B
-
- — W -~
- 1. ol /‘.' l
& e] .
- - =~ -
. TEX o~ s i
T E P -t
- . == - o -~ ‘
o = - g | Y A ¥
v - = Y N e
-~ - (N - T ™
e 2 ’ o S g
- . a8 = -
™ - - w ‘!-.._m
v - .
ey 1 =8 - ": ‘: ‘. - -~
P = 2'E ® e .
, . . 4 * Fw - e
- oms = AHY T T)
- smARS S . A e -t
paaseueT SN <a- = —
- 2 . e ~m, i v .
2 TR Ll N N g
=T o - B e
S R - b S .
; - . ll'= - S i ceamn
S " . ¥ (0 P, L S v
- 4 = - - Ll ™
=~ i o - .- _.". “m g - it
9 3 N e ‘I.. vy
| - Lo -
— < UL I - I 5 o
y et nl':" - ol
2 - T ar ¥ »
: ~ . - Bl B
R ~]
emmaas = =28 , e g A]
B A L pe— = | = e “- oy) | s g
ot ———— S am o aw e i 70
B : ‘ L e, Sisumg M
.‘! T : : Ak - T T s
TR o NS Ey
. 2] R e R = o ie ry
. P T " e - L
: o S e T

g‘“ ‘ - . - e B [l
i s B T) e s, ~ e g
—— 1& : TR (A Sl A e, M

Professional Experti.i

PowerShell 3.0 Advanced
Administration Handbook

Sherif Talaat Haijun Fu [PACKT] enterprise &

PUBLISHING

http:///
http://www.allitebooks.org

PowerShell 3.0 Advanced
Administration Handbook

A fast-paced PowerShell guide with real-world
scenarios and detailed solutions

Sherif Talaat

Haijun Fu

. ()
enterprise
professional expertise distilled

PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http:///
http://www.allitebooks.org

PowerShell 3.0 Advanced Administration Handbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2013

Production Reference: 1150413

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-642-6
www . packtpub. com

Cover Image by Siddhart Ravishankar (sidd.ravishankaregmail . com)

[vww allitebooks.cond

http:///
http://www.allitebooks.org

Credits

Authors
Sherif Talaat

Haijun Fu

Reviewers
Mark Andrews

Karim CAMMOUN
Tong Young

Acquisition Editor
Rukhsana Khambatta

Lead Technical Editor
Dayan Hyames

Technical Editors
Sharvari Baet

Prasad Dalvi

Nitee Shetty

Copy Editors
Brandt D'Mello

Insiya Morbiwala
Aditya Nair
Alfida Paiva

Project Coordinator
Arshad Sopariwala

Proofreaders
Amy Guest

Chris Smith

Indexer
Monica Ajmera Mehta

Graphics
Valentina Dsilva

Production Coordinator

Shantanu Zagade

Cover Work
Shantanu Zagade

[vww allitebooks.cond

http:///
http://www.allitebooks.org

About the Authors

Sherif Talaat is a young computer science addict. He is MCSA, MCSE, MCTS, and
MCITP certified. He has been working in the ICT industry since 2005. He used to
work on Microsoft core infrastructure platforms and solutions with main focus on IT
process automation and scripting techniques.

He is one of the early adopters of Windows PowerShell in the region called

MEA —Middle East and Africa. He speaks about Windows PowerShell in technical
events and user groups' gatherings; he is the founder of the "Egypt PowerShell User
Group" (http://powershellgroup.org/egypt), and is the author behind the first
and only Arabic PowerShell blog (http://arabianpowershell.wordpress.com).
He has been awarded the Microsoft Most Valuable Professional (MVP) award for
PowerShell five times in row since 2009. You can also catch him at sheriftalaat.com.

[vww allitebooks.cond

http:///
http://www.allitebooks.org

Acknowledgement

I would like to take the chance to dedicate this book to the soul of my dad and to
thank my mom for her love, encouragement, and prayers. To my sisters Shereen
and Dalia, and my brother Amr, thank you so much for the usual support, feedback,
guidance, and for being proud of me.

To Israa, the best wife in the world, thanks for your love, support, and patience
during the long days and nights I have spent writing this book. I could not have
done this without you.

To my dear son Yahia, you were the hidden source of inspiration to complete this
book. Keep it up my son, I need this again in future engagements.

To Prof. Ahmed Bahaa, Refaat Issa, and Sherif Tawfik, thanks for everything you
taught me for building the unique, professional, persistent, and challenging person
inside me. I really can't thank you enough for the support, advice, trust, and belief
you had in me.

Last but not the least, thank you Packt Publishing for giving me the chance to

write this book. I'd also thank every team member who contributed to this project.
Rukhsana, Arshad, Dayan, the external reviewers, and the other guys whom I didn't
meet — your contributions were invaluable and this book wouldn't be what it is
without you.

[vww allitebooks.cond

http:///
http://www.allitebooks.org

Haijun Fu is a computer programmer and an author living in China. He was
educated at the Lanzhou University. He has been a Windows PowerShell Microsoft
Most Valuable Professional (MVP) since 2011.

With a strong focus on PowerShell, cloud computing, the next generation of Internet
security, Internet technology development, software testing, and database design,
he has been writing many articles in order to share his experience with others on

his blog. He has over 7 years of experience in software development and system
architecture design. He is skilled especially at systems analysis, architecture design,
and software project management.

In his spare time, he likes reading and writing. He is the author of two technical
books called Windows PowerShell 2.0 Application Programming Best, Practices Publishing
House of Electronics Industry in Mainland China and 350 PowerShell Utilize Example:
Windows Automation Technology Manual in Taiwan.

He can be found on the Web at fuhaijun.com and on Twitter as @fuhjo02. You can
also reach him by e-mail at Powershellelive.cn.

[vww allitebooks.cond

http:///
http://www.allitebooks.org

Acknowledgement

First and foremost, I'd like to thank my family who have always been a source of
inspiration and encouragement. Without their support, who knows where I'd be.
I am very thankful to my love, Ruby Liu, who has always stood by me, helped me
at all times, and has even smilingly got me cups of tea during my sleepless nights
of writing!

Writing a book is an interesting journey. Now that it's completed, looking back over
the last several months I'm amazed at how lucky I've been to come in contact with so
many terrific people.

I would also like to express my gratitude to my friend and co-author of this book,
Sherif Talaat, for giving me so many useful suggestions on this book.

I was fortunate to have three great guys as reviewers for my book, Mark
Andrews, Karim CAMMOUN, and Tong Young. They spent countless hours
providing feedback and examples, researching specific content, offering lots of
encouragement, and engaging with me in great discussions about PowerShell.

Thanks to the editorial and project team at Packt Publishing for giving me the
opportunity to write this book, and also being patient and understanding through
the process of writes, re-writes, technical edits. So a really big thanks goes to them,
especially Rukhsana, Dayan, Arshad, and many more.

The team at Packt Publishing, it was an honor and privilege working with you.

Last but not the least, I would like to thank my friends who helped me directly or
indirectly by giving me moral support.

[vww allitebooks.cond

http:///
http://www.allitebooks.org

About the Reviewers

Mark Andrews has had a varied career in technology. Over the last 18 years he has
worked in several departments ranging from customer service to quality assurance.
Throughout all of these positions, the responsibility of configuration management
and build management has always fallen either to him personally or to one of the
groups that he managed; because of his "keeping a hand in" management style, he
has been involved closely with the scripting and automation framework for this area.
Creating scripted frameworks that intercommunicate across machines, operating
systems or domain boundaries is a passion for him.

Karim CAMMOUN is an IT consultant based in Ecublens, Switzerland, and has
been working on Microsoft products for the past 20 years. With a strong expertise
on Microsoft server products, he is a key player in migration projects, analyzing
customer needs, and designing and deploying AD, Exchange, Lync, and Windows.
Besides, he also develops in C++, PowerShell, VBscript, and VBA.

Tong Young has been working in the IT industry since 2000, focusing on Microsoft
Windows Server, Exchange, SQL, SCCM, and SCOM. He is a PowerShell enthusiast
who uses PowerShell every day to automate tasks and add value to everyday tasks.
He is currently working at yellowpages. com.

[vww allitebooks.cond

http:///
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www. PacktPub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www . PacktPub . com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at servicee@
packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[ﬂ]PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content

¢ On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

[vww allitebooks.cond

http:///
http://www.allitebooks.org

http:///

Table of Contents

Preface 1
Chapter 1: Getting Started with PowerShell 7
Working with pipelines 8
Viewing the object structure 10
Using format cmdlets to change the output view 12
Using cmdlets to redirect data 13
Variables and objects 14
Using variables to store objects 15
Getting CIM objects 17
Listing CIM classes 17
Displaying details of the CIM classes 18
Creating .NET and COM objects 20
Looping and flow control 21
Comparison and logical operators 21
Conditional statements 21
Using switches to manage large conditional statements 22
Repeat operations with loops 23
The for statement 23

The foreach statement 24
Nested loops 24
Lists, arrays, and hash tables 25
Operating script block 30
Defining script blocks 30
Passing parameters and returning values 31
Functions 34
Scripts 35
Creating scripts 36
Invoking scripts 37
Passing parameters 37

Return values

38

http:///

Table of Contents

Developing and maintaining script libraries 38
Discovering what's new in Windows PowerShell 3.0 39
Windows PowerShell Web Access (PSWA) 39

How PSWA works 40

Installing and configuring Windows PowerShell Web Access 40

Step 1 — installing the Windows PowerShell Web Access Windows feature 40
Step 2 — configuring Windows PowerShell Web Access Gateway 41
Step 3 — configuring the PowerShell Web Access authorization rules 43
Auto-loading of modules 45
Online and updatable Help 46
Scheduled jobs 46
The Show-Command cmdlet 47
Integrated Scripting Environment (ISE) 48
IntelliSense 48
Script snippets 49
How to use snippets 49
How to create/add new snippets 49

Add-on tools 50

Autosave and restart manager 50
PowerShell remoting 50

Disconnected session 51

Remoting on a public network 51

The custom session configuration file 51
Windows PowerShell Workflow (PSW) 51

Creating a workflow using PowerShell 52

Controlling PowerShell Workflow execution 54
Summary 56

Chapter 2: Developing Snap-ins for PowerShell 57
Creating a PowerShell snap-in 58
Writing a PowerShell snap-in 58

Creating a new class library project 58

Creating a PowerShell installer class 60

Creating a class file to include several PowerShell cmdlets 61

Declaring cmdlet parameters 64
Declaring parameter sets 65
Validating the parameter inputs 66
Overriding methods 69
Registering and removing a PowerShell snap-in 75
Registering and removing snap-in in PowerShell 1.0 76
Registering and removing a snap-in in PowerShell 3.0 76

Lii]

http:///

Table of Contents

Listing and executing cmdlets in a PowerShell snap-in 79
Debugging a PowerShell snap-in 81
Summary 83
Chapter 3: Using PowerShell Remoting 85
An overview of PowerShell remoting 86
Enabling/disabling remoting 87
Operating PowerShell in a no-domain environment 88
Setting the network location to Private 89
Enable PSRemoting 92
Configuring WSMan trusted hosts 94
Configuring PowerShell remoting on a domain using Group Policy 95
Allowing remote server management through WinRM 96
Allowing Windows Remote Management through Windows Firewall 97
Turning on Service Windows Remote Management (WS-Management) 101
Doing a Group Policy Update 104
Disabling remoting 105
Executing the remoting commands 106
Running ScriptBlock on a remote computer 106
Creating a persistent session with Invoke-Command 107
Running remote commands as a job 109
Specifying credentials required for remoting 110
Entering an interactive remoting session 110
Exiting an interactive session 111
Using a persistent session with interactive remoting 112
Starting interactive remoting with an existing session 112
Disconnecting and reconnecting sessions 113
Saving a remote session to a disk 115
Exporting a remote session to a module on a disk 116
Importing a module saved on a disk 117
Limitations of Export-PSSession 117
Using session configurations 117
Creating a new session configuration 118
Listing available session configurations 120
Custom permissions and PS session configurations 121
Invoking a custom session configuration 123
Disabling a session configuration 123
Deleting a session configuration 124
Summary 124

[iii]

http:///

Table of Contents

Chapter 4: Extending Windows PowerShell 125
Introduction to Windows PowerShell modules 126
PowerShell module types 126

Script modules 126
Binary modules 126
Manifest modules 127
Dynamic modules 127
The PSModulePath environment variable 127
Viewing the PSModulePath variable 127
Adding locations to the PSModulePath variable 128
Importing PowerShell modules 128
Removing PowerShell modules 130
Reloading PowerShell modules 131
Writing a PowerShell module 131
Creating script modules 132
Binary modules 136
Manifest modules 137
Dynamic modules 138
Storing modules on a disk 140
Working with multiple versions of modules 140
Checking PowerShell module dependencies 142
Signing PowerShell modules 144
Execution policies 144
Changing the execution policy 145
Script signing background 146
Setting up a self-signed certificate 147
Signing a module 150
Summary 154

Chapter 5: Managing Core Infrastructure with PowerShell 155

Preparing the operating system for first time use 157
Task 1 — changing the computer name 158
Task 2 — changing the time zone settings 158
Task 3 — setting the Network Interface Card (NIC) configuration 159
Task 4 — managing Windows Server roles and features 160

Example 1 160
Example 2 161

Deploying the Active Directory Domain Services (ADDS) role 161
Scenario 1 — installing a new Active Directory Forest 162
Scenario 2 — installing a new domain in an existing forest 163
Scenario 3 — installing a new domain controller in an existing domain 164

[iv]

http:///

Table of Contents

Managing and configuring the Domain Name System (DNS) role 165
Task 1 — configuring DNS server resource records 165
Task 2 — creating primary forward and reverse lookup zones 166
Task 3 — adding a DNS server forwarder 166
Task 4 — exporting DNS server zones 166

Deploying and configuring the Dynamic Host Configuration

Protocol (DHCP) role 167
Task 1 — installing the DHCP server role 167
Task 2 — setting up the DHCP server scope 167
Task 3 — configuring DHCP scope options 167
Task 4 — configuring DHCP scope exclusion 168
Task 5 — configuring DHCP scope reservations 168
Task 6 — authorizing the DHCP server in Active Directory 168

Managing Windows Firewall 169
Task 1 — enabling or disabling Windows Firewall profiles 169
Task 2 — creating Windows Firewall rules 169

Example 1 169
Example 2 169

Using the Best Practice Analyzer (BPA) 170
Task 1 — displaying the list of best practice models 170
Task 2 — invoking a best practice model 170
Task 3 — showing the best practice model result 171

Summary 172

Chapter 6: Managing Active Directory with PowerShell 173

Active Directory-related concepts 174
Introduction to Active Directory 174
Namespace 175
Object 175
Container 175
Trees 175
Domain 175

Installing an Active Directory Domain Service (ADDS) 176

New AD server roles in Windows 2012 176
Active Directory Certificate Services 176
Active Directory Domain Services 176
Active Directory Lightweight Directory Services 176
Active Directory Rights Management Services 177

Managing Active Directory with PowerShell 177
Account management 177

User management 177

Computer management 178

[vl

http:///

Table of Contents

Group management 179
Viewing group permissions 179
Creating a group 180
Adding and removing members of a group 181

Organizational unit management 183
Creating a new organizational unit 183
Listing organizational units 184
Renaming an organizational unit 184
Modifying an organizational unit 185
Moving an organizational unit 185
Deleting an organizational unit 186

Domain controller management 186
Finding a domain controller 186
Finding a domain controller's site 188
Finding the global catalog servers in a forest 188

Summary 188
Chapter 7: Managing the Server with PowerShell 189
Working with Server Manager cmdlets 190
Adding roles or features by using PowerShell 190
Advantages of PowerShell cmdlets for Server Manager 193
Managing networking using PowerShell 193
Managing Group Policy with PowerShell 197
Importing a GroupPolicy module 197
Creating GPOs with PowerShell 199
Managing IIS with PowerShell 199

Creating a new website 200

Modifying 1IS binding 201

Creating an FTP site 201

Creating a virtual directory 202

Creating a WebAppPool 202

Backing up and restoring WebConfiguration 202

Managing a DNS server using PowerShell 204
Managing Hyper-V with PowerShell 205

Installing Hyper-V on Windows Server 2012 206

Creating a virtual machine 207

Starting and stopping a virtual machine 208

Modifying a virtual machine 208

Operating a virtual machine snapshot 209

Managing AppLocker with PowerShell 210

Importing the AppLocker PowerShell module 210

Retrieving application information 210

Retrieving an AppLocker policy 211

Setting an AppLocker policy 212

[vi]

http:///

Table of Contents

Generating rules for a given user or group 213
Testing the AppLocker policy against a fileset 213
Summary 214
Chapter 8: Managing Unified Communication Environments
with PowerShell 215
What Exchange Management Shell is 216
How to make Windows PowerShell understand Exchange
Server cmdlets 218
Option 1 —do it like EMS 218
Option 2 — loading Exchange Server snap-ins 219
Managing Exchange using PowerShell Remoting 220
Getting started with Exchange scripting 221
Scenario 1 — creating multiple mailboxes from CSV file 221
Scenario 2 — creating a shared mailbox 222
Scenario 3 — creating a resource (room/equipment) mailbox 224
Scenario 4 — creating a distribution group 225
Scenario 5 — defining a MailTip for a distribution group 226
Scenario 6 — creating a dynamic distribution group 226
Scenario 7 — creating multiple mailbox databases from a CSV file 227
Scenario 8 — exporting mailboxes to PST files 228
Scenario 9 — importing a mailbox from PST files 229
Scenario 10 — hiding mailbox users from Global Address List (GAL) 230
Scenario 11 — getting mailbox users who never accessed their mailboxes 230
Scenario 12 — generating an organization mailbox statistics report 231
Scenario 13 — generating a mailbox size report 231
What Lync Server Management Shell is 232
How to make PowerShell understand Lync Server cmdlets 234
Loading a Lync Server module 234
Managing Lync using PowerShell Remoting 235
Getting started with Lync scripting 236
Scenario 1 — enabling Lync to user accounts 236
Scenario 2 — configuring IM file transfer filtering configuration 237
Scenario 3 — configuring IM URL filtering 238
Scenario 4 — bulk assignments of client PIN 238
Scenario 5 — getting number of users using OCS/Lync 239
Scenario 6 — setting the conference disclaimer 240
Microsoft Office 365 240
Office 365 and Windows PowerShell 241
Managing Office 365 using PowerShell 241
Managing Microsoft Exchange Online using PowerShell 242

Summary 244
[vii]

http:///

Table of Contents

Chapter 9: Managing Collaboration and Data Platforms

with PowerShell 245
What is SharePoint Management Shell 246
How to make Windows PowerShell understand the SharePoint
server cmdlets 248
Getting started with SharePoint scripting 248

Scenario 1 — creating a new site collection 248
Scenario 2 — creating a new website 249
Scenario 3 — creating a new quota template 250
Scenario 4 — backing up your SharePoint environment 251
Managing SharePoint Online using PowerShell 252
How to load SharePoint Online Management Shell 253
How to connect to SharePoint Online 254
Scenario 1 — exporting a list of SharePoint Online sites to CSV 254
Scenario 2 — restoring a deleted SharePoint Online site 255
Scenario 3 — checking the SharePoint Online site's health status 255
Scenario 4 — setting the SharePoint Online User as Site Collection
Administrator 256

Windows PowerShell Command Builder for SharePoint and Office 365 256

What is SQL Server PowerShell 257
How to load SQL Server PowerShell 258
Method 1 — importing the SQL Server PowerShell module 258
Method 2 — launching SQL Server PowerShell from SSMS 259
Getting started with SQL Server scripting 260
Scenario 1 — executing the T-SQL statement 260
Scenario 2 — backing up the SQL Server database 261
Scenario 3 — restoring the SQL Server database 262
Scenario 4 — getting server instances and databases properties 262
Scenario 5 — generating the SQL script for databases, tables,
and stored procedures 264
Summary 266
Chapter 10: Managing Microsoft Desktop Virtualization
with PowerShell 267
What Desktop Virtualization is 267
Understanding Desktop Virtualization components 268
What Remote Desktop Services is 269
Managing RDS using PowerShell 270
Getting started with RDS scripting 270
Scenario 1 — creating new RDS deployments 270
Task 1.1 — creating a new virtual-machine-based deployment 272
Task 1.2 — creating a new session-based deployment 273

[viii]

http:///

Table of Contents

Scenario 2 — adding a Remote Desktop Server to an existing deployment 274

Scenario 3 — adding and configuring an RD Gateway 275
Scenario 4 — adding and configuring RD Licensing Server 276
Scenario 5 — creating new RDS collections 277

Task 5.1 — creating new session-based collections 277

Task 5.2 — creating new VM-based collections 278
Scenario 6 — setting session-based collection configuration 281
Scenario 7 — setting VM-based collection configuration 283
Scenario 8 — updating VM-based collections 284
Scenario 9 — assigning Profile Disks to collections 285

Scenario 10 — publishing Remote Desktop RemoteApp to collections 286
Scenario 11 — configuring Remote Desktop Connection Broker for

high availability 287
Summary 289
Chapter 11: Managing Microsoft Cloud Platform with PowerShell 291
What Windows Azure is 292
What Windows Azure PowerShell is 292
Installing Windows Azure PowerShell 292
Making Windows PowerShell understand Windows Azure cmdlets 293
Connecting to your Windows Azure environment 294
Getting started with Windows Azure scripting 295
Scenario 1 — creating a new Azure Affinity Group 295
Scenario 2 — creating a new Azure storage account 296
Scenario 3 — assigning a storage account to an Azure subscription 296
Scenario 4 — creating a new Azure Cloud Service 297
Scenario 5 — creating a new SQL Azure Database Server 297
Scenario 6 — creating a new SQL Azure database 298

Scenario 7 — creating a new SQL Azure Database Server firewall rule 299
Scenario 8 — provisioning the new Azure VM in Windows (quick mode) 299

Scenario 9 — provisioning the new Azure VM in Linux (quick mode) 300
Scenario 10 — provisioning the new Windows Azure VM
(advanced mode) 301

Scenario 11 — Adding a new endpoint to Windows Azure VM (NoLB) 302
Scenario 12 — configuring the Windows Azure Virtual Machines

load balancing (LB) 303
Scenario 13 — creating and assigning a data disk to Windows

Azure Virtual Machine 305
Scenario 14 — moving the Local VHD to Windows Azure 305
Scenario 15 — provisioning a new Windows Azure VM from a Disk 307
Scenario 16 — creating Windows Azure Image from a VM 308
Scenario 17 — exporting and importing Windows Azure VM 308

[ix]

[vww allitebooks.cond

http:///
http://www.allitebooks.org

Table of Contents

Scenario 18 — starting, stopping, and restarting the Windows Azure VM 310
Scenario 19 — uploading the certificate to Windows Azure 310
Scenario 20 — generating the Azure Virtual Machine RDP file 311
Summary 312
Chapter 12: Integrating Windows PowerShell and System
Center Orchestrator 313
Completing your ITPA story with PowerShell and Orchestrator 313
What System Center Orchestrator is 314
Understanding Orchestrator workflows 315
Orchestrator and PowerShell are better together 316
Using PowerShell in Orchestrator workflow 316
Using PowerShell to build Orchestrator Integration Packs 319
Summary 329
Index 331

[x]

http:///

Preface

PowerShell 3.0 Advanced Administration Handbook comes with a set of real-world
scenarios and detailed scripts that will help you get started with PowerShell and
learn what PowerShell is, how to write the syntax and build your scripts, and how
to use and integrate PowerShell with different technologies, products, and tools.

This handbook starts with the essential topics of PowerShell, and then introduces
the new features in PowerShell 3.0. The book then goes through building PowerShell
scripts, functions, and developing extensions such as snap-ins and modules, and
continues with detailed examples showing the usage of PowerShell with different
technologies and products to give you an idea of PowerShell usage in the real world.

What this book covers

Chapter 1, Getting Started with PowerShell, introduces us to PowerShell, which is built
based on .NET and is an object-based shell and scripting language. This chapter
shows us how we can make use of PowerShell's integration with COM, WMI, and
ADSI technologies alongside its tight integration with .NET. Indeed, PowerShell

is the only technology that enables you to create and work with objects from these
various technologies in one environment.

Chapter 2, Developing Snap-ins for PowerShell, explains the use of snap-ins that are
compiled into assemblies, when released as a program for third-party users. In this
chapter you will see how you can extend Windows PowerShell by writing your own
snap-ins. These may contain cmdlets and providers too. The author can also encrypt
based on .NET code obfuscation to protect their source code. Thus the authors of
programs need not worry about their snap-ins decompiling the source code.

Chapter 3, Using PowerShell Remoting, shows us how PowerShell remoting enables
management of computers from a remote location. Remoting is built based on
Windows remote management (WinRM). WinRM is Microsoft's implementation of
the WS-Management protocol.

http:///

Preface

Chapter 4, Extending Windows PowerShell, introduces us to a very import feature in
Windows PowerShell 3.0 —modules. You can load most of the existing snap-ins as a
module, which means you don't need to have administrator privileges to load a new
snap-in. You can simply place it in any folder, access it, and tell PowerShell where to
find it.

Chapter 5, Managing Core Infrastructure with PowerShell, demonstrates how PowerShell
can be used to replace the GUI to perform different administration tasks on
Windows Server, especially the installation of the server core.

Chapter 6, Managing Active Directory with PowerShell, introduces us to the Active
Directory module for Windows PowerShell, which consolidates a group of cmdlets.
The Active Directory module for Windows PowerShell provides a centralized
experience for administering your directory services. In this chapter you will look at
the Active Directory-related cmdlets, the Active Directory server roles, and how you
can manage the Active Directory using PowerShell.

Chapter 7, Managing the Server with PowerShell, explains how you can manage
your server with great flexibility using PowerShell, which is built into Windows
Server 2012. Many PowerShell cmdlets exist to let you perform several of the key
administrative tasks you may need to do on a daily basis, including installing
features for your Windows Server 2012, managing networking, managing Group
Policy, managing IIS, managing DNS server, managing Hyper-V and AppLocker,
and many others.

Chapter 8, Managing Unified Communication Environments with PowerShell, introduces
us to Windows PowerShell modules for Microsoft Exchange Server, Lync Server, and
Office 365, and explains how it can be utilized for a better and easier administration
and management.

Chapter 9, Managing Collaboration and Data Platforms with PowerShell, provides recipes
on how to deal with Microsoft SQL Server, Microsoft SharePoint Server,
and SharePoint Online.

Chapter 10, Managing Microsoft Desktop Virtualization with PowerShell, provides
guidance and scripts on how to build end-to-end Desktop Virtualization scenarios
that are session- and virtual-machine-based, using Windows PowerShell.

Chapter 11, Managing Microsoft Cloud Platform with PowerShell, tackles the Microsoft
cloud platform with Windows Azure and explains how to use Windows PowerShell
to automate Windows and SQL Azure tasks. It also provides ways to overcome the
technical limitations of using Windows Azure Management Portal.

[2]

http:///

Preface

Chapter 12, Integrating Windows PowerShell and System Center Orchestrator, describes
how PowerShell can be used in the real world in combination with Microsoft System
Center Orchestrator to build an IT Process Automation standard framework.

What you need for this book

This book requires that you have Windows PowerShell 3.0, which is available
out of the box in Windows Server 2012 and Windows 8. It's also available for
earlier versions of Windows as part of Microsoft's Windows Management
Framework (WMF) 3.0

This book is mainly about using Windows PowerShell with different technologies
and tools, so you must have the following software in order to proceed:

* Windows Server 2012

* Exchange Server 2013

* Lync Server 2013

e SQL Server 2012

* SharePoint Server 2013

* An Office 365 subscription

* A Windows Azure subscription

* System Center Orchestrator 2012

* Microsoft Visual Studio 2010

Who this book is for

This book is intended for IT administrators who wish to learn Windows PowerShell,
and want to quickly discover it's capabilities with different tools and technologies.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The out-Host -Paging command is a useful pipeline element."

[31]

http:///

Preface

A block of code is set as follows:

Function Reload-Module ($SModuleName)

{

if ((get-module -list | where{$_.name -eq "$ModuleName"} | measure-
object) .count -gt 0)

{

if ((get-module -all | where{$.Name -eq "S$ModuleName"} |
measure-object) .count -gt 0)

{

Remove-Module $ModuleName
Write-Host "Module $ModuleName Unloading"

}

Import-Module $ModuleName
Write-Host "Module $ModuleName Loaded"

}

Else

{

Write-Host "Module S$ModuleName Doesn't Exist™"

}
}

Any command-line input or output is written as follows:

PS> Invoke-Command { (new-object BasicTest) .Multiply (5, 2)}

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Click on Run to execute the command with the parameters you entered."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

[4]

http:///

Preface

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub. com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to have
the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

[5]

http:///

Preface

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

http:///

Getting Started with
PowerShell

PowerShell runs existing commands and scripts seamlessly. You can make use
of PowerShell's integration with COM, WMI, and ADSI technologies along with
its tight integration with .NET. Indeed, PowerShell is the only technology that
enables you to create and work with objects from these various technologies in
one environment.

In this chapter we will cover:

* Windows PowerShell syntax and grammar
* How to write PowerShell scripts and functions
* What is new in Windows PowerShell 3.0

In order to enable the readers to get familiar with the language environment quickly,
this chapter will briefly introduce the PowerShell grammar. A key concept to grasp
when starting to work in PowerShell is that everything is an object. An "object", in
PowerShell, consists of properties (information we can gather) and methods (actions
we can perform).

An object is something we can gather information from and/or perform an action
upon. In simple terms, an object is a black box that has attributes or properties that
describe it. Some of these properties are read-only. You can change or set the others.
For example, consider a service that has properties such as name, display name,
status, and services that it depends on.

http:///

Getting Started with PowerShell

Often, objects can also be made to do something. These actions are referred to as
methods. Sometimes, the method is used to modify the object and sometimes to
make an external change. A service can be stopped and started. You can also modify
the service object by changing its start mode to either automatic, manual, or disabled.
First of all, we will introduce the most important object in PowerShell — pipeline.

Working with pipelines

In a traditional command-line environment, you would have to manipulate the
text to convert output from one format to another and to remove titles and column
headings. A major advantage of using objects is that it is much easier to pipeline
commands, that is, to pass the output of one command to another command as
the input.

Windows PowerShell provides a new architecture that is based on objects rather than
text. The cmdlet that receives an object can act directly on its properties and methods
without any conversion or manipulation. Users can refer to properties and methods
of the object by their names, rather than calculating the position of the data in the
output. You do not need to manipulate strings or calculate data offsets. Pipelines act
like a series of connected segments of pipe. Items moving along the pipeline pass
through each segment. To create a pipeline in Windows PowerShell, you connect
commands together with the pipe operator " |". The output of each command is used
as an input to the next command. A related useful characteristic of pipelines is that
they operate on each item separately; thus you do not have to modify them based on
each single item. Furthermore, each command in a pipeline usually passes its output
to the next command in the pipeline item-by-item. This usually reduces the resource
demand of complex commands and allows you to get the output immediately.

The notation used for pipelines is similar to the one used in other shells, so at first
glance, it may not be apparent that Windows PowerShell introduces something new.
For example, if you use the out -Host cmdlet to force a page-by-page display of the
output from another command, the output looks just like the normal text displayed
on the following screen, broken up into pages:

Downloading the example code

purchased from your account at http: //www. packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

é‘Q You can download the example code files for all Packt books you have

[8]

http:///

Chapter 1

ey powershell =S -

Out-Host -Paging

vancedInstallers
ol ocker

The out-Host -Paging command is a useful pipeline element whenever you want
to display a lengthy output slowly. It is especially useful if the operation is very
CPU-intensive because processing is transferred to the out -Host cmdlet when it
has a complete page ready to display, and the cmmdlets that precede it in the pipeline
halt their operation until the next page of output is available. You can see this if you
use the Windows Task Manager to monitor the CPU and memory consumed by
Windows PowerShell. For example, run the following command:

Get-ChildItem C:\Windows -recurse
and command:

Get-ChildItem C:\Windows -recurse | Out-Host -Paging

compared the CPU and memory utilization rate..

[o]

[vww allitebooks.cond

http:///
http://www.allitebooks.org

Getting Started with PowerShell

What you see on the screen is text, but that is because it is necessary to represent
objects as text in a console window. This is just a representation of what is really
going on inside Windows PowerShell. For example, consider the Get -Location
cmdlet. If you type Get-Location while your current location is the root of the C
drive, you would see the following output:

powershell
C:4v» Get-Location

Instead of using text to insert commands into a pipeline communication, Windows
PowerShell uses objects. From the users' perspective, objects package related
information into a form that makes it easier to manipulate the information

as a unit, and extract specific items that you need.

The Get-Location command will not return the text that contains the current path,
but returns an object called the PathInfo object, including the current path and some
other information packet. Then the out -Host cmdlet will send the pathInfo object
to the screen, after which Windows PowerShell will decide what information is to be
displayed and how to show it based on its format rules.

Viewing the object structure

Because objects play such an important role in Windows PowerShell, there are
several native commands designed to work with arbitrary object types. The most
important one is the Get -Member command.

The simplest technique for analyzing the objects that a command returns is to pipe
the output of the command to the Get -Member cmdlet. The Get -Member cmdlet
shows the formal name of the object type and a complete listing of its members.
Sometimes the number of returned elements can be overwhelming. For example,
a service object can have over 100 members.

[10]

http:///

Chapter 1

To see all the members of a service object and page the output, please type
the following;:

PS > Get-Service | Get-Member | Out-Host -Paging

The output from this command will look something like this:

powershell
Dt -He -Paging

erviceController

Definition
ServiceN
edservi i) edOn
em.0Object, em. Event...

Continue or
eateObjRef h tuntime. ObjRef ¢ Obj pe request...
void IDi i
1.0bject ob

.ServiceControll. ..

ainer {get;}

ler[] DependentSerwi...

B Ml = = i T = i = i v e R

[11]

http:///

Getting Started with PowerShell

The Get -Member command lets you list only members that are properties. There
are several forms of properties. The resulting list is still very long, but a bit more
methodical, as shown in the following screenshot:

e powershell = B

Get-Member -MemberType Properties

1. ServiceProce rviceController

MemberType

vicesDependedOn
Propert
Proper
Proper
Proper
Proper
Proper
Proper
Proper ntime. Inter A ServiceHandle {get;}
Propert i 1
Proper . o'l 0 vicesDependedOn {...
Proper . / Wi rpe {get;}
Proper . nentModel. e |
Property erviceProce viceControlle atus {get;}

If you need to look at the content outside of Windows PowerShell's default display
format, you can do so through the use of the format cmdlets, which can format the
output data.

Using format cmdlets to change the output
view
Windows PowerShell's set of cmdlets allows users to control which attributes are

displayed for a specific object. All cmdlet names begin with a verb form. The format
cmdlets are Format -Wide, Format-List, Format-Table, and Format - Custom.

Each format cmdlet has default properties. These properties will be used if you
do not specify a particular attribute to display. Each cmdlet also uses the same
parameter name and attribute, but you need to specify which attribute has to
appear. As the Format-wide cmdlet reveals a single attribute display only, its
property parameters require only a single value, but the characteristic parameters
of Format-List and Format-Table will accept an attribute name list.

With the Format -wide cmdlet, you can format the output as a table listing one
property only. This makes it useful for displaying simple lists that show only
one element per line.

[12]

http:///

Chapter 1

The Format-List cmdlet is used for formatting the output as a list of properties,
each on a new line. The Format-Table cmdlet is used for tabular output.

Using cmdlets to redirect data

Windows PowerShell provides several cmdlets that let you control the data's output
directly. These cmdlets share two important characteristics that we will discuss in
this section.

By default, Windows PowerShell sends data to the host window, which is just what
the out -Host cmdlet does. The out-Host cmdlet is primarily used for paging data.
For example, the following command uses Out -Host to page the output:

ey powershell

ModuleName

ttend
\ppxPackage
ume
1edAppxPackage
CacheExtension
ientNrptRule
erTMMappi
rIdTi
rtBinding
ember

a
Storage

The out-Null cmdlet is designed to immediately discard any input it receives. This
is useful for discarding unnecessary data that you get as a side effect of running a
command. When typing the following command, you will not get anything back
from the command:

Get-Command | Out-Null

[13]

http:///

Getting Started with PowerShell

The out-Null cmdlet does not discard an error output. For example, if you enter
Get-Command Is-NotACommand | Out-Null, a message is displayed informing you
that Windows PowerShell does not recognize Is-NotACommand. This is shown in the
following screenshot:

powershell =S -

‘> Get-Command Is-MWotACommanc Out-Nu

You can send the output to a file instead of the console window by using the
out-File cmdlet. The following command line sends a list of processes to the
C:\tmp\processlist.txt file:

PS > Get-Process | Out-File -FilePath C:\tmp\processlist.txt

Variables and objects

When you manipulate in Windows PowerShell, you are operating the NET
Framework objects. Technically, a .NET Framework object is an instance of a .NET
Framework class that consists of data and the operations associated with that data.
An object is a data entity that has properties.

For example, when you get a service in PowerShell, you are really getting an object
that stands for the service. When you view information in it, you are viewing the
properties of the service object. And, on starting a service, when you change the
Status property of the service to started, you are using the start () method

of the service object.

All objects of the same type have the same properties and methods, but each instance
of an object can have different values for the properties. For example, every service
object has a Name and Status property. However, each service can have a different
name and a different status.

[14]

http:///

Chapter 1

Using variables to store objects

You can store the output of a pipeline or a command in a variable for later use, or to
work with it in more detail. Variables in PowerShell allow users to store the output
of something that may be used later. A variable's name starts with a dollar sign (%)
and can be followed by any alphanumeric character or the underscore in its name.
You can create a variable and assign it a value in the same step. Windows PowerShell
only creates the variable if it does not exist, otherwise it assigns the specified value to
the existing variable, as shown in the following screenshot:

ey powershell = B

n = 2+4

vice= Get-Service
vice. Count

zervice | Where-Object {%_.5tatus -eg "Running'}

You can store any pipeline or command result in a variable to use it later. If that
result is simple data, such as a number or a string, then the variable contains simple
data. If the command generates rich text data, such as the objects that stand for
system services from the Get-Service cmdlet, then the variable contains the list of
rich data. If the command, such as a former executable, generates plain text, then the
variable contains plain text.

Variables are stored in the memory; if you no longer need the variables that store a
large amount of data, you should assign the $null value to those variables, and then
PowerShell can release the memory for you.

[15]

http:///

Getting Started with PowerShell

PowerShell offers several ways to access environment variables. To list all the
environment variables you can list the children of the env drive, as shown in the
following screenshot:

e powershell - O

Get-ChildItem env:

value

SPROFILE

A
monProgramFiles
IPUTERNAME

indow. . .

PowershelT\Modules. ..

USERDOMAIN

USERDOMAIN_ROAMINGPROFILE WIN

USERNAME Fuh3y

USERPROFILE r J.-W KLH4LHAVU
windir i

To get an environment variable, prefix its name with $env (such as $env:
variablename). An example is shown in the following screenshot:

powershell

Senviusername

PowerShell provides access to the environment variable through its environment
provider. The provider lets you work with data storage, such as registration,
environment variables, alias, and certificate, as you will visit the filesystem. Get
environment variables to use their provider path; supply env: or environment: :
by using the Get -CchildItem cmdlet.

[16]

http:///

Chapter 1

Getting CIM objects

Windows Management Instrumentation (WMI) is a core technology for Windows
system administration because it exposes a wide range of information in a uniform
manner. As we all know, WMI is an infrastructure that supports the CIM model and
Microsoft-specific extensions of CIM.

The WMI infrastructure ships in Windows 2000, which was difficult to write and
use. In PowerShell 3.0, Microsoft introduced several new cmdlets, which are used for
operating CIM. With these cmdlets, not only can we manage servers, but we can also
manipulate all the heterogeneous devices necessary to make these servers together
into a comprehensive and coherent computing platform. In today's world, cloud
computing is a very important technology. Generalized cloud computing requires
standard-based management. This is the reason why Microsoft paid so much
attention to standard-based management in Windows Server 2012, which is expected
to be a Cloud OS. We are going to discuss how to use Get-CimClass to access CIM
objects and then how to use CIM objects to do specific things.

Listing CIM classes

The first problem of using CIM is trying to find out what can be done with CIM. CIM
classes describe the resources that can be managed. There are dozens of CIM classes,
some of which contain several properties.

Get-CimClass resolves this problem by making CIM discoverable. You can get
a list of the CIM classes available on the local computer using the -ClassName
parameter with a keyword and a wildcard character. An example is shown in
the following screenshot:

e powershell = =

W Get-CimClass -ClassName *BIOS™ Format-Wide

[17]

http:///

Getting Started with PowerShell

Get-CimClass uses the root/cimv2 namespace by default. If you want to specify
another WMI namespace, use the Namespace parameter and specify the namespace's
path, as shown in the following screenshot:

ey powershell

-ComputerName . -Nam ace root

IndicationFilte...
rrelatedIndi i
rrelatedIndic:
rrelatedIndic:
rrelatedIndi

i Indicati

IndicationFilte. ..
IndicationFilte...

ameterInfo

I
Lt
I
LY
N
LS
I
LS
I
LS
I
Lt
I
LS
I
Lt
I
LY
N
LS
I
LS
I
LS
I
LS
I
LS
I
Lt
I
LY
N
LS
I
LS
I
LS
I
LS
I
LS
I
Lt
I
LY
N
LS
I
LY
N
LS
I
LS
I
LS
I
Lt
I
LY
En
LY

Displaying details of the CIM classes

If you are familiar with WMI cmdlets from PowerShell 2.0, you will find learning
new CIM cmdlets easy. If you already know the className value of a WMI class,
you can use it to get information. For example, one of the WMI classes commonly
used for searching for information about a process is Win32_pProcess. The WMI
cmdlet needs to work with ClassName and NameSpace, and the CIM cmdlet follows
the same pattern. Refer to the following screenshot:

[18]

http:///

Chapter 1

ey powershell - o IEN |

Format-Wide

| Format-wide

Although we are showing all of the parameters, the command can be expressed in a
more succinct way. The ComputerName parameter is not necessary when connecting
to the local system. We display it to demonstrate the most general case and remind
you about the parameter. The Namespace parameter defaults to root /cimv2, and can
be ignored as well. Finally, most cmdlets allow you to ignore the name of common
parameters. With Get -wWmiObject, if no name is specified for the first parameter,
Windows PowerShell treats it as the Class parameter.

[19]

[vww allitebooks.cond

http:///
http://www.allitebooks.org

Getting Started with PowerShell

You will also notice that in some places, the script using the wMI cmdlet can't be
simply changed to the cIM cmdlet by changing the cmdlet name. This is shown
in the following example:

) powershell = =

-class Win32_Process -Name create -ArgumentlList "mspaint.exe

PARAMETERS

. __PARAMETERS

PROPERTY_COUNT
DERIVATION
SERVER
NAMESPACE

We can see that the parameters of the two cmdlets are completely different, and the
result displayed is not the same.

Creating .NET and COM objects

There are software components with .NET Framework and COM interfaces that
enable users to perform many system administration tasks. Windows PowerShell lets
you use these components, so you are not limited to the tasks that can be performed
by using cmdlets.

We can create an instance of an object using its default constructor. This can be done
using the New-0Object cmdlet with the classname as its only parameter:

) powershell = =

$generator = New]
erator. NextDouble()

8131

[20]

http:///

Chapter 1

Many cmdlets (such as Get -Process and Get-ChildItem) generate live

.NET objects that represent tangible processes, files, and directories. However,
PowerShell supports much more of the NET Framework than just the objects
that its cmdlets produce.

Looping and flow control

The PowerShell loop statement allows the user to execute operations without the
need to execute the command repeatedly, for example, repeating operations several
times, processing a set of items, or cycling a condition till it becomes true.

The PowerShell flow control and comparative statements let the user script adapt
to different data. They let you do this based on the value of the data by carrying out
orders, skipping some operations, and so on.

Comparison and logical operators

PowerShell allows the user to contrast data, and then make decisions with the
comparison operators. It allows making decisions based on the result of logical
operators to contrast data blocks.

Examples for comparison operators are -eq, -ne, -ge, -gt, -1t, -le, -1like,
-notlike, -match, -notmatch, -contains, -notcontains, -is, -isnot, -in,
-notin, and so on.

Examples for logical operators are -and, -or, -xor, -not, -shl, -shr, and so on.

By default, the PowerShell comparison operator is not case sensitive. For all
operators that are case sensitive, the -1i prefix makes the comparison case
insensitive, and the -c prefix executes case-sensitive comparisons.

Conditional statements

In PowerShell you can change the flow of execution of the script by using the
conditional statements. The following code snippet shows us an example:

if (condition)

{

statement block

}

elseif (condition)

{

statement block

}

[21]

http:///

Getting Started with PowerShell

else

{

statement block

}

If the condition calculates to $true, PowerShell implements the block you supply.
Then, it continues with the rest of the if/else statement list. PowerShell needs
matching parentheses in the block even if the block contains only one statement.

If the condition calculates to $false, PowerShell implements the statements
under elseif until a condition matches. If there is a match, PowerShell executes
the block-related conditions, and then continues to implement the rest of the
if/else statement list. For example:

StextForMatch = Read-Host "Input some text"

SmatchType = Read-Host "Supply Simple or Regex matching?"
Spattern = Read-Host "Match pattern"

if (SmatchType -eq "Simple")

{

StextForMatch -like $pattern

}

elseif (SmatchType -eqg "Regex")

{

StextForMatch -match S$Spattern

}

else

{

Write-Host "Match type must be Simple or Regex"

}

If none of the conditions calculate to $true, PowerShell executes the statement
block related to the else clauses, and then continues to implement till the end
of the if/else statement list.

Using switches to manage large conditional
statements

A switch statement is usually used to control several conditions that have a clear
value. It requires the value of the conditions to be an integer or a character. The
conditions used in a switch statement are called cases. Using the value of case,

the control program will jump to the matching case, and will keep running till the
statement exits or meets the break statement. Usually, we can use the default
clause to include other exceptions. If the conditions of the switch statement are all
false, the control program will jump to execute the default clause. If the default
clause is omitted, it will execute the next statement directly.

[22]

http:///

Chapter 1

The following code snippet shows a switch statement:

switch options expression

{

comparison value { statement block }

-or

{ comparison expression } { statement block }
()

default { statement block }

}

When PowerShell evaluates a switch statement, it calculates the expression for
the statement in the switch body. If the expression is a list of values, PowerShell
calculates each entry against the statement in the switch body.

The {comparison expression} statement for you deals with the current input
items, which are stored in the $_ variable, in any one of the script blocks. When it is
dealing with a {comparison expression} statement, PowerShell executes a related
statement block only when the {comparison expression} valueis $true.

When dealing with a switch statement, PowerShell tries matching the current input
object for each statement in the switch body even if there are already one or more
matches. PowerShell exits a switch statement after it finds a match or if it encounters
a break statement, which is the final statement of the block of statements.

Repeat operations with loops

A PowerShell 1oop statement lets you execute a group of statements several times.

The for statement
Consider the following code block:

:loop label for(initialization; condition; increment)

{

statement block

}

A PowerShell for statement first executes the expressions given during initialization.
It next assesses the condition; if the condition of the evaluation results to $true,
PowerShell executes the given statement block. Then, it will execute the expressions
given in increment. PowerShell continues to execute the statement block and the
incremental statement as long as the condition calculates to $true.

[23]

http:///

Getting Started with PowerShell

For example:

for (Scounter = 0; Scounter -1t 10; Scounter++)

{

Write-Host "Processing item $counter"

}

The foreach statement
Consider the following code block:

:loop label foreach(variable in expression)

{

statement block

}

When PowerShell executes a foreach statement, it implements a pipeline of the
given expression. For each entry produced by the expression, it assigns an entry
variable, and then executes a given statement block.

For example:

ShandleSum = 0;
foreach ($process in Get-Process |
Where-Object {$.Handles -gt 600})

{

ShandleSum += S$Sprocess.Handles

}

ShandleSum

Nested loops

Sometimes, loops may be nested within each other. However, if you are working

with nested loops, how do you break and continue to work? They will always affect
the inner loop, which is the loop that they were called from. However, you can also
label loops and then submit the label to continue or break if you want to exit or skip

the outer loops.

The next example nests two foreach loops. The first (outer) loop cycles through a

field with three WMI classnames. The second (inner) loop runs through all instances
of the respective WMI classes. This allows you to output all instances of all the three
WMI classes. The inner loop checks whether the name of the current instance begins

with "a"; if not, the inner loop will then invoke continue to skip all instances not
beginning with "a". The result is a list of all services, user accounts, and running
processes that begin with "a":

[24]

http:///

Chapter 1

ey powershell

As expected, the continue statement in the inner loop has had an effect on the inner
loop where the statement was contained. But how would you change the code if
you'd like to see only the first element of all services, user accounts, and processes
that begin with "a"? Actually, you would do almost the exact same thing, except that
now continue would need to have an effect on the outer loop. Once an element was
found that begins with "a", the outer loop would continue with the next WMI class:

) |

y Win32_Proc

e powershell

Lists, arrays, and hash tables

PowerShell makes dealing with arrays and lists similar to working with other data
types: you can expediently create an array or a list, and then add or remove elements
from it. You can also expediently execute sort, search, or put it in another array.
When you want to store the mapping between one block of data and another,

a hash table supplies a perfect solution.

[25]

http:///

Getting Started with PowerShell

For example, you can create an array and save a given set of items in it; these items
should be separated by a comma, as shown in the following screenshot:

ey powershell =

SmyArray = 3,4 o Wor
= SmyArray

You can also create an array with a specific size using the New-0Object cmdlet.
We can access a specific element of the array by using PowerShell's array access
principle, as shown in the following screenshot:

]

powershell =

hject
ello Powe

PowerShell's array access principle provides an easy way to visit two specific
elements of an array or more combinations of the elements in the array.
In PowerShell, the first item of the array is assigned index 0.

To store a command, generate a list of outputs using variable assignment,
as shown in the following screenshot:

] powershell - olEN|

it
ell
chIndexer

1460
5040

http:///

Chapter 1

To access every item in an array, use the Foreach-0Object cmdlet, as shown in the
following screenshot:

5 powershell

r=1,3,5

ray | Foreach-Object { $sum += $_ }

To access each item in an array, use the foreach keyword, as shown in the
following screenshot:

fl powershell

) { %=sum += Selement }

o —h e

To access items in an array by position, use a for loop, as shown in the
following screenshot:

X powershell

scounter -1t SmyAr ournt; Scounter++) {

ter]

PowerShell thus provides three main alternatives to deal with the elements in an
array. In the Foreach-0Object cmdlet and the foreach script's keywords, technology
visits an element of the array and lets you use the cycle items in the array in a less
structured approach.

[27]

http:///

Getting Started with PowerShell

You can use the sort-object cmdlet to sort a list of items, as shown in the
following screenshot:

ey powershell
L) Object -Descending CPU [select ProcessName

The sort-object cmdlet provides you with a convenient way to sort objects by a
property that you specify. If you don't specify an attribute, the Sort-object cmdlet
follows the ordering rule of the objects, if they define any. In addition to sorting by a
property in the ascending or descending order, the Sort-object cmdlet's -unique
switch operator also allows you to delete duplicates from the sorted collection.

The -contains operator is a useful method to determine quickly if a list contains

a specific element. To search for a list item instead of matching a pattern, use the
-match or -1ike operators. The -eq, -1ike, and -match operators are useful
methods to find a matching element set for your specific condition. The -eq operator
returns all the elements that are equal to your terms, the -1ike operator returns

all the elements matched elements in the wildcard given in your pattern, and the
-match operator returns all elements that match the regular expression given in your
pattern. To delete all the elements of the array, match them to a given mode, and
then you can keep all the elements that do not match the pattern.

[28]

http:///

Chapter 1

We can use the System.Collections.ArrayList class to set a processing array and
define it, as shown in the following screenshot:

X powershell

As in most languages, an array in PowerShell keeps the same length once you create
them. PowerShell allows you to add an entry, delete an entry, and search for an entry
in an array, but these operations may be time consuming when you are working on a
large amount of data. For example, to combine two arrays, PowerShell creates a new
array that is big enough to hold the contents of the two arrays, and then copies the
two arrays to the destination array.

For example, if you have a collection of items, and you need to visit each item by the
label that you provided, you can define a map between the label and the entry using
a hash table. This is shown in the following screenshot:

ey powershell = = -

r 7 31
il, 2, 3}

L
valuel
5

Hash tables are very similar to arrays that allow you to access items by whatever
label you want —not just through their index in the array. They form the keystone of
a large number of scripting techniques. Since they allow you to map names to values,
they form the effective basis for lookup tables such as the International Telephone
Country Codes and area codes. Since they allow you to map names to fully-featured
objects and script blocks, they can often take the place of custom objects. This key
and value mapping also proves to be helpful in interacting with cmdlets that support
advanced configuration parameters, such as the calculated property parameters
available on the Format-Table and Select-0Object cmdlets.

[29]

[vww allitebooks.cond

http:///
http://www.allitebooks.org

Getting Started with PowerShell

For example, consider that you have hash table keys and values, and you want
column value results from the sorted key sequence. To sort a hash table, we can
make use of the GetEnumerator () method in the hash table to obtain personal
elements. Then, we can use the Sort-object cmdlet, and sort by name or value,
as shown in the following screenshot:

ey powershell = B

{1, 2, 3}
valuel
5

foreach($item in $myHashtable.GetEnumerator sort Name)

item. Value

However, the hashtable object supports the GetEnumerator () method and allows
you to deal with single hash table entries that have name and value attributes. Once
you have these, we can sort them easily as we can sort any other PowerShell data.

Operating script block

An elegant code block helps the process not only when controlling the collection

of objects, but also in many other conditions. The most important thing is that the
script block allows us to package a block of code and delay its execution. A script
block holds the code snippets, and so you do not need to specify a formal name. We
can dynamically create any script operation and of course, we can also perform the
transfer of different parameters many times.

Defining script blocks

Defining a script piece for writing is very simple; it is just surrounding several
program statements within curly brackets. This statement will not be executed
immediately; on the contrary, a new script block object will be created and returned.
In order to facilitate calling the script block after that, we may allocate a script block
to a variable. The following screenshot shows a sample script block:

[30]

http:///

Chapter 1

ey powershell = =

o Trom a script block™ |

We can call a script block using the invoke operator (&). The following screenshot
shows how we can use this operator with a variable when this variable contains
a block:

(4] powershell =

o from a script block

Block compile objects can be passed in and executed multiple times. They are
reference objects and we can assign a variable to a block just to make the variable
point to the block quoted in memory.

Passing parameters and returning values

As we have seen so far, none of the blocks have executed an action or an
interaction with the outside world in complex ways. Now that I have already
mentioned the expression, we can see the operation from the point of view of the
block, which can be used in an expression. The operation parameters evaluate the
return value. This return value from the script block simply asks you to output
an object that will neither be a cmdlet nor another expression. The following is

an example of a return value:

e powershell =

[31]

http:///

Getting Started with PowerShell

As you can see from the last command in the previous example, the return
number cannot be used directly in a conditional expression; you must make use of
parentheses. If you don't, the plus (+) operator will be mistaken as the right-hand
operand and an error, as shown in the following screenshot, will be raised:

ey powershell - b -

$number

1 + (&Snumber)

= 1 + &%number

Note that the output of an object does not terminate the execution of the block,
and the rest of the statement outputs after the object are still implemented. For
example, you can print a string to the console window to return a value, and
the retuning value does not contain other output statements, as shown in the
following screenshot:

ey powershell

wmberPrint = { 5; Write-Host “generated a number
snumberPrint

a number

t = &SnumberPrint
mber
ult

The $numberpPrint block returns a value and writes a string to the console. Looking
at the anonymous block invocation, you may think that the block returns or prints
two variables, but this in fact is not the case. Look at the assignment operation in the
following screenshot. The $result variable is assigned number 5; this will return the
real value and the string will be printed to the console.

We can use a return statement to end the execution and exit the script block. It
terminates the execution and gives the return value. Changing the block before
using return will prevent the Write-Host command from executing;:

[32]

http:///

Chapter 1

X powershell

1 return 5; Write-Host “generated

You can use the return statement to simply quit a block and stop execution. It
doesn't ask you to provide a value. If you omit the value, the script block will only
exit and not return a value. In this case, the block returns a value to the caller only if
there is an output before the return statement.

A useful scripting block will need a way to get parameters from the outside world
so that it can be executed with different data. The parameters can be passed and
retrieved according to their position. A piece of scripting block will always have a
predefined $args variable through automatic settings, and it will contain a group
of provided parameters. We can use it to create and output a custom message to the
user giving a first name and a family name as shown in the following screenshot:

) powershell - O

stName $TlastName”

Though the indexed access to parameters is a good technology, which can be used in
many programming languages, unfortunately, it's too easy to make a mistake once
the parameters grow in quantity. It is best to be used in a very simple scene where
you cannot go wrong. In an advanced scenario, when you don't know the number

of parameters while defining your script block, a mistake is likely to occur. We did
not talk much about simple and advanced scenarios and in most cases we make

use of named parameters. These are announced in the script block using the param
keyword. Here is how the previous example switches to named parameters:

£ powershell = =

e)
e $lastMName”

" -TastName "Gates"

[33]

http:///

Getting Started with PowerShell

Note that usually the first letter of a parameter name will suffice. In cases where
multiple parameter names start with the same character sequence, you will have
to provide the initial characters that uniquely identify the parameter.

We can set default parameter values, which can contain any expression. We can
exploit this fact to implement mandatory parameters. Mandatory parameters are
parameters that absolutely have to be provided when calling the script block. To do
that, we add an expression that throws an exception when evaluated. In that way,
the exception will be thrown if the caller fails to provide the parameter. Based on this
consideration in the $greeting block, the $firstName parameter is essential:

) powershell = B

me rl'equ'ir'ed! "), $lastMame)

ame

Now, you can follow the $ (throw "wrong information") model to realize
forced parameters.

Functions

A function in PowerShell is just a subroutine having another name or a piece of code
that can accept parameters, operations, and return values. A subroutine is probably
the most important invention in the field of computer science programming,.
Subroutines allow writing code snippets that are independent of the main program,
and can be called when you need them. A function is the main mechanism to
construct abstraction, and produce reusable code snippets in PowerShell.

By learning to structure the code and the function, you can make them more
manipulative and readable.

[34]

http:///

Chapter 1

A function is very similar to a script block in the sense that it contains executable
code. The main difference is that it is a script with two anonymous parameters and it
must be assigned to a variable so that it is assessed. For functions to get their name in
their creation, their name must be immediately assessed. For defining a function, we
must use the function keyword as shown in the following code snippet:

function <names> (<parameter lists>)

{

<function body>

}

The function name should start with a letter and may contain any alphanumeric
character sequence and an underscore character. This is how we define a simple
function to output some text:

X powershell

Hi
a function

Having a function to accept parameters, we can provide a list of function definitions.
The following is a sample function; it accepts two numbers and writes the sum to
the console:

i£3] powershell = =

(3Tirst, $second)

Write-Sum 4 5

Scripts

A PowerShell command sequence can be saved as a script file and can be executed
later. We need to use a script file when we want to create small scripting tools,
which we can run on a regular basis. We also need to use script files in cases where
we create a complex modular script to keep their code in a different file. This will
facilitate function development and maintenance.

[35]

http:///

Getting Started with PowerShell

Creating scripts

The typical PowerShell script is a text file, which can be created using all kinds of
tools. By default, these documents carry the .ps1 file extension. You can create them
using Notepad, but it is best if you use a more powerful tool such as a programmer's
text editor with syntax highlighting and intelligent word completion, for example
Notepad++, ISE, and PowerGUIL.

Notepad++ is a free source code editor and is a Notepad replacement that supports
several languages. With a plugin that supports PowerShell, it gives you full syntax
highlighting for PowerShell.

The Windows PowerShell Integrated Scripting Environment (ISE) is a host
application for Windows PowerShell. Powershell v3 comes with a pretty good ISE
built-in. In Windows PowerShell ISE, you can run commands and write, test, and
debug scripts in a single Windows-based graphic user interface with multiline
editing, tab completion, syntax coloring, selective execution, context-sensitive
help, and support for right-to-left languages.

PowerGUI is a graphical user interface and script editor for Microsoft Windows
PowerShell. You can find it at www. PowerGUI . org. It is the freeware tool that the
administrators need for speeding up PowerShell adoption, and harnessing the power
of PowerShell to efficiently manage their entire Windows environment. PowerGUI
simplifies management with an intuitive user console.

You can even create scripts from the PowerShell console using the string and the
Set-Content cmdlet. The following screenshot shows how you can create your
first script:

] Administrator: powershell

r1d. ps1 code
d.psl

As you can see, the hello-world.ps1 file is a pure text file; we can check its contents
using the Get -Content cmdlet.

[36]

http:///

Chapter 1

Invoking scripts

PowerShell finds a file to invoke just by looking at the path environment variable. It
is interesting to note that the current folder is not in the system path. This means that
invoking a script in the current folder will require you to prefix it with a path. Thus
the command in our case becomes .\hello-world psl. This will look familiar if
you come from a Unix background as shell will not include the current folder

path variable.

When in action, PowerShell's default security construction principle only allows
interactive commands and will be implemented in the console input. Shell has
several executive policies, configuration levels of security, and user privileges to run
the script. By default, the shell will run in the restricted policy level; this means that
is not allowed to run a script. We can check the executive policy by calling the
Get-ExecutionPolicy cmdlet.

Passing parameters

The PowerShell script files also allow users to pass parameters for initialization.
Script files have the $args variable set up with the parameters passed at the time

of their invocation. The following is example code for using $args to get parameters:
$firstName = $args[0]

$lastName = $args[1l]

Write-Host "Hello, $firstName S$lastName"

We can save the code as Get-HelloArgs.psl, and then execute it as follows:

ey Administrator: powershell =
oArgs. psl Bl

Of course, we also can use the param keyword for accepting a parameter. The
following is the example code:

param ($firstName, $lastName)

Write-Host "Hello, $firstName $lastName"

We can save the code as Get-HelloParam.ps1 and execute it as follows:

ey Administrator: powershell

oParam. psl -TirstName B1 -lastName Gates

[37]

http:///

Getting Started with PowerShell

Return values

A parameter is, most of the time, a one-way communication mechanism, and will
only transfer data from the environment of the script. We need to be able to return
values from our script. PowerShell provides a good way to output the return value
from a script and we should make use of this method.

An object can be bound to a variable or outputted to a pipeline for the next
command. We can use it to generate a pile of objects from our script and output
them. The following screenshot gives us a script that gives an output of three
temporary filenames:

ey Administrator: powershell - B -

ontent Generate-TempFiles.psl $code
\Generate-TempFiles. psl

As you can see, this value can be assigned to a variable or can be passed down
the line as a foreach command. A return statement will output an object and
terminate execution.

Developing and maintaining script libraries

Sooner or later, you will be responsible for creating a bigger, more complex solution
using PowerShell as its implementation language. Earlier when you wrote your

own code, there were cases where each piece of code was stuck in a separate file and
you could not find a way through the code. This was not a pleasant situation as you
must be aware that your options are separated from the script code into several files
to make things easier to manage. In addition to this, fast navigation to the correct
location of the correct file with less code makes it more reusable. This is a very
common and useful function that lets you move out of the first client code to another
file, and is then included in many documents. In practice, I usually use a folder in my
system path that contains useful scripts so that I can easily include useful features in
any of the scripts and start working on the production code in no time.

[38]

http:///

Chapter 1

Script libraries are normal files that contain useful functions. They are ordinary
PowerShell scripts that do not execute an action— they just define several functions
and let the library client code call them to do the real job.

Including or importing a script library in a script file is similar to executing it. It is a
good programming practice to ensure that the scripting library should contain any
executable code function definition.

Discovering what's new in Windows
PowerShell 3.0

A few months ago, Windows PowerShell 3.0 was launched as part of the Windows
Server 2012 and Windows 8 RTM release. PowerShell 3.0 introduced a lot of

new features, and improved some existing features in order to allow system
administrators to control and manage their systems more easily and efficiently. In
this section, the focus will be on the unique features of Windows PowerShell 3.0 to
make sure that you gain the knowledge and the edge of using it.

Windows PowerShell Web Access
(PSWA)

Windows PowerShell Web Access (PSWA) is one of the new features in Windows
PowerShell 3.0 that has been introduced in Windows Server 2012. Yes, it is what

you are guessing right now. PowerShell Web Access is a web-based version of

the PowerShell console where you can run and execute PowerShell cmdlets from

any web browser that is not only available on desktops but also on any mobile or
tablet devices. PowerShell Web Access allows you to do your administration tasks
smoothly anywhere and anytime using any device running a web browser regardless
of it being a Microsoft or a non-Microsoft one.

[39]

[vww allitebooks.cond

http:///
http://www.allitebooks.org

Getting Started with PowerShell

How PSWA works

The Windows PowerShell Web Access gateway is the name of the server where
PowerShell Web Access is installed and configured. This gateway is the bridge
between the end user and the managed servers, so once you connect to the web
interface of the PowerShell Web Access for writing your cmdlets and scripts, the
gateway will be responsible for executing them on the right server. In the real world,
the PSWA gateway is placed in the DMZ (demilitarized zone) and the web interface
is published to the Internet so that you can easily connect to your server anytime
and anywhere.

DMZ Internal Servers VLAN
Powershell
Web Access
Firewall &> <—>| Firewall [&—>

Gateway,
End User Kroxy
D g [
<

Desktop Mobile Slate
Ipad

Installing and configuring Windows
PowerShell Web Access

This part will show how to install and configure Windows PowerShell Web Access
easily in a few steps.

Step 1 — installing the Windows PowerShell Web

Access Windows feature

In this step we will add the Windows PowerShell Web Access Windows feature.
There are two ways to accomplish this task; either we can use the Server Manager
Wizard or Windows PowerShell. Since PowerShell is our hero in this book, let's do it
in the PowerShell way, using the following steps:

[40]

http:///

Chapter 1

Run the Windows PowerShell console with administrative privileges.

2. Install the Windows PowerShell Web Access feature using the Install-
WindowsFeature cmdlets. The purpose of this is to install PowerShell Web

Access and the pre-requisites, if not installed.

PS > Install-WindowsFeature WindowsPowerShellWebAccess -
IncludeAllSubFeature -IncludeManagementTools

The following screenshot shows the execution results that you should get
after using this command, and also warns you that you still need to do some
configuration in order to complete the PSWA installation:

Administrator: Windows PowerShell I;Ii-—

dministra

rt Meeded

Application Development 5
stalling and conf 1 ws PowerShell Web Access, see

Step 2 — configuring Windows PowerShell Web
Access Gateway

The gateway is the server where Windows PowerShell Web Access is installed

and running. It is called a gateway because it is the gateway/proxy between the
end user and the managed servers/nodes in your network. Now, after installing
the PowerShell Web Access feature we will configure the gateway. In this step, we
will create an IIS web application that runs PowerShell Web Access and configures
the SSL certificate. There are two ways to accomplish this task; we can either do it
manually or use PowerShell, and again here we are using PowerShell:

1. Run the Windows PowerShell console with administrative privileges.
2. Use the Install-PswaWebApplication cmdlet to install and configure

PswaWebApplication:

Install-PswaWebApplication -WebSiteName "Default Web Site" -
WebApplicationName "PSWA" -UseTestCertificate

[41]

http:///

Getting Started with PowerShell

The following screenshot shows the execution results that you should get
after installing the PSWA application, and it also shows a warning because
you have to choose a UseTestCertificate switch:

) Administrator: Windows PowerShell

ed.

d be used
reating applicati

A_pool

reating web application PSWA...
Path
app1icationPoo
EnabledProtoco
PhysicalPath 3 [E3 ShellwebAct

reating self-signed certificate...

reating HTTPS binding...

Make use of UseTestCertificate for testing purposes
a in your private lab only. Never use it in a production

= environment; for your production environments use a
certificate from a trusted Certificate Authority (CA).

3. Open PSWA using https://<server_name>/PSWA to verify your
installation. We should see a screen similar to the following:

28 Windows Server 2012
Windows PowerShell Web Access
Enter your credentials and connection settings

User name:

Password:

Connection type: Computer Name ﬂ

Computer name:

v Optional connection settings
Sign In

@© 2012 Migosoft Corporation. All rights reserved.

[42]

http:///

Chapter 1

The PSWA web application files are located under $windir%\Web\
7 PowerShellWebAccess\wwwroot.

Step 3 — configuring the PowerShell Web Access
authorization rules

Now, we have PSWA up and running; however, no one will be able to sign in and
use it until we create the appropriate authorization rule. The reason behind this is
that it is a good practice to secure your environment by restricting the access to your
network until you create the right access for the right person. The authorization rule
is the access control for your PSWA that adds an additional security layer to your
PSWA. It is similar to the access list on your firewall and network devices. We can
configure the PSWA authorization rule using the following steps:

1. Run the Windows PowerShell console with administrative privileges.

2. Use the Add-PswaAuthorizationRule cmdlet to create the authorization rule
with the -UserName, —-ComputerName, and —-ConfigurationName switches.

The following screenshot shows the execution results that you should get
after configuring the PSWA authorization rule:

ey Administrator: Windows PowerShell = | = -

ministrator -ComputerName PSWA -ConfigurationName

Conf1igu

ministrator

The PSWA authorization rule's files are located under $windir%\Web\
s PowerShellWebAccess\data\AuthorizationRules.xml.

[43]

http:///

Getting Started with PowerShell

Signing in to PowerShell Web Access

Now, let's verify the installation and start using the PSWA by signing into it using
the following steps:

1. Open the Internet browser.
2. Enter https://<server name>/PSWA. The following screen will appear:

E¥ Windows PowerShell Web ... % .

=& Windows Server 2012

Windows PowerShell Web Access

Enter your credentials and connection settings

User name: PSWA\Administrator
Password: sesessee
Connection type: Computer Name
Computer name: PSWA

(v) Optional connection settings

Sign In

© 2012 Microsoft Corporation. All rights resenved.

3. Enter the values for User name, Password, Connection type, and
Computer name.

4. Click on Sign In to get the following screen:

[44]

http:///

Chapter 1

[=T= =

a
@[@ Freeelocalhost P50 e U canecle s O = 6 Certificate error G”QPSWA | | A K {r

A,

3

Windows PowerShell
Copyright (€) 2012 Microsoft Corporation. All rights reserved.

PS Jsers\Administrator\Documents:>
Get-Pi

powershell

PM (KD WS(K) WM{M) CPU(s)
1788 7120
1148 3236
1332 14564
20108 50508 760 dwm
14892 45308 3068 explorer
o 20 0 Idle
20868 55676 2188 iexplore
5388 18792 2760 iexplore
3580 9392 528 1sass
2860 7004 2552 msdtc
65824 74544 2668 powershell
3400 6640 520 services
308 960 264
8032 1204
8120 296 svche
15728 328 svche
7580 636 svchc
672 svchost

2660
372 csrss
424 csrss

[(=

&
10
12
18
67

(o]
52
28
24
17
27
11

5
16
11
40
12
13

EREREBEE2E

= History: 4 Connected to: PSWA

Auto-loading of modules

PowerShell 3.0 will now be able to check and load all the cmdlets and modules
installed on the local computer and load them automatically while starting up so you
do not have to use the Import-Module cmdlet to import each module that you want
to use.

[45]

http:///

Getting Started with PowerShell

Online and updatable Help

In the previous version of PowerShell, we used the Get-Help cmdlet to show the
Help information that comes embedded by default with the cmdlets. In PowerShell
3.0, the inline help has been replaced with a Help file hosted on the Internet. By
default, the Get -Help cmdlet will not show you any Help information until you

use the Update-Help cmdlet to download the help files from the Internet. If you

are running the Get -Help cmdlet for the first time without using the Update-Help
cmdlet, it will automatically prompt you to download the latest Help files from the
Internet. The reason behind this is that in the previous versions of PowerShell, the
Help information was static and sometimes there were mistakes as well as updates
in the Help information. There was no available way to update the Help information
even while using a Windows update. Thus Microsoft introduced a new update
method using the Update-Help cmdlet, which gets the latest Help information from
the Help files hosted on the Internet. Also, you can use the SAVE-HELP cmdlet to save
the Help files locally or on shared folders so that every computer in your network
can get them directly. Moreover, if you do not want to download the help files
locally, you can use the Get -Help cmdlets with the -online switch for redirecting
you to the web pages that contain the Help information for the cmdlets, but you have
to consider the Internet connectivity each time you use this parameter. The following
screenshot shows the use of the Get -Help cmdlet:

Administrator: Windows PowerShell

P5 C:hUsers\Administrator> Get-Help Get-Service

Do you want to run Update-Help?
he Update-Help cmdlet downloads the newest Help files r Windows PowerShel]l modules and installs them on your

computer. For more deta see the help topic at ht go. microsoft. com/fwlink/?LinkId=210614.
[¥] ¥Yes [N] No [5] Susp [7] Help (default is ™ f

Scheduled jobs

Scheduled jobs are similar to background jobs introduced in PowerShell 2.0. Both
jobs run asynchronously in the background without interrupting the user interface,
but the difference is that the background jobs must be started manually using the
Start-Job cmdlet, and in some cases, if you want to automate this job you can use a
scheduled task to create a scheduled job that triggers your script. In PowerShell 3.0,
scheduled jobs are introduced to reduce the hassle of scheduling the background
jobs in multiple steps. Simply, scheduled jobs can create background job and
schedule it for a later execution using a set of cmdlets instead of using the Task
Scheduler wizard. You can also get the results of running scheduled jobs and
resume interrupted jobs.

[46]

http:///

Chapter 1

In the following example, we will create a simple scheduled job that clears the
event log for application, security, and system log stores every day at 02:00 am.
The first thing we need to define is when the scheduled job will be executed using
the New-JobTrigger cmdlet, then create and register the job using the Register-
Scheduledob cmdlet. The code snippet is as follows:

$trigger = New-JobTrigger -Daily -At 2am

Register-ScheduledJob -Name ClearEventLogDaily -Trigger $trigger -
ScriptBlock {Clear-EventLog -LogName Application,Security, System

| Task Scheduler Library | Microsoft | Windows | PowerShell |

i. All PowerShell scheduled tasks are saved by selecting Task Scheduler
~ Scheduled]Jobs.

The Show-Command cmdlet

The show-Command cmdlet allows you to display the command in a Graphical User
Interface (GUI) as if you are browsing a web form or a normal Windows program.
You can use Show-Command to compose a command in a GUI form, select the
required variables and write the values, then click on Run to execute the command
with the parameters you entered. You can also click on the Copy button to copy the
command with the parameters and values to the clipboard so that you can paste it to
the PowerShell console and save it to a script. Refer to the following screenshot:

= Administrator: Windows PowerShell ISE =i L0}
File Edit View Tools Debug Add-cns Help
b e 3 4 SN B = d B mo =
Untitled1,ps1* X = |_I_-‘
1 Show-Command -Name Get-Service 2 Get-Service =
Parameters for "Get-Service": [2]

Default| DisplayName |InputObject |
DisplayName: » [firewall”
ComputerName: localhost

[] DependentServices

Exclude:

Include:
<

PS C:\Users\Administrator> Show-Command -Name Get-Service [] RequiredServices

~ Commoen Parameters

[un | [Cop] s

< "

>

Running script / selection. Press Ctrl+Break to stop. Ln2 Col1 {1 120%

[47]

http:///

Getting Started with PowerShell

Integrated Scripting Environment (ISE)

PowerShell ISE is the GUI editor for PowerShell. It is similar to the Blue PowerShell
console but with more advanced features. In the previous version of PowerShell,

ISE was just a graphical editor that allowed you to write and execute the PowerShell
commands and scripts in a nice user interface that highlights the syntax and with
the ability to add/remove breakpoints for debugging capabilities. In PowerShell 3.0,
new features have been added to ISE to give the administrator a different experience
while using it. In this section we will highlight these features.

IntelliSense

IntelliSense is the name of Microsoft's implementation for the autocomplete
technique. Autocomplete is one of the most famous features in today's applications,
and everyone using a computer is using autocomplete. Simply, autocomplete is a
feature embedded in most of the search engines that gives you a list of suggestions
once you start typing on your keyboard. IntelliSense in PowerShell not only shows
you a suggestion for words but also for commands, parameters, variables, and even
UNC paths on your computer. The following screenshot shows us an example:

< Administrator: Windows PowerShell ISE =1t -
File Edit View Tools Debug Add-ons Help
0= 3 & B » 9 P 3B w |8 Boo @& e
Untitled1.ps1* X &
1 get-r| "~

£}l Get-PSDrive .
Ll Get-PSProvider

L}l Get-PSSessionConfiguration

E} Get-PswahuthorizationRule

1_3 Get-Random

L}l Get-RDAvailableApp

£}l Get-RDCertificate

E} Get-RDConnectionBrokerHighAvaila...

1_3 Get-RDDeploymentGatewayConfigura...

Ln1 Col6 [} 120%

[48]

http:///

Chapter 1

Script snippets

Code snippet is the name used to describe a piece of reusable code, and it is usually
used to speed up the process of writing code especially when using a repetitive
code and syntax. PowerShell 3.0 ISE introduced the snippets feature to make the
script-writing process easier. By using snippets you do not have to know the syntax
for each command and function. For example, the ForEach code snippet inserts

the syntax of the ForEach loop and you just have to modify your variables. The
following screenshot shows us a similar example:

=] Administrator: Windows PowerShell ISE I;Ii-

File Edit View Tools Debug Add-ons Help

e d & B x»| 9 B = | 8 Boo|l &

Untitled1.ps1* X
1

do-until

do-while
for Description: for loop
foreach = | Path: Built-in

function
for (%i = 1; §i -1t 99; Si++)

{

if
if-else
switch i
try-catch-finally

Ln1 Col1 [l 120%

How to use snippets
You can use snippets using Ctrl +] or by selecting Edit | Start Snippets.

How to create/add new snippets

In order to create a new code snippet we use the New-Isesnippet cmdlet. In the
following example we will create a new snippet to restart all SQL Server Services:

New-IseSnippet -Title RestartSQLServerServices -Description
"Restart all SQL Server Services" -Text "Restart-Service
-Name *SQL*"

In PowerShell, snippets are saved in the form of an XML file with the snippet.
psilxml file's extension under User Profile | Windows PowerShell | Snippets.

[49]

[vww allitebooks.cond

http:///
http://www.allitebooks.org

Getting Started with PowerShell

You can get the path of the snippets' folder using the following command:

Join-Path (Split-Path S$profile.CurrentUserCurrentHost)
"Snippets"

To display all user-defined snippets we use the Get -IseSnippet cmdlet. This
command will show the name of each snippet and where it is located. To remove

a snippet, open the folder that contains all the user-defined snippets and delete the
snippet file. By default, PowerShell loads all the snippets located in the default folder
automatically during startup; however, if you have saved your snippet's files in a
separate folder, use Import-IseSnippet -Path <Snippets Folder Path> to

load it.

Add-on tools

Add-on tools are Windows Presentation Foundation (WPF) controls that can be
added to PowerShell ISE to add extra features and functionalities to the ISE, such

as spelling checker and script-printing features. One of the most popular add-ons is
Microsoft Script Explorer. The Microsoft Script Explorer enables you to find scripts,
snippets, and modules in the script repositories such as TechNet Script Center and
other community repositories such as PoshCode, and also it can search for scripts in
local and network filesystems.

Autosave and restart manager

PowerShell ISE 3.0 automatically saves any runspace and script file that is open , so
in case a failure happens in your ISE or your operating system restarts suddenly, ISE
will restore all your runspaces once you open it again. It is similar to "restore session
in Internet Explorer.

PowerShell remoting

PowerShell remoting is one of the most impressive features that make PowerShell
unique and give it a different flavor over other shells. PowerShell remoting allows
IT administrators to control and execute PowerShell scripts on multiple remote
computers from a local PowerShell console without moving to any place. We will
talk more in depth about PowerShell remoting in the coming chapters, but let's take
a sneak peak at what is new in PowerShell 3.0 from the remoting perspective.

[50]

http:///

Chapter 1

Disconnected session

PowerShell remoting is now similar to a remote desktop session; you can disconnect
your session without interrupting any running process, application, or script, and
you can connect later to this session again from the same or a different computer to
continue your work.

Remoting on a public network

Remoting in PowerShell 3.0 can be enabled on public networks on the client
operating systems such as Windows 7 and Windows 8. In simple terms, we use
the skipNetworkProfileCheck switch with the Enable-PSRemoting or Set-
WSMANQuickConfig cmdlets.

The custom session configuration file

The custom session configuration file is a predefined session configuration that
includes information about which cmdlets, snippets, modules, and other PowerShell
components should be loaded in this session and the configuration that can be used
by the user, which gives another edge of security for PowerShell in general and
PowerShell remoting specifically.

Windows PowerShell Workflow (PSW)

The word "workflow" represents a set of objects, tasks, and activities that are
connected together and running concurrently or sequentially or both. In IT, the word
workflow always links to another word automatically. For example, in Microsoft
SharePoint Server we use a workflow to automate an approval process such as
vacation request approval, or we can use Microsoft System Center Orchestrator to
automate a process such as provisioning new users and applications.

Workflow capabilities have been introduced in Windows PowerShell 3.0, and it is
designed specifically to help you perform time and effort-consuming complex tasks
across multiple and different devices in different locations.

[51]

http:///

Getting Started with PowerShell

You might wonder what the real value of Windows PowerShell Workflow is, as

you already use PowerShell to write different scripts and modules that allow you to
perform long-running tasks, and this is the aim of scripting in general. Well, before I
tell you the answer let's think about these questions together: can you write a script
that restarts an operation on a device and waits for this device to boot-up to resume
the rest of the commands again? Can you write a single script that runs on multiple
devices concurrently? PowerShell Workflows is designed to be interruptible,
stoppable, restartable, and also parallelizable, which is why it is more efficient for
long-running tasks than scripts.

The script consists of a set of commands; however, workflow consists of a set

of activities. Commands normally represent an action that you want to execute;
however, the activities represent a task you want to perform. Moreover, commands
execute sequentially and activities run sequentially and concurrently.

There are two methods to define a workflow; we can either use the PowerShell
syntax or, since it is built on top of Windows Workflow Foundation (WF), you can
use an XAML file designed by Visual Studio Workflow Designer.

Creating a workflow using PowerShell

Writing a PowerShell Workflow is similar to writing a PowerShell function with a little
difference. The first difference is using the word "workflow" instead of "function". Also,
as in functions, the same definition of parameters using param () can be used with
CmdletBinding to add some advanced workflow features. cmdletBinding allows

you to add advanced capabilities to your function and workflows, such as adding

the -verbose, -Debug, -whatif, and -confirm parameters to your workflow without
implementing them manually. It also defines HelpUri that will be used by the Get -
Help cmdlets to get the online help for the workflow or function. The following code
snippet shows how we write a PowerShell Workflow:

Workflow Test-Workflow

{

[CmdletBinding (ConfirmImpact=<Strings,
DefaultParameterSetName=<Strings>,

HelpURI=<URI>, PositionalBinding=<Booleans>)]
Param([string] <Parameter Name>)

}

As mentioned earlier, PowerShell Workflows use activities that are similar to
cmdlets; the PowerShell team has already implemented all PowerShell core cmdlets
as activities, which makes it easier for PowerShell users to use activities and not get
confused, except for a set of cmdlets that are excluded from this implementation.
Does it mean that the excluded cmdlets cannot be used in a workflow?

[52]

http:///

Chapter 1

No, PowerShell automatically executes them using a special activity called
inlineScript. The purpose of this activity is to execute any PowerShell command
that is valid in PowerShell but not supported by workflows, such as executing a
.ps1 file or calling a dynamic parameter inside a workflow.

For the list of excluded cmdlets you can visit
s http://technet.microsoft.com/en-us/library/jj574194.aspx.

PowerShell Workflows can be executed concurrently and sequentially by using

the reserved keywords such as parallel and Sequence. The activities inside the
parallel block will be running concurrently, and activities inside the sequence
block will be running sequentially. ForEach -parallel is a combination of the
Sequence and Parallel executions. ForEach -parallel will execute the activities
sequentially on the items in the collection concurrently. In other words, if there is a
collection of computers where a set of activities such as rename and restart computer
are being executed, the activities will be executed in sequence on all computers at the
same time. The following script block shows the syntax of using the parallel and
Sequence execution capabilities inside a workflow:

Workflow Test-Workflow

{

Parallel

{
<Activity 1>
<Activity 2>
<Activity 3>

}

Sequence

<Activity 1>
<Activity 2>
<Activity 3>

}

ForEach -parallel ($item in $collection)

{

<Activity 1>
<Activity 2>
<Activity 3>

}

}

parallel execution is useful for running independent activities concurrently, such
as starting a process and restarting a service at the same time where each activity is
running independently from the other one.

[53]

http:///

Getting Started with PowerShell

Sequence execution is useful for defining a set of activities to run sequentially inside
a Parallel or ForEach -parallel execution.

For more information on the different ways of creating a PowerShell
% Workflow refer to http://msdn.microsoft.com/en-us/library/
g windows/desktop/hh852738 (v=vs.85) .aspx.

Controlling PowerShell Workflow execution

One of the most interesting features in PowerShell Workflow, and what makes it
unique compared to a normal script is the flexibility of controlling the execution; at
any point you can interrupt, suspend, or resume the workflow's execution. You can
even restart the computer while running the workflow and complete the execution
upon startup.

You can suspend the workflow's execution using the Suspend-wWorkflow activity
that will save the execution state, variables, and values in a checkpoint and return
the job ID for the suspended workflow, so you can use the job ID as a parameter for
the Resume-Job cmdlet to resume the workflow execution again.

In the following example, we will learn how to suspend and resume the workflow
execution:

Workflow Test-Workflow

{
<Activity 1>
<Activity 2>
Suspend-Workflow
<Activity 3>

}
You can execute this workflow using the following command:

PS C:\>Test-Workflow

The first two activities will be executed and the workflow will be suspended, and the
result of suspend-workflow will be information about the workflow-executed job.

Id Name PSJobTypeName State HasMoreData Location Command
2 Job2 PSWorkflowJob Suspended True localhost Test-
Workflow

[54]

http:///

Chapter 1

In order to resume the workflow again, we will use the Resume-Job cmdlet:

S C:\>Resume-Job -Name Job2

In order to get the results of the activities executed after resuming, in our case
Activity 3, we will use the Get -Job and Receive-Job cmdlets:

PS C:\>Get-Job -Name Job2 | Receive-Job

Since PowerShell Workflow is recoverable, you can restart the target computer
and smoothly resume the workflow again using the Restart-Computer activity.
Simply use the -wait switch with Restart-Computer so that the workflow will
wait for the computer to restart and reconnect again before proceeding with the
workflow execution.

In the following example, the workflow will restart the targeted computer

after executing Activity 1and Activity 2, and then wait for the computer
to boot up again to resume and execute Activity 3. You can also use the
-PSConnectionRetryCount and -PSConnectionRetryInterval parameters to
specify the connection retries and the interval between each connection retry.

Workflow Test-Workflow
{
<Activity 1>
<Activity 2>
Restart-Computer -Wait -PSConnectionRetryInterval 4 -
PSConnectionRetryCount 8
<Activity 3>

}

In order to maintain these features of PowerShell Workflow, it is a must to
implement another feature in workflows, which is "CheckPoint". Checkpoints in
PowerShell Workflow take a snapshot of the current state and data, and then save

it in the profile of the user who executes this workflow on the hard disk, so on
resuming, the workflow will start from the last checkpoint instead of starting from
the beginning. PowerShell by default adds checkpoints in the beggining and ending
of the workflow. In addition, you can use the -pPspersist switch with any activity to
take a checkpoint after completing its execution. Also, you can use the Checkpoint-
Workflow activity at any point in your flow to take a checkpoint.

[55]

http:///

Getting Started with PowerShell

Workflows are used to execute tasks faster, so using checkpoints
without any need or optimization will slow the execution and
make the usage futile.

%%‘ In case of using pipelines and parallel execution, checkpoints will

not be taken until the completion of the pipeline or the parallel
activities; however, you can use checkpoints in sequence activities
to take a checkpoint after completion of every single activity.

Summary

In this chapter, we studied variables and data structures such as objects, lists, arrays,
and hash tables, which are used frequently in the examples in later chapters. This
chapter facilitated the explanation for the later examples.

If arithmetic is the soul of the program, then the control flow is the skeleton of
PowerShell. Control flows directly determine the program operation's path.
Pipelines, script blocks, functions, and script files are major program-organization
tools of PowerShell.

PowerShell 3.0 introduced a lot of new features, such as PowerShell Web Access

and PowerShell Workflow. PowerShell 3.0 improves some existing features such as
PowerShell ISE. Since the later chapters will be based on this chapter content, readers
are encouraged to review characteristics of the PowerShell language at this step.

In the next chapter we will introduce a snap-in for protecting your PowerShell code.
The user can encrypt based on the .NET code obfuscator to protect the source code
from getting cracked.

[56]

http:///

Developing Snap-ins
for PowerShell

There may be times when PowerShell does not include a built-in cmdlet with the
specifications you want; in such a scenario you will have to write a PowerShell
snap-in to register your custom cmdlet. You will see how easy it is to actually build
a custom-class library that in turn is an extension of the PowerShell console and will
add a couple of extra commands according to your preference.

In this chapter we will cover:

* Creating a PowerShell snap-in

* Writing a PowerShell snap-in

* Registering and removing a PowerShell snap-in

* Listing and executing cmdlets in a PowerShell snap-in

* Debugging a PowerShell snap-in

A Windows PowerShell snap-in provides a mechanism for registering sets of
cmdlets and providers with the shell, thus extending the functionality of the shell. A
PowerShell snap-in can register all the cmdlets and providers in a single assembly, or
it can register a specific list of cmdlets and providers.

Sometimes, when you have developed a product for which you want the source
code to be kept as a secret from your client or you have written some scripts and
then released them to be used by others, and you want to protect this source code
against reverse engineering, cracking, and modification by others, snap-ins are the
best choice. Normally, commercial PowerShell solutions use the snap-ins method

to publish their own products, such as VMware vSphere PowerCLI and the Quest
Active Directory series. The code will be complied into assemblies so that all security
options for C# and VB.NET code can be used.

http:///

Developing Snap-ins for PowerShell

Creating a PowerShell snap-in

All Windows PowerShell snap-in classes are derived from the pPSSnapIn or
CustomPSSnapIn class. The default type is PSSnapIn, which registers all cmdlets
and providers in a single assembly. The other type is CustomPSSnapIn, which allows
users to specify the list of cmdlets and providers from either a single assembly or
multiple ones. The registration mechanism adds the cmdlets, providers, or hosting
applications to the current session. In this chapter, we will introduce how to create
snap-ins to expand the cmdlets of PowerShell.

First of all, we need to introduce a programming environment to facilitate the
description of the follow-up. We will require the following;:

e Tools: Visual Studio 2010 and .NET Framework 3.5
¢ Environment: PowerShell 3.0 and Windows 2008

It is easy to build a custom-class library that is in turn an extension of the PowerShell
console and will add a couple of extra commands according to your preference.

We should download the Windows SDK in order to get the System.Management .
Automation.dll file to make PowerShell easily accessible. We can download this
from http://www.microsoft.com/en-us/download/details.aspx?id=8279.

Users can write some code for a snap-in and compile the code into a .NET assembly.
Then you should register the assembly as a snap-in with PowerShell. Before you can
use the cmdlets or providers in your snap-in, you need to load the snap-in into a
PowerShell session. After the snap-in is loaded, users can use cmdlets or providers
in the snap-in just like other built-in cmdlets and providers. To avoid the loading
operation of your snap-in every time you want to use it, you can load a snap-in by
saving it into a configuration file.

Writing a PowerShell snap-in

In this section, we will explain how to write a snap-in.

Creating a new class library project

First of all, we should create a class library project and name it MySnapIn in Visual
Studio 2010 as shown in the following screenshot:

[58]

http:///

Chapter 2

New Project ﬂ I
g g I.NET Framework ¢ j Sork by IDeFauIt | Search Installed Templat O |
Installed Templates
: - -) Type: Visual C#
visual Basic - Ecﬁ ‘Windows Forms Application Wisual C#
= A project for creating a C# class library (.dll)

= visual C# ot

windows v ‘WPF Application Wisual Ca#

Web

Cloud E.(-:ﬁl Console Application Wisual Ca

Reporting -

SharePaint Ecﬁ ASP.MET Web Application Wisual Ca#

Silverlight —

Test s ch| Class Library Visual C#

WCF

Wiorkflow = ;ﬁ A5P.NET MYC 2 Web Application visual C#

M) . [E
Narne: | MySniaptn|
Location: ID:'I,demo'l, LI Browse. .. |
Solution: ICreate ey solution j
Solution name: IMySnapIn [v Create directary For solution
™ add to source conkral

Then, add a reference to the System.Management . Automation.dll (found in C:\
Windows\assembly\GAC MSIL\System.Management.Automation\1.0.0.0 31bf
3856ad364e35) and System.Configuration.Install.dll (found in C:\Windows\
Microsoft.NET\Framework\v2.0.50727) files. You should now have the following
reference added:

Solution Explorer * 1 X

= .E MySnapIn
=d| Propetties

=R = crences

=]
A Microsoft, CSharp
A Syskem
A Swskern. Configuration. Install
A Syskem, Core
A0 Swskem.Daka
[

A System.Data,DataSetExtensions
A Swskern.Management. Automation
A2 Syskern, xml

A Syskern, ¥ml.Ling

'—i] Solution Explorer ﬁ; Team Explorer

[59]

http:///

Developing Snap-ins for PowerShell

Creating a PowerShell installer class

In order for our PowerShell cmdlet to work, we have to create an Install class.

This class looks fairly worthless, but nevertheless it is still required because this class
will be invoked when you install the snap-in and provide the system with some
information, such as where it comes from and what it is supposed to do.

Create a public class that derives from the Pssnapin class. In this example, the class
name is MySnapInInstallclass. First, start by adding the necessary references.
Next, add the following code to that class:

.5

4% MySnapin.MySnapininstallclass +| 2r'Vendor

“lusing System.Management. Automation;
using System.ComponentMadel;

Finamespace MySnapln
{
[Runinstaller(true)] // snap-in installation class
El public class MySnaplnlnstaliclass : PSSnapln

Get a name for this PowerShell snap-in.
/ This name will be used in registering
/// this PowerShell snap-in.
/ < /summary>
= public averride string Name
{
= get
{
return "MySnapln”;
)
}
= / <summary>
/// Vendor information for this PowerShell snap-in.
/ < /summary>
= public override string Vendor
{
= get
{
return “fuhj;
)
}
= / <summary>
/// Gets resource information for vendor. This is a string of format:
/ resourceBaseName,resourceName.
</summary>
Bl public override string VendorResource
{
= get
{
return "MySnapln, fuhj”;
}
}
= /// <summary>
/ Description of this PowerShell snap-in
</summary>
= public averride string Description
{
= get
{
return “This is a PowerShell Snap-In that include several Cmdlets.”;
}
}
Bl public override string DescriptionResource
{
= get
{
return "MySnapln, This is a PowerShell Snap-In that include several Cmdlets.”;
1]
i
iz
3

[60]

http:///

Chapter 2

The property for name, vendor, and description of the snap-in need to be
emphasized. Especially the property for the name of the snap-in, as it will be used
when we call Add-PSSnapin to register it to the PowerShell session. Meanwhile, the
property for the vendor resources and description resources are optional. The public
property for the name of the snap-in do not use any of these characters: 4, (,), {, },
L1,S -/, \,i, 5" "', <> |, 2 @ >, and *. Use of any of these characters is illegal.

This essentially provides some information to the system upon installing your
snap-in. In fact, the information is stored in the computer registry and the
PowerShell session depends on the information found in the snap-in file storage
location and the related information, for execution. We will introduce these
contents later on.

Creating a class file to include several
PowerShell cmdlets

We will now introduce the most important part of a snap-in. Let's create a cmdlet
class file that is named MySnapInCmdletsclass.cs, in the project. The users can set
several classes in a file and also each class in the respective file, because a snap-in
only contains the install and cmdlet classes. Here, in order to make it convenient
for the users' understanding, all the cmdlet classes are placed in a file and the
installer class is placed in the other file. If the user's snap-in contains a lot of cmdlets,
it facilitates maintenance when the user creates a class file for each cmdlet class.

Use the [cmdlet ()] attribute in your class to tell the system that it's going to be a
cmdlet for PowerShell. Your class name comprises of two parts: verb and noun. The
verb defines the action that this cmdlet will perform, and the noun defines the object
on which the verb acts. The keyword verbsCommon . Get means that it is a cmdlet
with the built-in verb Get. And the keyword after the comma, with double quotation
marks, is the noun of the verb-noun structure. The cmdlet, which is composed of

the verb and noun, will be invoked when a snap-in is registered in a PowerShell
session. The only method of the class that needs to override into the actions is
ProcessRecord ().

[61]

http:///

Developing Snap-ins for PowerShell

The code will be as follows:

using System.Text;
-Inamespace MySnapln

{

{

{

}

#endregion

MySnaplnCmdletsclass.cs *OX
|“‘fﬁMySnapln.GetHelloCommand | #¥ProcessRecord() -
—-lusing System; *

using System.Collections.Generic;

using System.Management.Automation;

-l #region GetHelloCommand
/fa most simple cmdlet example
[Cmdlet(VerbsCommon.Get, "Hello™)]

-1 public class GetHelloCommand : C‘TIC“Eti

- protected override void ProcessRecord()

WriteObject("Hello!!™);

i Sa-f—ellc'-;‘v'c'I-:J'Zc'w’waﬁdl

& A-:IdTest'Zc"1“1a'1d|

|GetLifeCycleComma '1-:J|

H |GetComputerNameCom "1a-1d|

We can see that all of the cmdlet classes are derived from cmdlet. In fact, the
snap-in not only already contains the most basic function units, but can also
compile successfully. The subsequent section introduces you to the registration
and the call, in a way that we can use now.

[62]

http:///

Chapter 2

Next, I want to give an example of custom verbs taking parameters and logic
judgment. The code is shown in the following screenshot:

MySnapinCmdletsclass.cs *0OXx
| v"[3I‘v'1}-'Snapln.Gr:tlZ:cmputr:rNamr:lI:cmmancI vl 7% ProcessRecord() -
-lusing System; +

using System.Collections.Generic;
using System.Text;
using System.Management.Automation;

-Inamespace MySnapln
{
#H GetHelloCommand
-1 #region SayHelloWorldCommand
[/Custom verbs, take parameters, with logic judgment cmdlet examples
[Cmdlet("Say”, "HelloWarld")]
=1 public class SayHelloWorldCommand : Cmdlet
{
private string argus;
[Parameter(Position = 0)]
[ValidateNotMNullOrEmpty]
| public string Args
{
get { return argus; }
set { argus = value; }
H
= protected override void ProcessRecord()
{
if fargus != null &8& argus.Length > 0)
{
Console.WriteLine("Hello World:™ + argus);
}
else
Console.WriteLine("Need some parameter”);

}

#endregion

H [AddTestCommand

|GetLifeCycleC Dmr‘1and|

H |GetComputerNameC Dr‘1r‘1and|

[63]

http:///

Developing Snap-ins for PowerShell

It is very similar to the first example that used the [cmdlet ()] attribute; the
difference is that the parameter verbsCommon . Get is replaced by a custom parameter
"Say", which is contained within double quotes. This is an essential attribute for
cmdlet classes. In the ProcessRecord () method, there is an if/else logic judgment
as well as an argus keyword for saving the input parameters.

In the subsequent sections, we will see the rest of the method-declaring parameters.
Because the method of declaring parameters is exclusive, we can't demonstrate all
methods in one example.

Declaring cmdlet parameters

Let's consider an example where we define a public property as shown in the
preceding code. When we add the parameter attribute and set the position
keyword to the argument position, the first position is indicated a value of o. It
means that you declare a positional parameter, and then the first parameter in the
pipeline will be assigned to the designated variables, as the parameters of the index
starts at 0.

If you want to declare a named parameter, you can add the parameter attribute and
omit the Position keyword from the attribute. Just as shown in following code:

[Parameter ()]

public string PersonName
get { return personName; }
set { personName = value; }

}

private string personName;

If you want to declare a mandatory parameter, you should add the parameter
attribute and set the Mandatory keyword to true. It means the snap-in we create
with this keyword will force the user to input the specified parameters, otherwise
it will report an error. This is very useful when a snap-in needs an obligatory
parameter. Refer to the following code:

[Parameter (Position = 0, Mandatory = true)]
public string PersonName

get { return personName; }

set { personName = value; }

}

private string personName;

[64]

http:///

Chapter 2

If you want to declare an optional parameter, you just omit the Mandatory keyword
when you add the parameter attribute. Just as shown in following code:

[Parameter (Position = 0]
public string PersonName
get { return personName; }
set { personName = value; }

}

private string personName;

The example that we just saw introduces the method of declaring a parameter, but
sometimes we need our snap-in to accept several different parameter groups. These
parameter groups are optional. Once a parameter group is input, the parameters

in this group must follow their own parameter rules. For example, the unique
parameter of the Get - Command cmdlet is optional. Now we need to declare a
parameter set to solve this problem; we will introduce the declared parameter

set in the next section.

Declaring parameter sets

Now we will show how to define two parameter sets when you declare the
parameters for a cmdlet. Each parameter set has both a unique parameter and
a shared parameter that is used by both parameter sets. We will declare these
parameter sets using the following steps:

1. We declare a Mandatory parameter, and then add the Parameterset
keyword to the parameter attribute for the unique parameter of the first
parameter set.

[Parameter (Position = 0, Mandatory = true,
ParameterSetName = "Tests01")]
public string PersonName

get { return personName; }

set { personName = value; }

}

private string personName;

2. Add the parameterset keyword to the pParameter attribute for the unique
parameter of the second parameter set.
[Parameter (Position = 0, Mandatory = true,
ParameterSetName = "Tests02")]
public string CarName

{

[65]

http:///

Developing Snap-ins for PowerShell

get { return carName; }
set { carName = value; }

}

private string carName;

3. For the parameter that belongs to both of the parameter sets, add a
Parameter attribute for each parameter set and then add the Parameterset
keyword for the Parameter attribute. In each Parameter attribute, you can
specify the defined parameter and share if the parameter is Optional or
Mandatory and in which Parameterset set:

[Parameter (ParameterSetName = "Tests01")]
[Parameter (Mandatory= true,ParameterSetName = "Tests02")]
public string SharedProperty

{

get { return sharedProperty; }
set { sharedProperty = value; }

}

private string sharedProperty;

Now we show an example that defines two parameter sets in which both of them
share a property. In the Tests02 parameter set, the parameters CarName and
sharedProperty are set to Mandatory, and the parameter sharedProperty in the
Tests01 parameter set is set to Optional.

After defining the parameters for a snap-in, it is very important that we validate
whether the parameter is legal or not, such as an argument set, argument range,
argument pattern, argument length, and argument count. The normal working
of snap-in is directly related to whether the parameters are legal or not. We will
introduce how to validate the parameter input in the next section.

Validating the parameter inputs

As we enter into the program execution, the input needs to be checked. In order to
ensure that the parameters are legal, we program according to our expectations.

Validating the argument set

We can specify a validation rule that the PowerShell runtime can use to check the
parameter argument before the cmdlet is run. This validation rule provides a set of
the valid values for the parameter argument.

[66]

http:///

Chapter 2

Add the validateset attribute before the Parameter attribute as shown in

the following code. This example specifies a set of three possible values for the
PersonName parameter, and when the Ignorecase keyword is specified the case of
the parameter is ignored when you check the parameter.

[ValidateSet ("Gates", "Jobs", "Ballmer" , IgnoreCase = true)]
[Parameter (Position = 0, Mandatory = true)]
public string PersonName

get { return personName; }

set { personName = value; }

}

private string personName;

Validating the argument range

We can specify a validation rule that the PowerShell runtime can use to check the
minimum and maximum values of the parameter argument before the cmdlet is run.
You set this validation rule by declaring the validateRrange attribute.

Add the validateRange attribute before the Parameter attribute as shown in the
following code. This example specifies a range of 0 to 10 for the ReceivedData
parameter.

[ValidateRange (0, 10)]
[Parameter (Position = 0, Mandatory = true)]
public int ReceivedData
{
get { return receivedData; }
set { receivedData = value; }

}

private int receivedData;

Validating the argument pattern

We can specify a validation rule that the PowerShell runtime can use to check the
character pattern of the parameter argument before the cmdlet is run. You set this
validation rule by declaring the validatePattern attribute.

[67]

http:///

Developing Snap-ins for PowerShell

Add the validatePattern attribute as shown in the following code. This example
specifies a pattern of five digits, where each digit has a value of 0 through 9 for the
ReceivedData parameter.

[ValidatePattern (" [0-9] [0-9] [0-9] [0-9] [0-91")]
[Parameter (Position = 0, Mandatory = true)]
public int ReceivedData

{

get { return receivedData; }
set { receivedData = value; }

}

private int receivedData;

Validating the argument length

We can specify a validation rule that the PowerShell runtime can use to check the
number of characters of the parameter argument before the cmdlet is run. You set
this validation rule by declaring the validateLength attribute.

Add the validateLength attribute as shown in the following code. This example
specifies that the length of the argument should have a length of 0 to 5 characters for
the PersonName parameter:

[ValidateLength (0, 5]
[Parameter (Position = 0, Mandatory = true)]
public string PersonName

{

get { return personName; }
set { personName = value; }
}

private string personName;

Validating the argument count

We can specify a validation rule that the PowerShell runtime can use to check the
count of arguments that a parameter accepts before the cmdlet is run. You set this
validation rule by declaring the validateCount attribute.

Add the validateCount attribute as shown in the following code. This example
specifies that the parameter will accept one argument or as many as four arguments.

[ValidateCount (1, 4)]
[Parameter (Position = 0, Mandatory = true)]
public string PersonName

get { return personName; }

set { personName = value; }

}

private string personName;

[68]

http:///

Chapter 2

Thus this section showed us examples of how to validate a parameter input by using
various attributes to implement validation rules.

Overriding methods

In the following example, there are a couple of different methods to be used:
BeginProcessing (), EndProcessing (), ProcessRecord (), StopProcessing ().
The code is as shown in the following screenshot:

MySnaplnCrdletsclass.cs 0

| “% MySnapln.AddTestCommand vl ¥ BeginProcessing()

-lusing System;
using System.Collections.Generic;
using System.Text;
using System.Management.Automation;

-Inamespace MySnapln

{

GetHello

SayHelloWorldCommand
- #region AddTestCommand
//Complete cmdlet example with BeginProcessing(),EndProcessing(),ProcessRecord(), StopProcessing() method
[Cmdlet(VerbsCommon.Add, "Test™)]
=1 public class AddTestCommand : Cmdlet
{//Initialization, ready for data
-] protected override void BeginProcessing()
{
WriteObject("BeginProcessing method - Execution has begun™);
}
//Tmplement operation
= protected override void ProcessRecord()
{
WriteObject("ProcessRecord method - Executing the main code™);
base.ProcessRecord();
}
//Complete, clear scene
-] protected override void EndProcessing()
{
WriteObject("EndProcessing method - Finalizing the execution™);
base.EndProcessing();
}
//Break down, rollback operation
-] protected override void StopProcessing()
{
WriteObject("StopProcessing method - Break down, rollback operation”™);
base.StopProcessing();

}

#endregion

|GetLifeCycleCommand

|GetComputerNameCommand

[69]

http:///

Developing Snap-ins for PowerShell

We can see that all of these methods have been overridden in this example. With
these methods, we can accomplish various missions whether the cmdlet executes
successfully or not. The BeginProcessing () method is used for initializing
parameters and getting ready for the data. The pProcessRecord () method is used
for the main implementation operation. The EndProcessing () method is used for
finalizing the execution. The StopProcessing () method is used for breaking down
the execution and the rollback operation.

In the following example, we will introduce how to share variables between two
different executions and how to use a custom-defined object. The code is as follows:

MySnaplnCrdletsclass.cs *OX
| “1% MySnapln.AddTestCommand v! ¥ StopProcessing() -]
-lusing System; =

using System.Collections.Generic;
using System.Text;
using System.Management.Automation;

-Inamespace MySnapln

{

- #region GetlifeCycleCommand
/fCheck Snap-in cmdlet's life cycle examples
-1 public class TaskManager
{
private static int runCount = 0;
- public static int Runi)
{

return runCount+ +:

}
[Cmdlet(VerbsCommon.Get, "LiftCycle™)]

-1 public class GetlifeCycleCommand : Cmdlet
{

- protected override void ProcessRecord()

{
WriteQbject(TaskManager.Run());
base.ProcessRecord():

}

#endregion

GetComputerNameCommand

100% -

[70]

http:///

Chapter 2

There is an object that contains a private variable and a public method in the
example. When the rRun () method is invoked in the ProcessRecord () method,
the value of the variable runcount will be maintained in the PowerShell session.

Now, we put all the cmdlet classes merged into the code of the
MySnapInCmdletsclass.cs file and compile out the assembly of our choice, which is
used for the presentation of the subsequent section.

First of all, we need to use the following statement in the namespace that is used to
import the class library assembly that the following code depends on:

-lusing System;
using System.Collections.Generic;
using System.Text;
using System.Management.Automation;

We need to import some namespaces. Using other namespaces in an ordinary
console program is very common, but here we need to emphasize the use of

the System.Management . Automat ion namespace. The System.Management.
Automation namespace is the root namespace for Windows PowerShell. It contains
the classes, enumerations, and interfaces required to implement custom cmdlets.

In particular, the cmdlet class is the base class from which all cmdlet classes must
be derived. System.Management . Automation is found under C:\Program Files)\
Reference Assemblies\Microsoft\WindowsPowerShell\v1l.O.

Then, we will introduce several simple cmdlet examples that contain some language
characteristics that the cmdlet may mention when we are developing. The first class
is GetHelloCommand; it looks as follows:

[Cmdlet(VerbsCommon.Get, "Hello™)]
public class GetHelloCommand : Cmdlet
{

protected override void ProcessRecord()

{
WriteObject("Hello!!™);

[71]

http:///

Developing Snap-ins for PowerShell

The statement [Cmdlet (VerbsCommon.Get, "Hello")] means that we will define a
cmdlet such as Get-Hello. The VerbsCommon . Get statement means we use the built-
in verb, Get. Our class GetHelloCommand inherits the cmdlet class. And in the class,
we override the ProcessRecord () method, which only contains the WriteoObject
method used to output a string. This simple cmdlet only outputs a string to

the console.

The second class, which is named sayHelloWorldCommand, is used to demonstrate
how to create a cmdlet that contains user-defined verbs and takes parameters with
logical judgment. Its code looks as follows:

#region SayHelloWorldCommand
f{Custom verbs, take parameters, with logic judgment cmdlet examples
[Cmdlet("Say”, "HelloWorld™)]
public class SayHelloWorldCommand : Cmdlet
{
private string argus;
[Parameter{Position = 0)]
[ValidateNotNullOrEmpty]
public string Args
{
get { return argus; }
set { argus = value; }
}
protected override void ProcessRecord()
{
if (argus != null && argus.Length > 0}
{
Console.WriteLine("Hello World:™ + argus);
}
else
Console.WriteLine("Need some parameter™);

}

#endregion

The statement [Cmdlet ("Say", "HelloWorld")] will create a cmdlet called
"Say-HelloWorld" without using the built-in verbs or the keyword verbsCommon.
The statements [Parameter (Position = 0)] and [ValidateNotNullOrEmpty]
are used to limit the received command-line parameter to the first parameter (note
that the index starts from 0), and do not allow this parameter to be null or empty.
In the override method of ProcessRecord (), if the parameter argus is not null or
the length is greater than zero, the cmdlet will output parameters; otherwise, it will
prompt the need for parameters.

[72]

http:///

Chapter 2

In the third class, named AddTestCommand, is a complete cmdlet example with the
BeginProcessing (), ProcessRecord (), EndProcessing (), and StopProcessing ()
keywords. The code for it is as follows:

#region AddTestCommand
//Complete cmdlet example with BeginProcessing(),EndProcessing(),ProcessRecord(),StopProcessing() method
[Cmdlet{VerbsCommon.Add, "Test™)]
public class AddTestCommand : Cmadlet
{//Initialization, ready for data
protected override void BeginProcessing()
{
WriteObject("BeginProcessing method - Execution has begun”);
}
/{Implement operation
protected override void ProcessRecord()
{
WriteObject("ProcessRecord method - Executing the main code”);
base.ProcessRecord():
}
f/Complete, clear scene
protected override void EndProcessing()
{
WriteObject("EndProcessing method - Finalizing the execution™);
base.EndProcessing();
}
//Break down, rollback operation
protected override void StopProcessing()
{
WriteObject("StopProcessing method - Break down, rollback operation™);
base.StopProcessing();

}

#endregion

The BeginProcessing () method is used for initializing the environment and
readying of data. The ProcessRecord () method is used for implementing the
operation. The EndProcessing () method is used for clearing the scene when the
execution completes. And the StopProcessing () method is used for breaking
down and rolling back the operation when the execution has errors.

[73]

http:///

Developing Snap-ins for PowerShell

The following example checks the snap-in cmdlet's life cycle; the code is as shown in
the following screenshot:

#region GetLifeCycleCommand
f/Check Snap-in cmdlet’s life cycle examples
public class TaskManager‘i
{
private static int runCount = 0;
public static int Run()
{

return runCount+ +;

¥

[Cmdlet(VerbsCommon.Get, "LiftCycle™)]
public class GetLifeCycleCommand : Cmdlet
{

protected override void ProcessRecord()

{
WriteObject(TaskManager.Run();
base.ProcessRecord():

}

#endregion

We defined a class named TaskManager, in which we declared a variable runCount
for keeping a track of the running time of the cmdlet, and the static method run ()
for updating the variable. In the GetLifeCycleCommand class, we invoke the Run ()
method of the TaskManager object. When we execute the Get -LifeCycle cmdlet,
the output number will increase with the increase in the number of executions.

The last example is shown for capturing the hostname. This is the only example that is
close to the real-world applications. The code is as shown in the following screenshot:

#region GetComputerNameCommand

{fThe example for capture the host name|
[Cmdlet{VerbsCommon.Get, "ComputerName®}]
public class GetComputerNameCommand : Cmdlet

i
protected override void ProcessRecord()
{
WriteObject(System.Environment.GetEnvironmentVariable(*ComputerMame™));
base.ProcessRecord();
}
}
#endregion

[74]

http:///

Chapter 2

We can see that the example uses the System.Environment.
GetEnvironmentVariable method to get the ComputerName variable.

Readers can find the complete program code of this example from the Packt
Publishing website at http: //www.packtpub. com/. Our project should look
something like the following:

Solution Explorer

= | @ (2]
2 Solution 'MySnapIn' (1 project)
= E MySnapln
=d| Properties
= | _r References
{3 Microsaoft.CSharp
2 Swskem
System, Configuration. Inskall
1 Swskem, Core
{3 System.Daka
2 Swskem,Data.DataSetExtensions

3 Swstem,xml
{3 System, xml.Lin

'-ig Solution Explorer ﬁ= Team Explorer

We can see that these selected items include two .d11 files and two class files.
Now, we will compile the project to build it into a snap-in. In Visual Studio, go to
Build | Build Solution. There is a .d11 file in the bin/debug subdirectory of the
code directory.

In order to use cmdlets in a snap-in, you must register it with PowerShell first. This
will be described in the next section.

Registering and removing a PowerShell
snap-in

In order to use a cmdlet that is contained in a snap-in, the cmdlet needs to be
registered and loaded into a PowerShell session for execution. Because registering a
DLL file needs administrator rights, it is required to start a PowerShell session as an
administrator and invoke a statement for registering a snap-in.

[75]

http:///

Developing Snap-ins for PowerShell

Registering and removing snap-in in
PowerShell 1.0

In PowerShell 1.0, we have to register a snap-in into PowerShell using installutil.
exe, which is contained in the .NET Framework. The default installation position will
be one of the following:

* 3%windir%\Microsoft.NET\Framework64\v4.0.30319\ (Used for x64)
* Swindir%\Microsoft.NET\Framework\v4.0.30319\ (Used for x86)

Users must set the location of the PowerShell session to the directory that contains
the assembly DLL file of the snap-in, and then use installutil.exe to register
the DLL file. Next, we can load a snap-in into the PowerShell session using
Add-PSSnapin MySnapIn. We can use Get-Command -PSSnapIn MySnapln to

get cmdlets that are registered by the MySnapIn. All command as shown in the
following screenshot:

Install.ps1 X

#d11 name
$F1leName="MySnapIn.dl11"”

#snap- 'II1 nan’e

4 $PSSnap e "‘vySnapIn
5 Srtd 1. Runtime. InteropServices. RuntimeEnvironment] : :GetRuntimeDirectory()
] set-alias ipstalluti] (eso'l.fe path (join-path irt nstalluti - exe))

7 installutil (Join- Path (Split-Path iMyInvocation r\;yCommand Path) eName)
5 Add-PSSnapin $PSSnapindame
Get-Command -PSSnapin 5

Registering and removing a snap-in in
PowerShell 3.0

If you're running PowerShell 3, you don't need to install this using PSSnapin. You
can use Import-Module to load it. Just as shown in the following screenshot:

e Administrator: powershell = =

Import-Module
WARNING: The names of 1 ported commands from the module 'MySnapIn’ include unapproved verbs

p
hat might make them 1 discoverable. find the commands with wnapproved werbs, run the
Import-Module command again with the Verbose parameter. For a list of approved verbs, type
Get Verb.

Get-Command -module MySnapIn

ModuleName

st
mputerMame

[76]

http:///

Chapter 2

When executing the statement, we need to take care that we create a snap-in and
place it in its own subdirectory in the system module directory $env:PSModulePath
(such as C:\Windows\System32\WindowsPowerShell\vl.0\Modules) or

the user's module directory (such as C:\Users\Administrator\Documents\
WindowsPowerShell).

In fact, depending on the information we implement for the snap-in installer, the
following registry information will be created when we register a snap-in. A registry
key with a snap-in name, in our example it is named MySnapIn, which was defined
in the MySnapInInstallclass.cs class file, will be created with a key under HKLM\
SOFTWARE\Microsoft\PowerShell\1\PowerShellSnapIns\. Just as shown in the
following screenshot:

& Registry Editor M=l I
File Edit Yiew Favorites Help
; Outlook Express ;I Mame Type | Data
PCHealth ab|{Default) REG_SZ {value not set)
* PLA ab| applicationBase REG_SZ DihdermolMySnapIng MySnapInibiny
i Pavvershel ab| pecemblyMame REG_S7 MySnapln, Yersion=1.0.0.0, Cultw
1 ab| Description REG_52 This is a Powershell Snap-In that in
""" 0403 ab|DescriptionIndirect REG_SZ IMySnapIn, This is a Powershell sns
?Eg; ab|ModuleMame REG_SZ D:hdemoiMySnapInMySnapInibiny
) ab|powerShellversion REG_SZ 3.0
----- PowerShellEngine .
=+ | Powershellanaplns 20 vendor REG_5Z Fuhj
ab|yendorIndirect REG_52 MySnapIn,fuhj
ab|yersion REG_SZ 1.0.0.0
SqlserverCmdlet3napinl 00 J
SqlServerProviderSnapinl 00
‘wiebAdrinistration
- PSConfigurationProviders
- | Shellds
- 3
[#- | Prink
-y RADAR | K1 | 2
|C0m|3uter'l,HKEY_LOCAL_MACHINE'!,SOFTWARE'l,MicrosoFt'l,PowerSheII'l,1'l,F‘owerSheIISnapIns'l,MySnapIn 4

We can see that the information we registered in the installer class has been created
in the registry. The system finds the snap-ins depending on the key registered in
the registry.

Once you load the snap-in into PowerShell, the snap-in will always load
automatically in every PowerShell session until it is removed by the
Remove -Module cmdlet using the following command:

PS C:\> Remove-Module MySnapIn

[77]

http:///

Developing Snap-ins for PowerShell

In order for PowerShell 3.0 to be compatible with the earlier versions of the
PowerShell runtime environment, we create a script file named Install.ps1 and
use it in different operation environments for snap-in installations. For earlier
versions of PowerShell, such as PowerShell 1.0 and PowerShell 2.0, we can directly
place this script file in the directory of snap-in assemblies and invoke .\Install.
ps1 for installation. For PowerShell 3.0 you only need to add -Force parameters for
executing the registered snap-in. Just as the code shown in the following screenshot:

| Installps1 X
1 #Run mode PS> .‘\Install.psl -force
2 #follow configuration
3 #d11 name
4 $FileName="MySnapIn.d11”
5 #snap-in name
6 $PS5SnapinName="MySnapIn"
7 #follow do not modify
8
9 gif($PSversionTable) {
10 [Write-Host "You're running PowerShell $(iPSVersionTable.PSVersion),
11 =0 vou don't need to Install this as a PSSnapin, you can use Import-Module (or Add-Module in CTP2) to Toad it.
1z If you still want to install it as a PSSnapin, re-run this script with -Force”
13 [if(3args "-Force") {
14 return
15
16 [}
17
18 $rtd System.Runtime. InteropServices. RuntimeEnvironment GetRuntimeDirectory ()
12 set-alias installutil (resolve-path (join-path Sritd dinstallutil.exe))
20

21 # od C:\Users\Administrator\Projects"PowerShel1\MySnapIn'bin’Debug
22 installutil (Jein-Path (Split-Path SMyInvocation.MyCommand.Path) $FiTleName)

24 EIF(37) { . .
25 # Get-PSSnapin -registered
26 | Add-PSSnapin $PSSnapinMame

28 | #Get-PSSnapin -registered

30 |# get-help =-Window
31 Get-Command -PSSnapin 5PSSnapinName

33 Write-Host "To load the Snapin in the future, you need to rum:”

34 |Write-Host "Add-PSSnapin $PSSnapinName” -fore Red

35 | Write-Host

36 |Write-Host "You can also add that line to your Profile script to Toad it automatically.”
37 21 else {

38
3% HWrite-Warning @"
40 “nInstallation Failed. You're probably just not running as administrator.

41 If you see a System.UnauthorizedAccessException in the Tog output above, with an HKEY_LOCAL_MACHIMNE path,
42 that's deffinitely what happened, just start an administrative console and try again.

43 '@

44 [}

[78]

http:///

Chapter 2

The following screenshot shows the script file for uninstalling;:

Unlnstall.ps1 X

#Run mode PS> .%UnInstall.psi
#follow configuration

#d11 name
$F1leName="MySnapIn.d11"
#snap-in name
5P55SnapinName="MySnapIn"
#follow do not modify

R T

napint

Remove-P55napin $PSSnapinName

m. Runtime. InteropServices. Runtime

tallutil (resolve-path (ja:ﬁ-pat“

ironment GetRuntimeDirectory ()
td installutil.exe))

set-alias

-
[E T S AT]

installutil fu (Join-Path (Split-Path #MyInvocatfion.MyCommand.Path) £FileName)

In these two script files, users only need to replace the $FileName and
$PSSnapinName values with their own snap-in assembly name and snap-in
name to register their own snap-in.

Listing and executing cmdlets in a
PowerShell snap-in

We can use Get-Module Or Get-PSSnapin -registered to get a list of registered
snap-ins in the current PowerShell session, as shown in the following screenshot:

(%] Administrator: powershell

el1.Management 1
ell.utility {add-Member
{Get-Hello,

apin -registered

apIn
PowerShell Snap-In that include several Cmdlets.
id] etSnapinl00
owerShell snap-in that includes wariou Server cmdlets.

erverProviderSnapinl00

cription : Server Provider

[79]

http:///

Developing Snap-ins for PowerShell

We can use Get - Command with the -module parameter for listing cmdlets in a
PowerShell snap-in, as shown in the following screenshot:

ey Administrator: powershell

We can now use the cmdlet register in our snap-in, just like a native cmdlet. All the
cmdlets in our snap-in can be invoked as shown in the following screenshot:

BB Administrator: Windows PowerShell ¥3 _ (O

PS5 C:~>» Get—Hello

Hellot?

PE C:%> Say—HelloYWorld

MNeed some parameter

PS C:5> Say—HelloWorld PowerShell

Hello Yorld:PowerShell

P8 C:%> Add-Test

BeginProcessing method — Execution has hegun
ProcessRecord method — Executing the main code
EndProcessing method — Finalizing the execution
P8 C:n>» Get—LiftCycle

a

P& C:%>» Get—LiftCycle

1
PS C:n> Get—-LiftCuycle
2
PE C:n> Get—ComputerMame
WIN-SERUERZGA38

PSS Czs

[80]

http:///

Chapter 2

Debugging a PowerShell snap-in

Once you have built a cmdlet, set a breakpoint in your code in Visual Studio. Once
you have done that, open a new PowerShell window, switch to the compilation
directory of the snap-in, and install your module or snap-in. The operation is the
same when you load the cmdlet with Add-PSSnapin or Import-Module. In Visual
Studio, go to Debug | Attach to Process. Scroll through the list and look for
PowerShell.exe, just as shown in the following screenshot:

tschtoprocess @R

IDeFauIt j
IWIN—SERVERZDDS j Browse. .., |
— Transport Information

The default transport leks vou select processes on this compuker or a remote computer running the Microsoft Visual Studio Remote
Debugging Manitor (MSYSMON.EXE).

Transpork:

Cualifier:

Attach bo Inutomatic: Managed {v4.0) code, T-50L code

Select. .. |

— Available Processes

™ Show processes From all users

I Show processes in all sessions

Refresh |

Process | jin | Title Type I User Marne I SEssion |
conime, exe 3354 *36 W IM-SERVERZO0S... 2
dwrm,exe 2268 %86 WIN-SERVERZ00G... 2
explarer.exe 2276 Start B WIN-SERVERZOOZ,,, 2
mspaink.exe 3604 Untitled - Paint 56 WIN-SERVERZOOS... 2
po hell Administrator:] 2
rdpclip. exe 2168 %86 WIM-SERVERZ2008.,.. 2
regedit.exe 2765 Registry Editor x56 WIN-SERVERZOOG... 2
taskeng.exe 2072 =86 WIN-SERVERZ2008... 2
taskmgr.exe 3320 windows Task Manager prea) WIN-SERYERZ00S... 2
wuaucl,exe 2976 wiit WIN-SERVERZOOS,,. 2

Atkach I

Cancel

[81]

http:///

Developing Snap-ins for PowerShell

When you find the right process, select it and click on the Attach button. Now, go to
your PowerShell window and run the command that can trigger your breakpoint. If
all goes according to plan, your breakpoint will be hit and you can step through the

cmdlet's code, as shown in the following screenshot:

[(]

MysnapInCmdletsclass.cs & ¢

“I% MySnapIn, GetlifeCydeCommand vI 2% ProcessRecord()

= public clazs TaskManager

{

priwate static int runCount = 0;

= public static int Fun()
{
\) return ranCount+;

H

I
[Cndlet (VerbsCommon. Get, "LiftCycle™)]

= public class GetLifeCycleCommand : Cmdlet
{

protected override woid ProcessRecord()
{

) WriteObject (TaskManager. Runi)) ;|
baze. ProcessRecord()

Wiakch 1 > B X CallStack
| hame Walue Type ;I hame Langl;l
o# runCount [1 (@] int | My Snapln.dlliMySnapln GetlifeCycleCornmand Process| C#
| I [External Code]

-5-'3 Call Stack,

We can see in the screenshot that the breakpoints we set are hit and the variable
being watched can also get a value. We can thus very conveniently debug a cmdlet

registered in any snap-in.

[82]

http:///

Chapter 2

Summary

In this chapter, we discussed how to create a snap-in and compile these class files
into an assembly. Then we introduced how to register the assembly as a snap-in to a
PowerShell session and debug a PowerShell snap-in.

At the end of this chapter, we believe that you have been able to attempt creating a
snap-in independently. As snap-ins are a powerful support mechanism, users can
easily expand any function of PowerShell according to their own needs.

The snap-in is compiled into assemblies when it is released to a program for
third-party users. The author can also encrypt based on .NET code obfuscation
to protect their source code. Program authors do not need to worry about their
snap-in decompiling out the source code.

In the next chapter, we will discuss how to use PowerShell remoting. PowerShell
remoting can manage remote computers through the network. We will learn how
to enable and disable remoting, execute remote commands, enter an interactive
remoting session, and save remote sessions to a disk.

[83]

http:///

http:///

Using PowerShell Remoting

PowerShell v2 introduced a powerful new technology, remoting, which was
refined and expanded upon for PowerShell v3. Based primarily upon standardized
protocols and techniques, remoting is possibly one of the most important aspects
of PowerShell. Future Microsoft products will rely upon it almost entirely for
administrative communications across the network.

In this chapter we will cover:

* PowerShell remoting system requirements

* Enabling/disabling remoting

* Executing a remote command

* Interactive remoting sessions

* Saving a remote session to a disk

* Understanding session configuration
The most important and exciting characteristic of PowerShell is its remote
management ability. PowerShell remoting can control the target remote computer
through the network. PowerShell remoting uses WinRM (Windows Remote
Management), which is based on Microsoft's WS-Management protocol. With
PowerShell remoting, the administrator can execute various management operations

on dozens of target computers throughout the network. In this chapter we will
introduce content relevant to PowerShell remoting .

http:///

Using PowerShell Remoting

An overview of PowerShell remoting

A few cmdlets in PowerShell support accessing information on a remote computer.
These cmdlets have a ComputerName parameter, such as Get-WmiObject or
Invoke-WmiMethod. All of them get objects from remote computers by using .NET
Framework methods to retrieve the object. The remoting ability of these cmdlets

is dependent on PowerShell. Whether a cmdlet has this ability depends on author
implementation of methods such as Remote Procedure Call (RPC), to realize remote
access. They do not use the Windows PowerShell remoting infrastructure.

WS-Management protocol, a SOAP-based, firewall-friendly protocol, was designed
for systems to locate and exchange management information. The intent of the
WS-Management protocol specification is to provide interoperability and
consistency for enterprise systems that have computers running on a variety of
operating systems from different vendors. To use WS-Management-based Windows
PowerShell remoting, the local and remote computers must be configured for
remoting, and the host application must run in elevated mode. WS-Management
protocol is based on standard web service specifications such as HTTPS, SOAP over
HTTP (WS-I profile), SOAP 1.2, WS-Addressing, WS-Transfer, WS-Enumeration, and
WS-Eventing.

Universal Code Execution Model (UCEM) is a characteristic feature of PowerShell
remoting. UCEM means that the execution can be local and in any position.
PowerShell remoting can import from local threads using remote commands — this
feature works as the implicit remote management, which allows the user to save
and export these incoming commands to a hard disk and could be used in the future
of the module. PowerShell Remote Management allows various connection modes,
including interactive (1:1), fan-out (1:n), and fan-in (n:1) by using of IIS hosting
model. Here we will be explaining how we can configure a host on any one of these
work forms.

To enable PowerShell remoting sessions on Windows PowerShell 2.0, the local and
remote computer participating in remote management must have the following:

* Windows PowerShell 2.0 or higher

* The Microsoft .NET Framework 2.0 or higher

* Windows Remote Management 2.0
To run remote sessions on Windows PowerShell 3.0, the local and remote computers
must have the following:

* Windows PowerShell 3.0 or higher

* The Microsoft NET Framework 4.0 or higher
* Windows Remote Management 3.0

[86]

http:///

Chapter 3

You can create remote sessions between computers running Windows PowerShell
2.0 and Windows PowerShell 3.0. However, features that run only on Windows
PowerShell 3.0, such as the ability to disconnect and reconnect to sessions, are
available only when both computers are running Windows PowerShell 3.0.
PowerShell 3.0 supports operating systems such as Windows 7 Service Pack 1,
Windows Server 2008 R2 SP1, and Windows Server 2008 Service Pack 2, or higher
versions. All of these operation systems should install Windows Management
Framework (WMF) 3.0 separately, which includes PowerShell 3.0. Windows 8 and
Windows Server 2012 have PowerShell built in by default. Because of PowerShell
remoting, PowerShell 3.0 contains more language characteristics. The content of
these chapter-related scripts and commands will be represented based on the version
of Windows 8.

To be able to run scripts and commands on remote computers, the user performing
remote script execution must be:

* A member of the administrators group on the remote machine
* Able to provide administrator credentials at the time of remote execution

* Able to access the PS session configuration on the remote system

Also, on client OS versions of Windows such as Windows Vista and Windows 7,
network location must be set to either Home or Work. WS-Management may not
function properly if the network location for any of the network adapters is set
to Public.

Enabling/disabling remoting

In a workgroup, two computers need to be awarded the permissions of remote
access. For security purposes, the default settings don't allow remote access. If you
try to log in to the host in the workgroup, since there is no strict security requirement
and infrastructure or domain setting, you will need to modify the configuration.
When the host is configured, you can remotely access one from the other hosts

using PowerShell remoting. The following section will show you how to configure
PowerShell remoting in a domain environment.

[87]

http:///

Using PowerShell Remoting

Operating PowerShell in a no-domain
environment

What needs to be stressed on here is that PowerShell remoting can't be enabled
remotely in a no-domain environment. In the subsequent section, we will talk about
how to configure PowerShell remoting in a domain environment. Remoting in
PowerShell can be enabled by just running the following command in an interactive
PowerShell prompt:

winrm quickconfig

WinRM is the Microsoft implementation of the WS-Management protocol and
provides a secure way of communicating with local and remote computers using
web services.

Before we execute this command, we can check the WinRM configuration by using
following command:

winrm get winrm/config -format:pretty

We will get the result in the form of an error that tells us that the service of the
destination computer isn't running or that it doesn't accept the request, as shown in
the following screenshot:

e Administrator: powershell = =

Jindows PowerShell
opyright (C> 2012 Microsoft Corporation. All rights reserved.

S C:sWindowsssystem32> winem get winrmAconfig —format:pretty
f:WEManFault Code=""2158858778" Machine="WIN-8" xmlns:f="http:/“schemas.microsof
.comswhensusman -1 usmanfaunlt™>

<f:Meszage>The client cannot connect to the destination c‘1:.131::11-‘1\31:1 in the reqg
est. Ueprify that the service on the destination is »unning and is acceptlng PEC
iests. Consult the logs and documentation for the WS—Management QEP01ce running
on the destination, most commonly IIS8 or WinRM. If the destination is the WinRM
ervuice, run the following command on the destination to analyze and configure t
he WinRM service: "winrm guickconfig". <-/f:Messagel?
AF :WSManFault>

rror number: —2144188526 Bx80338012

he client cannot connect to the de*tlnatlun p301fled in the request. Uerify th
t the service on the destination is running and is acceptlng requests. Consult
he logs and documentation for the WS-Management service running on the destinat
ion, most commonly IIS or WinRM. If the destination is the WinRM service, wun th
e following command on the destination to analyze and configure the WinRM servic
e: "winrm guickconfig'.

PS5 C:»\Windows“system32> _

[88]

http:///

Chapter 3

Then, we execute the previous command. You will be asked to respond to a
couple of questions that are based on OS architecture. You can see this in the

following screenshot:
- E

Administrator: powershell

PS5 C:™\Windows“system32> winrm gquickconfig
JinRM iz not set up to receive reqguests on this machine.
he following changes must he made:

Start the WinRM service.
Set the WinRBM sewrvice type to delayed auto start.

ake these changes [y/nl?7 y

JinRM has bheen updated to receive requests.

JinRH service type changed successfully.
JinBM service started.
JEManFault
Message
ProviderFault

WEHanFault
Message = WinRM firewall exception will not work since one of th
Change the network

e network connection types on this machine is set to Public.
onnection type to either Domain or Private and try again.

Error number: -2144108183 0x80338169
JinRM firewall exception will not work since one of the network connection types

on this machine is set to Public. Change the network connection type to either
Domain or Private and try again.
PS5 C:sWindows>system32> _

As we can see, the output has an error. The reason for the error is that the WinRM
firewall exception will not work when the network connection types on this machine

is set to Public.

Setting the network location to Private

The WinRM firewall exception did not work since one of the network connection
type on this machine was set to Public. Change the network connection type to either

Domain or Private and try again.

[89]

http:///

Using PowerShell Remoting

The network location feature was introduced in Windows Vista. It provides an

easy way to customize your firewall settings based on whether or not you trust the
computers around you. There are three network location types: Private, Public, and
Domain. If your computer is a member of a domain, you won't be able to change
the network location type. If your computer is standalone or part of a workgroup,
you can choose what type of network location you want, Public or Private. Private
means that you are a member of a trusted network and you can lower your network
security a little bit. Public means that you have no trust in the network outside

and you will not let your guard down. We can find it in Networking and Sharing
Center, as shown in the following screenshot:

oo Network and Sharing Center = =
T 5% < Metwork and Internet » Metwork and Sharing Center v G Search Control Panel 0
View your basic network information and set up connections ~
Control Panel Home

View your active networks
Change adapter settings

Change advanced sharing Network 2 Access type: Internet
settings Public network Connections: [Ethernet

Change your networking settings

See also ﬁ. Set up a new connection or network
HormeGroup = Set up a broadband, dial-up, or VPN connection; or set up a router or access point.,
Internet Options : Troubleshoot problems

Windaows Firewall Diagnose and repair network problems, or get troubleshooting information,

Setting the correct network location type is very important for Windows PowerShell
remoting. You cannot enable Windows PowerShell remoting on your machine if
your connections are set to Public. It means you won't be able to connect to this
machine using Windows PowerShell remoting. Vista provides a Ul dialog for setting
network location, but unfortunately, there is no command-line utility for that. You
can, however, do it with Windows PowerShell.

The API for setting network location type in Vista is COM-based, and the code
in the following screenshot shows how to call this API with the Windows
PowerShell script:

Set_network_location_to_Private.ps1 X

Skip network location setting for pre-Vista operating systems

if([environment 0s5Version.version.Major 6) { return }
Skip network location setting if local machine is joined to a domain.
iF(1.3,4.5 (Get-WmiObject win32_computersystem).DomainRole) { return }

twork connections

cListManager Activator CreateInstance([Type GetTypeFromCLSID([Guid] " {DCBOOCOL-570F-4A9B-8D69-199FDBAS7238}"))
jons SnetworkListManager . GetNetworkConnections ()

twork Tocation to Private for all networks

$connections % [5_.GetNetwork().SetCategory(1)}|

Do R

[90]

http:///

Chapter 3

After the execution of the script, we will find in Networking and Sharing

Center that network location types have been switched to Private, as shown
in the following screenshot:

ES Network and Sharing Center = B
s+« Metwork and Internet » Metwark and Sharing Center Search Control Panel
View your basic network information and set up connections ~
Control Panel Home

View your active networks
Change adapter settings
) Access type: Internet
Change advanced sharing Network 2

settings HomeGroup: Available to join

Private network .
S —— Connections: 4 Ethernet

Change your networking settings

‘Ei'_. Set up a new cennection or network

HomeGroup Set up a broadband, dial-up, or VPN connection; or set up a router or access point,

Internet Options

B =41 Troubleshoot problems
Wi s Fi /i -
Windows Firewall Diagnose and repair network problems, or get troubleshooting information,

W
Now, we can execute the winrm quickconfigcommand again, as shown in the
following screenshot:
%] Administrator: powershell = B

S C:Uindows“system3d2> winrm guickconfiyg

JinRM service is already running on this machine.

JinAM iz not set up to allow remote access to thiz machine for management .
he following changes must bhe made:

reate a WinRM listener on HITP:-/* to accept WS—Man requests to any IP on this
achine.

[Enable the WinBRM firewall exception.
onf igure LocalAccountTokenFilterPolicy to grant administrative rights remotely

o local users.
ake these changes [ys/nl? v

JinAM has been updated for remote management.

reated a WinRM listener on HITP:-/* to accept W5S5—Man requests to any IP on this
machine .

JinAM firewall exception enahled.

onf igured LocalAccountTokenFilterPolicy to grant administrative rights remotely
to local users.

PS5 C:sUWindowsssystem32> _

[91]

http:///

Using PowerShell Remoting
The following things happen when you run this command:

The WinRM service gets enabled and the startup type is set to autostart.

A WinRM listener gets created to accept remoting requests on any IP
addresses assigned to a local computer.

Windows firewall exceptions for WinRM service will be created. This is
essentially the reason why the network location cannot be set to Public if you
want to enable PS remoting. Windows firewall exceptions cannot be enabled

if the network location is set to Public.
* All registered PS session configurations are enabled.

By default, WinRM only enables HTTP transport to accept remoting requests. You
can manually enable HTTPS transport using either the winrm command or the New-

WSManIntance cmdlet.

Enable PSRemoting

In fact, we can also use the Enable-PSRemoting cmdlet to enable PowerShell
remoting, as shown in the following screenshot:

e Administrator: powershell

PS C:“Windows“systemn32> Enable—-PSRemoting

JinRM Quick Configuration
Funning command "Set-WSManQuickConfig" to enable remote management of this
omputer by wusing the Windows Remote Management {(WinRM)> service.
This includes:

1. Starting or restarting {if already started? the WinRM service

2. 8etting the WinRM service startup type to Automatic

3. Creating a listener to accept requests on any IP address

4. Enabling Windows Firewall inbound rule exceptions for WS-Management

raffic (for http only).

Do yow want to continue?

[A]1 Yes to A1l [H]1 HNo
iz "¥'VH:oy

already set up to receive requests on this computer.
already set up for remote management on this computer.

[L]1 Mo to A1l [51 Suspend [?]1 Help

icrosoft.powershell SDDL:
CNSG:BAD:PCA;:GA;;:BAXCA;;GA;; ;RMXS:PCAUFAGA; ; ;WD CAU;SA;GRGU; 5 ;WD) . This
#ill allow selected users to remotely run Windows PowerShell commands on this

EH] Yes ;o All [H] Ho I[L] Mo to A1l [5]1 Suspend [?71] Help

(default is "¥"):

fire you sure you want to perform this action?
FPerforming operation "Set-P8SessionConfiguration” on Target "Mame:

icrosoft.powershell.workflow SDDL:
CNSG:BAD:P<A;;GA;;:BA>XCA; ;GA;; ;RMOS :PCAU;FA;GA; ; ;WD CAU; SA;GEGY; ; ;WD> . This
#ill allow selected users to remotely run Windows PowerShell commands on this
omputer".

[¥]1 Yes [A] Yes gu A1l [NH]1 Ho I[L] Mo to A1l [5]1 Suspend [7?1]1 Help

{default is "¥"»:
PS C:“Windows“system32>

[92]

http:///

Chapter 3

You should always use the more comprehensive Enable-PSRemot ing cmdlet. You
can use the - force parameter along with this cmdlet to silently enable remoting.

You can use the Enter-pPSSession cmdlet to test whether remoting is enabled on the
local machine or not.

Enter-PSSession -ComputerName localhost

If remoting is enabled and functional, you will see the prompt changing to
something like this:

ey Administrator: powershell

PS5 C:»> Enter—PSS8ession —ComputerMame localhost
[localhost]: P8 C:sUserssfuhj.WIN-Z22ZKLH4LHAVUSDocuments?> _

Next, we check the remoting configuration information, so that we can compare the
results with the previous execution.

winrm get winrm/config -format:pretty
We get a result similar to the following:

Administrator: powershell = = “

[P C: \Ulndoug\gygtem32) u1n1m get u1n sconfig —formatipretty
cfg:Config xml:lang="en-US" xml cf p://schemas .microsoft.coms/wbemsusmans1 config">
{cfg:MaxEnvelopeSizekbh>588<{ cfg:MaxEnvelopeSizekb>
{cfg:MaxT imeoutms :MaxT imeoutms >
{cfg:MaxBatchltems >32888<{/cfg:MaxBatchltems>
{cfg:MaxProviderRequests>4274967295<cfg:MaxProviderRequests>
{cfg:Client>
{cfyg: NetuolkDelaymg)SBBB(/cfg NetworkDe layms >

{cfg:Allowlnencrypted>*falsed/cfg:Allovwlinencrypted>
(cfg:ﬂuth)
{cfg:Basic>truel{/cfg:Basic>
H >truedcfg:Digest>
{cfg:Kerberos>truel{/cfg-Kerheros>
{cfg:Negotiate>truel{/cfg:Negotiate’>
{cfg:Certificate>true{/cfy:Certificate>
{cfg:CredSSP>false{ /cfg:CredSSP>
<scfgifAuth’
{cfg:DefaultPorts>
<cfg:HTTP>5985< cfg=HTTP>
<cFg-HTTPE>5986< /cfg-HTTPS>
{s/cfg:DefaultPorts>
{cfg:TrustedHosts>{ /cfg:TrustedHosts>
<s/cfg:Client>
{cfg:Servicel>
<cfg:RootSDDL>0:NSG:BAD:PCA;;GA; 5 ;BAYCA;SGR: ;5 TUXS:PCAUSFASGA; 5 WD (AU SAGAGH; ;WD < cfg:Ro
0t SDDL>
<

fg:MaxConcurrentOperations>4294967295<{ /cfg:MaxConcurrentOperations>

By default, PowerShell remoting uses port number 5985 (for HTTP) and 5986

(for HTTPS). This can be changed by modifying wsman:\localhost\Listener\
listener*\port to a different value using the Set-Item cmdlet. However, beware
that this will change the port number for every WinRM listener on the system.

[93]

http:///

Using PowerShell Remoting

Configuring WSMan trusted hosts

You will not be able to connect a computer that is in a workgroup just by running
the Enable-PSRemoting cmdlet. This is because the security levels on a workgroup-
joined computer are more stringent than on a domain-joined computer. So, on
workgroup-joined computers, you need to do more work before you can create
remoting sessions. If we execute the Invoke-Command cmdlet without configuring a
trusted host, we will get an error message:

Administrator: powershell = = “

E]

Jindows PowerShell
opyright <(C» 2812 Microsoft Gorporation. All rights reserved.

PS C:s\MWindows“systemd2? Invoke—Command —ComputerMame 192.168.18.11 —ScriptBlock

Get—Process?

PS C:xMindows“wsystem3d2> _

We can see that a computer that doesn't join the domain must be added to the
TrustedHosts configuration setting or the connecting operation will be refused.

On all workgroup-joined computers, you need to add the IP address of all remoting
clients to the list of trusted hosts. To do this:

Set-item wsman:localhost\client\trustedhosts -value *

Using * as the value will add all computers as trusted hosts. If you want to add only
a specific set of computers, use the following command:

Set-item wsman:localhost\client\trustedhosts -value "Computerl,Computer2"
If you want to add all computers in a specific domain, use the following command:

Set-item wsman:localhost\client\trustedhosts -value "*.domain.com"

If you want to add an IP address of a remote computer to the trusted hosts list, use
the following command:

Set-item wsman:localhost\client\trustedhosts -value "192.168.10.11"

[94]

http:///

Chapter 3

Of course, we can also use the WinRM batch script to add a computer to the trusted
hosts list by using the following command:

winrm set winrm/config/client “@ {TrustedHosts="""192.168.10.117""}

The screen will look like this:

ey Administrator: powershell

PS C:xWindowsssystem32> winrm set winemsconfigsclient B {TrustedHosts=
8.1@8.11 ">

MetworkDelayms = 560808
URLPrefix = wsman
AllowlUnencrypted = false
Auth

Basic = true

Digest = true

Kerberos = true

Hegotiate = true
Certificate = true
CredSSP = false
DefaultPorts
= 5985
= L9886
TrustedHos = 192.168.18.11

PSS C:sWindowsssystem32» _

Once these changes are made, you can use the Enable-PSRemot ing cmdlet to enable
remoting on these workgroup-joined computers.

Configuring PowerShell remoting on a
domain using Group Policy

In the workgroup environment, two servers need an interactive session to enable
PowerShell remoting, and then each operation on the remote computer needs to
provide corresponding credentials so that the remote computer can recognize
whether the operation is legal. This is appropriate for managing a small number

of hosts, but for a large number of hosts the situation gets more complicated; the
account may be different on different computers, and the password is also different.
To manage a large number of hosts, Active Directory is a simple and fast method
because a domain-joined host can realize unified login authentication throughout the
domain controller. We will introduce you to configuring PowerShell remoting in a
domain environment using the Group Policy in following section.

[95]

http:///

Using PowerShell Remoting

Allowing remote server management through
WinRM

When we enable PowerShell remoting in a domain environment, we must create a
Group Policy Object (GPO) for it, using the following steps:

1.

Launch Group Policy Management (GPMC) via Control Panel | All
Control Panel Items | Administrative Tools | Group Policy Management,
and create a new GPO titled Wwindows Remote Management.

Right-click on Edit to edit the newly created GPO by using Group

Policy Management Editor, and then expand it through the Computer
Configuration Policy structure using Windows Remote Management

| Computer Configuration | Administrative Templates | Windows
Components | Windows Remote Management (WinRM) | WinRM
Service and selecting Allow remote server management through WinRM.
This policy setting allows you to manage whether the WinRM service
automatically starts and listens on the network for HTTP requests on port
5985 (and if enabled, for HTTPS requests on port 5986).

Enable the GPO and complete the IPv* filter's textboxes; an example of a
relaxed configuration can be see following screenshot:

e Allow remote server management through WinRM == -

E} Allow remote server management through WinRM

O Not Configured Comment:

(® Enabled

O Disabled

Supported on: [t ez st Windows Vista

Options: Help:

Pud filker: |w | A | | This policy setting al\nws.ynu to manage Whethx.arthe Windows | ~
Remote Management (0inRR) service automatically listens on

P filter: H | the netwark for requests on the HTTP transport over the default
HTTP port.

ynta

If you enable this policy setting, the WinRM service autormatically
I'ype "*" to allow messages from any IP address, or listens on the netwark for requests on the HTTP transport over
eave the the default HTTP port.

ield empty to listen on no IF address. You can Ta allow WinRM service ta receive requests owver the netwark,
pecify one configure the Windows Fireweall policy setting with exceptions for
r more ranges of IP addresses, Port 5885 {default port for HTTE).
If wou disable or do not configure this policy setting, the WinRk
service will not respond to requests frarm a rernote computer,
xample IPv4 filters: regardless of whether or not any WinRh listeners are configured,
1-001-2.0.0.20,24.0.0.1-240022 The service listens on the addresses specified by the [Pwd and
IPvE filters, The [Puwd filter specifies one or more ranges of [Pwd
V| [addresses, and the [PvG filker specifies one or mare ranges of
< m > IPvEaddresses, If specified, the service enumerates the awvailable |«

| OK H Cancel || Apply |

[96]

http:///

Chapter 3

The service listens on the addresses specified by the IPv4 and IPv®6 filters. The IPv4
filter specifies one or more ranges of IPv4 addresses, and the IPv6 filter specifies one
or more ranges of IPv6 addresses. If specified, the service enumerates the available
IP addresses for the computer and uses only the addresses that fall within one of the
filter ranges.

You can use the asterisk (*) to indicate that the service listens on all available IP
addresses on the computer. When * is used, other ranges in the filter are ignored. If
the filter is left blank, the service does not listen on any addresses.

For example, if you want the service to listen only on IPv4 addresses, leave the IPv6
filter empty.

Ranges are specified using the syntax IP1-IP2. Multiple ranges are separated using
the comma (,) as the delimiter.

An example of IPv4 filtersis 8.8.8.1-8.8.8.20, 8.8.4.1-8.8.4.22

Allowing Windows Remote Management through

Windows Firewall

1. Locate Computer Configuration | Policies | Windows Settings | Security
Settings | Windows Firewall with Advanced Security | Windows
Firewall... | Inbound Rules, as shown in the following screenshot:

Group Policy Management Editor l;li-
Eile Action View Help
e 2(m = B
[=" Windows Rernate Managerent [WINZ012-2D FUHAIUN,COM] Palicy [][Mame Group Profile Enabled Ac

4 & Computer Configuration)))
There are no items to show in this view,
a [] Policies
b] Software Settings
4 1 Windows Settings
[Marme Resolution Policy
[Seripts (Startup/Shutdawn)
4 T Security Settings
b 53 Account Policies
3 Local Palicies
| Ewventlog
5 Restricted Groups
5 Systern Services
2 Registry
4 File Systern
o Wired Netwark ([EEE 802.3) Policies
| Windowes Firewall with Advanced Security
4 i Windows Firewall with Advanced Security - LDAP://CN=]
1 Inbound Rules
&9 Outbound Rules
2 Connection Security Rules

v v
[

[

| Bl b Lick hdonsmne Rnlicinc |
< m > <] >

[97]

http:///

Using PowerShell Remoting

2. Right-click on Inbound Rules and click on New Rule. Under Rule Type,
click on Predefined and locate Windows Remote Management. Be careful
here, there's another rule called Windows Remote Firewall Management,
but that's not what you want. Click on Next. This is seen in the
following screenshot:

"4 MNew Inbound Rule Wizard -
Rule Type

Select the type of firewall rule to create.

Steps:
Rule Type ‘what type of rule would you like to create”?
Predefined Rules
@ Action) Program
Fiule that controls connections for a program.
) Port

Rule that controls connections for a TCP ar UDP part.

(O] Predefined:

Windows Remaote Managerent W

Fiule that controls connections for a 'Windows experience.

) Custom
Custorn rule.

< Back Mexst » | | Cancel

[98]

http:///

Chapter 3

3. Your rules should look something like those shown in the following

screenshot. Click on Next again:

7

Predefined Rules

Steps:
@ Fule Type
@ Predefined Rules

@ Action

New Inbound Rule Wizard

Select the wles to be created for this experience.

which rules would pou like to create?

The following rules define network, connectivity requirements for the selected predefined group.
Fiules that are checked will be created. If a ule already exists and iz checked, the contents of

the existing rule will be overwritten.

Bules:
Mame Profile Descrpti.. Pr.. Lo.. R.
Windows Remote Management [HT... Public Inbound... TCP 5985 Any

Windows Remote Management (HT ...

< m

Domain, Private Inbound... TCP 5985 Any

< Back | | Mext » | | Cancel

[99]

http:///

Using PowerShell Remoting

4. Now define what action you want the firewall to take. Click on Allow the
connection. Then click on Finish, as shown in the following screenshot:

L heesw Inbound Rule Wizard [x]]
Action
Sizaciy The actior It ba baboan vwhan a coneecion melches dhe condbore s afied n Fe s
Rrene

‘il action shwdd fe ke hen 3 consaclon ae: e spooicd condion?

= Il [T N .
= Allow the connechion
L ET Théc nziide: ponse dons ot e proteeleduilh 9ses 35 wed a2 thase sz et

" Allow the connechion if i is seouns
This mchude: ool coreechons thal have Seen aufrenicaled by warg IPese. Conveclons
il secuiat oy B safbog: i Pens piopaiias and e in e Connecian 5 oy

Fue nzde.

- Rlack the connecdion

| 5 Fisce, FEnzh Carcel

5. When the rules are created, you may choose to make further restrictions, that
is, to only allow the IP addresses of your management subnet or perhaps
some specific user groups:

[100]

http:///

Chapter 3

Windows Remote Management (HTTP-In) Properties -

General Programs and Services Femote Computers
Protocols and Ports | Scope | Advanced | Local Principals | Remote Users
Local IP* address
B ® pnylP address

LY
() These IP addresses:

Remate IP address
B O Ay P address
® These IP addreszes:

Local subnet Add...
192.168.10.9 -

oK || Cancel || Apply

Turning on Service Windows Remote Management
(WS-Management)

Now that the firewall is allowing the remoting traffic to go through, we need
something to actually listen for it. For that, we need to start Windows' remoting
service and make sure it starts automatically.

[101]

http:///

Using PowerShell Remoting

In addition, the WinRM service is, by default, not started on Windows client
operating systems. To configure the WinRM service to start automatically, navigate
to Computer Configuration | Policies | Windows Settings | Security Settings |
System Services. On the right-hand pane, locate Windows Remote Management
and double-click on it:

2 Group Policy Management Editor bli-
Eie grtian Miew Help
e r@mXE=Bm
A % Camputer Configuration || Serdice Hame “ Smartup Perrisiion =,
a |] Falicies [F Windows All-User Install &gent MeotDefined Mot Defined
&l Safoemre Settings (8 Wi o Audia Mot Defined Mot Defined
4 [Whndmus Settings [Wind s Audia Endpoirt Builder Mot Defined Mot Defined
b 1 Mame Resalution P | B windowes Color Systemn Het Defined Mot Defined
= Seripta (StartupdSt o Drier Foundation - User-micde Driver Fra.. Mot Defined Net Defined
4 B Securiy Se“':g’_ _ [wlindowws Ervar Repctting Serice Mot Defined ot Defined
b ol f:c‘:'l";:rc‘i’e":"’ [Windows Event Collectar Nt Defines Mot Defined
: ‘jl Ewnt-lnl FWindoas Beent Log Mot Defined Mot Defined
. £a08 = || P windows Firswal ot Defined Nt Defined
I & Restricted Group !
% Windoes Font Cache Serice Mot Defined Mot Defined
Ny [windows Installer Hot Defined Mot Definedt
y (- Windows Licensing Monitering Serice Mot Defined Mot Defined
I g File System
| Eu Wired Metwork (| [# windowes Managerment Instrume itation Mot Defined Not Defined
T il i [Windos Madules [nstaller Mot Defined Mot Define d
3 “Windaws Firewrsl
= Metoark List blar s Rermote Managern: danagement) Mot Defined Mot Defined
3 ,_rr Wireless Hetwork [Wind o Ehore Tervice (W ETervice) Hot Defined Mot Defined
- Publickey Palici || [Windows Time Nt Defined Mot Defined
I O Software Restrics || [Windows Lpdate Not Definer Mot Defined
I Metark Aceess ||| R WinHTTR Web Prosye Suto-Discovery Service Mot Defined Mot Defined
b Maplication Cont || e d Auta Config HotDefined Mot Defined -
b) 1F Security Polici || 5y Perfarman ce Adapter Not Defined Not Defined
. - I Advanced Audit [warksttion Mot Defined Mot Defined =

Check the Define this policy setting box and set the service startup mode to
Automatic, as shown in the following screenshot:

Windows Remote Management (WS-Managem... _

Secunty Policy Setting

::‘%. Windows Remate Management ('S -+ anagement)

=

Define thiz policy zetting

Select zervice startup mode:

() Manual

() Digabled

| Ok | | Cancel | | Lpply

[102]

http:///

Chapter 3

We also want to set a service preference here in case the service fails. Navigate to

Computer Configuration | Preferences | Control Panel Settings | Services.

Right-click on Services, click on New | Service, as shown in the following screenshot:

= v) r
File Action View Help

e nE a0 mcE Bn O+
=/ Windows Remote Management [WINZ
4 & Cornputer Configuration
b 1 Policies
4 7] Preferences
b 7] Windows Settings
4 (39 Control Panel Settings
= Data Sources
2 Devices
' Folder Options
#G Local Users and Groups
Metwork Options
13 power Options

&b Printers

(&) Scheduled Tasks

“ Services

4 4% User Configurati
b [Policies Al Tasks v
bl Preferences View z

Copy
Paste
Print.
Refresh

= T Export List..

There are no items to show in this view,

Creates & ne iterr in this e
_—

On the General tab, use the following settings:

¢ Startup: Automatic
¢ Service Name: WinRM

e Service Action: Start Service

General |Recovery | Common

{% Startup: |Autnmat|:

SErVICE NAME: | WinRM

Service action: |Start SErvice

wWait timeout if service is locked: seconds

Log on as:
®) Mo change
(@] Local System account

[llows service to inkeract with deskkop

() This account: |

Password:

oK ‘ | Cancel | | Apply

[103]

http:///

Using PowerShell Remoting

On the Recovery tab, set all the failure settings to Restart the Service. Click on OK:

WinRM Properties -

General | Recovery | Comman

Select the computer's response iF this service Fails,

First Failure: Ig;g_start the Service V|
Second Failure: |Restart the Service] |
Subsequent Failures: |Restart the Service W |

Restart Fail count after: o o days
Restart service after: 1 : minutes

Run Prograrm

Append Fail count o end of command line {jfail=%:1%)

o] [coe

Doing a Group Policy Update

Assuming the GPO is now enabled and linked to an OU containing the computers
targeted for remoting, log on to one of the client machines in the domain and run
gpupdate /force or wait for the Group Policy to be deployed to the client machine.

Refer to the following screenshot:
- | O -

=X Administrator: CAWindows\system32\cmd.exe

ssUserssAdministrator>gpupdate Aforce
pdating policy...

omputer Policy update has completed successfully.
ser Policy update has completed successfully.

wUserssAdministrator

[104]

http:///

Chapter 3

To view the currently applied GPO, use the gpresult command and confirm that
the GPO titled Windows Remote Management is listed in the Applied Group
Policy Objects section.

Disabling remoting

You can use Disable-PSRemoting to disable remoting on the local computer.
Disable-PSRemoting will only disable the session configuration. All the changes
effected by Enable-PSRemot ing will not be removed. This includes leaving the
WinRM service in the enabled state and leaving all the listeners to enable PS
remoting. You will have to manually undo these changes if they are not required by
any other component or service on the local computer.

If no other service or components on the local computer need the WinRM service,
you can disable it by running the following command:

Set-Service winrm -StartupType Manual

Stop-Service winrm

To remove all WinRM listeners listening on the default PS remoting port (5985), use
the following command:

Get-ChildItem WSMan:\localhost\Listener -Recurse | Foreach-Object {
$.PSPath } | Where-Object { (Get-Item "$ \Port").Value -eq 5985 } |
Remove-Item

If the authentication scheme is different from Kerberos or if the client computer

is not joined to a domain, HTTPS transport must be used or the destination machine
must be added to the TrustedHosts configuration setting. Use winrm.cmd to
configure trusted hosts. Note that computers in the trusted hosts list might not

be authenticated.

[105]

http:///

Using PowerShell Remoting

Executing the remoting commands

With remoting, we can execute commands and scripts on a remote computer in a
couple of ways. This includes the Invoke-Command cmdlet and interactive remoting
sessions. Once you have enabled remoting on all your machines, you can use the
Invoke-Command cmdlet to run commands and scripts on the local computer or
remote computers. Here is an example of executing the remoting commands:

ey Administrator: powershell = =

[
dasHost
dllhost
dllhost
dum
dum
explorer

8 Idle

i.
a.
i.
6.
a.
a.
a.
a.
2.
a.
i.
a.
2.
a.
7.
.
3.

When we appoint an IP address to the - ComputerName parameter and set the
-ScriptBlock parameter as Get - Process, the result of execution will be
returned to the local computer.

Running ScriptBlock on a remote computer

You can execute a command on a remote computer by using the following method:

Invoke-Command -ComputerName Win-8 -ScriptBlock {Get-Service}

The scriptBlock parameter can be used to specify a list of commands that you want
to run on the remote computer. The ComputerName parameter is not required for the
running of commands on the local machine. If you want to run the same command
on multiple remote computers, you can supply the computer name or IP address as a
comma separated list or read a text file's content by using the Get - content cmdlet:

Invoke-Command -ComputerName Win-8,Win-8-Client -ScriptBlock {Get-
Service}

We can also make use of the following command:

Invoke-Command -ComputerName (Get-Content c:\servers.txt) -
ScriptBlock {Get-Service}

[106]

http:///

Chapter 3

This method is called fan-out or 1:many remoting. You can run the same commands
on multiple computers just as a single command. All commands and variables in the
ScriptBlock parameter are evaluated on the remote computer.

If you have a script of commands to run, you can have Invoke-Command read
it, transmit the content to the remote computers, and have them execute
those commands:

Invoke-Command -ComputerName Win-8,Win-8-Client -filePath
c:\Scripts\Tasks.psl

The computerName parameter of the Invoke-Command cmdlet accepts multiple
computer names, and the Session parameter accepts multiple PS sessions. When
you run an Invoke-Command command, Windows PowerShell runs the commands
on all of the specified computers or in all of the specified PS sessions. Windows
PowerShell can manage hundreds of concurrent remote connections. However,
the number of remote commands that you can send might be limited by the
resources of your computer and its capacity to establish and maintain multiple
network connections.

If you use something like -ScriptBlock {Get-Service -Name $serviceNamel},
PowerShell exports the remote computer session to have $serviceName defined. You
can pass variables on the local computer to a remote session with the -ArgumentList
parameter when using Invoke-Command. You can do this using the following
command:

$serviceName="WinRM"

Invoke-Command -ComputerName (Get-Content c:\servers.txt) -ScriptBlock
{param(sName) Get-Service -Name $Name} -ArgumentList $serviceName

This example shows how to use the -ArgumentList parameter to pass the variables
to the remote session.

Creating a persistent session with
Invoke-Command

Run Invoke-Command with the - ComputerName parameter, which specifies the
name of the remote computer, its NetBIOS name, and its IP address. This parameter
can establish a temporary session and execute the remote command every time.
Establishing a session every time is a time-consuming operation. It may be fine for
a couple of commands but not when you have to execute many more commands
and scripts. This is a very efficient method for running a single command or several
unrelated commands, even on many remote computers.

[107]

http:///

Using PowerShell Remoting

To avoid the unnecessary time overhead, we can use a persistent session of the
remote computer using the -Session parameter. You can create a persistent
connection to a remote computer by using the New-pPSsession cmdlet as shown in
the following examples.

When you use the New-PSSession cmdlet to create a PS session, Windows
PowerShell establishes a persistent connection for the PS session. Then, you can run
multiple commands in the PS session, including commands that share data.

$session=New-PSSession -ComputerName Win-8

Right now, $session contains the session details for the persistent connection. We
can use $session to invoke a command on the remote computer; the syntax for that
looks like this:

Invoke-Command -Session $session -ScriptBlock {Get-Service}

$session contains all variables you create/ modify when you execute commands
on the remote computer. So, subsequent command execution with $session as
the session will have access to all the variables created/updated on the remote
computer. For example:

$session=New-PSSession -ComputerName Win-8

Invoke-Command -Session $session -ScriptBlock {$fileCount = (Get-
ChildItem C:\ -Recurse) .Count}

invoke-command -session $session -ScriptBlock {$fileCount}

We could access the $fileCount variable only because we used a persistent session
to run the command:

ey Administrator: powershell

Sindowsssystem32? 9session=New—P85ession —ComputerName Win-8
“Windowsssystem32> Invoke—Command —Session $session —ScriptBlock {$fileCoun
Get—ChildItem C:% —Recursel.Count?

“Windowsssystem32?> Invoke—Command —Session $session —ScriptBlock {$fileCoun

sMindowsssystem3d2 >

Through the use of a persistent session, we will execute commands transfer to

a specified host. After the execution is completed, the Invoke-Command cmdlet
retrieves the execution result. The whole process is completed based on the persistent
session. When you use the New-PSSession cmdlet to create a PS session, Windows
PowerShell establishes a persistent connection for the PS session. Then, you can run
multiple commands in the PS session, including commands that share data.

[108]

http:///

Chapter 3

Typically, you create a PS session to run a series of related commands that share
data. Otherwise, the temporary connection created by the ComputerName parameter
is sufficient for most commands.

Running remote commands as a job

When we transmit a time-consuming operation to the remote host by PowerShell
remoting, we have to wait for the commands to complete to return the execution
results. In the example shown earlier, this gets the total file count on C drive on

the remote machine. It depends on the amount of documentation available on

the C drive when operation execution is completed. If the file count is a huge
number, waiting for the remote computer operation to be completed is very time
consuming. To avoid this, you can use the -asjob parameter to run the command as
a background job on the remote computer, as shown in the following command:

$session=New-PSSession -ComputerName Win-8

Invoke-Command -Session $session -ScriptBlock { (Get-ChildItem C:\
-Recurse) .Count} -asjob

Once you execute this, you will see the job details listed as shown in the
following screenshot:

Administrator: powershell
C=s\Windows“systemd2» %session=New-PSSesszion —ComputerMame Win-8
$ C:sMindows“system32> Invoke—Command —Session %$session —ScriptBlock { (Get-Chi
ldItem C:» —Recurse?.Count?} —asjoh

Id Name PSJobT ypeNamne State HasMoreData Location

Joh? RemotedJob Running

8 C=sMindowsssystem32> _

When you use the -asjob parameter with the Invoke-Command cmdlet, the
background job gets created locally and runs on the remote computer. Since this job
is created locally, we can use *-job cmdlets to manage the job object. The job object
will not be destroyed in the current PowerShell process until the process is closed.

For example, you can use the Get -Job cmdlet to monitor the status of the job, and
once the job status changes to completed, you can use the Receive-Job cmdlet to see
the output of the script block specified.

Get-Job -id 7 |Receive-Job

[109]

http:///

Using PowerShell Remoting

To get the results of the job, use the Receive-Job cmdlet. Because the job results are
automatically returned to the computer where the job object resides, you can get the
results with a local Receive-Job command.

Specifying credentials required for remoting

At the start of the chapter, we have mentioned that we can use PowerShell remoting
between computers in a workgroup environment. In a domain environment, we can
log on as a user only if we have administrator credentials to access any computer in
the domain. However, in a workgroup, we have to pass the credentials along with
Invoke-Command. For example:

$cred=Get-Credential

Invoke-Command -ComputerName win-8 -ScriptBlock {Get-Service} -Credential
$cred

In this example, Get -Credential prompts for the credentials to access a remote
computer and uses the same while calling the Invoke-Command cmdlet. When you
enter the Get -Credential cmdlet, a dialog box appears requesting a username
and password. When you enter the requested information, the cmdlet creates a
pPSCredential object representing the credentials of the user and saves it in the
$cred variable.

Entering an interactive remoting session

Enter-PSSession and Exit-PSSession are the cmdlets used to start/exit
an interactive remoting session. To enter an interactive session, we use the
following command:

Enter-PSSession -ComputerName win-8

Once you enter an interactive remoting session, the PowerShell prompt changes to
reflect the remote computer name you just connected to. The commands that you
type run on the remote computer as though you have typed them directly on the
remote computer. This indicates that you are in an interactive remoting session:

ey Administrator: powershell =

omputerMame win-8
Documentss

[110]

http:///

Chapter 3

In order to verify that we really have connected to the remote computer through the
interactive remoting session, we can implement the ipconfig command to check
the current thread host information before and after we enter into the interactive
remoting session, as shown in the following screenshot:

Administrator: powershell - 0

omputer
CLment

We can see that the network adapter information of is different before and after
entering the interactive remoting session. When we enter the interactive remoting
session, we can execute any command just like Telnet. It is not the same as using
Telnet, but it provides a similar experience.

Exiting an interactive session

You can use Exit-PSSession to come out of an interactive session. You need to pay
attention to the specified - ComputerName parameter as the Enter-pSSession cmdlet
starts just a temporary PS session and not a persistent session. Any variables that you
create and the command history will be destroyed if you exit this interactive session.

[111]

http:///

Using PowerShell Remoting

Using a persistent session with interactive
remoting

It will be advantageous to use a persistent session so that you can enter and exit the
interactive session as many times as you like. All the data, variables, and command
history you created in the remote session will persist until you remove the session.
You can also do it the same way you used persistent sessions with Invoke-Command.

$session= New-PSSession -ComputerName win-8

Enter-PSSession -Session $session

Starting interactive remoting with an existing
session

It is quite possible that you have created a persistent session to use with Invoke-
Command. You can use the same persistent session with Enter-PSSession to start
an interactive remoting session. You can use the Get -PSSession cmdlet to see a
list of all available/opened PS sessions and then use Enter-pPSSession to start
interactive remoting;:

ey Administrator: powershell
Format-List *

[112]

http:///

Chapter 3

There are several ways to enter an existing PS session for interactive remoting, as
shown in the preceding screenshot. You can use any that is convenient to you:

* Using the session ID:
Enter-PSSession -Id 3

* Using the session instance ID:
Enter-PSSession -InstanceId 2c4ae306-78c4-4a40-a52b-0eeb6c6cd4c

* Using the session name:

Enter-PSSession -Name Session3

* Using the -session parameter:

$session=Get-PSSession -Id 3

Enter-PSSession -Session $session

In these ways, you can enter an interactive session that contains all data and
command history. All of the session scene will be preserved until the current
PowerShell process is destroyed.

Disconnecting and reconnecting sessions

In PowerShell v3, you can disconnect and reconnect sessions by using Disconnect -
PSSession and Connect-PSSession. These commands will each accept a session
object, which you'd usually create with New-pPsSession.

A disconnected session leaves a copy of PowerShell up and running on the remote
computer. This is a good way to get it to run some long-running task, disconnect,
and then reconnect later to check up on it. You can even disconnect a session on one
computer, move to another computer, and reconnect to that session.

[113]

http:///

Using PowerShell Remoting

The following example shows a session being created from a client to a server. The

session is then given a task to perform as a background job, and then the session is

disconnected. It's important to note that the commands and the background job are
on the server, not the client:

ey Administrator: powershell
==10n -ComputerName win-8
State ConfigurationName Availabi

Opened

Enter-
] . WIN-

S5tate

Jobl sack g Running True

on (Get-P: n -Mame Sessio

ConfigurationName Availabi
Tity

onnected i . 5h Mone

Then, we move to a different machine. We're logged on and running PowerShell
as the same user that we were on the previous client computer. We retrieve the
session from the remote computer and then reconnect it. We then enter the newly
reconnected session, display that background job, and receive some results from it.
Finally, we exit the remote session and shut it down via Remove-PSSession:

[114]

http:///

Chapter 3

ey Administrator: powershell

=z1o0n -ComputerName

ComputerName ConfigurationName Availabi

Name St: Jat: Location

Jobl Completed True

[win-8]: P53 C:h» | =elect -Last 5

x Time Ty Source

Tt-wind . .
ft-wind . : A secur...
ft-wind . 4902 The Pe
- ne . |

ft-wind - 4608 Wi

[N KRR SV |
I B R BRI
WO A0 WD LD D

puterMame win-3% |Remove-P

Obviously, disconnected sessions can present management concern because you're
leaving a copy of PowerShell up and running on a remote machine, and you're doing
so in a way that makes it difficult for someone else to even see that you've done it!
That's where session options come into play.

Saving a remote session to a disk

In this section, we look at how we can save a remoting session to a disk so that
we don't even have to explicitly create a PS session to execute commands on a
remote computer.

[115]

http:///

Using PowerShell Remoting

Exporting a remote session to a module on a
disk

The Export-PsSession cmdlet lets us export commands from a remote session and

save the same in a PowerShell module on the local disk. This cmdlet can get cmdlets,
functions, aliases, and other command types into a PowerShell module.

$session = New-PSSession -ComputerName win-8
Invoke-Command -Session $session -ScriptBlock {Import-Module NetTCPIP}

Export-PSSession -Session $session -OutputModule RemoteCommands
-AllowClobber -Module NetTCPIP -Force

In the preceding example, we create a persistent session and import a module named
NetTCPIP. Then, we use the Export-PSSession cmdlet to export all commands,
aliases, functions, and so on available in the PS session $session to a module on the
local hard disk and name it RemoteCommands.

If the Export-PSSession cmdlet is successful, you will see output similar to what is
shown in the following screenshot:

ey Administrator: powershell

mputerName win-!
=ion -Script c{ Import-Mo

ion -QOutputModule RemoteC

i ndowsPower Shel1WModule

In the preceding output, it is clear that Export-PSSession generates .psmil, .psdl,
and format data files for the module automatically. Right now, you can load the
module to get access to the remote commands.

[116]

http:///

Chapter 3

Importing a module saved on a disk

If you observe the output closely, the path where the module files are stored is the
same as that for $Env:PSModulePath. So, you don't need to specify the absolute path
to the module. The following operation imports all remote commands available in
the module to the local session:

Import-Module RemoteCommands

Then, when we execute a remote command, it establishes the remote session,
executes the command in the remote session, and returns the output. All this is done
without you really using any remoting-related cmdlet. Of course, if establishing a
remote session requires a password, you will be prompted for one.

Limitations of Export-PSSession

Using Export - PSSession has the same limitations as implicit remoting. You cannot
use Export-PSSession to export a PowerShell provider. You cannot start a program
with a user interface as it requires access to the interactive desktop. The exported
module does not include the session options used to create the session. So, if you
need any specific session options to be configured before running remote commands,
you need to create a PS session with all the required session options before importing
the on-disk module.

Using session configurations

In the earlier section, we saw that, when PowerShell remoting is enabled, the default
session configuration gets registered. The Invoke-Command, Enter-PSSession, and
New-PSSession cmdlets have a -ConfigurationName parameter that can be used to
specify a different session configuration rather than the default one.

A session configuration is used to define who can create a PowerShell session

on the local computer. When we enable PowerShell remoting using Enable-
PSSession, we can see a final step performing Microsoft.PowerShell session
configuration registration. These default session configurations are used when the
remote users connecting to a local system do not specify a configuration name.

By default, only members of the administrators group have access to these two
session configurations.

[117]

http:///

Using PowerShell Remoting

Based on the preceding description, PowerShell session configurations can be
used to:
* Customize the remoting experience for users
* Delegate administration by creating session configuration with varying levels
of access to the system

The following cmdlets are available for managing session configurations:

® Register-PSSessionConfiguration

® Unregister-PSSessionConfiguration
® Enable-PSSessionConfiguration

® Disable-PSSessionConfiguration

® Set-PSSessionConfiguration

® Get-PSSessionConfiguration

Creating a new session configuration

The Register-PSSessionConfiguration cmdlet can be used to create a new
session configuration. You can use a C# assembly or a PowerShell script as a startup
script for this new session configuration. This startup script can be used to customize
the remoting experience. For example, create a script that imports the NetTcPIP
module using the Import-Module cmdlet:

Import-Module NetTCPIP

Save this script as startupscript.psl (or with any name of your choice) on the
local computer. Now, use the Register-pPsSSessionConfiguration cmdlet to create
a new session configuration. This can be done by running the following command:

Register-PSSessionConfiguration -Name "NetTCPIP" -StartupScript C:\
StartupScript.psl

[118]

http:///

Chapter 3

The preceding command gives the following output:

pScript r
WARMING: Register
dependent services.
ATT WinRM

as Micr

Administrator: powershell

o [1

s PowerShell s

onfiguratior

[N] Mo [L] No to ATl

[N]1 Mo

[L] Mo to ATl

mputer

ion configuratio

[5] Suspend

ocal WPlugin
Name

NetTCPIP

"Name: Win

[5] Suspend

that are created wit

You will be prompted to confirm this action at the end to restart the WinRM service
on the local computer. You must enable the script execution on the local computer to
be able to use the startup script as a part of session configuration.

[119]

http:///

Using PowerShell Remoting

Listing available session configurations

The Get -PSSessionConfiguration cmdlet lists all the available session
configurations on the local computer. This can be seen in the following screenshot:

ey Administrator: powershell - B

: BUTLTIN\Admin Allowed, BUILTIN\Remote
Management Us -

: microsoft. powershell.workf

: 3.0

: BUTLTIN\Admini A1lowed, BUILTINYRemote
Management Us A = wed

: NetTCPIP
: 0

cript : tartupscript.psl
er :

; BUILTIN' Admini ato owed, BUILTINYRemote
Management Us

As you see in the preceding output, Get -PSSessionConfiguration lists all
available session configurations on the local computer and who has permission to
access each configuration. No permissions have been assigned yet to the new active
directory configuration.

[120]

http:///

Chapter 3

The Get-PSSessionConfiguration cmdlet cannot be used to access a list of PS
session configurations from a remote computer. However, we can use the Get -
WSManInstance cmdlet to achieve this as shown in the following command:

Get-WSManInstance winrm/config/plugin -Enumerate -ComputerName win-8 |
Where ~ { $.FileName -like '*pwrshplugin.dll'} | Select Name

This will list all the session configuration names as available on the remote computer.
You can then use any one of the session configurations to connect to the remote
computer using PowerShell remoting.

Administrator: powershell

1rm/ contig/p
ect name

You must have access to the session configuration on the remote computer to be able
to use it within PowerShell remoting.

Custom permissions and PS session
configurations

You can use Set-PSSessionConfiguration to allow access to invoke the new
session configuration. To do this, we can use the following command:

Set-PSSessionConfiguration -Name NetTCPIP -ShowSecurityDescriptorUI

[121]

http:///

Using PowerShell Remoting

This opens up the dialog to add permissions to invoke this session configuration.
As you can see in the following screenshot, the administrators group has no invoke
permission on this session configuration:

| Administrator: powershell ==

criptorul
R =11

urations, such
http://schemas microsoft com/powershell /Net TCPIP el i - e

Group or user names:
52, Administrators (WIN-8-CLIEN T Administrators) . NetTCPIP”
'\'JJ Remote Managemert Users (WIN-8-CLIENT Remote Mana... Help

[¥] Ye
(default 1=

Bemaove

Pemissions for Administrators

Derry

Full Control{&ll Operations)]

Read(Get, Enumerate, Subscribe)]
Ol
O

Wite(Put, Delete Create)
Execute{lnvoke)
Special pemissions

For special pemissions or advanced settings,
click Advanced.

Leam about access control and pemissions

OK Cancel

Check the Allow checkbox for the Execute (Invoke) permission and then click on
OK. You will be prompted to restart the WinRM service. Now, an administrator or
a member of the administrators group will be able to use this session configuration.
Similarly, you can add a non-administrator user to the list of users/groups and then
assign appropriate permissions. This way, you can have non-administrator users
remote into the local computer using PowerShell remoting.

[122]

http:///

Chapter 3

Invoking a custom session configuration

You can use the New-PSSession, Enter-PSSession, and Invoke-Command cmdlets
specifying the -ConfigurationName parameter to load a session configuration other
than the default configuration. The following code snippet shows three different
ways to invoke a remote session using a custom session configuration name:

$s = New-PSSession -ComputerName win-8 -ConfigurationName NetTCPIP
Enter-PSSession -ComputerName win-8 -ConfigurationName NetTCPIP

Invoke-Command -ComputerName win-8 -ConfigurationName NetTCPIP
-ScriptBlock {Get-Process}

We used Invoke-Command to load the active directory module within a persistent
session and then used that persistent session to import Net TCPIP cmdlets into the
local session. However, by using a session configuration that imports the Active
Directory module as a startup script, we will have all the Net TcPIP cmdlets available
as soon as we connect to the remote session.

Disabling a session configuration

You can use the Disable-PSSessionConfiguration cmdlet to disable an existing
session configuration and prevent users from connecting to the local computer by
using this session configuration. You can use the -Name parameter to specify what
session configuration you want to disable. If you do not specify a configuration
name, the default Microsoft . Powershell session configuration will be disabled.

The Disable-PSSessionConfiguration cmdlet adds a deny all setting to the
security descriptor of one or more registered session configurations. As a result, you
can unregister, view, and change the configurations, but you cannot use them all in
one session.

The Disable-PSRemoting cmdlet will disable all PS session configurations available
on the local computer.

The Enable-PSSessionConfiguration cmdlet can be used to enable a disabled
configuration. You can use the -Name parameter to specify what session
configuration you need to enable.

[123]

http:///

Using PowerShell Remoting

Deleting a session configuration

You can use the Unregister-PSSessionConfiguration cmdlet to delete a
previously defined session configuration. It is quite possible to delete the
default session configuration —Microsoft . Powershell —using this cmdlet.
However, this default session configuration gets recreated if you re-run the
Enable-PSRemoting cmdlet.

Summary

In Windows PowerShell 3.0, you can run remote commands on a single computer or
on multiple computers by using a temporary or persistent connection. You can also
start an interactive session with a single remote computer. When you work remotely,
you type commands in Windows PowerShell on a local computer, but the commands
run on a remote computer. The experience of working remotely should be as much
like working directly at the remote computer as possible.

In this chapter, we discussed how to enable/disable remoting, execute remote
command, and save remote sessions to a disk. We also covered how to use an
interactive remoting session and session configuration.

When we submit a remote command, the command will be transmitted to the
Windows PowerShell engine of the remote computer through the network and
executed on the remote computer. The command results are sent back to the local
computer and appear in the Windows PowerShell session on the local computer.

In the next chapter, we will discuss extending PowerShell by writing modules. A
module is a set of related Windows PowerShell functionalities that can be dynamic
or that can persist on a disk. Modules that persist on disk are referenced, loaded, and
persisted as script modules, binary modules, or manifest modules respectively.

[124]

http:///

Extending Windows
PowerShell

One of the great features of PowerShell is its extensibility. You are not limited

to the commands that Microsoft ships. You can load additional commands and
functionalities via a module. Many other Microsoft product teams and third-party
vendors deliver PowerShell solutions for their products via modules.

A module is a set of related Windows PowerShell functionalities that can either be
dynamic or that can persist on a disk. Modules that persist on a disk are referenced,
loaded, and persisted as script modules, binary modules, or manifest modules.
Unlike snap-ins, the members of these modules can include cmdlets, providers,
functions, variables, aliases, and much more. A module is really nothing more than
a PowerShell script with a . psm1 file extension, although it can include binary code,
typically delivered in a DLL file.

In this chapter we will cover:

Windows PowerShell modules

PowerShell module types

The PsModulePath environment variable

Importing, removing, and reloading modules

Writing a Windows PowerShell module

Working with multiple versions of PowerShell modules

Checking PowerShell module dependencies

You can run the Get -Module command to see what is loaded in your current session.

http:///

Extending Windows PowerShell

Introduction to Windows PowerShell
modules

In the previous versions of Windows PowerShell, only developers could create
packages using snap-ins that contained .NET Framework classes for cmdlets and
providers. Now by using Windows PowerShell modules, you do not have to use

a compiled language to create a package for your Windows PowerShell solutions.
Modules allow cmdlet developers, script developers, and administrators to package
and distribute their solutions.

Windows PowerShell modules allow you to partition, organize, and abstract your
Windows PowerShell code into self-contained, reusable units. With these reusable
units, administrators, script developers, and cmdlet developers can easily share
their modules directly with others. Script developers can also repackage third-party
modules to create custom script-based applications. Modules, similar to those in
other scripting languages such as Perl and Python, enable production-ready
scripting solutions that use reusable, redistributable components, with the added
benefit of enabling you to repackage and abstract multiple components to create
custom solutions.

PowerShell module types

PowerShell accepts several module types that can be used to package and deploy,
just like script modules, binary modules, manifest modules, and dynamic modules.

Script modules

A script module is a file (.psm1) that contains valid PowerShell code. Script
developers and administrators can use this type of module to create modules
whose members include functions, variables, and more.

Binary modules

A binary module is a .NET Framework assembly (.d11) that contains compiled
code. Cmdlet developers can use this type of module to create modules that
contain cmdlets, providers, and more. (Existing snap-ins can also be used as
binary modules.)

[126]

http:///

Chapter 4

Manifest modules

A manifest module is a module that includes a manifest (which is described later

in this section) to describe its components, but that does not specify a root module
in the manifest. A module manifest does not specify a root module when the
ModuleToProcess key of the manifest is blank. In most cases, a manifest module
also includes one or more nested modules using script modules or binary modules.
A manifest module that does not include any nested modules can be used when you
want a convenient way to load assemblies, types, or formats.

Dynamic modules

A dynamic module is a module that does not persist to disk. This type of

module enables a script to create a module on demand that does not need to be
loaded or saved to persistent storage. By default, dynamic modules created with the
New-Module cmdlet are intended to be short-lived and therefore are not visible using
the Get-Module cmdlet.

The PSModulePath environment variable

The psModulePath environment variable stores the paths to the locations of modules
that are installed on the disk. Windows PowerShell uses this variable to locate
modules when the user does not specify the full path to a module. The paths in this
variable are searched in the order in which they appear.

When Windows PowerShell starts, PSModulePath is created as a system environment
variable with the default value $home\Documents\WindowsPowerShell\Modules;
Spshome\Modules.

Viewing the PSModulePath variable

If you want to view the PSModulePath variable, you can type the
following command:

$Env:PSModulePath

We can see that PSModulePath is an item of the $Env driver. Of course, we can add
other locations to it for specifying custom module library paths. In this way, we can
use the Import-Module cmdlet for importing the module to any current path.

[127]

http:///

Extending Windows PowerShell

Adding locations to the PSModulePath
variable

To add paths to the PSModulePath variable, we can use the methods discussed in
this section.

If we want to add a temporary value that is available only for the current session, we
need to execute the following command at the command line:

$Env:PSModulePath=$Env:PSModulePath + ";C:\MyModules"

If we want to add a persistent value that is available whenever a session is opened,
we need to add the following command to the PowerShell profile:

$Env:PSModulePath=$Env:PSModulePath + ";C:\MyModules"

After we add the content to the profile, any PowerShell command line will load the
variable automatically.

The psModulePath variable assigns a parameter for the PowerShell engine to search
through the multiple paths specified in this variable, to find a directory named by the
module name and load the module program when using the Import-Module cmdlet
that loads modules into the current session.

Importing PowerShell modules

We can use the Import-Module cmdlet to import modules. When this command

is executed, PowerShell searches for the specified module within the directories
specified in the PSModulePath variable. When the specified directory named as the
module name is found, PowerShell searches for files in the following order:

* Manifest module files (.psd1)

* Script module files (. psm1)

* Binary module files (.d11)
We can list the available modules using the Get -Module cmdlet with the
-ListAvailable switch. To import a module, we can use the Import-Module
cmdlet. Then we can use the Get -Command cmdlet to get the command list of this

module with the -Module switch parameter. Finally, we can execute the cmdlet in
the module. The effect of the command is shown in the following screenshot:

[128]

http:///

Chapter 4

ExportedComnands

ADRMS

AppLocker
BestPractices
BitsTransfer
PSDiagnostics
ServerManager
TroubleshootingPack

Feature
Feature
Remove—WindowsFeature

PS G:\Users™Administrator? Get-WindousFeature

lay Mame

ctive Directory Certificate Services
Certification Authority

1 Gertification Authority Web Enrollment

1 Online Responder

1 Network Device Enrcllment Service

1 Certificate Enrollment Web Service

1 Certificate Enrollment Policy Web Service

1 Active Directory Domain Services

1 Active Directory Domain Controller

1 Identity Management for UMIX
[1 Server for Network Information Services
[1 Password Synchronization

A
L
L
L
L
L
L
A
L
L

PS C:“sers\Adninistrator> Import—Module ServerManager
PS C:“sers“Adninistrator> Get—Command —Module ServerManager

- [O[x]

Definition

Feature [-Namel <{Feature[1> [-Include
Get—WindowsFeature [[-Hamel <8tring[1>1 [-LogPat
Remove—WindowsFeature [-Namel <{Featurel1> [-LogP

AD—Certificate
ADCS—Cert—Authority
ADGS-Web—Enrollment
ADGS-Online—Cert
ADCS-Device—Enrollment
ADCS-Enroll-Webh—Suc
ADCS-Enroll-Weh—Pol
AD-Domain—Services
ADDS-Domain—Controller
ADDS-Identity—Mgnt
ADDS-NIS
ADDS-Password—Sync =

In fact, observant readers may notice that the Get -WwindowsFeature cmdlet lists all
the server roles on this server, which is similar to the Add Roles Wizard in Server
Manager, as shown in the following screenshot:

Roles:

Select one or more roles to install on this server,

Description:

l: Active Directory Lightweight Directory Services
l: Active Directory Rights Management Services
E Application Server

[DHCP Server

[] oMs Server

': Fax Server

[] File Services

[Hypery

[] Metwork Policy and Access Services

E Print and Document Services

l: Remate Desktop Services

[wWeb Server (115)

[windows Deployment Services

[windows Server Update Services

More about server roles

= Previous I

Confirmation A;gvcasDirettnrdthertiFittate SteF_viEEs

- > - is used ko create certification
Progress [Active Directory Domain Services authorities and related role services
Results [Active Directory Federation Services that allow you o issue and manage

certificates used in a variety of
applications,

Imstall Cancel

[129]

http:///

Extending Windows PowerShell

In PowerShell 3.0, modules are imported automatically when any cmdlet or
function in the module is used in a command. This feature works on any module
in a directory that is included with the value of the PsModulePath variable. The
following actions will trigger the automatic import of a module:

* Using any cmdlet in a module: For example, executing the Get -Acl cmdlet
imports the Microsoft.PowerShell.Security module that contains the
Get-Acl cmdlet.

* Using the Get-Command cmdlet to get the command: For example,
executing Get - Command Get-VpnConnection imports the vpnclient
module that contains the Get -VpnConnection cmdlet. A Get -Command
command that includes wildcard characters is considered to be a discovery
and does not trigger the import of any module.

* Using the Get-Help cmdlet to get help: For example, executing the
Get-Help Set-PSBreakpoint cmdlet imports the Microsoft.PowerShell.
Utility module that contains the set-PSBreakpoint cmdlet.

By default, the Import-Module cmdlet does not return any object to the pipeline.
Sometimes, we may need the cmdlet to return an object that is used for judging
whether execution is normal or not. The cmdlet supports a PassThru parameter that
can be used to return a PSModuleInfo object for each module that is imported.

When a module is imported using the Import-Module cmdlet, all the module
members are imported into the current session by default. If we want to restrict
the members that are imported, we use the -function, -cmdlet, -variable, and
-alias parameters of the Import-Module cmdlet.

Removing PowerShell modules

The Remove-Module cmdlet removes modules from the current session. If a module
contains assemblies (.DLL), the Remove-Module cmdlet will delete the program
realization set of all the members but won't uninstall the programs.

Remove-Module -Name BitsTransfer

We can remove the BitsTransfer module by executing the preceding command.

[130]

http:///

Chapter 4

Reloading PowerShell modules

Sometimes, for the purpose of testing we need to reload the PowerShell modules. For
instance, say we write a script module. Now in order to debug the function, we need

to reload the modules when the scripts are modified. In this section, we will define a

Reload-Module function that is used to reload the specified module. Here is the code
for it:

Function Reload-Module ($ModuleName)

{

if ((get-module -list | where{$.name -eqg "$ModuleName"} | measure-
object) .count -gt 0)

{

if ((get-module -all | where{$.Name -eq "SModuleName"} | measure-
object) .count -gt 0)

Remove-Module s$ModuleName

Write-Host "Module $ModuleName Unloading"
Import-Module $ModuleName
Write-Host "Module $ModuleName Loaded"

}

Else
Write-Host "Module S$ModuleName Doesn't Exist"

The function checks to make sure the module exists before running any commands,
and if it exists, it also checks to make sure it's loaded, before attempting to unload it.

Writing a PowerShell module

In the earlier versions of PowerShell, snap-ins were popular with system
administrators who used cmdlets provided by third-party vendors. However, it is
easier to achieve the objective of sharing functions and scripts as part of a module. In
addition to this, while a snap-in can only contain cmdlets and providers, a module
can also contain other common PowerShell items, such as functions, variables,
aliases, and PowerShell drives.

[131]

http:///

Extending Windows PowerShell

Each module should be stored in a subfolder of one of these paths and typically the
name of the subfolder is the name of that module; within that folder you should
then store the files that make up the module. At the least, we need a * .psm1 file.

In this file, a number of functions or variables that make up the module could be
placed. In addition to this, it is possible to place PowerShell scripts in * . ps1 files in
the module's folder and reference them in the *.psm1 file. As a final touch, a module
manifest file can be created, which will give a more professional and rounded feel to
your module, but we will discuss manifests later.

Let's look at the process of creating an example module.

Creating script modules

Script modules can contain any valid PowerShell code. We can place a couple of
functions in a * . psm1 file to make a module. There is nothing special about a * . psm1
file; it is a normal * . ps1 script file. We can rename any *.ps1 script file that contains
our functions to * . psm1 to create a script module.

Firstly, let's create two functions for our module that we will use for sending and
receiving TCP messages. The first function will monitor a local TCP port that waits
for an external program to connect, accept the messages sent by it, and display the
message content in the console. We name it Receive-TCPMessage.ps1. Its code is
as follows:

Function Receive-TCPMessage

{

param ([ValidateNotNullOrEmpty ()]
[int] S$Port)
try

{
$SEndPoint = New-Object System.Net.IPEndPoint ([System.Net.
IPAddress] : : Loopback, $Port)
$Socket = New-Object System.Net.Sockets.TCPListener ($SEndPoint)
SSocket.Start ()
$Socket = $Socket.AcceptTCPClient ()
$EncodedText = New-Object System.Text.ASCIIEncoding
SStream = $Socket.GetStream()
SBuffer = New-Object System.Byte[] $Socket.ReceiveBufferSize
while($Bytes = $Stream.Read($Buffer,0,$Buffer.Length))
{
$Stream.Write ($Buffer, 0, $Bytes)
Write-Output $EncodedText.GetString ($Buffer, 0, $Bytes)

[132]

http:///

Chapter 4

$Socket.Close()
$Socket .Stop ()

}

catch{}

}

We can see that Receive-TCPMessage is an ordinary function with a parameter
$port. In the code, we use the New-Object cmdlet to create two .NET objects

called Ssystem.Net . IPEndPoint and System.Net .Sockets.TCPListener. The
System.Net.IPEndPoint object is used to resolve the loopback address for an IP
address. The system.Net .Sockets.TCPListener object is used when waiting for a
connection and for receiving messages.

The second function is Send-TCPMessage; it is saved as Send-TCPMessage .ps1. We
will use it to connect to a TCP port of the destination host. Its code looks as follows:

Function Send-TCPMessage

{

param ([ValidateNotNullOrEmpty ()]

[string] $EndPoint,

[int] S$Port,

[string] $Message)

SIP = [System.Net.Dns] ::GetHostAddresses ($SEndPoint)
$SAddress = [System.Net.IPAddress]::Parse($SIP)

$Socket = New-Object System.Net.Sockets.TCPClient ($SAddress, $SPort)
SStream = $Socket.GetStream()

SWriter = New-Object System.IO.StreamWriter ($Stream)
SWriter.AutoFlush = S$Strue

SWriter.NewLine = S$Strue

SWriter.Write (SMessage)

$Socket.Close ()

}

We can notice that the preceding code looks like the first function that uses the
System.Net.Sockets.TCPClient object to establish a connection. The function
needs three parameters, namely $EndPoint, $Port, and $Message. The EndpPoint
parameter is used with the [System.Net.Dns] : :GetHostAddresses method to
resolve the domain of an IP address.

[133]

http:///

Extending Windows PowerShell

Execute these functions. The following screenshot shows how to send and receive
TCP messages:

¥ Administrator: Windows PowerShell _|O]

is a TCP message send by PowerShell'

We now save these functions in the PSNet . psmi file and save them at C: \Users\
Administrator\Documents\WindowsPowerShell\Modules\PSNet\TCPOp.

Organize * Incudeinlibrary + Sharewith + New folder = -~ O ﬂ

. Program Files 6é4) name - Date modified | Type Size | |
. Users

Administrato &% Receive-TCPMessage 2012/10/16 10:27 Windows PowerShel... 1KB
4. Administrator

L Contacts | Send-TCPMessage 2012/10/16 10:27 Windows PowerShel..., 1KB

p Desktop

g Downloads
Favorites

Lirks

* | My Documen LI

In order to realize code package structure similar to the C# code namespace, we
create the subdirectory psNet\TCPOp in the directory specified by the pPSModulePath
variable. Of course, we can create a UDP operation in PSNet \UDPOp and add
dot-sourcing statements for the script file in the psNet . psm1 file.

Now, we will talk about how to create the script module file pSNet . psm1, which is
as follows:

Shome /Documents/WindowsPowerShell /Module/PSNet /TCPOp/Receive-
TCPMessage.psl

Shome/Documents/WindowsPowerShell /Module/PSNet/TCPOp/Send-
TCPMessage.psl
Write-Host "PSNet Module Added" -BackgroundColor green
-ForegroundColor blue
Export-ModuleMember -Function * # Used for deriving function to
members of the module

[134]

http:///

Chapter 4

We can see that the first and second statements are used for dot sourcing two script
files. The third statement is used for notifying the users that the psNet module has
been added to the current session. The last statement is used for deriving a function
for the members of the module.

So far, we have finished the task of writing a script module. If we want to import the
module once the PowerShell session has already started, we can add the Import-
Module cmdlet into our PowerShell profile.

Import-Module PSNet -PassThru

Once the PowerShell session has already started, we will get the following results:

B Administrator: Windows PowerShell

Windows PowerShell
Copyright <C> 2012 Microsoft Corporation. All rights reserved.

PSHet Module Added|

{Receive sage, Send-ICPMessagel

PS G:lUsers™fidministrator? Get—Command —Module PSNet

Hame ModuleMame

Receive-TCPMessage
Function Send-TCPMessage

PS C:\Users\Administrator> _

We can see that two functions are members of the module that is available to us in
this PowerShell session using the Get - Command cmdlet.

Get-Command -Module PSNet

We can check whether or not our module psNet is available using the Get -Module
cmdlet with the -ListAvailable switch.

Get-Module -ListAvailable

[135]

http:///

Extending Windows PowerShell

We may get the result shown in the following screenshot:

istrator: Windows PowerShell
PS C:“Users\Adninistrator> Get-Module -ListAvailahble

Directory: C:-Users™idministratorsDocuments-MindowsPowerShellModules

ExportedCommands

ADRMS {Update-ADRMS. Uninstall-ADRMS. Install-ADRMS>
AppLocker {8et—AppLockerPolicy, Get—AppLockerPolicy, Test—AppLockerPolicy, Get—-...
BestPractices {Get—BpaModel, Invoke—BpaModel. Get-BpaResult. Set—BpaResultX
BitsTransfer {Add-BitsFile, Remove-BitsTransfer, Complete-BitsTransfer, Get—BitsIr...
CimCmdlets {Get—CimAssociatedInstance. Get—-CimClass. Get—CimInstance. Get—CimSes...
ISE {New—IseSnippet. Import—IseSnippet. Get—IseSnippet
Microsoft.PowerShell.Diagnostics {Get—WinEvent, Get—Counter. Import—Counter., Export—Counter...X
.PowerShell.Host {8tart-Transcript. Stop-Transcript?
-Powerfhell.Managenent {Add—Content, Clear—Content. Clear—ItemProperty, Join—Fath...X
-PouerShell.Security {Get—Acl. Set—Acl. Get-PFxCertificate. Get—Credential...>
-PouwerShell.Utility {Format-List, Format—Custom. Fopmat-Tabhle. Format-Wide...>
Microsoft.WEMan.Management {Disabhle—WSHanCredSSF,. Enable-WSManCredSSP, Get—WSHanCredSSP, Set—USHM...

We can see that the psNet module has a ModuleType of script while other built-in
and third-party modules have a ModuleType of manifest or script.

Binary modules

A binary module can be any assembly (.d11) that contains a cmdlet class. By default,
all the cmdlets in the assembly are imported when the binary module is imported,
unless the cmdletToExport keyword is specified in the manifest file of the binary
module to restrict the cmdlet range when using Import-Module to import

the module.

In fact, you can load most existing snap-ins as modules instead, which means you
don't have to be an administrator to load a new snap-in. There is no need to register
them by running Installutil.exe. You can simply place them in a folder and tell
PowerShell where to find them. In addition to this, any formatting or type files that
are referenced by the snap-in cannot be imported as part of a binary module. To
import formatting and type files, you must create a module manifest.

The development method of a binary module is completely similar to the method
used for developing snap-ins in Chapter 2, Developing Snap-ins for PowerShell. Readers
can review this chapter for the method to develop snap-ins.

[136]

http:///

Chapter 4

Manifest modules

A manifest module is a Windows PowerShell datafile (.psd1) that describes the
contents of a module and determines how a module is processed. A manifest file is
a text file that contains a hash table of keys and values. To use the manifest file in a
module, place the module manifest file in the root of the module directory.

It is possible to smarten up your modules and give them a more professional look

by using module manifests. For instance, you may wish to include some author

and versioning information as part of the module, or you may wish to specify
minimum versions of PowerShell and/or the .NET Framework that are needed for
the components of your module. You should create a module manifest. Microsoft has
made creating a basic module manifest easy by giving us the New-ModuleManifest
cmdlet. While it is possible to create a module manifest manually (by simply creating
a *.psd1 file containing your requirements and placing it in the module folder),
using the cmdlet makes it easy to create a basic one. Let's continue with the psNet
module and create a basic module manifest using New-ModuleManifest.

We can specify all of the parameters we wish to include in the manifest and supply
them on the command line.

New-ModuleManifest -Author "fuhj"
-CompanyName "Packt Publishing" ~

-CopyRight "(c) 2009 fuhj" ~

-Description "Sending and receivingTCP message"
-FileList "PSNet.psml" ~

-FormatsToProcess @()

-ModuletoProcess "PSNet.psml"
-NestedModules @() ~

-Path "C:\Users\Administrator\Documents\WindowsPowerShell\Modules\

PSNet\PSNet.psdl" °
-RequiredAssemblies @()

-TypesToProcess @()

You can use Get-Help New-ModuleManifest to examine in more detail other
options that you may wish to include in your module manifest. When the
command is executed, we get a module manifest file named pSNet .psd1.

of
Script module or binary module file associated with this manifest.
RootModule = 'PSNet.psml'

Version number of this module.
ModuleVersion = '1.0'

ID used to uniquely identify this module
GUID = '08766c71-a825-4d38-b2a2-477445be6al7"
Author of this module

[137]

http:///

Extending Windows PowerShell

Author = 'fuhj'

Company or vendor of this module

CompanyName = 'Pocket Publishing'

Copyright statement for this module

Copyright = '(c) 2009 fuhj'

Description of the functionality provided by this module
Description = 'Sending and receivingTCP message'

Functions to export from this module
FunctionsToExport = '*!

Cmdlets to export from this module
CmdletsToExport = '*!

Variables to export from this module

VariablesToExport = '*!

Aliases to export from this module
AliasesToExport = '*!

List of all files packaged with this module
FileList = 'PSNet.psml'

}

Now that we have created a basic module manifest, we can take that as a template
for future modules and customize it as per our needs.

Dynamic modules

Using Add-Type and Import-Module, you can dynamically compile and load an
assembly without any intermediate assembly files to clean up. For instance, to run
a cmdlet on a remote machine, you could send over the cmdlet source code and
compile, import, and run it all on the fly.

Let's say you have your cmdlet in C# code with the variable $source:

PS> S$source = @"
public class BasicTest

{

public static int Add(int a, int b)

{
}

public int Multiply(int a, int b)

{

return (a + b);

return (a * b);

[138]

http:///

Chapter 4

"@

PS> Invoke-Command { (Add-Type -TypeDefinition $args[0] -PassThru).
assembly | Import-Module} -ArgumentList $source

PS> Invoke-Command { (new-object BasicTest) .Multiply (5, 2)}

All the code will be executed as follows:

strator: Windows PowerShell

PS C: dministrator> $source = @
>> public class Basiclest

public static int Add{int a, int hd>
<
return <a + hd;
>
public int Multiply{int a, int b)>
<
return <a = h;
>
>
@

t Ssource
PS C:\lUsersAdministrator> Invoke—Command {(new-ohject BasicTest)>.Multiply<5, 20}
18
PS8 C:xllsers\Administrator’> _

The PowerShell session compiles the code with Add-Type and passes the resulting
assembly object to Import-Module.

In the preceding example, we can consider a situation where we need to execute a
cmdlet in a remote host. But we don't want to upload the compiled assembly file

to the remote host, delete files, and clean up environment after the operation is
completed. We can read cmdlet source code from local files and then push the code
to remote host with a remote session. The source code will be compiled, imported as
a module, and run on the remote host. The cmdlet Execute-MyCmdlet is invoked in
the remote session and then removed, without the need to remove any intermediate
files on the remote system.

PS> [string] $source = Get-Content myCmdletcode.cs

PS> $s = New-PSSession remoteHost

PS> Invoke-Command $s { (Add-Type -TypeDefinition $args[0] -PassThru).
assembly | Import-Module} -ArgumentList $source

PS> Invoke-Command $s {Execute-MyCmdlet}

PS> Remove-PSSession $s

It's very useful when we need to invoke a cmdlet in an assembly on the remote
system without wanting to remove any intermediate files.

[139]

http:///

Extending Windows PowerShell

Storing modules on a disk

After we have written script, binary, and manifest modules, there are several places
where we can store them. They can be stored in the system folder where PowerShell
is installed, or in a user's folder. In either case, the module is placed into a module
directory, and the entire module is placed in the subdirectories that are named by
module name, with the following exceptions:

* Dynamic modules created using the New-Modules cmdlet can be named
using the -Name parameter of the cmdlet

* Modules imported from the assembly object using the Import-Module
-Assembly command are named using the following syntax:

"dynamic_code module " + assembly.GetName () .
When storing files in the system folder, you have to create the following path:

C:\Windows\system32\WindowsPowerShell\vl.0\Modules\

It needs to be emphasized that to modify the directory, administrator privileges
are required. When we store files in the user's folder, we have to create the
following path:

C:\Users\Administrator\Documents\WindowsPowerShell\Modules

Working with multiple versions of
modules

Sometimes, we need to develop several versions of modules for different PowerShell
versions or Windows versions. We have two or more versions of the module that we
need to be able to load in order to support users and do development.

The psModulePath variable contains a semicolon-delimited list of folder paths that
PowerShell searches for modules. Some people may think of a PowerShell module as
basically a .d11 (binary module), .psm1 (script module), or .psd1 (manifest module)
file, but it's never just one file; it's a group of folders and files. In order for PowerShell
to find the psNet module when you type Import-Module PSNet, you have to set

up a folder in PSModulePath named PSNet and also a file (.d11, .psm1, or .psd1)
named PSNet.

As we all know, PowerShell has a -version parameter that is used to specify the
PowerShell version. We can execute this in the console as follows:

powershell.exe -version 3.0

[140]

http:///

Chapter 4

We may get a different result when we tell the console to start PowerShell Version

2.0 or Version 3.0, as shown in the following screenshot:

1. Administrator: Windows PowerShell

i~ >PowverShell.exe —version 2.8
Jindows PowerShell
opyright (C> 2887 Microsoft Corporation. All rights reserved.

PS C:~> $PSUersionTahle

2.8.58727.6387
BuildUerzion 6.1.7688.16385
PSUersion
JSManStackUersion
PSCompatibleVersions
BerializationUersion
PSRemotingProtocollersion

S C:-> PowerShell.exe —version 3.8
Jindows PowerShell
opyright (C> 2012 Microsoft Corporation. All rights reserved.

PS C:»» SPSUersionTahle

FEUerzion

JEManStackUerszion

EerializationUVerszion 1
LRVerzion 319.17929
BuildUersion AA.16384
PSCompatibleUersions 2.8, 3.8>
FSRemot ingProtocollersion

=E |

The Import-Module cmdlet has a version parameter that is an alias of

MinimumVersion. We cannot use the version parameter of the Import-Module

cmdlet to load a specified version of the module. For instance:

PS C:\> Import-Module -Name PSWorkflow -MinimumVersion 3.0.0.0

This command imports the PSWworkflow module. It uses the Minimumversion
(alias=Version) parameter of Import-Module to import only version 3.0.0.0 or
greater of the module. You can use the Requiredversion parameter to import a
particular version of a module, or use the Module and Version parameters of the
#requires keyword to require a particular version of a module in a script.

[141]

http:///

Extending Windows PowerShell

Although we cannot use the -version parameter to specify the module's version, we
can rename the module directory and module file to distinguish between different
versions of the module. Right now, we are going to copy the psNet module to
PSNet1.3 for our development version, then rename the manifest module file to
PSNet1l.3.psdl and rename the script module file to PsNet1.3.psml. Finally, we
must modify the options of the manifest module file in which all the options of the
script module file are ModuleVersion, RootModule, and FileList.

We can load the development version to the current session as follows:

Import-Module PSNetl.3

And then, we can find the development version of pPsNet1. 3 in the list of
available modules:

rator: Windows PowerShell

ers\idministrator> Import-Module PSHetl.3

PSNet Module Added

PS C:\UsersMdministrator> Get—Module -ListAvailable
Directory: C:lsers™dministrator“Docunents“WindowsPowerShell“\Modules

ExportedConmands

PSHet {Receive-TCPMe e, Send-TCPMessagel
PENet1.3 {Receive—-ICPMessage. Send-TCPMessagel

Directory: C:“Windows“system3d2-WindowsPowerShell'wl.B"Modules

ExportedConmands

{Update-ADRMS. Uninstall-ADRMS,. Install-ADRMS>
AppLocker {8et—AppLockerPolicy,. Get-AppLockerPolicy, Test—AppLockerPolicy. Get—...
BestPractices {Get-BpaModel. Invoke—-BpaModel. Get-BpaResult,. Set—BpaResult2
BitsTransfer {Add-BitsFile. Remove-BitsTransfer. Complete-BitsTransfer, Get—BitsTe._ ..
CimCndlets {Get-CimAssociatedInstance. Get—CimClass. Get—CimInstance. Get—CimSes...
ISE {New-IseSnippet. Import-IseSnippet. Get—IseSnippet?
Microsoft _PowerShell. Diagnostics {Get—WinEvent. Get—Counter, Import-Counter, Export—Counter...}
Microsoft.PowerShell.Host {8tart-Transcript, Stop-Transcriptl?
Microsoft.PowerShell.Management {fAdd-Content,. Clear—Content. Clear—ItemProperty., Join—Path...>

Checking PowerShell module
dependencies

One problem with using modules is that sometimes you have a dependency on
external code. This means that a script that uses the module must have the module
installed, or the script will fail. If you can control the environment, taking an external
dependency is not a bad thing. But most times, we write a module used for an
external module on the user's computer, and we don't know whether or not this
module has been installed on the user's computer; it must be a disaster.

[142]

http:///

Chapter 4

At this time, it is very important that we write some proper error handling code for
our module. For example, we need to write some code using background intelligent
transfer service (BITS) for implementing a specific feature. But we don't know
whether the user's computer has the BitsTransfer modules. For instance, the user's
computer may have installed Windows XP OS, but the BitsTransfer modules are a
feature of Windows 7 and the later versions of OS. We can use the following code for
error handling;:

if (Get-MyModule -name "BitsTransfer") { call your bits code here }
else { "Bits module is not installed on this system." ; exit}

In this case, we use the Get -MyModule function to check whether a module has been
installed on the user's computer or not. Now, we realize the Get -MyModule function.
First of all, this function accepts a single string for storing the name of the module
that we want to check. Then, the function needs to check whether the specified
module is currently loaded or not. If it is not loaded, the Get -Module cmdlet is used
to see if the module exists on the system. If the module exists but is not loaded, the
function loads it and returns strue. If the module is loaded, it directly returns $true.
If the module does not exist, it directly returns $false. This section of the script is

as follows:

Function Get-MyModule

{

Param([string] $name)

if (-not (Get-Module -name S$name))

{

if (Get-Module -ListAvailable |
Where-Object { $.name -eq $name })

{

Import-Module -Name S$name

Strue

} #end if module available then import
else { Sfalse } #module not available
} # end if not module

else { Strue } #module already loaded
} #end function get-MyModule

With this function, we can check module dependencies and write more robust code.
When we write script code, we also need to know how to deal with a script error if it
occurs, in order to avoid it bringing unnecessary trouble to the user.

[143]

http:///

Extending Windows PowerShell

Signing PowerShell modules

PowerShell supports a concept called execution policies in order to help deliver

a more secure command-line administration experience. Execution policies define
the restrictions under which PowerShell loads files for execution and configuration.
The four execution policies are Restricted, Al1Signed, RemoteSigned, and

Unrestricted.

Execution policies

PowerShell is configured to run in its most secure mode by default. This mode is the
Restricted execution policy, in which PowerShell operates as an interactive shell
only. The modes are as follows:

Restricted:

o

o

o

Default execution policy
Does not run scripts

Interactive only

AllSigned:

o

o

Runs scripts

All scripts and configuration files must be signed by a publisher that
you trust

Opens you to the risk of running signed (but malicious) scripts after
confirming that you trust the publisher

RemoteSigned:

o

o

Runs scripts

All scripts and configuration files are downloaded from
communication applications, such as Microsoft Outlook, Internet
Explorer, Outlook Express, and Windows Messenger; they must be
signed by a publisher that you trust

Opens you to the risk of running malicious scripts that are not
downloaded from these applications, without prompting

[144]

http:///

Chapter 4

® Unrestricted:

Runs scripts

All scripts and configuration files are downloaded from
communication applications, such as Microsoft Outlook, Internet
Explorer, Outlook Express, and Windows Messenger; it runs them
after confirming that you have understood that the file has originated
from the Internet

No digital signature is required
Opens you to the risk of running unsigned, malicious scripts
downloaded from these applications

You can use the Get-ExecutionPolicy cmdlet to check the execution policies
as follows:

ey Administrator: powershell =

Changing the execution policy

Run the following script from a PowerShell prompt (a11Signed is an example):

ey Administrator: powershell
Set-ExecutionPolicy AllSignec
on Policy Change

cution 1 s 0 Vi n ipts (ng the execution
b icies help 1

cution policy?

This command requires administrator privileges. Changes to the execution policy are
recognized immediately.

[145]

http:///

Extending Windows PowerShell

If you're executing PowerShell scripts for the first time, PowerShell may just display
an error message as you try to run a script:

Administrator: powershell

The default execution policy of PowerShell is Restricted. In this mode, PowerShell
operates as an interactive shell only. It does not run scripts, and it loads only
configuration files signed by a publisher that you trust. The A115igned execution
policy is best for production since it forces the requirement for digital signatures on
all scripts and configuration files.

Script signing background

Adding a digital signature to a script requires that it be signed with a code-signing
certificate. Two types are suitable:

* Those created by a certificate authority for a fee (such as VeriSign
and Thawte)

* Those created by a user (called a self-signed certificate)

If your scripts are specific to your internal network use, you may be able to self-sign.
You can also buy a code-signing certificate from another certificate authority if
you like.

For a self-signed certificate, a designated computer is the authority that creates the
certificate. The benefits of self-signing include its zero cost as well as creation speed
and convenience. The drawback is that the certificate must be installed on every
computer that will be running the scripts, since other computers will not trust the
computer used to create the certificate. Of course, you can deploy it through a GOP
if your computers are in a domain environment.

To create a self-signed certificate, the makecert . exe program is required. This is
available as part of the Microsoft .NET Framework SDK or Microsoft Windows
Platform SDK. The latest is the .NET Framework 2.0 SDK; after installing, makecert.
exe is found in the ¢:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\
Bin\ directory.

[146]

http:///

Chapter 4

You can download it from http://www.microsoft .com/downloads/details.
aspx?familyid=fe6£2099-b7b4-4£f47-a244-c96d69c35dec&displaylang=en.

Setting up a self-signed certificate

You can create a local certificate authority for your computer by running the
following command:

ey Administrator: powershell =

You will be prompted for the private key:

Create Private Key Password “

Key: Subject Key
Password:

Confirm Password:

QK MNane Cancel

Next, you'll be prompted to verify the private key you entered in the preceding screen:

Enter Private Key Password “
Key: Subject Key
Password: |
CK Cancel

[147]

http:///

Extending Windows PowerShell

And then, the self-signed certificate will be added into the current user's Certificate
Store. Windows will notify users that if you install this root certificate, Windows will
automatically trust any certificate issued by this CA. Installing a certificate with an
unconfirmed thumbprint is a security risk.

Eile Achion ¥ew Help

You are about to install a certificate from a certification authority (CA)

. claiming to represent:

Windows PowerShell Local Certification Authority

Windows cannot validate that the certificate is actually from "Windows
PowerShell Local Certification Authority”. You should confirm its origin
by contacting "Windows PowerShell Local Certification Authority”. The
following number will assist you in this process:

Thumbprint (shal): C235E004 609A4A28 0DE353E1 BEBC3B3A 579636C9

Warning:

If you install this root certificate, Windows will automatically trust any
certificate issued by this CA. Installing a certificate with an unconfirmed
thumbprint is a security risk. If you click "Yes" you acknowledge this

risk.

Do you want to install this certificate?

o 2 4aIXE =B

150 Certificates - Current User

_ Fersonal
[Certificates
~ Trusted Rook Certification &4
[Certificates
Enterprise Trust
-] Intermediate Certification Au
Active Directory User Obpect
7 Trusted Publichers
] Untrusted Certificates
~ Third-Party Root Certificatio
1 Trusted People
© Client Authentication |ssusrs
| Smart Card Trusted Rocts

>

-

lesued Te

[FCIess 3 Public Primary Certfication Authority
L Copyright icl 1997 Micrasoft Carp.

[ZIGTE CyberTrust Global Root

ﬂMicrusnﬂ Authenticode(tm] Root Autheriby
CalMicrasaft Anat Authority
aIMicrosoft Root Certificace Authority
[FIMicrasoft Rook Certificabe Authority 2010
CalMicrosoft Root Certificate Authority 2011
LalHO LIABILITY ACCEPTED, ()47 VariSign, Inc.
Sl Thawte Premium Server T4
ﬁThawteF‘r:mlum Server CA

Ll Thawte Timestamping CA

Ll UT- USERFirse-Object

[SlWeriSign Class 3 Public Primary Certification Aut...

ows Powershell Local Cerification Aut

€

lzzued By

Class 3 Public Primary Certificatio,.
Cogyright (] 1997 Microsoft Corp.
(5TE CyberTrust Glokal Root
Microsoft Authenticode(tm) Root...
Il crosoft Root Authonty

IMicrozoft Root Certificate Authori..,
Microsoft Root Certificate Authon...
Iicrosoft Root Certificate Author..,

WO LABILMTY ACCEPTED. (197 V.
Thawte Premium Server CA
Thawte Fremium Server C8
Thawte Timestamping CA
UTH-USERFirst-Object

Werifign Clase 3 Pultlic Primary Ce.,

owrs Powershell L

Exgiratio...
1/a/2004
1243171999
£14/2018
11,2000
1243172020
51102021
B/24/2035
3232036
178/2004
17272011
112021
152021
702019
TAT036
17172040

Iritended Purg =
Secure Email,
Tirme Sampir
Secure Email,
Secure Email,
<&k

<=

=all=

<&l

Tirme Sampir
Server Auther
Server Auther
Tirme Sampir
Encrypting Fil
Server Auther
Code Signing

Trusted Root Certificabion Authorities store contains 17 certificates,

[148]

http:///

Chapter 4

After creating a trusted root certification authority, we will generate a personal
certificate from the preceding certification authority:

You will be prompted for the private key:

Enter Private Key Password

Key: Issuer Signature

Password:

QK Cancel

There will now be a certificate present in the personal store:

_— |

| Enterprise Trust
| Intermediate Certification Au
| Active Directory User Object
a | | Trusted Publishers

| Certificates
| Untrusted Certificates
| Third-Party Root Certificatior|
| Trusted People
| Client Authentication lssuers
| Smart Card Trusted Roots

£ (£

Personal store contains 1 certificate.

=1 certmgr - [Certificates - Current User\Personal\Certificates]
File Action View Help
=@ dEa XER HE
G Certificates - Current User lssued To ‘ lssued By Expiratio... Intended Purpos:
4 || Personal %
| Certificates o
a || Trusted Root Certification Au
| Certificates

[149]

http:///

Extending Windows PowerShell

After performing the preceding steps, verify from PowerShell that the certificate was
generated correctly:

ey Administrator: powershell

> Get-Chilaltem cert:\CurrentlUser\My -codesign

Directory: Microsoft.PowerShell. SecurityCertificate: :CurrentUseriMy

Subject

EO03BA21BE3306C00D9E32AE614E673 CN=PowersShell Scripts Publisher

Signhing a module

In order to show how to sign a module, we will create a simple module
called MyModule in the PowerShell module location ¢: \Windows\System32\
WindowsPowerShell\vl.0\Modules\MyModule.

We add the following content to the MyModule.psmi file in the preceding location:

MyMedule.psm1 X
C: /Windows,/System32 WindowsPowershell /vl.0/Modules /MyModule/ Say-Hello.psl1l
Export-ModuleMember -Function =

We can see that the module file is used for dot-sourcing a script file and exporting
the module function. And, the content of the script file say-Hello.ps1 will be as
shown in the following screenshot:

Say-Hello.ps1 X

—Ifunction Say-Hellof
Write-Host "Hello World!®|
h

To test the effectiveness of digitally signing a PowerShell module, use the script from
the following screenshot:

[150]

http:///

Chapter 4

&3 Administrator: powershell

Now sign the script:

ey Administrator: powershell =

odu lex Set-AuthenticodeSignatur -

valid /~Hello. ps1

ShelT'wil. 0'\Maodules

PowerShell appends your digital signature to the end of that file. This signature
verifies that the file came from you and also ensures that nobody can tamper with
the content in the file without detection. After the script is signed, it looks as follows:

Say-Hello.ps1 X

—lfunction Sawv-Hellof
Write-Host 'Hello wWorld!”

[

i ¥ A a4

SIG # Begin signature block

MIIEbwYJKoZ IhvcMAQoCoIIEYDCCBFwC AQExCzAJEqUr DgMCGgUAMGKGC 1 sGAD
gJcCAQSgWzBZMDQGC 1 sGADDEg] cCAR4wIgIDAQAABBAT 2Dt gWUsITr ckOs Ypfwis
AQEAAQEAAGEAAGEAAGEAMCEWCOYFKwa DAhoF AAQUWZ 2Gx 1 al deNwAk 301Wma 2m+7
91CggglgMIICZJCCAdDgAWIBAQIQZ 9xUemk 7Pq9PBHENS 1 rLzAJBgUr DgMCHQU A,
MDsx0TASBgNVEAMTMFdpbmRwd3MgUGI3ZXITaGVsbCEMbZNRbCEDZXI10aWZ pY 2 :}?'
awIuIEF1dGhvem10eTAeFwOxMzAyM J UxMzaMDVaFw0z0TEWMzZE,yMzUSNT 1aMCc
ITAFBgNVBAMTHFBlvd2VyU2h 1 bGwgl2NyaXB0cyBQdwW]s aXNoZ XTwaZ 8wDQY IKoZ
hvcNAQEBBQADOYOAMIGIADGEAL 3tUPed+cKWeZHT aeWe /hprubxXZuvhsgtu4d3s
TLaMhEOFsWALOgYuLy /11wl jNxtngor lo7OuE3TesUdpzp0ksYDtWraklgi STGH
J+wat 10 t3vN+oGDIILKvUgBQvy 3 zUED3 94 gr 6vgXBKS cz01pVDBee,/ NDeKechg:
ZxRAgMBAAGT gYYwoYMwEWYDVRO T BAwwC g¥ IKwYBEQUHAWMwbAYDVROBEBGUWY4A

LSNP BB IAA PG AFF N EP TP E iy A3 USRS

(%3]

]
o o H H o W H B R W

H

.
b

)
& o
i
e

Rl

[151]

http:///

Extending Windows PowerShell

Import the module again and execute the function:

ey Administrator: powershell

A

clude unapp ed verbs

es ; o
hat might m: i d y find the command X a ed verbs, run the
Tmp: odule command e parameter. For a list of approved wverbs, type

Answer A and the function proceeds to run, and runs without needing prompting
thereafter. A new certificate is also created in the Trusted Publishers container:

= certmgr - [Certificates - Current User\Trusted Publishers\Certificates] = =
File Action View Help
G Certificates - Current User Issued To ’ lssued By Expiratio.. Intended Purpos:
4 Personal [EPowerShell Scripts Publisher Windows PowerShell Local Certifi... 1/1/2040 Code Signing
| Certificates
4 Trusted Root Certification Au
| Certificates

Enterprise Trust
Intermediate Certification Au
Active Directory User Object
4 Trusted Publishers

| Certificates
Untrusted Certificates
Third-Party Root Certificatior
Trusted People
Client Authentication |ssuers
Smart Card Trusted Roots

< || £ >

Trusted Publishers store contains 1 certificate,

[152]

http:///

Chapter 4

To validate the signature of a script or formatting file, use the
Get-AuthenticodeSignature cmdlet:

e Administrator: powershell = B

Modu le=> Get-AuthenticodeSignature .

SignerCertificate

Publisher

Power5hell Local Certification Authority

Number

windowsPower Shellywl s o. psl

The Get -AuthenticodeSignature cmdlet gets the authenticode signature from a
file. This can be a PowerShell script or formatting file, but the cmdlet also supports
DLLs and other Windows standard executable file types.

Signed modules can be transported by exporting (from the original computer) and
importing (to the new computer) the PowerShell certificates found in the Trusted
Root Certification Authorities container. Optionally, the trusted publishers can also
be moved to prevent the first-time prompt. From the Current User certificate store,
go to the Trusted Root Certification Authorities container and locate the PowerShell
Local Certificate Root certificate. Right-click on it and click on All Tasks | Export.

[153]

http:///

Extending Windows PowerShell

Log in to the target machine as the user under which modules will be running. Open
MMC and add the Certificates snap-in for the current user, locating the Trusted Root
Certification Authorities container. Expand the container to find the Certificates
store. Right-click on it and select All Tasks | Import.

Your signed modules should now run on the new computer. Note that PowerShell
will prompt you the first time they are run unless you also import the Trusted
Publishers certificate.

Summary

In Windows PowerShell 3.0, modules are a very important feature. You can load
most existing snap-ins as a module instead, which means you don't need to have
administrator privileges to load a new snap-in. There is no need to register snap-ins
by running InstallUtil.exe. You can simply place them in any folder you can
access and tell PowerShell where to find them.

In this chapter, we discussed how to extend PowerShell by writing modules. The
content covered how to import, remove, and reload PowerShell modules, create a
module, and sign a module. This is a great encouragement to DBAs and systems
administrators to create PowerShell cmdlets to automate a number of processes,

and make them accessible via modules. It has also enabled Microsoft to provide
modules to accompany added roles or features of the OS that ease the administrative
workload. Getting access to these modules is a simple process of installing the correct
role or feature and then importing the module. As IT organizations strive towards
greater automation, it is well worth checking out the automation possibilities that
these modules bring.

In the next chapter, we will have a look at the Windows Server 2012 Server Core
installation option, which allows you to use Windows Server capabilities in a
shell-like interface without any graphical interface. Also, we will cover how

to use PowerShell to manage and configure Server Core instead of the normal
command-line interface cmd.

[154]

http:///

Managing Core Infrastructure
with PowerShell

A few years ago, Microsoft added a new feature called Server Core to the Windows
Server operating system. Server Core is an option for installing the operating system
with a minimal Graphical User Interface (GUI), which means less services footprint,
less hardware requirements, and a more secure surface. Because Server Core is a
minimal installation of GUI, each and every single administration task is done via
the command line. In Windows Server 2012, a lot of new PowerShell modules have
been developed in order to make the management of Server Core much easier.

In this chapter we will discuss the following points:

* What is Server Core?
* How to make PowerShell the default shell
* Preparing your operating system using PowerShell

* Managing and configuring core infrastructure roles

http:///

Managing Core Infrastructure with PowerShell

The default shell for the Server Core is cmd. exe, so before we start building our core
infrastructure, let's do a nice trick and change the default shell from the traditional
command-line interface (cmd) to Windows PowerShell.

> ServerCore on SHERIF-COEX - Virtual Machine Connection - O “

File Action Media Clipboard View Help
G O@O@O|N I D

Administrator: C\Windows\system32\cmd.exe

C=“Users Administrator’

Status: Running = A8

In order to accomplish this task, change the value of the shell registry key under
HKLM: \Software\Microsoft\Windows NT\CurrentVersion\winlogon from cmd.
exe to Powershell.exe. We can do this by either using the registry editor RegEdit
or Windows PowerShell.

To do that using PowerShell, we need to start Windows PowerShell by executing
PowerShell in the cmd window, and then using the Set - ItemProperty cmdlet to
change the registry key value.

C:\Users\Administrator> PowerShell.exe

PS > Set-ItemProperty "HKLM:\Software\Microsoft\Windows NT\
CurrentVersion\winlogon" Shell PowerShell.exe

[156]

http:///

Chapter 5

After changing the registry key value, log out and log in again to apply the
new changes.

o ServerCore on SHERIF-COEX - Virtual Machine Connection - O
File Action Media Clipboard View Help

B O0O@OO NikiED

Administrator: Windows PowerShell

Windows PowerShell
Copyright (C> 2812 Microsoft Corporation. All r»ights reserved.

PS C:MWindows“system32>

Status: Running (22t P?', ::

Preparing the operating system for first
time use

Now, after changing the default shell to PowerShell, it is time to do some basic
preparation for the server before starting to build the infrastructure roles and
services. Usually, after installing the operating system or running the Sysprep
generalization utility, you need to rename the computer to a specific naming
convention to meet organization standards, assign a static IP address to your server,
change the time zone, and so on. Although these kinds of tasks look very easy in the
normal Windows Server GUI, the situation is different in Server Core where the GUI
is no longer available. So, PowerShell will help us achieve our purpose.

[157]

http:///

Managing Core Infrastructure with PowerShell

Task 1 — changing the computer name

In this task, we will change the computer name that was generated during the
installation of the operating system to a more meaningful name. In this example, we
will use HQ-DC-01 to refer to the Domain Controller server in the headquarters. For
this purpose, we will use the Rename-Computer cmdlet to rename the computer and
then use the Restart -Computer cmdlet to restart the computer to apply the changes.

PS > Rename-Computer -NewName HQ-DC-01
PS > Restart-Computer

ey Administrator: Windows PowerShell |E||E|.

Windows PowerShell
Copyright (C> 2812 Microsoft Corporation. All rights reserved.

m | >

PS C:sUWindowsszsystem32> Rename—Computer —HewMame DCA1
WARMING: The changes will take effect after you restart the computer DC-@1.
PS5 C:»Windows>system32> Restart—Computer_

Task 2 — changing the time zone settings

In this task, we will change the default time zone to Greenwich Standard Time.
For this purpose, we will use the time zone utility to change the time zone.

#Display the Current Time Zone
PS > TZutil /g

#Display the list of available Time Zones
PS > TZutil /1

#Set the new Time Zone
PS > TZutil /s "Greenwich Standard Time"

1
‘Q Use TZutil with the Invoke-Command cmdlet to change the

time zone settings on remote computers.

[158]

http:///

Chapter 5

Task 3 — setting the Network Interface Card
(NIC) configuration

In this task, we will change the configuration for the Network Interface Card
(NIC); this task will be accomplished in two steps. The first step is to use the
New-NetIPAddress cmdlet, which is a part of the Net TCPIP module, to set the
IP address and default gateway configuration. The second step is to use the
Set-DNSClientServerAddress cmdlet, which is part of the Dnsclient module,
to set the DNS configuration for the client computer.

#Setting static IP Address Configuration

PS > New-NetIPAddress -IPAddress 192.168.0.2 -InterfaceAlias Ethernet
-DefaultGateway 192.168.0.1 -AddressFamily IPv4 -PrefixLength 24

#Setting Client DNS Settings

PS > Set-DnsClientServerAddress -InterfaceAlias Ethernet
-ServerAddresses 192.168.0.1,192.168.0.2

If you want to revert the TCP/IP settings and use the DHCP assignment method for
automatic IP addresses assignment, you have to perform the following steps:
Remove the IP address and subnet mask settings.

Remove the network route (default gateway) setting.

Reset the DNS client configuration.

Ll NS

Enable the DHCP assignment on the interface.

You can use the following code:

#Remove static IP Address Setting
PS > Remove-NetIPAddress -InterfaceAlias Ethernet

#Remove network route
PS > Remove-NetRoute -InterfaceAlias Ethernet

#Reset Client DNS Settings
PS > Set-DnsClientServerAddress -ResetServerAddresses

#Enable the DHCP option on the interface
PS > Set-NetIPInterface -InterfaceAlias Ethernet -Dhcp Enabled

[159]

http:///

Managing Core Infrastructure with PowerShell

Task 4 — managing Windows Server roles and
features

Managing server roles and features is one of the most important, basic, and repetitive
tasks when dealing with a server operating system such as Windows Server. In

this task, we will learn how to use the ServerManager module to display, add, and
remove Windows roles and features.

Example 1

In this example, we will use the Get -WwindowsFeature cmdlet to list all the installed
roles and features on the local server.

#Get list of all installed Roles and Features
PS > Get-WindowsFeature | where Installed -eq $true

Refer to the following screenshot:

(%] Administrator: Windows PowerShell E||E||Z|

PS C:~MWindowsssystem3d2> Get—WindowsFeature ! where installed —eq 5true

Hame
Active Directory Domain Services AD-Domain—-Services
DHCFP Server DHCP
DNE Server DHNE
File And Storage Services FileAndStorage—Services
[#]1 File and i8%C81 Services File—Services
[A]1 File Server F5-FileServer
[¥] Storage Services Storage—-Services
.MET Framework 4.5 Features MET-Framework—45-Fea...
[H#]1 .MET Framework 4.5 MET-Framework—45—-Core
[X¥1 WCF Services NET-UCF-Servicesds
[¥]1 TICP Port Sharing MET-UCF-TCP-PortShar...
Hemote Server Administration Tools REAT
[%]1 Role Adminisztration Tools REAT-Role—Tools
[H1 AD D& and AD LDE Tools REAT-AD-Too1ls
[¥] Active Directory module for Windows ... RSAT-AD-PowerShell
User Interfaces and Infrastructure User—Interfaces—Infra
Windows PowerShell PowerShellRoot
[H]1 Windows PowerShell 3.8 PowerShell
HoW64 Support HoW64—8upport

Installing Windows features using PowerShell is very useful even if you have a full
graphical user interface, especially when you want to install a set of prerequisites for
a product such as Exchange Server or SharePoint Server on multiple servers.

[160]

http:///

Chapter 5

For this purpose, we will use the Install-WindowsFeature cmdlet that comes
with a couple of very interesting switches, - IncludeAllSubFeature and
-IncludeManagementTools, which make the installation easier.

* IncludeAllSubFeature: This is useful if you want to install a role or feature
that has subfeatures and you want to install all of them in one step; it's a
good candidate for roles such as Web Server and File Server.

* IncludeManagementTools: When you install a role or feature using
PowerShell, it will install the role itself only without the management
console. For example, if you install Internet Information Services (IIS) using
PowerShell, it will not install the IIS Management Tool until you add the
IncludeManagementTools switch.

Example 2
In this example, we will install the Web Server role with all subfeatures and
management tools.

#Install-WindowsFeature
PS > Install-WindowsFeature Web-Server -IncludeAllSubFeature
-IncludeManagementTools

Deploying the Active Directory Domain
Services (ADDS) role

The Directory Service is one of the core services that must be implemented when we
consider building an integrated, secure, and centralized infrastructure. It is required
for any organization looking for an integrated, central administration process

for network resources, managing identities, and access control. There are three
deployment scenarios related to the Active Directory deployment:

* Creating a new Active Directory forest
* Creating a new Active Directory Domain in an existing forest

* Creating a new Active Directory Domain Controller in an existing domain

[161]

http:///

Managing Core Infrastructure with PowerShell

These deployment options are available as part of Active Directory Domain Services
Configuration Wizard.

= Active Directory Domain Services Configuration Wizard = -
: ; TARGET SERVER
Deployment Configuration =

Deployment Configuration

Select the deployment operation
®) Add a domain controller to an existing domain
) Add a new domain to an existing forest

) Add a new forest

Specify the domain information for this operation

Domin: y
Supply the credentials to perform this operation
<MNo credentials provided>

Mare about deployment configurations

< Previous Next > nsta Cancel

Before you start deploying the Active Directory, you need to add the Active
Directory Domain Services Windows role first. Installing this role will install the
required binary files to set up the Active Directory Domain Services and will also
install the ADDSDeployment module that is required to deploy Active Directory
using Windows PowerShell.

For this purpose, we will use the Add-windowsFeature cmdlet:

#Install "Active Directory Domain Services" windows feature
PS > Add-WindowsFeature AD-Domain-Services

Scenario 1 — installing a new Active Directory
Forest

In this scenario, we will install a new Active Directory Forest and an Active Directory
Domain called contoso.local, and the functional level Windows Server 2012 for
both the forest and domain in addition to installing and configuring the DNS server
role. The following example explains how to accomplish this task by using the
Install-ADDSforest cmdlet with the following group of parameters:

* DomainName: Defines the root's domain name

[162]

http:///

Chapter 5

* DomainNetbiosName: Defines the NetBIOS name for the domain
* ForestMode: Specifies the forest functional level
* DomainMode: Specifies the domain functional level

* SafeModeAdministratorPassword: Defines the administrator password
required for starting up a domain controller in an active directory
restore mode

* InstallDNSs: Installs and configures the DNS server role; the default value is
true if the parameter is not used

For the functional level for both the forest and domain, use the level name or the
following equivalent values:

Functional level Name Value
Windows Server 2003 Win2003 2
Windows Server 2008 Win2008 3
Windows Server 2008 R2 Win2008R2 4
Windows Server 2012 Win2012 5

You can use the following code:

PS > Install-ADDSForest -DomainName contoso.local
-SafeModeAdministratorPassword (ConvertTo-SecureString P@sswlOrd
-AsPlainText -Force) -DomainMode Win2012 -DomainNetbiosname Contoso
-ForestMode Win2012 -InstallDNS

Scenario 2 — installing a new domain in an
existing forest

In this scenario, we will install a new Active Directory child domain called corp
in the existing Active Directory Forest called contoso.local and with a domain
functional level, that is, Windows Server 2012 in addition to installing and
configuring the DNS server role. The following example explains how to
accomplish this task by using the Install-ADDSdomain cmdlet with the
following group of parameters:

* NewDomainName: Defines the new domain name
* ParentDomainName: Defines the parent domain name for the new domain

* DomainMode: Specifies the domain functional level

[163]

http:///

Managing Core Infrastructure with PowerShell

SafeModeAdministratorPassword: Defines the administrator password
required for starting up a domain controller in the safe mode and the active
directory restore mode

InstallDNS: Installs and configures the DNS server role; the default value is
true if the parameter is not used

DomainType: Defines the domain type, which can be either child or Tree

CreateDnsDelegation: Creates a DNS delegation for the new DNS server.

You can use the following code:

PS > Install-ADDSDomain -NewDomainName corp -ParentDomainName contoso.
local -SafeModeAdministratorPassword (ConvertTo-SecureString PesswOrd
-AsPlainText -Force) -CreateDnsDelegation -Credential (Get-Credential
Contoso\Administrator) -DomainMode Win2012 -DomainType ChildDomain

Scenario 3 — installing a new domain
controller in an existing domain

In this scenario, we will install a new Active Directory Domain Controller in the
existing Active Directory Domain in addition to installing and configuring the DNS
server role. The following example explains how to accomplish this task by using the
Install-ADDSdomaincontroller cmdlet with the following group of parameters:

DomainName: Defines the name of the domain that the Domain Controller will
be a part of

NoGlobalCatalog: Defines if the domain controller will hold a Global
Catalog replica or not

site: Defines which Active Directory site the domain controller will be
a part of

ReplicationSourceDC: Defines the source domain controller for replication

SafeModeAdministratorPassword: Defines the administrator password
required for starting up a domain controller in the safe mode and the active
directory restore mode

InstallDNS: Installs and configures the DNS server role

CreateDnsDelegation: Creates a DNS delegation for the new DNS server

ReadOnlyReplica: Use this option if you want to install a read-only
domain controller

[164]

http:///

Chapter 5

You can use the following code:

PS > Install-ADDSDomainController -NoGlobalCatalog:$false
-CreateDnsDelegation:$false -Credential (Get-Credential)
-DomainName "contoso.local" -InstallDns:Strue -ReplicationSourceDC
"DCO1l.contoso.local" -SiteName "Default-First-Site-Name"
-SafeModeAdministratorPassword (ConvertTo-SecureString P@sswlOrd
-AsPlainText -Force)

Managing and configuring the Domain
Name System (DNS) role

The Domain Name System (DNS) is one of the most popular infrastructure
roles not only for IT specialists but also for normal Internet users. DNS is an
application-layer protocol responsible for the hierarchical naming structure
for the different IT components either connected locally to the intranet or
exposed to the Internet.

In this section, we will learn about the new Windows PowerShell modules for DNS
that have been introduced in Windows Server 2012 and how you can use them to
perform different DNS configuration tasks.

By default if you are using Windows 8 or Windows Server 2012, you will have the
DnsClient PowerShell module installed to allow you to manage and troubleshoot
the DNS client component. However, the Dnsserver PowerShell module will be
available on Windows Server once you install the DNS role.

Task 1 — configuring DNS server resource
records

In this task, we will learn how to create a different type of DNS resources records. In
this example, we will create records of types 2, CName, and Mx. For the purpose of this
task, we will use the Add-DnsServerResourceRecord* cmdlets where * represents
the type of the record.

% You can use the Add-DnsServerResourceRecord cmdlet and define
/~— the type of the resource record as a parameter such as -MX or -CName.

#Add DNS Server 'A' Resource Record
PS > Add-DnsServerResourceRecordA -Name FileServer -Ipv4Address
192.168.1.20 -ZoneName Contoso.local

[165]

http:///

Managing Core Infrastructure with PowerShell

#Add DNS Server 'CName' Resource Record

PS > Add-DnsServerResourceRecordCName -Name OWA -HostNameAlias
EXCH-MBXCAS-02.Contoso.local -ZoneName Contoso.local

#Add DNS Server 'MX' Resource Record

PS > Add-DnsServerResourceRecordMX -Name Mail -MailExchange
EXCH-HUB-01.Contoso.local -ZoneName Contoso.local -Preference 10

Task 2 — creating primary forward and reverse
lookup zones

In this task, we will learn how to create different DNS zones. For the purpose of this
task, we will use the Add-DnsServerPrimaryZone cmdlet to create primary forward
and reverse lookup zones.

#Add DNS Forward Zone

PS > Add-DnsServerPrimaryZone -Name 'Labs' -ReplicationScope Domain
-DynamicUpdate Secure

#Add DNS Server Reverse Lookup zone

PS > Add-DnsServerPrimaryZone -NetworkId '192.168.1.0/24"'
-ReplicationScope Forest -DynamicUpdate NonsecureAndSecure

Task 3 — adding a DNS server forwarder

In this task, we will learn how to add a forwarder to the forwarders list in the DNS
server. For the purpose of this task, we will use the Add-DnsServerForwarder cmdlet.

#Add DNS Server Forwarder
PS > Add-DnsServerForwarder -IPAddress '4.2.2.3','8.8.8.8'"

Task 4 — exporting DNS server zones

In this task, we will learn how to back up the DNS server. For the purpose of this
task, we will use the Export -DnsServerZone cmdlet to export the DNS zone to a
file that contains all records from this zone.

The DNS backup file will be stored by default under the DNS physical
i directory C: \Windows\System32\Dns.

#Export DNS Zones

PS > ForEach($Zone in (Get-DnsServerZone | Where IsAutoCreated -eq
sfalse))

[166]

http:///

Chapter 5

{

Export-DnsServerZone -Name $Zone.ZoneName -FileName S$Zone.ZoneName

}

Deploying and configuring the Dynamic
Host Configuration Protocol (DHCP) role

The main purpose of using Dynamic Host Configuration Protocol (DHCP) is to
automatically assign the IP addresses and the other TCP/IP configuration to the
network devices. This part explains how to use Windows PowerShell to install and
configure the DHCP role. In order to complete the DHCP deployment process, you
should accomplish the following tasks.

Task 1 — installing the DHCP server role

The first step in deploying the service is installing the DHCP server role. For this
purpose, we will use Add-WindowsFeature to install the server role and also

to install the DHCPServer module that contains the DHCP-related cmdlets

and functions.

#Install DHCP Server Role
PS > Add-WindowsFeature DHCP

Task 2 — setting up the DHCP server scope

In this task, we will set up the DHCP server scope that defines the network subnet
configuration. In this example, we will create a DHCP scope called contoso for the
192.168.0.0 subnet with a subnet mask 255.255.255. 0 and then activate it.

#Adding DHCP server IPv4 scope
PS > Add-DhcpServerv4Scope -Name "Contoso" -StartRange 192.168.0.1
-EndRange 192.168.0.254 -SubnetMask 255.255.255.0 -State Active

Task 3 — configuring DHCP scope options

In this task, we will set up the DHCP scope options that define settings such as DNS
Domain Name, DNS Server Address, WIN Server, and Default Gateway. In this
example, we will configure the DHCP scope options for the DHCP scope created in
the previous example.

#Configuring DHCP Scope options (e.g. DNS Server and Router)
PS > Set-DhcpServerv4OptionValue -DnsDomain contoso.local -DnsServer
192.168.0.2 -Router 192.168.0.1

[167]

http:///

Managing Core Infrastructure with PowerShell

Task 4 — configuring DHCP scope exclusion

In this task, we will configure range exclusion for the DHCP scope. Usually, range
exclusion is used when you want to exclude a range of specific IP addresses from
your scope so that you can use it for static assignment for network devices. In this
example, we will configure exclusion for 30 IP addresses in the DHCP scope created
in the first example.

#Configuring DHCP scope exclusion
PS > Add-DhcpServerv4ExclusionRange -Scopeld 192.168.0.0 -StartRange
192.168.0.100 -EndRange 192.168.0.130

Task 5 — configuring DHCP scope

reservations

In this task, we will configure IP address reservations in the DHCP scope. DHCP
reservation is used to reserve a specific IP address for a specific device (for example,
network printer) in order to make sure that your device is always assigned the same
IP address. It is similar to the idea of range exclusion, but the difference is DHCP
assigns the same IP address to the same device every time automatically instead of
defining range exclusion and then assigning it manually to each and every device.

In this example, we will reserve the IP address 192.168.0.10 for the network
printer with the MAC address F4-DA-F1-78-00-6D.

#Add DHCP IP Address Reservation

PS > Add-DhcpServerv4Reservation -ScopeId 192.168.0.0 -IPAddress
192.168.0.10 -ClientId F4-DA-F1-78-00-6D -Description "Multi-Function
Network Printer in 3rd floor"

Task 6 — authorizing the DHCP server in
Active Directory

In this task, we will authorize the DHCP server in Active Directory in order
to start leasing the IP addresses to the clients. In this example, we will use the
Add-DhcpServerInDC cmdlet to add the DHCP server created in the previous
steps to the list of the authorized DHCP servers in the Active Directory.

#Authorize DHCP Server in Domain Controller
PS > Add-DhcpServerInDC -DnsName "DhcpServer.contoso.local"

[168]

http:///

Chapter 5

Managing Windows Firewall

Windows Firewall is a built-in component in Windows operating systems that allows
you to control the incoming and outgoing network traffic and communications.

Task 1 — enabling or disabling Windows
Firewall profiles

In this task, we will use the set-NetFirewallProfile cmdlet to disable all
Windows Firewall profiles, and then enable the firewall public profile.

#Disable all Firewall Profiles
PS > Set-NetFirewallProfile -All -Enabled False

#Enable Windows Firewall Public Profile
PS > Set-NetFirewallProfile -Name Public -Enabled True

Task 2 — creating Windows Firewall rules

In this task, we will use the New-NetFirewallRule cmdlet to create a new Windows
Firewall rule.

Example 1
This example explains how to create a firewall rule that blocks all outbound traffic to

any FTP protocol.

PS > New-NetFirewallRule -Name "Block FTP" -DisplayName "Block FTP"
-Direction Outbound -Action Block -Protocol TCP -LocalPort FTP

Example 2

This example explains how to create a firewall rule that allows inbound traffic
coming from an application (for example, Skype).

PS > New-NetFirewallRule -Name "Skype" -DisplayName "Skype" -Direction
Inbound -Action Allow -Program "C:\Program Files (x86)\Skype\Phone\
Skype.exe"

[169]

http:///

Managing Core Infrastructure with PowerShell

Using the Best Practice Analyzer (BPA)

Best Practice Analyzer is a Windows management tool that assesses and evaluates
the server configuration against Microsoft's best practices and compliances, then
reports the healthy and violated best practices, and then provides ways to fix it.

Task 1 — displaying the list of best practice
models

In this task, we will use the Get -BpaModel cmdlet to display the list of available
models and then filter them to get the models that have not run on the server before.

#Get list of all BPA models
PS > Get-BpaModel

#Get list of all BPA filtered by LastScanTime propert
PS > Get-BpaModel | where LastScanTime -eqg Never

The list in the following screenshot shows the available BPA models and
their properties:

) Administrator: Windows PowerShell [=][=]E]
PS5 C:sUWindowsssystem32> Get—BpaModel | where LastScanTime —eg never

m | >

: Microsoft-Windows - ADRMS

I Micr ft Corporation

: RightzManagementServices
1i.A

: Never

: SingleMachine

: MicrosoftsWindouws CertificateServices
: Microsoft Corporation
: CertificateServices

Veprszion

L ScanT ime

LasthcanlimelUtcOftset

SubMode 1s

Parameters 8

MHode 1T ype : SingleMachine
SupportedConfiguration = Wind

Task 2 — invoking a best practice model

In this task, we will use the Invoke-BpaModel cmdlet to start scanning the server for
the best practices and compliances violations and problems for File Services.

#Invoke File Services BPA Model
PS > Invoke-BpaModel -ModelId Microsoft/Windows/FileServices

[170]

http:///

Chapter 5

The following screenshot shows the output of invoking a single BPA model:

Modelld
SubModelld
Buccess
ScanTime

PS C:™Windowsssystem32> Invoke—BpaModel —Modelld Microsoft-sWindows~-FileServices

Administrator: Windows PowerShell E“E.

Microszoft-Windows-FileServices

True

18/24,2012 2:25:39 AM
B8 : 88 : B8

{DCA1,. DCHA1ix>

Task 3 — showing the best practice model

result

In this task, we will use the Get -BpaResult cmdlet to display the result of the File
Services best practice scan that has been invoked in the previous example.

#Get File Services BPA Model scan results
PS > Get-BpaResult -ModelId Microsoft/Windows/FileServices

The following screenshot shows the results of the BPA model execution:

Prohlem

Impact

Hesolution

Compliance

: Windows networking subsystem performance may be degraded since

: Enable R85 with PowerShell cmdlet: Enable-MetAdapterRss. or in

Administrator; Windows PowerShell

http:/sgo.microsoft.coms fulink/p 7LinkId=243162
False

75
65992230847

Microsof t-Windows-FileServices
HB

75

dcHl

FileServices

dcB1l

Warning

Conf iguration

Enable Heceive Hide bcaling (Hbi%> on a network adapter

ﬁqmehqeﬁunrk adapters are capahle of RS5. but the capahility is
izabled.

it is not configured to use multi-—core and many-—CoOre pProcessor
architecture.

the network adapter Advanced Properties.

hCtp:/ /g0 . MICFOS0It .CcOM L WLINK P/ fLINKLA=£251b 3
False

[171]

http:///

Managing Core Infrastructure with PowerShell

Summary

Windows Server Core is a great addition to the Windows Server operating system.
It provides a new non-traditional concept of Windows, but the main challenge is to
perform the normal administration tasks with no Graphical User Interface (GUI),

especially for the administrator with no shell background.

In this chapter, we have seen how Windows PowerShell can make life easier in terms
of deploying, managing, and configuring the different server roles and features even
without a GUL

In the next chapter, we will discuss on how to manage organizational units, user
accounts, user passwords and groups by using the Active Directory module. The
Active Directory module for Windows PowerShell consolidates a group of cmdlets.
You can use these cmdlets to manage your Active Directory domains.

[172]

http:///

Managing Active Directory
with PowerShell

Active Directory (AD) is a directory service created by Microsoft for Windows
domain networks. It is included in most Windows Server operating systems. Active
Directory provides a central location for network administration and security. Server
computers that run Active Directory are called domain controllers. An AD domain
controller authenticates and authorizes all users and computers in a Windows
domain-type network along with assigning and enforcing security policies for all
computers and installing or updating software. For example, when a user logs

in to a computer that is part of a Windows domain, Active Directory checks the
submitted password and determines whether the user is a system administrator

or a normal user.

In Windows Server 2000, Windows Server 2003, and Windows Server 2008,
administrators used a variety of command-line tools and Microsoft Management
Console (MMC) snap-ins to connect to their Active Directory domains and

AD Lightweight Directory Services (LDS) configuration sets for the purpose

of monitoring and managing them. The Active Directory module for Windows
PowerShell now provides a centralized experience for administering your
directory service.

The Active Directory module for Windows PowerShell consolidates a group of
cmdlets. You can use these cmdlets to manage your Active Directory domains, AD
LDS configuration sets, and Active Directory Database Mounting Tool instances in a
single, self-contained package.

http:///

Managing Active Directory with PowerShell

In this chapter we will cover:

* Creating, listing, renaming, modifying, and deleting an organizational unit
* Creating a user account

* Getting and listing the properties of a user account

* Preventing the password change of a user

* Creating a security or distribution group

First of all, we should introduce some concepts of Active Directory services.

Active Directory-related concepts

Active Directory is a complicated technology. The following introduction to it will
involve some proper nouns. In order to facilitate the reader's understanding, we first
explain some concepts.

Introduction to Active Directory

Active Directory provides information about the storage network object and
makes the information available to users and network administrators that use the
Active Directory services. Active Directory can store all kinds of information about
the object, and also make the information easily accessible to administrators and
users who may need to find and use it. It uses information of the structured data
storage directory as the logical structure of its foundation; at the same time it will
be integrated safely in the Active Directory. Through the network login, the system
administrator can manage the entire network of directory data and units, and
empowered network users can also access the network on any local resource.

Active Directory includes two aspects: a directory object and a directory service.

A directory object stores information about all kinds of objects of a physical nature,
which helps to understand the active directory from the static point of view. We
have to consider the "catalogue" or "folder" as only an object or an entity, with no
major difference.

A directory service enables the directory containing all the information and resources
to play the role of a service. Active Directory is a distributed directory service.
Although information can be spread in many sets of different computers, users can
quickly access it. Since many machines have the same information, Active Directory
has a strong fault-tolerance ability. Because of this, no matter where the user access
and information are, Active Directory provides a unified view to all users.

[174]

http:///

Chapter 6

Namespace

Essentially, Active Directory is a namespace. We can add the namespace for any
given name at the analytic boundary. The boundary referred to the name can
provide or associate the range for mapping the entire information. Name
resolution provides a name that is translated into a name that represents object
or information processing.

Object

Objects are the Active Directory information entities; we usually see them as
properties, but they are sets of attributes, which often represent physical entities,
such as user accounts and filenames. Objects, with the help of the attribute
description of their basic characteristics such as a user account attribute, may include
customer name, telephone number, e-mail address, and home address.

Container

A container is Active Directory's name part of the space and directory object. It also
has attributes, but the directory object is different. It does not represent a tangible
entity, but represents a store object space; since it represents only a store object space,
it is a small namespace.

Trees

In any namespace, a directory tree points to the object container and a hierarchical
structure. The leaves and the nodes of the tree are often objects, and a tree without
any leaves or nodes is a container. A directory tree expresses the mode of connection
of objects; it also shows the path from one object to another object.

In the Active Directory, the directory tree is the basic structure. With every container
as a starting point, using the layer-upon-layer method, it can constitute a subtree. A
simple directory can constitute a tree, and a computer network or a domain can form
a tree. In fact, a directory tree describes a kind of path relationship.

Domain

A domain is the fundamental, logical building block for the partitioning of Active
Directory. Partitioning is a very important concept of directory services because

it allows the use of multiple directory partitions rather than one massive store.
Consequently, each domain's directory needs to store only the information about the
objects located in that domain, and as a result of this, Active Directory as a whole
becomes very scalable.

[175]

http:///

Managing Active Directory with PowerShell

Installing an Active Directory Domain
Service (ADDS)

In the default installation of Windows 2012, Active Directory is not installed by
default. We can install AD DS by using Server Manager or by using PowerShell in
Windows Server 2012. When installing AD DS by using Server Manager, Active
Directory Domain Server Configuration Wizard (dcpromo. exe) is deprecated from
the beginning in Windows Server 2012.

New AD server roles in Windows 2012

You can use Active Directory Domain Services (AD DS) in Windows Server 2012
to deploy domain controllers more rapidly and easily, increase flexibility when
auditing and authorizing access to files, and more easily perform administrative
tasks through consistent graphical and scripted management experiences.

Active Directory Certificate Services

Active Directory Certificate Services (AD CS) in Windows Server 2012 is the
server role that allows you to build a public key infrastructure (PKI) and provides
public key cryptography, digital certificates, and digital signature capabilities for
your organization.

Active Directory Domain Services

By using the Active Directory Domain Services (AD DS) server role, you can create
a scalable, secure, and manageable infrastructure for management of users and
resources, and provide support for directory-enabled applications such as Microsoft
Exchange Server.

Active Directory Lightweight Directory

Services

Active Directory Lightweight Directory Services (AD LDS) is a Lightweight
Directory Access Protocol (LDAP) directory service that provides flexible support
for directory-enabled applications without the dependencies and domain-related
restrictions of AD DS.

[176]

http:///

Chapter 6

Active Directory Rights Management Services

Active Directory Rights Management Services (AD RMS) in Windows Server
2012 is the server role that provides you with management and development tools
that work with the security technologies in the industry. This includes encryption,
certificates, and authentication, which are used to help organizations create reliable
information protection solutions.

Managing Active Directory with
PowerShell

The Active Directory module for PowerShell consolidates a group of cmdlets.

You can use these cmdlets to manage your Active Directory domains, AD LDS
configuration sets, and Active Directory Database Mounting Tool instances in a
single, self-contained package. In the following sections, we will show examples to
demonstrate how to operate Active Directory using PowerShell. In our examples, we
add the computer wingClient as a client to a domain fuhaijun.com with a domain
controller named win2012-ad.

Account management

We can use the Active Directory module in PowerShell to manage your user and
computer accounts in Active Directory Domain Services (AD DS). And now we will
show how to use the Active Directory module to accomplish many of the common
tasks that are associated with managing users.

User management

You can use the Active Directory module for Windows PowerShell to manage users
in AD DS in Windows Server 2012. This section contains topics that explain how to
use the Active Directory module to accomplish many of the common tasks that are
associated with managing users.

Creating an AD User

The following example shows how to use the Active Directory module for Windows
PowerShell to create a new user in AD DS.

[177]

http:///

Managing Active Directory with PowerShell

We create a new user (TestUser) with a password (p@ssword) in an organizational
unit (Test) in the fuhaijun.com domain:

New-ADUser -SamAccountName TestUser -Name "A Test User" -AccountPassword
(ConvertTo-SecureString -AsPlainText "p@sswOrd" -Force) -Enabled $true
-Path 'OU=Test,DC=FUHAIJUN,DC=COM'

Here, using the -Force parameter, we try to convert a plain text string to a security
string used as a password. And the -path parameter is used for specifying a domain
path that the user creates.

Setting a user account to Expire

Sometimes, we need to create an account for a temporary user with a limited time
available. Within the specified time range, this account can be used, but after that
period the account will be disabled.

Set-ADUser TestUser -AccountExpirationDate 11/27/2014

We can see that it is very simple. The Set -ADUser cmdlet is used for setting the user
(TestUser) to expire on 11/27/2014.

Forcing a user to change the password at the next login

In order to ensure that the newly created user account's password remains
confidential, you can force the user to change his/her password at the next login.

Set-ADUser -Identity TestUser -ChangePasswordAtNextLogon $true

We force the user (TestUser) to change the password by allocating the
-ChangePasswordAtNextLogon switch parameter.

Preventing users from changing the password

When some user account is a special user account, such as a user account shared by
multiple users, we need to prevent users from modifying the password.

Set-ADAccountControl -Identity TestUser -CannotChangePassword $true

The -cannotChangePassword parameter is used for preventing the user (TestUser)
from modifying the password.

Computer management

If a computer needs to be operated in a domain, it must be connected to the
domain. The following examples explain how to use the Active Directory module in
PowerShell to perform many of the tasks associated with computer management.

[178]

http:///

Chapter 6

Joining a computer to a domain

You must run the following command on a local computer if you want to add
the local computer to the fuhaijun.com domain by using the current logged-in
user's credentials.

Add-Computer -DomainOrWorkgroupName fuhaijun

When we need to add the computer wingClient to the fuhaijun.com domain
and specify a domain controller with the - server parameter using the current
credentials, we can run the following command on the local computer:

Add-Computer Win8Client -DN fuhaijun -Server Win201l2-ad

Of course, we can also add a local computer to the OU in the directory specified by
the -ouPath parameter using the current logged-in user:

Add-Computer -DomainOrWorkgroupName fuhaijun -OUPath
OU=testOU,DC=fuhaijun,DC=com

Renaming a computer

Sometimes we need to rename a computer. We can rename the local domain-joined
computer by executing the following command:

Rename-Computer -NewName win8client2 -DomainCredential fuhaijun\
administrator -Restart

The preceding example demonstrates how to change a domain-joined computer's
name to Win8Client2 with the parameter -DomainCredential for specifying

the privilege of a domain controller administrator. In order for changes to take
effect after modifying the hostname, the -Restart parameter is used to restart the
computer after execution is finished. This command is run on the local computer.

Group management

A group is the concept for organization of objects with the same characteristics.
Based on the operation of the group, the management tasks for the group members
can be accomplished.

Viewing group permissions

If you want to manage a group, first of all you need to know the permissions of the
current group. You can run the following command from the AD: \ > drive; the drive
must be connected to the domain where the group exists.

Get-ACL (Get-ADGroup UserGroup) | f1 * -f

[179]

http:///

Managing Active Directory with PowerShell

Executing the preceding command, we can get the following result:

ey Administrator: Active Directory Module for Windows PowerShell -8

cd ad:
> Get—ACL <(Get—ADGroup UserGroup> | F1 = —f

: Microsoft.fActiveDirectory.ManagementsActiveDirectory:

://RootDEE/CHN=UserGroup,DC=Fuhaijun.DC=com

PSParentPath : Microsoft.fActiveDirectory.Management™ActiveDirectory:
= /#RootDSE-DC=fuhaijun . DC=com

PSChildName CH=UzerGroup
AD

PSProvider Microsoft.ActiveDirectory.Management“ActiveDirectory

entralfAccessPolicyld

entralfAccessPolicyName

iccessToString NT AUTHORITY~SELF Allow
NT AUTHORITY“Authenticated Uzers Allow
NT AUTHORITYNSYSTEM Allow
BUILTIN~Account Operators Allow
FUHAILJUN~Domain Admins Allow
NT AUTHORITY“Authenticated Uzersz Allow
BUILTINsWindows Authorization Access Group Allow
BUILTIN“Pre—Windows 2888 Compatible Access Allow
BUILTIN~Pre—Vindows 2800 Compatible Access Allow
BUILTIN“Pre—VWindows 28BBA Compatible Access Allow
BUILTIN“Pre—Windows 2888 Compatible Access Allow
BUILTIN~Pre—Windows 2HAB Compatible Accessz Allow

We use the Get -ADGroup cmdlet to obtain the existing group, UserGroup, then
pass it to the Get -AcL cmdlet, and finally transmit it to the Format-List cmdlet
for formatting the output to the list.

Creating a group

Once we have viewed the group permissions, we need to create a group for
managing a series of AD objects. The following example demonstrates how
to create a group named ProductAdmins in the fuhaijun.com domain:

New-ADGroup -Name "Product Admins" -SamAccountName ProductAdmins
-GroupCategory Security -GroupScope Global -DisplayName "Product
Administrators" -Path "CN=Users,DC=fuhaijun,DC=Com"

[180]

http:///

Chapter 6

When this command executes, we can find a new group named ProductAdmins by
using ADSI Edit, as shown in the following screenshot:

Active Directory Users and Computers \;‘i-

File Action Miew Help

o= fBXEdz HR T eETE%

] Active Directory Users and Com|| Mame b Type Description "
| Saved Queries .:E,WinRMRemoteWMlU... Security Group... Members of this group ...

4 4 fuhaijun.com .RSchema Admins Security Group.. Designated administrato...
4 _ Builtin 52, Read-only Domain Co... Security Group... Members of this group ...
b= Computers 2 RAS and IAS Servers Security Group.. Servers in this group can..
b :__ Domain Controllers T product Admins Security Group... =
b - ForeignSecurityPrincipal _3. Guest User Built-in account for gue... .
[|| Managed Service Accour|| .

:‘Q;Group Policy Creator ... Security Group... Members in this group c...

mifcers ?J fu hj User

.ﬁEnterprise Read-only ... Security Group.. Members of this group ...
52, Enterprise Admins Security Greup... Designated administrato...
SiDomain Users Security Group.. All domain users

2, Demain Guests Security Greup... All domain guests

82, Demain Controllers Security Greup.. All domain contrellers i..
EEJDomain Computers Security Group... Al workstations and ser...

< m 5 #2, Domain Admins Security Group... Designated administrate... e

Adding and removing members of a group

The most common maintenance operation is to add and remove group members.
We can use the Add-ADGroupMember cmdlet for adding a user £uhj to the group
ProductAdmins.

Add-ADGroupMember -Identity ProductAdmins -Member fuhj

[181]

http:///

Managing Active Directory with PowerShell

The parameter - I1dentity is used for specifying the group to to which to

add the new member, and the parameter -Member is used for specifying the
operating group's new member. After the command is executed, we can find the
pProductAdmins group in the fuhj user's properties on the Member Of tab.

fu hj Properties EEN]

Remote control | Remate Desktop Services Profile I COM+
General I Address I Account I Profile I Telephones I Organization
Member Of | Dial-n I Environment I Sessions

Member of:
MName Active Directory Domain Services Folder
Domain Users fuhaijun.com/Users

Product Admins fuhaijun com/Users

Remaote Desldop ... fuhaijun.com,/Buitin

Add. . | | Bemave
Primary group: Domain Users
) There is no need to change Primary group unless
Set Primary Group you have Macintosh clients or POSI¥-compliant
applications.
| ok || Canesl || opk Help

When we need to remove a group, we can use the Remove -ADGroup cmdlet for
removing an Active Directory group object. You can use this cmdlet to remove
security and distribution groups.

Get-ADGroup -filter 'Name -like "Product*' | Remove-ADGroup

The preceding example shows how to get all the groups whose names start with
product and then remove them.

[182]

http:///

Chapter 6

The -1dentity parameter specifies the Active Directory group to be removed.

You can identify a group by its distinguished name (DN), GUID, security
identifier (SID), Security Accounts Manager (SAM) account name, or canonical
name. You can also set the -Ident ity parameter to an object variable such as
$<localADGroupObject>, Or you can pass an object through the pipeline to the
-Identity parameter. For example, you can use the Get -ADGroup cmdlet to retrieve
a group object and then pass the object through the pipeline to the Remove-ADGroup
cmdlet. If ADGroup is being identified by its DN, the -Partition parameter will be
automatically determined.

For AD LDS environments, the -partition parameter must be specified except in
the following two conditions:

* The cmdlet is run from an Active Directory provider drive

* A default naming context or partition is defined for the AD LDS environment

To specify a default naming context for an AD LDS environment, set the msDs -
defaultNamingContext property of the Active Directory directory service agent
(DSA) object (nTDsDsa) for the AD LDS instance.

Organizational unit management

The OU is a particularly useful type of directory object in domains. OUs are Active
Directory containers into which you can place users, groups, computers, and other
OUs. An OU cannot contain objects from other domains. OUs can contain other OUs.
An OU is the smallest scope or unit to which you can assign Group Policy settings or
delegate administrative authority. By using OUs, you can create containers within a
domain that represent the hierarchical and logical structures in your organization.

Creating a new organizational unit

We can create a new organizational unit named UserAccounts, which is located in
the domain fuhaijun.com, as shown in the following example:

New-ADOrganizationalUnit -Name UserAccounts -Path "DC=FUHAIJUN,DC=COM"

We can also use the - instance parameter to specify a template from a completely
set OU object, as follows:

$ouTemplate = Get-ADOrganizationalUnit "OU=UserAccounts,DC=FUHAIJUN,DC=c
om" -properties seeAlso,managedBy;

New-ADOrganizationalUnit -name UserReports -instance $ouTemplate

[183]

http:///

Managing Active Directory with PowerShell

In the preceding example, we can see that we create an OU named UserReports
from the template $ouTemplate.

Listing organizational units

We can use the Get -ADOrganizationalUnit cmdlet to get one or more Active
Directory organizational units. This cmdlet gets an organizational unit object or
performs a search to retrieve multiple organizational units.

Get-ADOrganizationalUnit -Filter 'Name -like "*"' | ft -AutoSize

When we execute this command, we get the result as shown in the
following screenshot:

ey Administrator: Windows PowerShell
‘“Administrator> Get-ADOrganizationalUnit -Filter {Name -like ' = | Tt -Auto5ize N

1nguishedMame

145 F-00C04TB984F9} ,CN=PoTicies,C

We can see that all organizational units created in the preceding examples have been
listed out. The Format-Tables cmdlet is used for formatting the output display.

Renaming an organizational unit

We can use the rename-ADObject cmdlet for changing the name of an
organizational unit.

Rename-ADObject "OU=TestOU, DC=Fuhaijun,DC=Com" -NewName Groups

Rename the object having the distinguished name ou=
TestOU, DC=Fuhaijun, DC=Com to Groups. After executing the command, the name of
the OU Testou will be changed to Groups.

Of course, we can also use the -Identity parameter with the object GUID in order
to locate the organizational unit object to be renamed.

Rename-ADObject -Identity "d465ddc9-a5e6-4998-91laa-09e33fe22369" -NewName
Groups

[184]

http:///

Chapter 6

Note that the - Partition parameter is not specified because the object is in the
default naming context of the domain.

Modifying an organizational unit

We can modify the description of the organizational unit with the distinguished
name OU=TestOU, DC=Fuhaijun, DC=COM by using the Set -ADOrganizationalUnit
cmdlet.

C:\PS>Set-ADOrganizationalUnit -Identity "OU=TestOU,DC=Fuhaijun,DC=COM"
-Description "This Organizational Unit is a test OU of Fuhaijun.COM"

Of course, we can also modify several properties at once. The
Get-ADOrganizationalUnit cmdlet can help us obtain the destination
organizational unit, and then assign it to a variable $Asiansalesou. Then we can
set the properties of the variable and use the set-ADOrganizationalUnit cmdlet
with the - Instance parameter to save the modification to the object. The command
would be as follows:

$AsianSalesOU = Get-ADOrganizationalUnit "OU=Asia,OU=Sales,OU=UserAccount
s,DC=Fuhaijun, DC=COM"

$AsianSalesOU.StreetAddress = "No. 20 Chang An Avenue"

$AsianSalesOU.City = "Beijing"

$AsianSalesOU.PostalCode = "100000"

$AsianSalesOU.Country = "China"

Set-ADOrganizationalUnit -Instance $AsianSalesOU

Moving an organizational unit

When we need to adjust the organization structure, we need to move an OU to
another location; to do so we must use the Move-ADObject cmdlet.

Move-ADObject "OU=ManagedGroups,DC=Fuhaijun,DC=Com" -TargetPath
"OU=Managed, DC=Fuhaijun, DC=Com"

As we can see, we use the -TargetPath parameter to specify the destination path.
Meanwhile, we can also use this cmdlet to move other AD objects.

[185]

http:///

Managing Active Directory with PowerShell

Deleting an organizational unit

As one of the daily tasks is to maintain the Active Directory, removing an Active
Directory organizational unit is also very important. The following example will
show how to delete an organizational unit:

C:\PS>Remove-ADOrganizationalUnit -Identity
"OU=TestOU, DC=FUHAIJUN, DC=COM" -Recursive
Are you sure you want to remove the item and all its children?

Performing recursive remove on Target: 'OU=Accounting,DC=Fuhaijun,DC=com
1

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y

The preceding example shows how to remove an organizational unit and all of its

children. If the organizational unit is protected from deletion, the organizational unit
and its children will not be deleted. If the organizational unit is not protected even if
any of the children are, both the organizational unit and the children will be deleted.

It is also possible to remove an organizational unit using its object GUID as the
identity while suppressing the confirmation prompt.

Remove-ADOrganizationalUnit -Identity "d465ddc9-a5e6-4998-9laa-
09e33fe22369" -confirm:$false -ProtectedFromDeletion $false

We used the -1dentity parameter to specify the object GUID for an organizational
unit and the -confirm:$false parameter to suppress the confirmation prompt. If
the flag for -ProtectedFromDeletion is set to True, this cmdlet does not delete the
OU and it returns an error.

Domain controller management

You can use the Active Directory module for Windows PowerShell to manage your
domain controllers and the operation's master roles in AD DS.

Finding a domain controller

The following example demonstrates how to find a domain controller for the
Fuhaijun.com domain:

Get-ADDomainController -Discover -DomainName fuhaijun.com

[186]

http:///

Chapter 6

The execution result is as follows:

ey Administrator: Windows PowerShell
E mainName ftuhaijun.com
: fuhaijun.
fuhaijun.
n2012-AD. fuhaijun. com}

192.168.10.9

N2012-AD
: Default-Fi

Administrato

We can find all the information about the domain controller, including the hostname,
IP address, and so on. If you want to find all the domain controllers for the domain
and you are currently logged in, just use the following command line:

Get-ADDomainController -filter *

When this command is executed, you get all the details as shown in the
following screenshot:

eaf Administrator: Windows PowerShell I;Ii-_

ainController -filter =

omain Controlle
DefaultPartition 3
Domain : fuhaijun.
1 True
fuhaijun.

tes,CN=Configura

uhaijun,D
Operating 1 H erver 2
Dperatir f
Operating
Operating

[187]

http:///

Managing Active Directory with PowerShell

Finding a domain controller's site

After we find the domain controller, we can also find the domain controller's site
using the Get -ADDomainController cmdlet with the - Identity parameter,
as follows:

Get-ADDomainController -Identity Win2012-AD | FT Name, Site

Finding the global catalog servers in a forest

The Get-ADForest cmdlet gets the Active Directory forest specified by the
parameters. You can specify the forest by setting the -Identity or -Current
parameters. The -Identity parameter specifies the Active Directory forest that is
required. You can identify a forest by its fully qualified domain name (FQDN),
DNS hostname, or NetBIOS name. You can also set the parameter to a forest object
variable, such as $<localForestObjects, or you can pass a forest object through the
pipeline to the -I1dentity parameter.

Get-ADForest Fuhaijun.com | FL GlobalCatalogs

Summary

The Active Directory module for Windows PowerShell provides
command-line scripting for administrative, configuration, and diagnostic
tasks, with a consistent vocabulary and syntax. The Active Directory module
enables end-to-end manageability with Exchange Server, Group Policy,

and other services.

In this chapter, we discussed how to manage organizational units, user accounts,
user passwords, and groups by using the Active Directory module. The Active
Directory module for Windows PowerShell can help users to manage the AD
effectively through the PowerShell. If you are an administrator managing domains,
computers, users, groups, mailboxes, organizational units, and so on, using the
Active Directory module for PowerShell, you may no longer find it difficult to
manage time for efficiently managing all the AD objects and preparing AD reports
for all the computers present in your organization. It will ease the task of managing
AD objects and will also save a substantial lot of time of the administrator or of the
help-desk person who is managing them.

In the next chapter, we will discuss how to manage a server with PowerShell.
We will also look at adding roles and features, managing networks, group policy,
managing IIS, and the DNS server.

[188]

http:///

Managing the Server with
PowerShell

Having PowerShell built into Windows Server 2012 gives you flexibility while
managing your server. Several PowerShell cmdlets let you perform many of the key
administrative jobs that you may need to do on a daily basis, including installing
features for your Windows Server, backing up your server, analyzing the server,
managing IIS, and many others. PowerShell lets you perform many of these tasks
consistently on a batch basis.

Managing your web servers and web farms is an ideal scenario for PowerShell. With
PowerShell, you can configure IIS as well as manage applications, sites, application
pools, and many other aspects of IIS. Managing the core server configuration of IIS

is one key aspect of working with IIS. Another scenario is working with the websites
themselves, including the sites, directories, and web applications on the server. From
working with your server configuration to deploying your applications, PowerShell
can help you accomplish this in a scalable, automated, and consistent fashion.

In this chapter we will cover:

* Working with Server Manager cmdlets
* Managing Group Policy

* Managing IIS with PowerShell

* Managing DNS Server

* Managing Hyper-V with PowerShell

* Managing AppLocker with PowerShell

All demos in this book are based on Windows Server 2012 and PowerShell 3.0.

http:///

Managing the Server with PowerShell

Working with Server Manager cmdlets

Windows Server 2012 eases the task of managing and securing multiple server roles
in an enterprise with the Server Manager console. Server Manager in Windows
Server 2012 provides a single source for managing a server's identity and system
information, displaying server status, identifying problems with server role
configuration, and managing all roles installed on the server.

Server Manager makes server administration more efficient by allowing
administrators to do the following using a single tool:

* View and make changes to server roles and features installed on the server

* Perform management tasks associated with the operational lifecycle
of the server, such as starting or stopping services, and managing local
user accounts

* Perform management tasks associated with the operational lifecycle of roles
installed on the server, including scanning certain roles for compliance with
best practices

* Determine server status, identify critical events, and analyze and
troubleshoot configuration issues or failures

Adding roles or features by using PowerShell

PowerShell cmdlets can be used for server management. In Windows Server 2012,
we can use the Get -WindowsFeature cmdlet to retrieve roles and features that are
available on a computer. We can see the features that have been installed; those
features will be marked with checkboxes ([X]) in its display name. The Install-
WindowsFeature and Uninstall-WindowsFeature cmdlets are used for installing
and uninstalling a role or feature:

1. Open a PowerShell session with elevated user rights. To do this, navigate to
Start | All Programs | Accessories | Windows PowerShell and right-click
on the Windows PowerShell shortcut. Then click on Run as administrator.

2. Load the Server Manager module into the PowerShell session before working
with Server Manager cmdlets. Type the following and press Enter:

Import-Module Servermanager

[190]

http:///

Chapter 7

3. If you do not know the command name of the role, role service, or feature
that you want to install, type the following and then press Enter to return
a list of all command names in the Name column. The command name is
required for the next step.

Get-WindowsFeature web-*

When the command is executed, we get all the Windows features that have
their names starting with 'web- '. It looks like the following screenshot:

) Administrator: Windows PowerShell I;Ii-

ministrator> Get-WindowsFeature web-*

rection
WebDAV Publishir

Web-Reque:
Web-Http-
Web-Per

(g 1zed Certificate Support
Client Certificate Mapping Authentic... W
) _Authent1

Web-Net-Ext

4. Type the following command, in which the name represents the command
name of the role, role service, or feature that was obtained in the previous
step, and then press Enter to install the role or feature. The -restart
parameter restarts the computer automatically after installation is complete,
if a restart of the computer is required by the role or feature.

Install-WindowsFeature Telnet-Client

[191]

http:///

Managing the Server with PowerShell

Since the process of feature installation runs for a long duration, in order to let
the user know the current progress of the installation, the installation will show
a progress bar with the percentage of the installation completed, as shown in the
following screenshot:

el Administrator: Windows PowerShell I;Ii-

PS5 C:\lUsers‘\Administrator>

Start Installation...

[ocoooooooo00

If you want to install several features at a same time, you can use the
Get-WindowsFeature cmdlet to obtain some feature objects, and then pass
them to the Install-windowsFeature cmdlet. Say we want to install all
features for I1S7.5; in this case, we type the following and press Enter:

Get-WindowsFeature web-* |Install-WindowsFeature

After these features have been installed, we can check the installation status, as
shown in the following screenshot:

ey Administrator: Windows PowerShell

Web-Hittp-
Web-5tatic
Web-Http-Re
1 WebDAV ishi Web-DAV-Publishing
[X] Health and D 1Cs Web-Health
[X] HTTP La o

on

Certificate Support
ate pping Authentic.

-Digest-Auth
ing Authe. Web-Cer th
Web-IP-
Web-Ur1
Web-Win
Web-App
Web-Net-Ext Installed

[192]

http:///

Chapter 7

You can install multiple roles, role services, and features by using commas to
separate the command names, as shown in the following example:

Install-WindowsFeature Telnet-Server,Hyper-V

In this example, we install the Telnet Server and Hyper-V roles.

Advantages of PowerShell cmdlets for Server
Manager

PowerShell cmdlets for Server Manager offer some significant advantages over

the serverManagerCmd.exe command. After Windows PowerShell and the Server
Manager cmdlet sets are installed by using the Deployment Image Servicing

and Management (DISM) tool, Windows PowerShell cmdlets can be run on a
computer that is running the Server Core installation option of Windows Server
2012. Instructions for installing Windows PowerShell and the Server Manager cmdlet
sets on the Server Core installation option of Windows Server 2012 are available in
Remote Management with Server Manager.

Managing networking using PowerShell

Managing network settings and services is a core task for administrators of Windows
Server-based networks. Examples of network configuration tasks include configuring
interfaces, IP addresses, default gateways, and similar tasks.

In previous versions of Windows Server, such tasks usually had to be performed
using a combination of GUI tools and various command-line utilities. But with the
significantly increased Windows PowerShell capabilities built into Windows Server
2012, you can now perform most network administration tasks from the Windows
PowerShell command line or by running Windows PowerShell scripts.

Running the Get -Net IPAddress cmdlet displays a list of all interfaces on the server:

%) Administrator: Windows PowerShell

led
led
Ted

Loopback Pseudo-Interface 1

s\ Administrators

[193]

http:///

Managing the Server with PowerShell

From the preceding command output, you can see that the interface you are looking
for is identified by the alias Ethernet 2. To view the existing TCP/IP configuration
of this interface, you can use -InterfaceAlias with the Get -Net IPAddress cmdlet
as follows:

ey Administrator: Windows PowerShell I;Ii-_
T

Interf: nd
InterfaceAli

3 hernet 2
: IPv4

: Unicast

: 24

Dhep

The preceding command output shows that the Ethernet interface currently has
192.168.10.9/24 as its IPv4 address.

You can add a second IP address to the interface by executing the
following command:

New-NetIPAddress -InterfaceAlias "Ethernet 2" -IPAddress 192.168.10.20
-AddressFamily IPv4 -PrefixLength 24

The resulting command output looks like this:

ey Administrator: Windows PowerShell M

dministrator> new-NetIPAddre:

: 192.168.10.20
: 15

: Ethernet 2
s v
Unicast
Length
origin
0origin
tate
alidLifetime 3
f dLifetime :
rce

: 192.168.10. 20
: 15

: Ethernet 2
: TPvd

Unicast
ixLength
Origin
origin

[194]

http:///

Chapter 7

By using -InterfaceAlias with the Get -NetIPAddress cmdlet again, you can
verify that the command accomplishes the desired result.

Get-NetIPAddress -InterfaceAlias Ethernet

When the command is executed, all the information of Ethernet 2 will be listed out.
It looks like the following;:

%) Administrator: Windows PowerShell

Ethernet 2

: fedD::

: 15
: Ethernet 2
: IPw
: Unicast
64
el TKnown
: Link

: 192.168.10.20
15
: Ethernet 2
: IPva
Unicast

: False
: ActiveStore

: 192.168.10.9
: 15

: Ethernet 2

: IPv4
Unicast
24

: Manual

[195]

http:///

Managing the Server with PowerShell

Viewing the Advanced TCP/IP Settings window for the interface from the Network
Connections folder confirms the result. We can see two IP addresses have been
added to the interface. It is shown in the following screenshot:

. ?
Advanced TCP/IP Settings I_-
IP Settings | DNS WINS
IP addresses
IF address Subnet mask
192.168.10.9 255,255.255.0
192.168.10.20 255,255,255.0
Add... | | Edit... | | Remove
Default gateways:
Gateway Mefric
192.168.10.1 Automatic
Add... | | Edit... | | Remaove
Automatic metric
| oK | | Cancel |

You can enable and disable bindings on a network adapter by using Windows
PowerShell. For example, start by using the Get -NetAdapterBinding cmdlet to
display the bindings for the specified interface:

=T

Enabled

ey Administrator: Windows PowerShell

ery Responder n pndr

ery Mapper I, jer n tdio True
apter Multiplexor Pr ol n E False
Nety] n 1

True

True

o = True

Internet Proto C N 6 True
Internet Pro / (7 4) ns_tcpip True

dministrator>

[196]

http:///

Chapter 7

To disable a specific binding such as QoS Packet Scheduler, you can use the
Disable-NetAdapterBinding cmdlet as follows:

Disable-NetAdapterBinding -Name "Ethernet 2" -ComponentID ms lltdio
You can use the Enable-NetAdapterBinding cmdlet to re-enable the binding.

You can disable a specific network adapter or even all network adapters using
Windows PowerShell. For example, the following command disables the adapter
named Ethernet 2.

Disable-NetAdapter -Name "Ethernet 2" -Confirm:$false

To disable all network adapters on the server, you can use the following command:

Disable-NetAdapter -Name *

Note that all remote connectivity with the server will be lost if you do this. To enable
any network adapters that are disabled, you can use the Enable-NetAdapter cmdlet.

Managing Group Policy with PowerShell

While most administrative tasks for Group Policy can be most easily performed by
using GUI tools such as the GPMC and the Group Policy Management Editor, some
tasks can also be performed using Windows PowerShell. You can use the Windows
PowerShell Group Policy cmdlets to automate many of the same tasks for domain-
based Group Policy objects (GPOs) that you perform in the user interface by using
the Group Policy Management Console (GPMC).

The Group Policy cmdlets can only be run on a computer that has the Group Policy
Management Console installed. You can use Windows PowerShell to configure
and manage Group Policy in an Active Directory environment based on Windows
Server 2012.

Importing a GroupPolicy module

You can import the cmdlets manually by running the following commands from
Windows PowerShell:

Import-Module ServerManager

Add-WindowsFeature GPMC

Get-Command -Module GroupPolicy

[197]

http:///

Managing the Server with PowerShell

The following screenshot shows that we have imported a GroupPolicy module and
checked all the commands of the module:

LA Administrator: Windows PowerShell I_I_-_

erverManager
C

r newl

Name

Get-GPPermi

Copy
Get-GPInheritance

Get-GPPermis

Get-GPPrefRe:
tryV

Get-GPResultant

We can use the Get -Gpo cmdlet to get one GPO or all the GPOs in a domain.
The usage of the Get -GP0 cmdlet is as shown in the following screenshot:

e Administrator: Windows PowerShell I_I_-

in Policy
1

nain Admin.

1
nain Admins

016d-11d2-945F-00c04fb984T9
nabled

12:42 PM
=

[198]

http:///

Chapter 7

Creating GPOs with PowerShell

Only domain administrators, enterprise administrators, and members of the Group
Policy Creator Owners group can create GPOs. These users must run Windows
PowerShell in an elevated state. You can use the Domain parameter to explicitly
specify the domain for this cmdlet. If you do not specify the domain explicitly, the
cmdlet uses the default domain. The default domain is the domain that is used to
access network resources by the security context under which the current session
is running. This domain is typically the domain of the user that is running the
session. For example, the domain of the user who has started the session by opening
Windows PowerShell from the Program Files menu, or the domain of a user that is
specified in a runas command. However, computer startup and shutdown scripts
run under the context of the LocalSystem account. The LocalSystem account is a
built-in local account, and it accesses network resources under the context of the
computer account. Therefore, when this cmdlet is run from a startup or shutdown
script, the default domain is the domain to which the computer is connected.

Next, you can use the New-GP0 cmdlet to create a new GPO as follows:

) Administrator: Windows PowerShell M

rshAdministrator> New-GPO -Mame TestGPO -Comment "This 15 a GPO for test

Displa
Domain

dmin
15-8c3a-08022ad63T21

d

This command creates a GPO in the domain of the user. The GPO is created with the
specified comment.

Managing IIS with PowerShell

The web server management module (WebAdministration) for Windows
PowerShell, which includes IIS cmdlets, can let you manage the configuration and
operation of IIS. It implements a namespace model that includes application pools,
websites, web applications, and virtual directories.

[199]

http:///

Managing the Server with PowerShell

In Windows Server 2012, the Windows PowerShell icon is pinned to the task bar
by default. However, you must start Windows PowerShell only once to make the
Import all modules task appear. You can manually add the IIS module to the
instance of Windows PowerShell that you have opened by using the following
command at the PowerShell prompt:

Import-Module WebAdministration

If we want to operate the IIS objects, we must import the WebAdministration
module. The following screenshot shows how to import this module and shows
all the websites in this computer:

%) Administrator: Windows PowerShell I;‘i-

inetpub’wwwroot
http =:80:testsite

In the preceding example, we import the WwebAdministration module and list the
websites on the current computer. The IIS module implements a virtual drive named
118. The root virtual folders are AppPools, websites, and Ss1Bindings. In the
AppPools folder, runtime data such as the current operation of the worker processes,
application domains, and requests can be found. The sites folder contains website
folders, as well as application procedures and virtual directories.

To use the Windows PowerShell cmdlets for IIS, you must be a member of the IIS
Administrators group or you must have been delegated the appropriate authority.

Creating a new website

We can create a new IIS website by using the New-website cmdlet with the settings
specified in the parameter values.

New-Website -Name testsite -Port 80 -HostHeader testsite -PhysicalPath
c:\temp

The following screenshot shows that we create a website named testsite and
specify the physical path as c: \temp.

[200]

http:///

Chapter 7

%) Administrator: Windows PowerShell

s\Administrator> _

Meanwhile, we can find the websites in the IIS Manager as shown in the
following screenshot:

=
i(-) @ b WIN-2012 » Sites »
Connections ¥
. @ Sites

ﬁllv _z"_ &. -: :
— Qj Start Page)
.. Filter: » " Go - 5 Show All | Group by:
483 WIN-2D12 (WIN-2012y | =0 T Nnow AT [Pt Y

.2} Application Pools Mame * D Status Binding

a-[8] Sites € Default Web Site 1 Started (ht.. *:20 (http)

b0 Default Web Sit | & testsite 2 Started (ht.. testsite on *:30 (ht

Modifying IIS binding

Sometimes, after we create a website, in order to adapt to a change of environment,
we need to modify a property of an existing IIS site binding. We can execute the
Set -WebBinding cmdlet to modify IIS binding as follows:

Set-WebBinding -Name 'Default Web Site' -BindingInformation "*:80:"
-PropertyName Port -Value 1234

In the preceding example, we change the setting for the port property for the default
website from 80 to 1234.

Creating an FTP site

We can create a new FTP site using the New-webFtpsite cmdlet. FTP 7 or later must
be installed for this cmdlet to function successfully.

New-WebFtpSite -Name testFtpSite -Port 21 -PhysicalPath c:\test
-HostHeader mySite -IPAddress 127.0.0.1

[201]

http:///

Managing the Server with PowerShell

When this command is executed, an FTP site named testFtpSite will be created.
The FTP site will listen on port 21 and the physical path is c: \test. This is shown
in the following screenshot:

Administrator: Windows PowerShell

Creating a virtual directory

A virtual directory simply designates a folder that appears in a path but is not actually
a subfolder of the preceding folder in the path in IIS. Virtual directories present a
unified virtual view of user information from multiple systems so that it appears to
reside in a single system. In PowerShell, we can use the New-WebVirtualDirectory
cmdlet to create a virtual directory. The example is as follows:

New-WebVirtualDirectory -Site "Default Web Site" -Name TestVDir
-PhysicalPath c:\inetpub\virtualdir

The example creates a new virtual directory named TestvDir on the default website.

Creating a WebAppPool

Application pools are used to separate sets of IIS worker processes that share the
same configuration and application boundaries. Application pools are used to isolate
our web applications for better security, reliability, availability, and performance
and keep them running without impacting each other. The worker process serves as
the process boundary that separates each application pool so that when one worker
process or application is having an issue or recycles, other applications or worker
processes are not affected. We can use the New-WebAppPool cmdlet for creating a
new application pool as shown in the following example:

New-WebAppPool MyAppPool

This example creates a new IIS application pool named MyAppPool.

Backing up and restoring WebConfiguration

In order to mitigate mistake we make when we modify the IIS configuration, we can
back up the configuration of IIS into a configuration file. If any errors occurred, we
can restore the backup configuration.

[202]

http:///

Chapter 7

The following example demonstrates how to create a backup of your IIS
configuration in a folder named MyIISConfigBackup.

Backup-WebConfiguration -Name MyIISConfigBackup

We can also use the Get-WebConfigurationBackup cmdlet to get a list of available
IIS configuration backups.

Get-WebConfigurationBackup

Restoring the IIS configuration backup is very simple. We can use the
Restore-WebConfiguration cmdlet with the -Name parameter to restore a
configuration file named MyIISConfigBackup, as shown in the following example:

Restore-WebConfiguration -Name MyIISConfigBackup

When the IIS configuration backup file is no longer needed, we can use the
Remove-WebConfiguration cmdlet with the -Name parameter to remove it.

Remove-WebConfiguration -Name MyIISConfigBackup

All the examples of this section are shown in the following screenshot:

) Administrator: Windows PowerShell \;Ii-

Backup-WebContTiguration -Name MyIISContigBackup

nfigBackup :00:00 AM

Get-WebConfigurationBackup

nfigBackup
0000000002

0000000003
'Y_0000000004
Y_0000000005
Y_0000000006
Y_0000000007

Y_0000000008
Y_0000000009
Y_0000000010
Y_0000000011

sackup
nfigBackup

In the preceding screenshot, we have demonstrated the maintenance process of an
IIS configuration backup file.

[203]

http:///

Managing the Server with PowerShell

Managing a DNS server using PowerShell

You can manage Windows Server 2012 DNS servers using Windows PowerShell.
Common DNS server management tasks are adding resource records to zones,
configuring forwarders, configuring root hints, and so on.

For example, let's view a list of zones on a DNS server that is also a domain
controller for the fuhaijun.com domain:

) Administrator: Windows PowerShell

ration. All rights reserved.

rverZone

Administra

To view a list of resource records of type A (address) in the fuhaijun.com zone, we
can pipe the output of the Get -DnsServerResourceRecord cmdlet into the Where-
Object cmdlet as follows:

Administrator: Windows PowerShell

ad A 01:00:00 192.168.10.9

wingdclient L 01:00:00 192.168.10.10

ministrator>

To add a new A resource record for a test server, you can use the Add-
DnsServerResourceRecordA cmdlet as follows:

Add-DnsServerResourceRecordA -IPv4Address 192.168.10.1 -Name gateway
-ZoneName fuhaijun.com

You can also add other types of resource records such as PTR, CN, or MX

records using the Add-DnsServerResourceRecorda cmdlet, by replacing A

with the record type, for example, Add-DnsServerResourceRecordPTR, Add-
DnsServerResourceRecordCN, and Add-DnsServerResourceRecordMX. And you
can use the Remove-DnsServerResourceRecord cmdlet to remove resource records
from a zone.

[204]

http:///

Chapter 7

When we set up a DNS server, we can use the Test -DNSServer cmdlet to verify
whether it was configured correctly or not. As we all know, DNS Server 8.8.8.8 is a
server for the Google Public DNS service. Whereas, 192.168.10.9 is a DNS Server 1
installed in my private network. And 192.168.10.10 is just a common workstation,
not a DNS server. We can use the Test -DNSServer cmdlet to check the three
preceding IP addressed separately, as follows:

e Administrator: Windows PowerShell \;Ii-

or> TEST-DNS5ERVER B8.8.8.8

RoundTripTime TepTried
00:00:00

r> Test-DnsServer 192.168.10.9
oundTripTime

00:00:00

rator= Test-DnsServer 192.168.10.10

Result

No

='Administrators

We can see the result of these commands; DNS servers return Success and the
non-DNS Server returns NoRespnse. The Test -DNSServer cmdlet can check
whether a server is a valid DNS server.

Managing Hyper-V with PowerShell

Microsoft Hyper-V, known as Windows Server Virtualization, is a native hypervisor
that enables platform virtualization on an x86-64 system. Microsoft Hyper-V and
VMware ESX Server are based on the hardware support Bare-Metal virtualization
products. Their biggest difference is that Microsoft Hyper-V adopts a microkernel
structure, and the ESX Server is a product of a single kernel.

The main characteristic of a single kernel is that the hardware driver present in the
Hypervisor layer is shared by all virtual machines on the Hypervisor. When a virtual
machine OS needs to access the hardware, it uses the Hypervisor driver model.

This kind of single-kernel Hypervisor can provide very good performance, but it

has defects in safety and compatibility. Due to the drivers and some third-party

code running in a very sensitive area, the model has a large attack surface. Another
problem is stability. The model relies on shared drivers, so any bug will affect all of
the virtual machines. In addition, you also require the Hypervisor to support all of
the drivers, and this causes this layer to be relatively large in size.

[205]

http:///

Managing the Server with PowerShell

The Hyper-V adopts a microkernel structure; it is a thin Hypervisor. Because it
does not need third-party drivers, Hyper-V has the advantage on volume. In
addition, since the microkernel volume is low, the running efficiency is very high.
A driver runs in each partition within the virtual machine OS to be able to access
the hardware directly by using the Hypervisor. It makes each partition independent
of the others, so it has better security and stability.

The Hyper-V technology provides an environment that you can use to create and
manage virtual machines and their resources. Each virtual machine is an isolated,
virtualized computer system that is capable of running its own operating system.
This allows you to run multiple operating systems at the same time on the same
physical computer. In the following sections, we will introduce how to manage
Hyper-V with PowerShell.

Installing Hyper-V on Windows Server 2012

We can use the Server Manager from the control panel to add the Hyper-V role.

On the desktop, right-click on PowerShell in the task bar, and then click on Run as
Administrator. In Windows PowerShell 3.0, there is no need to import the Server
Manager cmdlet module into the PowerShell session before running cmdlets that
are part of the module. A module is automatically imported the first time you run a
cmdlet that is part of the module. We can run the Get -WindowsFeature cmdlet to
verify installation, as shown in the following screenshot:

Administrator: Windows PowerShell

dministrators:

We can see Hyper-V has not been installed. We can then use the Install-
WindowsFeature Hyper-V cmdlet to install Hyper-V, as shown in the
following screenshot:

ey Administrator: Windows PowerShell

owsFeature Hyper-w

ewly—-installed role or feature 1s

[206]

http:///

Chapter 7

After you add Hyper-V to your computer, a restart is required to complete the
process. This restart is necessary to start the Windows Hypervisor and the Virtual
Machine Management service. After that occurs, you can create and run virtual
machines on this computer.

Creating a virtual machine

If you want to create a virtual machine that can be accessed by networking, you must
create a virtual hard disk first, and then create a virtual machine. Finally, connect

the virtual network adapter to a virtual switch. The Hyper-V module supplies the
needed cmdlet for our operations.

We can create a virtual hard disk by using the New-VvHD cmdlet with the
following parameters:
* -path: Specifies the path of the virtual hard disk

* -ParentPath: Specifies the path to the parent of the differencing disk
to be created

* -SizeBytes: The maximum size, in bytes, of the virtual hard disk to
be created

For example, we can create a VHDX-format differencing virtual hard disk with a
parent path of D: \vhd\webserver.vhdx, as shown in the following screenshot:

BEES|

ey Administrator: Windows PowerShell

0GE -ParentPath D: X -Diftterencing

We can create a virtual machine by using the New-vM cmdlet with the
following parameters:

* -Name: Specifies the name of the new virtual machine

* -path: Specifies the path of the virtual machine

[207]

http:///

Managing the Server with PowerShell

* -VHDPath: Specifies the path to the parent of the differencing disk to be
created

* -MemoryStartupBytes: Specifies the amount of memory, in megabytes, to
assign to the virtual machine

For example, we can create a virtual machine named MyvM with 2 GB of memory and
an existing virtual hard disk that uses the VHDX format connected to it, as shown in
the following screenshot:

Starting and stopping a virtual machine

We can start or stop the virtual machine MyvM by using the Start-vM or Stop-vM
cmdlet. The parameter -Name is the name of the virtual machine.

Start-VM -Name MyVM

Stop-VM -Name MyVM

Modifying a virtual machine

Sometimes, we need to add a virtual switch on a Hyper-V host. The New-vMSwitch
cmdlet is used to add a virtual switch. The parameter SwitchType specifies the type
of switch to be created. The allowed values are Internet and Private, just as shown
in the following screenshot:

Administrator: Windows PowerShell

=witch -Name MyWMSwitch -SwitchType Priwvate

Meanwhile, we can create a VMNetworkAdapter and add it to a
specified virtual machine connecting to the virtual switch by using
the Add-vMNetworkAdapter cmdlet.

Add-VMNetworkAdapter -VMName MyVM -SwitchName MyVMSwitch

[208]

http:///

Chapter 7

If we want to add a new hard drive for a virtual machine, we can use the add-
VMHardDiskDrive cmdlet with the -vMName parameter for specifying the VM's name
and the -path parameter for the hard drive to be saved.

Add-VMHardDiskDrive -VMName MyVM -Path D:\vm\vhd\diskl.vhdx

We can add a DVD drive to a virtual machine when we need to install a new guest
OS for it by using the Add-vMDvdDrive cmdlet. The -vMName parameter specifies the
virtual machine. The - path parameter specifies the location of the ISO image that
will be mounted to the virtual machine.

Add-vMDvdDrive -VMName MyVM -Path D:\Cent0S6.3 KS1-x86 64.iso

Operating a virtual machine snapshot

A virtual machine snapshot captures the state, data, and hardware configuration of a
virtual machine. Snapshots provide a fast and easy way to revert a virtual machine to
a previous state.

We can create a snapshot of a virtual machine by using the checkpoint-vM cmdlet.

Checkpoint-VM -Name MyVM -SnapshotName BeforeInstall

We can retrieve a list of the snapshots of a virtual machine by using the Get-
VMsnapshot cmdlet, as shown in the following screenshot:

2] Administrator: Windows PowerShell

We can restore a virtual machine snapshot by using the Restore-vMSnapshot
cmdlet, as shown in the following screenshot:

%) Administrator: Windows PowerShell

[*] Help {default is

We can delete a snapshot or snapshot tree by using the Remove - VMSnapshot cmdlet.

Remove-VMSnapshot -Name BeforeInstall -VMName MyVM

[209]

http:///

Managing the Server with PowerShell

Managing AppLocker with PowerShell

AppLocker is a new feature used for Software Restriction Policies. AppLocker
contains new capabilities and extensions that allow users to create rules to allow or
deny applications' permission to run based on the unique identities of files, and to
specify which users or groups can run those applications. Of course, you can create
and manage AppLocker rules by using Windows PowerShell cmdlets.

Microsoft supplies an AppLocker module, which contains five cmdlets that are
used to help create, test, maintain, and troubleshoot an AppLocker policy. To edit
or update a GPO by using the AppLocker cmdlet, you must have the Edit Setting
permission. By default, members of the Domain Admins group, the Enterprise
Admins group, and the Group Policy Creator Owners group have this permission.
To perform tasks by using the Local Security policy snap-in, you must be a member
of the Local Administrators group on the computer.

Importing the AppLocker PowerShell module
To use the AppLocker cmdlet, you must first import the AppLocker module by using
the following command at the PowerShell prompt:

Import-Module AppLocker

Retrieving application information

Now, after importing the AppLocker module, you need to retrieve application
information for preparing to deny others access. For this purpose, we use the
Get-AppLockerFileInformation cmdlet with the following parameters:

* -path: List of paths to the files from which the file information is retrieved.

* -Directory: Defines the directory containing the files from which the file
information is retrieved. To search all subfolders and files in the directory,
include the Recurse parameter.

* -FileType: Defines the generic file type to find. The file type options are exe,

secript, WindowsInstaller, or d11.

For example, we can get the file information for the mspaint . exe file at
C:\Windows\System32\.

Administrator: Windows PowerShell

1nt. exe

[210]

http:///

Chapter 7

We can get the file information for all of the executable files in the
C:\Windows\System32 directory, as shown in the following screenshot:

Administrator: Windows PowerShell I;li-

Retrieving an AppLocker policy

Before we modify the AppLocker policy, we should first get the AppLocker policy
from the local GPO. We can use the Get -AppLockerPolicy cmdlet with the
following parameters:

* -Local: Gets the AppLocker policy from the local GPO.
* -Domain: Gets the AppLocker policy from the GPO that is specified by the
path in the LDAP parameter.
* -LDAP: This is the LDAP path of the Group Policy object. It must specify a
unique GPO.
* -XML: Specifies that the AppLocker policy be output as an XML-formatted
string.
For example, we can get the local AppLocker policy as an AppLockerPolicy object,
as shown in the following screenshot:

Administrator: Windows PowerShell

[211]

http:///

Managing the Server with PowerShell

We can also get the AppLocker policy of the unique GPO specified by the LDAP
path as an AppLockerPolicy object.

Administrator: Windows PowerShell
1 —LDAP "LDAP://Winz A0, Tuhat jun. com/CH={31B2F3

Setting an AppLocker policy

We can set the AppLocker policy for the specified GPO. If no Lightweight Directory
Access Protocol (LDAP) is specified, the local GPO is the default. The set-
AppLockerPolicy cmdlet has the following parameters:

* -XMLPolicy: Specifies the path where the AppLocker policy XML file
is saved.

* -PolicyObject: Specifies the AppLocker object that contains the
AppLocker policy.

* -LDAP: The LDAP path of the Group Policy object. If this parameter is not
specified, the local AppLocker policy is set.

* -Merge: If the -Merge parameter is used, rules in the specified AppLocker
policy will be merged with the AppLocker rules in the target GPO specified
in the LDAP path. The merged policies will remove rules with duplicate rule
IDs. If the -Merge parameter is not specified, the new policy will overwrite
the existing policy.

For example, we can set the local AppLocker policy to the policy specified in
D:\Policy.xml.

Get-AppLockerPolicy -Local -Xml -XMLPolicy C:\Policy.xml

We can also set the GPO specified in the LDAP path to contain the AppLocker policy
that is specified in ¢: \Policy.xml.

Set-AppLockerPolicy -XMLPolicy C:\Policy.xml -LDAP "LDAP://Win2012AD.
fuhaijun.com/CN={31B2F340—016D—11D2—945F—00C04FB984F9},CN=P01icies,CN=Sys
tem,DC=fuhaijun,DC=com"

[212]

http:///

Chapter 7

Generating rules for a given user or group

We can use a list of file information to automatically generate rules for a given
user or group. It can generate rules based on publisher, hash, or path information.
We can use the Get -AppLockerFileInformation cmdlet to create the list of file
information, and then pass the information to the New-AppLockerPolicy cmdlet.
The New-AppLockerPolicy cmdlet with the following parameters creates a new
AppLocker policy from a list of file information:

* -FileInformation: A file can contain publisher, path, and hash information.
Some information may be missing, such as publisher information for an
unsigned file.

* -RuleType: Specifies the type of rules to create from the file information.

* -RuleNamePrefix: Specifies a name to add as a prefix to each rule that
is created.

* -user: Defines the user or group that rules are applied to. You can provide
the value in one of the following formats:

° DNS user name (domain\username)
° User Principal Name (username@domain.com)

° SAM user name (username)
* -Optimize: Instructs that similar rules should be grouped together.

For example, we can create an AppLocker policy that allows rules for all of the
executable files in C: \Windows\System32. The policy contains publisher rules for
those files with publisher information and hash rules for those that do not.

%] Administrator: Windows PowerShell

cationId.Po...

Testing the AppLocker policy against a fileset

After you create AppLockerPolicy rules, you can use the Test -AppLockerPolicy
cmdlet to test whether a specified list of files is allowed to run or not on the

local computer for a specified user. The Test -AppLockerPolicy cmdlet has
following parameters:

* -PolicyObject: Specifies the policy object that contains the
AppLocker policy

[213]

http:///

Managing the Server with PowerShell

* -path: Specifies the list of file paths to test

* -User: Defines the user or group to be used for testing the rules in the
specified AppLocker policy

* -Filter: Filters the output by the policy decision for each input file
We can use the AppLocker policy in C:\Policy.xml to test whether or not mspaint.

exe and taskmgr . exe are allowed to run for users who are members of the
Everyone group, as shown in the following screenshot:

Summary

Using Windows PowerShell commands in Windows Server 2012 for basic
administration and networking tasks can save a lot of time. This is true not only
because you can script the tasks for application on multiple computers, but you can
also save time by not having to navigate through frequently complex user interface
(UI) dialog boxes when you use PowerShell to configure individual computers.

In this chapter, we discussed how to add roles or features and manage Group
Policy. We also discussed the module extension manager, IIS, DNS Server,
Hyper-V, and AppLocker.

DevOps is a modern term and there is some disagreement about what it demands,
but at the heart it is all about making changes safely through automation and
bridging the gap between operators and developers. There is a lot to do in this area,
but Windows Server 2012 and PowerShell 3.0 have made excellent progress towards
accomplishing those goals. PowerShell won't be the only tool in your automatic
DevOps toolbox, but it should be in every efficient developer's toolbox.

In the next chapter, we will take a look at the usage of Windows PowerShell in
managing and configuring unified communication (UC) components, especially
Microsoft Exchange Server, Lync Server, and Office 365.

[214]

http:///

Managing Unified
Communication
Environments with
PowerShell

Unified communication (UC) has become one of the most important components
of any organization, regardless of the size of the business, not only because of the
integration between different components but also because of the added value for
end users that can stay connected to the business, and be reachable and in control.
The term unified communication from a technological perspective always refers to
e-mails, Instant Messaging (IM), voice message, Voice over IP (VoIP), and a lot of
other amazing technologies that everyone uses on a daily basis.

Today, a lot of vendors in the market are providing comprehensive unified
communication solutions for different types of business sectors. However, in this
chapter the focus will be on Microsoft unified communication on-premise and
cloud-hosted solutions, and how Windows PowerShell can be used to configure
and manage them easily.

This chapter will discuss how to start using Windows PowerShell to perform the
basic and advanced administration tasks for Exchange Server, Lync Server, and
Office 365.

http:///

Managing Unified Communication Environments with PowerShell

In this chapter we will cover:

* What Exchange Management Shell is

* How to use PowerShell to do Exchange Management tasks
* What Lync Management Shell is

* How to use PowerShell to do Lync Management tasks

* Windows PowerShell with Office 365 and Exchange Online Service

What Exchange Management Shell is

Exchange Management Shell (EMS) is a normal Windows PowerShell console that
runs a set of Exchange-related Windows PowerShell snap-ins and cmdlets that are
loaded when Exchange Management Shell is started up. It also shows a basic and
quick guidance for using it and some effective daily Exchange Management Shell
tips each time you open it.

EMS is the Windows PowerShell interface that allows you to easily perform
Exchange Server administrative tasks, such as creating mailboxes, configuring mail
flow policies, and managing security permissions in addition to being able to execute
normal Windows PowerShell cmdlets and functions.

3 Machine: Exch.CoEx.local M

Welcome to the Exchange Management Shell?
Full list of cmdlets: Get—Command
Only Exchange cmdlets: Get—ExCommand
mdlets that match a specific string: Help *<stringdx
r
: Help <cmdlet name> or <{cmdlet name>
Bhow quick reference guide: QuickRef
[Exchange team blog: Get-ExBlog
Show full output for a command: {command> ! Format-List
ip of the day #48:
[Forgot what the available parameters are on a cmdlet? Just use tab completion? Type:

Set-Mailbox —<{tah>

Jhen you type a hyphen (~> and then press the TAB key. you cycle through all the available parameters on the cmdlet. Wan
to narrow your search? Type part of the parameter’s name and then press the TAB key. Type:

Set-Mailbox -Prohibit{tab>

ERBOS Connecting to Exch.CoEx.local.
onnected to Exch.CoEx.local.
ndouwsNsystem32>_

On having a deeper look at EMS shortcut properties, you will obviously notice that
Exchange Management Shell is nothing more than running a powershell.exe file
with an Exchange script.

[216]

http:///

Chapter 8

G\
Vi

EF

Exchange Management Shell Properties -

Colors | Security I Details I Previous Versions

General | Shortcut | Options I Fort I Layout

.- BExchange Management Shell

Target type: Application

Target location: v1.0

Target: |ershe||.axe noexit -command "|'C:\Program Files"-|

Start in: | |

Shortout key: | None |

Run: | Mormal window v |
Comment: |Manages the Exchange e-mail system with the cn||
Open File Location | | Change lcon.... | | Advanced. .. |
0K || Canecel Apply

The Exchange script loaded by Exchange Management Shell is located at
%SystemDrive% | Program Files | Microsoft | Exchange Server | V15
| Bin | RemoteExchange.psl.

Exchange Management Shell tips

Use the Get - ExCommand cmdlet to list the Exchange Server

cmdlets and functions only

Use the Get -Tip cmdlet to get a new Exchange tip
Use the Get -ExBlog cmdlet to open the Exchange Server

team blog

[217]

http:///

Managing Unified Communication Environments with PowerShell

How to make Windows PowerShell
understand Exchange Server cmdlets

Launching EMS is a quick and nice way to jump into the Exchange PowerShell
environment and start doing things. However, sometimes you may want to write

a long, complex script with a lot of debugging, comments, and breakpoints so that
you can move from the traditional Windows PowerShell blue console to Windows
PowerShell Integrated Scripting Environment (ISE) for a better scripting experience.
Moreover, you may want to bring the Exchange environment to the ISE so a couple
of options are available in order to achieve this goal.

Option 1 — do it like EMS

In this method, we will load into Windows PowerShell ISE the cmdlets and functions
related to Exchange Server, by running the RemoteExchange . ps1 script inside the
PowerShell ISE and then executing the Connect -ExchangeServer -Auto cmdlet to
connect to the Exchange Server in your organization.

= Machine: Bxch.CoBxocsl BN

Tike [d1 Wiew Tecls Oebwg Adcons lelp o
- = [B » [m o= & 7

Nemctelxchergeps X

2 & Teagraahl 03 Huevwwal D Torparal e &1 weehls rome wed

#lcad hashteble oF Tocelized string

4 Lnpe-t-locals zedvata -uimdingvyscisble ReErotakxchangs Localizeditrings -kilenans Ranotesmcharge, strings. asdl
H

56 THCIAST &TSMEW WTOATH Jasdsiaxsy R
tunctian phocanIncsed | 1nt | fprotorraciiota g

St bt 1

g A ciindonticth shoztowi.raved v esPhosd calws ndont doewidsh
10 ir gapesler =wileicl b FroaenT Tomels o limaicln b

1F |

12 # tirst, outTor 5722 hos to b sct to wirdowsize o mare
1 # this cpzration does rot ususlly fail

14 ort.uT ranui. dufferuize

15 A fparron widlh

LK (RS TTHEN froe vl eeeculad idlmd

L -

12 Sourr ent_width-Sare dnidtk

1% | aheztopioraed, ufferbize sourrent

0 F

Bl il s Ding Bl Cer® e s ol s alevady Lenr

2 rasiine wincoe Size. S we sre well within mae J9v-t. 9% wom't thros =ccectizo.

Fhow Full o
i al he day mhe s
p cnd ok, The How b Iet |ots wau add menagomon
merbers will be granced the parns ans prawided by the naregsmant
vl 3o Monleas <vsulea

d £ grant par 11: groups of adw
for ard & TENAgEnENT

Corncct CwchangeSorwver Auto

IR AR E-) | L

Crmpred |

[218]

http:///

Chapter 8

Option 2 — loading Exchange Server snap-ins

In this method, you will load the snap-ins related to Exchange Server directly into
Windows PowerShell ISE without using the RemoteExchange . ps1 script. During
Exchange Server installation, the Exchange DLLs and snap-ins are installed and
registered in the system.

You can get a list of the Windows PowerShell snap-ins available in the current
PowerShell session using the Get - PSSnapin cmdlet, with the -Registered
parameter used to display the list of registered snap-ins even if they are not added
or available in the current Windows PowerShell session. In order to get the list of
PowerShell snap-ins registered by Exchange Server, just filter the cmdlet results by
the word Exchange. And the wildcard symbol * is used to idetifiy all snap-ins that
contain the word Exchange.

#Get list of Exchange available PowerShell Snap-ins

PS> Get-PSSnapin -Registered *Exchange*

ey Administrator: Windows PowerShell I;‘i-

oft Corporation. All rights reserwved.

\Administrator.COEX> Get-P3Snapin -Registered *Exchange=

: Microsoft.Exchange.Management. Powershell. E2010
: 1.0
: Admin Ta for the Exchange Server

: Microsoft.Exchange.Management. Powershell. Setup
: 1.0
: Setup Tasks for the Exchange Server

: Microsoft.Exchange.Management. Powershell. Snapln
1.0
: Admin Tasks for the Exchange Server

: Microsoft.Exchange.Management. Powershell. Support

1.0
: Support Tasks for the Exchange Server

“WAdministrator. COEX=

Now after getting the list of available Exchange PowerShell snap-ins, we need to
load it into the current PowerShell session using the Add-pPSsnapin cmdlet.

[219]

http:///

Managing Unified Communication Environments with PowerShell

Since the Exchange had registered four snap-ins, to quickly load them into Windows
PowerShell, use the pipeline trick to get the list of Exchange PowerShell snap-ins and
add them directly.

#Add Exchange Server PowerShell Snap-ins
PS> Get-PSSnapin -Registered *Exchange* | Add-PSSnapin

e Administrator: Windows PowerShell

A1l rights reserved.

apin

snap-in contains cmdlets used to manage components 5 werShell.
apin -Registered xchange* | Add-PSSnapin
t.PowerShell. Core
Powershell snap-in contains omdlets used to manage components of Windows Powershell.

.5napIn

ange. Management. Powers .E2010

erver

ange.Management. PowerShell. Setup

for the Exchange Server
.Exchange.Management . Powershell. Support

for the Exchange Server

dministrator.COEX>

Managing Exchange using PowerShell
Remoting

In Chapter 3, Using PowerShell Remoting, we had a long discussion about Windows
PowerShell Remoting and how PowerShell uses different ways to allow you to
connect to a remote computer using a remote shell. For Exchange Server, we use
implicit remoting to connect to the Client Access Server (CAS) using a virtual
directory called Powershell in order to get the Exchange cmdlets and load them on
the local computer.

[220]

http:///

Chapter 8

To connect to Exchange using implicit remoting, perform the following steps:

1. Create a new PowerShell Remoting session using the New-PSsession cmdlet.

2. Import the created session to the local computer using the Import-
pPSSession cmdlet.

Use the following script:
#Create new implicit remoting session

$Session = New-PSSession -ConfigurationName Microsoft.Exchange
-ConnectionUri "http://Exch.Contoso.local/PowerShell" -Credential
(Get-Credential) -Authentication Kerberos

#Import the PowerShell remoting Session
Import-PSSession -Session $Session
In order to disconnect the Exchange remoting session, use the
Remove-PSSession cmdlet:

#Remove Exchange Remoting Session

PS > Remove-PSSession -Session $Session

Getting started with Exchange scripting

In this section, we will help you get started with Exchange Server scripting and
automation using a set of Windows PowerShell scenarios and examples.

Scenario 1 — creating multiple mailboxes from
CSV file

In this scenario, you are a messaging administrator who want to create multiple
exchange mailboxes using a CSV file that contains new employees' information
sent by the HR department.

1. Import the CSV file using the Import-csv cmdlet, and then store the
imported data in a defined variable.

2. Define a variable called ou to store the organizational unit (OU) location
information, and then prompt the user to enter the OU name.

3. Define a variable called Domain to store the domain suffix information,
and then prompt the user to enter the domain suffix.

4. Use the ForEach loop to iterate over the list of users imported from the
CSV file.

[221]

http:///

Managing Unified Communication Environments with PowerShell

5. Use the New-Mailbox cmdlet within the ForEach loop defined in the
previous step to create a new user account in the active directory,
and then create a mailbox for this user account.

Use the following script:

#Import a file named "UsersList.CSV" and save it in variable called
"SUsersList™"

$UsersList = Import-Csv C:\UsersList.csv

#Prompt the user to enter the name of the OU that will store the new
user accounts (e.g. IT)

$0U = Read-Host -Prompt "Enter the name of the OU..."

#Prompt the user to enter the Domain Suffix (e.g. Contoso.local)
$Domain = Read-Host -Prompt "Enter the domain suffix..."

#Iterating over the $UsersList to create an account for each user
ForEach ($User in $UsersList)

{

New-Mailbox -FirstName $User.Firstname
-LastName $User.Lastname °
-DisplayName ($User.Firstname + " " + $User.Lastname)

-Name (SUser.Firstname + " " + S$User.Lastname)

-Alias $User.Alias

~

-SamAccountName S$User.Alias
-UserPrincipalName "$User.Alias@$Domain" °
-Password (ConvertTo-SecureString -String "P@sswOrd" ~-AsPlainText

-Force) °~

-OrganizationalUnit $OU
-ResetPasswordOnNextLogon $true

Scenario 2 — creating a shared mailbox

In this scenario, you are messaging administrator who receive a request from the
sales team asking for a shared mailbox for the department so that any member of the
sales team can have the ability to read, and also reply to customer inquiries received
on this alias.

1. Create a shared mailbox using the New-Mailbox cmdlet with the
-Shared switch.

[222]

http:///

Chapter 8

2. Create a new distribution group for the sales team using the
New-DistributionGroup cmdlet, and grant it access on the shared
mailbox created in the previous step so that any member of the team
can get access to the shared mailbox without having to having to manually
assign, send, and receive rights for each user. The distribution group type
should be security to be able to assign security permissions on it.

3. Assigna FullAccess permission to the group created in the previous step on
the shared mailbox using the Add-MailboxPermission cmdlet to grant the
group members the ability to access the mailbox.

4. Assign a SendAs permission using the Add-RecipientPermission cmdlet to
allow group members to send e-mails (reply) from the shared mailbox alias.

Use the following script:

#Enter the alias of Shared Mailbox to be created
SMBalias = Read-Host -Prompt "Enter Shared Mailbox name..."

#Enter the alias of Distribution Group to be access to Shared mailbox
$DGalias = Read-Host -Prompt "Enter Distribution Group name..."

#Create a new shared mailbox
New-Mailbox -Name S$MBalias -Shared

#Create a new security distribution group
New-DistributionGroup -Type Security -Name $DGalias -SamAccountName
$DGalias

#Assign FullAccess rights on the shared mailbox to the distribution group
Add-MailboxPermission -Identity $MBalias -User $DGalias -AccessRights
FullAccess -InheritanceType All

#Assign SendAs rights to disribution groupn on the shared mailbox
Add-RecipientPermission $MBalias -Trustee $DGalias -AccessRights
"SendAs"

[223]

http:///

Managing Unified Communication Environments with PowerShell

Scenario 3 — creating a resource (room/
equipment) mailbox

In this scenario, you are messaging administrators who receive a request from
the corporate facilities team asking for help in automating the process of making
meeting room and equipment reservations.

1. Create a resource mailbox using the New-Mailbox cmdlet with the ~-Room or
-Equipment parameter to define the type of resource mailbox you want to
create, that is, either Room or Equipment.

2. Automate a resource calendar reservation using the set-
CalendarProcessing cmdlet with the following group of parameters:

° -AutomateProcessing: To allow auto acceptance of a

resource reservation

-MaximumDurationInMinutes: To define the maximum duration for
a single resource reservation

-AddOrganizerToSubject: To show the organizer's name in the
reservation subject

-EnableResponseDetails: To send a detailed response for resource
reservation acceptance or rejection

—ProcessExtenralMeetingMessages: To define whether the
resource can be reserved by external users or not

Use the following script:

#Enter the name of the resource mailbox
SMailbox = Read-Host -Prompt "Enter the name of the resource
mailbox..."

#Enter the type of required resource

Do {$type = Read-Host -Prompt "Enter the type of the resource (1 for
Room, 2 for Equipment) "}

While ((Stype -ne 1) -and (Stype -ne 2))

#Create resource mailbox with a selected type
If ($type -eq 1)

{New-Mailbox -Name S$Mailbox -Room}

elseif (Stype -eq 2)

{New-Mailbox -Name $Mailbox —Equipment}

#Define resource reservation

Set-CalendarProcessing -Identity $Mailbox -AutomateProcessing
AutoAccept -MaximumDurationInMinutes 120 -AddOrganizerToSubject S$true
-EnableResponseDetails S$true -ProcessExternalMeetingMessages S$false

[224]

http:///

Chapter 8

Scenario 4 — creating a distribution group

In this scenario, you are messaging administrators who want to create a distribution
group for corporate departments, to make the communication between team
members and corporate departments faster and easier.

1. Import the CSV file using the Import-csv cmdlet, select the column
containing the department information using the select-0Object cmdlet,
and then group the department rows in department column using the
Group-Object cmdlet in order to unify the duplicate values.

2. Select the column that contains the results of departments' column filtering
and grouping using the Select-0Object cmdlet, then store the imported data
in a defined variable.

3. Use the ForEach loop to iterate over the list of departments extracted from
the CSV file.

4. Use the New-DistributionGroup cmdlet within the ForEach loop defined in
the previous step to create a new distribution group for each department.

5. Use the ForEach loop to iterate over the list of users extracted from the
CsV file.

6. Use the Update-DistributionGroupMember cmdlet to add each user to the
related department's distribution group.

Use the following script:

#Import a file named "UsersList.CSV", select and group the department,
save it in variable called "sSDepartmentsList"

$UsersInfo = Import-Csv C:\UsersList.csv

$DepartmentsList = $UsersInfo | Select Department | Group Department |
Select Name

#Iterating over the $DepartmentsList to create a distribbution group
for each department.
ForEach ($Department in $DepartmentsList)

New-DistributionGroup -Type Distribution -Name S$Department.Name
-SamAccountName $Department.Name.Trim() -DisplayName $Department .Name
-MemberJoinRestriction Open -OrganizationalUnit "DGg"

}

#Iterating over the $UsersInfo to add each user to the related a
distribbution group according to department.
ForEach ($User in $UsersInfo)

{
Update-DistributionGroupMember -Identity $User.Department -Members
$User.Alias -Confirm:S$false

}

[225]

http:///

Managing Unified Communication Environments with PowerShell

Scenario 5 — defining a MailTip for a
distribution group

In this scenario, you are messaging administrators who want to add a MailTip for the
technical support department's distribution group that is asking the users to check
the IT support portal before opening an incident request.

1. Use the set-DistributionGroup cmdlet to add a MailTip to the required
distribution group.

2. Use the -MailTip parameter to define the MailTip text.

Use the following script:

#Enter the Distribution Group Name/Alias
$Alias = Read-Host -Prompt "Enter the Distribution Group Name/
Alias..."

#Enter the MailTip Text
$TipText = Read-Host -Prompt "Enter the MailTip Test..."

#Update the DG with the MailTip
Set-DistributionGroup -Identity $Alias -MailTip S$TipText

Scenario 6 — creating a dynamic distribution
group

Unlike a normal distribution group, a dynamic distribution group does not have
criteria for members but has one for membership. In other words, you do not have

to add each member to the group, but you need to define filtering criteria so that
each time you send an e-mail to this group, the Exchange server will query active
directory using the mentioned criteria and send the message to the list retrieved from
this query.

In this scenario, you are messaging administrators who want to create a dynamic
distribution group for a Technology department that contains subdepartments,
such as Software, Networking, Infrastructure, and Security.

1. Create a dynamic distribution group using the New-
DynamicDistributionGroup cmdlet.

2. Use the -IncludedRecipients parameter to define the recipients to be
included in this group.

[226]

http:///

Chapter 8

3. Use the -RecipientContainer parameter to define the scope of the
recipients based on their location in active directory.

4. Use the -ConditionalDepartment parameter to define which departments
should be included in the group based on the department property of the
user object in the active directory.

Use the following script:

New-DynamicDistributionGroup -Name "Information Technology Team"
-IncludedRecipients MailboxUsers -RecipientContainer "Contoso.local/
HQ/IT" -Alias "ITteam" -ConditionalDepartment "Software","Security", "N
etworking", "Infrastructure" -OrganizationalUnit "DDGs"

Scenario 7 — creating multiple mailbox
databases from a CSV file

In this scenario, you are messaging administrators who want to minimize the
administration efforts of Exchange mailbox databases. So, we create multiple
Exchange mailbox databases for each department in our organization using a CSV
file that contains new employee information sent by the HR department.

1. Import the CSV file using the Import-csv cmdlet, select the column that
contains department information using the Select-0Object cmdlet, and then
group the department column using the Group-0bject cmdlet in order to
unify the duplicate values.

2. Select the column that contains the results of the group of department
columns using the Select-0Object cmdlet, and then store the imported data
in a variable.

3. Use the ForEach loop to iterate over the list of departments extracted from
the CSV file.

4. Use the New-MailboxDatabase cmdlet within the ForEach loop defined in
the previous step to create new mailbox databases.

5. Use the Mount -Database cmdlet within the ForEach loop to mount the
database created in the previous step.

Use the following script:

#Import a file named "UsersList.CSV", select and group the department,
save it in variable called "$DepartmentsList"

$DepartmentsList = Import-Csv C:\UsersList.csv | Select Department |
Group Department | Select Name

[227]

http:///

Managing Unified Communication Environments with PowerShell

#Iterating over the $DepartmentsList to create a database for each
department, and then mount it.

ForEach ($Department in $DepartmentsList)

{

New-MailboxDatabase -Name $Department.Name -Server "EXCH-MB-01"
-EdbFilePath ("c:\Mailbox\" + "$Department.Name" + "\" + $Department.
Name + ".edb") | Mount-Database

}

Scenario 8 — exporting mailboxes to PST files

In this scenario, you are messaging administrators who want to back up the current
Exchange Server environment using an alternative way that allows an easier and
faster way to restore a single mailbox. So we will use Windows PowerShell to export
every Exchange mailbox to PST files. For the purpose of achieving this task, we will
use the New-MailboxExportRequest cmdlet.

1.

In order to get the New-MailboxExportRequest cmdlet, we have to load
the Microsoft .Exchange .Management . PowerShell.E2010 PowerShell
snap-in.

Use the Get-MailboxDatabase cmdlet to retrieve a list of all the available
Exchange mailbox databases.

Use the ForEach loop to iterate over the list of mailbox databases retrieved in
the previous step.

Use the Test-Path and New-Item cmdlets to validate the existence of a
folder for each database, and create it if it does not exist.

Use the Get-Mailbox cmdlet with the -Database parameter to retrieve a list
of all the available Exchange mailboxes per database.

Use the ForEach loop to iterate over the list of mailboxes retrieved in the
previous step.

Use the New-MailboxExportRequest cmdlet within the ForEach loop
defined in the previous step to export each mailbox to the PST file.

Use the -IsArchive parameter with the New-MailboxExportRequest cmdlet
to export the archived mailbox to the PST file.

[228]

http:///

Chapter 8

Use the following script:

#Load Exchange PowerShell Snap-in
Add-PSSnapin Microsoft.Exchange.Management.PowerShell .E2010

#Iterating over the mailboxes database
ForEach ($DB in Get-MailboxDatabase)

{

#ticheck the existence of database backup folder
if (! (Test-Path "\\EXCH\Backup\SDB"))

{

#Create backup folder for database if not exist
New-Item -ItemType Directory -Name $DB.Name -Path "\\EXCH\Backup\"

}

#Iterating over the mailboxes for in each database
ForEach ($SMailbox in (Get-Mailbox -Database $DB.Name))

{

#Export each mailbox into releated database folder
New-MailboxExportRequest -Mailbox $Mailbox.Alias -FilePath
("\\EXCH\Backup\" + $DB.Name + "\" + SMailbox.Alias + ".pst")

}
}

Scenario 9 — importing a mailbox from PST
files

In this scenario, you are messaging administrators who are trying to restore an
Exchange database from a backup but facing a problem due to a corrupted
backup file. So, we need to restore the mailboxes by importing the PST file

for each mailbox. For the purpose of achieving this task, we will use the
New-MailboxImportRequest cmdlet.

1. Inorder to get the New-MailboxImportRequest cmdlet, we have to load the
Microsoft.Exchange.Management . PowerShell.E2010 PowerShell snap-in.

2. Use the Get-GetChilditem cmdlet to retrieve the list of all the available
PST files.

3. Use the ForEach loop to iterate over the list of files retrieved in the
previous step.

4. Use the New-MailboxImportRequest cmdlet within the ForEach loop
defined in the previous step to import each mailbox to the PST file.

5. Use the -IsArchive parameter with the New-MailboxImportRequest cmdlet
to import the PST file to the archived mailbox.

[229]

http:///

Managing Unified Communication Environments with PowerShell

Use the following script:

#Load Exchange PowerShell Snap-in
Add-PSSnapin Microsoft.Exchange.Management.PowerShell .E2010

#Iterating over the backup file to get the list of *.pst files
ForEach ($file in (Get-ChildItem "\\EXCH\Backup\" -Recurse -Include
* . pst))

{

#parse file name and remove the extension to get the user alias
SAlias = $file.Name.Replace(".pst","")

#Import the PST file to the user inbox
New-MailboxImportRequest -Mailbox $Alias -FilePath $file.Name

Scenario 10 — hiding mailbox users from
Global Address List (GAL)

In this scenario, you are messaging administrators and your manager has asked you
to hide the users under the Directors OU from the corporate GAL.

1. Get the list of Exchange mailboxes using the Get -Mailbox cmdlet with the -
OrganizationUnit parameter in order to filter by OU name.

2. Use the Set-Mailbox cmdlet with the -HiddenFromAddressListsEnabled
parameter to hide the retrieved mailboxes from the GAL.

Use the following script:

PS > Get-Mailbox -OrganizationalUnit "Directors" | Set-Mailbox
-HiddenFromAddressListsEnabled $true

Scenario 11 — getting mailbox users who
never accessed their mailboxes

In this scenario, you are messaging administrators and you have got a request from
the HR asking for a list of users who never access their mailboxes.

1. Get the list of Exchange mailboxes using the Get -Mailbox cmdlet.

2. Use the Get-MailboxStatistics cmdlet to get more insight on the
mailboxes retrieved in the previous step.

3. Use the where-0Object cmdlet to filter the list and show only the mailboxes
with no available LastLogonTime information.

[230]

http:///

Chapter 8

Use the following script:

PS > Get-Mailbox | Get-MailboxStatistics | Where LastLogonTime -eq
Snull

Scenario 12 — generating an organization
mailbox statistics report

In this scenario, you are messaging administrators and you want to generate a
mailbox statistics report for all the Exchange mailboxes in the organization.
1. Get the list of Exchange mailboxes using the Get -Mailbox cmdlet.

2. Use the Get-MailboxStatistics cmdlet to get more insight on the
mailboxes retrieved in the previous step.

3. Use the where-0Object cmdlet to filter the list and show only the mailboxes
with the available LastLogonTime information.

4. Use the select-0Object cmdlet to select the items to be included in
the report.

5. Use the Export-csv cmdlet to export the results to a CSV file.

Use the following script:

#Generating CSV report for Exchange Mailboxes Statistics

Get-Mailbox | Get-MailboxStatistics | Where LastLogonTime -ne $null |
Select DisplayName, ItemCount, LastLogonTime, MailboxType

, TotalItemSize, Database, ServerName, IsArchiveMailbox | Export-Csv
C:\Reports\MailboxStatisticsReport.csv

Scenario 13 — generating a mailbox size
report

In this scenario, you are messaging administrators and want to generate a mailbox
size report for all the Exchange mailboxes in the organization that exceed a
specific size.

1. Prompt the user to enter the size that he/she wants to search for.

2. Get the list of Exchange mailboxes using the Get -Mailbox cmdlet.

3. Use the Get-MailboxStatistics cmdlet to get more insight on the
mailboxes retrieved in the previous step.

4. Use the where-object cmdlet to filter the list and show only the mailboxes
with TotalItemSize that exceed the specified size.

[231]

http:///

Managing Unified Communication Environments with PowerShell

5. Use the select-0Object cmdlet to select the items to be included in
the report.

6. Use the Export-csv cmdlet to export the results to a CSV file.

Use the following script:

#Get the maximum size of mailbox

SMailboxSize = Read-Host -Propmt "Enter maximum mailbox size (e.g.
320MB) "

#Generating CSV report for Exchange Mailboxes Size

Get-Mailbox | Get-MailboxStatistics | Where TotalItemSize -gt
SMailboxSize | Select DisplayName, ItemCount, LastLogonTime,
MailboxType, TotalItemSize, Database, ServerName, IsArchiveMailbox |
Export-Csv C:\Reports\MailboxStatisticsReport.csv

What Lync Server Management Shell is

Like EMS, Lync Server provides a Windows PowerShell interface that allows you
to perform Lync Server administrative tasks available in Lync Control Panel using
Windows PowerShell. An interesting fact about Lync Server is that most of its
configurations and settings cannot be done using the GUI but can be done using
only Windows PowerShell.

Lync Server Management Shell is a normal Windows PowerShell console running a
set of Lync-related cmdlets and functions loaded on Windows PowerShell startup.
EMS uses a set of Windows PowerShell snap-ins to load Exchange cmdlets, however
Lync Server Management Shell uses PowerShell modules to load Lync cmdlets.

ministrator: Lync Server Management Sheii?’

l_:lcll;;‘liullll.ltll-\:llll.-llt: L P-4

Lync {Approve—-CsDevicelpdateRule,. ...
;‘IJ‘.LI'U-’:U:I' .ru\'": 'Q;IGll-l) {r‘ll.‘l.l.‘l Culllpl.lincl', r‘ll.‘ll.:. CUII i'GIIl.., C- - -
Microsoft.PowerShell. Utility {Add-Member. Add-Type. Clear—...
SetCsPinSendCAlle lcomeMail

startup

[232]

http:///

Chapter 8

On having a deeper look at Lync Server Management Shell's shortcut properties, you
will obviously notice that Lync Server Management Shell runs a powershell.exe
file that loads the Lync Server PowerShell module.

Vi

Lync Server Management Shell Properties £

Colors I Security I Detailz I Previous Versions

General | Shortcut | Options I Fort I Layout

@ Lync Server Management Shell

Target type: Application

Target location: v1.0

Target: |5|::|f't Lync Server 2D13\Modu|es\L1_.'nc\L‘_.'nc.psd1'|

Start in: |"C:\Prog|am Files\Microsoft Lync Server 20134" |

Shortcut key: |None |

Run: | Nomal window v |
Comment: |Manages Lync Server with the command prompt. |
Open File Location | | Change lcon... | | Advanced... |
oK || Cancel Apply

The Lync Server module loaded by Lync Server Management Shell is
located at %SystemDrive% | Program Files | Microsoft | Common
Files | Microsoft Lync Server 2013 | Modules | Lync | Lync.psdl.

[233]

http:///

Managing Unified Communication Environments with PowerShell

How to make PowerShell understand
Lync Server cmdlets

As we do with Exchange Server, if we want to launch Lync Server Management
Shell, we have to either execute Lync Server Management Shell to load Lync Server
cmdlets within the normal blue shell window or load related Lync PowerShell
modules within the PowerShell ISE for a better experience when writing scripts
that deal with Lync management.

Loading a Lync Server module

In this method, we will load Lync Server PowerShell modules directly on Windows
PowerShell ISE. During the Lync Server installation preparation, a couple of
Windows PowerShell modules are getting installed and registered in the system.

To get the list of PowerShell modules imported in the current PowerShell session, we
will use the Get-Module cmdlet with the -ListAvailable parameter to display the
list of available modules in our system even if they were not imported in the current
PowerShell session. In order to get the list of PowerShell modules installed by Lync
Server, use the Get -Module cmdlet with the -ListAvailable parameter and then
filter by the word Lync.

#Get list of LYNC available PowerShell modules
PS> Get-Module -ListAvailable *Lync*

[~ Administrator: Windows PowerShell

PSs C:\Users'Administrator.COEX> Get-Module -ListAvailable *Lync*®
Directory: C:\Program Files‘Common Files‘\Microsoft Lync Server 2013\Modules

Lync {Get-!

. n icy, 1licy, Remove-CsClientPolicy, New-C...
Script LyncOnlineConnector {Get-CsWebTicket, Mew 1

PS C:\Users‘Administrator.COEX=

[234]

http:///

Chapter 8

Now after getting the list of available Lync PowerShell modules, we have to load
them into the current Windows PowerShell session using the Import-Module
cmdlet. Since the Lync had registered two modules, you can import them directly
in one step by using the pipeline method to get the list of Lync modules and import
them directly.

#Import Lync Server PowerShell Modules

PS > Get-Module -ListAvailable *Lync* | Import-Module

Managing Lync using PowerShell
Remoting

Like Exchange Server, Lync Server uses implicit remoting to connect to a frontend
server using a virtual directory called ocsPowershell, in order to load the Lync
cmdlets on the local computer.

To connect to Lync using implicit remoting, perform the following steps:

1. Create a new PowerShell Remoting session using the New-PSsession cmdlet.

2. Import the created session to the local computer using the
Import-PSSession cmdlet.

Use the following script:

#Create new implicit remoting session
$Session = New-PSSession -ConnectionUri "https://Lync.Contoso.local/
OcsPowerShell" -Credential (Get-Credential)

#Import the PowerShell remoting Session
Import-PSSession -Session $Session

In order to disconnect the Lync remoting session, use the Remove-PSSession cmdlet:

#Remove Lync Remoting Session

Remove-PSSession —-Session $Session

[235]

http:///

Managing Unified Communication Environments with PowerShell

Getting started with Lync scripting

In this section, we will help you getting started with Lync Server scripting and
automation using a set of Windows PowerShell scenarios and examples.

Scenario 1 — enabling Lync to user accounts

In this scenario, you are voice administrators who have recently installed Lync
Server in the corporate network and want to enable the users for Lync in order to be
able to use the Lync client on their machines.

1. Get the list of available users using the Get -CsadUser cmdlet, and then filter
the results to make sure that retrieved users have e-mail addresses and are
not enabled for Lync use.

Define a variable called Users to store the list of filtered users.
Use the ForEach loop to iterate over the list of users.

Define a variable called s1P to store the parsed string of the user's
SIP address.

5. Use the Enable-CsUser cmdlet within the ForEach loop defined in the
previous step to enable each user for Lync capabilities. Use the Get -Ccspool
cmdlet to get the Lync pool.

Use the following script:

#Get list of users who are not enabled for lync

$Users = Get-CsAdUser -Filter {(Enabled -ne $true) -and
(WindowsEmailAddress -ne $null)}

#lterating over the list of users to enable each one of them
Foreach ($User in S$Users)

{

$sip = "sip:" + $User.WindowsEmailAddress

#Enable users for LYNC

Enable-CsUser -Identity $User.SamAccountName -RegistrarPool (Get-
CSPool) .Identity -SipAddressType EmailAddress -SipAddress $sip

}

[236]

http:///

Chapter 8

Scenario 2 — configuring IM file transfer
filtering configuration

In this scenario, you are messaging administrators who want to add an extra layer of
security to the Instant Messaging communication between the users. So, you enable
file transfer filtering to block specific file extensions from being sent over Lync. By
default, Lync Server creates a file transfer filter configuration with a global scope
across the Lync environment. So, let's create another configuration with SiteScope.

Create a new file transfer filtering configuration using the New-CsFileTransferFilt
erConfiguration cmdlet with the following group parameters:

* -Identity site: <Site Names: Defines the scope of the policy that is
to be applied

* -Action: This parameter defines whether to block all the file extensions
or to just block specific ones; by default, a list of extensions is added when
you select to block any extensions

Edit File Filter - CoEx
kd Commit | X Cancel
Scope: Site
Name: =
Cokx
|| Enable file filter
File transfer:

Block specific file types hil

File type extensions to block:

.ade .adp .a3pp .asp .bas .bat .«cer .chm .cmd .com .cpl .crt wcsh.
exe fup .grp .hip .hta .inf .ins Jisp .its js jse Jksh.Ink.mad .maf
.Mag .mam .magq .mar .mas .mat .mau .mav .maw .mda .mdb .
mde .mdt .mdw .mdz .msc .msi .msp .mst .ocx .ops .pcd .pif .p
.pnp .prf.prg .pst .reg .scf .scr.sct .shb shs tmp .url v vbe v
bs wvsd wsmacros wvss wst vsw .ws s wstawsh

* -Extension: Modifies the list of extensions by adding, removing,
or replacing extensions from the current list

* _WarningAction: Defines how to warn the sender about the file
transfer rejection

* -InMemory: Temporarily keeps the policy in memory instead of
committing it on the server

[237]

http:///

Managing Unified Communication Environments with PowerShell

Use the following script:

#Create a new file transfer filtering configuration
New-CsFileTransferFilterConfiguration -Identity site:CoEx -Action
Block -Extensions @{Add=".psl"} -WarningAction Stop

Scenario 3 — configuring IM URL filtering

In this scenario, you are messaging administrators who want to add an extra layer of
security to the IM communication between the users. So, we will enable URL filtering
to block hyperlinks from being sent over Lync.

Create a new file transfer filtering configuration using the New-
CsImFilterConfiguration cmdlet with the following parameters:

* -Identity site:<Site_Names>: Defines the scope of the policy that is to
be applied

e _Action: Defines the default action, either 211ow, Block, or Warn,
of the policy

* -BlockFileExtension: Blocks hyperlinks containing the file extension

* -WarnMessage: Sets the message to appear with hyperlinks if you choose the
Warn action

* -IgnoreLocal: Bypasses this policy for local intranet URLs; the default value
is true

Use the following script:

#Create a new url filtering configuration
New-CsImFilterConfiguration -Identity site:CoEx -Enabled S$true
-BlockFileExtension $true -Action Warn -WarnMessage "This is might
contain a harmful content" -IgnorelLocal $false

Scenario 4 — bulk assignments of client PIN

In this scenario, you are voice administrators who want to assign a Personal
Identification Number (PIN) to the newly created and enabled Lync users.

1. Get the list of available users using the Get -CsAdUser cmdlet, and then filter
the results to make sure that the retrieved users are enabled for Lync.

2. Get the client PIN information for each user retrieved in the previous step
using the Get-CsClientPinInfo cmdlet, and then filter the results to get
only the users with no PIN.

3. Assign a random client PIN using the Set-CsClientPin cmdlet, or add
the -pIN switch to define the PIN value.

[238]

http:///

Chapter 8

Use the following script:

#Set Client PIN

Get-CsAdUser -Filter {(Enabled -eq $true)} | Get-CsClientPinInfo |
Where IsPinSet -eqg $false | Set-CsClientPin

Or you can also use the following script:

#Get list of users with no PIN

$Users = Get-CsAdUser -Filter {(Enabled -eq $true)} | Get-
CsClientPinInfo | Where IsPinSet -eq $false

#define the initial start for PIN value
$PINinit = 50000

#iterating of users list
Foreach ($User in $Users)
{
#setting the user PIN info
Set-CsClientPin -Identity $User.Identity -Pin $PINinit
#increase the PIN by 1 each
SPINinit++

Scenario 5 — getting number of users using
OCS/Lync

In this scenario, you are voice administrators who want to generate a simple report
showing which users are using Office Communication Server (OCS) and which are
using Lync Server.

1. Get the list of available users using the Get-CsuUser cmdlet.

[e]

—0OnOfficeCommunnicationServer: Gets the list of users on Office

Communication Server

° -onLyncServer: Gets the list of users on Lync Server

2. Use (Get-CsUser) .Count to count the number of records returned in
the result.

[239]

http:///

Managing Unified Communication Environments with PowerShell

Use the following script:

#Write the number of users on OCS

Write-Host "Office Communication Server Users:" (Get-csUser
-OnOfficeCommunicationServer) .Count -ForegroundColor Green
#Showing the list of OCS Users

Get-csUser -OnOfficeCommunicationServer | Select DisplayName,
SamAccountName, sipAddress, LineURI, EnterpriseVoiceEnabled | ft

#Write the number of users on LYNC

Write-Host "Lync Server Users:" (Get-csUser -OnLyncServer) .Count
-ForegroundColor Green

#Showing the list of Lync Users

Get-csUser -OnLyncServer | Select DisplayName, SamAccountName,
sipAddress, LineURI, EnterpriseVoiceEnabled | ft

Scenario 6 — setting the conference
disclaimer

In this scenario, you are voice administrators who want to set a disclaimer for a
conference so that each user can see it before joining the conference. For example,
you want to inform the users that the meeting will be recorded.

Set the conference disclaimer using the set-CsConferenceDisclaimer cmdlet.

Use the following script:

#Setting conference dislaimer

Set-CsConferenceDisclaimer -Header "Welcome to Contoso Conferencing
Center" -Body "Kindly, note that according to corporate policy this
meeting will be recorded"

Microsoft Office 365

Office 365 is the Microsoft cloud implementation for Exchange Server, Lync Server,
SharePoint Server, and Office Web Apps. Office 365 is a Software-as-a-Service
solution that provides you with the same experience as traditional on-premise
technologies with an equivalent for each product.

On-premise product Equivalent cloud product
Microsoft Exchange Server Microsoft Exchange Online
Microsoft Lync Server Microsoft Lync Online
Microsoft SharePoint Server Microsoft SharePoint Online
Microsoft Office Professional Microsoft Office Web Apps

[240]

http:///

Chapter 8

Office 365 allows you to use the internal directory service to authenticate online
services and also implement a hybrid environment that operates both on-premise
and cloud-hosted solutions.

Office 365 and Windows PowerShell

In Office 365, Windows PowerShell is a critical component for performing

almost every single administration task, and most tasks are not available on the
management portal. So in order to start using Windows PowerShell for Office 365,
you have to download and install the following components:

* Microsoft Online Service Sign-In Assistant

e Microsoft Online Service Module for Windows PowerShell

Download links for Microsoft Online Service components are available

athttp://onlinehelp.microsoft.com/en-us/office365-
' enterprises/hh124998.aspx.

After installing the Microsoft Online Service Module for Windows PowerShell, the
following modules should be available in your system:

® MSOnline

® MSOnlineExtended

Managing Office 365 using PowerShell

Now to start using the preceding modules, you have to either use Microsoft Online
Service Module for the Windows PowerShell shortcut or import the modules

using the Import-Module cmdlet to load the Microsoft Online Service cmdlets and
functions. Then, use the Connect-MsolService cmdlet to connect to your Office 365
account.

#Import MSOnline Modules
Get-Module -ListAvailable *MSOnline* | Import-Module

#Connect to Office 365 account
Connect-MsolService -Credential (Get-Credential username@domain.
onmicrosoft.com)

[241]

http:///

Managing Unified Communication Environments with PowerShell

The following screenshot shows the Microsoft Online Services Module for
Windows PowerShell:

|

(%] Administrator: Microsoft Online Services Module for Windows PowerShell -
PS C:\uindows\system32> Connect-MsolService -Credential (Get-Credential)

cmdlet Get-Credential at command pipeline position 1
Supply values for the following parameters:
Credential

PS C:\windows\system32> Get-MsolAccountSku

AccountSkuld ActiveUnits WarningUnits ConsumedUnits

Managing Microsoft Exchange Online using
PowerShell

In order to manage Exchange Online using Windows PowerShell, we use the same
method that we use for Microsoft Exchange Server implicit remoting, but with minor
changes in the session configuration.

The differences between the session configuration for Microsoft Exchange Server and
Exchange Online is as follows:

* The use of basic authentication for Exchange Online instead of Kerberos
authentication for Exchange Server because we are connecting to a
website hosted on the IIS server and not on a member of the local active
directory domain.

®* _ConnectionUri is https://ps.Outlook.com/PowerShell instead of
https://Exchange-Server-FQDN/PowerShell

* The -AllowRedirection parameter allows a connection to Microsoft
Exchange Online using a unified address, then redirects the connection
to an alternate URL based on the instruction that is returned by the
remote destination.

[242]

http:///

Chapter 8

Use the following script:

#Create new implicit remoting session

$Session = New-PSSession -ConfigurationName Microsoft.Exchange
-ConnectionUri "https://ps.Outlook.com/PowerShell" -Credential (Get-
Credential) -Authentication Basic -AllowRedirection

#Import the PowerShell remoting Session
Import-PSSession -Session $Session

The following screenshot shows the connection to Exchange Online and a warning
that the connection will be redirected to another URIL.

x

Windows PowerShell
Copyright <G> 2812 Microsoft Corporation. All rights reserved.

PS C:swindows\system32> $Session = New—PSSession —ConfigurationMame Microsoft.Exchange —ConnectionUri "https://ps.Outloo
k.con/PowerShell" -Credential {(Get—Credentiald —Authentication Basic —AllowRedirection

cmdlet Get-Credential at command pipeline position 1
Bupply values for the following parameters:
Credential
YARNING

: Your connection has been redirected to the following URI:
://pod51813psh.outlook.con PoverShell-Live ID?PSVUersion=3 "
Your connection has been redirected to the following URI
“https: ' dhIprd@3iipsh.outlook.com P rShe iveID?PSUersion=3.8 "
PS C:swindows“system32> Import-P§Session —Session %$Session

ModuleType Mame ExportedCommands

Script tmp_yhgtni2g.1jd {Add-AvailabilityAddressSpace, Add-DistributionGroupMember. Add-Mailb...

P8 C:windows“system32>

After connecting to Microsoft Exchange Online, you can start using the normal
Microsoft Exchange Server cmdlets and functions.

+ For more information on available PowerShell cmmdlets for Microsoft
% Exchange Online, please visit http://help.outlook.com/en-
’ us/140/dd575549.aspx.

[243]

http:///

Managing Unified Communication Environments with PowerShell

Summary

In this chapter, we talked about unified communication as a concept and how it
becomes an important component, especially where complex business requirements
exist. Also, we saw how Windows PowerShell can help in managing such solutions
in a much faster and convenient way, especially for the cloud-hosted scenario as in
Office 365.

In the next chapter, we will go on to discover Windows PowerShell in a different
area and for different technologies. Our focus will be on the collaboration and data
platforms represented in Microsoft SharePoint Server, SharePoint Online, and
Microsoft SQL Server. Definitely, no one can deny how complex it is to deal with
these technologies, especially for people who do not have any previous experience.
So, the target of the next chapter will be to show how PowerShell can make an
administrator's life easier and happier.

[244]

http:///

Managing Collaboration
and Data Platforms with
PowerShell

Many years ago, if you were working on a project where you wanted to share files,
archive documents, or set a project time plan, the most proper way at that time was
using a very simple network-sharing mechanism for creating a shared folder for each
project and a spreadsheet under each project containing the names of the persons or
departments contributing on that project. Do not be surprised by such a solution. At
that time, this was one of the easiest ways to achieve your goal.

A few years later, the collaboration software such as Microsoft SharePoint Server
was introduced to the market to provide a better way of communication and
collaboration between people to achieve their tasks and goals in a more convenient
way. Later on, the collaboration software was reinvented to be a platform where
people would not only use it but also customize and integrate it with other
components to meet the organization's requirements and obtain the best value.

Well, it is a must to mention that collaboration platforms do not work alone. You
must have a data platform at the backend serving it. In our chapter, we will focus
on the Microsoft SharePoint Server and pursue this chance to spot Microsoft SQL
Server, which is the data platform behind it.

In this chapter we will cover:

What is SharePoint Management Shell

How to use PowerShell to do SharePoint Management tasks
How to manage SharePoint online using PowerShell?

What is SQL Server PowerShell?

How to use PowerShell to do SQL Server Management Tasks?

http:///

Managing Collaboration and Data Platforms with PowerShell

What is SharePoint Management Shell

After a long discussion about management shells in the previous chapter, I believe
that now you can easily guess what SharePoint Management Shell is. Yes, you

are right, SharePoint Management Shell is the Windows PowerShell interface for
SharePoint Application Programming Interface (API) that allows you to interact
directly with SharePoint Server via Windows PowerShell cmdlets and functions.
Refer to the following screenshot:

Microsoft.PowerShell. Core

Description This Windows PowerS8hell snap—in contains cmdlets used to manage
comoonents of Windowus PouerShell

ame Microsoft.SharePoint . PowerShell

SUersion .8

escription Register all administration Cmdlets for Microsoft SharePoint
Server

PS C:sUsers~Administrator.COES> _

As usual, SharePoint Management Shell has a shortcut to launch it directly like Lync
Management Shell and Exchange Management Shell. This shortcut is always nothing
more than running a powershell . exe file with a Windows PowerShell script that
loads the products' snap-ins, modules, binaries, and assemblies. The following
screenshot shows how we launch this shortcut:

[&" SharePoint 2013 Management Shell Properties -

Colors Security Details Previous Versions
General Shortcut Options Fortt Layout

EE SharePoint 2013 Management Shell

Target type Application

Target location: v1.0

Targst: | ‘

Start in | ‘

Shorteut key: |Nnne ‘

Run: | MNaormal window v ‘
Comment |Lir|k to start PowerShell and register SharePoint EI‘
Open File Location | | Change Icon... | | Advanced... ‘

[246]

http:///

Chapter 9

The SharePoint script loaded by SharePoint Management Shell is located under
$SystemDrive%/Program Files/Common Files/Microsoft Shared/Web Server

Extensions/15/Config/PowerShell/Registration/SharePoint.psl.

Looking at the SharepPoint.ps1 script you will notice that the script is simply doing

the following three things:

* Setting the PowerShell runspace thread option to ReuseThread to make sure

that every cmdlet is running within the same thread

* Adding the Microsoft.SharePoint.PowerShell snap-in

* Setting the console's location to the users' home folder

The following screenshot shows the content of the SharePoint .ps1 script:

= AdminizTator: Windows Powershell [SE =23
fike [d1 Wiew Tocls Cebug Adcons lledp _
Gl -SSR SFI R WO [N B o T Y E =& Bo0 o
it el | S aa ol % |)
fubr = flus NP, P »
ol ane

| FRTE s L RRTE B |

Sez-lzcwzion Siome

srrgghl ™MLl _alﬂ.\.-‘.u;rwll.l Ag L 1Pl ’l.';MIH R CETLTIRY
1 R RYE e

TPOTE

SETamduaNsnEMED]IT)

i e RO AT
T Y TR
0 B 3R ¥ Dl

1
5 =
& 4 %G ¥ Kegin sigusluee Hlhisk
T & BT Tac AYIE 7 Theen BAG e CaTRae TO0G IWCART =0 & 1R le RoWOG IIAMTKGT | -GAG0R |
& £ 070CAQSoWIEINDOCC] SCOHOECT CCANSMICI [ANLAEEAT 20EqNIs I Tre cI s Vp=vhlt
W F ApTOAQELACE AgELADE Sk WD FRmalih oF 8000 57 G Din d0e kWP a_n 280

i & MU ghak ki

14 x icln E Ly EbWEInJ\Lz_m;EMLLIﬂ\IF.J2 z
15 i

e 3

17

1E F

™ F

wmoor 1L UL T R UG TRk gYS y s

21 a H,f -\xl-‘-vl w51 -wJ 1l i

22 - 117 KK a7 |’ir| (L f
a1 F I:FEE.c:.ﬁzF.dE:\'p'
A £

o E

36 3 .t

27 v Rl TRig: AR .

2K FriaddHAEL & 20 2oL b | CRLzES bESrm B ik 1903503 InUD
a5 Mz TR TD b Tl 21 D05 :Ibah’.\EEEQmIEﬂJ’J\DJ1JI MT2iRChp

I F smar 1. e a.laa.\Lsd.'lkh-rm].cl (1] r'||:LlJJ"?'| '|c¢1\ IU'IPan:.-qﬂLJ)

JHIHTE -
.lkl”n-.u.' ..-AAJ.']':-\.@“.H. Dt tTL_

—I!l-

| Frome w5 |

Moz wl | et

Hanme

[t

A5-BFCIzc Al minLecy Car i aralioe
LEC B URP A L HIT CTERT 4
Sli-bppaa ke

Ad0 FpEsTivmcedFaape
A8-Z Tz azne Bensien

- D

ATl T Feon lnen o dis v
A%- e CE Morge=enas e
Al e

&dc-Zorert

Adc Lnstl erzHptHule
adc-Troliuste Ty Wagaing
LB

Actii- il T RA ki R

A0 IIVIAUSILNSEL S NG P g
a8c-lenTrigge”

S e

A dEIR Tt
L

842t FHRES SetEirding
Ml N caalean Uen e

&dc-Nzt_xioTear M
fdic Mlebamiton ean Ve e

4,82 Jdzzlnn
B LA e b
LE o Lt)
w1
154 |}

=

-~
=

nes

[247]

http:///

Managing Collaboration and Data Platforms with PowerShell

How to make Windows PowerShell
understand the SharePoint server
cmdlets

In order to use the SharePoint Server cmdlets in Windows PowerShell, you can
either directly launch SharePoint Management Shell to quickly jump into the
SharePoint PowerShell environment, or execute the SharePoint.ps1 script in
your runspace environment, or use the Add-pPSsnapin cmdlet to add the
Microsoft.SharePoint.PowerShell snap-in into your Windows

PowerShell session using the following instructions:

#Add SharePoint Server PowerShell Snap-ins

PS> Add-PSSnapin Microsoft.SharePoint.PowerShell

Getting started with SharePoint scripting

In this part we will help you get started with SharePoint Server scripting and
automation using a set of Windows PowerShell scenarios and examples.

Scenario 1 — creating a new site collection

In this scenario, you are a SharePoint administrator who wants to create a SharePoint
site collection for your corporate intranet usage. For this purpose you will use the
New-SpPsite cmdlet with the following group of parameters:

* -Url: This parameter defines the URL of the site collection.

* -Name: This parameter defines the title of the site.

* -Description: This parameter writes a short description for the
site collection.

* -Template: This parameter defines which template will be used to create the
site. Use the Get -SPWebTemplate cmdlet to get the list of available templates.

* -OwnerAlias: This parameter defines the alias of the site collection's owner
<Domain\Users.

* -Language: This parameter defines the Local ID (LCID) of the language.

[248]

http:///

Chapter 9

For more information about the list of LCIDs, check the following link:
o http://msdn.microsoft.com/en-us/goglobal /bb964664 .aspx

The script will be as follows:

#Creating new SharePoint Site Collection

New-SPSite -Url http://SharePoint.Contoso.local/sites/Contoso -
Name "Contoso Team Site" -Description "Team collaboration
intranet site for Contoso Team" -Template STS#0 -Language

1033 -OwnerAlias "Contoso\SherifT"

Scenario 2 — creating a new website

In this scenario, you are a SharePoint administrator who wants to create a set of
SharePoint sites (subsites) for different corporate teams and departments under an
existing SharePoint site collection. For this purpose, you will use the New-Spweb
cmdlet with the following group of parameters:

* -Url: This parameter defines the URL of the site collection.

* -Name: This parameter defines the title of the site.

* -Description: This parameter writes a short description for the site
collection.

* -Template: This parameter defines which template will be used to create the
site. Use the Get -sPWebTemplate cmdlet to get the list of available templates.

* -AddToTopNav: This parameter adds the site to the top-level navigation bar.

* -UseParentTopNav: This parameter uses the parent's navigation bar as the
top-level navigation bar.

* -AddToQuickLaunch: This parameter adds the subsite to the quick launch.

The script will be as follows:

#Creating new SharePoint web site

New-SPWeb -Url http://SharePoint.Contoso.Local/Sites/Contoso/
Blog -Name "Contoso Blog" -Template BLOG#0 -AddToTopNav -
UseParentTopNav -AddToQuickLaunch

[249]

http:///

Managing Collaboration and Data Platforms with PowerShell

Scenario 3 — creating a new quota template

In this scenario, you are a SharePoint administrator who wants to create a new

quota template for the SharePoint site using Windows PowerShell. Unfortunately,
there is no native cmdlet for creating a new quota template; however, you can call
SharePoint assemblies using Windows PowerShell to create a new quota template.

This scenario shows a step-by-step procedure for creating a new quota template:
1. Create an object $template of the SharePoint quota template using the
New-Obiject cmdlet.

2. Define the properties of the SharePoint quota template, such as name, storage
maximum level, and storage warning level.

3. Create an object $service of the SharePoint content service.

Add the template to the content service's object using the $service.
QuotaTemplates.Add ($template) method.

5. Update the content service using the $service.Update () method.

The script is as follows:

#Create Object of SharePoint Quota Template

$Template = New-Object Microsoft.SharePoint.Administration.
SPQuotaTemplate

#Define template name

$Template.Name = "Blogs Quota Template"

#Assign Storage Maximum Level

$Template.StorageMaximumLevel = 100MB
#Assign Storage Warning Level
$Template.StorageWarningLevel = 80MB

#Creating object of SharePoint Content Service

$Service = [Microsoft.SharePoint.Administration.
SPWebService] : :ContentService

#Add the template to the content service
$Service.QuotaTemplates.Add ($Template)

#Update Content Service to create the template

$Service.Update ()

[250]

http:///

Chapter 9

Scenario 4 — backing up your SharePoint
environment

In this scenario, you are a SharePoint administrator who wants to perform a
complete backup of the SharePoint environment components. By default, there is not
a single cmdlet that can back up the whole SharePoint environment; however, you
can use a combination of cmdlets to back it up.

These following steps show the SharePoint cmdlets that you need to use in order to
perform a complete SharePoint environment backup.

1. Back up the SharePoint configuration database using the
Backup-SPConfigurationDatabase cmdlet.
Back up the SharePoint farm using the Backup-SpFarm cmdlet.

Back up the SharePoint sites using the Backup-SpSite cmdlet.

The script is as follows:

#Define the Back-up folder

$BackupFolder = "C:\SharePointBackup"

#Backup SharePoint Configuration Database

Backup-SPConfigurationDatabase -Directory $BackupFolder

#Backup SharePoint Farm

Backup-SPFarm -Directory $BackupFolder -BackupMethod Full

#Backup SharePoint Sites
ForEach($Site in Get-SPSite)

{

Backup-SPSite -Identity $Site.Url -Path (Join-Path $BackupFolder
($Ssite.Url.Remove (0,$Site.Url.LastIndexOf ("/")+1) + ".bak"))

}

[251]

http:///

Managing Collaboration and Data Platforms with PowerShell

Managing SharePoint Online using
PowerShell

One of the services provided by Microsoft Office 365 is SharePoint Online, where
you have Microsoft SharePoint Server hosted on the cloud like the Lync Online and
Exchange Online mentioned in the previous chapter.

Microsoft SharePoint Online provides SharePoint Online Management Shell similar
to SharePoint Management Shell for the on-premise SharePoint. SharePoint Online
Management Shell is a Windows PowerShell module that allows you to easily
manage and control your hosted SharePoint via Windows PowerShell.

Download the SharePoint Online Management Shell from http://www.
s microsoft.com/en-eg/download/details.aspx?id=35588.

After installing the SharePoint Online Management Shell binaries, you will get a new
shortcut called "SharePoint Online Management Shell". This shortcut refers to the
Windows PowerShell module called Microsoft .oOnline.SharePoint .PowerShell,
which is similar to Microsoft.SharePoint.PowersShell with "Online" referring to
SharePoint Online.

General | Shortcut | Options | Font | Layout | Colors | Security | Details

éﬂ' SharePoint Online Management Shell

Targettype: Application

Targetlocation: v1.0

Target ||Microsoﬁ_OnIine.SharePoinLPowerShell -DisableMar

Startin:

Shortcut key: MNone

Run: MNormal window
Comment:

Open File Location Change lcon... Advanced...

http:///

Chapter 9

How to load SharePoint Online Management
Shell

In order to use the SharePoint Online cmdlets and functions, use the Import-
Module cmdlet with the -DisableNameChecking switch to import the Microsoft.
Online.SharePoint.PowerShell module. The -DisableNameChecking switch

is used because the SharePoint Online module has a set of cmdlets that start with
unapproved -standard- verbs, so it used to avoid any warning message regarding
those unapproved verbs.

<G> 2.12 Microsoft Corporation. All rights reserved.
C:NUserssw—shta> Import—Module Microsoft.Online.SharePoint.PowerShell

UI’IRNING The names of some imported comman from the module ’'Microsoft.Online.SharePoint.PowerShell’ include
unapproved verhs that mlght make them 1 iscoverable. To find the commands with unapproved verhs., run the
Import—Module command again with the Uerbose parameter. For a list of approved werhs. type Get—UBl‘h.

For a list of Windows PowerShell verbs, you can refer to the following;:

* http://social.technet.microsoft.com/wiki/

contents/articles/4537.powershell-approved-verbs-
- en-us.aspx
% * http://msdn.microsoft.com/en-us/library/windows/

desktop/ms714428 (v=vs.85) .aspx

* http://blogs.msdn.com/b/powershell/
archive/2009/07/15/final-approved-verb-list-for-
windows-powershell-2-0.aspx

The script will be as follows:

#Import SharePoint Online Module

PS > Import-Module Microsoft.Online.SharePoint.
PowerShell -DisableNameChecking

[253]

http:///

Managing Collaboration and Data Platforms with PowerShell

How to connect to SharePoint Online

Now, after importing the SharePoint Online module, you definitely want
to connect to your SharePoint Online site. For this purpose you will use the
Connect-SPOService cmdlet with the following group of parameters:

* -url: This parameter defines the URL for your SharePoint Online site

* -Credential: This parameter defines the logon credentials for the
SharePoint Online site administrator who must also be an Office 365
global administrator

The script will be as follows:

#Connect to SharePoint Online

Connect-SPOService -Url https://<YOUR OFFICE365 DOMAIN>-admin.SharePoint.
Com -Credential USER@<YOUR OFFICE365 DOMAIN>.onmicrosoft.com

Let's assume that your SharePoint Online site is http: //PowerShell.SharePoint.
com. So the command should look the following:

Connect-SPOService -Url https://PowerShell-admin.SharePoint.com
-Credential admin@PowerShell.onmicrosoft.com

Scenario 1 — exporting a list of SharePoint
Online sites to CSV

In this scenario, you are a SharePoint Online administrator who wants to generate a
file containing the list of all the SharePoint Online site collections and subsites. For
this purpose you will use the Get-sposite cmdlet.

We will be performing the following steps:

1. Get the list of site collections and sites using the Get -sPosite cmdlet with
the -Detailed switch for detailed information about each site.

2. Use the Export-Csv cmdlet to export the list to a CSV file.

The script will be as follows:

#Get and Export the list of SharePoint Online site
Get-SPOSite -Detailed | export-csv $home\desktop\SPO-sites.csv

[254]

http:///

Chapter 9

Scenario 2 — restoring a deleted SharePoint
Online site

In this scenario, you are a SharePoint Online administrator who wants to restore

a SharePoint Online site that has been deleted by mistake. The deleted sites of
SharePoint Online go to the recycling bin for 30 days before they are permanently
deleted. In order to restore the site, you need to get the list of deleted sites to make
sure that your site is still retained and then restore it.

We will be performing the following steps:

1. Get the list of the deleted SharePoint Online sites using the
Get-SPODeletedSite cmdlet.

2. Restore the deleted SharePoint Online sites using the
Restore-SPODeletedSite cmdlet with the -Nowait switch to execute the
restored job immediately.

The script will be as follows:

#Get and Restore the list of SharePoint Online deleted site
Get-SPODeletedSite | Restore-SPODeletedSite -NoWait

Scenario 3 — checking the SharePoint Online
site's health status

In this scenario, you are a SharePoint Online administrator who wants to generate a
health check report for all the SharePoint Online sites.

We will be performing the following steps:

1. Get the list of SharePoint Online sites using the Get -Sposite cmdlet.
2. Check the site's health using the Test-sposite cmdlet.
The script will be as follows:

#Run health checks on the list of SharePoint Online sites

Get-SPOSite | Test-SPOSite

[255]

http:///

Managing Collaboration and Data Platforms with PowerShell

Scenario 4 — setting the SharePoint Online
User as Site Collection Administrator

In this scenario, you are a SharePoint Online administrator who wants to assign a
"Site Collection Administrator" role to the SharePoint Online User. For this purpose
you will use the set -spouser cmdlet with the following group of parameters:

* -Identity: This parameter defines the URL of the site collection

* -LoginName: This parameter is the login name for a SharePoint Online User
(an Office 365 user)

* -IsSiteCollectionAdmin: This parameter assigns/removes users to/from
the role of site collection administrators

The script will be as follows:

#Assign site collection admin role to user

Set-SPOUser https://WindowsPowerShell.sharepoint.com/sites/blog
-LoginName Sherif@WindowsPowerShell.onmicrosoft.com
-IsSiteCollectionAdmin $true

Windows PowerShell Command Builder
for SharePoint and Office 365

Windows PowerShell Command Builder is a simple and nice web-based application
that helps you to easily explore, discover, and build PowerShell commands for
SharePoint 2010, SharePoint 2013, SharePoint Online, and Office 365.

All you have to do is drag-and-drop the chosen PowerShell cmdlets (Verbs and
Nouns) over the Design Surface area to show all the required and optional
parameters in the form of textboxes. Then, fill the textboxes with your values

and click on the Copy to Clipboard button to copy it. It also has a list of prebuilt
commands for the most common tasks for each product to help you in adopting the
Windows PowerShell for these products. For example, for SharePoint 2010 you have
tasks such as Create, Back up, and Remove sites. For SharePoint Online, you also
have a task such as Connect to SharePoint online site, and the same can be used for
each product. The following screenshot gives a peek into the Windows PowerShell
Command Builder for SharePoint:

[256]

http:///

Chapter 9

— | -
\ﬂl‘;j):l Ll PR e micrasob.cemIresoL s Tecatoeyen usiUhezmed: 3 = gh ||l e el G 2 | &
Windows PowerShell for SharcPoint Command Builder
S 3 MOUN orvare i Cob storad bulld ag o Comiva g Ordo ord encpaF hor b Ana ansian sutsen by Froduss ;:;'_""“a" For oL vir » Lo mbesin
P Sl b | [T T T T e T
[-Iﬁ “hrweeref =i vl onlinn
Verbs Design Surface

Romloe

LEL

Sl 'swn-L el L aee it com
Cwcartiys

o P hed st

Opdca

Do e S P0Gendos - L "t Powe el Sherefolirtoor” <Creder tial
“dnn@har T s wi salleoan

Cornzd oo Sronclolrt Ol neadle kit atiar Sonbe

What is SQL Server PowerShell

SQL Server introduced SQL Server PowerShell first in SQL Server 2008 R2 where
SQL Server provided a Windows PowerShell module called sor.ps. This module
helps SQL Server administrators benefit from the capabilities of Windows
PowerShell and T-SQL to perform SQL Server complex administration scripts.

The SQL Server PowerShell module provides a SQL Server Provider PS SQLSERVER
:\ > that allows to deal with SQL Server instances, databases, tables, and other

SQL components as a filesystem driver when you use the traditional commands to
navigate, rename, and delete objects.

For more information about the PowerShell provider, refer to http://

msdn.microsoft.com/en-us/library/windows/desktop/
eel26186 (v=vs.85) .aspx.

[257]

http:///

Managing Collaboration and Data Platforms with PowerShell

The following screenshot shows how to use the normal dir command with the SQL
Server provider for listing the available databases as if it is a file or a folder:

X SQL Server Powershell \;‘i-

Audits

AvailabilityGroups

BackupDevices
redentials
ryptographicProviders

BerverAuditSpecifications
BystemDatalypes
BystemMessages
riggers
zserDefinedMeszages

HARNING: 2 columns do not fit into the display and were removed.

Containment Type Recovery Model CompatLuel

JSE_Content Mormal Mone Full

[PS SQLSERUER:“SQLA\SHAREPOINT~POWERPIVOT“databases> _

SQL Server PowerShell also provides a set of cmdlets that allows executing T-SQL
and XQuery statements.

How to load SQL Server PowerShell

In order to load the SQL Server PowerShell, you can either import the SQL Server
PowerShell module directly into the PowerShell session or start it directly from the
SQL Server Management Studio (SSMS).

Method 1 — importing the SQL Server PowerSheli
module

The script for this method will be as follows:

#Import SQL Server PowerShell Module

Import-Module SQLPS -DisableNameChecking

[258]

http:///

Chapter 9

Method 2 - launching SQL Server PowerShell from
SSMS

This method uses the following steps:

1. Open the Microsoft SQL Server Management Studio.

2. Right-click on any item under the Object Explorer pane, as shown in the
following screenshot:

= Wizroscft SOL Server Manzgoment Studio (Acmi nistrazor)
Mle [dn Wiew Dsbug Tookk ‘Windew |lela
PN e W S MewOuerr 0G4 0D 9 - - D E k

iject Caolarer v U
Comnzct- B3 Al m & V]la
L‘o SHGRF AR 110 RN
1< (3 ‘wtabaszs
3 Systarn Detabaser Dacorren
_d D=tzlaze srapshot Hegarer

13 Sonphton_Serdit v
|0 B Saven - LR EN
|1 Karaged ¥otaeat Actuim Mertar
| § Pefomerce®airt
| Search_ferece ey
| Fean 1 e a g p ko

<onnect.

MNewOuery

10 Sewn i S - Ayg Pzuge
|] ¥=manca ¥oracz Lpp
| S=cure_fters Szevi

ShareF o it
ref i Tl telizics

10 St <Ml
|1 Irarsmersen
L Uszr Profie Zepvic
|;; Lzer Pocf e Zarvice
[TRUC T
10 Wb bl ey
|0 Wik Toment

|1 W3E_Legging
Jacutiy

T L T T T o ——

S Olijeit

I
kel

pindn
Alwagade Hea Ay aly

=[O Manzgmmen

T Ld riegrEdor Serdces Camlogs

[3 S e e 20k

i
1)

s LR
SRR Tl

[259]

http:///

Managing Collaboration and Data Platforms with PowerShell

3. Select Start PowerShell to launch the SQL PowerShell. Selecting this option
will take us to the following window:

X SAL Server Powershell

FSdSQLSERUER:\SQL\SHHREPOINT\POHERPIUOT> dir
Audits
AvailabilityGroups
BackupDevices
redentials
ryptographicProviders
Databazes
Endpoints

LerverfAuditSpecifications
BystemDatalypes
BystemMessages

serDefinedMessages
[PS SQLSERVER:~SQL~SHAREPOINT~POWERFIUOT >

Getting started with SQL Server scripting

In this part we will help you get started with SQL Server scripting and automation
using a set of Windows PowerShell scenarios and examples.

Scenario 1 — executing the T-SQL statement

In this scenario, you are a database administrator who is writing a set of SQL Server
automation tasks and you want to execute the T-SQL statement via Windows
PowerShell. For this purpose you will use the Invoke-Sglcmd cmdlet with the
following group of parameters:

* -ServerInstance: This parameter defines the SQL Server instance <SERVER
NAME\ INSTANCE NAME>

* -Database: This parameter is the name of the database

* -Hostname: This parameter is the name of the server running the SQL Server

* -Query: This parameter defines the T-SQL statement

[260]

http:///

Chapter 9

The script will be as follows:

#Invoke SQL Query using PowerShell

Invoke-Sqlcmd -ServerInstance SQLOl\SharePoint -Database Master
-Query "SELECT db name(dbid) as DB,name,filename FROM sysaltfiles"
-HostName SQLO1

Scenario 2 — backing up the SQL Server
database

In this scenario, you are a database administrator who wants to use Windows
PowerShell to back up all SQL Server databases hosted under a specific instance. For
this purpose you will use the Backup-SqglDatabase cmdlet.

We will be using the following steps:

1. Use the ForEach loop to iterate over the list of databases under the
SharePoint\PowerPivot instance.

2. Define variables to store the full file path for each database and database log
within the ForEach loop defined in the previous step.

3. Use the Backup-SglCmdlet cmdlet to back up each database in the file path
defined in the previous step with a filename similar to the database name.

The script will be as follows:

ForEach($Database in (Get-ChildItem SQLSERVER:\SQL\SharePoint\PowerPivot)\
Databases))

{
$FilePath = "C:\Backup\" + $Database.Name + ".bak"

$LogFilePath = "C:\Backup\" + $Database.Name + ".log"

#Backup Database File

Backup-SglDatabase -ServerInstance SharePoint\PowerPivot -Database
$Database.Name -BackupAction Database -BackupFile $FilePath

#backup Database Log File

Backup-SqglDatabase -ServerInstance SharePoint\PowerPivot -Database
$Database.Name -BackupAction Log -BackupFile $LogFilePath

}

[261]

http:///

Managing Collaboration and Data Platforms with PowerShell

Scenario 3 — restoring the SQL Server
database

In this scenario, you are a database administrator who wants to use Windows
PowerShell to restore a SQL Server database. For this purpose you will use the
Restore-SglDatabase cmdlet.

We will use the following steps:
1. Use the ForEach loop to iterate over the folder that contains the database's
backup files.
2. Use the Restore-sglcmdlet cmdlet to restore each database to the file path

defined in the previous step with a filename similar to the database name.

The script will be as follows:

$BackupFolder = "C:\Backup\"

$ServerInstance = "SharePoint\PowerPivot"

ForEach($File in (Get-ChildItem $BackupFolder))

{

$DatabaseName = $File.Name.Replace(".bak","")

#Restore Database File

Restore-SglDatabase -ServerInstance SharePoint\PowerPivot -Database
$DatabaseName -RestoreAction Database -BackupFile $File.FullName

}

Scenario 4 — getting server instances and
databases properties

In this scenario, you are a database administrator who wants to generate a report
that contains the SQL Server instance and underlying database properties. For
this purpose, you will use SQL Server Management object (SMO) with Windows
PowerShell.

[262]

http:///

Chapter 9

The following steps show a step-by-step procedure of how to use SQL SMO
in PowerShell:

1. Load the SQL SMO assembly using [void] [System.Reflection.Assembly
]::LoadWithPartialName (ASSEMBLY NAME).
Create an SMO object $server of the current SQL Server instance.

Use the previously created object to get the list of server instance properties
and also the list of databases under this instance.

4. Use the ForEach loop to iterate over the list of retrieved databases to get the
properties of each database.

The script will be as follows:

#Server Instance name

$ServerInstance = "SharePoint\PowerPivot"

#Load SQL SMO assembly

[void] [System.Reflection.Assembly] : :LoadWithPartialName ('Microsoft.
SglServer.SMO')

#Create SMO object of SQL Server Instance

$Server = new-object ('Microsoft.SglServer.Management.Smo.Server')
$ServerInstance

Write-Host "$ServerInstance Server Instance Properties" -ForegroundColor
Red

#Get the Server Instance Properties

$Server.Properties | Select Name, Value

##Iterate over the list of the databases under the Server Instance

ForEach ($Database in $Server.Databases)

Write-Host $Database.Name " Database Properties"
-ForegroundColor Green

#Get the Database Properties
$Database.Properties | Select Name, Value

[263]

http:///

Managing Collaboration and Data Platforms with PowerShell

Scenario 5 — generating the SQL script for
databases, tables, and stored procedures

In this scenario, you are a database administrator who wants to generate an SQL
script for a specific database and its tables and stored procedures. For this purpose
you will use an SQL SMO with Windows PowerShell.

The following steps show a step-by-step procedure of how to use SQL SMO and
PowerShell to generate the SQL scripts:

1.

Load the SQL SMO assembly using [void] [System.Reflection.Assembly
]::LoadWithPartialName(ASSEMBLY_NAMEL

Create an SMO object $server of the current SQL Server instance.

Use the previously created object to get the list of server instance properties
and also the list of databases under this instance.

Use the ForEach loop to iterate over the list of retrieved databases to get the
properties of each database.

Create a folder for each database, and then export the database script file
to it.

For each database, use the ForEach loop to iterate over the list of tables and
stored procedures, and then export them to the SQL scripts.

The script will be as follows:

$ServerInstance = "SharePoint\PowerPivot"

$ExportFolder = "C:\SqglScripts"

#Load SQL SMO assembly

[void] [System.Reflection.Assembly] : :LoadWithPartialName ('Microsoft.
SqlServer.SMO')

#Create SMO object of SQL Server Instance

$Server = new-object ('Microsoft.SglServer.Management.Smo.Server')
$ServerInstance

#Iterate over the list of the databases under the Server Instance

ForEach($Database in $Server.Databases)

{

[264]

http:///

Chapter 9

#Create Folder for each Database

New-Item -ItemType Directory -Path ("$ExportFolder\" +
$Database.Name + "\") | Out-Null

#Create folder for tables under each database folder

New-Item -ItemType Directory -Path ("$ExportFolder\" +
$Database.Name + "\Tables\") | Out-Null

#Create folder for stored procedures under each database folder

New-Item -ItemType Directory -Path ("$ExportFolder\" +
$Database.Name + "\StoredProcedures\") | Out-Null

#Generate and Export Database Script

$Database.Script () | Out-File ("$ExportFolder\" +
$Database.Name + "\" + $Database.Name + ".sql")

#Iterate over the list of the tables under each database
ForEach($table in $Database.Tables)
{

#Generate and Export Tables Scripts

$table.Script() | Out-File ("$ExportFolder\" +
$Database.Name + "\Tables\" + $table.Name + ".sqgl")

#Iterate over the list of the stored procedures under each database
ForEach ($SP in $Database.StoredProcedures)
#Generate and Export Stored Procedures Scripts

$SP.Script () | Out-File ("$ExportFolder\" + $Database.Name + "\
StoredProcedures\" + $SP.Name + ".sqgl")

}

[265]

http:///

Managing Collaboration and Data Platforms with PowerShell

Summary

In this chapter, we have seen the capabilities of Windows PowerShell with
SharePoint Server, SharePoint Online, and SQL Server and the real value of using it
to manage and administer such complex technologies.

As part of your job as an IT administrator or a helpdesk executive, you need to make
sure that your environment is in control and the end users are working fine with
minimal problems. In any environment using a computer, the most painful part is
dealing with desktops and client operating systems. You have to deal with many
desktops and notebooks on a daily basis to fix and solve their problems, which is
almost the same problem for everyone. Hence the virtualization concept has been
invented to deliver another kind of solution called Desktop Virtualization.

In the next chapter, we will learn what is Desktop Virtualization, and Microsoft
implementation for this concept in Windows Server 2012. We will also learn how
to use Windows PowerShell to install, configure, and manage the Remote Desktop
Services (RDS).

[266]

http:///

10

Managing Microsoft Desktop
Virtualization with PowerShell

Nowadays, one of the biggest sources of pain to any member of an IT department is
the problems that the end user faces. You may be receiving many requests daily from
many users complaining about the performance of their devices, asking for extra
permission, wanting to install software, and so on.

As an IT administrator, you are always inside the loop, trying to balance between
users' needs and business requirements that by nature of the situation require
investment in tools, hardware resources, and manpower. That is why, the concept
of Desktop Virtualization has been introduced to solve this formula and help the
administrator satisfy users' needs, while keeping the environment secure and in
control with a centralized management solution and, moreover, saving the money
spent on devices such as CAPEX and OPEX.

In this chapter we will cover:

* What Desktop Virtualization is
* What the different types of Desktop Virtualization solutions are

* How to manage Microsoft Remote Desktop Services using PowerShell

What Desktop Virtualization is

Desktop Virtualization is an architecture model where the client operating system is
separated from the physical hardware layer that is the end users' device.

http:///

Managing Microsoft Desktop Virtualization with PowerShell

There are two types of Desktop Virtualization solutions:

Virtual Desktop Infrastructure (VDI): This solution provides the user with a
virtual desktop that is a completely isolated operating system hosted on the
data center

Session Virtualization: This solution provides the user with just a session on
the shared Session Host server

Desktop Virtualization gives you the following advantages:

Centralized management: Manages all the desktops from a single console

Enhanced security: Data is always locked inside the data center; no more
vulnerability can be caused because if a device is stolen or lost, no one can
take something out without proper permissions

Anywhere access: The user can get connected any time, anywhere, from
desktops, notebooks, thin clients, tablet devices, and smartphones

Business continuity: The desktop's failure recovery and problem resolution
is faster than physical desktops

Understanding Desktop Virtualization
components

In order to build any Desktop Virtualization environment, you should have the
following components:

Virtualization platform: This component is the hypervisor layer responsible
for providing virtualization capabilities in order to host the virtual desktops.

Connection broker: This is the core component of any Desktop Virtualization
solution. This layer is responsible for the communication between end users
and the virtual desktop; it manages who can access what, and how. Also, it

is responsible for features, such as optimizing virtual desktop performance
over a WAN connection, redirecting local resources such as printers and USB
devices to the virtual desktop, and providing a physical desktop such as user
experience in terms of multimedia and graphics.

Application delivery: This component is responsible for delivering the
application to the end users' desktop on demand, using the concept of
application virtualization, where the application is running on the desktop
locally without being installed.

[268]

http:///

Chapter 10

* User profile and data: This technology is responsible for separating a user's
profile and data from the operating system and ensuring that it is saved
in a central store so that users can access their profiles, settings, and data
anywhere, regardless of the desktop and operating system.

* Client access device: This is the device where the users can access their
virtual desktops or sessions. The device could be a normal desktop,
notebook, thin-client, tablet, or smartphone.

The following diagram shows the common Desktop Virtualization architecture:

Client Access Device

Desktop, Notebook, Thin-Client, Tablet, Smartphone

Application Delivery
Microsoft App-V, Citrix XenApp, VMware ThinApp

Hypervisor

Microsoft Hyper-V, Citrix XenServer, VMware ESX

Data Centre Hardware

Servers, Storage, Networks, etc.

What Remote Desktop Services is

Remote Desktop Services (RDS) is a Microsoft implementation of the Desktop
Virtualization concept. Remote Desktop Services is a Windows Server role that
allows you to build VDI, session-based virtualization, and RemoteApp.

[269]

http:///

Managing Microsoft Desktop Virtualization with PowerShell

Managing RDS using PowerShell

In order to manage RDS using Windows PowerShell, you have the Windows
PowerShell module called RemoteDesktop that provides many RDS-related cmdlets
that help you perform all the tasks available on the GUI wizards. You do not need
to install any prerequisites in order to get the RemoteDesktop module; the module
available by default in Windows Server 2012 so you can use it directly to implement
the RDS itself.

#Import Remote Desktop Services Module PowerShell module

PS> Import-Module RemoteDesktop

Getting started with RDS scripting

In this part we will help you get started with RDS scripting and automation using a
set of Windows PowerShell scenarios and examples.

In the following scenarios, we will build a hybrid Desktop Virtualization
environment with the six RDS roles described later in this chapter in order to provide
both VM-based and Session-based Desktop Virtualization scenarios. Also, we

will build two nodes of the Remote Desktop Connection Broker (RDCB) for
high-availability purposes.

Scenario 1 — creating new RDS deployments

In this scenario, you are a Desktop Virtualization administrator who wants to install
RDS in order to implement a Desktop Virtualization solution for your organization.

In the previous version of Windows Server, we used to install RDS roles using the
Server Manager wizard to install Windows Server roles and features. However in
Windows Server 2012, if you want to install Windows roles or features, you will get
a couple of options asking you what kind of installation you want to perform, either
Role-based or feature-based installation or Remote Desktop Services installation,
as shown in the following screenshot:

[270]

http:///

Chapter 10

= Add Roles and Features Wizard =NiC -

DESTINATION SERVER

Select installation type ey

Select the installation type. You can install roles and features on a running physical computer or virtual
machine, or on an offline virtual hard disk (VHD).

() Role-based or feature-based installation
Configure a single server by adding roles, role services, and features.

(®) Remote Desktop Services installation

Install required role services for Virtual Desktop Infrastructure (VDI) to create a virtual machine-based
or session-based desktop deployment.

| < Previous | | Next » | Deploy Cancel

By design, RDS has six different server roles that should be installed on at least three
separate servers. So the second option — Remote Desktop Services installation —
exists to help you deploy different RDS roles on different servers in one installation
step from a central location.

Well, does it make any difference while installing RDS from Windows PowerShell?
Yes, indeed. You will not be able to use the Install-WindowsFeature cmdlet to
install it. Instead, you will have to use the deployment cmdlet that comes with the
RemoteDesktop PowerShell module.

[271]

http:///

Managing Microsoft Desktop Virtualization with PowerShell

An RDS installation provides two deployment scenarios, namely Virtual
machine-based desktop deployment and Session-based desktop deployment
as shown in the following screenshot:

s Add Koles and beatures VWizard — o[|

select deployment scenario St o

Rernate Desktop Sorvices con bz configunes fo cllow users to connect to virtval deskoops, Romotcipp
pregroms, ans sceson bised doesktoos

& Virtual machine-bazed deskzop dzploymeant

“wirtual machine-based Cesktop deployment zllows users to connect 1o virtusl deskieo collecticne
that indude -ublzhed Rerrotef.op prograrms and virial deskiops.

0 Szssiun-besed desbluc deplogm=nt

1

[R o

Sesivirbaned desklop deplogim L a o users Loocoomzcl Lo seseion o leclione e inchude

K pub mhed Romul=dpp crogrene as o seaion- based deudelopa.
S & z=7ion Hos
artirmnEtion

< Previmam | | Mt = Jerho [rncel

Task 1.1 — creating a new virtual-machine-based
deployment

In this type of deployment, you create an RDS environment capable of hosting
VDI scenarios. This deployment requires three RDS roles: Remote Desktop
Virtualization Host (RDVH), Remote Desktop Session Broker (RDCB), and
Remote Desktop Web Access (RDWeb). For this purpose, you will use the
New-RDVirtualDesktopDeployment cmdlet with the following parameters:

* -ConnectionBroker: This parameter defines the FQDN of the server to hold
the Connection Broker role

* -WebAccessServer: This parameter defines the FQDN of the web server to
hold the Web Access role

[272]

http:///

Chapter 10

* -VirtualizationHost: This parameter defines the FQDN of the Hyper-V
server to host the Virtualization Host role

* -CreateVirtualSwitch: This parameter creates a virtual network switch on
the Hyper-V server to be used by the virtual machine created by RDS

The script will be as follows:

#Remote Desktop Virtualization Host

$RDVH = 'RDVH-0l.Contoso.local'’

#Remote Desktop Connection Broker

$RDCB = 'RDCB-0l.Contoso.local'’

#Remote Desktop Web Access
$RDWeb = 'RDWeb-01l.Contoso.local'
#Creating new Virtual Machine-based deployment

New-RDVirtualDesktopDeployment -ConnectionBroker $RDCB -WebAccessServer
$RDWeb -VirtualizationHost $RDVH -CreateVirtualSwitch

Task 1.2 — creating a new session-based
deployment

In this type of deployment, you create an RDS environment capable of hosting
Session Virtualization scenarios. This deployment requires three RDS roles: Remote
Desktop Session Host (RDSH), RDCB, and RDWeb. For this purpose, you will use
the New-SessionDeployment cmdlet with the following parameters:

* -ConnectionBroker: This parameter defines the FQDN of the server to hold
the Connection Broker role

* -WebAccessServer: This parameter defines the FQDN of the web server to
hold the Web Access role

* -SessionHost: This parameter defines the FQDN of the server to host the
Session Host role

The script will be as follows:

#Remote Desktop Session Host

$RDSH = 'RDSH-0l.Contoso.local!'

#Remote Desktop Connection Broker

$RDCB = 'RDCB-0l.Contoso.local!'

[273]

http:///

Managing Microsoft Desktop Virtualization with PowerShell

#Remote Desktop Web Access
$RDWeb = 'RDWeb-01l.Contoso.local'’

#Creating new Session-based deployment

New-SessionDeployment -SessionHost $RDSH -ConnectionBroker $RDCB
-WebAccessServer $RDWeb

Scenario 2 — adding a Remote Desktop Server
to an existing deployment

In the previous scenarios, you have created a Remote Desktop deployment twice,
one for a VM-based environment and the other for a session-based environment.
Each of those scenarios installed three RDS roles out of a total of six. So, what if you
want to add other roles to the deployment? Or you want to combine the two kinds of
deployment into a hybrid RD deployment?

In this scenario, you are a Desktop Virtualization administrator who has an existing
RD deployment and wants to make it hybrid by adding either the RDSH role to the
VM-based deployment or the RDVH role to the session-based deployment. For this
purpose, you will use the Add-rDServer cmdlet with the following parameters:

* -ConnectionBroker: This parameter defines the FQDN of the server that
holds the Connection Broker role for the existing deployment.

* -Server: This parameter defines the FQDN of the server to add to
the deployment.

* -Role: This parameter defines which RD role the server will hold. The
following values can be used with the -rRole parameter:
° RDS-RD-Server to add an RD session host
° RDS-Virtualization toadd an RD virtualization host
° RDS-Connection-Broker to add an RD connection broker
° RDS-Web-Access to add RD web access
° RDS-Gateway to add an RD gateway

° RDS-Licensing to add an RD licensing server

[274]

http:///

Chapter 10

The script will be as follows:

$RDCB = 'RDCB-0l.Contoso.local'’

#Adding Virtualization Host to Session-based deployment

Add-RDServer -Server 'RDVH-0l.Contoso.local' -ConnectionBroker $RDCB
-Role RDS-Virtualization -CreateVirtualSwitch $true

#Adding Session Host to VM-based deployment

Add-RDServer -Server 'RDSH-0l.Contoso.local' -ConnectionBroker $RDCB
-Role RDS-RD-Server

Scenario 3 — adding and configuring an RD
Gateway

In this scenario, you are a Desktop Virtualization administrator who wants to
expose the current deployment to the Internet in order to make the environment
accessible to remote users. So, you have to add the Remote Desktop Gateway
(RDG) role to the existing deployment. For this purpose, you will use the Add-
rRDServer cmdlet to add the gateway to the existing deployment and then use the
Set-RDDeploymentGatewayConfiguration cmdlet to configure the RD gateway
settings using the following group of parameters:

* -ConnectionBroker: This parameter defines the FQDN of the server that
holds the Connection Broker role for the existing deployment.

* -BypassLocal: This parameter allows the user to bypass the RD gateway by
providing him/her with internal access.

* -LogonMethod: This parameter defines which logon method is to be used
by the user. It could be either Al1lowUserToSelectDuringConnection,
Smartcard, Or Password.

* -GatewayMode: This parameter defines whether the RD gateway is used or
not and how it will be configured, either by auto detect or manually.

* -GatewayExternalFqgdn: This parameter defines the external FQDN for RDG
to be accessible remotely over the Internet.

[275]

http:///

Managing Microsoft Desktop Virtualization with PowerShell

This script will be as follows:

$RDCB = 'RDCB-0l.Contoso.local'’
$RDG = 'RDGOl.contoso.local'

#Adding RD Gateway Server

Add-RDServer -Server $RDG -ConnectionBroker $RDCB -Role RDS-GATEWAY
-GatewayExternalFgdn RDG.Contoso.com

#Configuring RD Gateway

Set-RDDeploymentGatewayConfiguration -ConnectionBroker $RDCB -BypassLocal
$true -LogonMethod AllowUserToSelectDuringConnection -GatewayMode Custom
-GatewayExternalFgdn RDG.Contoso.com

Scenario 4 — adding and configuring RD

Licensing Server

Remote Desktop Licensing (RDL) is the legal role of RDS. It has no technical
impact on the environment or the deployment, however it is required to make sure
that your RDS licenses are properly configured. In this scenario, you will learn
how to add and configure the RDL role. For this purpose, you will use the Add-
rRDServer cmdlet to add the gateway to the existing deployment and then use the
Set-RDLicenseConfiguration cmdlet to configure the RD gateway settings.

The set-RDLicenseConfiguration cmdlet will be used with the following group
of parameters:

* -ConnectionBroker: This parameter defines the FQDN of the server that
holds the Connection Broker role for the existing deployment.

* -LicenseServer: This parameter defines the name of the server to hold the
RDL role.

* -Mode: This parameter defines the license mode of the RDS. It could be
PerUser Or PerDevice.

The script will be as follows:

$SRDCB = 'RDCB-0l.Contoso.local!'

$RDL = 'RDLOl.contoso.local'’

#Adding RD Licensing Server

Add-RDServer -Server $RDL -Role RDS-LICENSING -ConnectionBroker $RDCB

[276]

http:///

Chapter 10

#Configuring RD Licensing

Set-RDLicenseConfiguration -Mode PerUser -LicenseServer $RDL
-ConnectionBroker $RDCB

Scenario 5 — creating new RDS collections

Now after completing the RDS deployments for the VM-based and session-

based environments, it is the time to create a collection for each deployment. RDS
collections are a way to define the settings of your environments, such as how the
users will connect to it, which groups are authorized to access it, and which servers
will be used for this collection. You can also consider RDS collections as a logical
group for your Virtualization Desktop environment.

Task 5.1 — creating new session-based collections

In this scenario, you will need to create a collection for the session-based deployment
created previously. For this purpose, you will use the New-RDSessionCollection
cmdlet with the following parameters:

* -CollectionName: This parameter defines a name for the RDS collection

* -ConnectionBroker: This parameter defines the FQDN of the server
currently holding the Connection Broker role

* -SessionHost: This parameter defines the FQDN of the RDSH server(s) to
server to host the Session Host role

The script will be as follows:

#Remote Desktop Connection Broker

$SRDCB = 'RDCB-0l.Contoso.local!'

#Remote Desktop Session Host (s)

$SRDSH = @('RDSH-01l.Contoso.local', 'RDSH-02.Contoso.local')

#Creating new Session-based Collection

New-RDSessionCollection -CollectionName "mySessions"
-CollectionDescription "RDS - Session Virtualization Collection"
-ConnectionBroker $RDCB -SessionHost $RDSH

[277]

http:///

Managing Microsoft Desktop Virtualization with PowerShell

Task 5.2 — creating new VM-based collections

A VM-based collection provides the authorized user with a complete operating
system on a dedicated virtual desktop. The VM-based collection can be defined
either as a Pooled or Personal VM collection.

* Pooled collection: In this type of collection, you create a group of virtual
desktops and assign them to a users or groups. Assignment of the virtual
desktop is automatic and random so the user will connect to a different
machine every time. Moreover, the machine will roll back to the default
state once the user logs off.

* Personal collection: In this type of collection, the virtual desktop is assigned
manually so that the user connects to the same machine every time and
changes are stored on the machine even after the user logs off and the
machine restarts.

A Pooled or Personal VM collection could both be created as
either a Managed collection, where virtual desktops are created
- using a single master template, or as an Unmanaged collection,
% where the virtual desktops are created manually or using
S .
different templates.

In real-world implementations, it is recommended to have
Managed Pooled and Unmanaged Personal collections.

Task 5.2.A — creating a Managed Pooled collection
In this scenario, you will use the New-RDVirtualDesktopCollection cmdlet, and
also the Grant -RDOUAccess cmdlet to grant the RDS permission on the OU that will
host the VDI computer accounts and also with the following parameters:

* -CollectionName: This parameter defines the name of the RDS collection

* -ConnectionBroker: This parameter defines the FQDN of the server holding
the Connection Broker role

* -PooledManaged: This parameter defines the Managed Pooled
VM-based collection

* -UserGroups: This parameter defines the users and groups authorized to
access this collection

* -Domain: This parameter defines the Managed Pooled VM-based collection

* -VirtualDesktopTemplateHostServer: This parameter defines the FQDN
of the server hosting the new virtual desktop template

[278]

http:///

Chapter 10

* -VirtualDesktopTemplateName: This parameter defines the name of the
new virtual desktop template

* -VirtualDesktopNamePrefix: This parameter defines the VM name prefix

* -VirtualDesktopTemplateStorgePath: This parameter defines the path for
the storage hosting the template

* -StorageType: This parameter defines the type of storage, either Local, SMB
Shared, or SAN

* -VirtualDesktopAllocation: This parameter defines how the created
virtual desktops will be allocated across the different RD virtualization hosts

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-0l.Contoso.local!'

#Virtual Server hosting the Virtual Desktop Template

$RDtemplateHost = 'RDVH-0l.Contoso.local'

#Domain name

$DomainName = 'Contoso.local’

#AD OU that will contain the VDI computer accounts
$0U = 'VDI'

#Grant RDS a permission on the selected OU to create/remove computer
accounts for Virtual Desktops

Grant-RDOUAccess -Domain $DomainName -OU $OU -ConnectionBroker $RDCB

#Creating new VM-based Collection

New-VirtualDesktopCollection -CollectionName 'Win 7 SP1l' -Description
'RDS - Virtual Desktop Collection' -PooledManaged -UserGroups "Contoso\
Domain Users" -Domain "Contoso.local" -VirtualDesktopTemplateHostServer
$RDtemplateHost -VirtualDesktopTemplateName 'Win7SP1l-Temp'
-ConnectionBroker $RDCB -OU $0U -VirtualDesktopNamePrefix

"VD-W7-" -VirtualDesktopTemplateStoragePath "C:\VDs"

-StorageType LocalStorage -VirtualDesktopAllocation
@{"RDVH-01.Contoso.local"=5; "RDVH-02.Contoso.local"=5}

[279]

http:///

Managing Microsoft Desktop Virtualization with PowerShell

Task 5.2.B — creating an Unmanaged Personal collection

In this scenario, you will use the Grant -RDOUAccess cmdlet to grant the

RDS permission on the OU that will host the VDI computer accounts, the
New-RDVirtualDesktopCollection cmdlet to create the VM-based collection,
and also the Set-RDPersonalvirtualDesktopAssignment cmdlet to assign a
virtual desktop to a user.

The New-RDVirtualDesktopCollection cmdlet is used with the
following parameters:

-CollectionName: This parameter defines the name of the RDS collection

-ConnectionBroker: This parameter defines the FQDN of the server holding
the Connection Broker role

-PersonalUnmanaged: This parameter defines the Unmanaged Personal VM-
based collection

-UserGroups: This parameter defines the users and groups authorized to
access this collection

-VirtualDesktopName: This parameter specifies the name of the virtual
machine to be added to the collection

-VirtualDesktopTemplateName: This parameter defines the name of the
new virtual desktop template

-AutoAssignPersonalVirtualDesktopToUser: This parameter defines
whether a virtual desktop is automatically assigned to the users or not

-GrantAdministrativePrivilege: This parameter grants the user an
administrative privilege on the virtual desktop

The Set-RDPersonalvVirtualDesktopAssignment cmdlet is used with the
following parameters:

-CollectionName: This parameter defines the name of the RDS collection

-ConnectionBroker: This parameter defines the FQDN of the server holding
the Connection Broker role

-VirtualDesktopName: This parameter defines the name of the VM to
be assigned

-User: This parameter defines the user who will get the virtual machine

[280]

http:///

Chapter 10

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-0l.Contoso.local'’

#Remote Desktop Virtualization Host(s)

$SRDSH = @('RDSH-01l.Contoso.local', 'RDSH-02.Contoso.local')

#Domain name

$DomainName = 'Contoso.local!

#AD OU will contain the VDI computer accounts

$0U = 'VDI'

#Grant RDS a permission on the selected OU to create/remove computer
accounts for Virtual Desktops

Grant-RDOUAccess -Domain $DomainName -OU $O0U -ConnectionBroker $RDCB

#Creating new VM-based Collection

New-RDVirtualDesktopCollection -CollectionName 'Win 7 SP1'
-Description 'RDS - Virtual Desktop Collection' -PersonalUnmanaged
-UserGroups "Contoso\Domain Admins" -ConnectionBroker S$RDCB
-VirtualDesktopName "XYZ" -AutoAssignPersonalVirtualDesktopToUser
$false -GrantAdministrativePrivilege $true

#Assign Virtual Desktop to a User

Set-RDPersonalVirtualDesktopAssignment -CollectionName 'Win 7 SP1'
-User 'Contoso\Sherif' -VirtualDesktopName 'XYZ' -ConnectionBroker
$RDCB

Scenario 6 — setting session-based collection
configuration

In this scenario, you will create an RD-session-based collection and set the collection
configuration in order to it make ready for end users. For this purpose, you will use the
Set-RDSessionCollectionConfiguration cmdlet with the following parameters:

* -CollectionName: This parameter defines the name of the collection to
be modified.

[281]

http:///

Managing Microsoft Desktop Virtualization with PowerShell

-UserGroup: This parameter defines which user groups are authorized to
access this collection

-ClientDeviceRedirectionOptions: This parameter defines what should
be redirected from the client device to the remote session, for example, a
clipboard, audio, or drive.

-ClientPrinterRedirected: This parameter defines whether the user can
use the locally installed printer on the remote session or not.

-BrokenConnectionAction: This parameter defines the action to be taken
when the user's session is broken. So the server can disconnect or log off the
session to save the resources for other sessions.

-AutomaticReconnectionEnabled: This parameter defines whether the
broken session can be reconnected automatically or not.

-MaxRedirectedMonitors: This parameter defines the number of monitors
that can be redirected per user session.

-IdleSessionLimitMin: This parameter defines the number of minutes
before the idle sessions are disconnected.

-TemporaryFoldersPerSession: This parameter creates a temporary folder
for each session or uses one for all sessions.

-ConnectionBroker: This parameter defines the FQDN of the server that
holds the Connection Broker role for the existing deployment.

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-0l.Contoso.local'’

#Setting Session-based Collection Configuration

Set-RDSessionCollectionConfiguration -CollectionName mySessions
-UserGroup "CoEx\Domain Users" -ClientDeviceRedirectionOptions
Drive -ClientPrinterRedirected $true -BrokenConnectionAction
Disconnect -AutomaticReconnectionEnabled S$true
-MaxRedirectedMonitors 4 -IdleSessionLimitMin 60
-TemporaryFoldersPerSession $true -MaxRedirectedMonitors 4
-ConnectionBroker $RDCB

[282]

http:///

Chapter 10

Scenario 7 — setting VM-based collection
configuration

In this scenario, you will create a VM-based collection and set the collection
configuration in order to make it ready for end users. For this purpose, you
will use the Set -RDVirtualDesktopCollectionConfiguration cmdlet with
the following parameters:

* -CollectionName: This parameter defines the name of the collection to
be modified

* -UserGroups: This parameter defines which users and groups are authorized
to access this collection

* -RedirectAllMonitors: This parameter allows the users to redirect all
monitors to the virtual desktop

* -GrantAdministrativePrivilege: This parameter grants the user an
administrative privilege on the virtual desktop

* -AutoAssignPersonalVirtualDesktopToUser: This parameter
automatically assigns virtual desktops to the user

* -ConnectionBroker: This parameter defines the FQDN of the server that
holds the Connection Broker role for the existing deployment

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-0l.Contoso.local!'

#Setting VM-based Collection Configuration

Set-RDVirtualDesktopCollectionConfiguration "Call-Center Pool™"
-UserGroups "Contoso\CallCenter Users" -RedirectAllMonitors

$false -ClientDeviceRedirectionOptions AudioVideoPlayBac
k,PlugAndPlayDevice -GrantAdministrativePrivilege $true
-AutoAssignPersonalVirtualDesktopToUser $true -ConnectionBroker $RDCB

[283]

http:///

Managing Microsoft Desktop Virtualization with PowerShell

Scenario 8 — updating VM-based collections

In this scenario, you have a VM-based collection created using a specified Windows
7 template. For some reason, you made some changes on the master template and
you want to apply these changes on the virtual desktops in this collection. For this
purpose, you will use the Update-RDVirtualDesktopCollection cmdlet with the
following parameters:

-CollectionName: This parameter defines the name of the collection to
be updated

-ConnectionBroker: This parameter defines the FQDN of the server that
holds the Connection Broker role for the existing deployment

-VirtualDesktopTemplateHostServer: This parameter defines the FQDN
of the server hosting the new virtual desktop template

-VirtualDesktopTemplateName: This parameter defines the name of the
new virtual desktop template

-DisableVirtualDesktopRollback: This parameter defines whether the
machine can be rolled back or not after the update

-StartTime: This parameter defines the time at which the update operation
will start

-ForceLogof fTime: This parameter defines the time at which the connected
user will be forced to log off to perform the update operation

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-0l1l.Contoso.local’

#Virual Desktop Template Host Server

$VDtemplateHost = 'RDVH-0l.Contoso.local'

#Virtual Desktop Template

$VDtemplate = 'Win 7 SP1 Jan 2013 Update'

#Updating VM-based Collection

Update-RDVirtualDesktopCollection -CollectionName "Win 7 SP1"
-ConnectionBroker $RDCB -VirtualDesktopTemplateHostServer $VDtemplateHost
-VirtualDesktopTemplateName $VDtemplate -DisableVirtualDesktopRollback
$false -StartTime (Get-Date) -ForceLogoffTime (Get-Date) .AddHours (8)

[284]

http:///

Chapter 10

Scenario 9 — assigning Profile Disks to
collections

Profile Disks is a new feature introduced in RDS in Windows Server 2012. Profile
Disks saves users' profiles on a Virtual Hard Disk (VHD) file; this file follows the
user everywhere in the collection, so once the user connects to any virtual machine
or session, Profile Disks will be attached automatically.

By default, the Profile Disks feature is disabled, and you have to
activate it on the desired collection in order to use it. It can be used
with the session-based and VM-based collections and configured
using the Set-RDSessionCollectionConfiguration and
Set-RDVirtualDesktopCollectionConfiguration cmdlets.

I can hear you; you are wondering why we did not do that in the previous scenarios?
The answer is the parameters related to Profile Disks must be used exclusively and
not with normal configuration parameters.

The following parameters are common for Profile Disks irrespective of whether you
are configuring it for a VM-based or session-based collection:

* -CollectionName: This parameter defines the name of the collection to

be modified.
* -EnableUserProfileDisk: This parameter enables the Profile Disks feature.
* -DisableUserProfileDisk: This parameter disables the Profile Disks feature.

* -Diskpath: This parameter is the path used to store Profile Disks. It could
be a local directory or a shared folder. A shared folder is preferred if you are
using multiple servers per collection.

* -MaxUserProfileDiskSizeGB: This parameter defines the maximum size for
each Profile Disks feature.

* -IncludeFolderPath: This parameter defines the custom folder to be saved
on Profile Disks.

* -ExcludeFolderPath: This parameter defines the default profile folder to be
removed from Profile Disks.

* -RedirectAllMonitors: This parameter allows the users to redirect all
monitors to the virtual desktop.

[285]

http:///

Managing Microsoft Desktop Virtualization with PowerShell

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RCCB-0l.Contoso.local'’

#Enable and Assign Profile Disk to Session-based Collection

Set-RDSessionCollectionConfiguration -CollectionName "mySessions"
-EnableUserProfileDisk -DiskPath '\\FileServer-0l\ProfileDisks'
-MaxUserProfileDiskSizeGB 20 -IncludeFolderPath 'C:\myReports'
-ConnectionBroker $RDCB

#Enable and Assign Profile Disk to VM-based Collection

Set-RDVirtualDesktopCollectionConfiguration -CollectionName "Win7SP1"
-EnableUserProfileDisk -DiskPath '\\FileServer-0l\ProfileDisks'
-MaxUserProfileDiskSizeGB 20 -ExcludeFolderPath 'C:\Users\Sherif\Desktop\
myVideos' -ConnectionBroker S$RDCB

Scenario 10 — publishing Remote Desktop

RemoteApp to collections

RemoteApp is one of the RDS features that allows you to publish an application
through RDS Web Access so that users can launch the application directly without
even installing the application on the local machine.

In this scenario, you already have a VM-based collection and you want to set up
a RemoteApp and publish it to this collection in order to allow users to use this
application. For this purpose, you will use the New-RDRemoteApp cmdlet with the
following parameters:

* -CollectionName: This parameter defines the name of the collection to
be modified

* -ShowinWebAccess: This parameter chooses whether to show RemoteApp in
the web access portal or to hide it

* -UserGroups: This parameter specifies the users and groups with authorized
access to this RemoteApp feature

* -DisplayName: This parameter defines the display name of the
RemoteApp feature

* -FilePath: This parameter gives the path file of the RemoteApp feature
executable file

* -ConnectionBroker: This parameter defines the FQDN of the server that
holds the Connection Broker role for the existing deployment

[286]

http:///

Chapter 10

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-0l.Contoso.local'’

#Publish Remote Desktop RemoteApp to Collection

New-RDRemoteApp -CollectionName "mySessions" -ShowInWebAccess $true
-UserGroups "Contoso\CallCenter Users" -ConnectionBroker $RDCB
-DisgplayName Skype -FilePath "C:\Program Files (x86) \Skype\Phone\Skype.
exe"

Scenario 11 — configuring Remote Desktop
Connection Broker for high availability

In this scenario, you are a virtualization administrator at Contoso where Desktop
Virtualization is one of the important components, and you found that the current
implementation has only one Remote Desktop Connection Broker (RDCB) that
is a single point of failure. So, you have decided to add one more server for high
availability to save the environment in case of a disaster.

For this purpose, you will use the set -RDConnectionBrokerHighAvailabili
ty cmdlet to configure the High-Availability settings and then the Add-RDServer
cmdlet to add a new RDCB server to the array.

The set-RDConnectionBrokerHighAvailability cmdlet is used with the following
group of parameters:

* -ConnectionBroker: This parameter defines the FQDN of the server that
holds the Connection Broker role for the existing deployment.

* -DatabaseConnectionString: This parameter defines the connection
string to be used by the RDS to connect to the configuration database
on SQL Server.

* -ClientAccessName: This parameter defines the name used by the clients
to access Connection Broker. The name should be configured in DNS as a
round-robin record.

* -DatabaseFilePath: This parameter defines the path that creates the RDCB
configuration database file.

[287]

http:///

Managing Microsoft Desktop Virtualization with PowerShell

Before you start configuring the RDCB high availability, ensure that:
e The RDCB servers have an administrative permissions on SQL

Server
%‘ ¢ The RDCB servers have SQL Server's native client installed
¢ The RDCB servers have a DNS round-robin record
e The RDCB servers have a static assigned IP Address

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-0l.Contoso.local'’

#SQL Server Instance

$SQLinstance 'SQL-0l.Contoso.local!

#RD Connection Broker Database name

S$RDCBDB = 'RDCB'

$ConStr = "DRIVER=SQL Server Native Client 10.0; SERVER=$SQLinstan
ce;Trusted Connection=Yes;APP=Remote Desktop Services Connection
Broker;Database=$RDCBDB"

#Configuring RDCB HA settings

Set-RDConnectionBrokerHighAvailability -ConnectionBroker $RDCB
-DatabaseConnectionString $ConStr -ClientAccessName RDCB.Contoso.Local
-DatabaseFilePath ("C:\$RDCBDB" + '.mdf')

#Adding the second RDCB the HA Array

Add-RDServer -ConnectionBroker $RDCB -Server RDSH-02.Contoso.local -Role
RDS-CONNECTION-BROKER

[288]

http:///

Chapter 10

Summary

It is very obvious that virtualization in general has played a major role in changing
the shape of the ICT industry. In this chapter, we had a sneak peek at Desktop
Virtualization as a concept, its benefits, and the value of using it from a business and
technical perspective. Also, we learned how to use Windows PowerShell to install,
configure, and manage Microsoft Remote Desktop Services.

In the next chapter, we will continue the Windows PowerShell's journey of
knowledge with Microsoft Cloud solutions. The spotlight will be on how Windows
PowerShell can help you to build and manage your infrastructure and the platforms
hosted on the cloud, with a focus on Microsoft's implementation of Infrastructure-
as-a-Service (IaaS) represented in Windows Azure and Platform-as-a-Service (PaaS)
represented in SQL Azure.

[289]

http:///

http:///

11

Managing Microsoft Cloud
Platform with PowerShell

Cloud is one of the most popular words in the ICT industry nowadays; we hear it
every day, everywhere, and at every occasion. In simple words, cloud computing

is the concept of using and delivering computing resources to the end user as a
service. A computing resource could be software such as web portals and messaging
systems, or hardware such as CPU, memory, network, and storage. It could be
hosted internally in a corporate's data center "Private Cloud" or externally in a
vendor's data center "Public Cloud".

There are different types of cloud computing:

Software-as-a-Service (SaaS): In SaaS, you get your software (for example,
e-mail, web portals, or CRM) as a service hosted in the cloud; you do

not have to worry about hardware requirements, software prerequisites,
implementation, and maintenance hassles. In simple words, you can get
software that is ready to use in a few clicks.

Popular solution(s): Microsoft Office 365 and Oracle CRM On Demand
Platform-as-a-Service (PaaS): In PaaS, you get Data Platform such as SQL
Server as a service such as SaaS hosted in the cloud. You can also get your
SQL Server instance and database ready in no time.

Popular solution(s): Microsoft SQL Azure and Google App Engine

Infrastructure-as-a-Service (IaaS): In aaS, you get the infrastructure
(hardware) components as a service. It is similar to the web hosting concept
in which you get a specific hardware configuration to host your website;
however, in IaaS you get the hardware configuration to build and host your
virtual servers.

Popular solution(s): Microsoft SQL Azure and Amazon Web Services

http:///

Managing Microsoft Cloud Platform with PowerShell

This chapter will cover how Windows PowerShell helps in administering, managing,
and automating a cloud computing platform such as Microsoft Windows Azure.

We will also cover the following topics:

e Whatis Windows Azure?
¢ What is Windows Azure PowerShell?

* Managing Windows Azure using PowerShell.

What Windows Azure is

Windows Azure is a cloud-computing concept that is created by Microsoft. Mainly,
Windows Azure provides laaS and PaaS, so you can think about using it in many
scenarios, such as hosting a web application, deploying a centralized data store,
building a development and testing environment, or even implementing a disaster
recovery (DR) site for your on-premise environment.

What Windows Azure PowerShell is

Windows Azure comes with a very neat and easy, web-based management interface
that allows you to do any task in a few clicks, but unfortunately this interface is a
bit limited. For example, you cannot create a couple of virtual machines in one shot;
you have to repeat the same steps twice in order to get two virtual machines. The
same goes for the rest of the Azure tasks. That is why, Windows Azure provides

a powerful scripting environment via Windows PowerShell to make it easier for
administrators to automate multiple Azure tasks, such as the provisioning of virtual
machines, application deployment, and infrastructure management.

Installing Windows Azure PowerShell

Windows Azure PowerShell is provided with the Windows PowerShell module as
part of the Windows Azure Software Development Kit (SDK). In order to install
Windows Azure PowerShell:
1. Go to Windows Azure's download page:
http://www.windowsazure.com/en-us/manage/downloads/

2. In the Windows section, click on Install to download the web installer EXE
file for Windows Azure PowerShell:

[292]

http:///

Chapter 11

Command line tools

Windows downloads Mac Linux

n Windows Azure u Command Line n Command Line
PowerShell Interface Interface
Last updated March 2013 Last updated March 2013 Last updated March 2013
Cross-platform Get started tutorial Get started tutorial
Command Line Images, Drivers, Agents
Interface

Last updated March 2013

Get started tutorial

Archive

3. Launch the web installer file; click on Install to start Windows Azure
PowerShell's installation and configuration.

4. Follow the installation wizard to complete the process.

After installing Windows Azure PowerShell, a module called "Azure" should be
available in your system.

Making Windows PowerShell understand
Windows Azure cmdlets

In order to use Windows Azure cmdlets in Windows PowerShell, you can either
directly launch the Windows Azure PowerShell shortcut to quickly jump into
the Windows Azure PowerShell environment or launch the import Windows
Azure PowerShell module into your Windows PowerShell session using the
following command:

#Import Windows Azure PowerShell module
PS> Import-Module Azure

[293]

http:///

Managing Microsoft Cloud Platform with PowerShell

Connecting to your Windows Azure
environment

After downloading, installing, and importing the Windows Azure PowerShell, you
are just one step away from managing your Windows Azure environment using
PowerShell. The last step is connecting to your Windows Azure subscription.

In order to set up your Windows Azure subscription in your PowerShell, you have to
import the PublishSettings file that contains your Windows Azure subscription's
unique information, such as the subscription ID, name, service endpoint URL, and
certificate thumbprint. This information will be used by PowerShell to reach your
Windows Azure environment.

You can get the Publishsettings file easily by using the
Get-AzurePublishSettingsFile cmdlet. This cmdlet will take you to the
Windows Azure portal. When you enter your credentials, you will be redirected
to an instructional page to generate and download your Windows Azure
PublishsSettings file for your subscription.

#Generate and download the Windows Azure PublishSettings File
PS> Get-AzurePublishSettingsFile

Now you should have the publishsettings file called <AzurePublishSettings>.
publishSettings that contains your Windows Azure subscription. The next

step is to import it to PowerShell in order to define your subscription information
into Windows PowerShell. To import the publishSettings file, use the
Import-AzurePublishSettingsFile cmdlet as follows:

#Import Windows Azure PublishSettings File
PS> Import-AzurePublishSettingsFile <FileNames>.publishsettings

Once the publishsettings file is imported successfully, Windows PowerShell will
set your subscription as a default subscription; so every time you open Windows
PowerShell and use Windows Azure cmdlets, it will automatically connect to
Windows Azure using the default subscription. In order to show your subscription
information, use the Get -AzureSubscription cmdlet.

[294]

http:///

Chapter 11

eyl
PS C:sxlUsersw—shtasdesktop?> Get—AzureSubscription

SubscriptionName : Windows Azure MSDN — Uisual Studio Ultimate
Subscriptionld = Scba al4?
Certificate = [SBubject]

CN=Windows Azure Tools

[Issuerl
CN=Uindows Azure Tools

[Serial Numbherl
83674

[Not Beforel
12/28-2812 2:37:58 AN

[Not After]
12/28-2813 2:37:58 AN

[Thumbprint]
6AE6F61

ServiceEndpoint = https://management .core . windows _net/
SqlizureServiceEndpoint =

CurrentitnrageAccnunt :oenex

IsDefault : True

So at this point, we can say congratulations!! Your Windows PowerShell
environment is now ready to manage your Windows Azure.

Getting started with Windows Azure
scripting

In this section, we will help you get started with Windows Azure scripting and
automation using a set of Windows PowerShell scenarios and examples.

Scenario 1 — creating a new Azure Affinity
Group

In this scenario, you are a Windows Azure administrator who wants to get the best
performance by making sure that any related cloud components associated with a
specific cloud service are placed in the same data center, especially when Microsoft
has multiple Azure data centers distributed across the United States, Europe, and
Asia. So for this purpose, you need to create an "affinity group" in order to group the
related components logically. For this, you will use the New-AzureAffinityGroup
cmdlet with the following group of parameters:

* -Name: Defines the name of the new affinity group

* -Location: Defines the location of the affinity group; this will define which
data center needs to be used to place the cloud components associated with
this affinity group

[295]

http:///

Managing Microsoft Cloud Platform with PowerShell

Use the Get -AzureLocation cmdlet to get the list of
s available locations.

You can use the following code:

#Create New Azure Affinity Group
PS> New-AzureAffinityGroup -Name "ContosoAffinityGroup" -Location
"West US"

Scenario 2 — creating a new Azure storage
account

In this scenario, you will create an Azure storage account in order to allow your
services, applications, and infrastructure to utilize Windows Azure storage. For this
purpose, you will use the New-AzureStorageAccount cmdlet with the following
group of parameters:

* -StorageAccountName: Defines the name of the new azure storage account

* -AffinityGroup: Defines the name of the affinity group that the storage
account should be associated with

You can use the following code:

#Create New Azure Storage Account
PS> New-AzureStorageAccount -StorageAccountName "contoso"
-AffinityGroup "ContosoAffinityGroup"

Scenario 3 — assigning a storage account to
an Azure subscription

In this scenario, you will assign a previously created Azure storage account to your
Windows Azure subscription in order to make sure that any task created under this
subscription will use this storage account by default. For this purpose, you will use
the set-AzureSubscription cmdlet to define the Windows Azure subscription's
settings with the following group of parameters:

* -SubscriptionName: Defines the name of the Azure subscription; use the
Get-AzureSubscription cmdlet to list all the available subscriptions in
Windows PowerShell

* -CurrentStorageAccount: Defines the name of the previously created
Azure storage account

[296]

http:///

Chapter 11

You can use the following code:

#Assign Azure storage account to a specific azure subscription
PS> Set-AzureSubscription -SubscriptionName <Subscription Name>
-CurrentStorageAccount "Contoso"

Scenario 4 — creating a new Azure Cloud
Service

In this scenario, you will create a Windows Azure Cloud Service. A cloud service
describes the components of each solution you have on Windows Azure. For
example, if you have a web application hosted on a web server (IIS) that connects to
a database hosted on a database server (SQL Server), these two components should
be called "Cloud Service". So, cloud service is an essential requirement for any Azure
component you want to create on Windows Azure. For this purpose, you will use the
New-AzureService cmdlet with the following group of parameters:

* _gerviceName: Defines the name of the new Azure service
* -AffinityGroup: Defines the affinity group the storage account should be

associated with

You can use the following code:

#Create new Azure Cloud Service

PS> New-AzureService -ServiceName "myCloudService" -AffinityGroup
"ContosoAffinityGroup"

Scenario 5 — creating a new SQL Azure
Database Server

In this scenario, you will create a centralized SQL Server database hosted in
the cloud, utilizing the SQL Azure capabilities to host your database. So before
you create your SQL Server database, you first need to create a SQL Server
instance to host this SQL database. For this purpose, you will use the New-
AzureSglDatabaseServer cmdlet with the following group of parameters:

* -AdministratorLogin: Defines the login name for the SQL Azure
instance administrator

* -AdministratorLoginPassword: Defines the login and password for the
SQL Azure instance administrator

* _Location: Defines the SQL Azure server instance's location

[297]

http:///

Managing Microsoft Cloud Platform with PowerShell

You can use the following code:

#Create new SQL Azure Database Server instance

PS> New-AzureSglDatabaseServer -AdministratorLogin "SherifT"
-AdministratorLoginPassword "PesswOrd" -Location "West US"

Scenario 6 — creating a new SQL Azure
database

In this scenario, you will create a SQL Azure database on a previously created SQL
Azure database server instance. For this purpose you will use a couple of cmdlets;
the first cmdlet is the New-AzureSqlDatabaseServerContext cmdlet that is used
to define which server you will connect to, and the second cmdlet is the New-
AzureSqglDatabase cmdlet that is used to create the SQL Azure database.

Following are the group of parameters:

® New-AzureSglDatabaseServerContext

° _gerverName: Defines SQL Azure server name
® New-AzureSglDatabase
° -context: Defines the database context object created using the New-

AzureSqlDatabaseServerContext cmdlet

° -DatabaseName: Defines the name of the new database you want to
create

° _collation: Defines the collation of the database
° _Edition: Defines the database edition, either "Web" or "Business"

° -MaxSizeGB: Defines the maximum size of the database in gigabytes;
the maximum size of the database depends on which database
edition you are using

You can use the following code:

#Create SQL Azure Database Server Context
PS> Scontext = New-AzureSglDatabaseServerContext -ServerName <server_
Name>

#Create new SQL Azure Database
PS> New-AzureSglDatabase -Context $context -DatabaseName "myDatabase"
-Collation SQL Latinl General CP1 CI AS -Edition "Web" -MaxSizeGB 1

[298]

http:///

Chapter 11

Scenario 7 — creating a new SQL Azure
Database Server firewall rule

In this scenario, you will create a SQL Azure Database server firewall rule in order to
allow communication between your SQL Azure database server and web application
that is hosted either somewhere else or on other computers in a specific network
range. For this purpose, you will use the New-AzureSglDatabaseServerFirewallRu
1e cmdlet to define the firewall rule settings for SQL Azure Server.

Following are the group of parameters:

* -ServerName: Defines SQL Azure server name

* -RuleName: Defines the name of the firewall rule
* _startIpAddress: Defines the start IP address

* _EndIpAddress: Defines the end IP address

% Use 0.0.0.0 for -StartIpAddress and -EndIpAddress to allow
o communication between SQL Azure and Windows Azure.

You can use the following code:

#Create SQL Azure Database Server Firewall Rule

PS> New-AzureSglDatabaseServerFirewallRule -ServerName <Server Name>
-RuleName "myIntranet" -StartIpAddress 192.168.1.1 -EndIpAddress
192.168.1.254

Scenario 8 — provisioning the new Azure VM
in Windows (quick mode)

In this scenario, you will create a new Windows Azure virtual machine running

a Windows operating system using the quick mode. The quick mode allows you

to create a new virtual machine with minimal input from your side; it is good for
testing purposes. For the purpose of creating a new virtual machine, you will use the
New-AzureQuickvM cmdlet with the following group of parameters:

* _Windows: Defines that a virtual machine will run a Windows
operating system.
* _ServiceName: Defines the cloud service that will host the virtual machine.

e _Name: Defines the name of the virtual machine.

[299]

http:///

Managing Microsoft Cloud Platform with PowerShell

-password: Defines the operating system's administrator password.

- ImageName: Defines the name of the image that will be used to provision the
virtual machine.

Use the Get -AzureVMImage cmdlet to list all the images
/s— available in Windows Azure.

-InstanceSize: Defines the size of the virtual machine: "ExtraSmall",
"Small", "Medium", "Large", or "ExtraLarge". The difference between instance
sizes is the number of CPU cores and memory.

You can use the following code:

#Create new Windows Azure VM - Windows using Quick Mode

PS > New-AzureQuickVM -Windows -ServiceName "DatabaseService" -Name
"CAI-DC-03" -ImageName "MSFT Windows-Server-2012-Datacenter-
201210.01-en.us-30GB.vhd" -Password Pe@sswOrd -AffinityGroup
"ContosoAffinityGroup" -AffinityGroup "ContosoAffinityGroup"

Scenario 9 — provisioning the new Azure VM
in Linux (quick mode)

In this scenario, you will create a new Windows Azure virtual machine that is
running Linux operating system using the quick mode. For the purpose of creating a
new virtual machine, you will use the New-AzureQuickvM cmdlet with the following
group of parameters:

-Linux: Defines that the virtual machine will run a Linux operating system.
-ServiceName: Defines the cloud service that will host the virtual machine.
-Name: Defines the name of the virtual machine.

-LinuxUser: Defines the Linux administrator user.

-password: Defines the operating system's administrator password.

- ImageName: Defines the name of the image that will be used to provision
the virtual machine. Use the Get -AzurevMImage cmdlet to list all the
available images.

-InstanceSize: Defines the size of the virtual machine: "ExtraSmall",
"Small", "Medium", "Large", or "ExtraLarge". The difference between
instance sizes is the number of CPU cores and memory.

[300]

http:///

Chapter 11

You can use the following code:

#Create new Windows Azure VM - Linux using Quick Mode

PS> New-AzureQuickVM -Linux -ServiceName "myLinuxEnv" -Name
"SUSE-02" -ImageName "b4590d9e3ed742e4ald46e5424aa335e SUSE-Linux-
Enterprise-Server-11-SP2-New" -LinuxUser "root" -Password P@sswOrd
-AffinityGroup "CoontosoAffinityGroup"

Scenario 10 — provisioning the new Windows
Azure VM (advanced mode)

In this scenario, you will create a Windows Azure virtual machine that is running
the Windows operating system using the advanced mode in order to add extra
configurations that are not available using the quick mode, such as virtual machine
disk and endpoint configurations. For this purpose, you will use a combination of
the following Azure cmdlets:

* The New-AzurevMconfig cmdlet is used to configure a new virtual machine
configuration. Its parameters are as follows:

o

o

-Name: Defines the name of the virtual machine.

- ImageName: Defines the name of the image that will be used to
provision the virtual machine.

-InstanceSize: Defines the size of the virtual machine: "ExtraSmall",
"Small", "Medium", "Large", or "ExtraLarge". The difference between
instance sizes is the number of CPU cores and memory.

* The add-AzureProvisionConfig cmdlet is used to define the virtual
machine's provision configuration, such as the operating system, domain,
time zone, and automatic updates. Its parameters are as follows:

o

-Windows: Defines that the virtual machine will run a Windows
operating system

-password: Defines the operating system's administrator password

-DisableAutomaticUpdates: Disables the automatic update feature
on the virtual machine

-ResetPasswordOnFirstLogon: Forces the user to change the
password on the first login

-TimeZone: Defines the time zone for the virtual machine
-WindowsDomain: Defines that the virtual machine will join a domain

-Domain: Defines the name of the domain the virtual machine
will join

[301]

http:///

Managing Microsoft Cloud Platform with PowerShell

° -JoinDomain: Defines the fully qualified domain name (FQDN) of
the domain the virtual machine will join

° -DomainUserName: Defines the username of the domain account that
has permission to join the virtual machine to the domain

° -DomainPassword: Defines the password for the domain username

° -MachineObjectoOU: Defines the fully qualified domain name
(FQDN) for the Organizational Unit (OU) in which the computer
account will be created

* The New-AzurevM cmdlet is used to create a new virtual machine using
the previously created virtual machine configuration and provisioning
configuration. Its parameters are as follows:

° _gerviceName: Defines the cloud service that will host the virtual
machine

© -vMs: Defines the virtual machine configuration object that will be
used to create the virtual machine

You can use the following code:

#Create Azure VM configuration

PS> $vml = New-AzureVMConfig -Name myWebOl -InstanceSize

Medium -ImageName "a699494373c04fc0bc8f2bb1389d6106_ Windows-
Server-2012-Datacenter-201212.01-en.us-30GB.vhd" | Add-
AzureProvisioningConfig -Windows -Password "P@sswOrd" -WindowsDomain
-Domain "Contoso" -JoinDomain "Contoso.com" -DomainUserName
"Administrator" -DomainPassword "P@sswOrd" -MachineObjectOU
"OU=Azure,DC=Contoso,DC=com" -DisableAutomaticUpdates -
ResetPasswordOnFirstLogon -TimeZone "Pacific Standard Time"

#Create Azure VM using the previously created VM
PS> New-AzureVM -ServiceName "ContosoWeb" -VMg $vml

Scenario 11 — Adding a new endpoint to
Windows Azure VM (NoLB)

In this scenario, you have a secure website running on the Windows Azure virtual
machine and you want to make this website accessible to other users. In order to
achieve this task, you will have to create an endpoint that is configured to allow
communication between users in different networks and the website on your
virtual machine. Network Endpoint is similar to the concept of Network Address
Translation (NAT) or the Port Forward features in network switches and routers.

[302]

http:///

Chapter 11

To make your website accessible to other users, you will use the Add-AzureEndPoint
cmdlet with the following parameters to add a new Not Load-Balanced (NoLB)
endpoint to the secure website-utilizing port 443 for HTTPS:

* -Name: Defines the name of the Endpoint rule

* -Protocol: Defines the protocol of the endpoint, either TCP or UDP

* -LocalPort: Defines the local port of the endpoint that is used for
communicating with the application on the virtual machine

* -PublicPort: Defines the public port that the Endpoint will use to listen to
incoming requests

You can use the following steps:
1. Get the Windows Azure VM you want to assign the Endpoint rule to, using
the Get-AzurevM cmdlet with the -ServiceName and -Name parameters.
Use the Add-AzureEndPoint cmdlet to add a new endpoint.

Commit the changes on the virtual machine using the Update-Azurevm
cmdlet.

You can use the following code:

#Add NoLB EndPoint to Windows Azure virtual machine

PS> Get-AzureVM -ServiceName "CorpWebsite" -Name "WebSrv0l" | Add-
AzureEndpoint -Name "HTTPs" -Protocol tcp -LocalPort 443 -PublicPort
443 | Update-AzureVM

Scenario 12 — configuring the Windows Azure
Virtual Machines load balancing (LB)

In this scenario, you have cloud services running on the corporate website portal;
these cloud services consist of three virtual web servers, and you want to make sure
that load balancing is configured for this server. In order to achieve this task, you
will have to add a new Load-Balancing Endpoint and assign this endpoint to all
those virtual machines that should be members of the load balancing stack.

[303]

http:///

Managing Microsoft Cloud Platform with PowerShell

For this purpose, you will use the Add-AzureEndPoint cmdlet with the following
parameters to add a new Load-Balanced (LB) EndPoint for the server hosting the
website portal:

-Name: Defines a name for the EndPoint rule
-Protocol: Defines the protocol for the endpoint, either TCP or UDP

-LocalPort: Defines the local port for the endpoint that is used for
communicating with the application on the virtual machine

-PublicPort: Defines the public port that the endpoint will use to listen to
incoming requests

-LBSetName: Defines a name for the Load-Balanced EndPoint set

-ProbeProtocol: Defines the protocol for the Load-Balanced EndPoint that
is to be probed (tested); it's either HTTP or TCP

-ProbePort: Defines the port to be used by the probes; by default, the public
port is used if this parameter is not defined

-ProbePath: Defines the URI to be used by the probes; it's used only with the
HTTP probe protocol

You can use the following steps:

1.

Get all Windows Azure VMs under the cloud service that you want to
assign a Load-Balanced EndPoint to, using the Get -AzurevM cmdlet with the
-ServiceName parameter.

Use the Add-AzureEndPoint cmdlet to add a new endpoint.

Commit the changes on the virtual machine using the Update-AzurevM cmdlet.

You can use the following code:

#Add Load-Balanced EndPoint to Windows Azure virtual machine

PS> Get-AzureVM -ServiceName CorpWebsite | Add-AzureEndpoint -Name

"LB-Http" -Protocol tcp -PublicPort 80 -LocalPort 80 -LBSetName "LB-
WebFarm" -ProbePort 80 -ProbeProtocol "http" -ProbePath "/" | Update-
AzureVM

[304]

http:///

Chapter 11

Scenario 13 — creating and assigning a data
disk to Windows Azure Virtual Machine

In this scenario, you have a Windows Azure virtual machine with only one disk for
the operating system, and you want to create a new data disk and attach it to this
virtual machine. For this purpose, you will use the Add-AzureDatabisk cmdlet with
the following group of parameters:

* -CreateNew: Creates a new data disk

* -DiskLabel: Defines the disk label for the new data disk

* -DiskSizeInGB: Defines the data disk size in gigabytes

* -LUN: Defines the Logical Unit Number (LUN) location for the data disk in
the virtual machine; you can assign LUN from 0 to 15

You can use the following steps:

1. Get the Windows Azure VM to which you want to assign the data disk, using

the Get-AzurevM cmdlet with the -ServiceName and -Name parameters.

2. Use the Add-AzureDataDisk cmdlet with -CreateNew to create a new
data disk.

3. Commit the changes on the virtual machine using the Update-AzurevMm
cmdlet.

You can use the following code:

#Create and Assign a new data disk to Windows Azure VM

PS> Get-AzureVM -ServiceName "myWebFarm" -Name WebSrv0l |
Add-AzureDataDisk -CreateNew -DiskSizeInGB 30 -DiskLabel
"UserDataDisk" -LUN 0 | Update-AzureVM

Scenario 14 — moving the Local VHD to
Windows Azure

In this scenario, you want to migrate a virtual machine from your on-premise
Hyper-V server to Windows Azure without rebuilding the server from scratch. So
you have decided to move the local VHD file for the virtual machine to your storage
on Windows Azure. For this purpose, you will use the Add-Azurevhd cmdlet with
the following group of parameters:

* The add-Azurevhd cmdlet is used to move the VHD file from the local server
to Windows Azure. Its parameters are as follows:

° -LocalFilePath: Assigns the file path for the local VHD file

[305]

http:///

Managing Microsoft Cloud Platform with PowerShell

° -Destination: Assigns the URI for the Windows Azure container to
which the VHD will upload

* The Add-AzureDisk cmdlet is used to add the VHD to the Windows Azure
Disk library. Its parameters are as follows:

° -o0s: Defines that the VHD is an operating system disk; it accepts
either Windows or Linux

° -DiskName: Defines the name of the disk on the library

° -MediaLocation: Defines the location of the VHD that is to be added
to the disk library

You can use the following steps:

Define a variable $LocalVHD to store the local path for the VHD file.

2. Define a variable $bDestination to store the URI for the Windows Azure
container.

3. Use the add-Azurevhd cmdlet to move the VHD file.
Use the add-2AzureDisk cmdlet to convert the VHD to Azure Disk and store
it in the disk library.

You can use the following code:

#Get the Azure Storage Account for the default Azure Subscription
PS> $StorageAccountName = (Get-AzureSubscription) .CurrentStorageAccount

#Define DiskName
PS> $DiskName = "AppVServerDisk"

#Define Local VHD file path
PS > S$LocalVHD = 'D:\Hyper-V\Virtual Hard Disks\AppVServer.vhd'

#Define the URI for the Windows Azure Container

PS > S$Destination = 'http://' + $StorageAccountName + '.blob.core.
windows.net/vhds/AppVServerDisk.vhd'

#Move VHD file from local server to Windows Azure Storage
PS > Add-AzureVhd -LocalFilePath $LocalVHD -Destination S$Destination

#Convert the VHD file to Windows Azure Disk
PS > Add-AzureDisk -0S Windows -DiskName $DiskName -MediaLocation
$Destination

[306]

http:///

Chapter 11

Scenario 15 — provisioning a new Windows
Azure VM from a Disk

In this scenario, you have a VHD for one of your virtual servers that has recently
been moved from the on-premise Hyper-V server to the Windows Azure storage,
and you want to create a new Windows Azure virtual machine using this VHD. For
this purpose, you will use a combination of the following Azure cmdlets:

* The New-AzurevMConfig cmdlet is used to create a new virtual machine
configuration. Its parameters are as follows:

° _Name: Defines the name for the new virtual machine.
° _piskName: Defines the name of the disk that will be attached to the
virtual machine to provision it.

° _InstanceSize: Defines the size of the virtual machine: "ExtraSmall",
"Small", "Medium", "Large", or "ExtraLarge". The difference between
instance sizes is the number of CPU cores and memory.

* The New-AzurevM cmdlet is used to create a new virtual machine using
the previously created virtual machine configuration and provisioning
configuration. Its parameters are as follows:

° _gerviceName: Defines the cloud service that will host the virtual
machine

° -vMs: Defines the virtual machine configuration object that will be
used to create the virtual machine

You can use the following code:

#Create Azure VM Configuration object
PS> svml = New-AzureVMConfig -Name AppVServer -InstanceSize Medium
-DiskName "AppVServerDisk"

#Create new VM from Azure VM Configuration
PS> New-AzureVM -ServiceName "ContosoWeb" -VMs S$vml

[307]

http:///

Managing Microsoft Cloud Platform with PowerShell

Scenario 16 — creating Windows Azure Image
from a VM

In this scenario, you have a customized Windows Azure virtual machine and you
want to use this virtual machine as a base image for the future provisioning of virtual
machines. For this purpose, you will use the Save-AzurevMImage cmdlet to capture
the virtual machine and save it as an image.

The parameters of the save-AzurevMImage cmdlet are as follows:

* -ServiceName: Defines the name of the cloud service hosting the
virtual machine

e _Name: Defines the name of the virtual machine

* -NewImageName: Defines a name for the new image

Make sure to Sysprep your virtual machine before using
e the Save-AzureVMImage cmdlet.

You can use the following code:

#Create Azure VM Image
PS> Save-AzureVMImage -ServiceName "CorpWebsite" -Name "myWebOl"
-NewImageName "Corp Website Core Image, Update Jan 2013"

Scenario 17 — exporting and importing
Windows Azure VM

In this scenario, you have a Windows Azure virtual machine running under

a specific cloud service and you want to move it to another cloud service.
Unfortunately, there is no option in the Windows Azure portal that allows moving
the virtual machine between different cloud services. The workaround is to use

a combination of Windows Azure PowerShell cmdlets to achieve this goal. These
cmdlets are as follows:

* The Export-aAzurevM cmdlet is used to export a virtual machine state
(configuration) to an XML file. Its parameters are as follows:
° -ServiceName: Defines the name of the cloud service hosting the
virtual machine
-Name: Defines the name of the virtual machine

° -path: Defines the path in which to export the XML state file

[308]

http:///

Chapter 11

* The Remove-AzureVM cmdlet is used to remove the current virtual machine
and lease the attached disk. Its parameters are as follows:

o

-ServiceName: Defines the name of the cloud service hosting the
virtual machine

o

-Name: Defines the name of the virtual machine

The Remove-AzureVM cmdlet removes the virtual machine
s but not the attached disk.

* The Import-aAzurevM cmdlet is used to import the virtual machine state file.
Its parameter is as follows:

° -path: Defines the path of the XML state file

The Import-AzureVM cmdlet might import the virtual
i machine with a new IP Address.

* he New-AzurevM cmdlet is used to create a new virtual machine using a state
(configuration) XML file imported in the last step. Its parameter is as follows:

o

-ServiceName: Defines the name of the cloud service hosting the
virtual machine

You can use the following code:

#Export Azure VM configuration

PS> Export-AzureVM -ServiceName CorpWebsite -Name myWeb0l -Path $home\
desktop\myWeb01.xml

#Remove Azure VM
PS> Remove-AzureVM -ServiceName CorpWebsite -Name myWebO1l

#Importing Azure VM configuration file, and create new VM using the
import file

PS> Import-AzureVM -Path $home\desktop\myWebOl.xml | New-AzureVM
-ServiceName CorpPortal

[309]

http:///

Managing Microsoft Cloud Platform with PowerShell

Scenario 18 — starting, stopping, and
restarting the Windows Azure VM

In this scenario, you have a large number of Windows Azure virtual machines and
you spend a lot of time starting, restarting, or stopping these using the management
portal. Using the management portal, you are doing this task one by one and you
want to discover the other possibilities in PowerShell. For this purpose, Windows
Azure PowerShell provides a quick and basic task equivalent to this:

* The start-aAzurevM cmdlet used to power on a virtual machine

* The stop-AzurevM cmdlet used to shut down a running virtual machine

* The Restart-AzurevM cmdlet used to restart a virtual machine
All three cmdlets use the same parameters as follows:

* -ServiceName: Defines the name of the cloud service hosting the virtual
machine

e _Name: Defines the name of the virtual machine

You can use the following code:

#Start Azure VM
PS> Start-AzureVM -ServiceName CorpWebsite -Name myWebOl

#Restart Azure VM
PS> Restart-AzureVM -ServiceName CorpWebsite -Name myWebOl

#Shutdown Azure VM
PS> Stop-AzureVM -ServiceName CorpWebsite -Name myWebOl

Scenario 19 — uploading the certificate to
Windows Azure

In this scenario, you have a Secure Socket Layer (SSL) certificate that you want to
use for one of the services hosted on Windows Azure. In order to use it, you will
have to upload it first to your Windows Azure subscription. For this purpose, you
will use the Add-AzureCertificate cmdlet with the following group of parameters:

* -ServiceName: Defines the cloud service in which you will deploy the
certificate

[310]

http:///

Chapter 11

* -CertToDeploy: Defines the local path for the certificate files such as CER
and PFX certificates

* -password: Defines the certificate password, if any

You can use the following code:

#Upload certificate to Windows Azure service
PS> Add-AzureCertificate -ServiceName "myDevEnv" -CertToDeploy
<myCertificate.pfx> -Password abcl23

Scenario 20 — generating the Azure Virtual
Machine RDP file

In this scenario, you will generate a remote desktop file for your Windows Azure
virtual machines so you can connect to them directly instead of using the Windows
Azure portal. For this purpose, you will use the Get -AzureRemoteDesktopFile
cmdlet with the following group of parameters:

* -ServiceName: Defines the cloud service in which your virtual machine
resides

* -Name: Defines the name of the virtual machine for which you want to
generate the RDP file

* -LocalPath: Defines the local path where you want to save the RDP file

* -Launch: Launches the remote desktop session for the selected session

You can use the following code:

#Generate Remote Desktop File for Windows Azure VM

PS> Get-AzureRemoteDesktopFile -ServiceName "myDevEnv" -Name
"DevTools" -LocalPath Shome\Desktop\DevTools.rdp -Launch

[311]

http:///

Managing Microsoft Cloud Platform with PowerShell

Summary

It is very obvious that cloud computing is the future of our ICT industry; it is going
to be a core component in each and every entity, and this is no secret. There are huge
benefits and roadmaps provided by this technology for future growth.

In this chapter, we have seen Microsoft Windows Azure and SQL Azure as a
real-life example of a cloud computing implementation, and we have learned
how Windows PowerShell can play a major role in operating such a technology
easily, as if managing a normal virtualized environment.

In the next chapter, we will talk about IT Process Automation (also known as
Runbook automation) and the concept behind it. Also, we will learn how Windows
PowerShell and System Center Orchestrator can be integrated together to implement
and complete this concept in real life.

[312]

http:///

12

Integrating Windows
PowerShell and System
Center Orchestrator

In previous chapters of this book, we had a deeper look at Windows PowerShell

and its capabilities as an automation engine. We also had a long tour discovering
Windows PowerShell and its capabilities with different products and technologies.
The fact is that PowerShell is not only a command-line interface (for products such
as Exchange Server or Windows Server) that allows a better and easier configuration
and management, but it also plays a major role in areas such as Business Process
Automation (BPA).

In this chapter we will cover the following topics:

* Whatis IT Process Automation (ITPA)?
* What is System Center Orchestrator (SCO)?
* Windows PowerShell and System Center Orchestrator are better together.

Completing your ITPA story with
PowerShell and Orchestrator

ITPA, also known as Run Book Automation (RBA), is the concept of delivering an
end-to-end automation, integration, and orchestration scenarios between people,
processes, tools, and other different parties in enterprise and

complex IT environments.

http:///

Integrating Windows PowerShell and System Center Orchestrator

ITPA is one of the best ways to:

* Increase IT resource utilization and allocation; the resources are either people
or equipment

* Reduce the cost of operations as it reduces the human error factor, Mean
Time To Respond/Repair (MTTR)

* Effectively and efficiently implement IT industry standards and best
practices, such as ITIL and Microsoft Operations Framework (MOF)

What System Center Orchestrator is

System Center Orchestrator is the Microsoft platform for implementing ITPA.
Orchestrator allows you to build workflows that automate and integrate the
different tools and software from the same and different vendors together in
order to standardize deployment, provisioning, configuring, monitoring, and
troubleshooting of the different components in your IT environment.

System Center 2012 Orchestrator Runbook Designer = |
Actions Edit Options View Help
(i Refresh | [Run @ H |.# Check Out 7 Runbook Tester | [Orchestration Console |(2) Evaluation version: 176 day(s) left
Connections & Cloud Management | VM Checkpoint Management | 1.1.1 Create Checkpoint ‘ & Cloud Management |1 < | > Activities
B g
P RO & 5 system
sco ﬂEnd Process gRun 55|
g Ruhooks S Get SNMP Variable ! Save E
& A Monitor SNMP Trap EdSend S
=[] $C2012 Selutions B Query Wl ?35&(-
i~ 0.05imple Bample |:| ¥ > 5 N |!B’ ¥ Restart System B8 Start/s
207 1.0 Cloud Management & < & P=! Run Net Script '
b= Run |
J1.1.0 UM Checkpoint Initiste Get VM Create Success Run Program
- 1.2.0 Virtus! Disk Man Checkpoi... Checkpoint Notification) <
w0 1.3.0 Virtual Network | £ i L
-7 1.4.0 VM Managemen| [Scheduling
=~ 2.0 Service Management 4| Wonitoring

-7 2.1.0 Change Manage|

& Fie Management
m-) 220 Cl Management = o
LA,

=1 Email

| 23.0 Incident Manage
277 3.0 Data Protection

TR, 1%, Notification
Failure Failure o
i @+ 3.1.0 Recovery Manag| Motificati... Motificati... ﬁ i

\ @[3.2.0 Protection Mang [Active Directory

Bl

B

N | 4.0 Operations Managem
-] 5.0 Configuration Manag

& Computer Groups
4 Runbook Servers

| 3.1.0 Collection Mana
| 5.2.0 Deployment Ma
| 5.3.0 Client Managem)
| 6.0 Administrative Tasks

- Text File Management

SC 2012 Data Protection Manager
SC 2012 Configuration Manager
SC 2012 Operations Manager

SC 2012 Service Manager

E SC 2012 Virtual Machine Manager

g& Runbook Control

& G!oba\ Settings Log

-l g Counters =

- Variables QX

iU Schedules

< [T > || Log ‘Lng History | Audit History | Events‘

=]

2R

[314]

http:///

Chapter 12

Understanding Orchestrator workflows

As mentioned earlier in this book, the workflow term represents a set of objects,
tasks, and activities that are connected together and are running concurrently

or sequentially. In Orchestrator, the workflow activity represents a task such as
creating a new domain user or creating a new mailbox, and each group of activities is
wrapped together in a package called Integration Pack (IP), where each Integration
Pack contains a set of related tasks. For example, Active Directory Integration Pack
contains a set of activities that represents the different Active Directory tasks such
as creating security groups, removing organizational units, and resetting computer
accounts. The activities in Orchestrator are either .NET activities developed using
Orchestrator SDK and C# or are activities created by Command Line Activity
Wizard using command line tools such as Windows PowerShell or SSH.

System Center 2012 Orchestrator Runbook Designer - | @
Actions Edit Options View Help
(3 Refresh | [» Run H | £ CheckOut 77 ¥ Runbook Tester Orchestration Console ‘@ Evaluation version: 176 day(s) left
Connections #% Cloud Management | VM Checkpoint Management | 1.1.1 Create Checkpoint | & ¢ < :f Activities \
bKD& & system |
50) Scheduling)
Zié Runbooks =4l Monitering il
=7 5C2012 Selutions &/ File Management)l
| 0.0 Simple Example Ij - «‘i’- " 3 o =1 Email
=7 1.0 Cloud Mansgement ‘ o4 h 31 4 vetcaon
-7 1.1.0 VM Checkpoint | nitiate et reate i Tl
H I A . : Utilities
5107 1.2.0 Virtual Disk Man Checkpoi... Checkpoint Notifi # -
4.0 1.3.0 Virtual Network | I S5cirve Tncinny) |
] 1.4.0 VM Managemer| A Delete Group “& Get Group
2.0 Service Management MJDalete User é‘E_Get: Organizatio|
.5 2.10 Change Manage| 83 Disable Computer “R, Get User
509 220 CI Management #3 Disable User i Move Computes
A 2‘3‘D| ki |$ ’l$ &5 Enable Computer & Move Group
| 2.3.0 Incident Manage - LR, 35 Enable User =2, Move User
E-C3 3.0 Data Protection Failure Failure & Get Computer A= Remave Compl
#-{7] 3.1.0 Recovery Manag| Motificati... Notificati... |
47 3.2.0 Protection Mana < m
| 4.0 Operations Managem 4= Text File Wanagement
=~ 5.0 Configuration Manag SC 2012 Data Protection Manager

- 5.1.0 Collection Mana 5C 2012 Configuration Manager
1] 5.2.0 Deployment Mal SC 2012 Operations Manager |
47 5.3.0 Client Managem = -1

| 6.0 Administrative Tasks SC 2012 Service Manager)
& Computer Groups &l 5¢ 2012 Virtual Wachine Manager
4 Runbook Servers < m WL_-’;& Runbook Control)
o

& Global Settings
12 Counters =
%Ly Varishles QX
- Schedules

< m > ||| Log | Log History AuditHismry|Evems|

If you had the time to play with System Center Operations Manager (SCOM), you
definitely know that SCOM requires a Management Pack (MP) for the different
software and hardware in order to be capable to monitor these products. The concept
applies to SCO, where vendors provide the Integration Pack for their products in
order to automate and integrate them with each other.

[315]

http:///

Integrating Windows PowerShell and System Center Orchestrator

Orchestrator and PowerShell are better
together

The great thing about Orchestrator and PowerShell is that they complement the
missing parts in each other. In this section you will find how this can happen by
covering the following points:

* Using PowerShell in Orchestrator workflow

* Using PowerShell to build Orchestrator Integration Packs

Using PowerShell in Orchestrator workflow

Although Orchestrator provides a variety of Integration Packs for different products
across different vendors, you may sometimes need an activity that is not available or
is has a limited functionality. That is why Orchestrator has a standard activity called
Run .Net Script, which allows you to write your own PowerShell code to be executed
as an activity within your workflow.

The following steps show how you can achieve this task:

1. Launch Runbook Designer in System Center Orchestrator.

2. Under the Connections pane on the left-hand side, select Runbook Server,
and then right-click on Runbooks folder and go to New | Runbook to create
a new Runbook, as shown in the following screenshot:

System Center 2012
Actions Edit Opticns View Help
(i Refresh | [» sl i i1 A &
Connections
B & &t

=g SCO

"'Eu Runbooks
R 5C2012 Solutions

+ l-_ Cgmputer Gr |i MNew... i 2 IFD'dEr

..... E] Runbook Seny Fename
+-1g7 Global Setting

Delete

Move

Import...
Export...

Permiszions...
IT

[316]

http:///

Chapter 12

3. Under the Activities pane on the right-hand side, select System | Run .NET
Script, and then drag-and-drop the activity to the Runbook design area as
shown in the following screenshot:

nbook Tester | COrchestration Console |® Evaluation version: 176 day(s) left

Actvies |
;:_‘;E System
ﬂ End Process
& Get SNMP Variable 53]
‘“HMonitar SNMP Trap EdSend s
- = Query WMI st S
= 1l Restart System R start/st
'

E Run Program

Run .Met
Script

[<] m | |>
FH Scheduling

4. Open the Run .NET Script activity to select the language type and script
code, as shown in the following screenshot:

Run .Net Script
Define the language and script.

Language
Type IPowerSheII

Seript
$BI0S = Get-WmiObject -Class Win32_BIOS

[317]

http:///

Integrating Windows PowerShell and System Center Orchestrator

5. If you want to load specific Namespaces or Assembly References, go to

Advanced, and then add the binaries you want.

6. If you want to retrieve the results of the script in a variable that can be passed
to another workflow activity, go to Published Data, and click on Add to add
new published data, and then enter the following details:

1. Name: Name of the published data that will be used be Orchestrator

2. Type: Data type of the data populated from PowerShell

3. Variable name: PowerShell variable name that stores the results

Run .Net Script

Define variables to be

published.

Run .Net Script Properties

[%]

Published Data

General Add...
Details Name — =
iy Type |Sh-ing V| Remave
Collection
Published Datq yriable name |BIOS
Run Behavior oK | | Cancel |
|
| Fnsh || cancel || Hep |

7. Click on OK to add the new published data, and then click on Finish to close
the activity properties wizard.

Launch Runbook Tester to test the workflow activities.

In the Runbook Tester window, click on Run to start workflow testing
and monitor the testing logs in the bottom-center pane, as shown in the

following screenshot:

[318]

http:///

Chapter 12

=2 System Center 2012 Qrchestrator Runbook Tester [New Runbook] \;‘i-
File View Test Help
1 f[’: Step Through “Toggle Breakpoint
Run Time Properties []
P
Run .. Net’Sc:ript

Log (Start Time: 1/20/2013 4:12:51 PM, End Time: 1/20/2013 4:13:04 PM, Statu... Resource Browser

l— @ Start time 1/20/2013 4:13:.03 PM Activity name Run .Net Script - | (Computer Groups @
End e B)_fice Detais o
MEBIOS INFO "-."-.S;;O"-mot"-;::imvl‘ﬁa'in32_BIOS.Name="B_|2 = | Variables
LU Criaoned rar
Loop: Mumber of attempts 1 Schedules
Loop: Total duration 12
Activity duration 203
Activity end time 2013-01-20T16:13:03

Activity end time (day) 20
Activity end time fhours) 16
Activity end time {minutes) 13
Activity end time {month) 1 w

Using PowerShell to build Orchestrator Integration
Packs

Usually, enterprises do not rely only on ready-made software and solutions

from software vendors but might also develop their own Line-of-Business (LoB)
applications. In order to automate such an application, you have to build your own
custom activities and IPs.

For the purpose of achieving this task, Orchestrator already comes with the
Orchestrator Integration toolkit that helps you to extend Orchestrator's capabilities
by developing different types of custom activities and IPs.

Orchestrator Integration Toolkit contains:

* Integration Toolkit SDK: This is a Software Development Kit (SDK) for
System Center Orchestrator that allows building custom activities using C#.

* Command Line Activity Wizard: This wizard allows building custom
activities using command line tools such as Windows cmd, Windows
PowerShell, and SSH.

* Integration Pack Wizard: This utility allows wrapping the custom activities'
assemblies generated by either Integration Toolkit SDK or Command-Line
Activity Wizard in Integration Pack format.

[319]

http:///

Integrating Windows PowerShell and System Center Orchestrator

Orchestrator Integration Toolkit can be downloaded at: http://www.
i microsoft.com/en-us/download/details.aspx?1d=28725

After downloading and installing Orchestrator Integration Toolkit, it is now
time to start building your first custom activity and Integration Pack. In order to
build a custom activity using PowerShell, you need to use the Command-Line
Activity Wizard.

In the following example, you will create a custom activity that accepts the Computer
Name as a parameter to retrieve its operating system information using the
Win32 OperatingSystem WMI class.

Step 1 — creating the assembly file (.dll)
In this step you will learn how the assembly file that contains the commands and
activities will be used later to build the Integration Pack.

1. Launch Orchestrator Command-Line Activity Wizard, and then click on
Next to create a new custom activity assembly file.

This wizard allows you to either create a new assembly for the
s custom activity or modify an existing assembly.

Orchestrator Command-Line Activity Wizard

T — Command-Line Activity Wizard.
~ System Center2012 by
d:m This wizard will guide you through the steps reguired

to build an assembly containing Orchestrator SOK-
compatible commands that can be used in runbooks
via the "Invoke NET™ activity or converted into a
deployable Integration Pack via the IP Wizard.

If you have & pre-existing assembly created from
this wizard, you can load it to initizlize the wizard
with the previous assembly’s settings by clicking
the button below.

q Load existing assembly D

Click Mext to procesd.

< Back ‘ Next >

[320]

http:///

Chapter 12

2. Enter the assembly file's name and the path to create and save the assembly
file, and then click on Next to move to the commands step.

Use the Assembly Information button to add more details about
s the assembly, such as description, company, and version.

Orchestrator Command-Line Activity Wizard

Assembly Details
Enter the details of the NET assembly to be created. Orchestra tor

Mame:* |Contosolntegration Assembhy |

CmylPs'Contoso dll | l:l

Asszembly file™

Assembly Information ... |

e] []

3. Now it is time to define the commands that will be used by the custom
activity. In this case, define the command that will retrieve the operating
system information for a specific computer. Click on the Add button to
define your command.

Under the General tab, define:
1. Name: Name of the command

2. Mode: Command mode such as Windows Command, PowerShell, SSH,
Or Run a Program

3. Program: select a program if the command's Mode is
Run a Program

[321]

http:///

Integrating Windows PowerShell and System Center Orchestrator

4. Description: Description of the command

General | Arguments | Published Data

Mame:” |Get0SInfo

Mode:™ | Run Windows PowerShell

Program: |

Description: |Get the Operating System Information using

Win32_Operating System WM Class

Under the Arguments tab, define:

1. The parameters that will be passed to the command line:

Properties

Mame:” |ComputerMame

Usage mode:™| Command Argument

Display Style:| Tex

Default value: [localhost

Cptions: |

[322]

http:///

Chapter 12

2. The command line that will be executed:

Arguments | Published Data

Command Line

Get-WmiObject Class Win32_Operating System ComputerMame
S(ComputerMame)

Parameters

Name Usage Mode Display Style
ComputerMame Commandfrgu... String

[] Include working directory parameter

Under the Published Data tab, define:

1.

The results of command-line execution and how they will be

displayed in Orchestrator.

You need to create a published data record for each property you

want to show.

Properties

Mame:* | @0rganization

Property:*| Organization|

Description:

[323]

http:///

Integrating Windows PowerShell and System Center Orchestrator

The @ symbol is for published data record names for the sake
= of better sorting when displaying the results.

4. Click on Next to build and create the assembly file.

Now, after building the assembly file for the command-line custom activity, it is
time to use it, either by loading it to the Runbook using the Invoke.Net activity or
wrapping the assembly in an Integration Pack.

Step 2 — creating the Integration Pack

In this step you will learn how to use the assembly file created in the previous step
and the Integration Pack Wizard to build your first integration pack.

1. Launch Orchestrator Integration Pack Wizard, and then click on Next to
create a new IP file.

This wizard allows you to either create an IP or
S modify an existing IP.

= Orchestrator Integration Pack Wizard = | = -

S Welcome to the Orchestrator
~. System Centerzo12 Integration Pack Wizard
Orchestrator

This wizard help you create an Orchestrator Integration
Pack from class libraries created by the Crchestrator
Command-Line Activity Wizard or developed using the
Orchestrator SDK.

Tao impaort and modify a previously-created Integration
Pack (.0IF) click the button below.

‘ | Import Integration Pack | ’

Click Mext to proceed.

[324]

http:///

Chapter 12

2. Enter the new Integration Pack details and then click on Next

= Orchestrator Integration Pack Wizard = | = -
Product Details
Provide details about the product. Orchestrator
Preduct name:* |Contoso IP |
Category name:”| Basic Automation |
Company:® |Contoso |

EULAfile: | |[=]

Resource file: |SystemCerrter.Orchestmtor.Irrtegmtion.Toolkit.Wizard.lrnages.dll| El

Version:” EI EI ["] Upgrade from previous versions

Diescription:

the first Orchestrator Integration Pack by Contoso

Category Icon: g'—‘

e] [e]

3. Now it is time to define the activities that will be part of this IP by selecting
the custom assembly files created in the previous step. Each command in the
assembly file represents a single activity in the Integration Pack.

s

= Orchestrator Integration Pack Wizard | = [B] X -
N
Add or remove activities

Activity Information

Library:* [C:\mylPs\Contoso i | [=]

Class:” |Contoso IntegrationAssembly. GetCQ Sinfo w |
Name

Display Name:” | Get0SInfo |

Description: |Get the Operating System Information using
Win32_OperatingSystem WMI Class

peoivion Jag

[ok || Cancel |

Cancel

[325]

http:///

Integrating Windows PowerShell and System Center Orchestrator

4. Define the Integration Pack dependencies and the files to be deployed with
the Integration Pack, such as documentations, scripts, and the assembly file.

Dependencies and Included Files
Provide dependent or additional files to be included with the Orchestrator
Integration Pack.

Add files that vou would like to have deployed with your Integration Pack (i.e.
scripts, assemblies, jar files, documentation, etc.)

CmylPs'Contoso dll

5. Finally, define the path to create and save the Integration Pack file, and then
click on Next to start building the file, as shown in the following screenshot:

Orchestrator Integration Pack File
Provide details of the Orchestrater Integration Pack file. Orchestrator

Path and name of the Integration Pack (. OIF) file to be created:
[Ci\myIPs\Cantosa OIP | [-]

MNote: Any existing file with the same name will be overwritten.

[326]

http:///

Chapter 12

Step 3 — importing the Integration Pack into Orchestrator

In this step you will learn how to import the Integration Pack created in the previous
step into System Center Orchestrator.

Launch Orchestrator Deployment Manager.

Choose Orchestrator Management Server on which you want to deploy the
Integration Pack if you have more than one server.

Right-click on the Integration Packs folder, select Register IP with the
Orchestrator Management Server, and then follow the wizard to select the
Contoso.OIP IP file to register it with the server.

Right-click on the Integration Packs folder, select Deploy IP to Runbook
Server or Runbook Designer, and then follow the wizard to select the IP that
has been registered in the previous step, Contoso 1P, and choose the server
to deploy on it.

Step 4 - testing and using the new Integration Pack

In this step you will learn how to test and use the Integration Pack created and
imported in steps 2 and 3.

1.
2.

Launch System Center Orchestrator Runbook Designer.

Under the Activities pane on the right-hand side, you will find a new tab
called Contoso Basic Automation with a single activity, GetOSInfo; select it
and then drag-and-drop the activity to Runbook's design area.

ﬁ_. Basic Automation

,d b Y
ﬁ. Contoso Basic Automation

&i;,,.; GetOSInfo

5| Text File Management

5C 2012 Data Protection Manager
SC 2012 Configuration Manager
5C 2012 Operations Manager

=

[327]

http:///

Integrating Windows PowerShell and System Center Orchestrator

3. Open the GetOSInfo activity to modify the ComputerName property, which
was defined as a parameter in the Command-Line Activity Wizard:

Properties
Define the properties used by the activity.

Input Properties

[

Launch the Runbook Tester application to test the workflow activities.

5. In the Runbook Tester window, click on Run to start workflow testing and
monitor the testing logs in the bottom-center pane. In the first few records
in the log section, you will notice that the published data starts with the "@"
symbol reflecting the results from PowerShell execution:

File Wiew Test Help
P Run [} Step Through | Wcter M Stop ‘ I8 Toagle Brezkpoint
Run Time Propeties [I

GetOSinfo

d Time: 1/20/2013 7:44:58 PM, Status
Activity name GetOSlnfo
Bl Hide Detals

7601
Microsoft
AutoBVT
00486-001-0001076-84752
C:\Windows\system32
6.1.7601
Get-WmiObject Class Win32_OperatingSyst...
TERe

Loop: Number of attempts 1

Loop: Total duration 13

ivity duration 12617

[328]

http:///

Chapter 12

Summary

Windows PowerShell is not just a command-line tool or a scripting engine; it
provides different capabilities and usage scenarios depending on the area you are
using Windows PowerShell in and for.

In this chapter, we have seen how enterprises and entities with complex IT
environments can use Windows PowerShell with another component such
as System Center Orchestrator to define a new meaning for automation and
provide more benefits and values via IT Process Automation.

Now, having reached the final destination together in this book, it is your turn to
take the lead and continue sailing the Windows PowerShell sea with your own ship
and the tools you have learned in this book to gain more, build your own scripting
Arsenal, and become ready for any challenge. Just remember that PowerShell is the
future, so be ready for more to learn.

[329]

http:///

http:///

Symbols

[cmdlet()] attribute 61, 64

$args variable 33

$env 16

$Env driver 127

$null value 15

$numberPrint block 32

$result variable 32

$service.QuotaTemplates.Add($template)
method 250

$service.Update() method 250

-Action parameter 237

-AddOrganizerToSubject parameter 224

-AddToQuickLaunch parameter 249

-AddToTopNav parameter 249

-AdministratorLogin parameter 297

-AdministratorLoginPassword parameter
297

-AffinityGroup parameter 296, 297

-AllowRedirection parameter 242

-asjob parameter 109

-AutoAssignPersonalVirtualDesktopToUser
parameter 280, 283

-AutomateProcessing parameter 224

-AutomaticReconnectionEnabled parameter
282

-BrokenConnectionAction parameter 282

-BypassLocal parameter 275

-CertToDeploy parameter 311

-ClientAccessName parameter 287

-ClientDeviceRedirectionOptions parameter
282

-ClientPrinterRedirected parameter 282

-Collation parameter 298

-CollectionName parameter 277-280, 284

Index

-ConditionalDepartment parameter 227

-ConnectionBroker parameter 272-287

-ConnectionUri 242

-Context parameter 298

-CreateNew parameter 305

-CreateVirtualSwitch parameter 273

-credential parameter 254

-CurrentStorageAccount parameter 296

-DatabaseConnectionString parameter 287

-DatabaseFilePath parameter 287

-DatabaseName parameter 298

-database parameter 260

-description parameter 248, 249

-Destination parameter 306

-Directory 210

-DisableAutomaticUpdates parameter 301

-DisableUserProfileDisk parameter 285

-DisableVirtualDesktopRollback parameter
284

-DiskLabel parameter 305

-Diskname parameter 307

-DiskName parameter 306

-DiskPat parameter 285

-DiskSizeInGB parameter 305

-DisplayName parameter 286

.dll file. See binary module

-Domain 211

-DomainCredential parameter 179

-Domain parameter 278, 301

-DomainPassword parameter 302

-DomainUserName parameter 302

-Edition parameter 298

-EnableResponseDetails parameter 224

-EnableUserProfileDisk parameter 285

-EndIpAddress parameter 299

-ExcludeFolderPath parameter 285

http:///

-Extension 237 -Name 207

-FileInformation 213 -name parameter 249
-FilePath parameter 286 -Name parameter 248, 295, 299, 300-303, 310
-FileType 210 NET
-Filter 214 creating 20
-ForceLogoffTime parameter 284 -Optimize 213
-Force parameter 93,178 -OS parameter 306
-GatewayExternalFqdn parameter 275 -OwnerAlias parameter 248
-GatewayMode parameter 275 -ParentPath 207
-GrantAdministrativePrivilege parameter -Password parameter 300, 301

280, 283 -Path parameter 178, 207, 214, 309
-Hostname parameter 260 -PersonalUnmanaged parameter 280
-Identity parameter 186, 256 -PolicyObject 212,213
-IdleSessionLimitMin parameter 282 -PooledManaged parameter 278
-ImageName parameter 300, 301 -ProbePath parameter 304
-IncludedRecipients parameter 226 -ProbePort parameter 304
-IncludeFolderPath parameter 285 -ProbeProtocol parameter 304
-InMemory 237 -ProcessExtenralMeetingMessages
-InstanceSize parameter 300, 301, 307 parameter 224
-InstantSize parameter 300 -Protocol parameter 303, 304
-IsArchive parameter 229 .psdl file. See manifest module
-IsSiteCollectionAdmin parameter 256 .psml file. See script module
-JoinDomain parameter 302 -PSSessionConfiguration cmdlet 123
-language parameter 248 -PublicPort parameter 303, 304
-LBSetName parameter 304 -query parameter 260
-LDAP 211,212 -RecipientContainer parameter 227
-LicenseServer parameter 276 -RedirectAllMonitors parameter 283, 285
-Linux parameter 300 -ResetPasswordOnFirstLogon parameter
-LinuxUser parameter 300 301
-ListAvailable parameter 234 -Restart parameter 179, 191
-Local 211 -role parameter 274
-LocalFilePath parameter 305 -RuleName parameter 299
-LocalPort parameter 303, 304 -RuleNamePrefix 213
-Location parameter 295,297 -RuleType 213
-LoginName parameter 256 Secure Socket Layer (SSL) certificate
-LogonMethod parameter 275 uploading, to Windows Azure 310
-LUN parameter 305 -ServerInstance parameter 260
-MachineObjectOU parameter 302 -ServerName parameter 299
-MaximumDurationInMinutes parameter -server parameter 179, 274

224 -ServiceName parameter 297-310
-MaxRedirectedMonitors parameter 282 -SessionHost parameter 273, 277
-MaxSizeGB parameter 298 -ShowinWebAccess parameter 286
-MaxUserProfileDiskSizeGB parameter 285 -SizeBytes 207
-MediaLocation parameter 306 -StartIpAddress parameter 299
-MemoryStartupBytes 208 -StartTime parameter 284
-Merge 212 -StorageAccountName parameter 296
-mode parameter 276 -StorageType parameter 279

[332]

http:///

-SubscriptionName parameter 296

@ symbol 324

-template parameter 248, 249

-TemporaryFoldersPerSession parameter
282

-TimeZone parameter 301

-URL parameter 248, 249, 254

-UseParentTopNav parameter 249

-User 213,214

-UserGroups parameter 278, 280, 286

-User parameter 280

-version parameter 142

-VHDPath 208

-VirtualDesktopAllocation parameter 279

-VirtualDesktopName parameter 280

-VirtualDesktopNamePrefix parameter 279

-VirtualDesktopTemplateHostServer
parameter 278, 284

-VirtualDesktopTemplateName parameter
279, 280, 284

-VirtualDesktopTemplateStorgePath
parameter 279

-VirtualizationHost parameter 273

-VMName parameter 209

-VMs parameter 302

-WarningAction 237

-WebAccessServer parameter 272, 273

-WindowsDomain parameter 301

-Windows parameter 299, 301

-XML 211

-XMLPolicy 212

A

account management, AD
about 177
user management 177
Active Directory. See AD
Active Directory Certificate Services. See
AD CS
Active Directory Domain Service. See
ADDS
Active Directory Forest
installing 162, 163
Active Directory Lightweight Directory
Services. See AD LDS

Active Directory Rights Management
Services. See AD RMS
AD
about 173,174
container 175
domain 175
namespace 175
new AD server roles 176
objects 175
trees 175
AD CS 176
Add-ADGroupMember cmdlet 181
Add-AzureCertificate cmdlet
parameters 310
Add-AzureDisk cmdlet
parameters 305, 306
Add AzureEndPoint cmdlet
parameters 304
Add-AzureProvisionConfig cmdlet
parameters 301
Add AzureVhd cmdlet
parameters 305
Add-DnsServerResourceRecordA cmdlet
204
Add-MailboxPermission cmdlet 223
add-on tools 50
Add-PSSnapin cmdlet 219, 248
Add RDServer cmdlet
parameters 274
AD DS 176
ADDS
installing 176
ADDSDeployment module 162
ADDS role
deploying 161, 162
new Active Directory Forest, installing
162,163
new domain controller, installing in
existing domain 164
new domain, installing in existing forest
163, 164
Add-VMNetworkAdapter cmdlet 208
ADLDS 176
AD, managing
about 177
account management 177

[333]

http:///

domain controller management 186
group management 179
organizational unit management 183
with PowerShell 177

AD RMS 177

AllSigned mode 144

application delivery component 268

Application Programming Interface (API)

246

AppLocker
application information, retrieving 210, 211
managing, with PowerShell 210
policy, retrieving 211
policy, setting 212
policy, testing against fileset 213
PowerShell module, importing 210
rules, generating for group 213
rules, generating for user 213

argument range
argument count, validating 68
argument length, validating 68
argument pattern, validating 67
validating 67

argument set
validating 66

AuthenticodeSignature cmdlet 153

Azure 293

Azure Affinity Group
creating 295

Azure Cloud Service
creating 297

Azure storage account
creating 296

Azure Virtual Machine RDP file
generating 311

Azure VM in Linux (quick mode)
provisioning 300

Azure VM in Windows (quick mode)
provisioning 299

B

background intelligent transfer service
(BITS) 143

Backup-SqlCmdlet cmdlet 261

BeginProcessing() method 70, 73

Best Practice Analyzer. See BPA
binary module 126
BPA
about 313
model, invoking 170
model list, displaying 170
model result, showing 171
using 170
Business Process Automation. See BPA

Cc

CannotChangePassword parameter 178
Certificate Authority (CA) 42
CIM class
details, displaying 18-20
listing 17
CIM objects
getting 17
client access device component 269
Client Access Server (CAS) 220
client PIN
bulk assignments 238
cloud computing
types 291
cloud computing, types
Infrastructure-as-a-Service (laaS) 291
Platform-as-a-Service (PaaS) 291
Software-as-a-Service (SaaS) 291
cmdlet parameters
declaring 64
cmdlets
using, to redirect data 13, 14
code snippets
about 49
new snippets, adding 49, 50
new snippets, creating 49, 50
using 49
Command Line Activity Wizard 319
command-line interface (cmd) 156
commands, PowerShell Remoting
executing 106
persistent session, creating with
invoke-command 107-109
remote commands, running as job 109
remoting credentials, specifying 110

[334]

http:///

ScriptBlock, running on remote computer
106, 107
COM objects
creating 20
computer management
about 178
computer, joining to domain 179
computer, renaming 179
computer name
changing 158
ComputerName parameter 19, 86, 106
conditional statements
about 21, 22
managing, switches used 22, 23
conference disclaimer
setting 240

Connect ExchangeServer -Auto cmdlet 218

connection broker component 268
Connect-MsolService cmdlet 241
Connect SPOService cmdlet 254
container, AD 175
CreateDnsDelegation 164
CsImFilterConfiguration cmdlet 238
custom permissions 122
CustomPSSnapln class 58

D

data disk
assigning, to Windows Azure Virtual
Machine 305
creating, for Windows Azure Virtual
Machine 305
default domain 199
Deployment Image Servicing and
Management (DISM) tool 193
Desktop Virtualization
about 267
advantages 268
architect 269
components 268
Session Virtualization 268
Virtual Desktop Infrastructure (VDI) 268
Desktop Virtualization, components
application delivery 268
client access device 269
connection broker 268

platform, virtualizing 268
user profile and data 269
DHCEP role
about 167
DHCP scope exclusion
configuring 168
DHCEP scope options
configuring 167
DHCEP scope reservations
configuring 168
DHCP server module 167
DHCP server
in Active Directory, authorizing 168
DHCP server role
installing 167
DHCP server scope
setting up 167
digital signature
adding, to script 146, 147
DisableNetAdapterBinding cmdlet 197
Disable-PSRemoting cmdlet 123
Disable-PSSessionConfiguration cmdlet
123
disaster recovery (DR) 292
disk
remote session, saving 115
Windows Azure VM, provisioning from
307
distinguished name (DN) 183
distribution group
creating 225
MailTip, defining for 226
DistributionGroup cmdlet 223
DMZ (demilitarized zone) 40
DnsClient module 159
DNS role
about 165
DHCP scope exclusion, configuring 168
DHCP scope options, configuring 167
DHCP scope reservations, configuring 168
DHCP server in Active Directory,
authorizing 168
DHCEP server role, installing 167
DHCP server scope, setting up 167
DNS server forwarder, adding 166
DN server resource records, configuring
165

[335]

http:///

DNS server zones, exporting 166
primary forward and reverse lookup zones,
creating 166
DNS server
managing, PowerShell used 204, 205
DNS server forwarder
adding 166
DNS server resource records
configuring 165
DNS server zones
exporting 166
domain
in existing forest, installing 163, 164
domain, AD 175
domain controller
in existing domain, installing 164
domain controller, AD
finding 186
global catalog servers, finding in forest 188
site, finding 188
DomainMode 163
DomainName 162
Domain Name System role. See DNS role
DomainType 164
dynamic distribution group
creating 226

E

EMS
about 216, 217
tips 217
Enable-CsUser cmdlet 236
Enable-NetAdapterBinding cmdlet 197
Enable-NetAdapter cmdlet 197
Enable-PSRemoting cmdlet 92, 93
endpoint
adding, to Windows Azure VM (NoLB)
302, 303
EndPoint parameter 133
EndProcessing() method 70, 73
Enter-PSSession cmdlet 93,110, 111, 117
Exchange
managing, PowerShell Remoting used
220,221
Exchange Management Shell. See EMS

Exchange scripting
about 221
distribution group, creating 225
dynamic distribution group, creating 226
mailboxes, exporting to PST files 228
mailboxes, importing from PST files
229,230
mailbox size report, generating 231
mailbox users, getting 230
mailbox users, hiding from Global Address
List (GAL) 230
MailTip, defining for distribution group
226
multiple mailbox databases, creating from
CSV file 227
multiple mailboxes from CSV file, creating
221,222
organization mailbox statistics report,
generating 231
resource (room/equipment) mailbox,
creating 224
shared mailbox, creating 222, 223
Exchange Server cmdlets 218
Exchange Server snap-ins
loading 219
Execute-MyCmdlet 139
execution policies
about 144
AllSigned mode 144
changing 145, 146
RemoteSigned mode 144
restricted mode 144
types 144
Unrestricted mode 145
Exit-PSSession cmdlet 110
Export-AzureVM cmdlet
parameters 308
Export-PSSession
limitations 117
Export-PSSession cmdlet 116

F

flow control 21

foreach keyword 27

ForEach loop 221, 225, 227, 229, 264
Foreach-Object cmdlet 27

[336]

http:///

ForEach -parallel 53
foreach statement 24
ForestMode 163
for loop 27
format cmdlets
using, to modify output view 12
Format-List cmdlet 13,180
for statement 23
FTP site
creating 201
fully qualified domain name (FQDN) 188
function 34, 35

G

Get-ADDomainController cmdlet 188

Get-ADForest cmdlet 188

Get-ADOrganizationalUnit cmdlet 184, 185

Get-AuthenticodeSignature cmdlet 153

Get AzurePublishSettingsFile cmdlet 294

Get AzureRemoteDesktopFile cmdlet
parameters 311

Get-CimClass 17

Get-Command cmdlet 128, 130, 135

Get-Content cmdlet 36

Get-CSPool cmdlet 236

GetEnumerator() method 30

Get-ExBlog cmdlet 217

Get-ExCommand cmdlet 217

Get-ExecutionPolicy cmdlet 145

Get-GetChilditem cmdlet 229

Get-GPO cmdlet 198

Get-Help cmdlet 46, 130

Get-Job cmdlet 109

GetLifeCycleCommand class 74

Get-Location cmdlet 10

Get-Location command 10

Get-Mailbox cmdlet 228

Get-MailboxDatabase cmdlet 228

Get-MailboxStatistics cmdlet 230, 231

Get-Member command 12

Get-Module cmdlet 234

Get-MyModule function 143

Get-NetIPAddress cmdlet 193,194, 195

Get-PSSessionConfiguration cmdlet 121

Get-PSSessionConfiguration cmdlet 120

Get-PSSnapin cmdlet 219

Get SPODeletedSite cmdlet 255
Get SPOSite cmdlet 254
Get-Tip cmdlet 217
Get-WebConfigurationBackup cmdlet 203
Get-WindowsFeature cmdlet 129, 190
Global Address List (GAL)
mailbox users, hiding from 230
GPMC 96,197
GPOs
about 197
creating, with PowerShell 199
performing 104
gpresult command 104
Graphical User Interface (GUI) , 47
group management, AD
group, creating 180
group members, adding 181-183
group members, removing 181-183
group permissions, viewing 179, 180
Group-Object cmdlet 225
Group Policy Management Console. See
GPMC
GroupPolicy module
importing 197, 198
Group Policy objects. See GPOs

H

Hyper-V
installing, on Windows Server 2012
206, 207
installing, Windows Server 2012 used
206, 207
managing, PowerShell used 205, 206

IaaS 291

IIS
binding, modifying 201
FTP site, creating 201
managing, with PowerShell 199, 200
new website, creating 200, 201
virtual directory, creating 202
WebAppPool, creating 202
WebConfiguration, backing up 202, 203
WebConfiguration, restoring 202, 203

[337]

http:///

IM 215
IM file transfer filtering

configuring 237
Import-AzureVM cmdlet

parameters 309
Import-CSV cmdlet 221, 225
Import-Module cmdlet 127, 128, 136, 241,

253

Import-PSSession cmdlet 221
IM URL filtering

configuring 238
Infrastructure-as-a-Service. See IaaS
InstallDNS 163
Install-WindowsFeature cmdlet 190, 271
Instant Messaging. See IM
Integrated Scripting Environment. See ISE
Integration Pack. See IP
Integration Pack Wizard 319
Integration Toolkit SDK 319
Intellisense 48
interactive remoting session

about 110,111

disconnecting 113-115

exiting 111

persistent session, using 112

reconnecting 113-115

starting, with existing session 112, 113
Internet Information Services (IIS) 161
Invoke-Command

about 106,107,117

used, for creating persistent session 107-109

IP 315

ISE 36, 48, 218

ITPA 313,314

IT Process Automation. See ITPA

L

LDAP 176
Lightweight Directory Access Protocol. See
LDAP
Lightweight Directory Services (LDS) 173
Load-Balanced (LB) EndPoint 304
Local ID (LCID) 248
Local VHD
moving, to Windows Azure 305

locations
adding, to PSModulePath environment
variable 128
loop statement
about 21
foreach statement 24
for statement 23
nested loops 24, 25
Lync
managing, PowerShell Remoting used 235
Lync scripting
about 236
client PIN, bulk assignments 238
conference disclaimer, setting 240
enabling, to user accounts 236
IM file transfer filtering, configuring 237
IM URL filtering, configuring 238
Lync Server cmdlets 234
Lync Server Management Shell 232,233
Lync Server module
loading 234, 235

mailbox
exporting, from PST files 229, 230
exporting, to PST files 228, 229
organization mailbox statistics report, gen-
erating 231
users, hiding from Global Address List
(GAL) 230
MailboxImportRequest cmdlet 229
mailbox size report
generating 231
MailTip
defining, for distribution group 226
Managed Pooled collection
creating 278, 279
Management Pack (MP) 315
manifest module 127
Mean Time To Respond/Repair (MTTR)
314
Microsoft Exchange Online
managing, PowerShell used 242, 243
Microsoft Hyper-V. See Hyper-V
Microsoft Management Console (MMC)
173

[338]

http:///

Microsoft Office 365
about 240, 241
and Windows PowerShell 241
managing, PowerShell used 241, 242
Microsoft Online Service components
URL, for downloading 241
Microsoft Operations Framework (MOF)
314
module on disk
importing 117
remote session, exporting 116
msDS-defaultNamingContext property 183
multiple mailboxes
creating, from CSV files 221,222
databases, creating from CSV file 227

N

namespace, AD 175
nested loops 24, 25
NetTCPIP module 118
Network Address Translation (NAT) 302
networking
managing, PowerShell used 193-197
Network Interface Card (NIC)
configuration, setting 159
network location feature 90
New AzureAffinityGroup cmdlet
parameters 295
New-AzureQuickVM cmdlet
parameters 299, 300
New-AzureService cmdlet
parameters 297
New-AzureSqlDatabase cmdlet
parameters 298
New-AzureSqlDatabaseServer cmdlet
parameters 297
New-AzureSqlDatabaseServerFirewallRule
cmdlet
parameters 299
New AzureStorageAccount cmdlet
parameters 296
New-AzureVM cmdlet
parameters 302, 307, 309
New-AzureVMConfig cmdlet
parameters 301
New-DistributionGroup cmdlet 225

New-DynamicDistributionGroup cmdlet
226
New-Mailbox cmdlet 222
New-MailboxDatabase cmmdlet 227
New-MailboxImportRequest cmdlet 229
New-ModuleManifest cmdlet 137
New-Object cmdlet 20
New-PSSession cmdlet 108, 117
New RDSessionCollection cmdlet
parameters 277
New RDVirtualDesktopCollection cmdlet
parameters 280
New RDVirtualDesktopDeployment cmdlet
272,273
New SPWeb cmdlet
parameters 249
New-VHD cmdlet 207
New-WebFtpSite cmdlet 201
New-WebVirtualDirectory cmdlet 202
Notepad++ 36
Not Load-Balanced (NoLB) 303

(0

objects, AD 175
object structure
viewing 10-12
Office 365. See Microsoft Office 365
Office Communication Server (OCS)
used, by users 239
operating system
computer name, changing 158
preparing 157
time zone settings, changing 158
Orchestrator
and PowerShell 316
Orchestrator Integration Packs
building, PowerShell used 319-324
creating 324-326
Orchestrator Integration Toolkit
URL 320
organizational unit (OU), AD
about 183, 221, 302
deleting 186
listing 184
modifying 185
moving 185

[339]

http:///

new organizational unit, creating 183, 184
renaming 184

OUPath parameter 179

Out-Host cmdlet 8, 10,13

Out-Host -Paging command 9

overriding methods 69-75

P

PaaS 291
Parameter attribute 64
parameter inputs
validating 66
parameters
passing 31
Parameterset keyword 65
parameter sets
declaring 65, 66
Partition parameter 183
PathInfo object 10
persistent session
creating, Invoke-Command used 107-109
using, with interactive remoting session
112
personal collection 278
Personal Identification Number (PIN) 238
pipelines
about 8,9
creating, in PowerShell 8
Platform-as-a-Service. See PaaS
pooled collection 278
Port property 201
PowerGUI
about 36
PowerShell
about 7
and Orchestrator 316
AppLocker, managing with 210
function 34, 35
GPOs, creating with 199
IIS, managing with 199, 200
used, for adding features 190-193
used, for adding roles 190-193
used, for creating workflow 52, 53
used, for managing DNS server 204, 205
used, for managing Hyper-V 205, 206

used, for managing Microsoft Exchange
Online 242, 243
used, for managing Microsoft Office
365 241
used, for managing networking 193-197
used, for managing RDS 270
used, for managing SharePoint Online 252
using 156
using, in Orchestrator workflow 316-318
using, to build Orchestrator Integration
Packs 319-324
PowerShell 3.0
modules, auto-loading 45
remote sessions, running on 86
PowerShell cmdlet
for Server Manager, advantages 193
powershell.exe file 246
PowerShell installer class
creating 60, 61
PowerShell Remoting
about 50, 86
custom session configuration file 51
disabling 105
disconnected session 51
Enable-PSRemoting cmdlet 92, 93
enabling 87
enabling, on Windows PowerShell 2.0 86
in no-domain environment 88, 89
network location, setting to private 89-92
on public network 51
running, on Windows PowerShell 3.0 86
used, for managing Lync 235
used, for managing PowerShell Remoting
220,221
WSMan trusted hosts, configuring 94, 95
PowerShell Remoting, domain
configuration
about 95
Group Policy Update (GPO), performing
104
Group Policy used 95
remote server management, allowing
through WinRM 96, 97
Service Windows Remote Management
(WS-Management), turning on 101,
103

[340]

http:///

Windows Remote Management through
Windows Firewall, allowing 97-100
PowerShell snap-in
cmdlets, executing 79
cmdlets, listing 79
creating 58
debugging 81, 82
registering 75, 76
registering, in PowerShell 3.0 76-79
removing, from PowerShell 3.0 76-79
writing 58
PowerShell snap-in, writing
argument count, validating 68
argument length, validating 68
argument pattern, validating 67
argument range, validating 67
argument set, validating 66
class file, creating to include PowerShell
cmdlets 61-64
cmdlet parameters, declaring 65
cmdlet parameters, declsring 64
methods, overriding 69-75
new class library project, creating 58, 59
parameter inputs, validating 66
parameter sets, declaring 65, 66
PowerShell installer class, creating 60, 61
primary forward
creating 166
ProcessRecord() method 64, 70-73
Profile Disks
about 285
assigning, to collections 285
parameter 285
PSModulelnfo object 130
PSModulePath environment variable
about 127
locations, adding 128
viewing 127
PSModulePath variable 140
PSNet module 135
PS session configurations 121
PSSnapln class 58
PSW
about 51, 52
execution control 54, 55
PSWA
about 39

configuring 41, 42

installing 40, 41

rules, configuring 43

signing in to 44

working 40
PSWorkflow module 141
public key infrastructure (PKI) 176
PublishSettings file 294

Q

quota template
creating 250

R

RBA 313
RD Gateway 275
RDS
about 269
adding, to existing deployment 274
Managed Pooled collection, creating
278,279
managing, PowerShell used 270
new RDS collections, creating 277
new RDS deployments, creating 270, 271
new session-based collections, creating 277
new session-based deployment, creating
273
new virtual-machine-based deployment,
creating 272,273
new VM-based collections, creating 278
Profile Disks, assigning to collections 285
RD Gateway, adding 275
RD Gateway, configuring 275
RD Licensing Server, adding 276
RD Licensing Server, configuring 276
Remote Desktop Connection Broker
(RDCB), configuring 287
Remote Desktop RemoteApp, publishing to
collections 286, 287
scripting 270
session-based collection configuration,
creating 281, 282
Unmanaged Personal collection, creating
280
VM-based collection configuration, creating
283

[341]

http:///

VM-based collections, updating 284
ReceivedData parameter 68
Register-PSSessionConfiguration cmdlet

118
remote commands

running, as job 109, 110

Remote Desktop Connection Broker
(RDCB) 270, 272

Remote Desktop Licensing (RDL) 276

RemoteDesktop module 270

Remote Desktop RemoteApp

publishing, to collections 286
Remote Desktop Services. See RDS

Remote Desktop Session Host (RDSH) 273

Remote Desktop Virtualization Host
(RDVH) 272

Remote Desktop Web Access (RDWeb) 272

Remote Procedure Call. See RPC
remote session
exporting, to module on disk 116
Export-PSSession, limitations 117
module on disk, importing 117
saving, to disk 115
RemoteSigned mode 144
Remove-AzureVM cmdlet
parameters 309
Remove-Module cmdlet 130
resource (room/equipment) mailbox
creating 224
Restart-AzureVM cmdlet 310
Restore-SqlCmdlet cmdlet 262
Restore SqlDatabase cmdlet 262
restricted mode 144
reverse lookup zones
creating 166
RPC 86
Run Book Automation. See RBA
Run() method 71

S

SafeModelAdministratorPassword 163

SaaS 291

Save AzureVMImage cmdlet
parameters 308

scheduled jobs 46

SCO. See System Center Orchestrator

script block

defining 30-34

operating 30
ScriptBlock

running, on remote computer 106, 107
ScriptBlock parameter 107
script libraries

developing 38

maintaining 38
script module 126
scripts

about 35

creating 36

invoking 37

parameters, passing 37

return values 38
Security Accounts Manager (SAM) 183
security identifier (SID) 183
Select-Object cmdlet 29, 225, 231
self-signed certificate

setting up 147-150
server core 155
ServerManagerCmd.exe command 193
Server Manager cmdlets

working with 190
ServerManager module 160
Service Windows Remote Management

(WS-Management)

turning on 102, 103, 104
session-based collection configuration

setting 281, 282
session-based collections

creating 277
session-based deployment

creating 273
session configurations

about 117

available session configurations, listing

120,121
custom permissions 122

custom session configuration, invoking 123

deleting 124
disabling 123
new session configuration, creating 118,
119
PS session configurations 121
Session Virtualization 268

[342]

http:///

Set-ADUser cmdlet 178
Set-AzureSubscription cmdlet
parameters 296
Set-Content cmdlet 36
Set-DistributionGroup cmdlet 226
Set-RDConnectionBrokerHighAvailability
cmdlet
parameters 287
Set RDDeploymentGatewayConfiguration
cmdlet
parameters 275
Set RDLicenseConfiguration cmdlet
parameters 276
Set RDPersonalVirtualDesktop Assignment
cmdlet
parameters 280
Set RDSessionCollectionConfiguration
cmdlet
parameters 281
Set RDVirtualDesktopCollectionConfigura-
tion cmdlet
parameters 283, 286
shared mailbox
creating 222, 223
SharePoint environment
backing up 251
SharePoint Management Shell 246, 247
SharePoint Online
connecting to, steps 254
deleted SharePoint Online site, restoring
255
Management Shell, loading 253
managing, PowerShell used 252
sites, exporting to CSV 254
sites health status, checking 255
user, setting as site collection administrator
256
SharePoint Online Management Shell
URL, for downloading 252
SharePoint scripting
new quota template, creating 250
new site collection, creating 248
new website, creating 249
SharePoint environment, backing up 251
Show-Command cmdlet 47
Site 164
Software-as-a-Service. See SaaS

Software Development Kit (SDK) 319
Sort-Object cmdlet 30
SQL Azure Database Server
creating 297, 298
SQL Azure Database server firewall rule
creating 299
SQL script
generating, for databases 264
SQL Server database
backing up 261
restoring 262
SQL Server Management object (SMO) 262
SQL Server PowerShell
about 257, 258
launching, from SSMS 259, 260
loading 258
module, importing 258
Start-AzureVM cmdlet 310
Start-Job cmdlet 46
Stop-AzureVM cmdlet 310
StopProcessing() method 70, 73
storage account
assigning, to Azure subscription 296
switches
using, to manage large conditional
statements 22, 23
System Center Operations Manager
(SCOM) 315
System Center Orchestrator
about 314
Integration Pack, importing 327
new Integration Pack, testing 327, 328
new Integration Pack, using 327, 328
workflow 315-318
System.Collections.ArrayList class 29
System.Net.Sockets.TCPClient object 133
System.Net.Sockets.TCPListener object 133

T

Task Scheduler wizard 46
time zone settings
changing 158
trees, AD 175
TrustedHosts configuration setting 94
T-SQL statement
executing 260, 261

[343]

http:///

U

ucC 215
UCEM 86
Unified communication. See UC
Uninstall-WindowsFeature cmdlet 190
Universal Code Execution Model. See
UCEM
Unmanaged Personal collection
creating 280
Unregister-PSSessionConfiguration cmdlet
124
Unrestricted mode 145
Update-DistributionGroupMember cmdlet
225
Update-Help cmdlet 46
Update RDVirtualDesktopCollection
cmdlet
parameters 284
user interface (UI) 214
user management
AD user, creating 177
password change at next login, forcing 178
password change, preventing 178
user account, setting to Expire 178
user profile and data component 269

Vv

ValidateCount attribute 68
ValidateLength attribute 68
ValidatePattern attribute 68
ValidateRange attribute 67
variables

about 14

using, to store objects 15, 16
VerbsCommon.Get statement 72
Virtual Desktop Infrastructure (VDI) 268
virtual directory

creating 202
Virtual Hard Disk (VHD) 285
Virtualization platform component 268
virtual machine

modifying 208, 209

snapshot, operating 209
virtual-machine-based deployment

creating 272

VM
Windows Azure Image, creating from 308
VM-based collection configuration
setting 283
VM-based collections
creating 278
personal collection 278
pooled collection 278
updating 284
Voice over IP (VoIP) 215

w

WebAppPool
creating 202
WebConfiguration
backing up 202, 203
restoring 202, 203
Where-Object cmdlet 230, 231
Windows Azure
about 292
certificate, uploading to 310
Windows Azure cmdlets 293
Windows Azure environment
connecting to 294
Windows Azure Image
creating, from VM 308
Windows Azure PowerShell
about 292
installing 292
installing, steps for 293
Windows Azure scripting
about 295
Azure Virtual Machine RDP file, generating
311
certificate, uploading to Windows Azure
310, 311
data disk, assigning to Windows Azure
Virtual Machine 305
data disk, creating for Windows Azure
Virtual Machine 305
Local VHD, moving 305, 306
new Azure Affinity Group, creating
295, 296
new Azure Cloud Service, creating 297
new Azure storage account, creating 296
new Azure VM in Linux (quick mode),

[344]

http:///

provisioning 300
new Azure VM in Windows (quick mode),
provisioning 299
new endpoint, adding to Windows Azure
VM (NoLB) 302, 303
new SQL Azure database, creating 298
new SQL Azure Database Server, creating
297
new SQL Azure Database server firewall
rule, creating 299
new Windows Azure VM (advanced
mode), provisioning 301, 302
new Windows Azure VM, provisioning
from disk 307
storage account, assigning to Azure
subscription 296
Windows Azure Image, creating from VM
308
Windows Azure Virtual Machines load
balancing (LB), configuring 303, 304
Windows Azure VM, exporting 308, 309
Windows Azure VM, importing 308, 309
Windows Azure VM, restarting 310
Windows Azure VM, starting 310
Windows Azure VM, stopping 310
Windows Azure Software Development Kit
(SDK) 292
Windows Azure Virtual Machine
data disk, assigning 305
data disk, creating 305
Windows Azure Virtual Machines load
balancing (LB)
configuring 303, 304
Windows Azure VM
exporting 308, 309
importing 308, 309
provisioning, from disk 307
restarting 310
starting 310
stopping 310
Windows Azure VM (advanced mode)
provisioning 301, 302
Windows Azure VM (NoLB)
new endpoint, adding 302, 303
Windows Firewall
about 169
profiles, disabling 169

profiles, enabling 169
rules, creating 169
Windows Management Framework. See
WMF
Windows Management Instrumentation. See
WMI
Windows PowerShell
and Microsoft Office 365 241
EMS 216
Exchange Server cmdlets 218
Exchange Server snap-ins, loading 219, 220
Lync Server cmdlets 234
modules 126
SharePoint server cmdlets 248
Windows PowerShell 3.0
features 39
Windows PowerShell Command Builder
for Office 365 256
for SharePoint 256
Windows PowerShell, modules
about 126
automatic importing 130
binary module 126
dependencies, checking 142, 143
importing 128, 129
manifest module 127
multiple versions 140-142
reloading 131
removing 130
script module 126
signing 144
storing, on disk 140
types 126
writing 131
Windows PowerShell modules, signing
about 144
execution, policies 144, 145
execution policies, changing 145
execution policy, changing 146
script signing, background 146, 147
self-signed certificate, creating 147-150
steps 150-154
Windows PowerShell modules, writing
binary modules 136
dynamic modules 138, 139
manifest modules 137, 138
script modules, creating 132-136

[345]

http:///

Windows PowerShell Web Access. See
PSWA
Windows PowerShell Workflow. See PSW
Windows Presentation Foundation (WPF)
50
Windows Remote Management.
See WinRM
Windows SDK
URL, for downloading 58
Windows Server 2012
Hyper-V, installing 206, 207
virtual machine, creating 207, 208
virtual machine, modifying 208, 209
virtual machine, snapshot 209
virtual machine, starting 208
virtual machine, stopping 208
Windows Server roles
managing 160

Windows Server Virtualization.
See Hyper-V
WinRM
about 85
allowing, through Windows Firewall
97-100
remote server management, allowing
through 96, 97
winrm quickconfig command 91
WMF 87
WMI 17
workflow
creating, PowerShell used 52, 53
Write-Host command 32
WSMan trusted hosts
configuring 94, 95

[346]

http:///

. (G
enterprise
professional expertise distilled

PUBLISHING

Thank you for buying

PowerShell 3.0 Advanced
Administration Handbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www . packtpub. com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

http:///

enterprise 8

professional expertise distilled

"PUBLISHING

SQL Server 2012 with
PowerShell V3 Cookbook

Donabel Santos

SQL Server 2012 with PowerShell

V3 Cookbook
ISBN: 978-1-84968-646-4 Paperback: 634 pages

Increase your productivity as a DBA, developer, or IT
Pro, by using PowerShell with SQL Server to simplify
database management and automate repetitive,
mundane tasks

1. Provides over a hundred practical recipes that
utilize PowerShell to automate, integrate and
simplify SQL Server tasks

2. Offers easy to follow, step-by-step guide
to getting the most out of SQL Server and
PowerShell

3. Covers numerous guidelines, tips, and
explanations on how and when to use
PowerShell cmdlets, WMI, SMO, .NET classes
or other components

Microsoft Exchange 2010
PowerShell Cookbook

Mike Pfeiffer

Microsoft Exchange 2010

PowerShell Cookbook
ISBN: 978-1-84968-246-6 Paperback: 480 pages

Manage and maintain your Microsoft Exchange 2010
environment with Windows PowerShell 2.0 and the
Exchange Management Shell

1. Step-by-step instructions on how to write
scripts for nearly every aspect of Exchange 2010
including the Client Access Server, Mailbox,
and Transport server roles

2. Understand the core concepts of Windows
PowerShell 2.0 that will allow you to write
sophisticated scripts and one-liners used with
the Exchange Management Shel

Please check www.PacktPub.com for information on our titles

http:///

enterprise 8

professional expertise distilled

"PUBLISHING

Microsoft Windows
PowerShell 3.0 First Look

Adam Driscoll

Microsoft Windows PowerShell

3.0 First Look
ISBN: 978-1-84968-644-0 Paperback: 200 pages

A quick, succinct guide to the new and exciting
features in PowerShell 3.0

1. Explore and experience the new features found
in PowerShell 3.0

2. Understand the changes to the language and the
reasons why they were implemented

3. Discover new cmdlets and modules available in
Windows 8 and Server 8

4. Quickly get up to date with the latest version of
Powershell with concise descriptions and simple
examples

Microsoft SharePoint 2010 and
Windows PowerShell 2.0: Expert
Cookbook

Yaroslav Pentsarskyy

Microsoft SharePoint 2010 and
Windows PowerShell 2.0: Expert

Cookbook
ISBN: 978-1-84968-410-1 Paperback: 310 pages

50 advanced recipes for administrators and IT Pros
to master Microsoft SharePoint 2010 and Microsoft
PowerShell 2.0 automation

1. Dive straight into expert recipes for SharePoint
and PowerShell administration without
dwelling on the basics

2. Master how to administer BCS in SharePoint,
automate the configuration of records
management features, create custom
PowerShell cmdlets

3. A hands-on cookbook focusing on only the
most high level tips and tricks for mastering
SharePoint and PowerShell administration

Please check www.PacktPub.com for information on our titles

http:///

	Cover

	Copyright
	Credits
	About the Authors
	Acknowledgement
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Getting Started with PowerShell
	Working with pipelines
	Viewing the object structure
	Using format cmdlets to change the output view
	Using cmdlets to redirect data

	Variables and objects
	Using variables to store objects
	Getting CIM objects
	Listing CIM classes
	Displaying details of the CIM class

	Creating .NET and COM objects

	Looping and flow control
	Comparison and logical operators
	Conditional statements
	Using switches to manage large conditional statements
	Repeat operations with loops
	The for statement
	The foreach statement
	Nested loops

	Lists, arrays, and hash tables
	Operating script block
	Defining script blocks
	Passing parameters and returning values

	Functions
	Scripts
	Creating scripts
	Invoking scripts
	Passing parameters
	Return values

	Developing and maintaining script libraries

	Discovering what's new in Windows PowerShell 3.0
	Windows PowerShell Web Access (PSWA)
	How PSWA works
	Installing and configuring Windows PowerShell Web Access
	Step 1 – installing the Windows PowerShell Web Access Windows feature
	Step 2 – configuring Windows PowerShell Web Access Gateway
	Step 3 – configuring the PowerShell Web Access authorization rules

	Auto-loading of modules
	Online and updatable Help
	Scheduled jobs
	The Show-Command cmdlet
	Integrated Scripting Environment (ISE)
	IntelliSense
	Script snippets
	How to use snippets
	How to create/add new snippets

	Add-on tools
	Autosave and restart manager

	PowerShell remoting
	Disconnected session
	Remoting on a public network
	The custom session configuration file

	Windows PowerShell Workflow (PSW)
	Creating a workflow using PowerShell
	Controlling PowerShell Workflow execution

	Summary

	Chapter 2:
Developing Snap-ins for PowerShell
	Creating a PowerShell snap-in
	Writing a PowerShell snap-in
	Creating a new class library project
	Creating a PowerShell installer class
	Creating a class file to include several PowerShell cmdlets
	Declaring cmdlet parameters
	Declaring parameter sets
	Validating the parameter inputs
	Overriding methods

	Registering and removing a PowerShell snap-in
	Registering and removing snap-in in PowerShell 1.0
	Registering and removing a snap-in in PowerShell 3.0

	Listing and executing cmdlets in a PowerShell snap-in
	Debugging a PowerShell snap-in
	Summary

	Chapter 3
: Using PowerShell Remoting
	An overview of PowerShell remoting
	Enabling/disabling remoting
	Operating PowerShell in a no-domain environment
	Setting the network location to Private
	Enable-PSRemoting
	Configuring WSMan trusted hosts

	Configuring PowerShell remoting on a domain using Group Policy
	Allowing remote server management through WinRM
	Allowing Windows Remote Management through Windows Firewall
	Turning on Service Windows Remote Management (WS-Management)
	Doing a Group Policy Update

	Disabling remoting

	Executing the remoting commands
	Running ScriptBlock on a remote computer
	Creating a persistent session with Invoke-Command
	Running remote commands as a job
	Specifying credentials required for remoting

	Entering an interactive remoting session
	Exiting an interactive session
	Using a persistent session with interactive remoting
	Starting interactive remoting with an existing session
	Disconnecting and reconnecting sessions

	Saving a remote session to a disk
	Exporting a remote session to a module on a disk
	Importing a module saved on a disk
	Limitations of Export-PSSession

	Using session configurations
	Creating a new session configuration
	Listing available session configurations
	Custom permissions and PS session configurations
	Invoking a custom session configuration
	Disabling a session configuration
	Deleting a session configuration

	Summary

	Chapter 4
: Extending Windows PowerShell
	Introduction to Windows PowerShell modules
	PowerShell module types
	Script modules
	Binary modules
	Manifest modules
	Dynamic modules

	The PSModulePath environment variable
	Viewing the PSModulePath variable
	Adding locations to the PSModulePath variable

	Importing PowerShell modules
	Removing PowerShell modules
	Reloading PowerShell modules
	Writing a PowerShell module
	Creating script modules
	Binary modules
	Manifest modules
	Dynamic modules

	Storing modules on disk
	Working with multiple versions of modules
	Checking PowerShell module dependencies
	Signing PowerShell modules
	Execution policies
	Changing the execution policy
	Script signing background
	Setting up a self-signed certificate
	Signing a module

	Summary

	Chapter
5: Managing Core Infrastructure with PowerShell
	Preparing the operating system for first time use
	Task 1 – changing the computer name
	Task 2 – changing the time zone settings
	Task 3 – setting the Network Interface Card (NIC) configuration
	Task 4 – managing Windows Server roles and features
	Example 1
	Example 2

	Deploying the Active Directory Domain Services (ADDS) role
	Scenario 1 – installing a new Active Directory Forest
	Scenario 2 – installing a new domain in an existing forest
	Scenario 3 – installing a new domain controller in an existing domain

	Managing and configuring the Domain Name System (DNS) role
	Task 1 – configuring DNS server resource records
	Task 2 – creating primary forward and reverse lookup zones
	Task 3 – adding a DNS server forwarder
	Task 4 – exporting DNS server zones

	Deploying and configuring the Dynamic Host Configuration Protocol (DHCP) role
	Task 1 – installing the DHCP server role
	Task 2 – setting up the DHCP server scope
	Task 3 – configuring DHCP scope options
	Task 4 – configuring DHCP scope exclusion
	Task 5 – configuring DHCP scope reservations
	Task 6 – authorizing the DHCP server in Active Directory

	Managing Windows Firewall
	Task 1 – enabling or disabling Windows Firewall profiles
	Task 2 – creating Windows Firewall rules
	Example 1
	Example 2

	Using Best Practice Analyzer (BPA)
	Task 1 – displaying the list of best practice models
	Task 2 – invoking a best practice model
	Task 3 – showing the best practice model result

	Summary

	Chapter
6 : Managing Active Directory with PowerShell
	Active Directory-related concepts
	Introduction to Active Directory
	Namespace
	Object
	Container
	Trees
	Domain

	Installing an Active Directory Domain Service (AD DS)
	New AD server roles in Windows 2012
	Active Directory Certificate Services
	Active Directory Domain Services
	Active Directory Lightweight Directory Services
	Active Directory Rights Management Services

	Managing Active Directory with PowerShell
	Account management
	User management
	Computer management

	Group management
	Viewing group permissions
	Creating a group
	Adding and removing members of a group

	Organizational unit management
	Creating a new organizational unit
	Listing organizational units
	Renaming an organizational unit
	Modifying an organizational unit
	Moving an organizational unit
	Deleting an organizational unit

	Domain controller management
	Finding a domain controller
	Finding a domain controller's site
	Finding the global catalog servers in a forest

	Summary

	Chapter 7
: Managing the Server with PowerShell
	Working with Server Manager cmdlets
	Adding roles or features by using PowerShell
	Advantages of PowerShell cmdlets for Server Manager

	Managing networking using PowerShell
	Managing Group Policy with PowerShell
	Importing a GroupPolicy module
	Creating GPOs with PowerShell

	Managing IIS with PowerShell
	Creating a new website
	Modifying IIS binding
	Creating an FTP site
	Creating a virtual directory
	Creating a WebAppPool
	Backing up and restoring WebConfiguration

	Managing a DNS server using PowerShell
	Managing Hyper-V with PowerShell
	Installing Hyper-V on Windows Server 2012
	Creating a virtual machine
	Starting and stopping a virtual machine
	Modifying a virtual machine
	Operating a virtual machine snapshot

	Managing AppLocker with PowerShell
	Importing the AppLocker PowerShell module
	Retrieving application information
	Retrieving an AppLocker policy
	Setting an AppLocker policy
	Generating rules for a given user or group
	Testing the AppLocker policy against a fileset

	Summary

	Chapter 8
: Managing Unified Communication Environments with PowerShell
	What Exchange Management Shell is
	How to make Windows PowerShell understand Exchange Server cmdlets
	Option 1 – do it like EMS
	Option 2 – loading Exchange Server snap-ins

	Managing Exchange using PowerShell Remoting
	Getting started with Exchange scripting
	Scenario 1 – creating multiple mailboxes from CSV file
	Scenario 2 – creating a shared mailbox
	Scenario 3 – creating a resource (room/equipment) mailbox
	Scenario 4 – creating a distribution group
	Scenario 5 – defining a MailTip for a distribution group
	Scenario 6 – creating a dynamic distribution group
	Scenario 7 – creating multiple mailbox databases from CSV file
	Scenario 8 – exporting mailboxes to PST files
	Scenario 9 – importing a mailbox from PST files
	Scenario 10 – hiding mailbox users from Global Address List (GAL)
	Scenario 11 – getting mailbox users who never accessed their mailboxes
	Scenario 12 – generating an organization mailbox statistics report
	Scenario 13 – generating a mailbox size report

	What Lync Server Management Shell is
	How to make PowerShell understand Lync Server cmdlets
	Loading a Lync Server module

	Managing Lync using PowerShell Remoting
	Getting started with Lync scripting
	Scenario 1 – enabling Lync to user accounts
	Scenario 2 – configuring IM file transfer filtering configuration
	Scenario 3 – configuring IM URL filtering
	Scenario 4 – bulk assignments of client PIN
	Scenario 5 – getting number of users using OCS/Lync
	Scenario 6 – setting the conference disclaimer

	Microsoft Office 365
	Office 365 and Windows PowerShell
	Managing Office 365 using PowerShell
	Managing Microsoft Exchange Online using PowerShell

	Summary

	Chapter 9
: Managing Collaboration and Data Platforms with PowerShell
	What is SharePoint Management Shell
	How to make Windows PowerShell understand the SharePoint server cmdlets?
	Getting started with SharePoint scripting
	Scenario 1 – creating a new site collection
	Scenario 2 – creating a new website
	Scenario 3 – creating a new quota template
	Scenario 4 – backing up your SharePoint environment

	Managing SharePoint Online using PowerShell
	How to load SharePoint Online Management Shell?
	How to connect to SharePoint Online?
	Scenario 1 – exporting a list of SharePoint Online sites to CSV
	Scenario 2 – restoring a deleted SharePoint Online site
	Scenario 3 – checking the SharePoint Online site's health status
	Scenario 4 – setting SharePoint Online User as Site Collection Administrator

	Windows PowerShell Command Builder for SharePoint and Office 365
	What is SQL Server PowerShell?
	How to load SQL Server PowerShell?
	Method 1 – importing the SQL Server PowerShell module
	Method 2 – launching SQL Server PowerShell from SSMS

	Getting started with SQL Server scripting
	Scenario 1 – executing the T-SQL statement
	Scenario 2 – backing up the SQL Server database
	Scenario 3 – restoring the SQL Server database
	Scenario 4 – getting server instances and databases properties
	Scenario 5 – generating the SQL script for databases, tables, and stored procedures

	Summary

	Chapter 10
: Managing Microsoft Desktop Virtualization with PowerShell
	What Desktop Virtualization is
	Understanding Desktop Virtualization components
	What Remote Desktop Services is
	Managing RDS using PowerShell
	Getting started with RDS scripting
	Scenario 1 – creating new RDS deployments
	Task 1.1 – creating a new virtual-machine-based deployment
	Task 1.2 – creating a new session-based deployment

	Scenario 2 – adding a Remote Desktop Server to an existing deployment
	Scenario 3 – adding and configuring an RD Gateway
	Scenario 4 – adding and configuring RD Licensing Server
	Scenario 5 – creating new RDS collections
	Task 5.1 – creating new session-based collections
	Task 5.2 – creating new VM-based collections

	Scenario 6 – setting session-based collection configuration
	Scenario 7 – setting VM-based collection configuration
	Scenario 8 – updating VM-based collections
	Scenario 9 – assigning Profile Disks to collections
	Scenario 10 – publishing Remote Desktop RemoteApp to collections
	Scenario 11 – configuring Remote Desktop Connection Broker for high availability

	Summary

	Chapter 1
1: Managing Microsoft Cloud Platform with PowerShell
	What is Windows Azure?
	What is Windows Azure PowerShell?
	Installing Windows Azure PowerShell
	Making Windows PowerShell understand Windows Azure cmdlets
	Connecting to your Windows Azure environment
	Getting started with Windows Azure scripting
	Scenario 1 – creating a new Azure Affinity Group
	Scenario 2 – creating a new Azure storage account
	Scenario 3 – assigning a storage account to an Azure subscription
	Scenario 4 – creating a new Azure Cloud Service
	Scenario 5 – creating a new SQL Azure Database Server
	Scenario 6 – creating a new SQL Azure database
	Scenario 7 – creating a new SQL Azure Database server firewall rule
	Scenario 8 – provisioning the new Azure VM in Windows (quick mode)
	Scenario 9 – provisioning the new Azure VM in Linux (quick mode)
	Scenario 10 – provisioning the new Windows Azure VM (advanced mode)
	Scenario 11 – Adding a new endpoint to Windows Azure VM (NoLB)
	Scenario 12 – configuring the Windows Azure Virtual Machines load balancing (LB)
	Scenario 13 – creating and assigning a data disk to Windows Azure Virtual Machine
	Scenario 14 – moving the Local VHD to Windows Azure
	Scenario 15 – provisioning a new Windows Azure VM from a Disk
	Scenario 16 – creating Windows Azure Image from a VM
	Scenario 17 – exporting and importing Windows Azure VM
	Scenario 18 – starting, stopping, and restarting the Windows Azure VM
	Scenario 19 – uploading the certificate to Windows Azure
	Scenario 20 – generating the Azure Virtual Machine RDP file

	Summary

	Chapter 12
: Integrating Windows PowerShell and System Center Orchestrator
	Completing your ITPA story with PowerShell and Orchestrator
	What is System Center Orchestrator?
	Understanding Orchestrator workflows
	Orchestrator and PowerShell are better together
	Using PowerShell in Orchestrator workflow
	Using PowerShell to build Orchestrator Integration Packs

	Summary

	Index

