouses and Oracle helps
you do that using DBMS_CDC_PUBLISH, DBMS_CAPTURE_ADM, and DBMS_CDC_
SUBSCRIBE packages.

DBMS_CQ_NOTIFICATION is a trigger in many ways. It can send notifications and
does certain job on the execution of DDL and DML on the objects associated with
the queries that are registered with DBMS_CQ_NOTIFICATION.

DBMS_CRYPTO and DBMS_OBFUSCATION_TOOLKIT are for encryption and decryption
purposes. DBMS_CRYPTO is the newer one of the two.

DBMS_DATA_MINING and DBMS_DATA_MINING_TRANSFORM are for your data mining
requirements. DBMS_DATA_MINING implements a number of mining models which
help you predict the future based on your historical data while DBMS_DATA_MINING_
TRANSFORM holds a number of transformation functions. DBMS_PREDICTIVE_
ANALYTICS takes data mining a step further by helping you to mine the data so
that it is meaningful to a wider audience.

DBMS_COMPARISON is to compare data in different databases and update the objects
in one database based on those in the other.

DBMS_DEBUG helps in the debugging of the target session using another session.

You can create dimensions using the Create Dimension statement. Creating
dimensions is not necessary but if you are working in a data warehouse with
star schema and hierarchies then creating dimensions can enable more complex
types of query rewrite which can significantly improve your performance. DBMS_
DIMENSION package and the Enterprise Manager Dimension wizard can be used
for the management of these.

Chapter 5

[223]

DBMS_ERRLOG is useful in cases where your data isn't clean enough and the insertion
of records often fails because, one row out of some thousand odd rows was not good
enough to be inserted. DBMS_ERRLOG can help you create a log table which can hold the
bad record while the good ones are inserted. We can log errors in DML statements by
adding an extra clause like the following:

LOG ERRORS INTO ERROR_LOG_TABLE REJECT LIMIT 1

In the preceding clause ERROR_LOG_TABLE stands for the table created with
DBMS_ERRLOG package. A table created by DBMS_ERRLOG is a normal table with
a few columns used for error logging purpose.

DBMS_FILE_TRANSFER is for file related operations like coping and transferring of
files. There are other ways to do this, but this one is the easiest.

DBMS_FLASHBACK_ARCHIVE and DBMS_FLASHBACK are for retrieving and managing
flashback data.

DBMS_REFRESH and DBMS_MVIEW are for materialized views.

UTL_RECOMP is for recompiling invalid objects.

DBMS_XMLPARSER is used for the parsing of XML documents.

Summary
This chapter was meant to introduce some of the advanced features of APEX and
Oracle database. We started this chapter with HTML image maps and then moved
on to learn about PSPs and the loadjava utility. This chapter introduced FusionCharts
to you which is a freeware and can be used for the generation of FlashCharts and
can be a good substitute for AnyChart. Tag clouds can be seen in almost all places on
the internet so it was prudent to see a method to create tag clouds in APEX. We saw
websheets and plugins which are the two most important improvements in APEX
4.x. We also saw the method to configure mails in APEX and to download APEX
applications without webserver. We learned about Oracle OLAP cubes and Oracle
Advanced Queues. We also explored some of the interesting features of APEX and
some of the lesser known PL/SQL packages of APEX and Oracle.

Flight to Space Station: Advanced APEX

[224]

The next chapter will focus on other technologies which can be coupled with APEX
to give an enriched user experience. The next chapter talks about some of the PL/SQL
packages which can generate reports. We will also explore Jasper and Eclipse BIRT
in it. We will then move on to a chapter about OBIEE 11G, which will include a detail
discussion on BI Publisher as well. The next chapters will focus on integrations of
tools and migration of reports from other technologies to APEX. The final chapter
will be on tuning. Till now, our boat was in the river of APEX and we are about to
enter the sea of reporting. I hope you like the adventure.

Using PL/SQL Reporting
Packages, Jasper, and

Eclipse BIRT
The focus of this chapter is to explore ways and means to generate reports using
reporting solutions such as PL/PDF, PL_FPDF, Apache FOP, Apache Cocoon, Jasper,
and Eclipse BIRT. The following are the major learning outcomes of this chapter.

• Generating reports using PL/PDF
• Generating reports using PL_FPDF
• Creating XLS, RTF, CSV, and HTML documents using PL/SQL
• Generating reports using Apache FOP
• Generating reports using Apache Cocoon
• Creating reports in Jasper and integrating it with APEX
• Creating reports in Eclipse BIRT and integrating it with APEX

Before we begin, let us install the Chapter 6 reference application (4-98-
9_06_chapter6.sql) and the Chapter 06-B reference application (4-98-9_06_
chapter6-B.sql).

Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT

[226]

APEX reporting using PL/PDF and
PL_FPDF
Both PL/PDF and PL_FPDF can be used for the generation of PDF documents.
We will start our discussion with PL/PDF and then move on to creating PDF
documents using PL_FPDF.

Creating PDF using PL/PDF
The process of creating documents using PL/PDF begins by downloading the
installation pack (Version 2.7.0) from http://www.plpdf.com/. The installation
pack installs the trial version, which can help us generate a maximum of five-page
long PDF documents.

It is good to logically separate this code from the rest of the application code
so plpdf.com suggests creating a separate schema. Unzip plpdf-v270.zip
(installation pack) and execute 1_create_user.sql from the sys user to create the
plpdf schema and to grant necessary privileges to it. These grants include select
on sys.V_$DATABASE and execute on sys.DBMS_CRYPTO to plpdf. The password
of this schema is also plpdf. Log in as plpdf and execute 2_install_objects.
sql to install the necessary objects for pdf printing. Execute 3_compile_schema.
sql as plpdf to compile any invalid objects. The 3_compile_schema.sql script
uses dbms_utility.compile_schema to compile all objects of the schema, which
is passed to it as an argument.

We can have the PLPDF code in any page process APEX, and call the page process on
the click of a button. You can check out an example to create a PDF document in the PL
PDF region on the third page of the reference application. The button to download it is
in the first page of the application. Note that if any object of the plpdf schema is used,
then the corresponding grants will have to be given to packt_schema. So execute the
following to enable the use of PLPDF in our APEX application.

Grant execute on plpdf.plpdf to packt_schema;
Create public synonym plpdf for plpdf.plpdf;

Let us now look at the code.

declare
l_blob blob;
begin
Plpdf.init; Plpdf.NewPage;
Plpdf.SetPrintFont('Arial',NULL,12);

Chapter 6

[227]

Plpdf.PrintCell(50,10,'Hello World');
Plpdf.SendDoc(l_blob);
owa_util.mime_header('application/pdf',FALSE);
htp.p('Content-Length: ' || dbms_lob.getlength(l_blob));
owa_util.http_header_close;
WPG_DOCLOAD.download_file (l_blob);
END;

The code starts with Plpdf.init. Every new page should start with Plpdf.NewPage.
Plpdf.SetPrintFont is to set the font and Plpdf.SendDoc has an out argument
which returns the PDF document as a blob. This blob can then be downloaded
by first setting the header, and then invoking the WPG_DOCLOAD.download_file
procedure. The header is set using the highlighted code.

Run first page of the reference application and hit the PL PDF button to get a PDF
document generated using PL/PDF. Note that the trial version of PL/PDF puts a
water mark on the documents.

The important point is that PL/PDF gives a viable alternative to the report printing
needs in Oracle APEX. Traditionally, BI Publisher is used for PDF printing, but if
your report printing needs are limited, then you could save your BI Publisher license
money by using the trial version of PL/PDF.

Plpdf has also come up with plxls, which as you might have
guessed, lets you generate an XLS document using PL/SQL.
It is also important to note that APEX Listener 2.x can also
help us with our report printing requirements.

Creating PDF using PL_FPDF
PL_FPDF is another package that can help us in PDF printing. The first F in PL_FPDF
stands for free. PL_FPDF is a PL/SQL wrapper around FPDF which is a PHP class
and does the business of generating PDF files. More info on the FPDF library can
be found at http://www.fpdf.org/. Check out the following link to know more
about PL_FPDF:

http://www.erasme.org/PL-FPDF,1337?lang=en

You can download the package from the following link:

https://github.com/Pilooz/pl_fpdf

Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT

[228]

The lack of good documentation is the biggest problem with PL_FPDF. So if you
wish to know about the functions and procedures in the pl_fpdf package then you
will have to have a good scan of the entire code package. Compile the package,
create a synonym, pl_fpdf, in packt_schema for the package, and grant execute
on pl_fpdf to package packt_schema.

Let us now look at the code in the reference application that uses PL_FPDF. Have a
look at the PL FPDF region of the third page of the reference application. The code
is responsible to print a PDF document with Hello World in it. It starts with setting
the page layout. This is followed by the opening of the document, addition of a page,
setting of the font, putting the text in a cell, and finally outputting the document.

begin
 pl_fpdf.FPDF('P','cm','A4');
 pl_fpdf.openpdf; pl_fpdf.AddPage();
 pl_fpdf.SetFont('Arial','B',16);
 pl_fpdf.Cell(0,1.2,'Hello World',0,1,'C');
 pl_fpdf.Output();
end;

This brings us to the end of the section dealing with PDF generation. We will now
look at a few methods to generate reports in other formats.

Process to create RTF, XLS, CSV, and
HTML documents
If we wish to generate simple RTF, XLS, CSV, and HTML files, then we can code
them ourselves. This involves a little effort, but it's worth it, as it saves us the
license cost.

RTF, CSV, and HTML printing
RTF documents have their own syntax just like HTML documents. Write the text,
which you wish to show, in WordPad and save it as an RTF file. Open this file in
Notepad and you will see the code responsible for generating the document. We
can use this to frame the text, which can then be downloaded using wpg_docload.
download_file. I used this process to build the following code sample. This has
been implemented in the RTF document generator process on the third page of
the reference application. The button to run this process is on the first page of the
reference application.

Chapter 6

[229]

declare
l_blob blob;
begin
dbms_lob.createTemporary(l_blob, true);
dbms_lob.open(l_blob, dbms_lob.lob_readwrite);
dbms_lob.append(l_blob,utl_raw.cast_to_raw('{\rtf1\ansi\ansicpg1252\
deff0\deflang1033{\fonttbl{\f0\fnil\fcharset0 Calibri;}}
{*\generator Msftedit 5.41.21.2510;}\viewkind4\uc1\pard\sa200\sl276\
slmult1\lang9\f0\fs22 Hello, I am \b bold\b0\par
}'));
 dbms_lob.close(l_blob);
owa_util.mime_header('application/msword',FALSE);
htp.p('Content-Disposition: attachment; filename=abc.rtf');
htp.p('Content-Length: ' || dbms_lob.getlength(l_blob));
owa_util.http_header_close;
WPG_DOCLOAD.download_file (l_blob);
END;

I suggest that you use WordPad instead of Microsoft Word for this purpose, because
Microsoft Word generates a lot of formatting code, which might not be necessary
for our purpose. If you plan to use this approach to generate RTF files, then the
following three links will be useful:

http://www.pindari.com/rtf1.html

http://www.pindari.com/rtf2.html

http://www.pindari.com/rtf3.html

To generate HTML documents, you just have to replace the RTF code with HTML
code. You will have to set the header for HTML and then download the blob using
wpg_docload.download_file.

The same process works for CSV files as well. CSV files have comma separated
values, so you will have to make sure that the columns of your output are comma
separated. String aggregation functions such as listagg will prove helpful here.
APEX also gives you the option to download reports in CSV files. So you honestly
do not have to put an extra effort for CSV download.

Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT

[230]

XLS document generation
XLS documents can be created using XML. Special tags with namespaces can be
used for the creation of an XLS document. This XML contains all kinds of formatting
required for an XLS file. We can save this XML file as .xls and open it using Microsoft
Excel. The use of XML, for generating XLS documents, is similar to HTML, which has
its own special tags but is inherently an XML document. We can put "Hello, I'm bold"
in an XLS file using the following code:

<?xml version="1.0"?>
<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:spreadsheet="urn:schemas-microsoft-com:office:spreadsheet">
 <Worksheet spreadsheet:Name="Example">
 <spreadsheet:Table>
 <spreadsheet:Row>
<spreadsheet:Cell>
 <spreadsheet:Data spreadsheet:Type="String"
 xmlns="http://www.w3.org/TR/REC-html40">
 Hello, I am Bold.</spreadsheet:Data>
</spreadsheet:Cell>
 </spreadsheet:Row>
</spreadsheet:Table>
 </Worksheet>
</Workbook>

Open a text editor and save the file as example.xls and then open it in Microsoft
Excel. We can put the above code in a blob column and download the file using
wpg_docload.download_file in APEX. We can get more information about the
tags used for the generation of XLS documents from http://msdn.microsoft.
com/en-us/library/office/aa140066(v=office.10).aspx.

Tom Kyte has developed the owa_sylk package, which can also
be used for XLS document generation. The following links will be
informative:
http://en.wikipedia.org/wiki/SYmbolic_LinK_(SYLK)

http://asktom.oracle.com/pls/asktom/
f?p=100:11:0::::P11_QUESTION_ID:728625409049

Chapter 6

[231]

APEX reporting using fop and Cocoon
Report printing using the fop package and Cocoon are one of the standard ways
of report printing in APEX. So let's see how it's done.

We first have to create an ACL to enable external network access in the Oracle
database. Use the following code snippet for this:

SQL> exec DBMS_NETWORK_ACL_ADMIN.CREATE_ACL('apex_users.xml','APEX
Users','APEX_040200', TRUE, 'connect');
SQL> exec DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL('apex_users.xml','*');
SQL> commit;

Do not forget to add commit at the end.

Once ACL has been set, we have to deploy fop.war on Weblogic. fop.war can
be found in <Directory in which apex_4.1.1_en.zip is unzipped>\apex\
utilities\fop.

APEX Listener 2.x has fop tightly integrated in it. So, you don't
have to do the configuration described in the next section if you
are using APEX Listener 2.x. You can just select Oracle APEX
Listener in the Print Server dropdown by navigating to Manage
Instance | Instance Settings | Report Printing section to enable
report printing using APEX Listener.

APEX reporting using fop.war and WebLogic

The code pack consists of fop directory. You can deploy
this open directory on WebLogic to install fop. You can
also follow the process below to install fop.

The steps involved to install fop.war on WebLogic are:

1. Unzip fop.war.
This step is required because report printing requires classes such as
DOMParser and XMLProcessor. Before deploying, our fop application should
have a JAR that has these classes. The xmlparserv2.jar file in <Oracle_
database_home>/lib has these classes. So we unzip fop.war, and then put
xmlparserv2.jar in WEB-INF/lib of the unzipped fop.war file directory.
Now this unzipped directory can be installed as an application in WebLogic,
just as we install a war file.

Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT

[232]

2. Login to the WebLogic console using the admin credentials.
3. Click on the Deployments link under the Domain Structure panel on the

left-hand side of the page.
4. Click on the Install button.
5. Browse for the directory that contains the contents of the fop.war file along

with the xmlparserv2.jar file in the Path browse item and click on Next.
6. Select the Install this deployment as an application radio button and click

on Next.
7. Select DD Only: Use only roles and policies that are defined in the

deployment descriptors in the Security section, and Use the defaults
defined by the deployment's targets in the Source accessibility section.
Then click on Next.

8. Select Yes, take me to the deployment's configuration screen and click on
the Finish button. Click on the Save button after the deployment is done.

9. Go to the list of deployments again and make sure that the newly deployed
fop application is in the Active state.

Now, we have to configure APEX to use fop.war. Login to the INTERNAL
workspace, by going to Manage Instance | Instance Settings | Report Printing
section and change the settings as shown in the following screenshot:

Chapter 6

[233]

Note that you will have to change Print Server Host Address and Print Server Port
according to your environment. Now we can create a report and then go to the
Print Attributes page of it. This page gives us a number of options for configuring
our report. The link in the Print URL textbox can be used as a target of any button
if we wish to generate our own report printing link. The Output Format text box
lets us select the desired output format of our report. Selecting Yes in the Enable
Report Printing dropdown gives us a link at the bottom of the report region on our
application page. You can find one such report with a download link on the second
page of the reference application.

APEX reporting using Apache Cocoon and
WebLogic
Apache Cocoon is a XML and XSLT-based Java application that helps in publishing
reports in most of the known formats. Although Cocoon can use a number of different
data sources, we will use it for the publishing of APEX reports. Cocoon can be
configured as a report printing agent for APEX. The following are the steps to do the
same:

 The code pack consists of the cocoon directory. You can
deploy this open directory on WebLogic to install cocoon.
You can also follow the process below to install cocoon.

1. Download cocoon-2.1.11-src.zip from http://www.apache.org/dist/
cocoon/ and unzip it.

2. Set the JAVA_HOME environment variable and test it using the
following command:
C:> echo %JAVA_HOME%

The above command should return a value similar to the following:
C:\Program Files (x86)\Java\jdk1.6.0_26

3. Open a command prompt and go to the <Directory in which cocoon-
2.1.11-src.zip is unzipped>\cocoon-2.1.11 folder and run the
build.bat file.

4. Get fop_post.zip from http://apex.oracle.com/i/carl/apex_cocoon/
fop_post.zip and unzip it.

5. Put the unzipped fop_post folder in <Directory in which cocoon-
2.1.11-src.zip is unzipped>\cocoon-2.1.11\build\webapp.

Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT

[234]

6. Open a command prompt and change the directory to <The directory
in which cocoon-2.1.11-src.zip is unzipped>\cocoon-2.1.11>
and then run the following:
C:> build war

This build command executes the build.bat file which uses the ANT
utility shipped in cocoon-2.1.11-src.zip to build a web application
for us. If everything works well then you should get a message similar
to the following:
BUILD SUCCESSFUL

Total time: 2 minutes 48 seconds

7. You will find cocoon.war in <Directory in which cocoon-2.1.11-src.
zip is unzipped>\cocoon-2.1.11\build\cocoon.

This WAR file can be deployed on OC4J without any troubles, but you would need
the weblogic.xml file to deploy on WebLogic. To add weblogic.xml, we will have
to unzip cocoon.war and then put weblogic.xml (supplied in the code bundle), with
the necessary code, in the WEB-INF directory, of the directory containing the unzipped
files. The code pack has the weblogic.xml file with the necessary configuration. This
weblogic.xml file is needed so that the org.apache.log.* package is loaded from
the web class loader and not from the WLS system class loader. We can deploy the
open directory of the code pack in WebLogic just as we deployed the fop application.
Log in to the WebLogic console and make sure that the deployed application is active.

This ends the Cocoon installation. We now have to configure APEX to use Cocoon.
Change the value of the Print Server Script textbox in the Report Printing section
of the Instance Settings page to /cocoon/fop_post/. My final settings for Cocoon
look like the following:

Chapter 6

[235]

Restart WebLogic once you have changed the settings. Note that you will have
to change Print Server Host Address and Print Server Port according to your
environment. You can then use the report on the second page of the reference
application for testing Cocoon report printing as well. The same link was used
to test the FOP implementation in the previous section. The report link remains
unaltered, but the backend system to generate the reports has changed.

Creating Jasper reports
Jasper is a reporting tool that can be used to implement a variety of reporting
requirements. While it is possible to install Jasper reports server on WebLogic, we
will see the use of Jasper using a typical install, which includes the bundled tomcat
server and the PostgreSQL database. If you wish to get the WAR application that
you intend to deploy on a WebLogic server, then you will have to contact the
customer support at http://support.jaspersoft.com.

If you are good at Java then you could deploy the Jasper
library on your web server and then bypass the use of the
Jasper Report Server. This method is more economical
than using the Jasper Report Server.

Let's look at the process of creating a simple report in Jasper and then using it in APEX.

1. Go to the following place and download the installer for your OS:
http://www.jaspersoft.com/thanks-download-30-day

The same page contains the link to download iReports. Get that as well.
If you don't want the hustle of installing, then you can use the 3 day trial
period on Jasper's cloud server. Check out the following link for this.
You will however have to install iReports.
https://www.jaspersoft.com/jaspersoft-live-trial

Install Jasper server and iReports.
We will use our packt_schema objects for building our reports, so you don't
have to worry if PostgreSQL does not sound familiar. I will assume that you
have a Jasper Report Server on Tomcat with PostgreSQL.

2. Now, to use our oehr_employees table in our report, we need an Oracle
connection from the report and for that we need a driver. Copy ojdbc14.jar
from <ORACLE_HOME>\owb\wf\lib to <iReports installation folder>\
platform9\lib. For example, C:\Program Files (x86)\Jaspersoft\
iReport-4.7.1\platform9\lib.

Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT

[236]

Also put it in <JasperReports Server install root>/apache-tomcat/
lib for the server.

3. Open iReports and you will see a link to create a database connection
on the welcome window itself. A screenshot of this link is shared for
your convenience.

Select Database JDBC connection in the popup that opens after clicking on
that link.

4. Fill in the details to create a connection for the packt_schema shown in the
following screenshot and hit the Save button.

Chapter 6

[237]

5. Now click on the step 2 link on the welcome window of iReports. You will get
a bunch of options, but you keep the default options. Keeping the defaults will
create a blank A4 report for you.

6. Name the report as shown in the following screenshot:

7. Put select * from oehr_employees in the Query step of the wizard and
select the necessary columns in the Fields step of the wizard. The selected
columns will appear in the Fields section of the Report Inspector. Click on
Next twice and then click on Finish.
You should be able to see the ready arena for you to make a new report.
Refer to the following screenshot for your convenience. The lines in the
following screenshot are for marking the regions in the report. These regions
include the Title and Page header. You can move these lines by hovering
your mouse over them and then dragging them. If you do not want a Page
Header then reduce its width to zero by dragging. The layout to create the
report looks like the following.

8. Drag a few columns from the Fields section present in the Report Inspector,
which is there on the leftmost side of the window. Drag these columns on the
Detail 1 section. A tool tip can be seen in the Detail1 section of the previous
screenshot. This should help you identify the Detail1 section.

Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT

[238]

Right-click on any of these fields/columns and you will find Edit Expression
on the top of the menu. There are a number of other options to format the
field, and I am sure you will have a look at them whenever the need arises.
The following screenshot shows the Palette, the Expression editor, and also
the highlighted column.

9. You can then drag the Static Text item from the Palette window on the
rightmost side. Static Text can be used to create the headings of the columns.
If Palette is not visible then you can select it from the Window menu on
the top. Check the Window menu so that you are aware of the tools you
have at your disposal for generating the reports. There are wizards spread
all over the window, so I suggest that you explore a little. For example,
the highlighted button below helps us to play with the query.

Chapter 6

[239]

10. Creation of the report is done. Now let's deploy it to the Jasper server. Create
a Jasper Server connection by going to the Repository Navigator which is
present next to Report Inspector as shown in the following screenshot. We
can get the Repository Navigator panel by selecting JasperReports Server
Repository from the Window menu (highlighted in the following screenshot).
The first button in the Repository Navigator is to add a new server.
The following screenshot shows the button:

This server connection uses web services to do its job. So we have to give the
URL of the repository service to create a connection. The default installation
creates jasperadmin/jasperadmin as the admin user, so the same has been
used to create the connection. The following screenshot shows the values
which help us configure the connection.

Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT

[240]

11. If you expand the server connection, you will be able to see all the objects
on the Jasper server now. Right-click on the folder in which you intend to
deploy your report and select Add | JasperServer Report as shown in the
following screenshot:.

12. The wizard expects you to name the report and then makes you pick
the report to be deployed. You can click on the Get source from current
opened report button. Clicking on the button picks a .jrxml file of the
currently open report. This file is converted to a .jasper file, which is
used by the Jasper Server.

13. The wizard then expects you to give a data source for the report to run on
the server. Select Locally Defined and then click on the Edit local datasource
button and perform the steps as described by the following screenshot:

Chapter 6

[241]

14. Click on the Data Source Details tab and then click on the Import from
iReport button. Select the packt_schema connection which you had
created earlier. Click on the Save and Finish buttons.

Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT

[242]

Reports can explicitly be compiled using the compile button on the
development window. Compilation is the process of converting the
.jrxml file to the .jasper file, which is finally used by the jasper
server. The jrxml file is an XML file that contains all the information
we had coded using the UI of iReports.

Using Jasper in APEX
There are a number of ways to use Jasper reports in APEX.

Jasper 4.7 gives us both, the SOAP and REST web services, for using Jasper
reports in any third party tool. We will use the RESTful web service to get our
reports here. You can check out the detailed web service documentation of
Jasper at the following URL:

http://community.jaspersoft.com/sites/default/files/docs/
jasperreports-server-web-services-guide.pdf

Before we check out the use of RESTful web service, I wish to tell you that Opal-
consulting has also come up with a solution which uses freely available methods of
integrating APEX with Jasper, and you can find more about it at the following URL:

http://www.opal-consulting.de/apex/f?p=20090928:4

Go to the second page of the Chapter 6-B reference application. I have hardcoded the
values since the purpose is only to display the use of RESTful web service. I guess we
have enough experience now to use APEX items in the PL/SQL region, in a bid to
make the whole process dynamic. The code is shared as follows for your convenience.

Chapter 6

[243]

Note that for the code to work you will have to change the
hostname, port, report paths, and credentials in the Rest Jasper
page process on the second page of the reference application.

DECLARE
 l_http_req UTL_HTTP.req; l_http_resp UTL_HTTP.resp;
 l_web_serv_end_pt_url VARCHAR2 (2000) :=
 'http://localhost:8444/jasperserver-
 pro/rest_v2/reports/reports/samples/AllAccounts.pdf';
 l_blob BLOB; l_raw RAW(32767);
BEGIN
 l_http_req := UTL_HTTP.begin_request (l_web_serv_end_pt_url,
 'GET', 'HTTP/1.1');
DBMS_LOB.createtemporary(l_blob, FALSE);
 utl_http.set_authentication(r => l_http_req, username =>
 'jasperadmin', password => 'jasperadmin', scheme => 'Basic',
 for_proxy => FALSE);
l_http_resp := UTL_HTTP.get_response (l_http_req);
 BEGIN
 LOOP
 UTL_HTTP.read_raw(l_http_resp, l_raw, 32767);
 DBMS_LOB.writeappend (l_blob, UTL_RAW.length(l_raw), l_raw);
 END LOOP;
 EXCEPTION
 WHEN UTL_HTTP.end_of_body THEN
 UTL_HTTP.end_response(l_http_resp);
 END;
owa_util.mime_header('application/pdf',false); htp.p('Content-
length: ' || dbms_lob.getlength(l_blob));
owa_util.http_header_close; wpg_docload.download_file(l_blob);
end;

Let us now understand this code. Right after beginning the request using UTL_
HTTP.begin_request, we authenticate the session using admin jasperadmin/
jasperadmin credentials. The response is collected using UTL_HTTP.get_response,
and we then convert the response object to a blob and then put the blob as an
argument to wpg_docload.download_file, after setting the header.

A shorter method of doing the same thing is using the HTTPURITYPE.createuri
function. The code using this function has also been put as a comment in the Rest
Jasper page process. The authentication credentials are passed in the URL in this
commented code.

Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT

[244]

The above code uses the UTL_HTTP package to send an HTTP request to the RESTful
web service. The general syntax of invoking the Get HTTP method of the Jasper
RESTful web service is given as follows:

http://<jasper server hostname>:<jasper server port number>/
jasperserver-pro/rest_v2/reports/<path/to/report>/<Reoprt
name>.<desired report format>

Here rest_v2/reports is the web service. There are a few more v2 web services.
Check the PDF on Jasper web services for more info on this.

An example of the URL Get request to a RESTful webs service is:

http://localhost:8444/jasperserver-pro/rest_v2/reports/reports/
samples/AllAccounts.html

We can also use the traditional APEX method of creating a RESTful web service
reference and then creating a page process that runs the web service. Then, we can
use the collection which holds the response to get the document.

This brings us to the end of the discussion on Jasper Reports. We will continue our
quest of exploring reporting technologies and the process of gluing them with APEX.
The next section is dedicated to Eclipse BIRT, which is one such technology.

Creating reports using Eclipse BIRT and
integrating with APEX
Business Intelligence and Reporting Tool (BIRT) is an open source JEE solution
that can be used to create high fidelity report outputs in most of the know file
formats. BIRT has three major APIs. The first one, called the Design engine API,
is to help you create your BIRT reports. The second one, called the Report engine
API, is for consuming your report files on a web server, and the third one, called
the chart engine, is for displaying the charts on a web server. Let's start the process
of creating a report in BIRT.

1. Get your Eclipse BIRT package from the following place:
http://download.eclipse.org/birt/downloads/

2. Unzip the package and then run the Eclipse Juno application.

Chapter 6

[245]

If you get the Failed to load the JNI shared library
"C:\Program Files (x86)\Java\jdk1.6.0_20\bin..\jre\
bin\client\jvm.dll" error while opening eclipse.exe, then
make sure that your JDK and OS are either both 32 bit or both 64 bit.
Then open command prompt and run the following command after
getting in the directory which holds eclipse.exe:
D:\Work\Code\Chapter 07\eclipse>eclipse -vm "C:\
Program Files\Java\jdk1.6.0_26\bin"

3. Set your workspace directory.
4. Open the workbench and press Ctrl + N.
5. Go to Business Intelligence and Reporting Tools.
6. Select Report Project and click on Next.
7. Enter the name of the project and click on Finish.
8. Again press Ctrl + N and select Report instead of Report Project,

and click on Next.
9. Select your created project and give a name to the report. I named it as

eclipseReport. The extension of the report design file is rptdesign.
Click on Next.

10. Select My First Report as the template and click on Finish.
11. You will see the Data Sources link in the Data Explorer tab present

on the left-hand side of the workbench. Right-click on it and select
New Data Source.

12. Select JDBC datasource and click on Next.
13. Click on the Manage Drivers button.
14. Add ojdbc14.jar. The ojdbc14.jar file should be present in <Oracle

database home>\owb\wf\lib. Click on the OK button after adding it.
15. After the addition process is completed, you should be able to see oracle.

jdbc.OracleDriver (v10.2) in the Driver Class drop-down. Select the same.
16. Put your database username/password and put jdbc:oracle:thin:

@localhost:1521:orcl as the Database URL and then test the connection.
Click on Finish.

17. Click on the Save All button which is present next to the Save button.
18. The next step is to build the data set for the report. Click on Data Sets in

the Data Explorer tab and select New Data Set.

Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT

[246]

19. Select the newly created data source. Let Data Set Type be SQL Select
Query. Put the Data Set Name as Employee Data Set. Click on Next.

20. Put select * from oehr_employees in the Query Text field and click
on Finish.

21. You should now get a window listing all the columns of the oehr_employees
table. You will find Preview Results in this window. Select it to verify that
the query is able to set the records. Click on OK.
Since you had selected My First Report as the template, a table element
is inserted by default in your workspace. A table element iterates through
all the data rows of a data set.

22. Change the heading of the column and the report as shown in the
following screenshot:

23. Now drag the columns from the Data Set section created by you in the
Detail Row section, which is right beneath the label.

24. Select the FIRST_NAME data column and then click on the Property Editor
– Data tab (highlighted in the following screenshot), present in the lower half
of the window.

Chapter 6

[247]

You can use this tab for formatting the data column. Use it to center-align
the data column's text. Do the same for other columns as well and save
your report.
If you move your mouse pointer to the lower left corner of the table then
you will see a Table button (highlighted in the following screenshot). If you
click on this button then you get to set the properties of the entire table.

Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT

[248]

Eclipse BIRT helps you create charts, filter reports, sort and aggregate data,
cross tab reports, create interactive views, and so on. Since the code is ours,
we can tinker and customize it wherever we want to do so.
You have a Palette tab (highlighted in the following screenshot) next to the
Data Explorer tab. It performs, more or less, the same function as Palette in
iReports. Right under it are some quick tools for Aggregation and for the
Relative Time Period analysis (highlighted in the following screenshot):

25. You can get a preview in a number of formats by clicking on the preview
icon as shown in the following screenshot:

Chapter 6

[249]

Running the BIRT report on WebLogic
Perform the following for running the BIRT report on WebLogic:

The code pack consists of the birt directory. You can deploy
this open directory on WebLogic to install BIRT runtime. You
can also follow the process below to install BIRT runtime.

1. Click on the Runtime button which is present at the bottom of the button
stack in the following link, to download the runtime viewer:
http://download.eclipse.org/birt/downloads/

Note that deploying BIRT on WebLogic has the following bug:
https://bugs.eclipse.org/bugs/show_bug.cgi?id=383926

The workaround this bug is to unzip the birt.war file (present in the runtime
viewer downloaded from the preceding link) and remove the org.apache.
xerces_2.9.0.v201101211617.jar file from it.

2. The <Eclipse workspace directory>/<BIRT project name directory>
folder will have the .rptdesign file, that you created in step 9 of the
previous list of steps. Put this file in the folder that contains the unzipped
birt.war file. The same unzipped directory has a test.rptdesign file.

3. Log in to the WebLogic console and click on Deployments.

Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT

[250]

4. Click on the Install button and browse for the birt directory (which was
generated after unzipping the birt.war file) in the Path browse item and
click on Next.

5. Select the Install this deployment as an application radio button and click
on Next.

6. Select DD Only: Use only roles and policies that are defined in the
deployment descriptors in the Security section, and Use the defaults
defined by the deployment's targets in the Source accessibility section.
Then click on Next.

7. Select Yes, take me to the deployment's configuration screen and click on
the Finish button. Click on the Save button after the deployment is done.

8. Go to the list of deployments again and make sure that the newly deployed
BIRT application is in the Active state.

9. Open http://localhost:7001/birt/index.jsp and click on the View
Example link. You should be able to see the following report:

The BIRT installation contains the eclipseReport.rptdesign file which
was created using Eclipse. We had put this file in step 2. We can execute
the report using the following URL:
http://localhost:7001/birt/frameset?__report=eclipseReport.
rptdesign

Note that previous link has the web server and port of my WebLogic
installation. You will have to replace the same with your WebLogic
information. The same alert applies to other links in this section. We get
links to download out report in a number of formats, but in this case, we
are using the frameset operation. Our aim is to run the report outside
the frame so that we can have a URL to download the report from APEX.
To do this, run the report using the following link:

Chapter 6

[251]

http://localhost:7001/birt/run?__report=eclipseReport.rptdesign

This gives the report in its default format. We can specify the desired format
of the report by adding the _format option. So if we wish to get the report
in PDF format then we can use the following URL:
http://localhost:7001/birt/run?__report=eclipseReport.
rptdesign&__format=pdf

If you have defined any parameter in the report design, then the parameters
can also be passed in the URL, and is separated by ampersand. Check out the
following link to find more options:
http://www.eclipse.org/birt/phoenix/deploy/viewerUsage.php

These URLs can now be invoked from APEX.

10. Linking this in APEX is equally simple. Add a button in APEX and set
the Action drop-down to Redirect to URL in the Action When Button
Clicked section. The URL can be framed as discussed in step 9.
Clicking on the button will give you your report in the desired format.
You can obviously let the user select his desired format at the APEX end and
dynamically construct the URL. All this is done for you in the third page of
Chapter 06-B reference application. You will have to set the environment as
chalked out in the preceding steps to use the reference application.

Ideally, your BIRT report viewer Weblogic web server will
be protected by your company's firewall, so security should
not be a concern. Questions have however been raised on the
security of the URL parameter method of Web Viewer. You
can find more information at the following link:
https://bugs.eclipse.org/bugs/show_bug.
cgi?id=336767

Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT

[252]

Summary
This chapter brought the understanding of some tools which can be linked with
APEX without much impact on the pocket. We started with some packages which
have PL/SQL wrappers around them. These include PL/PDF and PL_FPDF. We
also had a look at Apache FOP and Apache Cocoon, which can be used as report
generation engines in APEX. This was followed by a discussion on Jasper, which is
licensed, but is often used with APEX for report generation. The final section was
on Eclipse BIRT, which can work wonders with the report without a big footprint
on the pocket. We will take this approach of introducing newer tools which can
be integrated with APEX, by talking about OBIEE 11g in the next chapter. OBIEE
has been the the face of Oracle's reporting solution for a number of years now
and certainly warrants some discussion on it. OBIEE 11g is a part of the Fusion
Middleware architecture of Oracle and comes with a lot of exciting new features
which can be leveraged. I will try my best to inform you sufficiently so that you
can make a decision about using this tool whenever required. See you in Chapter 7,
Integrating APEX with OBIEE.

Integrating APEX with OBIEE
With this chapter we will launch in a different and a very special space. We are now
planning to link APEX with a specialized enterprise reporting technology. When we
talk about Business Intelligence (BI), few tools are as elaborate as OBIEE is. This
chapter will not only focus on the exotic BI features of OBIEE, but will also talk about
BI Publisher 11g, which looks very different from its 10g avatar. OBIEE is enormous
and certainly needs a separate book on it. I will however, assume that you are
new to it and will try to make you as comfortable as possible with this technology.
The motive here is to give you a brief idea of OBIEE, so that you are familiar with
its powers and hence in a position to use it in APEX, whenever required. I must
mention that BI Publisher is often used as a printing engine and can be configured
for a spectrum of reporting solutions with APEX. So, we will talk about BI Publisher
in detail. We will see all this in a while. Let us start by building a little understanding
of OFM.

Install the reference application (4-98-9_07_chapter07.sql) for
this chapter before going through the chapter. Note that credentials
in all web service references and processes will have to be changed
for the code to work. You will also have to create an ACL. OBIEE
presentation server host and IP address will also have to be changed
in all web service references and processes. You will also have to
ensure that BI Publisher reports and OBIEE answers exist in the path
mentioned in the web service references and page processes.

Integrating APEX with OBIEE

[254]

Understanding Oracle fusion
management architecture
Before we start talking about OBIEE, I believe we should talk a little about the
fusion architecture and get a hang of the tasks which we will be doing in the
rest of the chapter. Let us first have a look at the architecture.

Database holding metadata tables

Managed server

Weblogic
Domain BI Plugin

BI Office

BI Webservices

BI Actions

BI Security

BI Publisher

Node manager

Admin server

Enterprise Manager

Weblogic console

JMX MBeans

BI System
components

Java Host

BI Server

Presentation Server

Cluster Controller

BI Scheduler

O
PM

N

Note that Managed server can be absent in the desktop class installations. In such
installations, all the Managed server components are deployed on Admin server
itself. On a broader basis, we can say that JEE components can be easily managed in
Weblogic and OPMN (Oracle Process Manager and Notification) takes care of non-
JEE components. These non-JEE components are called System Components and a
combination of a number of such components along with controlling OPMN is called
a fusion middleware instance. In order to allow the control of System Components
from a UI, a fusion middleware instance is registered with a weblogic domain. Because
of this registration, Enterprise Manager can be used to control the components of a
fusion middleware instance. Enterprise Manager is in fact a nerve center for starting
and stopping all JEE and System Components in a farm.

Chapter 7

[255]

We can also control the components of OPMN from the command line. It is possible
to register a number of fusion middleware instances in a weblogic domain. The
config file (opmn.xml) of the OPMN, that has our OBIEE components registered
in it, can be found in <BI_Middleware_Home>\instances\instance1\config\
OPMN\opmn. The non-JEE System Components of OBIEE includes Oracle BI Cluster
Controller component, Oracle BI Java Host component, Oracle BI Presentation
Server component, Oracle BI Scheduler component, and Oracle BI Server
component. We can see these components using the opmnctl command in the
following screenshot:

Understanding OBIEE
We have seen that OBIEE System Components consist of a Cluster Controller
component, a Java Host component a Presentation Server component, a BI
Scheduler component, and a BI Server component.

Let us now talk about the BI Server component.

The assumption here is that OBIEE is installed. SampleAppLite_
BI0001.rpd, and the corresponding default web catalog is online.
This repository and its default web catalog are online by default
when we do a desktop class installation of OBIEE.

Integrating APEX with OBIEE

[256]

Understanding the BI Server component
BI Server hosts a repository often called rpd. This repository is a store of all the
metadata which is used by OBIEE for the creation of the reports. Let us have a brief
overview of the repository. This rpd has three layers namely, Physical, Business
Model and Mapping (BMM), and Presentation. A repository opened using the
Admin tool of OBIEE is shared for your convenience in the following screenshot:

Connections to the data source are made in the Physical layer (highlighted in
the preceding screenshot) using connection pools. OBIEE can use a variety of data
sources which include relational data sources, XML files, Essbase data sources,
Hyperion Financial Management data sources, OLAP data sources, and ADF data
sources. The relationships among the different tables as they exist in the data source
are brought to the notice of the BI Server component in the Physical layer. The model
created by connecting the tables in the Physical layer is called the physical model.
The next layer is the Business Model and Mapping (BMM) layer (highlighted in the
preceding screenshot) where we define the business model. Let's say that we have a
fact table, we have aggregated some of the measures and stored the aggregated value
in a new table. We will then have the same information at different levels in different
tables. In such a case, two sources of information should map in the same logical
table because business-wise the information is the same. Logical tables are tables that
exist in the Business Model and Mapping layer. Multiple tables of the Physical layer
can be sources of a logical table.

The final layer is the Presentation layer (highlighted in the preceding screenshot).
This layer is finally exposed to the user in the portal. Apart from these three layers,
repositories also have wizards for job, session, and cache managements. It is also a
storehouse for the OBIEE variables: repository and session. Hierarchies are also created
in the repository. Hierarchies enable us to link one level in a dimension to another
level. If a user generates a report with a dimension column and if a hierarchy has been
defined on the dimension, then a drilldown link automatically appears on the column
and the user can then drilldown to see a more detailed level of information.

Chapter 7

[257]

A new concept called Lookups has been introduced in OBIEE 11g. Both physical
and logical tables can be marked as Lookup tables by checking the Lookup table
checkbox. Setting the table as a lookup lets OBIEE bypass certain checks which
it performs on facts and dimensions. If configured correctly, Lookups can offer
substantial performance benefits.

Another important concept which is new to OBIEE 11g is double columns. It lets us
set one column as an ID and another column as a description. So, OBIEE uses the
description column in the report and uses the ID column to join the table containing
the description column with other tables which are required a business query.

OBIEE 11g has introduced a new column called Hierarchical column. If a column in
the presentation layer is defined as a hierarchical column then this column in OBIEE
is presented as a collapsible column, which can be expanded to see the different
levels of hierarchy.

The BI Server component holds the repository and it exposes the tables in the
Presentation layer to the outside world as an ODBC data source.

Both the analytics application (the OBIEE portal) and the admin tool connect to the
repository hosted on the BI Server component using ODBC. The admin tool is the BI
server's interface, which helps us modify the repository. The preceding screenshot is
of the Oracle BI Administration Tool that helps us see the repository.

This finishes a quick overview of the BI Server component. Let us now look at
BI Presentation Server.

Integrating APEX with OBIEE

[258]

Understanding the BI Presentation Server
We will use this section to understand the various features provided by the BI
Presentation Server component.

Understanding Dashboards, analysis (answers),
and filters
Let us go through the following steps to understand and get a feel of the various
features of OBIEE Dashboards and analysis.

1. Open the OBIEE portal (typical URL:http://<obiee_presentation_
server_ip>:<obiee_presentation_server_port>/analytics/saw.
dll?bieehome) and navigate to the New | Analysis link (highlighted
in the following screenshot).

2. This will open up a menu which will show you the subject areas that are
present in the Presentation layer of the repository. Select the SampleApp
Lite subject area.

3. Expand the Time | More Time Objects dimension folder.
4. Double-click on Calendar Date. Similarly expand Base Facts, and then

double-click on Revenue.

Chapter 7

[259]

These two columns have been selected in the following screenshot:

We can see a button to add filters in the preceding screenshot. These filters
let us limit the number of records in our analysis. If we create a new filter
and select the is prompted in the Operator checkbox then our analysis will
be affected by prompts. Prompts let the user select the filtering criteria in
a dashboard or on a dashboard page. Prompts can be created using the
Prompts tab (displayed next to the Results tab).
Let me now introduce the selection steps of OBIEE. The fundamental
difference between filters and selection steps (highlighted in the following
screenshot) is that filters filter the data and then the aggregations on the
columns are performed. Selection steps are applied after the aggregations
are performed so they only control the display of data. Selection steps are
a collection of steps and the order of steps affect the final result. Each step
processes the result of the previous step to generate the final result.

5. Click on the Save Analysis button (highlighted in the preceding screenshot).
Create a New Folder called Packt in the Shared Folders and save the analysis
as First Analysis.

Integrating APEX with OBIEE

[260]

6. Now click on the Results tab (highlighted in the following screenshot).

You will see a lot of buttons on the top. These buttons (highlighted in the preceding
screenshot) are used to format the result in a desired format. These can help us
create all sorts of charts using the selected data. The Advanced tab shows us the
logical SQL that is sent to the BI Server component. We also get link to get a web
query (.iqy) file which can be used to directly get the data from the analysis in an
excel sheet in the Advanced tab. The tab also gives us the freedom to directly edit
the XML of the analysis. This XML is the definition of the report. The Bypass Oracle
BI Presentation Services Cache checkbox in the Advanced tab lets us bypass the
presentation server cache. The final sections of the Advanced tab are used to do
some advanced SQL operations and to take a few steps to improve the performance
of the analysis.

A collection of analysis and other presentation objects are put together in a Dashboard
that enables a Dashboard to give a 360 degree view of the business to the user.
A typical Dashboard is shared for your convenience in the following screenshot:

Chapter 7

[261]

Understanding KPIs and KPI watchlist
KPI stands for Key Performance Indicator. This is one of the most frequently used
terms in Business Intelligence circles. Although APEX does not have a region similar
to the KPI functionality in OBIEE, but with our knowledge of APEX, creating KPIs in
APEX should not be tough. For the time being, however, let's see the KPIs of OBIEE.
KPIs are an advanced version of our old measures. In KPIs we have an actual measure
and a target measure. Actual measure is compared against the target measure and
is then the values of the actual measure are grouped. We pin certain dimensions
which can be used to slice and dice and we define ranges, which tell us whether
the performance has been good, average, or bad. The screenshot of a typical KPI
is shared as follows:

Integrating APEX with OBIEE

[262]

A collection of KPIs can be put together in a KPI Watchlist. We can slice and dice a
watchlist on runtime. A screenshot of one such KPI Watchlist is shown as follows:

Understanding Actions
The concept of Actions is new to OBIEE 11g. It provides limbs to OBIEE, which
can be used for handshaking with other systems. Actions can be used to navigate
to an analysis, the Dashboard, or a web page or can be used to invoke a browser
script, a web service, a Java method in an EJB, or send an HTTP requests. Actions
can be initiated from an analysis, the Dashboard, agents, balanced scorecards, and
KPIs. A list of Actions is called an Action Link Menu.

Using Actions is a simple process. An action was used to invoke the logon method
of the SAWSessionService web service of OBIEE. A screenshot of the result is
shared as follows:

Using browser script Actions can however, become a little tricky. Let us talk about
browser script Actions.

If we use Actions to invoke a browser script then the script should be in the
UserScripts.js file. The path of this file in my system is <BI_Domain>\
servers\<BI_Server>\tmp_WL_user\analytics_11.1.1\silp1v\war\res\b_
mozilla\actions.

Chapter 7

[263]

Every Action has two different parts with a fixed syntax. A typical signature of
a first part is USERSCRIPT.funct_name = function(array_of_parameters)
{ <Code> };.

Here funct_name is the name of the function and the actual code gets in this part.
The second part to be coded has the following syntax:

USERSCRIPT.funct_name.publish = { parameters:[new JAVASCRIPT.parameter
("<variable name without angle brackets>","<description without angle
brackets>","<default value without angle brackets>")]};.

This second part describes the parameter list for the function. The preceding code is
the prototype for just one parameter but you can have a list of parameters. The list
maps to the array_of_parameters function of the first part. Let's say that the name
of one of the parameters in the second part is abc, then you can use this parameter
in the code in the first part using array_of_parameters.abc. The values to the
parameters declared in the parameter list of the second part can be fed from OBIEE
when we use a browser script Actions.

Understanding OBIEE Mapviewer
OBIEE Mapviewer is new in OBIEE 11g. It lets us seamlessly integrate third-party
maps such as Google and Navteq with OBIEE. The advantage of this integration is
that we can lay our BI data on top of these maps and can create a number of layers
on top of the base maps to make more sense of the data. Layers can be used for
setting advanced zoom levels in maps. These zoom levels can be considered as a
drilldown method while using maps. We can also create our own maps in Oracle
Spatials. We can learn more about Oracle Spatials from http://www.oracle.com/
technetwork/database-options/spatialandgraph/overview/index.html.

Information on the configuration of Spatial Analytics in OBIEE can be found at
http://download.oracle.com/otndocs/products/spatial/pdf/osuc2012_
presentations/osuc12_advbi_lappsharma.pdf.

Integrating APEX with OBIEE

[264]

An example of location intelligence and Spatial Analytics is shared as follows:

Understanding strategy management
OBIEE's strategy management has been designed to reflect the business strategy of the
customers. It lets us define objectives, connect them, and put weightage on the results
so that we can focus on the important KPIs of the system. A Strategy Tree (shown in
the following screenshot) displays the rolling up of each of our objectives to higher
objectives. It also shows whether each of the objectives is meeting expectations or not
using red, yellow and green color coding. A Strategy Wheel (shown in the following
screenshot) is another representation of the objective hierarchy and it shows the
objectives in a circular diagram. The Cause and Effect Map (shown in the following
screenshot) are used to display dependencies among various objectives and show
KPIs in a fish bone diagram. The Strategy Map (shown in the following screenshot)
is another method of displaying these dependencies.

Chapter 7

[265]

Configuring the Gmail SMTP server in OBIEE
We will use this section to check out the configuration of the Gmail smtp server for
e-mail delivery using agents. We will talk about OBIEE agents after we are done with
the SMTP server configuration. We had used stunnel to configure mail functionality
in APEX because our database Version (11.2.0.1.0) is not capable of sending SSL
requests to the mail server and Gmail accepts only SSL requests. We can use Stunnel
for OBIEE as well. It is important to point out that OBIEE is capable of sending SSL
requests to the SMTP server.

Note that the configurations mentioned here are according to the stunnel.conf
file described in the Configuring the mail section of Chapter 5, Flight to Space Station
– Advanced APEX. Let us now configure OBIEE for e-mail delivery.

1. Log in to Fusion Middleware Control.
2. Expand Business Intelligence in Farm_bifoundation_domain

in the left panel.
3. Click on coreapplication and then on the Deployment tab.

Select the Mail tab under the Deployment tab.

Integrating APEX with OBIEE

[266]

4. Click on the Lock and Edit Configuration button and enter the
following details:

 ° SMTP server: localhost
 ° Port: 1925
 ° Display name of sender: Your choice
 ° Email address of sender: Gmail ID
 ° Username: Gmail ID
 ° Password: Your Gmail password

5. Apply and activate changes. You will be taken to a screen that helps you
restart the BI components. Restart them.

Once the web server is configured, we can now create an agent on top of an
OBIEE analysis.

Understanding agents
OBIEE agents are used to schedule OBIEE tasks. Agents run the report on a specific
schedule and deliver the output to a configured device. The jobs executed by the
agents can be seen in the Job Manager. Link to open the Job Manager is present in
the Oracle Business Intelligence program group. We can use our weblogic admin
credentials to log in to the Job Manager.

A screenshot of the Job Manager is shared as follows:

Let us now create an agent, using the following steps:

1. Log in to the analytics portal via http://<obiee_presentation_
server_ip>:<obiee_presentation_server_port>/analytics/saw.
dll?bieehome&startPage=1.

Chapter 7

[267]

2. Move your mouse pointer on top of the New link and select Agent
(highlighted in the following screenshot) from it.

This will take us to a screen that will help you configure agents. I created an agent
with the following configuration:

Integrating APEX with OBIEE

[268]

The tabs in the previous screenshot are self-explanatory. The General tab is for
impersonation and priority setting. Impersonation uses the data level security
configuration of the user to which the session is impersonated and the agent is
executed accordingly. Priority is to set the priority of the delivery. The Schedule
tab lets us set the schedule of the agent. The Condition tab can help us make the
running of the agent subject to certain conditions. These conditions can be based on
both KPIs and analysis. Delivery Content is the analysis, Dashboard, or the briefing
book, which we want to deliver to the user. Recipients are the users who will receive
the delivery of this agent. The Destination tab lets us select a number of devices to
which the content can be delivered. For example, you can configure the delivery of
an agent to both the dashboard of the user and to his e-mail.

I got an e-mail in my Gmail inbox after executing the agent shown in the
preceding screenshot.

OBIEE server reaching out to Stunnel to deliver the e-mail can be seen in the
Stunnel's log. If you see that Stunnel is getting used, then you can be sure that your
OBIEE configuration is correct. If you do not get the e-mail, then the Stunnel log file
should tell you the problem. A successful connection will give you a log similar to
the following one:

2012.11.20 17:12:15 LOG5[1680:7764]: Reading configuration from file
stunnel.conf
2012.11.20 17:12:15 LOG5[1680:7764]: FIPS mode is enabled
2012.11.20 17:12:16 LOG5[1680:7764]: Configuration successful
2012.11.20 17:13:43 LOG5[1680:4456]: Service [ssmtp] accepted
connection from 127.0.0.1:58947
2012.11.20 17:13:44 LOG5[1680:4456]: Service [ssmtp] connected remote
server from 223.178.246.29:58948

Chapter 7

[269]

2012.11.20 17:14:17 LOG5[1680:4456]: Connection closed: 129655 byte(s)
sent to SSL, 435 byte(s) sent to socket

Integrating OBIEE with APEX
Integration of OBIEE with APEX can be done using web services, OBIEE's Go URL,
or using ODBC connections. There are a number of limitations of the ODBC technique,
so a section is not dedicated to it. It is important to understand that if we use ODBC,
then, we are leveraging OBIEE's BI Server component, but we are not leveraging
OBIEE's Presentation Server component. ODBC method connects to the BI Server
component and accesses the presentation tables of OBIEE to query data. The data will
be fetched using the relationships established in the BI repository.

The other two methods are web services and Go URL. We will have a look at
them now.

Integration using web services
Before we dig into understanding a few web services of OBIEE, I wish to point out
that we can only use manually created web services reference for OBIEE's integration
with APEX because OBIEE's WSDL contains multiple SOAP bindings.

The SOAP envelopes can easily be generated using SoapUI. The WSDL page of OBIEE
web services is http://<obiee_presentation_server_ip>:<obiee_presentation_
server_port>/analytics/saw.dll/wsdl/v7 or http://<obiee_presentation_
server_ip>:<obiee_presentation_server_port>/analytics/saw.dll/wsdl/
v6. SoapUI will use this WSDL to generate the right structure of the SOAP envelope
required to fire the call.

Alright, let us now check out a few web services.

Delivery of OBIEE reports can happen either by first fetching the reports to
APEX and then delivering it from APEX, or the delivery can happen by using
OBIEE agents and agents can be called from APEX. The executeIBotNow method
of the iBotService service can be used to execute an agent. We have already
seen a number of ways to execute a web services method from APEX and the
executeIBotNow method is no different. A typical SOAP envelope to execute
an agent looks like the following code:

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:v7="urn://oracle.bi.webservices/v7">
<soapenv:Header/>

Integrating APEX with OBIEE

[270]

 <soapenv:Body>
 <v7:executeIBotNow>
 <v7:path>/shared/Packt/Agents/First Agent</v7:path>
<v7:sessionID>dr9l3u5fd53tpj0nq64ck5m15fj5m3hdnes557q</v7:session
 ID>
 </v7:executeIBotNow>
 </soapenv:Body>
</soapenv:Envelope>

The session ID highlighted in the preceding piece of code is in the response to the
logon method of the SAWSessionService service. The logon method accepts a
user ID and a password to generate a valid OBIEE session. The result of a successful
execution of the agent looks like the following code:

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:sawsoap="urn://oracle.bi.webservices/v7">
 <soap:Body>
 <sawsoap:executeIBotNowResult/>
 </soap:Body>
</soap:Envelope>

I wish to talk about HTMLViewService here. This service is used to get an online
OBIEE report for any client that uses this service. An example of a soap envelope that
invokes an OBIEE report using HTMLViewService is shown in the following code:

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:v6="urn://oracle.bi.webservices/v6">
<soapenv:Header/>
<soapenv:Body>
 <v6:getHtmlForPageWithOneReport>
 <v6:reportID>simpleReport</v6:reportID>
 <v6:report>
 <v6:reportPath>/shared/Packt/simpleReport</v6:reportPath>
 <v6:reportXml></v6:reportXml>
 </v6:report>
 <v6:reportViewName></v6:reportViewName>
 <v6:reportParams>
 <v6:filterExpressions></v6:filterExpressions>
 <v6:variables>
 <v6:name></v6:name>

Chapter 7

[271]

 <v6:value></v6:value>
 </v6:variables>
 <v6:nameValues>
 <v6:name></v6:name>
 <v6:value></v6:value>
 </v6:nameValues>
 <v6:templateInfos>
 <v6:templateForEach></v6:templateForEach>
 <v6:templateIterator></v6:templateIterator>
 <v6:instance>
 <v6:instanceName></v6:instanceName>
 <v6:nameValues>
 <v6:name></v6:name>
 <v6:value></v6:value>
 </v6:nameValues>
 </v6:instance>
 </v6:templateInfos>
 <v6:viewName></v6:viewName>
 </v6:reportParams>
 <v6:reportOptions>
 <v6:enableDelayLoading>false</v6:enableDelayLoading>
 <v6:linkMode></v6:linkMode>
 </v6:reportOptions>
 <v6:pageParams>
 <v6:idsPrefix></v6:idsPrefix>
 <v6:dontUseHttpCookies>true</v6:dontUseHttpCookies>
 </v6:pageParams>
 <v6:sessionID>dr9l3u5fd53tpj0nq64ck5m15fj5m3hdnes557q</v6:
 sessionID>
 </v6:getHtmlForPageWithOneReport>
</soapenv:Body>
</soapenv:Envelope>

The end point for the above SOAP envelope has the following form http://<obiee_
presentation_server_ip>:<obiee_presentation_server_port>/analytics/
saw.dll?SoapImpl=htmlViewService

report_id (highlighted in the preceding code) can be any value. report_path
(highlighted in the preceding code) is the path of the analysis in OBIEE web catalog.
The output of the preceding invocation looks like the following code:

<noscript>To use Oracle BIEE, please enable javascript in your
browser.
</noscript>

Integrating APEX with OBIEE

[272]

<script type="text/javascript" src="http:// <obiee_presentation_
server>:<obiee_presentation_server_port>/analytics/res/b_mozilla/
browserdom.js"></script>
<script type="text/javascript">try{saw.doFrameBust(0);function
sawC2U(s)
{return
 "http:// <obiee_presentation_server>:<obiee_presentation_server_
port>/analytics/saw.dll?__xyz__".replace("__xyz__",s);}function
sawP2U(s)
 {return
 "http:// <obiee_presentation_server>:<obiee_presentation_
server_port>/analytics/saw.dll/__xyz__".replace("__xyz__",s);}var
sawEmptyHtm="http:// <obiee_presentation_server>:<obiee_presentation_
server_port>/analytics/res/empty.htm";var obips_fmapId="APwjeg";var
obips_scid="KlrYtT9JNWfOXC2JfSl5";var obips_maxStylesheets=100;var
g_LocaleInfo={sDateSeparator:"/",sTimeSeparator:":",sDecimalPoint:"."
,sThousandsSeparator:",",sAM:"AM",sPM:"PM",b24:false,sDateOrder:"mdy"
,nFDOW:6,nYearPadding:4,nMonthPadding:2,nDayPadding:2,nHourPadding:2,
sListSeparator:",",sNegativeNumberTemplate:"-#"};var obips_seeded_res
= [{p:"styleproperties.res",v:{exprs:{"dialogHelpPosition":"header",
"shuttleButtonSpace":"true","shuttleButtonLabel":"false","shuttleTab
leCellSpace":"6","shuttleDropdownWidth":"7px","shuttleDropdownHeight"
:"4px","menubarSeparator":"false","pageShadowBackground":"true","hea
derRightBorder":"true","pageBorderBottomRequired":"true","tabBarStar
tCellWidth":"5px","tabBarStartImgRequired":"true","bihRoundCorner":"
false","adminBannerBackground":"false","breadCrumbHeight":"15"}}}];}
catch(e){if (window.console && console.error) console.error('Header
script error:' + e.message);}</script><script type="text/javascript"
src="http://<obiee_presentation_server>:<obiee_presentation_
server_port>/analytics/res/b_mozilla/common/obips.ImportMeFirst.
js"></script><script type="text/javascript" src="http:// <obiee_
presentation_server>:<obiee_presentation_server_port>/analytics/
res/b_mozilla/common.js"></script><script type="text/javascript"
src="http:// <obiee_presentation_server>:<obiee_presentation_
server_port>/analytics/res/b_mozilla/viewhelper.js"></script><script
type="text/javascript" src="http:// <obiee_presentation_
server>:<obiee_presentation_server_port>/analytics/res/b_mozilla/
common/obips.JavaScriptExtensions.js"></script><script type="text/
javascript" src="http:// <obiee_presentation_server>:<obiee_
presentation_server_port>/analytics/res/b_mozilla/common/ajax.
js"></script><script type="text/javascript" src="http:// <obiee_
presentation_server>:<obiee_presentation_server_port>/analytics/
res/b_mozilla/common/ondemandload.js"></script><div id="simpleReport2"
Effective_simpleReport2_ReportObj_ID="simpleReport2_ReportObj" >
<img class="SrchImg" border=0 src="http:// <obiee_presentation_
server>:<obiee_presentation_server_port>/analytics/res/s_FusionFX/
views/searching.gif" alt=""></div>

Chapter 7

[273]

<SCRIPT type="text/javascript">
 try{simpleReport2_ReportObj = new saw.ondemandload.
EmbededReport('simpleReport2');
 var reportObject = simpleReport2_ReportObj;
 reportObject.setSessionId
 ('q9dbef0d519166nss2m3751pr9dkg63pa3al1ji');
 reportObject.setSearchId('tdi2f2upm13eu0e62mo36e2m8a');
 reportObject.setAjaxGoUrl('http:// <obiee_presentation_
server>:<obiee_presentation_server_port>/analytics/saw.dll?ajaxGo');
 reportObject.show();
}catch(e){if (window.console && console.error) console.error('Load
embedded report error:' + e.message);}
</SCRIPT>

This response fires an AJAX request to the BI Presentation Server component. The
AJAX request is highlighted in the preceding code. This AJAX request is responsible
for helping us get our desired report. The result looks like the following screenshot:

Note that if the OBIEE Presentation Server and APEX Listener server are hosted
on different web servers, then we will have to set a bridge. This bridge will broker
the requests between APEX Listener and OBIEE Presentation. More information
on setting the bridge can be found at http://docs.oracle.com/cd/E21764_01/
bi.1111/e16364/methods.htm#i1011107.

A bridge can be coded in any language but should deployed on the same domain as
the BI Presentation server. HTMLViewService has a setBridge method which should
be used before making a call to get any report from OBIEE. Once we have invoked
the setBridge method, our web service response will change a little. Following code
is a part of the web service response after the invocation of setBridge. Compare it
with the response shared earlier.

<SCRIPT type="text/javascript">
try{tab_rpt_ReportObj = new saw.ondemandload.EmbededReport('tab_rpt');
var reportObject = tab_rpt_ReportObj;

Integrating APEX with OBIEE

[274]

repor-tObject.setSessionId('b3ea95e7dngnr89k4bf016ng7ejslru074onuli');

reportObject.setSearchId('e1diij9vrjr9oc29757smpk2sm');
reportObject.setAjaxGoUrl('http://localhost:7001/bridgeJSP.jsp?Redirec
tURL=http%3a%2f%2flocalhost%3a7001%2fanalytics%2fsaw.dll%3fajaxGo');
reportObject.show();
}catch(e){if (window.console && console.error) console.error('Load
embedded report error:' + e.message);}

To get the above response, http://localhost:7001/bridgeJSP.jsp was passed as
an argument to setBridge method. Note that the bridge code, bridgeJSP.jsp in this
case, has to be implemented and is not a part of OBIEE tool. Note the highlighted part
of the code. Instead of calling the OBIEE resources directly, the web service response
now calls http://localhost:7001/bridgeJSP.jsp and passes the required resources to
it (the bridge) as an argument. It is now the responsibility of the bridge to call OBIEE
resources and send the response back to APEX. So the bridge should be able to
capture the headers and cookies from APEX and the BI Presentation server and use
them to make both HTTP GET and HTTP POST calls to the BI server. The headers
and cookies will also have to be set while sending the response back to APEX.

Integration with APEX using Go URL
OBIEE lets external systems use its services using Go URL. The URL lets us pass
filters to the OBIEE analysis and Dashboards. The only problem in this approach
is the security. If we are firing a Go URL from an external system, then we will be
prompted for a password. We can escape this by passing the credentials in the URL.

The following URL is an example of a Go URL:

http://<obiee_presentation_server_ip>:<obiee_presentation_
server_port>/analytics/saw.dll?Go&Path=%2Fshared%2FSample%20
Lite%2FKPIs%2FAvg%20Order%20Size&NQUser=weblogic&NQPassword=weblog
ic123.

Here, the path of the Avg Order Size KPI in the catalog is /shared/Sample Lite/
KPIs and weblogic/weblogic123 are the credentials of the weblogic user. If we wish
to show only a particular view of the analysis then we can use &ViewName=<view_
name> in the Go URL, where <view_name> is the name of the view, which we want
to show.

Chapter 7

[275]

We can get the view name of all the views in the analysis by going to the Analysis
XML section in the Advanced tab of an analysis. There are some more options,
associated with goURL, which we can check. A detail list can be found in OBIEE's
Integrator's guide from the following location: http://docs.oracle.com/cd/
E23943_01/bi.1111/e16364/apiwebintegrate.htm#CACCHBHC.

OBIEE Dashboards can be accessed using the syntax similar to the following URL:
http://<obiee_presentation_server_ip>:<obiee_presentation_server_
port>/analytics/saw.dll?Dashboard&PortalPath=%2Fshared%2FSample%20
Lite%2F_portal%2FQuickStart&NQUser=weblogic&NQPassword=weblogic123.

Pages inside the Dashboard can be accessed using http://<obiee_presentation_
server_ip>:<obiee_presentation_server_port>/analytics/saw.dll?Dashboa
rd&PortalPath=%2Fshared%2FSample%20Lite%2F_portal%2FQuickStart&Page=S
corecard&NQUser=weblogic&NQPassword=weblogic123.

Note the use of &Page=Scorecard here.

If you hate OBIEE buttons on your page then you can use Portal Pages as shown
in the following example: http://<obiee_presentation_server_ip>:<obiee_
presentation_server_port>/analytics/saw.dll?PortalPages&PortalPath=%2
Fshared%2FSample%20Lite%2F_portal%2FQuickStart&Page=Scorecard&NQUser=
weblogic&NQPassword=weblogic123.

We can also fire queries on the presentation tables using Go URL. The following
is an example: http://<obiee_presentation_server_ip>:<obiee_
presentation_server_port>/analytics/saw.dll?Go&SQL=select+Products.
Product,Products.Brand+from+"Sample+Sales+Lite".

We can use goURL as targets of any link in APEX. goURL can be set as the targets
in classic and interactive reports, buttons, branches and any other place to use URLs
in APEX.

Integration using iFrames in APEX
We can also use iFrames in APEX to display OBIEE content. Integration using
iFrames is an extension of integration using GoURL. We will have to do the
following configurational changes and restart OBIEE before using OBIEE
reports in APEX iFrames:

1. Put the following in instanceconfig.xml.
<Security>
<InIFrameRenderingMode>allow</InIFrameRenderingMode>
</Security>

Integrating APEX with OBIEE

[276]

2. Put the following in web.xml present in <Middleware_Home>\oracleBI1\
bifoundation\web\app\WEB-INF.
 <context-param>
 <param-name>oracle.adf.view.rich.security.FRAME_BUSTING</param-name>
 <param-value>never</param-value>
 </context-param>

3. Once these configurations are done, we can use the following code in
APEX HTML region to get OBIEE reports.:
 <html>
 <title> OBIEE iFrame demo</title>
 <body>
 <iframe src="http://<OBIEE_Presentation_server_ip>:<OBIEE_
Presentation_server_port>/analytics/saw.dll?Go&Path=<report_path_
in_obiee_web_catalog>&NQUser=<OBIEE_user_id>&NQPassword=<OBIEE_
password>" width="700" height="400"></iframe>
 </body>
</html>

The following is an example of the argument of the src attribute of the iframe tag.

http://localhost:7001/analytics/saw.dll?Go&Path=/shared/Test/Test%20
Report&NQUser=weblogic&NQPassword=Admin123.

Understanding BI Publisher
A few years back, BI Publisher was called XML publisher. Oracle bought it, baptized
it in its own way, and started calling it BI Publisher. The basic architecture of the
tool still remains the same. It is a widely used reporting solution because of the ease
with which it can be integrated with almost any interface and its ability to work on
almost any kind of data source. The data sources can even be files and web services.
However, the most important feature of BI Publisher is the ability to design the
output format (template) using MS Word (rtf format). One can use the BI Publisher
plugin of MS Word to make this template. The template with the data source is
then used to produce the report. However, rtf is not the only possible format for
designing the template. We can also make templates in the pdf, eTEXT, flash, and
excel formats.

Chapter 7

[277]

BI Publisher is essentially a JEE web archive (WAR) application and until 10g it
worked almost independent of OBIEE answers and Dashboards. OBIEE answers
and Dashboards is the erstwhile Siebel Analytics. It is possible to use answers
(now analysis) as data sources in BI Publisher. In 11g, we can have a shared
repository of objects and the two tools are more tightly integrated.

We will talk about creating the BI Publisher reports in
greater detail because BI Publisher is often used as a
report printing engine in APEX. Functions such as APEX_
UTIL.DOWNLOAD_PRINT_DOCUMENT and APEX_
UTIL.GET_PRINT_DOCUMENT can use the rtf template
along with report data and send these to BI Publisher to
create a report.

Creating and mailing reports in BI Publisher
We will use rtf templates for creating our sample reports because it is generic (can
be used to generate almost any format of the output) and is easy to use. The other
template formats are xls, pdf, flash, and eTEXT.

Let's now begin the process of creating a simple BI Publisher report. Log in to BI
Publisher (typical URL http://<obiee_presentation_server_ip>:<obiee_
presentation_server_port>/xmlpserver/login.jsp).

We have to first create a data model, then a template, and will finally put both of
these together.

Creating data model in BI Publisher
The first step in the creation of a BI Publisher report is the creation of a data model.
This defines the method of fetching data. We will be using a SQL Query as the data
source and will create a report on our very own oehr_employees table. BI Publisher
can use SQL Query, MDX Query, Oracle BI Analysis, ADF View Object, Web
Service, LDAP Query, XML file, Microsoft Excel file and HTTP (XML Feed) as data
sources.

1. Let us first create a data source. Click on the Administration link (highlighted
in the following screenshot) on the top-right corner of the page after logging
into BI Publisher.

Integrating APEX with OBIEE

[278]

2. Click on JDBC Connection under the Data Sources group.
3. Click on the Add Data Source button.
4. Enter Oracle Query Data Source as Data Source Name. Data Source

Name can be any name. Let Driver Type be Oracle 11G and Database
Driver Class be oracle.jdbc.OracleDriver.

5. Enter jdbc:oracle:thin:@<db_host>:<db_post>:<sid> as Connection
String. Replace <db_host>:<db_post>:<sid> with your database information.
Enter packt_schema credentials in the Username and Password textboxes.
Put the Data Source Name as Oracle Query Data Source.

6. Click on the Test Connection button after doing this. You should get
the Connection established successfully message at the top of the
browser window.

7. Click on the Apply button.
8. Click on the Home link (highlighted in the preceding screenshot).
9. Click on the Data Model link (highlighted in the following screenshot).

10. Select Oracle Query Data Source (highlighted in the following screenshot)
as Default Data Source. Note that we had created this Data Source in step 5.

Chapter 7

[279]

11. Click on the Data Sets link (highlighted in the preceding screenshot) in the
left panel and then click on the New Data Set button under the Diagram tab
and select SQL Query as shown in the following screenshot:

12. Enter the Name as Employee Query (this can be any name) and enter select
* from oehr_employees where employee_id like nvl(:BIP_EMP_
ID,'%')in SQL Query text box. Check the Oracle Query Data Source radio
button as shown in the following screenshot. Click on the OK button:

Integrating APEX with OBIEE

[280]

13. Click on the Parameters link and then click on the green colored plus sign
(+) to add a parameter. Name it BIP_EMP_ID and give Enter employee id:
as its label as shown in the following screenshot. Note that we are naming it
BIP_EMP_ID because we had used BIP_EMP_ID in the query in step 12.

14. Click on the Save button (highlighted in the following screenshot). Create a
new folder called BIP Data Model under Shared Folders in the catalog and
save this data model in it.

15. Click on the Get XML Output (highlighted in the preceding screenshot)
button. Enter 100 in the Enter employee id: textbox and click on the Run
button as shown in the following screenshot. This XML will help us in the
next step of making rtf templates. Save the part of this XML starting from
<DATA_DS> and ending at </DATA_DS>. Also remove the (–) characters
highlighted in the following screenshot:

Chapter 7

[281]

16. Upload this file in the Data Model link in the Sample Data link under the
Attachment section as shown in the following screenshot. Save the data model.

Integrating APEX with OBIEE

[282]

BI Publisher data model gives you a lot more options than the ones mentioned here. I
believe you must have felt it by now. I cannot talk about all of those because it would
require another book devoted to the subject, but I can certainly point you to the
documentation which contains a good description of these options. Have a look at
http://docs.oracle.com/cd/E23943_01/bi.1111/e22258/toc.htm.

Using the BI Publisher's MS Word plugin to make rtf
templates
Let us now make a template for our data. We have chosen to make an rtf template
and we will do this using BI Publisher's MS Word plugin. We can download this
plugin from our BI Publisher application itself. Let's see the process now.

1. Click on the Home link in BI Publisher and then click on Download BI
Publisher Tools in the Getting Started section in the left panel.

2. Download and install BI Publisher desktop. Choose 30 bit / 64 bit according
to the machine on which you plan to create your templates. Install the same.
This will help you see the BI Publisher tab in MS Word. This tab is highlighted
in the following screenshot.

3. Open MS Word and click on the BI Publisher tab and then on the Sample
XML button as shown in the following screenshot. Load the XML file which
you got from step 15 of the Creating data model in BI Publisher section. You
should get the Data loaded successfully message. Select Table Wizard
(highlighted in the following screenshot).

4. Select First Name, Last Name, Email, Salary, and Employee id from the
shuttle, keep the defaults in the other steps, and click on Finish.

5. Save this file as employees.rtf on your local machine.

The template automatically gets a loop to iterate through the rows of the data set.
Check the help texts of various form fields (grey boxes) in the rtf file and match the
values with the tags in the screenshot under step 15.

Chapter 7

[283]

You will find <?for-each:G_1?> in the help text of the form field with the label 'F'.
<?for-each:G_1?> is basically a loop of G_1. Everything between <?for-each:G_1?>
and <?end for-each?> is iterated for each value of G_1. You will find values such
as <?FIRST_NAME?> between <?for-each:G_1?> and <?end for-each?>. This
arrangement ensures that the value of FIRST_NAME of the datasource (SQL query in
our case) is iterated for every value of G_1. There is a whole science behind template
building and you can check out its documentation at http://docs.oracle.com/cd/
E23943_01/bi.1111/e22254/toc.htm.

Assembling the rtf template and data model together
After creating the template, we have to create a BI Publisher report using the
template and data model. Let's see the steps for it.

1. Log in to BI Publisher and click on the Report link (highlighted in
step 9 of the Creating data model in BI Publisher section) to create a
new BI Publisher report.

2. Click on Use existing Data Model. Select the data model which
you had created and click on Next.

3. Select the Use Report Editor radio button and click on Finish.
4. Save this report in a new folder called BIP reports.
5. Click on the Add New Layout button as shown in the following screenshot:

6. Upload the created RTF file in the Upload or Generate Layout section and
save the report.

7. Now click on the View Report tab(highlighted in the preceding screenshot)
to see this report. The report will look like the following screenshot:

Integrating APEX with OBIEE

[284]

This ends our discussion on creating a simple report in BI Publisher. We dedicated
a substantial section to creating reports in BI Publisher because BI Publisher is often
coupled with APEX for report printing.

Scheduling reports and e-mail delivery in
BI Publisher
Let us now see the process of scheduling reports in BI Publisher. Scheduling reports
in BI Publisher is a simple process. Here, we will have a look at the BI Publisher's
system to schedule reports and will later look at a method to run the schedule from
APEX using web services.

1. Log in to BI Publisher and click on the Administration link on the
top-right corner.

2. Click on the Email link under the Delivery section. Note the other
methods of report delivery. These methods include delivery to the
Printer, Fax, WebDAV, FTP, HTTP, and CUPS servers.

3. Click on the Add Server button.
4. Enter Host as smtp.gmail.com and Port as 465. Enter your Gmail username

and Gmail password. Enter Gmail in the Server Name field. Server Name
can be any wild string. Click on the Apply button. The following screenshot
should help you in the configuration:

We could also have used Stunnel as well for delivering mails.

Chapter 7

[285]

5. Open the report again and click on the Schedule link as shown in the
following screenshot:

6. Click on the Output tab, select Email in the Destination Type button,
and then click on the Add Destination button.

7. Enter a To address, the Subject and Message fields, and click on the
Submit button.

8. Give a Report Job Name and click on the OK button. You should get
an alert for the successful submission of the job.

9. Click on the Return button.
10. Click on the Actions button again and select the Job History link

(highlighted in the preceding screenshot) this time.
11. You should be able to see your successfully executed report and the

delivered report in your e-mail inbox.

Integrating APEX with OBIEE

[286]

Creating barcode reports in BI Publisher
We are talking about creating barcode reports because these reports are not available
in APEX. This is unique to BI Publisher and hence mandates a deeper look.

In BI Publisher 10g, we had to go through a long process of registering the barcode
encoding class with BI Publisher, so that it can be instantiated at runtime to apply
the formatting. However in 11g, some barcode fonts are shipped with BI Publisher
and we don't need any registration, if we use these implemented barcode fonts.

The process to create a barcode report is not too different from the process to
create any other BI Publisher report. All just have to copy 128R00.TTF from <BI_
Middleware_home>\Oracle_BI1\common\fonts to C:\WINDOWS\Fonts. Note that
other barcode fonts in BI Publisher are in the B39R00.TTF and UPCR00.TTF files.
128R00.TTF supports the code128a, code128b, and code128c algorithms. B39R00.
TTF supports the code39 and code39mod43 algorithms, while UPCR00.TTF supports
the upca and upce algorithms.

I have created an rtf template (Barcode.rtf, shipped with the book) that uses the
code128a algorithm. I have displayed the salaries of employees as barcodes. To do
this, I have changed the font to Code 128. You should be able to see Code 128 in the
list of fonts in MS Word after you copy 128R00.TTF to C:\WINDOWS\Fonts. I have
also put <?format-barcode:SALARY;'code128a'?> in the help text of the Salary
column form field. We can add the help text by clicking on the form field (the grey
colored boxes) and then clicking on the Add Help Text button in MS Word.

If the barcodes do not display properly in the PDF format on the BI Publisher portal
then perform the following steps:

Chapter 7

[287]

1. Click on the Home link, and then click on the Edit link under the
Barcode report tab.

2. Click on the Properties button on the top-right corner of the
browser and then click on the Font Mapping tab.

3. Under RTF Templates, click on the green plus sign (+).
4. Enter Code 128 as Font family, Normal as Style and Weight, Truetype as

Target Font Type, 128R00.TTF as Target Font, and leave TTC Number blank.
5. Click on the OK button.

The report should look like the following screenshot:

We can also check the report in MS word itself by loading the
employees.xml file (shipped with the book) and generating
the sample report in the rtf/excel/html formats in MS Word.
The method to use MS word to test templates has been shown
in the following section.

Dynamic BI Publisher
Alright, till now we have been dealing with the basic functions of BI Publisher but I
wanted to include this exotic section, so that the readers of this book could take their
BI Publisher programming to a higher level.

Open the RTF file created in Using the BI Publisher's MS Word plugin to make rtf templates
section to make more sense of this section. You can also open employee.rtf which has
been shipped with the book. We have seen that RTF templates have form field which
have place holders such as <?EMPLOYEE_ID?> to display the columns of the data source
in the data model.

Integrating APEX with OBIEE

[288]

In our case, we have used SQL Query as the data source. We have also seen how we
can use the form fields to iterate through the rows of a data source. The syntax used
to iterate through the rows of our query on oehr_employees is <?for-each:G_1?>.
Here G_1 is the parent node that holds the columns of the query output. So <?for-
each:G_1?> helps us to iterate through different rows of the G_1 data group. We had
a short discussion about <?for-each:G_1?> and other tags of the rtf file in step 15 of
Creating data model in BI Publisher section as well. You can validate the presence of
G_1 in the data source by having a look at the screenshot under step 15 of Creating data
model in BI Publisher section. We see here that the for loop and the <?FIRST_NAME?>
place holder work on fixed tags, that is, G_1 and <?FIRST_NAME?>.

What if we have a requirement of displaying different columns based on certain
conditions in BI Publisher? This will mean that the column names to be displayed
and to be used in for loops will not be known at the time of creation of the template.
This section tries to address the question of dynamically displaying columns in
BI Publisher.

A sample RTF (Dynamic BIP using params.rtf) and XML file (Dynamic BIP
using params.xml) has been created so that you can test the working code on
your local desktop without uploading the code on the BI Publisher's server.
Perform the following steps to test this:

1. Open Dynamic BIP using params.rtf and load Dynamic BIP using
params.xml.

2. Click on the PDF button as shown in the following screenshot:

3. You will see the following output:

Chapter 7

[289]

Let us now see the code that helps us in making the template dynamic. The same is
shared for your convenience as follows;

<?param@begin:Column1;'"Name"'?>
<?param@begin:Column2;'"PhoneNumber"'?>
<?param@begin:Column3;'"DateOfBirth"'?>
<?param@begin:Column4;'"Age"'?>

<?$Column1?> <?$Column2?> <?$Column3?> <?$Column4?>
<?for-
each:Employee?>
<?./*[name() =
$Column1]?>

<?./*[name()
= $Column2]?>

<?./*[name()
= $Column3]?>

<?./*[name() =
$Column4]?> <?end
for-each?>

We first declare a param parameter in the begin context using <?param@
begin:Column1;'"Name"'?>. Note that Column1 is the name of a param parameter.
Params are the parameters which we declare in the data model. Templates can also
have variables which can be used for certain calculations in the template and are
local to the template. Column1 param here is set to have a default value of Name but
the value of Column1 param can be passed while running a BI Publisher report as
well. We can have a dropdown parameter type in BI Publisher. We can have a list
of column names as different values in this list and we can let the user select the
column that he wants to see in the report using the parameter. The column name
value that the user selects, in the parameter, can be captured in the template using
<?param@begin:Column1;'"Name"'?> where Column1 is the name of the parameter.
The next important thing is the use of this param to code dynamic columns in rtf
template. This is done by <?for-each:Employee?><?./*[name() = $Column1]?>.

Note that you will have to open Dynamic BIP using params.xml to comprehend
the code. We are dealing with the animal called the XPATH syntax here. It's an
industry standard developed by World Wide Web Consortium (W3C). It is a
method to navigate in XML documents. The first . in ./*[name() = $Column1] is
for the current node. Since we are running the loop of Employee, the dot is for the
Employee node. / is for the descendants of the current node(Employee in our case). *
is a wild card character in the XPATH syntax. So this means that we are considering
all the descendants of the Employee node. [] is for filtering, so we first consider all
nodes and then put a filter that the node should be the one whose name matches
with the value of Column1 param.

Integrating APEX with OBIEE

[290]

The BI Publisher syntax is simplified XSL instructions. You can also use native XSL
commands in your templates. The code you put in your templates is converted to
XSL-FO when you upload the template. Since we just saw that we can have dynamic
columns using BI Publisher syntax so we should be able to make dynamic columns
using XSL syntax as well. The syntax for the dynamic columns for loop in XSL syntax
is <xsl:for-each select=".//node()[local-name()=$P_LOOP]"><?sort:name;
'ascending';data-type='text'?>.

Similarly, syntax for dynamic display of column is <xsl:value-of select=".//
node()[local-name()=$P_SORT_BY]">.

Consider Dynamic Grouping Employees.xml and Dynamic Grouping Employees.
rtf. The only special thing in this template is the dynamic for-each-group, that is,
<?for-each-group:ROW;./*[name(.) = $group1]?>.

Have a look at Dynamic Sort.rtf and Dynamic Sort.xml to get the code for
dynamic sorting.

I hope you remember our discussion on the Table functions from
our discussion in Chapter 3, In the APEX Mansion – Interactive Reports.
That table function can also be used in BI Publisher when we select
SQL Query as the data source. This can enable us to materialize the
thought of dynamic data source.

Integrating BI Publisher with APEX
We have seen various examples of creating reports in BI Publisher. I hope you
understand that there is a lot more to BI Publisher than what I have written here. BI
Publisher can be used for generating charts, matrix reports, republish the generated
reports, and a lot more. There is tremendous flexibility in the security model as well.
Again data model and templates can also be made in a number of other ways. BI
Publisher also gives a utility called Template Viewer which can be used to see the
reports generated by templates designed in other medium such as excel and PDF
without having to upload the templates on the server. This saves time and helps to
validate the templates offline. The BI Publisher desktop utility also installs a number
of samples which can serve as good training material for BI Publisher.

Now that we have some idea about the enormous possibilities open to us using
BI Publisher, the time is apt to check out the integration of this tool with APEX.

Chapter 7

[291]

Using convert servlet in Instance Settings
Usually, integrations with other tools work with web services. This basically means
that the code exists on the tool which is being integrated and is accessed by some
other tool using web services. Although APEX and BI Publisher can be integrated
using web services, and we will see this integration in a short while, the two tools
can also be integrated using convert servlet. In this method, the data and the
template are passed by APEX to convert servlet of BI Publisher which generates the
report in the desired format and sends it back to APEX. So the code in this case exists
in APEX and it just leverages the reporting engine of BI Publisher to generate high
fidelity reports. This integration works in a similar way to the integration between
APEX and Apache FOP or APEX and Apache Cocoon. The configuration is done in
the Report Printing section of Instance Settings. Since we have been to this place
while configuring Apache FOP and Apache Cocoon, let me just put the screenshot
which shows the BI Publisher specific values to be put in this section.

Page 4 of the reference application uses the APEX_UTIL package to transmit a Report
Layout and Report Query stored in shared components to BI Publisher which finally
returns the document. As pointed out in the Apache Cocoon and Apache FOP section,
if you have an APEX report, then you can use this configuration to print that report in
various formats by going to the Print Attributes page of the report.

Integrating APEX with BI Publisher using
web services
BI Publisher can also be integrated using web services. We have already created
a report in BI Publisher, we can pass parameters to BI Publisher from APEX and
then direct BI Publisher to run the report using the values passed from APEX. The
generated report can then be fetched from BI Publisher to APEX. Not just this, we
can also get the status of the submitted jobs at APEX end to inform the user about
the status of his submitted report. Using this mechanism, we can make sure that
the user never leaves the APEX screen while BI Publisher does all the hard work
at the backend.

Integrating APEX with OBIEE

[292]

An example of APEX using BI Publisher's web service has been coded for you in
the page 2 of the reference application. Make sure that you change the ports and
configure the ACL according to your environment. My APEX is working on the
8001 port and BI Publisher is working on the 7001 port.

I am using a PL/SQL process to parse calls and web services but we have already
seen a number of other ways of doing this and I am sure you would explore other
ways such as using APEX web service references.

A report has been created for you on page 5 of the reference application which
demonstrates the process of passing APEX items to BI Publisher. The only trick
in passing the parameters is to use the #<APEX_ITEM_NAME_WITHOUT_ANGLE_
BRACKETS># syntax in the web service reference. Check the code for more details.

The code for getting the response has been coded
according to the web service responses which I am
getting on my environment. You might have to tweak
it according to the responses on your environment.

BI Publisher guest folder
Apart from the two techniques mentioned in the preceding section, BI Publisher
also has a guest folder feature. We can specify one of the folders in the catalog as
guest folder and reports placed in this folder will not require any access credentials.
This is an insecure method but I thought you should know. The URL required to
access the reports can be found in BI Publisher. To get the URL, click on the Actions
button. The process to reach the Actions button of a report has already been shared
with you in this chapter. Move your mouse over Share Report link and then click
on Document Only. You would get an info dialogue box which will give you the
link to the report. You can call this link from any place and the report will open for
you. The only condition is that the report and the data model it references should be
in the Shared Folder and the Shared Folder should be configured. Guest access will
not work if we are sharing the catalog with OBIEE. Let us now see the process to
configure the Shared Folder.

1. Click on the Administration link on the top-right corner, and then click on
Server Configuration under System Maintenance.

2. Select Oracle BI Publisher – File System in the Catalog Type dropdown
and enter a value in the Path textbox. For example, C:\OracleProducts\
BI_Middleware\instances\instance1\BIPCatalog.

3. Go to the path folder and create a folder called Reports in it.

Chapter 7

[293]

4. The changed configuration does not take effect till BI Publisher is restarted.
For restarting BI Publisher, log in to console (http://<obiee_presentation_
server_ip>:<obiee_presentation_server_port>/console) and click
on Deployments. Use the Next link to go to bipublisher (11.1.1). Select
bipublisher (11.1.1) and then click on the Stop button. Select Force Stop
Now from the list. Select Yes in the following step. We now start the server
by selecting bipublisher (11.1.1) again and hitting the Start button this time.
Select Servicing all requests from that. Select Yes in the step that follows.

5. Log in to BI Publisher again, click on the Administration link on the top-right
corner, and then click on Security Configuration under Security Center.

6. Check the Allow Guest Access checkbox and enter the name of the guest
folder in the Guest Folder Name textbox. For example, Guest_folder.

7. Click on the Apply button.
8. Click on the Administration link and then click on the File link under

Data Sources.
9. Click on demo files and check the Allow Guest Access checkbox in the

Security section.

I am doing this because the report which I would create
in the guest folder will use this data source. You have to
do this with the data source which you would use in the
report stored in the guest folder.

10. Click on the Apply button.
11. Create a Guest_folder folder in the Reports folder which you created

in step 3.
12. Restart BI Publisher.
13. Create a report and its data model in the Guest_folder folder.
14. You can call this report from anyplace without any authentication. The link

to call the report can be found from the Share Report Link in the Actions
menu. The link looks similar to http://<obiee_presentation_server_
ip>:<obiee_presentation_server_port>/xmlpserver/Guest_folder/
emp_report.xdo?_xpf=&_xpt=0&_xdo=%2FGuest_folder%2Femp_report.
xdo&_xmode=4&_xt=emp_layout&_xf=html&_xautorun=true.

Integrating APEX with OBIEE

[294]

Another famous way of integrating applications on an
enterprise is to use Single Sign On (SSO). SSO can be
used to configure tools to share a single authenticating
server and logins to individual tools is avoided. SSO
can also be used to integrate APEX with OBIEE.

Summary
The goal of this chapter was to introduce you to OBIEE and to give you a good idea
about the strengths of the tool, so that you are in a position to use it when the need
be. The intent was also to introduce some of the major reporting mechanisms which
are easily possible in OBIEE, but are a little difficult to achieve using traditional APEX
programming. OBIEE has been the back bone of Oracle's Business Intelligence and
reporting solution, so it mandated a chapter on it.

We will talk about integrating some other known technologies with APEX in the
next chapter.

All About Web Services
and Integrations

This chapter is entirely dedicated to web services and integrations. While we have
been talking about web services all along, we haven't discussed the process to create
web services. This chapter will talk about the creation of both RESTful and SOAP web
services. We will talk using them as well. We will then discuss the creation of BPEL
processes and a simple crystal report. We will then move on to read about migrating
Microsoft Access reports to APEX. We will also learn about the migration of Oracle
forms to APEX. Finally, we will have a short discussion about using Google web
services and Oracle R enterprise in Oracle APEX. Enough talking, let's roll.

The following are the major learning outcomes of this chapter:

• Creating web services using native the XML DB web service
• Querying data using native web service
• Creating RESTful web service using Resource Templates
• Creating a simple synchronous BPEL (Business Process Execution

Language) process
• Creating an asynchronous BPEL process with human workflows.
• Integration of SAP crystal reports with APEX
• Migrating MS Access application to APEX
• Migrating Oracle Forms and Reports to APEX
• APEX integration with Google web services
• Using Oracle R enterprise in APEX

All About Web Services and Integrations

[296]

Understanding reports on web services
and collections
This section deals with the creation of a report on web services and collections.
I have grouped these two topics together because the response of a web service can
be stored in APEX collections, which can then be used in APEX reports. We will also
see Resource Templates in this section. Resource Templates help us build RESTful
web services and we will learn to create a report on that as well.

Throughout the chapter, I have used my database credentials,
ip address, WebLogic address and port numbers. You are
expected to replace there your corresponding information.

We can store the response of web services in either page items or collections. Here,
we are using web services to populate collections but the APEX_COLLECTION API can
also be used to do all sorts of operations on collections. Some of the methods in this
API are APEX_COLLECTION.ADD_MEMBER, APEX_COLLECTION.TRUNCATE_COLLECTION,
and APEX_COLLECTION.SORT_MEMBERS. The information stored in the collections can
be retrieved by either querying apex_collections or wwv_flow_collections.

Most of the web services discussed in this chapter are hosted on XML HTTP Server.
We have to grant access to packt_schema to use XDB web services. We also have to
create an Access Control List. Execute the following to do this:

SQL> @4-98-9_02_acl_for_web_services

You can find 4-98-9_02_acl_for_web_services.sql in the code pack for Chapter 2,
Conventional Reporting in APEX. Put APEX_040200 in Enter the schema which will
run the webservice: prompt.

Grant the following privileges to packt_schema:

GRANT XDB_WEBSERVICES TO packt_schema;
GRANT XDB_WEBSERVICES_OVER_HTTP TO packt_schema;

Execute the following statements from SQL*Plus using SYSDBA:

exec DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE('/sys/acls/apex_users.xml',
'PACKT_SCHEMA',TRUE, 'connect');
commit;

If the name of the ACL in your case is different then use the same in the above command.

Chapter 8

[297]

Understanding native XML DB web services
We have learned a few things about XMLHTTP Protocol server in the first chapter.
This chapter will introduce the configuration and use of XML HTTP Protocol server
to expose stored PL/SQL functions and procedures as web services. The input and
output XML schema definition (XSD) are governed by the arguments and the return
values of stored procedures and functions.

Setting XML DB web services
The following are the steps to configure XML DB web services:

1. Execute the following code after connecting from command prompt as
sys to enable XML HTTP Protocol server to work on port 8080:
Begin
DBMS_XDB.sethttpport(8080);
End;

If 8080 port is in use then configure some other port number.

2. Open command prompt and get into the directory that contains the
following script. Execute the following command after connecting as
sysdba. This step helps us to present stored functions and procedures
as web services.

SQL> @4-98-9_08_enableWebservice

This script tweaks xdbconfig.xml, which is the configuration file for
the XML HTTP Protocol server. xdbconfig.xml can be changed using
the DBMS_XDB package. The preceding script does the necessary changes
for us.

If you have executed the scripts under Understanding reports on web services and
collections section and this section then, you should now be able to see the WSDL
for the Get_employee function of Chapter2 PL/SQL package when you fire the
following URL:

http://localhost:8080/orawsv/PACKT_SCHEMA/CHAPTER2/GET_EMPLOYEE?wsdl

This URL will prompt you for credentials. Pass your packt_schema credentials to
see the WSDL.

All About Web Services and Integrations

[298]

Creating a report on native XML DB web services
Let's now now see the process of creating reports on web service responses stored
in collections/items associated with the APEX web service references/processes.
Get employee manual and GET_EMPLOYEE_TABService web service references
of Chapter2, Conventional Reporting in APEX reference application use native web
services. We will talk about GET_EMPLOYEE_TABService in some time. Let's now
talk about the Get employee manual web service reference.

The Get employee manual web service reference of Chapter 2, Coventional Reporting in
APEX reference application has a manually written SOAP envelope. We know that our
web service needs authentication. We can pass the credentials from the URL. If we pass
the credentials from the URL then we have to mark that the web service does not need
basic authentication. Enter http://packt_schema:packt_schema@localhost:8080/
orawsv/PACKT_SCHEMA/CHAPTER2/GET_EMPLOYEE in the URL textbox of the Get
employee manual web service reference of Chapter 2, Conventional Reporting in APEX
reference application. Note that we are passing packt_schema credentials by using
the @ symbol. Change the credentials according to your own environment. We'll see
another method of authentication in the next section. Replace localhost with the ip
address of your database server

The following is the code of a manually written SOAP envelope of the Get employee
manual web service reference for your reference:

<?xml version='1.0' encoding='UTF-8'?><SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/
XMLSchema">
 <SOAP-ENV:Body>
<ns1:CCHAP2_EMP_TYPE-GET_EMPLOYEEInput xmlns:ns1="http://xmlns.oracle.
com/orawsv/PACKT_SCHEMA/CHAPTER2/GET_EMPLOYEE">
<ns1:EMP_ID-NUMBER-IN>#P8_EMP_ID#</ns1:EMP_ID-NUMBER-IN>
</ns1:CCHAP2_EMP_TYPE-GET_EMPLOYEEInput>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAP envelope in the Get employee manual web service
reference is written according to my environment. If your environment
needs a different envelope then use soapUI (http://www.soapui.
org/Downloads/download-soapui-pro.html) to create a SOAP
envelope that suits your environment. soapUI will expect the WSDL
written at the end of the Setting XML DB web services section, to create a
SOAP envelope.

Chapter 8

[299]

Note that #P8_EMP_ID# is highlighted in the preceding code. The P8_EMP_ID item is on
page 8 of the Chapter2, Conventional Reporting in APEX reference application and holds
the value of employee ID selected by the user while using this page. The preceding
SOAP envelope passes the employee ID selected by the user to the native web service
using #P8_EMP_ID#. Now to get a response from this web service reference, we have
to invoke it. Invocation is done by the Get employee page process. The Get employee
page process invokes the Get employee manual web service reference, which in
turn invokes the chapter2.get_employee function. The following is the code of
chapter2.get_employee:

FUNCTION get_employee(emp_id NUMBER) RETURN chap2_emp_type
AS
 emp_object chap2_emp_type;
BEGIN
 SELECT chap2_emp_type(first_name, last_name, employee_id, email,
job_id)
 INTO emp_object
 FROM oehr_employees WHERE employee_id = emp_id;
 RETURN emp_object;
END;

The employee ID passed from the manually written SOAP envelope, that is,
#P8_EMP_ID# is mapped to the emp_id argument of the chapter2.get_employee
function. So the value passed from #P8_EMP_ID# is captured in the emp_id argument
of the chapter 2.get_employee function. Note that the chapter2.get_employee
function returns an object of the chap2_emp_type type. We created the chap2_
emp_type type, because a function can return only one value and we wanted to
get more than one attribute of the selected employee. The SELECT statement in the
get_employee function uses emp_id, which was passed as an argument to fetch the
details of the selected employee. We cast the details of the selected employee to the
chap2_emp_type type in the SELECT clause and store it in emp_object. This object
is finally returned by the chapter2.get_employee function. This returned object is
a part of the web service response. The web service response is captured in APEX
tables. The storing of response in APEX tables happens because we have GET_EMP_
MANUAL in the Store Response in Collection textbox of the Get employee manual
web service reference. GET_EMP_MANUAL is an APEX collection and we will soon use
it in our report. APEX collections can be retrieved by using APEX_COLLECTIONS or
wwv_flow_collections. We can put any name in the Store Response in Collection
textbox, but we will have to use the same name while framing our report on the web
service response.

All About Web Services and Integrations

[300]

Let us now look at a typical web service response returned by a call to the Get
employee manual web service reference. Note that our report region will be heavily
dependent on the structure of this XML:

<?xml version="1.0" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GET_EMPLOYEEOutput xmlns="http://xmlns.oracle.com/orawsv/PACKT_
SCHEMA/CHAPTER2/GET_EMPLOYEE">
 <RETURN>
 <CHAP2_EMP_TYPE>
 <FIRST_NAME>Neena</FIRST_NAME>
 <LAST_NAME>Kochhar</LAST_NAME>
 <EMPLOYEE_ID>101</EMPLOYEE_ID>
 <EMAIL>NKOCHHAR</EMAIL>
 <JOB_ID>AD_VP</JOB_ID>
 </CHAP2_EMP_TYPE>
 </RETURN>
 </GET_EMPLOYEEOutput>
 </soap:Body>
</soap:Envelope>

Note the structure of the nodes in the preceding XML. We will use this structure
while framing our XPATH when we create a report based on the Get employee
manual web service reference.

Let's now talk about creating a report on our web service response. We can either
create a classic report and frame the query to fetch the data from GET_EMP_MANUAL
APEX collection ourselves, or can follow the steps mentioned in the following
paragraph to create a report.

To create a report on the Get employee manual web service reference, we have to
create a Report region, and then select Web Service Result. We will have to select
Manually Created as Web Reference Type, Get employee manual as Web Service
Reference, enter /GET_EMPLOYEEOutput/RETURN/CHAP2_EMP_TYPE in Result Node
Path (XPath), http://xmlns.oracle.com/orawsv/PACKT_SCHEMA/CHAPTER2/
GET_EMPLOYEE in Message Namespace and FIRST_NAME, LAST_NAME, EMPLOYEE_
ID, EMAIL, and JOB_ID in Parameter Names textboxes. Following these steps will
automatically create a Report region with the necessary query in it. It is easy to
draw a relation between the value of Result Node Path (XPath) and the sample
web service response shared previously.

Let's now look at the query of the Get employee region. This region is based on the
Get employee manual web service reference, and hence it uses the GET_EMP_MANUAL
collection (highlighted in the following code).

Chapter 8

[301]

select extractValue(value(t),'/*/FIRST_NAME','xmlns="http://xmlns.
oracle.com/orawsv/PACKT_SCHEMA/CHAPTER2/GET_EMPLOYEE"') "FIRST_
NAME", extractValue(value(t),'/*/LAST_NAME','xmlns="http://xmlns.
oracle.com/orawsv/PACKT_SCHEMA/CHAPTER2/GET_EMPLOYEE"') "LAST_
NAME", extractValue(value(t),'/*/EMPLOYEE_ID','xmlns="http://
xmlns.oracle.com/orawsv/PACKT_SCHEMA/CHAPTER2/GET_EMPLOYEE"')
"EMPLOYEE_ID", extractValue(value(t),'/*/EMAIL','xmlns="http://xmlns.
oracle.com/orawsv/PACKT_SCHEMA/CHAPTER2/GET_EMPLOYEE"') "EMAIL",
extractValue(value(t),'/*/JOB_ID','xmlns="http://xmlns.oracle.com/
orawsv/PACKT_SCHEMA/CHAPTER2/GET_EMPLOYEE"') "JOB_ID"
 from wwv_flow_collections c, table(xmlsequence(extract(c.
xmltype001,'//GET_EMPLOYEEOutput/RETURN/CHAP2_EMP_
TYPE','xmlns="http://xmlns.oracle.com/orawsv/PACKT_SCHEMA/CHAPTER2/
GET_EMPLOYEE"'))) t

where c.collection_name = 'GET_EMP_MANUAL

Let me now talk about the extract function (made bold in the preceding code).
extract uses a varchar2 string containing a XPATH, another string holding the
namespace information, and an XMLTYPE value (this is our web service response) as
arguments. It returns the part of the XMLTYPE value encapsulated by the XPATH
passed to it as an argument. The XPATH (made bold in the preceding code) informs
the extract function about the part of the XML (web service response) in which we
are interested. It is easy to draw a relation between this XPATH and the structure of the
sample web service response shared previously. extract returns this desired fragment
as an XMLTYPE value. The output of the extract function is fed to xmlsequence.
xmlsequence has two forms. One form accepts a XMLType and the other accepts a ref
cursor. We will use the former. xmlsequence returns a varray of the top-level nodes in
the XMLType value. This set of varrays is then fed to our old buddy, the table function.

If you observe the web service response shared in this section, you will find that the
nodes encapsulated by /GET_EMPLOYEEOutput/RETURN/CHAP2_EMP_TYPE are FIRST_
NAME, LAST_NAME, EMPLOYEE_ID, EMAIL, and JOB_ID. The extract function gives us the
web service response fragment inside /GET_EMPLOYEEOutput/RETURN/CHAP2_EMP_
TYPE, and we then get the values of FIRST_NAME, LAST_NAME, EMPLOYEE_ID, EMAIL, and
JOB_ID using the extractValue function in the select clause. Now that we understand
the query, we can change the way in which we retrieve the data. We can put //GET_
EMPLOYEEOutput/RETURN instead of //GET_EMPLOYEEOutput/RETURN/CHAP2_EMP_TYPE
as an argument to the extract function. If we do this, then the extract function will
give us the XML fragment encapsulated by //GET_EMPLOYEEOutput/RETURN. We will
then have to accordingly modify the extractValue function in the select clause. For
example, we will have to change the expression for the LAST_NAME column to /*/CHAP2_
EMP_TYPE/LAST_NAME. The extractValue function takes the XMLType and XPATH as
the arguments and returns the scalar value of the XPATH node.

All About Web Services and Integrations

[302]

Since we have configured the native web service and have done environment specific
changes, so your Get employee region, Get employee using XMLTable region,
and Get employees region should work perfectly. But before we see them in action,
we will have to make the following changes on page 8 of the Chapter 2, Conventional
Reporting in APEX reference application:

1. Set the condition of the getOrders page process to never.
2. Enter your credentials of packt_schema in the Get employees page process.
3. Click on the Items radio button under the Web Service Output Parameters

section of the Get employees page process. Remove EMP_TAB_COLLECTION
from the EMPLOYEE_ID textbox and click on the Apply Changes button.
Now select the Collection radio button under the Web Service Output
Parameters section of the Get employees page process, and enter EMP_TAB_
COLLECTION as the collection name in the text box next to Entire Response
Document and click on the Apply Changes button again.

We have discussed the process of creating a native XMLDB web service and
checked out a report region based on it. Let us now talk about the Get employee
using XMLTable and Get employees regions. Get employee using XMLTable
shows a newer and improved syntax of extracting values from an XML, while
the Get employees regions is based on a native web service that returns a set of
records unlike the Get employee manual web service reference which returned
only a single record.

Using XMLTable to parse a web service response
Oracle has come up with a new method of parsing XML in SQL query. We can
now use the more concise XMLTable method instead of the old mechanism of using
table function with xmlsequence. The newer syntax offers significant performance
improvement. However, the wizard that creates a report on web services in APEX
4.x still creates the report using xmlsequence. The Get employee using XMLTable
region in page 8 of the reference application uses the newer syntax to display the
same data as in the previous section. The following code of this region has been
shared for your convenience:

select FIRST_NAME,LAST_NAME,EMPLOYEE_ID,EMAIL,JOB_ID FROM wwv_flow_
collections c,
XMLTABLE(XMLNAMESPACES ('http://schemas.xmlsoap.org/soap/envelope/'
as "soap", 'http://xmlns.oracle.com/orawsv/PACKT_SCHEMA/CHAPTER2/GET_
EMPLOYEE' as "EMP_NS")
,'/soap:Envelope/soap:Body/EMP_NS:GET_EMPLOYEEOutput/EMP_NS:RETURN/
EMP_NS:CHAP2_EMP_TYPE' PASSING c.xmltype001
COLUMNS "FIRST_NAME" VARCHAR2(20 BYTE) PATH 'EMP_NS:FIRST_NAME',
"LAST_NAME" VARCHAR2(25 BYTE) PATH 'EMP_NS:LAST_NAME',

Chapter 8

[303]

"EMPLOYEE_ID" NUMBER(6,0) PATH 'EMP_NS:EMPLOYEE_ID',
"EMAIL" VARCHAR2(25 BYTE) PATH 'EMP_NS:EMAIL',
"JOB_ID" VARCHAR2(10 BYTE) PATH 'EMP_NS:JOB_ID')
where c.collection_name = 'GET_EMP_MANUAL'

Using a native web service to return a collection
of rows
Let's now discuss a method to get a bunch of records as a response from a native
web service. The trick lies in the way we write our function which is finally
invoked through a native web service. The web service behind the Get employees
region returns a collection of records. Check out GET_EMPLOYEE_TABService web
service reference. This is not a manually written web service. So it takes care of
environment-related troubles for framing the SOAP envelope.

The web service reference says that it needs basic authentication. The authentication
parameters are passed from the Get employees page process on page 8. Recollect that
we passed the authentication credentials in the URL in the Get employee manual
web service reference. Change the packt_schema credentials in the Get employees
page process to your own schema credentials. Have a look at the WSDL of the GET_
EMPLOYEE_TABService web service reference to see its structure. You can use the
following URL, to check out the WSDL, which lets us get multiple rows:

http://localhost:8080/orawsv/PACKT_SCHEMA/CHAPTER2/GET_EMPLOYEE_
TAB?wsdl

The GET_EMPLOYEE_TABService web service reference calls the chapter2.get_
employee_tab function. Let's have a look at this function now, which is as follows:

FUNCTION get_employee_tab RETURN chap2_emp_tab_typ_obj AS
 l_return chap2_emp_tab; l_return2 chap2_emp_tab_typ_obj;
BEGIN
 SELECT chap2_emp_type(FIRST_NAME,LAST_NAME,EMPLOYEE_ID,EMAIL,JOB_ID)
BULK COLLECT INTO l_return
 FROM oehr_employees;
 l_Return2 := chap2_emp_tab_typ_obj(l_return);
 RETURN l_Return2;
END;

In the preceding function, we use BULK COLLECT to put the data in a collection.
This is a performance booster and we will read about it in Chapter 9. chapter2.get_
employee_tab returns an object of type chap2_emp_tab_typ_obj. chap2_emp_tab_
typ_obj is an object which has an attribute of type chap2_emp_tab. chap2_emp_tab
in turn is a table of type chap2_emp_type. This arrangement helps us return a bunch
of rows from the native web service call to get_employee_tab function.

All About Web Services and Integrations

[304]

The Get employees page process invokes the GET_EMPLOYEE_TABService web
service reference, which in turn invokes the chapter2.get_employee_tab function.
The response of the web service is stored in EMP_TAB_COLLECTION APEX collection.
This collection is declared in the Get employees page process.

Finally, the Get employees region is built on top of the EMP_TAB_COLLECTION
collection. The query is similar to the query of the Get employee region discussed
previously. The end structure of the web service might change in your environment.
So take soapUI's help to understand the structure in your environment and change
the Region Source of the Get employees region accordingly.

Querying XML DB using a web service
Till now, we have seen the process of calling a stored PL/SQL function using web
services. This section will present a method of firing queries on tables using a native
web service. The queries are sent in a standard XML syntax to the web service
defined by the http://localhost:8080/orawsv?wsdl WSDL. Details of the query
syntax can be found at http://docs.oracle.com/cd/E11882_01/appdev.112/
e10492/xdb_web_services.htm#CHDEGIEE

Chapter2.get_emp_frm_ws_query is an example of firing queries on tables using a
native web service. The following code of this function is shared for your convenience:

Change the credentials and the WSDL in the following
function according to your own environment.

FUNCTION get_emp_frm_ws_query(employee NUMBER) RETURN xmltype
AS
 request utl_http.req; response utl_http.resp;
 envelope VARCHAR2(3000) := '<packt:Envelope xmlns:packt="http://
schemas.xmlsoap.org/soap/envelope/">
<packt:Body>
<query xmlns="http://xmlns.oracle.com/orawsv">
<query_text type="SQL">
select * from oehr_employees where employee_id = :employee
</query_text>
<bind name="employee">'||employee||'</bind>
</query>
</packt:Body>
</packt:Envelope>';
 resp_store VARCHAR2(32767);
 xml_resp xmltype;
BEGIN

Chapter 8

[305]

 request := utl_http.begin_request('http://packt_schema:packt_
password@localhost:8080/orawsv', 'POST', 'HTTP/1.1');
 utl_http.set_authentication(request, 'packt_schema', 'packt_
password');
 utl_http.set_header(request, 'Content-Type', 'text/xml');
 utl_http.set_header(request, 'Content-Length', LENGTH(envelope));
 utl_http.write_text(request, envelope);
 response := utl_http.get_response(request);
 utl_http.read_text(response, resp_store);
 xml_resp := xmltype(resp_store);
 utl_http.end_response(response);
 RETURN xml_resp;
END;

Note that authentication (the preceding second highlighted code) can be done by
both the utl_http.begin_request and utl_http.set_authentication functions.
Note the process of binding variables to filter records in the result set in the first
highlighted piece of the preceding code. Note the namespace declarations as well.

The preceding function returns an XMLType object. We will soon see that we pass
:P8_EMP_ID from the region source to chapter2.get_emp_frm_ws_query function.
This value is collected in the employee argument in the chapter2.get_emp_frm_ws_
query function. The employee argument is then used in the native query call to filter
the records. This can be seen in the first highlighted piece of the preceding code.

Let us now go from top to bottom in the preceding chapter2.get_emp_frm_ws_
query function.

The envelope variable holds the manually written SOAP envelope. utl_http.
set_header is used to set the header of the request. utl_http.write_text writes
the SOAP envelope in the utl_http.req variable. utl_http.get_response gets
the response of this request. This response is of the utl_http.resp type. utl_http.
read_text converts the response to the varchar2 type. XmlType() is used to cast the
varchar2 response to XMLType, so that we can use the extract function to get the
relevant parts of the response and parse it to generate our report.

We invoke chapter2.get_emp_frm_ws_query from the Get employee from
PLSQL web service query call region. The following code of this region is
shared for your convenience:

return 'SELECT extractValue(value(t),''/*/FIRST_
NAME'',''xmlns="http://xmlns.oracle.com/orawsv"'') FIRST_NAME,
extractValue(value(t),''/*/LAST_NAME'',''xmlns="http://xmlns.oracle.
com/orawsv"'') "LAST_NAME",
extractValue(value(t),''/*/EMPLOYEE_ID'',''xmlns="http://xmlns.oracle.
com/orawsv"'') "EMPLOYEE_ID",

All About Web Services and Integrations

[306]

extractValue(value(t),''/*/EMAIL'',''xmlns="http://xmlns.oracle.com/
orawsv"'') "EMAIL",
extractValue(value(t),''/*/JOB_ID'',''xmlns="http://xmlns.oracle.com/
orawsv"'') "JOB_ID",
extractValue(value(t),''/*/SALARY'',''xmlns="http://xmlns.oracle.com/
orawsv"'') "SALARY",
extractValue(value(t),''/*/HIRE_DATE'',''xmlns="http://xmlns.oracle.
com/orawsv"'') "HIRE_DATE",
extractValue(value(t),''/*/PHONE_NUMBER'',''xmlns="http://xmlns.
oracle.com/orawsv"'') "PHONE_NUMBER"
 FROM TABLE(xmlsequence(extract(chapter2.get_emp_frm_ws_query(:P8_
EMP_ID),''//queryOut/ROWSET/ROW'',''xmlns="http://xmlns.oracle.com/
orawsv"''))) t';
end;

Note the argument of the extract function (highlighted in the preceding code)
in the from clause and compare it with the argument of the extract function in
the previous regions. In the previous regions, APEX was storing the web service
response in an XMLType column called xmltype001 of an APEX collection. We are
not using APEX collections here. chapter2.get_emp_frm_ws_query is returning
an XMLType object that contains the web service response here. Also note that we are
passing the value of P8_EMP_ID from the table function to chapter2.get_emp_frm_
ws_query which captures this value in its employee argument and uses employee
argument to filter the records.

The Get employees from PLSQL web service call region uses PL/SQL
to fire a SOAP request for a native XML DB web service. This region uses
the xmltype value returned by chapter2.get_emps_frm_ws function
to build a report. This function shows the process to return a bunch of
records using native webservice query call. Replace the credentials in this
function with your own credentials to see the code in action.

Implementing and using RESTful web
services using Resource Templates
Resource Templates are a feature of APEX listener and they let us define handlers for
the HTTP GET, HTTP POST, HTTP DELETE, and HTTP PUT methods. Resource Templates
can be used to create RESTful web services.

Note that Resource Templates work only with the APEX
listener and not with mod_plsql.

Chapter 8

[307]

Let's now enable RESTful web services. Perform the following steps to do this:

Configuring RESTful web services using Resource
Templates

1. Run <directory where apex is unzipped>\apex\apex_rest_config.
sql as sysdba. This script will help us to create the APEX_LISTENER and
APEX_REST_PUBLIC_USER schemas.

2. Run the following command:
java -jar <directory in that contains the currently hosted apex.
war file>\apex.war setup

We can find <directory in that contains the currently hosted
apex.war file> by logging into the WebLogic console and navigating to
Deployments | apex. The path will be visible next to the Path: label in the
Overview tab. Running the preceding command will prompt you to enter
your database configurations and passwords of the APEX_LISTENER and
APEX_REST_PUBLIC_USER schemas. Fill in these details. This command will
update your apex.war file. We should now replace the existing apex.war
deployment on WebLogic with the new file.

3. Update the APEX listener installation by logging to the console, clicking on
Deployments, selecting the Apex checkbox, and then clicking on the Update
button. Keep the defaults in the wizard and finish the update process.

4. Execute the following statement as sysdba:
alter user packt_schema grant connect through APEX_REST_PUBLIC_
USER;

5. Login to the INTERNAL workspace and navigate to Manage Instance |
Feature Configuration. Select Yes in the Enable RESTful Services dropdown
present under the SQL Workshop tab and click on the Apply Changes button.

Creating RESTful web services using Resource
Templates
Let us now create a Resource Template by performing the following steps:

1. Login to your workspace and navigate to SQL Workshop | RESTful Services.
2. Click on the Create button.
3. Enter any name in the Name textbox, and enter packt/ as URI Prefix.

packt/ will be a part of the URL of RESTful service.

All About Web Services and Integrations

[308]

4. Enter getAllDepartments in the URI Template textbox.
5. Select GET in the Method dropdown.
6. Let Source Type be Query and Format be JSON.
7. Enter select department_id, department_name, location_id, manager_

id from oehr_departments in the Source textbox, and then click on the
Create Module button.

8. Click on the GET link (highlighted in the following screenshot):

9. Select No in the Requires Secure Access dropdown, if the server on which
your listener is hosted does not accept https requests. Click on the Apply
Changes button.

10. Click on the TEST button under the Source section. Your RESTful URL will
look like the following:
http://localhost:7001/apex/packt_workspace/packt/
getAllDepartments

Change the preceding URL according to your environment.

11. You should be able to see the following output:

Note that the response is a JSON object. We will see the
parsing of a JSON object in a short while.

Chapter 8

[309]

The newly created Resource Template does not accept any argument. We can
however create a Resource Template that accepts arguments. Import 4-98-9_08_
packt_restful_service_module.sql in your workspace. Open the packt.
RESTful.Service.Module module, and then select the getEmployee/{emp_id}
template. getEmployee/{emp_id} does a select on the oehr_employees table and
returns the details of the employee whose ID is passed to it. The URL for accessing
this Resource Template will be similar to http://localhost:7001/apex/packt_
workspace/packt/getEmployee/100. The initial part of the URL will depend on your
environment, but /packt/getEmployee/100 will remain the same. 100 in this example
is used inside the handler as a bind variable.

Commented code in the Report on Resource template
region on page 8 of the reference application demonstrates
the method to pass the employee ID to a resource template
and get a response. To see the output of the commented
code, replace the URL in the UTL_HTTP.begin_request
function with your RESTful URL and execute it. The code
posts the output using DBMS_OUTPUT.put_line.

The uncommented code in the Report on Resource template region uses
the getAllDepartments Resource Template, and then parses it using regular
expressions. Let's now understand the parsing of the JSON object.

Parsing JSON objects and using MAKE_REST_
REQUEST
Note that results from a RESTful service created using Resource Templates can be in
either CSV or JSON form. We will see the process to parse a JSON object and frame
a report on top of it.

Enter the URL of your getAllDepartments RESTful service as a value of the p_url
argument of the APEX_WEB_SERVICE.MAKE_REST_REQUEST function in the region
source of the Report on Resource template region on page 2 to make the region work.
The query of this region source is also shared in the lower-half of this section.

The parsing of JSON objects can be tricky, because Oracle does not have functions
to parse it like it has functions to parse XML data. The following is an example of
one such JSON object generated for a few columns of two rows of the oehr_
departments table:

{"items":[{"department_id":10,"department_
name":"Administration","manager_id":200,"location_
id":1700},{"department_id":20,"department_name":"Marketing","manager_
id":201,"location_id":1800}]}

All About Web Services and Integrations

[310]

Now, if any of the column values has null in it, then that column does not feature
in the JSON object at all. So this means that we cannot use the position of a column
in JSON object to parse it, because if the value of this column for a particular row
is null then the position of this column in the JSON object will be occupied by the
column following it. However, the following packages published by a few private
parties can be used to parse JSON objects:

• http://sourceforge.net/projects/pljson/files/latest/
download?source=files

• http://reseau.erasme.org/IMG/zip/JSON-1.1-2.zip

I am using regular expressions to get the required string to be displayed in the
report, because my requirement is very specific and I feel more comfortable with
regular expressions. Run http://localhost:7001/apex/packt_workspace/packt/
getAllDepartments to get a feel of the response from an RT. Replace localhost:7001
according to the APEX Listener configuration of your environment

Note that this section also introduces APEX_WEB_SERVICE.MAKE_REST_REQUEST to
you. We can also use the traditional PL/SQL method to call web services, but this
method is more concise. The following code is provided for your convenience:

SELECT regexp_substr(regexp_substr(column_value, '("department_
id":)+[[:digit:]]{1,},'), '[[:digit:]]{1,}') "Department id",
 regexp_substr(regexp_substr(column_value, '("department_
name":")+[[:alnum:]]{0,}'), '[[:upper:]]+[A-Z,a-z]{0,}')
"Department name",
 regexp_substr(regexp_substr(column_value, '("location_
id":)+[[:digit:]]{1,}'), '[[:digit:]]{1,}') "Location id",
 regexp_substr(regexp_substr(column_value, '("manager_
id":)+[[:digit:]]{1,}'), '[[:digit:]]{1,}') "Manager id"
FROM TABLE(chapter2.chap2_srt_2_tab_4_query(SUBSTR(apex_web_service.
make_rest_request(p_url => 'http://localhost:7001/apex/packt_
workspace/packt/getAllDepartments', p_http_method => 'GET'), 12),
'},{'))

The substr function in the FROM clause is used to remove the unnecessary parts from
the JSON object string. },{ is the separator based on which we will break the string
into rows. This breaking of a string into rows is done by the apex_util.string_to_
table function in chapter2.chap2_srt_2_tab_4_query. chapter2.chap2_srt_2_
tab_4_query returns an apex_application_global.vc_arr2, which is passed to the
table function.

Chapter 8

[311]

The following code of chapter2.chap2_srt_2_tab_4_query is shared for your
convenience:

FUNCTION chap2_srt_2_tab_4_query(
 p_clob CLOB, p_seperator VARCHAR2)
 RETURN chap2_srt_2_tab_4_query_typ PIPELINED
IS
 l_tab apex_application_global.vc_arr2;
BEGIN
 l_tab := apex_util.string_to_table(p_clob,p_seperator);
 FOR i IN 1 .. l_tab.count
 LOOP
 pipe row(l_tab(i));
 END LOOP;
END;

The next stage of parsing happens in the SELECT clause by regular expressions. This
parsing finally gives us the required value. Note the use of the column_value pseudo
column in the SELECT clause of the preceding shared query. Database returns a virtual
table with a single column called column_value in the following two conditions:

• When we refer to an XMLTable construct without the columns clause
• When we use the table function to refer to a scalar, nested table type

RESTful web services have a number of other features. Check the following
documentation to learn more about them:

http://docs.oracle.com/cd/E37097_01/doc/doc.42/e35128/restful_svc.htm

Creating and using RESTful PL/SQL web
service
RESTful PL/SQL web services are a close kin of Database Access Descriptors
(DADs). DADs had been the backbone of Oracle APEX architecture until the
advent of APEX Listener.

To see a working example of the RESTful PL/SQL web service we will have to
execute the following steps:

1. Create packt_dad by executing the 4-98-9_Appendix_create_dad.sql
script of the Appendix code pack.

2. Ensure that the ANONYMOUS account is OPEN by executing the following
query as sysdba:
select account_status from dba_users where username = 'ANONYMOUS'

All About Web Services and Integrations

[312]

3. Execute the following to configure the attributes of packt_dad:
 begin
 dbms_epg.set_dad_attribute (dad_name => 'packt_dad', attr_name
=> 'path-alias', attr_value => 'plsql_rest');
 dbms_epg.set_dad_attribute (dad_name => 'packt_dad', attr_name
=> 'path-alias-procedure', attr_value => 'chapter2.plsql_rest_
handler_proc');
 end;

Our DAD configuration is now complete. Let's now understand the process of passing
parameter values to a RESTful PL/SQL web service. There are two methods to pass the
parameters to a PL/SQL RESTful web service and your attention is required, because
both the methods appear to be similar. Before we talk about the method to pass the
values, let us see the code of chapter2.plsql_rest_handler_proc. chapter2.
plsql_rest_handler_proc is the final user of the passed argument. The following
code is shared for your convenience:

PROCEDURE plsql_rest_handler_proc(p_path IN VARCHAR2) AS
 l_req_method VARCHAR2(20) := owa_util.get_cgi_env('REQUEST_METHOD');
 l_input VARCHAR2(20) := owa_util.get_cgi_env('QUERY_STRING');
 l_response CLOB;
 l_number_of_rows NUMBER := 0;
BEGIN
 SELECT SUBSTR(l_input,13) INTO p_path FROM dual;
 IF l_req_method = 'GET' THEN
 SELECT COUNT(*)
 INTO l_number_of_rows
 FROM oehr_orders
 WHERE customer_id =l_input;
 IF l_number_of_rows > 0 THEN
 SELECT dbms_xmlgen.getxml('select * from oehr_orders where
customer_id='
 || l_input) xml
 INTO l_response
 FROM dual;
 ELSE
 SELECT dbms_xmlgen.getxml('select ''No data found'' as Order_id
from dual') xml
 INTO l_response
 FROM dual;
 END IF;
 OWA_UTIL.mime_header('text/xml');
 HTP.print(l_response);
 END IF;
END;

Chapter 8

[313]

chapter2.plsql_rest_handler_proc has an argument called p_path.Values can
be fed to the p_path argument from the URL using the http://localhost:8080/
packt_dad/plsql_rest/145 URL. Replace localhost with the ip address of your
database server. Here, 145 is accepted as the value of p_path. We can test the
passing of values from URL by replacing l_input by p_path in the preceding two
highlighted SELECT statements and then firing the preceding URL. You should get an
XML as a response. 145, passed from the URL, is compared inside the plsql_rest_
handler_proc procedure with the customer_id column of the oehr_orders table to
return the records.

However, as you notice, if we have to pass the value of p_path from the URL then
the URL will have to be changed for every value. We don't want this because we
have to mention the URL endpoint of the RESTful Web service in Web service
references in Shared Components in APEX and hence the URL has to be static.

The process of passing argument values in the URL of a PL/SQL RESTful
web service might work well if we invoke the RESTful web service URL
in a procedure, and are hence able to change the value in the URL on the fly.

The second method to pass values is by configuring input parameters for the APEX
RESTful web service reference. Notice that the getOrdersREST web service reference
has customer_id configured for it. This customer_id is passed to the QUERY_STRING
environment variable. The whole list of environment variables can be found by
entering http://localhost:8080/packt_dad/plsql_rest*/ in the browser. The
* in the end makes the URL pattern incorrect, and hence you see the error message
along with the list of environment variables. Replace localhost with the ip address
of your database server.

It is important to note that configuring input parameters also changes the GET HTTP
request, but then this change of URL happens internally. Let me explain it to you with
an example. Consider the getOrdersREST web service reference. The endpoint of this
reference is http://localhost:8080/packt_dad/plsql_rest/dummy_text and
customer_id is configured to be an input parameter. Replace localhost with the ip
address of your database server. dummy_text at the end of the URL can be any wild
text. Let's say that a value of 145 is passed to customer_id input parameter. The final
URL, which will be framed by APEX on passing 145 as the value of customer_id,
will be http://localhost:8080/packt_dad/plsql_rest/dummy_text?customer_
id=145. Replace localhost with the ip address of your database server. Now, the
customer_id=145 is passed to the QUERY_STRING environment variable. Check the
code of chapter2.plsql_rest_handler_proc (shared previously) to understand the
use of owa_util.get_cgi_env to capture the value. The whole advantage of using this
parameter method is that we can have a static URL in the APEX web service reference
endpoint and still pass the necessary parameters.

All About Web Services and Integrations

[314]

Revert the code in the two highlighted select statements, that is, replace p_path in the
select statements with l_input. The getOrdersREST REST web service reference is
called from the getOrders page process, and the values returned by this web service
are stored in the ORDERS_COLLECTION collection. The ORDERS_COLLECTION collection
is used to build the report in the REST PLSQL webservice region. The getOrders
page process was made conditional in the Creating a report on native XMLDB webservice
section and its condition was set to never. Remove this condition and run page 8 again.

Understanding and implementing BPEL
An understanding of developing BPEL processes is vital to an advanced APEX
developer because APEX is often used as the front end to expose business process
to the end user. We will dedicate the next few sections to understand BPEL
(Business Process Execution Language), to install and configure it, to develop a
simple composite using database adapter in it, to deploy and test the code, and
to understand the process of developing and testing Human Workflows.

What is BPEL
BPEL is used to code business processes. Although BPEL is coded as a Java
composite, JDeveloper provides a pretty user interface which transforms the
development from a Java intensive programming to a Drag-and-Drop operation.
We will certainly not be able to check out all the features of BPEL, but I will try to
ensure that you get a good feel of the tool and are able to code business process in
BPEL, whenever required. One of the most important features of SOA is the worklist
and Human Workflows. Human Workflows are used in almost every place where
BPEL is used. Human Workflows are useful in a number of ways and one of their
important feature is to let you put a task from the work stack of one user to the work
stack of another. So, if a junior officer has worked on a task, then Human Workflows
can help you to move the task to the manager's worklist and can help you send it
back to the junior officer's worklist, when the manager sends some comments on the
task. This process of transferring a job helps us code most of the business processes.

The end result of coding a BPEL process will be the creation of a web service. The
web service exposes the operations according to your needs. These operations can be
accessed from APEX. We have seen a number of examples of using SOAP web service
in APEX. Imagine BPEL to be the glue that can gel all your tools together. This is
because BPEL can help us invoke web services of a number of tools on our enterprise,
code some additional logic on top of these web service and present the whole solution
as a new web service to the external world. Since it works on XML schemas, the
configuration and interface can be configured very easily. The UI of JDeveloper further
simplifies our life.

Chapter 8

[315]

We will, however, limit ourselves to the essentials. This chapter will provide you
with a good start on how you could use this technology in APEX, and will give you
an idea on where you could use it.

Installing BPEL
The following steps will help us install SOA components and also help us to extend
the domain upon which APEX is installed to handle SOA composites.

1. Download the SOA suite from Oracle’s website.
2. Go to the following location: <Directory in which the SOA suite is

unzipped>\Disk1\install\win64 and execute setup.exe.
3. Enter your JDK path, for example C:\Program Files\Java\jdk1.6.0_26,

when prompted for a JRE/JDK path.
4. Click on Next. I skipped the software updates. You can insert your

credentials if you want updates.
5. Click on Next again after the wizard does its prerequisites check.
6. Enter the middleware home directory of the WebLogic on which your

listener is hosted in the Oracle Middleware Home textbox. For example,
C:\OracleProducts\Middleware. Enter Oracle_SOA in the Oracle Home
Directory textbox.

7. Select WebLogic as Application Server.
8. Click on the Install button, and click on Next after the completion

of installation.
9. Save the configuration details and click on Finish.
10. This completes the BPEL installation. We now have to link it to a WebLogic

domain and a server.
11. Run the RCU which you had downloaded with OBIEE 11G's download page.

You have to execute rcu.bat in the rcuHome\BIN directory to do this. Note
that the RCU should be of 11.1.1.6 Version.

12. Enter your database details and set the schema prefix. Setting of schema
prefix is done in step 3 of the RCU wizard. If you still have OBIEE 11G
installed, then select the Select an existing Prefix radio button.

13. Check the SOA and BPM Infrastructure checkbox. Click on Next.
Follow the wizard to finish the installation.

14. Go to Oracle SOA 11g - Home1 program group in the Start menu and
select Configure Application Server.

All About Web Services and Integrations

[316]

15. Select Extend an existing weblogic domain and click on Next.
16. Select the domain on which you had installed APEX. This is not a good

practice, but then installing everything on one server of a domain will mean
that we would only have to start a single server to get everything to work.
This will save precious RAM. Note that this arrangement is suggested to create
a testing environment only, not a production environment. Click on Next.

17. Select Oracle SOA Suite for Developers – 11.1.1.0 [Oracle_SOA], Oracle
Enterprise Manager – 11.1.1.0 [oracle_common], and then click on Next.

18. Fill in the Hostname, DBMS/Service, and the Port fields for all the four
schemas, enter the passwords for each of them and change the prefix from
DEV to the one that you had set in step 12. Click on Next.

19. Enter the details of the schemas which had been created using RCU and
click on Next. Test your credentials and click on Next again.

20. Check the Deployments and Services checkbox and click on Next.
21. Let all the checkboxes be checked in both Target Deployments to Clusters

and Servers and Target Services to Clusters and Servers steps, and let
the target be AdminServer. Click on Next for both these steps, then click
on the Extend button, and finally click the Done button after the domain
has been extended.

22. We should now install JDeveloper which will help us create our code.
The wizard for JDeveloper is straightforward and does not warrant any
discussion on it.

23. Download the Oracle SOA Composite Editor for JDeveloper from
http://www.oracle.com/ocom/groups/public/@otn/documents/
webcontent/156082.xml. I downloaded the 11.1.1.6.0.15.53 version.

24. Open JDeveloper Studio 11.1.1.6.0 and select Default Role.
25. Select Check for Updates from the Help menu.
26. Select Install From Local File in the Source section and browse for the

downloaded file. Click on Next >, and then click on Finish.
27. This will restart JDeveloper after configuring it to develop SOA composites.
28. You can open the packtApplication.jws file from the code pack in

JDeveloper. This will help you see the two projects in JDeveloper. Our
discussion regarding BPEL in the rest of the chapter will revolve around
these two projects.

Chapter 8

[317]

Developing a BPEL Composite
Use packtProject, shipped with the book, for your reference while going through
the following steps. You can open packtApplication.jws in JDeveloper to see the
project. Perform the following steps to create a BPEL composite:

1. Compile the specification and body of chapter08 package in packt_schema.
4-98-9_08_chapter08_pkg.sql has the spec and the body and can be found
in the code pack shipped with the book.

2. Open JDeveloper and click on the New Application button. Enter an
application name and select SOA Application. Click on Next >.

3. Enter the name for the project, select SOA in the Project Technologies tab
(as shown in the following screenshot), and click on Next >.

4. Select Composite With BPEL Process and click on Finish.
5. Select BPEL 2.0 Specification in the Create BPEL Process wizard, choose

Synchronous BPEL Process as Template, and name your BPEL process.
Keep the other defaults and click on OK.

6. Your JDeveloper window should now look like the following screenshot.
Double-click on the BPEL process (highlighted in the following screenshot
with an arrow):

All About Web Services and Integrations

[318]

7. Double clicking on the BPEL process will open the following screenshot:

recieveInput and replyOutput (marked in the previous screenshot) are types of
activities. Our BPEL code will be between these two activities. We will put more
activities between these activity blocks and will connect adapters to the BPEL code
so that the BPEL process can connect to external systems to create an enterprise
business process. The recieveInput activity accepts input for our BPEL process
and replyOutput sends the response to the client packt bpelprocess_client
(underlined in the second screenshot of this section) is the interface for external
application. Also note the process operation right under it. We will talk about
process in a short while.

1. Double-click on the reciveInput activity.
Note that the name of the operation in the reciveInput activity is process.
This basically means that or receiveInput activity will receive the input
for process operation. Note that we had also noticed process operation
while talking about packtbpelprocess_client as well.You would see
inputVariable as the variable. This variable will be the input of your process
operation. Similarly, you should see outputVariable in the replyOutput
activity. This variable will be the response of your web service.

Chapter 8

[319]

2. Expand BPEL Services in the Component Palette and drag Database
Adapter. Put it on the grey area in the right-hand side as shown in the
following screenshot:

Adapters let us get information from different sources. A long list of adapters (refer
to the preceding screenshot) in the Component Palette might have given you a good
idea of the wide range of options to connect to external systems. The Database Adapter
lets us perform an operation on a database from our BPEL code. Operations on the
database are an external service to our BPEL process, just like our BPEL process is a
service to any other system that wishes to use it.

All About Web Services and Integrations

[320]

Dragging the Database Adapter opens up the Adapter Configuration Wizard, which
helps us set the specific function/procedure to be called by the adapter. The steps in
the wizard are straightforward. The wizard initially expects us to create a database
connection. This connection is required to fetch the input and output properties of the
function/procedure and other database properties. Note that this connection is for
JDeveloper, and you will have to configure a separate connection on your server so that
your server can connect to the database when your code is executed on the web server.
In the wizard, the JNDI name is automatically populated once you create a database
connection. Note this JNDI name, as you will need it when you create a connection on
the web server. I selected the Call a Stored Procedure or Function radio button in step
4 of the wizard and then selected CHAPTER08.DB_ADAPTER procedure in step 5. Select
the defaults in all the other steps and click on the Finish button at the end. Click on the
OK button.

I named my database adapter service as packtDBService and my application now
looks like the following screenshot:

Invocation of the service exposed by the adapter happens by using an Invoke
activity (You will see this activity under the Web Service section of BPEL Constructs
in Component Palette). We will now see the steps to use the Invoke activity:

1. Drag the Invoke activity between the reciveInput and replyOutput activities
as shown in the following screenshot:

Chapter 8

[321]

2. Use your mouse to drag a link from the right side of the Invoke activity to
the DB Adapter service as shown in the following screenshot:

All About Web Services and Integrations

[322]

This will open a box that will let you edit the Invoke activity. We will now use this
box to create an input and an output variable for this activity. We can then use the
Assign activity to assign the inputVariable attribute seen in the receiveInput
activity to the input variable of the Invoke activity. This will mean that the input of
the user to the process operation will be passed to the DB adapter service using the
Invoke activity by performing the following steps:

1. You would see a little green plus sign (highlighted in the following screenshot)
on the box that lets you edit the properties of the Invoke activity. Click on
that and create a variable. You would see an Output tab (highlighted in the
following screenshot) that lets you create an output variable. Create an output
variable as well. The response from your adapter is stored in the output
variable created in this place. Click on OK after doing this.

2. Drag the Assign activity (from BPEL Constructs in Component Palette)
between the reciveInput and invoke1 activities. You can rename the invoke1
activity and the newly created Assign activity to a more meaningful name.

Chapter 8

[323]

3. Double-click on the Assign activity, click on the Copy Rules tab and assign
the input variable (discussed in step 1 of the previous series of steps) to the
input of the Invoke activity as shown in the following screenshot. Assigning
can be done by dragging your mouse pointer from the variable on the left
to the variable on the right. A line should appear between the two variables
once your operation is finished as shown in the following screenshot. Click
on the OK button.

We will now put an Assign activity to assign the output of the Invoke
activity to the replyOutput activity. We will use this Assign activity to
concatenate first_name and last_name found in the output of the Invoke
activity, and then assign it to the outputVariable variable (discussed in
step 1 of the previous series of steps) of the replyOutput activity.

4. Drag an Assign activity between the replyOutput and the Invoke
activity. Click on Copy Rules tab, and then click on the Expression
button (Marked in the preceding screenshot).

5. Select String Functions from the Functions dropdown and double-click
on concat present in the list under it.

6. Now, move your cursor inside the round brackets of the concat function in
the Expression text area, and select both P_FIRST_NAME and P_LAST_NAME
(highlighted in the following screenshot) from the output variable of the
Invoke activity. My final expression looks as follows:
concat($outputFromPacktDBService.OutputParameters/ns2:P_FIRST_
NAME,$outputFromPacktDBService.OutputParameters/ns2:P_LAST_NAME)

All About Web Services and Integrations

[324]

Note how BPEL has created P_FIRSTNAME and P_LASTNAME
inside the output variable of the Invoke activity that invokes the
DB service. BPEL has fetched this information from the signature
of the stored procedure, which is invoked by the DB service.
P_FIRSTNAME and P_LASTNAME are the two out arguments in
the signature of the chapter08.db_adapter procedure.

7. Click on OK.
8. Drag from the right side of the newly created expression to the output

variable of replyOutput as shown in the following screenshot:

Chapter 8

[325]

9. Click on the OK button after this.

You could also change replyOutput such that it accepts
P_FIRSTNAME and P_LASTNAME as separate values, and
you can then concatenate the values in APEX.

10. Click on the Save All button in JDeveloper.

This brings us to the end of a simple BPEL implementation. We will now see the
process of deploying the code on WebLogic.

Deploying BPEL code
Let's see the process to deploy our code. We will have to create a connection to the
application server. Since we have installed SOA on the admin server of the same
domain that hosts APEX, let us first start the admin server of APEX's domain. Once
the server is started, we can then create a connection in JDeveloper to the server by
performing the following steps:

1. Select Application Server Navigator from the View dropdown.
2. Right-click on Application Server and select NewApplication Server….
3. Select Standalone Server and click on Next >.
4. Give a connection name and select Weblogic 10.3 in the Connection

Type: dropdown.
5. Enter your weblogic admin credentials and click on Next >.
6. Enter the other necessary parameters and test your connection. Click on

Next > and finally on Finish.

Now that we have created an application server connection, we must deploy our
code on the server. Perform the following steps for this:

1. Right click on SOA Project (your project) in Application Navigator,
select Deploy and then select SOA Project….

2. Select Deploy to Application Server and click on Next >.
3. Keep the defaults in click on the Next > button again.
4. Select the application server connection and click on Next >.
5. Select the admin server (the server on which the code will be deployed) of

your domain and click on Next > again. Click on the Finish button at the end.

All About Web Services and Integrations

[326]

We must now create a database connection on the WebLogic server, so that our
deployed composite is able to call the chapter08.db_adapter procedure from the
web server. Perform the following steps to do this:

1. Log in to the console (http://localhost:8001/console) and click on
Data Sources under the Services group. Replace localhost:8001 with
the ip address and port of your WebLogic

2. Click on New, select Generic Data Source and enter jdbc/packtDBConn
in the JNDI Name textbox.

3. Click on the Deployments link under your domain in the Domain
Structure panel.

4. Click on DbAdapter, then on the Configuration tab and finally on the
Outbound Connection Pools tab.

5. Expand javax.resource.cci.ConnectionFactory and click on the
New button.

6. Select javax.resource.cci.ConnectionFactory in the Outbound
Connection Group list, and then click on the Next button.

7. You now have to put JNDI name. Note that this JNDI name should match
with the JNDI name, which was automatically populated when you
created the database connection in JDeveloper. My JNDI name is eis/DB/
packtDBConn.

8. Go to the Outbound Connection Group list again. You would see a link on
your JNDI name. Click on the same.

9. Click on the Property Value column of the xADataSourceName row.
An editable textbox will appear on clicking. Enter jdbc/packtDBConn
in the textbox and press the Enter key on your keyboard.

Note that if you do not press the Enter key, then the value
will not be saved.

10. We have entered jdbc/packtDBConn in the textbox, because we have created
a data source with the same name in step two.

11. Click on the Save button and restart WebLogic.

Chapter 8

[327]

Testing the BPEL code
We had checked Oracle Enterprise Manager – 11.1.1.0 [oracle_common] in step 17
of the Installing BPEL section. This extension can now help us to control and test our
BPEL code. Let us see the steps for the same:

1. Log in to the enterprise manager (http://localhost:8001/em). Replace
localhost with the ip address of your WebLogic server using your
WebLogic admin credentials.

2. You should be able to see SOA group on the left side of the browser.
Expand it, and then expand everything that comes under it until you
see your deployed BPEL project.

3. Click on your project and then click on the Test button on the top.
4. This will take you to a page that shows the WSDL and the endpoint

URL of the web service. You would need these while calling the web
service from APEX.

5. Note that the operation is in process. You would see this process operation
if you click on the receiveInput activity in JDeveloper. We had discussed
process operation in the Developing a BPEL Composite section.

6. Enter 100 as the value in the input textbox and click on the Test Web
Service button on the top.

7. You should see a result textbox with StevenKing in it as the response.
8. Click on the Launch Flow Trace button. You would see a link on your

BPEL process. Click on the same.
9. This will show you a step-by-step execution of the activities. Click on the

Flow tab to get a pictorial representation that mimics the activity icons in
JDeveloper. I love this not just for the beautiful arrangement of the activities
but also because debugging and error tracking is so easy this way. You can
see one such flow in the first screenshot under Understanding Human workflows
and Worklist section.

10. You can now create a web service reference in APEX using the endpoint URL
and the WSDL, which you had captured in step four.

The good thing about BPEL web service is that every execution
is logged with an instance ID, and you can check your executions
in the enterprise manager.

All About Web Services and Integrations

[328]

Implementing BPEL Human Workflows
Human Workflow is one of the most interesting features of BPEL that helps a
developer to code business process in BPEL. As discussed in previous sections,
workflows usually involve a task which is transferred from the work stack of
one person to the work stack of another person in an organization. BPEL gives a
readymade activity called Human Workflows. Human Workflows has an Invoke
activity that connects as an out-of-the-box web service which maintains a task.
This web service is called the Task service. Once a Human Workflow task is initiated,
methods of the task service can be used to put the task from the work stack of one user
to the work stack of another. Since we can call web services from PL/SQL and from
APEX, we can trigger the shifting of a task based on the action of a user in APEX.

Let us now code a human workflow in BPEL by performing the following steps:

Use the humanTasksProject project, shipped with the book, for
your reference while going through the following steps. You can
open packtApplication.jws in JDeveloper to see the project.

1. Execute the first five steps of the Developing a BPEL composite section with
a difference of selecting Asynchronous BPEL Process as Template in step
five. Drag a Human Task present under SOA Components between the
recieveInput and callbackClient activities.

Note that we are creating an asynchronous process here,
because a synchronous process waits until the Human
Workflow process completes. Human Workflow process
might take a long time to finish and the time will depend
upon the users who act on the process.

2. Double-click on the Human task and click on the green plus sign under
the General tab. This will help us create a task definition. Have a look at
the next screenshot to get a feel of the .task file. Task definition defines
the behavior of our human task.

Chapter 8

[329]

3. Give a name to the task definition and note that the possible Outcomes of
the task are APPROVE and REJECT. We can add more possible outcomes,
if required. Click on OK. This will create a new .task for you which can
be edited to change task definition.

4. Click on OK again. This will open the .task file for you.

The following is a screenshot of one such .task file. Let us now talk about the
various sections (tabs on the left hand side of the following screenshot) of this
task file and their use.

The General section is for title, description, outcomes, and other such attributes of
the task. The Data section is for defining the types of the messages which you might
need in the task. The Assignment section lets you set the participants in the task and
configure the routing policy. The Presentation section is for multilingual and other
such settings. The Deadlines section lets you set the expiry date and the due dates
of the task. Notification is for sending alerts for the various status changes of the
task. Access section is more like authorization and it lets you specify access rules
and assignment restrictions. The Events section is for BPEL Callback configuration
for tasks and routing assignments:

Note that in the next two sections, we will talk about the .task file of the
humanTasksProject project. humanTasksProject is shipped with the book. You
will have to make similar changes in the .task file of your project based on the
understanding of this file.

All About Web Services and Integrations

[330]

Configuring the General section
Let us now try to dig deeper in the General section of the .task file. Keep an eye on
the preceding screenshot to make more sense of the following talk:

1. Enter The task id is <%/task:task/task:systemAttributes/
task:taskId%> in the Task Title textbox. This will help us see the task id in
the worklist and we will need this task id for transferring the tasks from the
work stack of one user to the work stack of the other.

Note that you can use the expression builder to frame the XPath
by clicking on the Build title from XPath… button next to the
Task Title textbox. The button is not visible in the preceding
screenshot, but is present to the right of the Task Title textbox.

All the tasks created by us appear in the BPM worklist. So, a worklist is the
face of the tasks. It shows various properties associated with a task. Now,
we might have a number of tasks for various purposes. These tasks might
have the same task definition or might have different ones. The important
point is that the value of the Category textbox of the tasks is displayed in
the worklist. Hence the value of the Category textbox of the tasks can be
used to inform the viewer about the broad categories of a task. We can
give a dynamic XPath expression for the category or can put a static text.

2. Let's use static text for Category. Change the value in the dropdown to
By name. Refer to the preceding screenshot.
The task owner is a sort of an administrator of a task. He can perform
operations on behalf of other participants because he owns the task. We can
use the application server connection that was used to deploy the pervious
project to fetch the users in the embedded LDAP server of WebLogic. A
connection will be made to the identity store of the application server and
you would get an option to select the owner of the task.

3. Click on the magnifying glass next to the Owner textbox, and then click
on the Lookup… button. This will give you the list on users in the identity
store of your application server. Select packt_admin from these and click on
the Select button. Click on the OK button. Refer to the preceding screenshot.

Configuring the Assignment section
Open the Assignment section of the .task file (humanTaskDefination.task) of
humanTasksProject project. The following screenshot of the Assignment section
is shared for your convenience:

Chapter 8

[331]

The Assignment section lets you set the participants in the task. Participants are
grouped under stages which can be put in parallel or series to form a complex
approval structure. We will keep things simple.

1. Double click on State1 and put your own stage name I named it packtStage
(highlighted in the preceding screenshot).
We will now add participants for our task. Participants can also be of multiple
types. The possible types of participants are Single, Parallel, Serial, and FYI.
We will create a Single type participant.
A Single participant type can have a list associated with it. One of the users
from the list should acquire the task and act on it. Since the type is Single, the
action of one user is enough to change the status of the task. I created a user
(participant2) by navigating to Home | Summary of Security Realms |
myrealm | Users and Groups in WebLogic server and added the user in this
participant list.

2. Add the participant and click on OK.
At this point, we will have packt_admin and participant2 in our
participant list. Note that we have an Advanced section right under the
participant list. This section lets us configure the time limit and other such
properties for acting on the task. We can however configure the expiration
in the Deadlines section. If the expiration configuration is done in the
Deadlines section, then it is valid across all participants.

All About Web Services and Integrations

[332]

Although we will use Single participant type, let us talk about the other
participant types as well. The parallel participant type is used where multiple
people have to act in parallel to reach a decision. Any kind of voting can be an
example of this type of decision making system. The FYI participant type is
used when the business process does not have to wait for the action of the user.
Advanced configuration of the routing of the task can be done by clicking
on the Task will go from starting to final participant button. This button
is highlighted in the preceding screenshot. In our case we have a Single
participant type with a participant list that consists of two users (packt_
admin and participant2). Any of these two users can act on the task but
from the perspective of the task, it just needs one user to act on it. If we
had added more users (note that this is different from adding users to the
participant list) then we could have used the Task will go from starting to
final participant button for advanced configuration.

3. Save your .task file and open your .bpel file.
You would see that an If activity has been placed under the human task
which is followed by one branch each for the APPROVE and REJECT outcomes
and an extra branch that caters to the else condition. You can replace the
empty activities in each of the branch with an Assign activity or any other
logic that suits you. An Assign activity has however been added for your
reference in the APPROVE branch of the humanTasksProject project.
It is important to note that the Human Task is itself composed of the basic
activities, which we have seen while creating the previous composite. If you
expand the plus sign next to the green colored Human Task, then you will
find that a human task consists of an Assign activity, an Invoke activity, a
receiveComplete activity, and a partner link of the Task service. The Invoke
activity is used to invoke the Task service and the recieveComplete activity
is used to get the response from the service.

Read more details on creating the Task definition from the following:
http://docs.oracle.com/cd/E14571_01/integration.1111/e10224/
bp_hwfmodel.htm#SOASE007

http://docs.oracle.com/cd/E14571_01/integration.1111/e10224/
bp_introhwf.htm

4. Deploy the code on the application server. Refer to Deploying BPEL code
section for steps to deploy the code.

Chapter 8

[333]

Understanding Human workflows and Worklist
Let us now understand the execution flow of Human workflows and the use
of Worklists.

Log in to the Enterprise Manager and run this BPEL process just the way you ran
the previous one to see the execution of Human workflow.

You would find that the logic after the receiveCompletedTask of the Human
Workflow has not been executed as shown in the following screenshot:

All About Web Services and Integrations

[334]

This is because the Human Workflow is not finished. It can finish only when it reaches
an outcome, be it APPROVE or REJECT. We can use the methods defined in the Task
service to change the state of the task created in the BPEL process. A typical URL of the
WSDL of the task service is as follows:

http://host:port/integration/services/TaskService/TaskServicePort?WSDL

We will use the reassignTask and updateTaskOutcome methods of the Task
service in our experiment. Note that we had made packt_admin as the owner of
the task in step three of the Configuring the General section section. So PACKT_ADMIN
can reassign the task to participant2. participant2 is another user in the LDAP
server. We had created participant2 in step two of the Configuring the Assignment
section section. Once the task has been reassigned, participant2 can use the
updateTaskOutcome method to either APPROVE or REJECT the task. In either case,
the task will be completed and the branch of the If activity that deals with the
outcome will be executed.

Let us now walk the talk. We will use soapUI to invoke the reassignTask and
updateTaskOutcome methods of the Task service. We have seen enough examples
of invoking a SOAP webservice method using PL/SQL and APEX. Invocation of the
reassignTask and updateTaskOutcome methods of the Task service using PL/SQL
or APEX is left to you as an exercise. Invocation of these methods will help us finish
the execution of this business process.

Use soapUI to create a soapUI project using the WSDL of the task service. Note that
the SOAP envelope of both the reassignTask and updateTaskOutcome methods
are huge and have a number of optional tags. We will limit ourselves to the most
important ones.

The following is my envelope of the reassignTask method. Have a good look at it.
This soap envelope passes the credentials of the owner of the task. This part has been
highlighted in the following code. Task ID (second highlighted piece of code) is a
unique ID for the human task. We had configured the title to have the task ID in step
one of the Configuring the General Section section. If you go to the flow of the BPEL
process in the Enterprise Manager and then click on the initiateTask activity of the
human workflow then you will find the task ID in the title tag. Use this task ID in
the following SOAP envelope.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:tas="http://xmlns.oracle.com/bpel/workflow/
taskService" xmlns:com="http://xmlns.oracle.com/bpel/workflow/
common" xmlns:task="http://xmlns.oracle.com/bpel/workflow/
task" xmlns:tas1="http://xmlns.oracle.com/bpel/workflow/
TaskEvidenceService">

Chapter 8

[335]

 <soapenv:Header/>
 <soapenv:Body>
 <tas:reassignTask>
 <com:workflowContext>
 <com:credential>
 <com:login>PACKT_ADMIN</com:login>
 <com:password>PACKT_ADMIN</com:password>
 </com:credential>
 </com:workflowContext>
 <tas:taskId>b418e5fe-8adf-45e8-b413-a17e48c6874a</tas:taskId>
 <tas:taskAssignees>
 <tas:taskAssignee isGroup="No">participant2</
tas:taskAssignee>
 </tas:taskAssignees>
 </tas:reassignTask>
 </soapenv:Body>
</soapenv:Envelope>

Invoke the reassignTask method using soapUI. This invocation assigns the
task to participant2. We can now use the credentials of participant2 to invoke
updateTaskOutcome method of Task service. Below is my envelope to invoke
the service.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:tas="http://xmlns.oracle.com/bpel/workflow/
taskService" xmlns:com="http://xmlns.oracle.com/bpel/workflow/
common" xmlns:task="http://xmlns.oracle.com/bpel/workflow/
task" xmlns:tas1="http://xmlns.oracle.com/bpel/workflow/
TaskEvidenceService">
 <soapenv:Header/>
 <soapenv:Body>
 <tas:updateTaskOutcome>
 <com:workflowContext>
 <com:credential>
 <com:login>participant2</com:login>
 <com:password>participant2</com:password>
 </com:credential>
 </com:workflowContext>
 <tas:taskId>b418e5fe-8adf-45e8-b413-a17e48c6874a</tas:taskId>
 <tas:outcome>REJECT</tas:outcome>
 </tas:updateTaskOutcome>
 </soapenv:Body>
</soapenv:Envelope>

All About Web Services and Integrations

[336]

Once we finish the task, the flow of the process in the Enterprise Manager should
finish. Your flow should now look like the following screenshot:

Chapter 8

[337]

We can use Oracle BPM worklist to view the tasks. The URL of the worklist is
http://localhost:8001/integration/worklistapp/faces/login.jspx.

Replace localhost with the ip address of your SOA server Log in to the worklist using
the admin credentials of your domain and click on the Administrative Tasks tab.

You can use the State dropdown to filter the tasks based on their status. Let me
show you a screenshot of the worklist:

If you think that BPEL could be a technology which could help you meet your
business ends then you should have a look at the Mediator and Business Rule.
Mediator helps us transform and route requests to various services. Oracle BPEL
Process manager provides a mechanism to code rules as a reusable service which
can be used in multiple processes.

Since BPEL processes can be invoked using SOAP
requests and since we have learned a number of
methods of invoking SOAP requests using APEX,
using BPEL in APEX should be a cakewalk.

Integration with SAP crystal reports
SAP's crystal Reports shares the reporting market with Oracle products such as
OBIEE and BI Publisher. Since Oracle APEX is a reporting and rapid application
development tool, we should have a brief look at the way in which crystal reports
can be integrated with APEX. Let's begin:

1. Download Crystal report designer (development tool for crystal reports)
from the following link:
https://www.sap.com/campaign/ne/free_trial/crystal_
reports_2011/index.epx?URL_ID=crcom&kNtBzmUK9zU=1

All About Web Services and Integrations

[338]

2. Unzip 51043408.zip, go to 51043408\DATA_UNITS\CrystalReports and
execute setup.exe to install the designer. You will get the Installation key
code in the e-mail Id submitted while filling the form before downloading
the installer. Use this code to install the product.
If your system memory is a constraint then do a custom install, because
the default installation installs the drivers for all kinds of data sources
and makes arrangements for integration of Business Objects with tools
such as SAP, Peoplesoft, JD Edwards, Siebel, and EBS.

3. Copy ojdbc14.jar from <Oracle database home>\owb\wf\lib to C:\
Program Files (x86)\SAP BusinessObjects\SAP BusinessObjects
Enterprise XI 4.0\java\lib\external.

4. Edit C:\Program Files (x86)\SAP BusinessObjects\SAP
BusinessObjects Enterprise XI 4.0\java\CRConfig.xml and add C:\
Program Files (x86)\SAP BusinessObjects\SAP BusinessObjects
Enterprise XI 4.0\java\lib\external\ojdbc14.jar to the Classpath
tag. ojdbc14.jar holds the driver which will help us connect to Oracle
database so we are putting it in right places for Crystal Reports to use it.

5. Open crystal reports 2011 and click on the Blank report link under the Start
A New Report section.

6. Expand Create New Connection and select JDBC(JNDI) from it.
7. Select the JDBC Connection radio button, enter oracle.jdbc.driver.

OracleDriver as Database ClassName, and jdbc:oracle:thin:
@localhost:1521:ORCL (change this according to your database server)
in the Connection URL textbox. Give a name to the connection and click
on Next >.

8. Enter your schema name and password and click on the Finish button.
9. Select the OEHR_EMPLOYEES table and click on the OK button.

Designing the report after this point is similar to designing the report on
iReport for Jasper or on Eclipse for BIRT. Open firstCrystalReport.rpt
in the code pack for reference. firstCrystalReport.rpt has been built by
following the nine steps mentioned previously.

10. We can now deploy this report on a crystal server. We can download and
install the crystal server from http://www54.sap.com/solutions/sme/
software/analytics/crystal-server/index.html.

11. firstCrystalReport.rpt can then be deployed on your crystal server and
integration with APEX works by the URL mechanism. SAP publishes an
entire guide that can be used for URL integration. You can find this guide at
http://help.sap.com/businessobject/product_guides/boexir4/en/
xi4_cr_url_reporting_en.pdf.

Chapter 8

[339]

We can reference a crystal report of Central Management Server (CMS) using a
URL similar to http://<servername>:<port>/BOE/CrystalReports/viewrpt.
cwr?id=1783.

Here 1783 is the unique ID of the report. The invocation of these URLs from APEX
can happen from any of the standard ways of URL invocation such as buttons.

Migrating from MS Access to APEX
Let us now look at migration of code from MS Access to APEX. The code pack has
the sampleDB.mdb file which contains an employee table. mdb is an MS Access
database file format. Let us now see the process of converting the sampleDB.mdb file
to an APEX application. Let us see the process of migration now:

1. Log in to the APEX workspace, click on the arrow next to Application
Builder and select Migrate (as shown in the following screenshot) from it.

2. Click on Download Exporter for the Microsoft Access link in the Tasks panel.
3. Download omwb2007.zip and unzip it.

omwb2007.zip contains omwb.chm which gives all the details about
the migration.

4. Open MS Access and open omwb2007.mde in it.

All About Web Services and Integrations

[340]

This will open Oracle Migration Workbench Exporter for Microsoft Access 2007.
We can either get an export for Oracle Application Express or can get an export
for Oracle SQL Developer. The export for Application Express is a .sql file. We
will, however, see the process to export for SQL Developer, which is as follows:

1. Select Export for Oracle SQL Developer and click on Next >.
2. Choose the sampleDB.mdb file, select an output directory to store the

exported XML file, check the Export Table Data checkbox and click
on the Export button.

3. Exit the wizard.
4. Open SQL Developer and navigate to Migration | Migrate from the

Tools menu.
5. Select the packt_schema connection for the Migration repository in

step 2 of the wizard and click on Next >.
6. Give a name to the project and choose Output Directory and click on Next >.
7. Select Offline Mode in step 4 of the wizard and choose the exported XML file

of step 6. Click on the Next > button.
8. Click on the Next > button. Choose packt_schema as the target connection is

step 7, and let the Mode be Online and click on the Finish button.
9. You will now be able to see your Migration Project in the Migration

Projects window. You would also be able to see a bunch of Captured
and Converted objects as shown in the following screenshot:

10. Right-click on Converted Database Objects and click on Generate Target.
11. Click on Next > and you will be prompted to select a schema for target

objects. Select packt_schema for this purpose and let the Mode be Online
and click on Finish.

Chapter 8

[341]

This will generate a .sql and executing that .sql file is the final step in the
migration from MS Access to Oracle. You can now customize the .sql file
in your own way.

If you want to create your own MS Access application then you can
download the product from http://www1.buyoffice.microsoft.
com/usa/product.aspx?family=o14_officepro_try&country_
id=US&WT.mc_id=ODC_enUS_Pro_Try.

Migrating from Oracle Forms and Reports
We will now look at the process of converting Oracle Forms and Reports to Oracle
APEX. Fortunately, Oracle APEX is shipped with a set of four files to test the
migration of Oracle Forms and Reports to APEX. We can find the sample XML files
when you log in to the APEX workspace, by performing the following steps:

1. Click on the arrow next to Application Builder.
2. Select Migrate from the list.
3. Click on the Sample Files link in the Tasks panel on the right-hand side of

the page.

Have a look at the XML files. These XML files contain all kinds of information such
as the names of the parent modules from which the file was generated. These files
also contain the names of the APEX items which will be created using the file, the
SQL queries, the fonts, and other properties required for creating APEX regions and
pages. So, the XML file basically contains all the required metadata for generating an
APEX application.

The objects are converted to APEX using the process described here, but we have to
be careful with the business logic. Once the conversion is complete, we should check
the newly generated application and tweak it, wherever required.

In the following steps, you could also use the files (forms_
conversion_ddl.sql, forms_conversion_data_insert.
sql, customers_fmb.xml and orders_fmb.xml) of the code stack
shipped with the book. The files will ensure hassle free execution.

All About Web Services and Integrations

[342]

Let us now see the process of conversion:

1. Execute forms_conversion_ddl.sql followed by forms_conversion_
data_insert.sql in packt_schema to ensure that the objects referred
to in the XML files are available in the database.

2. Create a migration project by clicking on the arrow next to Application
Builder, selecting Migrate in the list and, then clicking on the Create
Project button.

3. Select Forms in the Type dropdown, and select a schema (packt_schema in
our example) that holds the Oracle Form's objects.

4. Select customers_fmb.xml in the Forms Module XML File browse
item and click Next >. Click on the Upload Another File > button.

5. Select Forms Module (_fmb.XML) in the File Type dropdown, select
orders_fmb.xml file and click on the Upload > button.

6. Click on the Create button and follow the wizard to create your
migrated application.

Integration with Google API
Proximity analysis and location intelligence are the need of the day. This kind of
analysis require data about all landmarks across the globe so that the distances can
be calculated and co relation with landmarks can be discovered. For example, a retail
store chain might be interested to know about the influence of the proximity of a
cinema hall to their store. For getting a good understanding of this, one would need
the data on the existing store's location (this we would have because it is business
data) and we will need the location of cinema halls in that area. If the retail chain
is spread across the globe then we will need information about all the cinema halls
spread across the globe. Certainly we cannot have cinema hall's data in our database
as many more different kinds of land marks are possible and the data volume of
all of these will be huge. This is where Google's Places API becomes handy. It is a
means of getting all location data from Google which can then be combined with
our business data and used to create reports in APEX.

Note that we are using Google’s Places API here. The same
process can be used for any of the other APIs of Google.

Chapter 8

[343]

Let us first have a look at various services given by Google. We will be using the
Places API but there are many more services which can be put to good use. Have
a look at the following link to check out the various APIs, developer tools and
announcements from Google:

https://developers.google.com/

The link for the Places API can be found in the following location:

https://developers.google.com/places/?hl=en

Detailed documentation on the Places API can be found at
https://developers.google.com/places/documentation/.

Let me first explain the process:

We have to use our Gmail account to get a key which will help us to use the API.
We then have to create a wallet so that we are able to send https requests from
our PL/SQL program. We will also have to create an ACL to enable our schema
to make network requests and finally we have to code to invoke the API and parse
the response. Let us begin:

1. Log in to the following URL using your Gmail ID and click on the Create
project button:
https://code.google.com/apis/console

2. Activate Places API. You will be prompted for your organization's name
and URL. Provide the same and click on Submit.

3. You will have to Accept an agreement document by Google. You will then
see that the Places API has been switched ON for your use as highlighted
in the following screenshot:

All About Web Services and Integrations

[344]

4. Click on the API Access tab (highlighted in the following screenshot) under
API Project and note your API key (highlighted in the following screenshot).
We will need this key to make requests to Places API:

5. Right click on your Internet Explorer in the Program Group and select
Run as administrator. This is necessary for downloading the certificates
in the next step. Use your API key as shown in the following URL to test
whether you are able to access the API or not:
https://maps.googleapis.com/maps/api/place/textsearch/
xml?query=Restaurants+in+London&sensor=true&key=AIzaSyDtWU5
xG2NNPngE0qcQHdLmEgBqWnpXaSU.

Have a good look at the structure of the XML returned by the above URL. The
structure will be used to parse the XML and get the required values. Note that we are
trying to get the locations of Restaurants in London using the preceding call. In our
code we will pass these two values, that is, landmark and city as arguments to our
PL/SQL function. Let us now see the steps to use the Places API.

1. Let us create a wallet to make calls to Places API. Click on the little lock
icon (highlighted in the following screenshot) next to the address bar, and
then click on View certificates (highlighted in the following screenshot):

Chapter 8

[345]

2. Click on the Certification Path tab (highlighted in the following screenshot)
and download all certificates in the chain in the Base-64 encoded X.509
(.CER) format. The following screenshot shows three certificates in the
chain. Downloading can be done by double-clicking a certificate in the chain,
clicking on the Details tab of that certificate, and then clicking on the Copy
to File… button, and then using the wizard to download the certificate in
the .CER format:

3. Once the certificates are downloaded, we can create a wallet and import
the certificates in it. Import the certificate at the lowest level in the chain
first and then follow a bottom-up approach. For example, I executed the
following commands to create my wallet. The first command creates
a wallet and the rest three statements import the certificate in it. In the
following example, my wallet is created in C:\Users\vishal\Desktop\
wallet as follows:
orapki wallet create -wallet C:\Users\vishal\Desktop\wallet -pwd
packt_password -auto_login

orapki wallet add -wallet C:\Users\vishal\Desktop\wallet -trusted_
cert -cert C:\Users\vishal\Desktop\Certs\googleapis.cer -pwd
packt_password

orapki wallet add -wallet C:\Users\vishal\Desktop\wallet -trusted_
cert -cert C:\Users\vishal\Desktop\Certs\GoogleInternetAuthority.
cer -pwd packt_password

orapki wallet add -wallet C:\Users\vishal\Desktop\wallet -trusted_
cert -cert C:\Users\vishal\Desktop\Certs\GeoTrust.cer -pwd packt_
password

All About Web Services and Integrations

[346]

4. Let us now create an ACL to enable network calls from our schema. Execute
the following statements for this:
BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL('google_usrs.xml','ACL for
google users','PACKT_SCHEMA', TRUE, 'connect');
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL('google_usrs.xml','*');
END;

commit;

5. We will now create the types which can hold the parsed response of our
Places API in the following way:
CREATE OR REPLACE type google_type AS
object(l_name VARCHAR2(100), l_address VARCHAR2(300), l_
latitude NUMBER, l_longitude NUMBER)

CREATE OR REPLACE type google_typ_tab AS
TABLE OF google_type

6. Let us now see the code that can help us fire the Places API on the fly based
on certain parameters and can parse the response and present it as a table
using the following code:
create or replace
FUNCTION google_rpt(p_city VARCHAR2, p_category VARCHAR2) RETURN
google_typ_tab pipelined AS
type rc IS ref CURSOR;
l_rc rc;
--
l_clob CLOB := NULL;
l_eob boolean := FALSE;
l_http_req utl_http.req;
l_http_resp utl_http.resp;
l_buff VARCHAR2(32767);
l_google_type google_type := NULL;
l_query VARCHAR2(5000) := 'select name,address,latitude,longitude
 from xmltable(''//PlaceSearchResponse//result'' passing
xmltype(:l_clob)
 columns name varchar2(100) path ''//name'',
 address varchar2(300) path ''//formatted_
address'',
 latitude number path ''//geometry//location//
lat'',

Chapter 8

[347]

 longitude number path ''//geometry//location//
lng'') xml_tab';

l_name VARCHAR2(100);
l_address VARCHAR2(300);
l_latitude NUMBER;
l_longitude NUMBER;

BEGIN

 dbms_lob.createtemporary(l_clob, TRUE);
 --utl_http.set_proxy('<proxy server user id>:<proxy server
password>@<proxy server>:<proxy server port>');
 utl_http.set_wallet('file:C:\Users\vishal\Desktop\wallet',
'packt_password');
 l_http_req := utl_http.begin_request('https://maps.googleapis.
com/maps/api/place/textsearch/xml?query=' || p_category || '+in+'
|| p_city || '&sensor=true&key=AIzaSyDtWU5xG2NNPngE0qcQHdLmEgBqWnp
XaSU', 'GET', 'HTTP/1.1');
 l_http_resp := utl_http.get_response(l_http_req);

 WHILE NOT(l_eob)
 LOOP
 BEGIN
 utl_http.read_text(l_http_resp, l_buff, 32767);
 -- buffer = VARCHAR2(32767)

 IF l_buff IS NOT NULL
 AND LENGTH(l_buff) > 0 THEN
 dbms_lob.writeappend(l_clob, LENGTH(l_buff),
TRANSLATE(TRANSLATE(l_buff, '&', ';'), '''', ' '));
 END IF;

 EXCEPTION
 WHEN utl_http.end_of_body THEN
 l_eob := TRUE;
 END;
 END LOOP;

 utl_http.end_response(l_http_resp);

 OPEN l_rc FOR l_query USING l_clob;
 LOOP
 FETCH l_rc
 INTO l_name,
 l_address,
 l_latitude,

All About Web Services and Integrations

[348]

 l_longitude;
 l_google_type := google_type(l_name, l_address, l_
latitude, l_longitude);
 EXIT
 WHEN l_rc % NOTFOUND;
 pipe ROW(l_google_type);
END LOOP;

CLOSE l_rc;
dbms_lob.freetemporary(l_clob);
RETURN;

EXCEPTION
WHEN others THEN
DBMS_OUTPUT.PUT_LINE(l_query);
DBMS_OUTPUT.PUT_LINE(utl_http.get_detailed_sqlerrm);
DBMS_OUTPUT.PUT_LINE(sqlerrm);
CLOSE l_rc;
dbms_lob.freetemporary(l_clob);
utl_http.end_response(l_http_resp);
END;

Please execute the set define off command before
executing the preceding code, otherwise &sensor and
&key in the preceding utl_http.begin_request
procedure call will be considered as substitution
variables, and the compiled function will not have the
right string to make the request to Places API.

Let us now try to understand the preceding code. We had seen the response
XML of the Places API in step five of the previous series of steps, so we use
it to frame our query to parse the response. This query is assigned to the
l_query variable in the first highlighted part of the code. We see that l_clob
is passed to this query. We will talk about l_clob and the process of filling
values in this variable in a short while. I have commented the utl_http.
set_proxy code, but utl_http.set_proxy can be used if your network calls
have to pass through a proxy. utl_http.set_wallet is then used to set the
wallet, so that we can make https requests. utl_http.begin_request then
makes the request and we convert the response to a clob. This converted
response is stored in l_clob. We then open a cursor for the query stored in
l_query and pass l_clob to it. We then run a loop to store the parsed values
and pipe the output. Note the use of utl_http.get_detailed_sqlerrm and
sqlerrm to print runtime exceptions.

Chapter 8

[349]

7. Execute the following statement to test the code. The following statement can
be used as a region source in APEX and the arguments passed to the query
can be APEX items::

select * from table(google_rpt('Restaurants','London'))

Your output will look like the following screenshot:

All About Web Services and Integrations

[350]

Apart from restaurants, we can search for a number of other landmarks. A complete
list of landmarks can be found in the following link.

https://developers.google.com/places/documentation/supported_types

If you get an ORA-28759: failure to open file error, then
you have an issue with OS level permissions on your wallet. Copy the
directory (C:\Users\vishal\Desktop\wallet) in this example
to some other directory, for example, C:\packt_wallet. Put this
new directory path in the utl_http.set_wallet procedure of the
google_rpt function and compile the function again to fix the problem.

The SDO_GEOM.SDO_DISTANCE in the MDSYS schema can be used for distance
calculations. So we can combine the google_rpt function with the latitude/
longitude information of our data to find the distance of our data from major
landmarks in a city. The MDSYS schema holds spatial data and methods which
can be helpful in location related business queries.

Integration with Oracle R Enterprise
Oracle R is a statistical tool and can be used for data mining and predictive analysis.
We haven't showcased this capability yet and predictive analysis is an important
part of intelligent reporting. More information on Oracle R Enterprise can be
found at http://www.oracle.com/technetwork/database/options/advanced-
analytics/r-enterprise/index.html.

We can check the process of configuring and installing Oracle R by going through
the following guide:

http://docs.oracle.com/cd/E36939_01/doc/doc.13/e36763.pdf

We can find out about the new features in 1.3 release of Oracle R in the following
documentation:

http://www.oracle.com/technetwork/database/options/advanced-
analytics/r-enterprise/ore-new-features-1882823.pdf

The user guide for Oracle R Enterprise 1.3 can be found at http://docs.oracle.
com/cd/E36939_01/doc/doc.13/e36761.pdf and you can refer to the following
blog to get an introduction of the product:

https://blogs.oracle.com/R/entry/introduction_to_the_ore_statistics

Chapter 8

[351]

In this section, we will try to implement the use case of identifying the best locations
for putting ATMs in an area of interest depending on customer density spread across
the area of interest. Let us first create the data for our analysis.

We will consider that our area of interest, where we want to plant our ATM machines,
lies between 36 and 37 degree latitude and -122 and -123 degree longitude.

Let us say that we have data of all 100,000 people living in our area of interest.
We can use the following query to create this data for us. Execute this in the
RQUSER schema. RQUSER schema is an integral part of Oracle R.

CREATE TABLE customer_locations AS
SELECT dbms_random.VALUE(36, 37) latitude,
 dbms_random.VALUE(-123, -122) longitude
FROM dual CONNECT BY rownum <= 100000

Now let me explain our objective here. We will use the K-Means clustering algorithm
to find the centroids in the data set created by the above query. Check the user guide
above to know more about the K-Means clustering algorithm. These centroids will
be the centers of densest locations in our area of interest. These centroids can hence
be the potential locations for placing our ATM machines. We will first see the code to
get the centroids as an output of a SQL query and will then get these points plotted
and get the plot as a PNG image. We will also understand the process of passing
arguments to Oracle R script. Let us begin.

sys.rqscriptcreate can be used to create Oracle R scripts and sys.rqScriptDrop
can be used to drop them.

Log in to the RQUSER schema and execute the following script. Replace the values in
ore.connect command with your environment values:

BEGIN
 sys.rqscriptcreate('find_centers', 'function() {
 library(ORE)
ore.connect("rquser","<database_SID>","<database_host_name>","<RQUSER_
password>",<database_port_number>)
ore.sync()
ore.attach()
var_cust_locs <- ore.pull(CUSTOMER_LOCATIONS)
ret_centroids <- kmeans(var_cust_locs,4,3)
df <- data.frame(ret_centroids$centers)
df}');
END;

All About Web Services and Integrations

[352]

The preceding anonymous PL/SQL block uses sys.rqscriptcreate to create the
Oracle R find_centers script. The library(ORE) command loads the Oracle R
libraries. We then connect to the RQUSER schema using ore.connect, so that we can
access the data of CUSTOMER_LOCATIONS table inside the R script. ore.sync() is used
to sync the metadata of the database with Oracle R. We then use ore.attach() to
attach the schema so that we can use its objects in our R script. We use ore.pull to
pull the data from the CUSTOMER_LOCATIONS table and create the var_cust_locs data
frame. We pass var_cust_locs as an argument to kmeans. The second argument, that
is, 4 tells the kmeans function that we wish to get 4 centroids for our data set and the
last argument, that is, 3 tells the kmeans function that it can run 3 iterations to get the
centroids. After the algorithm has executed, we use ret_centroids$centers to get
our centroids and then assign it to the df data frame using the data.frame method.
We finally have df in the end, so that the data frame can be used by the calling query.

Run the following query to see the 4 centroids.

select *
 from table(rquser.rqEval(NULL,
 'select 1 latitude, 1 longitude from dual',
 'find_centers'));

The first argument of the rquser.rqEval function, that is, NULL is for any input
that we wish to give to the R script. The select statement defines the output table
definition and the third argument, that is, find_centers is the name of our R script.

The output of this looks like the following screenshot:

Once the right grants have been provided, we can use the above query in our
APEX application.

Chapter 8

[353]

Let us now see the code that can help us get the centroids plotted on a chart and get
the chart as a PNG image (This image can then be downloaded from APEX):

begin
sys.rqScriptCreate('display_chart',
'function(x) {
ore.connect("rquser","<database_SID>","<database_host_name>","<RQUSER_
password>",<database_port_number>)
ore.attach()
 ore.sync()
ret_centroids <- kmeans(x,12,20)
plot(ret_centroids$centers)
}');end;

The code is more or less similar to the previous code. The only major difference is
that we are using the plot method to plot the centroids and the fact that this script
accepts an argument, that is, x. We will talk about x in a short while from now. We
can use the following query to get an XML that contains our desired PNG image.
We have seen enough examples of extracting information from XML documents
and downloading files, so this one is left to you as an exercise. Note that ORE 1.3
supports PNG output as well, so you can get your data directly as a .png file in
ORE 1.3:

select value
from table(rqTableEval(cursor(select * from customer_locations),
NULL,'XML','display_chart'))

We are using rqTableEval here instead of rqEval. The first cursor is passed as an
input to the display_chart script. This is captured in the script using the x variable.
The second NULL is for the parameter cursor. The third argument, that is, XML tells the
R script that we need an XML output, and the fourth argument is the name of the R
script.

We can drop the above script, if required, using the following code:

begin
 sys.rqScriptDrop('display_chart');
end;

The definitions of the scripts created using sys.rqScriptCreate can be found using
the following query:

select * from sys.rq_scripts

We can get more information about rq*Eval functions from http://docs.oracle.
com/cd/E36939_01/doc/doc.13/e36761/scripts.htm#autoId18.

All About Web Services and Integrations

[354]

The select statements that use rqEvaland rqTableEval can be used as region source
in APEX after assigning necessary privileges. Note that the above scripts help us run
our algorithms (kmeans) online. However, if the data volume for analysis is huge
and if the algorithm is talking a lot of time to execute, then we can put the R script
in a bat/sh file. This R script can execute and store the results in a table. The table
can them be used for our reporting. The following code is an example of storing the
output of the kmeans algorithm in a database table:

library(ORE)
ore.connect("rquser","<database_SID>","<database_host_name>","<RQUSER_
password>",<database_port_number)
ore.sync()
ore.attach()
var_cust_locs <- ore.pull(CUSTOMER_LOCATIONS)
ret_centroids <- kmeans(var_cust_locs,4,3)
df <- data.frame(ret_centroids$centers)
ore.create(df,table="STORE_CENTROIDS")

Summary
This chapter was dedicated to web services, business processes and integrations with
some of the well-known tools. We started with understanding native XMLDB web
services and then moved on to look at the method to create RESTful web services
using Resource Templates. We learned about BPEL, which is Oracle strategic tool
to code business processes. We then focused on understanding the conversion of
applications from other commonly used technologies. We also saw the process of
integrating SAP Crystal Reports, Oracle R Enterprise, and Google API with APEX.

This brings us to the end of our discussion on using foreign tools in/for APEX.
Tuning is one of the most interesting activities in APEX development and involves
a lot of techniques. We will see some of the most interesting tuning procedures in
the next chapter.

Performance Analysis
This chapter brings us to the end of our discussion on Oracle APEX, and the tools
that can help us in the process of report development using APEX. We discussed the
core and advanced features of APEX in the initial chapters, then moved on to know
about other technologies which can be used for reporting with APEX, and we are now
at a point, where we can now sink a little deeper to understand the ways and means
to tune our APEX application. Since the APEX application is stored on the database,
and talks to the user through a web server, the tuning exercise will largely focus on
knowing about ways to tune the database and will have a few headings that will talk
about the web server and the APEX Listener. The Listener, a JEE application living on
the web server, also has a few parameters which can be tuned for better performance.

Let us now discuss a few best practices that can help us write efficient code.

Tuning pointers for development
We will now look at a few pointers for developers that can help us improve the
performance of our APEX applications. Let us start with the use of v().

Using v()
Using APEX items as bind variables instead of v() in the SQL queries is advisable.
This is because constant switches between the SQL and the PL/SQL engines can result
in poor performance. For example, if we wish to call a stored procedure from an APEX
page process, and we wish to pass an APEX page item to it, and if this procedure uses
the page item in a SQL query, then it is far better to pass the value of the page item
as bind variables to the stored procedure, against fetching the value of the page item
using v() inside the SQL query of the stored procedure. This will avoid unnecessary
switches between the SQL and the PL/SQL engines. These switches will happen if v()
is used in a SQL query. An example of passing values as bind variables can be seen in
AD_PRES authorization scheme of the reference application of Chapter 3.

Performance Analysis

[356]

Using the page and region caching
Page and region caching should be used wherever possible to reduce load on
the server. We can set these in the Edit Page or the Edit Region pages of APEX.
Administrators can login to the Admin console and purge these caches. The settings
of the cache lets us set the time out for the cache. We can also set conditional caches.
In other words, the data from the cache is fetched only if the condition set by us
returns true. If the condition returns false, then the data is fetched according to the
coded logic, and the cache is bypassed. Again, we can cache the page/region for
every user. Setting the cache for every user can be achieved by selecting Yes in the
Cache By User dropdown present in the Server Cache section of the page definition.
Caching a region for every user can be achieved by selecting Cached by User in the
Caching dropdown of the Caching section in the region definition page.

Understanding the weighted page
performance of APEX
Log in to your APEX workspace and click on the arrow next to Administration on
the top. Click on Monitor Activity, go to the Page View Analysis section, and then
click on By Weighted Page Performance. You will get a report that will list the APEX
application pages with Median Elapsed, Weighted Average, and Page Events. We
can find the worst performing pages by considering Weighted Average and Median
Elapsed. Page Events include page rendering and page processing events.

Using the #TIMING# substitution string
We can put the #TIMING# substitution string in an APEX region footer to display the
time taken to load the region. This can help us show the contribution of each region
to the total time taken to load the page. This can help us decide on the primary target
for tuning the performance of a page.

Choosing a pagination scheme
Choosing a pagination scheme such as Page X to Y of Z, needs extra processing
to calculate Z. So such pagination schemes should only be used when the user
absolutely has to know the count of the total number of pages. Again, Partial
Page Refresh (PPR) for pagination should be used so that time is not wasted
in loading the unchanged parts of the page.

Chapter 9

[357]

Tuning the like comparisons
We often have to use the like keyword for wildcard searches. This section shows
a method to optimize such queries.

Let us first create a table with 100,000 rows in it.

CREATE TABLE "PACKT_SCHEMA"."PERFORMANCE_TEST"
 (
 "EMPLOYEE_NAME" VARCHAR2(4000 BYTE),
 "DEPT_NUMBER" NUMBER,
 "SHIRT_COLOR" VARCHAR2(6 BYTE),
 "EMPLOYEE_NAME2" VARCHAR2(4000 BYTE)
);

INSERT INTO performance_test
SELECT DBMS_RANDOM.STRING ('u', 10) AS employee_name,
CEIL (DBMS_RANDOM.VALUE (1, 10)) * 10 AS dept_number,
DECODE (FLOOR (DBMS_RANDOM.VALUE (1, 5)), 1, 'Blue', 2, 'Green',
 3, 'Purple', 4, 'Red') AS shirt_color,
 DBMS_RANDOM.STRING ('u', 10)
AS employee_name2
FROM DUAL
 CONNECT BY ROWNUM <= 100000;

CREATE BITMAP INDEX "PACKT_SCHEMA"."PERF_TEST_COLOR_BTMP_IDX" ON
 "PACKT_SCHEMA"."PERFORMANCE_TEST" ("SHIRT_COLOR");

CREATE INDEX "PACKT_SCHEMA"."PERF_TEST_NAME_BTRE_IDX" ON
 "PACKT_SCHEMA"."PERFORMANCE_TEST" ("EMPLOYEE_NAME");

CREATE INDEX "PACKT_SCHEMA"."PERF_TEST_NAME_CTX_IDX" ON
 "PACKT_SCHEMA"."PERFORMANCE_TEST" ("EMPLOYEE_NAME2")
 INDEXTYPE IS "CTXSYS"."CONTEXT";

EXEC DBMS_STATS.GATHER_TABLE_STATS ('packt_schema',
 'performance_test');

Execute the following statement and check the plan:

explain plan for
select shirt_color from performance_test where
 contains(employee_name2,'%ASDFRED%') > 0;

@C:\Oracle11GDB\product\11.2.0\dbhome_1\RDBMS\ADMIN\utlxpls.sql

Performance Analysis

[358]

Replace the path in the preceding code with the path of your utlxpls.sql file.
Execute the following statement and check the plan again:

explain plan for
select shirt_color from performance_test where employee_name like
 '%ASDFRED%';

@C:\Oracle11GDB\product\11.2.0\dbhome_1\RDBMS\ADMIN\utlxpls.sql

You will see that the context index is used in the query with the contains clause
and the cost of the query is reduced. The following is a screenshot showing the
plans of the two queries on my system:

Read more about Oracle text indexing at http:/docs.oracle.com/cd/E11882_01/
text.112/e24436.pdf.

Chapter 9

[359]

Using the bind variables
If the bind variables are used, then the query is parsed on first execution, and every
subsequent execution of the query only results in a soft parse of the query.

Till Oracle10g, cursor sharing was not adaptive. So the use of bind variables in
skewed column data was troublesome. Let me explain this with an example. Let's
say that we have a table with a year column, and that we have 100,000 records for
the year 2010 and 5,000 records for the year 2011. The queries to filter the records
for a year would differ only in constant for the year. Till Oracle10g, the use of bind
variables in such cases would use the same plan to fetch the data for both years. But,
the data volumes in the two years might differ a lot. In such a case, using the same
plan to fetch the records might be incorrect. To solve this problem, Oracle11g has
Adaptive Cursor Sharing functionality. Adaptive Cursor Sharing uses the same
plan only if it is appropriate. Read about adaptive cursors at http://www.oracle.
com/technetwork/articles/sql/11g-sqlplanmanagement-101938.html.

The cursor_sharing parameter is another important thing to consider, while
formulating a strategy for bind variables. It determines what kind of queries can
share the cursors. The possible values include EXACT, SIMILAR, and FORCE. We
can set the cursor_sharing parameter using Alter session or alter system
statements. The EXACT value only allows the queries with exactly same text to share
the cursor. The SIMILAR value lets the similar queries that differ only in literals
to share the cursor, unless the literals affect either the meaning of the statement,
or the degree to which the plan is optimized. The FORCE value lets similar queries
that differ only in literals to share the cursor, unless the literals affect the meaning
of the statement.

Cursor sharing also reduces latch contention, and hence improves concurrency.
If bind variables are not used, then the library cache will be flushed with a number
of queries, which will try to acquire the latches on resources such as the shared
SQL area, and hence result in poor performance.

The use of bind variables also reduces the SQL Injection attacks. We have a discussion
on this in the SQL Injection section of the Appendix.

Performance Analysis

[360]

Using materialized views
Materialized views or M-views are used to pre-calculate the aggregations and
calculations used in a report. Pre-calculation results in lesser time to display a
report, and hence better user experience. Views have a SQL query associated with
them, which is executed when we select from the view. So views do not have data
of their own. However, materialized views have their own data, hence the name
materialized. Materialized views have a query and a refresh frequency associated
with them. The associated query is executed at a set frequency, and the data returned
by the query is stored.

If Oracle feels that a query request, built on relational tables, can also be fulfilled
using M-views, then Oracle uses M-views to fulfill the request. Oracle does this
favor without any change from the developer. This is called the query rewrite
feature of Oracle. Oracle takes the rewrite decision based on a SQL text of the query
and the one associated with the M-view, or it takes the decision based on the joins,
selected columns, grouped columns, and other such properties of the query and the
M-view. Creating dimensions (using the create dimension statement), constraints,
and maintaining referential integrity also improves the optimizer's intelligence of
rewriting the query. The DBMS_MVIEW.EXPLAIN_REWRITE method can tell you the
possibilities of rewrite of a query. The DBMS_ADVISOR.TUNE_MVIEW method can be
used to get a query of the M-view that is more suited for enabling the use of the
M-view for query rewrite.

Read more at http://docs.oracle.com/cd/E11882_01/server.112/e10706/
repmview.htm.

Using bulk operations
The use of statements such as FORALL and BULK COLLECT can improve the
performance when dealing with large volumes. These help in reducing context
switches between a SQL and the PL/SQL engines, and hence improve performance.
The higher the number of rows involved, greater will be the benefit of using them. You
can find examples and more information on bulk operations at http://www.oracle.
com/technetwork/issue-archive/2012/12-sep/o52plsql-1709862.html.

Read the Using native web service to return a collection of rows section of Chapter 8, All
About Web Services and Integrations, to see an example of BULK COLLECT.

Chapter 9

[361]

Using sequences
We can also use the cache setting to enhance the performance of sequences.
The cache clause of the create sequence statement can be used for better
performance. If this is used, then the database preallocates a bunch of sequence
numbers and keeps them in memory for faster access.

Understanding indexes
Index compression is usually used for better data storage and for the fact that
Oracle will have to scan lesser data blocks for fulfilling the query. This will result in
lesser I/O and hence improved performance. So, index compression is the trade-off
between lesser data blocks versus more work by CPU to decompress. Compressing
unique indexes might not be helpful because every entry is unique, so we have
nothing to compress.

We can enable index monitoring by using the ALTER
INDEX MONITORING USAGE statement, and then query
the V$OBJECT_USAGE view to get usage information.

Understanding the bitmap index
The bitmap index works extremely well for low cardinality columns, which are not
updated frequently. They not only improve the data retrieval process, but also save
space. Unlike the B-tree index, the bitmap indexes store null values, and hence can
be used even if the queries have an is null comparison.

The bitmap join index takes the advantage of the bitmap indexes a step further.
It stores the result of a join, and can completely prevent a join from happening on
the tables, resulting in improved performance. The bitmap join index can be used to
improve the performance of the queries involving inner joins in a data warehouse.
Again, the bitmap join indexes compress better than the regular bitmap index on a
join column, so it improves data storage as well.

However, the bitmap indexes can cause sufficient problems, if the table having a
bitmap index is frequently updated. During DML when the index is updated, all
bitmap segments are locked. This can result in a lot of locking on the database. Since
the bitmap index is smaller as compared to a B-tree index on the same column, an
index fast full scan is faster. Read more about the bitmap indexes at http://docs.
oracle.com/cd/E11882_01/server.112/e25554/indexes.htm#CIHGAFFF.

Performance Analysis

[362]

Understanding the reverse key index
In a reverse key index, index entries are spread across multiple data blocks and
hence the contention for a single hot block is reduced. If values are stored in a key
using a sequence, then consecutive increasing values from the sequence are stored
in the rightmost leaf block of a B-tree index. So if multiple sessions are inserting,
then an index block can become a hot block. To avoid this situation, we can use
the reverse key indexes. The values of the reverse key indexes are stored in reverse
order, and hence the data values no longer seek the rightmost leaf block, and get
scattered in multiple blocks, which reduces contention. For example, if the values
from a sequence are 123, 124, and 125, and if these values are stored as the primary
key of a table, then each of these would seek the rightmost leaf block because the
rightmost block is for the largest value. If a reverse key index is used, then the
values would be reversed to 321, 421, and 521 before inserting. This will result
in scattering of the values, and hence will reduce the contention.

However, the reverse key index can result in full table scan, where a B-tree index
would use an index range scan. This is because the values in the index of a reverse
key index are not adjacent. Range scans usually happen when we have range
predicates in the where clause.

Ordering columns in an index
The ordering of columns in an index depends on our requirements. The order of
columns in an index can dictate whether the index will be used to fulfill a query,
or not.

For very selective range scans, the column which is fetched most frequently (most
selective), should be the first column in the index.

If the range scan is huge, then I/Os can usually be reduced by ordering the columns
in the least selective order or in a manner that sorts the data in the way it should
be retrieved.

Using the with clause
If a sub query is used in multiple places in our query, then we can give a name
to that subquery using the WITH clause, and reference it in all the places where
the subquery is written. Oracle stores this subquery in the temp tablespace, and
then uses the result wherever the WITH clause is referenced in the query. This not
only helps to reduce the complexity of the query, but also improves performance,
since the sub query in the WITH clause would have executed at all referenced places,
if it was not in the WITH clause.

Chapter 9

[363]

Have a look at the Understanding the WITH clause section and the Creating a hierarchical
report using the recursive WITH clause section of Chapter 2, Conventional Reporting in
APEX, to see the examples of WITH clause.

Understanding partitioning strategies
Partitioning a huge table helps in managing the table, and can also help in a quicker
response time due to partition pruning and partition-wise joins. Partition pruning
is the process by which the query accesses only the necessary partitions to retrieve
the data rather than accessing the whole table. Partition-wise joins are used only if at
least one of the tables is joined on the join key. This technique breaks the bigger join
into many smaller joins that fastens the data fetching process. Partition-wise joins
can either be Full Partition-Wise Joins or can be Partial Partition-Wise Joins. Each of
these has its own requirements. Read about these at http://docs.oracle.com/cd/
E11882_01/server.112/e16541/part_warehouse.htm.

Partitioning can be a good strategy for DML operations as well because it allows the
degree of parallelism equal to the number of partitions. If one partition of a table is
unavailable, other partitions can remain online. Partitions can be configured such
that each partition is stored in a separate tablespace. This can enable DBAs to do
backup and recovery on individual partitions.

We can partition the data based on the data in a column. For example, we can have
partitions based on a date column. In other words, we can have a partition for every
month. This kind of partitioning is called range partitioning. We can also have a
list that defines the data distribution and group multiple values of a column under
a single value of the list. Such type of partitioning is called list partitioning. Hash
partitioning allows the partitioning of data based on the hash algorithm.

These distribution methods can be applied at a single level or two levels. We can
have one level of partition using one method, and then these partitions can again be
partitioned using another method. This is called composite partitioning. However,
we can also have single partitioning. In composite partitioning, we cannot use the
hash-range and the hash-list partitioning methods. Some newer forms of partitioning
such as interval partitioning, REF partitioning and virtual column based partitioning
have been introduced in Oracle11g.

Read more about partitioning at http://www.oracle.com/technetwork/
database/options/partitioning/index.html.

Performance Analysis

[364]

Understanding anonymous blocks versus
stored procedures
Stored PL/SQL procedures are better than anonymous PL/SQL blocks. When a
procedure/function/package is in the shared pool of the SGA, retrieving from disk is
not required and the execution can begin immediately. Anonymous PL/SQL blocks in
APEX are stored in the APEX metadata tables. This code has to be fetched and parsed
on every execution. Packing similar procedures in a package is better as it will result
in the loading of the entire package in the memory after the call to any procedure/
function of the package. So, no disk I/O will be required for any procedure/function
of the package after the call to any one procedure/function of the package.

Using star transformation
Star transformations are little more than just a joining strategy. The idea is to
fetch only those rows from the huge fact table that satisfy the filters on the smaller
dimension tables that join with the facts. If star transformation is used in the
execution of a query, then oracle does not even refrain from using temporary
tables and rewriting of the query in order to speed up the data retrieval process.
Rewriting of the query involves the creation of subquery predicates which join to
the fact. These subquery predicates are referred to as bitmap semi-join predicates.
Star transformation works only if we have the bitmap indexes on the join columns
of the fact table. The transformation first filters the relevant rows from dimensions,
and then uses the bitmap indexes of the fact to get relevant fact rows. These fact
rows are joined back to the dimensions to get the selected columns of the dimension
tables. Note that we had to join the fact rows back to the dimensions because there
might be some columns of the dimensions, which might be selected, but might not
appear in the WHERE clause. The initial filter on the dimensions only deals with the
conditions in the WHERE clause. Star transformation can be enabled using the star_
transformation_enabled parameter.

Read more about star transformation at http://docs.oracle.com/cd/B28359_01/
server.111/b28313/schemas.htm#i1006335.

Understanding clustering of tables
The single big purpose of clustering is to reduce the amount of I/O because disk
operations are slower than data buffer operations. Clustering basically involves the
storage of similar data together. So the number of data blocks to be read to fulfill a
query is significantly reduced.

Chapter 9

[365]

This improves query performance. Using clusters for single table improves the
performance of range scans. Similarly, we can store the rows of multiple tables
together, if they share a common key. This can be done using the multi table index
clusters or the multi table hash clusters. The index clusters give good performance,
if the query involves the join, on the column in the index. In the hash clusters, the
index is replaced by a hash function. We can use the sorted hash clusters to improve
the performance of queries involving sorting.

Clustering also has side effects. If we query only a single table from a multi table
cluster, then the performance might be poor because we would be reading a larger
record since the data of both the tables is stored together. Again, DML on clusters
is slower.

Queries on the index clusters have to access the index segments, and also the table
segments, so the performance of the hash clusters is known to be better than the index
clusters in most cases. The hash clusters work with a hash function, and hence do not
need an index, although hash clusters can have an index. The hash clusters require less
storage because they do not need the index segment. However, the hash clusters should
be used only in a situation, where the table is static because if the tables of a hash cluster
require more space than initial allocation, then overflow blocks are required, which
degrades performance. If most queries, on the hash clusters, retrieve a range of values
based on the cluster key, then the hash function cannot be used. This will result in a full
table scan which is costly in clusters. Equality operation on the cluster key can use the
hash clusters, and hence are better to be used with hash clustering. Again, we have to
tactically set the HASHKEYS parameter because if the cardinality grows over the specified
value, then we will have to rebuild the cluster, and setting an oversized value will result
in wastage.

Understanding parallelism
We can use parallel hints for queries that involve large table scans, joins, or
partitioned index scans. However, it must be pointed out that parallelism might
spoil performance on over utilized systems or systems with small I/O bandwidth.
Parallelism involves breaking a huge task into a number of smaller tasks, which
are executed in parallel.

We can use the DBMS_PARALLEL_EXECUTE package to update large amount of data
as it improves performance, reduces rollback space consumption, and we do not
lose all our work if something fails in the process of updating.

Performance Analysis

[366]

Using code inlining
Code inlining results in faster execution, but is certainly not the best method to write
the code as it harms readability. Oracle11g gives us a solution to this problem by
giving us plsql_optimize_level. If the value of plsql_optimize_level is set to 3,
then the PL/SQL compiler is directed to find the prospects to inline the code. So, our
readability is not hampered, and our code works faster. Code inlining shows better
result when used with native compilation.

Understanding short circuit evaluation
If any of the expressions joined together by logical OR operators are true, then the
result of the entire expression is true. So if we have a lot of OR conditions, then oracle
does not execute other OR conditions, if the first one returns true. This is called short
circuiting. So, in a series of expressions joined by the OR operator, make sure that you
order the expressions such that the least expensive expressions are in the beginning.

Understanding PLSQL_CODE_TYPE
We can use PLSQL_CODE_TYPE to define the method used to compile our code. If the
value is set to INTERPRETED, then the code is compiled to the PL/SQL byte code, which
is used by the PL/SQL Interpreter engine. If the value is set to NATIVE, then the PL/
SQL code will be compiled to the native machine code. Using NATIVE or INTERPRETED
does not affect the speed of execution of the SQL, but using NATIVE compilation
increases the speed of execution of PL/SQL code. Compiling code in the NATIVE mode
is a lot easier in Oracle11g than in the previous versions, and Oracle calls it Real Native
Compilation. Datatypes such as simple_integer, SIMPLE_FLOAT, and SIMPLE_DOUBLE
when used in combination with native compilation show significant performance
benefits. The simple_integer datatype is a subtype of the pls_integer datatype.

Using PL/SQL datatypes
Choosing the correct datatype can be vital for performance. If we know that our
variables will never have null values, then using SIMPLE_INTEGER, SIMPLE_FLOAT,
or SIMPLE_DOUBLE, rather than BINARY_FLOAT or BINARY_DOUBLE will result in
better performance. The benefit is greater with native compilation. Operations on
datatypes such as PLS_INTEGER, BINARY_FLOAT, and BINARY_DOUBLE use hardware
arithmetic, so use them instead of using NUMBER because the NUMBER operations use
library arithmetic.

Chapter 9

[367]

The use of constrained datatypes involves an additional check during each assignment.
One should make sure that one uses the same datatype for similar operations, so that
implicit conversion of the datatypes is minimized. Read more about the datatypes at
http://docs.oracle.com/cd/E11882_01/appdev.112/e10472/datatypes.htm.

Using HTML in SQL
Coding HTML in SQL hampers the reusability of the code. APEX has other, better
ways such as templates and item formatting to code HTML.

Implementing XML PIVOT queries
We have seen the pivot clause in the Implementing matrix report section in Chapter
2, Conventional Reporting in APEX. We had used substitution variables to make the
IN clause dynamic. But, such queries are prone to SQL Injection attacks. We have a
discussion on this in the SQL Injection section of the Appendix. The solution is to use
the PIVOT XML clause. If the PIVOT XML clause is used, then we can have a subquery
in the IN clause, and hence it makes the IN clause, dynamic. The PIVOT XML clause
returns an XMLTYPE datatype, which can be easily converted to more meaningful
information by using the extract and the extractvalue functions. Have a look
at the following query:

SELECT *
 FROM oehr_employees
 PIVOT XML
 (SUM(salary) FOR department_id IN
(select department_id from oehr_departments)
)

This query uses a nested query in the in clause, and hence we can eliminate the need
of substitution variable.

Understanding denormalization
Normalization is the organization of data in such a way that data redundancy
is minimized, and updates in data result in minimum changes in the database.
Normalization primarily has three forms, namely, 1NF, 2NF, and 3NF. These
days, memory is becoming cheaper, which has resulted in the focus shift from
reducing redundancy to improving performance. Since joining one table to the
other is a costly affair, data warehousing environments are usually modeled as
the star schema, which is highly denormalized.

Performance Analysis

[368]

Understanding secure files, deduplication,
and large object storage
The default storage method of LOBs is BASICFILE, but Oracle11g has a better storage
method called SECUREFILE. This method provides better security and space utilization
by encryption, compression, and deduplication. Deduplication is the process by which
Oracle stores only one copy of the LOB, even if it is associated with multiple rows.
The DB_SECUREFILE parameter is the governing initialization parameter that decides
which LOB will be created as a SECUREFILE LOB, and which one will be created as
BASICFILE.

Both BASICFILE and SECUREFILE have some caching options too. These options lets
us cache the LOB for both read and read/write operations. Deduplication option of
SECUREFILE prevents the duplication of LOB at table or partition level. Similarly,
the COMPRESS option of SECUREFILE lets us compress the LOB to the LOW, MEDIUM,
and HIGH level. The LOW compression level in Oracle11g Release 2 involves minimum
CPU overhead. The SECUREFILE LOBs can also be encrypted, and we can choose
from a variety of encryption algorithms.

The DBMS_LOB API can be used for managing the BASICFILE and the SECUREFILE
LOBs.

The DBMS_SPACE.SPACE_USAGE procedure is an overloaded procedure, which returns
information about the LOB space usage in blocks, but it only works with tablespaces
created with Auto Segment Space Management. The use of the NOLOGGING option is
faster because changes are not logged in the redo log. However, the use of the LOGGING
option ensures that data is recoverable, if the face of some database problems during
the DML operation. The FILESYSTEM_LIKE_LOGGING logging option is available only
for the SECUREFILE LOBs. It logs the metadata, but doesn't log the data itself. The
FILESYSTEM_LIKE_LOGGING logging option also ensures that the data is completely
recoverable after server failure.

Read more about SECUREFILE at http://docs.oracle.com/cd/E11882_01/
appdev.112/e18294/adlob_smart.htm.

Chapter 9

[369]

Discussions on HTML, JavaScript, and
client-side tools
We will dedicate the next few sections to understanding the ways in which HTML,
JavaScript, and client-side tools can be used to improve performance.

Let us start with looking at a better way of storing static images.

Understanding image storage
Static image stored in file system are better than images stored as blobs in tables
because images stored in the file system can be cached by the browser, and will
result in quicker load of the page in subsequent runs. So, it is better to store images
such as logo in the files, since logos are present on every page, and the caching by
the browser will improve the performance. The APEX Listener provides cache.
procedureNameList in defaults.xml to cache the files based on database procedures.

Using browser-specific tools
Firefox has lead from the front in developing add-ons that can help a developer
play with the HTML and JavaScript code at his end. These tools not only help a
developer debug JavaScript and jQuery code, but also enable him to understand
scripting security threats in the code. Some of the major add-ons which can be used
with Firefox are Firebug, YSlow, Web developer, and Greasemonkey. You can read
more about these at https://addons.mozilla.org/en-us/firefox/collections/
mozilla/webdeveloper/. Similarly, IE has Microsoft script debugger, which can be
enabled by clicking on the Advanced tab in Internet Options, and then unchecking
the Disable script debugging (Internet Explorer) and the Disable script debugging
(Other) checkboxes. IE 8 also has a whole bunch of developer tools, which can be
accessed by pressing the F12 key. These tools also include a profiler, which can
be used to give us timing information about the load of various components of a
web page. Similarly, Chrome has tools such as the speed tracer. Read more about
speed tracer at https://developers.google.com/web-toolkit/speedtracer/.
These tools not only help us debug our problematic code, but also help us know the
response time. This information can not only be used for tuning the application, but
also for tuning the network.

Performance Analysis

[370]

Using minified JavaScript
Minified JavaScript files should be used since JavaScript files are cached in the
browser at first execution. Minified JavaScript files are the ones, which do not have
any unwanted characters and comments. Again inline JavaScript code is loaded
every time the page is executed, and it increases the HTML page size. This affects the
performance. So, we should always put our JavaScript in separate files. The loading
of these files can be done strategically. We should not load all our JavaScript files
at login time as it can harm the user's experience. It is important to understand that
JavaScript code compressors are available.

Compressing HTML for better performance
If you are using the Apache based web servers, then you can use the mod_deflate
module to compress the data sent to the client browser. To use mod_deflate, we first
have to register it in the httpd.conf file, and then configure it to accept response
from the server, so that the uncompressed data is not sent directly to the client
browser. We can also use mod_gzip to compress files, if using any Apache based
server. In WebLogic, we can use the compress-html-template element to compress
HTML in JSP template blocks. Tuning a web server is a whole different subject, and
different web servers can be tuned in different ways. Some of the other things which
we can do with WebLogic include turning off the logging and precompiling JSP.
Read more about these at http://docs.oracle.com/cd/E14571_01/web.1111/
e13814/webapptune.htm.

Learn more about tuning WebLogic at http://docs.oracle.com/cd/E14571_01/
web.1111/e13814/wls_tuning.htm.

Scaling of images using HTML consumes memory of the client-side
computer. Hence, it is best to avoid this wherever possible. Use the file
format that results in smallest file size. Image size is usually smaller if
the image quality is lower.

APEX Listener parameters
APEX Listener lets us cache file content fetched through database procedures.
We can edit the defaults.xml file of the Listener configuration for this purpose,
or can use SQL Developer for the configuration. The jdbc.InitialLimit method
of the defaults.xml file lets us set the initial number of connections that should
be made to the database. This value should be carefully selected according to your
user base in order to ensure that the wait time is minimized.

Chapter 9

[371]

The defaults.xml file also has many more properties related to connection
pooling. These properties can have significant impact on user experience. Learn
more about APEX Listener at http://docs.oracle.com/cd/E37099_01/doc/
doc.20/e25066.pdf.

Also, have a look at the defaults.xml file of your listener installation. The names
of most of the parameters are self-explanatory.

Discussions on database tools for
performance tuning
We will now have a look at a few database tools that can help us understand
the performance bottlenecks, and can help us tune our APEX applications.
An understanding of these tools can change our development perspective,
and help us code better APEX applications.

Using PL/SQL hierarchical profiler and
DBMS_PROFILER
PL/SQL hierarchical profiler is new to Oracle11g, and can help us find the execution
time taken by individual subprograms called from a function. It also gives the time
taken by the SQL and the PL/SQL engines to fulfill a call to a function. We can create
the necessary tables for hierarchical profiler by executing the dbmshptab.sql script.
The raw data collector component of the profiler collects the data of execution, while
the Analyzer component then puts it in a format which can be more easily understood.
The data of the profiler is stored in tables such as DBMSHP_RUNS, DBMSHP_FUNCTION_
INFO, and DBMSHP_PARENT_CHILD_INFO. The profiler also has the plshprof command-
line utility which can be used to get the information gathered by the profiler in HTML.
We can use the information collected by the profiler to find the problematic parts of
our code.

We can start the collection of profiling statistics by using DBMS_HPROF.START_
PROFILING, and can stop the collection by using DBMS_HPROF.STOP_PROFILING.
The DBMS_HPROF.ANALYZE function analyzes the raw profiler output and stores
them in tables. Read more about hierarchical profiler at http://docs.oracle.com/
cd/E11882_01/appdev.112/e25518/adfns_profiler.htm.

Performance Analysis

[372]

Both hierarchical profiler (DBMS_HPROF) and traditional profiler
(DBMS_PROFILER) serve similar purpose, but have a very important
distinction. The DBMS_HPROF method clearly shows the hierarchical
call stack of execution, while DBMS_PROFILER shows line-by-line
details. So, if function A calls function B, which in turn calls function
C, then hierarchical profiler can clearly show the hierarchical chained
execution and the time taken by each module for executing. We will
learn more about DBMS_PROFILER in a short while.

The DBMS_PROFILER method works like a charm to collect statistics of PL/SQL code.
The package helps us pinpoint the part of code, which is contributing maximally in
performance degradation. Execute proftab.sql and profload.sql in sequence to
configure the profiler. Profiler information is stored in the plsql_profiler_units,
the plsql_profiler_data, and the plsql_profiler_runs tables. These tables can
be joined on the runid column to know about the start of the run, stop of the run, line
number, and the duration of the run. We can also join the line# column of plsql_
profiler_data with line column of the user_source view to get the text of each
line of the executed code. Read more about the columns of the user_source view at
http://docs.oracle.com/cd/E18283_01/server.112/e17110/statviews_5437.
htm. The dbms_profiler.start_profiler method can be used to direct the profiler
to start collecting the statistics and dbms_profiler.stop_profiler can be used to
stop the collection of the statistics. Read more about the DBMS_PROFILER package at
http://docs.oracle.com/cd/E11882_01/appdev.112/e16760/d_profil.htm.

Understanding Data Guard
If you need to run your analytical queries on huge set of data, and you cannot afford
to run ETL processes on your primary OLTP database, then you could use Data
Guard to create a replica of your primary database, and do the necessary operation
on the replica. Whenever a commit happens in the primary database, the Data
Guard transport services read the redo logs of the primary database and write in
the redo log of the replica. This process is highly efficient as it does not involve any
disk I/O during the process. Synchronous redo transport ensures that the commit
in the primary database happens only after it receives an acknowledgement from
the replica of receiving the information. This ensures that the data loss is reduced
to zero, but also introduces latency in the primary database. However, Data Guard
Oracle11g Release 2 has a number of new things that helps to reduce the impact of
synchronous redo transport. Asynchronous redo transport may result in some data
loss, but unlike synchronous redo transport, it does not impact the primary database.

Chapter 9

[373]

The replica can also be used for testing, backup, and failover. Active Data Guard
is an option that requires a separate license. Active Data Guard enables read-only
access to a physical standby database for queries, sorting, and reporting. Active
Data Guard can also auto repair corrupt blocks. Data Guard can be managed from
enterprise manager.

GoldenGate is another Oracle product that performs similar functions. GoldenGate is
however loaded with cross platform migrations, two way and multi master replication.

Understanding SGA result cache
The shared pool of the SGA has a new component in Oracle11g called the result
cache, which can further be subdivided into the SQL Query result cache and the
PL/SQL function result cache. The DBMS_RESULT_CACHE package lets us do the
administration of the result cache, and we can see and monitor the impact of our
changes using the V$RESULT_CACHE_* views. These views show the objects that
have been cached, the memory and cache settings, dependencies, and other such
information. In case of the query result cache, the results of a query are cached, and
on subsequent execution, the result of the query is fetched from the cache. In case of
the function result cache, the output of the function is stored for a set of inputs, and
the value is fetched from the cache, when the same values of arguments are passed.
The database invalidates the query result cache, when the underlying objects are
changed by DML operations. The RESULT_CACHE_MODE initialization parameter can
be used to control the queries which can be cached. You will have to use the /*+
result_cache */ hint, if RESULT_CACHE_MODE is set to MANUAL. If RESULT_CACHE_
MODE is set to FORCE, then you can use the /*+ no_result_cache */ hint to prevent
the result of a query from being cached. The result cache is disabled if RESULT_
CACHE_MAX_SIZE is set to 0 on startup. The RESULT_CACHE_MAX_SIZE parameter
can be used to set the max size of the result cache. The result_cache_max_result
parameter specifies the percentage of result_cache_max_size that a single result
can use.

Understanding SQL work areas
Properly-sized work areas can significantly improve the performance of the queries.
Examples of work areas are sort area and hash area. Ideally, operations such as
sorting should happen in the RAM, but then if the sort area is not sized properly,
then spillover can happen to the temp tablespace. This basically means that a part of
the sorting would be done in the temp tablespace. Sorting in the temp tablespace will
increase I/Os, and hence degrade performance.

Performance Analysis

[374]

The same principle can also be applied to hash area. Oracle can automatically
manage the memory allocated to different work areas. The memory management
is done with a goal of maximizing the performance of the memory intensive SQL
operations. The total amount of memory that can be used for all work areas is
governed by the PGA_AGGREGATE_TARGET parameter which is set by the DBA. On
an instance that runs huge amount of memory intensive queries, the distribution of
RAM between SGA and PGA can be as high as 70 percent to PGA, and 30 percent
to SGA. However, the actual distribution depends on your own requirements. The
DBA should run a representative workload on a new instance to estimate the size of
PGA_AGGREGATE_TARGET in this environment. The PGA_AGGREGATE_TARGET parameter
can also be tuned using PGA advice statistics. Views such as V$PGASTAT, V$PROCESS,
V$PROCESS_MEMORY, V$SQL_WORKAREA_HISTOGRAM, V$SQL_WORKAREA_ACTIVE, and
V$SQL_WORKAREA can helps us monitor our memory settings. The Automatic PGA
memory management is disabled, if PGA_AGGREGATE_TARGET is set to 0. The V$PGA_
TARGET_ADVICE and the V$PGA_TARGET_ADVICE_HISTOGRAM parameters can be used
to understand the impact on key PGA statistics on changing PGA_AGGREGATE_TARGET.
The STATISTICS_LEVEL parameter should be set to TYPICAL or ALL, and PGA_
AGGREGATE_TARGET should be set, if you wish to use the V$PGA_TARGET_ADVICE and
the V$PGA_TARGET_ADVICE_HISTOGRAM views.

Read more about memory configuration at http://docs.oracle.com/cd/
E11882_01/server.112/e16638/memory.htm.

Using data compression
We can compress both table and index data, if we find from the trace that high I/O
has been the reason for slow performance. Compressions are helpful in queries that
do a full table scan. Oracle Advanced Compression Advisor has been implemented
through the DBMS_COMPRESSION package. The advisor gives the estimated benefit of
using the table compression feature.

Also, see http://docs.oracle.com/cd/E11882_01/appdev.112/e25788/d_
compress.htm for more info on the DBMS_COMPRESSION package.

Understanding segment space problems
Frequent DML operations on a table can result in fragmentation of the data storage.
We can use the Segment Advisor to find the objects, which can be tweaked for better
data storage and faster retrieval. The Segment Advisor can be used either with
Enterprise Manager or in PL/SQL by using the DBMS_ADVISOR package.

Chapter 9

[375]

We can view the results of Segment Advisor by querying the DBA_ADVISOR_*
views, viewing the results in Enterprise Manager, or calling the DBMS_SPACE.ASA_
RECOMMENDATIONS procedure. We have the freedom of configuring Automatic Segment
Advisor. We can also use the ALTER TABLE, ALTER VIEW, ALTER MATERIALIZED
VIEW, and ALTER MATERIALIZED VIEW LOG statements with SHRINK SPACE clause to
reclaim wasted space and rest the High Water Mark. This will help in improving the
performance of queries, which involve full table scans.

Understanding the Database Resource
Manager
The Database Resource Manager can be used for prioritizing jobs so that the
response time of high priority jobs is minimized. So, we can prioritize jobs such
that the jobs of online users always get a higher priority, and some other jobs such
as the ETL might get a lower priority. Database Resource Manager can also queue
all subsequent requests, if the specified maximum number of concurrently active
sessions is reached.

Understanding the SQL Access Advisor and
SQL Tuning Advisor
The SQL Tuning Advisor issues advisories such as reorganizing SQL for improved
performance. The SQL Access Advisor suggests partitioning strategies, creation
and dropping of indexes, and materialized views. The SQL Access Advisor can
use the methods defined in DBMS_ADVISOR package to perform its operations.
Have a look at the following list of subprograms of DBMS_ADVISOR. It shows which
subprograms can be used for the SQL Access Advisor. Read about it at http://
docs.oracle.com/cd/E18283_01/appdev.112/e16760/d_advis.htm#CHDEGCBJ.
The recommendations will be more accurate if the advisor is executed against a
workload that mimics your live environment. We can also schedule the advisories of
SQL Access Advisor and SQL Tuning Advisor. The SQL Access Advisor is primarily
for making schema modifications and the SQL Tuning Advisor is for making SQL
related changes such as creation of SQL profiles. We will again talk about the SQL
Tuning Advisor in a short while again.

Understanding temporary tablespace
Proper configuration of the temporary tablespace can help to optimize disk
sort performance. Oracle recommends that we use locally managed temporary
tablespaces with a uniform extent size of 1 MB, although dictionary managed
tablespaces are also possible.

Performance Analysis

[376]

Dictionary managed tablespaces store the extent allocation information in Oracle
dictionary. Locally managed tablespaces on the other hand maintain a bitmap that
is modified when an extent is freed or allocated for use. If the number of users in an
application is huge, then the extent size should be reduced. Every usage requires at
least one extent, so the reduction in extent size ensures that extents are available for
every user session.

If temporary tablespace has been increased due to some one-off database operation,
then we can shrink the size of temp table space to the original by using the alter
tablespace shrink space statement. Similarly, we can also shrink a tempfile
using the alter tablespace shrink tempfile statement. The DBA_TEMP_FREE_
SPACE view can be used to see temporary tablespace usage information.

Understanding SQL monitoring
Oracle11g has two new views, which can be used to get performance metrics of
queries that consume for more than 5 seconds of CPU or I/O time, and the queries
running in parallel mode. Based on this information, the DBA can take a call to
let the query execute or terminate it. We can get the SQL monitoring active report
in HTML format using the DBMS_SQLTUNE package, or can get the report from
Enterprise Manager. The V$SQL_MONITOR and V$SQL_PLAN_MONITOR views have
been introduced in Oracle11g to support SQL monitoring. Real time SQL monitoring
also helps us to understand what part of the execution plan corresponds to most
utilization of resources.

Views such as V$ACTIVE_SESSION_HISTORY, V$SESSION_LONGOPS, V$SQL_PLAN,
and V$SQL can be used for monitoring queries.

Understanding DB_FILE_MULTIBLOCK_
READ_COUNT
The DB_FILE_MULTIBLOCK_READ_COUNT parameter is the number of blocks, which
are read in a single I/O during a full table scan or index fast full scan. If the value
of this parameter is large, then full table scans become cheaper resulting in the
optimizer going for a full table scan, rather than an index scan. Optimizer also uses it
to cost index fast full scans. Larger DB_FILE_MULTIBLOCK_READ_COUNT would mean
that Oracle will be able to read a larger number of blocks in a single I/O. Hence, sort
merge joins might become less costly in comparison to nested loop joins. Hence, this
parameter should be set according to your query workload. The default value of
DB_FILE_MULTIBLOCK_READ_COUNT corresponds to the maximum I/O size that can
be efficiently performed on a platform.

Chapter 9

[377]

Understanding extended statistics
In Oracle11g, we can collect the statistics of multiple columns together. If we have a
table with two columns such that the combination of the two columns becomes very
selective, but individually the columns are not selective, then collecting the statistics
together makes sense because it will help the optimizer to understand the structure of
the data, and hence frame better plans. The DBMS_STATS.CREATE_EXTENDED_STATS
parameter can be used to create such statistics. Extended statistics can also be used
when the data in the columns is skewed. Basically, extended statistics is a method
to inform the optimizer about the correlations among the data of various columns.
Histograms were used in Oracle10g to inform the optimizer about the skewness of
data, but gathering extended statistics is a more direct way of handling the situation.
Once the extended statistics are created, we would see a system generated name in the
USER_TAB_COL_STATISTICS view, which stands for the newly connected statistics of
the column group. We can view extended stats in the DBA_STAT_EXTENSIONS view.

Understanding SQL Performance Analyzer
The SQL Performance Analyzer enables us to forecast the impact of system changes
on SQL performance by testing these changes using a SQL workload on a test system.
SPA is used to understand the effect on the system by doing a certain change to the
database. The process is to first create a SQL tuning set, which is a combination of the
SQL statements with execution context, plans, statistics, and other such information.
Tuning set can be created using the DBMS_SQLTUNE package or from the enterprise
manager. This tuning set can then be exported to a testing system, where we can do
the proposed change. SPA gives us the freedom to order the SQL statements in a
tuning set. The process is to first invoke the SPA, which executes the SQL statements,
make the change, and then invoke the SPA again after the change. SPA then gives the
verdict on the improvements after considering before and after change performance.
After the verdict, we can use the SQL Tuning Advisor and SQL plan baselines to tune
the SQL statements further. SPA tasks can be created using the DBMS_SQLPA package.

Understanding SQL Tuning Advisor
Oracle database can be configured for automatic SQL tuning. If configured, Oracle
optionally implements recommendations for high impact SQLs. These high impact
SQLs are picked from the AWR report and the task is done in maintenance time slots.
Before the implementation, only those recommendations are accepted that result in
three times performance improvement.

Performance Analysis

[378]

The suggestions include collection of statistics, building of indexes, restructuring
query, and setting a profile for the query. Automatic tuning configuration can be
done using the DBMS_AUTO_TASK_ADMIN package. We can use the SQL Tuning
Advisor from SQL Developer as well. The report can be generated using DBMS_AUTO_
SQLTUNE.REPORT_AUTO_TUNING_TASK. Input to manually execute tuning advisor can
come from any source including ADDM, AWR, tuning sets, and shared SQL area.
The report can be seen using DBMS_SQLTUNE.REPORT_TUNING_TASK. The status of a
tuning task can be seen in USER_ADVISOR_TASKS, and the process of execution can
be seen in V$ADVISOR_PROGRESS. Many more views are associated with SQL tuning
activity, and you can find more information about these and the tuning advisor at
http://docs.oracle.com/cd/E11882_01/server.112/e16638/sql_tune.htm.

Understanding pinning in keep pool
Any small table which has full table scans and is used frequently can be pinned to the
keep pool. We can monitor the DBA_HIST_SNAPSHOT, DBA_HIST_OPTIMIZER_ENV, DBA_
HIST_SQLTEXT, and DBA_HIST_SQL_PLAN views to find possible candidates for pinning.
We could also collect information from the AWR report. We can use the DB_KEEP_
CACHE_SIZE parameter to assign RAM memory to the keep pool. Oracle has given the
following query to find out the objects whose data blocks reside in buffer cache:

SELECT o.OBJECT_NAME, COUNT(*) NUMBER_OF_BLOCKS
 FROM DBA_OBJECTS o, V$BH bh
 WHERE o.DATA_OBJECT_ID = bh.OBJD
 AND o.OWNER != 'SYS'
 GROUP BY o.OBJECT_NAME
 ORDER BY COUNT(*);

Again, the contents of the buffer cache change frequently, so a constant monitoring
will be required. We can pin tables to the keep pool by using the following statement:

ALTER TABLE kp_test STORAGE (buffer_pool KEEP)

We can also configure other pools. Read the following for more information:

http://docs.oracle.com/cd/E28271_01/server.1111/e16638/memory.htm

Chapter 9

[379]

Understanding Automatic Database
Diagnostic Monitor (ADDM)
ADDM is one of the most important reports in Oracle. Its advisory includes changes
in initialization parameter settings, partitioning advice, hardware changes, use of
bind variables, and many more. ADDM report not only lists problem, but also gives
solutions to fix it. An ADDM analysis is done between a pair of snapshots and we
can either get the report from Enterprise Manager or by using the addmrpt.sql
script. We can also do our operations using the DBMS_ADDM package. If we wish to
analyze all instances of a database, then we can run the ADDM in database mode,
If information about a single instance is required, then we can execute it in instance
mode, and if information about a group of instances is required, then we can run it in
partial mode. The findings of the ADDM can also be seen in the DBA_ADDM_FINDINGS
view. The DBA_ADVISOR_RECOMMENDATIONS view can be seen to know more about
the recommendations.

Understanding Automatic Workload
Repository (AWR)
AWR report is by far the most import report in Oracle. The data in the workload
repository is used by ADDM report, SQL Tuning Advisor, undo advisor, and segment
advisor. It contains usage and access information of objects, Active Session History
(ASH) statistics, statistics about SQLs that are burdening the system, and system and
session statistics. Actions for the AWR report can either be performed using Enterprise
Manager or by using the DBMS_WORKLOAD_REPOSITORY package. We can generate
AWR reports using the awrrpt.sql, awrrpti.sql, awrsqrpt.sql, and awrsqrpi.sql
scripts as well.

We can also generate an AWR compare report that generates a report comparing two
snapshot intervals. We can use the awrddrpt.sql and the awrddrpi.sql scripts to
generate this report.

The USER_ADVISOR_FINDINGS view lists the findings of all advisors.

Performance Analysis

[380]

Understanding index-organized tables
Index-organized tables is a specialized storage method that stores the data in the form
of a B-tree index structure in a primary key sorted manner. If queries on a heap table
use an index, then the necessary records are first searched in the index, and the data
is then fetched from the tables. In IOTs, the data itself is available in sorted form in a
B-tree data structure, and can hence be fetched very quickly. This not only quickens the
process, but also saves space, since the information is not stored in two places (index
and table). We can create an IOT by using the ORGANIZATION INDEX clause at the end
of the CREATE TABLE statement. Just like B-tree indexes, IOTs can also be fragmented
due to incremental updates. We can rebuild an IOT using the ALTER TABLE...MOVE
statement. Small lookup tables are usually good candidates for IOT.

Understanding row chaining and row migration
Before we try to understand row chaining and row migration, let us first understand
the organization of our data in Oracle. Data of Oracle objects is stored in segments.
Segments are a collection of extents, and extents are a collection of data blocks.
Extents of a segment can be spread in many datafiles. However, a single extent can
only belong to a single datafile only. All extents of a segment are always stored in
one tablespace, but can belong to multiple datafiles. Every operating system has its
block size, and Oracle's block size is a multiple of the operating system block size.
Every data block has some memory dedicated to overhead. Overhead is a collection
of information about the block, memory addresses, and the information about the
object to which the block belongs. The overhead is followed by a bunch of rows.
Now, when we insert a row, the row can be too big to fit in a single data block. In
such cases, oracle stores a part of the row in one block and other part in some other
data block. Oracle then chains the two data blocks. This is called row chaining.

Let's say that we had a row that was stored in a data block, but after updating, the
data block became too small to store the row. In such a case, Oracle can move the
whole row to a new data block, and the current data block then contains a reference
to the new block. This is called row migration. In either case, the amount of I/O
required to fetch the entire record is higher as compared to a row that is stored in a
single block. Execute the utlchain.sql script, and then execute the analyze table
statement with the with chained rows clause to find the changed rows in the table.
After this, the information of the chained rows can be fetched from the chained_
rows table. The Chained_rows table is created by the utlchain.sql script. If you
wish to know the count of chained rows, then you could gather the stats, and then
type select chain_cnt from user_tables where TABLE_NAME=<table_name>.

Chapter 9

[381]

While row chaining is unavoidable, we can fix row migrations. If there are a huge
number of chained rows, then questions should be raised about the design, and we
should consider changing the block size. Again, it is important to understand that
multiple tablespaces of different block sizes can be a trouble for the DBAs, since the
DBA will have to reserve space in the buffer cache for a different DB block size, and
the buffer cache memory of one block size cannot be used for different size. This
results in memory wastage. Bigger blocks size also results in contention for blocks.
Row migration can either be fixed by table reorganization, or by reinserting the
rowids of problematic rows. We can get these rowids from the chained_rows table.
We can reinsert the rows, and then delete the problematic rows.

Row migration can also be minimized by setting a bigger value of PCTFREE. The
PCTFREE parameter decides the amount of free space that is left in a block to handle
future updates. If this value is too low, then bigger updates will not be able to fit
in the same data block, and will hence result in row migration. So Oracle always
reserves PCTFREE percentage of space for future use, and if the rest of the space is
utilized, then the data is inserted in a new block. Oracle considers a block unfit for
insertion until the percentage of free space falls less than the value of PCTUSED. We
can approximate the size of a table using different values for the PCTFREE parameter
in the DBMS_SPACE.CREATE_TABLE_COST procedure.

Statements, for example, Alter table move statement and export/import can also
help to fix the row migration problem.

Understanding the clustering factor
Clustering factor is the ordering of the rows of a table with respect to a particular
index. Every index on a table has a clustering factor of its own. We can ensure that
the clustering factor of one index is minimized, but the rows of a table cannot be
ordered according to all the indexes, so the clustering factor of all indexes cannot
be reduced. The lowest clustering factor is equal to number of data blocks that hold
the table data, and the highest clustering factor is equal to the number of rows of
the table. Higher clustering factor can result in huge I/Os, and in certain situations,
the optimizer might opt for not using the index because of high cost. Again, higher
clustering factor can result in higher number of blocks in the buffer cache, and hence
undue wastage of space in the cache. If the first index entry corresponds to a row is
in one block, and if the next index entry corresponds to a row in another block, then
the clustering factor is incremented by one. So, if the clustering factor is equal to the
number of rows, then this means that every next reference of the index is to a row in
a different block.

Performance Analysis

[382]

Clustering factor equal to the number of data blocks of the table means that the rows
are perfectly ordered, and the clustering factor increments because one data block is
full and next row has to be stored in a new data block. Clustering factor is important
in case of index range scans and index full scans. If the stats are gathered, then we
can find the clustering factor using the following query:

select clustering_factor from user_indexes where
 index_name='<index_name>';

We can improve the clustering factor by CTAS (CREATE TABLE AS SELECT) with
an order by clause, or can use the DBMS_REDEFINITION package to rebuild table
and order rows. Read about DBMS_REDEFINITION at http://docs.oracle.com/cd/
E11882_01/appdev.112/e25788/d_redefi.htm.

Understanding the Active Session History
report
Active Session History (ASH) reports are used to find transient problems that last
for a few minutes in the database. We can get the ASH report from the Enterprise
Manager or by running the ashrpt.sql or the ashrpti.sql script. The report helps
us find the blocker and waiter queries. It also gathers information such as SQL_ID, SID,
module, action, and block. Two important views related to ASH reports are DBA_HIST_
ACTIVE_SESS_HISTORY and V$ACTIVE_SESSION_HISTORY. The DBA_HIST_ACTIVE_
SESS_HISTORY view displays the history of the contents of the in-memory active
session history of recent system activity. This view contains snapshots of V$ACTIVE_
SESSION_HISTORY. The ASH report gives us the execution plan, which can help us
find which part of the SQL made the maximum contribution to the SQL elapsed time.

Summary
This chapter was dedicated to the ways and means of tuning the APEX application
and the database on which it lives. The end of this chapter brings us to the end of our
journey. This book was dedicated to present Oracle APEX as a reporting solution. We
started with understanding APEX architecture, and created a variety of reports using
APEX features. We customized our reports using jQuery and CSS. We also looked at
a number of other technologies, which can be coupled with APEX, and finally ended
our discussion with tuning techniques. The objective was to introduce the reporting
features of Oracle APEX, to empower you to use Oracle APEX with any existing
reporting solution in your organization, and to help you understand and evaluate
the integrations of Oracle APEX with any proposed reporting solution that you
might want to use for your organization.

Appendix
The topics contained in this section are not vital to understanding the concepts
but can boost the understanding of the way APEX functions. Before we get into
the specific sections in this appendix, it is important that we compile the Appendix
package. Use the steps described in the Steps to create PACKT_SCHEMA section to
create the PACKT_SCHEMA. Appendix package. The PACKT_SCHEMA.Appendix package
is dependent on a number of objects. The installation of these objects is carried out
in Creating database objects and installing the reference application section of Chapter
2, Conventional Reporting in APEX. Once this is done, execute 4-98-9_Appendix_
appendix.sql from SQLPLUS after logging in as sydba:

SQL> @4-98-9_Appendix_appendix

Steps to create PACKT_SCHEMA
We will now see the steps to create PACKT_SCHEMA. This schema will hold all our
APEX applications and the supporting code used in this book. Open SQLPLUS using
sysdba. Enter the following command in the SQL prompt to create a new tablespace
called packt_tablespace and a new schema called packt_schema. Note that, in the
command prompt, you should get into the directory that contains 4-98-9_Appendix_
create_ts_and_user.sql before executing the following command. This caution
applies for all the files executed from SQL Prompt:

SQL> @4-98-9_Appendix_create_ts_and_user

Now, perform the following steps:

1. Enter packt_tablespace in the Enter tablespace name: prompt.
2. Enter the location in which you will want the .dbf file to be created in the

Enter dbf file location [For example:C:\Oracle11GDB\oradata\
orcl\oracle_apex_packt_datafile.dbf] : prompt.

Appendix

[384]

3. Enter packt_schema in the Enter user name: prompt.
4. The previous steps will create the packt_schema along with all the necessary

privileges. Enter packt_password in the Enter user passowrd: prompt.

SQL Injection
This section talks about various ways in which SQL Injection can happen. It also
discusses some steps that can help us avoid it. This exercise uses the OEHR_EMPLOYEES
table. You will have to execute 4-98-9_02_install_schema.sql using SYS to install
the schema before doing this exercise.

Execute the following statement from sysdba to check whether the installation is
successful or not. This statement should not return any records:

Select * from all_objects where owner='PACKT_SCHEMA' and status =
'INVALID';

Dynamic SQL with concatenated variables
In the SQL Injection attacks that happen because of Dynamic SQL with concatenated
variables, the input value, put by the hacker, to a PL/SQL function is such that a part
of the dynamic SQL code gets commented.

Let us understand this with an example. Let us say you have two conditions in a
where clause and have a concatenated variable in the first condition. If the hacker
puts -- (PL/SQL comment) in the variable, then our string will be generated with --.
The parser will consider anything after -- as a comment and since the placement of
-- is in the first condition, anything following it, including your second condition,
will not be executed.

Let's see this in action!

Compile the APPENDIX package contained in the 4-98-9_Appendix_appendix.sql file.
Package can be compiled after logging in as sysdba. The APPENDIX package contains
a procedure called sql_injection. This procedure is prone to SQL Injection. Check
out the code of this procedure. It shows the count of employees whose salary is greater
than 2000 and who work in the department whose ID is passed to this procedure.

Run the following in SQLPLUS:

SQL> set serveroutput on
SQL> exec packt_schema.appendix.sql_injection(10);

Appendix

[385]

You will get the following output:

Now check out the query executed by this procedure:

select count(employee_id) from oehr_employees where department_id=10
and salary > 2000

If a hacker wants to get the count of all the records in the oehr_employees table,
then he will need a query that looks like the following:

select count(employee_id) from oehr_employees where department_id =
department_id -- and salary > 2000

He can get this query by passing department_id -- as an argument in the
procedure call as shown in the following screenshot:

So we see that a hacker can get a count of all the rows in the table when the procedure
was developed to return the count of employees of a specific department whose
salaries are greater than 2000. Now the attack can be more severe and a hacker can can
get a lot of information. If the variable is concatenated in the select list then a hacker
can comment the FROM clause and select from some data dictionary view and expose
the entire database's security.

The solution is three fold:

1. Grant the access to sensitive tables very carefully.
2. Use bind variables instead of string concatenation. It will prevent you from

SQL Injection attacks and reduce parse time.
The Appendix.sql_injection_using_bind procedure uses bind variables
to achieve the same result as appendix.sql_injection but it is more secure
and returns an error when the user tries to pass department_id -– to it as
shown in the following screenshots:.

Appendix

[386]

So, we see that it is not possible to manipulate the query string if we use
bind variables.

3. Use DBMS_ASSERT package to validate the user input.

Assumption of formats and implicit
conversions
The second type of SQL injection is when you assume certain formats and rely on
implicit conversions. Please check the following link for information on this kind
of SQL injection:

http://tkyte.blogspot.in/2012/02/all-about-security-sql-injection.html

Cross-site scripting
The following is a brief code to demonstrate the use same origin policy to call
web services of a resource hosted in the same domain. The code requires some
knowledge of OBIEE, but the intent is to show the same origin policy in action.
OBIEE is discussed in detail in Chapter 7, Integrating APEX with OBIEE.

Have a look at the following screenshot. Note that the web server host is localhost,
the server is operating on port 9704, and the resource is analytics:

Appendix

[387]

I have put the following JavaScript in the Text Properties textbox. Let me briefly
describe the function of this code. Have a look at the highlighted line of code. An
HTTP post call is made to a resource called xmlpserver which is hosted on the same
server as the caller itself, that is, localhost:9704. Since the domain is the same, the
call falls under the same domain policy. This policy is letting us access the web service
of some other resource in the same domain using a client-side scripting language.

A hacker makes a similar request to access web resources from a different domain
using similar client-side scripting as shown in the screenshot shared after the code.

<script language="Javascript">
function XMLPWebserviceFunction ()
{
var xmlhttp = new XMLHttpRequest();
xmlhttp.open("POST", "http://localhost:9704/xmlpserver/services/
PublicReportService_v11",true);
xmlhttp.setRequestHeader("Content-Type","text/xml; charset=utf-8");
xmlhttp.setRequestHeader("SOAPAction","getFolderContents");
xmlhttp.onreadystatechange=function (){
 if (xmlhttp.readyState ==4 && xmlhttp.status == 200){
 var xmlDoc=xmlhttp.responseXML ;
 var Xml2String;
 if (xmlDoc.xml) {
 Xml2String=xmlDoc.xml
 }else{
 Xml2String= new XMLSerializer().
serializeToString(xmlDoc);
 }
 var msg= "RESPONSE HEADERS *********\n";
 msg+=xmlhttp.getAllResponseHeaders();
 msg+="Response here *******************\n";
 msg+= Xml2String;
 msg+="\nResponse ends here ****************";
 alert(msg);
 }
 }
var xml = '<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.
org/soap/envelope/" '
 + ' xmlns:pub="http://xmlns.oracle.com/oxp/service/v11/
PublicReportService" '
+ 'xmlns:pub1="http://xmlns.oracle.com/oxp/service/
PublicReportService"> <soapenv:Header/> '
+ ' <soapenv:Body> <pub:getFolderContents> '

Appendix

[388]

+ ' <pub:folderAbsolutePath>/Marketing</pub:folderAbsolutePath> '
+ ' <pub:userID>Administrator</pub:userID>
<pub:password>Administrator</pub:password> '
+ '</pub:getFolderContents> </soapenv:Body> </soapenv:Envelope> ' ;
xmlhttp.send(xml);
}
</script>
<html>
 <head>
 <title>Web services</title>
</head>
<form>
 <table>
 <tr>
 <td> <input value="Click for response" type="button" onclick=
"Javascript:XMLPWebserviceFunction();"></td>
 </tr>
 </table>
</form>
</body>
</html>

Let me share the result after the invocation of the previous client-side code.
The screenshot shows the data returned by the WebService accessed using
JavaScript. Note that this attack is done through scripting language and hits
the web server unlike SQL Injection, which attacks the database directly.

Appendix

[389]

Database and web interaction in DAD and
Listener configurations
This section is dedicated to the process of invocation of a stored PL/SQL function
using DAD and APEX Listener. Let us first see the DAD configuration.

The DAD configuration
Let us try to recreate the fun of crafting APEX by making our own DAD and doing
a few things with it. This will help us boost our understanding of the ins and outs
of APEX. Make sure that you have set your XMLDB HTTP server to work on the port
of your choice using DBMS_XDB.sethttpport. You will have to use this port and the
IP address of your database server in all the URLs of this section. <your_database_
ip:<your_db_http_port> will replace localhost:8080 in the URLs of this section.

The code in 4-98-9_Appendix_create_dad.sql creates and configures a DAD
for you. The DAD you create is authorized to execute the procedures in the schema
you mention in the Enter the name of the schema with which you want to
associate this DAD: prompt. Execute the following using sysdba.

SQL> @4-98-9_Appendix_create_dad

I believe that you have compiled the appendix package in your schema. If not,
then check the beginning of the Appendix to find to command to do this. Open
the Appendix package and have a look at the appendix.dad_proc procedure.

Invoke the following URL. Here packt_dad is the name of the DAD which we
just created:

http://localhost:8080/packt_dad/APPENDIX.DAD_PROC?val=Hello%20
World&redirect_url_var=http://www.google.com

We can also use the following URL:

http://localhost:8080/packt_dad/PACKT_SCHEMA.APPENDIX.DAD_
PROC?val=Hello%20World&redirect_url_var=http://www.google.com

Appendix

[390]

Invoking the previous URL opens the Google home page and inserts Hello World
into the dad_table. The insertion is shown in the previous screenshot.

In this example, we saw the use of OWA package to do web interaction. We also
saw insertions in the database. The best part was that both the web interaction
and the database insertion were done by the same URL. This is pretty much what
APEX does but it does it on a lot bigger scale.

The Listener configuration
We can call the same function in the Listener configuration by giving execute rights
on this function to APEX_PUBLIC_USER and listing the function in the defaults.
xml file of the Listener configuration. Defaults.xml can be found in the Listener's
configuration directory. We can find the location of the Listener configuration
directory by executing the following command:

C:\ >java -jar <Directory holding apex.war>\apex.war configdir

Add the following tag in the defaults.xml file and restart WebLogic:

<entry key="security.inclusionList"> apex, p, v, f, wwv_*,y*, c*,
PACKT_SCHEMA.*,packt_schema.*, apex_util.*</entry>

This will ensure that the procedures defined in PACKT_SCHEMA are directly accessible
from the browser. If your schema name is different, then put the same instead of
PACKT_SCHEMA in the previous code.

Execute the following using sysdba. This will ensure that APEX_PUBLIC_USER has
execution rights on the APPENDIX package in packt_schema:

grant execute on packt_schema.appendix to apex_public_user;

The following link will open the Google home page and insert Hello World into
dad_table:

http://<apex_listener_webserver>:<apex_listener_webserver_port>/
apex/PACKT_SCHEMA.APPENDIX.DAD_PROC?val=Hello%20World&redirect_url_
var=http://www.google.com

Appendix

[391]

APEX behind the scenes
This section will help us see the entire flow of commands which are responsible
for the generation of all pages in APEX. These commands flow from the Listener
to the database.

Enabling auditing on the APEX_PUBLIC_
USER schema
Perform the following for Enabling auditing on the APEX_PUBLIC_USER schema:

1. Log in to the database using sys and execute the following:
SQL> @4-98-9_Appendix_enable_auditing

The previous script enables the auditing and restarts the database,
so you will have to restart WebLogic as well because the connection
pool is destroyed by db restart.

2. Execute the following script now:
SQL> @4-98-9_Appendix_check_calls_by_lsnr_2_web_toolkit

This script contains a simple query on dba_audit_trial and it contains
some SQLPLUS commands to format the output. The query shows the
objects owned by sys which have been invoked in the last five minutes.

3. Now open your APEX workspace console.
Since the console is also an APEX application, you will be able to see a lot
of calls to HTP.P and OWA functions when you run the 4-98-9_Appendix_
check_calls_by_lsnr_2_web_toolkit script again.
In the output of the previous script, the client_id value in the output
shown by the 4-98-9_Appendix_check_calls_by_lsnr_2_web_toolkit
script is a combination of the user ID and the session ID of APEX.

Switching off the auditing
The following script should be executed using sydba to switch off the auditing:

SQL> @4-98-9_Appendix_disable_auditing

Index
Symbols
3D stacked chart 174
#TIMING# substitution string

using 356

A
actions menu, IR

about 111
custom functions, adding using DA 125
download feature 118
filtering feature 112
flashback feature 116
formatting options 115
reset feature 118
rows per page feature 114
save report feature 117
select columns feature 112
subscription feature 119

Actions, OBIEE 262, 263
Active Session History. See ASH
ADDM 379
ADD_WORKSPACE 221
administration, websheet application 202
admin server, OBIEE 254
advanced queues. See AQs
advanced section, report attributes page 123
agents, OBIEE

about 266
configuring 267, 268
creating 266

aggregation
creating, model clause used 104, 105
creating, on partitioned time dimension

region 101, 102

AJAX
page process and JavaScript, communica-

tion between 93, 95
AJAX templates

soft deletion, implementing with 88-91
alert JavaScript function 94, 98
All Employees link 73
alt attribute 179
Analytic Workspace Manager 211
anchor tag 87
anonymous blocks

versus, stored procedures 364
Anychart options

Doughnut chart, using 173
AnyChartPNGSaver.jsp file 171

URL 172
Apache Cocoon

about 233
configuring 233-235

APEX. See also Oracle APEX
200 page items cap 44
auto feeding, on another 83
background jobs 219
cross-site scripting 45
db audit trail, enabling 44
dynamic query region, using 68
Google API integration 342-350
integrating, with BI Publisher 290
integrating, with OBIEE 253
methods, using to upload files 78, 79
MS Access, migrating from 339, 340
Oracle Forms and Reports, migrating

from 341
Oracle R Enterprise integration 350
performance analysis 355
reports downloading, ways 84

[394]

SAP crystal reports integration 337
SQL Injection 45
web interfaces 44

APEX API 220, 221
APEX application

downloading, without web server 211
APEX_APPLICATION_INSTALL

package 220
APEX-BI Publisher integration

about 290
convert servlet, using in instance

settings 291
web services, using 291

APEX browser-side cache 40
APEX configurations

about 12
DAD, used 12
diagrammatic representation 12

APEX_CSS package 220
APEX_CUSTOM_AUTH package 220
APEX data

font color, changing for alternate rows 129
formatting, using CSS in page header 129
user-defined CSS class, using 130

APEX_DEBUG_MESSAGE package 183
APEX engine

installing 21-23
APEX_ERROR package 220
APEX features

about 216
advisor 218
application express views 219
database object dependencies report 218
data loading wizard 218
pages, locking 217
pages, unlocking 217
shortcuts 218

APEX format mask
used, for downloading reports 85

APEX HTML bar chart 166
APEX HTML chart

creating 165
APEX_INSTANCE_ADMIN 221
APEX_ITEM package 221
APEX_LANG package 221
APEX_LDAP package 160, 221
APEX Listener

configuring 20, 21
configuring, on WebLogic domain 26, 27
deploying, on WebLogic domain 27, 28
prerequisites 25
setting up 25

APEX Listener parameters 370
APEX_MAIL package 221
APEX-OBIEE integration

about 269
Go URL, used 274, 275
web services, used 269-273

APEX page submissions
decoding 41-43

APEX_PLUGIN package 221
APEX printer

making friendly 41
APEX_PUBLIC_USER schema

auditing, disabling 391
auditing, enabling 391

APEX reporting
CSV files, creating 229
HTML documents, generating 229
Jasper reports, creating 235-242
Jasper, using 242, 243
PDF, creating using PL_FPDF 227
PDF, creating using PL/PDF 226, 227
reports, generating using Cocoon 231
reports, generating using FOP 231
RTF, creating 228
XLS documents, generating 230

APEX server-side cache 40
APEX templates

soft deletion, implementing with 88-91
used, for advanced formatting 67, 68

APEX_UI_DEFAULT_UPDATE
package 221

APEX URL
about 29
application ID 30
Cache Management 38-40
DAD name 30
debugging 35-37
f procedure 30
hostname 29
page number 31
ParamValues 40
port number 29

[395]

protocol 29
request handling 34
session management 31, 32
web context 30

APEX_UTIL package 221
APEX_UTIL.GET_BLOB_FILE_SRC

function
about 87
used, for downloading reports 87

APEX_UTIL.GET_FILE function 87
APEX_UTIL package 87
APEX workspace

creating 28
Apply Changes button 78
AQs

about 215, 216
implementing 216
message 215
message queues 216

a_report_Split function 180
ASH 382
assignment section, BPEL Human Workflow

about 331
advanced section 331
deadlines section 331
tasks, completing 336

Asynchronous JavaScript and
XML (AJAX) 195

attributes
URL 49

Automatic Database Diagnostic Monitor.
See ADDM

Automatic Undo Management (AUM)
system 116

Automatic Workload Repository. See AWR
autoOpen attribute 180
avg function 102
AWR 379

B
bar chart

creating, APEX's HTML chart functionality
used 164

barcode reports, BI Publisher
creating 286, 287

beforeClose attribute 180
bindings attribute 182
bind variables

using 359
BI Presentation Server 258
BI Publisher

about 276
barcode reports, creating 286, 287
data model, creating 277-282
e-mail delivery, scheduling 285
guest folder 292
integrating, with APEX 290
MS Word plugin, using 282
reports, creating 277, 283
reports, mailing 277
reports, scheduling 284
rtf templates and data model,

assembling 283
rtf templates, creating with MS Word

plugin 282
Shared Folder, configuring 292, 293

BI Publisher guest folder 292
BIRT 244
BI Server component 257
bitmap index

about 361
reference link 361

blob object 179
bottom N row

displaying, in HTML chart 165
BPEL

about 314
code, deploying 325, 326
code testing 327
composites, developing 317-324
Human Workflow 328
installing 315, 316

breadcrumb region 73
Break Formatting section

used, in classic reports 53-56
browser specific tools

about 369
using 369

bulk operations
using 360

bundled tomcat server 235

[396]

Business Intelligence and Reporting Tool.
See BIRT

by clause 103

C
calendar

creating 176
callbackClient activity 318
candlestick chart 175
Central Management Server (CMS) 339
CGI environment variables

displaying 50
CGI variables

URL 51
chart engine 244
chart option, IR format menu 116
classic or interactive reports 40
classic report search functionality

implementing 51, 52
client side image maps 187
CLOB value 169
clustering factor 381
Cocoon

used, for generating reports 231
code, BPEL

deploying 325, 326
testing 327

code inlining
using 366

collection approach 151-154
color attribute 167
column group section, report attributes

page 124
complex types

displaying 100
composites, BPEL

developing 317-325
compute option, IR format menu 116
connect by clause 74
context menu

creating 181, 182
URL 181

context namespace 50
control break option, IR format menu 115
cost-based aggregation 212
cross-site scripting 45, 386, 387, 388

Crystal report designer
downloading 337

css() function 66
CSV download

enabling 53
CSV files

creating 229
CTAS (CREATE TABLE AS SELECT) 382
cube 101
custom functions, actions menu

adding, DA used 125
Cv() function 105

D
DA

about 36, 40, 47
used, for adding custom functions to

actions menu 125
used, for data highlighting 65, 66
used, for filtering report 92
used, for logging values 92, 93
used, to set page items 80-82

DAD
about 12
configuring 389

dads.conf file 17
DA plugins

creating 198, 199
dashboards, OBIEE 258
data

highlighting, Dynamic Actions used 65, 66
highlighting, jQuery used 65, 66

Database Access Descriptor. See DAD
database API 222, 223
database objects

creating 48
Database Resource Manager 375
database tools, for performance tuning

about 371
ADDM 379
ASH 382
AWR 379
clustering factor 381
Database Resource Manager 375
data compression 374
Data Guard 372

[397]

DB_FILE_MULTIBLOCK_READ_COUNT
parameter 376

DBMS_PROFILER method 372
extended statistics 377
index-organized tables 380
keep pool, pinning to 378
PL/SQL hierarchical profiler 371
row chaining 380
row migration 380
segment space problems 374
SGA result cache 373
SQL Access Advisor 375
SQL monitoring 376
SQL Performance Analyzer 377
SQL Tuning Advisor 377, 378
SQL work areas 373
temporary tablespace 375, 376

data class 65, 67
data compression 374
datagrid, websheet application 202
Data Guard 372
data level security, implementing

query filters, used 106
VPD, used 105, 106

data model, BI Publisher
creating 277-282

data sources, OBIEE
ADF data sources 256
Essbase data sources 256
Hyperion Financial Management

data sources 256
OLAP data sources 256
relational data sources 256
XML files 256

DB_FILE_MULTIBLOCK_READ_COUNT
parameter 376

DBMS_CAPTURE_ADM package 222
DBMS_CDC_PUBLISH package 222
DBMS_CDC_SUBSCRIBE package 222
DBMS_COMPARISON package 222
DBMS_CQ_NOTIFICATION package 222
DBMS_CRYPTO.Hash function 49
DBMS_CRYPTO package

about 48, 222, 449
URL 48

DBMS_DATA_MINING package 222
DBMS_DATA_MINING_TRANSFORM

package 222
dbms_datapump package 177

URL 178
DBMS_DATAPUMP package 177
DBMS_DEBUG package 222
DBMS_DIMENSION package 222
DBMS_ERRLOG package 223
DBMS_FILE_TRANSFER package 223
DBMS_FLASHBACK_ARCHIVE

package 223
DBMS_LDAP_UTIL packages 160
DBMS_LOB package

about 80
URL 80

DBMS_MVIEW package 223
DBMS_OBFUSCATION_TOOLKIT

package 222
DBMS_PREDICTIVE_ANALYTICS

package 222
DBMS_PROFILER package 372
DBMS_RANDOM package 156
DBMS_REFRESH package 223
DBMS_SESSION package

about 50
URL 50

DBMS_XMLPARSER package 223
DBPrism 44
DEBUG 36
debugging, APEX URL

about 35, 36
error handling 37
TKPROF 38

decode statement 59, 102, 176
defaults.xml file 86
delEmployee function 89
denormalization 367
Design engine API 244
detail view section, report attributes

page 122
developer-defined

used, for downloading reports 85-87
developer tools, Google

reference link 343
dialog box

creating 179, 180
dimensions 211
Distinguished Name (DN)

[398]

about 158
getting, from JXplorer 158-160

double columns 257
Doughnut chart

used, for creating Anychart options 173
download feature, IR actions menu 118
download format options, IR

e-mail functionality, configuring 118
HTML format 119
PDF format 119

Dynamic action plugins. See DA plugins
Dynamic Actions. See DA
dynamic BI Publisher 287-289
dynamic breadcrumbs

creating, for drill ups 71-74
dynamic interactive reports

about 140
collection approach 151
conditional columns 141-143
interface table function approach 145
native PL/SQL table function approach 141

dynamic messages
creating, substitution variables used 71

dynamic query region
used, in APEX 68

E
Eclipse BIRT

about 244
reports, creating 244-248
reports, running on WebLogic 249-251

Eclipse Juno application 244
e-mail delivery, BI Publisher

scheduling 284
environment properties

displaying, USERENV namespace
used 49, 50

EPG 13
Equifax Secure Certificate Authority

trusted certificate 206
Expand All button 78
Expdp utility 177
extended statistics 377
external mod_plsql configuration 16-19
extractValue function 301

F
farm 254
filtering feature, IR actions menu 112
filters, OBIEE 259
find function 164
Flashback AJAX call 116
flashback feature, IR actions menu 116
flashback queries 109
flashback transaction query 116
flashback version query 116
Flash charts

3D stacked chart 174
Anychart options creating, Doughnut
chart used 173
candlestick chart 175
creating 171
Flash image maps, creating 176
gantt chart 174
gauge chart 174
scatter chart 174
XML chart, customizing 171, 172

FOP
used, for generating reports 231

fop.war
installing, on WebLogic 231-233

for clause 63
formatting

APEX templates, using 67, 68
formatting options, IR actions menu

about 115
chart 116
compute option 116
control break 115

form element 164
from clause 51
funnel charts

creating, FusionCharts used 191, 192
fusion middleware instance 254

G
gantt chart

about 174
XML customization, URL 175

gauge chart 174

[399]

general section, BPEL Human
Workflow 330

getClobVal function 169
GIF file 166
Gmail smtp server, OBIEE

configuring 265, 266
Google API

integrating, with APEX 342-350
Google visualization charts

creating 170
URL 170

Go URL
used, for APEX-OBIEE integration 274

Grizzly
URL 25

group by clause 101, 102
Group by extensions

Rollup 59
Cube 59

GROUP_ID function 59
GROUPING_ID function 59
grouping sets

using, in query 57, 58
group reports implementation

about 53
Break Formatting section used, in classic

reports 53-56
grouping sets, using 57-59
HTML formatting, using in query 57, 58
JavaScript used, to modify report 56, 57

H
height attribute 166
help menu, websheet application 203
Hierarchical column 257
hierarchical query

report, creating with
used, for creating wizard 182, 183

hierarchical report
about 69
dynamic breadcrumbs, creating for

drill ups 71-74
dynamic messages creating, substitution

variables used 71
recursive with clause, using 75, 76

report, creating with hierarchical query 75
tree, creating on hierarchical data 77
with drilldown 69, 70

HTML
coding, in SQL 367
compressing 370

HTML chart
bar chart creating, HTML chart
bottom N row, displaying 165
creating 164
functionality used 164
report, creating from XMLTYPE 168, 169
self-generated HTML charts 166, 167
top N row, displaying 165

HTML documents
generating 229

HTML formatting
using, in query 57, 58

html() function 66
HTML image maps

client side image maps 187
creating 186
server side image maps 186

htp.p function 169
htp.p procedure 72
HTTP server API, Grizzly

URL 25
Human Workflow 328
Human Workflow, in BPEL

about 328
assignment section 331
Assignment section 331-334
coding 328, 329
general section 330

I
icon view section, report attributes page 122
If statement 169
images

used, for creating reports 177-179
image storage 369
img tag 166, 178, 179
impdp utility 177
in clause 62, 63
indexes

bitmap index 361

[400]

columns, ordering 362
reverse key index 362
using 361

index-organized tables 380
input tag 164
insertInLogTable 94
installation, BPEL 315, 316
instr function 51
Interactive Report Dashboard

creating 138
Interactive Reports (IR)

about 109
actions menu 111
classic report, creating with APEX

views 133
column, formatting with another column

126-128
column, highlighting using CSS and

jQuery 130
configurable attributes 120
CSS, using 126
customizing 131, 132
dashboard, creating 138
features 111
formatting, region query used 130, 131
linking 113
multiple IR, creating on same page 134-137
report attributes page 120
report ID, capturing with JavaScript 133
rows, customizing 114
search functionality 111
user groups, authorizing for viewing report

columns 137, 138
interface approach 145
interface table function approach

about 145
ODCITableClose function 150
ODCITableDescribe function 149
ODCITableFetch function 150
ODCITablePrepare function 149
ODCITableStart function 150

internal mod_plsql configuration 13-15
item plugins

creating 194-197
item type

changing, on user event 96-98

J
Jasper

using, in APEX 242, 243
Jasper reports

creating 235-242
JavaScript

used, to modify report 56, 57
Java Server Pages (JSP) 188
Java virtual machine (JVM) 190
JEE web archive (WAR) application 277
jqGrid

about 98
URL 98

jQuery
used, for data highlighting 65, 66

jquery.contextmenu.r2.js 181
jquery.sparkline.min.js file

about 160
URL 160

JSON objects
parsing 309

JXplorer
DN, getting 158-160

K
KPI, OBIEE 261
KPI watchlist, OBIEE 262

L
labels

substitution variables, using 83
lag function 102
LDAP

about 155
authentication, using 156-160

ldapbind command 157
lead function 102
Lightweight Directory Access Protocol.

See LDAP
like comparisons

tuning 357, 358
like operator 70
link column section, report attributes

page 121

[401]

listagg function 64, 100
list clause 63
Listener configuration 390
li tag 181
loadjava utility

about 189
using 190

LOB 368
Lookups 257

M
M-views. See Materialized Views
mail configuration

performing 205-210
MAKE_REST_REQUEST function 309
managed server, OBIEE 254
master detail report

complex types, displaying 98
implementing 98

Materialized Views (MVs)
about 213
using 360

matrix report implementation
about 62
Oracle 11g pivot operator 63, 64
with clause 62

message routing 216
methods

used, to upload files in APEX 78, 79
minified JavaScript

about 370
using 370

model clause 47, 104
Mod_owa 44
mod_plsql 20
mod_plsql configurations

about 12
external mod_plsql 13
internal mod_plsql 12

MS Access
migrating, to APEX 339-341

MS Word plugin, BI Publisher
using 282

multiple IR
creating, on same page 134-137

N
native PL/SQL table function approach

about 141-143
parallel-enabled table functions 143, 144

O
OBIEE

about 214, 253-256
Actions 262, 263
agents 266
analysis 259, 260
dashboards 258
data sources 256
filters 259
Gmail smtp server, configuring 265, 266
integrating, with APEX 269-275
KPI 261
KPI watchlist 262
OBIEE Mapviewer 263
Oracle BI Cluster Controller

component 255
Oracle BI Java Host component 255
Oracle BI Presentation Server

component 255
Oracle BI Scheduler component 255
Oracle BI Server component 255
strategy management 264

OBIEE 11g
double columns 257
Hierarchical column 257
Lookups 257

OBIEE Mapviewer 263
ODCITableClose function 151
ODCITableDescribe function 149
ODCITableFetch function 150
ODCITablePrepare function 149
ODCITableStart function 150
OEHR_EMPLOYEE_PROFILES file 177
OFM (Oracle Fusion Middleware) 16
oldHTML variable 98
OnDemand APEX process 35
online analytical processing cubes. See

Oracle OLAP cubes
Open attribute 180
opmnctl command 255

[402]

Oracle 11G pivot operator 63, 64
Oracle APEX

about 9, 10
advantages 10
APEX charts 11
APEX Listener 11
auto complete 11
calendars 11
dynamic actions 11
error handling 11
features 10
inbuilt jQuery 11
interactive report 11
plugins 11
RESTful web services 11
team development 11
websheets 11

Oracle Application Express.
See Oracle APEX

Oracle Application Server (OAS) 16
Oracle BI Cluster Controller component 255
Oracle BI Java Host component 255
Oracle BI Presentation Server

component 255
Oracle BI Scheduler component 255
Oracle BI Server component 255
Oracle BPM worklist 337
Oracle Business Intelligence Enterprise

Edition. See OIBEE
Oracle Forms and Reports

migrating, to APEX 341
Oracle fusion management architecture

about 254
admin server 254
farm 254
fusion middleware instance 254
managed server 254
OPMN 254
system components 254

Oracle HTTP Server (OHS) 16
Oracle OLAP cubes 211-215
Oracle PL/SQL Cartridge 12
Oracle R 350
Oracle remote scheduler agent 219
Oracle R Enterprise

integrating, with APEX 351-354
reference link 350

reference link, for user guide 350
Oracle Spatials 263
Oracle Wallet Manager 206
Oracle Web Agent (OWA) 12
order by clause 165
order by siblings clause 78
order_id value 180

P
P3_EMPLOYEE_LIST 64
PACKT_SCHEMA

steps, for creating 383
packt_schema.chapter2.download_file

function 86
page and region caching

using 356
page process plugins

creating 197
pagination scheme

selecting 356
parallelism 365
Partial Page Refresh (PPR) 356
partitioned time dimension region

aggregation, creating 101, 102
partitioning

about 140
strategies 363

PDF documents
creating, PL_FPDF used 227
creating, PL/PDF used 226, 227

performance analysis
about 355
tuning pointer, for development 355

pipelining 140
pivot operator 47, 62
Places API, Google

reference link 343
reference link, for detail documentation 343

PL_FPDF
about 227
used, for creating PDF documents 227

PL/PDF
about 226
used, for creating PDF documents 226, 227

PLSQL_CODE_TYPE 366
PL/SQL datatypes

[403]

using 366
PL/SQL hierarchical profiler 371
PlsqlRequestValidationFunction 18
PL/SQL Server Pages. See PSP
plugins

creating 194
DA plugin, creating 198
item plugins, creating 194
page process plugins, creating 194

PostgreSQL database 235
PPR

disadvantages 80-82
p procedure

about 84
used, for downloading reports 88

prepend 126
Previous button 182
PSP

about 188
creating 188, 189

Q
query filters

using 106
query partition clause

used, for data densification 103, 104

R
raise_application_error function 183
reassignTask method 334
recieveInput activity 318
reference application

about 110
installing 48

regular expressions
used, for creating wizard 182, 183

report
creating, from XMLTYPE 168, 169
creating, with hierarchical query 75
creating, with images 177-179
creating, with slider 163
downloading, APEX format mask used 85
downloading, APEX_UTIL.GET_BLOB_

FILE_SRC used 87
downloading, developer-defined

used 85-87

downloading, p process used 88
downloading, stored function used 85-87
downloading, ways for 84
filtering, Dynamic Actions used 92, 93
generating, BIRT used 245-248
generating, Cocoon used 231
generating, FOP used 231
searched text, highlighting 59, 60

report attributes page, IR
advanced section 123
column group section 124
detail view section 122
icon view section 122
link column section 121
search bar section 120

Report engine API 244
reports, BI Publisher

creating 283
scheduling 284

reset feature, IR actions menu 118
Resource Templates

about 306
creating 307
used, for configuring RESTful

web services 307
used, for creating RESTful web services 309

RESTful PL/SQL web service
about 311
argument values, passing 313
input parameters, configuring 313
parameter, passing 312
parameter values 312
working example 311

RESTful web services
configuring, Resource Template used 307
creating, Resource Template used 307-309
JSON objects, parsing 309, 310
MAKE_REST_REQUEST, using 309

row chaining 380
row migration 380, 381
rows per page feature, IR actions menu 114
rpd 256
RTF document

creating 228
rtf template, BI Publisher

assembling 283
creating 282

[404]

S
SAP crystal reports

about 337
integrating, with APEX 337-339

save report feature, IR actions menu 117
scan context 149
scatter chart 174
SDO_GEOM.SDO_DISTANCE

function 350
search bar section, report attributes

page 120
searched text

highlighting, in report 59, 60
search functionality, IR 111
SECUREFILE LOB 368
segment space problems 374
select clause 51, 58
select columns feature, IR actions menu 112
select statement 76, 77
self-generated HTML charts 166, 167
sentry function 49
sequences

using 361
server side image maps 186
session management, APEX URL

about 31-33
zero session ID 33, 34

Session State process 40
setFileName function 78, 83
SET_PARAMETER function 221
SGA result cache 373
short circuit evaluation 366
Single Sign On (SSO) 294
slider

report, creating with 162, 163
URL 163

Slider function 164
soft deletion

implementing, with AJAX templates 88-91
implementing, with APEX templates 88-91

sort
enabling 53

sparkline reports
creating 160, 161

sparklines class 160
sparkType attribute 162

SQL Access Advisor 375
SQL Injection

about 45, 384
dynamic SQL, with concatenated

variables 384, 385
formats assumptions 386
implicit conversions 386

SQL monitoring 376
SQL Performance Analyzer 377
SQL Tuning Advisor 377, 378
SQL work areas 373
star transformation

reference link 364
using 364

stored function
used, for downloading reports 85-87

strategy management, OBIEE 264
style attribute 178
subscription feature, IR actions menu 119
substitution variables

used, for creating dynamic messages 71
used, for labels 83

sum function 102
SYS_CONNECT_BY_PATH function 74
sys_context function 49
System Components 254

T
table authentication

implementing 48, 49
table function 100
tables

clustering 364, 365
table tag 57, 169
tabular form

creating 95
implementing 95
item type, changing on user event 96-98

tag cloud
about 193
creating 193

TCPS dispatcher 15
td elements 57
td tags 57
template

editing, for additional formatting 60, 61

[405]

Template Viewer 290
temporary tablespace 375, 376
Thoth Gateway 44
time series reports implementation

about 101
aggregation, creating on partitioned time

dimension region 101, 102
aggregations creating, model clause used

104, 105
analytical functions, used 102
query partition clause, used for data

densification 103, 104
time dimension, used 102

top N row
displaying, in HTML chart 165

tree
creating, hierarchical data based 77

tuning pointer, for development
#TIMING# substitution string, using 356
anonymous blocks, versus stored

procedures 364
bind variables, using 359
bitmap index 361
bulk operations, using 360
code inlining 366
columns, ordering in index 362
deduplication 368
denormalization 367
HTML, coding in SQL 367
indexes 361
large object storage 368
like comparisons, tuning 357, 358
materialized views, using 360
page and region caching, using 356
pagination scheme, selecting 356
parallelism 365
partitioning strategies 363
PLSQL_CODE_TYPE 366
PL/SQL datatypes 366
reverse key index 362
secure files 368
sequences, using 361
short circuit evaluation 366
star transformation, using 364
tables, clustering 364
v(), using 355
weighted page performance 356

WITH clause, using 362
XML PIVOT queries, implementing 367

U
ul tag 181
UNIQUE_SESSION_ID function 50
UPDATE button 78, 82
UPDATE buttons 81
updateTaskOutcome method 334
user-defined CSS class

using, in APEX 130
USERENV namespace

used, for displaying environment
properties 49, 50

user event
item type, changing 96-98

V
v() 355
val function 164
validations

setting, for different parts of a page
process 183

values
logging, Dynamic Actions used 92, 93

varray
displaying, in report 100

VPD
using 105, 106

W
web interfaces

DBPrism 44
Mod_owa 44
Thoth Gateway 44

WebLogic domain
creating 24, 25

web services
used, for APEX-OBIEE integration 269

web services and collections report
creating 296

websheet application
administration 202
creating 200, 201
datagrid 202

[406]

help menu 203
reports 202
view menu 203
websheets, sharing using ACL 204

websheets 200
weighted page performance 356
where clause 51, 52, 76-78, 106
width attribute 164, 166
window.open function 90
with clause

about 47, 62, 75 62
using 362

wizard
creating, hierarchical queries used 182, 183
creating, regular expressions used 182, 183

World Wide Web Consortium (W3C) 289
wpg_docload package 47
wwv_flow.accept function 164
WWV_FLOW_FILES

used, to upload files 84

X
XLS document

generating 230
XMLBD HTTP Protocol Server 29
XML chart

customizing 171, 172
URL 171

XML DB
about 13
querying, web service used 304-306

XML DB HTTP server 13
XML DB web services

about 297
configuring 297
report, creating 298-302
used, for returning collection of records 303
web service response, parsing with

XMLTable 302
XML PIVOT queries

implementing 367
XMLQUERY function 169
XMLTable

used, for parsing web service response 302
XMLTYPE

report, creating from 168, 169

Thank you for buying
Oracle APEX 4.2 Reporting

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle APEX Best Practices
ISBN: 978-1-849684-00-2 Paperback: 298 pages

Accentuate Oracle APEX development with proven
best practices

1. Oracle APEX Best Practices will get you started
with Oracle APEX for developing real-world
applications that perform and maximize the full
potential of Oracle APEX

2. You will also learn to take advantage of
advanced SQL and PL/SQL along the way

3. Combines the knowledge of Oracle Apex
Experts -- Alex Nuijten, Iloon Ellen-Wollf,
and Learco Brizzi

4. Setting up your environment and getting
ready for developing applications

Oracle Database XE 11gR2 Jump
Start Guide
ISBN: 978-1-849686-74-7 Paperback: 146 pages

Build and manage your Oracle Database 11g XE
environment with this fast paced, practical guide

1. Install and configure Oracle Database XE
on Windows and Linux

2. Develop database applications using
Oracle Application Express

3. Back up, restore, and tune your database

4. Includes clear step-by-step instructions
and examples

Please check www.PacktPub.com for information on our titles

Oracle Application Integration
Architecture (AIA) Foundation
Pack 11gR1: Essentials
ISBN: 978-1-849684-80-4 Paperback: 274 pages

Develop and deploy your Enterprise Integration
Solutions using Oracle AIA

1. Full of illustrations, diagrams, and tips with
clear step-by-step instructions and real time
examples to develop full-fledged integration
processes.

2. Each chapter drives the reader right from
architecture to implementation.

3. Understand the important concept of Enterprise
Business Objects that play a crucial role in AIA
installation and models.

Governance, Risk, and
Compliance Handbook for
Oracle Applications
ISBN: 978-1-849681-70-4 Paperback: 488 pages

Written by industry experts with more than 30 years
combined experience, this handbook covers all the
major aspects of Governance, Risk, and Compliance
management in your organization

1. Risk Management: Creating a risk management
program, performing risk assessment and
control verification, and more

2. To maximize real world learning, the book is
built around a fictional company establishing
its governance processes

3. Written by industry experts with more than
30 years combined experience

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Know Your Horse Before You Ride It
	What is really new in the new avatar of APEX?
	APEX configurations
	APEX configuration using DAD
	Internal mod_plsql configuration
	External mod_plsql configuration

	APEX Listener configuration

	Installing APEX engine and Listener
	Installing the APEX engine in the database
	Creating a WebLogic domain and starting the servers
	Setting the APEX Listener
	Configuring and deploying APEX Listener on the WebLogic domain

	Creating APEX workspace
	Understanding the APEX URL
	The protocol
	Hostname and port number
	DAD name and web context
	The f procedure
	The application ID in the URL
	The page number in the URL
	Session management
	The zero session ID

	Request handling
	Debugging
	Error handling
	TKPROF

	Cache Management
	Passing values and navigation
	Making APEX printer friendly

	Decoding the APEX page submissions
	APEX behind the scenes
	Other web interfaces
	A pessimist's view of APEX
	Cap of 200 page items
	SQL Injection
	Cross-site scripting

	Summary

	Chapter 2: Conventional Reporting in APEX
	Creating database objects and installing the reference application
	Implementing external table authentication
	Displaying environment properties using the USERENV namespace
	Displaying the CGI environment variables
	Implementing classic report search functionality
	Enabling sorting and CSV download
	Implementing group reports
	Using the Break Formatting section in
classic reports
	Using JavaScript to modify report
	Using grouping sets and HTML formatting in
a query

	Additional methods of formatting
	Highlighting the searched text in a report
	Editing a template for additional formatting

	Implementing a matrix report
	Understanding the with clause
	Understanding the Oracle 11G's pivot operator
	Understanding string aggregation

	Data highlighting using Dynamic Actions and jQuery
	Advanced formatting using APEX templates
	Understanding dynamic query region
in APEX
	Implementing hierarchical reports
	Hierarchical reports with drilldown
	Creating dynamic messages using substitution variables
	Creating dynamic breadcrumbs for drill ups
	Creating a report with hierarchical query
	Creating a hierarchical report using the recursive with clause
	Creating a tree based on hierarchical data

	Understanding methods to upload files
in APEX
	Using DA to set page items and side effects
of PPR
	A workaround to the side effects of PPR

	Using substitution variables for labels
	Auto feeding one APEX item based on another
	Method to upload files using WWV_FLOW_FILES

	Understanding download methods
	Download using APEX format mask
	Download using developer-defined stored function
	Download using APEX_UTIL.GET_BLOB_FILE_SRC
	Download using p process

	Implementing soft deletion with AJAX and APEX templates
	DML operations and report filtering using DA, JavaScript, and page processes
	Filtering report and logging values using Dynamic Actions
	AJAX – a two-way communication between page process and JavaScript

	Implementing tabular Form
	Creating a tabular form
	Changing item type on user event

	Implementing a master detail report and displaying complex types
	Displaying complex types and varray in
a report

	Implementing time series reports
	Creating aggregation on partitioned time dimension region
	Time series analysis with analytical functions and time dimension
	Using query partition clause for data densification

	Creating aggregations using the model clause

	Implementing data-level security
	Using VPD
	Using query filters

	Summary

	Chapter 3: In the APEX Mansion – Interactive Reports
	About the reference application
	Important features of the interactive report
	The Search functionality
	Using the Select Columns feature of the Actions menu
	Using the filtering feature of the Actions menu
	Linking the interactive reports

	Using the Rows per Page feature of the Actions menu
	Customizing the number of rows in an IR

	Using the formatting options of the Actions menu
	Using Control Break
	Using the Compute option
	Using Chart in an IR

	Using the Flashback feature of the Actions menu
	Using the Save Report feature of the Actions menu
	Using the Reset and Download features of the Actions menu
	Configuring the Email functionality
	Downloading in CSV and HTML formats
	Downloading in PDF format

	Using the Subscription feature of the Actions menu

	Other configurable attributes of an IR
	Using the Link Column section of the Report Attributes page
	Using the Icon View section of the Report Attributes page
	Using the Detail View section of the Report Attributes page
	Using the Advanced section of the Report Attributes page
	Using the Column Group section of the Report Attributes page

	Using Dynamic Actions (DA) to add custom functions in the Actions menu
	Using CSS in IR
	Formatting a column using another column
	Using CSS in page header to format APEX data
	Changing the font color of alternate rows in APEX

	Using a user-defined CSS class in APEX
	Conditionally highlighting a column in IR using CSS and jQuery
	Formatting an IR using region query

	Understanding the process of any customizations in IR
	Using APEX views to create a classic report on saved IRs
	Capturing report ID using JavaScript

	Creating multiple IR on the same page
	Authorizing user groups to view report columns
	Creating Interactive Report Dashboard
	Understanding Dynamic Interactive Reports
	Using native PL/SQL table function approach and conditional columns
	Using parallel-enabled table functions

	Unterstanding interface table function approach
	Understanding the ODCITableDescribe function
	Understanding the ODCITablePrepare function
	Understanding the ODCITableStart function
	Understanding the ODCITableFetch function
	Understanding the ODCITableClose function

	Understanding the collection approach

	Summary

	Chapter 4: The Fairy Tale Begins – Advanced Reporting
	About the reference application for
this chapter
	Using LDAP authentication
	Process to get the necessary DN from JXplorer

	Creating sparkline Reports
	Creating a report with slider
	Creating HTML charts
	Creating a bar chart using APEX's HTML chart functionality
	Creating an APEX HTML chart
	Displaying the top N and the bottom N rows in an HTML chart
	Understanding APEX HTML bar chart behind the scenes

	Understanding self-generated HTML charts
	Creating a report from XMLTYPE

	Creating Google visualization charts
	Creating Flash charts
	Customizing an XML chart
	Understanding Anychart options using a doughnut chart
	Discussion on scatter and 3D stacked charts
	Discussion on a gauge chart
	Discussion on a gantt chart
	Discussion on a candlestick chart
	Creating Flash image maps

	Creating a calendar
	Creating a report with images
	Creating a dialog box
	Creating context menu
	Creating wizard and using hierarchical queries and regular expressions
	Setting different validations for different parts of a page process

	Summary

	Chapter 5: Flight to Space Station: Advanced APEX
	Creating HTML image maps
	Server side image maps
	Client side image maps

	Creating PL/SQL Server Pages (PSP)
	Understanding and using loadjava utility
	Creating funnel charts using FusionCharts
	Creating tag cloud
	Creating plugins
	Creating item and page process plugin
	Creating DA plugin

	Creating websheet application
	Understanding datagrid
	Understanding reports
	Understanding the features of administration and view drop-downs
	Understanding Websheet Help menu
	Sharing websheets using ACL

	Configuring the mail
	Downloading APEX application without web server
	Understanding Oracle OLAP cubes
	Understanding Oracle's advanced queuing
	Understanding other APEX features
	Understanding locking and unlocking of pages and team development
	Understanding database object dependencies report
	Understanding advisor
	Understanding shortcuts
	Understanding data loading wizard
	Understanding application express views

	Understanding background jobs in APEX
	Knowing about important functions from the API
	Knowing about the APEX API
	Knowing about the database API

	Summary

	Chapter 6: Using PL/SQL Reporting Packages, Jasper, and Eclipse BIRT
	APEX reporting using PL/PDF and
PL_FPDF
	Process to create RTF, XLS, CSV, and HTML documents
	APEX reporting using fop and Cocoon
	Creating Jasper reports
	Creating reports using Eclipse BIRT and integrating with APEX
	Summary

	Chapter 7: Integrating APEX with OBIEE
	Understanding Oracle fusion management architecture
	Understanding OBIEE
	Understanding the BI Server component
	Understanding the BI Presentation Server
	Understanding Dashboards, analysis (answers), and filters
	Understanding KPIs and KPI watchlist
	Understanding Actions
	Understanding OBIEE Mapviewer
	Understanding strategy management
	Configuring the Gmail SMTP server in OBIEE
	Understanding agents

	Integrating OBIEE with APEX
	Integration using web services
	Integration with APEX using Go URL
	Integration using iFrames in APEX

	Understanding BI Publisher
	Creating and mailing reports in BI Publisher
	Creating data model in BI Publisher
	Using the BI Publisher's MS Word plugin to make rtf templates
	Assembling the rtf template and data model together
	Scheduling reports and e-mail delivery in
BI Publisher
	Creating barcode reports in BI Publisher
	Dynamic BI Publisher

	Integrating BI Publisher with APEX
	Using convert servlet in Instance Settings
	Integrating APEX with BI Publisher using
web services
	BI Publisher guest folder

	Summary

	Chapter 8: All About Web Services and Integrations
	Understanding reports on web services and collections
	Setting XML DB web services
	Creating a report on native XML DB web services
	Using XMLTable to parse a web service response
	Using a native web service to return a collection
of rows
	Configuring RESTful web services using Resource Templates
	Creating RESTful web services using Resource Templates
	Parsing JSON objects and using MAKE_REST_REQUEST

	Understanding and Implementing BPEL
	Configuring the General section
	Configuring the Assignment section
	Understanding Human workflows and Worklist

	Integration with SAP crystal reports
	Migrating from MS Access to APEX
	Migrating from Oracle Forms and Reports
	Integration with Google API
	Integration with Oracle R Enterprise
	Summary

	Chapter 9: Performance Analysis
	Tuning pointers for development
	Using v()
	Using the page and region caching
	Understanding the weighted page performance of APEX
	Using the #TIMING# substitution string
	Choosing a pagination scheme
	Tuning the like comparisons
	Using the bind variables
	Using materialized views
	Using bulk operations
	Using sequences
	Understanding indexes
	Understanding the bitmap index
	Understanding the reverse key index
	Ordering columns in index

	Using the WITH clause
	Understanding partitioning strategies
	Understanding anonymous blocks versus stored procedures
	Using star transformation
	Understanding clustering of tables
	Understanding parallelism
	Using code inlining
	Understanding short circuit evaluation
	Understanding PLSQL_CODE_TYPE
	Using PL/SQL datatypes
	Using HTML in SQL
	Implementing XML PIVOT queries
	Understanding denormalization
	Understanding secure files, deduplication, and large object storage

	Discussions on HTML, JavaScript, and client-side tools
	Understanding image storage
	Using browser specific tools
	Using minified JavaScript
	Compressing HTML for better performance
	APEX Listener parameters

	Discussions on database tools for performance tuning
	Using PL/SQL hierarchical profiler and DBMS_PROFILER
	Understanding Data Guard
	Understanding SGA result cache
	Understanding SQL work areas
	Using data compression
	Understanding segment space problems
	Understanding the Database Resource Manager
	Understanding the SQL Access Advisor and SQL Tuning Advisor
	Understanding temporary tablespace
	Understanding SQL monitoring
	Understanding DB_FILE_MULTIBLOCK_READ_COUNT
	Understanding extended statistics
	Understanding SQL Performance Analyzer
	Understanding SQL Tuning Advisor
	Understanding pinning in keep pool
	Understanding Automatic Database Diagnostic Monitor (ADDM)
	Understanding Automatic Workload Repository (AWR)
	Understanding index-organized tables
	Understanding row chaining and row migration
	Understanding the clustering factor
	Understanding Active Session History report

	Summary

	Appendix
	Steps to create PACKT_SCHEMA
	SQL Injection
	Dynamic SQL with concatenated variables
	Assumption of formats and implicit conversions

	Cross-site scripting
	Database and web interaction in DAD and Listener configurations
	The DAD configuration
	The Listener configuration

	APEX behind the scenes
	Enabling auditing on the APEX_PUBLIC_USER schema
	Switching off the auditing

	Index

