/ll MANNING

Pl

HOR S(

Covers Play /

Peter Hilton
Erik Bakker

Francisco Canedo
Foreworn BY James Ward

.allitebooks.co

http://www.allitebooks.org

Play for Scala

PETER HILTON
ERIK BAKKER
FRANCISCO CANEDO

MANNING
Shelter Island

.allitebooks.co

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 261

Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

/l/l Manning Publications Co. Development editor: Jeff Bleiel
20 Baldwin Road Copyeditor: Benjamin Berg
Shelter Island, NY 11964 Proofreaders: Andy Carroll, Toma Mulligan

Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781617290794
Printed in the United States of America

12345678910 - MAL- 18 17 16 15 14 13

WWW.aI litebooks. cor_rl

www.manning.com
http://www.allitebooks.org

brief contents

PART 1 GETTING STARTED . «eeeeeeeeseececcescecescescssesoessscessessssessessssesensl

1 = Introduction to Play 2 3
2 = Your first Play application 17

PART 2 CORE FUNCTIONALITY «eeeecccescesccscesscsscescescesssssssssssssssossons 43

3 = Deconstructing Play application architecture 45
» Defining the application’s HTTP interface 80
= Storing data—the persistence layer 114

= Building a user interface with view templates 137

N O Ot W~

= Validating and processing input with the forms API 170

PART 3 ADVANCED CONCEPTS . ceeeeeeceecescescscescessecessescssessesssseseesess 2]

8 = Building a single-page JavaScript application with
JSON 203
9 = Playand more 240

10 = Web services, iteratees, and WebSockets 264

iii

M.al I itebooks.cogl

http://www.allitebooks.org

M.al I itebooks.cogl

http://www.allitebooks.org

contents

Sforeword xi

preface xii
acknowledgments xv

about this book xvi

about the cover illustration xx

PART 1 GETTING STARTED o.co.oo.co.co.c.oo.oo.to.to.to.co.co.co.co.c.oo.oo1

Introduction to Play 2 3

1.1 WhatPlayis 4
Key features 4 = Java and Scala 5 = Play isn’t Java EE 5

1.2 High-productivity web development 7
Working with HI'TP 7 = Simplicity, productivity, and usability 7

1.3 Why Scala needs Play 8
1.4 Type-safe web development—why Play needs Scala 8

1.5 Hello Play! 9

Getting Play and setting up the Play environment 9 = Creating
and running an empty application 10 = Play application
structure 11 = Accessing the running application 12 = Add a
controller class 13 = Add a compilation error 13 = Use an
HTTP request parameter 14 = Add an HTML page template 14

M.al I itebooks.cogl

http://www.allitebooks.org

vi CONTENTS

1.6 The console 15
1.7 Summary 16

Your first Play application 17

2.1 The product list page 18

Getting started 19 = Stylesheels 19 = Language localization
configuration 20 = Adding the model 21 = Product list

page 22 = Layout template 23 = Controller action method 24
Adding a routes configuration 24 = Replacing the welcome page
with a redivect 25 = Checking the language localizations 25

2.2 Details page 27
Model finder method 27 = Details page template 27
Additional message localizations 28 = Adding a parameter to a
controller action 29 = Adding a parameter to a route 30
Generating a bar code image 30

2.3 Adding a new product 32

Additional message localizations 32 = Form object 33 = Form
template 34 = Saving the new product 37 = Validating the user
mput 38 = Adding the routes for saving products 40

2.4 Summary 41

PART 2 CORE FUNCTIONALITY o.o..o..o.co.co.noo..00-00-000000000000000043

Deconstructing Play application architecture 45

3.1 Drawing the architectural big picture 46
The Play server 46 = HTTP 47 = MVC 47 = REST 48

3.2 Application configuration—enabling features and changing
defaults 49

Creating the default configuration 49 = Configuration file
format 50 = Configuration file overrides 52 = Configuration AP[—
programmatic access 52 = Custom application configuration 53

3.3 The model—adding data structures and business logic 54

Database-centric design 54 = Model class design 55 = Defining
case classes 56 = Persistence API integration 57 = Using Slick
Jfor database access 57

3.4 Controllers—handling HTTP requests and responses 58

URL-centric design 59 = Routing HTTP requests to controller
action methods 60 = Binding HI'T'P data to Scala objects 61
Generating different types of HT'TP response 62

M.al I itebooks.cogl

http://www.allitebooks.org

3.5

3.6

3.7

3.8

3.9

CONTENTS vii

View templates—formatting output 62
Ul-centric design 63 = HTML-first templates 63 = Type-safe Scala
templates 65 = Rendering templates—Scala template functions 67
Static and compiled assets 69
Serving assets 69 = Compiling assets 69

Jobs—starting processes 70
Asynchronous jobs 70 = Scheduled jobs 72 = Asynchronous
resulls and suspended requests 74

Modules—structuring your application 75

Third-party modules 76 = Extracting custom modules 77
Module-first application architecture 77 = Deciding whether to
write a custom module 78 = Module architecture 78

Summary 79

Defining the application’s HTTP interface 80

4.1

4.2

4.3

4.4
4.5

4.6

4.7

Designing your application’s URL scheme 81
Implementation-specific URLs 81 = Stable URLs 82 = Java
Servlet API—limited URL configuration 83 = Benefits of good
URL design 83

Controllers—the interface between HTTP and Scala 84
Controller classes and action methods 84 = HTTP and the
controller layer’s Scala API 87 = Action composition 88

Routing HTTP requests to controller actions 89

Router configuration 90 = Matching URL path parameters that
contain forward slashes 93 = Constraining URL path parameters
with regular expressions 93

Binding HTTP data to Scala objects 94

Generating HTTP calls for actions with reverse routing 97
Hardcoded URLs 97 = Reverse routing 98

Generating a response 101

Debugging HTTP responses 102 = Responsebody 102 = HTTP status
codes 106 = Response headers 106 = Serving static content 110

Summary 113

Storing data—the persistence layer 114

5.1

Talking to a database 115

What are Anorm and Squeryl? 115 = Saving model objects in a
database 115 = Configuring your database 116

M.al I itebooks.cogl

http://www.allitebooks.org

viii CONTENTS

5.2 Creating the schema 116

5.3 Using Anorm 118

Defining your model 118 = Using Anorm’s stream AP 119
Pattern matchingresults 119 = Parsingresulls 120 = Inserting,
updating, and deleting data 122

5.4 Using Squeryl 123
Plugging Squeryl in 124 = Defining your model 125
Extracting data—queries 128 = Saving records 130 = Handling
transactions 131 = Entity relations 133

5.5 Caching data 135
5.6 Summary 136

Building a user interface with view templates 137

6.1 The why of a template engine 138

6.2 Type safety of a template engine 139
A not type-safe template engine 139 = A type-safe template
engine 141 = Comparing type-safe and not type-safe templates 143
6.3 Template basics and common structures 144

@, the special character 144 = Expressions 145 = Displaying
collections 146 = Security and escaping 149 = Using plain
Scala 152

6.4 Structuring pages: template composition 154
Includes 154 = Layouts 157 = Tags 159

6.5 Reducing repetition with implicit parameters 160

6.6 Using LESS and CoffeeScript: the asset pipeline 163
LESS 164 = CoffeeScript 164 = The asset pipeline 165

6.7 Internationalization 166

Configuration and message files 166 = Using messages in your
application 167

6.8 Summary 169

Validating and processing input with the forms APl 170

7.1 Forms—the concept 171
Play 1.x forms reviewed 171 = The Play 2 approach to forms 173

7.2 Forms basics 173

Mappings 173 = Creating a form 174 = Processing data with a
Jorm 175 = Object mappings 178 = Mapping HTTP request
data 179

M.al I itebooks.cogl

http://www.allitebooks.org

CONTENTS ix

7.3 Creating and processing HTML forms 179
Writing HTML forms manually 179 = Generating HTML
Jorms 182 = Input helpers 185 = Customizing generated
HTML 186

7.4 Validation and advanced mappings 188

Basic validation 188 = Custom validation 189 = Validating
multiple fields 190 = Optional mappings 191 = Repeated
mappings 191 = Nested mappings 192 = Custom

mappings 193 = Dealing with file uploads 196

7.5 Summary 198

PART 3 ADVANCED CONCEPTS .« eececeecceccescescescoscescoscoscescesces 201

Building a single-page JavaScript application with JSON 203

8.1 Creating the single-page Play application 204
Getting started 205 = Adding stylesheets 205 = Adding a simple
model 206 = Page template 207 = Client-side script 208

8.2 Serving data to a JavaScript client 208
Constructing J[SON data value objects 208 = Converting model
objects to J[SON objects 213

8.3 Sending JSON data to the server 219
Editing and sending client data 219 = Consuming [SON 221
Consuming J[SON in more detail 223 = Reusable consumers 225
Combining JSON formatters and consumers 226

8.4 Validating JSON 227

Mapping the J[SON structure to a model 228 = Handling “empty”
values 229 = Adding validation rules and validating

input 229 = Returning JSON validation errors 230
Alternative JSON Ulibraries 232

8.5 Authenticating JSON web service requests 232

Adding authentication to action methods 233 = Using basic
authentication 236 = Other authentication methods 238

8.6 Summary 238

Play and more 240

9.1 Modules 240
Using modules 241 = Creating modules 244

9.2 Plugins 250

M.al I itebooks.cogl

http://www.allitebooks.org

CONTENTS

9.3 Deploying to production 255

Production mode 256 = Working with multiple

configurations 256 = Creating native packages for a package
manager 258 = Setting up a front-end proxy 259 = Using
SSL 261 = Deploying to a cloud provider 262 = Deploying to an
application server 263

9.4 Summary 263
1 Web services, iteratees, and WebSockets 264

10.1 Accessing web services 265
Basic requests 265 = Handling responses asynchronously 266
Using the cache 267 = Other request methods and headers 269
Authentication mechanisms 270

10.2 Dealing with streams using the iteratee library 272

Processing large web services responses with an
iteratee 272 = Creating other iteratees and feeding them
data 275 = Iteratees and immutability 276

10.3 WebSockets: Bidirectional communication with the
browser 277

A real-time status page using WebSockets 280 = A simple chat
application 282

10.4 Using body parsers to deal with HTTP request bodies 286

Structure of a body parser 287 = Using built-in body parsers 288
Composing body parsers 289 = Building a new body parser 291

10.5 Another way to look at iteratees 294
10.6 Summary 294

index 297

Joreword

Change comes in waves. You're reading this book because you want to be part of the
next wave of change in software development. Big data, mobile, JavaScript-based web
apps, RESTful services, functional programming, and the real-time web are propelling
us into a new era. Every new era is accompanied by a new set of tools, which keen
developers wield to build amazing things. Play Framework and Scala are the tools
you’ll use to ride the approaching wave and build the next amazing thing.

When surfing a new wave, it’s best to go along with experts in the surf break. They
can tell you when and where to go, what places to avoid, and how to have a smooth
ride. Peter Hilton, Erik Bakker, and Francisco Canedo are your experts in the Play and
Scala break. They all have extensive experience building amazing things with these
tools. Before most of us even saw the wave, they were riding it and building the tools
the rest of us need. Play for Scala is your guide to this new surf break.

Whether you’re just getting started with Play or building a real-time app with itera-
tees, this book will guide you well. The authors have done a great job of providing the
right level of detail. They haven’t obviated the need to do some self-exploration,
Google searches, and check Stack Overflow. Yet their code examples are complete
and well explained. It’s hard to write a book that fits the needs of novices and experts,
but somehow Hilton, Bakker, and Canedo pulled it off. Play for Scala has exactly the
right verbosity level.

Now comes the fun part. The wave is approaching, so grab your tools, paddle out
with your expert guides, and surf your way into the next era of software development!

James WARD

DEVELOPER ADVOCATE AT TYPESAFE
WWW.JAMESWARD.COM

http://www.jamesward.com/
www.jamesward.com

preface

We were early adopters of Play and saw it gain popularity among a wide variety of Play
developers. Now it’s time for Play to go mainstream.

Play 1.0

When I first tried the Play 1.0 release in 2010, I was struck by how simple it was. Having
tried many different web frameworks, it was a refreshing change to find one that used
what I already knew about HTTP and HTML (the web) instead of being based on non-
web technology. In fact, the developer experience was so good, it felt like cheating.

I was also impressed by how finished Play seemed: this was no early experimental
release. Many open-source projects adopt the “release early, release often” philosophy,
which means a first public release is a version 0.1 that’s more of a prototype, vision
statement, and call for participation. Play, on the other hand, started at version 1.0
and had clearly already been used to build real applications. Zenexity used Play on
customer projects for some time before releasing version 1.0, and it wasn’t just Java
developers using Play; web developers had been using it too. You could tell.

The idea that Play would be for web developers, not just Java developers, turned
out to be the most important of goals because of the consequences for the frame-
work’s design. After years of struggling with frameworks that make it hard to make
nice HTTP interfaces—even at the simplest level of building web applications whose
URLs weren’t ugly—here was a framework that actually helped. Suddenly we were run-
ning with the wind.

xii

PREFACE xiii

At first, we figured that this was a small framework for small applications, which
was nice because it meant that we wouldn’t have to use PHP any more for easy prob-
lems. What actually happened was that each Play application was bigger or more com-
plex than the last, and was another chance to get away with not using Java EE. We
didn’t just get away with using Play; by the time Play 1.2 was released in 2011, we
started to get away from having to use Java EE, and JSF in particular, which had
become the new JSP for me (only more complex).

At this point, it only seemed fair to help more Java web developers start using Play.
And then there was Scala.

Play for Scala

For us, Play 2 came at a time when we were discarding more than just writing web
applications with JSP or JSF. We were also starting to use Scala instead of Java. The Play
early adopters and the Scala early adopters then found each other, and we realized
that the combination is even more compelling.

When we started talking to people about moving on from Java EE, we discovered
that people can get upset when you suggest that the technology that they’ve devoted a
significant portion of their career to mastering is an architectural dead end, and that
it’s time for something new. Moving on is hard, but inevitable if you don’t want to be
the next COBOL programmer. You know you’re a junior developer when none of the
things on your CV have become legacy yet.

In our business, it’s important to be ready for something new. As with many kinds
of beliefs, you're going to be happier if your technology choices are strong opinions,
loosely held. The arrival of Play 2 was clearly not just a new version; it was a challenge
to take what we’d been doing to something more mainstream.

At Lunatech, technology adoption follows a kind of progression, starting from a sin-
gle enthusiast and initial experiments, moving on to low-risk use by a few people, and
finally to full adoption on development projects for external customers. At each stage,
most technologies are discarded; Play and Scala survived this natural selection in the
technology space and are now used by most of us on nearly all of our new projects.

Having made this kind of change before, we understand that switching to Play or
switching to Scala can be a big step, especially if you do both at the same time. We
were open to the idea that something more than a few blog posts and some documen-
tation was needed, and we came to the surprising conclusion that the world needed
another computer book.

Learning from Play

A rewarding aspect of Play is that while you learn it, you can also learn from it. First,
Play teaches the value of a good developer experience, largely by making various
other frameworks look bad. Then Play teaches you how to do web development right,
and also about the future of web applications.

PREFACE

Play’s design teaches us the value and elegance of embracing web architecture as it
was intended to be used. It does this by offering an HTTP-centric API for writing state-
less web applications with a stateless web tier and REST-style APIs. This is the heart of
what we cover in this book and the key to Play’s approach.

Getting beyond the failed vision that more layers and more complexity would
somehow be simpler, and discarding the accumulated detritus of the Java Enterprise
Edition dystopia will be the least of your worries in the long term. Play’s API also
teaches us that in the future you may need to master a new kind of real-time web
development: reactive web programming.

But to start with, the challenge is to learn how to build the same kind of web appli-
cations that we’ve been building for years in a better way that’s more aligned with how
the web works. The difference is that this time it’s going to be more fun, and this book
is going to show you how. This time around, work is play.

acknowledgments

First of all, we would like to thank the Play community who’ve helped turn Play into what
itis today. Without the hard work from the committers, people writing documentation,
asking and answering questions on the forums, writing modules, and all the application
developers using Play, there wouldn’t have been any point in writing this book.

Second, we’d like to thank all the people at Manning who helped us write this
book. Michael Stephens who approached us to write this book. Bert Bates who taught
us how to write. Karen Miller who was our editor for most of the process. Further-
more, we’d like to thank the production team who did a lot of hard work (including
weekends) to get this book to press, and everyone else at Manning. Without you, this
book wouldn’t have been possible.

We’d like to thank, especially, James Ward for writing a thoughtful foreword, Jorge
Aliss who was particularly helpful when we were writing about SecureSocial, the exter-
nal reviewers—Adam Browning, Andy Hicks, Doug Kirk, Henning Hoefer, Ivo Jerk-
ovic, Jeton Bacaj, Keith Weinberg, Magnus Smith, Nikolaj Lindberg, Pascal Voitot,
Philippe Charriere, Stephen Harrison, Steve Chaloner, Tobias Kaatz, Vladimir Kupt-
cov and William E. Wheeler—and technical proofreader, Thomas Lockney, who
devoted their own time to review our book and make it better, as well as the MEAP sub-
scribers who took the time to let us know about issues on the forum.

Last, but certainly not least, we would like to thank you, the person reading this
book. We wrote this book for you, to help you get the most out of Play. The fact that
you're reading this means that we didn’t do it for nothing, and we hope this book
helps you to build great and wonderful software. If you do, thank you for that too.

XV

about this book

You’re probably reading this book because you want to build a web app. This book is
about one way of doing that.

There are so many different web applications that the question, “How should I do
X?” can often only be answered with, “It depends.” So instead of trying to give some
general advice that won’t be good for many cases anyway, we’ll introduce Play’s com-
ponents, their relations, and their strengths and weaknesses. Armed with this knowl-
edge, and the knowledge of your project that only you have, you can decide when to
use a tool from Play or when to use something else.

In this book we use a fictitious company managing paperclip logistics as a vehicle
for example code. This isn’t one running example that gets bigger with each chapter,
culminating in a complete application at the end of the book. Rather, we wanted to
save you from the cognitive load of having to “get into” the business domain of many
different examples, so we chose this as a common business domain. The examples
and the chapters themselves are mostly standalone, to aid readers who don’t read the
book in one go or who want to skip chapters. We understand that some readers would
value building one application that uses concepts from multiple chapters while read-
ing the book, and we encourage those readers to pick a more interesting problem
than that of paperclip logistics, and to try to adapt what they learn from this book to
solving that problem instead.

The web entails many more technologies than any book could possibly encompass.
We focus on Play and the boundaries between Play and other technologies, but not

ABOUT THIS BOOK xvii

more. We expect that the reader has a basic understanding of the web in general and
HTTP and HTML in particular.

This isn’t a book about learning Scala, although we understand that Scala is likely
new to many readers as well. We recommend picking up this book after an introduc-
tion to Scala, or in parallel with an introduction to Scala. Though we stay clear of the
hard parts of Scala, some of the language constructs will likely be hard to grasp for
readers who are entirely unfamiliar with Scala.

This book isn’t the one book about Play that covers everything. Partly, this is
because Play is a new framework and is evolving rapidly. Best practices are often not
worked out yet by the Play community. There’s also a more mundane reason: page
count. The subject of testing, for example, didn’t fit within the page limit for the
book, and rather than doing a very condensed chapter about testing, we chose to
leave it out.

If you're curious, the short version is that Play is highly testable. This is partly due
to its stateless API and functional style, which make the components easier to test. In
addition, there are built-in testing helpers that let you mock the Play runtime and
check the results of executing controller actions and rendering templates without
using HTTP, plus FluentLenium integration for user-interface level tests.

Rather than trying to cover everything, this book tries to lay a foundation, and we
hope that many more books about Play will be written. There’s much to explore
within Play and on the boundaries between Play and the Scala language.

Roadmap

Chapter 1 introduces the Play framework, its origins, and its key features. We look at how
to get started with Play, and glance over the components of every Play application.

Chapter 2 shows in more detail the components of a Play application and how they
relate to each other. We build a full application with all the layers of a Play application,
with multiple pages, and with validation of user input.

Chapter 3 starts with a dive into the architecture of Play. We show why Play works
so well with the web, and how control flows through your application. We look at how
the models, views, and controllers of an application fit together and how an applica-
tion can be modularized.

Chapter 4 focuses on controllers. Controllers form the boundary between HTTP
and Play. We see how to configure a Play application’s URLSs, and how to deal with URL
and query string parameters in a type-safe way. We use Play forms to validate and
retrieve user input from HTML forms, and we learn how to return an HTTP response
to the client.

Chapter 5 shows how a persistence layer fits into a Play application. Anorm is a
data access layer for SQL databases that’s bundled with Play and works with plain SQL.
As a possible alternative, we also introduce Squeryl, which is a data access layer that
uses a Scala domain-specific language to query a database.

xviii

ABOUT THIS BOOK

Chapter 6 shows how Play’s template engine works. It discusses the syntax and how
the template engine works together with Scala. We see how we can make reusable
building blocks with templates and how to compose these reusable blocks to construct
larger templates.

Chapter 7 goes into more detail on the subject of Play forms. Forms are a powerful
way to validate user data, and to map data from incoming HTTP requests to objects in
Scala code. They also work in the other direction: they can present Scala objects to a
user in an HTML form. We also learn how to create forms for complex objects.

Chapter 8 introduces Play’s JSON API in the context of a sample application with a
JavaScript front end that uses the Play application as a web service. Play’s JSON API
assists with converting JSON to Scala objects and generating JSON from Scala objects.

Chapter 9 focuses on Play in a bigger context. We see how we can use existing Play
modules and how to create our own modules and plugins. We glance over the various
ways to deploy an application and how to deal with multiple configurations effectively.

Chapter 10 starts with a description of Play’s web service API and how you can
leverage it to consume the APIs of other web applications. The second part of this
chapter introduces more advanced concepts of Play, such as iteratees, a Play library
that helps you work with streams of data and WebSockets.

Code conventions and downloads

All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. This book contains many code listings to explain concepts and
show particular Play APIs. The listings don’t always result in a full application; other
code that’s outside the scope of the chapter is also needed. In many listings, the code
is annotated to point out the key concepts.

The code in this book is for Play versions 2.1.x, which is the most recent version of
Play at the time of printing. If you are using a different version of Play, some of the
code details might be different.

For your convenience, we’ve put up complete example applications for all chap-
ters on GitHub: https://github.com/playforscala/sample-applications. These applica-
tions are available for multiple versions of Play, organized in a branch named to the
Play version. The source code is also available for download from the publisher’s web-
site at www.manning.com/PlayforScala.

The code in these applications isn’t identical to the listings in this book; often
things from multiple listings are merged in the complete application. Some additional
HTML markup, which would obfuscate the main point of a listing in the book, is used
in some places for aesthetic reasons.

Author Online

Purchase of Play for Scala includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and

https://github.com/playforscala/sample-applications
https://github.com/playforscala/sample-applications
http://www.manning.com/hilton/
http://www.manning.com/hilton/
http://www.manning.com/hilton/
https://github.com/playforscala/sample-applications
www.manning.com/PlayforScala

ABOUT THIS BOOK Xix

subscribe to it, point your web browser to www.manning.com/PlayforScala. This page
provides information on how to get on the forum once you’re registered, what kind
of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors

PeTer HiLTON is a senior solution architect and operations director at Lunatech
Research in Rotterdam, the Netherlands. Peter has focused on web application design
and development since 1998, working mostly on Java web frameworks and web-based
collaboration. In recent years, Peter has also applied agile software development pro-
cesses and practices to technical project management. Since 2010, Peter has been a
committer on the Play framework open source project and has presented Play at vari-
ous Furopean developer conferences. Together with colleagues at Lunatech, Peter is
currently using Play to build web applications and web services for enterprise custom-
ers in the Netherlands and France. He’s on Twitter as @PeterHilton.

Erik BAKRkER has been building web applications since 2002 and is currently also
employed by Lunatech Research. He put his first Scala application in production in
early 2010 and has worked with Play 2 since its inception. Erik is a Play module con-
tributor and has presented and blogged about the Play framework and Scala. You can
find him on Twitter as @eamelink.

Francisco Jost CANEDO DoMINGUEZ joined Lunatech Research as a software developer
in 2005. He started his professional career in 1997 and has comfortably worked with
languages as diverse as C, C++, Java, XSLT, JavaScript, HTML, and Bash. He’s been
exploring the power of Scala since 2010. Having had firsthand experience with sev-
eral different web frameworks, Francisco finds Play’s approach to be a breath of fresh
air. He is @fcanedo on Twitter.

lvww.allitebooks.coni

http://www.manning.com/hilton/
www.manning.com/PlayforScala
http://www.allitebooks.org

about the cover illustration

The figure on the cover of Play for Scala is captioned a “Woman from Sibenik, Dal-
matia, Croatia.” The illustration is taken from the reproduction, published in 2006,
of a 19th-century collection of costumes and ethnographic descriptions entitled Dal-
matia by Professor Frane Carrara (1812-1854), an archaeologist and historian, and
the first director of the Museum of Antiquity in Split, Croatia. The illustrations were
obtained from a helpful librarian at the Ethnographic Museum (formerly the
Museum of Antiquity), itself situated in the Roman core of the medieval center of
Split: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The
book includes finely colored illustrations of figures from different regions of Croa-
tia, accompanied by descriptions of the costumes and of everyday life.

Sibenik is a historic town in Croatia, located in central Dalmatia, where the river
Krka flows into the Adriatic Sea. The woman on the cover is wearing an embroidered
apron over a dark blue skirt, and a white linen shirt and bright red vest, topped by a
black woolen jacket. A colorful headscarf completes her outfit. The rich and colorful
embroidery on her costume is typical for this region of Croatia.

Dress codes have changed since the 19th century, and the diversity by region, so
rich at the time, has faded away. It is now hard to tell apart the inhabitants of different
continents, let alone different towns or regions. Perhaps we have traded cultural diver-
sity for a more varied personal life—certainly for a more varied and fast-paced techno-
logical life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
illustrations from collections such as this one.

XX

Part 1

Getting started

Et 1 tells you what Play is and what a basic application looks like.

Chapter 1 introduces Play, its origins, and its key features. We show a simple
example to make it concrete and the basics of the components of every Play
application.

Chapter 2 gives more details about a Play application’s components by build-
ing a basic but complete Play application. We show how to make a full applica-
tion with all the common layers of a Play application, including multiple pages

and input validation. This application will serve as a basis for other samples in
the book.

Introduction to Play 2

This chapter covers

Defining the Play framework

Explaining high-productivity web frameworks
Why Play supports both Java and Scala
Why Scala needs the Play framework
Creating a minimal Play application

Play isn’t a Java web framework. Java’s involved, but that isn’t the whole story.
Although the first version of Play was written in the Java language, it ignored the
conventions of the Java platform, providing a fresh alternative to excessive enter-
prise architectures. Play wasn’t based on Java Enterprise Edition APIs and it wasn’t
made for Java developers. Play was made for web developers.

Play wasn’t just written for web developers; it was written by web developers, who
brought high-productivity web development from modern frameworks like Ruby
on Rails and Django to the JVM. Play is for productive web developers.

Play 2 is written in Scala, which means that not only do you get to write your web
applications in Scala, but you also benefit from increased type safety throughout
the development experience.

1.1

111

CHAPTER 1 Introduction to Play 2

Play isn’t only about Scala and type safety. An important aspect of Play is its usabil-
ity and attention to detail, which results in a better developer experience (DX). When
you add this to higher developer productivity and more elegant APIs and architec-
tures, you get a new emergent property: Play is fun.

What Play is

Play makes you more productive. Play is also a web framework whose HTTP interface is
simple, convenient, flexible, and powerful. Most importantly, Play improves on the
most popular non-Java web development languages and frameworks—PHP and Ruby
on Rails—by introducing the advantages of the Java Virtual Machine (JVM).

Key features
A variety of features and qualities makes Play productive and fun to use:

= Declarative application URL scheme configuration

= Type-safe mapping from HTTP to an idiomatic Scala API

= Type-safe template syntax

= Architecture that embraces HTML5 client technologies

= Live code changes when you reload the page in your web browser

= Fullstack web framework features, including persistence, security, and
internationalization

We’ll get back to why Play makes you more productive, but first let’s look a little more
closely at what it means for Play to be a full-stack framework, as shown in figure 1.1. A
full-stack framework gives you everything you need to build a typical web application.
Being “full-stack” isn’t only a question of functionality, which may already exist as a
collection of open source libraries. After all, what’s the point of a framework if these
libraries already exist and provide everything you need to build an application? The
difference is that a full-stack framework also provides a documented pattern for using
separate libraries together in a certain way. If you have this, as a developer, you know

Integrated HTTP server

Expressive HTTP interface RESTful web
(provides full access to HTTP features) services API
Integrated
ngh-peﬁormqnce Publlg as‘set Asynchronous /0 consolle
template engine compilation and build
system
HTML fprm Integrated Akka
validation cache

Datastore-agnostic model persistence

Figure 1.1 Play framework stack

1.1.2

113

What Play is 5

that you’ll be able to make the separate components work together. Without this, you
never know whether you’re going to end up with two incompatible libraries, or a badly
designed architecture.

When it comes to building a web application, what this all means is that the com-
mon tasks are directly supported in a simple way, which saves you time.

Java and Scala

Play supports Java, and it’s the best way to build a Java web application. Java’s success
as a programming language, particularly in enterprise software development, has
enabled Play to quickly build a large user community. Even if you’re not planning to
use Play with Java, you still get to benefit from the size of the wider Play community.
Besides, a large segment of this community is now looking for an alternative to Java.

But recent years have seen the introduction of numerous JVM languages that pro-
vide a modern alternative to Java, usually aiming to be more type-safe, resulting in
more concise code, and supporting functional programming idioms, with the ulti-
mate goal of allowing developers to be more expressive and productive when writing
code. Scala is currently the most evolved of the new statically typed JVM languages,
and it’s the second language that Play supports.

Play 2 for Java

If you're also interested in using Java to build web applications in Play, you should take
a look at Play 2 for Java, which was written at the same time as this book. The differ-
ences between Scala and Java go beyond the syntax, and the Java book isn’t a copy
of this book with the code samples in Java. Play 2 for Java is more focused on enter-
prise architecture integration than is this book, which introduces more new technology.

Having mentioned Java and the JVM, it also makes sense to explain how Play relates to
the Java Enterprise Edition (Java EE) platform, partly because most of our web devel-
opment experience is with Java EE. This isn’t particularly relevant if your web develop-
ment background is with PHP, Rails, or Django, in which case you may prefer to skip
the next section and continue reading with section 1.2.

Play isn’t Java EE

Before Play, Java web frameworks were based on the Java Servlet API, the part of the
Java Enterprise Edition stack that provides the HTTP interface. Java EE and its archi-
tectural patterns seemed like a good idea, and brought some much-needed structure
to enterprise software development. But this turned out to be a bad idea, because
structure came at the cost of additional complexity and low developer satisfaction.
Play is different, for several reasons.

Java’s design and evolution is focused on the Java platform, which also seemed like
a good idea to developers who were trying to consolidate various kinds of software

CHAPTER 1 Introduction to Play 2

development. From a Java perspective, the web is only another external system. The
Servlet API, for example, adds an abstraction layer over the web’s own architecture
that provides a more Java-like API. Unfortunately, this is a bad idea, because the web is
more important than Java. When a web framework starts an architecture fight with the
web, the framework loses. What we need instead is a web framework whose architec-
ture embraces the web’s, and whose API embraces HTTP.

LASAGNA ARCHITECTURE

One consequence of the Servlet API’s problems is complexity, mostly in the form of
too many layers. This is the complexity caused by the APT’s own abstraction layers,
compounded by the additional layer of a web framework that provides an API that’s
rich enough to build a web application, as shown in figure 1.2.

The Servlet API was originally intended to be an end-user API for web developers,
using Servlets (the name for controller Java classes), and JavaServer Pages (JSP) view
templates. When new technologies eventually superseded JSP, they were layered on
top, instead of being folded back into Java EE, either as updates to the Servlet API or as
a new API. With this approach, the Servlet API becomes an additional layer that makes
it harder to debug HTTP requests. This may keep the architects happy, but it comes at
the cost of developer productivity.

THE JSF NON-SOLUTION

This lack of focus on productive web development is apparent within the current
state of Java EE web development, which is now based on JavaServer Faces (JSF). JSF
focuses on components and serverside state, which also seemed like a good idea,
and gave developers powerful tools for building web applications. But again, it
turned out that the resulting complexity and the mismatch with HTTP itself made JSF
hard to use productively.

Java EE frameworks such as JBoss Seam did an excellent job at addressing early
deficiencies in JSF, but only by adding yet another layer to the application architec-
ture. Since then, Java EE 6 has improved the situation by addressing JSF’s worst short-
comings, but this is certainly too little, too late.

Java EE web architecture Play framework architecture
(many layers) (few layers)
| Facelets |
I
| JavaServer Faces | | Play framework |
I
| Servlet AP |
I
| Java EE container (e.g., JBoss AS) | | NIO HTTP server (Netty) |

I
| Servlet/HTTP server (e.g., Tomcat) |

Figure 1.2 Java EE “lasagna” architecture compared to Play’s simplified architecture

1.2

121

122

High-productivity web development 7

Somewhere in the history of building web applications on the JVM, adding layers
became part of the solution without being seen as a problem. Fortunately for JVM web
developers, Play provides a redesigned web stack that doesn’t use the Servlet API and
works better with HTTP and the web.

High-productivity web development

Web frameworks for web developers are different. They embrace HTTP and provide
APIs that use HTTP’s features instead of trying to hide HTTP, in the same way that web
developers build expertise in the standard web technologies—HTTP, HTML, CSS, and
JavaScript—instead of avoiding them.

Working with HTTP

Working with HTTP means letting the application developer make the web application
aware of the different HTTP methods, such as GET, POST, PUT, and DELETE. This is differ-
ent than putting an RPC-style layer on top of HTTP requests, using remote procedure
call URLs like /updateProductDetails in order to tell the application whether you
want to create, read, update, or delete data. With HTTP it’s more natural to use PUT /
product to update a product and GET /product to fetch it.

Embracing HTTP also means accepting that application URLs are part of the appli-
cation’s public interface, and should therefore be up to the application developer to
design instead of being fixed by the framework.

This approach is for developers who not only work with the architecture of the
World Wide Web, instead of against it, but may have even read it.!

In the past, none of these web frameworks were written in Java, because the Java
platform’s web technologies failed to emphasize simplicity, productivity, and usability.
This is the world that started with Perl (not Lisp, as some might assume), was largely
taken over by PHP, and in more recent years has seen the rise of Ruby on Rails.

Simplicity, productivity, and usability

In a web framework, simplicity comes from making it easy to do simple things in a few
lines of code, without extensive configuration. A Hello World in PHP is a single line of
code; the other extreme is JavaServer Faces, which requires numerous files of various
kinds before you can even serve a blank page.

Productivity starts with being able to make a code change, reload the web page in the
browser, and see the result. This has always been the norm for many web developers,
whereas Javaweb frameworks and application servers often have long build-redeploy cycles.
Java hot-deployment solutions exist, but they aren’t standard and come at the cost of addi-
tional configuration. Although there’s more to productivity, this is what matters most.

Usability is related to developer productivity, but also to developer happiness.
You’re certainly more productive if it’s easier to get things done, no matter how smart
you are, but a usable framework can be more than that—a joy to use. Fun, even.

L Architecture of the World Wide Web, Volume One, W3C, 2004 (www.w3.org/TR/webarch/).

www.w3.org/TR/webarch/

1.3

14

CHAPTER 1 Introduction to Play 2

Why Scala needs Play

Scala needs its own high-productivity web framework. These days, mainstream soft-
ware development is about building web applications, and a language that doesn’t
have a web framework suitable for a mainstream developer audience remains con-
fined to niche applications, whatever the language’s inherent advantages.

Having a web framework means more than being aware of separate libraries that
you could use together to build a web application; you need a framework that inte-
grates them and shows you how to use them together. One of a web framework’s roles
is to define a convincing application architecture that works for a range of possible
applications. Without this architecture, you have a collection of libraries that might
have a gap in the functionality they provide or some fundamental incompatibility,
such as a stateful service that doesn’t play well with a stateless HTTP interface. What’s
more, the framework decides where the integration points are, so you don’t have to
work out how to integrate separate libraries yourself.

Another role a web framework has is to provide coherent documentation for the
various technologies it uses, focusing on the main web application use cases, so that
developers can get started without having to read several different manuals. For exam-
ple, you hardly need to know anything about the JSON serialization library that Play
uses to be able to serve JSON content. All you need to get started is an example of the
most common use case and a short description about how it works.

Other Scala web frameworks are available, but these aren’t full-stack frameworks
that can become mainstream. Play takes Scala from being a language with many useful
libraries to being a language that’s part of an application stack that large numbers of
developers will use to build web applications with a common architecture. This is why
Scala needs Play.

Type-safe web development—why Play needs Scala

Play 1.x used bytecode manipulation to avoid the boilerplate and duplication that’s
typical when using Java application frameworks. But this bytecode manipulation
seems like magic to the application developer, because it modifies the code at run-
time. The result is that you have application code that looks like it shouldn’t work, but
which is fine at runtime.

The IDE is limited in how much support it can provide, because it doesn’t know
about the runtime enhancement either. This means that things like code navigation
don’t seem to work properly, when you only find a stub instead of the implementation
that’s added at runtime.

Scala has made it possible to reimplement Play without the bytecode manipulation
tricks that the Java version required in Play 1.x. For example, Play templates are Scala
functions, which means that view template parameters are passed normally, by value,
instead of as named values to which templates refer.

Scala makes it possible for web application code to be more type-safe. URL routing
and template files are parsed using Scala, with Scala types for parameters.

1.5

1.5.1

Hello Play! 9

To implement a framework that provides equivalent idiomatic APIs in both Java
and Scala, you have to use Scala. What’s more, for type-safe web development, you also
need Scala. In other words, Play needs Scala.

Hello Play!

As you’d expect, it’s easy to do something as simple as output “Hello world!” All you
need to do is use the Play command that creates a new application, and write a couple
of lines of Scala code. To begin to understand Play, you should run the commands
and type the code, because only then will you get your first experience of Play’s sim-
plicity, productivity, and usability.

The first step is to install Play. This is unusual for a JVM web framework, because
most are libraries for an application that you deploy to a Servlet container that you’ve
already installed. Play is different. Play includes its own server and build environment,
which is what you’re going to install.

Getting Play and setting up the Play environment

Start by downloading the latest Play 2 release from http://playframework.org. Extract
the zip archive to the location where you want to install Play—your home directory is
fine.

Play’s only prerequisite is a JDK—version 6 or later—which is preinstalled on Mac
OS X and Linux. If you’re using Windows, download and install the latest JDK.

Mac users can use Homebrew

If you're using Mac OS X, you could also use Homebrew to install Play 2. Use the
command brew install play to install, and Homebrew will download and extract
the latest version, and take care of adding it to your path, too.

Next, you need to add this directory to your PATH system variable, which will make it
possible for you to launch Play by typing the play command. Setting the PATH variable
is OS-specific.
= Mac OS X—Open the file /etc/paths in a text editor, and add a line consisting
of the Play installation path.
= Linux—Open your shell’s start-up file in a text editor. The name of the file
depends on which shell you use; for example, .bashrc for bash or .zshrc for
zsh. Add the following line to the file: PATH="$PATH" : /path/to/play, substitut-
ing your Play installation path after the colon.
= Windows XP or later—Open the command prompt and execute the command
setx PATH "$PATH%;c:\path\to\play" /m substituting your Play installation
path after the semicolon.

lvww.allitebooks.coni

http://playframework.org
http://www.allitebooks.org

10

1.5.2

CHAPTER 1 Introduction to Play 2

Now that you’ve added the Play directory to your system path, the play command
should be available on the command line. To try it out, open a new command-line
window, and enter the play command. You should get output similar to this:

_ |
SN N A B
[/ I AN AN
[_| |/

play! 2.1.1, http://www.playframework.org
This is not a play application!

Use “play new™ to create a new Play application in the
current directory, or go to an existing application
and launch the development console using “play’.

You can also browse the complete documentation at
http://www.playframework.org.
As you can see, the play command by itself only did two things: output an error mes-
sage (This is not a play application!) and suggest that you try the play new com-
mand instead. This is a recurring theme when using Play: when something goes
wrong, Play will usually provide a useful error message, guess what you’re trying to do,
and suggest what you need to do next. This isn’t limited to the command line; you’ll
also see helpful errors in your web browser later on.

For now, let’s follow Play’s suggestion and create a new application.

Creating and running an empty application

A Play application is a directory on the filesystem that contains a certain structure that
Play uses to find configuration, code, and any other resources it needs. Instead of cre-
ating this structure yourself, you use the play new command, which creates the
required files and directories.

Enter the following command to create a Play application in a new subdirectory
called hello:

play new hello

When prompted, confirm the application name and select the Scala application tem-
plate, as listing 1.1 shows:

Listing 1.1 Command-line output when you create a new Play application

$ play new hello

153

Hello Play! 11

play! 2.1, http://www.playframework.org
The new application will be created in /src/hello

What is the application name?
> hello

Which template do you want to use for this new application?

1 - Create a simple Scala application
2 - Create a simple Java application

> 1
OK, application hello is created.

Have fun!

The first time you do this, the build system will download some additional files (not
shown). Now you can run the application.

Listing 1.2 Command-line output when you run the application

$ cd hello

$ play run

[info] Loading global plugins from /Users/peter/.sbt/plugins/project
[info] Loading global plugins from /Users/peter/.sbt/plugins

[info] Loading project definition from /src/hello/project

[info] Set current project to hello (in build file:/src/hello/)

--- (Running the application from SBT, auto-reloading is enabled) ---
[info] play - Listening for HTTP on /0:0:0:0:0:0:0:0%0:9000

(Server started, use Ctrl+D to stop and go back to the console...)

As when creating the application, the build system will download some additional files
the first time.

Play application structure

The play new command creates a default application with a basic structure, including
a minimal HTTP routing configuration file, a controller class for handling HTTP
requests, a view template, jQuery, and a default CSS stylesheet, as listing 1.3 shows.

Listing 1.3 Files in a new Play application

.gitignore
app/controllers/Application.scala
app/views/index.scala.html
app/views/main.scala.html
conf/application.conf

conf/routes
project/build.properties
project/Build.scala

12

1.54

CHAPTER 1 Introduction to Play 2

project/plugins.sbt
public/images/favicon.png
public/javascripts/jquery-1.7.1.min.js
public/stylesheets/main.css
test/ApplicationSpec.scala
test/IntegrationSpec.scala

This directory structure is common to all Play applications. The top-level directories
group the files as follows:

= app—Application source code

= conf—Configuration files and data

= project—Project build scripts

= public—Publicly accessible static files

= test—Automated tests

The play run command starts the Play server and runs the application.

USE ~run TO COMPILE CHANGED FILES IMMEDIATELY If you start your applica-
tion with the run command, Play will compile your changes when it receives
the next HTTP request. To start compilation sooner, as soon as the file has
changed, use the ~run command instead.

Accessing the running application

Now that the application is running, you can access a default welcome page at http:
//localhost:9000/, as figure 1.3 shows.

Your new application is ready.

Welcome to Play 2.1 Browse

- s s . i Z | weniatior
Congratulations, you've just created a new Play application. This page will help you with the Local documentation
few next steps. Browse the Scala AP|

You're using Play 2.1.1 Start here

Using the Play console

Why do v°u see this page? Setting up your preferred IDE
Your first application

The conf/routes file defines a route that tells Play to invoke the Application.index

action whenever a browser requests the / URI using the GET method:

Home page
GET / controllers.Application. index

Play has invoked the controllers.Application. index method to obtain the Action to
execute:

def index = Action {

Figure 1.3 The default welcome page for a new Play application

1.5.5

1.5.6

Hello Play! 13

This is already a kind of Hello World example—it shows a running application that
outputs something, which allows you to see how things fit together. This is more than
a static HTML file that tells you that the web server is running. Instead, this is the min-
imal amount of code that can show you the web framework in action. This makes it
easier to create a Hello World example than it would be if you had to start with a com-
pletely blank slate—an empty directory that forces you to turn to the documentation
each time you create a new application, which probably isn’t something you’ll do
every day.

Leaving our example application at this stage would be cheating, so we need to
change the application to produce the proper output. Besides, it doesn’t say “hello
world” yet.

Add a controller class

Edit the file app/controllers/Application.scala and replace the Application
object’s index method with the following:

def index = Action {
Ok ("Hello world")
}

This defines an action method that generates an HTTP OK response with text content.
Now http://localhost:9000/ serves a plain-text document containing the usual
output.

This works because of the line in the conf/routes HTTP routing configuration file
that maps GET / HTTP requests to a method invocation:

GET / controllers.Application.index()

Add a compilation error

The output is more interesting if you make a mistake. In the action method, remove
the closing quote from "Hello world", save the file, and reload the page in your web
browser. You’ll get a friendly compilation error, as figure 1.4 shows.

Compilation error

unclosed string literal

In /Users/pedro/Dropbox/notes/book/samples/chaptl/hello/app/controllers.scala at line 7.

5 object Application extends Controller {

6 def index = Action {

ok(iHello world)

8 3

Figure 1.4 Compilation errors are shown in the web browser, with the relevant source code highlighted.

14

1.5.7

1.5.8

CHAPTER 1 Introduction to Play 2

Fix the error in the code, save the file, and reload the page again. It’s fixed. Play
dynamically reloads changes, so you don’t have to manually build the application
every time you make a change.

Use an HTTP request parameter

This is still not a proper web application example, because we didn’t use HTTP or
HTML yet. To start with, add a new action method with a string parameter to the con-
troller class:

def hello(name: String) = Action
Ok ("Hello " + name)

}
Next, add a new line to the conf/routes file to map a different URL to your new
method, with an HTTP request parameter called n:

GET /hello controllers.Application.hello(n: String)

Now open http://localhost:9000/hello?n=Play! and you can see how the URL’s
query string parameter is passed to the controller action. Note that the query string
parameter n matches the parameter name declared in the routes file, not the hello
action method parameter.

Add an HTML page template

Finally, to complete this first example, you need an HTML template, because you usu-
ally use web application frameworks to generate web pages instead of plain-text docu-
ments. Create the file app/views/hello.scala.html with the following content:
@ (name: String)
<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>Hello</title>
</head>
<body>
<hl>Hello @name</hl>
</body>
</html>
This is a Scala template. The first line defines the parameter list—a name parameter in
this case—and the HTML document includes an HTML em tag whose content is a Scala
expression—the value of the name parameter. A template is a Scala function definition
that Play will convert to normal Scala code and compile. Section 3.5.4 explains how
templates become Scala functions in more detail.

To use this template, you have to render it in the hello action method to produce
its HTML output. Once Play has converted the template to a Scala object called views
.html.hello, this means calling its apply method. You then use the rendered tem-
plate as a String value to return an Ok result:

1.6

The console 15

def hello(name: String) = Action {
Ok (views.html.hello (name))
1

Reload the web page—http://localhost:9000/hello?n=Play!—and you’ll see the
formatted HTML output.

The console

Web developers are used to doing everything in the browser. With Play, you can also
use the Play console to interact with your web application’s development environment
and build the system. This is important for both quick experiments and automating
things.

To start the console, run the play command in the application directory without
an additional command:

play
If you're already running a Play application, you can type Control+D to stop the appli-
cation and return to the console.

The Play console gives you a variety of commands, including the run command
that you saw earlier. For example, you can compile the application to discover the
same compilation errors that are normally shown in the browser, such as the missing
closing quotation mark that you saw earlier:

hello] $ compile
info] Compiling 1 Scala source to target/scala-2.10/classes...

[

[

[error] app/controllers/Application.scala:9: unclosed string literal
[error] Ok ("Hello world)

[error] ~

[error] ../controllers/Application.scala:10: ')' expected but '}' found
[error] }

[error] *

[error] two errors found

[error] (compile:compile) Compilation failed

[error] Total time: 2 s, completed Jun 16, 2013 11:40:29 AM

[hello] S

You can also start a Scala console (after fixing the compilation error), which gives you
direct access to your compiled Play application:

[hello] $ console

[info] Starting scala interpreter...

[info]

Welcome to Scala version 2.10.0

(Java HotSpot (TM) 64-Bit Server VM, Java 1.6.0_37).
Type in expressions to have them evaluated.

Type :help for more information.

scala>

Now that you have a Scala console with your compiled application, you can do things
like render a template, which is a Scala function that you can call:

16

1.7

CHAPTER 1 Introduction to Play 2

scala> views.html.hello.render ("Play!")
resO: play.api.templates.Html =

<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>Hello</title>
</heads>
<body>
<hl>Hello Play!</hl>
</body>
</html>
We just rendered a dynamic template in a web application that isn’t running. This has
major implications for being able to test your web application without running a

Server.

Summary

Play was built by web developers, for web developers—taking good ideas from existing
high-productivity frameworks, and adding the JVM’s power and rich ecosystem. The
result is a web framework that offers productivity and usability as well as structure and
flexibility. After starting with a first version implemented in Java, Play has now been
reimplemented in Scala, with more type safety throughout the framework. Play gives
Scala a better web framework, and Scala gives Play a better implementation for both
Scala and Java APIs.

As soon as you start writing code, you go beyond Play’s background and its feature
list to what matters: the user experience, which determines what it’s like to use Play.
Play achieves a level of simplicity, productivity, and usability that means you can look
forward to enjoying Play and, we hope, the rest of this book.

Your furst Play application

This chapter covers

Planning an example Play application
Getting started with coding a Play application

Creating the initial model, view templates,
controllers, and routes

Generating bar code images
Validating form data

Now that you’ve seen how to download and install Play, and how to greet the world
in traditional fashion, you’ll want to start writing some proper code, or at least read
some. This chapter introduces a sample application that shows how a basic Play
application fits together from a code perspective.

Although we’ll tell you what all of the code does, we’ll save most of the details
and discussion until later chapters. We want you to have lots of questions as you
read this chapter, but we’re not going to be able to answer all of them straight away.

This chapter will also help you understand the code samples in later chapters,
which will be based on the same example.

Our example application is a prototype for a web-based product catalog, with
information about different kinds of paperclips. We’ll assume it’s part of a larger
warehouse management system, used for managing a supply chain. This may be

17

18

2.1

CHAPTER 2 Your first Play application

less glamorous than unique web applications such as Twitter or Facebook, but then
you’re more likely to be a commercial software developer building business applica-
tions than a member of Twitter’s core engineering team.!

We’ll start by creating a new application and then add one feature at a time, so you
can get a feel for what it’s like to build a Play application. But before we do that, let’s

see what we’re going to build.

The product list page

We’ll start with a simple list of products, each of which has a name and a description,
shown in figure 2.1. This is a prototype, with a small number of products, so there isn’t
any functionality for filtering, sorting, or paging the list.

Product catalog

Paperclips Large
Large Plain Pack of 1000

Zebra Paperclips
Zebra Length 28mm Assorted 150 Pack

Giant Paperclips
Giant Plain 51mm 100 pack

MNo Tear Paper Clip
Mo Tear Extra Large Pack of 1000

Paperclip Giant Plain
Giant Plain Pack of 10000

Figure 2.1 The main page, showing a list of products

To make the product list page work, we’ll need a combination of the following:

= A view template—A template that generates HTML

= A controller action—A Scala function that renders the view

= Route configuration—Configuration to map the URL to the action

= The model—Scala code that defines the product structure, and some test data

These components work together to produce the list page, as shown in figure 2.2.

HTTP Invoke Render
request Routes action Controller page View
configuration class template
Maps the request Load data The action renders the
URL to a controller template, using data from
action the model, and sends this
Model with the HTTP response

Figure 2.2 The application’s model-view-controller structure

1 Apart from anything else, this is the kind of business domain we work in.

211

212

The product list page 19

Getting started

To get started, we need to create the new application and remove files that we’re not
going to use. Then we can configure languages.

If you haven’t already downloaded and installed Play, refer to the instructions in
section 1.5.1.

As in the previous chapter’s Hello World example, use the play command to cre-
ate a new application.

play new products

Before going any further, you can delete a couple of files that we’re not going to use
for this prototype:

rm products/public/images/favicon.png
rm products/public/javascripts/jquery-1.7.1.min.Jjs

Now run the application to check that your environment works:

cd products
play run

http://localhost:9000/ should show the same Play welcome page as in section 1.5.4.

Stylesheets

If you’re especially observant, you may have wondered why the product list page
screenshot at the start of this section had a formatted title bar, background color,
and styled product list. As with any web application, we want to use stylesheets to
make sure our user interface isn’t inconsistent (or ugly). This means that we need
some CSS. For this sample application, we’re going to use Twitter Bootstrap (http://
twitter.github.io/bootstrap/) for the look-and-feel.

This just means downloading the Twitter Bootstrap distribution (we’re using ver-
sion 2.0.2) and copying docs/assets/css/bootstrap.css to our application’s public/
stylesheets directory, so we can link to this stylesheet from the templates we’ll create.
Also copy glyphicons-halflings-white.png and glyphicons-halflings.png to
public/img.

These examples also use a custom stylesheet (shown in listing 2.1 as public/
stylesheets/main.css) that overrides some of the Twitter Bootstrap styling for the
screenshots in the book.

Listing 2.1 Override Twitter Bootstrap—public/stylesheets/main.css

body { color:black; }

body, p, label { font-size:15px; }

.label { font-size:13px; line-height:16px; }

.alert-info { border-color:transparent; background-color:#3A87AD;
color:white; font-weight:bold; }

div.screenshot { width: 800px; margin:20px; background-color:#DOE7EF; }

.navbar-fixed-top .navbar-inner { padding-left:20px; }

.navbar .nav > 1li > a { color:#bbb; }

M.al I itebooks.cogl

http://twitter.github.io/bootstrap/
http://twitter.github.io/bootstrap/
http://www.allitebooks.org

20

2.1.3

CHAPTER 2 Your first Play application

.screenshot > .container { width: 760px; padding: 20px; }
.navbar-fixed-top, .navbar-fixed-bottom { position:relative; }
hl { font-size:125%; }
table { border-collapse: collapse; width:100%; }
th, td { text-align:left; padding: 0.3em 0;
border-bottom: 1px solid white; }
tr.odd td { }
form { float:left; margin-right: lem; }
legend { border: none; }
fieldset > div { margin: 12px 0; }
.help-block { display: inline; vertical-align: middle; }
.error .help-block { display: none; }
.error .help-inline { padding-left: 9px; color: #B94A48; }
footer { clear: both; text-align: right; }
dl.products { margin-top: 0; }
dt { clear: right; }
.barcode { float:right; margin-bottom: 10px; border: 4px solid white; }

You can see the result of using Twitter Bootstrap with this stylesheet in this chapter’s
screenshots.

Language localization configuration

This is a good time to configure our application. Not that there’s much to do: we only
need to configure which languages we’re going to use. For everything else, there are
default values.

First open conf/application.conf in an editor and delete all of the lines except
the ones that define application.secret and application.langs near the top. You
should be left with something like this:

application.secret="WA5HkNORKAJP [kZJ@OV;HGa " <4tDvgSfqn2PJednx410s77NT1"
application.langs="en"

Most of what you just deleted were commented-out example configuration values,
which you’re not going to need. You won’t be using logging in this prototype either, so
you don’t need to worry about the log level configuration.

REMOVE CONFIGURATION FILE CRUFT Once you’ve created a new Play applica-
tion, edit the conf/application.conf and delete all of the commented lines
that don’t apply to your application so you can see your whole configuration
at a glance. If you later want to copy entries from the default applica-
tion.conf file, you can find it in $PLAY HOME/framework/skeletons/scala-
skel/conf/.

The value of the application.secret configuration property will be something else:
this is a random string that Play uses in various places to generate cryptographic signa-
tures, most notably the session cookie. You should always leave this generated prop-
erty in your application configuration. The “secret” in application.secret suggests
that it should be kept secret. Be sure to use a different secret for your production envi-
ronment and never check that into your source code repository.

214

The product list page 21

The application.langs value indicates that the application supports English.
Because supply chains (and Play) are international,? our prototype will support addi-
tional languages. To indicate additional support for Dutch, Spanish, and French,
change the line to

application.langs="en,es, fr,nl"

We’ll use this configuration to access application user-interface text, which we’ll
define in a messages file for each language:

= conf/messages—Default messages for all languages, for messages not localized
for a particular language

= conf/messages.es—Spanish (which is called Espariol in Spanish)

= conf/messages.fr—French (Frangaisin French)

= conf/messages.nl—Dutch (Nederlandsin Dutch)

Note that unlike Java properties files, these files must use UTF-8 encoding.

Although we haven’t started on the user interface yet, you can make a start by
localizing the name of the application. Create the messages files with the contents
shown in listings 2.2 through 2.5:

Listing 2.2 conf/messages

application.name = Product catalog

Listing 2.3 conf/messages.es

application.name = Catdlogo de productos

Listing 2.4 conf/messages.fr

application.name = Catalogue des produits

Listing 2.5 conf/messages.nl
application.name = Productencatalogus

Now we’re ready to start adding functionality to our application, starting with a list of
products.

Adding the model

We’ll start the application with the model, which encapsulates the application’s data
about products in the catalog. We don’t have to start with the model, but it’s conve-
nient to do so because it doesn’t depend on the code that we’re going to add later.

To start with, we need to include three things in the example application’s model,
which we’ll extend later:

2 Not to mention the authors: Peter is English, Erik is Dutch, and Francisco is Spanish.

22

2.1.5

CHAPTER 2 Your first Play application

= A model class—The definition of the product and its attributes
= A data access object (DAO)—Code that provides access to product data
= Test data—A set of product objects

We can put all of these in the same file, with the contents of listing 2.6.

Listing 2.6 The model—app/models/Product.scala

package models

case class Product (<+ Model class
ean: Long, name: String, description: String)

object Product { <—— Data access object

var products = Set(
Product (5010255079763L, "Paperclips Large",
"Large Plain Pack of 1000"),
Product (5018206244666L, "Giant Paperclips",
"Giant Plain 51lmm 100 pack"),
Product (5018306332812L, "Paperclip Giant Plain",
"Giant Plain Pack of 10000"),
Product (5018306312913L, "No Tear Paper Clip",
"No Tear Extra Large Pack of 1000"),
Product (5018206244611L, "Zebra Paperclips",
"Zebra Length 28mm Assorted 150 Pack")
)

def findAll = products.toList.sortBy(_ .ean) <—— Finder function
}
Note that the Product case class has a companion object, which acts as the data access
object for the product class. For this prototype, the data access object contains static
test data and won’t actually have any persistent storage. In chapter 5, we’ll show you
how to use a database instead.

The data access object includes a £indAll finder function that returns a list of
products, sorted by EAN code.

The EAN identifier is an international article number (previously known as a
European Article Number, hence the abbreviation), which you typically see as a 13-
digit bar code on a product. This system incorporates the Universal Product Code
(UPC) numbers used in the U.S. and Japanese Article Number (JAN) numbers. This
kind of externally defined identifier is a better choice than a system’s internal identi-
fier, such as a database table primary key, because it’s not dependent on a specific
software installation.

Product list page

Next, we need a view template, which will render HTML output using data from the
model—a list of products in this case.

2.1.6

The product list page 23

We’ll put the product templates in the views.html.products package. For now,
we only need a list page, so create the new file shown in listing 2.7.

Listing 2.7 The list page template—app/views/products/list.scala.html

Template

@ (products: List [Product]) (implicit lang: Lang)
parameters

@main (Messages ("application.name")) {

<dl class="products">

@for (product <- products) { Loop over the
<dt>@product .name</dt> products parameter
<dd>@product .description</dd>

}

</dl>
}
This is a Scala template: an HTML document with embedded Scala statements, which
start with an @ character. You’ll learn more about the template syntax in section 6.3.

For now, there are two things worth noticing about the template. First, it starts with
parameter lists, like a Scala function. Second, the products parameter is used in a for
loop to generate an HTML definition list of products.

The implicit Lang parameter is used for the localized message lookup performed
by the Messages object. This looks up the page title, which is the message with the key
application.name.

The page title and the HTML block are both passed as parameters to main, which is
another template: the layout template.

Layout template

The layout template is just another template, with its own parameter lists, as listing 2.8
shows.

Listing 2.8 The layout template—app/views/main.scala.html

@(title: String) (content: Html) (implicit lang: Lang) <P4W Parameter
<!DOCTYPE html> list
<html>
<head>
<titles@title</title> <—— Output title
<link rel="stylesheet" type="text/css" media="screen"
href='@routes.Assets.at ("stylesheets/bootstrap.css") '>

<link rel="stylesheet" media="screen"
href="@routes.Assets.at ("stylesheets/main.css") ">
</head>
<body>
<div class="screenshot">

<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">

24

217

2.1.8

CHAPTER 2 Your first Play application

@Messages ("application.name")

</div>
</div>
</divs>

<div class="container">
@?ontent Outputpage

</div> content block
</div>
</body>
</html>
The main purpose of this template is to provide a reusable structure for HTML pages
in the application, with a common layout. The dynamic page-specific parts are where
the page title and page contents are output.

Most of the contents of this template are taken up by the HTML structure for Twit-

ter Bootstrap, which we’ll use to style the output.

Controller action method

Now that we have model code that provides data and a template that renders this data
as HTML, we need to add the code that will coordinate the two. This is the role of a
controller, and the code looks like listing 2.9.

Listing 2.9 The products controller—app/controllers/Products.scala

package controllers

import play.api.mvc.{Action, Controller}
import models.Product

object Products extends Controller ({ Coqﬂn"er
def list = Action { implicit request => action
val products = Product.findall Get a product
list from model
Ok (views.html.products.list (products)) Render view
} template

}

This controller is responsible for handling incoming HTTP requests and generating

responses, using the model and views. Controllers are explained further in section 4.2.
We’re almost ready to view the result in the web browser, but first we have to con-

figure the HTTP interface by adding a route to the new controller action.

Adding a routes configuration

The routes configuration specifies the mapping from HTTP to the Scala code in our
controllers. To make the products list page work, we need to map the /products URL

219

2.1.10

The product list page 25

to the controllers.Products.list action. This means adding a new line in the
conf/routes file, as listing 2.10 shows.

Listing 2.10 Routes configuration file—conf/routes

GET / controllers.Application.index <+—— Welcome page
GET /products controllers.Products.list <—— Products list

GET /assets/*file controllers.Assets.at (path="/public", file)

As you can see, the syntax is relatively simple. There are two other routes in the file,
for the default welcome page, and for public assets. You can read more about serving
assets in section 3.6.

Now that we’ve added the HTTP route to the new products list, you should be able
to see it in your web browser at http://localhost:9000/products.

Replacing the welcome page with a redirect

Ifyouopenhttp://localhost:9000/,you’llstill see the welcome page, which youdon’t
need any more. You can replace it with an HTTP redirect to the products list by changing
the controller action in app/controllers/Application.scala (see listing 2.11) to
return an HTTP redirect response instead of rendering the default template.

Listing 2.11 The default controller—app/controllers/Application.scala

package controllers
import play.api.mvc.{Action, Controller}

object Application extends Controller {

def index = Action { R:::ir::ttstl?st URL
Redirect (routes.Products.list ()) P

}
}

Now delete the unused app/views/index.scala.html template.
Next we’ll add some debugging information to see how language selection works,
among other things.

Checking the language localizations

Although we now have a basic products list, we haven’t checked the application local-
izations. First, let’s look at how the language is selected.

Play sets the application language if the language configuration in the HTTP
request matches one of the configured languages. For example, if you configure your
web browser’s language settings to indicate that you prefer Spanish, this will be
included with HTTP requests and the application language will be Spanish.

To check the setting, let’s add some debugging information to the page footer.
Create a new template for the footer, in app/views/debug.scala.html, as shown in

26

CHAPTER 2 Your first Play application

listing 2.12. While we’re adding debug information, we’ll include the server user
name and timestamp.

Listing 2.12 Debug information template—app/views/debug.scala.html

@() (implicit lang: Lang) Application language,
@import play.api.Play.current set from request
<footers>

lang = @lang.code,
user = @current.configuration.getString("environment.user"),
date = @(new java.util.Date() .format ("yyyy-MM-dd HH:mm"))
</footers>
The user name comes from a configuration property, so add the following line to

conf/application.conf:
environment .user=3${USER}

The ${ .. } syntax is a configuration property reference. This means that USER will be
looked up as another configuration property or as an environment variable if it can’t
be found. For more details about the configuration file syntax, see section 3.2. Note
that on Windows, the environment variable is USERNAME, so set the value to ${USER-
NAME} instead of ${USER}.

Finally, we need to add the footer to the main page template. Rendering one tem-
plate from another is like calling a Scala function, so we add @debug () to the main lay-
out template, as listing 2.13 shows.

Listing 2.13 Page footer to the layout template—app/views/main.scala.html

<div class="container">

@content Call debug
@debug () template
</divs>

Now we can load the page with the web browser’s preferred language set to Spanish,
and see the page with a Spanish heading and the es language code in the footer, as
figure 2.3 shows.

Catalogo de productos

Paperclips Large

Large Plain Pack of 1000
Zebra Paperclips

Zebra Length 28mm Assorted 150 Pack
Giant Paperclips

Giant Plain 51mm 100 pack
No Tear Paper Clip

Mo Tear Extra Large Pack of 1000
Paperclip Giant Plain

Giant Plain Pack of 10000

lang = es, user = pedro, date = 2012-07-01 12:42

Figure 2.3 The product list page, with the language set to Spanish (es)

2.2

221

22.2

Details page 27

Product catalog

Product: Paperclips Large
EAN: 5010255079763
MName: Paperclips Large
Description: f 1000 5"010255"079763

Large Plain Pack of 1

& Edit
debug: user=paco, lang=en, date=2013-06-30

Figure 2.4 The product details page, including a generated bar code

Details page
The next page is a details page for a particular product. The page’s URL, for example
/products/5010255079763, includes the EAN code, which is also used to generate a
bar code image, as figure 2.4 shows.

To finish the details page, we’ll need several more things:

= A new finder method—To fetch one specific product

= A view template—To show this details page

= An HTTP routing configuration—For a URL with a parameter
= A bar code image—To display on the page

We’ll also need to add a third-party library that generates the bar code, and add
another URL for the bitmap image. Let’s start with the finder method.

Model finder method
The new finder method, which will find a product by its EAN, is a short one. Add the

following to app/models/Product .scala:

object Product {
var products = Set(

def findByEan(ean: Long) = products.find(.ean == ean)
}
This method takes the object’s Set of products (products) and calls its find method
to get the requested product. Let’s look at the template.

Details page template

The new template will show the details of the requested product, along with the EAN
as a bar code. Because we’ll want to show the bar code in other templates, in later ver-
sions of the application, we’ll make a separate template for it. Now we have all that we
need for a template that will show a product’s details (see listing 2.14).

28

223

CHAPTER 2 Your first Play application

Listing 2.14 Product-details—app/views/products/details.scala.html

@ (product: Product) (implicit lang: Lang) “““‘”‘H“HH‘“H“‘“
570102557079763
@main (Messages ("products.details", product.name)) {
<h2>
@tags.barcode (product .ean) <+—— Call bar code tag
@Messages ("products.details", product.name)
</h2>

Output product

<dl class="dl-horizontal"s> details

<dt>@Messages ("ean") :</dt>
<dd>e@eproduct .ean</dd>

Product: Paperclips Large
<dt>@Messages ("name") :</dt>

<dd>@product .name</dd> EAN: 5010255079763
Name: Paperclips Large

iption: Plain Pack of 1
<dt>@Messages ("description") :</dt> Description-=arge Flaln Beok of 1000

<dd>@product .description</dd>
</dl>
}
There’s not much new in this template, except for the bar code tag that we’re includ-
ing: the template won’t compile until you add it. If you’re familiar with Play 1, you’ll
know that Play 1’s templates were actually Groovy templates and that you could write
your own tags to use in them.

Scala templates don’t really have tags. You may recall that Scala templates become
functions that you can call (like any other function) from within your templates. This
is all that our bar code “tag” is—we’re just calling it a tag because that’s an idea we’re
used to working with. We also have a convention to put small or frequently used tem-
plates in a tags package.

Let’s make the bar code tag, so that the template compiles, by adding a new file
shown in listing 2.15.

Listing 2.15 The bar code tag—app/views/tags/barcode.scala.html

@(ean: Long)

Additional message localizations

Our product-details template uses some additional internationalized messages, so we
need to update the message files, as listings 2.16 through 2.19 show:

224

Details page 29

Listing 2.16 Additional details page messages—conf /messages

ean = EAN
name = Name
description = Description

products.details = Product: {0}

Listing 2.17 Additional details page messages—conf /messages.es

ean = EAN
name = Nombre
description = Descripcidn

products.details = Producto: {0}

Listing 2.18 Additional details page messages—conf /messages. fr

name = Nom
description = Descriptif

products.details = Produit: {0}

Listing 2.19 Additional details page messages—conf /messages.nl

ean = EAN
name = Naam
description = Omschrijving

products.details = Product: {0}

A couple of things are still missing; let’s add the action that will be responsible for
finding the requested product and rendering its details page.

Adding a parameter to a controller action

Because our new action needs to know which product to show, we’ll give it a parame-
ter whose value will be the requested product’s EAN code. The action will use the EAN
to find the right product and have it rendered, or return a 404 error if no product
with that EAN was found. Listing 2.20 shows what it looks like.

Listing 2.20 Details page controller action—app/controllers/Products.scala

def show(ean: Long) = Action { implicit request =>
Product.findByEan (ean) .map { product => Render a product
Ok (views.html.products.details (product)) <F4W details page ...
} .getOrElse (NotFound)
} ... OF return
a 404 page

M.al I itebooks.cogl

http://www.allitebooks.org

30

2.2.5

2.2.6

CHAPTER 2 Your first Play application

Our new action makes use of the fact that findByEan returns the product wrapped in
an Option, so that we can call the Option.map method to transform it into an Option
containing a page that shows the product details. This rendered page is then returned
as the action’s result by the call to getOrElse. In the case that the product wasn’t
found, findByEan will have returned a None whose map will return another None whose
getOrElse returns its parameter—NotFound in this case.

Now that we have an action that takes a parameter, we need a way to pass the
parameter to the action from the request. Let’s look at how to add parameters to
routes.

Adding a parameter to a route

We want to put the EAN in the path of the request, rather than as a URL parameter. In
Play, you can do this by putting the name of the parameter in the path of your URL
with a colon (:) in front of it, as listing 2.21 shows. This part of the path will then be
extracted from the request and used as the parameter for the method, as specified by
the route mapping.

Listing 2.21 Details page route—conf/routes

GET /products/:ean controllers.Products.show(ean: Long) Route with ean
parameter

Now we can add the bits for generating the bar code.

Generating a bar code image

To add the bar code to the details page, we need a separate URL that returns a bitmap
image. This means that we need a new controller action to generate the image, and a
new route to define the URL.

First, we’ll add barcode4j to our project’s external dependencies, to make the
library available. In project/Build.scala, add an entry to the appDependencies list:
val appDependencies = Seq(

"net.sf.barcode4j" % "barcode4j" % "2.0"
)
Note that you’ll have to restart the Play console or issue its reload command before it
notices the new dependency, as well as rerun the idea or eclipse commands so that
your IDE knows about it.

Next, we’ll add a new Barcodes controller object that defines two functions. One is
an eanl3BarCode helper function that generates an EAN 13 bar code for the given
EAN code, and returns the result as a byte array containing a PNG image. The other is
the barcode action that uses the eanl3BarCode helper function to generate the bar
code and return the response to the web browser. The Barcodes controller is shown in
listing 2.22.

Details page 31

Listing 2.22 Barcodes controller—app/controllers/Barcodes.scala

package controllers
import play.api.mvc.{Action, Controller}
object Barcodes extends Controller {

val ImageResolution = 144 A
Action that returns

def barcode (ean: Long) = Action { PNG response

import java.lang.IllegalArgumentException

val MimeType = "image/png"
tr Call to helper
v { functi
val imageData = eanl3BarCode (ean, MimeType) unction
Ok (imageData) .as (MimeType)
}
catch {
case e: IllegalArgumentException =>
BadRequest ("Couldn’t generate bar code. Error: " + e.getMessage)
}
}
def eanl3BarCode (ean: Long, mimeType: String): Array[Byte]l =

import java.io.ByteArrayOutputStream

import java.awt.image.BufferedImage

import org.krysalis.barcode4j.output.bitmap.BitmapCanvasProvider
import org.krysalis.barcode4j.impl.upcean.EAN13Bean

val output: ByteArrayOutputStream = new ByteArrayOutputStream
val canvas: BitmapCanvasProvider =
new BitmapCanvasProvider (output, mimeType, ImageResolution,
BufferedImage.TYPE BYTE BINARY, false, 0)

val barcode = new EAN13Bean ()
barcode.generateBarcode (canvas, String valueOf ean)
canvas.finish

output. toByteArray

}
}

Next, we’ll add a route for the controller action that will generate the bar code:
GET /barcode/:ean controllers.Barcodes.barcode (ean: Long)

Finally, request http://localhost:9000/barcode/5010255079763 in a web browser
to check that our application can render bar codes. Now we can request the details
page of a product and see the generated bar code next to its other details.

32

2.3

23.1

CHAPTER 2 Your first Play application

We added a method to our DAO, two new actions (for the details page and bar
code image), their corresponding routes, and some templates to build some new
functionality.

Adding a new product

The third page in the application is a form for adding a new product, with model con-
straints and input validation, as figure 2.5 shows. See chapter 7 for more detailed
information about forms.

Product catalog Products + New

Product details

Product: (new)

EAN
Numeric
Name
Required
Description
Required
Add

debug: user=paco, lang=en, date=2013-06-30
Figure 2.5 The form for adding a new product

To implement the form, we’ll need to capture the form data that the browser sends
when a user fills it in and submits it. But before we do that, we’ll add the new messages
we’re going to need.

Additional message localizations

The messages for adding a product illustrate the functionality that we’re going to add.
They include text for a form submit button, the name of the form’s “command,” and
status messages for success and validation failure. See listings 2.23 through 2.26.

Listing 2.23 conf/messages

products.form = Product details
products.new = (new)
products.new.command = New

23.2

Adding a new product 33

products.new.submit = Add
products.new.success = Successfully added product {O}.

validation.errors = Please correct the errors in the form.
validation.ean.duplicate = A product with this EAN code already exists

Listing 2.24 conf/messages.es

products.form = Detalles del producto
products.new = (nuevo)

products.new.command = Afiadir
products.new.submit = Afiadir
products.new.success = Producto {0} afiadido.

validation.errors = Corrija los errores en el formulario.
validation.ean.duplicate = Ya existe un producto con este EAN

Listing 2.25 conf/messages.fr

products.form = Détails du produit
products.new = (nouveau)
products.new.command = Ajouter
products.new.submit = Ajouter
products.new.success = Produit {0} ajouté.

validation.errors = Veuillez corriger les erreurs sur le formulaire
validation.ean.duplicate = Un produit avec ce code EAN existe déja

Listing 2.26 conf/messages.nl

products.form = Productdetails

products.new = (nieuw)

products.new.command = Toevoegen
products.new.submit = Toevoegen
products.new.success = Product {0} toegevoegd.

validation.errors = Corrigeer de fouten in het formulier
validation.ean.duplicate = Er bestaat al een product met dit EAN

Now we can return to the data processing: the next step is the serverside code that
will capture data from the HTML form.

Form object

In Play, we use a play.api.data.Form object to help us move data between the web
browser and the server-side application. This form encapsulates information about a
collection of fields and how they’re to be validated.

To create our form, we need some extra imports in our controller. Add the follow-
ing to app/controllers/Products.scala:
import play.api.data.Form

import play.api.data.Forms.{mapping, longNumber, nonEmptyText}
import play.api.il8n.Messages

34 CHAPTER 2 Your first Play application

The imports mentioned here are all we need for this specific form. play.api.data
and play.api.data.Forms contain more useful things to help you deal with forms, so
you might prefer to use wildcard imports (..data. and ..data.Forms.).

We’ll be using our form in several action methods in the Products controller, so
we’ll add it to the class as a field (shown in listing 2.27), instead of making it a local
variable inside one particular action method.

Listing 2.27 Product form—app/controllers/Products.scala

privatg le productForm: Form[Product] = Form(The form’s fields and
mappin
fian? -> longNumber.verifying(4——Jtharc°nﬂrﬁn“
"validation.ean.duplicate", Product.findByEan(_) .isEmpty),
"name" -> nonEmptyText,
"description" -> nonEmptyText
) (Product.apply) (Product.unapply) Functions to map between
) QT form and model

This code shows how a form consists of a mapping together with two functions that
the form can use to map between itself and an instance of our Product model class.

The first part of the mapping specifies the fields and how to validate them. There
are several different validations, and you can easily add your own.

The second and third parts of the mapping are the functions the form will use to
create a Product model instance from the contents of the form and fill the form from
an existing Product, respectively. Our form’s fields map directly to the Product class’s
fields, so we simply use the apply and unapply methods that the Scala compiler gener-
ates for case classes. If you’re not using case classes or there’s no one-to-one mapping
between the case class and the form, you’ll have to supply your own functions here.

2.3.3 Form template
Now that we have a form object, we can use it in our template. But first we want to be
able to show messages to the user, so we’ll have to make some changes to the main
template first, as listing 2.28 shows.

Listing 2.28 New main template—app/views/main.scala.html

@(title: String) (content: Html) (implicit flash: Flash, Fhshscope
lang: Lang) parameter

<!DOCTYPE htmls>

<html>

<head>

<titlesetitle</title>
<link rel="stylesheet" type="text/css" media="screen"
href='@routes.Assets.at ("stylesheets/bootstrap.css") '>
<link rel="stylesheet" media="screen"
href="@routes.Assets.at ("stylesheets/main.css") ">
</head>
<body>

Adding a new product 35

<div class="screenshot">

<div class="navbar navbar-fixed-top">
<div class="navbar-inner"s>
<div class="container"s

@Messages ("application.name")

<ul class="nav">
<li class="divider-vertical"s>
<1li class="active">

@Messages ("products.list.navigation")

</1li>

<li class="active">

<i class="icon-plus icon-white"></i>
@Messages ("products.new.command")

</1li>
<li class="divider-vertical"s>

</div>
</div>
</div>

Show success

<div class="container"s> 3
message, if present

@if (flash.get ("success") .isDefined) {
<div class="alert alert-success">
@flash.get ("success")
</div>

}

@if (flash.get ("error") .isDefined) {
<div class="alert alert-error">
@flash.get ("error")
</div>

}

