
M A N N I N G

Richard Siddaway

FOREWORD BY
Ed Wilson

Covers 150 practical techniques

www.allitebooks.com

http://www.allitebooks.org

PowerShell and WMI

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

PowerShell and WMI

RICHARD SIDDAWAY

M A N N I N G

Shelter Island

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Jeff Bleiel
20 Baldwin Road Technical proofreaders: Aleksandar Nikolic
PO Box 261 Copyeditor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Melody Dolab

Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781617290114
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12

www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 To my parents, June and Ron

 Without your help, support, and encouragement

 I’d never have been able to do this

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

brief contents
PART 1 TOOLS OF THE TRADE 1

1 ■ Solving administrative challenges 3

2 ■ Using PowerShell 24

3 ■ WMI in depth 62

4 ■ Best practices and optimization 101

PART 2 WMI IN THE ENTERPRISE...135

5 ■ System documentation 137

6 ■ Disk systems 171

7 ■ Registry administration 200

8 ■ Filesystem administration 224

9 ■ Services and processes 251

10 ■ Printers 271

11 ■ Configuring network adapters 289

12 ■ Managing IIS 316

13 ■ Configuring a server 339

14 ■ Users and security 359

www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSviii

15 ■ Logs, jobs, and performance 381

16 ■ Administering Hyper-V with PowerShell and WMI 399

PART 3 THE FUTURE: POWERSHELL V3 AND WMI421

17 ■ WMI over WSMAN 423

18 ■ Your own WMI cmdlets 441

19 ■ CIM cmdlets and sessions 459

www.allitebooks.com

http://www.allitebooks.org

ix

contents
foreword xix
preface xxi
acknowledgments xxiii
about this book xxv
about the author xxxiii
about the cover illustration xxxiv

PART 1 TOOLS OF THE TRADE ..1

1 Solving administrative challenges 3

1.1 Administrative challenges 4

Too many machines 5 ■ Too many changes 6 ■ Complexity and
understanding 7

1.2 Automation: the way forward 7

1.3 PowerShell overview 10

PowerShell scope 11 ■ PowerShell and .NET 12 ■ Breaking the
curve 13

1.4 WMI overview 14

What is WMI? 14 ■ Is WMI really too hard? 16

1.5 Automation with WMI and PowerShell 16

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

1.6 Putting PowerShell and WMI to work 19

Example 1: Shutting down a data center 20 ■ Example 2: Auditing
hundreds of machines 21

1.7 Summary 23

2 Using PowerShell 24

2.1 PowerShell in a nutshell 26

2.2 Cmdlets 26

Utility cmdlets 27 ■ Where-Object 28 ■ Foreach-Object 30 ■ Aliases 30

2.3 Pipeline 32

2.4 .NET for administrators 34

Objects 34 ■ PowerShell objects 34 ■ Creating .NET objects 34
Creating your own objects 35

2.5 PowerShell scripting language 37

Loops 38 ■ Branching 40 ■ Input and output 41

2.6 Finding help 42

Get-Help 43 ■ Get-Command 44 ■ Get-Member 45 ■ PowerShell
community 46

2.7 Code reuse 47

Editors 48 ■ Scripts 49 ■ Functions 50 ■ Modules 53

2.8 PowerShell remoting 55

Remoting by cmdlet 55 ■ PowerShell remote sessions 57

2.9 PowerShell jobs 58

2.10 Summary 60

3 WMI in depth 62

3.1 The structure of WMI 63

Providers 65 ■ Namespaces 66 ■ Classes 69

3.2 Methods and properties 76

Methods 76 ■ Class properties 79 ■ System properties 80 ■ Key
properties 81

3.3 Documenting WMI 82

3.4 WMI cmdlets and accelerators 84

Cmdlets 84 ■ Type accelerators 87

3.5 Using WQL 89

Keywords 89 ■ Operators 90

CONTENTS xi

3.6 WMI references and associators 94

3.7 WMI events 96

3.8 Summary 99

4 Best practices and optimization 101

4.1 Security 103

Using internet code 103 ■ Code security 105 ■ Access to code 106

4.2 Optimizing PowerShell code 107

Data input 107 ■ String substitution 111

4.3 Calculated fields, types, and formatting 113

Calculated fields 114 ■ Type files 116 ■ Format files 118

4.4 Debugging and error handling 120

Debugging 121 ■ Error handling 123 ■ WMI return codes 125

4.5 Getting the most from WMI 126

Issues with learning to use WMI 127 ■ WMI configuration
settings 128 ■ Authentication 129 ■ Data filtering 131
Data conversions 131

4.6 Summary 134

PART 2 WMI IN THE ENTERPRISE135

5 System documentation 137

5.1 System hardware and configuration 139

TECHNIQUE 1 Get computer system information 140
TECHNIQUE 2 Get computer type 142
TECHNIQUE 3 Get domain role 144
TECHNIQUE 4 Get processor information 145
TECHNIQUE 5 Get BIOS information 146
TECHNIQUE 6 Get memory configuration 148

5.2 Peripherals 150

TECHNIQUE 7 Get display settings 151
TECHNIQUE 8 Get input devices 152
TECHNIQUE 9 Get ports 153

5.3 Power supplies 154

TECHNIQUE 10 Get battery details 155
TECHNIQUE 11 Get battery status 156
TECHNIQUE 12 Test power source 157
TECHNIQUE 13 Get power plans 158

CONTENTSxii

5.4 Operating system 160

TECHNIQUE 14 Get operating system version 160
TECHNIQUE 15 Discover hotfixes 163
TECHNIQUE 16 Get boot configuration 164
TECHNIQUE 17 Find recovery configuration 165
TECHNIQUE 18 Test system time 167

5.5 Software 168

TECHNIQUE 19 Discover installed software 168

5.6 Summary 169

6 Disk systems 171

6.1 Physical disks 172

TECHNIQUE 20 Discover disk controllers 174
TECHNIQUE 21 Physical drive information 175
TECHNIQUE 22 Link partitions to disk drives 177
TECHNIQUE 23 Enumerating disk partitions 179
TECHNIQUE 24 Link partitions to logical disks 180

6.2 Logical disks 181

TECHNIQUE 25 Logical disk information 181
TECHNIQUE 26 Root directory data 182
TECHNIQUE 27 Mount points 184

6.3 Volumes 185

TECHNIQUE 28 Enumerate volume information 185
TECHNIQUE 29 Using volume change events 187

6.4 Managing disks 191

TECHNIQUE 30 Formatting a disk 192
TECHNIQUE 31 Performing Chkdsk 194
TECHNIQUE 32 Analyzing and removing fragmentation 195

6.5 CD drives 197

TECHNIQUE 33 Enumerating CD drives 198

6.6 Summary 199

7 Registry administration 200

7.1 Accessing the registry 201

TECHNIQUE 34 Test registry size 202
TECHNIQUE 35 Discovering registry data types 203

7.2 Reading the registry 206

TECHNIQUE 36 Reading registry keys 206
TECHNIQUE 37 Reading registry values 208
TECHNIQUE 38 Enumerating keys and values 209

CONTENTS xiii

7.3 Creating and modifying registry keys and values 211

TECHNIQUE 39 Creating registry keys 211
TECHNIQUE 40 Setting registry values 212

7.4 Deleting registry keys 214

TECHNIQUE 41 Deleting registry values 214
TECHNIQUE 42 Deleting registry keys 215

7.5 Registry access rights 216

TECHNIQUE 43 Reading access rights 216
TECHNIQUE 44 Taking ownership of a registry key 219

7.6 Registry events 221

TECHNIQUE 45 Monitoring registry events 221

7.7 Summary 223

8 Filesystem administration 224

8.1 Working with files 226

TECHNIQUE 46 Finding files 227
TECHNIQUE 47 Performing actions on files 230
TECHNIQUE 48 Compressing files 232

8.2 Folder administration 234

TECHNIQUE 49 Discovering the files in a folder 235
TECHNIQUE 50 Discovering folders with specific attributes 237
TECHNIQUE 51 Decoding the access mask 239

8.3 Listing, creating, and modifying shares 240

TECHNIQUE 52 Listing shares 241
TECHNIQUE 53 Creating shares 242
TECHNIQUE 54 Modifying shares 243

8.4 Filesystem events 244

TECHNIQUE 55 Working with filesystem events 244

8.5 Page file management 248

8.6 Summary 249

9 Services and processes 251

9.1 Services 252

TECHNIQUE 56 Listing services 254
TECHNIQUE 57 Configuring services 255
TECHNIQUE 58 Discovering the service load order 257

9.2 Processes 259

TECHNIQUE 59 Listing process owners 260
TECHNIQUE 60 Creating a process 261
TECHNIQUE 61 Terminating a process 263

CONTENTSxiv

9.3 Process-related events 265

TECHNIQUE 62 Investigating an event 266
TECHNIQUE 63 Monitoring processes 268

9.4 Summary 270

10 Printers 271

10.1 Printer configuration 272

TECHNIQUE 64 Discovering printers 272
TECHNIQUE 65 Testing printer capabilities 274
TECHNIQUE 66 Discovering printer ports 276
TECHNIQUE 67 Discovering printer drivers 277

10.2 Printer status 279

TECHNIQUE 68 Testing printer status 279
TECHNIQUE 69 Listing print jobs 280

10.3 Managing printers 282

TECHNIQUE 70 Setting a default printer 282
TECHNIQUE 71 Printing a test page 284
TECHNIQUE 72 Controlling printers 285
TECHNIQUE 73 Renaming a printer 287

10.4 Summary 288

11 Configuring network adapters 289

11.1 Discovering network adapters 291

TECHNIQUE 74 Identifying network adapters 291
TECHNIQUE 75 Discovering adapter configurations 294
TECHNIQUE 76 Listing an adapter’s network protocols 296
TECHNIQUE 77 Listing network connections 298

11.2 Configuring network adapters 300

TECHNIQUE 78 Enabling network adapters 300
TECHNIQUE 79 Disabling network adapters 301
TECHNIQUE 80 Renaming network adapters 302

11.3 Enabling and setting network addresses 304

TECHNIQUE 81 Enabling DHCP 304
TECHNIQUE 82 Displaying DHCP configuration 305
TECHNIQUE 83 Controlling DHCP leases 306
TECHNIQUE 84 Setting an IP address 307
TECHNIQUE 85 Setting other properties 309

11.4 Configuring network services 310

TECHNIQUE 86 Setting DNS servers 311
TECHNIQUE 87 Setting WINS servers 312
TECHNIQUE 88 Displaying the routing table 313

11.5 Summary 315

CONTENTS xv

12 Managing IIS 316

12.1 IIS WMI provider 317

TECHNIQUE 89 Displaying web server defaults 319
TECHNIQUE 90 Restarting the web server 322

12.2 Websites 324

TECHNIQUE 91 Listing websites 324
TECHNIQUE 92 Creating a website 327
TECHNIQUE 93 Testing website status 329
TECHNIQUE 94 Restarting a website 331

12.3 Application pools and applications 333

TECHNIQUE 95 Listing web applications 333
TECHNIQUE 96 Listing application pools 334
TECHNIQUE 97 Recycling an application pool 336

12.4 Summary 338

13 Configuring a server 339

13.1 Initial tasks 341

TECHNIQUE 98 Renaming a server 341
TECHNIQUE 99 Joining a computer to a domain 343

13.2 Controlling server restarts 345

TECHNIQUE 100 Shutting down a server 346
TECHNIQUE 101 Restarting a server 347

13.3 Configuring network adapter settings 348

TECHNIQUE 102 Setting an IP address 349
TECHNIQUE 103 Configuring other settings 351

13.4 Activating a server 352

TECHNIQUE 104 Testing license state 353
TECHNIQUE 105 Setting the license key 354
TECHNIQUE 106 Activating a server 355
TECHNIQUE 107 Setting a power plan 356

13.5 Summary 358

14 Users and security 359

14.1 User accounts on the local system 360

TECHNIQUE 108 Listing user accounts 361
TECHNIQUE 109 Finding logged on users 364
TECHNIQUE 110 Discovering user information 366

14.2 Groups on the local system 370

TECHNIQUE 111 Listing local groups 370
TECHNIQUE 112 Listing group membership 371

CONTENTSxvi

14.3 Security 372

TECHNIQUE 113 Testing antivirus status 373
TECHNIQUE 114 Testing antispyware status 374
TECHNIQUE 115 Testing antimalware status 376
TECHNIQUE 116 Testing firewall status 377
TECHNIQUE 117 Listing firewall settings 378

14.4 Summary 380

15 Logs, jobs, and performance 381

15.1 Event logs 382

TECHNIQUE 118 Discovering event log sources 384
TECHNIQUE 119 Backing up event logs 385

15.2 Scheduled jobs 387

TECHNIQUE 120 Creating a scheduled job 387
TECHNIQUE 121 Discovering scheduled jobs 390
TECHNIQUE 122 Deleting scheduled jobs 391

15.3 System performance 392

TECHNIQUE 123 Reading performance counters 393
TECHNIQUE 124 Windows system assessment report 395
TECHNIQUE 125 Stability index data 396

15.4 Summary 398

16 Administering Hyper-V with PowerShell and WMI 399

16.1 Creating and configuring virtual machines 401

TECHNIQUE 126 Creating a virtual machine 401
TECHNIQUE 127 Adding extra CPUs 404
TECHNIQUE 128 Attaching an .iso image to a DVD drive 405
TECHNIQUE 129 Adding a virtual disk 407
TECHNIQUE 130 Adding a network adapter 408

16.2 Controlling virtual machines 410

TECHNIQUE 131 Starting a virtual machine 410
TECHNIQUE 132 Starting multiple machines 412
TECHNIQUE 133 Stopping virtual machines 413

16.3 Managing virtual disks 414

TECHNIQUE 134 Testing virtual disk status 414
TECHNIQUE 135 Examining virtual disk usage 416
TECHNIQUE 136 Compacting virtual disks 417

16.4 Summary 420

CONTENTS xvii

PART 3 THE FUTURE: POWERSHELL V3 AND WMI421

17 WMI over WSMAN 423

17.1 Remoting protocols 424

17.2 Using WSMAN 429

TECHNIQUE 137 Testing WSMAN 431
TECHNIQUE 138 Retrieving WMI data using WSMAN 432
TECHNIQUE 139 Modifying WMI instances through WSMAN 433
TECHNIQUE 140 Deleting WMI instances through WSMAN 435

17.3 Using CredSSP to access remote machines 436

17.4 How to choose between WMI, remoting, and WSMAN 439

17.5 Summary 440

18 Your own WMI cmdlets 441

18.1 Creating a WMI cmdlet 443

TECHNIQUE 141 Creating a simple cmdlet 443
TECHNIQUE 142 Extending the cmdlet 446

18.2 Creating multiple cmdlets 448

TECHNIQUE 143 Creating cmdlets from multiple WMI classes 449
TECHNIQUE 144 Building a super- module 450

18.3 Creating format and type files 451

TECHNIQUE 145 Adding a format file 452
TECHNIQUE 146 Adding a type file 454

18.4 Using the CIM IDE 456

18.5 Summary 458

19 CIM cmdlets and sessions 459

19.1 Using WMI methods 460

TECHNIQUE 147 Adding a method 460
TECHNIQUE 148 Adding a method that uses parameters 464

19.2 CIM cmdlets 468

19.3 CIM sessions 474

TECHNIQUE 149 Creating a CIM session 476
TECHNIQUE 150 Accessing CIM sessions 479

19.4 Summary 481

CONTENTSxviii

afterword This is not the end 483

appendix A PowerShell reference 485

appendix B WMI reference 491

appendix C Best practices 496

appendix D Useful links 500

index 505

xix

foreword
I am glad that Richard Siddaway decided to sit down and write a book on WMI. I have

had the privilege of working with Richard over the last several years since becoming

the Microsoft Scripting Guy, and I have long been impressed by his technical prowess.

Whether Richard is speaking at a user group or conference or writing a blog article, it

does not take long before the topic of WMI crops up. When I am planning a guest

series of articles for the Hey Scripting Guy! Blog, Richard is the first person I turn to if

the subject is WMI. In short, Richard is the perfect person to write this book.

 The book is not just about WMI. Richard begins with an overview of Windows

PowerShell technology. In fact, the “Using PowerShell” chapter is an excellent overview

of Windows PowerShell. In less than 40 pages he hits all the highlights—functions, mod-

ules, PSDrives, aliases, remoting, and jobs. But it is not simply a fly-by at 30,000 feet; he

gets down to the nitty-gritty, boils down essential information, and surfaces a number of

potential gotchas. Even if you already know Windows PowerShell, this chapter is worth

a look; if you don’t know Windows PowerShell, you should read this chapter a couple

of times so you don’t have problems with the remainder of the book.

WMI can be complicated—I know, I wrote a book on the subject for Microsoft

Press a few years ago. Luckily, Richard has devoted an entire chapter to discussing not

only the basics of WMI, but some of the more advanced concepts as well. I love his

WMI documentation script in chapter 3. Of course, one of the nice things about WMI

is that it is self-describing, which means that it is possible to write scripts to discover

information about WMI. Well, now you do not need to write those scripts yourself,

because Richard has done it for you.

www.allitebooks.com

http://www.allitebooks.org

FOREWORDxx

 But if the book were all esoteric academic minutiae, it would be of limited practical

value to network administrators and to consultants in the field who are attempting to

use this rather difficult technology to solve real world problems. Luckily, Richard lives

in the real world and his book quickly begins to produce real value. His section on

WMI in the enterprise covers system documentation, working with disk subsystems,

the registry, and more.

 Windows PowerShell is a powerful, cool technology. WMI is a powerful, cool tech-

nology. When you combine the two you have a flexible and powerful solution. When

Richard Siddaway is the author of the book—you have an unbeatable combination.

Buy this book! You will thank me later.

 ED WILSON, MCSE, MCSD
 MICROSOFT SCRIPTING GUY

 AUTHOR OF

WINDOWS POWERSHELL 2.0 BEST PRACTICES

xxi

preface
I am very passionate about using PowerShell to automate the administration of Win-

dows systems. This will become apparent very quickly if you talk to me, listen to me at

conferences, or read my other books or blogs. WMI has a reputation for being power-

ful but hard to use. PowerShell is the way forward for system administrators, and WMI

is that horrible, old technology that no one really knows how to use. So why do we

need a book on PowerShell and WMI?

 In reality, PowerShell and WMI are made for each other. They are both powerful,

but put them together and you have low-level access to just about every facet of your

Windows system. WMI is a first-class citizen in the PowerShell world, with a set of cmd-

lets to make using WMI easier and to provide the ability to work over WSMAN or

DCOM protocols. The great strength of the pairing of PowerShell and WMI is that you

can work with both local and remote systems. The other point to remember is that

Microsoft is putting a lot of effort into WMI for the Windows 8 family of products.

There are big changes coming regarding what you can do with WMI and how you can

use it.

 In short, it seemed that now was the time to bring WMI in from the cold and into

mainstream administration where it belongs.

 This book is written for system administrators, and it provides a suite of scripts to

automate a large range of administration tasks. In most cases, these scripts are ready

to use in your environment—I use many of them on a regular basis. In the chapters,

those scripts are explained and the background to the tasks is discussed so you can put

the script into context for your environment. This isn’t a cookbook or a theoretical

PREFACExxii

book on the PowerShell language—it’s more. It’s a practical guide to taking these two

technologies and making them do what you need in order to solve the problems you

have in your environment.

 Best practices can be an emotive subject, but one of my goals in writing the book

has been to supply best practice guidelines for using PowerShell and WMI and Win-

dows administration in general. There is no point in automating bad practice—it just

makes mistakes happen quicker.

 The solutions presented in the book show the way that I solve various problems.

Use the scripts to solve your problems, and if you find better solutions, please share

them with the PowerShell community.

 I’ve gained a number of things during the writing of this book:

■ A deeper understanding of PowerShell and WMI
■ Some wonderful opportunities to talk with very knowledgeable people
■ New friends who share my interest in and passion for PowerShell and WMI

I hope you get a sense of that passion and interest from reading this book, and I hope

that it both helps you in your role as an administrator and inspires you to investigate

some of the areas of PowerShell and WMI that I haven’t been able to cover. Who

knows, we could be talking about it at a PowerShell Deep Dive sometime soon.

 Use the techniques, join the PowerShell community, and most of all, enjoy what

you do.

xxiii

acknowledgments
Producing a book like this is never a solo effort. My name may appear on the cover,

but a whole team of people was required to get this book into your hands. This is my

opportunity to thank them for their efforts.

 I have to start with the Microsoft PowerShell and WMI teams. Without their work,

there wouldn’t be anything to write about. The team members I have met and corre-

sponded with have always tried their best to answer my questions, and without their

input this book would be a very different animal. So a big thank you to current and

former members of these teams, especially Jeffrey Snover, Kenneth Hansen, Bruce

Payette, Lee Holmes, Jason Shirk, Osama Sajid, Wojtek Kozacynski, Lukasz Anforow-

icz, and James Brundage.

 I would also like to thank the Microsoft Scripting Guy—Ed Wilson—for writing the

foreword to this book and for some very stimulating and thought-provoking discus-

sions on the subject of PowerShell and WMI.

 The people at Manning continue to be superb. They are a very professional group

who understand how to put a good book together and how to get the best from their

authors. Many thanks to Marjan Bace, Michael Stephens, Sebastian Sterling, Maria

Townsley, Jeff Bleiel, Andy Carroll, Melody Dolab, Karen Tegtmeyer, Ozren Harlovic,

Mary Piergies, Maureen Spencer, and Christina Rudloff.

 There were two reviews of this manuscript during its development. The individual

reviewers took the time to read and comment, sometimes in great detail, on the con-

tents. Without their contributions this would have been a poorer book. Thanks to

ACKNOWLEDGMENTSxxiv

Jonathan Medd, James Berkenbile, Mike Shepard, Nikander Bruggeman, Margriet

Bruggeman, Karsten Strøbæk, Amos Bannister, Adam Bell, and Peter Monadjemi.

 Special thanks must go to Aleksandar Nikolic for performing the technical review

of the final manuscript and code. My discussion in the Frankfurt airport with Ravi-

kanth Chaganti, after the European PowerShell Deep Dive, was especially useful. As

usual, any and all errors of omission or commission remaining in the book are mine

and mine alone.

 During the MEAP process, a forum exists for readers to post comments and ask

questions. The comments and questions have all been read and incorporated into the

book where appropriate. Thank you for taking the time to post.

 The PowerShell community is very enthusiastic and willing to share. Thank you to

those who have helped with example code, discussed topics with me, provided solu-

tions to problems, listened to talks (I have been talking a lot about PowerShell and

WMI over the last year, and will continue to do so), asked questions, and offered

speaker slots. The PowerShell MVP community and UK PowerShell group deserve a

special vote of thanks.

 Final thanks must go to my family, friends, and colleagues who’ve supported me

through the writing and production of this book.

xxv

about this book
This is a book for system administrators, those who manage administrators, those

responsible for auditing systems, and anyone else who needs to discover information

about Windows-based systems. PowerShell and WMI are powerful individually, but when

they come together they supply an unrivalled way to access and administer your systems.

 I have attempted to show the breadth of problems that PowerShell and WMI can

solve. The depth of these technologies is also exposed by the detailed and practical

examples. There are areas such as clustering and the System Center family that

haven’t been touched because of space considerations.

This book isn’t a pure cookbook of PowerShell-based scripts nor is it a book on Win-

dows administration. It lies between these two points and provides insight into how to

automate the administration of your Windows systems using PowerShell and WMI.

PowerShell versions

This book was written during the PowerShell v3 development and beta program. Except

where otherwise stated, this book deals with PowerShell v2. Chapters 18 and 19

require PowerShell v3 as they use functionality only available in that version.

My development environment is Windows 7 and Windows Server 2008 R2, but I have

also tested on Windows Server 2003 and Windows Server 2008 where possible.

Most of the code will also run on PowerShell 1.0, and I will point out where this is not

the case and what alternatives are available.

ABOUT THIS BOOKxxvi

 You may not choose to read this book from cover to cover, but I urge you to keep it

on your desk. I hope you will find yourself referring to it on a frequent basis. Once you

start automating, the possibilities are only limited by your knowledge, and this book’s

task is to supply you that knowledge along with appropriate examples so you can apply

it to your environment.

 The scripts are presented as techniques with problem, solution, and discussion sec-

tions. They should help you solve your particular problems. If they don’t, a message

on the Author Online forum will reach me, and I may be able to supply some point-

ers. But no promises, because I have a day job as well.

Who should read this book?

This book is primarily for that overworked, and undervalued, person—the IT adminis-

trator. As an administrator, you may well find yourself constantly bombarded with new

requests, new technologies, and user problems, and you may want to automate some

of those tasks but not know where to start. Even some simple tools that could discover

the configuration of the server that your predecessor built but didn’t document would

be a help.

 This book won’t solve all of your problems, but it will help you start to automate

some of those problem areas. Make sure your manager reads chapter 1. They will then

see what you are trying to achieve and how using the techniques in this book will

make them look good as well.

 The sample code in the book is based on real-world examples—I use a lot of scripts

based on these techniques in my job. I have combined many of the discovery scripts,

for example, to create a script that completely documents my servers. Take the code,

experiment (in a test lab), and discover how you can start automating now.

Roadmap

PowerShell and WMI is divided into three parts. The book starts with an overview of the

PowerShell and WMI technologies in part 1, “Tools of the trade.” This introductory

section covers the overall problems you need to solve, provides an overview of Power-

Shell and WMI, and offers some best practices.

 Chapter 1 describes the challenges we face every day as administrators—increasingly

complex environments, new applications, fewer staff, and tighter deadlines. A quick look

at PowerShell and WMI shows how they can be used to solve these problems and recover

at least some of the time we need to become proactive in our approach.

 Chapter 2 provides an overview of PowerShell. The use of cmdlets at the Power-

Shell prompt is described, followed by an introduction to how PowerShell uses .NET

and how we can utilize some of the .NET functionality with PowerShell. Don’t worry,

this isn’t going to become a developers’ book! PowerShell also has a scripting lan-

guage that supplies the framework for our code. Simple scripts are described, leading

up to the advanced functions we’ll be working with throughout the book. This chap-

ter also supplies an overview of PowerShell remoting and jobs.

ABOUT THIS BOOK xxvii

WMI is the other technology we’ll be using, and it moves to center stage in chap-

ter 3. This is the most theoretical chapter in the book, because we delve into the

structure of WMI, discovering how to document providers, namespaces, and classes.

Examples of using the five WMI cmdlets are presented, together with some of the

issues that may cause problems (workarounds are also presented). WQL is an SQL sub-

set that can be used to query the WMI repository. Using WQL may seem like an old

fashioned way of working, but it’s still required in a number of scenarios. A good

working knowledge of WQL will help in the later chapters of the book. WMI maintains

links, known as associators and references between many classes. These links can be used

to make administration easier, so we’ll spend some time discovering how to use them.

 Part 1 closes with chapter 4. This chapter covers a number of topics that will help

you get the most out of PowerShell and WMI. It starts with finding code examples and

ensuring that they’re safe to use. This leads into the topic of securing the PowerShell

environment, including the digital signing of scripts. The section on optimizing Pow-

erShell looks at data input and output, format files, simple debugging techniques, and

error handling. WMI best practices, including the configuration of WMI-related set-

tings, authentication within WMI, data filtering, and conversions bring the chapter to

a close.

 The bulk of the book is taken up by part 2, “WMI in the Enterprise.” A number of

the chapters in this section discuss using WMI events. By using events, you can per-

form actions such as these:

■ Monitor for a USB pen drive being plugged in, and copy data to the drive
■ Monitor changes to specific registry keys and values
■ Monitor the filesystem for additions, deletions, or modification of the files in a

given folder
■ Monitor processes to block specific applications or to ensure that an applica-

tion is restarted if it fails

WMI has traditionally been viewed as a method of gathering information about your

system’s configuration. Chapter 5 demonstrates how this can be achieved using Power-

Shell and WMI. Techniques for discovering system configuration information, includ-

ing hardware, operating system, and installed software are presented.

 This theme continues into chapter 6, where you’ll discover how to investigate the

storage systems installed in your servers. The WMI classes that enable you to work

with, and discover information about, disk controllers, physical and logical disks, vol-

umes, and mount points will be utilized and explained. Administering disks in terms

of formatting and defragmenting disks will also be discussed.

 In chapter 7, our attention turns to the registry. The usual warnings regarding reg-

istry modifications having the potential to destabilize your system still apply. Tech-

niques to discover the registry size, administer registry keys and values, and work with

security settings will be discussed.

ABOUT THIS BOOKxxviii

 The other major data store that administrators work with on a regular basis is the

filesystem—this is the subject of chapter 8. WMI can’t be used to create filesystem

objects, but it can be used to search for files and folders on local and remote

machines. This becomes especially useful when we want to discover files or folders

with special attributes, such as being hidden. Techniques to compress (and uncom-

press) files and folders are presented before we move on to examining the security set-

tings on filesystems. The chapter closes with a look at file shares, with code that can be

used to automate their whole lifecycle.

 A server isn’t just a collection of hardware. In many cases, our main interest in a sys-

tem is the applications that are running on that system. These are investigated in chap-

ter 9, when we turn our attention to services and processes. The service health of a

system (whether the correct services are running) and service load order are investi-

gated. The whole process lifecycle from creation through administration to destruction

can be managed with the PowerShell and WMI techniques presented in this chapter.

 The one subject that’s guaranteed to upset every administrator at some time in

their career is printing. Chapter 10 discusses printers. It starts by showing how to dis-

cover printer configuration and status, followed by a look at printer drivers. The chap-

ter then examines how to manage printers and print jobs. The final part of the

chapter discusses troubleshooting printers and shows how to perform tests, such as

sending a test page to the printer.

 Networking is the subject of chapter 11. Discovering the physical configuration of

the network adapters, their IP addressing configuration, and the protocols in use

forms the first part of the chapter. This is followed by sections on managing the physi-

cal adapters, configuring IP addresses, and related information. The chapter closes by

examining how to discover the IPv4 routing table.

IIS is a common component of the Windows infrastructure. The IIS WMI provider

is the subject of chapter 12. The chapter demonstrates how to administer the web

server configuration, the website lifecycle, application pools, and web applications.

The IIS WMI provider requires us to use a number of specialized techniques, which

are explained in detail.

 Configuring new servers is the subject of chapter 13. We’ll look at how to rename a

server and perform the domain join operation. Network configuration using the tech-

niques from chapter 11, setting the license key, and activating the operating system

are all discussed. The final part of the chapter explains how to configure power plans.

 Security should always be an important consideration, and in chapter 14 we’ll con-

sider the users who have access to our systems, together with a number of other

security-related issues. After you’ve discovered how to work with the local users and

groups on the system, we’ll examine the antimalware status. The chapter closes with

techniques for working with the firewall state and settings.

 Windows is an event-driven operating system. In chapter 15, techniques for work-

ing with the event logs are presented. WMI can only work with the classic event logs,

but we can discover event log sources and back up the event logs. Simple scheduled

ABOUT THIS BOOK xxix

jobs and performance counters are discussed. In later versions of Windows, system

assessments and a stability index can be produced, and these can be accessed by Pow-

erShell and WMI. Accessing this information is an easy way to determine whether a

particular system component isn’t performing or is affecting system stability.

 Chapter 16 is a bit different in that we use the Hyper-V PowerShell library, which is

based on WMI, to work with virtual machines. Techniques to create and configure

remote machines, control virtual machines, start a group of virtual machines in

sequence, and administer virtual disks are presented. This chapter is a good example

of what many administrators do automatically—take the tools that are provided and

build a wrapper to do exactly what they need in their environment.

 In part 3, “The future: PowerShell v3 and WMI,” we take an in-depth look at some

of the exciting new functionality associated with PowerShell and WMI; namely, using

WMI over the WS-Management protocols and the introduction of CIM cmdlets and

“cmdlets-over-objects” in PowerShell v3.

 Chapter 17 examines the WSMAN cmdlets. Using these, it is possible to access the

WMI provider from the WinRM service on the remote machine. This enables the

retrieval of information and the configuration of the remote machine. It’s possible to

perform just about any task through the WSMAN cmdlets that you could using the

WMI cmdlets. The advantage is that you bypass DCOM, become firewall friendly, and

potentially can access CIMOM (other non-Windows WMI providers) instances on non-

Windows systems. The disadvantage is that it involves a more complex coding syntax

and that you’re not dealing with live objects.

 Chapters 18 and 19 should be read together, with the content in chapter 19 build-

ing directly on that in chapter 18. The starting point is new functionality in Power-

Shell v3 that enables you to wrap a WMI class in XML and use the resulting file as a

PowerShell cmdlet—this is known by the catchy title of “cmdlets-over-objects.” The

cmdlet is loaded into PowerShell as a module, and parameters are added to the cmd-

let to provide filtering and search options. Two or more WMI classes can be treated

this way, and the resultant cmdlets are loaded by creating a module file that calls them

as submodules. Format and type files are also added to the module to control the for-

matting of the output.

 In chapter 19, WMI methods are added to the mix. These drive the creation of

additional cmdlets that are again loaded as part of the module. The ability to “cmdlet-

ize” WMI classes gives a huge boost to the ease of use. Much of the new PowerShell

functionality in Windows Server 8 is produced in this manner.

 Chapter 19 continues with the CIM cmdlets. These are analogous to WMI cmdlets

but use a new API and new .NET objects. The CIM cmdlets are compared and con-

trasted to the WMI cmdlets to provide a context for their use. These CIM cmdlets com-

bine the firewall friendliness of the WSMAN cmdlets and the ease of use of the WMI

cmdlets. The chapter, and the book, closes with a review of CIM sessions, which can be

thought of as similar to PowerShell remoting sessions. CIM sessions create a persistent

connection to a remote machine to make multiple calls more efficient. They can work

over WSMAN or DCOM to enable access to systems running PowerShell v3 or v2.

 www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOKxxx

 There are four appendices to the book. They supply a PowerShell reference guide,

a WMI reference guide, a best practices guide, and a list of references that can be con-

sulted for further information.

Source code downloads

The source code for this book can be downloaded from the publisher’s website at

www.manning.com/PowerShellandWMI.

WARNING All downloaded code must be tested in your environment.

The code is provided as a zip file with a folder for each chapter, except that the nature

of chapters 18 and 19 leads to a single folder spanning both of those chapters. A Pow-

erShell file, .ps1, is provided to match each listing in the chapter. The files are named

for the listings; for example, Listing3.1.ps1.

TIP Each listing is presented as one or more functions. The most efficient
way to load these is to use the chapter’s module file.

Other files may be supplied occasionally, such as example output where the data is too

big to include on the page or example input files. In all cases, they’re referenced in

the chapters.

 Alternative coding styles are provided where I have used a report production style

of script in the chapter. These can be found in subfolders of the relevant chapter,

named “Alternative Non-Report Style”.

 In some cases, alternative scripts using the CIM cmdlets from PowerShell v3 are

provided as examples of how to use this new functionality. The CIM alternatives are

located in a subfolder of the chapter, named “CIM”.

Code and typographical conventions

This is a book about using PowerShell, and there are a lot of examples provided

throughout the book. A fixed-width font, like this, is used for short lines of code in

the text. Listings and longer code examples embedded in the text also use a fixed

width font:

like this.

Listings are annotated, where necessary, and full explanations are provided in the

text. In many cases, the code statements have been split across multiple lines in order

to fit the code on the page. These lines either terminate with a back tick (`), which is

the PowerShell continuation character, or the following line has a ➥ symbol to indi-

cate that the line is a continuation.

 If the code has been typed directly at a PowerShell prompt, it’ll be displayed like

this:

PS> 1kb
1024

www.manning.com/PowerShellandWMI

ABOUT THIS BOOK xxxi

I have followed a number of conventions when putting together the code for this

book. Some of these are standard PowerShell best practices, and others are my per-

sonal coding style. I will usually refer to servers when discussing the types of machines

we are administering, but many of the techniques covered in this book can be applied

to desktop machines as well.

 PowerShell commands (cmdlets and functions) can have shortcut names, known

as aliases, defined. I don’t normally use aliases in scripts, because I want to ensure that

the scripts are readable, and are as easy to understand as possible. I also use the full

parameter names in cmdlets. Cmdlet, parameter, property, and attribute names will

be displayed like this.

 There is one exception to my rule on aliases, and that’s for the utility cmdlets,

where I use the following conventions:

■ Where-Object is aliased as where but never as ?.
■ ForEach-Object is aliased as foreach but never as %.
■ Select-Object is aliased as select.
■ Sort-Object is aliased as sort.

Group-Object and Measure-Object are used less frequently, but they’re aliased to group

and measure respectively. In the discussion around a script, I always use the full cmdlet

name. I have adopted this convention for a number of reasons:

■ It is advised by the PowerShell team.
■ It represents accepted practice and usage.
■ It’s more readable.
■ It saves some space on the page.

I use double quotes around strings unless I am sure that I don’t want to substitute into

the string. WMI filters and WQL use single quotes to delineate strings within the

query. I also tend to leave keywords, such as do and if in lowercase. My function

names and their parameters are usually lowercase—I’ll make an exception to this if

the name is long and some capitalization makes it more readable.

 In some cases, the listings in the book are truncated. This is to save space and is

always stated in the script’s discussion. The download code for the book is complete.

My goal has been to provide a balance between readability, conciseness, and com-

pleteness. Only you can tell if I have succeeded.

Author Online

Purchase of PowerShell and WMI includes free access to a private web forum run by

Manning Publications where you can make comments about the book, ask technical

questions, and receive help from the author and from other users. To access the forum

and subscribe to it, point your web browser to www.manning.com/PowerShellandWMI.

This page provides information on how to get on the forum once you are registered,

what kind of help is available, and the rules of conduct on the forum.

www.manning.com/PowerShellandWMI

ABOUT THIS BOOKxxxii

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialog between individual readers and between readers and the author can take place.

It is not a commitment to any specific amount of participation on the part of the

author, whose contribution to the AO remains voluntary (and unpaid). We suggest

you try asking the author some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-

ble from the publisher’s website as long as the book is in print.

xxxiii

about the author
Richard Siddaway is a technical architect for Serco in the UK, working on transforma-

tion projects in the Local Government and Commercial arena. With more than 22

years of experience in various aspects of IT, Richard specializes in the Microsoft envi-

ronment at an architectural level—especially around Active Directory (AD),

Exchange, SQL Server, and infrastructure optimization.

 Much of his recent experience has involved Active Directory migrations and opti-

mizations, which often include Exchange. Richard has hands-on administration expe-

rience and is involved in implementation activity in addition to filling architectural

and design roles. He has extensive experience specifying, designing, and implement-

ing high-availability solutions for a number of versions of the Windows platform, espe-

cially for Exchange and SQL Server.

 Richard is always looking for the opportunity to automate a process, preferably

with PowerShell and WMI. Richard founded and currently leads the UK PowerShell

User Group. Microsoft has recognized his technical expertise and community activi-

ties by presenting a Microsoft Most Valued Professional award. Richard has presented

to The Technical Experts conference in the USA and Europe, the Directory Experts

Conference, at various events at Microsoft in the UK and Europe, and for other user

groups worldwide. Richard has a number of articles and technical publications to his

credit, including PowerShell in Practice (Manning). He is a coauthor of the forthcoming

PowerShell in Depth: A system administrator’s guide (Manning).

xxxiv

about the cover illustration
The figure on the cover of PowerShell and WMI is captioned “The Bibliophile,” which

means a lover of books. The man on the cover may just be an avid reader or possibly he’s

a collector of rare editions or even a bookseller. The illustration is taken from a 19th-

century edition of Sylvain Maréchal’s four-volume compendium of regional and pro-

fessional dress customs published in France. Each illustration is finely drawn and col-

ored by hand. The rich variety of Maréchal’s collection reminds us vividly of how

culturally apart the world’s towns and regions were just 200 years ago. Isolated from each

other, people spoke different dialects and languages. In the streets or in the countryside,

it was easy to identify where they lived and what their class, trade, or station in life was

just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the

time, has faded away. It is now hard to tell apart the inhabitants of different conti-

nents, let alone different towns or regions. Perhaps we have traded cultural diversity

for a more varied personal life—certainly for a more varied and fast-paced technolog-

ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-

brates the inventiveness and initiative of the computer business with book covers

based on the rich diversity of regional life of two centuries ago, brought back to life by

Maréchal’s pictures.

Part 1

Tools of the trade

Welcome to PowerShell and WMI. WMI is a mature administration technol-

ogy that has been with us for a good number of years. PowerShell is the relatively

new kid on the block that’s bringing automation to administrators who haven’t

considered it in the past. PowerShell and WMI are a natural pairing, like Batman

and Robin or fish and chips.

 The book has three sections. In this first part of the book, we’ll look at the

technologies in isolation.

 Chapter 1 provides a brief overview of the subject as well as some examples

of the benefits that using PowerShell and WMI together will bring to your

environment.

 In chapter 2, we’ll turn our attention to PowerShell, looking at its major ele-

ments and how to use them. This isn’t intended to be a complete PowerShell

tutorial, but taken together with appendix A, it will supply the information you

need to get the most from this book.

WMI moves on stage in chapter 3, and you’ll learn what it is and how to use it

with PowerShell. We’ll look at the WQL language along with some advanced top-

ics, including using WMI and .NET together.

 Finally, chapter 4 shows some ways to optimize your use of WMI and Power-

Shell. These suggestions are not intended to be prescriptions but are based on

my accumulation of experience from using PowerShell and WMI. They will

hopefully make using these technologies easier and more enjoyable. Learn from

my mistakes, in other words.

3

Solving
 administrative challenges

Ask any Windows administrator about their biggest problems, and somewhere in

the list, usually near the top, will be too much work and not enough time to do it.

They know that automation is possible, will be at least aware of some of the technol-

ogies that could solve their problems, such as Windows Management Instrumenta-

tion (WMI) and PowerShell, but don’t have the time to spend investigating the

technologies. That’s a shame because it’s commonly accepted that 70 percent of an

organization’s IT budget is used to “keep the lights on.” Automation can make a

worthwhile contribution to reducing that percentage and freeing people and

money to contribute to the business bottom line.

 It’s also possible that they’ve looked at WMI or PowerShell and decided they

were too difficult. This is an understandable view, given the issues with WMI in

VBScript—especially the amount of work involved in getting WMI to work in

This chapter covers

■ The administrator’s headache

■ Solving the challenge with automation

■ PowerShell and WMI—the automation tools

4 CHAPTER 1 Solving administrative challenges

VBScript, and the lack of usable examples that also explain the techniques that have to

be used. Some horrendous examples of PowerShell have been posted on the web that

put me off, never mind someone wanting to start with the subject! Unfortunately,

administrators then miss out on the possibilities that automation provides to reduce

their workload and accomplish more.

 The aim of this book is to radically lower the entry bar to using WMI productively

in your environment. The examples that are provided can be used with few or no,

changes. You’ll also gain a deeper understanding of WMI that can be used to work

with areas we don’t cover.

 PowerShell itself is constructed to make WMI usage much easier and more intuitive.

PowerShell is Microsoft’s automation engine that, among other things, provides easy-

to-use access to the rich management toolset available in WMI. Together, PowerShell and

WMI provide a set of tested techniques that will enable you to administer your Windows

environment more quickly and easily. You’ll be able to automate many of the standard

tasks that currently consume too much of your attention, freeing up time to do the more

interesting things that otherwise couldn’t be fitted into your normal working day.

 The first thing I’ll do in this chapter is define the problem we’re trying to solve.

There are a number of issues that affect any Windows environment of significant size:

■ Number of systems

■ Rising infrastructure complexity

■ Rate of change

The second part of the chapter shows why PowerShell and WMI provide a great toolset

for solving these problems. Getting the most out of PowerShell involves investing a lit-

tle time in learning it, especially when using WMI. Automation is the key to making

your life as an administrator easier. The benefits you can achieve with PowerShell and

WMI automation provide an excellent return on the investment you make in learning

to use the technologies.

 The chapter closes with two examples showcasing the power this combination of

technologies delivers to us. The first example shows how you can shut down all the

servers in your data center with one command, and the second shows how you can test

settings on many machines in one pass.

 Let’s start with a look at the responsibilities of a modern Windows administrator

and the problems administrators face.

1.1 Administrative challenges

Administrators are very busy people. They seem to be continually asked to do more

with fewer resources. Figure 1.1 illustrates this with a sketch graph that I’ll refer to in

the following sections. One thing the graph illustrates is the ever-decreasing cost, in

real terms, of hardware. For example, I recently acquired a laptop with a quad-core

processor (hyperthreading allows Windows to see eight cores) and 16 GB of RAM as a

mobile lab. A few years ago, a machine with those specifications was a mid-range

server, not a laptop!

http://www.poshcode.org
http://www.poshcode.org
http://www.poshcode.org

5Administrative challenges

The same is true in the server market—4-, 8-, or even 10-core processors and lots of rel-

atively cheap memory mean that we can afford to run applications and business pro-

cesses that were previously only considered by large corporations with huge budgets.

 This leads directly to the other components of the graph, which show the steep

rise in infrastructure complexity and the even faster rise in administration costs. The

continual upward growth of infrastructure complexity and cost isn’t sustainable.

PowerShell and WMI can help you break out of this growth curve. First, though, we

need to examine the problem in a little more depth—where do the complexity and

cost of administration come from?

1.1.1 Too many machines

This may seem to be an odd way to look at infrastructure, but do you really need every

server you’ve created? Many, if not most, organizations have too many servers. This

comes about for a number of reasons:

■ The decreasing cost of hardware—This change leads to it being easier to add a new

server than to think about using an existing one.

■ Department- or project-based purchasing—This approach raises questions about

server ownership and makes departments or projects unwilling to share

resources.

■ The “one application—one server rule”—Separating applications so that a problem

in one doesn’t affect others may still be valid for business-critical applications,

Figure 1.1 The relationship between decreasing hardware costs, increasing

infrastructure complexity, and the cost of administering the evolving infrastructure

 www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1 Solving administrative challenges

but it’s not necessarily required for second- or third-line applications. It’s defi-

nitely not required for testing and training versions.

■ Weak or reactive IT departments—The lack of controls and processes in IT leads to

departments and projects introducing systems that IT doesn’t know about and

has had no involvement with until the systems hit production.

An administrator’s workload increases faster than the rate of increase of machines due

to the time spent switching one’s focus between machines (often requiring a new

remote connection to be made) and the additional complexity each machine and its

supported applications bring to the environment.

 Virtualization is one of the hot topics in IT at present, with most organizations vir-

tualizing at least part of their server estates. There are several advantages of virtualization:

■ Reduced numbers of physical servers

■ Reduced requirement for data center facilities, including space, power, and air

conditioning

■ Increased use of physical assets, giving a better return on investment

The organization as a whole benefits from virtualization, but the administrator’s load

is increased. If you have 100 servers to administer before virtualization, and you

change to use 4 physical hosts and virtualize the 100 servers, you now have 104 systems

to administer. The complexity may increase as well, because the virtualization plat-

form may introduce a different operating system into the environment. The increase

in the total (physical plus virtual) number of systems also means that there will be

more change happening as the environment evolves.

1.1.2 Too many changes

Change can be viewed as an administrator’s worst headache. Unfortunately environ-

ments aren’t static:

■ Operating system and application patches are released on a regular basis.

■ New versions of software are released.

■ Storage space needs to be readjusted to match usage patterns.

■ Application usage patterns force hardware upgrades.

■ Virtualization and other disruptive new technologies change the way environ-

ments are created and configured.

This level of activity, multiplied across the tens, hundreds, or even thousands of

machines, builds on top of the day-to-day activity, such as monitoring and backups.

 This situation isn’t supportable in the long term. Organizations can’t absorb ever-

increasing administration costs, and today’s economic realities prevent other mecha-

nisms, such as increased revenue, from providing an escape. The situation has to be

resolved by reducing the cost of administration. But administrators are hampered in

doing this by the fact that many changes bring new technologies into the environment

without ensuring they’re supportable.

7Automation: the way forward

1.1.3 Complexity and understanding

Complexity is the real problem in many cases. It can arise due to a number of causes:

■ Multiple operating systems bring different toolsets and terminology, even

between versions of Windows.

■ Different types of applications, such as databases, email, Active Directory, and

web-based applications, require different skill sets, use different tools, and place

different stresses on a server that the administrator must accommodate.

■ Many machines perform the same or similar roles, but subtle, potentially

undocumented, differences increase the likelihood of error.

Complexity is often compounded by incomplete knowledge and skill sets on the part

of the administrators. Too often a project will introduce a new technology and admin-

istrators are expected to immediately pick up and manage the systems. Do the admin-

istrators have the skills? Do they have the time to learn the intricacies of the new

technology? Sadly, the answer to both questions is often no.

 This leads administrators to make best-guess decisions about how to do things.

Sometimes, if the new technology is a version change from something already in use,

administrators will continue to use the old methods even if there’s now a better way to

perform the task.

 This lack of skills and knowledge leads to mistakes, and these mistakes cost money,

often in terms of lost revenue for the organization. This puts more pressure on the

administrators and leads to a lack of trust from the business. The IT department is

often then excluded from discussions about new technologies until it’s too late, and

the cycle takes another spiral downwards.

 Not only are major changes introduced by projects, administrators also face the

host of minor changes required to keep their environments secure and running

smoothly.

1.2 Automation: the way forward

The way to overcome these issues is to introduce automation. Get the machines to do

the mundane, repetitive work—that’s what we invented them for!

 Automation means many things to many people. There’s a hierarchy of automa-

tion activity that can be considered, as shown in figure 1.2.

Figure 1.2 Hierarchy of automation activity

8 CHAPTER 1 Solving administrative challenges

The question that needs to be answered by every organization is, “Where do I get the

most benefit?” The answer depends on what you’re trying to achieve and where you

are now. I know of a number of organizations that are quite happy using the standard

Windows tools and a few bulk-editing tools. Others attempt to schedule everything or

even create automated responses to events. Automation, for most organizations,

involves a mixture of command-line tools, scripting, and scheduled tasks.

 That leads to the second big question, which is, “How do I automate my adminis-

trative tasks?” PowerShell provides a set of command-line tools (called cmdlets) that

can be used interactively. As the commands become longer and more ambitious,

there’s a natural progression into scripting. One of the great strengths of PowerShell

is that you can use exactly the same commands in a script or at the command prompt,

so everything you’ve learned about commands is still usable in scripts.

 PowerShell by itself is a wonderful tool (OK, I am fanatical about it), but you can

take it a stage further and layer WMI on top. This opens a standards-based manage-

ment toolset that you can use on local and remote machines and that can poten-

tially include non-Windows systems when PowerShell v3 is used. The scripts can be

run interactively or they can be scheduled to run at a specific time by using Power-

Shell and WMI. But before we get into those delights, let’s have a look at automation

in general.

 In this book, we’ll be concentrating on scripting as the primary automation activ-

ity. It could be argued that because you’re using PowerShell, you could do much of

your work from the command line. The benefit of scripting, though, is that you can

reuse the code and save even more time by not having to rewrite the code each time

you want to use it. This topic is covered in depth in chapter 4 of PowerShell in Practice

(Manning 2010).

 Scheduled tasks and automatic responses are too dependent on the particular

environments for this book, so in chapter 3 we’ll start to look at how you can automate

responses to events that occur on your systems. We’ll revisit this in later chapters as we

consider specific areas of administration. We won’t neglect the use of the command

line, though. Many of the examples are short enough to use interactively.

 Let’s look at an example. Suppose you need to determine the amount of free space

on the C: drive of a number of machines in your environment. One way is to go to the

data center, assuming they’re all in the same data center, and log onto the console of

each machine. You’d then need to open Windows Explorer or another tool and find

the free space on the C: drive. Write down the answer, and repeat for the next

machine on the list.

 A slightly easier option is to use Windows’ Remote Desktop functionality to con-

nect to each machine. Then you’d need to manually obtain the information. With this

approach you don’t have to move from your desk, but it still takes too much time.

 My favorite solution is to use PowerShell as shown in listing 1.1. Don’t worry if you

don’t understand the code right now. We’ll return to this script in chapter 6 when we

look at how to administer the disks in servers.

9Automation: the way forward

In this PowerShell example you start with a list of server names taken from my lab

setup. This list is piped into a ForEach-Object cmdlet (aliased as foreach) that calls

Get-WmiObject for each server in the list in order to find the information on the logi-

cal disk used as the C: drive. You then format the information and output it as a table,

as shown in the following listing.

"dc02", "W08R2CS01", "W08R2CS02", "W08R2SQL08",
"W08R2SQL08A", "WSS08" | foreach {
 Get-WmiObject -Class Win32_LogicalDisk `
-ComputerName $_ -Filter "DeviceId='C:'" } |
Format-Table SystemName, @{Name="Free";

Expression={[math]::round($($_.FreeSpace/1GB), 2)}} -auto

The free space is recalculated from bytes to GB to make the results more understand-

able. Notice that PowerShell understands GB, as well as KB, MB, TB, and PB. The

results look like this:

Listing 1.1 Find free disk space

Scripting Conventions

I discussed these conventions in the introductory material but if you’re like me you

skipped that part of the book.

I will usually refer to servers when discussing the types of machines you’re adminis-

tering but many of the techniques covered in this book can be applied to desktop ma-

chines as well.

PowerShell commands (cmdlets and functions) can have shortcut names, known as

aliases, defined. I don’t normally use aliases in scripts as I want to ensure that the

scripts are readable and as easy to understand as possible. I also use the full pa-

rameter names in cmdlets.

There is one exception to this rule and that’s for the utility cmdlets where I use the

following conventions:

■ Where-Object aliased as where but never as ?

■ ForEach-Object aliased as foreach but never as %

■ Select-Object aliased as select
■ Sort-Object aliased as sort

In the discussion around a script I always use the full cmdlet name.

I have adopted this convention for a number of reasons:

■ On the advice of the PowerShell team.
■ Because it represents accepted practice and usage.
■ Because it’s more readable.
■ It saves some space on the page.

10 CHAPTER 1 Solving administrative challenges

SystemName Free
---------- ----
W08R2CS01 119.04
W08R2CS02 118.65
W08R2SQL08 114.8
W08R2SQL08A 115.17
WSS08 111.41
DC02 118.53

NOTE I don’t intend to show output from every script we discuss in the
book, but I will show output occasionally where it aids in the discussion of a
particular issue.

 There are a number of enhancements that you could apply to this script:

■ Put the computer names into a CSV file (as we’ll do in listing 1.4)

■ Add the results to an Excel spreadsheet, or a database, so that trends can be

seen

■ Schedule the task to run on a periodic basis

I use a similar script, with the first two enhancements, to regularly report on disk

space trends for the organization I’m currently working with. I now have a tool that

takes seconds to run against each machine and provides vital information. It’s also

quickly and easily extensible to cover other machines that may become of interest.

The script took me a few minutes to write and test, and there’s an immediate payback

every time I use it.

 PowerShell is designed to provide this type of return. In the words of Jeffrey

Snover, the architect of PowerShell, “I firmly believe that economics determine what

people do and don’t do so PowerShell is designed from the ground up to make com-

posable, high-level task oriented abstractions be the cheapest things to produce and

support.” The full article, “The Semantic Gap,” is available from the Windows Power-

Shell Blog at http://blogs.msdn.com/b/powershell/. A search for semantic gap will take

you to the post.

 The second part of this book will show many examples of this concept in action,

but for now we’ll have a closer look at PowerShell and discuss why it’s the ideal plat-

form for automating your administration.

1.3 PowerShell overview

In this section, I want to show you why PowerShell is the ideal platform for automating

your Windows administration.

 PowerShell is now on its second version (with the third in beta at the time of writ-

ing). It’s part of the default installation of Windows 7 and Windows Server 2008 R2

(for Server Core it’s an optional install). PowerShell v2 also can be installed on Win-

dows Server 2008, Windows Server 2003, Windows Vista, and Windows XP. PowerShell

v3 is an integral part of the Windows 8 family of operating systems. This level of sup-

port means you can use PowerShell to manage all of your Windows systems.

http://blogs.msdn.com/b/powershell/

11PowerShell overview

WINDOWS 2000 SUPPORT Windows 2000 is now out of support and won’t be
considered in this book. PowerShell doesn’t have an option to install on
Windows 2000.

There are also an increasing number of applications that have PowerShell support

built into them. It’s a requirement for all new versions of the major Microsoft

products, and adoption by third-party vendors is steadily increasing the scope of

PowerShell.

The ability to access remote machines (which we’ll look at in chapter 2) simplifies

administration, because you can automate your whole Windows environment from a

single administration console. This is how you can break the curve of rising infrastruc-

ture complexity. We’ll look at how you can achieve this after we’ve examined Power-

Shell’s scope.

1.3.1 PowerShell scope

PowerShell enables you to administer a range of applications, from those having

direct PowerShell support built into them to community-inspired and -provided addi-

tions that are available for download.

 A number of major applications have direct PowerShell support:

■ Exchange 2007/2010 (probably the poster child of PowerShell support)

■ SQL Server 2008/2012

■ SharePoint 2010

■ Various members of the System Center family

Other elements of the Windows environment have PowerShell support available

through Microsoft or third-party additions, including the following:

■ Active Directory

■ IIS

■ Clustering

■ Terminal Services

■ Graphical presentation tools

PowerShell resources

Chapter 2 provides an overview of PowerShell’s features, the language, and how to

use it. It isn’t a full PowerShell tutorial, but it will explain what you need to understand

the examples in the second part of the book.

Bruce Payette’s Windows PowerShell in Action, second edition (Manning 2011) pro-

vides the most detailed coverage of PowerShell from a language perspective. My

PowerShell in Practice (Manning 2010) supplies many examples of using PowerShell

to administer Windows systems.

12 CHAPTER 1 Solving administrative challenges

The availability of functionality is good, but to get the most from it you need to get it

into production use, and the sooner the better. One way to achieve this is to take

advantage of the PowerShell community, which supplies sample code that can shorten

the development cycle. PowerShell has a very strong and productive community that

starts with the PowerShell team but also includes the following resources (links are

provided in appendix D):

■ Blogs, including mine

■ Code repositories for community contributions, such as www.poshcode.org and

www.powershell.com

■ Forums, such as www.powershell.com

This provides a breadth and depth of support and additional functionality that almost

guarantees you’ll be able to find help with solving your problem.

1.3.2 PowerShell and .NET

Whenever PowerShell is discussed, the fact that it’s .NET-based and can access most of

the .NET Framework is brought up. At this point, I find that the eyes of many adminis-

trators begin to glaze over and they slide down into their seats. WAKE UP!

 Yes, PowerShell is .NET-based and there are some really clever things that can be

done by working directly with .NET code in PowerShell, some of which we’ll see in

later chapters. But you don’t need to do this until you’re ready to work at this level.

There are a huge number of administration tasks you can perform without dipping

your toes any further into the .NET waters than we did in listing 1.1. Just don’t forget

that .NET is there when you need it, and there are lots of great examples of how to

work with .NET available from the PowerShell community.

As an example of how you can use .NET with PowerShell, let’s look at the services

running on a system. A subset of the installed services on my test system is shown in

figure 1.3.

 The Get-Service cmdlet (a PowerShell command) returns a list of the running

services. I have restricted the output by using wi* to only return services starting with

“wi.” The results are piped into a Format-Table cmdlet that outputs the results as a

nicely formatted table.

WMI and .NET

It’s possible to use WMI functionality through .NET code created and run in Power-

Shell. This is an advanced technique that we’ll look at in chapter 12, when we’re

working with IIS.

There are generally alternatives to using .NET in this way, and I’ll always choose

those over a .NET-based solution. I’m an administrator, not a developer, and I’ll pres-

ent solutions for administrators.

www.poshcode.org
www.powershell.com
www.powershell.com

13PowerShell overview

NOTE The PowerShell pipeline passes .NET objects rather than text as in
with other shells. This supplies a large measure of PowerShell’s power.

I deliberately chose to use wi* because it demonstrates two services we’ll be seeing a

lot more of later: WMI and Windows Remote Management (WinRM). (It also keeps

the figure to a reasonable size.)

 Underneath the hood, Get-Service is using a .NET class called System.

ServiceProcess.ServiceController, which is fascinating but doesn’t mean much

to me without looking up the .NET documentation. The beauty is that you don’t

need to know this 99.99 percent or more of the time. PowerShell abstracts all of this,

and you can perform your discovery with an easy-to-use command that has a descrip-

tive name.

1.3.3 Breaking the curve

In figure 1.1 you saw that there’s a continuous rise in the complexity of organizations

and the cost of performing the administration in those organizations. This continu-

ous increase isn’t supportable in the long term, and we need a way to break the

upward curve.

 PowerShell can help us break that curve by providing the following:

■ A set of tools to interactively administer servers and applications

■ An automation engine that works across the entire Windows estate

■ The ability to apply those concepts to a number of applications

■ Remote administration engines that enable multiple machines to be adminis-

tered with a single command

■ Asynchronous and scheduled tasks to further enhance automation

PowerShell offers a productivity boost that will easily repay the time you spend learn-

ing to get the best from the technology. And using PowerShell and WMI together will

further enhance your productivity gains.

Figure 1.3 Using Get-Service to display a subset of the running services

14 CHAPTER 1 Solving administrative challenges

1.4 WMI overview

In this section, we’ll look at what WMI offers us as administrators. We’ll examine WMI

in much greater detail in chapters 3 and 4, where we’ll drill into the details of how to

use it to automate administration tasks.

WMI has been available to Windows administrators since the days of Windows NT 4,

but it isn’t a static technology. Each new version of Windows brings changes to the

functionality available through WMI, usually by adding extra capabilities but occasion-

ally by removing or radically changing functionality. New versions of other applica-

tions can have a similar impact. For instance, Exchange 2003 had WMI support, but

that was removed in Exchange 2007/2010.

WMI AND OFFICE Microsoft Office 2007 supplied a WMI provider in the
shape of the root\MSAPPS12 namespace. This functionality was removed in
Office 2010. Remnants of WMI classes will remain on a system if an upgrade
from Office 2007 to 2010 is performed, but they won’t be usable.

The only way to be sure that particular functionality is available on your version of

Windows is to check the documentation on the Microsoft Developer Network

(MSDN). The WMI functionality available on a particular system can be discovered in a

number of ways using PowerShell and other tools. Chapter 3 supplies full instructions

on this.

 There are many automation scripts available using WMI, and most of them use

VBScript due to the efforts of the people behind the Microsoft Script Center after

Windows 2000 shipped. This gives the unfortunate impression that WMI requires a lot

of coding for you to achieve any gains. This is no longer true, as you’ll see in a little

while, and it’s slowly becoming apparent on the internet as the PowerShell commu-

nity supplies example code using WMI.

 To get started, let’s look at what WMI actually is.

1.4.1 What is WMI?

Just what is WMI? The abbreviation stands for Windows Management Instrumentation

and the functionality is automatically installed with Windows. The base functionality

can be enhanced by adding features and roles to Windows or by installing additional

applications.

 At first glance, it may seem like a very large set of stuff that you might be able to

use if you get lucky and someone has mapped out how to use the bit you’re interested

in. When we get to chapter 3, though, you’ll see that there is a structure to WMI that

you can exploit to discover what is available, and to some degree how to use it.

 At this stage you need to be aware that WMI doesn’t exist in a vacuum. It’s Micro-

soft’s implementation of the Common Information Model (CIM) that’s produced by

the Distributed Management Task Force (DMTF). The CIM (and WMI) defines a series

of classes that supply information about Windows systems, and they may allow you to

directly interact with aspects of local and remote systems.

15WMI overview

 You can look at the WMI classes available for working with disks by using

Get-WmiObject:

Get-WmiObject -List *disk* | sort name | select name

This command will produce output like the following:

Name

CIM_DiskDrive
CIM_DisketteDrive
CIM_DiskPartition
CIM_DiskSpaceCheck
CIM_LogicalDisk
CIM_LogicalDiskBasedOnPartition
CIM_LogicalDiskBasedOnVolumeSet
CIM_RealizesDiskPartition
Win32_DiskDrive
Win32_DiskDrivePhysicalMedia
Win32_DiskDriveToDiskPartition
Win32_DiskPartition
Win32_DiskQuota
Win32_LogicalDisk
Win32_LogicalDiskRootDirectory
Win32_LogicalDiskToPartition
Win32_LogonSessionMappedDisk
Win32_MappedLogicalDisk
Win32_PerfFormattedData_PerfDisk_LogicalDisk
Win32_PerfFormattedData_PerfDisk_PhysicalDisk
Win32_PerfRawData_PerfDisk_LogicalDisk
Win32_PerfRawData_PerfDisk_PhysicalDisk

There are a number of classes that start with CIM_ and others that start with Win32_.

There isn’t always a one-to-one pairing of the two types, but major object types such as

logical disks are paired. The CIM_ class is the parent, corresponding to the definition

supplied by the DMTF; the Win32_ classes are child classes that Microsoft has imple-

mented. In some cases the classes are identical, and in others there is additional func-

tionality in the Microsoft class. We’ll usually be working with the Win32_ classes.

POWERSHELL v3

Microsoft invested very heavily in WMI for PowerShell v3, and it offers several im-

provements:

■ A new API and associated .NET classes
■ Closer adherence to the CIM standards (so expect less deviation from the stan-

dard in Microsoft’s implementations)
■ Simplified creation of WMI providers (see chapter 3 for details on providers)
■ The ability to create cmdlets directly from WMI objects (see chapters 18 and 19)

The scripts in chapters 2–16 will use the existing WMI cmdlets for compatibility be-

tween PowerShell v2 and v3. Annotated versions of the scripts using the new Power-

Shell v3 CIM cmdlets will be available in the book’s source code.

 www.allitebooks.com

http://www.allitebooks.org

16 CHAPTER 1 Solving administrative challenges

There are also classes for working with performance counters that you’ll experiment

with in chapter 15. As you’ll see in future chapters, you can work with many parts of

your systems.

 Technologies that have this level of power tend to seem very complicated when

you’re first introduced to them. WMI is no exception.

1.4.2 Is WMI really too hard?

In the years since its introduction, WMI has gained a poor reputation for a number of

reasons:

■ Many administrators don’t think to look on MSDN for documentation. I know I

didn’t when I started using WMI.

■ Discovering which classes are available isn’t always easy. (Chapter 3 will show you

how to discover detailed information on the WMI classes installed on a system.)

■ Coding WMI can be time consuming. The examples in this book are ready to

use, requiring few or no changes for your environment. They can also be used

as templates for your own scripts.

■ A lot of information is held in a coded form. For instance, the

Win32_LogicalDisk class has a media type property that returns a numeric

value—hard drives are type 3. If you don’t know that, you can get into prob-

lems. The information about these values is available in the WMI documenta-

tion, and simple techniques are presented throughout this book to decode

these values. The new CIM classes in PowerShell v3 also provide alternatives that

simplify use.

■ Class names aren’t always consistent. For instance, there is a

Win32_LogicalDisk class, but the physical counterpart is Win32_DiskDrive

rather than a class called Win32_PhysicalDisk. This book’s chapters are broken

into topics that highlight the common classes you’ll need to use, and this infor-

mation is also gathered in appendix B.

WMI is a powerful technology that provides low-level access to the workings of your

servers. It has been shunned by the administrator community because it’s viewed as

being too hard to use, but this need not be the case, as you’ve seen in this section. The

rest of this book shows how you can make the most of this free power. Microsoft has

also realized how much can be done with WMI and is providing a huge boost to the

technology in the Windows 8 family.

 But before we look at how to use WMI, we need to see how it works with PowerShell.

1.5 Automation with WMI and PowerShell

PowerShell v1 has good WMI support. You can use Get-WmiObject to access existing

WMI objects, as you saw in listing 1.1. You can also create new WMI objects, perform

searches, and manipulate the objects that are available. This is all explained in detail

in chapter 3.

17Automation with WMI and PowerShell

 This capability is raised to a new level with PowerShell v2. The functionality of Pow-

erShell v1 is at least maintained in v2, and it’s often enhanced. For example, you can

work directly with WMI security levels in the WMI cmdlets. PowerShell v2 also provides

additional cmdlets to modify and even remove objects. You also get the capability to

work directly with WMI events, as you’ll see in a number of chapters, including 7, 8,

and 15.

Let’s look at a WMI example. The starting point is VBScript and WMI, which you’ll

translate into PowerShell. This will provide a template that can followed if you need to

translate other scripts. The following code listing retrieves some information regard-

ing the processes running on your system. The code is modified from Microsoft’s

Scripting Guide.

set objWMIService = GetObject("winmgmts:" _
 & "{impersonationlevel=impersonate}!\\" _
 & ".\root\cimv2")

set colProcesses = objWMIService.ExecQuery _
 ("SELECT * FROM Win32_Process")

for each objProcess in colProcesses
 WScript.Echo " "
 WScript.Echo "Process Name : " + objProcess.Name
 WScript.Echo "Handle : " + objProcess.Handle
 WScript.Echo "Total Handles: " + Cstr(objProcess.HandleCount)
 WScript.Echo "ThreadCount : " + Cstr(objProcess.ThreadCount)
 WScript.Echo "Path : " + objProcess.ExecutablePath
next

This example uses just a small subset of the available properties to keep the script

manageable. The script starts by creating an object, objWMIService, to enable interro-

gation of the WMI service B. A list of active processes is retrieved by running a WQL

query C. The collection of processes is iterated through, and you write a caption and

the value of a particular property to the screen D.

Listing 1.2 VBScript to retrieve process information

Internet code

You may not always have time to create a script to solve a problem, or you may not

have the knowledge. Fortunately, there are a many scripts available on the Internet.

It’s essential that you test any script that you downloaded from the internet or obtain

from a book (including this one) in your environment to ensure that it works as adver-

tised and doesn’t have any adverse effects. The original script writer is always working

based on the assumptions inherent in their environment—they can’t know any of the

quirks in your environment that would cause the scripts to cause accidental damage.

This is a warning that I will repeat periodically throughout the book.

Enable interrogation
of WMIB

Select from
WMI classC

Output
resultsD

18 CHAPTER 1 Solving administrative challenges

 Writing a script like this takes time, even with cut and paste in your editor. You

have to set up the link to WMI, run a query, and then manually define the formatting

of your display.

 This code can be directly translated to PowerShell as shown in the next listing. The

PowerShell commands are explained in more detail in later chapters, but their basic

functions should be understandable by comparison to the VBScript example.

$procs = Get-WmiObject -Query "SELECT * FROM Win32_Process"
foreach ($proc in $procs) {
 Write-Host "Name :" $proc.ProcessName
 Write-Host "Handle :" $proc.Handle
 Write-Host "Total Handles :" $proc.Handles
 Write-Host "ThreadCount :" $proc.ThreadCount
 Write-Host "Path :" $proc.ExecutablePath
}

You first run the WMI query to select the information you need and put the results

into a variable. The variable is a collection of objects representing the different pro-

cesses. You can then loop through the collection of processes (using the foreach com-

mand), and for each process in that collection use the Write-Host cmdlet to output a

caption and the value of the properties you’re interested in.

Using this approach will produce the results that you need, but it doesn’t use Power-

Shell to its full capabilities. You end up doing the formatting work yourself rather than

leaving it to PowerShell. Your goal is to get the machines to do as much of the work as

possible. You could just run Get-WmiObject -Class Win32_Process, but this displays

a lot of information that you’d need to wade through, which is another manual pro-

cess. You need to select the data you want to see and format it in a sensible way, which

leads to the following PowerShell code:

Get-WmiObject Win32_Process |
Format-Table ProcessName, Handle, Handles,
ThreadCount, ExecutablePath -AutoSize

Listing 1.3 PowerShell translation

VBScript to PowerShell conversions

When you’re working with WMI, it’s inevitable that you’ll end up translating VBScript

code into PowerShell because of the sheer number of examples that are available

from sites such as the Microsoft TechNet Script Center.

The “VBScript-to-Windows PowerShell Conversion Guide” is available on the TechNet

Script Center at http://technet.microsoft.com/en-us/scriptcenter/default.aspx.

You’ll need to find it through a search engine because it does move around on the site.

Consult this guide if it isn’t obvious how to change a particular piece of VBScript

into PowerShell.

http://technet.microsoft.com/en-us/scriptcenter/default.aspx

19Putting PowerShell and WMI to work

This final version uses the Get-WmiObject cmdlet directly. Get-WmiObject returns an

object for each process, and you use the PowerShell pipeline to pass them into a Format-

Table cmdlet. This combines the data selection and display functionality you saw earlier

and produces neatly formatted tabular output. If you wanted the output in a list format,

as in the previous two examples, you could substitute Format-List for Format-Table.

 In these simple examples, you’ve progressed from a VBScript that requires a large

amount of manual formatting to a one-line PowerShell version that does the format-

ting automatically. The final PowerShell version is small enough that you could type it

and run it directly from the command line if required. But a better solution is to turn

it into a script, or function, that can accept a machine name as a parameter, and you

can use that across your server estate. You’ll learn how to do this in chapters 2 and 3.

 So far, the examples in this chapter have focused on day-to-day tasks we face as

Windows administrators. We’ll close the chapter with a couple of examples showing

how PowerShell and WMI can help with some of the bigger tasks we might be asked to

perform on a less frequent basis.

1.6 Putting PowerShell and WMI to work

The two examples we’ll look at in this section are things that you may not need to per-

form on a frequent basis, but they’ll involve a lot of work if you have to do them manually.

 The first example involves shutting down all the Windows machines in your data

center. This isn’t an everyday task, but as an example of the power of PowerShell and

WMI, it’s difficult to beat.

 The second example involves auditing a large number of machines to discover

their capabilities. This can be especially useful when starting a new role or if you’re

performing any kind of investigation. In many cases you may have the base informa-

tion but need other data to complete your knowledge. The techniques we develop in

later chapters will build on this example.

 Could you achieve these results without PowerShell and WMI? Yes, but it would not

be as easy or efficient. You could shut down all the machines in your environment in a

few different ways:

■ Physically visiting each machine

■ Using a remote desktop utility to access each system and shut it down

■ Accessing an “out of band” management card in the server and forcing a shutdown

■ Creating a script in another language to access a utility that forces a shutdown

All but the last one involve shutting down the system manually. That may be accept-

able for a handful of servers, but not for tens or hundreds of machines.

 Auditing can be achieved with a number of utilities, but they involve extra

expense, infrastructure, and a learning curve. If you have PowerShell, WMI, and this

book, you can perform these tasks for a fraction of the cost and time required to set

up alternative systems.

 Now, how can you shut down that data center?

20 CHAPTER 1 Solving administrative challenges

1.6.1 Example 1: Shutting down a data center

Shutting down a data center isn’t something that you want to do every day. At least, it

isn’t if you want to keep your job. But there are times when it’s necessary, such as if

there will be major work on the power supplies or air conditioning systems and it

would be safer to have all the systems offline.

 I first used this technique when I had to shut down all of the servers in a data center

because we were moving them to a different location. Instead of having to travel 150

miles to supervise the shutdown, I did it all remotely and closed the gateway machines

as I exited the environment.

NOTE I used this script on a regular basis to shut down the lab I used to
develop the scripts presented in this book.

The Win32_OperatingSystem class has a method called Win32Shutdown that can be

used to stop all your machines, as shown in the next listing.

Import-Csv computers.csv |
foreach {
 (Get-WmiObject -Class Win32_OperatingSystem `
 -ComputerName $_.Computer).Win32Shutdown(5)
}

This script uses a CSV file called computers.csv, which contains a list of computer

names. The version that I use to shut down my lab contains the following lines:

Computer
W08R2CS01
W08R2CS02
W08R2SQL08
W08R2SQL08A
WSS08
DC02

The first line is a header, and each subsequent line has one computer name (com-

puter names aren’t case sensitive). You can generate this file manually for a small

number of machines or create it with a script that queries Active Directory for a larger

environment.

 In some cases, you need to control the order in which machines shut down; for

example a front end SharePoint server should be closed down before the back end

database server. This is achieved by editing the order in which computer names

appear in the CSV file.

 In listing 1.4, Import-Csv is used to read the CSV file. The contents are piped into

a ForEach-Object cmdlet (foreach is an alias). For each computer name that’s

passed along the pipeline, you use Get-WmiObject and the Win32_OperatingSystem

class. The computer name is passed as $_.Computer, where the $_ symbol refers to the

current object on the pipeline and the Computer part comes from the CSV header.

Listing 1.4 Shut down a data center

21Putting PowerShell and WMI to work

 The Get-WmiObject is contained in parentheses, (), so you can treat it as an object

on which you can call the Win32Shutdown method. The value of 5 that’s passed to the

method forces a shutdown even if users are still logged on. This approach will be revis-

ited in chapter 19 when we look at new ways to work with WMI in PowerShell v3.

 In PowerShell v2, you could make this script even simpler by using the Stop-Computer

cmdlet instead of a WMI call. Other possible enhancements included pinging the server

prior to shutdown to ensure you can contact it and putting a delay between each machine

you shut down to ensure that linked servers don’t have problems.

 The next example involves auditing servers. You can never have too much informa-

tion about your servers’ configuration.

1.6.2 Example 2: Auditing hundreds of machines

This example shows how you can gather basic information from many machines. You

could get this same level of data by connecting to each machine in turn, running utili-

ties on the system to get the information, and then recording it, but that’s a lot of

work for more than a few machines.

 The audit should return the following information:

■ Server make and model

■ CPU data (numbers, cores, logical processors, and speed)

■ Memory

■ Windows version and service pack level

You can use a number of WMI classes, as shown in the following listing, to accomplish

this task.

Import-Csv computers.csv |
foreach {
 $system = "" |
 select Name, Make, Model, CPUs, Cores,
 LogProc, Speed, Memory, Windows, SP

 $server = Get-WmiObject -Class Win32_ComputerSystem `
 -ComputerName $_.Computer

 $system.Name = $server.Name
 $system.Make = $server.Manufacturer
 $system.Model = $server.Model
 $system.Memory = $server.TotalPhysicalMemory
 $system.CPUs = $server.NumberOfProcessors

 $cpu = Get-WmiObject -Class Win32_Processor `
 -ComputerName $_.Computer | select -First 1

 $system.Speed = $cpu.MaxClockSpeed

 $os = Get-WmiObject -Class Win32_OperatingSystem `
 -ComputerName $_.Computer

 $system.Windows = $os.Caption

Listing 1.5 Computer audit

Computer listB

Create
objectC

Computer
systemD

ProcessorE

Operating
system

F

22 CHAPTER 1 Solving administrative challenges

 $system.SP = $os.ServicePackMajorVersion

 if (($os.Version -split "\.")[0] -ge 6) {
 $system.Cores = $cpu.NumberOfCores
 $system.LogProc = $cpu.NumberOfLogicalProcessors
 }
 else {
 $system.CPUs = ""
 $system.Cores = $server.NumberOfProcessors
 }

 $system
} |
Format-Table -AutoSize -Wrap

As in listing 1.4, you again have a CSV file B that contains a list of computer names.

This file is read using Import-Csv and the results are piped into foreach (an alias of

ForEach-Object).

 The easiest way to present the final data is in a table, so you need to create an

object C to hold the results. One method of creating such an object is to pipe an

empty string, "", into a select statement with the names of the properties you want

the object to have. Note that this only works for properties that are strings. There are

other ways of creating objects, which you’ll see in later chapters.

 Once you have your object, you can start gathering the data. The first data con-

cerns the computer system itself, which you can find with the Win32_ComputerSystem

class D. Get-WmiObject is used, and the results are put into a variable. You can then

map the required properties across to the object you’re using to store the results.

 This process is repeated for CPU data E and operating system details F using the

Win32_Processor and Win32_OperatingSystem classes respectively. You test the oper-

ating system version:

■ If the major version number (the first part) is greater than or equal to 6, you’re

dealing with Windows Server 2008, Windows Vista, or later. In this case, the ver-

sion of WMI will correctly return the number of cores and logical processors per

physical CPU so you can populate the fields.

■ If the major version number is less than 6, you’re dealing with Windows

Server 2003, Windows XP, or earlier, and you can only retrieve the total num-

ber of cores, so you show that and remove the number of processors.

The differences between the output for the two types of operating system are shown in

the following output extract:

Make Model CPUs Cores LogProc Windows
---- ----- ---- ----- ------- -------
Dell Inc. PowerEdge 1950 2 2 2 Windows Server® 2008
Dell Inc. PowerEdge R710 16 Windows(R) Server 2003
Dell Inc. PowerEdge 1950 8 Windows(R) Server 2003

When your object is fully populated, you can pipe it into Format-Table G. The

-Autosize parameter will control the width of the columns to best display them on

OutputG

23Summary

screen, and the -Wrap parameter will cause any data that’s too long to fit in the col-

umn to wrap onto multiple lines to ensure you see all of the results.

 This script could be enhanced in a number of ways:

■ Ping the server to ensure it’s reachable

■ Add further information, such as disks, installed applications, hotfixes, and

page file configuration

■ Output the data to a file that could become the basis of your server documentation

■ Add the data directly into a CMDB for configuration management

The first two points are covered in later chapters, whereas information on the second

two can be found in PowerShell in Practice (Manning 2010).

 These two examples show what can be achieved with the right knowledge and a

few lines of very simple code. I don’t know of any other combination of out-of-the-box

tools that performs so much work for so little effort. WMI really does put the power

in PowerShell.

1.7 Summary

As Windows administrators, we’re under increasing pressure due to the rise in com-

plexity of the environments we have to work in and the ever-rising costs of administra-

tion. On the one hand, we’re being asked to take on more work and administrate a

steadily increasing number of servers and applications. On the other hand, we’re fac-

ing demands to cut costs.

 The way out of this dilemma is to automate as much of our day-to-day work as pos-

sible. In a Windows environment, the pairing of PowerShell and WMI provides an

unmatched set of capabilities:

■ PowerShell is available on all currently supported Windows platforms except

Windows Server 2008 Server Core.

■ PowerShell support is built into an increasing number of Microsoft and third-

party applications.

■ WMI provides low-level access to hardware, operating systems, and applications

enabling full lifecycle management.

■ The ability to work with remote systems simplifies administration and stretches

the envelope of automation.

■ PowerShell enables WMI to be used much more easily and shortens the learning

curve to productive use of the technologies.

■ There is an existing body of knowledge regarding WMI that can be readily

adapted for use in PowerShell.

■ A thriving PowerShell community provides support for PowerShell and WMI usage.

■ Both technologies will be available for the foreseeable future, ensuring that

your investment will continue to show returns.

In the next chapter, we’ll dive deeper into PowerShell to make sure you have all of the

tools you need to get the most out of WMI.

24

Using PowerShell

You saw in chapter 1 that automation is the key to reducing pressure on Windows

administrators and that it will also reduce the cost of managing IT environments.

PowerShell is my preferred automation platform because it’s available across the

Windows environment, it’s built into major Microsoft applications, and it’s being

adopted by an increasing number of third-party vendors. It’s also the most power-

ful shell and scripting language available on the Windows platform, as it can lever-

age the .NET Framework.

 In this chapter, we’ll turn our attention to PowerShell. We’ll focus on WMI in

chapter 3. If you’re familiar with PowerShell, you can skip this chapter or treat it as

a refresher. It will also introduce some of the aspects of my style of using Power-

Shell and go over the terminology I’ll be using. My PowerShell style is to use full

names for cmdlets and parameters. I don’t use aliases apart from the *object cmd-

lets, and I keep the names and parameters of my functions in lowercase so I can

This chapter covers

■ PowerShell cmdlets

■ PowerShell and .NET

■ PowerShell scripting language

■ Creating PowerShell code for reuse

25PowerShell in a nutshell

easily distinguish them. The full details of my coding style can be found in the “about

this book” section at the beginning of the book.

 If you’re new to PowerShell this chapter, together with appendix A, will supply

enough information for you to understand and use the rest of this book. This chapter

will start by introducing PowerShell, explaining what it is and outlining its major fea-

tures. The basic commands (cmdlets) will be explained and you’ll see how to link

them using the PowerShell pipeline. This is where .NET brings its power to bear. You’ll

learn how to use .NET directly, but just where you need to, because this is a book for

administrators rather than developers.

NOTE A full explanation of the PowerShell language can be found in Bruce
Payette’s Windows PowerShell in Action, second edition (Manning 2011). My
PowerShell in Practice (Manning 2010) supplies many practical examples of
administering Microsoft environments with PowerShell.

All modern scripting languages have a number of structures that can be used to con-

trol the scripts. These structures allow you to loop through the same commands a

number of times and branch to execute different parts of the script depending on the

outcome of a test. As you’ll see, looping is performed using the Do, For, and While key-

words; branching capabilities are supplied by the If and Switch statements. Power-

Shell also allows you to read from and write to files on your systems using the *-Csv,

*-Content, and Out-File cmdlets. PowerShell is to a large degree self-describing, and

it has a number of self-discovery mechanisms, including an extensive help system.

 Using the PowerShell cmdlets from the command line will enable you to perform

a lot of tasks, but to get the most from this automation engine you need to be able to

reuse the code you devise. This is where scripts and modules earn their keep. They

provide two mechanisms for storing your commands on disk so that you can use them

as and when required without having to retype everything. Functions are a way of reus-

ing code in scripts to make them more efficient, and they’re the basic building blocks

of PowerShell modules. Scripts, functions, and modules will be examined in depth in

section 2.7 of this chapter.

 Administering a single machine is straightforward. Administering tens, hundreds, or

thousands of machines requires the ability to work remotely. PowerShell supplies several

ways to accomplish this. Some cmdlets have the ability to access remote machines, which

can save you time and effort when working interactively. PowerShell v2 enables remote

administration via the industry standard Web Services–Management protocols.

 One thing administrators never have enough of is time. Multitasking is much

talked about but difficult to deliver with command-line or GUI-based tools. PowerShell

jobs allow you to run tasks in the background while you get on with other activities.

The results are then ready for you to access when you’ve finished your other activities.

 Let’s start our investigation by looking at PowerShell itself, and discussing just what

it does.

 www.allitebooks.com

http://blogs.msdn.com/b/powershell/
http://www.allitebooks.org

26 CHAPTER 2 Using PowerShell

2.1 PowerShell in a nutshell

Starting at the top, what does PowerShell give you for your money? Quite a lot,

because it either comes as part of the operating system or it’s a free download. Power-

Shell v1 became available for download in November 2006. PowerShell v2 is part of

the default installation of Windows 7 and Windows Server 2008 R2, and it’s available

as a download for older versions of Windows.

 When you start PowerShell, you’ll get a command prompt similar to the old DOS

prompt. So what is special about PowerShell?

 This is what you get:

■ A shell

■ A set of command-line tools (cmdlets)

■ A scripting language

■ An automation engine that allows for remote access, asynchronous processing,

and integration between products

The shell is where things happen. It’s a basic window with a prompt where you can

type commands and get results. Shells have been available on operating systems

for many years, and PowerShell is like other shells in that it allows you to do things

such as these:

■ Run PowerShell commands

■ Run the standard Windows utilities, such as ipconfig or ping

■ Work with the filesystem using standard commands

■ Run Windows batch files (with some provisos around environmental variables)

■ Run VBScripts

PowerShell gets more interesting when you move on and think about the command-

line tools that ship with the product.

2.2 Cmdlets

PowerShell v2 ships with 236 command-line tools that are available as soon as it’s

installed (this number rises significantly in PowerShell v3). These are called cmdlets (I

pronounce it as “command-lets,” but other pronunciations are available). A cmdlet

name consists of two words separated by a hyphen, such as Get-Process. The first part

of the name is a verb, and the second part is a noun (which should be singular), which

makes the cmdlet’s function easy to guess. For example, Get-Process will get informa-

tion about the processes running on the local, or a remote, machine.

NOTE Not all PowerShell verbs are verbs in English. For example, New is a
PowerShell verb; it’s equivalent to “create a new” in English.

A consistent naming standard helps discovery. The PowerShell team introduced a

standard set of verbs in PowerShell v2, and they can be discovered using the command

27Cmdlets

Get-Verb (which is a built-in function rather than a cmdlet). You can fetch a list of the

cmdlets available in PowerShell using Get-Command:

Get-Command -CommandType cmdlet | group verb |
sort count -Descending | select name -First 20

This command groups the results by the verb in the cmdlet name and sorts the verbs

on the number of occurrences (largest first). The top 20 verbs are then displayed, as

shown in table 2.1.

Much of what you’ll be doing in this book can be accomplished with these verbs. The

primary command in the preceding code example is Get-Command; the other com-

mands are utility cmdlets that you’ll be seeing a lot in later chapters, so it’s worth

understanding what they do.

2.2.1 Utility cmdlets

Utility cmdlets function as the glue that binds the working cmdlets together on the

pipeline. They enable you to filter, sort, compare, and group data or even create new

objects. They provide a suite of utility actions that you need to be able to perform

when working with any data. PowerShell provides a set of such cmdlets that have the

word object as their noun.

 In many scripting languages you have to write these utilities yourself, but PowerShell

supplies them out of the box. They’re used so frequently that it’s worth getting to know

them before we dive deeper into PowerShell. The utility cmdlets, together with their

purposes, are listed in table 2.2. You may have noticed that the only utility cmdlet verb

that makes our top 20 list in table 2.1 is select. But if you change the previous script

to discover the top 20 nouns, you’d see that object heads the list at number 1.

Table 2.1 Top 20 verbs used in PowerShell

Get Set New Remove

Out Export Invoke Write

Import Start Add Clear

Test Enable Stop Format

ConvertTo Disable Register Select

Table 2.2 Utility cmdlets, their aliases, and their purposes

Cmdlet Alias Purpose

Compare-Object compare,

diff

Compares two sets of objects.

ForEach-Object foreach, % Performs an operation against each member of a set of input objects.

Group-Object group Groups objects that contain the same value for specified properties.

28 CHAPTER 2 Using PowerShell

Aliases are explained in more detail in the next section, but for now notice that New-

Object doesn’t have an alias and that some of the cmdlets have two possible aliases.

 The code snippet in the previous section showed an example of using select,

sort, and group. Their purposes are obvious from their names. Of the other utility

cmdlets, where and foreach will be used the most.

2.2.2 Where-Object

The Where-Object cmdlet is used as a filter in that only objects that meet its criteria

are passed along the pipeline. As an example, you can display the services running on

a system like this:

Get-WmiObject -Class Win32_Service

An object is returned for each service and displayed in this format:

ExitCode : 1077
Name : WinRM
ProcessId : 0
StartMode : Manual
State : Stopped
Status : OK

This is probably a bit more information than you need, so you can trim it down using

Select-Object, like this:

Get-WmiObject -Class Win32_Service |
select name, startmode, state

Measure-Object measure Calculates the numeric properties of objects, and the characters,

words, and lines in string objects, such as files of text.

New-Object Creates an instance of a Microsoft .NET Framework or COM object.

Select-Object select Selects specified properties of an object or set of objects. It can

also select unique objects from an array of objects, or it can select

a specified number of objects from the beginning or end of an array

of objects.

Sort-Object sort Sorts objects by property values.

Tee-Object tee Saves command output in a file or variable and displays it in the

console. This functions exactly like a T junction on a road. The stem

of the T is the pipeline. When it reaches the top, it splits into two

and the object is duplicated and sent to the variable or file in one

direction and along the pipeline in the other.

Where-Object where, ? Creates a filter that controls which objects will be passed along a

command pipeline.

Table 2.2 Utility cmdlets, their aliases, and their purposes (continued)

Cmdlet Alias Purpose

29Cmdlets

This time you get a nicely formatted table returned. At this point, you could sort on

the service state to put all of the running and all of the stopped services together, or

alternatively you could use a filter:

Get-WmiObject -Class Win32_Service |
select name, startmode, state |
where {$_.state -eq "stopped"}

The objects are piped into a Where-Object cmdlet that has a filter of where

{$_.state -eq "stopped"}.

 The last code snippet could equally well be written as follows:

Get-WmiObject -Class Win32_Service |
where {$_.state -eq "stopped"} |
select name, startmode, state

If you’re performing this action over the network, it may be better to filter out the

objects that you don’t want to bring back first, in order to reduce network traffic.

When working against a single machine it probably doesn’t matter, but against hun-

dreds of machines, filtering as early as possible could improve performance.

SCRIPT BLOCK The code inside the braces, {}, is known as a script block. You’ll
see other examples of script blocks throughout the book. A script block is a
collection of statements or expressions that can be used as a single unit and
that can accept arguments and return values. Script blocks are most often
used as filters or unnamed functions.

In this case, the script block is comparing the value of the state property of the object

on the pipeline (denoted by $_) to "stopped". If they’re equal, the object is passed;

otherwise it’s filtered out.

 When I ran this on the machine I’m using to write this book, I noticed that a cou-

ple of services were set to automatically start but hadn’t actually started. This is a sce-

nario that could potentially cause problems if it’s the Exchange or SQL Server service

that’s behaving in this manner. A little extra work will give you this code snippet,

which displays the status of services set to start automatically on a particular computer:

$computername = "."
Get-WmiObject -Class Win32_Service -ComputerName $computername |
where {$_.state -eq "stopped" -and $_.startmode -eq "auto"} |
select name, startmode, state

The first line defines a variable to hold the computer name. In this case a period, ".",

signifies the local machine (localhost or $env:COMPUTERNAME can also be used to

denote the local system). By using the -ComputerName parameter, you can connect to a

specific computer rather than the default local machine. A second filter is added to the

script block to check whether the startmode is set to automatic. If both criteria are met,

the object is displayed.

30 CHAPTER 2 Using PowerShell

 A few lines of PowerShell code have created a troubleshooting tool that you can use

to test the state of important services on remote machines. In section 2.7, you’ll see how

to use this code in a script or function that can take the computer name as a parameter.

2.2.3 Foreach-Object

The other utility cmdlet we need to consider is ForEach-Object. This performs one or

more commands contained in a script block on each object on the pipeline. For

instance, you could modify the previous code snippet to this:

$computername = "."
Get-WmiObject -Class Win32_Service -ComputerName $computername |
where {$_.state -eq "stopped" -and $_.startmode -eq "auto"} |
foreach { $_.StartService()}

The select statement has been dropped, and once you’ve filtered down to the ser-

vices that you think should be started based on their start mode, you can use ForEach-

Object to call the StartService method of the service object. WMI will provide a

return code of 0 if the action was successful. Any other value means something went

wrong, and you’ll need to investigate. In chapter 4 you’ll see how to test the return

code in your scripts to detect errors and problems.

 We’ve been discussing the utility cmdlets using their full names, but in the code

snippets the alias has been used. Aliases have a place in your PowerShell usage, but

you need to understand what they are and when you should and shouldn’t use them.

2.2.4 Aliases

A PowerShell alias is a shortcut name for a command. The command can be a cmdlet

or a function (you’ll learn about functions later in the chapter when we look at code

reuse). Table 2.2, earlier in this chapter, listed the aliases for the utility cmdlets. A list

of currently defined aliases can be obtained by using Get-Alias.

Data filtering

In the snippet we’ve been considering it doesn’t matter if you perform the select or

the filtering first, because all you’re interested in is the data. In some cases, though,

it will matter—especially if you’re filtering a small number of results out of a large

amount of data.

In most cases, it’s best to assume that your scripts will have optimum performance

if the data filtering is performed as soon as possible. This is very definitely true when

you’re returning data from a remote server. This topic is discussed further in chapter 4.

PowerShell always returns objects. Using Select-Object trims the object to only

those properties of interest. If the full object is required for further use, such as to

access a method, you’ll need to use a different technique. One possible solution is

presented in section 2.2.3.

31Cmdlets

 You can reproduce the list in table 2.2 by filtering using Where-Object (alias where).

Get-Alias | where {$_.definition -like "*object"} |
Format-Table Name, Definition -AutoSize

You use where to filter on the definition of the alias, and only return those objects that

have a definition ending in the characters “object”.

 Other cmdlets are available for working with aliases:

Get-Command *alias | select name

Name

Export-Alias
Get-Alias
Import-Alias
New-Alias
Set-Alias

If you’re thinking there’s gap in this list, you’re right. There’s no cmdlet to delete

aliases. But there’s a way round this, as you’ll see shortly.

 The import and export commands are for reading and writing the alias informa-

tion to a file so you can reuse it in other PowerShell sessions. Unless you do this, or

you set the alias in your profile, it’s lost when you close PowerShell.

NOTE Profiles are PowerShell scripts that run when you start PowerShell. Use
the command Get-Help about_profiles for more details.

You can create an alias in two ways:

New-Alias -Name filter -Value Where-Object
Set-Alias -Name sieve -Value Where-Object

You can confirm the creation with the code snippet you used earlier to list the aliases

of the utility cmdlets. You can also substitute your new alias into the snippet:

Get-Alias | filter {$_.definition -like "*object"} |
Format-table Name, Definition -AutoSize

Using sieve works just as well!

Alias problems

One of the main problems with custom aliases is that they’re not necessarily avail-

able to other users. For example, suppose you’ve just created a new alias for Where-
Object. If you prefer using that to the standard aliases, you could make it permanent

on your system by adding the definition to your PowerShell profile.

You might later want to share your scripts with work colleagues, but if they don’t have

the alias defined in their profile, the script will fail. An even worse scenario occurs if

they have the same alias but it’s defined as something else. The best case outcome

is that the script just fails, but it’s possible that data will be lost or corrupted. The

worst case scenario is that the system is severely damaged and needs rebuilding and

the data needs restoring.

32 CHAPTER 2 Using PowerShell

Set-Alias can change an alias if required, but deleting an alias can be a little tricky.

The defined aliases in a PowerShell session are exposed as the alias: drive, which

means you can view them like this:

"filter", "sieve" | foreach {dir alias:\$_}

This will display your two aliases, and you can adapt it to delete them:

"filter", "sieve" | foreach {Remove-Item alias:\$_}

Checking the alias drive for your two aliases will now show that they’re no longer present.

Cmdlets provide the components that do things for you, but as you’ve seen in the

examples so far, you can get more out of them when you link them on the PowerShell

pipeline.

2.3 Pipeline

A lot is made of the PowerShell pipeline. Administrators who have used UNIX or DOS

may say, “Oh yeah. We’ve had pipelines for years.” Not like this one, you haven’t.

(continued)

You can test the effect of not having an alias defined by copying the snippet that uses

the new alias into a new PowerShell window and trying to run it. You’ll be told that

the alias isn’t recognized. Note that if you have defined the alias in your profile, you

would need to use powershell.exe -noprofile before you test your snippet.

The other problem with aliases is readability. Our original code,

Get-Alias | filter {$_.definition -like "*object"} |
Format-table Name, Definition -AutoSize

is much more readable than this:

gal | ? {$_.definition -like "*obj*"} | ft name, definition -a

The bottom line is that aliases are fine at the command line, but don’t publish code

using them and don’t include them in scripts.

PowerShell drives

PowerShell exposes a number of data stores as if they were part of the filesystem.

You can navigate them like a filesystem drive and use the *-Item and *-ItemProperty
cmdlets in the same way you would against the filesystem.

The list of installed PowerShell drives can be found using Get-PSDrive.

For more information, see the help:

■ Get-Help about_Providers
■ Get-Help Get-PSdrive
■ Help files for individual providers

33Pipeline

 The big difference is that DOS and UNIX commands produce (emit) text, whereas

PowerShell cmdlets emit .NET objects. You’re passing .NET objects along the Power-

Shell pipeline. This gives you access to all of the methods on those objects, which mas-

sively increases the things you can do.

 When we started discussing cmdlets in section 2.1.1, we used this piece of PowerShell:

Get-Command -CommandType cmdlet | group verb |
sort count -Descending | select name -First 20

This has a number of cmdlets linked on the pipeline. The | symbol is the pipe symbol,

as in other shells. Figure 2.1 shows this pipeline as a process diagram.

 The starting point is a request for a list of the cmdlets, which is implemented by

Get-Command. The -CommandType parameter restricts the returned data to cmdlets.

 The next step in the process is to group the cmdlets by verb. The grouped informa-

tion is passed to the Sort-Object cmdlet, where the groups are sorted by count,

which is the number of cmdlets in each group. They’re sorted in descending order so

that the groups with the largest number of cmdlets are at the top of the list.

 The final action in this pipeline is to select the first 20 results passed by the sorting

action and pick off their names.

TIP Always think of the pipeline as a set of processes being applied in this
way. If you start at the top and work through each stage, it will soon become
second nature to unravel complex-looking PowerShell statements.

The pipeline is a way to link PowerShell cmdlets together to create a series of actions

where the sum is very definitely greater than the parts. I refer to PowerShell snippets

like the one in the previous example as scripts. If I’ve saved it to a file with a .ps1

extension, it’s definitely a script. There are people who will argue that when you type

Figure 2.1 A process

diagram of the PowerShell

pipeline at work

http://psam.codeplex.com/

34 CHAPTER 2 Using PowerShell

them at the prompt they aren’t scripts. But until someone comes up with a better

name that everyone accepts, I’ll keep calling them scripts.

 We’ve stated several times that the PowerShell cmdlets emit .NET objects. The

example in this section used properties of those objects to help in the processing. It’s

about time we had a closer look at .NET itself.

2.4 .NET for administrators

PowerShell is based on .NET. It makes extensive use of .NET under the covers, and as

you saw in the previous section, pipeline processing is one way to work with those .NET

objects. But this doesn’t mean that you have to become a .NET developer in order to

use PowerShell. It’s possible to use the PowerShell cmdlets and language without delv-

ing into the murky depths of .NET code. The objective is to know enough to under-

stand any scripts you may come across that use .NET classes directly.

 PowerShell uses .NET objects, so your first task is to understand objects.

2.4.1 Objects

According to Bruce Payette (lead developer on the PowerShell team), “an object is a

package that contains both data and the information on how to use that data” (Win-

dows PowerShell in Action, p 11).

 What this means is that an object is a thing, such as a process. It has a bunch of attri-

butes, which are pieces of data (a name, an amount of CPU usage, or the number of han-

dles used by the process). You can also do stuff to the thing, such as terminating a process.

 Congratulations! You now know all that you need to know about objects to use

them in PowerShell. However, there is a tiny complication in the way that PowerShell

actually works with .NET objects.

2.4.2 PowerShell objects

PowerShell complicates things sometimes because it doesn’t always work with pure

.NET objects. Here are some examples:

■ The .NET objects for Active Directory entities, such as users, have the VBScript

type methods, but they aren’t visible using Get-Member, which is a cmdlet you

can use to discover information about objects (it’s aliased as gm).

■ PowerShell puts a wrapper around .NET objects. Sometimes properties and

methods can be added or removed. The pure .NET object can be accessed by

using a .psbase suffix. You’ll see examples of this in later chapters.

You’ve seen how to access .NET objects created by cmdlets, but is there a way to create

your own objects?

2.4.3 Creating .NET objects

I’m really glad you asked that question, because there’s an easy way to create .NET

objects. Back in table 2.1 there was a cmdlet called New-Object. That’s what you use

for creating objects.

35.NET for administrators

 Let’s assume you want to work with some (pseudo) random numbers:

$rand = New-Object -TypeName System.Random -ArgumentList 42
$rand.Next()

It probably doesn’t seem obvious, but this statement uses the New-Object cmdlet to

create an object that’s stored in the $rand variable. You use the System.Random .NET

class to define the type of object you want to create, and you provide a value of 42 to

the object, which acts as a seed value to the calculation of the random numbers. Using

different seed values each time prevents a repetition of the numbers generated. Full

details of the random class can be found on MSDN—search for System.Random.

NOTE PowerShell v2 has its own cmdlet for generating random numbers,
Get-Random, but this is a nice simple example of using a .NET object.

As a test, you can use the Next method. This will generate a random number. Com-

puters can’t generate true random numbers, so I would expect your first answer to

be 1434747710.

 Using the standard .NET objects will satisfy many of your needs, but sometimes

you’ll need to create a brand new object of your very own.

2.4.4 Creating your own objects

You have three ways to create new objects that you’ve designed:

■ Use the select method you saw in listing 1.5 in chapter 1.

■ Use New-Object and the PSObject class.

■ Create a new .NET class using C#.

Here’s a recap of the first and simplest method:

$myobject = "" | select name, number, description
$myobject.Name = "Object1"
$myobject.Number = 100
$myobject.Description = "Simplest object creation"

If you run this code, you’ll create an object called myobject that has three properties.

The properties have the values defined in the script, which you can verify using

$myobject | gm.

 The drawback to this method is that the resultant object is a string, as are all of its

properties. Technically, it’s a Selected.System.String, but for all practical purposes

it’s a string.

 The second method is a bit cleverer and uses New-Object:

$myobject = New-Object System.Management.Automation.PSObject |
Add-Member -MemberType NoteProperty -Name "Name" `
 -Value "object2" -PassThru |
Add-Member -MemberType NoteProperty -Name "Number" `
 -Value 100 -PassThru |
Add-Member -MemberType NoteProperty -Name "Description" `
 -Value "More complicated" -PassThru

 www.allitebooks.com

http://www.allitebooks.org

36 CHAPTER 2 Using PowerShell

This approach uses System.Management.Automation.PSObject to create an object.

The Add-Member cmdlet is used to add the properties. This allows you to use the Pow-

erShell pipeline, but it still involves a reasonable amount of typing. It’s easy to make a

mistake in all of the Add-Member statements. The Number property will take an integer

type, but if you decide to change that property to a string value, PowerShell will accept

it. That could lead to problems further on in your script.

NOTE If you only want to add one or two extra properties to an existing
object, such as a process object from Get-Process, using Add-Member is a
good way to proceed.

You can simplify the second method slightly by using New-Object PSObject rather

than the full .NET class name, but the other issues remain. It’s possible to simplify the

previous snippet like this:

$myobject = New-Object PSObject -Property @{
 Name = "object2a"
 Number= 100
 Description = "More complicated"
}

In this example, the Property parameter is used. It’s a hash table of property names

and values that are applied to the object as it’s created. Some PowerShell users don’t

like this method, as the order of the parameters on the object can’t be guaranteed

because you’re using a hash table.

 The final method is to create a new object using a piece of C# code. This is an

advanced technique, and if you’re shuddering after reading it don’t worry. It will be

used in some scripts presented in later chapters, so by the end of the book you’ll have

a good idea how it works.

 The following listing shows how you can convert the previous code snippet to cre-

ate the object using C#.

$source = @"
public class pawobject
{
 public string Description { get; set;}
 public string Name { get; set;}
 public int Number { get; set;}
}
"@

Add-Type $source -Language CSharpVersion3

$myobject = New-Object -TypeName pawobject -Property @{
 Name = "myobject3";
 Number = 200;
 Description = "More complicated again"
 }

Listing 2.1 Object creation

C# codeb

Create
class

C

Create
objectD

37PowerShell scripting language

The starting point for this adventure is a here-string (a multilined string that can be

used to embed chunks of text into your script), $source, that holds your C# code B.

The here-string starts with @" and ends with "@. The first line states that you want to

create a new class called pawobject (PowerShell and WMI object, in case you’re won-

dering). A class can be thought of as a template that you use to create an object. The

three properties, Name, Number, and Description are defined, providing their names,

data types, and whether they can be modified (get is used to read the property, and

set is used to change the value of the property—I usually define both).

Add-Type, which is only available in PowerShell v2, and above, is then used to com-

pile the class c. The class is created and held in memory ready for you to use when

required.

NOTE Listing 2.1 uses C# version 3, which allows for simpler C# code. Believe
me, this is simplified! If earlier versions of C# are used, the code is much
more verbose and involves defining variables that are only used inside the
.NET class.

Now you’re getting back to familiar territory. The class you created is used in New-

Object to give you an object you can work with in PowerShell d. One nice feature of

working this way is that you can define the properties of the object when you create it.

This saves a bit of typing and looks impressive.

 The main advantage of using this method is that the properties become strongly

typed, which is developer-speak for saying that the Number property will only accept

integer values and the Name and Description properties will only accept values that

are strings or that can be converted to strings.

 Objects are one of the keys to PowerShell. Once you understand that everything is

treated as an object, it makes a lot more sense. As well as working with objects, you need

to be able to create them. This is especially important when you combine data from a

number of sources and want to output a single object. You’ll be working with objects for

the rest of the book, so this will be second nature by the time you’re finished.

 That’s all I want to say about objects, and it’s probably all you want to read about

them for now, so let’s move on and have a look at the features of the PowerShell script-

ing language.

2.5 PowerShell scripting language

In section 2.1, I said that PowerShell consists of four things: a shell, the command-line

tools, a scripting language, and an automation engine. We’ve looked at the shell and

the command-line tools (cmdlets); it’s now time to look at the scripting language.

 The PowerShell scripting language is the framework that binds the cmdlets,

objects, and pipelines together. Two types of constructs—loops and branches—pro-

vide the majority of the framework structure. Loops and branches handle data inside

the script, but scripts can’t exist in isolation. You need to provide input so the script

has data to work with, and you need to be able to access the output and save it to disk.

38 CHAPTER 2 Using PowerShell

NOTE I’ll assume in this section that you have sufficient scripting background
to be familiar with terms such as array and variable. If not, appendix A provides
a brief introduction, but reading my PowerShell in Practice and Bruce Payette’s
Windows PowerShell in Action, second edition, is highly recommended.

Data input and output are important parts of any computer-based processing. There

are a number of cmdlets that perform input and output, and when they’re combined

with other cmdlets and the scripting language they put the power into PowerShell.

 We’ll start by looking at the different ways you can create loops in PowerShell.

TIP In many cases, PowerShell provides multiple methods of solving a partic-
ular problem. I’ll present the ways that I think work best. If you find another
way of doing things that you prefer, then by all means substitute it for what I
do. The PowerShell language is based on the C# syntax, but unlike C# it’s case
insensitive. You’ll see that demonstrated with my deliberately liberal view of
the use of case in the PowerShell scripts later in the book.

2.5.1 Loops

You use a loop when you want to perform the same action a number of times. You’ve

already seen one type of loop, in the shape of the ForEach-Object cmdlet, in sec-

tion 2.2.1. There’s also a foreach loop using a PowerShell keyword, and there are

the usual for, do, and while types of loop structures. Foreach is the most confusing,

so we’ll get that one settled first.

FOREACH

The two flavors of the foreach statement can create confusion, but they can be distin-

guished because one is never part of a pipeline (the foreach keyword) whereas the

other is always on the pipeline (foreach as an alias of ForEach-Object).

 When you use the foreach keyword, you can write your script like this:

$lower = "a","b","c","d"
foreach ($letter in $lower){Write-Host $letter.ToUpper()}

An array (collection) of letters is defined. For each letter in the collection, you con-

vert the letter to uppercase and use Write-Host to write it to the screen. This gives a

display similar to that shown in figure 2.2.

Figure 2.2 Use of a foreach keyword statement

39PowerShell scripting language

You can also use the foreach alias on the pipeline, as you’ve seen. In this example

you’re using the ForEach-Object cmdlet:

"a","b","c","d" | foreach {Write-Host $_.ToUpper()}

This is illustrated in figure 2.3.

 In this case you’re piping the array of letters into the ForEach-Object cmdlet

(using its foreach alias). You don’t need the ($letter in $lower) structure because

it’s implicit in the use of the pipeline. The other difference is that you use $_ to repre-

sent the current object on the pipeline, which is the individual letters.

 Both constructions give the same result. If foreach is on the pipeline, it’s an alias

for the ForEach-Object cmdlet. If foreach is followed by a ($letter in $lower) type

of structure, it’s a language statement.

FOR LOOP

A for loop is a simple counting loop that’s present in most languages. You can turn

the previous looping example into a for loop like this:

for ($i=65; $i -le 68; $i++){Write-Host $([char]$i)}

You define a variable, $i, to have a value of 65, and you define a limit where $i is less

than or equal to 68. Starting at 65, you convert the value of $i into a character (using

ASCII codes) and write it out. The value of $i is incremented until it reaches the limit.

This will produce the same results as in figures 2.2 and 2.3.

 As an example of PowerShell versatility, you could rewrite this loop as follows:

65..68 | foreach {Write-Host $([char]$_)}

The .. or range operator is used to define a range of numbers. You pipe that range of

numbers into a ForEach-Object cmdlet and display the character as before.

 This isn’t the end of the looping story for PowerShell though.

OTHER LOOPS

There are two other loop formats available in PowerShell.

 The first of these is the while loop, which takes the following structure:

while (<condition>) {
 < PowerShell code>
}

Figure 2.3 Use of a foreach alias

40 CHAPTER 2 Using PowerShell

This reads as “while this condition is true, execute the following code.”

 The other alternative is a do loop, with this syntax:

do {
 < PowerShell code>
} until (<condition>)

This one performs the condition checking at the end of the script block, rather than

before it executes.

 You won’t see these loops in action in the scripts later in the book because these

particular styles of loops aren’t required in the tasks we’ll be investigating. I’ve only

mentioned them here for completeness. Their full details can be found using these

help commands:

Get-Help about_While
Get-Help about_Do

That’s about it for loops. We’ll now branch out a bit and look at how to make deci-

sions in PowerShell.

2.5.2 Branching

There will be many occasions where you’ll run one batch of code if a particular condi-

tion is met, and otherwise you’ll do something else. This decision-making process is

called branching.

 PowerShell provides two ways of making decisions. If you have one or a small num-

ber of possible outcomes, you can use an if statement. For the occasions when you

have a larger number of potential outcomes, PowerShell offers the switch statement.

IF STATEMENT

An if statement has a simple structure that can be read as, “if this statement is true then

do the commands in the following script block.” Here’s a straightforward example:

$date = Get-Date
if ($date.DayOfWeek -eq "Friday"){
 "The weekend starts tonight"}
elseif ($date.DayOfWeek -eq "Saturday" -or `
 $date.DayOfWeek -eq "Sunday"){"It's the weekend"}
else {"Still working!"}

The first line gets the current date. You then compare the day of the week to Friday. If

it’s Friday, you’re happy because it’s the end of the week, and the weekend starts

tonight. There’s an alternative that you want to check (elseif), just in case it’s a Sat-

urday or Sunday, in which case you’re very happy because it’s the weekend. The final

choice is a catchall (else), in case the condition isn’t true—in that case, you’re still in

the middle of the week and are possibly unhappy about it.

NOTE One thing to notice in the preceding example is that it doesn’t use a
cmdlet to write the data to screen. If you have a string all by itself on a line,
PowerShell will treat it as something you want to output and will write it to the
screen or whatever output mechanism you’ve defined.

41PowerShell scripting language

This works very well for a small number of choices, but if you want to extend your

choices and check for every day of the week, it would be more efficient to switch to

another code structure.

SWITCH STATEMENT

The switch statement is used when you have more choices than can be sensibly man-

aged using if statements. You can nest if statements, and it does work, but it’s hard to

read and can be very hard to maintain. You don’t want to go looking for work—the

idea is to reduce your workload.

 A switch statement defines a statement or variable to check and then a number of

possible outcomes. You can modify the previous example to use a switch statement

instead:

switch ((Get-Date).DayOfWeek) {
 "Sunday" {"It’s the weekend but work tomorrow"; break}
 "Monday" {"Back to work"; break}
 "Tuesday" {"Long time until Friday"; break}
 "Wednesday" {"Half way through the week"; break}
 "Thursday" {"Friday tomorrow"; break}
 "Friday" {"It’s the weekend tomorrow"; break}
 "Saturday" {"It’s the weekend"; break}
 default {"Something's gone wrong"}
}

Here, you find the current day of the week and compare it to the possible outcomes.

When one matches, you print out the message and use the break command to skip

further processing in the switch statement. The default statement is there to catch

any values that don’t match one of the defined values—in that case you print a mes-

sage to say something has gone wrong because you don’t recognize the day of the

week as reported by Get-Date. The scripts in later chapters will provide many exam-

ples of using if and switch statements.

 In many cases, your scripts will need to have some kind of input and output. This

means that you don’t need to keep typing in data and that you can save results for fur-

ther investigation.

2.5.3 Input and output

Input and output can be broken down into three main areas:

■ Writing to the screen and accepting data typed in response to a prompt

■ Writing to or reading from a file on disk

■ Writing to or reading from a specialized data store, such as Active Directory, the

registry, or SQL Server.

There are a number of input and output cmdlets you can use, as detailed in table 2.3.

You’ve seen some of these cmdlets in action already, and you’ll meet more of them in

later examples.

42 CHAPTER 2 Using PowerShell

This table is provided for reference. You’ll learn how to use these cmdlets in the

scripts in later chapters. If you want to learn more about a particular cmdlet right now,

PowerShell’s help system is available for just that purpose.

2.6 Finding help

PowerShell, like all good computer systems, has a way of supplying help to the user.

The help information is contained in a series of XML files that are found in the

PowerShell install folder, but don’t worry about it being XML—PowerShell provides

the Get-Help cmdlet to read it with, so you don’t have to work out how to do so your-

self. In addition, there’s the Get-Command cmdlet for working with commands (includ-

ing non-PowerShell commands) and Get-Member for investigating the objects that

PowerShell uses.

 The final part of the help system is the PowerShell community. This is an internet-

based group of individuals who commit a lot of time and effort to helping others with

PowerShell problems.

 As with all IT products, the best place to start is with the help system.

Table 2.3 Common cmdlets that provide input and output functionality

Screen Files Specialized

Write-Host Out-File Write-Debug

Read-Host Export-Csv Write-Error

Out-Host Import-Csv Write-EventLog

Out-GridView ConvertFrom-Csv Write-Progress

Write-Output ConvertTo-Csv Write-Verbose

Add-Content Write-Warning

Clear-Content

Get-Content

Set-Content

XML support in PowerShell

I’m deliberately ignoring XML in this section, as I don’t intend to use it in most of the

scripts in the book. XML will be used in chapters 18 and 19 in a very specialized use.

PowerShell has good XML support; for instance, it’s used in the background when

you use PowerShell remoting, but you see the results not the XML.

The full range of XML support can be seen by following the links obtained from this

command: Get-Help xml.

43Finding help

2.6.1 Get-Help

You’ve seen that PowerShell uses a verb-noun convention for cmdlets. The obvious

name for the cmdlet that reads help files is Get-Help. No aliases are defined for this

cmdlet by default, but a built-in function called Help is available.

 The function definition can be viewed in this way:

(Get-Item -Path function:\help).Definition

The working part of the function is the line

Get-Help @PSBoundParameters | more

which pipes the output of the Get-Help cmdlet into more, which produces a paged dis-

play. An alias, man, is defined on this function.

 The standard way to use Get-Help is to follow it with the name of the cmdlet you

want help for:

Get-Help Get-Command

This will supply basic help about the cmdlet, including a description and a basic view

of the syntax. At the end of the display is a REMARKS section that takes this form:

REMARKS
 To see the examples, type: "get-help Get-Command -examples".
 For more information, type: "get-help Get-Command -detailed".
 For technical information, type: "get-help Get-Command -full".

I tend to use the -Full option as a matter of course, because I usually want to dig into

the individual parameters to solve a problem or discover how to get something to

work. Using Get-Help Get-Help -Full will give you the full information on using the

help system.

 One innovation in PowerShell v2 is that you can get access to online PowerShell

help. This is useful because the PowerShell team corrects documentation bugs online,

so this gives you access to the latest version. (In PowerShell v3, your local help files will

be updateable.) If you want to see any changes, use this command:

Get-Help Get-Command -Online

Your browser will be opened at the appropriate TechNet page, providing access to the

latest version of the documentation.

 In addition to the information available about cmdlets, there’s also a set of help

files that give conceptual information about PowerShell. They cover specific language

features, such as loops, or PowerShell features such as remoting. The range of help

available in this category can also be viewed using Get-Help:

Get-Help about*

 Text-based help files are good for quick lookups, but they’re not very good for

browsing. Graphical help files are available as a download from the TechNet Script

Center for PowerShell v1 or as part of PowerShell ISE in v2. An updated CHM file for

44 CHAPTER 2 Using PowerShell

PowerShell v2 is available for download from Microsoft. Details can be found at http:

//blogs.msdn.com/b/powershell/—click the “Help file” tag.

2.6.2 Get-Command

Get-Command is another cmdlet that supplies information, though it focuses on the

types of commands available on the system. Get-Help is restricted to supplying infor-

mation from the help system, but Get-Command can look beyond PowerShell. As an

example try running this:

Get-Command ipconfig | fl *

This will display information about the utility, including its path and version.

 The difference between the PowerShell-related information returned by Get-Help

and Get-Command can be illustrated by comparing the information supplied in their

respective synopses:

SYNOPSIS - Get-Help
 Displays information about Windows PowerShell commands and concepts.

SYNOPSIS - Get-Command
 Gets basic information about cmdlets and other elements of Windows
 PowerShell commands.

Get-Help will tell you how to use a particular command, but Get-Command will discover

what commands are available.

 If you type Get-Command *wmi*, you’ll find a long list of cmdlets, aliases, and

applications is returned. If you just want to see the WMI cmdlets, you can use this

command:

Get-Command *wmi* -CommandType cmdlet | select name

Name

Get-WmiObject
Invoke-WmiMethod
Register-WmiEvent
Remove-WmiObject
Set-WmiInstance

By the end of the book, you’ll know a lot about working with these cmdlets.

 The other use for Get-Command is finding the cmdlets that are loaded by a particu-

lar PowerShell snap-in or module:

Get-Command -Module BitsTransfer

You’ll learn more about snap-ins and modules in section 2.7.4.

 There are some other useful parameters to remember when using Get-Command:

■ -Syntax—Displays a syntax list for a cmdlet. Useful for checking a parameter

name or on parameter sets.

■ -Noun—Displays all cmdlets with a particular noun. Get-Command -Noun wmi* is

an alternative to the code you used to find the WMI cmdlets earlier.

http://blogs.msdn.com/b/powershell/
http://blogs.msdn.com/b/powershell/

45Finding help

■ -Verb—Displays all cmdlets with a particular verb. If you know you need to get

something but can’t remember the noun, try Get-Command -Verb get.

■ -CommandType—Returns particular types of commands. Valid values are Alias,

Application, Cmdlet, ExternalScript, Function, and Script.

So far we’ve looked at getting help about PowerShell itself. The other area we need to

consider is the objects you’re working on in your PowerShell scripts.

2.6.3 Get-Member

PowerShell is based on .NET and uses .NET objects, as you’ve seen. When you’re work-

ing with objects, you need to be able to look at the object to determine what proper-

ties and methods it has. This tells you what data the object holds and what you can do

with it.

 One option is to go to the MSDN website and browse the .NET documentation for

the class used to create the object. But there are a couple of issues with this option:

■ You need to find the object’s type so you know which class to look up.

■ It takes a long time.

A better way is to use the Get-Member cmdlet. The easiest way to use it is to pipe the

object you want to investigate into the cmdlet:

Get-Process powershell | Get-Member

The object under investigation in this example is a process object (restricted to the

PowerShell process). The first thing it returns is the type:

TypeName: System.Diagnostics.Process

You then get a list of the properties and methods. A very abbreviated example of the

output from the preceding example code is as follows:

Name MemberType Definition
---- ---------- ----------
Handles AliasProperty Handles = Handlecount
Name AliasProperty Name = ProcessName
OutputDataReceived Event System.Diagnostics...
WaitForInputIdle Method bool WaitForInputIdle...
__NounName NoteProperty System.String __NounName=Process
BasePriority Property System.Int32 BasePriority {get;}
Container Property System.ComponentModel..
WorkingSet64 Property System.Int64 WorkingSet64 {get;}
PSConfiguration PropertySet PSConfiguration {Name...
PSResources PropertySet PSResources {Name..
Company ScriptProperty System.Object Company...
CPU ScriptProperty System.Object CPU...

This shows that a wide range of property types is available. Using the -MemberType

parameter you can select the type of information to return. The full list of options is

shown in table 2.4.

46 CHAPTER 2 Using PowerShell

You can also view static methods by using the -Static parameter. By default, these

aren’t returned. Get-Member also allows you to view the base object. PowerShell wraps

objects, and it sometimes adds or removes methods and properties, and the -View

parameter enables you to peel off these layers.

 You’ve now seen the help available in PowerShell itself, but there’s one other

source of help that deserves a mention.

2.6.4 PowerShell community

PowerShell has a very strong, active, and passionate community. Two areas where the

community excels are in answering questions on PowerShell forums and providing

code examples, either in specific code repositories or on blogs. These examples can

be very useful when you start writing your own code.

 The heart of the PowerShell community is the PowerShell team members them-

selves. They can be found in various places:

■ Posting on the team blog

■ Answering questions on the Microsoft forums

■ Providing code samples

■ Commenting on blog posts by members of the community

Their participation can be intermittent, depending on their deadlines, but if you par-

ticipate in the community long enough, you’ll come across them. If you’re ever lucky

enough to be invited to a PowerShell community dinner at one of the major Microsoft

conferences, you’ll certainly get a chance to meet them.

 The PowerShell team is backed up by the PowerShell MVPs. There are just over 40

of these individuals worldwide, and they’re recognized by Microsoft for their technical

expertise in PowerShell and their passionate (fanatical?) devotion to the product.

Between them they

■ Write blogs

■ Write books and articles

■ Create podcasts

■ Answer questions on forums

■ Maintain code repositories and other websites

■ Run user groups

■ Supply PowerShell code and functionality

Table 2.4 The options for

AliasProperty CodeProperty Property

NoteProperty ScriptProperty Properties

PropertySet Method CodeMethod

ScriptMethod Methods ParameterizedProperty

MemberSet Event All

47Code reuse

They also make a lot of suggestions to the PowerShell team regarding new features for

PowerShell and problems and bugs with the current version. They generally test it to

destruction.

 A third group is the vendors who build PowerShell into their products. In many cases,

they offer free versions of PowerShell functionality from their websites. They also help

push the boundaries of PowerShell by extending its control to other platforms.

 There are many people interested in PowerShell who interact with the three groups

already mentioned. They range from newcomers to experienced users who want to know

more. Many of them make contributions to various parts of the PowerShell community.

TIP I was a judge in the 2010 and 2011 Scripting Games organized by Microsoft
(see their Script Center on TechNet). I was overwhelmed by the quality of some
of the entries. People had really gone to town in creating production-quality code.
These are superb learning exercises and they’re well worth studying for ideas.

The PowerShell community is continually growing in strength because of the number

of people who contribute. I strongly recommend getting involved. All you have to do

is write some PowerShell code in a way that makes it reusable, as you’re about to learn.

2.7 Code reuse

You’ve now had an introduction to PowerShell’s scripting language and seen how it can

be used with the cmdlets. But so far we’ve just looked at working interactively at the Pow-

erShell prompt. A lot of work can be done that way, but for the longer pieces of code

or functionality, you’ll want to reuse the code. That means you need a way to save your

PowerShell masterpieces. There are a number of editors that can be used to write and

save your PowerShell scripts, including those supplied with Windows and PowerShell.

NOTE I am deliberately excluding tools such as PowerGUI and PowerShell
Plus from this discussion. Both products are excellent and have a role to play
in hosting PowerShell code, but in this book I want to concentrate on produc-
ing code with PowerShell and WMI.

Setting PowerShell’s execution policy

PowerShell won’t allow you to run scripts when it’s first installed. This is by design—

it’s a security policy designed to protect users from the execution of malicious code.

The ability to run scripts is controlled by the PowerShell execution policy, which you

can examine using Get-ExecutionPolicy. This will be set to Restricted for a new

installation. I recommend you change it like this:

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

The remote-signed setting allows scripts to run from the local drive but expects

scripts on remote drives to be signed with a recognized code-signing certificate. You

will need to be running PowerShell with elevated privileges (run as administrator).

I strongly recommend that you don’t use the Unrestricted execution policy setting.

48 CHAPTER 2 Using PowerShell

After a quick look at the editor provided with PowerShell, we’ll focus on how to write

scripts and functions. PowerShell v2 allows you to utilize a number of advanced capa-

bilities in functions (they then become officially known as advanced functions). This

enables your functions to work on the pipeline as first-class citizens alongside cmdlets.

 PowerShell modules enable you to organize your code and load it into PowerShell

very efficiently. They also provide an excellent method of storing code in an easily acces-

sible manner, especially once you’ve built up a sizeable library of scripts and functions.

You can also unload a module when it’s no longer required, which allows maximum

flexibility in your PowerShell configuration. PowerShell v3 modifies this behavior a lit-

tle bit in that it will automatically load any module it finds on the module path.

 But before you can do any of this good stuff, you need to be able to write the code,

which means you need an editor.

2.7.1 Editors

There are a number of PowerShell editors available. I use several of them:

■ Notepad

■ PowerShell ISE

■ PowerGUI Script Editor

■ PowerShell Plus

Other editors are available, but these are the ones I use and am familiar with. They

supply the functionality I need in the way, more or less, that I want to use it. I haven’t

examined all of the possible editors, and this isn’t meant as a definitive list.

 Notepad is available on all versions of Windows, but it only supplies text editing.

There’s no color syntax highlighting or PowerShell intelligence built into it. I find

it very useful if I want to open a script and just read it. It has a fast response and

low overhead.

 The other three editors all provide a development environment of some kind,

which includes the following:

■ Editing capability with color highlighting and PowerShell intelligence

■ Ability to run scripts within the environment

■ Debugging features

I tend to use the PowerShell ISE most at the moment because it’s supplied with Power-

Shell v2, so I know it will be available on whichever machine I am using. PowerShell

ISE isn’t installed by default on server operating systems, but it is an optional feature.

 PowerGUI and PowerShell Plus need to be downloaded and installed. PowerGUI is

a free tool from Quest, and PowerShell Plus is a commercial product from Idera.

 The PowerShell ISE is illustrated in figure 2.4, showing the three main areas that

each of the editors possesses.

 The top pane is an editing pane where scripts can be created. It’s possible to exe-

cute the whole script or to highlight a part of the script and run just that. The middle

pane is an interactive PowerShell prompt that works exactly like a normal PowerShell

49Code reuse

console. The bottom pane shows the code that was run and the results. The position of

the various panes can be changed to a certain degree. In PowerShell v3, the interactive

and result panes are combined into a single pane that mimics the PowerShell console.

 You now know how to set your environment to run scripts, and you have an idea of

the editors you can use. It’s time to actually create a script.

2.7.2 Scripts

A script is simply a text file of PowerShell commands that has a .ps1 extension. The

same extension is used for PowerShell v1, v2, and v3. (There was some discussion dur-

ing the beta process of having a different extension for PowerShell v2, but it never

happened.)

 As an example, let’s look at a script that discovers what disks are installed in your

computers. The following listing shows the script.

param (
 [string]$computername = "localhost"
)
 Get-WmiObject -Class Win32_DiskDrive -ComputerName $computername |

Listing 2.2 Script to investigate physical disks

Figure 2.4 The PowerShell ISE

50 CHAPTER 2 Using PowerShell

 Format-List DeviceID, Status,
 Index, InterfaceType,
 Partitions, BytesPerSector, SectorsPerTrack, TracksPerCylinder,
 TotalHeads, TotalCylinders, TotalTracks, TotalSectors,
 @{Name="Disk Size (GB)"; Expression={"{0:F3}" -f $($_.Size/1GB)}}

The first line defines the input parameter for the script. You want a computer name,

so to prevent any errors you define a default value of localhost. This means that if

you don’t enter a computer name, the disks in the local system will be evaluated.

TIP In many WMI scripts, a period (.) Is substituted for localhost—both
refer to the local machine. In a very few instances, however, these values can
cause issues, so I will use $env:COMPUTERNAME in the bulk of the book. All
three are valid as far as WMI is concerned.

The next step is to use Get-WmiObject to return the disk information for the selected

computer. You then pipe the results into Format-List, which selects the properties to

be displayed and recalculates the disk size in GB.

 You can save this script into a file called Get-DiskInfo.ps1 (available in the code

download). The script is run by typing the following:

.\Get-DiskInfo.ps1

The .\ is required if you’re in the directory containing the script. PowerShell doesn’t

include the current folder on the path when searching for scripts. If the script is in

another folder, ensure that folder is on the search path or use the full path to the script.

NOTE It isn’t essential, but I tend to follow the PowerShell cmdlet naming
conventions when naming scripts. PowerShell v2 will complain if you use a
verb that isn’t on the approved standard list.

Running the script in this manner produces a report for the local machine. To access

another computer, you’d use something like this:

.\Get-DiskInfo.ps1 -computername "rslaptop01"

The parameter name you defined at the beginning of the script is used to pass the

name of the machine to be investigated. You could leave the parameter name out, and

PowerShell would assign your input to the computername parameter. One extra bonus

is that tab completion works on the script name and parameter name.

 I can guarantee that you’ll build up a large collection of scripts over time. Some of

these you’ll want to run regularly, and some you’ll want to keep together for other rea-

sons. One way of doing this is to use a script file that contains a library of functions.

2.7.3 Functions

In PowerShell, a function is a set of code (a script block) to which you give a name.

When you type that name at the prompt or include it in a script, you call the function,

which will then execute its code. Functions can be very advanced, to the point of act-

ing like cmdlets written in PowerShell, as you’ll see later in the section.

51Code reuse

 You can produce a function from the script in listing 2.2. The body of code for that

script becomes the function, and you can then wrap some code around it to read a

CSV file of computer names and pass them to the function. This is shown in the follow-

ing listing.

function get-disk {
param (
 [string]$computername = "$env:COMPUTERNAME"
)
 Get-WmiObject -Class Win32_DiskDrive -ComputerName $computername |
 Format-List DeviceID, Status,
 Index, InterfaceType,
 Partitions, BytesPerSector, SectorsPerTrack, TracksPerCylinder,
 TotalHeads, TotalCylinders, TotalTracks, TotalSectors,
 @{Name="Disk Size (GB)"; Expression={"{0:F3}" -f $($_.Size/1GB)}}
}

Import-Csv computers2.csv | foreach {get-disk $_.computer}

This uses the previous code as a function within the script. A CSV file is used to input

the computer names to the get-disk function.

 An alternative method of using this code is to leave the last line of code out of this

script and save it as listing2.3a.ps1. You can then run it as follows:

. .\Listing2.3a.ps1

It’s very important to note that there are two dots in the command. The first tells Pow-

erShell to keep any functions or variables in memory, rather than discarding them

after execution. You’ll see this referred to as dot sourcing. Once the function has been

loaded into memory, you can use it as any other PowerShell command.

 This means you can perform either of these actions at the prompt:

get-disk rslaptop01
Import-Csv computers2.csv | foreach {get-disk $_.computer}

The function has become part of PowerShell, and you can use it from the prompt or

include in your scripts if desired. You can load this function into PowerShell by includ-

ing it in your profile or running as you did earlier.

NOTE You can use the filter command to use the function on the pipeline.
This was a piece of PowerShell v1 functionality that has been superseded by
the advanced function capabilities introduced in PowerShell v2.

This is good, but it isn’t all you can do. You can make your function behave much

more like a cmdlet. The following example will demonstrate how you can use this

functionality.

 I don’t intend to discuss the full details of PowerShell’s advanced function capabil-

ities, because I want to concentrate on WMI. More details can be found in these help

files:

Listing 2.3 Function to investigate physical disks

52 CHAPTER 2 Using PowerShell

■ about_Functions

■ about_Functions_Advanced

■ about_Functions_Advanced_Methods

■ about_Functions_Advanced_Parameters

■ about_Functions_CmdletBindingAttribute

The books referenced in chapter 1 can also provide further information.

 In order to turn the function from listing 2.3 into an advanced function that can

behave like a cmdlet, you need to make the changes shown in the following listing.

function get-disk {
[CmdletBinding()]
param (
 [Parameter(ValueFromPipelineByPropertyName=$true)]
 [string]
 [ValidateNotNullOrEmpty()]
 $computername
)
PROCESS {
 Write-Debug $computername
 Get-WmiObject -Class Win32_DiskDrive -ComputerName $computername |
 Format-List DeviceID, Status,
 Index, InterfaceType,
 Partitions, BytesPerSector, SectorsPerTrack, TracksPerCylinder,
 TotalHeads, TotalCylinders, TotalTracks, TotalSectors,
 @{Name="Disk Size (GB)"; Expression={"{0:F3}" -f $($_.Size/1GB)}}
}
}

The function starts with a name, as previously. The [CmdletBinding()] attribute B
is the clever piece that enables the function to behave like a cmdlet on the pipeline.

It also provides access to the common parameters, such as debug (see Get-Help

about_CommonParameters).

 The other main alteration is that the parameter block gets a large number of

options, some of which are used on the parameter in this function. These options are

used individually on each parameter, which can make the parameter block rather

large, but the functionality is worth the extra typing.

 You can enable this parameter to accept input from the pipeline C. In this case,

you’re accepting it by property name. There are a number of validation techniques

you can apply to the parameter, including checking it against a range or set of values.

In this case, you’re testing to see if it’s null or empty D. If it’s empty or null, an error

is thrown and the function isn’t executed.

 The final change is to add some debugging capability to the function E. You can

add the -Debug parameter to your use of the cmdlet, and you’ll receive a printout of

the computer name you’re working with.

 The function is loaded by dot sourcing the PowerShell file containing the code:

PS> . .\Listing2.4.ps1

Listing 2.4 Advanced function to investigate physical disks

Act as
cmdlet

B
Accept
pipeline
input

C

Perform validationD

Specify
debugging

E

53Code reuse

After loading the function, you can try it without a computer name and it errors:

PS> get-disk
Get-WmiObject : Cannot validate argument on parameter 'ComputerName'. The

argument is null or empty. Supply an Argument that is not null or empty
and then try the command again.

Excellent. Another change you made was to add the -Debug parameter:

PS> get-disk rslaptop01 -Debug
DEBUG: rslaptop01

Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help (default is

"Y"): y

DeviceID : \\.\PHYSICALDRIVE0
Status : OK
Index : 0
InterfaceType : IDE
Partitions : 3
BytesPerSector : 512
SectorsPerTrack : 63
TracksPerCylinder : 255
TotalHeads : 255
TotalCylinders : 30401
TotalTracks : 7752255
TotalSectors : 488392065
Disk Size (GB) : 232.883

As you can see, the value of the variable is output, and you’re also asked to confirm

your continuation.

 The last change was to enable pipeline input. You can make this work as follows:

Import-Csv computers3.csv | get-disk

The objects that are imported from the CSV file are piped into the function, and you

can process a number of computers quite easily and simply.

 Loading functions singly in this way is acceptable when you’re creating and testing

them, but it’s a painful process if you have many to load. In PowerShell v1, you could

put them into a library file and dot source that. PowerShell v2 supplies a superior

alternative in the form of modules.

2.7.4 Modules

In PowerShell v1, you could extend PowerShell functionality by adding cmdlets via a

snap-in. This method was used very successfully by Exchange 2007 and the Quest AD

cmdlets, for instance. The one drawback to snap-ins is that they only allow for the

addition of compiled cmdlets. You have to write your cmdlet in C# or another .NET

language, compile it, and then install it. This isn’t a technique that most administra-

tors wish to embrace.

 A PowerShell v2 module can contain a DLL with cmdlets in the same way as a snap-

in. More importantly, it can contain module files (which have a .psm1 extension);

54 CHAPTER 2 Using PowerShell

these are PowerShell files containing a set of PowerShell functions. You now have a

way to load and unload PowerShell functionality very easily, and that functionality is

created in PowerShell. This provides a way of organizing and delivering working code,

and it’s well within the reach of PowerShell-using administrators. Modules of useful

functionality are also available from code repositories such as CodePlex. See, for

example, the PowerShell Admin Modules at http://psam.codeplex.com/. I know

these are safe—I wrote them.

 You can discover the modules installed in your system like this:

Get-Module -ListAvailable

Modules, by default, are installed in two locations, which are stored in the PSModule-

Path environmental variable. The variable content consists of a number of folder

paths that are separated by semicolons. The -split operator can be used to make the

variable contents easier to read. On my system, I get this result:

PS> $env:psmodulepath -split ";"
C:\Users\Richard\Documents\WindowsPowerShell\Modules
C:\Windows\system32\WindowsPowerShell\v1.0\Modules\

 The first path is in my profile, and the second path is in the PowerShell install

folder. I also store the modules I’ve written in C:\Scripts\Modules. This is achieved by

adding this line to my PowerShell profile:

$env:PSModulePath = "C:\Scripts\Modules;" + $env:PSModulePath

If you examine any of these locations, you’ll find a set of folders that match the mod-

ule names. Each of these folders will contain a module file (.psm1), potentially a man-

ifest file (.psd1, used to control which functions are visible and to ensure that any

prerequisites are loaded), and possibly a number of script files (.ps1). If the module is

supplying compiled cmdlets, it will also contain one or more DLLs.

 Deploying a module is simple. Just copy the folder containing the required files

into a folder on your module path.

NOTE PowerShell v3 will, by default, automatically load all modules it finds
on the module path when the console or ISE is started.

The module can then be imported into PowerShell like this:

Import-Module BitsTransfer

This is one of the standard PowerShell modules. You can discover the functions or

cmdlets it has loaded as follows:

PS> Get-Command -Module BitsTransfer | select name

Name

Add-BitsFile
Complete-BitsTransfer
Get-BitsTransfer
Remove-BitsTransfer

http://psam.codeplex.com/

55PowerShell remoting

Resume-BitsTransfer
Set-BitsTransfer
Start-BitsTransfer
Suspend-BitsTransfer

These commands can be used in scripts or at the prompt. Once you’ve finished with

this task, you can remove the module:

Remove-Module BitsTransfer

Automating a process saves time and effort. In order to gain the maximum savings,

you need to save the code you’ve produced so that you can reuse it. Scripts, functions,

and modules are your tools for this task. Of the three, modules are the best way of

organizing your PowerShell functionality. They’re just one of the new features that

PowerShell v2 offers.

 The most requested feature for PowerShell v2 was the ability to work with remote

machines.

2.8 PowerShell remoting

The examples we’ve discussed so far have been run against local, and in some cases

remote, machines. An automation tool must be able to work easily and efficiently

against a number of remote machines or you won’t fully realize the benefits of

developing scripts. There are a number of ways remote administration has been built

into PowerShell:

■ Some cmdlets can access remote machines.

■ PowerShell can use the WS-Management protocols to create remote PowerShell

sessions.

■ You can access data directly through the WS-Management (WSMAN) cmdlets.

■ PowerShell v3 allows you to use CIM sessions. These also use the WSMAN proto-

cols and can be thought of as a cross between PowerShell remote sessions and

the WSMAN cmdlets.

■ You can access web services from within some PowerShell cmdlets.

We’ll concentrate on using PowerShell remote sessions and the remoting features built

into cmdlets in this chapter because they have the most impact on the functions you’ll

be working with in part 2 of the book. The WSMAN cmdlets are discussed in chapter 17,

and the new CIM cmdlets and sessions are covered in chapters 18 and 19. The last

option is used in Windows Server 2008 R2 Active Directory and Exchange 2010, though

the implementations aren’t identical. Neither of these technologies have a WMI com-

ponent, so they won’t be followed up in this work.

 We’ll start by looking at the cmdlets that can work remotely.

2.8.1 Remoting by cmdlet

A number of cmdlets have a -ComputerName parameter that enables them to access

remote machines. Get-WmiObject had this ability in PowerShell v1, and others had

56 CHAPTER 2 Using PowerShell

the capability added in PowerShell v2. The full list of cmdlets that can work in this way

can be discovered using Get-Help:

PS> Get-Help * -Parameter computername | Format-Wide -Column 3

Get-WinEvent Get-Counter Test-WSMan
Invoke-WSManAction Connect-WSMan Disconnect-WSMan
Get-WSManInstance Set-WSManInstance Remove-WSManInstance
New-WSManInstance Invoke-Command New-PSSession
Get-PSSession Remove-PSSession Receive-Job
Enter-PSSession Get-EventLog Clear-EventLog
Write-EventLog Limit-EventLog Show-EventLog
New-EventLog Remove-EventLog Get-WmiObject
Invoke-WmiMethod Get-Process Remove-WmiObject
Register-WmiEvent Get-Service Set-Service
Set-WmiInstance Get-HotFix Test-Connection
Restart-Computer Stop-Computer

We’ll be looking at working directly with the WSMAN cmdlets in chapter 17, but for now

let’s consider the other cmdlets. Most of them, such as Get-Service, Get-WmiObject,

and Get-EventLog, don’t require PowerShell to be installed on the remote machine.

The PSSession cmdlets require PowerShell v2 to be installed and configured, but not

necessarily running.

Accessing data from one or more remote computers involves using the -Computer-

Name parameter. For example, this is how you would check on a service on the local

machine:

PS> Get-Service winrm

Status Name DisplayName
------ ---- -----------
Running winrm Windows Remote Management (WS-Manag...

It’s just as easy to do this on remote machines:

PS> Get-Service -Name winrm -ComputerName w08r2sql08

Status Name DisplayName
------ ---- -----------

WMI remote access

All of the WMI cmdlets have a -ComputerName parameter. In order for these cmdlets

to be able to work remotely, you need to configure the remote firewall. This can be

performed using the firewall administrative tools or you can run the following com-

mands from PowerShell or a command prompt.

Netsh firewall set service RemoteAdmin
Netsh advfirewall set currentprofile settings remotemanagement enable

On Windows Server 2008 R2, the second command will return a message saying that

it’s deprecated, but it will configure the firewall correctly.

57PowerShell remoting

Running winrm Windows Remote Management (WS-Manag...

PS> Get-Service -Name winrm -ComputerName w08r2sql08a

Status Name DisplayName
------ ---- -----------
Running winrm Windows Remote Management (WS-Manag...

According to the help, you should be able to do this:

PS> Get-Service -Name winrm -ComputerName w08r2sql08, w08r2sql08a

Unfortunately, you’ll only get the results for the first machine in the list. But you can

fall back on WMI:

PS> $computers = @("localhost", "w08r2sql08", "w08r2sql08a")
PS> Get-WmiObject -Class Win32_Service -Filter "Name='winrm'" `
 -ComputerName $computers | ft SystemName, State, StartMode

SystemName State StartMode
---------- ----- ---------
SERVER02 Running Auto
W08R2SQL08 Running Auto
W08R2SQL08A Running Auto

This gives you a quick way to test whether the required services are running on remote

machines. We’ll be revisiting this idea in chapter 9.

 Working within individual cmdlets is great, but it does have a couple of limitations.

The biggest one is that not all cmdlets have a -ComputerName parameter, meaning

you’re confined to the local machine. The second issue is that working in this manner

is slow because the connection to the remote machine has to be created, used, and

destroyed for each use. What you need is a way, such as WinRM, to create a connection

between the local and remote machines that remains open for as long as you need it.

2.8.2 PowerShell remote sessions

PowerShell can use the WinRM service to create a connection to a remote machine.

WinRM is Microsoft’s implementation of the industry standard Web Services for Man-

agement (WS-Management) protocol. In PowerShell v2, the installer includes Power-

Shell and WinRM.

 The following requirements must be met for PowerShell remoting to work:

■ The WinRM service must be installed on the remote systems.

■ PowerShell v2 must be installed on both systems.

■ The Enable-PSRemoting cmdlet must have been run on the remote machines

with elevated privileges to configure WinRM, the firewall, and other necessary

elements.

You can create a connection to one or more remote systems like this:

$s = New-PSSession -ComputerName W08R2SQL08, W08R2SQL08A

The available sessions can be viewed with Get-PSSession:

58 CHAPTER 2 Using PowerShell

PS> Get-PSSession

 Id Name ComputerName State ConfigurationName Availability
 -- ---- ------------ ----- ----------------- ------------
 1 Session1 w08r2sql08 Opened Microsoft.PowerShell Available
 2 Session2 w08r2sql08a Opened Microsoft.PowerShell Available

Now you need to be able to use these sessions:

PS> Invoke-Command -Session $s -ScriptBlock {Get-Service winrm}

Status Name DisplayName PSComputerName
------ ---- ----------- -------------
Running winrm Windows Remote Management w08r2sql08a
Running winrm Windows Remote Management w08r2sql08

Your session currently consists of connections to a number of computers. You can

access just one of the machines in the session as follows:

$sa = Get-PSSession -Id 2
Invoke-Command -Session $sa -ScriptBlock {Get-Service sql*}

This code creates a new session variable that points to the machine (session) you want

to work with. When you have a number of sessions open, you can work with them in any

desired combination to send the right commands to the server you want to work with.

 The script block that Invoke-Command uses will be run against the remote

machine. If you give a filename or path within the script block, it will be looked for on

the remote machine. You can run a script from the local machine against a remote

machine by using the -FilePath parameter of Invoke-Command.

 When you’ve finished with the sessions, they should be removed:

Get-PSSession | Remove-PSSession

When you’re working with WMI, you can use either the -ComputerName parameter

built into the cmdlets or PowerShell remote sessions to access remote machines.

 Both options have one thing in common, though. You can run them as back-

ground jobs.

2.9 PowerShell jobs

The objective of automating your work is to make the work easier and faster. You can

start a script and let it perform the tasks rather than working through the tasks yourself.

But there’s one slight roadblock on the journey to the automation highlands. When you

start a PowerShell script, it takes time to run. If you’re connecting to a number of remote

machines, this can take significant time. Your PowerShell prompt is unavailable for this

time, which could impact other tasks. One way to avoid this problem is to start up

another PowerShell session or, better still, you could use a background job.

 PowerShell jobs run asynchronously. They return the prompt for immediate use

while the job carries on running in the background. When the job has finished, the

results are stored until you’re ready to access them. Note that the results aren’t per-

sisted between PowerShell sessions, so they’ll be lost if you close PowerShell.

59PowerShell jobs

 Jobs can be created in two ways. First, there are a number of cmdlets specifically

for working with jobs. Second, there are a number of cmdlets that have an -AsJob

parameter that allows that cmdlet to be performed as a job. The two sets of cmdlets

are listed in table 2.5.

A job can be created on the local machine using Start-Job:

Start-Job -Name PaW1 -ScriptBlock {
Get-WmiObject -Class Win32_Service -Filter "Name='winrm'"}

NOTE It could be argued that the Start-Job cmdlet should be called New-
Job. You can always create an alias, but remember the issues related to pub-
lishing scripts with your own aliases, as mentioned in section 2.1.1.

You can also create a job to run against remote machines:

Invoke-Command -ComputerName w08r2sql08, w08r2sql08a -ScriptBlock {
Get-WmiObject -Class Win32_Service -Filter "Name='winrm'"} -AsJob

Get-Job is used to see how your jobs are progressing, as shown in figure 2.5. Note that

when you explicitly create a job, you give it a name, but when using the -AsJob param-

eter, the system will assign a name.

 The important points in figure 2.5 are that both jobs have completed, as shown

under the State column, and that HasMoreData is True. You can access data held in

the jobs by using Receive-Job in a number of ways:

Receive-Job -Name Paw1 -Keep
Receive-Job -Name Job3 -Keep
Get-Job -Id 3 | Receive-Job -Location w08r2sql08a -Keep

In the first example, you get the information from the job you created with Start-Job.

The second example retrieves data from the job created with Invoke-Command. The final

example shows how you can access the data for one computer when the job has been

Table 2.5 Cmdlets for working with PowerShell jobs

Cmdlets with AsJob parameter Job cmdlets

Invoke-Command Get-Job

Get-WmiObject Receive-Job

Invoke-WmiMethod Remove-Job

Remove-WmiObject Start-Job

Set-WmiInstance Stop-Job

Test-Connection Wait-Job

Restart-Computer

Stop-Computer

60 CHAPTER 2 Using PowerShell

run against a number of machines. In all cases, you use the -Keep parameter. If this isn’t

used, the data is deleted as it’s accessed and won’t be available for further analysis. I rec-

ommend always using -Keep unless you’re sure you won’t need to revisit the data.

 The last job-related thing you need to think about is tidying up the environment by

deleting jobs you don’t need. You can use Get-Job to pipe specific jobs into Remove-Job,

or for a complete and final cleanup, you can use this:

Get-Job | Remove-Job

PowerShell jobs created using the WMI cmdlets are slightly different from jobs created

with Start-Job or Invoke-Command -AsJob. Each starts a child process, but they’re dif-

ferent. In practical terms, this doesn’t affect how you manage the jobs because the

*Job cmdlets work on them all.

 PowerShell jobs are one of the most overlooked features of PowerShell that can

make life easier and add flexibility to the way you perform automated tasks.

2.10 Summary

PowerShell is a shell, a language, and a set of command-line tools that supply a frame-

work for our automation work. It’s .NET-based and its pipeline works on these objects

rather than on text as is traditional in other shells.

 The scripting language provides all of the features you require, including

■ Different types of loops

■ Branching via if or switch statements

■ File input and output to use data and store results

There are a number of ways of finding help for PowerShell. There are cmdlets that

read the XML help files and display information about cmdlets or the objects they’re

Figure 2.5 Starting and viewing PowerShell jobs

61Summary

working with, and there’s web-based help available. A final source of assistance is the

PowerShell community.

 When you create a piece of PowerShell code, you need to be able to store it so you

can run it again in the future. The simplest way to do this is to create a script. If you have

a lot of scripts that potentially interact or that need to be loaded together, you can

rewrite them as functions to make code reuse a simpler proposition. PowerShell v2

offers you the option of creating modules of functions that ease the work in organizing

and loading and unloading them much simpler.

 Automation in the enterprise requires that you can work with remote machines.

This can be achieved using the remote capabilities built into some cmdlets or by using

PowerShell sessions to specific remote computers. You can also access remote

machines and run PowerShell tasks as background jobs, making you more productive

and more flexible.

 PowerShell provides one way of performing administrative tasks. The other

approach is to use WMI. In the next chapter, we’ll turn our attention to WMI and see

how it works with PowerShell.

62

WMI in depth

Windows Management Instrumentation, known as WMI to its friends, isn’t well

understood by the majority of administrators. It appears to be a technology that’s

difficult to use and that isn’t well documented, unless you want to go rummaging in

the depths of TechNet and MSDN. Is this a fair assessment?

 Until PowerShell appeared, this was my stance on WMI. I could make it work,

but I didn’t really understand it and certainly didn’t feel I could get the best out of

it. Code was difficult to produce and test in VBScript, using WMI interactively

required a different set of tools with a cryptic syntax, and background information

was very sparse and difficult to find. Now, though, I have the tools to make using it

much easier, and I can also use those tools to investigate how WMI is put together.

By the end of this chapter, you’ll similarly have a good understanding of the under-

lying structure of WMI and how all the bits relate, and you’ll know how to make it

work for you.

This chapter covers

■ WMI structure

■ WMI cmdlets and accelerators

■ WMI Query Language

■ Discovering links between WMI classes

63The structure of WMI

 In this chapter, we’ll start by considering what WMI is, and we’ll look at the major

components that you need to understand in order to use it:

■ Providers

■ Namespaces

■ Classes

PowerShell works with .NET objects, as you saw in chapter 2. In this chapter, you’ll dis-

cover the makeup of the objects that WMI produces and learn how to use the methods

and properties of those objects. You’ll learn how to produce your own working docu-

mentation based on the information stored within WMI. This won’t provide full expla-

nations for WMI classes, but it will provide enough information to work productively

with the classes. The linkages between classes enable a deep level of access to the

information locked in WMI, and the techniques presented in this chapter will enable

you to unlock that information.

 The next item on the agenda is to explore what PowerShell can offer for working

with WMI. We’ll expand on the brief glimpse you had in chapter 1, and you’ll see how

much easier WMI becomes in PowerShell. You’ll learn about each of the WMI cmdlets

and about the type accelerators, which are shortcuts that make working with WMI

objects via .NET much simpler.

 The PowerShell cmdlets remove the need to write WMI queries, which was the only

way to work with WMI in the past. But there are times when queries are the best way to

get the information you need. This is when you’ll want to turn to WMI Query Language

(WQL), which is a subset of SQL. You can use WQL in complete queries or in filters.

WMI also enables you to discover the references and associations between different

WMI classes and to work with WMI events. You’ll see throughout the book that WMI

exposes a wealth of information about the events occurring on your system. For exam-

ple, would you like a specific task to occur when a USB memory stick is plugged into

your system? Keep reading and you’ll find out how to achieve this.

 There are a small number of scenarios where the PowerShell WMI cmdlets can’t solve

your problem. The workaround is to access the .NET objects directly. One of the most

common examples of this is the IIS WMI provider, which we’ll look at in chapter 12.

 But before you can do any of these things, you need a good understanding of WMI

and how it works.

3.1 The structure of WMI

The first step in learning to use a technology involves understanding what it is and

what it does. You learned in chapter 1 that WMI is Microsoft’s implementation of the

DMTF’s Common Information Model (CIM). Microsoft has taken the basic CIM specifi-

cation and often enhanced the classes or added new classes to produce WMI.

 On modern Windows systems, WMI is part of the base operating system install. It’s

there automatically and you don’t have to worry about it. When you extend the func-

tionality of your systems, such as by installing the DNS role, additional WMI functional-

ity is automatically installed. All you have to do is work out how to use it.

64 CHAPTER 3 WMI in depth

We need to dive a bit deeper into the details before we get to the fun bits. On Win-

dows systems there is a C:\Windows\System32\wbem folder that supplies the WMI func-

tionality. WBEM stands for Web-Based Enterprise Management, and the architecture

of WBEM is used in WMI. The DMTF supplies the standards for WBEM.

 According to the DMTF website, WBEM is “a set of management and Internet stan-

dard technologies developed to unify the management of distributed computing envi-

ronments. WBEM provides the ability for the industry to deliver a well-integrated set of

standard-based management tools, facilitating the exchange of data across otherwise

disparate technologies and platforms.”

NOTE For more information about WBEM, see the DMTF website: http://
www.dmtf.org/standards/wbem.

What that means is that we have a

standards-based way of managing dis-

tributed systems. The components that

form the architecture of WMI are shown

in figure 3.1.

 Our starting point for understand-

ing WMI’s architecture is the Managed

Object Format (MOF) files, which can

be found in the WBEM folder. There are a large number of these files. The exact num-

ber will vary with the version of Windows you are using:

PS> (Get-ChildItem -Path C:\Windows\System32\wbem -Filter *.mof).count
207

The MOF files store the definitions of the WMI classes. It’s possible to write your own MOF

file and compile it to extend WMI. The details are available in the WMI SDK on MSDN.

I don’t intend to spend any time looking at the structure of MOF files or at how you can

work with them. That topic is firmly outside the scope of this book. Good luck.

Run as administrator

WMI, in many cases, can be run and used without elevated privileges. But there are

some namespaces, especially those related to security, that require PowerShell to

be started using Run as Administrator.

If you’re only pulling information, such as info about network cards, PowerShell can

be started normally. If you’re using the methods of a WMI class, you may need ele-

vated privileges. Some of the work you’ll do on IIS in chapter 12 will require you to

start PowerShell using Run as Administrator.

The scripts in this chapter will complete without elevated privileges but you’ll be de-

nied access to some namespaces. I recommend using elevated privileges when try-

ing the code.

Figure 3.1 The structure of WMI

http://www.dmtf.org/standards/wbem
http://www.dmtf.org/standards/wbem

65The structure of WMI

 Associated with each of the MOF files is a provider. This is a DLL that’s registered

with Windows and WMI, giving you access to the classes you actually use. The class def-

initions are stored in the WMI repository. The instances of those classes are retrieved

dynamically by a provider when requested by a consumer, such as a PowerShell cmd-

let. The classes are arranged in namespaces to give a logical, hierarchical structure

with the root namespace at the top.

NOTE WMI is based on COM, not .NET. COM stands for Common Object
Model and it’s the programming model Microsoft used before .NET. It’s slowly
being replaced by .NET, but a lot of COM-based applications will be with us for
many years. While COM uses classes, methods, and properties, these aren’t
identical to the .NET entities of the same name. We’ll ignore these differences
as long as they don’t get in the way of using WMI with PowerShell.

Understanding the relationship between the components that make up WMI enables

you to achieve a number of things:

■ You can test the integrity of WMI and discover whether you need to rebuild.

You’ll know you need to rebuild if you get errors accessing an individual

namespace, provider, or class (but remember to check that you’re running with

elevated privileges).

■ You can discover the structure of WMI on your system. The WMI classes that are

present change with the version of Windows, and of other applications, so it can

be useful to determine whether a class or namespace is present.

■ You can use WMI to its full capabilities.

The first item from figure 3.1 that can supply some useful help is the provider.

3.1.1 Providers

You won’t use providers directly, but there are a couple of reasons for wanting to iden-

tify the provider:

■ You know where the class was loaded from and if there are any associated

classes.

■ You know what it’s providing.

■ You know where to start looking if you need to repair WMI (this isn’t something

I’ll cover, but instructions for recompiling WMI can be found on MSDN).

The providers can be found by using the WMI system class __Win32Provider.

 All system classes are denoted by a prefix of two underscore characters, __. The

class is available on a per namespace basis:

Get-WmiObject -Class __Win32Provider | select name

This lists all of the providers in the namespace that PowerShell uses as a default,

root\cimv2. One thing to be aware of is that there’s a namespace called root\DEFAULT.

This isn’t the same as PowerShell’s default namespace, just to be confusing.

66 CHAPTER 3 WMI in depth

 Up to now, I’ve implied that all providers are the same and that they just supply

classes. Unfortunately things are a bit more complicated. There are a number of dif-

ferent provider types, as shown in table 3.1.

A single provider can function as multiple, different provider types. The registry pro-

vider, for example, registers a number of WMI elements:

■ Event

■ Instance

■ Method

■ Property

Providers install classes into a namespace. Namespaces are the working part of WMI.

You need to understand the namespaces that are installed and what they can do.

3.1.2 Namespaces

WMI namespaces are used to logically subdivide the available WMI classes. Some

namespaces are installed by default on all Windows systems, and others are only avail-

able when specific applications or Windows features are installed.

 The first question is what namespaces are installed on a system? You know that the

namespace at the top of the hierarchy is called root and that your default namespace

is root\cimv2. How can you find the other namespaces and their relationships?

DISCOVERING NAMESPACES

You saw earlier that WMI system classes are prefixed with a double underscore charac-

ter. Take a look at the system classes for a namespace—in this case, root\cimv2:

Get-WmiObject -Namespace 'root\cimv2' -List "__*"

Table 3.1 WMI provider types

Provider type Purpose Registration type

Class Supply applications with class

definitions; rarely implemented

__ClassProviderRegistration

Event Provide event notifications to WMI __EventProviderRegistration

Event

consumer

Consume WMI events __EventConsumerProviderRegistration

Instance Supply WMI classes, such as

Win32_Service
__InstanceProviderRegistration

Method Provide the methods of the rele-

vant WMI classes

__Method

Property Supply ways to work with property

values, including reading and

modifying

__PropertyProviderRegistration

67The structure of WMI

You’ll see that there is a class called __NAMESPACE. You can now investigate that class

and generate a list of the namespaces in the root\cimv2 namespace:

Get-WmiObject -Class __NAMESPACE | select name

You could generate a list of all namespaces by working from the root down and manu-

ally running the preceding code, but that would involve a lot of tedious manual work.

The theme of the book is getting the machine to work for you, so you need a way to

automate the discovery process. One way to achieve this is to use the code in the fol-

lowing listing.

function get-namespace {
param ([string]$name)
 Get-WmiObject -Namespace $name -Class "__NAMESPACE" |
 foreach {
 "$name\" + $_.Name
 get-namespace $("$name\" + $_.Name)
 }
}
"root"
get-namespace "root"

The work engine of this script is the get-namespace function. (Functions are explained

in chapter 2, if you skipped that chapter.) The function takes a namespace name as its

only parameter. It then uses that name to retrieve the namespaces contained within that

namespace using Get-WmiObject, as you saw previously. The results are piped into a

ForEach-Object cmdlet that displays the name of the current namespace and the dis-

covered namespaces using a backslash (\) as a divider. You can then use that full

namespace path as the input to get-namespace. The script starts the whole discovery

process by displaying root on screen and calling the get-namespace function.

 Now I’m going to scare you. This process of getting a function to call itself is called

recursion. I slipped the description into this discussion before telling you what it’s

called because recursion is one of those topics that causes grown administrators to run

away. But it’s not that bad, is it?

 Now let’s adapt listing 3.1 to not only show the namespaces but also show the

providers.

TIP You need to run these scripts from an elevated shell to avoid the access
denied messages, especially from the security-related namespaces.

If you take listing 3.1 and add the code from section 3.1.1 where we discussed provid-

ers, you’ll end up with the following.

function get-namespace {
param ([string]$name)
 Get-WmiObject -Namespace $name -Class "__NAMESPACE" |

Listing 3.1 Find WMI namespaces installed on a system

Listing 3.2 Find WMI providers in each namespace

68 CHAPTER 3 WMI in depth

 foreach {
 $ns = "$name\" + $_.Name
 "`nNameSpace: $ns"
 "providers:"
 Get-WmiObject -NameSpace $ns -Class __Win32Provider |
 select name

 get-namespace $("$name\" + $_.Name)
 }
}
"root"
get-namespace "root"

The get-namespace function is still the work engine. You start off with the root

namespace, as before, and call the function with the namespace name as a parameter.

The function retrieves the namespaces and displays the namespace name, but this

time it’s prefixed with “NameSpace: ”. This enables you to distinguish namespaces

from providers, which will make the output more meaningful. The namespace is used

to get the list of providers. You then perform the recursion by calling get-namespace

with the new namespace name.

 This is a good start to the discovery process, but there are still a few more levels to

dig into. When we were discussing providers, I mentioned that an individual provider

can register itself into WMI in a number of different ways. You can also use PowerShell

and WMI to discover how providers register themselves.

REGISTRATIONS

A provider will register itself within a namespace, and the types of registrations were

detailed in table 3.1. As you might guess, there are a number of WMI system classes

that deal with registrations. You can find a full list of the classes involved in dealing

with registrations by using the -List parameter:

Get-WmiObject -Namespace 'root\cimv2' -List "__*Registration*"

If you try this code,

Get-WmiObject -Namespace 'root\cimv2' -Class __ProviderRegistration

you’ll get a long list of information. To see what the registration classes can tell you,

you can look at one of each type of registration class:

Get-WmiObject -Namespace 'root\cimv2' -List "__*Registration*" |
foreach {
 Get-WmiObject -Namespace 'root\cimv2' -Class $($_.Name) |
 select -First 1
}

Using Select-Object to just pick off the first of each type of class reduces the output

to something you can work with. It’s worth spending some time examining the output

to discover what information is available. There are a number of properties that store

WQL queries for returning information about events that you’ll be meeting again.

 It’s also interesting to look at which providers perform which type of registration:

69The structure of WMI

Get-WmiObject -Namespace 'root\cimv2' -List "__*Registration*" |
foreach {
 Get-WmiObject -Namespace 'root\cimv2' -Class $($_.Name) |
 Format-Table __CLASS, provider -AutoSize
}

This variation on the previous code displays the __CLASS (which tells you the type of

registration) and the provider performing that registration.

 Throughout the book, we’ll keep returning to WMI events. A provider can register

events, and one way you can discover the event classes you need to work with is to look

at the __EventProviderRegistration class:

Get-WmiObject -Namespace 'root\cimv2' `
 -Class __EventProviderRegistration |
foreach {
 "`n"
 $_ | Format-Table EventQueryList, provider -Wrap
}

This will display the event classes you can use to discover events related to a specific

provider. Better still, it shows the WMI query you have to run to get the information

you want. Now that’s something that makes life a lot easier.

 We’ll return to providers and namespaces when we put all of this together to docu-

ment the WMI environment in section 3.3.

 One of the things that providers can supply to namespaces is the WMI classes you

need to work with. Classes are at the bottom of the hierarchy, but they’re the most

important component, because you’ll work directly with them to perform your admin-

istration tasks.

3.1.3 Classes

A WMI class represents a specific item in your system. It could be a piece of hardware,

such as a network card or CPU, or it could relate to software, such as the operating sys-

tem, a hotfix, a feature like DNS, or any other installed software. It could even relate to

an event or a data store, such as the registry. In the second part of the book, we’ll look

at a large number of WMI classes and see what they can do. For now, though, you need

to understand how to work with the WMI classes.

 The first thing to understand is the different types of classes available. CIM defines

three class categories:

■ Core classes represent managed objects that apply to all areas of management.

■ Common classes represent managed objects that apply to specific management

areas (these classes are prefixed with CIM_).

■ Extended classes represent managed objects that are technology-specific—that is,

classes that are created to manage the Windows platform and Microsoft applica-

tions. Examples would include the classes for managing IIS, Hyper-V, or DNS.

Within these categories there are a number of class types, as shown in table 3.2.

70 CHAPTER 3 WMI in depth

WMI classes can be divided into two groups. The first group is comprised of the system

classes, which are present in each namespace. They provide information about the

namespace, registrations, and security. They’re also responsible for the processing of

events created by other WMI classes.

 The second group is more heterogeneous and includes the core CIM classes as well

as the extension classes that Microsoft has created. These are the worker classes that

you use to manage your Windows environment.

 You’ve already seen some of the system classes in action. But what else can they do

for you?

SYSTEM CLASSES

Each WMI namespace has an instance of each of the system classes, identified by a

double-underscore prefix (__). The full list for the root\cimv2 namespace can be

found by using the -List parameter in Get-WmiObject:

Get-WmiObject -Namespace 'root\cimv2' -List "__*"

The same system classes are present in each namespace. You can see this by compar-

ing two namespaces at random:

$cimv2 = Get-WmiObject -Namespace 'root\cimv2' -List "__*" |
select name

$scent = Get-WmiObject -Namespace 'root\SecurityCenter' -List "__*" |
select name

Compare-Object -ReferenceObject $cimv2 -DifferenceObject $scent `
 -IncludeEqual

The preceding code generates a list of system classes for each namespace. The

Compare-Object cmdlet is used to compare the two objects that are produced. If you

don’t use the -IncludeEqual parameter, you’ll get nothing back, which indicates that

the two objects are identical.

Table 3.2 WMI class types

Class type Purpose Example

System class (can

be static or abstract)

Supports WMI configuration and operations. __NAMESPACE

Abstract Template used to define new classes. Identified

by Abstract qualifier.

__Provider
CIM_Service

Static Defines data stored in WMI repository; usually

used to define system classes. Identified by lack

of Abstract or Dynamic qualifier.

__Win32Provider

Dynamic (typically

extension classes)

Represents a WMI managed resource; the infor-

mation is retrieved from a provider when

requested. Identified by Dynamic qualifier.

Win32_Service

Association Links two classes or resources. Identified by

Association qualifier.

Win32_SystemServices

71The structure of WMI

TIP This is a little gotcha with PowerShell: if it has nothing to return, it won’t
tell you that. It can be difficult to tell the difference between an error and a
situation with no data to return. The only way to resolve the question is to test
around the problem.

When you use the parameter, you’ll get output with this form:

InputObject SideIndicator
----------- -------------
@{Name=__SystemClass} ==
@{Name=__NAMESPACE} ==

Output truncated for brevity

You’ll get one line of output per system class. Many of the system classes are involved

in the production and consumption of events, and you won’t work with them directly

very often, though you do need to know that they exist.

 When we were discussing providers, you saw that they register classes, but which

provider registers which class?

CLASSES BY PROVIDER

In figure 3.1, you saw that providers install items into the WMI repository. This

includes classes, but a number of other items are also installed by providers. It’s useful

to be able to document just what is being installed into WMI. This can be helpful when

you’re trying to troubleshoot a problem—discovering that a particular piece of WMI

isn’t installed may point to the problem.

 For this example, you’ll just work with a single namespace. The following listing takes

what you know about WMI so far (oh yes, there’s more to come) and demonstrates how

you can use PowerShell and WMI to discover the classes installed by each provider.

$namespace = "root\cimv2"

Get-WmiObject -Namespace $namespace -Class __Win32Provider |
foreach {
 $provider = $_.Name
 "Provider: $provider"

 $refs = Get-WmiObject -Namespace $namespace `
 -Query "REFERENCES OF {__Win32Provider.Name='$provider'}"

 foreach ($ref in $refs) {

 $type = $ref.__CLASS
 " Registration: $type"

 switch ($type) {

 "__PropertyProviderRegistration" {
 " does not have classes"
 break
 }

 "__ClassProviderRegistration" {

Listing 3.3 Find WMI classes installed by a provider

Define
namespaceB

List
providersC

Iterate
referencesD

Determine
registration typeE

Process
registrationF

72 CHAPTER 3 WMI in depth

 " only provides class definitions"
 break
 }

 "__EventConsumerProviderRegistration" {
 " uses these classes"
 " $($ref.ConsumerClassNames)"
 break
 }

 "__EventProviderRegistration" {
 " queries these classes:"
 foreach ($query in $ref.EventQueryList) {
 $a = $query -split " "
 " $($a[($a.length-1)])"
 }
 break
 }

 default {
 " supplies these classes:"
 Get-WmiObject -Namespace $namespace -List -Amended |
 foreach {
 if ($_.Qualifiers["provider"].Value -eq "$provider"){
 " $($_.Name)"
 }
 } # class list
 break
 }
 } #switch
 } # refs
} # provider loop

This is quite a long script, but it can be broken down into a number of easy sections.

You start by defining the namespace you want to work with B. As written, the script

uses the default namespace. The __Win32provider system class returns all of the pro-

viders that contribute to the namespace.

 A foreach loop iterates through the collection of providers. The provider name is

displayed as the first action in the loop C. A piece of WMI Query Language (WQL) is

used to get a list of the classes to which the provider is linked. These links are known

as references. We’ll examine WQL in more detail when we get to section 3.5.

 Another foreach loop is used to work through each reference D. Notice that you

have one foreach loop nested inside another. To help keep track of the braces, {}, I’ve

put a comment on each of the closing braces to relate it to the appropriate starting point.

 The type of registration is found in the __CLASS property of the reference. A

switch statement E uses the registration type to determine how to process the differ-

ent registrations F:

■ A __PropertyProviderRegistration will only provide properties, so you dis-

play a message that this provider doesn’t supply classes.

■ A __ClassProviderRegistration only provides class definitions, as explained

by the message.

Process
registration

F

Process method
and instance
registration

G

73The structure of WMI

■ An __EventConsumerProviderRegistration will use a number of event classes.

The ConsumerClassNames property holds the class names.

■ An __EventProviderRegistration queries one or more classes for WMI event

information. The relevant classes are found in the EventQueryList property.

This property is very helpful, as it lists the full query rather than just the

class name.

The default clause in the switch statement G enables processing of the

__MethodProviderRegistration and __InstanceProviderRegistration types.

These will sometimes appear to duplicate the registration in the list.

 Running this script against the root\cimv2 namespace as you do here produces over

a thousand lines of output. The output from running this script on my Windows 7

machine is included in a file called root_cimv2_providers_and_classes.txt, which is avail-

able in the script download package associated with the book.

 You now know how to find the providers in a namespace and the classes linked to a

provider. The last part of the puzzle is to find out which classes are available to work

within a particular namespace.

CLASSES IN A NAMESPACE

You’ve used Get-WmiObject for much of your discovery work. It’s the primary Power-

Shell tool for retrieving WMI-related information. It’s also useful for investigating the

classes in a namespace.

 Compared to the last script, this one is nice and simple:

Get-WmiObject -List

You’ve seen the -List parameter a few times already. You can use Get-Help to look at

the parameter definition:

Get-Help Get-WmiObject -Parameter list

The output from this command is shown in figure 3.2.

 The -List parameter can be thought of as the dir command of WMI. It shows you

what is there so you can find the class you need to work with.

Figure 3.2 Using the -Parameter option with Get-Help

74 CHAPTER 3 WMI in depth

NOTE In PowerShell v3, the Get-CIMClass cmdlet does a similar job. This is
discussed in chapter 19. Versions of some of the scripts in this chapter written
using Get-CIMClass are also available in the download.

The previous example will produce a list of all the classes in the root\cimv2

namespace. This is an impressive list of 1,045 classes.

 A list of this length is a bit too big to keep scrolling through, so you need a way to

filter the output. In PowerShell v2, you can add a filter to restrict the number of

classes returned:

Get-WmiObject -List *network*

The filter will use the standard wildcards, as shown.

 Unfortunately this doesn’t work in PowerShell v1, so you’ll need to do a bit more

work in that case:

Get-WmiObject -List | where {$_.Name -like "*network*"}

The filtering is performed on the pipeline using Where-Object rather than in the

Get-WmiObject cmdlet. The results are the same.

 You aren’t restricted to the default namespace when discovering the available

classes. You can change the namespace to be interrogated by using the -Namespace

parameter:

Get-WmiObject -Namespace "root\SECURITY" -List

Remember that the namespaces related to security require PowerShell to be run with

elevated privileges; otherwise they enjoy giving you an error message and refusing to

display the data.

 You now know the class name that may help you with your task, but you don’t know

what it does or what information it provides. An overview of what the class does can be

gained from its description. Unfortunately, the description is hidden by default.

QUALIFIERS

WMI classes have a number of hidden properties known as qualifiers. These properties

are expensive, in processing time, to retrieve, due to the way the information is stored

in the WMI repository.

 PowerShell v2 added an -Amended parameter to Get-WmiObject that enables you to

access these details. The qualifiers aren’t directly displayed, but you can view them by

treating them as a collection of properties:

PS> $q = Get-WmiObject -List Win32_Process -Amended
PS> $q.Qualifiers | Format-Table Name, Value -AutoSize -Wrap

Name Value
---- -----
CreateBy Create
DeleteBy DeleteInstance
Description The Win32_Process class represents a sequence of events
 on a Win32 system. Any sequence consisting of the
 interaction of one or more processors or interpreters,

75The structure of WMI

 some executable code, and a set of inputs, is a
 descendent (or member) of this class.
 Example: A client application running on a Win32 system.
DisplayName Processes
dynamic True
Locale 1033
provider CIMWin32
SupportsCreate True
SupportsDelete True
UUID {8502C4DC-5FBB-11D2-AAC1-006008C78BC7}

In the preceding example, you use the -List parameter to generate the class informa-

tion and use the class name as a filter to restrict the output. The -Amended parameter

ensures the qualifiers are captured and piped into Format-Table, where the name

and value of each qualifier are displayed. The -Wrap parameter is used to produce a

display that wraps any text that’s longer than the display line, making sure you don’t

miss any data.

 One area where the qualifiers come in useful is when you have a number of related

classes but aren’t sure which one you really need to use. Network adapters are a good

example. Suppose there are three classes of interest:

■ Win32_NetworkAdapter
■ Win32_NetworkAdapterConfiguration
■ Win32_NetworkAdapterSetting

You have three choices. You could guess which one you need, but this could be frus-

trating and delay solving the problem. A second option is to use MSDN to look up the

description of the class. This will give the correct result, but it will still take time. The

third, and best, choice is to display the description of each class:

Get-WmiObject -List Win32*networkadapter* |
foreach {
 "`n$($_.Name)"
 ((Get-WmiObject -List $($_.Name) -Amended).Qualifiers |
 where {$_.Name -eq "Description"}).Value
}

You start by using Get-WmiObject to fetch a list of the WMI classes that are related to

network adapters. This output is piped into a ForEach-Object cmdlet. The name of

the class is displayed by putting it into a string on a line by itself. The new-line charac-

ter (`n) forces the output of at least one blank line between data sets.

 You reuse the class name in Get-WmiObject with the -Amended parameter to access

the qualifiers. A Where-Object filter only allows the description qualifier through, and

you only display the text of the description.

 PowerShell treats the contents of the parentheses, (), as an object, so you can

select the qualifiers and the description with minimal code. As an experiment, try

building up the code in the foreach cmdlet one section at a time to see how the

parentheses control the output. That’s how I created it in the first place!

76 CHAPTER 3 WMI in depth

WMI has a structure. The WMI classes are created from providers and are organized

in namespaces. Each namespace has a number of system classes that are always pres-

ent, as well as WMI classes representing physical objects such as disks or logical objects

such as processes. WMI objects are the instances of WMI classes present on a particular

machine. The WMI objects have visible properties and methods, and sometimes a fur-

ther set of invisible properties, and you need to explore them to get the most benefit

from using WMI. As you do, you’ll learn a little more about Get-Member.

3.2 Methods and properties

In chapter 2, you saw that Get-Member allows you to discover things about your Power-

Shell objects. This includes the available properties (the data describing and defining

objects, such as the drive letter and size of a disk) and methods (which enable you to

do things such as stop a process or format a disk).

 All classes have a number of system properties (prefixed with a double underscore,

__). A class also has a key property, which is the property that differentiates the

instances of the class; for example, you can have multiple instances of Notepad open,

each of which has its own unique Handle property. Handle is the key property for the

Win32_Process class.

 All Windows systems have processes, so they make ideal candidates for investigat-

ing WMI methods and properties. We’ll start with methods.

3.2.1 Methods

If you want to work with processes using WMI, a quick look in the cimv2\root

namespace will show that you want to use the Win32_Process class:

Get-WmiObject -List *process*

There are a large number of processes running on your system, so let’s focus on the

first one:

Get-WmiObject -Class Win32_Process |
select -First 1 | Get-Member

If you look at the help file of Get-Member, you’ll find a parameter called -View.

PS> Get-Help Get-Member -Parameter View

This will produce the following output:

-View <PSMemberViewTypes>
 Gets only particular types of members (properties and methods). Specify

one or more of the values. The default is "Adapted, Extended".

 Valid values are:
 -- Base: Gets only the original properties and methods of the .NET
 Framework object (without extension or adaptation).
 -- Adapted: Gets only the properties and methods defined in the
 Windows PowerShell extended type system.
 -- Extended: Gets only the properties and methods that were added in
 the Types.ps1xml files or by using the Add-Member cmdlet.

77Methods and properties

 -- All: Gets the members in the Base, Adapted, and Extended views.

 The View parameter determines the members retrieved, not just the display
of those members.

 To get particular member types, such as script properties, use the
MemberType parameter. If you use the MemberType and View parameters in
the same command, Get-Member gets the members that belong to both sets.
If you use the Static and View parameters in the same command, the View
parameter is ignored.

The base option is equivalent to using psbase, which was mentioned back in chapter 2.

 The best way to start examining the structure of the Win32_Process object is by

looking at all of the methods and properties available:

Get-WmiObject -Class Win32_Process |
select -First 1 | Get-Member -View all

The methods available through this view are displayed in the Base column of table 3.3.

I performed a similar exercise for the adapted and extended views to complete the

table. There are no properties or methods in the extended view, so that column wasn’t

included in table 3.3.

Table 3.3 Win32_Process methods

Method Base Adapted

AttachDebugger Y

Clone Y

CompareTo Y

CopyTo Y

CreateObjRef Y

Delete Y

Dispose Y

Equals Y

Get Y

GetHashCode Y

GetLifetimeService Y

GetMethodParameters Y

GetOwner Y

GetOwnerSid Y

GetPropertyQualifierValue Y

GetPropertyValue Y

78 CHAPTER 3 WMI in depth

The relationship between an object’s members is illustrated in figure 3.3.

 If an object doesn’t appear to have a method that you think it should, I recom-

mend using either the psbase option or the -View parameter on Get-Member to inves-

tigate the base object. What appears when you do this can be very illuminating. The

PowerShell-generated wrapper around the base .NET objects may be useful when

GetQualifierValue Y

GetRelated Y

GetRelationships Y

GetText Y

GetType Y

InitializeLifetimeService Y

InvokeMethod Y

Put Y

SetPriority Y

SetPropertyQualifierValue Y

SetPropertyValue Y

SetQualifierValue Y

Terminate Y

ToString Y

Table 3.3 Win32_Process methods (continued)

Method Base Adapted

Figure 3.3 Relationships

between the different

views of a PowerShell

object, showing that the

All view is the sum of the

other views

79Methods and properties

functionality is added, but it can become awkward when functionality is apparently

removed! The same advice applies to properties—check the base object if you can’t

see what you think should be present.

 One additional issue arises when you’re investigating properties, and that’s the

PowerShell extensible type system. This is covered in detail in chapter 4, but for now

we need to consider its impact on displaying WMI properties.

3.2.2 Class properties

Many newcomers are confused when they start trying to use WMI in PowerShell

because they think they aren’t getting all of the data they should. Consider the

Win32_OperatingSystem class. When you request the class, you get the following

information:

PS> Get-WmiObject -Class Win32_OperatingSystem

SystemDirectory : C:\Windows\system32
Organization :
BuildNumber : 7600
RegisteredUser : Richard
SerialNumber : 00426-065-1155216-86852
Version : 6.1.7600

At this point, you might think “Is that all? Not worth bothering about!” The default

display format has struck again. It’s a simple matter to produce the full set of proper-

ties, neatly formatted in a list of property names and values.

Get-WmiObject -Class Win32_OperatingSystem | Format-List *

As an experiment, try producing a formatted list of all properties and their values

in another scripting language. It’s a frustrating exercise because of the many lines

of code that have to be written just to format the output. In PowerShell you can

use Format-List * to display all properties, as in the previous example, and

Format types

If you look in the PowerShell install folder, you’ll see a number of files named *.for-

mat.ps1xml. These are the type files that control the default display for a significant

number of the objects that the PowerShell cmdlets produce. The list of files can be

found as follows:

Get-ChildItem -Path $pshome -filter *.format.ps1xml

There is some information about format types available through the PowerShell help

system. Look up these cmdlets:

■ Get-FormatData
■ Export-FormatData
■ Update-FormatData

And take a look at this file: about_format.ps1xml.

Reading this information before you get to chapter 4 will be good preparation.

80 CHAPTER 3 WMI in depth

Select-Object can be used to reduce the properties if further processing will be

performed on the pipeline. Calculated fields can be used to look up numeric code

values or convert sizes and dates to more readable formats.

When you display the full set of an object’s properties, you also get to see the system

properties.

3.2.3 System properties

In section 3.1.2 (on namespaces), you saw that there are a number of system classes in

each namespace. Each class has a number of system properties whose names start with

a double underscore: __. The values for the system properties can be viewed sepa-

rately using a format statement to restrict the output. This is illustrated in figure 3.4.

Display errors

One issue to be aware of is that making a number of calls to Get-WmiObject in the

same script and then attempting to format the results of each call individually can

produce the following display error.

out-lineoutput : The object of type
 "Microsoft.PowerShell.Commands.Internal.Format.FormatStartData"
is not valid or not in the correct sequence. This is likely
caused by a user-specified "format-list" command which is
conflicting with the default formatting.
 + CategoryInfo : InvalidData: (:) [out-lineoutput],
InvalidOperationException
 + FullyQualifiedErrorId : ConsoleLineOutputOutOfSequencePacket,
 Microsoft.PowerShell.Commands.OutLineOutputCommand

As it states, this error is due to the conflict between the coded display parameters

and the default parameters. I have managed to overcome this by creating a variable

that holds the output and then displaying that information, or by creating a new object

to hold the required output data and using that for display purposes. You’ll see these

techniques in later chapters.

Figure 3.4 Viewing the system properties of a WMI class

81Methods and properties

The __PATH and __SERVER properties are probably the most useful, and you’ll see

them in later chapters. If you want to avoid displaying the system properties, they can

also be filtered out:

Get-WmiObject -Class Win32_OperatingSystem |
select -ExcludeProperty __* -Property *

These system properties don’t really add much, but you can’t do anything about them.

Unless you want to display all properties without the system properties, the best prac-

tice is to simply choose the properties you require.

 One final thing you’ll need to do with properties is discover which property func-

tions as the key for a class.

3.2.4 Key properties

The key property is the property you need to supply a value for when you create a

class using the [wmi] type accelerator (which you’ll meet in section 3.4.2). If you

don’t know which property acts as a key for the class, you can’t create an instance of

that class.

 You’ve seen that classes have qualifiers and, following the hierarchical nature of

WMI, so do properties. The property that functions as the key can be discovered using

the following code, which is adapted from a posting by Jeffrey Snover on the Power-

Shell team blog.

function get-key {
[CmdletBinding()]
param (
 [string]
 [ValidateNotNullOrEmpty()]
 $class
)
 $t = [WMIClass]$class
 $t.properties |
 select @{Name="PName";Expression={$_.name}} -ExpandProperty Qualifiers |
 where {$_.Name -eq "key"} |
 foreach {"The key for the $class class is $($_.Pname)"}
}

NOTE The original script arose because an MVP reported an error using the
type accelerators. It’s in the “WMI Object Identifiers and Keys” article on the
PowerShell blog and can be found at http://mng.bz/0JI2. The post explains
why a key is required when creating an instance of a WMI class.

This function takes a single parameter—the name of the class. The ValidateNotNull-

OrEmpty validation method is used to ensure that a value is passed into the function. This

is then used to create an object representing that WMI class.

 The properties are piped into a Select-Object cmdlet, where you create a calcu-

lated field for the name of the property and expand its qualifiers. Where-Object is

Listing 3.4 Discover the key property of a WMI class

http://mng.bz/0JI2

82 CHAPTER 3 WMI in depth

used to filter out all of the properties except the key. The name of the property that

functions as the key is written out using string substitution to create the output.

 PowerShell can help you discover the information you need to successfully work

with WMI classes. You may find it helpful to have a function that combines the code

from this section to fully document a WMI class. I’ve included this combined code in

the script download package as the get-wmiclass function.

 You now know how to discover the properties and methods of WMI classes. It’s time

to move on and look at ways to document the specific WMI features on your system.

3.3 Documenting WMI

You’ve seen a number of pieces of the puzzle for documenting WMI in previous sec-

tions. In the following listing, they’re put together to produce a script that will docu-

ment WMI down to the class level. This is useful at this point in the chapter because

the next sections deal with using the WMI functionality within PowerShell.

function main {
 "root"
 get-namespace "root"
}

function get-namespace {
param ([string]$name)
 Get-WmiObject -Namespace $name -Class "__NAMESPACE" |
 foreach {
 $ns = "$name\" + $_.Name
 "`nNameSpace: $ns"
 get-providerclass $ns
 get-namespace $ns
 }
}

function get-providerclass {
param ([string]$namespace)

 Get-WmiObject -Namespace $namespace -Class __Win32Provider |
 foreach {
 $provider = $_.Name
 "Provider: $provider"

 $refs = Get-WmiObject -Namespace $namespace -Query "REFERENCES OF
{__Win32Provider.Name='$provider'}"

 foreach ($ref in $refs) {

 $type = $ref.__CLASS
 " Registration: $type"

 switch ($type) {

 "__PropertyProviderRegistration" {
 " does not have classes"
 break
 }

Listing 3.5 Document WMI on a machine

Main control
functionB

Namespace
iterationC

Provider
iteration

D

Provider
referencesE

Provider
typesF

83Documenting WMI

 "__ClassProviderRegistration" {
 " only provides class definitions"
 break
 }

 "__EventConsumerProviderRegistration" {
 " uses these classes"
 " $($ref.ConsumerClassNames)"
 break
 }

 "__EventProviderRegistration" {
 " queries these classes:"
 foreach ($query in $ref.EventQueryList) {
 $a = $query -split " "
 " $($a[($a.length-1)])"
 }
 break
 }

 default {
 " supplies these classes:"
 Get-WmiObject -Namespace $namespace -List -Amended |
 foreach {
 if ($_.Qualifiers["provider"].Value -eq "$provider"){
 " $($_.Name)"
 }
 } # class list
 break
 }
 } #switch
 } # refs
 } # provider loop
}
main

This code can be run on a system to determine the namespaces, providers, and classes

available on the machine. The information produced by this script is a valuable

resource for documenting your system. The script can also be used to test for prob-

lems with WMI—if it completes, there are no obvious problems.

 The script starts on the very last line, where you call the controlling function,

main B. This defines your starting point as the root namespace, and it calls

get-namespace C. The work of documenting WMI starts here, as you recursively iter-

ate through the namespaces installed on the system.

 As each namespace is discovered you list out its name and call the get-providerclass

function D. The instances of the Win32_Provider class for that namespace are returned,

and for each of them you determine the references E. You can iterate through the ref-

erences, determine the type of provider, and depending on the provider type F, display

some or all of the following:

■ Event classes that are used

■ Event classes that are queried

■ Classes that are supplied

84 CHAPTER 3 WMI in depth

I have commented the closing brace (}) of the major loops to aid understanding of

the structure of the script.

 This script produces over 2,550 lines of output on my Windows 7 system, which

makes it a bit unwieldy to use when outputting to screen! One alternative is to send

the output to a text file (I saved the listing to a script called Get-WmiList):

./Get-WmiList | Out-File wmidoc.txt

The text file can then be searched using Select-String or an editor to find the rele-

vant information.

 We’ve covered a lot of ground and delved into a lot of background material on WMI.

In the course of this investigation, we’ve looked at how to use Get-WmiObject. But there

are other PowerShell cmdlets for working with WMI that we need to consider.

3.4 WMI cmdlets and accelerators

PowerShell v1 provided the Get-WmiObject cmdlet—this was read-only access to WMI,

though it could also be used to create an object from which you could call methods.

This one cmdlet enabled you to work with WMI easily, compared to previous scripting

languages. PowerShell v1 also offered some type accelerators for working with WMI

through the .NET classes. Type accelerators are shortcuts for accessing .NET classes.

 The delivery of PowerShell v2 expanded the list of cmdlets, as well as giving Get-

WmiObject additional functionality. You now have additional cmdlets for invoking

WMI methods, setting WMI property values, and removing WMI objects entirely.

TIP The CIM cmdlets available in PowerShell v3 are described in chapter 19.

The type accelerators are still available and provide an easier route to creating WMI

classes and searching for WMI instances, if you have to resort to .NET code. But it’s

generally easier to work with the PowerShell cmdlets than the accelerators.

3.4.1 Cmdlets

You have a grand total of four cmdlets for working with WMI objects:

■ Get-WmiObject
■ Set-WmiInstance
■ Invoke-WmiMethod
■ Remove-WmiObject

A fifth cmdlet deals with WMI events, but we’ll deal with that in section 3.7. Get-Wmi-

Object is the one you’ll be working with most, so we’ll start there.

GET-WMIOBJECT

You’ve used Get-WmiObject a number of times already. Its help file synopsis states that

it “Gets instances of Windows Management Instrumentation (WMI) classes or informa-

tion about the available classes.” It’s the PowerShell method of discovery for WMI.

85WMI cmdlets and accelerators

 This cmdlet is normally used to define the namespace and class you want to work

with. You can also supply credentials, authentication, and impersonation levels. You

can use the cmdlet interactively or configure it to run asynchronously as a PowerShell

job by using the –AsJob parameter. I’ll explain these features as we need them.

SET-WMIINSTANCE

This cmdlet “Creates or updates an instance of an existing Windows Management

Instrumentation (WMI) class.” You’ll mainly use this to modify existing instances of

WMI objects.

WARNING My experience with Set-WmiInstance suggests that using this
cmdlet to create new WMI instances is of limited practical use. I don’t recom-
mend using Set-WmiInstance for anything but modifying the properties of
existing objects.

WMI objects tend to have a long list of properties. Some properties are read-only,

which means you can’t change them. The property you’re interested in should be

checked to ensure that it can be modified before you attempt to change it. You can

skip this step, but be prepared for the error messages when you hit a property that

can’t be changed.

 You’ve seen that you can view an object’s properties using Get-Member:

Get-WmiObject -Class Win32_NTEventLogFile `
-Filter "LogFileName='Scripts'" | Get-Member

You can view the property information, such as the maximum file size, of your log file:

MaxFileSize Property System.UInt32 MaxFileSize {get;set;}

The fact that it’s modifiable is indicated by the presence of “set” in the curly braces

after the data type: {get;set;}.

TIP I’ve used an event log called Scripts in these examples to ensure that a
mistake doesn’t adversely affect your system. If you want to create an event log
to experiment with, use the following syntax and change the source and log
names as required: New-EventLog -Source MyNewSource -LogName MyNew-
Log. This is discussed in more detail in chapter 15.

One thing this doesn’t tell you is how to present the data. For example, a file size

could be presented in bytes, KB, MB, or even GB. The two options are to guess from

looking at the current setting or to check the documentation. The first is more excit-

ing, but the second gets the job done faster. When you want to change the maximum

file size of an event log, you need to present the size in bytes:

$log = Get-WmiObject -Class Win32_NTEventLogFile `
-Filter "LogFileName='Scripts'"

Set-WmiInstance -InputObject $log `
 -Arguments @{MaxFileSize=31457280}

86 CHAPTER 3 WMI in depth

You use Get-WmiObject to create an object representing the log file you’re inter-

ested in (the Scripts file again, in this example). This object is used as input to

Set-WmiInstance. The property or properties that you want to set are given as a

hash table. The information could also be presented as follows:

-Arguments @{MaxFileSize=(30*1MB)}.

Note that 30*1MB resolves to 31457280, which is what was used in the preceding exam-

ple. It has to be presented in this format, rather than as 30MB, to ensure that the class

accepts the value as bytes.

 Objects have both properties and methods. You’ve seen how to manipulate WMI

properties. Now let’s look at how you can work with methods.

INVOKE-WMIMETHOD

PowerShell v2 supplies a brand new cmdlet especially for working with WMI methods.

One of the tasks you’ll need to do on a periodic basis is back up your event logs. Let’s

return to the Scripts log file and see how you can use methods.

Get-WmiObject is used to create a variable for the WMI object:

$log = Get-WmiObject -Class Win32_NTEventLogFile `
 -Filter "LogFileName='Scripts'"

Get-Member is then used to determine the methods on this object:

$log | Get-Member -MemberType method

The -MemberType parameter can take a number of options, one of which lists only the

methods available on the object.

 One of the methods is BackUpEventLog. A look at the documentation indicates

that you only need to provide the name and path to the file that will be used as a tar-

get for your backup:

Invoke-WmiMethod -InputObject $log -Name BackupEventlog `
 -ArgumentList "c:\test\paw3.evt"

TIP Remember to use PowerShell with elevated privileges or these com-
mands will fail.

With Invoke-WmiMethod, you use the variable you’ve already created as the InputObject.

The name of the method is supplied, and the file to be used is given as the argument.

 It’s also possible to do this in one pass using the pipeline:

Get-WmiObject -Class Win32_NTEventLogFile `
 -Filter "LogFileName='Scripts'" |
Invoke-WmiMethod -Name BackupEventlog `
 -ArgumentList "c:\test\paw4.evt"

This time you don’t need to specify the object you’re using because the pipeline man-

ages that aspect of the processing. Note that I’ve changed the filename in this exam-

ple. That’s because the method will fail if the file already exists. In a production script,

you’d use Test-Path to determine whether the file exists and throw an exception to

stop processing if it did.

87WMI cmdlets and accelerators

 The three cmdlets we’ve looked at so far enable you to get information about WMI

objects and work with the methods and properties. We’ll look at how you can create

new WMI objects in a while, but first we need to consider what happens when a WMI

object is no longer required.

REMOVE-WMIOBJECT

Remove-WmiObject is a very easy cmdlet to understand. It removes WMI objects from

your system. Be careful with it, though, as deleting the wrong objects could be a

career-threatening action. There are many WMI objects, such as the computer system

or disk drives, that it doesn’t make sense to remove!

 I have a very simple recommendation for working with Remove-WmiObject: use

Get-WmiObject first. This is best illustrated with an example. Assume you have a pro-

cess running on your machine (such as Notepad) that’s misbehaving, and you need to

shut it down. The first thing you have to do is identify the exact process, and this is

best achieved with Get-WmiObject:

Get-WmiObject -Class Win32_Process |
where {$_.Name -like "Notepad*"}

A Where-Object filter is used to identify the exact process. Then, the simple way to delete

the process is to pipe the resultant Win32_Process object into Remove-WmiObject:

Get-WmiObject -Class Win32_Process |
where {$_.Name -like "Notepad*"} |
Remove-WmiObject

Your misbehaving process is gone, and your system can settle back to its normal state.

This way you’ve removed the process but you’ve put a check on the way you do it to

ensure that you remove the correct process.

NOTE This approach removes all instances of the process, in this example
Notepad, from your system. When you’re trying to remove a misbehaving pro-
cess, this is exactly what you need. I once had to remove many (30+) instances
of a cscript process from a system, and this technique would have saved me a
lot of work.

Cmdlets provide the best way of working with WMI objects, but sometimes you need to

get a bit closer to the underlying .NET code.

3.4.2 Type accelerators

In section 2.4 you saw how to use the New-Object cmdlet to create .NET objects. Pow-

erShell also has type accelerators, which are shortcuts for creating .NET objects directly.

WMI has three type accelerators, and they’re listed in table 3.4 together with the .NET

class they represent.

 My experience is that the cmdlets are used much more than the accelerators. This

is due to the additional WMI functionality introduced in PowerShell v2. The accelera-

tors were more important in PowerShell v1 than they are now, but there are still a few

88 CHAPTER 3 WMI in depth

occasions when they come in handy. One task you’ll always be performing is searching

for information that WMI can make available.

[WMISEARCHER]

Get-WmiObject is used for retrieving WMI-based data. You’ve seen WQL queries used

in the -Filter parameter and the -Query parameter. Section 3.5 will dive deeper into

WQL, but you can get a taste of simple WQL queries by looking at the [wmisearcher]

type accelerator.

 These two PowerShell statements produce identical results:

Get-WmiObject -Class Win32_Process -Filter "Name='powershell.exe'"

Get-WmiObject `
-Query "SELECT * FROM Win32_Process WHERE Name='powershell.exe'"

In both cases, you’re finding the WMI object that’s the PowerShell process. You can

also perform this using [wmisearcher]:

$query = [wmisearcher]

 ➥ "SELECT * FROM Win32_Process WHERE Name='powershell.exe'"
$query.Get()

All of these techniques will return the same information. The question now becomes

which method to use. I use Get-WmiObject nearly 100 percent of the time. It’s

quicker to type and has the advantage of returning an object you can work with,

rather than just the data. It’s also easier to use against remote machines.

 You’ve seen an accelerator for finding WMI information, but sometimes you’ll

need to create a WMI object. This can be done with the [wmiclass] accelerator.

[WMICLASS]

The [wmiclass] accelerator provides a shortcut for creating new instances of WMI

classes. There isn’t any New-WmiObject cmdlet or an easy way to work with WMI objects

through New-Object. In PowerShell v1, the usual way to create a new WMI object was

to use [wmiclass]. Invoke-WmiMethod has, at least partially, taken over this task in

PowerShell v2.

 Using the accelerator is straightforward:

$p = [wmiclass]'Win32_Process'
$p.Create("calc.exe")

TIP If you’re still using PowerShell v1, you’ll need to change the second line
of the preceding example to $p.psbase.Create("calc.exe").

There is one final accelerator to consider.

Table 3.4 WMI type accelerators

Accelerator .NET type

Wmisearcher System.Management.ManagementObjectSearcher

Wmiclass System.Management.ManagementClass

Wmi System.Management.ManagementObject

89Using WQL

[WMI]

Table 3.4 shows that [wmi] works with the same .NET class as Get-WmiObject. When

you’re using the cmdlet, you can perform a task such as this:

Get-WmiObject -Class Win32_Process -Filter "Name='calc.exe'"

If you want to use the accelerator, you might try this:

[wmi]"root\cimv2:Win32_Process.Name='calc.exe'"

This will generate an error, because when using this accelerator you need to use the

property that functions as the key for the class. The way to discover the key was cov-

ered in listing 3.4. Your code becomes

[wmi]"root\cimv2:Win32_Process.Handle='4456'"

This involves additional steps, and effort, to return the same information that you can

get from the cmdlet. As with the [wmisearcher] accelerator, I recommend using the

Get-WmiObject cmdlet rather than the accelerator.

 Many of the WMI examples in this chapter have involved the use of a filter of some

kind that has been created using WQL. You need to learn how WQL works in order to

use the technology to its maximum potential.

3.5 Using WQL

You’ve seen WMI queries performed in a number of the examples in this chapter. If

you thought that the syntax looked like SQL, you’d be correct. You’ve been using WMI

Query Language (WQL). It’s a subset of SQL that supplies only the functionality you

need for working with the WMI repository. That means you’re restricted to running

simple SELECT statements without JOINs or any of the other complications you can

expect in SQL.

TIP It’s important to note that the other SQL options—DELETE, UPDATE, and
REPLACE—don’t exist in WQL either.

You have a number of options available in the way you use WQL with PowerShell.

These options are best explained with reference to the WQL keywords. A number of

keywords are only used when working with WMI associations and references—those

particular keywords will be discussed in section 3.6.

3.5.1 Keywords

WQL, like PowerShell, has a number of keywords that you need to understand if

you’re to use it properly. This is the basic structure of a WQL query:

SELECT <property list>
FROM <WMI class name>
WHERE <one or more conditions>

NOTE I have deliberately used uppercase for the WQL keywords in this sec-
tion for emphasis. WQL keywords aren’t case sensitive.

90 CHAPTER 3 WMI in depth

There are two ways you can use WQL in PowerShell. The first follows the tradition

established by VBScript of running a full query:

Get-WmiObject `
-Query "SELECT * FROM Win32_Process WHERE Name='PowerShell.exe'"

This runs a query that will select all of the data (properties) from a Win32_Process

instance where the name of the process is PowerShell.exe. In WQL you can only spec-

ify a single class to query at a time. This restriction also applies to Get-WmiObject in

that the -Class parameter only accepts a single class at a time.

 You could restrict the properties returned by your query. For instance, the follow-

ing query only returns the three properties you specify in the WQL statement:

Get-WmiObject -Query "SELECT Name, Threadcount, UserModetime FROM
Win32_Process WHERE Name='PowerShell.exe'"

TIP If you need to work with an object that has a reduced property set, try using
this approach: Get-WmiObject -Class Win32_Process -Filter "Name=

'PowerShell.exe'" -Property Name, Threadcount, UserModetime. It pro-
duces an object that has the system properties and the ones you defined only.
This approach rarely seems to be adopted in practice for some unknown reason.

The second method of using WQL is to use the -Filter parameter rather than the

-Query parameter:

Get-WmiObject -Class Win32_Process -Filter "Name='PowerShell.exe'"

The preceding code is similar to running the full query except that you select the class

with the -Class parameter, and the -Filter parameter uses the part of the query that

follows the WHERE keyword.

 This approach can also restrict the properties you return:

Get-WmiObject -Class Win32_Process `
 -Filter "Name='PowerShell.exe'" |
Format-List Name, Threadcount, UserModetime

The advantage of this method is that the system properties aren’t returned.

 Is one approach better than the other? I tend to use a filter rather than a query

because I find it easier to read and it involves less typing. I think it’s also more flexible

because I can easily change the properties selected for display without risking the syn-

tax of the query.

 Our queries so far have been based on simple SELECT statements, but WQL also

enables us to perform other processing as part of the query.

3.5.2 Operators

There are three groups of WQL operators to consider:

■ Logical operators which define how statements are combined

■ Comparison operators which perform matching operations

■ Wildcards which enable you to perform matching on a subset of data

91Using WQL

The WQL queries you’ve seen so far have only had a single condition in the WHERE

clause. That’s a bit limiting, but there is a way to remove this limitation.

LOGICAL OPERATORS

The logical operators are used to combine statements. The logical operators available

in WQL are detailed in table 3.5.

The use of the first two operators in the table can be demonstrated as follows. I started

two instances of PowerShell so that I had a choice of targets:

Get-WmiObject -Query "SELECT *

 ➥ FROM Win32_Process

 ➥ WHERE Name='PowerShell.exe'

 ➥ AND Handle='6036'"

In this example, the AND operator is used to link the two comparisons. Both compari-

son expressions must evaluate to TRUE for this query to work. On your system, the

value of the Handle property will be different.

WARNING It isn’t possible to refer to a property name on both sides of the
comparison operator in a WHERE clause. You’ll receive an error if you try it.

An alternative way of using the criteria is to use an OR statement to link the two

expressions:

Get-WmiObject -Query "SELECT *

 ➥ FROM Win32_Process

 ➥ WHERE Handle='6036'

 ➥ OR Name='PowerShell.exe'"

The Handle property is checked first, and if that evaluates to TRUE, your data is

retrieved. If it evaluates to FALSE, the second expression is checked. These operators

can also be used in a Get-WmiObject Filter statement.

 The comparisons you’ve performed so far have involved checking equality. Other

comparisons are also available.

COMPARISON OPERATORS

In this section, we’ll consider numerical comparisons and how you can determine

whether a property has a NULL value. The numerical comparison operators are listed

in table 3.6.

Table 3.5 WQL logical operators

Operator Meaning

AND Combines two expressions and returns TRUE if both expressions are TRUE

OR Combines two expressions and returns TRUE if one expression is TRUE

TRUE Boolean operator that evaluates to -1

FALSE Boolean operator that evaluates to 0

92 CHAPTER 3 WMI in depth

You may recall the PowerShell comparison operators we discussed in chapter 2: -eq,

-lt, -gt, -le, -ge, -neq. Using a PowerShell operator instead of the WMI operator in a

WQL query will cause syntax errors. WMI is very unforgiving of syntax errors in WQL

queries, so the script will fail rather than run and cause a problem with your systems.

 These comparison operators can be used in a Query or Filter statement, and the

syntax is similar for all of them. Starting with the -Query parameter, you can write this

code:

Get-WmiObject -Query

 ➥ "SELECT Name, HandleCount FROM Win32_Process WHERE
HandleCount>=550" |
Format-Table Name, HandleCount -AutoSize

Alternatively, you can use a -Filter parameter as follows:

Get-WmiObject -Class Win32_Process -Filter "HandleCount>=550" |
 Format-Table Name, HandleCount -AutoSize

In the two preceding examples, you’re discovering all of the processes that have more

than 550 handles. In the first example, a full WQL query is used to return the data,

whereas the second uses the -Filter parameter. Format-Table is used with the prop-

erty names in both cases to screen out the system classes.

 Using a full query allows you to trim down the amount of data you’re dealing with

as soon as possible. This is a good technique when accessing remote machines

because it reduces network traffic.

 You can, of course, perform the same filtering task in PowerShell:

Get-WmiObject -Class Win32_Process |
Where {$_.HandleCount -ge 550} |
Format-Table Name, HandleCount -AutoSize

Notice the difference in the comparison operator. They do the same job, but you

need to write them differently. It’s a pain, but you’ll have to live with it because the

technologies come from two separate teams.

 A property may sometimes have a value of NULL. This doesn’t mean that it’s zero or

that a string is empty. It’s best thought of as meaning that a value hasn’t been set.

There are two comparison operators for working with NULL values. Try these two

Operator Meaning

= Equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

!= or <> Not equal to
Table 3.6 WMI comparison operators

93Using WQL

queries with and without a CD in the drive to really see the difference. If you can work

out the results before running the query, you’ll have this down solid:

Get-WmiObject -Query "SELECT *

 ➥ FROM Win32_CDRomDrive

 ➥ WHERE VolumeName IS NULL"

Get-WmiObject -Query "SELECT *

 ➥ FROM Win32_CDRomDrive

 ➥ WHERE Drive IS NOT NULL"

The first query returns all instances of the CD drive that don’t have a volume name set.

The second query returns instances of the CD drive that have a drive letter set.

 In the examples of using WQL so far, you’ve used the full value of the property.

Now let’s consider the case where you aren’t quite sure what the value should be.

WILDCARDS

Wildcards enable you to specify only part of the value you want to compare against.

You need to use the LIKE operator and build expressions using wildcards.

TIP You may see statements on the internet claiming that WMI can’t use
wildcards. This is incorrect. What those authors have done is tried to use the
PowerShell wildcards and failed.

The WQL and PowerShell wildcard equivalents are given in table 3.7 for comparison

purposes. Technically, the last two options in the table are beginning to get into regu-

lar expressions, but I’ll deal with them here for completeness.

The expressions in table 3.7 can be used in a WMI query or with a -Filter parameter:

Get-WmiObject -Class Win32_Process -Filter "Name LIKE 'po%'"

In the preceding statement, all processes whose names start with the letters po will be

returned. This is case insensitive, so PowerShell.exe will be returned. The same result

could be obtained by using Where-Object:

Get-WmiObject -Class Win32_Process | where {$_.Name -like 'PO*'}

Table 3.7 Comparison of WQL and PowerShell wildcard characters

WQL Meaning PowerShell

_ Any single character ?

% Zero or more characters *

[a=c]
[abc]

Any one character in the set or range []

[^a=c]
[^abc]

Any one character not in the set or range use -notmach operator or

[^]

94 CHAPTER 3 WMI in depth

The matching can be made more sophisticated. For instance, you can test for differ-

ent patterns of the name:

Get-WmiObject -Class Win32_Process -Filter "Name LIKE 'P_W%'"
Get-WmiObject -Class Win32_Process | where {$_.Name -like 'P?W*'}

In both of these cases, you’re looking for a name that starts with p, that has any second

character, and that has w as the third character.

 If you want to get very sophisticated in your testing, you can start to match on

groups of letters:

Get-WmiObject -Class Win32_Process `
-Filter "Name LIKE '%[sh][sh]%'" |
select name

Get-WmiObject -Class Win32_Process |
where {$_.Name -match '.[sh][sh].'} | select name

In this case, you’re looking for processes that have some combination of the letters s

and h somewhere together in their name.

 It would be possible to fill the chapter with examples of using these expressions. I

recommend experimenting with these options to get a good understanding of how

they work. This is one area where some testing goes a long way to help understanding.

 We’ve finished looking at using WQL for simple querying of data, but there are a

few more WQL-related topics that we need to consider regarding the relationships

between WMI classes—references and associators.

3.6 WMI references and associators

WMI classes supply information about a single discrete item in your system. Sometimes

this granularity seems to have been taken too far, such as in the classes dealing with

network adapters:

Get-WmiObject -List *Win32_NetworkAdapter*

This will return three results:

■ Win32_NetworkAdapter

■ Win32_NetworkAdapterConfiguration

■ Win32_NetworkAdapterSetting

You need to understand the relationships between these classes, and you need to

know how to use the relationships to make your work easier. This will involve looking

at WMI references and WMI associators.

 To investigate the relationship between the WMI classes, you need a starting point.

We’re using the network adapters as an example, so the obvious starting point is the

physical adapter:

Get-WmiObject -Class Win32_NetworkAdapter |
where {$_.NetEnabled} | select name, deviceid

95WMI references and associators

You’re only interested in those adapters that are enabled. The name of the adapter

and the deviceid are selected. The name is obvious, but why the deviceid? The par-

ticular adapter you’re investigating needs to be identified in such a way that it can be

used to determine relationships with other classes. There are many possible identifi-

ers, but the property that acts as the key for the class is a good place to start; you can

find the key by using listing 3.4. It’s possible to determine relationships using the WMI

documentation, but that takes longer.

 You’ll work with a single adapter, as that keeps the examples simple. You can start

by looking at the references of the adapter. I chose the wireless adapter in my develop-

ment system, based on the results of the previous code snippet:

Get-WmiObject `
 -Query "REFERENCES OF {Win32_NetworkAdapter.DeviceId='11'}"

Notice the use of {} to define the WMI instance for which you need the references.

 A number of WMI classes will be returned. They’re classes that show the links

between two other classes. The links are described by a pair of properties. Unfortu-

nately the names of the properties can vary. These are some common pairs of names:

■ SameElement, SystemElement

■ GroupComponent, PartComponent

■ Element, Setting

■ Antecedent, Dependent

In some classes, a third property is available, called device.

 The links can be better displayed by using the __PATH system property of each class:

Get-WmiObject `
 -Query "REFERENCES OF {Win32_NetworkAdapter.DeviceId='11'}" |
foreach {
 ""
 $_.__CLASS
 $($_.__PATH -split ",")
}

This will show the class and the instance that links to your particular adapter. If you only

want to see the classes involved, you can simplify the code by using the ClassDefsOnly

keyword:

Get-WmiObject -Query "REFERENCES OF

 ➥ {Win32_NetworkAdapter.DeviceId='11'}

 ➥ WHERE ClassDefsOnly" |
Format-Table Name, Properties -AutoSize

Name Properties
---- ----------
Win32_PnPDevice {SameElement, SystemElement}
Win32_NetworkAdapterSetting {Element, Setting}
Win32_SystemDevices {GroupComponent, PartComponent}
Win32_AllocatedResource {Antecedent, Dependent}
Win32_ProtocolBinding {Antecedent, Dependent, Device}

96 CHAPTER 3 WMI in depth

An additional benefit of starting with the classes is that you can see the properties

involved in the links. The information that’s returned can be controlled by using the

other keywords that are available for use with references and associators. They’re

described in table 3.8.

A reference supplies the linking, or associating, WMI classes. In many cases, it’s more

productive to jump straight to the endpoint of the link. This is where you’ll find the

information you need. You can find the endpoints by using ASSOCIATORS OF instead of

REFERENCES OF.

 You can start with the associated classes:

Get-WmiObject -Query "ASSOCIATORS OF
{Win32_NetworkAdapter.DeviceId='11'} WHERE ClassDefsOnly" |
select Name

This supplies a list of WMI classes, one of which is the

Win32_NetworkAdapterConfiguration class:

Get-WmiObject -Query "ASSOCIATORS OF
 {Win32_NetworkAdapter.DeviceId='11'} WHERE RESULTCLASS =
Win32_NetworkAdapterConfiguration"

You now have a method of linking two related classes and ensuring that you can find

all of the required information about the system component. You’ll see more exam-

ples of performing these types of queries in later chapters.

 Windows is an event-driven operating system. Everything you do, from pressing a

key to working in your applications, causes events to be generated. Many of these

events are WMI-based, and you need to be able to utilize this functionality.

3.7 WMI events

PowerShell v2 provides access to the Windows event engine through a number of

mechanisms:

Table 3.8 Keywords for references and associators queries

Keyword Meaning References Associators

ClassDefsOnly Returns class definition instead of

class instances

Y Y

RequiredQualifier Specifies a qualifier that returned

classes must meet

Y Y

ResultClass Restricts results to one class Y

AssocClass Restricts association to a single class Y

RequiredAssocQualifier Only returns instances that are linked

through a class with a specific qualifier

Y

97WMI events

■ WMI

■ .NET

■ PowerShell engine

The cmdlets that you can use to work with events are outlined in table 3.9.

As an example, consider plugging in a USB device. There’s a WMI class,

Win32_VolumeChangeEvent, that you can use to discover when something changes:

$query = "SELECT * from Win32_VolumeChangeEvent WITHIN 5"
Register-WmiEvent -Query $query -SourceIdentifier 'USBEvent'

The first part of this query is a standard select from the class. Within 5 means that the

class is checked every 5 seconds to determine whether an event has occurred. The event

is then registered using USBEvent as an identifier. You can use Get-EventSubscriber to

see the subscription.

 When you plug in a USB device, the VolumeChangeEvent will be triggered. You can

see the results by using Get-Event:

$e = Get-Event | select -First 1

The drive that was added can be identified using this code:

$e.SourceEventArgs.NewEvent

A corresponding event is raised when the USB drive is removed.

 You can also work with other events, such as a process being started:

$process = "calc.exe"
$WMIQuery = "SELECT * FROM __InstanceCreationEvent WITHIN 5 WHERE
 TargetInstance ISA 'Win32_Process' AND TargetInstance.Name =

Table 3.9 Cmdlets for working with events

Cmdlet Purpose

Get-Event Gets the events in the event queue

Get-EventSubscriber Gets the event subscribers in the current session

New-Event Creates a new event

Register-EngineEvent Subscribes to events that are generated by the Windows PowerShell

engine and by the New-Event cmdlet

Register-ObjectEvent Subscribes to events that are generated by a Microsoft .NET Frame-

work object

Register-WmiEvent Subscribes to a Windows Management Instrumentation (WMI) event

Remove-Event Deletes events from the event queue

Unregister-Event Cancels an event subscription

Wait-Event Waits until a particular event is raised before continuing to run

98 CHAPTER 3 WMI in depth

'$Process'"
Register-WmiEvent -Query $WMIQuery `
 -SourceIdentifier "Process $Process"

This will trigger an event when the Windows calculator is started but not when other

processes such as Notepad are started.

 This is good, in that you can find out what has happened, but you’ll want more.

You’ll want to be able to perform some action when a particular event is triggered.

Suppose you have a process that should only run out of normal business hours. If it

starts during business hours, you want to immediately shut it down. You can adapt the

last example to accomplish this, as follows.

$process = "calc.exe"
$action = {
 Write-Host "Calculator is running and must be stopped"
 Get-WmiObject -Class Win32_Process -Filter "Name='$process'" |
 Invoke-WmiMethod -Name Terminate
 Write-Host "Calculator has been stopped"
}

$WMIQuery = "SELECT * FROM __InstanceCreationEvent
WITHIN 5 WHERE TargetInstance ISA 'Win32_Process' AND
TargetInstance.Name = '$Process'"

Register-WmiEvent -Query $WMIQuery `
-SourceIdentifier "Process $Process" -Action $action

The script starts by defining the process you want to prevent running. A script block B
is created that will perform the processing. You produce a message to say that the process

is running, you stop the process using the Terminate method of the Win32_Process

class, and you write out another message to say it has happened.

NOTE I know I could have used Stop-Process to kill the Calculator process,
but this is a WMI book after all.

The WMI query to check for the process starting is defined C, and the event is regis-

tered D, adding the -Action parameter with the script block as its value. One thing to

note is that when the event is registered in this manner, it creates a PowerShell job

that runs in the background. The data produced by this job isn’t accessible by the

*-Job cmdlets.

 When the Windows calculator is started, the event will trigger and close it down.

This is illustrated in figure 3.5. Once you’ve finished with the event, it should be

unregistered.

Unregister-Event -SourceIdentifier "Process $Process"

The job created by the event can be safely removed at this point. Always unregister the

event before deleting the job. Otherwise, you won’t be able to remove the event!

You’ll see further examples of WMI events in the second part of the book.

Listing 3.6 Trigger an action through a WMI event

Action
script
blockB

WMI
query

C

Register
event

D

99Summary

We’ve covered a lot of ground in this chapter. It provides the basic information that

you’ll need to perform the management tasks you’ll see in the second part of the book.

3.8 Summary

WMI is one of the most powerful tools available to Windows administrators. It’s a mis-

understood and underused technology due to the perceived complexity, the lack of doc-

umentation, and the difficulty in using it in the past. PowerShell corrects this and brings

an ease of use to WMI that should make it the tool of choice for all administrators.

WMI is a standards-based management toolset that’s installed by default in modern

Windows systems. It supplies a large number of classes that correspond to physical

entities in your systems, such as CPU, operating system, or installed application. The

classes contained in namespaces are arranged into a logical hierarchy.

 PowerShell delivers ease of use through four cmdlets:

■ Get-WmiObject
■ Set-WmiInstance
■ Invoke-WmiMethod
■ Remove-WmiObject

There are also three type accelerators that are shortcuts for working with the .NET

classes PowerShell uses to access WMI data. The most useful of these is [wmiclass],

which you can use to create new WMI objects.

Figure 3.5 Running listing 3.6 in the PowerShell ISE

100 CHAPTER 3 WMI in depth

WMI information resides in the WMI repository (or database). There’s a SQL-like

language called WQL for querying the repository. This can be used in a number of

ways with Get-WmiObject, but it’s easiest to understand when used in conjunction with

the -Filter parameter.

WQL also enables you to work with the links between WMI classes. These are created

and maintained automatically by WMI, so all you have to do is tap into the information.

An example of this is the link between the network adapter and its configuration.

 Windows is an event-driven operating system, and WMI and PowerShell provide

access to the event engine so that you can be alerted when things happen. You can

also configure an action to be performed when an event is triggered. This starts to

head towards the fully automated system we discussed in chapter 1.

 In this part of the book, we’ve looked at the problems and issues you’ll solve by

automation. We’ve examined PowerShell and WMI in depth to gain an understanding

of the tools you’ll be using. In the next chapter, we’ll look at some best practices

around using PowerShell, WMI, and scripting in general, to ensure that your scripts

are as efficient as possible and that you maintain the security of your environment.

101

Best practices
 and optimization

We’ve had a good look at PowerShell and WMI in the last two chapters. In this chap-

ter, we’ll start to examine how you can use them to solve your administrative prob-

lems. We’re not quite at the point of jumping into lots of scripts, though. That treat

is reserved for part 2 of the book, which starts with the next chapter.

 As the title suggests, this chapter is about best practices. There are a lot of views

on what constitutes best practices, ranging from a loose collection of tips and tricks

to a rigid set of commandments that should be followed to the letter. My approach

falls somewhere between those two extremes, but closer to the loose collection of

ideas. I’ll be presenting a collection of techniques that I’ve used or collected over

the last five or six years of using PowerShell (that’s going back into the early Power-

Shell v1 betas). I’ll also present a number of advanced techniques. You can adopt

This chapter covers

■ Finding code samples

■ Securing the PowerShell environment

■ PowerShell best practices

■ WMI best practices

102 CHAPTER 4 Best practices and optimization

these as and when required; they can be of great benefit in streamlining the produc-

tion of your PowerShell scripts. The idea is that at the end of the chapter, you’ll know

how to produce a good script.

NOTE I have a very simple definition of a good script. It’s a script that works
correctly and does the intended job in a reasonable time frame. Sometimes
better performance is required, in which case I’ll revise the script. It takes 90
percent of the estimated development time to perform 90 percent of the task
of creating the best script to do a job. It takes another 90 percent of the time
to get that last 10 percent of polish. Spend the time on another script!

The first thing we’ll look at in this chapter is security. You’ll often need to find sample

code on the internet to help you solve your problems. This raises a number of issues:

■ Where can you find the code?

■ Can you trust the code?

■ Which code sample supplies the correct answer?

When you utilize the automation techniques described in this book, there are a num-

ber of security concerns related to the code: who can access and run it, and how can

you audit that usage. These questions will be answered in the first part of the chapter.

 Second, PowerShell has a very wide scope. There are a number of areas where it’s pos-

sible to script solutions that don’t take full advantage of PowerShell’s strengths and fea-

tures. In this chapter, we’ll examine a number of areas where this is common, including

■ Data input and output (including working with strings)

■ Calculated fields, types, and members

■ Error handling

You saw in chapter 3 that PowerShell uses format files to determine how the data from

PowerShell objects should be displayed by default. This default behavior can be modi-

fied to enable better control of the output, and we’ll also look at that in this chapter.

 Next, it’s inevitable that bugs and mistakes will creep into your scripts, and Power-

Shell v2 provides a number of simple techniques for finding and eliminating bugs.

Errors will also occur when you’re running your scripts. In some cases, you can ignore

them and continue processing your data, but other times the errors could cause sig-

nificant problems if you don’t deal with them properly.

 Finally, WMI has its own set of best practices that you need to understand. You’ve

seen some of the underlying WMI structure, but you also need to understand the way

WMI is configured and what you can modify.

 Automation usually implies accessing remote machines, which in turn means that

you need to be able to authenticate yourself on that machine. Your default credentials

may often be enough, but sometimes you’ll need that little bit more, and we’ll look at

that in this chapter.

WMI will often return data in its own internal format, especially for dates. Luckily,

there’s a very simple way to convert them to a readable format. You also need to be

103Security

aware that WMI will return sizes (of files, disks, and so on) in bytes, so you need to be

able to convert them to more usable forms. PowerShell can do some formatting for us

but we can also perform some simple formatting in our scripts—especially where we

want to make things more readable.

 We’ll get to all of these topics in turn. Our first port of call on this journey to good

scripting is security. PowerShell is too powerful to leave unsecured.

4.1 Security

PowerShell has a number of security features built into it:

■ It doesn’t run scripts by default—you must modify the execution policy to

enable this.

■ It doesn’t allow scripts to run by double-clicking—don’t modify this.

■ It doesn’t run scripts from the current folder—don’t modify this.

Those features were covered in chapter 2.

 In this section, we’ll extend our security thinking and look at how you can make

sure that code you download is safe. Beyond that, we’ll look at how you can keep your

code safe and restrict access to PowerShell scripts. (You also need a way to monitor

who is using your code, and this final point will be covered in chapter 15.)

 The internet is a great resource for PowerShell code, but how can you use it safely?

4.1.1 Using internet code

PowerShell is all about solving problems—your administration problems. Ideally, you

would have all the time you require to

■ Properly define the problem

■ Research possible solutions

■ Decide on the best approach

■ Write and test the solution

■ Apply it in production

But in reality, you generally have a problem to solve now. There isn’t time to go

through a full cycle of developing the ideal solution. You need something to use

immediately. You have to find some sample code, and this usually means the internet.

 The first thing you need to do is find the code you need. One method is to enter

some search criteria into your favorite search engine (no, I’m not getting involved in

that debate, thank you) and see what you get back.

 It’s highly probable that you’ll get a number of hits, including some of the sites I’ll

discuss shortly. One group of hits will be question and answer threads on the various

forums that support PowerShell. These sources may be useful depending on who is

supplying the answer. If you get lucky and find that someone else has posted a ques-

tion that’s similar to your problem, you’ll have a potential answer.

http://richardspowershellblog.wordpress.com/
http://richardspowershellblog.wordpress.com/
http://richardspowershellblog.wordpress.com/

104 CHAPTER 4 Best practices and optimization

A second group of hits will include PowerShell-related blogs, several of which are very

good. The ones I regularly read are listed in appendix D. Many of these blogs are

maintained by PowerShell MVPs. I know I’m laboring the point, but you still need to

test any scripts you take to use in your environment, even the ones from my blogs.

 The third group of hits will likely include the various PowerShell repositories that

are available:

■ CodePlex—Contains over 400 PowerShell-related projects, including the Hyper-

V library, PowerShell Community extensions, and my administration modules

■ Microsoft TechNet Script Center—Has lots of WMI examples, but many of the older

ones are direct translations of VBScript and so may need reformatting

■ MSDN code gallery—Contains some PowerShell-related projects, including the

CIM IDE used in chapters 18 and 19

■ PowerShell Code Repository (PoshCode.org)—The site of the Scripting Games and a

large code repository; many MVPs deposit code here

■ PowerGUI.org—Mainly PowerGUI related, but the ideas can be reused

■ PowerShell.com—A large code repository and that has excellent forums, includ-

ing one dedicated to PowerShell and WMI

There are others, but I’ve either used these ones or I know the people who run the

sites. Guess what? You still need to test the code!

 One thing that shocks many newcomers to PowerShell is that when they look for

code to solve a particular problem, they find two or three different approaches to the

solution instead of the single definitive answer they were hoping for. By the time you

get to the end of this book, you’ll be able to look back and say, “You could have solved

that one by doing ...” for any of the examples in the book.

TRUST

Do you trust code you download from the internet?

I generally don’t, and I know many people who supply code on their blogs or on the

sites they run.

If I know the person who actually wrote the code, and I trust them, I will be confident

that the code isn’t deliberately malicious. But I can’t be sure that it will run error free

in my environment. I will perform a read-through of the code at a minimum. If it’s for

a production environment, I will test it under controlled conditions.

If I don’t know the code author, I am much more careful about the code. I will perform

a painstaking examination of the code, especially if a lot of aliasing or cascading func-

tion calls have been used. I will test the code extensively in a sandbox before it hits

the production environment.

Care should be applied to any code received as part of a download package with a

book, including this one, or on a CD accompanying a book. The code won’t be delib-

erately malicious, but it hasn’t been tested in your environment. Test before use

must be the approach.

105Security

 There is no right answer. If your solution solves the problem in a reasonable time,

it’s a good script. Pick the answer you feel most comfortable with and that you under-

stand. Get the problem solved rather than spending time puzzling out some compli-

cated piece of code. You can always unravel the complicated code at your leisure for

reuse in the future. Remember the KISS principle: Keep It Simple Scripter.

 Let’s suppose you’ve found some code that sort of answers your question. Unless

you’re really lucky, it won’t be a complete answer, so you’ll need to do some work on

it. You also need to consider how you’ll ensure that the code you create hasn’t been

modified to produce a harmful result.

4.1.2 Code security

In chapter 2, I recommended that your execution policy should be set to Remote-

Signed. This will run unsigned scripts from your local disk, but it requires that down-

loaded scripts, including scripts on network drives, be signed. This eases development

but enables you to protect the code you’ve developed. The only question remaining is

what is code signing and how do you do it?

Code signing is the act of applying a code certificate to your code. This will put a lot of

seemingly random characters at the end of your PowerShell scripts. An example of

this can be seen if you open any of the XML files in the PowerShell install folder.

They’re all signed. Don’t modify them or PowerShell won’t load them.

 There are three steps to code-signing a PowerShell script:

1 Obtain a code-signing certificate.

2 Install the certificate.

3 Apply the certificate.

Easy! You can obtain a code-signing certificate from a number of places:

Developers and signers

How many PowerShell developers are you going to have? Many organizations will

have a single person doing the majority of the development. Other users may do

some of the code writing, but the one guru is the person who approves the code. At

most, an organization will have a small number of people producing code.

Keeping the number of PowerShell developers small enables better control over the

code. Even with a single person doing all of the work, using a version-control system

ensures that you can track the changes made to scripts. If your application develop-

ers have a system for doing this, ask them nicely and see if they can let you use a

little bit of it. Otherwise a simple script-naming convention that incorporates a version

number would allow you to identify current script versions.

Code signing should be restricted to one or two individuals. If your application devel-

opers already have a process, I recommend that you join it. Otherwise, adopt a meth-

od that will achieve the security goals outlined in this section.

106 CHAPTER 4 Best practices and optimization

■ You can create a self-signed certificate using the makecert utility. This is usable

if the scripts will only run on your machine.

■ Your enterprise’s Public Key Infrastructure (PKI), if you have one, can generate

a certificate for you. Talk to the PKI administrators. This is a good solution if the

scripts will only be used inside the organization.

■ You can buy a code-signing certificate from a commercial certificate authority

(CA). This is the best solution if scripts will be shared beyond a single organization.

You can install the certificate with the Certificates management tool. This isn’t

readily available, so open the MMC and add the Certificates snap-in. Select Personal.

Right-click and select Import. A wizard will guide you through importing the certifi-

cate. This GUI tool can also be used to request a certificate from your PKI or a com-

mercial authority.

 It’s generally a good idea to secure the certificate by exporting the private key. This

can be performed using Internet Explorer. Alternatively Quest supplies tools to work

with the certificate store in their AD cmdlets (search for AD cmdlets at http://

www.quest.com). There is also a PowerShell module for administering certificates

developed by one of the PowerShell MVPs, which you can download from http://

pspki.codeplex.com/.

 The last step is the most straightforward. The following code can be used to apply

the certificate. Change the name of the certificate and script to work in your environ-

ment. This code can be used interactively or can become part of a script if you have a

lot of signing to perform:

$cert = Get-ChildItem -Path cert:\CurrentUser\my -CodeSigningCert
Set-AuthenticodeSignature myscript.ps1 $cert

Once you’ve signed the script, any modifications to it will cause it to fail unless it’s

re-signed.

 Now you know how to secure your code against tampering. How can you ensure

that only the right people can access your scripts?

4.1.3 Access to code

PowerShell scripts do a wonderful job of automating the administration of Windows

machines. But like all powerful tools, they have the potential to cause a lot of dam-

age if they’re misused. You need to ensure that only authorized personnel can access

your scripts.

 There are two basic solutions to the problem of controlling who has access to your

administration scripts. The first depends on them being on your personal workstation.

This ensures that you’re the only person who has access. With this approach, you need

to follow the normal security guidelines:

■ Lock the machine when you aren’t using it.

■ Possibly encrypt the folder, or drive, that contains the scripts.

■ Don’t share the folder containing the scripts.

■ Don’t divulge your password.

http://www.quest.com
http://www.quest.com
http://pspki.codeplex.com/
http://pspki.codeplex.com/

107Optimizing PowerShell code

This will work unless someone gains access to the machine. At that point, unless

there’s a further layer of protection, such as encryption, the scripts are accessible.

 The second approach is more common and must be adopted if multiple people

are using the scripts. This involves putting the scripts on a network share. Access can

be controlled by only allowing the group of administrators who need to use the scripts

permissions to the network share containing the scripts. An Active Directory group

can be assigned the appropriate permissions. Make sure that the group membership is

under change control or is treated as a Restricted Group in Group Policy to maintain

the security. Check the group membership periodically, just to be sure.

 An essential part of any administrator’s job is maintaining security on the data and

resources in their area of responsibility. Using PowerShell and WMI to administer that

environment doesn’t remove the need for security procedures and awareness. In fact,

a few extra security requirements come into play:

■ Be careful with code downloaded from the internet. Always ensure that you

understand how it works and always, always test it very carefully.

■ Use code-signing techniques to ensure that your code hasn’t been changed.

■ Restrict access to production code. Only those who need to use it should have

access. Be even more careful about who has permissions to modify produc-

tion code.

PowerShell has a number of areas where adherence to best practices can save time

and effort when writing and testing scripts. Optimized code will run more efficiently

and be easier to maintain.

4.2 Optimizing PowerShell code

Using PowerShell effectively is about getting the job done with the minimum amount

of code. And within your PowerShell code, there are a number of areas where you can

be more productive:

■ Data handling (input, output, string substitution, and so on)

■ Format files

■ Debugging

■ Error handling

Notice that I’m not including the standard best practices, such as

■ Commenting code

■ Using functions

■ Code formatting

■ Using naming conventions for scripts, variables, and the like

I’ll assume that you know the basics and want to progress to getting the best out of

PowerShell. The first area to consider is how you get data into PowerShell.

4.2.1 Data input

There are two aspects to getting data into your PowerShell scripts (assuming you aren’t

going off to another data store, such as Active Directory or SQL Server—that would be

108 CHAPTER 4 Best practices and optimization

a completely different problem). The first is the bulk use of data through reading a file.

The second is getting single values for the main variables into PowerShell.

READING FILES

There are two cmdlets that you can use to read the content of files:

■ Import-CSV
■ Get-Content

Which one you should use tends to be dictated by the type of data. If it’s a CSV file, you

use Import-CSV, and if its text, you use Get-Content. This covers the majority of situa-

tions. The important part is what you do with the data after you’ve read it.

 Let’s create a CSV file to work with:

Get-Service | select Status, Name, DisplayName |
Export-CSV chapt4.csv -NoTypeInformation

If you want to read this file, you can simply use

Import-CSV chapt4.csv | Format-Table -AutoSize -Wrap

The choice comes when you want to do something with the data. Consider a little

script that checks the status of each service; if the service is stopped, the information is

written out in red, and otherwise the normal foreground color is used. You need to

access each service to test its status. As you’ll recall from chapter 2, you have two

options. You can use the foreach PowerShell keyword as in figure 4.1.

Figure 4.1 Using the foreach keyword

109Optimizing PowerShell code

The other alternative is to use the ForEach-Object cmdlet (aliased as foreach) as in

figure 4.2.

 The contents of the loop are the same. The variation is in how you set up the loop.

If you use the pipeline, you can start processing immediately, but if you use a loop you

have the option of doing more with the data later in the script.

Import-CSV doesn’t demand that a file have a .csv extension. You can use .txt or

anything else sensible. The delimiter can be defined, and you can even force a header

onto the data if one doesn’t exist.

Get-Content can be used in a similar manner except that you use it to read text

files. These files are either structureless or the data needs to be handled on a row by

row basis.

 You’ve now seen how to perform a bulk read from a file, but what about getting

values for individual variables?

PARAMETERS

I’ve mentioned several times that WMI can access remote computers. This is one of

the big selling points for WMI. We need to get the computer name into a variable so

that we can use it in the script. But the bigger problem is getting the computer name

into the script in the first place.

Figure 4.2 Using the ForEach-Object cmdlet

110 CHAPTER 4 Best practices and optimization

 Imagine for a moment that you’ve been tasked with gathering information on the

amount of physical memory in the PC estate. You could go round and visit them all,

but it would be much easier to use WMI and the Win32_ComputerSystem class:

Get-WmiObject -Class Win32_ComputerSystem |
Select Name, @{Name="RAM"; Expression={$_.TotalPhysicalMemory / 1GB}}

Great. That works on the local machine, but you need the -ComputerName parameter

to work with remote machines:

$computer = "rslaptop01"
Get-WmiObject -Class Win32_ComputerSystem -ComputerName $computer |
Select Name, @{Name="RAM"; Expression={$_.TotalPhysicalMemory / 1GB}}

You don’t want to have to hard-code the computer name, so you might do this:

$computer = Read-Host "Computer name?"
Get-WmiObject -Class Win32_ComputerSystem -ComputerName $computer |
Select Name, @{Name="RAM"; Expression={$_.TotalPhysicalMemory / 1GB}}

No, no, and thrice no! Don’t do it! If you want to pass data into a script (or function)

use the param block, as shown in the next listing.

function get-ram {
[CmdletBinding()]
param (
 [parameter(Mandatory=$true)]
 [string]$computername
)
 Get-WmiObject -Class Win32_ComputerSystem -ComputerName $computername |
 Select Name, @{Name="RAM"; Expression={$_.TotalPhysicalMemory / 1GB}}
}

You can use the [parameter(Mandatory=$true)] advanced parameter. It forces a

prompt for a value if you don’t supply one. This technique prevents a number of

potential errors that would stop the script from running and forces you to present the

computer name to the script. All of this value from a simple line of code.

Listing 4.1 Using the param block

Advanced parameters and methods

Advanced parameters enable you to add static and dynamic parameters to functions

that use the [CmdletBinding()] attribute. Dynamic parameters are parameters

that are only available in a particular PowerShell provider—see about_Providers
and the individual provider help files.

Static parameters include the following:

■ Mandatory
■ Position
■ ValueFromPipeline
■ HelpMessage
■ Alias

111Optimizing PowerShell code

The function in listing 4.1 can be used within your scripts as an additional piece of

PowerShell functionality. You can call it from loops or any other script block.

 Now that you know how to get data into a script, let’s look at what you can do with

it. Many of your scripting actions will revolve around creating and manipulating the

contents of strings.

4.2.2 String substitution

I was a judge in Microsoft’s Scripting Games in 2010 and 2011, and one of the things

that I noticed was that many of the entries spent a lot of effort building up elaborate

strings when they could have done it in a single line of PowerShell.

 String substitution is one of my favorite bits of PowerShell. If you’ve not seen it

before, the idea is that you can substitute a variable into a double-quoted string.

Note that single-quoted strings won’t work. As an example, consider this piece

of PowerShell:

$colour = "red"
"The balloon is $colour"

That code will produce this output:

The balloon is red

However, this line,

'The balloon is $colour'

will produce this output:

The balloon is $colour

(continued)

There are a number of parameters that can be used to validate the data input to a

function, including testing for null values or empty strings. The data can also be test-

ed against a set or range of data.

Advanced methods include the following:

■ Input-processing methods that compiled cmdlets use to do their work
■ The ShouldProcess and ShouldContinue methods, which are used to get user

feedback before an action is performed
■ The ThrowTerminatingError method for generating error records
■ Several Write methods that return different types of output

Full details are available in the following PowerShell help files:

■ about_Functions_Advanced
■ about_Functions_Advanced_Methods
■ about_Functions_Advanced_Parameters
■ about_Functions_CmdletBindingAttribute

112 CHAPTER 4 Best practices and optimization

One place where this breaks down is when substituting properties of an object. Con-

sider something you might pull back with WMI, such as the output from accessing the

Win32_OperatingSystem class:

PS> $os = Get-WmiObject -Class Win32_OperatingSystem
PS> $os

SystemDirectory : C:\Windows\system32
Organization :
BuildNumber : 7600
RegisteredUser : Richard
SerialNumber : 00426-065-1155216-86852
Version : 6.1.7600

You can pick off a couple of properties, like this:

PS> $os | select Caption, ServicePackMajorVersion | Format-List
Caption : Microsoft Windows 7 Ultimate
ServicePackMajorVersion : 0

Then you can use Write-Host,

PS> Write-Host $os.Caption, $os.ServicePackMajorVersion
Microsoft Windows 7 Ultimate 0

and even expand it a bit:

PS> Write-Host $os.Caption, "Service Pack", $os.ServicePackMajorVersion
Microsoft Windows 7 Ultimate Service Pack 0

But if you try string substitution,

PS> Write-Host "The OS is $os.Caption with Service Pack
$os.ServicePackMajorVersion"

The OS is \\RSLAPTOP01\root\cimv2:Win32_OperatingSystem=@.Caption with
Service Pack
\\RSLAPTOP01\root\cimv2:Win32_OperatingSystem=@.ServicePackMajorVersion

Oops—that’s not what you want. The problem is that you’re getting the object rather

than the value. You need to use a subexpression:

PS> Write-Host "The OS is $($os.Caption) with Service Pack
$($os.ServicePackMajorVersion)"

The OS is Microsoft Windows 7 Ultimate with Service Pack 0

All this does is say, “give me the result of the expression in the parentheses and substi-

tute that in the string.” Easy and neat. No need to concatenate strings to create the

display line in your scripts.

NOTE The double space in the previous result is due to there being a space
as the last character of the Caption property. I have never seen a reason pre-
sented for its presence, but be aware that it exists—especially if you try filter-
ing on the Caption value.

113Calculated fields, types, and formatting

There’s one further point on building strings to consider, and it has to do with build-

ing file paths. How many times have you seen this type of code?

$path = "C:\Test" + "\" + "proc1.txt"
Get-Content $path

You could use string substitution and change the code to this:

$file = "proc1.txt"
Get-Content "C:\test\$file"

Better still, you could use Join-Path:

$file = "proc1.txt"
Get-Content (Join-Path -Path c:\test -ChildPath $file)

Join-Path, and the other cmdlets for working with paths, will also work on Power-

Shell drives such as the registry. They save a lot of typing and save you from having to

remember to add the dividers.

 Any automation techniques involving scripting will need to access data at some

point. You’ll either get it in bulk by reading from a file, or as single values via the

parameters used with functions and cmdlets. Handling the data inside the scripts

can be made much simpler by using the string substitution functionality and the

*Path cmdlets.

 The data you produce in your scripts can be used as is, but in many cases you need

to perform further calculations or change the way the data is formatted.

4.3 Calculated fields, types, and formatting

PowerShell provides a very good set of presentation opportunities via the Format-*

cmdlets. Sometimes these aren’t quite enough, though, and you’ll need to create your

own values to display. This is done by creating a calculated field—an expression that

involves one or more properties of the object you’re displaying. You could, alterna-

tively, modify the PowerShell type system to always add this calculated field to the

object you want to work with. This is more work in the short term, but it provides a

more powerful and easier-to-use solution. Just keep in mind that you need to distrib-

ute the new format file to every machine that will run the script requiring that format.

 Many of the PowerShell cmdlets and WMI classes have a default set of properties

that are displayed. Compare the output from these two PowerShell examples:

Get-WmiObject -Class Win32_ComputerSystem
Get-WmiObject -Class Win32_ComputerSystem | Format-List *

The first example displays a total of six properties (the default display), whereas the

second displays all of the properties on the object.

 These default displays are controlled by PowerShell format files. The bad news is

that they’re XML. The good news is that the format system is easy to change.

 First, though, let’s look at how you can use calculated fields.

114 CHAPTER 4 Best practices and optimization

4.3.1 Calculated fields

A calculated field can be used in a number of ways:

■ To recalculate a value—For example, to change a file size from bytes to GB

■ To reformat a value—For example, to change a date from WMI’s format to a for-

mat commonly used

■ To calculate a new value—For example, to calculate a value based on two or more

existing values

TIP A calculated field in PowerShell is analogous to a calculated column in a SQL

Server database table.

The Win32_LogicalDisk class can be used to return information about the logical

disk volumes in a computer. This WMI class returns the disk size and free space in

bytes. In many cases it may be simpler, and more meaningful, to report the percentage

of free space remaining on the disk. A system that has a disk that’s 80 percent full

needs attention, irrespective of the size of the disk. The following listing shows how

you can achieve this.

function calcfree {
param (
 $disk
)
 $free = ($disk.FreeSpace / $disk.Size) * 100
 "{0:F2}" -f $free
}

Get-WmiObject -Class Win32_LogicalDisk |
Format-Table DeviceId,
@{Name="PercFree"; Expression={calcfree $_}}

This script starts by defining a function that will calculate the percentage of free space

on the disk B. It takes a single parameter. I haven’t typed this parameter for two rea-

sons. First, the function only exists in this simple script, so there’s no risk of sending

the wrong type of data. Second, the type doesn’t have a shortcut, so it would be rather

overwhelming in terms of the space taken.

 The function then calculates the percentage of free space on the disk in the usual

manner, rounding the result to two decimal places to make it more presentable C. It

uses the .NET format string—the bit in the braces, {}—and the PowerShell format

operator, -f. This line is worth spending a little time understanding as this method of

formatting is very simple once you understand it, and very powerful.

 A .NET formatted string consists of one, or more, fields defined in a string. The

individual fields are defined by curly braces, {}. Within the curly braces, the number

to the left of the semicolon provides an index for the field; in this case, it’s the first

field. The F2 tells PowerShell to format the data as a floating-point number with two

decimal places. Other formats are available.

Listing 4.2 Calculated field in Format-Table

Function with
parameterB

Calculate
free spaceC

Calculated
field

D

115Calculated fields, types, and formatting

 The line then continues with the PowerShell format operator -f, which will take

the data to its right and format it into the fields on the left C. Individual items on the

right side of the operator are separated by commas. This is a string on a line by itself,

so the function returns the formatted string.

 The function needs to be called somehow, and you do that by piping the results of

a Get-WmiObject call using the Win32_LogicalDisk class. The results are piped into

Format-Table D where you display the DeviceId that denotes the drive and a calcu-

lated field that gives you the percentage free space.

 The calculated field is a hash table—denoted by @{}. The hash table has two

entries. The first entry provides a name for the calculated field. The second provides

an expression that calculates its value, and in this case it’s a call to the calcfree

method. You could put a calculation in the expression itself, but that can make it

more difficult to read and maintain. You’ll be seeing this technique in a lot more

scripts as you progress through the book.

 A calculated field can be used with Select-Object as well as the Format-* cmdlets.

When used in Select-Object, it becomes part of the object, so it can be used in fur-

ther processing. This enables you to modify listing 4.2 to give the next listing.

function calcfree {
param (
 $disk
)
 $free = ($disk.FreeSpace / $disk.Size) * 100
 "{0:F2}" -f $free
}

Get-WmiObject -Class Win32_LogicalDisk |
select DeviceId,
@{Name="PercFree"; Expression={calcfree $_}} |
sort perfree -Descending |
Format-Table -AutoSize

The main change here is that you replace Format-Table with Select-Object. You can

then continue the pipeline by sorting on the PercFree property you’ve created and

finally displaying the results with Format-Table.

NOTE In the first version of PowerShell, the calculated fields used in the
Select-Object and Format-* cmdlets were slightly different. Select-Object
used Name and Expression, as demonstrated in the previous example, but the
Format cmdlets used Label and Expression instead. The Format cmdlets will
still accept Label, so old scripts won’t break, but I recommend standardizing
on Name in PowerShell v2 and above.

I use a technique based on listing 4.3 to monitor the fullest disks in my customers’

server estate. I’ll show you how to do that in chapter 6.

 You’ve just seen how to use calculated fields to modify the data that’s presented.

It’s also possible to alter the default data that’s displayed by using the type and format

Listing 4.3 Calculated field in Select-Object

116 CHAPTER 4 Best practices and optimization

files. These files are created when PowerShell is installed and they’re loaded every

time PowerShell is started.

4.3.2 Type files

Type files enable you to add properties and methods to the Windows PowerShell

objects. Format files define the default display of objects in Windows PowerShell. Both

sets of files are XML and can be modified to add further customization to PowerShell.

We’ll start by looking at how you can use type files to extend an object, and you’ll get

to format files in the next section.

WARNING Don’t overwrite the format and type files in the PowerShell install
folder because any future PowerShell updates will destroy your changes. Also,
the files are digitally signed and will stop working if you modify them!

PowerShell type files can be found in the PowerShell install folder with a .ps1xml

extension:

Get-ChildItem $pshome*types.ps1xml

The majority of the information is stored in the types.ps1xml file.

NOTE On a 64-bit machine, PowerShell installs both 32- and 64-bit versions
of PowerShell in separate folders. If you need changes to type or format files
to apply to both, you have to explicitly apply them in both folders.

You’ve seen how to create a calculated field that identifies the percentage of free

space on a disk. Let’s look at how you can add that as a property that will always be

produced.

 We’ll start by looking at what PowerShell is already doing to the

Win32_LogicalDisk class. You haven’t seen much of Select-String so far, but it’s a

great tool for poking into the contents of text files. It will display the lines of a file that

contain the pattern you define. You can also display the lines before and after the

ones you’re searching for to put your match into context. Use Get-Help Select-

String for full details.

 In this case, you want to discover the type and format files that modify the way the

Win32_LogicalDisk class is processed by PowerShell:

Select-String -Path $pshome*.ps1xml -Pattern "Win32_Logicaldisk"

On my machine, this gives three references to the types.ps1xml file, of which the last

looks most likely. If you open up the file, you’ll see XML that defines a property set

and the standard members. It’s the standard members you see when you use the

default display.

TIP A quick way to open a file from the PowerShell prompt is to use Invoke-
Item (aliased as ii). This is one place where the alias is worth remembering, as
it means you can quickly type ii $pshome\types.ps1xml to open the file. It also
works for CSV, Excel, and Word files—any file that has a file association defined.

117Calculated fields, types, and formatting

Your mission, and you don’t get an option about accepting it, is to add a property to

the default set that shows the percentage of free space on the disk. Don’t try to mod-

ify types.ps1xml, because it’s digitally signed and will stop working. It’s much better

practice to create a type file with the changes, if for no other reason than that you

can just restart PowerShell to make your changes go away if you get something

wrong. Listing 4.4 shows the XML you need. Details of the XML structure can be

found in Get-Help about_Types.ps1xml.

TIP The name about_Types.ps1xml may seem odd, but it’s what is returned
if you try get-help about_t*. This help file can be accessed with get-help
about_types or get-help about_types.ps1xml. That’s just one of the oddi-
ties of PowerShell.

<?xml version="1.0" encoding="utf-8" ?>
<Types>
 <Type>
 <Name>System.Management.ManagementObject#
 root\cimv2\Win32_LogicalDisk</Name>
 <Members>
 <ScriptProperty>
 <Name>PercFree</Name>
 <GetScriptBlock>
 "{0:F2}" -f
 $(($this.FreeSpace/$this.Size)*100)
 </GetScriptBlock>
 </ScriptProperty>
 </Members>
 </Type>
</Types>

Note that the name of the type should on a single line. It’s only split here to fit into

the page width.

 The important part of the type definition starts with the <ScriptProperty> tag.

You define the name of the new property and provide a script block that calculates the

value of the property. The script block is taken directly from the calcfree function

you used in listing 4.3.

 The XML is saved to a file called listing4.4.ps1xml, and this new type information

needs to be loaded into PowerShell. The Update-TypeData cmdlet forces a reload of

type data, including any extras you want to add.

Update-TypeData -PrependPath listing4.4.ps1xml

The -PrependPath parameter instructs PowerShell to load your type data ahead of the

default data. This ensures that your new type structure is used.

 Figure 4.3 shows this occurring. If the load is successful, no messages are returned

(as in this case). Unfortunately, on some occasions PowerShell doesn’t return any feed-

back if the command hasn’t worked either. This is a feature of PowerShell that can cause

Listing 4.4 Win32_LogicalDisk type file

118 CHAPTER 4 Best practices and optimization

issues sometimes, in that you’re never quite sure if something has worked or not. In this

case, you can use Get-Member to prove that the script property has been added.

Get-WmiObject Win32_Logicaldisk | gm -MemberType ScriptProperty

The information produced by Get-Member is also shown in figure 4.3.

 The final test is to try and use the new property:

Get-WmiObject Win32_LogicalDisk |
select SystemName, DeviceId, PercFree

Figure 4.3 shows the results. The C: and D: drives have a percfree value calculated.

The E: and F: drives are DVD drives that don’t contain disks at present.

 The first time I used a script like this across my server estate, I found two disks that

had zero free space! A quick check showed that they were both CD drives where an

engineer had left the disk in the drive! In chapter 6, you’ll see how you can filter the

output so that you can cut down on the number of shocks you get.

 In the meantime, we need to look at how you can control the default formatting of

PowerShell’s output.

4.3.3 Format files

Format files define how objects are displayed in Windows PowerShell by default. The

PowerShell format files have a .ps1xml extension and are also found in the PowerShell

install folder:

Get-ChildItem $pshome*format*

Figure 4.3 Extending the PowerShell type system

119Calculated fields, types, and formatting

The WMI classes don’t use the format file very much. Most of the formatting is han-

dled by the type files you’ve already seen. You can perform a search of the format files

using Select-String:

Select-String -Path $pshome*format*ps1xml -Pattern "Win32_"

You’ll see results returned for the Win32_PingStatus and

Win32_QuickFixEngineering classes. You’ll use Win32_PingStatus for this exercise.

The first part of figure 4.4 shows how to use this class and the results you can expect. I

don’t use IPv6, so I’m going to drop that result from the default display.

 The first task is to extract the format data for the Win32_PingStatus class:

Get-FormatData -TypeName `
System.Management.ManagementObject#root\cimv2\Win32_PingStatus |
 Export-FormatData -Path chapt4_ping_status.ps1xml
-IncludeScriptBlock -Force

This pulls the XML out of the current format file and creates a file for you to use. You

can examine the file like this:

ii chapt4_ping_status.ps1xml

At this point, you’ll discover that it isn’t formatted. In fact it’s horrible to try and read

through. To be kind, I’ve created a nicely formatted version that is also included in

the download file for the book. Access the file by typing this command at a Power-

Shell prompt:

ii prettychapt4_ping_status.ps1xml

If you examine the file, you’ll notice that you need to remove the following sections:

<TableColumnHeader>
 <Label>IPV6Address</Label>
 <Width>40</Width>
</TableColumnHeader>

 <TableColumnItem>
 <PropertyName>IPV6Address</PropertyName>
 </TableColumnItem>

The file can then be saved as Win32_PingStatus.format.ps1xml.

 Once you have a new format file, you need to apply it:

Update-FormatData -PrependPath Win32_PingStatus.format.ps1xml

As with the type file, using the -PrePendPath parameter ensures that your formatting

is used in preference to the default. Figure 4.4 shows that you don’t get any response if

the format data is successfully updated.

 The final test is to use Win32_PingStatus again. This time you won’t get the IPv6

address showing in the output.

 Note that this change also works for the Test-Connection cmdlet. The reason for

this can be discovered if you try the following:

Test-Connection 127.0.0.1 | Get-Member

120 CHAPTER 4 Best practices and optimization

At some point when creating a script, you’ll find that the thing won’t work. “Thing” is

the politest name you’ll use for the offending script. You need to track down what is

causing your script to fail. This is known as debugging.

4.4 Debugging and error handling

As you progress with PowerShell, your scripts will become more complex. This

increases the possibility of bugs, or errors, creeping into the code. An error termi-

nating a script may not be too bad if you’re only gathering information, but it could

cause your system to become unstable if you’re performing changes. An error that

Figure 4.4 Modifying the default display format

Calculated fields or type/format files

This and the previous sections have shown how you can modify the way PowerShell

outputs objects:

■ Create a calculated field.
■ Add a script property by modifying the type files.
■ Modify the default formatting to include or exclude a field.

The best approach to use depends on what you’re doing. My personal approach is to

use calculated fields, because they only apply to the script in which they’re defined,

and they make the scripts more portable, which is an important consideration for a

consultancy role. Calculated fields are also easier to implement.

In a situation where these scripts will only be used by you, or possibly by a small num-

ber of users, modifying the format or type files is a good approach. This is also a good

approach if you’re delivering the functionality through a module, though loading for-

mat files through a module requires care to ensure they are prepended. The Hyper-V

management module from CodePlex (see chapter 16) provides a good example.

121Debugging and error handling

doesn’t terminate the script but that makes the wrong change could have drastic

consequences. You need to be able to cope with potential errors and discover the

bugs in your scripts.

 Using the [CmdletBinding()] attribute in your functions provides access to the

-Debug and -Verbose parameters. By using Write-Debug and Write-Verbose in your

functions, you can produce output as the function executes, which enables you to per-

form simple debugging techniques.

TIP PowerShell provides very good debugging functionality—see Get-Help
about_Debuggers. I’ve never found it necessary to use this functionality when
debugging my PowerShell code. If you’re interested in this sort of thing, feel
free to investigate.

The best-written function will come across situations where errors occur. This is

often, if not usually, due to the data being passed to the function. PowerShell

includes try-catch functionality to ensure that these errors can be handled grace-

fully if required.

 The last part of error handling we’ll deal with is the return codes supplied by WMI.

There is a simple rule—zero is good and everything else is bad—but what do you do

when you get a nonzero return code?

 Debugging is the art of finding problems in the code syntax (often typing mis-

takes) that prevent the code from running or produce the wrong results. We’ll start by

looking at how you can remove these bugs.

4.4.1 Debugging

A bug is something that prevents a script from running correctly. It may be a coding

or typographic error, or it may be an error in the logic of your script. How can you

find bugs? One way is to read through the code until you spot the error. But this can

take a bit too much time. A quicker way is to put some debug statements into your

script. These statements will show you the values of particular variables, which will

enable you to track what is happening. The problem with this approach is remem-

bering to remove them after you’ve finished debugging. Ideally, you could switch

them on and off. The advanced functions capabilities you’ve already seen give you

this capability.

NOTE If you would like to practice debugging on a script with known errors,
search for “Beginners PowerShell Event 7” on my blog at http://richardspow-
ershellblog.wordpress.com/. It was posted on 2 March 2008 and was a com-
mentary on one of the events from the Microsoft 2008 Scripting Games.

Let’s create and debug a script. The script in the following listing ensures that your

systems are up and running. It does this with a list of computers passed into a

ForEach-Object cmdlet.

http://richardspowershellblog.wordpress.com/
http://richardspowershellblog.wordpress.com/

122 CHAPTER 4 Best practices and optimization

function test-status {
 Import-Csv computers4.csv |
 foreach {
 Get-WmiObject -Class Win32_PingStatus
 -Filter "Address='$($_.Computer)'"
 }
}

function test-status2 {
 [CmdletBinding()]
 param()
 Import-Csv computers4.csv |
 foreach {
 Write-Debug $_.Computer
 Get-WmiObject -Class Win32_PingStatus `
 -Filter "Address='$($_.Computer)'"
 }
}

You can start with a simple function B that reads the contents of a CSV file and uses

Win32_PingStatus to test if the system is responding. This function is used in the

same way as test-status. It will return one ping per computer.

 If you start having problems with this script, you may want to check that the com-

puter name is being passed correctly. The second version of the function adds the

[CmdletBinding()] attribute C. This brings the advanced function capability

into play. You also need the param() statement, or PowerShell will throw an error.

A Write-Debug statement is added to write out the computer name when you

require it D.

 This second function is used from the PowerShell command prompt as test-

status2. As before, you get a single ping returned per computer. If you want to invoke

the debugging functionality, you simply add the debug switch:

test-status2 -Debug

This allows you to switch debug reporting on or off as required, without the need to

modify your code, which could introduce other errors.

 Most of the time, I find that simple instrumentation of the script is sufficient to dis-

cover any bugs—especially if the script is tested in sections as it’s written. If you have

more complicated debugging needs, PowerShell ISE provides a debug capability that

allows you to step through the code one line at a time and discover where it’s going

wrong. This functionality can be invoked from the PowerShell prompt using the cmd-

lets listed in table 4.1. A good example of using these cmdlets can be found in the

about_Debuggers help file.

 Now that you have an idea of how to track down bugs in your code, it’s time to

think about handling errors when the script is running.

Listing 4.5 Script debugging

Initial
function

b

Add debug
capability

C

Debug
statement

D

123Debugging and error handling

4.4.2 Error handling

PowerShell has a number of ways to handle errors. There are a number of PowerShell

automatic variables that deal with errors that are summarized in table 4.2.

The $ErrorActionPreference setting can be overridden by using the ErrorAction

parameter on an individual cmdlet basis.

 The $error variable contains a collection of the recent errors that have occurred,

with the most recent error being in the first element—$error[0]. The easiest way to

see the error contents is to generate an error! You can do this by trying to access a pro-

cess that isn’t running (make sure Notepad isn’t running before trying this):

Get-Process notepad
$?
$error[0]

Table 4.1 PowerShell debugger cmdlets

Cmdlet Purpose

Set-PSBreakpoint Sets breakpoints on lines, variables, and commands

Get-PSBreakpoint Gets breakpoints in the current session

Disable-PSBreakpoint Turns off breakpoints in the current session

Enable-PSBreakpoint Re-enables breakpoints in the current session

Remove-PSBreakpoint Deletes breakpoints from the current session

Get-PSCallStack Displays the current call stack

Table 4.2 PowerShell error handling variables

Variable Description

$ErrorActionPreference Determines response to a non-terminating error.

Values: Stop, Inquire, Continue, SilentlyContinue

$ErrorView Displays format of error information.

Values: NormalView, CategoryView

$error Contains an array holding recent error messages.

$error[0] is the latest.

$? Tests if last command completed successfully (True) or produced

an error (False).

$lastexitcode Contains the exit code of the last command run. It only works for

Windows commands and PowerShell scripts. It doesn’t capture the

WMI return code.

124 CHAPTER 4 Best practices and optimization

This command generates an error that can be viewed using $error. The contents of

the error messages can be separated out (to a certain extent) by using the individual

parameters of $error.

 Instead of working out why an error has occurred, it may be a better proposition to

catch the error as it happens. You can do this with a new feature in PowerShell v2—

the try-catch block.

 We’ll start by considering a simple function that performs arithmetic on two integers:

function div {
 param ([int]$a, [int]$b)
$a+$b
$a/$b
}

div 10 2
div 3 2
div 7 0

The function accepts the integers as parameters. Then it produces the sum of the

integers and divides the first integer by the second. All will go well until your third call

to the function, when the divide fails with a divide-by-zero exception.

 An exception is a .NET term for a terminating error, which is one that will cause your

script to stop. This may be a bad thing if you have a script performing many actions.

One way to handle this situation is to rewrite the function to use try-catch-finally

script blocks, as shown in the next listing.

function div {
 param (
 [int]$a,
 [int]$b
)
 try {
 $a+$b
 $a/$b
 }
 catch [Exception]{"It’s gone wrong" }
 finally {"end"}
}

div 10 2
div 3 2
div 7 0

When you run this script, you’ll get the following output:

12
5
end
5
1.5
end
7
It’s gone wrong
end

Listing 4.6 Using Try-Catch-Finally

125Debugging and error handling

The first two calls to the function produce the results you’d expect. The integers are

summed and divided correctly. Everything within the try block has worked. Notice,

however, that after each set of results the word end is printed out. This is because the

finally block has performed its job. The finally block is an optional extra that will

always execute irrespective of what happens in the try block.

 Your third and final call to the function performs the sum as expected, but when

the divide goes wrong you get a message stating, It’s gone wrong rather than the fail-

ure report you’d expect. The finally block then executes.

 The job of the catch block is to catch exceptions. .NET exceptions are defined in

the documentation, such as MSDN. Be warned—there are a lot of them. I used the

most generic exception in the preceding example, but there’s also a specific divide-

by-zero exception. The best way to find the specific exception is to look in

$error[0].exception and then perform an internet search to track down the spe-

cific exception. The preceding script could be altered so it reads as follows:

catch [DividebyZeroException] {"oops - divide by zero"}
catch [Exception]{"It’s gone wrong" }

An attempt is made to catch the specific exception first. If that doesn’t match, the

generic exception functions as a catchall statement. When using multiple catch

statements, always start with the most specific one first as PowerShell will use the first

catch statement that can handle the exception. The download code contains this

additional line of code. Try commenting out the different catch statements to see

the effect.

 One question remains: how much code should you put in the try block? This

depends on what your script is trying to achieve. Ideally it should be minimal, so that

every individual exception that could occur can be caught. But this increases the

amount of code you need to type and makes the script more cumbersome. A better

result is gained by putting the more critical code into individual try blocks. The safer

code can be contained in larger blocks. Only experience, together with knowledge of

the problem you’re solving and the data involved, can produce the correct answer.

Your approach to exception-handling will change over time as you become more

accustomed to PowerShell.

 The try-catch-finally blocks are designed to work with .NET exceptions. But

WMI isn’t .NET-based—it’s a COM-based technology. This means you need another

approach.

4.4.3 WMI return codes

When you invoke a WMI method, a numeric code is returned to report on the out-

come of the action. The rule when dealing with WMI return codes is very simple:

0 = Good

Anything else = bad

The return code is normally displayed on screen, but you can capture it in a variable,

as the following listing shows.

126 CHAPTER 4 Best practices and optimization

Start-Process notepad
Start-Sleep -Seconds 5

$ret = Get-WmiObject -Class Win32_Process `
 -Filter "Name='notepad.exe'" |
 Invoke-WmiMethod -Name terminate

if ($ret.ReturnValue -eq 0) {Write-Host "Worked OK"}
else {Write-Host "FAILED"}

The script starts by opening Notepad. I recommend you close any open instances of

Notepad before running the script, or they will be shut down as well. “Oops, I didn’t

mean to shut that one down” isn’t a recognized PowerShell statement.

Start-Sleep pauses the script for five seconds. The cmdlet also has a -Milliseconds

parameter for shorter pauses. After the pause, the script finds the Win32_Process class

corresponding to Notepad and pipes it to Invoke-WmiMethod, which kills the process.

WARNING WMI methods don’t have any -WhatIf or -Confirm parameters.
You call it, and it works. Remember this—it may just save some valuable data.
(I’ll repeat this warning at various points throughout the book.)

The $ret variable catches the output of the pipeline. The pipeline ends by invoking a

WMI method, so the return information includes the return code. A generic way of

dealing with the return code is shown in the script. The contents of the if-else script

blocks are totally dependent on the WMI classes being used, the script, and the data

involved. A full list of the return codes is available in the WMI documentation for each

method. One option is to use a switch statement for the most important return codes

and lump the rest into the default bucket.

 That’s it for debugging. Next, WMI has a few areas you need to consider to ensure

you’re getting the best out of it.

4.5 Getting the most from WMI

WMI, like all technologies, has some issues. In this section, we’ll look at common prob-

lems and how to overcome them. Along the way, we’ll cover some best practices that

you can take forward into the rest of the book.

NOTE The previous part of the chapter covered a number of points, such as
the format files, that apply to PowerShell in general as well as to WMI in
particular.

The primary issue with WMI is the number of classes available and, in many cases, the

lack of documentation for those classes. The WMI cmdlets can extract information on

the classes, as you saw in chapter 3. There are also some internet sources you can utilize.

In this section, we’ll look at some things that can be done to mitigate these deficiencies.

 There are also a number of configuration settings you need to set on your systems

to ensure that WMI will work correctly. WMI doesn’t require PowerShell remoting to

access remote machines, but the WSMAN and CIM cmdlets require the WinRM service

Listing 4.7 WMI return codes

127Getting the most from WMI

to be running on the remote machine. If you make enabling PowerShell remoting a

part of your configuration checks, you’ll have covered all eventualities. The tech-

niques to test that these settings are configured correctly, as well as how to perform

the configuration changes, will be covered later in this section.

 Controlling access to resources is an important part of system administration, and

WMI is no exception. The cmdlets will negotiate authentication whenever possible,

but occasionally you’ll have to override the defaults. The WMI cmdlets provide a way

to do this. When, and how to, change the default authentication mechanisms will

be explained.

TIP Run PowerShell with elevated privileges when working with WMI. It’s the
only way to access some classes.

The final parts of this section cover data filtering and conversions. Reducing the

amount of data you work with will make your scripts more efficient. WMI doesn’t

always return data in the best of formats, so you need to know how to convert the

results into a format you can work with.

 We’ll look first at how you can overcome WMI’s imperfections.

4.5.1 Issues with learning to use WMI

Two major issues stand out when working with WMI:

■ Inadequate documentation

■ The large number of classes available

These issues sometimes overlap, in that some classes aren’t documented, or the docu-

mentation hasn’t been brought up to date as changes have been made.

 The primary issue with WMI is one of documentation. For example, the root\cimv2

namespace is well documented, but the classes in the root\wmi namespace are undoc-

umented. In chapter 5 I’ll introduce the BatteryStatus class, but I haven’t been able

to discover any documentation on this class. Attempting to read the class description

isn’t much of a help:

(Get-WmiObject -Namespace 'root\wmi' -List BatteryStatus `
 -Amended).Qualifiers |
Format-Table Name, Value -AutoSize -Wrap

This will return the class description, among other information, but unfortunately all

you get is the rather terse BatteryStatus. You can make some guesses based on the

class name and the property names you can find as follows:

Get-WmiObject -Namespace 'root\wmi' -Class BatteryStatus |
Get-Member

An internet search doesn’t reveal much more useful information. There appear to be

a number of potentially useful classes in this namespace, but their usage is hampered

by the lack of documentation.

128 CHAPTER 4 Best practices and optimization

 The available classes aren’t always very well publicized. Did you know that there are

a set of WMI classes for working with failover clusters? They’re still present in Windows

Server 2008 R2, even though there are PowerShell cmdlets for working with clusters as

well! On your nearest cluster, try this:

Get-WmiObject -Namespace 'root\cluster' -List

The cluster properties can be discovered with

Get-WmiObject -Namespace 'root\cluster' -Class MSCluster_cluster

If you have any clusters in your organization, it’s worth checking out.

 Another issue is that some WMI classes don’t return any data. PowerShell has one

habit that I find annoying and confusing—this lack of return messages. If a Power-

Shell statement is wrong, sometimes there’s no return message. If a WMI class doesn’t

return data, there’s no return message. How do you know whether your PowerShell

statement has failed or there isn’t any data to return? All you can do is try other ways

of formatting the statement.

 The second major issue with WMI is the sheer number of classes available. No one

can know them all. We’ll look at some of the most commonly used classes in the follow-

ing chapters, but we’ll only be scratching the surface. Furthermore, WMI functionality

is constantly changing as Microsoft products evolve, but some of the documentation

doesn’t evolve as quickly. In chapter 5, we’ll look at the devices that can be carried on

a system’s motherboard. The documented list of devices hasn’t been updated recently,

so one of the machines I was testing against had a device that wasn’t recognized.

 Next, WMI works out of the box on the local system, as long as the Winmgmt service

is running, but you need to do a little bit of work to enable access to remote systems.

4.5.2 WMI configuration settings

There are a number of settings you need to check and configure before you start

working with WMI:

■ Required services are running

■ Windows firewall is configured for remote access to WMI

■ PowerShell remoting is enabled

I recommend that installing and configuring these items should be a part of the setup

procedure for all new servers.

NOTE Among other things, enabling PowerShell remoting ensures that the
WinRM service is configured and running. This isn’t required for WMI but it is
required for using the WSMAN cmdlets and the CIM cmdlets in PowerShell v3,
so you should ensure it’s configured with the other requirements.

The first thing you need to do is make sure that the services you need are running.

This includes the WMI service:

Get-WmiObject -Class Win32_Service -Filter "Name LIKE 'win%'" |
select Name, State

129Getting the most from WMI

You’re interested in the Winmgmt (WMI) and WinRM services. If they’re running,

you’re in good shape. On machines that will be accessed remotely, also check that the

DCOM Launcher is running because WMI uses DCOM for remote access.

 The introduction of the Windows firewall in the more recent server versions has

impacted WMI. You need to open the firewall to allow WMI access. This can be

achieved through the GUI, a GPO, or by using the following Netsh commands (I

haven’t found a way to configure the firewall using PowerShell directly yet):

Netsh firewall set service RemoteAdmin
Netsh advfirewall set currentprofile settings remotemanagement enabled

This gives you a route to connect to remote machines using WMI. You can now work

with your remote machines whether or not they have PowerShell installed.

 If you’re performing a significant number of actions on a remote machine, you’ll

be accessing it frequently and you’re better advised to enable PowerShell remoting.

This is a simple case of ensuring that the WinRM service is running on both machines

and that you’ve run the Enable-PSRemoting cmdlet to perform the configuration.

TIP Technically you only need PowerShell remoting enabled on the remote
machine, but if you have it enabled on both machines you can use the
WSMAN provider (see chapter 17) because enabling remoting ensures that
the WinRM service is configured correctly.

If a PowerShell WMI cmdlet can’t connect to a remote server, it will time out eventu-

ally. This can take a significant amount of time and will significantly delay the results if

you’re testing a number of remote machines. This process can be accelerated by test-

ing the connection to the remote machine first:

$computer = "server02"
if (Test-Connection -ComputerName $computer -Count 1) {
 Get-WmiObject -Class Win32_Service -Filter "Name LIKE 'win%'" |
 select Name, State
}
else {Write-Host "Cannot connect to $computer"}

You can use the Test-Connection cmdlet, which uses Win32_PingStatus to test if

your machine can be reached. If it can be, you perform your actions; otherwise you

write a message stating that you couldn’t contact the machine.

 The next step is to make sure that you have the required permissions to access the

WMI data on the remote machine.

4.5.3 Authentication

PowerShell v2 introduced a number of new parameters for Get-WmiObject, one of

which was the -Authentication parameter. This parameter is available on the four

cmdlets you use with WMI:

■ Get-WmiObject

■ Invoke-WmiMethod

130 CHAPTER 4 Best practices and optimization

■ Remove-WmiObject

■ Set-WmiInstance

This may seem confusing because there is also a -Credential parameter available on

these cmdlets. The -Credential parameter deals with passing a userid and password

to access the remote system. If credentials aren’t supplied, the cmdlets use the creden-

tials of the user.

NOTE WMI only needs credentials for remote machines. The WMI cmdlets
won’t accept a credential when accessing the local system.

This is best done by using Get-Credential to create the credential rather than trying

to create it using the -Credential parameter, which has been known to cause errors

because Get-WmiObject attempts the connection before it has used the credential to

prompt for the password. The connection doesn’t have a credential and so fails:

$cred = Get-Credential
Get-WmiObject Win32_ComputerSystem `
-Credential $cred -ComputerName dc02

The -Authentication parameter deals with DCOM authentication. WMI is COM-based

and uses DCOM to access remote systems. There are a number of possible settings, as

shown in table 4.3.

Under normal circumstances, the -Authentication parameter doesn’t need to be spec-

ified. The default value is applied and negotiates the correct level of authentication.

There aren’t many WMI providers that require an authentication level above default.

Table 4.3 WMI authentication

Value Meaning

-1 Unchanged—authentication remains as it was before.

 0 Default COM authentication level. Authentication is negotiated. WMI uses default Windows

Authentication setting. An authentication level of 1 (none) will never be negotiated.

 1 None. No COM authentication is performed.

 2 Connect. COM authentication is performed only when the client establishes a relationship with

the server. No further checks are performed.

 3 Call. COM authentication is performed only at the beginning of each call when the server

receives the request. Only packet headers are signed. No data is encrypted.

 4 Packet. COM authentication is performed on all the data that’s received from the client. Only

packet headers are signed. No data is encrypted.

 5 PacketIntegrity. All the data that’s transferred between the client and the application is authen-

ticated and verified. All packets are signed. No data is encrypted.

 6 PacketPrivacy. The properties of the other authentication levels are used, and all the data is

encrypted.

131Getting the most from WMI

The one you’re most likely to meet is the ISS provider, where the PacketPrivacy level

is needed. This will be explained in more detail in chapter 12.

 Once you’re authenticated to the remote server, you can retrieve your data.

4.5.4 Data filtering

We’ve already touched on the fact that WMI can return a lot of data. This can slow

down your scripts, especially if you’re returning data from remote machines, because

of the amount of data returned across the network.

 You have a number of ways to filter your data. All three of the following code snip-

pets will return the same results:

Get-WmiObject -Class Win32_Service |
where {$_.ExitCode -ne '0'} |
select Name, ExitCode, StartMode, State

Get-WmiObject -Query "SELECT Name, ExitCode, StartMode, State FROM
Win32_Service WHERE ExitCode <> 0"

Get-WmiObject -Class Win32_Service -Filter "ExitCode <> '0'" | select Name,
ExitCode, StartMode, State

The first option uses the Win32_Service class and then filters with Where-Object and

Select-Object to restrict the output. This works, but it has the drawback of returning

all of the Win32_Service properties before you start filtering. When you’re working

remotely, it means you extract all of the data, return it to base, and then start filtering.

 Technically the second option will return a bit more, because it also returns the sys-

tem properties, but all of the filtering is performed as you extract the data from the

WMI database. This means you only transport the objects and properties you’re inter-

ested in (plus the overhead of the system properties). You could perform another

select once you get the data back to filter out the system properties.

 The third approach uses a WMI filter to only return the services showing the exit

codes that aren’t zero. You then use Select-Object to filter down to the properties of

interest.

 Which is the best approach? As always, it depends. I would probably go for the

third option because it filters out the objects of no interest and is more easily modified

than the second option. I also don’t need to worry about the system properties getting

in the way.

 Returning just the subset of data you need is good, but you’ll find that some of the

data isn’t in a format that you can easily use.

4.5.5 Data conversions

One of the things about computer systems that prevents us from getting bored is that

every technology seems to have at least a couple of quirks in the way data is stored and

handled. WMI is no exception. Most sizes, such as disk capacities, are measured in

bytes, and dates are stored in a format that’s readable but difficult to work with (for

example, 20101020191535.848200+060).

132 CHAPTER 4 Best practices and optimization

 Both of these can cause problems, but there are fairly simple ways to cope with

them.

SIZES

There are a number of places you need to deal with sizes, including memory size, file

and folder sizes, and disk sizes. WMI nearly always returns sizes in bytes, which isn’t the

most understandable of formats. If you’re presented with a disk that has 118530666496

bytes of free space, how quickly can you work out what that means? A lot slower than

understanding 110.39 GB, I’ll bet.

 PowerShell understands the same sizes that administrators do, from kilobytes to

petabytes. You can see this by running the following code:

1kb, 1mb, 1gb, 1tb, 1pb |
foreach {"{0,16}" -f $_ }

You pipe a collection of the size constants into a foreach command, where you display

the value in right-justified fields using .NET string formatting and the -f operator.

Notice that you can’t just use kb and the like—you have to put a numeric value in front

of the constant. The value doesn’t have to be an integer; 1.5mb is understood as 1572864.

 A calculated field can be used to display the result of changing a value in bytes to

one in another unit, such as gigabytes. Compare the output produced by the two

options presented in the following snippets:

Get-WmiObject -Class Win32_ComputerSystem |
Format-List Manufacturer, Model, TotalPhysicalMemory

The first option uses the Win32_ComputerSystem class and produces a list including

manufacturer, model, and the total amount of memory. This is in bytes. If you’re test-

ing machines to ensure that they have sufficient RAM for a new piece of software, you

need to compare against the vendor specifications, which will be in megabytes or giga-

bytes:

Get-WmiObject -Class Win32_ComputerSystem |
Format-List Manufacturer, Model,
@{Name="RAM(GB)";
Expression={$([math]::round(($_.TotalPhysicalMemory / 1gb),2))}}

The second option provides a more usable display. The manufacturer and model are

displayed as before. This time you use a calculated field to divide the memory by 1 GB

and round the result to two decimal places. This is much easier to understand and com-

pare against the specifications. I’m in the middle of checking the specifications on 150

machines as I write this section, and I’m using the second approach. It does work!

 The other area where WMI causes problems with data is when you consider dates.

DATES

WMI has its own format for dealing with dates. This can be seen in figure 4.5, where

the Win32_OperatingSystem class is used to determine the last time the machine was

booted. There are other ways of measuring the time when a machine was started,

including checking when the event log service was started, but I find this technique

133Getting the most from WMI

more accurate. The date is returned as year, month, day, hours, and seconds. This is

followed by a value indicating the number of microseconds and the time zone.

 I can read it and figure it out, but I can’t easily work with it.

 Use Get-Member on the Win32_OperatingSystem class and you’ll find two script

methods added to the object (they are automatically added to all WMI objects):

■ ConvertToDateTime

■ ConvertFromDateTime

You’ll be converting WMI values to normal date formats most often, so let’s start with

that. The second line of code in figure 4.5 shows how this works:

Get-WmiObject Win32_OperatingSystem |
select @{Name="BootTime";
 Expression={$_.ConvertToDateTime($_.LastBootUpTime)}}

Call the method on the object on the pipeline, and use the object’s LastBootUpTime

as the argument. It looks a bit messy, but if it’s something you’re going to use a lot, put

it into a function that’s loaded into PowerShell from your profile.

 I use the ConvertToDateTime method much more than the ConvertFromDateTime

method. But as the method is available, it would be rude not to show how it works:

$date = [datetime]"8 October 2010 19:46:00"
Get-WmiObject -Class CIM_DataFile -Filter "Path='\\Test\\'" |
where {$_.LastModified -gt ($_.ConvertFromDateTime($date))}

A .NET DateTime object is created. The format used to present the date and time is

usable in any locale, which makes it the safest option if your code is likely to be used

in different countries. If you post it to the internet, expect it to be used in different

countries.

 The CIM_DataFile class is used to retrieve the files from the c:\test folder. Note

how you have to use a double backslash (\\) to represent a single backslash (\) in the

folder path. This is because the backslash symbol is an escape character in WMI. More

on this topic in chapter 8.

Figure 4.5 Using the WMI date conversion methods

134 CHAPTER 4 Best practices and optimization

 A PowerShell filter is used to test the LastModified property against your date. You

have to convert the date into WMI format for each test.

TIP Combining the information about data filtering and data formatting
that has been presented in this chapter leads to a simple rule of thumb: filter
as soon as possible and format as late as possible.

There is always more to learn about WMI, but we’ve reached the point where it’s time

to stop looking at the theory and see how you can use it in practice to make your

administrative tasks easier.

4.6 Summary

You’ve seen three broad areas of best practices. These can be applied in any environment

to help maximize the return from your investment in learning PowerShell and WMI.

 Security is a major issue in any organization. The internet is a great source of Pow-

erShell examples, but you should use a trusted source and always, without fail, test any

code you download.

 Keeping the code secure once you’ve created your scripts involves a number of steps:

■ Sign code to reduce the risks of tampering.

■ Restrict access to the shares containing the code.

■ Audit the use of administrative scripts.

When you’re using PowerShell, there are some best practices you can employ to make

your code more efficient and easier to write:

■ Use the pipeline when reading from files if possible.

■ Use parameters instead of prompting for values.

■ Use string substitution to save a lot of typing.

■ Use calculated fields to change the data you output.

■ Use type and format files to add new properties to PowerShell objects.

■ Use the PowerShell debugging and error handling to find and fix problems in

your code.

WMI adds another handful of items to consider:

■ WMI documentation may be out of date or nonexistent.

■ It can be difficult to discover what classes are available.

■ The Windows firewall must be configured to allow WMI access.

■ Use Test-Connection rather than waiting on multiple timeouts.

■ Some providers such as IIS and Microsoft Clustering require authentication for

remote access.

■ Filter early and format late.

■ Size and date conversions are simple with PowerShell

We’ve now completed our look at PowerShell and WMI theory. It’s time to start using

these tools to administer your systems. Chapter 5 starts this process by showing what

you can discover about your systems with some simple WMI scripts.

Part 2

WMI in the enterprise

This is where the fun starts. You’ve learned how to use PowerShell and WMI

in part 1 of the book. In this second part, we’ll concentrate on solving adminis-

trative problems using PowerShell scripts. Lots and lots of scripts.

WMI has been traditionally been used to gather information about com-

puter systems. This where we’ll start with chapter 5, looking at system hard-

ware, peripherals, the operating system, and installed software. Chapter 6

extends this theme by examining the storage systems attached to our comput-

ers. We’ll look at performing actions such as defragmentation as well as discov-

ering the disk configuration.

 Chapters 7 and 8 examine the registry and filesystem respectively. The man-

agement of these two data stores is essential to the well-being of your servers. In

chapter 9 we’ll look at how to manage the services and processes you have running.

 Chapter 10 looks at printers and chapter 11 focuses on discovering and con-

figuring network adapters and performing other network-related tasks. IIS has a

WMI provider that you’ll use in chapter 12; it enables you to configure websites

and applications.

 In chapter 13, we’ll bring these topics together to configure a server’s name,

network, domain, and power plan, among other items.

 Chapter 14 looks at security, focusing on what WMI has to offer regarding

users and the firewall. Chapter 15 extends the security aspect with a look at event

logs. We’ll also consider performance counters.

 Virtualization is a hot topic, and Hyper-V has its own WMI provider, which is

covered in chapter 16.

 Throughout these chapters, you’ll see examples of discovery and manage-

ment scripts that are immediately usable in your environment.

137

System documentation

Using WMI to discover information about your systems is the traditional role of

the technology. Many of the WMI-based scripts that you’ll find will show how

to perform these tasks. Documenting systems is a necessary task, but one that

most administrators put off until they’re forced into it. It’s a long, tedious, and

boring process.

 Not anymore! The scripts you’ll work with in this chapter won’t necessarily

make documenting your systems interesting, but they will make it a quick and rela-

tively painless process. Run the functions from this chapter and output the results

to a file. Instant documentation! I recently had to update the documentation for

several hundred servers ahead of an audit, and the scripts I used were based on this

chapter. It ran as an overnight task. A quick check the next morning, and that activ-

ity was marked as complete. Compare that to how long the documentation would

take to prepare manually, and the savings in time and effort available through Pow-

erShell and WMI soon become apparent.

This chapter covers

■ Discovering system hardware

■ Discovering operating system configuration

■ Discovering installed software

138 CHAPTER 5 System documentation

TIP Notes on the structure of the scripts and on how to use the functions are
given in the “about this book” section at the start of this book. Remember also
that the functions can be quickly rewritten if you only need a subset of the
data, such as if you only need the operating system version and service pack.

This chapter opens with a look at system hardware, covering topics such as the com-

puter itself, its role in the domain, the processor, the motherboard, and memory con-

figuration. At the end of section 5.1, you’ll know how to retrieve information about

the computer hardware that comprises your system. I use these scripts to create server

documentation whenever I build a new server. It’s so easy that it doesn’t really register

as a task. Updating documentation becomes a simple matter.

NOTE In this chapter, we’ll concentrate on information-gathering, but the
methods available with these WMI classes won’t be forgotten. They’ll be dis-
cussed in later chapters, especially chapter 13.

You also need to discover the peripherals attached to your systems. The basic set is the

monitor, keyboard, and mouse. USB ports play an important part in computer periph-

eral usage, so discovering what is available through them is an important task. Parallel

and serial ports may have declined in popularity, but are still present on many systems.

These peripherals may be more orientated toward your desktop estate, but under-

standing the capabilities of your systems is a requirement for upgrades. I once had to

determine if we could roll out a new piece of software to a number of machines in a

remote site. This software interacted with a USB device, so I had to check if the

machines had USB ports. I used the USB-related scripts in section 5.2 and easily discov-

ered the answer.

 Computers all have one thing in common. They need power. Understanding a com-

puter’s power supply, battery status, and power plans are important configuration items.

These items also form part of the computer’s documentation. Being able to access them

remotely makes producing documentation easier and quicker. Testing the battery status

is also a useful diagnostic step. All these and more are covered in section 5.3.

 After the hardware, the operating system is the next most important item. The

scripts in section 5.4 show how you can discover the operating system configuration,

installed hotfixes, boot and recovery configurations, as well as the system time and

time zone. I regularly need to report on when my servers were last rebooted to prove

my uptime statements. I use a script based on this section to easily check the time syn-

chronization on domain controllers.

 Systems in the enterprise are usually running a suite of applications. We’ll close the

chapter by looking at the installed software and registered COM applications. This

completes our documentation requirements.

 You may have noticed that the preceding hardware lists don’t include disks and

network cards. Don’t worry, I haven’t forgotten them. Chapter 6 is devoted to disk sys-

tems, and network cards are covered in chapter 11. Before we get to those items, you

need to know how to discover your basic hardware.

139System hardware and configuration

5.1 System hardware and configuration

The starting point for any investigation of your computer estate has to be the basic sys-

tem hardware. In this section, you’ll learn how to retrieve information about the con-

figuration of your servers from local and remote systems. This information will allow

you to document your servers as well as test for specific situations. I’ve used subsets of

these scripts to test whether a system meets the requirements for installing or running

a particular piece of software.

 We’ll start by examining the basic computer system, including the make and

model. Don’t worry if you’re running virtual systems, as WMI will report them as vir-

tual servers. The type of computer can be important when determining what else can

be done with the machine, and the role of the machine in the domain can similarly be

important. Simple scripts enable you to discover this information remotely.

 One of the most important parts of the system is the CPU. Determining how many

and what types there are can help you balance loads across the server estate. With

Windows Server 2008 and above, you also get an easy way to discover the number of

processor cores in each physical processor.

 The BIOS controls how the system starts. A recent project I was working on had a

problem because of bugs in a particular version of the BIOS. Using WMI, you can easily

check the BIOS versions of all the servers involved.

 Memory is often one of the main areas of concern. If you don’t have enough, your

applications won’t run properly. As well as discovering how much memory is in your

machines, you can discover how many banks of memory are in use and hence whether

you can upgrade these systems to prolong their life and reduce costs for the organization.

The final script of section 5.1 presents a technique for discovering this information.

 The WMI classes used in this section are listed in table 5.1. These classes cover the

major pieces of hardware you’ll meet in your systems. Some of the classes will be used

in more than one script, and some scripts use multiple classes, but the table presents

them in the order you’ll meet them in this section. I normally start with the basics of

the computer system and then work down to the fine details.

Table 5.1 System hardware classes

Component WMI class

Computer make and model,

Computer type, Domain role

Win32_ComputerSystem

Chassis type Win32_SystemEnclosure

Motherboard Win32_BaseBoard

Devices on motherboard Win32_OnBoardDevice

CPU Win32_Processor

BIOS Win32_BIOS

Memory Win32_PhysicalMemoryArray
Win32_PhysicalMemory

140 CHAPTER 5 System documentation

 Get computer system information

Ideally organizations should possess an asset database or, better still, a configuration-

management database. The database would detail the configuration of the computers

and other parts of the IT infrastructure. Unfortunately, many organizations don’t have

this information.

 There are a number of WMI classes you can use to find this information.

PROBLEM

You need to discover the configuration of the computers in your organization. This

may be to determine if the computers meet the requirements for a new software

installation. Alternatively, the information could be used to form the initial load of

your asset database or as a check on the currently loaded data.

SOLUTION

The WMI used in the following listing will supply the basic data you require, including

make and model of the computer.

$chassis = DATA {ConvertFrom-StringData -StringData @'
3 = Desktop
5 = Pizza Box
7 = Tower
10 = Notebook
'@}

$obd = DATA {ConvertFrom-StringData -StringData @'
3 = Video

Listing 5.1 Basic system information

Code samples

The scripts in this chapter are designed to be used as the basis of a system-docu-

mentation process. I’ve treated the scripts as report-generation tools, and in some

instances, usually where multiple WMI classes have been called, I’ve inserted strings

that will be output as headers. They also function as reminders of the data we are

retrieving when multiple WMI classes are accessed in one script.

PowerShell purists may view this as a cardinal sin, because these scripts aren’t out-

putting pure objects. But these scripts are written to fulfill a purely reporting function

and aren’t designed to be used in any further processing.

If you prefer not to have the headers produced, I’ve created alternative scripts in

the Chapter05\Alternative Non-Report Style folder of the download code. These

alternatives use Write-Verbose to control whether or not the header is produced

when the script runs. A further possibility would be to use Write-Warning to dis-

play the messages.

Alternative code will be provided at other points in the book where similar reporting

styles are used.

TECHNIQUE 1

Data
lookups

B

141TECHNIQUE 1 Get computer system information

5 = Ethernet
'@}

function get-computersystem {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 "Computer System"
 Get-WmiObject -Class Win32_ComputerSystem `
 -ComputerName $computername|
 select Name, Manufacturer, Model,
 SystemType, Description,
 NumberOfProcessors, NumberOfLogicalProcessors,
 @{Name="RAM(GB)";
 Expression={[math]::round($($_.TotalPhysicalMemory/1GB), 2)}}

 "System Enclosure:"
 Get-WmiObject -Class Win32_SystemEnclosure `
 -ComputerName $computername |
 select Manufacturer, Model,
 @{Name="Chassis"; Expression={$chassis["$($_.ChassisTypes)"]}},
 LockPresent,SerialNumber, SMBIOSAssetTag

 "Base Board:"
 Get-WmiObject -Class Win32_BaseBoard `
 -ComputerName $computername |
 select Manufacturer, Model, Name,
 SerialNumber, SKU, Product,
 Replaceable, Version

 "On Board Devices:"
 Get-WmiObject -Class Win32_OnBoardDevice `
 -ComputerName $computername |
 select Description,
 @{Name="Device";
 Expression={$obd["$($_.DeviceType)"]}}
}}

This script follows the basic pattern you’ll see throughout the book. You define some

hash tables B as lookup tables and use Get-WmiObject to retrieve the required data.

Convert-FromStringData is a PowerShell v2 cmdlet that converts a here-string (a Power-

Shell multiline string) into a hash table. If PowerShell v1 is being used, the hash table

will need to be defined from scratch (see appendix A). The Win32_ComputerSystem class

supplies data C, such as the make and model, the number of processors, and the amount

of RAM. The RAM is recalculated from bytes to gigabytes (GB) to make a more readily

understood display.

 The system enclosure D and the motherboard (baseboard) E are returned by the

appropriate classes. They both have properties labeled manufacturer, which won’t

necessarily be the same. It’s always interesting to compare the manufacturers given

here with the manufacturer of the whole system.

Computer
system

C

Chassis
type

D

MotherboardE

Onboard
devices

F

142 CHAPTER 5 System documentation

 Motherboards may possess a number of components, such as video controllers or

network cards, that are additional devices on the board. These can be discovered by

the Win32_OnBoardDevice class F. The list of available devices in the WMI documen-

tation is a little out of date, but the description of the device will usually supply suffi-

cient information.

DISCUSSION

A calculated field in Select-Object uses the lookup tables. The type of onboard

device is a good example of using the lookup tables F:

@{Name="Device"; Expression={$obd["$($_.DeviceType)"]}}

A name is defined as a string, and the lookup is performed by the expression. In this

case, the $obd variable holds the hash table and the DeviceType property is used as

the lookup. A subexpression is used to ensure the value of the property is obtained.

NOTE The full hash tables may not be given in the listings. Selected values
are used to illustrate the scripts in the book, but the full list of values is in the
code download.

The function can be used from the command line:

".", "127.0.0.1" | foreach {get-computersystem}

Alternatively, a list of computers could be supplied in a CSV file and piped to the function.

 As an example of the evolving nature of WMI, the NumberofLogicalProcessors

property on the Win32_ComputerSystem class C is only available on Windows

Vista/2008 and above.

 One of the things about WMI that may cause confusion is that there can be multi-

ple answers to the same question, such as the computer type.

 Get computer type

In listing 5.1 you saw that the Win32_SystemEnclosure class returned the chassis type.

This data is also available on the Win32_ComputerSystem class.

PROBLEM

You’ve been tasked with discovering which machines in your environment are desk-

tops and which are servers.

SOLUTION

The data can be discovered using the Win32_ComputerSystem class. The next listing

shows how this class can be used.

$comptype = DATA {
ConvertFrom-StringData -StringData @'
0 = Unspecified
1 = Desktop
2 = Mobile

Listing 5.2 Computer type

TECHNIQUE 2

143TECHNIQUE 2 Get computer type

3 = Workstation
4 = Enterprise Server
5 = Small Office and Home Office (SOHO) Server
6 = Appliance PC
7 = Performance Server
8 = Maximum
'@
}
function get-computertype {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject -Class Win32_ComputerSystem `
 -ComputerName $computername |
 select Name,
 @{Name="ComputerType"; Expression={$comptype["$($_.PCSystemType)"]}}
}}

The imaginatively named $comptype hash table is created using ConvertFrom-

StringData and defines the computer types. This is then used in a calculated field to

return the computer type.

DISCUSSION

The computer types produced by listings 5.1 and 5.2 are similar but not identical. An

example is shown in figure 5.1. Note that you can use Select-Object on the results of

these functions. Remember that you’re dealing with objects.

Figure 5.1 Results of running the functions from listings 5.1 and 5.2

144 CHAPTER 5 System documentation

In addition to determining its physical type, you can view a computer in the light of its

role in a domain.

 Get domain role

A Windows machine can be in a domain or a work group. It can be a workstation or a

server. If it’s in a domain, it could be a domain controller. You can find your domain

controllers in a number of ways using .NET, ADSI, or the AD cmdlets from Microsoft or

Quest. If you’re retrieving computer information using WMI, you can also find

domain controllers.

PROBLEM

You need to determine if your systems are in the domain and what role they play in

the domain. You specifically want to know if any machines are domain controllers.

SOLUTION

The script in the next listing follows the pattern established in previous scripts.

$domrole = DATA {
ConvertFrom-StringData -StringData @'
0 = Standalone Workstation
1 = Member Workstation
2 = Standalone Server
3 = Member Server
4 = Backup Domain Controller
5 = Primary Domain Controller
'@
}
function get-domainrole {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject -Class Win32_ComputerSystem `
 -ComputerName $computername |
 select Name, Domain,
 @{Name="DomainRole";
 Expression={$domrole["$($_.DomainRole)"]}}
}}

The hash table defines the possible outcomes for the domain role. The function accepts

a string containing a computer name as a parameter, and the parameter has a default

of $env:COMPUTERNAME, which means the local system name. Win32_ComputerSystem is

used to return the information using a calculated field to decode the domain role.

DISCUSSION

The default value on the parameter enables you to use just the function name to get

the information on the local machine. One of the really great things about the

Listing 5.3 Domain role

TECHNIQUE 3

145TECHNIQUE 4 Get processor information

advanced functions is that tab completion works on the parameter names. It just hap-

pens—no coding required!

 If you don’t want to use a default parameter, I suggest you use a mandatory param-

eter. This will force PowerShell to prompt for the computer name. You can do this by

changing the parameter statement to the following syntax:

[parameter(Mandatory=$true, ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]

If a default value and mandatory parameter are used together, the default is ignored.

 You’ve now learned about as much as you can at the machine level. It’s time to dive

into the computer hardware and configuration. We’ll start by looking at the processor.

 Get processor information

The computer’s processor performs the computational effort in your systems that

enable you to play games or even write a book. The number of cores in a physical CPU

continues to rise, but you still need to understand what your servers are capable

of processing.

 As a consultant, I’ve often ended up on new sites where no one can tell me the con-

figuration of a particular machine. Now I can find out for myself in much less time.

PROBLEM

Will your server support an increased workload? The answer depends on two things:

First, how busy is the server at the moment? You’ll learn how to discover this in

chapter 15. Second, what size processors do you have, and how many of them are in

your computer?

 Another thing you need to know is whether the processor can support 64-bit

applications.

SOLUTION

Discovering the speed and type of the processors in a computer can be achieved with

the Win32_Processor class, as shown in the following listing. Be careful when typing,

as the Win32_Process class will give you unexpected results if it’s selected by an editor

with IntelliSense on WMI class names.

$arch = DATA {ConvertFrom-StringData -StringData @'
0 = x86
9 = x64
'@}

$fam = DATA {ConvertFrom-StringData -StringData @'
29 = AMD Athlon™ Processor Family
112 = Hobbit Family
131 = AMD Athlon™ 64 Processor Family
132 = AMD Opteron™ Processor Family
'@}

$type = DATA {ConvertFrom-StringData -StringData @'

Listing 5.4 CPU type

TECHNIQUE 4

Lookup hash
tables

B

146 CHAPTER 5 System documentation

3 = Central Processor
4 = Math Processor
6 = Video Processor
'@}

function get-cputype {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject -Class Win32_Processor `
 -ComputerName $computername |
 Select DeviceID,
 @{Name="Processor Type";
 Expression={$type["$($_.ProcessorType)"]}},
 Manufacturer, Name, Description,
 @{Name="CPU Family";
 Expression={$fam["$($_.Family)"]}},
 @{Name="CPU Architecture";
 Expression={$arch["$($_.Architecture)"]}},
 NumberOfCores, NumberOfLogicalProcessors, AddressWidth,
 DataWidth, CurrentClockSpeed, MaxClockSpeed,
 ExtClock, L2CacheSize, L2CacheSpeed, L3CacheSize,
 L3CacheSpeed, CurrentVoltage, PowerManagementSupported,
 ProcessorId, SocketDesignation, Status
}}

Executing the listing creates a function called get-cputype and some hash tables B
to be used as data lookups. The function takes a computer name as a parameter C
and performs a call to Win32_Processor D. Where applicable, Select-Object uses a

calculated field to convert the numeric codes into meaningful values using the hash

tables. The results are displayed as a list. A separate listing will be created for each

CPU. Note that the CPU device IDs start numbering at zero.

DISCUSSION

A limited number of hash table members are shown for brevity. The full type listings

are available in the download version of the script. In case anyone is wondering, the

Hobbit processor is genuine.

 If this function is run against a Windows Server 2008/Vista or later system, the

number of logical processors and number of cores are reported correctly. Earlier

operating systems won’t report values for these properties and will report logical pro-

cessors as physical processors.

 Next, the BIOS controls how a system starts up. The version can have an impact on

your systems.

 Get BIOS information

The Basic Input/Output System (BIOS) runs when the computer starts. It initializes

certain system devices and then loads the operating system. On modern systems, the

Lookup hash
tablesB

Parameter
blockC

Processor
propertiesD

TECHNIQUE 5

147TECHNIQUE 5 Get BIOS information

BIOS can be upgraded. This may need to happen before other firmware can

be upgraded.

PROBLEM

What version of the BIOS is being used to start your system? This information has to be

recovered so that you can determine if an upgrade is required to work with a new device.

SOLUTION

The following listing shows how you can create a function to return the BIOS informa-

tion. You need to use the class twice in order to unravel the BIOS characteristics.

$bioschar = DATA {ConvertFrom-StringData -StringData @'
7 = PCI is supported
8 = PC Card (PCMCIA) is supported
9 = Plug and Play is supported
11 = BIOS is Upgradable (Flash)
15 = Boot from CD is supported
33 = USB Legacy is supported
'@}

function get-biosinfo {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject -Class Win32_Bios `
-ComputerName $computername |
 Select BuildNumber, CurrentLanguage, InstallableLanguages,
 Manufacturer, Name, PrimaryBIOS,
 @{Name="Release Date";
 Expression={ $_.ConvertToDateTime($_.ReleaseDate) }},
 SerialNumber, SMBIOSBIOSVersion, SMBIOSMajorVersion,
 SMBIOSMinorVersion, SMBIOSPresent, Status, Version

 "BIOS Characteristics:"
 Get-WmiObject -Class Win32_Bios -ComputerName $computername |
 Select -ExpandProperty BiosCharacteristics |
 foreach {$bioschar["$($_)"]}

}}

The BIOScharacteristics property is an array of integers that you’ll need to expand

so that you can decode the meaning of the integer. These values are defined in the

hash table called $bioschar B. The characteristics are a good guide to the devices

that the system can support.

 The get-biosinfo function C is used to get the BIOS information D. This data is

displayed as a list, as shown in figure 5.2. A data conversion using the ConvertToDateTime

method is performed on the BIOS release date.

Listing 5.5 Listing 5.5 BIOS

Hash
tableB

Function
definition

C

Main
data

D

Expand BIOS
characteristics

E

148 CHAPTER 5 System documentation

A second call to Win32_Bios is made E to access the BIOS characteristics. It would be

possible to slightly improve the function by making a single call to Get-WmiObject

and putting the results into a variable. The variable would then be used twice to display

the data.

 The BiosCharacteristics property is expanded by Select-Object, and each

integer code is looked up in the hash table to determine its meaning. Figure 5.2 shows

the output.

DISCUSSION

There are a number of WMI classes that use arrays of values as a property. In some

cases, you don’t need to worry about them because the information is available from

other properties. When the information can only be recovered from an array, you

have to use Select-Object and ExpandProperty to access the data.

 The drawback to ExpandProperty is that you can’t display other properties at the

same time as you’re expanding a property. You have to use two individual calls to

Select-Object.

 The last object on our tour of the main computer system is memory.

 Get memory configuration

The amount of memory in computer systems has rocketed. I remember having argu-

ments with management ten years ago because I wanted to put 256 MB in some PCs.

Figure 5.2 Expanding

the BIOS characteristics

TECHNIQUE 6

149TECHNIQUE 6 Get memory configuration

Now you wouldn’t really consider a new full-size machine that has less than 2 GB. Net-

books currently tend to come with 1 GB of RAM, but the Windows 7 Starter Edition is

configured to run with a low memory footprint.

NOTE Just in case you were thinking of jumping to using 1 GB of RAM and
Windows 7 Starter Edition for your main machines, remember that Starter
Edition can’t join a domain.

PROBLEM

Memory is normally arranged on one or more chips. You need to know the arrange-

ment so that you can determine if the system can be upgraded in a cost-effective man-

ner. You also need to know the amount of RAM in the system.

SOLUTION

Listing 5.1 showed how to use the Win32_ComputerSystem class to find the total system

memory. If you need that information as part of the memory information, the follow-

ing line of PowerShell can be utilized:

get-computersystem | where{$_."RAM(GB)"} | select "RAM(GB)"

Your functions can be used on the pipeline just like cmdlets. The rest of the memory

information is obtained from the get-memory function defined in the following listing.

$memuse = DATA {ConvertFrom-StringData -StringData @'
3 = System memory
'@}

$memcheck = DATA {ConvertFrom-StringData -StringData @'
3 = None
4 = Parity
'@}

$memform = DATA {ConvertFrom-StringData -StringData @'
7 = SIMM
8 = DIMM
'@}

$memtype = DATA {ConvertFrom-StringData -StringData @'
2 = DRAM
20 = DDR
21 = DDR-2
'@}

function get-memory {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 Get-WmiObject -Class Win32_PhysicalmemoryArray `

Listing 5.6 Memory configuration

Hash
tables

B

Memory
array

C

150 CHAPTER 5 System documentation

 -ComputerName $computername |
 Select @{Name="Location"; Expression={
 if ($_.Location -eq 3){"System Board"}
 else {"Other"}
 } },
 @{Name="Use";
 Expression={$memuse["$($_.Use)"]}},
 MemoryDevices, HotSwappable,
 @{Name="MaxRAM(GB)";
 Expression={[math]::round($($_.MaxCapacity/1mB), 2)}},
 @{Name="CheckType";
 Expression={$memcheck["$($_.MemoryErrorCorrection)"]}}

""
 Get-WmiObject Win32_Physicalmemory `
-ComputerName $computername |
 select BankLabel,
 @{Name="Size(GB)";
 Expression={[math]::round($($_.Capacity/1gb), 2)}},
 DataWidth, DeviceLocator,
 @{Name="Form";
 Expression={$memform["$($_.FormFactor)"]}},
 @{Name="Type";
 Expression={$memtype["$($_.MemoryType)"]}},
 Speed, TotalWidth,
 @{Name="Detail";
 Expression={$memdetail["$($_.TypeDetail)"]}}
}}

After defining the hash tables B, this script makes use of two WMI classes. The first

class, Win32_PhysicalMemoryArray C, displays the basic information, including

where the memory is located and how many memory devices can be fitted. The

MaxRAM(GB) is important for determining if further RAM can be fitted.

 The second class is Win32_Physicalmemory D, which is used to display informa-

tion about each individual memory device. This will include the memory size in GB,

the type of memory, and its speed.

DISCUSSION

If only the number of devices and the total size is required, you can use Measure-

Object to determine the results:

get-memory | Measure-Object -Sum "Size(GB)"

Comparing the results of this code with using get-computersystem (shown at the

beginning of the solution) can very quickly identify whether any memory has been

diverted for graphics or other uses.

 Memory is the last of the basic computer system components we’ll consider. It’s

time to look at the peripherals attached to your computers.

5.2 Peripherals

Computer systems aren’t self-contained boxes—you have to attach other devices to

them, such as a monitor, keyboard, and mouse. You also need to think about the

Memory
chips

D

151TECHNIQUE 7 Get display settings

hardware ports that are available on the system. Parallel and serial ports are often still

available, even though they’re being superseded by USB ports in many systems.

 The WMI classes we’ll be dealing with in this section are summarized in table 5.2.

The monitor is the primary peripheral you need to consider.

 Get display settings

Every client machine will have a monitor. Servers may not have a monitor physically

attached if they’re virtual machines or connected to a KVM to allow screen sharing.

PROBLEM

You need to determine the display characteristics of your system.

SOLUTION

There are two WMI classes you need to consider to solve this problem.

Win32_DesktopMonitor will provide information on the monitor that’s attached to the

system. There’s also the video controller to take into consideration; this information is

discovered using the Win32_VideoController class. The following listing shows how

these can be combined into a single function.

function get-display {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 "Monitor"
 Get-WmiObject -Class Win32_DesktopMonitor `
 -ComputerName $computername |
 select Name, Description, DeviceId,
 MonitorManufacturer, MonitorType,
 PixelsPerXLogicalInch,
 PixelsPerYLogicalInch,
 ScreenHeight, ScreenWidth

Table 5.2 Computer peripheral classes

Component WMI Class

Display settings Win32_DesktopMonitor
Win32_VideoController

Input device Win32_Keyboard
Win32_PointingDevice

Hardware ports Win32_ParallelPort
Win32_SerialPort
Win32_USBHub
Win32_USBController

Listing 5.7 Display settings

TECHNIQUE 7

152 CHAPTER 5 System documentation

 "Video"
 Get-WmiObject -Class Win32_VideoController `
 -ComputerName $computername |
 select Name,
 @{Name="RAM(MB)"; Expression={$_.AdapterRAM/1mb}},
 VideoModeDescription,
 CurrentRefreshRate,
 InstalledDisplayDrivers,
 @{Name="DriverDate";
 Expression={$_.ConvertToDateTime($_.DriverDate)}},
 DriverVersion
}}

This function is very straightforward. It starts with the standard parameter of a com-

puter name. This could also be an IP address. The Win32_DesktopMonitor class is

used first, and the required properties are selected.

 The Win32_VideoController class is called. Two calculated fields are used: the

first calculates the video RAM into megabytes from bytes, and the second converts the

driver date to a readable format.

DISCUSSION

The Win32_DesktopMonitor class was introduced with Windows Vista to replace the

Win32_DisplayConfiguration class. The Win32_VideoController class was intro-

duced at the same time to replace the Win32_DisplayControllerConfiguration

class. The old classes are still available in Windows up to at least Windows 7. The new

classes may misreport on devices using old drivers on older operating systems. It may

be worth trying the older classes in that case.

 The situation is much simpler when you consider input devices.

 Get input devices

The standard input devices are a keyboard and mouse. You’ll usually only have a sin-

gle keyboard, but you may have multiple mice, especially on laptops.

PROBLEM

The keyboard and mouse attached to your computer need to be determined to com-

plete the documentation of your system.

SOLUTION

Listing 5.8 shows how you can retrieve this information. The Win32_Keyboard class

will return the information on the keyboard. I’ve selected the properties that I think

are most useful, but as with all of the listings in the book, I encourage you to examine

the full list of available properties to determine if there are any others you require to

meet your particular needs.

function get-input {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,

Listing 5.8 Input devices

TECHNIQUE 8

153TECHNIQUE 9 Get ports

 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 "Keyboard"
 Get-WmiObject -Class Win32_Keyboard `
 -ComputerName $computername |
 select Name, Description, DeviceId,
 Layout, NumberOfFunctionKeys

 "Mouse"
 Get-WmiObject Win32_PointingDevice `
 -ComputerName $computername |
 select Manufacturer, Name, DeviceID,
 DeviceInterface
}}

The information on the mouse is provided by the Win32_PointingDevice class, which

isn’t exactly an intuitively named WMI class. If other, more exotic, input devices are

used on a particular system, I’m afraid you’ll need to experiment to determine if

they’re detected by this class.

DISCUSSION

The Win32_PointingDevice class will return multiple devices, especially on a laptop.

On the laptop I’m using to write this book, I have the touchpad and a Bluetooth-

attached wireless mouse, both of which are recorded. On IBM/Lenovo laptops, the

touchpad is recorded as well as the red mouse button in the middle of the keyboard.

 The last category of devices we need to consider in this section is the hardware

ports to which you attach other peripherals. Printers, disks, and other devices that

may be attached through these ports will be covered in the relevant chapters.

 Get ports

The standard hardware ports, for many years, were the parallel port and the serial

port. These are being replaced by USB ports, and many laptops only have USB ports.

There are also FireWire (1394) ports that may have to be considered.

PROBLEM

A new service is being introduced into your organization. This service requires a

device to be attached to some of the computers used in the organization. Do those

machines have a suitable hardware port?

SOLUTION

The parallel and serial ports can be discovered using the appropriately named port, as

shown in listing 5.9. Each of the relevant WMI classes is called and the appropriate

properties displayed. The Win32_SerialPort class has a number of properties that

indicate what is supported and settable. These can be quickly viewed using

Get-WmiObject Win32_SerialPort | select Support*, Settable*

These properties could be incorporated into the script if you deem it necessary.

TECHNIQUE 9

154 CHAPTER 5 System documentation

function get-port {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
"Parallel Port"
Get-WmiObject -Class Win32_ParallelPort `
 -ComputerName $computername |
select Name, OSAutoDiscovered, PNPDeviceID

"Serial Port"
Get-WmiObject -Class Win32_SerialPort `
 -ComputerName $computername |
select Name, OSAutoDiscovered,
PNPDeviceID, ProviderType, MaxBaudRate

 "USBHub"
 Get-WmiObject -Class Win32_USBHub `
 -ComputerName $computername | select Name, PNPDeviceID

 ""
 "USB Controller"
 Get-WmiObject -Class Win32_USBController `
 -ComputerName $computername | Select Name, PNPDeviceID
}}

Accessing the information about the USB ports is more problematic. There are two

classes you can use: Win32_USBHub and Win32_USBController. Neither of the classes

directly show the number of USB ports that are available, and there is no apparent way

to determine this. All you can do is show that USB connectivity is available.

DISCUSSION

As with all of the functions in this chapter, you can use it in a number of ways. If you

just need information on the local machine, you can use get-port. If you’re

accessing a remote machine, then get-port -computer server02 or get-port

-computer 10.10.54.201 will work.

 If required, the Win32_1394Controller and Win32_1394ControllerDevice classes

can be added to listing 5.9 to supply information on FireWire (1394) ports.

 Laptops are replacing desktop machines as the client of choice in many organiza-

tions. If you use laptops, you need to consider the state of their batteries.

5.3 Power supplies

Discovering information about the battery and its state is an interesting task. You need

to look beyond the default root\cimv2 namespace to discover the information. Table 5.3

summarizes the classes you need to work with and the namespaces you need to use.

We’ll start simply with the default namespace.

Listing 5.9 Hardware ports

155TECHNIQUE 10 Get battery details

 Get battery details

Our starting point is the battery itself. What type is it, and what is it doing?

PROBLEM

How can you discover the battery type installed in your system?

SOLUTION

The Win32_Battery class in the root/cimv2 namespace is used in the following listing

to determine the battery type.

$status = DATA {ConvertFrom-StringData -StringData @'
1 = Discharging
2 = On AC. No battery discharge. Not necessarily charging.
6 = Charging
'@}

$chem = DATA {ConvertFrom-StringData -StringData @'
6 = Lithium-ion
'@}

function get-battery {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject -Class Win32_Battery `
 -ComputerName $computername |
 select DeviceID, Name, Description,
 @{Name="Status";
 Expression={$status["$($_.BatteryStatus)"]}},
 @{Name="Chemistry";
 Expression={$chem["$($_.Chemistry)"]}},
 @{Name="Voltage(V)";
 Expression={$($_.DesignVoltage / 1000)}},
 @{Name="PecentChargeLeft";
 Expression={$($_.EstimatedChargeRemaining)}},
 PowerManagementSupport
}}

Table 5.3 Computer power classes

Component WMI class

Battery Win32_Battery

Battery status

Test power source

root\wmi BatteryStatus

Power plans root\cimv2\power Win32_PowerPlan

Listing 5.10 Battery details

TECHNIQUE 10

156 CHAPTER 5 System documentation

Some lookup tables are created at the beginning of the listing. These are truncated for

brevity, but the full lists are available in the download code. The Win32_Battery class is

used with a number of calculated fields, decoding the integers to meaningful values.

 The voltage is reported in millivolts which we divide by 1000 to produce the display

in volts.

DISCUSSION

EstimatedRunTime on Windows 7 (and Windows Server 2008 R2) always seems to

return 71582788, which is approximately 136 years if the documentation is correct.

Talk about a lifetime guarantee!

 Knowing how long the battery will last may be important to you. There is an indi-

rect way of discovering this.

 Get battery status

There’s another way to get information on your battery status. This involves using an

undocumented WMI class from the root\wmi namespace. There are many classes in

this namespace that appear as if they should be useful, but when investigated they

don’t return any data. You’re interested in the Batterystatus class:

Get-WmiObject -Namespace 'root\wmi' -Class Batterystatus

PROBLEM

How can you determine the status of your battery and use that to determine how long

it will take to discharge the battery?

SOLUTION

There isn’t a simple solution to this problem, so you need to approach it in a round-

about fashion. Your starting point is to determine the battery status, as shown in the

following listing. I have left the voltage in millivolts in this script. The appropriate

calculated field from listing 5.10 can be utilized in this script to convert it to volts

if required.

function get-batterystatus {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject -Namespace 'root\wmi' -Class BatteryStatus `
 -ComputerName $computername |
 Select Active, ChargeRate, Charging,
 Critical, DischargeRate, Discharging,
 PowerOnline, RemainingCapacity,
 Tag, Voltage
}}

Listing 5.11 Battery status

TECHNIQUE 11

157TECHNIQUE 12 Test power source

The key to determining the time left on the battery is the RemainingCapacity prop-

erty. If you measure this while the battery is discharging, you can calculate the time to

discharge. As an example, you can let the battery discharge for approximately one

hour. At the start of the discharge period, run these lines of code:

$c1 = (get-batterystatus).RemainingCapacity
$d1 = Get-Date

After sufficient time has elapsed, repeat the measurements using $c2 and $d2 for the vari-

ables. The difference between $d1 and $d2 creates a timespan object that will have a

totalminutes property. The difference between $c1 and $c2 shows how much capacity

has been used in the period. Divide that number by the totalminutes property to deter-

mine capacity used per minute. Divide that into $c1 to determine how long the battery

will take to discharge. Finally, now that you know the discharge rate, you’ll be able to cal-

culate the time remaining on the battery for any RemainingCapacity value.

 This approach assumes that the rate of discharge is always the same. You may need

to repeat this experiment under different loads to determine the complete battery

usage pattern.

DISCUSSION

I saw a post that stated the value of RemainingCapacity divided by 252 gave the time

to discharge. This doesn’t seem to hold on the systems I’ve tested under Windows 7

and Windows Server 2008 R2 Datacenter edition. (Yes, I run Datacenter on my laptop.

It runs Hyper-V very nicely.)

 You can also use the Batterystatus class to give a quick indication of whether the

laptop is running on battery or external power.

 Test power source

I was recently giving a talk using two laptops for the demonstration. I had an RDP link

from one to the other that repeatedly disconnected toward the end of the demonstra-

tion. It wasn’t until I’d finished that I realized that I’d left the second laptop on bat-

tery power!

PROBLEM

How can you determine if a laptop is running on battery power or external power?

This question could arise for the reason given in the introduction, or a user could

complain that their screen is dull, which could indicate being on battery.

SOLUTION

The following listing provides a simple test to determine the state of the power supply.

function test-powersource {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"

Listing 5.12 Test power source

TECHNIQUE 12

158 CHAPTER 5 System documentation

)
PROCESS {
 $status = Get-WmiObject -Namespace 'root\wmi' -Class BatteryStatus `
 -ComputerName $computername

 if ($status.PowerOnLine) {"System on External Power"}
 else {"System on Battery Power"}
}}

The BatteryStatus class is interrogated as shown. You then use the PowerOnLine

property as the condition in the if statement. It returns a Boolean (true or false), so

you can use it directly rather than testing the value. If the property returns true,

you’re on external power and you print the appropriate message. Otherwise you’re on

battery power.

DISCUSSION

In the example I gave at the beginning of this section, the power had been switched

to battery because the power switch had been knocked off. It would be possible to use

the techniques we’ll discuss in chapter 15 to create a scheduled job that tests the

power source during the presentation. If it’s running on external power, nothing is

returned, but if the system switches to battery power, a warning is given to the pre-

senter. Alternatively, a WMI event could be used to detect the change using the

BatteryStatusChange class.

 The last power-related item to be investigated is the power plan.

 Get power plans

Windows 7 and Windows Server 2008 R2 introduced a new WMI namespace called

root\cimv2\power for working with power plans. A power plan controls how the

machine reacts to being on external or battery power. This includes the control of

items such as screen brightness or hibernation after a period of inactivity.

 You can view the classes in this namespace:

Get-WmiObject -Namespace 'root\cimv2\power' -List

The documentation for these classes can be found on MSDN in the WMI section under

“Power Policy classes.” The classes involve a number of associations, as you’ll see when

you discover how to use them.

PROBLEM

The active power plan needs to be checked and its settings displayed.

SOLUTION

The script in the following listing makes use of a number of the WMI and PowerShell

features you saw in chapters 2 and 3. Refer to those chapters if you need a refresher.

function get-powerplan {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,

Listing 5.13 Power plan

TECHNIQUE 13

159TECHNIQUE 13 Get power plans

 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject -Namespace 'root\cimv2\power' `
 -Class Win32_PowerPlan -ComputerName $computername |
 sort IsActive -Descending |
 Format-List ElementName, Description, InstanceID, IsActive

"'nActive Plan Details"
$plan = Get-WmiObject -namespace 'root\cimv2\power' `
-Class Win32_PowerPlan -ComputerName $computername |
 where {$_.IsActive}

$id = ($plan.InstanceID).Replace("\","\\")

$query = "ASSOCIATORS OF {Win32_PowerPlan.InstanceID=""$id}""}"
$psIndexes = Get-WmiObject -ComputerName $computername `
-namespace 'root\cimv2\power' -Query $query

"Battery Power"
foreach ($psIndex in ($psIndexes | where {$_.InstanceID -like "*DC*"})){
 $inxid = ($psIndex.InstanceId).Replace("\","\\")
 $query = "ASSOCIATORS OF

 ➥ {Win32_PowerSettingDataIndex.InstanceID=""$inxid}""}

 ➥ WHERE RESULTCLASS = Win32_PowerSetting "
 Get-WmiObject -ComputerName $computername `
 -namespace 'root\cimv2\power' -Query $query |
 Add-Member -MemberType Noteproperty -Name "SettingIndexValue"`
 -Value $($psIndex.SettingIndexValue) -PassThru |
 Format-List InstanceId, Description, SettingIndexValue
}

"External Power"
foreach ($psIndex in ($psIndexes | where {$_.InstanceID -like "*AC*"})) {
 $inxid = ($psIndex.InstanceId).Replace("\","\\")
 $query = "ASSOCIATORS OF

 ➥ {Win32_PowerSettingDataIndex.InstanceID=""$inxid}""}

 ➥ WHERE RESULTCLASS = Win32_PowerSetting "
 Get-WmiObject -ComputerName $computername `
 -namespace 'root\cimv2\power' -Query $query |
 Add-Member -MemberType Noteproperty `
-Name "SettingIndexValue" `
 -Value $($psIndex.SettingIndexValue) -PassThru|
 Format-List InstanceId, Description, SettingIndexValue
}
}}

The function starts by obtaining a list of the current power plans on the system B.

This is sorted in descending order to ensure that the active plan is at the top of the

list. The information about the plans is displayed.

 The details of the active plan are obtained by creating a variable that represents

the active plan C. WMI uses the backslash (\) as an escape character, so you need to

replace single instances with double occurrences of the character. A WMI query D is

constructed and run to find the power setting indexes associated with the power plan.

Identify active
power plan

B

Separate
active plan

C

Get Powersetting-
Dataindex

D

Discover
power settings
for batteryE

Display
resultsF

Discover power
settings for
external power

G

Discover
WMI
asociatorH

Display
resultsI

160 CHAPTER 5 System documentation

 The settings for battery power are discovered first. The indexes are filtered in the

foreach condition to only pass those referring to battery power (DC). A query to find

the associators is constructed, with the results limited to the power settings E. The

query is executed F and the results are passed on to the pipeline. Add-member is used

to add the value of the setting, and the results are displayed.

 The process is repeated for external power (AC) G, with the associators being dis-

covered via a query H and the correct value I being added again.

DISCUSSION

This is the most complicated script we’ve looked at so far. If you can follow the logic,

then congratulations! You’re well on the way to being a PowerShell and WMI expert.

 The Win32_PowerPlan class can be used to change the active plan. You’ll learn how

to perform this task in chapter 13 when we consider server configuration.

 The power plan classes are only available on Windows 7 and Windows Server 2008

R2. You could refine listing 5.13 by testing that you’re running against the correct

operating system. But first you need to learn to discover the operating system in use

on your computers.

5.4 Operating system

The operating system is fundamental to your system. It determines what applications

can run and how you administer the system. Table 5.4 lists the main WMI classes you’ll

use when you’re working with the operating system.

In many cases the operating system determines what you can do with the system,

which often makes it the best place to start.

 Get operating system version

You need to document the operating system for a number of reasons. The obvious

reason is to complete the system documentation, but you also need to be able to

Table 5.4 Operating system classes

Component WMI class

Operating system

Service pack

Boot time

Win32_OperatingSystem

Hotfix Win32_QuickFixEngineering

Boot-up configuration Win32_BootConfigurations

Recovery configuration Win32_OSRecoveryConfiguration

Win32_LocalTime

System time Win32_UTCTime

Win32_TimeZone

TECHNIQUE 14

161TECHNIQUE 14 Get operating system version

answer questions such as when did the system last restart, how long has it been run-

ning, and what is the latest service pack that’s been applied.

PROBLEM

The system documentation on your servers is incomplete, and you need to add infor-

mation about the operating system. You’ve also been tasked with finding a way to mea-

sure the up-time of your servers as a measure of their reliability.

SOLUTION

The Win32_OperatingSystem class has a large number of properties that can help

answer these questions. Listing 5.14 shows the output of the apparently useful proper-

ties of this class. I say “apparently” because you may well discover a use for one of the

other parameters.

 The script starts by defining a set of lookup tables. Extracts from some of the more

interesting ones are shown here. The full set is available in the download listing.

$sku = DATA {ConvertFrom-StringData -StringData @'
1 = Ultimate Edition
8 = Datacenter Server Edition
'@}

$lang = DATA {ConvertFrom-StringData -StringData @'
1033 = English US
2057 = English UK
'@}

$code = DATA {ConvertFrom-StringData -StringData @'
1252 = Latin I
'@}

$fboost = DATA {ConvertFrom-StringData -StringData @'
0 = None
1 = Minimum
2 = (Default) Maximum
'@}

function get-operatingsystem {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject -Class Win32_OperatingSystem `
 -ComputerName $computername |
 select CSName, Caption,
 @{Name="Operating System SKU";
 Expression={$sku["$($_.OperatingSystemSKU)"]}},
 SerialNumber, ServicePackMajorVersion,
 ServicePackMinorVersion, BuildNumber, Version,
 OSArchitecture, SystemDevice, SystemDrive,

Listing 5.14 Operating system

162 CHAPTER 5 System documentation

 WindowsDirectory, SystemDirectory,
 @{Name="OS Language";
 Expression={$lang["$($_.OSLanguage)"]}},
 @{Name="OS Type";
 Expression={$os["$($_.OSType)"]}},
 @{Name="Code Set";
 Expression={$code["$($_.CodeSet)"]}},
 @{Name="Country Code";
 Expression={$country["$($_.CountryCode)"]}},
 EncryptionLevel,
 @{Name="Foreground Application Boost";
 Expression={$fboost["$($_.ForegroundApplicationBoost)"]}},
 DataExecutionPrevention_32BitApplications,
 DataExecutionPrevention_Available,
 DataExecutionPrevention_Drivers,
 @{Name="Data Execution Prevention Support Policy";
 Expression={$depsupport["$($_.DataExecutionPrevention_SupportPolicy)"]}},
 @{Name="Installation Date";
 Expression={$_.ConvertToDateTime($_.InstallDate)}},
 @{Name="Last Bootup time";
 Expression={$_.ConvertToDateTime($_.LastBootUpTime)}},
 @{Name="Local Date Time";
 Expression={$_.ConvertToDateTime($_.LocalDateTime)}},
 @{Name="Offset from GMT";
 Expression={"$($_.CurrentTimeZone) minutes"}},
 @{Name="Locale "; Expression={$loc["$($_.Locale)"]}},
 MaxNumberOfProcesses,
 @{Name="Max Process Memory Size (GB)";
 Expression={"{0:F3}" -f $($_.MaxProcessMemorySize*1kb /1GB)}},
 PAEEnabled,
 @{Name="Free Physical Memory (GB)";
 Expression={"{0:F3}" -f $($_.FreePhysicalMemory/1GB*1kb)}},
 @{Name="Size Stored In Paging Files (GB)";
 Expression={"{0:F3}" -f $($_.SizeStoredInPagingFiles *1kb /1GB)}},
 @{Name="Free Space In Paging Files (GB)";
 Expression={"{0:F3}" -f $($_.FreeSpaceInPagingFiles *1kb /1GB)}},
 @{Name="Total Visible Memory Size (GB)";
 Expression={"{0:F3}" -f $($_.TotalVisibleMemorySize *1kb /1GB)}},
 @{Name="Total Virtual Memory Size (GB)";
 Expression={"{0:F3}" -f $($_.TotalVirtualMemorySize *1kb /1GB)}},
 @{Name="Free Virtual Memory (GB)";
 Expression={"{0:F3}" -f $($_.FreeVirtualMemory*1kb /1GB)}}
}}

Csname is the first property selected; it returns the name of the computer. The major-

ity of the script is comprised of calculated fields in the Select-Object, and the major-

ity of them use the lookup hash tables to decode integer values into more meaningful

output. Dates are changed from WMI format into the more normal format you’re used

to by the ConvertToDateTime method. Service pack information includes a major and

minor version number, though usually only the major version number is populated.

 The memory-related properties at the end of the script are converted from kilo-

bytes to gigabytes by a simple calculation using the PowerShell constants. They’re

then formatted to three decimal places using .NET formatting.

163TECHNIQUE 15 Discover hotfixes

DISCUSSION

The system uptime can be calculated from the "Last Bootup Time" property you cal-

culate in the script:

(Get-Date) - (get-operatingsystem)."Last Bootup time"

The current date and time is retrieved by using Get-Date. It’s wrapped in parentheses

so that it’s treated as an object.

 The "Last Bootup Time" property is used from the get-operatingsystem function

from listing 5.14. Notice how PowerShell happily accepts property names with

spaces—just wrap them in quotes. Subtracting the two dates creates a TimeSpan object

that will give the uptime, as shown in figure 5.3. The TotalDays property is the most

appropriate to use for reporting purposes.

One thing to note is that time zone and daylight saving time offsets will be included in

the "Offset from GMT" property. You’ll learn more about time zones soon, but first we

need to consider hotfixes.

 Discover hotfixes

Patching is a fact of life for Windows administrators. The speed of evolution of new

threats to Windows systems means you have to keep them up to date. There are a

number of mechanisms for applying patches to your servers, and they all report in

slightly different manners.

PROBLEM

You need to interrogate your systems to determine which patches have been applied.

You’d also like to be able to test if a particular hotfix has been applied.

Figure 5.3 Calculating system uptime

TECHNIQUE 15

164 CHAPTER 5 System documentation

SOLUTION

PowerShell v2 introduced a cmdlet that can perform this task—Get-HotFix. In Power-

Shell v1, you can use the underlying WMI class, Win32_QuickFixEngineering, that the

Get-HotFix cmdlet uses. The only problem is how to determine if you’re running

PowerShell v2 or v1. The following listing shows how you can resolve this.

function get-hf {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
if ($psversiontable.PSversion.Major -qe 2) {
 $fixes = Get-HotFix -ComputerName $computername }
 else {
 $fixes = Get-WmiObject -Class Win32_QuickFixEngineering `
 -ComputerName $computername
 }

 $fixes | select CSName, HotFixID, Caption,
 Description, InstalledOn, InstalledBy
}}

DISCUSSION

The PowerShell automatic variable $psversiontable only exists in PowerShell v2. You

start by testing for its existence (the Major property will have a value of 2 for Power-

Shell vs2 and 3 for PowerShell v3. If it exists, you can use the cmdlet; otherwise you

can use the WMI class directly. You could just use WMI, but this is a simple example of

how you can test for PowerShell versions, so it’s worth doing this way.

 You can use the function to test whether a particular hotfix has been applied.

get-hf | where {$_.Hotfixid -eq "KB982799"}

There may be some hotfixes that can’t be discovered by this mechanism. These should

be found in the registry under these keys:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Hotfix
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates

You’ll learn how to look at this information in chapter 7. In the meantime we need to

consider how the system is configured to boot up.

 Get boot configuration

When a Windows system boots up, it needs to find the files it needs in order to boot. If

the directory with these files is incorrectly stored, the system won’t boot. Checking

that the boot configuration is correct can save a lot of troubleshooting effort and

potentially save you having to rebuild the system.

Listing 5.15 Hotfixes

TECHNIQUE 16

165TECHNIQUE 17 Find recovery configuration

PROBLEM

You need to check the boot configuration on your systems to ensure that the

machines will start up correctly.

SOLUTION

The following listing shows how you can use the Win32_BootConfiguration class to

solve this problem.

function get-bootconfig {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject -Class Win32_BootConfiguration `
 -ComputerName $computername |
 select ConfigurationPath, BootDirectory,
 Caption, LastDrive,
 ScratchDirectory, TempDirectory
}}

There are no surprises in this script. It retrieves the information from the WMI class

and displays the required properties. Note that the ScratchDirectory and Temp-

Directory properties relate to the folders that are used during startup, not the user’s

temp folder.

DISCUSSION

If you explore the root/cimv2 namespace, the Win32_SystemBootConfiguration class

should be ignored, as it only links the Win32_ComputerSystem class with the

Win32_BootConfiguration class.

 Closely related to the boot configuration is the recovery configuration.

 Find recovery configuration

In an ideal world, your servers would be started and would keep running until you

shut them down or until you initiate a restart due to a change, such as the application

of patches. Unfortunately, this isn’t always true, and your servers will sometimes fail

for no apparent reason. Windows can supply you with information related to the fail-

ure if it’s configured correctly.

PROBLEM

Windows has a number of options for determining what happens if a crash occurs. You

need to ensure that they’re set consistently across the server estate. You also need to be

able to check on any exceptions enabled for servers that need a different configuration.

SOLUTION

This information is recovered using the Win32_OSRecoveryConfiguration class, as

the following listing shows.

Listing 5.16 Boot configuration

TECHNIQUE 17

166 CHAPTER 5 System documentation

$dump = DATA {ConvertFrom-StringData -StringData @'
1 = Complete Memory Dump
2 = Kernel Memory Dump
'@}

function get-OSrecovery {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject Win32_OSRecoveryConfiguration `
 -ComputerName $computername |
 select Name, AutoReboot, DebugFilePath,
 @{Name="Debug Info";
 Expression={$dump["$($_.DebugInfoType)"]}},
 ExpandedDebugFilePath, ExpandedMiniDumpDirectory,
 KernelDumpOnly, MiniDumpDirectory,
 OverwriteExistingDebugFile,
 SendAdminAlert, WriteDebugInfo,
 WriteToSystemLog
}}

A hash table is constructed to store the lookup information for the type of memory

dump produced during a failure. Think carefully about this, because a full memory

dump of a 64-bit machine could take a lot of disk space. The properties are displayed

as shown in figure 5.4.

DISCUSSION

The DebugFilePath and the MiniDumpDirectory contain the environmental variable

%SystemRoot%. The value of this variable can be discovered using

$env:SystemRoot

Listing 5.17 Recovery configuration

Figure 5.4 Output of running the get-OSrecovery function in listing 5.17

167TECHNIQUE 18 Test system time

On my systems, it returns C:\Windows. This is the standard value if Windows has been

installed with the default installation path. The function could be modified to replace

the full variable with its value if you suspect that a nondefault installation path has

been used.

 One last configuration item needs to be considered: the system time.

 Test system time

In an Active Directory environment, the system clocks are only allowed a maximum

difference of five minutes from the domain controllers, by default. If this allowable

difference is exceeded, the machine can’t authenticate to the domain and nothing

works properly. This is generally viewed as a bad thing to happen.

PROBLEM

The local time on the system has to be checked to ensure that it’s correct. In an orga-

nization that spans time zones, you need to check the UTC (GMT) time to ensure that

the time settings across the organization are correct. Twice yearly, you have an addi-

tional issue with the changes to and from daylight saving time.

SOLUTION

There are a number of classes you can use to work with the system time, as shown in

the following listing. It starts by using the Win32_LocalTime and the Win32_UTCTime

classes to determine the respective time values.

function test-systemtime {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 $now = Get-WmiObject -Class Win32_LocalTime `
 -ComputerName $computername

 $now2 = Get-WmiObject -Class Win32_UTCTime `
 -ComputerName $computername

 $local = Get-Date -Year $($now.Year) -Month $($now.Month) `
 -Day $($now.Day) -Hour $($now.Hour) `
 -Minute $($now.Minute) -Second $($now.Second)

 $utc = Get-Date -Year $($now2.Year) -Month $($now2.Month) `
 -Day $($now2.Day) -Hour $($now2.Hour) `
 -Minute $($now2.Minute) -Second $($now2.Second)

 $tz = Get-WmiObject -Class Win32_TimeZone `
 -ComputerName $computername

$daylton = Get-Date -Month $tz.daylightmonth -Day $tz.daylightday `
 -Hour $tz.daylighthour -Minute $tz.daylightminute `

Listing 5.18 System time

TECHNIQUE 18

168 CHAPTER 5 System documentation

 -Second $tz.daylightsecond

$stndon = Get-Date -Month $tz.standardmonth -Day $tz.standardday `
 -Hour $tz.standardhour -Minute $tz.standardminute `
 -Second $tz.standardsecond

if (($local -ge $daylton) -and ($local -le $stndon)){
 $timename = $tz.DaylightName
}
else {$timename = $tz.StandardName}

 "Server : $($now.__SERVER)"
 "Time Zone : $($tz.Description)"
 "Time Setting: $timename"
 "Local Time : $local"
 "UTC Time : $utc"
}}

The information isn’t returned in a format that enables simple conversion to a datetime

format, so you use Get-Date to create the objects you need. You can then retrieve the

time zone information. The information on when the change to and from daylight sav-

ing time occurs can be used to determine which time setting you display. The data is dis-

played at the end of the function, where the dates will display as MM/DD/YYYY.

DISCUSSION

It isn’t possible to use the IsDaylightSavingTime method of Get-Date because that

will only apply to the local machine, not the remote machine. This could lead to

errors where you cross time zones and localities with different dates for changing the

daylight saving time settings.

Win32_CurrentTime will display both Win32_LocalTime and Win32_UTCTime. In my

experience it’s easier to deal with them separately.

 This completes our investigation of the operating system configuration. The last

area we need to explore is the installed software.

5.5 Software

Computers are great, but they can’t do much without software. The main task when

you’re working on the system configuration is discovering what software has been

installed.

 Discover installed software

Software can end up on machines for a number of reasons, including a corporate

decision to install it and a user taking an arbitrary decision to install the software.

When you’re troubleshooting issues with a client machine or server, you need to know

what has been installed.

PROBLEM

The software that has been installed on your computers can affect their performance.

In some cases, the installed versions need to be checked before an upgrade to other soft-

ware can occur. You need to be able to determine what software is installed on a system.

TECHNIQUE 19

169Summary

SOLUTION

Software can be installed in a number of ways. If the software was installed by the Win-

dows installer, you can use the Win32_Product class to discover what has been

installed. The following listing shows how this class is used, following the standard pat-

tern we’ve adopted throughout the chapter.

function get-software {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
"Installed Software"
 Get-WmiObject -Class Win32_Product `
 -ComputerName $computername |
 select Name, IdentifyingNumber,
 InstallLocation, Vendor, Version

"Installed COM Applications"
 Get-WmiObject -Class Win32_COMApplication `
 -ComputerName $computername |
select Name, AppID
}}

Win32_Product supplies information on application and version, which is probably

the most important data that you need. Many applications also register COM compo-

nents. You can use Win32_COMApplication to discover this aspect of the data.

DISCUSSION

The get-software function will return the majority, if not all, of the installed soft-

ware. There is always the possibility that an odd application is installed in some man-

ner that doesn’t register correctly, so you can’t find it with these classes. In chapter 7,

we’ll look at the information held in the registry on installed software.

 This concludes our journey around system configuration. Applying these tech-

niques will enable you to derive information about your systems. One issue to think

about is how you’ll store it. An easy way is to pipe the output from these functions into

text files as follows:

get-software | out-file c:\reports\software.txt

5.6 Summary

Understanding your system configuration is the first step toward controlling the envi-

ronment and being able to automate your administration. The techniques in this

chapter enable you to discover configuration settings for each of the following:

Listing 5.19 Installed software

170 CHAPTER 5 System documentation

■ The computer system, including make, model, form factor, motherboard,

onboard devices, processors, and memory

■ The peripheral devices including keyboard, mouse, and hardware ports

■ The battery and power plan active on the system

■ The operating system, including service packs, hotfixes, boot and recovery

options, and the time settings

■ The installed software

These techniques, in isolation, enable you to discover information about specific

aspects of your servers.

 I use these functions, on a regular basis, to document new servers as they come into

production. The production of the documentation is fully automated because my Pow-

erShell script writes the data directly into a Microsoft Word document. (An explanation

of this is beyond the scope of this chapter, but details can be found in my PowerShell in

Practice, page 214.) All I have to do is complete the front cover of the document.

Producing the documentation takes at least a day per server if performed manually;

automating the task allows it to run as a background task and takes about five minutes

of my time.

 We haven’t covered storage systems yet. We’ll look at them in the next chapter,

where you’ll learn how to discover the disk configuration and perform some adminis-

tration tasks on your disks.

171

Disk systems

Disk systems, along with CPU and memory, are the primary system resources we’re

interested in as administrators. We looked at how to explore CPU and memory con-

figurations in chapter 5. In this chapter, we’ll turn our attention to the disk systems.

 Working with the disk system on a local machine is easy. Administering the disks

on remote machines gets more difficult. As a real-world example consider the 200

virtual servers I have running. Virtual disks become fragmented just like physical

disks, leading to poor performance. The techniques you’ll learn later in this chap-

ter will show you which disks need defragmenting and could be used to perform

the defragmentation overnight. All from a single script. This is a classic of example

of how PowerShell and WMI can save you time and effort—quicker, easier adminis-

tration, and you get the benefits.

 We’ll start by considering physical disks and their controllers. Disk controllers

can be IDE- or SCSI-based. You can easily test for both in the same script. PowerShell

and WMI don’t return error messages if there’s no data, so you can use that feature

to test both types of controllers without worrying if they’re both present.

This chapter covers

■ Discovering the physical disks in your systems

■ Relating physical and logical disks

■ Managing disk volumes

172 CHAPTER 6 Disk systems

 A physical disk can contain one or more partitions. Discovering the partitions and

how they relate to the physical disks starts to build the picture of your disk systems.

There are a good set of relationships defined in WMI between the various components

of the disk system, so you can look forward to getting lots of practice finding associ-

ated classes. Now would be a good time to review WQL if you skipped chapter 3.

NOTE This information is all viewed from within Windows. If your disk sys-
tem consists of five disks in a RAID 5 array on your SAN that’s presented to
Windows as a single disk, WMI will report it as a single disk. WMI can’t drill
down into the structure of external disk arrays.

Partitions are the stepping stone to logical disks. You can have multiple partitions and

logical disks defined for a single physical disk, and discovering the relationships is a

quick and easy way to discover any unallocated space on your physical disk. The last

link in the chain is the volumes to be found on a system. These are the real point

where you work with the disks on a day-to-day basis. At the volume level, you can mon-

itor changes to the disk system as well as perform management tasks, such as format-

ting, running chkdsk, or defragmenting a volume. PowerShell and WMI enable you to

perform this as easily on a remote machine as on a local machine.

 The chapter closes with a quick look at CD/DVD drives to complete your explora-

tion of working with disks through WMI.

 Physical disks are the starting point of any investigation into disk management.

6.1 Physical disks

The hardware involved in disk systems consists of the physical disks themselves and

the disk controllers used by the operating system to communicate with the disks. The

relationships between the various components we’ll deal with in this chapter are illus-

trated in figure 6.1.

Figure 6.1 The

components of

disk systems

173Physical disks

A disk controller can work with one or more physical disks. A physical disk can have

one or more partitions, and a partition can contain one or more logical disks. The

WMI classes that correspond to these physical entities are listed in table 6.1.

Notice the names of Win32_LogicalDisk and Win32_DiskDrive for working with logi-

cal and physical disks respectively. This is one place where the logical naming of WMI

classes breaks down. Don’t try to search for Win32_PhysicalDisk, or you’ll have the

same frustrating experience I did.

 Disk controllers are at the head of the line for the physical side of disk systems.

Table 6.1 Disk-related WMI classes

Component WMI class

Disk controller

Win32_IDEController

Win32_IDEControllerDevice

Win32_SCSIController

Win32_SCSIControllerDevice

Physical disk Win32_DiskDrive

Partition

Win32_DiskDriveToDiskPartition

Win32_DiskPartition

Win32_LogicalDiskToPartition

Logical disk Win32_LogicalDisk

Mount point Win32_MountPoint

Volume Win32_Volume

CD drive Win32_CDROMDrive

WMI changes

As an example of how the IT infrastructure landscape is changing I’ve deliberately

decided to not include any content on floppy disks. These drives aren’t standard

on modern servers and are rapidly disappearing from our environments. If informa-

tion is required on these devices use the Win32_FloppyController and

Win32_FloppyDrive classes.

WMI itself is constantly changing and evolving in addition to hardware changes. If you

have worked with WMI before you may notice that the Win32_PhysicalMedia class

isn’t mentioned. It gives inconsistent results on Windows 7 and it appears this class

is being replaced by Win32_DiskDrive. I recommend only using Win32_DiskDrive.

174 CHAPTER 6 Disk systems

 Discover disk controllers

Figure 6.1 shows that storage systems consist of a number of items that all need to be

connected and working properly. Disk controllers can be split into two main types:

■ IDE—Generally used in PCs, laptops and low-end servers

■ SCSI—Generally used in servers

But this isn’t a hard and fast division, especially when you’re dealing with virtual

machines.

PROBLEM

The disk controllers in your systems need to be enumerated so that you know how the

storage solution is configured. Ideally you also want to be able to discover the physical

disks that are connected to the controllers.

SOLUTION

There are two WMI classes for working with disk controllers: Win32_IDEController

and Win32_SCSIController, as shown in table 6.1. You can use both classes in your

discovery script, as shown in the following listing.

$dprot = DATA {
ConvertFrom-StringData -StringData @'
9 = SCSI Parallel Interface
10 = SCSI Fibre Channel Protocol
11 = SCSI Serial Bus Protocol
42 = Enhanced ATA/IDE
'@
}

function get-diskcontroller {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 $ide = $null
 $scsi= $null

 $ide = Get-WmiObject -Class Win32_IDEController `
 -ComputerName $computername

 $scsi = Get-WmiObject -Class Win32_SCSIController `
 -ComputerName $computername

 if ($ide){
 "IDE Controllers"
 $ide | select Name, Status, Manufacturer,
 MaxNumberControlled,
 @{Name="Protocol"; Expression={$dprot["$($_.ProtocolSupported)"]}}
 }

Listing 6.1 Disk controllers

TECHNIQUE 20

Define data
valuesB

Get IDE
controllers

C

Get SCSI
controllers

D

Display IDE
dataF

175TECHNIQUE 21 Physical drive information

 if ($scsi){
 "SCSI Controllers"
 $scsi | select Name, Status, Manufacturer,
 MaxNumberControlled,
 @{Name="Protocol"; Expression={$dprot["$($_.ProtocolSupported)"]}}
 }
}}

The script follows the pattern established in chapter 5. The script starts by defining

the lookup values for the supported protocols B. The function takes a computer

name as a parameter with a default of “.”, which signifies the local host. Two variables

are created to represent the controller information and are deliberately set to null.

 The Win32_IDEController C and Win32_SCSIController D classes are called to

get the required information. In this function, you’re returning the information to the

previously defined variables rather than directly to the user. The variables are checked

individually to determine if they have a value. If IDE controllers exist E, the appropriate

data is displayed. Similarly, the SCSI controllers F are checked and displayed.

DISCUSSION

This script relies on the way the null values are handled by PowerShell to deter-

mine whether data should be displayed. A null value isn’t equal to $false. Try this

experiment:

$test = $null
if ($test){"hello"}
if (-not $test){"hello"}

You’ll get a result from the last line. Now try this:

$test -eq $false

It will return False. When testing variables, if the value is $null, it will react as if it’s

$false, but it doesn’t carry a value of $false.

 Now that you know which disk controllers are in your system, you need to under-

stand how the controllers are linked to the physical disks. This can be achieved by

using the appropriate associating class:

Get-WmiObject Win32_IDEControllerDevice |
Format-List Antecedent, Dependent

And for SCSI controllers, you use this:

Get-WmiObject Win32_SCSIControllerDevice |
Format-List Antecedent, Dependent

You know what controllers you have, and you know which disks are attached to them.

What can you discover about the disks themselves?

 Physical drive information

The physical drives in your computers control how much data you can store. Even

with compression, there is a finite limit to the amount of data you can cram onto a

Display
SCSI dataF

TECHNIQUE 21

176 CHAPTER 6 Disk systems

disk. Understanding the capacity limits of your disk systems is the first step toward a

realistic capacity management plan.

NOTE Win32_DiskDrive doesn’t include information on CD drives, but
Win32_LogicalDisk does. This can lead to confusion when matching logical
to physical disk information.

The Win32_DiskDrive class only works with disks that Windows counts as being inter-

nal. Any disks in the computer and in external storage systems that are allocated to

the computer will be included. Mapped drives won’t be included.

PROBLEM

The physical disks in your machines need documenting, including their capacity.

SOLUTION

The following listing shows a function that uses Win32_DiskDrive to solve this problem.

The function takes a computer name as a parameter and then accesses the WMI class.

function get-diskdrive {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 Get-WmiObject -Class Win32_DiskDrive `
 -ComputerName $computername |
 select DeviceID, InterfaceType,
 Manufacturer, Model, FirmwareRevision,
 SerialNumber, Signature,
 StatusInfo, Partitions,
 TotalHeads, BytesPerSector, TotalSectors,
 SectorsPerTrack, TotalTracks, TracksPerCylinder,
 TotalCylinders,
 @{Name="Disk Size (GB)";
 Expression={"{0:F3}" -f $($_.Size/1GB)}},
 SCSIBus, SCSILogicalUnit, SCSIPort, SCSITargetId

 "Capabilities:"
 Get-WmiObject -Class Win32_DiskDrive `
 -ComputerName $computername |
 select -ExpandProperty CapabilityDescriptions
}}

Select-Object is used to choose the properties you want to display. The ones selected

in this script are the ones I’ve found most useful, but as with all of these scripts, it’s

worth checking if there are other properties that may be of use to you in your specific

circumstances.

 The majority of the properties can be just displayed, but the disk size is returned in

bytes. This gives you a number that’s more than a bit unwieldy. A simple calculated

Listing 6.2 Disk drives

Calculate
capacity

B

Determine
capabilitiesC

177TECHNIQUE 22 Link partitions to disk drives

field B is used to divide the returned size by 1 GB to give a more meaningful result.

The result is formatted to three decimal places.

 The Win32_DiskDrive class returns a collection of capability descriptions as well as

the numeric code representing those descriptions. You can work directly with the capa-

bility descriptions by using the -ExpandProperty parameter of Select-Object C. This

provides a neatly formatted display of the disk capabilities.

DISCUSSION

The disk capabilities will include some of the following:

■ Random access

■ Supports writing

■ Encryption

■ Compression

■ Supports removable media

Expect the first two on all physical hard drives.

 Link partitions to disk drives

Figure 6.1 shows that a physical disk can contain a number of partitions. Assuming

that you’re using master boot record (MBR) partitioning, you can create either

■ Up to four primary partitions on a physical disk

■ Up to three primary partitions and an extended partition that can be divided

into multiple logical partitions

A primary partition is bootable.

PROBLEM

The disk systems on a number of remote servers need to be examined to determine

the relationship between the physical disks and the disk partitions. The boot partition

also needs to be determined.

SOLUTION

A quick list of the partitions on each physical disk can be obtained using the

Win32_DiskDriveToDiskPartition class. This class associates the disk drive and its

partitions. The information can be found with this simple PowerShell script:

Get-WmiObject -Class Win32_DiskDriveToDiskPartition |
Format-List Antecedent, Dependent

This just supplies the partition identifiers. You really need to find more detailed infor-

mation. You can use the Win32_DiskPartition class, but you have to relate it to the

physical drive. The physical drives will always be numbered from 0, so you can discover

if disk partitions can be directly associated with disk drives:

$query = "ASSOCIATORS OF
{Win32_DiskDrive.DeviceID=""\\\\.\\PHYSICALDRIVE0""} WHERE
ClassDefsOnly"
Get-WmiObject -Query $query

TECHNIQUE 22

178 CHAPTER 6 Disk systems

This WMI query will produce the following output:

■ Win32_PnPEntity

■ Win32_ComputerSystem

■ Win32_DiskPartition

■ Win32_PhysicalMedia

This leads to the following listing, which allows you to discover the partitions that are

associated with each disk drive.

function get-drivetopartition {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
[string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 Get-WmiObject -Class Win32_DiskDrive -ComputerName $computername |
 foreach {
 $_.DeviceId
 $inxid = ($_.DeviceID).Replace("\","\\")
 $query = "ASSOCIATORS OF {Win32_DiskDrive.DeviceID=""$inxid""}

 ➥ WHERE RESULTCLASS = Win32_DiskPartition"
 Get-WmiObject -ComputerName $computername -Query $query

 }
}}

The function accepts a computer name as a parameter. The Win32_DiskDrive class is

used to discover the physical drives. These are piped into a ForEach-Object cmdlet

that displays the device ID of the physical disk.

 Single backslash (\) characters are replaced by doubles (\\)because the backslash

is a WMI escape character and you need to ensure that the device ID is read correctly.

Alternatively, the __RELPATH property could be used.

 A query is created to find the associated partitions and is executed.

DISCUSSION

The display produced by running this script uses the default display of

Win32_DiskPartition. This produces something similar to the following display for

each of the partitions present on the disk:

NumberOfBlocks : 204800
BootPartition : True
Name : Disk #0, Partition #0
PrimaryPartition : True
Size : 104857600
Index : 0

Listing 6.3 Link disk drives to partitions

179TECHNIQUE 23 Enumerating disk partitions

I’ve deliberately left the size in bytes in this display. It would be possible to combine

listing 6.3 with the next listing to give more information and to recalculate the parti-

tion size.

 Enumerating disk partitions

We’ve seen how to discover the disk partitions created on a specific physical disk drive.

There’s more information available about the partition that may be of use to us.

PROBLEM

In many organizations there’s a tendency to over partition the physical disks. This

is especially true on the C: drive which is used to boot Windows. Many systems are

configured with small partitions which can lead to them running out of disk space.

Can we determine the size distribution of the partitions to discover if this will be

a problem?

SOLUTION

We’ve seen in listing 6.3 that the Win32_DiskPartition class can be used to investi-

gate the disk partitions on our system. The next listing extends the use of this class to

determine more information including the size of the partition.

function get-partition {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
[string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 Get-WmiObject -Class Win32_DiskPartition -ComputerName $computername |
 select DeviceID, Description, Bootable,
 BootPartition, PrimaryPartition,
 BlockSize, NumberOfBlocks,
 @{Name="Partition Size (GB)";
 Expression={"{0:F3}" -f $($_.Size/1GB)}},
 StartingOffset
}}

The function follows our usual pattern with the Win32_DiskPartition class being

used to return the partition data. The required properties are selected for display. A

calculated field is used to display the size in gigabytes rather than bytes.

DISCUSSION

The device id is of the form “Disk #0, Partition #0” which means that you can link

the partition information directly to the physical disk information. Figure 6.1 shows

that partitions form the link between physical disks and logical disks. The next step is

to link the partition information to the logical disks you’ve defined in the system.

Listing 6.4 Disk partitions

TECHNIQUE 23

180 CHAPTER 6 Disk systems

 Link partitions to logical disks

The logical disks are the ones that you’re used to working with. They’re identified by

drive letters and are where you’re used to storing your files.

PROBLEM

You need to enumerate the logical disks that are contained within your partitions. Ide-

ally you want to start at the partition and discover the logical disks.

SOLUTION

If you search for WMI classes that refer to disk partitions using

Get-WmiObject -List *partition*

you’ll find a class called CIM_LogicalDiskBasedOnPartition. This appears to give you

what you want, but the information is the same as what you’d find with Win32_Logical-

DiskToPartition. The following listing uses Win32_LogicalDiskToPartition to deter-

mine the relationships between partitions and logical disks.

function get-logicaltopartition {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
[string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 Get-WmiObject -Class Win32_LogicalDiskToPartition `
 -ComputerName $computername |
 Format-List Antecedent, Dependent, StartingAddress, EndingAddress
}}

The Antecedent and Dependent properties show the partition and logical disk respec-

tively. On machines with a separate system partition, where they’ve been configured

for dual boot, the small partition configured to control bootup may not be displayed.

DISCUSSION

You can perform a similar exercise to the one in technique 22 to discover the WMI

classes associated with Win32_LogicalDiskToPartition. The following three classes

will be returned:

■ Win32_DiskDrive

■ Win32_ComputerSystem

■ Win32_LogicalDisk

Using these classes and the examples in listings 6.2 to 6.5, it’s possible to construct a

script that starts with the physical disks and discovers the partitions and logical disks in

one pass. I’ll leave that as an exercise for you. (There’s a solution in the download

code—it’s called get-disk.ps1 and it can be found in the Extras folder for this chapter.)

In the meantime, let’s turn our attention to logical disks.

Listing 6.5 Partitions to logical disks

TECHNIQUE 24

181TECHNIQUE 25 Logical disk information

6.2 Logical disks

Logical disks are where you start to get close to the data. These are the disks that you

see when you look in Windows Explorer. There are two items of interest related to log-

ical disks.

 First, all logical disks have a root directory. While the name of the root directory is

of obvious interest, its other properties also reveal interesting information. We’ll look

at root directories first.

 The second item of interest is mount points, where you mount another disk into a

directory on your disk. Before we look at mount points, you need to discover the logi-

cal disks you have in the system.

 Logical disk information

The Win32_LogicalDisk class returns both local as well as mapped logical disks. Use

this class for obtaining information on local disks, and use the

Win32_MappedLogicalDisk class for information on mapped disks.

PROBLEM

Some of your servers are running out of disk space. You need to be able to check the

free space left on the disks in your servers.

SOLUTION

You’ve already seen that that the Win32_LogicalDisk class returns information about

your local disks. This is the class you want to use, because you’re interested in the disks

that belong to the server, and not anything that’s mapped. The following listing shows

how you can use the Win32_LogicalDisk class.

$dtype = DATA {ConvertFrom-StringData -StringData @'
3 = Local Disk
4 = Network Drive
'@}

$media = DATA {ConvertFrom-StringData -StringData @'
11 = Removable media other than floppy
12 = Fixed hard disk media
'@}

function get-logicaldisk {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
[string]$computername="$env:COMPUTERNAME"
)
PROCESS{

 Get-WmiObject -Class Win32_LogicalDisk `
 -ComputerName $computername |
 select DeviceID, Compressed, Description,

Listing 6.6 Logical disks

TECHNIQUE 25

Define
lookups

BB

Call WMI
class

C

182 CHAPTER 6 Disk systems

 @{Name="Drive Type";

 ➥ Expression={$dtype["$($_.DriveType)"]}},
 @{Name="Media Type";

 ➥ Expression={$media["$($_.MediaType)"]}},
 FileSystem,
 @{Name="Disk Size (GB)";

 ➥ Expression={"{0:F3}" -f $($_.Size/1GB)}},
 @{Name="Free Space (GB)";

 ➥ Expression={"{0:F3}" -f $($_.FreeSpace/1GB)}},
 SupportsDiskQuotas, SupportsFileBasedCompression,
 VolumeName, VolumeSerialNumber
}}

You start by defining some lookups B; the listing is truncated for brevity. The

Win32_LogicalDisk class is called C, and the results are piped into Select-Object.

You can select the properties in which you’re interested.

 The lookups are used to determine the drive type and the media type D. The disk

size and free space are returned in bytes. Calculated fields are used to change these

numbers to gigabytes E.

DISCUSSION

This listing can be adapted to only return the size information. This makes it easier to

see servers with disk issues. Alternatively, you could use Select-Object on the output:

get-logicaldisk | select "Disk Size (GB)", "Free Space (GB)",
@{Name="% Free"; Expression={"{0:F3}" -f `
$(($_."Free Space (GB)"/$_."Disk Size (GB)")*100)}}

You take the output from the function and select the two properties related to disk

size. Remember that they’re calculated fields. You need to use quotes around the

property names because they have spaces and special characters. You can then use

those two properties to calculate the percentage of free space. How flexible is that?

 Now that you know about the logical disks installed in your system, what can you

discover about their root directories?

 Root directory data

You can get a view of the root directory by using Win32_LogicalDiskRootDirectory

like this:

Get-WmiObject Win32_LogicalDiskRootDirectory |
select GroupComponent, PartComponent

This will return the logical disk device ID and the associated root directory.

 But discovering that C:\ is the root directory of C: probably doesn’t come as much

of a surprise. You need to be able to dig a bit deeper than this.

PROBLEM

You need to determine if the root directory of a logical disk is hidden, compressed, or

encrypted, as these can have an impact on how the folder structure system is used and

seen.

Use
lookups

D

Calculate
fields

E

TECHNIQUE 26

183TECHNIQUE 26 Root directory data

SOLUTION

The root directory controls a number of properties of its child directories. If you look

at the root directory in detail, you can discover how it affects the folder structure. The

WMI class Win32_Directory can be used to discover the properties of your folders, as

you’ll see in chapter 8. If you check the classes associated with Win32_LogicalDisk,

like this,

Get-WmiObject -Query "ASSOCIATORS OF
 {Win32_LogicalDisk.DeviceID='C:'} WHERE CLASSDEFSONLY"

you’ll see that Win32_Directory is one of them and returns the root directory. You

can use this information, as in the following listing, to discover the directories associ-

ated with a logical disk.

function get-rootdirectory {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
[string]$computername="$env:COMPUTERNAME"
)
PROCESS{
Get-WmiObject -Class Win32_LogicalDisk `
 -ComputerName $computername |
 foreach {
 $_.DeviceId
 $inxid = ($_.DeviceID).Replace("\","\\")
 $query = "ASSOCIATORS OF {Win32_LogicalDisk.DeviceID=""$inxid""}
 WHERE RESULTCLASS = Win32_Directory"
 Get-WmiObject -ComputerName $computername -Query $query |
 select Name, Hidden, Archive, Compressed, Encrypted,
 Readable, FSName, EightDotThreeFileName,
 FileSize, LastAccessed, LastModified
 }
}}

The function uses Win32_LogicalDisk to return the logical disks on the computer. The

device ID of each disk is printed, and the device ID is then modified by doubling

the backslash (\) characters (the backslash is a WMI escape character that needs to be

doubled to use it literally).

 You can find the Win32_Directory instances associated with that logical disk and

select the properties you want to display.

DISCUSSION

The important properties are Hidden, Compressed, and Encrypted. You can always

select just those properties using this line:

get-rootdirectory | select Name, Hidden, Compressed, Encrypted

The other way that directories interact with logical disks is through mount points.

Listing 6.7 Root directory

184 CHAPTER 6 Disk systems

 Mount points

When you create a logical disk (volume), you can choose to give it a drive letter and

make it accessible as g:\, for instance. Alternatively, you can take an empty folder, such

as c:\data, and mount the volume in the folder. This makes the volume’s disk space

appear as part of the c: drive, but it’s only accessible through the c:\data folder.

 I often use the latter technique for big Exchange or SQL Server systems where I

have more volumes than drive letters available. It also makes configuring Exchange

replication easier, because creating the same folder structure becomes a

simple proposition.

 You can use Get-WmiObject Win32_MountPoint to discover the active mount

points on your system, but this class only returns the directory and the volume that are

associated through a mount point.

PROBLEM

You’ve inherited a large Exchange server with multiple mount points defined. You

need to discover the volumes associated with those mount points.

SOLUTION

We’ll assume that you have a single root folder that holds the folders used for mount

points. We’ll also assume, for the sake of brevity, that you know the path to this folder.

The usual function structure is modified in the following listing by the addition of a

second parameter.

function get-mountpoint {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [string]$path ="C:\Data*"
)
 $test = 'Win32_Directory.Name="' +

 ➥ $path.Replace("\","\\") + '"'

 Get-WmiObject -Class Win32_MountPoint `
 -ComputerName $computername |
 where {$_.Directory -like $test} |
 foreach {
 $vol = $_.Volume
 Get-WmiObject -Class Win32_Volume `
 -ComputerName $computername |
 where {$_.__RELPATH -eq $vol} |
 Select @{Name="Folder";
 Expression={$_.Caption}},
 @{Name="Size (GB)";
 Expression={"{0:F3}" -f $($_.Capacity / 1GB)}},
 @{Name="Free (GB)";
 Expression={"{0:F3}" -f $($_.FreeSpace / 1GB)}},

Listing 6.8 Mount points

TECHNIQUE 27

Create
parameters

B

Set folder
for WMI

C

Test
folder

D

Test
volume

E

185TECHNIQUE 28 Enumerate volume information

 @{Name="%Free";
 Expression={"{0:F2}" -f $(($_.FreeSpace/$_.Capacity)*100)}}
 }
}}

The second parameter enables you to input the folder you want to test against B. The

folder name must be changed from a Windows format to a WMI format C. This is

achieved by doubling the backslash (\) characters. You can find the mount points that

match your folder D. This script uses Where-Object rather than a WMI filter because

the -like operator gives you an easier way to code the test, and I think it’s more flexible.

 The mount points are piped into ForEach-Object, where you display the volume

name and use the Win32_Volume class to retrieve the volume data. A filter is placed on

the volume using Where-Object E to compare the volume name to the __RELPATH

(relative path) property returned by WMI.

 When a volume is mounted in a folder, Win32_Volume returns the folder name in

the Caption property. You can display the folder and use three calculated fields to dis-

play the volume size, free space, and percentage free space. This provides instant

space monitoring for your Exchange systems with mount points.

DISCUSSION

The script could be extended by using Test-Path to ensure that the folder you’re test-

ing against is in existence.

 In practical terms, there isn’t a great deal of difference between volumes and logi-

cal disks. In WMI terms there’s a big difference, because the Win32_Volume class has

some methods for doing good things to your volumes.

6.3 Volumes

Volumes are the most useful of the disk structures we’ll deal with. They can be

regarded in the same light as logical disks, though there are technical differences. Vol-

umes are where you can directly administer your disks through the methods of the

Win32_Volume class. The classes that we dealt with for physical and logical disks don’t

have useful methods, so you can only use them to discover information. The situation

changes with volumes, as you’ll see in this section and the next.

 In this section, you’ll learn how to enumerate the volumes in your system. It’s

worth comparing listing 6.9 (coming up next) with listing 6.6 (which used

Win32_LogicalDisk) to see the similarities and differences in the data you can get

about logical disks and volumes. This section closes with a look at managing change

events related to your volumes.

 Enumerate volume information

The main class for working with volumes is Win32_Volume. It has a large number of

properties and some very useful methods. A quick look at the available methods and

properties can be obtained with

Get-WmiObject Win32_Volume | Get-Member

TECHNIQUE 28

186 CHAPTER 6 Disk systems

You can view the arguments needed by a particular method like this:

$v = Get-WmiObject Win32_Volume -Filter "DriveLetter='C:'"
$v.AddMountPoint

In this case, the method takes a directory path as an argument. An example of using

this method is supplied in section 6.4.

TIP This technique can be used for any method. Use the method name with-
out any arguments or parentheses, and you’ll get information on the method,
including the arguments that are required.

PROBLEM

You need to enumerate the volumes in your system. This will enable you to manage

the disk space.

SOLUTION

The following listing shows the solution to this problem. You can use the

Win32_Volume class to directly find the information you need.

$dtype = DATA {ConvertFrom-StringData -StringData @'
2 = Removable Disk
3 = Local Disk
5 = Compact Disk
'@}

function get-volume {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
[string]$computername="$env:COMPUTERNAME"
)
PROCESS{

 Get-WmiObject Win32_Volume -ComputerName $computername|
 select Caption, Label, Automount, Blocksize,
 BootVolume, SystemVolume,
 @{Name="Drive Type"; Expression={$dtype["$($_.DriveType)"]}},
 @{Name="Disk Size (GB)";
 Expression={"{0:F3}" -f $($_.Capacity/1GB)}},
 @{Name="Free Space (GB)";
 Expression={"{0:F3}" -f $($_.FreeSpace/1GB)}},
 Compressed, FileSystem, IndexingEnabled,
 MaximumFileNameLength, PageFilePresent,
 QuotasEnabled, QuotasIncomplete, QuotasRebuilding,
 SerialNumber, SupportsDiskQuotas,
 SupportsFileBasedCompression
}}

The script starts by defining a lookup hash table to supply the information on the disk

types B. Note that the Win32_Volume class does show information about CD/DVD

drives. There won’t be much returned if the drive is empty.

Listing 6.9 Enumerate volumes

Lookup
dataB

Function
parameter

C

WMI
call

D

187TECHNIQUE 29 Using volume change events

 The function takes a computer name as a parameter C and uses the

Win32_Volume class to retrieve the data D. Calculated fields are used to make the disk

size and free space values more presentable.

DISCUSSION

The Win32_Volume class is of most value for the methods it provides.

 But before you jump into managing the disks with those methods, you need to

consider how you can manage events related to volumes.

 Using volume change events

We discussed using WMI events in chapter 3. Events are triggered when something

happens on your system. If you try looking for WMI classes related to events,

Get-WmiObject -List *Event*

you’ll find a long list of classes, including Win32_VolumeChangeEvent. The name sug-

gests that it deals with events involving changes to a volume. But if you try to access the

class directly using

Get-WmiObject Win32_VolumeChangeEvent

you get nothing back! The event-handling cmdlets have to be used before you can

access the event engine.

PROBLEM

You’ve been tasked with copying a folder full of files onto a large number of USB

memory sticks. In order to speed the operation and spread the work across a number

of people, you want to automate the process.

SOLUTION

The solution depends on you detecting a USB memory stick being plugged in. WMI

treats the USB device as another volume. Run this PowerShell statement:

Get-WmiObject Win32_Volume |
Format-Table DriveLetter, DriveType, FileSystem, `
SerialNumber -AutoSize

Insert a USB device and repeat. You should see that the new volume is recognized.

 Note that the new drive type is given as 2, which is a removable drive (see listing 6.9)

but existing volumes are type 3 (hard drive) or type 5 (CD). This enables you to test for

the addition of a USB drive, as shown in listing 6.10.

WARNING This script is presented as a standalone script, rather than being
incorporated into the PowerShell module for the chapter. It’s presented in
this manner to avoid issues with variable scope. Feel free to rename the script
if that’s more convenient.

The script is run as follows:

. ./listing6.10 c:\teszzt2

TECHNIQUE 29

188 CHAPTER 6 Disk systems

You dot-source the script to ensure that the functions and variables remain in memory.

The path to the folder you wish to copy to the USB sticks is passed to the script as a param-

eter. Use quotes around the folder path if it contains spaces or other special characters.

param (
 [string]$folder
)
if (-not (Test-Path $folder)){
 Throw "Folder $($folder) not found"
}

function add-drive {
param (
 [string]$drive
)
 Write-Host "Drive $($drive) Added"
 Write-Host "Copying Files to Drive $($drive) "

 Copy-Item -Path $folder -Destination $drive -Recurse -Force -Verbose
 Write-Host "Finished Copying Files to Drive $($drive)"
}

function remove-drive {
param (
 [string]$drive
)
 Write-Host "Drive $($drive) Removed"
}

if (Get-EventSubscriber |
 where {$_.SourceIdentifier -eq "usb plug in"}) {
 Unregister-Event -SourceIdentifier "usb plug in"
}

if (Get-EventSubscriber |
 where {$_.SourceIdentifier -eq "usb plug out"}) {
 Unregister-Event -SourceIdentifier "usb plug out"
}

$queryIn = "SELECT * FROM __InstanceCreationEvent
WITHIN 2 WHERE TargetInstance ISA 'Win32_Volume'
AND TargetInstance.DriveType=2"
$queryOut = "SELECT * FROM Win32_VolumeChangeEvent WHERE EventType=3"

$actionIn = {
 add-drive $($event.SourceEventArgs.NewEvent.TargetInstance.DriveLetter)
}

$actionOut = {
 remove-drive $($event.SourceEventArgs.NewEvent.DriveName)
}

Register-WmiEvent -Query $queryIn `
-SourceIdentifier "usb plug in" -Action $actionIn
Register-WmiEvent -Query $queryOut `
-SourceIdentifier "usb plug out" -Action $actionOut

Listing 6.10 Automatic copy to USB memory stick

Test folder
existence

B

Perform on
USB additionC

Perform on
USB removalD

Clean up
events

E

Define
queries

F

Define actions G

Register
eventsH

189TECHNIQUE 29 Using volume change events

The script will test to see if the folder exists B. If Test-Path doesn’t return True, the

script will throw an error and stop. The test only determines if the folder exists—it

doesn’t test to see if the folder has any content!

 Two functions are defined. The first function provides the actions that will occur

when a USB stick is plugged into the system C. It takes the device’s drive letter as a

parameter and copies the folder to the drive with appropriate messages. The

-Recurse and -Force parameters on Copy-Item ensure that the folder contents are

copied and that an existing copy of the folder on the USB device is overwritten. The

-Verbose parameter displays a message as each file is copied, as shown in figure 6.2.

 The second function is executed when the USB stick is removed. In this case, it pro-

vides a message to say that the drive has been removed D.

 If the script is run multiple times, the existing events need to be removed before

new events are created E. A test is performed to determine whether an event sub-

scriber exists with the specific source identifier. If it does exist, it’s removed. The event

subscriptions will also be deleted when PowerShell is shut down.

 You’ve determined what you’re going to do when a USB device is plugged in, but

how do you recognize that event? There are two methods you can use to determine if

a change has occurred to your volumes. These are defined in the WMI queries the

script uses F.

 The first method uses the __InstanceCreationEvent class, which is a system class

defined in each WMI namespace:

$queryIn = "SELECT * FROM __InstanceCreationEvent

 ➥ WITHIN 2 WHERE TargetInstance ISA 'Win32_Volume'

 ➥ AND TargetInstance.DriveType=2"

This query selects all of the data from the __InstanceCreationEvent class, which

looks for the events related to the creation of an instance of a WMI class. The WITHIN 2

statement means that it checks every two seconds to determine if an event

Figure 6.2 Running the automatic copy of files when a USB stick is plugged in

190 CHAPTER 6 Disk systems

has occurred. The events are filtered by using WHERE TargetInstance ISA

'Win32_Volume', which only passes events related to volume creation. A further filter,

TargetInstance.DriveType=2, ensures that the volume has to be a removable one

before you take any notice of it.

 The second method checks for the removal of the drive. This uses a much simpler

query:

$queryOut = "SELECT * FROM Win32_VolumeChangeEvent WHERE EventType=3"

It uses the Win32_VolumeChangeEvent class and tests for event type 3, which is the

removal of a device (see table 6.2).

 Two actions are defined G, and these are performed when the events are trig-

gered. The actions call the two functions discussed earlier, C and D. The script’s last

action is to register the WMI events using the queries and actions you’ve defined H.

Suitable identifiers are used so that you can distinguish the events.

DISCUSSION

Two different methods have been presented to work with volume-related events. If

you prefer, a single method could be used to access the events. This involves changing

the queries to use either the Win32_VolumeChangeEvent class or the system classes.

 When using the Win32_VolumeChangeEvent class, you need to modify your queries

to detect the relevant events. Event type 2 is used for a device arrival (USB device

plugged in) and event type 3 is used when it’s removed. The full list of event types is

given in table 6.2.

This would make the relevant portions of the script read as follows:

$queryIn = " SELECT * FROM Win32_VolumeChangeEvent WHERE EventType=2"

$queryOut = "SELECT * FROM Win32_VolumeChangeEvent WHERE EventType=3"

$actionIn = {
 add-drive $($event.SourceEventArgs.NewEvent.DriveName)
}

$actionOut = {
 remove-drive $($event.SourceEventArgs.NewEvent.DriveName)
}

Notice that the event type is different in the two queries and that the way the drive let-

ter of the USB stick is accessed is now identical in both action statements.

Value Meaning

1 Configuration changed

2 Device arrival

3 Device removal

4 Docking Table 6.2 Win32_VolumeChangeEvent

event types

191TECHNIQUE 29 Managing disks

 Alternatively, you could use the system classes, which would change those portions

of the script as follows:

$queryIn = "SELECT * FROM __InstanceCreationEvent WITHIN 2 WHERE
TargetInstance ISA 'Win32_Volume' AND TargetInstance.DriveType=2"

$queryOut = " SELECT * FROM __InstanceDeletionEvent WITHIN 2 WHERE
TargetInstance ISA 'Win32_Volume' AND TargetInstance.DriveType=2"

$actionIn = {
 add-drive $($event.SourceEventArgs.NewEvent.TargetInstance.DriveLetter)
}

$actionOut = {
 remove-drive `
$($event.SourceEventArgs.NewEvent.TargetInstance.DriveLetter)
}

Your query to detect the removal of the drive has to be changed to use the

__InstanceDeletionEvent class, and the drive letter access is also changed to be

consistent.

 The most difficult task when working with events is determining how to access the

information produced by the event. The examples in this script show two of the major

WMI-related methods.

 At the first meeting of the UK PowerShell User Group, two of us sat and copied the

PowerShell downloads onto USB sticks. I think we did about 50 of them. I could have

used this script at that time. Now I would use listing 6.10 and be able to control the

process just by plugging in the USB stick. With most laptops having three USB ports,

that speeds up the process.

 You’ve now used a number of disk-related WMI classes to discover information

about your disks. It’s time to discover how you can manage the disks in your systems.

6.4 Managing disks

The Win32_Volume class presents a number of methods for managing disks, including

formatting, performing a chkdsk, and defragmenting the data on the disk. But before

we get to that, let’s see how you can work directly with the volumes by modifying

the properties.

 The two properties you’re most likely to change are the drive letter and the vol-

ume label. Changing the drive letter is a matter of altering the DriveLetter property:

Get-WmiObject -Class Win32_Volume -Filter "DriveLetter='D:'" |
Set-WmiInstance -Arguments @{DriveLetter='K:'}

You can remove the drive letter completely by using @{DriveLetter=$null} as the

argument for Set-WmiInstance. If you try to set the drive letter to be the same as one

in use, an error will occur.

 Changing the volume label follows a similar pattern:

Get-WmiObject -Class Win32_Volume -Filter "DriveLetter='K:'" |
Set-WmiInstance -Arguments @{Label='PaWtest'}

192 CHAPTER 6 Disk systems

You use Get-WmiObject and filter on the drive letter. This is piped into Set-WmiInstance

where you can change the label.

WARNING This technique can’t be used to change properties such as the vol-
ume block size. That involves reformatting the volume.

One issue that you meet in Windows is that drives have to be allocated letters, and

there are only 26 letters in the alphabet. This can mean that on very big systems you

run out of drive letters. Exchange systems with a dozen or so databases with separate

drives for the data and logs will soon reach this limit. You can overcome this problem

by using mount points. Listing 6.8 showed how to discover mount points. Creating

them is performed using the AddMountPoint method:

Get-WmiObject -Class Win32_Volume -Filter "DriveLetter='D:'" |
Invoke-WmiMethod -Name AddMountPoint -ArgumentList "C:\\pawtest"

This example uses a drive letter for simplicity, but it’s also possible to use the device ID

of the volume:

Get-WmiObject -Class Win32_Volume | where

 ➥ {$_.DeviceId -eq "\\?\Volume{d203ba64-8654-11de-add0-

 ➥ 001f1663f5df}\"}|
Invoke-WmiMethod -Name AddMountPoint -ArgumentList "C:\\pawtest"

In both cases, the result is piped into Invoke-WmiMethod to call the AddMountPoint

method. The folder to be used as the mount point has to be presented in WMI format

with double backslashes (\\) rather than a single one.

 One of the first management tasks you’ll have to perform on your volume is for-

matting it so that it becomes usable.

 Formatting a disk

The disks have to be formatted when you first install a new server. You also need to for-

mat them when you’re rebuilding the system so that it can be repaired or repurposed.

Occasionally, reformatting may be necessary if a machine has been infected with a

virus. Formatting is a destructive process, so it’s a good way of clearing the disks of all

data prior to reuse.

PROBLEM

You’re rebuilding a server because you’re changing its purpose. You need to format

the data drives. The C: drive will be reformatted during the installation of Windows.

SOLUTION

In the following listing, you use the Format method of the Win32_Volume class to refor-

mat the disk.

function format-drive {
[CmdletBinding()]
param (

Listing 6.11 Formatting a disk

TECHNIQUE 30

193TECHNIQUE 30 Formatting a disk

 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [parameter(Mandatory=$true)]
 [string]$drive,

 [ValidateSet("NTFS", "FAT", "FAT32")]
 [string]$filesys = "NTFS",
 [boolean]$quick = $true,
 [int]$cluster = 4096,
 [string]$label = ""
)
PROCESS{
 if (-not $drive.EndsWith(":")){$drive = "$drive:"}

 $v = Get-WmiObject -Class Win32_Volume `
 -Filter "DriveLetter='D:'" -ComputerName $computername
 $ret = $v.Format($filesys, $quick, $cluster, $label, $false)

 if ($ret.ReturnValue -eq 0){"Drive $drive formatted"}
 else {"Formatting of drive $drive failed" }
} }

The function accepts a number of parameters B. You’ve seen the computer name

and drive before. There are a limited number of choices available for the filesystem.

You should be using NTFS for the filesystem, so you set that as the default. The

ValidateSet() method is used on the parameter to check that only acceptable values

can be passed.

 If the drive doesn’t end with a colon (:), you add one. Get-WmiObject is used to

create a variable to represent the volume you want to format C.

WARNING Remember that you don’t get -Whatif or -Confirm with WMI. Be
careful when using this function. I’ve included a version of this function that
implements –Whatif using functionality from PowerShell’s advanced func-
tions. It’s in the Chapter06\Extras folder of the code download.

The Format method is invoked on the volume object using the parameters you’ve

passed into the function.

 If a result of 0 is returned, the formatting has succeeded D; otherwise a message is

displayed to say that it has failed.

DISCUSSION

One surprise while researching this technique was that using Invoke-WmiMethod and

formatting arguments didn’t work. For instance, this code should work:

Get-WmiObject -Class Win32_Volume -Filter "DriveLetter='D:'" |
Invoke-WmiMethod -Name Format `
-ArgumentList "NTFS", $true, 4096, "Test", $false

In fact, it returns an error stating, “Input string was not in a correct format.” Luckily,

you have more than one way to format a disk, and the method described in listing 6.11

works.

Set
parameters

B

Format
drive

C

Display
resultsD

194 CHAPTER 6 Disk systems

Now that your disk has been formatted, you can put it into use. During the lifetime of

the system, you may have to perform routine maintenance on the disk.

 Performing Chkdsk

Chkdsk performs a low-level check on the disk. It’s especially useful for detecting

whether sectors on the disk have become corrupted. Unfortunately, it’s often users

complaining that they can’t access a file that alerts you to a potential disk problem.

PROBLEM

A user has complained that they can’t access a file. It won’t open, even though other

files in the same folder are usable. You need to perform a chkdsk operation on the

volume to determine if there is any corruption of the media.

SOLUTION

The Win32_Volume class has a Chkdsk method. If you have used the command-line

chkdsk utility, you’ll find it very similar. The advantage of using WMI is that you can

work on the disks of remote machines.

 I have called this function invoke-chkdsk, following the PowerShell naming con-

ventions. It’s shown in the following listing. The function can be used as

invoke-chkdsk mycomputer f:

MVPs find the answer

I discussed the problem of Invoke-WmiMethod and how it takes arguments with the

other PowerShell MVPs, and after some investigation Shay Levy discovered that this

would work:

Get-WmiObject Win32_Volume -Filter "DriveLetter='D:'" |
Invoke-WmiMethod -Name Format `
 -ArgumentList @(4096,$false,'NTFS','King',$true,$null)

where the arguments are in the order of:

■ ClusterSize

■ EnableCompression

■ FileSystem

■ Label

■ QuickFormat

■ Version

He looked at the parameters that were returned by

([wmiclass]"Win32_Volume").GetMethodParameters('Format')

These are in the order given in the code in this sidebar, whereas the order given on

MSDN matches what I used in the listing and what is produced by using

(Get-WmiObject Win32_Volume -Filter "DriveLetter='D:'").Format

Very odd.

TECHNIQUE 31

195TECHNIQUE 32 Analyzing and removing fragmentation

function invoke-chkdsk {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [string]$drive ="D:",
 [boolean]$fixerrors = $false,
 [boolean]$vigorousIndexCheck = $true,
 [boolean]$skipFolderCycle = $true,
 [boolean]$forcedismount = $false,
 [boolean]$recoverbadsectors = $false,
 [boolean]$oktorunatbootup = $false
)
PROCESS {
 if (-not $drive.EndsWith(":")){$drive = "$drive:"}

 Get-WmiObject Win32_Volume -Filter "DriveLetter='$drive'" `
 -ComputerName $computername |
 Invoke-WmiMethod -Name ChkDsk `
 -ArgumentList $fixerrors, $vigorousIndexCheck,$skipFolderCycle, `
 $forcedismount, $recoverbadsectors, $oktorunatbootup
}}

The function takes the usual computer and drive parameters. It also takes a number

of Boolean (true or false) parameters. The default values will perform a chkdsk but

won’t attempt to repair any errors. If you want that to happen, the function should be

used as follows:

invoke-chkdsk mycomputer f: -fixerrors $true `
-recoverbadsectors $true

DISCUSSION

Performing a chkdsk in this manner will work on all drives except the C: drive (assum-

ing C: is the boot drive). On the boot drive, the chkdsk will be performed the next

time the system is restarted.

 The other maintenance activity you need to consider is how you deal with file

fragmentation.

 Analyzing and removing fragmentation

When a file is deleted from a volume in a Windows system, the remaining files aren’t

shuffled around to use the space that has been made. New files will start to be written

into the first available space on a disk. If there isn’t enough space for the file to fit in a

single piece, it will be written into whatever space is next available.

 As this process proceeds and more files are deleted, the resulting space gets bro-

ken up into small pieces, meaning that files can be spread across multiple areas of the

disk. This is fragmentation. If the level of fragmentation becomes too high, perfor-

mance can be affected.

Listing 6.12 Performing a chkdsk

TECHNIQUE 32

196 CHAPTER 6 Disk systems

 Modern Windows systems perform a certain amount of defragmentation automati-

cally, but it isn’t always enough. Sometimes you have to step in and do the job yourself.

PROBLEM

The users are complaining (again) that one of your servers is slow to respond when

files are requested. You need to analyze the volume for its fragmentation state and, if

necessary, perform a defragmentation on the disk.

SOLUTION

The following listing shows how you can use the DefragAnalysis and Defrag methods

of the Win32_Volume class to solve this problem.

function invoke-defraganal {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [string]$drive ="D:",
 [switch]$defrag
)
PROCESS
if (-not $drive.EndsWith(":")){$drive = "$drive:"}

if (-not $defrag) {
 "Analysing drive $drive"
 $dfa = Get-WmiObject Win32_Volume `
 -Filter "DriveLetter='$drive'" -ComputerName $computername |
 Invoke-WmiMethod -Name DefragAnalysis
 if ($($dfa.ReturnValue) -eq 0){
 "Defrag Recommended: $($dfa.DefragRecommended)"
 }
} else {
 "Defraging drive $drive"
 $dfa = Get-WmiObject Win32_volume `
 -Filter "DriveLetter='$drive'" -ComputerName $computername |
 Invoke-WmiMethod -Name Defrag -ArgumentList $false
}

if ($($dfa.ReturnValue) -eq 0){
 $dfa.DefragAnalysis |
 select AverageFileSize, AverageFragmentsPerFile,
 @{Name="AverageFreeSpacePerExtent (GB)";
 Expression={"{0:F3}" -f $($_.AverageFreeSpacePerExtent/1GB)}},
 ClusterSize, FragmentedFolders,
 ExcessFolderFragments, FilePercentFragmentation,
 @{Name="FreeSpace (GB)";
 Expression={"{0:F3}" -f $($_.FreeSpace/1GB)}},
 FreeSpacePercent, FreeSpacePercentFragmentation,
 @{Name="LargestFreeSpaceExtent (GB)";
 Expression={"{0:F3}" -f $($_.LargestFreeSpaceExtent/1GB)}},
 MFTPercentInUse, MFTRecordCount, PageFileSize,
 TotalExcessFragments, TotalFiles, TotalFolders,

Listing 6.13 Analyzing and performing defragmentation

Set
parameters

B

Perform
analysis

C

Perform
defragmentation

D

Display
results

E

197TECHNIQUE 32 CD drives

 TotalFragmentedFiles, TotalFreeSpaceExtents,
 TotalMFTFragments, TotalUnmovableFiles,
 @{Name="TotalMFTSize (GB)";
 Expression={"{0:F3}" -f $($_.TotalMFTSize/1GB)}},
 TotalPageFileFragments, TotalPercentFragmentation,
 @{Name="UsedSpace (GB)";
 Expression={"{0:F3}" -f $($_.UsedSpace/1GB)}},
 VolumeName,
 @{Name="VolumeSize (GB)";
 Expression={"{0:F3}" -f $($_.VolumeSize/1GB)}}
}
else {"Error occurred - return code: $($dfa.ReturnValue)"}
}}

The function accepts the computer and drive parameters as usual for this chapter B,

but you also have another parameter, defrag. This is a switch that’s set to False by

default. If you use it, a defragmentation occurs, and if you don’t, you just get the analysis.

 The script checks the formatting of the drive parameter and corrects it if required.

 If the defrag switch isn’t set C, then an analysis is performed using the Defrag-

Analysis method. Get-WmiObject is used to retrieve the volume, and then it’s piped

into Invoke-WmiMethod.

 A similar process is used if the defrag switch is set D, except that the Defrag

method is used.

 In both cases, the results are output to a variable, $dfa. If the return code is 0, the

results are displayed E; otherwise an error message is displayed. The results are simi-

lar to those obtained from running the analysis in the GUI tools. The sizes are all recal-

culated as gigabytes for ease of use.

DISCUSSION

The defrag switch makes the function easy to use:

Invoke-defraganal mycomputer f:

This line will test the F: drive on the stated computer. If the results come back suggest-

ing that defragmentation is required, you simply add the defrag parameter:

Invoke-defraganal mycomputer f: -defrag

This then performs the defragmentation and returns the results so you can see the

progress.

 Sometimes you’ll need to run multiple defragmentation passes to remove the max-

imum amount of fragmentation. This can be achieved with a slight modification:

1..5 | foreach {Invoke-defraganal mycomputer f: -defrag}

That completes our look at the system’s hard drives, but before we close the chapter

we need to consider CD drives.

6.5 CD drives

CD/DVD drives (for simplicity, I’ll refer to them as CD drives throughout this section)

are often the forgotten component when you’re discussing disks. They’re included by

198 CHAPTER 6 Disk systems

Win32_LogicalDisk and Win32_Volume but are excluded by Win32_DiskDrive. You’ve

seen how to deal with them as logical disks and volumes earlier in the chapter. All that

remains is to discover the data you need on the physical drive.

 Enumerating CD drives

Most modern systems have a CD drive. Virtual machines can gain access to the physical

drive of the host or can attach an ISO file through a virtual CD drive.

PROBLEM

In order to complete the documentation of your servers you have to enumerate the

CD drives that are present in the system.

SOLUTION

The listings presented earlier in the chapter will provide information on the vol-

umes present because of the CD drive. You can discover the required information on

the physical aspect of the CD drive using Win32_CDROMDrive. This class also works for

DVD drives.

WARNING Be careful with the name of this class. It’s easy to get it wrong,
especially if you’re in a hurry and just type Win32_CDROM as many people do.
(Yep, done that.) It’s a pity we can’t establish aliases for WMI classes.

The following listing shows how you can use this class.

function get-cdrom {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 Get-WmiObject -Class Win32_CDROMDrive `
 -ComputerName $computername |
 foreach {
 ""
 $_ | select Drive, MediaLoaded, Status, Name,
 MediaType, SCSIBus, SCSILogicalUnit,
 SCSIPort, SCSITargetId, TransferRate

 "Capabilities:"
 Get-WmiObject -Class Win32_CDROMDrive `
 -ComputerName $computername -Filter "Drive='$($_.Drive)'" |
 select -ExpandProperty CapabilityDescriptions
 }
}}

The function takes a computer name as a parameter. The default is the local machine,

as usual.

Listing 6.14 Enumerating CD drives

TECHNIQUE 33

199Summary

 You can then use Win32_CDROMDrive to return the information on the physical

aspects of the drive. A further call is made to the class to determine the capabilities. You

can use the capability descriptions via the ExpandProperty parameter of Select-Object

to create a formatted list of the capabilities. The capabilities are things like

■ Random access

■ Supports removable media

Notice that the call Win32_CDROMDrive to determine the capabilities uses the drive let-

ter as a filter to ensure that the capabilities are linked to the correct drive.

DISCUSSION

This script could be adapted to determine whether a CD drive is present in the

machine by testing to see if Win32_CDROMDrive returns data. If it doesn’t, there isn’t a

CD drive present.

 This brings our tour of the disk-related WMI classes to a close.

6.6 Summary

The functionality presented in this chapter and chapter 5 will provide most, if not all,

of the information you require about the physical aspects of your systems. It’s how I

document my systems.

 This chapter has worked through the WMI classes that enable you to work with

■ Physical disks and disk controllers

■ Partitions

■ Logical disks and volumes

■ CD drives

You’ve also seen how to work with events raised by the disk systems. This technique

also can be used to format drives and perform other management activities.

 Disks, like all aspects of your systems, need managing occasionally. You can use the

techniques in this chapter to format your disks, run disk-checking routines, and per-

form defragmentation.

 Chapters 5 and 6 have covered the hardware aspects of our systems. In the next

chapter, we’ll start to investigate some other aspects, starting with the registry.

200

Registry administration

The registry is used to contain configuration information about your Windows sys-

tems. It’s entirely separate from the information maintained by the WMI providers

we discussed in chapter 3, though some of the information may overlap.

WARNING This is the point where I issue the traditional warning about
being careful with the registry. If you damage the registry, you may have to
rebuild your system. I’m assuming that if you’re reading this, you aren’t
going to deliberately wreck your system, but do be careful. Creating a sys-
tem restore point before experimenting with the registry is highly recom-
mended—use Checkpoint-Computer on a client system.

Working with the registry on your local computer is easy because you have the registry

provider. This means you can use the standard cmdlets (*-Item, *-ItemProperty,

and so on) to perform your administration tasks. If you have PowerShell v2 installed

on all of your machines, you could use PowerShell remoting to access the registry

provider on your servers. But many organizations aren’t in that position, so you’ll

This chapter covers

■ Discovering the registry’s size

■ Manipulating registry keys and values

■ Discovering security settings on registry keys

■ Monitoring changes on keys and values

201Accessing the registry

need to use WMI to work with remote registries. There’s similar .NET functionality, but

I’m not going to cover it here.

 We’ll start the chapter by looking at how you can access the registry. The registry

size can be checked to ensure you don’t have a problem. Also, you’ll probably spend

more time reading registry values compared to other activities, so you need to under-

stand the data types available in the registry. Techniques to read, create, modify where

applicable, and delete registry keys and values are presented in turn to enable you to

manage the whole lifecycle.

TIP When working with the registry, the paths are known as keys, and the
actual entries are known as values, even though a registry value will have a
name and a value.

Security is always a concern. The registry needs to be protected from rogue actions, so

you need to be able to check access permissions on particular keys. If an untoward

action has occurred, you may need to reset the ownership of a registry key so that you

can perform further actions on the key and its values.

 There are some keys and values that you may need to protect further. You can use

the WMI registry events to monitor for changes to a key or its values.

 Before you can do anything, though, you need to learn how to access the registry

and what data types are available.

7.1 Accessing the registry

The registry consists of a number of areas known as hives. Each hive has a number of

keys. When you look at these in regedit.exe (see figure 7.1), they appear to be

arranged in a hierarchy similar to the filesystem. The keys can have subkeys. A key or

subkey can act as a container for values. A registry value has a name and an actual value.

Figure 7.1 displays these various elements.

Figure 7.1 The

structure of the registry

\\$computername\root\default:StdRegprov

202 CHAPTER 7 Registry administration

WMI uses a constant numeric value to identify each hive, as you’ll see in the later sec-

tions. These constants are listed in table 7.1, together with the variables I’ll use in this

chapter’s scripts.

Before we dive into reading and writing in the registry, let’s look at a couple more

things about it.

 Test registry size

Do you know how big the registry is on your systems? The registry is created

at machine startup from a number of files on the hard drive. If these files become

full of rubbish, then server startup time will be slower and performance will poten-

tially suffer.

PROBLEM

You need to be able to test the current and maximum sizes of the registry to ensure

that it isn’t becoming bloated, which could cause problems. You need to be able to

perform this test on local and remote machines.

SOLUTION

The Win32_Registry class provides the information you need to solve this problem.

The following listing shows how you can use this class.

function get-registrysize {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
Get-WmiObject -Class Win32_Registry -ComputerName $computername |
Select CurrentSize, ProposedSize, MaximumSize, Status,
@{Name="InstallationDate";Expression={$_.ConvertToDateTime($_.InstallDate)}}
}

Table 7.1 Constants for accessing registry hives

Variable Value Hive

$HKCR 2147483648 HKEY_CLASSES_ROOT

$HKCU 2147483649 HKEY_CURRENT_USER

$HKLM 2147483650 HKEY_LOCAL_MACHINE

$HKUS 2147483651 HKEY_USERS

$HKCC 2147483653 HKEY_CURRENT_CONFIG

Listing 7.1 Discovering the registry size

TECHNIQUE 34

203TECHNIQUE 35 Discovering registry data types

This function is similar in structure to the functions you saw in the previous chapter. If

you’re automating the documentation of your systems, you may want to include this

function. I do!

 The function takes a computer name as a parameter and calls the Win32_Registry

class. The appropriate properties are displayed by piping the WMI object into

Select-Object.

DISCUSSION

Converting WMI dates into a readable format was covered in detail in chapter 4.

 One potential enhancement to this function would be to add a calculation of regis-

try size as a percentage of the maximum size of the registry, as configured for that sys-

tem. This gives a more immediate indicator of the size and potential issues. After the

Status property in listing 7.1, add this line of code:

@{N="PercSize"; E={"{0:F3}" -f $(($($_.CurrentSize)/
$($_.MaximumSize))*100)}},

The comma at the end is required so that the date conversion is still part of the state-

ment. In this snippet, I used N and E as abbreviations for Name and Expression respec-

tively. This is valid PowerShell, but I generally use the full versions for clarity.

 Now that you know the registry size, you need to think about reading the registry

itself. In figure 7.1 the values are shown with data types such as REG_SZ. You need to

know the type before you can read the data on a particular value.

 Discovering registry data types

The registry can store multiple data types, including strings, numbers, and binary

data. Table 7.2 lists the data types you’ll meet most commonly.

One of the difficulties when working with the registry is that you need to use a dif-

ferent WMI method to access each data type. These methods are listed in the first

column of table 7.2. A similar set of methods exists to write to the registry (for exam-

ple, SetDWORDValue).

Table 7.2 Registry data types

Method Data type Comments

GetBinaryValue REG_BINARY Returns an array of bytes

GetDWORDValue REG_DWORD Returns a 32-bit number

GetExpandedStringValue REG_EXPAND_SZ Returns expanded references to environ-

mental variables, such as %SYSTEMROOT%

GetMultiStringValue REG_MULTI_SZ Returns multiple string values, such as

"A","B","C","D"

GetQWORDValue REG_QWORD Returns a 64-bit number

GetStringValue REG_SZ Returns a string

TECHNIQUE 35

204 CHAPTER 7 Registry administration

 Before you can successfully read the registry you have to understand the data types

you’re dealing with.

PROBLEM

You need to check on a registry value across many machines in your environment to

ensure that they’re configured correctly. Unfortunately, you don’t know the correct

data type to access the value.

SOLUTION

The WMI registry provider supplies a method known as EnumValues. Listing 7.2 shows

how you can utilize this method. The function accepts a number of parameters

including hive type, registry key, and computer name. The computer name defaults to

“$env:COMPUTERNAME”, which is the local machine.

 The parameters for the hive and the key both carry a mandatory tag. This means

that if you don’t supply them, you’ll be prompted for them. That’s a lot of functional-

ity for adding one line of code to the parameter definition! The hive parameter is also

tested against the set of valid hive types. PowerShell is the perfect doorman—if it isn’t

on the list it doesn’t get in.

function get-regvaluetype {
[CmdletBinding()]
param(
 [parameter(Mandatory=$true)]
 [string]
 [Validateset("HKCR", "HKCU", "HKLM", "HKUS", "HKCC")]
 $hive,

 [parameter(Mandatory=$true)]
 [string]$key,

 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
switch ($hive) {
 "HKCR" {$rh = 2147483648}
 "HKCU" {$rh = 2147483649}
 "HKLM" {$rh = 2147483650}
 "HKUS" {$rh = 2147483651}
 "HKCC" {$rh = 2147483653}
}

$regtype = DATA {
ConvertFrom-StringData -StringData @'
1 = REG_SZ
2 = REG_EXPAND_SZ
3 = REG_BINARY
4 = REG_DWORD
7 = REG_MULTI_SZ
'@

Listing 7.2 Discovering registry value types

Set hive
constant

B

Lookup table
for data types

C

205TECHNIQUE 35 Discovering registry data types

}

$reg = [wmiclass]\\$computername\root\default:StdRegprov
$data = $reg.EnumValues($rh, $key)
$x = ($data.snames).Length
for ($i=0; $i -le $x; $i++){"{0,-30} {1}" -f
 $($data.snames[$i]), $regtype["$($data.types[$i])"] }
}}

A switch statement B is used to set the hive constant based on the input parameter. A

hash table is created, holding the possible data types C. This is the same technique

you saw in chapters 5 and 6.

 The registry provider can’t be accessed using Get-WmiObject D. You have to use

[wmiclass] to create an instance of the class that you can then populate. Chapter 3

covers the [wmiclass] type accelerator in detail.

NOTE I deliberately used the StdRegprov class from the root\default
namespace. In Windows Vista, Windows 2008, and later, the registry classes
are also available in the root\cimv2 namespace. I’ve used root\default for
consistency with earlier versions of Windows.

The EnumValues method is used with the hive and key as parameters to retrieve the

registry values associated with that particular key. The names and data types are dis-

played in a formatted string E. This listing also uses an extra line of code to get the

number of values, to keep the loop coding simpler.

DISCUSSION

The function is loaded as part of the chapter module, or the individual listing can be

run. Remember to dot-source the listing!

 Advanced functions are used in the same way as cmdlets, as you can see in the fol-

lowing example:

get-regvaluetype -hive HKLM `
-key "SOFTWARE\Microsoft\Windows\CurrentVersion"

The results of running this example are shown in figure 7.2.

WMI registry
provider

D

Display
values

E

Figure 7.2 Displaying registry value types

206 CHAPTER 7 Registry administration

In this particular case, you have strings (REG_SZ) and expanded strings

(REG_EXPAND_SZ).

NOTE Setting the hive constant in each function is inefficient. In the next
listing you’ll move this functionality into a separate function so that it can be
reused easily.

Now that you know how to discover data types, you can move on to reading the registry.

7.2 Reading the registry

Reading the registry comprises two separate actions:

■ Reading a registry key to find subkeys

■ Reading registry values

We’ll start by reading a registry key.

 Reading registry keys

One nice thing about working with the registry through WMI is that the same pattern

of code is repeated. You’ll see this and you’ll also see the function for setting the hive

constant that I promised earlier.

PROBLEM

An application requires a particular subkey to be present. You need to be able to test

remote systems to determine whether this key is present to troubleshoot a problem.

SOLUTION

The solution to this problem is shown in listing 7.3. It consists of two functions: set-

HiveValue and get-regkey. The set-HiveValue function accepts a hive, such as

HKLM, as a parameter and returns the appropriate constant using the switch state-

ment you saw in listing 7.2. You don’t need to test the hive name because it’s tested in

the parent function.

TIP If you load the chapter module, the set-HiveValue function will be
automatically loaded for you. If you use the listings individually, cut and paste
the set-HiveValue function into another script and be sure to run it first.

function set-HiveValue {
param([string]$hive)
switch ($hive) {
 "HKCR" {$rh = 2147483648}
 "HKCU" {$rh = 2147483649}
 "HKLM" {$rh = 2147483650}
 "HKUS" {$rh = 2147483651}
 "HKCC" {$rh = 2147483653}
}
 $rh
}

Listing 7.3 Reading registry keys

TECHNIQUE 36

207TECHNIQUE 36 Reading registry keys

function get-regkey {
[CmdletBinding()]
param (
 [parameter(Mandatory=$true)]
 [string]
 [Validateset("HKCR", "HKCU", "HKLM", "HKUS", "HKCC")]
 $hive,

 [parameter(Mandatory=$true)]
 [string]$key,

 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
$rh = set-HiveValue $hive
$reg = [wmiclass]"\\$computername\root\default:StdRegprov"
$subkeys = $reg.EnumKey($rh, $key)
switch ($subkeys.ReturnValue){
 0 {$subkeys.snames; break}
 2 {"Key $key not found"; break}
 default {"Error has occurred"; break}
}
}}

The get-regkey (remember the PowerShell verb-noun naming conventions) takes a

hive and key as mandatory parameters. The computer name is an optional parameter.

A call is made to set-HiveValue to get the hive constant.

 An instance of StdRegprov (the registry provider) is created so that you can

retrieve the subkeys using the EnumKey method. This takes the hive constant and key

as parameters, as do most of the registry methods.

 The switch statement is an example of the type of error handling that can be used

with these functions. It tests the return value, and if the value is 0 it prints the subkeys;

otherwise an error message is shown. I haven’t done this in all the examples in the

chapter for brevity.

DISCUSSION

Being able to read registry keys is fundamental to working with the registry. It’s worth

experimenting with this function. As well as returning subkeys, the function can also be

used to test whether a key is present. Try the following code after loading the function:

get-regkey -hive HKLM -key "SYSTEM\CurrentControlSet\Services"

The output will be a list of services. If the key doesn’t exist, however, an error message

will be displayed. This can be illustrated by trying this version which has deliberately

misspelled the final part of the registry key:

get-regkey -hive HKLM -key "SYSTEM\CurrentControlSet\Servicez"

You’ll receive a message stating that the key doesn’t exist. Two purposes fulfilled with

one function—that’s productivity!

208 CHAPTER 7 Registry administration

 Reading the registry keys is step one. Step two is to drop down a level and read the

values.

 Reading registry values

Reading registry values is where the real administrative effort lies. These are the

entries that control the configuration of your systems and can potentially cause prob-

lems, especially if they are wrong.

PROBLEM

You need to be able to read registry values for an arbitrary key. The function must

work across a number of hives and with the standard registry data types. A generic

function of this sort will save you from having to recreate scripts.

SOLUTION

You’ve seen how to work with multiple hives in previous listings in this chapter. You

need to add the ability to read multiple data types. The following listing shows how

you can perform this task.

function get-regvalue {
[CmdletBinding()]
param (
 [parameter(Mandatory=$true)]
 [string]
 [Validateset("HKCR", "HKCU", "HKLM", "HKUS", "HKCC")]
 $hive,

 [parameter(Mandatory=$true)]
 [string]$key,

 [parameter(Mandatory=$true)]
 [string]$value,

 [parameter(Mandatory=$true)]
 [string]
 [Validateset("DWORD", "EXPANDSZ", "MULTISZ", "QWORD", "SZ")]
 $type,

 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
$rh = set-HiveValue $hive
$reg = [wmiclass]"\\$computername\root\default:StdRegprov"switch ($type) {
"DWORD" {$data =

 ➥ ($reg.GetDwordValue($rh, $key, $value)).uvalue}
"EXPANDSZ" {$data =

 ➥ ($reg.GetExpandedStringValue($rh, $key, $value)).svalue}
"MULTISZ" {$data =

 ➥ ($reg.GetMultiStringValue($rh, $key, $value)).svalue}
"QWORD" {$data =

 ➥ ($reg.GetQwordValue($rh, $key, $value)).uvalue}

Listing 7.4 Reading registry values

TECHNIQUE 37

209TECHNIQUE 38 Enumerating keys and values

"SZ" {$data =

 ➥ ($reg.GetStringValue($rh, $key, $value)).svalue}
}
$data
}}

The get-regvalue function builds on listing 7.3. The parameters for the hive, key,

and computer name work as described earlier. You add a parameter ($type) to

describe the data type. This parameter will automatically validate the data it’s given

against the set of acceptable values.

 The hive constant and WMI registry provider are configured. A switch statement is

used to perform the hard work. The registry data type is tested, and the appropriate

method is used to read the data.

 The code extracts the value from the data returned by WMI. An svalue indicates a

string and a uvalue indicates a numeric. The data is returned to the user.

DISCUSSION

This function may seem complicated, given the variety of data that can be entered for

the hive and the data type. The following examples will show how it works.

 This first example retrieves a DWORD value:

get-regvalue -hive HKLM `
-key "SOFTWARE\Microsoft\Windows\CurrentVersion\BITS" `
-value "LogFileMinMemory" -type DWORD

This reads the LogFileMinMemory value and returns a result of 120 on my system.

 The second example reads a string value—in this case, the Common Files directory:

get-regvalue -hive HKLM -key "SOFTWARE\Microsoft\Windows\CurrentVersion" `
-value "CommonFilesDir" -type SZ

This returns the expected result of C:\Program Files\Common Files.

 Our final example reads an expanded string. The path for program files is a good

example:

get-regvalue -hive HKLM -key "SOFTWARE\Microsoft\Windows\CurrentVersion" `
-value "ProgramFilesPath" -type EXPANDSZ

It returns C:\Program Files, and it’s stored in the registry as %ProgramFiles%. Its value

can be checked using $env:ProgramFiles.

 Often you’ll want to read a number of keys at the same time.

 Enumerating keys and values

There are times when reading a single value is insufficient. You must read multiple

keys and extract a value from each of them. This is known as enumeration.

PROBLEM

You need to discover what software is installed on your servers. This is to determine

what they’re doing and will help complete the documentation of the servers.

TECHNIQUE 38

210 CHAPTER 7 Registry administration

SOLUTION

You can restrict the number of parameters you need for the function in the following

listing because you know exactly what you want to read. The computer name defaults

to the local system, which is always good for testing. In this type of case, I tend to

develop a script to give a specific result rather than try to be too generic. The registry

key could be made a parameter to provide a more generic approach.

function get-software {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
$rh = set-HiveValue "HKLM"
$key = "SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall"
$reg = [wmiclass]"\\$computername\root\default:StdRegprov"$subkeys =

$reg.EnumKey($rh, $key)
$subkeys.snames |
 foreach {
 if ($_ -notlike "{*}") {
 $key2 = "$key\$_"
 $value = "DisplayName"
 $name = $reg.GetStringValue($rh, $key2, $value)
 if (($name.sValue -ne "") -and
 ($name.sValue -notlike "*(KB*)*")){
 $name.sValue
 }
 }
 }
}}

You can use the set-HiveValue function to set the hive constant. You give an explicit

value rather than a variable. The key is also set. You can enumerate the subkeys of a

key by using the EnumKey method.

TIP This code doesn’t show all installed software. The Win32_Product
class should be used as well as this code to retrieve a fuller list of installed
software.

The names of the keys are returned. Each name is tested to ensure it isn’t a value in

braces. The original key and the subkey names are joined and used to retrieve the dis-

play name of the software, which is displayed.

DISCUSSION

This may seem complicated if you have used the PowerShell registry provider. You can

accomplish the same task with this code:

Listing 7.5 List installed software

211TECHNIQUE 39 Creating registry keys

Get-ChildItem `
-Path HKLM:SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall |
where {$_.Name -notlike "*{*" } |
foreach { Get-ItemProperty -Path $($_.PSPAth) -Name DisplayName |
select DisplayName}

The drawback here is that you can’t use provider-based code on remote machines.

 Being able to read registry values is a good thing. Being able to create or modify

them is even better.

7.3 Creating and modifying registry keys and values

Making modifications to systems is an essential part of being able to administer them.

You can make bulk changes to the registry by using Group Policies (GPOs), but in

many cases you only need to modify a single value or create a single key. A PowerShell

function is a simpler, easier, and safer proposition.

WARNING You’ll need administrator privileges to be able to write to the regis-
try or to perform deletions. Run PowerShell with elevated privileges for these
examples.

 Before you can create a value, you need to create a key.

 Creating registry keys

At this point, I need to emphasize my warning from the beginning of the chapter.

You’ll be making changes to the registry, so be careful. It’s a good idea to create a sys-

tem restore point before working with these examples.

WARNING These examples worked on my test system. There’s no guarantee that
they’ll work on your system. Please test them thoroughly in your environment.

PROBLEM

You need to create a registry key on one or more machines.

SOLUTION

There is a CreateKey method on the registry provider that will perform the key-cre-

ation task. The use of this method is shown in the following listing.

function new-regkey {
[CmdletBinding()]
param (
 [parameter(Mandatory=$true)]
 [string]
 [Validateset("HKCR", "HKCU", "HKLM", "HKUS", "HKCC")]
 $hive,

 [parameter(Mandatory=$true)]
 [string]$key,

 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]

Listing 7.6 Create registry key

TECHNIQUE 39

212 CHAPTER 7 Registry administration

 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
$rh = set-HiveValue $hive
$reg = [wmiclass]"\\$computername\root\default:StdRegprov"$reg.CreateKey($rh,

$key)
}}

The usual hive, key, and computer parameters are input to the function. In this case,

the key doesn’t exist. The hive constant is obtained and an instance of the WMI regis-

try provider is created. A call to the CreateKey method using the hive and key com-

pletes the function and creates the new key.

DISCUSSION

You could extend the script by incorporating the code from listing 7.3, testing the out-

put from that portion of code, and creating the key if it doesn’t exist.

 The function is used like this:

new-regkey -hive HKLM -key "SOFTWARE\PAW"

This example creates a key on the local machine. You can test whether it has worked

by using the PowerShell registry provider:

Test-Path HKLM:\SOFTWARE\PAW

If we use something like this,

new-regkey -hive HKLM -key "SOFTWARE\PAW\Ch7"

the full path will be created (the PAW subkey will be created with its own subkey of Ch7).

 That’s how you create keys, but what about setting values?

 Setting registry values

When you want to set or create registry values, you’re faced with the same problem

you had in technique 37, in that you have to be able to deal with multiple data types. It

would be possible to create one function per data type, but that sounds like a lot of

repetitious coding to me. It’s also harder to maintain. When creating scripts, always

think about how you’re going to maintain them.

TIP I recommend that you always add comments to your scripts, even if they’re
simple reminders of what the script does. I haven’t used them in the scripts in
this book for brevity and because I’m explaining the scripts in the text.

PROBLEM

You have to modify, or create if it isn’t present, a registry value on a number of servers.

SOLUTION

You can amend listing 7.4 to provide the solution, as demonstrated in the following

listing. The set-regvalue function (notice I’m using approved verbs) takes the hive,

key, value, type, and computer parameters you saw in listing 7.4. Remember that the

TECHNIQUE 40

213TECHNIQUE 40 Setting registry values

value parameter takes the value name. In addition, you have three parameters you can

use to supply the data to be written into the registry.

function set-regvalue {
[CmdletBinding()]
param (
 [parameter(Mandatory=$true)]
 [string]
 [Validateset("HKCR", "HKCU", "HKLM", "HKUS", "HKCC")]
 $hive,

 [parameter(Mandatory=$true)]
 [string]$key,

 [parameter(Mandatory=$true)]
 [string]$value,

 [parameter(Mandatory=$true)]
 [string]
 [Validateset("DWORD", "EXPANDSZ", "MULTISZ", "QWORD", "SZ")]
 $type,

 [string]$svalue,

 [int32]$dvalue,

 [int64]$qvalue,

 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS { switch ($type) {
"DWORD" {$data = ($reg.SetDwordValue($rh, $key, $value, $dvalue))}
"EXPANDSZ" {$data = ($reg.GetExpandedStringValue($rh, $key, $value,

$svalue))}
"MULTISZ" {$data = ($reg.GetMultiStringValue($rh, $key, $value, $svalue))}
"QWORD" {$data = ($reg.SetQwordValue($rh, $key, $value, $qvalue))}
"SZ" {$data = ($reg.SetStringValue($rh, $key, $value, $svalue))}
}
if ($data.ReturnValue -eq 0) {"Setting $key\$value was successful"}
else {"Setting $key\$value was unsuccessful"}
}}

The hive constant and registry provider are set. A switch statement is used to call the

appropriate method based on the data type. If the registry value exists, it’s updated;

otherwise it’s created and the data written into it. A test of the WMI return code deter-

mines whether the registry value was updated successfully.

DISCUSSION

Here are two examples (for a string and a DWORD respectively) that show how to use

the function. These are the value types you’ll deal with most often:

Listing 7.7 Set registry value

214 CHAPTER 7 Registry administration

set-regvalue -hive HKLM -key "SOFTWARE\PAW" `
-value "stringvalue" -type SZ -svalue "This is a string"
get-regvalue -hive HKLM -key "SOFTWARE\PAW" `
-value "stringvalue" -type SZ
set-regvalue -hive HKLM -key "SOFTWARE\PAW" `
-value "integervalue" -type dword -dvalue 98
get-regvalue -hive HKLM -key "SOFTWARE\PAW" `
-value "integervalue" -type DWORD

Each example of using set-regvalue is followed by the equivalent get-regvalue to

show that it has been set.

 The last part of our registry lifecycle is to delete keys and values.

7.4 Deleting registry keys

All good things come to an end, and that includes the registry keys you’ve come to

know and love. Sooner or later you’re faced with the task of deleting registry keys and

values. This section will show you the most painless way to perform this task.

 The order of play is reversed, compared to the earlier sections, and we’ll start with

registry values.

 Deleting registry values

You first created keys and then values, and here you’ll reverse this to delete values and

then keys. If you delete the key, you delete all subkeys and associated values, which

may be a bit heavy-handed.

PROBLEM

A registry value has become obsolete because software versions have changed or

because some other aspect of your system has been modified. You need to be able to

delete this value across one or more machines.

SOLUTION

You can use the pattern established in earlier scripts. The following listing illustrates

how this will work. The usual parameters are accepted—hive, key, value, and com-

puter. The hive is tested to ensure it’s part of the accepted set of values.

function remove-regvalue {
[CmdletBinding()]
param (
 [parameter(Mandatory=$true)]
 [string]
 [Validateset("HKCR", "HKCU", "HKLM", "HKUS", "HKCC")]
 $hive,

 [parameter(Mandatory=$true)]
 [string]$key,

 [parameter(Mandatory=$true)]
 [string]$value,

Listing 7.8 Delete registry value

TECHNIQUE 41

215TECHNIQUE 42 Deleting registry keys

 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
$rh = set-HiveValue $hive
$reg = [wmiclass]"\\$computername\root\default:StdRegprov"
$reg.DeleteValue($rh, $key, $value)
}}

The hive constant and registry provider instance are created. The WMI registry pro-

vider supplies a method called DeleteValue, which takes the hive, key, and value as

arguments.

DISCUSSION

The function follows the same standards as the rest of the functions in the chapter. It’s

used as follows:

remove-regvalue -hive HKLM -key "SOFTWARE\PAW" -value "stringvalue"

This will remove the stringvalue from the SOFTWARE\PAW key in the HKLM hive.

WARNING Remember that with WMI methods, you don’t get the standard
PowerShell -Confirm or -WhatIf options. Deletion will occur immediately.

It’s now time to bring out the big guns to delete registry keys. Given that you use the

DeleteValue method to remove registry values, can you guess what you’ll use to delete

registry keys?

 Deleting registry keys

Deleting registry keys removes the key, all subkeys, and all associated values. Re-creating

a value that has been deleted in error is a relatively simple task. Re-creating a registry

key can be a lot more work. I recommend exporting the key on a test machine prior to

any widespread deletion activity. This will make it available for restore operations.

PROBLEM

A piece of software has been removed from your machines. Unfortunately it didn’t

perform a clean uninstall and left a registry key behind. You need to remove that reg-

istry key.

SOLUTION

You can adapt listing 7.8 to use the DeleteKey method. This is shown in in the follow-

ing listing.

function remove-regkey {
[CmdletBinding()]
param (
 [parameter(Mandatory=$true)]
 [string]
 [Validateset("HKCR", "HKCU", "HKLM", "HKUS", "HKCC")]

Listing 7.9 Delete registry key

TECHNIQUE 42

216 CHAPTER 7 Registry administration

 $hive,

 [parameter(Mandatory=$true)]
 [string]$key,

 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
$rh = set-HiveValue $hive
$reg = [wmiclass]"\\$computername\root\default:StdRegprov"
$reg.DeleteKey($rh, $key)
}}

The difference between listings 7.8 and 7.9 is that in 7.9 you don’t have a parameter to

get the value, and you use the DeleteKey method of the WMI registry provider.

DISCUSSION

The function is used as follows:

remove-regkey -hive HKLM -key "SOFTWARE\PAW"

On a local machine, you can test that the deletion has worked by using the PowerShell

registry provider:

Test-Path HKLM:\SOFTWARE\PAW

This should return a value of False, indicating that the key can’t be found.

 Security is extremely important, and the registry needs to be protected. Do you

know who has permission to access your registry keys?

7.5 Registry access rights

In a Windows environment, security permissions, or access rights, are set on the

object. These permissions control what you, as an individual, can do with that object—

read, write, delete, and so on.

 Permissions on registry keys are usually set when the key is created. These permis-

sions are then normally sufficient for the lifetime of the object. Occasionally a prob-

lem will occur that can be traced back to permissions on registry keys. At that time,

you need to be able to discover the permissions on a particular key.

 If the permissions on a key become corrupted for any reason, you may need to

take ownership of the key so that the problem can be corrected.

 Reading access rights

You have two potential methods of reading the access rights on a registry key. You can

discover all of the rights of all of the users, or you can discover the rights that you

have. In the tradition of the little boy in the sweetshop, when you’re faced with a

choice, grab both.

TECHNIQUE 43

217TECHNIQUE 43 Reading access rights

PROBLEM

A particular registry key appears to be giving problems and is preventing a piece of

software from working. You need to check the access rights on the key to determine

whether they need changing. The rights of all users need to be checked, as well as

your individual rights.

SOLUTION

When you’re faced with two choices, as in this case, you have a number of options:

■ Create two scripts

■ Return both sets of data, even though you may only need one set in most

situations

■ Use a mechanism to switch between the options

You’ll use the latter choice in the following listing and switch between the options.

PowerShell provides the [switch] data type for just this situation. The switch param-

eter defaults to false, but when you supply it to the function, its value is set to true

and a different branch of the code is executed.

$regmask = DATA {
ConvertFrom-StringData -StringData @'
1 = Query the values of a Registry key.
2 = Create, delete, or set a Registry value.
4 = Create a subkey of a Registry key.
8 = Enumerate the subkeys of a Registry key.
32 = Create a Registry key.
65536 = Delete a Registry key.
524288 = Write Ownership
'@
}

function get-regsecurity {
[CmdletBinding()]
param (
 [parameter(Mandatory=$true)]
 [string]
 [Validateset("HKCR", "HKCU", "HKLM", "HKUS", "HKCC")]
 $hive,

 [parameter(Mandatory=$true)]
 [string]$key,

 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]

 [string]$computername="$env:COMPUTERNAME",

 [switch]$all
)
PROCESS {
$rh = set-HiveValue $hive
$reg = [wmiclass]"\\$computernamename\

Listing 7.10 Discovering registry key security settings

Lookup
dataB

Function
parameters

C

218 CHAPTER 7 Registry administration

 ➥ root\default:StdRegprov"

if ($all) {
 $sd = $reg.GetSecurityDescriptor($rh, $key)

 "Owner "
 $sd.Descriptor.Owner | Format-Table Domain, Name -AutoSize

 $sd.Descriptor.DACL | foreach {
 "`n$($_.Trustee.Domain)/$($_.Trustee.Name)"
 $accessmask = $_.AccessMask

 $regmask.GetEnumerator()| sort Key |
 foreach {
 if ($accessmask -band $_.key){
 "$($regmask[$($_.key)])"
 }
 }
 }
}
else {
 "You have the following permissions:"

 $regmask.GetEnumerator()| sort Key |
 foreach {
 $test = Invoke-WmiMethod -InputObject $reg `
 -Name CheckAccess -ArgumentList $rh, $key, $($_.Key)
 if ($test){
 " $($regmask[$($_.key)])"
 }
 }
}

}}

The script starts by defining a hash table B as lookup data.

 If you’re familiar with the permissions set on files, you’ll notice that these are dif-

ferent. The function defines a number of parameters C. The [switch] parameter

defaults to false, remember. The hive constant and registry provider are also set D.

 Now you get to the decision point. If the $all parameter is true (the switch has

been set) E, you retrieve the security descriptor of the registry key.

NOTE The security descriptor structure is described in the documentation
for the Win32_SecurityDescriptor class.

The object owner can be displayed using the Owner property of the descriptor. The

access mask is held as a collection. For each member of the collection, you display the

user (or group) and get the access mask.

 You need to get the enumerator of your lookup table and sort it by the key F. That

way you can compare each value in order against the access mask to determine if that

permission is set.

 If the -all switch isn’t set G, you’re looking for your own permissions. This is a

simpler proposition. You sort the lookup table as before, but you use each hash table

Registry
providerD

All
permissionsE

Display
permissions

F

Your
permissions

G

219TECHNIQUE 44 Taking ownership of a registry key

key in turn as an argument to the CheckAccess method. If the test is passed, you print

the permission.

DISCUSSION

The function is used as follows:

get-regsecurity -hive HKLM -key "SOFTWARE\Microsoft\Windows\CurrentVersion"

If all permissions are required, the -all parameter is added to the end.

 We’ll be working more with security descriptors in chapters 8 and 14. Being able to

read access permissions is a useful skill, but you’ll sometimes need to go further and

take control of the key.

 Taking ownership of a registry key

Once you have ownership of an object, such as a registry key, you can do anything with it.

TIP The WMI SetSecurityDescriptor method can only be used on Win-
dows Vista and above or Windows Server 2008 and above. Downlevel operat-
ing systems won’t be able to use this method and will return an error. In that
case, you’ll have to use a .NET-based solution. I will post a .NET version on my
blog. It’s also included in the source code as listing 7.11a.

PROBLEM

The permissions on a registry key have become corrupted. You need to take owner-

ship of the key so that you can resolve the issue.

SOLUTION

This solution is based on an answer provided by PowerShell MVP Vadims Podans to a

question on the PowerShell MVP mailing list.

 The following listing shows how you can use PowerShell and WMI to take owner-

ship of a registry key. If you compare it to listing 7.10, you’ll notice that you’re still

working with the security descriptor.

function set-regkeyowner {
[CmdletBinding()]
param (
 [parameter(Mandatory=$true)]
 [string]
 [Validateset("HKCR", "HKCU", "HKLM", "HKUS", "HKCC")]
 $hive,

 [parameter(Mandatory=$true)]
 [string]$key,

 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
$rh = set-HiveValue $hive

Listing 7.11 Take ownership of a registry key

TECHNIQUE 44

Set parameters
and constantsB

220 CHAPTER 7 Registry administration

$reg = [wmiclass]"\\$computername\root\default:StdRegprov"
$Trustee=([WMIClass]"Win32_Trustee").CreateInstance()
$sd=([WMIClass]"Win32_SecurityDescriptor").

 ➥ CreateInstance()

$user = New-Object -TypeName Security.Principal.NTaccount `
-ArgumentList "Administrators"

$sid=$user.Translate([Security.Principal.SecurityIdentifier])
[byte[]] $SIDArray = ,0 * $sid.BinaryLength
$sid.GetBinaryForm($SIDArray,0)

$Trustee.Name = "Administrators"
$Trustee.SID = $SIDArray
$sd.Owner = $Trustee
$sd.ControlFlags = 524288

$reg.Scope.Options.EnablePrivileges = $true
$reg.SetSecurityDescriptor($rh,$key, $sd)
}}

The function commences by taking the usual parameters B and setting the hive con-

stant and registry provider. You then create two WMI objects C. The first is from the

Win32_Trustee class, which you use to hold the information about the new owner of

the registry key. The second is from the Win32_SecurityDescriptor class, which

you use to take ownership.

TIP I have assumed that this script will be run on the local machine. Accessing
the registry remotely to perform these changes adds an additional layer of risk.
In that situation, use PowerShell remoting to create the connection, and use the
-FilePath parameter to run a local script with this function embedded.

The security descriptor has to be populated with information. You start by creating an

object representing the new owner D. This uses a .NET class, because you can’t per-

form this task in WMI. The user’s Security Identifier (SID) is created in binary form E
and used with the name to create the trustee information F. The trustee and the con-

trol flags are used to create the security descriptor. The value of 524288 for the con-

trol flag indicates that the account (or group in this listing) you have created will be

taking ownership of the registry key.

 You need to enable all of your privileges on the registry provider G. This has to be

performed even if you’ve started PowerShell with elevated privileges. The final act of

the function is to apply the security descriptor, which transfers ownership of the regis-

try key to the Administrators group.

DISCUSSION

Using this function is a lot easier than describing it. The hive and key are provided as

follows:

set-regkeyowner -hive HKLM -key software\PAW

These two parameters are mandatory, so you’ll be prompted for them if they aren’t

supplied. The function uses the built-in local Administrators group as the new owner.

This could be modified, but I recommend leaving it in place.

Create
objects

C

Create
administrator
accountD

Set SIDE

Set
propertiesF

Take
ownership

G

221TECHNIQUE 45 Monitoring registry events

 One last topic and then we’re finished with the registry. You can be more proactive

with your registry administration by monitoring the WMI events related to registry

changes.

7.6 Registry events

You’ve seen how the PowerShell and WMI eventing engines combine in chapter 6. You

use a WMI query to interrogate the appropriate event class. The Register-WmiEvent

cmdlet is used to register this query with the PowerShell event engine and define the

actions to be taken when the event is triggered. The registry WMI provider supplies

similar functionality using the classes listed in table 7.3.

Notice the difference between RegistryKeyChangeEvent and RegistryTreeChange-

Event. The first one monitors only a specific key, but the second also monitors subkeys

and values.

WARNING HKEY_CLASSES_ROOT and HKEY_CURRENT_USER hives aren’t sup-
ported by the registry event classes listed in table 7.3. In most cases, this won’t
impact you because you’re not likely to work directly with these hives.

This technique can be useful for determining which keys are modified during a soft-

ware install.

 Monitoring registry events

It has been stated many, many times that the registry is a potential source of problems

in Windows environments. You have to protect it, and you need to know what’s hap-

pening and, in some cases, when changes are made. A registry change that sneaks

through and takes down the organization’s email server won’t look good on a resume.

PROBLEM

The registry is being changed on a server. How can you monitor when the changes are

occurring and which subkeys are affected?

SOLUTION

Listing 7.12 provides a template that you can modify as required to monitor registry

events. This listing shows you how to monitor change events at the tree and value lev-

els. Key event changes could be added using the same structure. Notice that I haven’t

parameterized this script. I think this activity should be explicitly set up rather than

using generic code, because it’s not something you’re likely to be doing every day.

Table 7.3 Registry event handling classes

Class Purpose

RegistryKeyChangeEvent Represents changes to a specific key (not its subkeys)

RegistryTreeChangeEvent Represents changes to a key and its subkeys

RegistryValueChangeEvent Represents changes to a singular value of a specific key

TECHNIQUE 45

222 CHAPTER 7 Registry administration

function valuechange {
param ($e)
 Write-Host "The following value has changed"
 $e.SourceEventArgs.NewEvent |
 Format-Table Hive, KeyPath, ValueName,
 @{N="Time";
 E={$([datetime]::FromFileTime($_.TIME_CREATED))}} |
 Out-Host
}

function treechange {
param ($e)
 Write-Host "The following tree has changed"
 $e.SourceEventArgs.NewEvent |
 Format-Table Hive, RootPath,
 @{N="Time";
 E={$([datetime]::FromFileTime($_.TIME_CREATED))}} |
 Out-Host
}

if (Get-EventSubscriber |
where {$_.SourceIdentifier -eq "regvalue"}) {
Unregister-Event -SourceIdentifier "regvalue" }

if (Get-EventSubscriber |
where {$_.SourceIdentifier -eq "regtree"}) {
Unregister-Event -SourceIdentifier "regtree" }

$vquery = "SELECT * FROM RegistryValueChangeEvent WHERE

 ➥ Hive='HKEY_LOCAL_MACHINE' AND KeyPath='SOFTWARE\\PAW' AND

 ➥ ValueName='stringvalue'"

$tquery = "SELECT * FROM RegistryTreeChangeEvent WHERE

 ➥ Hive='HKEY_LOCAL_MACHINE' AND RootPath='SOFTWARE\\PAW'"

$vaction = {valuechange $($event)}
$taction = {treechange $($event)}

Register-WmiEvent -Query $vquery `
-SourceIdentifier "regvalue" -Action $vaction
Register-WmiEvent -Query $tquery `
-SourceIdentifier "regtree" -Action $taction

You start by defining two functions to handle the events that are produced B. The

functions for value changes and tree changes are similar in that they’re passed the

event as an argument and then write out the registry object that has been changed

and the time the change occurred. Other activities could be included in these func-

tions, including checking the data in particular values and resetting it if required. The

event-handling functions use N and E as abbreviations for Name and Expression for

brevity. The script will run, but this abbreviation makes it slightly less readable.

WMI events return the time in file time format, which is a 64-bit value that repre-

sents the number of 100-nanosecond intervals that have elapsed since 12:00 A.M. on 1

January 1601 Coordinated Universal Time (UTC). The .NET DateTime class provides a

simple way to convert this value to a more readable format.

Listing 7.12 Monitor registry events

Define event-
handling
functions

B

Clean event
subscribers

C

Create
event
queries

D

Create event
actionsE

Register
eventsF

223Summary

 When registering events, you have to supply a source identifier. If a particular source

identifier exists, you need to delete it to enable the script to run C. WMI queries are cre-

ated D to retrieve the events. You have to supply the key and value you want to monitor

in the query. It’s possible to monitor the root of the hive to get all changes.

 Two simple actions are created to pass the event into your event-handling func-

tions E. The script then registers the events, supplying the query and the actions F.

DISCUSSION

This script isn’t included in the chapter module. It can be invoked as

. ./Listing7.12.ps1.

Feel free to change the name to something more meaningful if you desire.

 The PowerShell and WMI functionality provided in this chapter will allow you to

become an expert in administering the registry in a safe and productive manner. I must

emphasize again that registry changes must be tested before using them in production.

7.7 Summary

In this chapter you’ve learned several things about working with the registry:

■ The structure of the registry

■ How to read, write, and create registry keys and values

■ How delete objects from the registry

■ How the security on registry objects works and how to change it

■ How to monitor changes to the registry

This functionality will help protect your environment and allow you to safely adminis-

ter a fundamental part of your Windows systems.

 In chapter 8, we’ll look at the filesystem and how you can work with files, folders,

and shares.

224

Filesystem administration

Filesystem administration is probably one of the most neglected aspects of our jobs.

You create a disk volume and then set up some folders and shares. The area is

turned over to the users, and they proceed to fill it up with their files.

 You’ll have areas on specific servers for SQL Server databases or Exchange mail

stores, but much of your storage space is still taken up by files of one sort or

another. These files are often referred to as unstructured data and can include

Microsoft Word documents, spreadsheets, pictures, and output produced by the

many applications in your organization.

 Files are the basic building blocks of your filesystem. As an administrator, you

need to understand what files are stored and how you can find them. Files can be

hidden, compressed, and possibly encrypted (but not all three at once). Being able

to easily discover which files have gone through this process increases your ability

to administer the system.

This chapter covers

■ Working with files

■ Working with folders

■ Administering shares

■ Filesystem events

225

 PowerShell and WMI provide tools to perform these management tasks, as you’ll

see in the first section of this chapter. In addition to discovering information about

your files, you’ll see how to use WMI to perform actions on the files. You’ll create tech-

niques to compress, encrypt, and hide files. You’ll also learn techniques to copy files

and remove unwanted files.

TIP One thing that’s true of both files and folders when working through
WMI is that you can’t create these objects. You can analyze, manipulate, and
delete them, but you can’t create new ones.

Folders are used to organize files. You arrange them in hierarchies and often forget

about files in the bottommost layers. I have a vague memory of creating the files in fig-

ure 8.1 when I was working on a problem posted on one of the forums. I don’t really

need them, but I haven’t got around to deleting them. Multiply this by several other

folders in a similar situation, and then by the hundreds, or thousands, of users in your

environment, and you’ll soon see where your disk space is going.

 Discovering the folders on your system is the first step to controlling the filesystem.

You then need to examine the files in those folders. If the files aren’t needed, the

folder can be deleted—reclaimed and reused disk space means reduced costs to your

organization because you don’t need to buy more disks! You’ll also see how to work

with folders that are compressed or encrypted. You’ll learn about all of these subjects

in the folder administration section of this chapter (section 8.2).

 Another important part of administering the filesystem is controlling access to files

and folders. Do you know who has access to a particular folder? You’ll learn to use

PowerShell and WMI to discover this information via the folder’s security access mask

(also in section 8.2).

Figure 8.1 The hierarchy of folders and files

Workingwithfiles

226 CHAPTER 8 Filesystem administration

Folders are made available across the network by creating shares on the folders. This

is an area where you can, and will, manage the whole lifecycle (creation, discovery,

modification, and deletion) through PowerShell and WMI. Shares are always on a

remote machine to you, so being able to use WMI to manage the lifecycle is beneficial.

Shares are discussed in section 8.3.

 Do you know what the users are doing to your filesystem? Are they changing or

deleting files that they shouldn’t? In section 8.4 you’ll see how to use the PowerShell

eventing system to discover WMI events related to the filesystem and then to create a

monitoring system that can be applied to your important and confidential files.

 Our final stop when exploring the filesystem is the page file. This is used to swap

information from memory to disk, and it’s essential for the wellbeing of your systems.

Some applications, such as SQL Server, shouldn’t be using the page file much. If they

do, it’s an indication that something is not quite right with the machine’s setup. You’ll

see how to use PowerShell and WMI to manage the page file, once you’ve learned how

to take control of it from the system.

 Our starting point is the place where we store our data—the files themselves.

8.1 Working with files

Files are where you store your data. They may be valuable or they may be worthless a few

hours after they’re written. Users become frustrated when they can’t find a file, and

administrators become frustrated when the users don’t clean up their old files. You can

use the file management capabilities of WMI to remove both of these frustrations.

NOTE One oddity of WMI is that you work with the CIM_DataFile class rather
than a Win32 class. I’ve never seen a reason for this when nearly everything
else has a Win32 class.

On a large remote system, PowerShell and WMI may not be the fastest solution. They

will, however, be one of the cheapest. These technologies will work for you at a reason-

able speed unless your file stores are in the multi-terabyte range.

 If you need to find out how long your commands are taking, use the Measure-Command

cmdlet as follows:

$sb = {
$query = "SELECT * FROM CIM_DATAFILE WHERE Extension='ps1'"
Get-WmiObject -Query $query | select Name
}
Measure-Command -Expression $sb

Create a script block of the commands you want to run—that’s everything between

the braces: {}. Measure-Command will then run the script block and tell you how long it

took. On my Windows 7 laptop, it took 21.577 seconds.

 One drawback to using this cmdlet is that you don’t get the output of the script

block, just the timings. Replace Measure-Command with Invoke-Command and you’ll get

the output.

227TECHNIQUE 46 Finding files

 Now it’s time to return to our main topic and start looking at the other ways you

can find files. Once you’ve found your files, you’ll usually want to do something with

them. The usual suspects include copying, renaming, and deleting. You could also

change the compression or encryption state of the files. All of these activities are

based on finding the files in the first place.

 Finding files

One common scenario you’ll need to deal with is finding a file or group of files. If

you’re connected directly to the system you can use the search capabilities built into

Windows, but if you’re working across multiple machines, you’ll need a remote capa-

bility. You saw one possible way to search for files in the introduction to this section.

Other filter options are available.

PROBLEM

You need to start tidying up the filesystem on a server. Unfortunately the person

responsible for administering this server has left, and the documentation is inade-

quate. No one really knows what’s on this server or what should be on it. Your job is to

start investigating the files stored on this system.

SOLUTION

There isn’t a single technique you can use to investigate the files on a machine. We’ll

look at a number of ways that you can use WMI to provide information about the files.

The code in the following listing provides a series of code snippets that you can use as

the basis of scripts to access files based on various criteria.

$query = "SELECT * FROM CIM_DATAFILE

 ➥ WHERE Drive='C:' AND Path='\\Test\\'"
Get-WmiObject -Query $query |
select Name

$query = "SELECT * FROM CIM_DATAFILE

 ➥ WHERE Extension='log'"
Get-WmiObject -Query $query |
select Name

$query = "SELECT * FROM CIM_DATAFILE

 ➥ WHERE Writeable='$false'"
Get-WmiObject -Query $query |
select Name

$query = "SELECT * FROM CIM_DATAFILE

 ➥ WHERE Hidden='$true'"
Get-WmiObject -Query $query |
select Name

$query = "SELECT * FROM CIM_DATAFILE

 ➥ WHERE Drive='C:' AND Path='\\Test\\'

 ➥ AND Encrypted = '$true'"
Get-WmiObject -Query $query |

Listing 8.1 Investigating files with WMI

TECHNIQUE 46

Select from
folderB

Select specific
extensionC

Select
read-onlyD

Select
hiddenE

Select
encryptedF

228 CHAPTER 8 Filesystem administration

select Name

$test = (Get-Date).AddDays(-60)
$query = "SELECT * FROM CIM_DATAFILE
WHERE Drive='C:' AND Path='\\Test\\' "
Get-WmiObject -Query $query |
foreach {
 $date = $_.ConvertToDateTime($_.CreationDate)
 if ($date -lt $test) {
 $_ | select Name
 }
}

The easiest way I’ve found to use the CIM_DataFile class is to write a query. You could

use the -Filter parameter of Get-WmiObject, but I find it gets a bit complicated. Sep-

aration adds a line of code, but it makes things easier to read.

 One of the first things you may want to do is look at the contents of a particular

folder B. You can use this query:

$query = "SELECT * FROM CIM_DATAFILE WHERE

 ➥ Drive='C:' AND Path='\\Test\\'"
Get-WmiObject -Query $query | select Name

The query looks clumsy because you have to specify the drive and folder path indepen-

dently, but it gives you the flexibility to parameterize the query if you need to check the

same folder on multiple drives. Another common issue is that the drive letters aren’t

common across machines. If you can parameterize the query, it makes life easier.

 When you use Get-ChildItem to search the local filesystem, you can recurse

through the subfolders, but there’s no built-in recursion facility in WMI. If you want to

search subfolders as well, you need to do it yourself. We’ll come back to this when we

look at folders later in the chapter.

 You may have noticed that I haven’t used the -Computername parameter in any of

the code in this section. This was a deliberate decision to simplify the discussion.

When you do add the -Computername parameter, remember to use it before the query.

I’ve seen problems when the computer name is specified after the query. This is an

intermittent failure that can be difficult to reproduce.

 A frequent task is to search the filesystem for a particular type of file. You saw an

example of this at the beginning of the section. When searching for particular files,

you’ll often search for a particular extension C. You saw how to find all of the .ps1

files earlier. A common need is to discover the .mp3 and .jpg files your users have

managed to squirrel away on your servers.

 Many applications hide log files in odd places. The extension property supplies the

means to discover files of a particular type such as log files:

$query = "SELECT * FROM CIM_DATAFILE WHERE Extension='log'"
Get-WmiObject -Query $query | select Name

It’s possible to use multiple extensions in the query, or you can simply run multiple

queries. The latter option is more flexible and maintainable.

Select on
creation date

G

229TECHNIQUE 46 Finding files

 There are other criteria you can use when searching for files. Normally your files

can be modified, but in some cases you may want the files to be read-only D. Do you

know which files on your system are set to be read-only? This is how you find out:

$query = "SELECT * FROM CIM_DATAFILE WHERE Writeable='$false'"
Get-WmiObject -Query $query | select Name

The oddity here is that you’re testing whether the file is writable rather than

whether it’s read only—you’re looking for confirmation of the negative case. You use

the PowerShell Boolean value $false to provide the test value.

NOTE If you think back to chapter 4 where we discussed string substitution,
you’ll remember that you can only substitute in strings bounded by double
quotes. In this case, it may look like you’re substituting into a string bounded
by single quotes, but you really aren’t, because the single quotes form part of
the overall string.

A similar situation holds when you want to test for hidden files E. The users that

sneaked their MP3s, photos, or other personal and inappropriate files onto your

server may know just enough to hide them.

$query = "SELECT * FROM CIM_DATAFILE WHERE Hidden='$true'"
Get-WmiObject -Query $query | select Name

In this case, you’re testing for a positive outcome. If you want to see the full range of

properties, you can retrieve a file and pipe it into Get-Member, as for any other object.

 Another area you might think of testing is encrypted files F. If your users use EFS

and one such user leaves, you may want to ensure that they haven’t left any encrypted

files behind before they actually exit the organization:

$query = "SELECT * FROM CIM_DATAFILE WHERE Drive='C:'

 ➥ AND Path='\\Test\\' AND Encrypted = '$true'"
Get-WmiObject -Query $query |select Name

The change on this query is that you include a test to determine whether the

Encrypted property is set to true. You can test for compressed files in this way as

well—just change Encrypted to Compressed in the query.

 In many cases, you may want to put an end-of-life date on your documents G. If

you buy a document management system this is a feature you’d expect, but organiza-

tions that aren’t in a position to implement such a system can use a simple WMI query

to test the age of a particular document:

$test = (Get-Date).AddDays(-60)
$query = "SELECT * FROM CIM_DATAFILE WHERE Drive='C:'

 ➥ AND Path='\\Test\\' "
Get-WmiObject -Query $query |
foreach {
 $date = $_.ConvertToDateTime($_.CreationDate)
 if ($date -lt $test) {
 $_ | select Name
 }
}

230 CHAPTER 8 Filesystem administration

You start by creating a test date. This example uses a date 60 days in the past to be sure

you catch something. It uses the AddDays method with a negative number of days to get

a date in the past. There are a number of methods you can use to create a test date:

■ AddDays

■ AddHours

■ AddMilliseconds

■ AddMinutes

■ AddMonths

■ AddSeconds

■ AddTicks

■ AddYears

Once you’ve created your test date you can create a query to discover the files in a par-

ticular folder. (You could test the whole drive, but that would take a lot longer to run.)

A test is performed against each file to determine whether the creation date is less

than the test date, and you display the filenames that pass the test. Alternatively, you

could just as easily delete them or move them to an archive. It’s also possible to test on

InstallDate, LastAccessed, and LastModified dates.

DISCUSSION

It may seem that it would be possible to perform these searches by pulling all of the

files back and then using Where-Object to perform your filtering. This is an option,

and on the local machine it probably doesn’t matter which you do. If you’re perform-

ing the queries against a remote machine, though, it’s definitely a best practice to per-

form the filtering on the source machine, in the query. This restricts the amount of

data that’s returned across your network.

 Now that you know how to discover files that meet certain criteria, what can you do

with them?

 Performing actions on files

WMI doesn’t provide a mechanism for creating files or modifying the contents of a

file. You can, however, manage other aspects of the file’s lifecycle, including deletion,

copying, and renaming.

PROBLEM

A group of files are created on a regular basis in a particular folder, with the same

names each time. Those files are copied to another folder, and any files with matching

names have to be deleted from the second folder before the copy occurs. The original

files have to be renamed to preserve them against future processing.

SOLUTION

This solution may seem a bit odd, but I’ve seen similar activities where files are created

and then copied to a working folder. The original folder acts as an archive. It makes

the most sense to delete the files in the target folder, perform the copy action, and

then rename the original files.

TECHNIQUE 47

231TECHNIQUE 47 Performing actions on files

 The following listing presents a WMI based solution to this problem.

$query = "SELECT * FROM CIM_DATAFILE WHERE Drive='C:'

 ➥ AND Path='\\Test\\' AND FileName LIKE 'file_'"
Get-WmiObject -Query $query | foreach {
 $_.Delete() | Out-Null
}

$query = "SELECT * FROM CIM_DATAFILE WHERE Drive='C:' AND

 ➥ Path='\\Teszzt2\\' AND FileName LIKE 'file_'"
$files = Get-WmiObject -Query $query
foreach ($file in $files){
 $newcopy = "C:\Test\$($file.FileName).$($file.Extension)"
 $file.Copy($newcopy) | Out-Null

 $name = $file.FileName -replace "file", "test"
 $ext = $file.Extension -replace "txt", "csv"
 $newname = "C:\Teszzt2\$name.$ext"

 $file.Rename($newname) | Out-Null
}

The script starts by creating a query to find all of the files in the target folder that

match the pattern you’re working with. In this case, you’re looking for files that start

with the characters “file” and have a single other character in the name.

TIP The underscore character (_) is the WQL wildcard equivalent of a ques-
tion mark (?); it represents a single character. If you think you might have
multiple wildcard characters to deal with, change the query to be "FileName
LIKE 'file%'"

Get-WmiObject is used to run the query. The results are piped into ForEach-Object

where the Delete method of the WMI file object is used to perform the deletion B.

Out-Null is used to absorb the return code information from the multiple deletions

and prevent its display on screen. Alternatively, you could capture the return code and

display warning messages for files that fail to delete.

 The second query selects the files from the source folder. This time you create a

collection for the files, and each file in the files collection is processed in turn. A new

file path is created ($newcopy) and the file is copied C.

 The filename and extension are modified using the -replace operator, and the

file is renamed D. The return codes from the copy and the rename actions are again

suppressed by using Out-Null.

DISCUSSION

There are alternatives to using Out-Null. The following three lines of code all per-

form the same action in suppressing the output:

$file.Rename($newname) | Out-Null
$null = $file.Rename($newname)
[void]$file.Rename($newname)

Listing 8.2 File actions

Delete
files

B

Copy
files

C

Rename
files

D

232 CHAPTER 8 Filesystem administration

Which one should you use? Whichever one you like best. They all perform the same job.

It really comes down to which fits best with the way you like to work and the way you think

about the code. I tend to use Out-Null mainly because it’s easiest to add on to the line

of code when I’ve finished testing that section and want to clean up the output.

 You may come across a Win32_MoveFileAction class during your investigations of

WMI. It won’t really help you in this case because it’s one of a series of classes associ-

ated with installing software.

 In technique 46 you saw how to discover files that had been compressed. PowerShell

and WMI provide you with a method of performing file compression and decompression.

 Compressing files

The amount of data stored by organizations seems to be on a continuous upward spiral.

Disk space is comparatively cheap, so one strategy is to keep buying more disk space.

This works for a while, but eventually you’ll run out of space in your SAN racks or data

center. An alternative is to use file compression to reduce the size files occupy. This can

save up to 80 or 90 percent of the space a file occupies, depending on the file type.

PROBLEM

Your file server drives are running out of space. There isn’t any money in the budget

to acquire extra storage. The larger files on the disk need to be compressed to reclaim

some space.

SOLUTION

The solution presented in listing 8.3 follows the pattern established in technique 47: you

discover the files you need to work with, and then you perform the required actions.

This is a common approach to developing administration scripts because you can test

that you’ve discovered the correct files before you perform any actions on them.

function compress-file {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [string]$path="c:\test",
 [int]$size = 2MB
)
PROCESS {
$drive = Split-Path -Path $path -Qualifier
$folder = $path.Remove(0,2).Replace("\","\\") + "\\"

$query = "SELECT * FROM CIM_DATAFILE WHERE Drive='$drive' AND Path='$folder'
AND Filesize > $size"

Get-WmiObject -ComputerName $computername -Query $query |
 foreach {
 $_.Compress()
 }
}}

Listing 8.3 Compress a file

TECHNIQUE 48

Set
parameters

B

Specify drive
and path

C

Run WMI
queryD

Compress fileE

http://support.microsoft.com

233TECHNIQUE 48 Compressing files

The function starts by setting out the parameters it will accept B. The computer

name has been a common parameter in many of the scripts presented to date, and

you’ll see a lot more of that. The path to the folder you want to test is presented as a

string and the file size is presented as an integer. CIM_DataFile handles file sizes in

bytes, and PowerShell translates 2MB to 2097152 bytes automatically.

Split-Path is used on the path to get the drive letter (including the colon) by

using the -Qualifier parameter C. The path is then modified to work in WMI que-

ries. The query is created and run through Get-WmiObject D. Your results are piped

into ForEach-Object, where you use the Compress method on the file E.

 This script could be converted to encrypt the files by replacing Compress() with

Encrypt(). Remember that you can’t do both to the same file!

DISCUSSION

This script compresses files above the size of 2 MB. If you want to use larger sizes you

may run into the limits of the int32 data type. The maximum file size you can present

as a parameter is

PS> [int]::MaxValue / 1gb
1.99999999906868

If you want to use a larger value as your test point, the data type will have to be

changed to [int64]. This allows much larger file sizes to be used:

PS> [int64]::MaxValue /1gb
8589934592

In case you’re curious (I know I was), this translates to a large amount of storage:

PS> [int64]::MaxValue / 1pb
8192

If you have files this big, you may need to look at other techniques.

 Compressing files is a good thing when you’re short on disk space. If at a later date

you manage to acquire more storage, you may want to uncompress these files so that

the overhead of uncompressing the data to work on it and then compressing it again

is removed.

WARNING Don’t compress, or encrypt, SQL Server data files, Exchange data-
bases, or similar files with high I/O levels. The overhead can have a severe
impact on performance.

The function to perform the uncompression is shown in the following listing. I’ve

called it expand-file, using the recommended verb, which stops Import-Module

from throwing up warning messages about unapproved verbs.

function expand-file {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,

Listing 8.4 Uncompress a file

234 CHAPTER 8 Filesystem administration

 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [string]$path="c:\test"
)
PROCESS {
$drive = Split-Path -Path $path -Qualifier
$folder = $path.Remove(0,2).Replace("\","\\") + "\\"

$query = "SELECT * FROM CIM_DATAFILE

 ➥ WHERE Drive='$drive' AND Path='$folder'

 ➥ AND Compressed = '$true'"
Get-WmiObject -ComputerName $computername -Query $query |
 foreach {
 $_.UnCompress()
 }
}}

If you compare listing 8.4 to listing 8.3, you’ll see that the file size parameter has

been removed. This query looks for compressed files in the folder and then uses the

Uncompress method.

 The scripts have been deliberately restricted to a single folder for ease of use. They

could be modified to work against the whole drive by changing the query to test just

the drive. The query would then read

$query = "SELECT * FROM CIM_DATAFILE

 ➥ WHERE Drive='$drive' AND Compressed = '$true'"

Files don’t exist in isolation. Let’s step up the hierarchy a level and see what can be

done with folders.

8.2 Folder administration

Folders provide the organizational components of your filesystem. You can create

folder hierarchies to control the filesystem and help you find your files. Sometimes,

though, the hierarchy gets a bit too deep and you forget where you put things. At this

point you need to start searching for folders.

 A simple WMI call will list all of the folders on a machine:

Get-WmiObject -Class Win32_Directory | select Name

You’ll be surprised by the number of folders that are listed. Remember that NTFS file

paths are limited to 260 characters when creating folders. If you exceed this length,

most of your programs won’t be able to access the folder. And no, you can’t pass this

off as a security measure.

 You can easily retrieve data on a single folder:

Get-WmiObject -Class Win32_Directory `
-Filter "Name = 'C:\\Teszzt2'"

The PowerShell formatting files control what is displayed for the WMI class, so if you

want to see all of the information you need to bypass the default display:

Get-WmiObject -Class Win32_Directory `
-Filter "Name = 'C:\\Teszzt2'" | Format-List *

235TECHNIQUE 49 Discovering the files in a folder

Win32_Directory only displays information about the folder itself. Listing the files

and subfolders of a particular folder is covered in technique 49. The other techniques

in this section look at folders with specific attributes (compressed or encrypted) and

how you can decode the security settings on a folder.

 Discovering the files in a folder

In technique 46 you saw how to discover the files in a particular folder. Unfortunately,

if you’re working from the folder and want to get to its contents there’s no direct asso-

ciation between a Win32_Directory object and the files contained within the folder,

but the CIM_DirectoryContainsFile class is a WMI association class providing some

linkage information you can use.

PROBLEM

You need to be able to access the files in one or more folders based on the folder

name. Your filesystem contains a number of folders with similar names that you’ve dis-

covered using the code in the introduction to this section. You now need to look at

the files in those folders.

SOLUTION

The most direct route to solving this problem is to use the code in the introduction to

section 8.1 and access each folder individually. If you need to work through the rela-

tionship between a folder and its files, you can use the following listing to discover

how this works.

function get-foldercontent {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [string]$path
)
PROCESS{
 $target = $path.Replace("\", "\\\\")
 $filter = "GroupComponent = '" +
'Win32_Directory.Name="' + $target + '"' + "'"

 Get-WmiObject -ComputerName $computername `
-Class CIM_DirectoryContainsFile -Filter $filter |
foreach {
 $ff =

 ➥ ($_.PartComponent -split "CIM_DATAFile.")[1].Replace('"',"'")

 Write-Debug $ff
 Get-WmiObject -ComputerName $computername
 -Class CIM_DataFile -Filter $ff |
 select Name, FileSize, AccessMask
 }
}}

Listing 8.5 Folder contents

TECHNIQUE 49

Take
ownership

B

ParametersC

File
and folder
relationshipD

File
information

E

236 CHAPTER 8 Filesystem administration

The get-foldercontents function takes a computer name and folder path as

parameters B. The path is used to create a filter for accessing the

CIM_DirectoryContainsFile class C. This is an association class that contains two

properties per instance. The first property is the GroupComponent, which maps to the

folder. The second is the PartComponent, which maps to the file. I built the filter

string using concatenation rather than string substitution because I found it sim-

pler—getting the different sets of quotes correct became more trouble than it was

worth. Sometimes you just have to go with the simple approach.

 The filter is used to find the files associated with the folder D. Each instance of the

CIM_DirectoryContainsFile class that’s returned is piped through ForEach-Object,

where PartComponent is split and modified for use in CIM_DataFile E.

 The name, file size, and access mask (security permissions) are displayed for each

file. The file size is left in bytes in the listing, but this could be converted to MB or GB

if required. Other properties are available for display, as discussed in section 8.1.

DISCUSSION

You use the PartComponent property from the CIM_DirectoryContainsFile class in

listing 8.5. The value of this property is of this form:

\\RSLAPTOP01\root\cimv2:CIM_DataFile.Name="c:\\teszzt2\\paw4.evt"

On the left side of the equal sign you have the WMI path, and on the right side you

have the folder path in the correct format for WMI. The quotes aren’t correct for use

in further WMI processing, so you need to work on this.

 You need to extract sufficient information from the PartComponent to create the

filter in this form:

Name='c:\\teszzt2\\paw4.evt'

The PartComponent string is split at "CIM_DATAFile.". The period (.) is effectively

removed by including it in the split operator (it’s possible to retain the patterns used

for deciding where to split, but that’s beyond the scope of this book). The string

Replace() method can be used on the second element produced by the split to pro-

duce the filter you need. Creating multi-operation string-processing code like this may

seem complicated, but it’s straightforward if you build it up one bit at a time and test

each stage as you add it to the process.

 While we’re looking at folders, consider how you’d copy a folder and all its

contents:

$d = Get-WmiObject -Class Win32_Directory -Filter "Name='c:\\teszzt2'"
$d.Copy("d:\test")

Simply use Get-WmiObject to create the WMI object for the relevant folder, and then

use the Copy method to create the copy. Notice that the path to which the folder

should be copied only uses single backslashes (\). Consistency isn’t one of WMI’s

strong points. If you’re copying to the root of a drive, you only need the single back-

slash, as shown in the previous example.

237TECHNIQUE 50 Discovering folders with specific attributes

 Listing 8.5 generates a list of the files within a folder. It doesn’t include subfolders.

You can create a list of subfolders in a couple of ways. First, you can use

Win32_Directory and use the Path property as a filter:

Get-WmiObject -Class Win32_Directory -Filter "Path='\\Test\\'"

This will generate a list of the first-level subfolders. It won’t recurse through those

folders to find their subfolders.

 The second option is to use a wildcard in the WMI filter:

Get-WmiObject -Class Win32_Directory `
-Filter "Drive='C:' AND Path LIKE '\\Test\\%'" |
select Name

Adding the percent character (%)to the path and using LIKE means that you’re testing

for all folders whose path starts with \Test\. This will generate all subfolders to what-

ever depth is present.

 Now that you’ve found your folders, what can you discover about them?

 Discovering folders with specific attributes

In section 8.1 we looked at how you could discover files that were hidden, encrypted,

or compressed. But it’s more likely that you’ll need to deal with these issues at a folder

level than at a file level.

PROBLEM

A number of machines need to be tested to discover if there are any hidden, com-

pressed, or encrypted folders.

SOLUTION

You could write a total of three functions to solve this problem—one to test each attri-

bute. The only part that changes is the filter that decides the type of folder for which

you’re searching. But it’s more efficient to write a single function, as in the following

listing. It also gives you a chance to practice using the switch statement.

function test-folder {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME", [string]
 [Validateset("Hidden", "Compressed", "Encrypted")]
 $test
)
PROCESS{
 switch($test){
 "Hidden" {$filter = "Hidden='$true'"; break}
 "Compressed" {$filter = "Compressed='$true'"; break}
 "Encrypted" {$filter = "Encrypted='$true'"; break}

 }

Listing 8.6 Folders with specific properties

TECHNIQUE 50

Create
filter

B

238 CHAPTER 8 Filesystem administration

 Get-WmiObject -ComputerName $computername `
-Class Win32_Directory -Filter $filter |
 select Name
}}

The function takes the usual computer name parameter. A second parameter deter-

mines the type of folder. The possible values that can be input are limited by the

ValidateSet() attribute on the parameter. The results of inputting an incorrect value

to the -test parameter are shown in figure 8.2.

 The function throws an error, but more importantly it supplies feedback to the

user informing them of the correct values. Using the validation attributes in this man-

ner can supply a lot of error checking with minimal effort. They also make your scripts

look more professional and ready for production.

 The switch statement B takes the type of folder you’re testing and creates the

appropriate WMI filter. Get-WmiObject can then be used to retrieve the data C.

DISCUSSION

You can perform a number of actions on Win32_Directory objects. Hiding, encrypt-

ing, or compressing are the actions in the script in listing 8.6. Compressing a folder is

straightforward:

$d = Get-WmiObject -Class Win32_Directory -Filter "Name='c:\\teszzt2'"
$d.Compress()
$d.UnCompress()

The other methods available on folder objects include the following:

■ ChangeSecurityPermissions
■ Compress
■ Copy
■ Delete
■ GetEffectivePermission
■ Rename
■ TakeOwnerShip
■ Uncompress

When creating folders using Windows Explorer, I sometimes get finger trouble and

end up with folders called “New folder.” You can clean out these mistakes like this:

Get-WmiObject -Class Win32_Directory -Filter "Name Like '%New folder%'" |
Invoke-WmiMethod -Name Delete

Run
query

C

Figure 8.2 Result of inputting an incorrect value when using ValidateSet()

239TECHNIQUE 51 Decoding the access mask

Use Get-WmiObject to show the folders that meet the criteria and then invoke the

delete method on the folder. This can only be performed if you have the correct level

of permissions on the folder.

 Decoding the access mask

Windows, unlike some other operating systems, sets permissions on the object—in this

case a folder. You have to interrogate the object itself (the folder) to discover the per-

missions that have been set.

PROBLEM

A user is complaining that they can’t access the files in a particular folder. You need to

discover the permissions set on the folder to determine if they’ve been granted access.

SOLUTION

You can solve this problem by decoding the access mask. Back in technique 43 (in

chapter 7) you did this for registry keys. You can adopt a similar approach, as shown in

the next listing.

$fmask = DATA {
ConvertFrom-StringData -StringData @'
4 = Grants the right to append data to the file.

 ➥ For a directory, this value grants the right

 ➥ to create a subdirectory.
8 = Grants the right to read extended attributes.
65536 = Grants delete access.
524288 = Assigns the write owner.
'@
}

function get-foldermask {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [string]$path
)
PROCESS{
$path = $path.Replace("\","\\")
$sd = Get-WmiObject -Class Win32_LogicalFileSecuritySetting `
 -ComputerName $computername -Filter "Path='$path'" |
 Invoke-WmiMethod -Name GetSecurityDescriptor

 "Owner "
 $sd.Descriptor.Owner | Format-Table Domain, Name -AutoSize

 $sd.Descriptor.DACL | foreach {
 "`n$($_.Trustee.Domain)/$($_.Trustee.Name)"
 $accessmask = $_.AccessMask

 $fmask.GetEnumerator()| sort Key |
 foreach {

Listing 8.7 Folder access mask

TECHNIQUE 51

240 CHAPTER 8 Filesystem administration

 if ($accessmask -band $_.key){
 "$($fmask[$($_.key)])"
 }
 }
 }
}}

The script starts by creating a hash table of the permissions and the values associated

with them. The listing doesn’t show the full set for brevity, but it’s available in the code

download. The get-foldermask function takes a computer and path as parameters.

 The Win32_LogicalFileSecuritySetting class is used to get the security descrip-

tor. This class works with files and folders, even though it has file in the name! The

security descriptor stores the permissions data in which you’re interested.

 The data you want is in the Descriptor property of the security descriptor. You

start by displaying the owner of the folder and then work through each DACL in the

descriptor. The keys in the hash table are compared to the access mask using the

binary AND (band) operator. Where there is a match, the appropriate permissions are

displayed.

DISCUSSION

Once you have the set of permissions on the folder, you can determine whether the user

has any rights assigned on the folder. File and folder permissions are usually assigned

to groups rather than individual users, so you need to discover the user’s group mem-

bership. That’s an ADSI task rather than a WMI task, so it isn’t included here.

 If the permissions have been set incorrectly, you may need to take ownership of the

folder to rectify the problem:

Get-WmiObject -Class Win32_Directory -Filter "Name='c:\\teszzt2'" |
Invoke-WmiMethod -Name TakeOwnership

In a network environment, folders are normally made available as shares. You can also

work directly with shares using WMI.

8.3 Listing, creating, and modifying shares

Shares are an important part of administering Windows systems. They control how

you make resources available to the user population. You’ll normally think in terms of

file shares, but you can also share printers and other devices.

 If you want to view the available shares on the local system try this command:

ls hklm:\system\currentcontrolset\services\lanmanserver\shares |
select -ExpandProperty property

This will provide a list of the available shares.

 It would be possible to use the techniques you saw in chapter 7 to read the registry

of a remote machine, but shares on a cluster are a slightly different proposition.

Details can be found in KB article 971403 from http://support.microsoft.com.

 You can access share information directly using WMI. The Win32_Share class

enables you to manage the share lifecycle, including creation and deletion.

http://support.microsoft.com

241TECHNIQUE 52 Listing shares

 Listing shares

As a consultant I often need to discover how a machine is configured before I can

work on it. I’ve used many of the techniques you’ve seen so far in the book when pre-

sented with a new set of machines to work with.

PROBLEM

A file server is in the process of failing. You need to list the shares so that you can rec-

reate them on another machine when you move the data.

SOLUTION

WMI provides the Win32_Share class which you can use to answer this question. List-

ing 8.8 shows how you can use it. The function has two parameters: -name and

-computername, which supply a share name and computer name respectively. The

name parameter defaults to %, which is the standard WMI wildcard for any charac-

ter. This means that by default information on all shares is displayed. The parame-

ter can also accept standard Windows wildcard characters. A check is performed to

change the Windows wildcard * to %, which is the WMI equivalent.

function get-share {
[CmdletBinding()]
param (
 [string]$name="%",
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
$name = $name -replace "*","%"
if ($name -eq "%") {
 Get-WmiObject -Class Win32_Share -ComputerName $computername
}
else
{
 Get-WmiObject -Class Win32_Share -ComputerName $computername `
 -Filter "Name LIKE '$name'"
 }
}}

If a name is given, you search for a specific share that contains the value given to the -

name parameter. Otherwise you dump information for all available shares. The default

display includes the path to the folder.

DISCUSSION

This script will display all share types as written. You could just produce output related

to file shares or printer shares by adding a type parameter that takes the value of 0 for

file shares and 1 for printer shares. The WMI filters could be altered to add the type as

a search parameter. I’ve included that option as listing 8.8a in the download code.

Listing 8.8 Listing shares

TECHNIQUE 52

242 CHAPTER 8 Filesystem administration

 Jumping back to the share lifecycle, you need to be able to create shares before

you can do anything with them.

 Creating shares

The data-access requirements of organizations are constantly changing, and you’ll

need to create and remove shares to accommodate these changes. The changes can

occur due to reorganizations, mergers and acquisitions, or the setting up of major

project areas. Add the occasional need to move data between servers, and a large

organization can have a very fluid environment.

PROBLEM

A major new project has started within your organization. It needs its own separate

data area, and this data area has to be shared for access across the network.

SOLUTION

The Win32_Share class has a Create method that you’ll use to create the share. The

function in listing 8.9 has been deliberately written to only create file shares, but I left

the share type as a parameter in case you wish to extend this script to cover creating

other types of shares.

 The other parameters are the computer name, the name of the share and the

folder you’re sharing, a description, and the maximum number of connections you’re

allowing to the share. A value of 0 means the number of users simultaneously able to

access the share is unlimited.

function new-fileshare {
[CmdletBinding()]
param (
 [string]$name,
 [string]$path,
 [int]$type=0,
 [int]$maxcon,
[Alias("Description")]
[string]$desc,
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
[string]$computername="$env:COMPUTERNAME"
)
PROCESS{ if (!(Test-Path -Path $path)){Throw "Folder does not exist"}
 $s = [WmiClass]"\\$computername\root\cimv2:Win32_Share"
 $ret = $s.Create($path, $name, $type, $maxcon, $desc)

 if ($ret.ReturnValue -ne 0){
 Write-Host "Share $name was not created"
 }
 else {Write-Host "Share $name was created"}
}}

An instance of the Win32_Share class is created using the [wmiclass] type accelerator

and is put into the variable $s. The Create method is called on this object. The folder

Listing 8.9 Creating shares

TECHNIQUE 53

243TECHNIQUE 54 Modifying shares

path, share name, share type (0 for a file share), maximum connections, and descrip-

tion are used as arguments to the method.

 The return value is tested, and if the value is 0 a success message is displayed. Any

other value causes the display of a failure message.

DISCUSSION

It would be nice to be able to create the underlying folder structure and then create

the share on top, but WMI doesn’t give you a way to create folders. One possible solu-

tion is to use PowerShell remoting. The folders could be created using New-Item, and

then your new-fileshare function could be used to create the share. If the function is

used through PowerShell’s remote administration capabilities, the computer name

should be left as $env:COMPUTERNAME to represent the local machine.

 The opposite end of the share’s lifecycle is deleting the share. It’s an activity that

sometimes gets forgotten because of more pressing work. WMI can be used to delete a

share:

Get-WmiObject -Class Win32_Share -Filter "Name='Test'" |
Remove-WmiObject

The share is identified by using Get-WmiObject. The resultant object is piped into

Remove-WmiObject. Adding the -computername parameter to Get-WmiObject enables

you to work with shares on remote machines.

 Creation and deletion form the endpoints of a share’s lifecycle. In the middle, you

may need to modify the share.

 Modifying shares

There aren’t many aspects of a share that you can modify. The maximum number of

connections and the description are the only properties you can sensibly change. Any-

thing else involves recreating the share.

PROBLEM

During an audit of your fileservers you discover that none of the shares on your

fileservers have descriptions set. It will be easier for your junior administrators to work

with the shares if descriptions are set.

SOLUTION

The following listing demonstrates how you can use the SetShareInfo method to

modify a share’s properties. The function takes the share name, maximum connec-

tions, description, and computer name as parameters.

function set-share {
[CmdletBinding()]
param (
 [string]$name,
 [int]$maxcon,
[Alias("Description")]

Listing 8.10 Modifying shares

TECHNIQUE 54

244 CHAPTER 8 Filesystem administration

 [string]$desc,
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
[string]$computername="$env:COMPUTERNAME"
)
PROCESS{ $share = Get-WmiObject -Class Win32_Share `
 -Filter "Name='$name'" -ComputerName $computername

 if (!$maxcon){$maxcon = $share.MaximumAllowed }
 if (!$desc){$desc = $share.Description}

 $share.SetShareInfo($maxcon, $desc, $null)
}}

A variable is created to hold the object created when Get-WmiObject retrieves the

share information. The variables for the maximum connections and description are

tested. If they haven’t been created because values haven’t been passed into the

parameters, then the existing values from the share are used.

 The SetInfo method is used to apply the modification to the share. The maxi-

mum connections and description are set simultaneously. This is why you need to pick

up the existing values if they aren’t being changed.

DISCUSSION

I suspect that most shares are created and not touched again until they’re deleted, but

you still need to be aware of how to modify shares for the times when it becomes

necessary.

 You’ve seen that Windows is an event-driven system. In previous chapters we’ve

looked at disk events and registry events. It’s time to turn our attention to filesystem

events.

8.4 Filesystem events

When we talk about events affecting the filesystem, we’re really discussing events that

impact the files themselves. There are three possible actions that could affect our files:

■ Creation

■ Deletion

■ Modification

There are techniques available to monitor these events using WMI or .NET. In this sec-

tion, we’ll look at how to use the WMI filesystem events.

 Working with filesystem events

There are a number of reasons for wanting to monitor parts of your filesystem. The

files could contain sensitive information that you don’t want changed or deleted. Per-

haps the files perform a function in one of your critical applications and you can’t

afford to have them deleted. Alternatively, a third-party organization may deliver a file

to a certain location, and you need to be made aware of any new files being created so

that you can trigger further processing.

TECHNIQUE 55

245TECHNIQUE 55 Working with filesystem events

PROBLEM

You need to monitor part of the filesystem for creation, deletion, and modification

events. Each of these events needs to trigger a separate action.

SOLUTION

The solution presented in the following listing sticks with the pattern established in pre-

vious chapters. You have a separate function for handling the events, and the main body

of the script defines the queries and actions you’ll use when registering the events.

function eventhandler {
param ($e)
 $time = $e.TimeGenerated
 if (!($e.SourceIdentifier -eq "modfile")){
 $pc = $e.SourceEventArgs.NewEvent.TargetInstance.PartComponent
 $data = $pc -split "="
 $file = $data[1].Replace("\\","\").Replace("""","")
 }
 else {
 $file = $e.SourceEventArgs.NewEvent.PreviousInstance.Name
 }

 switch ($e.SourceIdentifier) {
 "newfile" {Write-Host "$time : File $file has been created"
 break}

 "delfile" {Write-Host "$time : File $file has been deleted"
 break}

 "modfile" { Write-Host "$time : File $file has been modified"
 Write-Host "Original"
 $e.SourceEventArgs.NewEvent.PreviousInstance | fl AccessMask,
 Archive, Encrypted, Extension, FileName, FileSize, Hidden,
 Readable, Status, System, Writeable | Out-Host

 Write-Host "Modified"
 $e.SourceEventArgs.NewEvent.TargetInstance | fl AccessMask,
 Archive, Encrypted, Extension, FileName, FileSize, Hidden,
 Readable, Status, System, Writeable | Out-Host
 break}
 }
}

if (Get-EventSubscriber |
where {$_.SourceIdentifier -eq "newfile"}) {
Unregister-Event -SourceIdentifier "newfile" }

if (Get-EventSubscriber |
where {$_.SourceIdentifier -eq "delfile"}) {
Unregister-Event -SourceIdentifier "delfile" }

if (Get-EventSubscriber |
where {$_.SourceIdentifier -eq "modfile"}) {
Unregister-Event -SourceIdentifier "modfile" }

$nquery = "SELECT * FROM __InstanceCreationEvent

Listing 8.11 Filesystem monitoring
Event
handler

B

Event
type

C

Event
processing

D

Clean
up

E

Define
queries

F

246 CHAPTER 8 Filesystem administration

 ➥ WITHIN 5 WHERE TargetInstance ISA

 ➥ 'CIM_DirectoryContainsFile'

 ➥ AND TargetInstance.GroupComponent =

 ➥ 'Win32_Directory.Name=""C:\\\\Teszzt2""'"

$dquery = "SELECT * FROM __InstanceDeletionEvent

 ➥ WITHIN 5 WHERE TargetInstance ISA

 ➥ 'CIM_DirectoryContainsFile'

 ➥ AND TargetInstance.GroupComponent =

 ➥ 'Win32_Directory.Name=""C:\\\\Teszzt2""'"

$mquery = "SELECT * FROM __InstanceModificationEvent

 ➥ WITHIN 5 WHERE TargetInstance ISA

 ➥ 'CIM_DataFile' AND TargetInstance.Name =

 ➥ 'C:\\Teszzt2\\proc1.txt'"

$action = {eventhandler $($event)}

Register-WmiEvent -Query $nquery `
-SourceIdentifier "newfile" -Action $action
Register-WmiEvent -Query $dquery `
-SourceIdentifier "delfile" -Action $action
Register-WmiEvent -Query $mquery `
-SourceIdentifier "modfile" -Action $action

The event handler function B is called when one of the registered events is triggered.

It takes the event information as a parameter. The time the event was generated is

picked out of the event object.

 The file that has been affected by the event is recovered from the event object C.

The recovery method depends on whether you’re dealing with a file modification

event or a file creation or deletion event.

 A switch statement is used to perform the bulk of the event processing D. The

switch criterion is the event source identifier (the type of event). If the file has been

created or deleted, you display the time the event occurred, the name of the file, and

whether the file was created or deleted.

 File modification is a bit more complicated. You display a number of properties of

the file in its original state and in its modified state. The change in file size could indi-

cate that data has been added to the file or has been removed. Changes to the encryp-

tion, compression, and hidden states are also immediately obvious.

 You need to register for the file events before your function can receive and pro-

cess them. The main body of the script starts by deleting the registration of any previ-

ously defined instances of these events E. The WQL queries that are used to discover

the events are defined next F.

 There are two types of queries in this script. The first type is for the creation and dele-

tion events. You use the CIM_DirectoryContainsFile class and look for the

__InstanceCreationEvent and __InstanceDeletionEvent events respectively. There

is a five second window in which you test for events, and the search is further restricted

to the defined folder. This query works because the CIM_DirectoryContainsFile class

maintains the link between a folder and its constituent files. A new instance of the class

is created when a file is created, and an instance is removed when a file is deleted.

Define
action

G

Register
eventsH

247TECHNIQUE 55 Working with filesystem events

 Unfortunately this approach won’t work for file modifications, because the WMI

instance linking the file to the folder hasn’t been changed—only the file contents

have been changed. You can overcome this by using the second type of query. The

CIM_DataFile class is used to look for instances of __InstanceModificationEvent.

You have to monitor individual files rather than a whole folder with this approach.

TIP It’s important to remember that you can monitor a whole folder for cre-
ation and deletion events but you have to monitor individual files for modifi-
cation events.

The action G is a simple statement that calls the eventhandler function. The event is

passed to the function. Registration of the events occurs as the last action of the script

H. One registration is made for each type of event using the appropriate query and

source identifier. The action is identical across all registrations.

DISCUSSION

Discovering the information that’s available within the event object can be a time-

consuming task, because it will vary depending on the type of event that’s triggered.

One way to find out what you’re working with is to use a modified version of list-

ing 8.11 to discover this information. You can test any event by putting these lines in

the eventhandler function:

$e | fl * | Out-Host
$e.SourceEventArgs.NewEvent | fl * | Out-Host

They can either replace what is there, or they can just be added to the function.

 The first line displays the basic event information. The following example is from a

file deletion event:

ComputerName :
RunspaceId : fef8fee4-2113-4b99-8471-a2513e1c4dbc
EventIdentifier : 1
Sender : System.Management.ManagementEventWatcher
SourceEventArgs : System.Management.EventArrivedEventArgs
SourceArgs : {System.Management.ManagementEventWatcher,

System.Management.EventArrivedEventArgs}
SourceIdentifier : delfile
TimeGenerated : 10/02/2011 21:54:44
MessageData :

The second line displays the contents of the SourceEventArgs.NewEvent property.

The same file deletion event produced this output:

__GENUS : 2
__CLASS : __InstanceDeletionEvent
__SUPERCLASS : __InstanceOperationEvent
__DYNASTY : __SystemClass
__RELPATH :
__PROPERTY_COUNT : 3
__DERIVATION : {__InstanceOperationEvent, __Event,

__IndicationRelated, __SystemClass}
__SERVER : RSLAPTOP01

248 CHAPTER 8 Filesystem administration

__NAMESPACE : //./root/CIMV2
__PATH :
SECURITY_DESCRIPTOR :
TargetInstance : System.Management.ManagementBaseObject
TIME_CREATED : 129418484845666000
Properties : {SECURITY_DESCRIPTOR, TargetInstance, TIME_CREATED}
SystemProperties : {__GENUS, __CLASS, __SUPERCLASS, __DYNASTY...}
Qualifiers : {abstract}
ClassPath : \\.\root\CIMV2:__InstanceDeletionEvent
Site :
Container :

Once you have this information, you can add further lines to drill down deeper into

the event information. It’s worth looking at the description of the System.Management

.EventArrivedEventArgs class on MSDN. It will help explain what is happening.

 This is the technique that I used to discover the TargetInstance and

PreviousInstance properties on the file modification event. A cut-down version of

listing 8.11 configured to test an event can be found in the source code for this

chapter. It’s the script called test-event.ps1.

 The last lap of our race around the filesystem involves a quick look at the page file.

8.5 Page file management

The page file is used to swap data out of memory and onto disk when the system is

busy. It’s also known as virtual memory. The page file is usually created during the

installation of the operating system and often is just left to get on with its job. The

Windows operating system does a good job of managing the page file.

 Nevertheless, the page file can take up a lot of space on disk, and you may want to

make modifications to the way the file works, such as moving it to another disk. There

are some WMI classes for working with the page file. If we try this,

Get-WmiObject -Namespace root\cimv2 -List *pagefile*

the following classes will be returned:

■ Win32_PageFileUsage

■ Win32_PageFile

■ Win32_PageFileSetting

■ Win32_PageFileElementSetting

On Windows 7 or Windows Server 2008 R2, you won’t get any output if you try any of

these PowerShell commands:

Get-WmiObject -Class Win32_PageFile
Get-WmiObject -Class Win32_PageFileSetting
Get-WmiObject -Class Win32_PageFileElementSetting

The Win32_PageFileUsage class will return information:

Get-WmiObject -Class Win32_PageFileUsage |
Format-Table Name, CurrentUsage, PeakUsage,
AllocatedBaseSize, TempPageFile

249Summary

If you substitute Format-List for Format-Table, the output may be easier to present

(if you want to pipe to a file for saving in a report). You’ll get something like this:

Name : C:\pagefile.sys
CurrentUsage : 146
PeakUsage : 146
AllocatedBaseSize : 2814
TempPageFile : False

The sizes are in megabytes.

 Don’t panic. Your machine isn’t broken, even though some of the classes don’t

return information. The problem is that the system is configured to automatically

manage the page file. You need to revert to manual management before you can work

with it. If you look back at the Win32_ComputerSystemClass that we used in chapter 5,

Get-WmiObject -Class Win32_ComputerSystem | select *pagefile*

you’ll find that the AutomaticManagedPageFile property is set to true. The way to mod-

ify this is to run PowerShell with elevated privileges and use the -EnableAllprivileges

parameter on Get-WmiObject:

Get-WmiObject -Class Win32_ComputerSystem -EnableAllPrivileges |
Set-WmiInstance -Arguments @{AutomaticManagedPageFile=$false}

TIP This combination of running with elevated privileges and using the
-EnableAllPrivileges parameter forces the system to accept that you have
the permissions to perform this action. The combination is essential. Using
only one of the options will generate an access-denied message.

The three reluctant page file classes are now accessible, and you can now work with

the page file to modify the maximum size, as follows:

$pf = Get-WmiObject -Class Win32_PageFileSetting
$pf.InitialSize = 5120
$pf.MaximumSize = 5120
$pf.Put()

Alternatively, having discovered the information you need, you can return the page

file to automatic management:

Get-WmiObject -Class Win32_ComputerSystem -EnableAllPrivileges |
Set-WmiInstance -Arguments @{AutomaticManagedPageFile=$true}

Most of the time you’re better off leaving the system to manage the page file.

8.6 Summary

The filesystem is fundamental to the operation of your Windows systems. Files are

responsible for storing your valuable data, and they’re grouped into folders for ease of

management. You can perform a number of actions on files and folders:

■ Discovery

■ Compression, encryption, and hiding (plus their reversal)

250 CHAPTER 8 Filesystem administration

■ Copying and moving

■ Deleting

■ Setting permissions

You can monitor files and folders for creation, deletion, and modification events. This

can help you protect your most critical files.

 Shares are used to make the server’s filesystem accessible across the network. You

can manage the full share lifecycle through WMI.

 The page file is used by the system as virtual memory. Information is swapped to

disk as required to meet an application’s requirements. You can usually allow the page

file to be managed automatically, but it’s possible to override this to fine tune its per-

formance.

 In chapter 9 we’ll start to look at the applications running on our systems and turn

our attention to services and processes.

251

Services and processes

Operating system components and applications run as processes on Windows sys-

tems. Examples of operating system processes include the Local Security Authority

Process (lsass.exe), Windows Explorer (explorer.exe), and the Desktop Window

Manager (dwm.exe). Processes created by applications could include Word, Note-

pad, or PowerShell.

 A service is a process that’s controlled by the Service Control Manager, such as

DNS, Net Logon, Exchange, or SQL Server. Services usually start when the system

boots up and runs in the background.

TIP Run the scripts in this chapter from PowerShell, or the ISE, when it
has been started with elevated privileges. You’ll get partial information
returned or errors if you run with PowerShell started as normal.

This chapter covers

■ Discovering services and their load order

■ Configuring services

■ Managing processes through their lifecycle

■ Working with process events

http://www.manning.com/siddaway2

252 CHAPTER 9 Services and processes

This chapter opens by examining how you can interact with the services on local and

remote machines. WMI enables you to discover information about services that you

can’t get through the PowerShell cmdlets, and configuration can be simpler when

working through WMI. Services, and their dependencies, have to be loaded in a partic-

ular order—the order and the list of dependencies form a useful troubleshooting tool

when services won’t start.

 Processes potentially provide more opportunities for automation than services, as

they tend to be more volatile. Discovering who has started a process on your server

that’s eating resources can enable you to stop the process to return the resources to

the critical applications that need them and prevent that user from performing other

actions that degrade the system’s performance. PowerShell and WMI also enable you

to manage the process lifecycle for local and remote systems. The creation and termi-

nation of processes provides an extra level of control over your systems.

 PowerShell enables you to utilize the WMI event system easily and efficiently. You’ll

see how to use WMI events to discover when processes are stopped or started. You’ve

already seen WMI events in some of the earlier chapters, and in this chapter you’ll

learn how to investigate WMI events of any kind. This is a generic technique that you

can apply in any situation—we’ll look at a practical example that shows you how to

monitor processes. This will be extended to restart process that shouldn’t stop, and to

stop processes that shouldn’t be started.

 Before we dive into these events, though, we need to go back and look at the ser-

vices on our systems.

9.1 Services

Services start when the system starts. They can be part of the base system functionality

or host important infrastructure components, such as DNS or DHCP. Services also pro-

vide a way for applications such as Exchange or SQL Server to function.

 Managing the services on your systems is an important administrative task. Power-

Shell supplies a number of cmdlets for working directly with services, as listed in

table 9.1.

Get-Service and Set-Service can work remotely because they have a -ComputerName

parameter. The other cmdlets can only work on the local system.

 There are some differences between the way the cmdlets work with services and

the way WMI works with services. You can see this by running these two lines of code

and comparing the output:

Get-Service -Name W32Time | Format-List *
Get-WmiObject -Class Win32_Service -Filter "Name='W32Time'" |
Format-List *

Table 9.1 PowerShell service cmdlets

Get-Service New-Service Restart-Service Resume-Service

Set-Service Start-Service Stop-Service Suspend-Service

253Services

TIP Use two PowerShell consoles to compare the results directly. It’s often a
good plan to have a couple of consoles open to dip into help or to test
something.

WMI adds some interesting and useful properties:

■ Description—The description seen in the Services GUI

■ StartName—The account used to start the service

■ PathName—The path to the service executable

■ DesktopInteract—Whether the service can interact with the desktop

Table 9.2 lists the methods available for use through WMI. Many of the methods listed

in table 9.2 have cmdlet equivalents listed in table 9.1. A very important difference is

that the WMI methods don’t have access to the -WhatIf and -Confirm parameters that

are present on the cmdlets. This means you need to be very careful when testing

scripts involving methods that can change the state of your systems.

On the other hand, the Get-Service cmdlet supplies an easy way to discover depen-

dent services (Win32_DependentService can also be used, but it’s more cumbersome)

and the services a particular service depends on. Set-Service can be used to modify

some properties of a service, including the following:

■ Description

■ Display name

■ Status—running, stopped ,or paused

■ Start mode

At this point, you may be thinking that you don’t need WMI at all when working with

services. It may not be the only way to work with remote services, as it once was, but it

still supplies some valuable and unique functionality.

 When troubleshooting a problem, one of the first diagnostic techniques is

to determine whether the services related to a particular application are running.

This is a very straightforward technique, as you’ll see shortly, especially when you use

it to compare those services that are running against those services that should

be running.

 There are also a number of service-related configuration items you can modify with

PowerShell and WMI, such as the service account and the start mode. Changing a service

Table 9.2 Methods of the Win32_Service class

Change ChangeStartMode Delete GetSecurity-
Descriptor

InterrogateService PauseService ResumeService SetSecurity-
Descriptor

StartService StopService UserControlService

254 CHAPTER 9 Services and processes

account password on many machines is a painfully slow process, but it’s essential at

times, such as when an administrator leaves the organization. The technique we’ll use

later brings automation and efficiency to this task, making it easy to accomplish (don’t

forget the change-control process though).

 Many services (and other parts of the operating system) are loaded as the machine

starts. The loading has to occur in a precise order to ensure that all system dependen-

cies are honored. The final service-related technique we’ll examine enables you to

determine the load order, which is very useful for troubleshooting startup errors on

your systems.

 Before we can get to the deep technicalities of service loading, you need to under-

stand the services that are running and the services that should be running.

 Listing services

You saw in the section introduction that WMI adds access to some properties over and

above those returned by the Get-Service cmdlet. You can use this to find out more

information about the services running on your systems.

PROBLEM

Get-Service will tell you if a particular service is running or not. It can’t tell you if the

service should be running. You need a method of comparing the running services

against those that should be running (those that are set to start automatically).

SOLUTION

This problem can be solved by comparing the status of the service (running or

stopped) against the mode of starting. The following listing shows how to obtain the

information required for this comparison.

function get-servicestatus {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [string]$name
)
PROCESS{
if (-not $name) {
$services = Get-WmiObject -Class Win32_Service `
-ComputerName $computername }
else {
$services = Get-WmiObject -Class Win32_Service `
-Filter "Name='$name'" -ComputerName $computername
}

$services | select DisplayName, StartMode,
 State, Description
}}

Listing 9.1 Listing services

TECHNIQUE 56

255TECHNIQUE 57 Configuring services

The get-servicestatus function takes an optional computer name as a parameter. It

can also take a service name as a parameter. Be careful with this parameter as it’s the

service name rather than the display name that’s required.

 If a service name isn’t supplied, the function returns all instances of the

Win32_Service class from the required computer. Supplying a service name restricts

the information to the particular service of interest.

 The service information is then piped into Select-Object to restrict output to the

required information. The StartMode property shows how the service should start—

automatically or manually.

DISCUSSION

The combination of the start mode and the current state of the service shows you

which services are running and which services should be running.

 The function emits objects and can be used as follows:

get-servicestatus |
where {$_.StartMode -eq "Auto" -and $_.State -ne "Running"} |
Format-Table -Autosize

Notice that the start mode is Auto and not Automatic! This information could be used

to force a restart of a service that hasn’t started.

 When applying patches to the server estate I work with, occasionally some services

won’t restart. I need to check them and force them to start if required.

TIP There is a school of thought that says that PowerShell best practice is to
always return objects. A lot of the work I do is investigative rather than direct
administration. I have found it quicker to write scripts and functions that
return the results directly. As with many other aspects of PowerShell, I end up
taking a pragmatic view to solve the immediate problem.

Step one is always discovering what is happening. You’ve just done that. Step two is to

do something about it. You need to be able to configure services to complete step two,

and it just happens that’s our next topic.

 Configuring services

In many cases, you’ll install your services and leave them alone, especially if they’re

major applications such as Exchange or SQL Server. A service account is created with a

password that doesn’t expire, and you never get around to changing it. This could be

a security vulnerability, exploitable by a rogue administrator, if the password is known

and the service needs a high level of privilege.

PROBLEM

You have a number of servers running a service that has a high level of privilege. The

password used by the service account has been compromised and needs to be

changed. You’ve been instructed to use a new account to be extra sure.

SOLUTION

One possible solution is to do this manually. It would work for a few machines, but you

can automate this activity, as shown in the following listing.

TECHNIQUE 57

256 CHAPTER 9 Services and processes

function set-serviceaccount {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [parameter(Mandatory=$true)]
 [string]
 [ValidateNotNullOrEmpty()]
 $servicename,

 [parameter(Mandatory=$true)]
 [string]$account,
 [parameter(Mandatory=$true)]
 [string]$password
)
PROCESS{
 $service = Get-WmiObject -Class Win32_Service `
 -ComputerName $computername -Filter "Name='$servicename'"

 $service.StopService()

 $service.Change($null,$null,$null,$null,$null,$null,

 ➥ $account,$password,$null,$null,$null)

 $service.StartService()
} }

The set-serviceaccount function has the service name as a mandatory parameter. A

validation test is performed to ensure that the name given isn’t null or empty. The

account and password to use for the service are deliberately left as optional. If they

aren’t given, all that happens is that the service is stopped and restarted. Sometimes

that’s all you need to do.

Get-WmiObject is used to create an object for the service in question. The

StopService method is called, and while the service is in a stopped state, the Change

method is used to make the required changes to the account and password.

 The function then restarts the service.

DISCUSSION

The Change method takes a long list of arguments, and their meaning is given in

table 9.3.

Listing 9.2 Configure services

Table 9.3 Options for the Change method of the Win32_Service class

Argument name Comment

DisplayName Display name of the service; maximum of 256 characters

PathName Full file path to the service executable

ServiceType Type of service—usually set as $null to indicate no change

257TECHNIQUE 58 Discovering the service load order

It’s possible to not give the three arguments after the password because they will default

to a NULL value. I have given them for completeness. The function is used like this:

set-serviceaccount -servicename BITS `
-account RSLAPTOP01\BITSTEST -password Pa55w0rd

WARNING The service won’t restart on Windows 7. If you try to start the ser-
vice manually, you’ll get an error stating that it can’t start because the service
isn’t using the same account as other services running in the same process. I
have used this service as a safe example, even though it will fail. It also gives
an opportunity to show how to reset to system accounts.

You’d better put it back like it was:

set-serviceaccount -servicename BITS `
 -account LocalSystem -password ""

Notice that you’re using an empty string for the password. This is the correct way to

reset to using the system type accounts. If you use $null you’ll generate an error.

 You now know how to discover the running services and configure them as

required. The last aspect of service administration to cover is how they’re loaded at

system startup.

 Discovering the service load order

Most services are loaded when the system starts. There is a defined order in which ser-

vices and their dependencies must be loaded. Many services are loaded in groups, but

not all services are members of a group and not all groups have members. System

startup involves the loading of other functionality, such as drivers, and is a complex

process that can occasionally exhibit problems.

PROBLEM

There are intermittent problems with one of your servers. You need to discover the

services, drivers, and other things that are loaded at system startup to determine

whether the problem is related to a malfunction of the load process.

ErrorControl Severity of error if service fails to start; accepts 0–4

StartMode Start mode of service—usually automatic or manual

DesktopInteract Set to true if service can communicate with window on desktop

StartName Service account name

StartPassword Password for service account

LoadOrderGroup Group in which service loads—see technique 58

LoadOrderGroupDependencies Load order groups that must start before this service starts

ServiceDependencies List of services that must start before this service starts

Table 9.3 Options for the Change method of the Win32_Service class (continued)

Argument name Comment

TECHNIQUE 58

258 CHAPTER 9 Services and processes

SOLUTION

The solution involves some repetitive processing, because the WMI associations don’t

work in the direction that you require. You can start with a service and associate a load

group, but you can’t start with the load group and discover the associated services.

This is illustrated in the following listing.

function get-serviceloadorder {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 $LOGSM = Get-WmiObject -Class Win32_LoadOrderGroupServiceMembers `
 -ComputerName $computername

 Get-WmiObject -Class Win32_LoadOrderGroup -ComputerName $computername |
 foreach {
 $name = $_.Name
 "{0,2} {1}" -f $_.GroupOrder, $name

 $LOGSM |
 where {$_.GroupComponent -like "*$name*"} |
 foreach {
 " $((($_.PartComponent).Split(':'))[1]) "
 }
 }
}}

The get-serviceloadorder function only requires a computer name as a parameter,

because you want to know the information for all the services.

 The processing starts by retrieving all instances of the

Win32_LoadOrderGroupServiceMembers class. The parts you’re interested in are the

GroupComponent, which supplies the load order group, and the PartComponent, which

supplies the name of the service or driver. Here’s an example:

GroupComponent :\\RSLAPTOP01\root\cimv2:

 ➥ Win32_LoadOrderGroup.Name="Boot Bus Extender"
PartComponent :\\RSLAPTOP01\root\cimv2:Win32_SystemDriver.Name="ACPI"

You could try to sort and group based on the GroupComponent, but the output is easier

to understand if you approach the problem slightly differently. The instances of the

Win32_LoadOrderGroup class are retrieved and piped into a ForEach-Object. Each

group has the group order and name displayed.

 The Win32_LoadOrderGroupServiceMembers that you’ve loaded into the $LOGSM

variable are filtered on the name of the load order group. The PartComponent of each

of the accepted instances is split on the colon (:) and the result is displayed.

DISCUSSION

The resultant display is too large to include in the book, but here’s a small portion:

Listing 9.3 Service load order

259TECHNIQUE 58 Processes

53 Cryptography
 Win32_SystemDriver.Name="KSecPkg"
54 PNP_TDI
 Win32_SystemDriver.Name="AFD"
 Win32_SystemDriver.Name="NDProxy"

The WMI class is deliberately left as part of the display to aid in discovering further

information about the item.

 We didn’t cover the Win32_SystemDriver class in chapter 5, but you can use it as

follows:

Get-WmiObject -Class Win32_SystemDriver |
sort State, DisplayName |
Format-Table DisplayName, State, Status -AutoSize

Adding a function to the chapter 5 module to return driver information is a good

exercise to test your understanding. A possible solution is available in the download

code—see get-systemdriver.ps1.

 Services tend to be static when compared to processes. New processes can be

started by users or by other processes, and you need to turn your attention to pro-

cesses to determine whether this volatility is having an adverse effect on your systems.

9.2 Processes

Do you know and understand the full list of processes running on your systems?

PowerShell provides a set of cmdlets for working with processes, as listed in table 9.4.

Only Get-Process has the ability to work against remote machines.

Debug-Process Get-Process

Start-Process Stop-Process

Wait-Process

Using Start-Process

One little known use for the Start-Process cmdlet is accessing websites and open-

ing them directly in your browser:

Start-Process http://www.manning.com/siddaway2

You can make this easier to use if you create an expression for the command and

put it into your profile:

$meap = "Start-Process http://www.manning.com/siddaway2"

You can then execute it like this:

Invoke-Expression -Command $meap

Better still, from the command line you can use the alias:

iex $meap

This is a nice easy way to get to your favorite websites.

Table 9.4 Process-related cmdlets

260 CHAPTER 9 Services and processes

Many processes are started by the system, but you also need to understand the pro-

cesses that users are starting. Processes have a limited lifecycle in that users tend to

start them, let them do their work, and then close them down. There is little need to

modify processes.

 Listing process owners

You can use the Get-Process cmdlet to discover which processes are running on your

local and remote systems. Unfortunately this cmdlet doesn’t tell you who is the owner

of the process—it doesn’t tell you who started it. This is a limitation of the .NET class

used by Get-Process rather than a PowerShell issue.

PROBLEM

A remote server is running slowly because extra processes are being started on it that

use badly needed resources. You need to determine who is starting these processes.

SOLUTION

The Win32_Process class can be used as shown in the following listing. The function

only requires a computer name as a parameter, which defaults to the local system,

as usual.

function get-processowner {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
Get-WmiObject -Class Win32_Process `
-ComputerName $computername |
select Name,
@{Name="Domain";Expression={($_.GetOwner()).Domain}},
@{Name="User";Expression={($_.GetOwner()).User}}

}}

The call to Get-WmiObject will return running processes. The Win32_Process class

has a method to find the process owner—GetOwner(). You can’t access this informa-

tion directly, but you can use Select-Object to create two calculated fields that dis-

play the domain and userid of the process owner by calling the GetOwner method.

DISCUSSION

This technique can also be used to check that processes such as Exchange, Share-

Point, and SQL Server are being started with the correct account.

TIP You won’t get system processes, such as winlogon.exe, unless you run this
function in PowerShell started with elevated privileges. This mimics the behav-
ior of the Task Manager utility, which only shows your own processes by default.

Listing 9.4 List process owners

TECHNIQUE 59

261TECHNIQUE 60 Creating a process

Usually you’ll start processes interactively, but there are times when you need to create

a process on a remote machine.

 Creating a process

The “Using Start-Process” sidebar earlier in this section showed you how to start a pro-

cess on the local machine using the Start-Process cmdlet. If you look at the help file

for Start-Process, you can see that it doesn’t have a -ComputerName parameter. Alter-

natively, you can use Get-Command to check the available parameters:

Get-Command Start-Process -Syntax

PROBLEM

You need to be able to start a process on a remote machine. This will enable you to

run programs on the remote machine as well as put additional load on that machine’s

resources to simulate additional load on the existing processes.

SOLUTION

The Win32_Process class has a Create method that you can use to start a new process

on a remote machine, as shown in listing 9.5. This will start the process in a default

manner.

 You can take this a stage further and use the Win32_ProcessStartUp class to refine

how the processes are started. This class can accept a number of options, as listed in

table 9.5.

The X and Y properties refer to the position on screen of the top left corner of the

window in which the application runs.

function new-process {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [parameter(Mandatory=$true)]
 [string]$name
)
PROCESS{
 $prcstart1 = [wmiclass]"\\$computername\root\cimv2:Win32_ProcessStartup"

Table 9.5 Win32_ProcessStartUp options

CreateFlags EnvironmentVariables ErrorMode FillAttribute

PriorityClass ShowWindow Title WinstationDesktop

X XCountChars XSize Y

YCountChars YSize

Listing 9.5 Create process

TECHNIQUE 60

262 CHAPTER 9 Services and processes

 $prcstart1.Properties["ShowWindow"].Value = 2

 $prcstart2 = [wmiclass]"\\$computername\root\cimv2:Win32_ProcessStartup"
 $prcstart2.Properties["PriorityClass"].Value = 128

 $proc = [wmiclass]"\\$computername\root\cimv2:Win32_Process"
 $proc.Create($name, $null, $prcstart1)

 $proc.Create($name, $null, $prcstart2)
}}

TIP This function is written to demonstrate how to use these classes and
options. If you need this in your own environment, I suggest rewriting it to
meet your requirements.

The function takes two parameters. The first is the usual computer name parameter

that accepts the name of the remote machine you’re going to work with. The second

parameter is the name of the process you intend to start. The process name is manda-

tory. Remember that with WMI, you need to include the extension if you’re starting an

application, such as notepad.exe.

 This demonstration function then creates two instances of the

Win32_ProcessStartup class. The [wmiclass] type accelerator is the easiest way to

achieve this, as shown. The first instance is used to set the ShowWindow property to a

value of 2, which forces the application to start with a minimized window.

 The second instance has the PriorityClass property set to 128, which forces the

application to start with its priority set to High.

 A single instance of the Win32_Process class is created. You can then call the

Create method twice using the name of the process and the relevant startup proper-

ties, as shown. The middle parameter that’s set to $null is the current drive and

directory for the process. If left as $null, it has the same path as the calling process,

which is PowerShell.

DISCUSSION

Windows supplies a few utilities that are ideal for testing this type of functionality,

most notably Notepad and the Calculator. In this case we’ll use Notepad to perform

our tests. The function is used as follows:

new-process -name notepad.exe

The WMI return information includes the ProcessIds of the new processes. This

information could be captured in a variable if required for future processing.

 You can test that the processes start with different priorities by using this code:

Get-WmiObject Win32_Process -Filter "Name='notepad.exe'" |
Format-Table Name, ProcessId, Priority -AutoSize

It will return a result similar to this:

Name ProcessId Priority
---- --------- --------
notepad.exe 5980 8
notepad.exe 5520 13

263TECHNIQUE 61 Terminating a process

You’ll get visual confirmation that one of the instances of Notepad starts in a mini-

mized window.

 This function was tested using Invoke-WmiMethod as a variant. If I was just creating

the process, it would have worked as shown in this example:

$proc = [wmiclass]"\\.\root\cimv2:Win32_Process"
Invoke-WmiMethod -InputObject $proc -Name Create `
-ArgumentList "notepad.exe"

Extending the code to utilize the startup options produces this code:

$proc = [wmiclass]"\\.\root\cimv2:Win32_Process"
Invoke-WmiMethod -InputObject $proc -Name Create `
-ArgumentList "notepad.exe", $null, $prcstart2

Unfortunately this code throws an invalid operation error and won’t work. I’ve deter-

mined that Invoke-WmiMethod expects the parameters in the order that was used, but

it still fails. In any case, you have a method that works, using listing 9.5, which is the

important point.

 Creating processes and checking ownership of processes leads you to the situation

where you’ll need to terminate a process.

 Terminating a process

Stopping a process on the local machine can be achieved in many ways:

■ Close the application window with a mouse click

■ Right-click the minimized application and select Close Window.

■ Use the Task Manager utility

■ Use Stop-Process

But none of these can be used when you’re dealing with a remote machine, so you

need a different approach.

PROBLEM

You’ve determined that there are processes running on a remote machine that need

to be terminated in order to conserve the resources used by that machine.

SOLUTION

If this is an ad hoc activity, you could perform the action at the PowerShell prompt.

But it’s likely that you’ll need to perform this action more frequently, so you can wrap

it in a function that you call as required and use easily against multiple machines. The

following listing shows how you can solve this problem.

function stop-remoteprocess {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

Listing 9.6 Terminate process

TECHNIQUE 61

264 CHAPTER 9 Services and processes

 [parameter(Mandatory=$true)]
 [string]$name
)
PROCESS{
 Get-WmiObject -Class Win32_Process `
 -ComputerName $computername -Filter "Name='$name'" |
 Remove-WmiObject
}}

This function is derived directly from listing 9.5. The computer name and process

name are input as parameters. Get-WmiObject is used with the Win32_Process class to

discover the relevant processes, based on the computer name and a filter created

from the process name. The results of that search are piped to Remove-WmiObject,

which deletes the instances of the Win32_Process class, which thus terminates the

process and closes the application.

DISCUSSION

This function takes a heavy-handed approach in that it stops all processes with a given

name. If you want to be more selective, substitute the ProcessId for the name. Better

still, you can write a function that will take a name or a ProcessId and either termi-

nate all processes of that name or the individual process by ID. This is shown in the

following listing.

function stop-remoteprocessid {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [parameter(ParameterSetName="Procname")]
 [string]$name,

 [parameter(ParameterSetName="Procid")]
 [int]$procid

)
PROCESS{
 switch ($psCmdlet.ParameterSetName) {
 "Procname" {
 Get-WmiObject -Class Win32_Process `
 -ComputerName $computername -Filter "Name='$name'" |
 Remove-WmiObject
 }
 "Procid" {
 Get-WmiObject -Class Win32_Process `
 -ComputerName $computername -Filter "ProcessId=$procid" |
 Remove-WmiObject

 }
 }
}}

Listing 9.7 Terminate process by name or ProcessId

265TECHNIQUE 61 Process-related events

You start with listing 9.6 and add a new parameter—$procid—to hold the ProcessId.

The goal is to use either the process name or ProcessId to identify the processes to

terminate. These two options can be separated by using parameter sets. The process

name is put into a parameter set called ProcName whereas the ProcessId is in a

parameter set called ProcId. The computer name parameter isn’t put into an explicit

parameter set and is therefore in both.

 This can be illustrated by displaying the syntax of the function:

Get-Command stop-remoteprocessid -Syntax
stop-remoteprocessid [-computer <String>] [-name <String>]...
stop-remoteprocessid [-computer <String>] [-procid <Int32>] ...

Get-Command displays two different syntaxes, one for each parameter set. The “...” rep-

resents the common parameters, which I removed for brevity. The good thing about

parameter sets is that they’re mutually exclusive. If you start to use the parameters in

one set, you can’t mix them with the parameters from another. Both of the following

examples will work:

stop-remoteprocessid -name notepad.exe
stop-remoteprocessid -procid 3280

If You tried to use name and ProcessId, like this,

stop-remoteprocessid -name notepad.exe -procid 3280

you’d get an error, as shown in figure 9.1.

 Processes consume resources on your systems. Sometimes you may want to prevent

particular processes from running to ensure that valuable resources are available for

your critical processes. Alternatively, you may need to ensure that a critical process is

restarted in the event of failure. You can accomplish both of these goals through the

WMI events related to processes.

9.3 Process-related events

An event is triggered on your systems when something happens or something changes

state. The two most common events related to processes are

■ New processes starting up

■ Processes shutting down

Figure 9.1 Error message when mixing parameter sets

266 CHAPTER 9 Services and processes

These events are similar to events you’ve seen previously in that they produce infor-

mation in a known format. The difference is in the exact information returned.

 You know from previous chapters that the following WMI system classes can be

used to monitor process creation and deletion:

■ __InstanceCreationEvent

■ __InstanceDeletionEvent

WMI spoils you for choice with process-related events because you also get the classes

listed in table 9.6.

Events relating to the registry and filesystem have been discussed in previous chapters,

and a pattern of working with events has been established. Processes provide an easy,

and safe, way of investigating the WMI event engine in more detail. After we look at

that, we’ll look at using the WMI classes to monitor process events and to add further

controls to your systems.

 Investigating an event

You’ve seen, for instance in listing 8.11, that Register-WmiEvent is used to register

a WMI event so you can work with it. When the event is triggered an object is cre-

ated using the System.Management.Automation.PSEventArgs .NET class. You need

to understand the anatomy of this object if you want to get the most from working

with events.

PROBLEM

The objects produced by a WMI-based event need to be investigated so that you can

determine the optimum method of processing events.

SOLUTION

Listing 9.8 will create an event object that you can work with at the command line.

WARNING This code should not be run as a script because you won’t see the
output due to the script being in a different scope. Paste each line into the
PowerShell console and run it. I also recommend opening a new PowerShell
console to run this code. That will ensure that there are no other events regis-
tered that could interfere with the investigation.

Table 9.6 Process event classes

Class Purpose

Win32_ProcessTrace Base class for process events

Win32_ProcessStartTrace Indicates a new process has started

Win32_ProcessStopTrace Indicates a process has stopped

TECHNIQUE 62

267TECHNIQUE 62 Investigating an event

$query = "Select * FROM __InstanceCreationEvent

 ➥ within 3 WHERE TargetInstance ISA 'Win32_Process'"

Register-WmiEvent -Query $query `
-SourceIdentifier "WMI process start"

Get-EventSubscriber

Start-Process notepad

Get-Event
$e = Get-Event | select -First 1

$e.SourceEventArgs

$e.SourceEventArgs.NewEvent

$e.SourceEventArgs.NewEvent.TargetInstance

The first step is to define a query. This will extract all instance-creation events where

the target is a member of the Win32_Process class. The next step is to register the

WMI event. In this case, you aren’t registering an action, so the event information is

accessible from the event queue. The event queue is simply the collection of events

that have occurred, to which the current PowerShell session has subscribed via the

registration cmdlets, and for which no processing action is registered. Events created

using New-Event will also appear on the queue if an action isn’t registered.

 You can test the registration by using Get-EventSubscriber which will confirm the

SourceIdentifier you’ve chosen. An instance of Notepad is started using the Start-

Process cmdlet. You could use the WMI function in listing 9.5 as an alternative to this

line. The event information can be displayed using Get-Event, but this only works if

an action hasn’t been defined when registering the event. If an action is defined, the

action handles the event and the event doesn’t appear on the event queue. A display

similar to figure 9.2 should result at this point.

Listing 9.8 Investigate process events

Figure 9.2 Event processing

268 CHAPTER 9 Services and processes

A variable, $e, can be created to hold the event. In this example, I forced the selection

of the first event, in case any other events occurred while working through the previ-

ous steps. The various components of the event object can be displayed using the syn-

tax provided.

 The final step is to recover the name of the process that has been started:

$e.SourceEventArgs.NewEvent.TargetInstance.name

DISCUSSION

The event information in figure 9.2 includes a ComputerName property. This is useful

when events are being forwarded to you. You can easily determine which machine is

generating the event.

 The Sender property contains three items:

■ Scope

■ Query

■ Options

They’re worth investigating to completely understand the event object, though there

is no information you need to access for the purposes of this example.

 This gives you two different methods of analyzing events. You can use the manual

steps given in listing 9.8, or you can adopt the test harness described in technique 55

(chapter 8).

TIP I strongly recommend experimenting with the information presented by
the event object. Event handling is one of those subjects that can seem incom-
prehensible until you’ve experimented enough to get to the Eureka! moment.

You’ve learned a lot about administering processes and process-related events in this

chapter. Let’s close out the chapter by putting it all together: you’ll create a method of

monitoring your processes.

 Monitoring processes

You saw event-handling scripts at the end of chapters 7 and 8 where you were working

with the registry and filesystem respectively. In both cases, you used the

__InstanceCreation system class as you did in technique 62. There are two alterna-

tive classes you can use when working with process events:

■ Win32_ProcessStartTrace

■ Win32_ProcessStopTrace

The same information can be retrieved, whether you work with the system class or the

trace classes.

PROBLEM

You have a server that’s running a critical application. The application’s process must

be immediately restarted if it stops. Resources are in short supply on the server, so you

want to prevent some other processes from starting and using those resources.

TECHNIQUE 63

269TECHNIQUE 63 Monitoring processes

SOLUTION

The following listing shows one possible solution to this problem. I used the Solitaire

and Calculator applications as examples in this listing so that you can experiment in

safety. Other applications can be substituted as required.

function eventhandler {
param ($e)
 $proc = $e.SourceEventArgs.NewEvent.ProcessName
 if ($e.SourceIdentifier -eq "Process Start") {
 Write-Host "$proc has started"

 if ($proc -eq "Solitaire.exe") {
 Write-Host "Solitaire is not allowed. It is stopping"
 Get-WmiObject Win32_Process -Filter "Name='solitaire.exe'" |
 Remove-WmiObject
 }
 }
 else {
 Write-Host "$proc has stopped"
 if ($proc -eq "calc.exe") {
 Write-Host "Calc.exe must be restarted."
 $np = [wmiclass]"Win32_Process"
 $np.Create("calc.exe")
 }
 }

}

if (Get-EventSubscriber |
where {$_.SourceIdentifier -eq "Process Start"}) {
 Unregister-Event -SourceIdentifier "Process Start" }
if (Get-EventSubscriber |
where {$_.SourceIdentifier -eq "Process Stop"}) {
Unregister-Event -SourceIdentifier "Process Stop" }

$queryStart = "SELECT * FROM Win32_ProcessStartTrace"
$queryStop = "SELECT * FROM Win32_ProcessStopTrace"

$action = {eventhandler $($event)}

Register-WmiEvent -Query $queryStart `
-SourceIdentifier "Process Start" -Action $action
Register-WmiEvent -Query $queryStop `
-SourceIdentifier "Process Stop" -Action $action

The script starts by defining the eventhandler function. Notice that you only need a

single function to handle the events from two different registrations. The process name

is immediately recovered from the event information. The examples in listing 9.8 illus-

trated how you get to this structure.

 A test on the SourceIdentifier property determines whether you’re dealing with

a process that’s starting or stopping. If the process is starting, you display the appropri-

ate message and then test if it’s the Solitaire application. When using WMI, you have to

include the program’s extension (.exe). In the event that Solitaire has been started,

Listing 9.9 Process monitoring

270 CHAPTER 9 Services and processes

you get the WMI object corresponding to its process and remove it, which closes down

the application.

 If you’re dealing with a process that has been stopped, you display the message,

test if it’s calculator.exe, and start it up again if necessary.

 The body of the script is similar to previous event handling scripts in that it cleans

up the registrations if you’re rerunning it, creates the queries and action, and then

registers the events.

DISCUSSION

This example uses two applications that are safe to experiment with. In reality, you

may want to stop a number of applications from running—I never have understood

why Windows server editions include the games. A small number of applications (six

or so) could be managed by creating an array and testing the newly started application

against the array using the -contains operator. A larger number of applications

would require using a file and comparing the newly started process against the file

contents. The whole concept could be extended to include the time of day. For exam-

ple, perhaps some applications could only be run out of business hours.

 It’s worth leaving the script running for a while to watch the processes that stop

and start automatically during the normal running of your system—it’s quite educa-

tional. And on that note, our coverage of services and processes is brought to a close.

9.4 Summary

Services and processes enable you to work with the applications running on your sys-

tems. You can use WMI to work with these objects to perform efficient management

and troubleshooting, including

■ Service discovery and configuration

■ Service load order and dependency diagnosis

■ Process owner discovery (who is running what)

■ Process lifecycle management

■ Process events, enabling you to control which applications can be run and when

Managing services and processes ensures that you concentrate your computer

resources where they’re required—running your critical applications.

 In chapter 10, we’ll move on to the favorite topic of many administrators, namely

printers and printing.

271

Printers

Printers are probably the second most common cause of issues in Windows envi-

ronments (password resets are the first). In many cases, these are logistical issues

involving toner, paper, and mechanical problems that administrators can’t control

directly, but we can control the printer and its associated print jobs. PowerShell and

WMI enable us to perform the control tasks on remote or local systems.

NOTE A printer in Windows terminology is the queue to which a print job is
sent. It’s linked to one or more physical print devices.

The first two parts of this chapter are concerned with discovering information

about printers. Our starting point will be to determine what printers are connected

to a particular computer. The capabilities of those printers are very important; for

example, can a particular printer print in color? This information is available

through WMI, but you have to deal with collections of properties to determine the

answers. We’ll then look at printer drivers and printer ports. Many printer issues

This chapter covers

■ Discovering printer configuration and status

■ Discovering and comparing printer drivers

■ Managing printers and print jobs

■ Testing printers

272 CHAPTER 10 Printers

can be traced to using an incorrect driver, and having a quick way to determine the

exact driver can save time when troubleshooting.

 Users tend to be more interested in the status of the printer and their print jobs than

in the technicalities of the printer configuration. PowerShell and WMI techniques for

retrieving this information are presented in the second section of the chapter.

 The third section of the chapter is concerned with managing printers. Setting the

default printer for users can save them, and you, a lot of effort in determining what’s

happening to their printouts. You can force a test page to be printed to determine

whether the connection is working correctly. The printer can be paused for mainte-

nance work and then resumed to allow the accumulated print jobs to be printed. You

can, if necessary, cancel all print jobs associated with a particular printer. Printers, like

many objects you deal with, can be renamed with more suitable and descriptive names

to make it easier for users to select the printer they need. The combination of Power-

Shell and WMI enables you to perform these tasks on remote systems, enhancing your

service to your users without any additional spending or effort.

 First, you need to discover your printer configurations before you can start manag-

ing them.

10.1 Printer configuration

WMI provides a number of classes for dealing with printers. You can discover these

classes using the -List parameter of Get-WmiObject, as you’ve seen previously:

Get-WmiObject -List *print*

The amended qualifiers of the WMI class will yield a description. You have to retrieve

this information specifically, as it’s relatively expensive to produce. This example

expands on the simple list to display the description of each class:

Get-WmiObject -List *print* | sort name |
foreach {
"`n$($_.Name)" ((Get-WmiObject -List $_.Name -Amended).Qualifiers |
 Where {$_.Name -eq "Description"}).Value
}

The two main classes we’ll consider are Win32_Printer and Win32_PrintJob. In this

section, you’ll use these two classes to discover your printers, printer status, and capa-

bilities, together with the print jobs, ports, and drivers associated with the printers.

The first task is to discover the printers to which a particular machine is connected.

 Discovering printers

Some organizations have simplified printer management by using third-party soft-

ware. This enables the users to all print to the same printer, but delivery is controlled

by the user physically accessing the device to “pull” their prints from a central queue.

 Many, if not most, organizations work with a mixture of printers distributed

throughout the organization. Some of these will manage their own print queues, and

some will utilize a dedicated printer server. Users can be allocated printers via logon

scripts, GPOs, or even as part of the base build of their PC. The situation is further

TECHNIQUE 64

273TECHNIQUE 64 Discovering printers

complicated by some applications and other technologies, such as faxes appearing as

printers. Discovering which printer a particular user is accessing can be problematical.

PROBLEM

A user calls the help desk saying, “My printer is not working.” You need to discover to

which printers the user is connected before any action can be taken to resolve the call.

SOLUTION

The function presented in the following listing solves this problem. It has a single

parameter that accepts a computer name. The local machine is the default, as usual.

function get-printer {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject -Class Win32_printer `
 -ComputerName $computername |
 select Name, Default, Direct, DoCompleteFirst,
 HorizontalResolution, VerticalResolution,
 KeepPrintedJobs, Local, Network, PortName, PrintJobDataType,
 PrintProcessor, Priority, Published, Queued, RawOnly, Shared,
 WorkOffline
}}

The working part of the function uses the Win32_Printer class on the required system.

This will pull back the properties defined to Select-Object, which are then displayed.

 The function outputs an object that the PowerShell engine then displays in the

default manner. This enables you to use the function at the prompt and perform fur-

ther filtering if required, as shown in figure 10.1, where the printer name and whether

it’s the default or shared are listed.

Listing 10.1 Discover available printers

Figure 10.1 Filtering the output of the get-printer function

274 CHAPTER 10 Printers

DISCUSSION

One common requirement is to determine the default printer on a system. You could

use the get-printer function as shown in figure 10.1, or you can access the informa-

tion directly:

Get-WmiObject -Class Win32_Printer -Filter "Default='$true'" |
Select Name

The properties defined to Select-Object can be modified to suit your particular

purposes.

 It can be useful to examine the WMI classes associated with your printer:

Get-WmiObject -Query "ASSOCIATORS OF

 ➥ {Win32_Printer.DeviceId='HP DeskJet 812C'} WHERE CLASSDefsOnly"

TIP You have to use the DeviceId parameter rather than the name to find
the associations in this case. If you’re in doubt about which property to try,
look at the Path property and use that syntax.

The Win32_PrinterDriver and Win32_PrinterConfiguration classes are the only

results that look to be of interest:

Get-WmiObject -Query "ASSOCIATORS OF

 ➥ {Win32_Printer.DeviceId='HP DeskJet 812C'}

 ➥ WHERE ResultClass = Win32_PrinterConfiguration"

The results show that the Win32_PrinterConfiguration class doesn’t add much to

your knowledge of printers because it contains the same information as the

Win32_Printer class. We’ll return to the Win32_PrinterDriver class in technique 67.

 The other thing you need to be able to determine is what your printers can do.

 Testing printer capabilities

Printers come in all shapes and sizes. They have a large number of possible capabili-

ties, such as

■ Printing to specific paper sizes

■ Printing in color

■ Printing on both sides of the paper (duplex)

The printer name or description usually doesn’t carry this information.

PROBLEM

Common questions from users include, “Which printer can I use to produce color

output?” and “Which printers will print on both sides of the paper?” There are also

requests to determine which printers support specific paper sizes. You need to be able

to answer these questions easily and quickly.

SOLUTION

The solution involves unraveling the CapabilityDescriptions and PrinterPaper-

Names properties of the Win32_Printer class, as shown in the following listing. These

properties are collections that WMI doesn’t deal with very well. You can use the Power-

TECHNIQUE 65

275TECHNIQUE 65 Testing printer capabilities

Shell -contains operator to solve this. You can also use the PowerShell advanced

function capabilities to validate your input.

function test-printercapabilities {
[CmdletBinding(DefaultParameterSetName="Pcap")]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [parameter(ParameterSetName="Pcap")]
 [string]
 [ValidateSet("Duplex", "Color", "Collate")]
 $capability="Color",

 [parameter(ParameterSetName="Paper")]
 [string]
 [ValidateSet("Letter", "Legal", "Executive", "A4", "A3")]
 $paper

)
 PROCESS {
 $printers = Get-WmiObject -Class Win32_Printer `
 -ComputerName $computername

 switch ($psCmdlet.ParameterSetName) {
 "Pcap" {
 "$capability printers on $computername"
 $printers |
 Where {$_.CapabilityDescriptions -contains $capability} |
 select Name
 }
 "Paper" {
 "$paper printers on $computername"
 $printers |
 Where {$_.PrinterPaperNames -contains $paper} |
 select Name
 }

 }
}
}

Two parameters are defined in addition to the usual computer name parameter B. In

both cases, you use the ValidateSet() advanced function parameter to restrict the

input to predefined paper sizes and printer capabilities. The examples presented in

the code are the common sizes and capabilities and can easily be changed to items

that meet your particular requirements.

 The -capability and -paper parameters are presented as two parameter sets. The

-computername parameter isn’t labeled as being a member of an individual parameter

set, so it’s a member of both. Parameter sets restrict the parameters that can be used

together so you can test for paper size or printer capability but not both together. The

Listing 10.2 Test printer capabilities

Define
parameter
sets

B

Switch
statement

C

276 CHAPTER 10 Printers

use of a default parameter set and default values means that you can run the function

without using any parameters and it won’t fail.

Get-WmiObject is used to fetch the WMI objects representing all of the printers on

the target machine. A switch statement based on the parameter set name is used to

display the printers that match either the desired capability or printer size C. This is

achieved by using the -contains operator to test if the capability or paper type is a

member of the collection returned by the relevant property.

DISCUSSION

Ideally, filtering should be performed as soon as possible, but in this particular case

it’s easier to use Where-Object. The full range of possible paper types a printer sup-

ports can be found by using the -ExpandProperty parameter of Select-Object:

Get-WmiObject -Class Win32_Printer -Filter "Default='$true'" |
select -ExpandProperty PrinterPaperNames

If you introduce ForEach-Object into the code, you can get a nice output where you

display the printer name and then the paper types it supports:

Get-WmiObject -Class Win32_Printer |
foreach {
"`n $($_.Name)"
$_ | select -ExpandProperty PrinterPaperNames
}

A similar activity can be performed for printer capabilities:

Get-WmiObject -Class Win32_Printer -Filter "Default='$true'" |
select -ExpandProperty CapabilityDescriptions

On my system, using an HP DeskJet 812C, the following capabilities are reported:

■ Copies

■ Color

■ Collate

Servers connect to printers via printer ports. You need to be able to discover the

printer ports to further your understanding of the printing environment.

 Discovering printer ports

Most of the information about printer ports can be found by using the Win32_Printer

class:

Get-WmiObject -Class Win32_Printer | select Name, PortName

This works well for USB, old-style parallel ports, and the ports created for the fax sys-

tem or applications such as Microsoft OneNote. It doesn’t work for TCP/IP ports.

PROBLEM

Many of your printers are networked rather than being directly attached to a server.

You need to discover the relevant TCP/IP ports used to connect to these servers.

TECHNIQUE 66

277TECHNIQUE 67 Discovering printer drivers

SOLUTION

Listing 10.3 presents a solution for this problem using the Win32_TCPIPPrinterPort

class. There are two possible protocols used to print to networked devices: the original

LPR protocol or the newer RAW protocol. The protocol is stored as a numeric value.

The listing starts by defining a hash table to be used as a lookup for the proto-

col meaning.

$pp = DATA {
ConvertFrom-StringData -StringData @'
1 = RAW Printing directly to a device or print server.
2 = LPR Legacy protocol, which is eventually replaced by RAW
'@
}

function get-tcpport {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
Get-WmiObject -Class Win32_TCPIPPrinterPort `
 -ComputerName $computername |
select Name, HostAddress, PortNumber,
@{N="Protocol"; E={$pp["$($_.Protocol)"]}},
SNMPCommunity, SNMPDevIndex, SNMPEnabled

}}

The get-tcpport function has a single parameter for a computer name. It then uses

the Win32_TCPIPPrinterPort class to retrieve data about the ports. The properties

are filtered using Select-Object, including the lookup of the printing protocol.

DISCUSSION

The last three properties are important in that they define the Simple Network Man-

agement Protocol (SNMP) configuration of the port. SNMP is a protocol for managing

devices on IP networks. The SNMPCommunity property shouldn’t be set to Public or

any other well-known setting. If it’s configured in that way, you need to talk to your

network administrators.

 The last configuration item to investigate is printer drivers.

 Discovering printer drivers

Printers, like all computer peripherals, need drivers to enable the computer operating

system to communicate with the printer. Printer drivers seem to be more prone to

causing problems than other drivers. A simple way of checking the driver version can

be very useful.

Listing 10.3 List TCP/IP printer ports

TECHNIQUE 67

278 CHAPTER 10 Printers

PROBLEM

You have a number of printers, of the same type, scattered throughout the organiza-

tion. Most of them are functioning correctly, but one or two are causing problems.

You need to check that the drivers are the same across all of the printers.

SOLUTION

You could use the Win32_PrinterDriver class to get information about the printer

drivers installed on the system. This, however, isn’t the best way to solve the problem

because you want to associate the driver with the printer. WMI associations can enable

you to do this, as shown in the following listing.

function get-printerdriver {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [string]$printer
)
PROCESS {
$query = "ASSOCIATORS OF {Win32_Printer.DeviceId='$printer'}

 ➥ WHERE ResultClass = Win32_PrinterDriver"

$driver = Get-WmiObject -ComputerName $computername -Query $query

"Driver for $printer"
$driver | select Version, SupportedPlatform, OEMUrl,
DriverPath, ConfigFile, DataFile, HelpFile

" Dependent Files"
$driver | select -ExpandProperty DependentFiles

}}

The get-printerdriver function accepts a computer and a printer name as parame-

ters. Both parameters are optional. A WMI query is created by substituting the printer

name into the string. Notice that you need to use the DeviceId property to identify

the printer, instead of the Name property.

 The query is run against the printer, and the results are held in the $driver vari-

able because you want to access them twice. The driver information is selected and

displayed, including the driver version. The dependent files property is then

expanded to show the other files that are loaded with this driver.

DISCUSSION

The -printer parameter in this function could be made mandatory to ensure that it’s

entered. At present the function throws an error if a printer name isn’t supplied.

You’ve seen how to make parameters mandatory in several functions already. Modify-

ing this script will be a good test of your understanding.

Listing 10.4 Discover printer drivers

279TECHNIQUE 68 Testing printer status

 In theory, you could use PowerShell and WMI to install printer drivers, as this code

from PowerShell MVP Aleksandar Nikiloc shows:

$server = "PrintServer"
$printdriver = [wmiclass]"Win32_PrinterDriver"
$driver = $printdriver.CreateInstance()

$driver.Name="HP2420"
$driver.DriverPath = "\\$server\drivers\printers\hp\lj2420"
$driver.Infname = "\\$server\drivers\printers\hp\lj2420\hpc24x0c.inf"

$printdriver.AddPrinterDriver($driver)
$printdriver.Put()

Personally, in an enterprise, I prefer to install drivers via a software distribution mech-

anism such as System Center, as I find there is more flexibility. It’s interesting that

Microsoft has added an Add-PrinterDriver cmdlet in Windows 8, but it’s based on a

new MSFT_PrinterDriver class rather than the Win32_PrinterDriver class.

 You know how to find the printers that are available and their capabilities. Now

you need to consider whether the printer is available to the user.

10.2 Printer status

Printer status can be split into two parts. The first part is the printer itself: Is it online

and available to the user? The second part is the print jobs sent to the printer: Is there

anything stopping a print job being produced? This section will answer both ques-

tions, starting with the status of the printer.

 Testing printer status

When considering the status of printers, you may see references to a PrinterState

property. This property has been deprecated by Microsoft, which means it will be

removed in a future version of Windows.

PROBLEM

A user is having difficulties printing. You need to check on the status of the printer to

determine if the problem is confined to a single user or will affect many users because

the printer is unavailable.

SOLUTION

The following listing presents a quick function that will return the status of the print-

ers connected to a particular machine.

$pstatus = DATA {
ConvertFrom-StringData -StringData @'
1 = Other
2 = Unknown
3 = Idle
4 = Printing
5 = Warming Up

Listing 10.5 Test printer status

TECHNIQUE 68

280 CHAPTER 10 Printers

6 = Stopped printing
7 = Offline
'@
}

function get-printerstatus {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject -Class Win32_printer `
 -ComputerName $computername |
 select Name,
 @{N="Status"; E={$pstatus["$($_.PrinterStatus)"]}}
} }

A hash table is used to define the meanings of the numeric status codes returned by

WMI. The function only takes a computer name as a parameter. Get-WmiObject

returns the printer objects. The printer name and a descriptive version of the status

are displayed. The numeric status value is converted to the description using the hash

table lookup defined at the beginning of the listing.

DISCUSSION

This listing could be combined with listing 10.1 if a single function to investigate

printers is required.

 The calculated field uses N and E as abbreviations for Name and Expression respec-

tively. You’ve seen the full names used in previous listings; they’ll be abbreviated in

future listings to save space where necessary.

 Printers are just the devices you use to print. Users are often much more interested

in the jobs they’ve submitted to the printer, especially if those jobs haven’t appeared.

 Listing print jobs

Printers can find many ways to go wrong. The paper jams, they run out of toner, or the

maintenance warnings start to flash. Many of these issues can stop the user’s printout

from appearing.

PROBLEM

Users are complaining that their printout isn’t appearing. You need to check the print

jobs associated with the printer to determine if there is a backlog that could indicate a

problem.

SOLUTION

It isn’t unknown for users to send print jobs to the wrong printer and then complain

that they can’t find them. You can use the Win32_PrintJob class to determine which

print jobs are still outstanding for a particular printer. The following listing shows how

you can test a single printer or all of the printers on a server.

TECHNIQUE 69

281TECHNIQUE 69 Listing print jobs

function get-printjob {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [string]$printer
)
PROCESS {
 if (-not $printer){
 $pjobs = Get-WmiObject -Class Win32_PrintJob `
 -ComputerName $computername
 }
 else {
 $pjobs = Get-WmiObject -Class Win32_PrintJob `
 -ComputerName $computername -filter "DriverName='$printer'"
 }

 $pjobs | select Document, JobId, Name, PagesPrinted,
 Status, Color, DataType, DriverName, Owner,
 PaperSize, Size, TotalPages,
 @{N="SubmissionTime"; E={$($_.ConvertToDateTime($_.TimeSubmitted))}}
}}

The get-printjob function takes the usual computer name as a parameter. It also has

an optional parameter of a printer name. If the -printer parameter isn’t supplied,

Get-WmiObject is used with the Win32_PrintJob class to return all of the print jobs on

the designated computer. Inputting a printer name causes a filter to be used that

restricts the output to the print jobs for the designated printer. Notice that the filter-

ing is performed on DriverName not printer name. This is an artifact of WMI in the

way the classes are coded. WMI associations can’t be used to link the Win32_Printer

class and the Win32_PrintJob class.

 The collection of print jobs is piped into Select-Object. A calculated field is used

to determine the time the print job was submitted.

DISCUSSION

The function is used as follows:

get-printjob
get-printjob -printer "HP DeskJet 812C"

The first example will display all of the print jobs on the local machine, and the sec-

ond will display those for the "HP DeskJet 812C" printer.

 Remove-WmiObject can be used to delete print jobs:

Get-WmiObject Win32_PrintJob | Remove-WmiObject

Where-Object could be used to restrict the jobs being deleted. It isn’t easy to filter a

print job on its name as it’s a combination of the printer name and the JobId, as

shown in figure 10.2.

Listing 10.6 List print jobs

282 CHAPTER 10 Printers

The Owner property would be a useful filter if you needed to find all of the print jobs

for a single user.

 The Pause and Resume methods on Win32_PrintJob can be used to control print

jobs. For example, this code will halt all print jobs on a server:

Get-WmiObject Win32_PrintJob | Invoke-WmiMethod -Name Pause

The Resume method can be used to restart printing. This is discussed further in tech-

nique 72.

 That concludes our investigation of the printer configuration and status. The next

step is to look at how you can manage printers using WMI.

10.3 Managing printers

Printer management tasks can be split into two broad groups. The first group com-

prises mundane tasks such as adding paper, changing toner or ink supplies, and clear-

ing jams. Unfortunately WMI can’t help with this sort of activity.

TIP A bonus function, get-printersecurity, is available in the download
code for this chapter. It can be used to determine the security permissions set
on a shared printer.

The second group of tasks comprises activities such as printing a test page, pausing

and restarting the printer, and renaming a printer. The act of setting a default printer

also falls into this group, and it’s the first task we’ll examine.

 Setting a default printer

All users have a default printer defined if they have any printers installed. The default

printer is the one an application will print to if the print icon is clicked and then the

Print button is clicked. It’s also the printer used by the Out-Print cmdlet if a printer

isn’t specified.

 This example will send the output to the default printer:

Get-WmiObject -Class Win32_Printer |
select Name, PortName | Out-Printer

Figure 10.2 Win32_PrintJob

output

TECHNIQUE 70

283TECHNIQUE 70 Setting a default printer

PROBLEM

A significant number of users have moved location within your organization. Their

new printer has been configured. Now you need to set the new printer as their default

printer.

SOLUTION

The following listing shows how you can use the Win32_Printer class to solve this

problem.

function set-defaultprinter {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [string]$printer
)
PROCESS {
Get-WmiObject -Class Win32_Printer `
-ComputerName $computername -Filter "Name='$printer'" |
Invoke-WmiMethod -Name SetDefaultPrinter

}}

The function accepts the usual computer name and printer parameters. The appro-

priate printer instance is retrieved using Get-WmiObject with the printer name as the

filter. It’s piped to Invoke-WmiMethod, where the SetDefaultPrinter method of the

Win32_Printer class is called.

DISCUSSION

The default printer can be discov-

ered using the get-printer function

from listing 10.1. This is demon-

strated in figure 10.3, where the fol-

lowing code is used:

get-printer | where{$_.Default

 ➥ -eq $true}

Alternatively, the Win32_Printer

class can be used at the prompt, as

explained in the discussion of tech-

nique 64.

 Once you’ve set the default

printer, you’ll probably want to print

a test page from it to ensure that it

works for the user.

Listing 10.7 Set default printer

Figure 10.3 Discovering the default printer

284 CHAPTER 10 Printers

 Printing a test page

Most printers have the ability to print a test page. This is often done to prove connec-

tivity, that the printer is configured correctly, or that the printer hardware is working.

Talking a user through producing a test page can be difficult.

PROBLEM

Printing a test page is a good diagnostic technique. You need to be able to perform

this task, remotely, for a user on their machine.

SOLUTION

The Win32_Printer class can also solve this problem for you as the following listing

demonstrates.

function send-testpage {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [parameter(ParameterSetName="NonDefPrint")]
 [string]$printer,

 [parameter(ParameterSetName="DefPrint")]
 [switch]$default
)
PROCESS {
 switch ($psCmdlet.ParameterSetName) {
 NonDefPrint {$filt = "Name='$printer'"}
 Defprint {$filt = "Default='$true'" }
 }

 $device = Get-WmiObject -Class Win32_printer `
 -Filter $filt -ComputerName $computername

 if ($device) {
 $device | Invoke-WmiMethod -Name PrintTestPage
 }
 else {
 "Printer not found"
 }
}}

A printer name and switch parameter that selects the default printer are defined, in

addition to the computer name parameter. The printer and default parameters are

in different parameter sets, with the computer name parameter being a member

of both.

 A Switch statement creates a WMI filter based on the parameter set selected. It will

either create a filter based on the printer name or on the fact that the target printer is

the default printer.

Listing 10.8 Print test page

TECHNIQUE 71

285TECHNIQUE 72 Controlling printers

 The WMI object representing the printer is retrieved and put into the $device vari-

able. If a printer is found that matches the filter criteria, the object represented by

$device is piped into Invoke-WmiMethod where the PrintTestpage method is called.

A message stating that the printer couldn’t be found is produced if the $device vari-

able is NULL (empty).

DISCUSSION

On my development system, these will both work:

send-testpage -printer "Send To OneNote 2010"
send-testpage -default

The following command will fail because the printer doesn’t exist:

send-testpage -printer "Send To OneNote 2001"

You can also use a simple loop to send multiple test pages:

1..5 | foreach {send-testpage -default}

TIP This is an easy way to build up a number of print jobs to experiment with
for listing 10.6 and technique 72.

There are times when you need to control the printer, pause, and resume, so that

essential maintenance can be performed. It’s recommended that you inform the users

before this happens to avoid a lot of irate callers.

 Controlling printers

Remote control of the printer could involve working at the individual job level or at

the printer level. You saw in technique 69 that you can pipe Win32_PrintJob objects

into Remove-WmiObject to delete print jobs individually or in groups.

 The Win32_PrintJob class has Pause and Resume methods that can be used to con-

trol print jobs. Pausing the print job is performed in this manner:

Get-WmiObject Win32_Printjob -Filter "JobId=7" |
Invoke-WmiMethod -Name Pause

The job is started again by using the Resume method:

Get-WmiObject Win32_Printjob -Filter "JobId=7" |
Invoke-WmiMethod -Name Resume

You can pause all of the jobs destined for a particular printer by filtering on the

printer name. You have to use the DriverName property to perform the filtering:

Get-WmiObject Win32_Printjob `
-Filter "DriverName='HP DeskJet 812C'" |
Invoke-WmiMethod -Name Pause

The state of the print jobs can be tested using the get-printjob function from list-

ing 10.4, or you can use the WMI class directly:

Get-WmiObject Win32_Printjob `
-Filter "DriverName='HP DeskJet 812C'" |
select name, JobStatus

TECHNIQUE 72

286 CHAPTER 10 Printers

You can also control the printer rather than the print jobs.

PROBLEM

You have a printer that needs some maintenance work. You have to stop jobs that have

been submitted from printing but still allow new jobs to be submitted and queued

until the printer is ready.

SOLUTION

The following listing demonstrates a solution to this problem.

function set-printer {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [string]$printer,

 [parameter(ParameterSetName="Pause")]
 [switch]$pause,

 [parameter(ParameterSetName="Resume")]
 [switch]$resume,

 [parameter(ParameterSetName="Cancel")]
 [switch]$cancelall

)
PROCESS {
$device = Get-WmiObject -Class Win32_Printer `
-ComputerName $computername -Filter "Name='$printer'"

 switch ($psCmdlet.ParameterSetName) {
 Pause {$device | Invoke-WmiMethod -Name Pause}
 Resume {$device | Invoke-WmiMethod -Name Resume }
 Cancel {$device | Invoke-WmiMethod -Name CancelAllJobs }
 }

}
}

The computer and printer parameters are joined by three switches that pause print-

ing, resume printing, or cancel all print jobs. The printer object is put into the

$device variable, which, depending on the parameter set being used, is piped into an

instance of Invoke-WmiMethod that calls the correct method to perform the task.

DISCUSSION

The function is used like this (assuming it has already been loaded):

set-printer -printer "HP DeskJet 812C" -cancelall

If a printer isn’t supplied, an error is thrown. Error checking similar to that per-

formed in listing 10.8 could be added to the function.

Listing 10.9 Pause and resume printer

287TECHNIQUE 73 Renaming a printer

 The final management task we need to consider in this chapter is renaming a

printer.

 Renaming a printer

Renaming a printer isn’t a task that you’ll need to perform every day, but it does become

useful when you’re changing the way you do things in the organization. Another poten-

tial reason for changing printer names is that you have to change the printer.

PROBLEM

A printer has been changed, and you need to rename it to match user expectations

and your organization’s naming standards. You can also reduce the level of help desk

calls if the users are able to find printers themselves.

SOLUTION

It would be possible to send instructions to the users so they could perform this task

themselves, but that would potentially introduce another source of error into the envi-

ronment. Instead, you can use the Win32_Printer class to solve this problem as shown

in the following listing.

function rename-printer {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [string]$printer,
 [string]$newname
)
PROCESS {
Get-WmiObject -Class Win32_Printer `
-ComputerName $computername -Filter "Name='$printer'" |
Invoke-WmiMethod -Name RenamePrinter -ArgumentList $newname

}}

Three parameters are required by the rename-printer function, namely computer

name, printer, and its new name. The WMI object representing the printer is retrieved

using Get-WmiObject. The object’s RenamePrinter method is called by piping the

printer object into Invoke-WmiMethod.

DISCUSSION

The function is used in this way:

rename-printer -printer fax -newname test21

Neither parameter checking nor error recovery has been included in the function.

There are sufficient examples in the other listings in the chapter to illustrate how this

could be achieved.

 This concludes our use of WMI to manage printers.

Listing 10.10 Rename a printer

TECHNIQUE 73

288 CHAPTER 10 Printers

10.4 Summary

Printers may be viewed as a necessary evil, but until the day of the paperless office

really arrives they’re something you have to live with and manage. WMI is an excellent

tool for discovering information about your computing and printing environment.

 The functions in this chapter supply the capability of remotely managing printers

across your organization but are customizable to meet your exact requirements. With

them, you’re able to

■ Discover printers and their configuration

■ Test printer capabilities and status

■ Discover existing print jobs

■ Find printer ports and drivers

You can also use PowerShell and WMI to actively manage your printers by

■ Setting the default printer

■ Printing a test page

■ Controlling printers and print jobs

■ Renaming printers

Being able to perform these tasks in a more efficient manner won’t change your view

of printers, but it will make life easier when you have to manage them.

 In chapter 11 we’ll look at networking and you’ll see how PowerShell and WMI

enable you to manage network cards across the environment.

289

Configuring
 network adapters

Networking is the glue that holds your infrastructure together. If the network isn’t

working or configured correctly the users can’t connect to the applications and you

can’t administer the systems. Your primary concern is the configuration of the net-

work adapters in your servers. This chapter presents a number of techniques you

can use to test the configuration and configure the network adapters.

NOTE The WMI networking classes, and especially their methods, dis-
cussed in this chapter only work with IPv4. As of Windows 7 and Windows
Server 2008 R2, WMI isn’t able to configure IPv6 settings.

This chapter covers

■ Network adapters, configuration, and protocols

■ Managing network adapters

■ Configuring DHCP and static addresses

■ Managing entries for DNS and WINS servers

■ Displaying the IPv4 routing table

290 CHAPTER 11 Configuring network adapters

Table 11.1 presents the WMI classes that you can use to work with network adapters.

You’ll be using many of them in this chapter. The Win32_NetworkAdapter and

Win32_NetworkAdapterConfiguration classes can cause some confusion. The first

one deals with the physical adapter and the second with the configuration of

the device.

NOTE Win32_NetworkConnection doesn’t seem to work on Windows 7 SP1. It
does work on Windows Server 2008 R2.

This chapter begins with a section that explains how you can discover information

about the network adapters in your systems. We’ll look at techniques to discover the

physical adapters and their configuration and then consider the network protocols

associated with an adapter. The section closes with a look at the connections mapped

from a machine.

 The second section shows how you can configure a computer’s adapters. This

includes enabling, disabling, and renaming the adapters. Once you have the network

adapters enabled, you need to configure the IP addresses.

 The third section illustrates how you can configure the adapters to accept

addresses from DHCP or to have static addresses set for the adapter. You need to be

able to view the DHCP configuration and control the lease. If a static address is set it’s

important that you set a default gateway as well.

 In the fourth section of the chapter, we’ll look at setting the Domain Name System

(DNS) and Windows Internet Name Service (WINS) servers your systems will use, and

you’ll see how to display the routing table.

 Regardless of what you’re doing you need to be able to discover the network adapt-

ers in your systems before you can work with them.

Table 11.1 WMI networking-related classes

Class Use

Win32_NetworkAdapter Works with physical adapters

Win32_NetworkAdapterConfiguration Works with adapter settings

Win32_NetworkAdapterSetting Associates Win32_NetworkAdapter and

Win32_NetworkAdapterConfiguration

Win32_NetworkConnection Displays information about the active network con-

nections on a Windows system

Win32_NetworkProtocol Displays the network protocols and their characteris-

tics associated with an adapter

Win32_NetworkClient Displays information regarding the network client

software installed on the system

Win32_IP4RouteTable Displays information about IP routing from the system

291TECHNIQUE 74 Identifying network adapters

11.1 Discovering network adapters

Network adapters are the physical devices you rely on to link your computers to the

network. In this section, we’ll start by looking at how you can discover the physical net-

work adapters that are installed in your system. Those adapters have a configuration

that you need to be able to access to determine if their settings are correct. Discover-

ing the adapter configuration is the second task you’ll learn to perform.

 Network protocols are used to perform the communication between systems, and

communication can break down if the protocols associated with an adapter aren’t

configured correctly. This section’s third technique demonstrates how protocols can

be related to a network adapter.

 Computers can have connections defined that enable access to resources on other

machines. These connections may be critical to the continued performance of your

applications and need to be checked. This section closes by examining the connec-

tions a machine makes and, where appropriate, discovering information about the

remote disk accessed through that connection.

 Until you’ve determined what network adapters are installed in your system you

can’t do anything else.

 Identifying network adapters

Network adapters (also known as network interface cards or NICs) are the starting point

for our discussion. They’re also the foundation for administering network-related

issues. There are a number of different types of adapters—the laptop I’m using to

write this has these adapters:

■ 1 wireless adapter

■ 1 Ethernet adapter

■ 1 Bluetooth adapter

■ 3 Microsoft ISATAP adapters (provides ability to transmit IPv6 on IPv4 networks)

■ 1 RAS async adapter

■ 1 Teredo tunneling adapter

■ 8 WAN miniport adapters

That’s a lot of adapters, and many of them won’t be used the majority of the time. You

need to be able to determine which adapters are carrying useful traffic on your systems.

PROBLEM

You need to identify the network adapters in your system so that you can determine

which ones are carrying the traffic to your applications. This will also enable you to

identify the adapters with which you’ll be working.

SOLUTION

Using table 11.1 or Get-WmiObject -List *network*, you can determine that the

Win32_NetworkAdapter class will satisfy your needs. The following listing shows how

you can use this class in a PowerShell function.

TECHNIQUE 74

292 CHAPTER 11 Configuring network adapters

function get-nic {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [int]$device
)
PROCESS {
if ($device) {
 $nics = Get-WmiObject -Class Win32_NetWorkAdapter `
 -ComputerName $computername -Filter "DeviceID='$device'"
}
else {
 $nics = Get-WmiObject -Class Win32_NetWorkAdapter `
 -ComputerName $computername
}
 $nics | select NetConnectionID, Name, DeviceID,
 AdapterType, AutoSense, GUID, Index, Installed,
 InterfaceIndex, MACAddress, Manufacturer, MaxSpeed,
 NetConnectionStatus, NetEnabled, PhysicalAdapter,
 ProductName, ServiceName, Speed
}}

The usual computer name parameter is used so you can access remote machines, and

it’s joined by a -device parameter. This takes an integer value that’s the DeviceId of a

particular adapter.

NOTE Most if not all of the functions in the remaining part of the book will
have a -computername parameter. It will be shown in the code but not neces-
sarily mentioned in the text to avoid repetition.

Get-WmiObject is used with the Win32_NetworkAdapter class to return data on all

adapters or a single adapter to a variable called $nics. Whether it returns data for one

or all adapters is controlled by the use of the -device parameter. The contents of the

$nics variable are piped into Select-Object, where the required properties are

selected. These are then displayed by the PowerShell engine.

DISCUSSION

A Selected.System.Management.ManagementObject type is output by the function.

This means that you can use your function as the start of a pipeline. If you only wanted

to see information on physical adapters, you could use this snippet:

get-nic | where{$_.PhysicalAdapter}

This would include the wireless and Ethernet adapters but exclude the WAN miniport

adapters if applied to the list of adapters on my laptop.

 There are a number of properties that could be used to identify a network adapter,

including the following:

Listing 11.1 Listing network adapters

293TECHNIQUE 74 Identifying network adapters

■ NetConnectionID

■ DeviceId

■ GUID

■ MACAddress

■ ProductName

So why use the DeviceId? Because it’s the key parameter for the class. In a number of

techniques earlier in the book, I mentioned looking at the Path property to deter-

mine the property you can use to test for WMI associations. In the case of a network

adapter you’d get something like this:

\\RSLAPTOP01\root\cimv2:Win32_NetworkAdapter.DeviceID="11"

You can also get the key property by using the following function (which I borrowed

from the PowerShell Team blog—I promise to give it back when I’ve finished with it):

function Get-WmiKey
{
 $class = [wmiclass]$args[0]
 $class.Properties |
 Select @{Name="PName";Expression={$_.name}} -Expand Qualifiers |
 Where {$_.Name -eq "key"} | foreach {$_.Pname}
}

The get-nic function can be used to return the Name and DeviceId of all adapters in

a machine, as shown in figure 11.1.

 The physical configuration of the network adapter is only half the story. You also

need data about the IP address and other items that relate to actual communication

through the adapter.

Figure 11.1 Using

the get-nic function

to discover network

adapter DeviceIDs

294 CHAPTER 11 Configuring network adapters

 Discovering adapter configurations

The network adapters for your system have been located using listing 11.1. Unfortu-

nately, the Win32_NetworkAdapter class doesn’t supply IP addressing information,

which is an essential item if you’re to administer your servers.

PROBLEM

Users are reporting issues communicating with a particular server. The network

adapter appears to be functioning, but you need to check that the IP addressing is

configured correctly.

SOLUTION

The following listing shows how this problem can be solved. The code is similar to list-

ing 11.1, with the main difference being the use of the Win32_NetworkAdapter-

Configuration class.

$nbstatus = DATA {
ConvertFrom-StringData -StringData @'
0 = EnableNetbiosViaDhcp
1 = EnableNetbios
2 = DisableNetbios
'@
}

function get-nicsetting {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [int]$index
)
PROCESS {
if ($index) {
 $nics = Get-WmiObject -Class Win32_NetWorkAdapterConfiguration `
 -ComputerName $computername -Filter "Index='$index'"
}
else {
 $nics = Get-WmiObject -Class Win32_NetWorkAdapterConfiguration `
 -ComputerName $computername
}

 $nics | select ServiceName, Description, Index,
 DHCPEnabled, DHCPServer,
 @{N="DHCPLeaseStart"; E={$_.ConvertToDateTime($_.DHCPLeaseObtained)}},
 @{N="DHCPLeaseEnd"; E={$_.ConvertToDateTime($_.DHCPLeaseExpires)}},
 IPEnabled, IPAddress, IPSubnet, DefaultIPGateway,
 IPConnectionMetric, IPFilterSecurityEnabled,
 DNSDomain, DNSDomainSuffixSearchOrder, DNSEnabledForWINSResolution,
 DNSHostName, DNSServerSearchOrder, DomainDNSRegistrationEnabled,
 FullDNSRegistrationEnabled, WINSEnableLMHostsLookup,
 WINSHostLookupFile, WINSPrimaryServer, WINSScopeID,

Listing 11.2 Display the network adapter configuration

TECHNIQUE 75

295TECHNIQUE 75 Discovering adapter configurations

 WINSSecondaryServer, DatabasePath, DeadGWDetectEnabled,
 DefaultTOS, DefaultTTL, ForwardBufferMemory, GatewayCostMetric,
 IGMPLevel, InterfaceIndex, IPPortSecurityEnabled,
 IPSecPermitIPProtocols, IPSecPermitTCPPorts, IPSecPermitUDPPorts,
 IPUseZeroBroadcast, KeepAliveInterval, KeepAliveTime, MACAddress,
 MTU, NumForwardPackets, PMTUBHDetectEnabled, PMTUDiscoveryEnabled,
 SettingID,
 @{N="NetBIOSOption"; E={$nbstatus["$($_.TcpipNetbiosOptions)"]}},
 TcpMaxConnectRetransmissions, TcpMaxDataRetransmissions,
 TcpNumConnections, TcpUseRFC1122UrgentPointer,
 TcpWindowSize
}}

}

A hash table is defined to enable the lookup of the TCPIPNetBios setting value. This

function uses -index as the parameter, instead of -device as in listing 11.1. Index is the

key value for the Win32_NetworkAdapterConfiguration class, which can be confusing

because it takes the same numeric value as the Win32_NetworkAdapter DeviceId prop-

erty when referring to the same adapter. This can be illustrated on your system by run-

ning this code.

Get-WmiObject -Class Win32_NetworkAdapterSetting |
Format-Table Element, Setting -AutoSize

TIP I recommend running the previous code using PowerShell ISE rather
than a PowerShell console as the output is rather wide.

By default, information is returned on all adapters in the system unless the -index

parameter is used. This parameter takes an integer value as input. The resultant infor-

mation, held in the $nics variable, is piped into Select-Object. A number of calcu-

lated fields are defined. Two convert the start and end dates of the DHCP lease from

WMI format to a more readable format. The third calculated field resolves the TCPIP-

NetBIOS property from its integer value to an understandable description.

DISCUSSION

The script may look ugly with the large set of properties in the Select-Object, but if you

compare it to the information put out by the WMI class you’ll see that the function is fil-

tering out a lot of nonessential or empty properties. A lot of the information presented

by the get-nicsetting function will be very familiar if you’ve used ipconfig.exe. The

function could just as easily have been called get-ipconfig!

NOTE The IPX protocol settings have been deliberately excluded. If you
require them, please check the WMI documentation for details and add the
properties into the function.

There is a WMI association between the Win32_NetworkAdapter and

Win32_NetworkAdapterConfiguration classes:

Get-WmiObject -Query "ASSOCIATORS OF

 ➥ {Win32_NetworkAdapter.DeviceID=7} WHERE

 ➥ ResultClass=Win32_NetworkAdapterConfiguration"

296 CHAPTER 11 Configuring network adapters

Alternatively, the two functions in listings 11.1 and 11.2 could be used like this:

7,11 | foreach {get-nic -device $_; get-nicsetting -index $_}

The preceding line of code will display the adapter information and the configuration

information for network adapters whose DeviceId is 7 or 11.

 You could even use these functions in other PowerShell functions, like this:

function get-ipconfig {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [int]$device
)
PROCESS{
 get-nic -computername $computername -device $device
 get-nicsetting -computername $computername -index $device
}}

NOTE This function is available in the code download. See get-ipconfig.ps1.

The physical and IP addressing configuration information needs to be supplemented

by the protocols bound to the individual adapters.

 Listing an adapter’s network protocols

You’re mainly interested in the TCP/IP protocol suite being available on the Ethernet

adapters for the servers in your enterprise environment. Other protocols may be of

interest at the workstation level.

 The network protocols are associated to adapters by WMI as can be shown by test-

ing an individual adapter:

gwmi -Query "ASSOCIATORS OF {Win32_NetworkAdapter.DeviceId=7}

 ➥ WHERE ClassDefsOnly"

When you look at the Win32_NetworkProtocol class, you’ll see that there isn’t a prop-

erty such as DeviceId or Index that enables you to identify the adapter to which the

protocol is bound. You need to approach the problem in a slightly different way.

PROBLEM

The network protocols bound to your adapters need to be checked to ensure that the

required protocols are available and that they’re configured correctly.

SOLUTION

The following listing builds on what you know about network adapters and uses WMI

associations to link the protocols to the adapter.

TECHNIQUE 76

297TECHNIQUE 76 Listing an adapter’s network protocols

function get-protocol {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject -Class Win32_NetWorkAdapter `
 -ComputerName $computername | sort DeviceId |
 foreach {
 "$($_.NetConnectionID) - $($_.Name)"

 Get-WmiObject -ComputerName $computername -Query

 ➥ "ASSOCIATORS OF

 ➥ {Win32_NetworkAdapter.DeviceId=$($_.DeviceId)}

 ➥ WHERE Resultclass=Win32_NetworkProtocol" |
 select Name, ConnectionlessService, Description,
 GuaranteesDelivery, GuaranteesSequencing,
 MaximumAddressSize, MaximumMessageSize,
 MessageOriented, MinimumAddressSize,
 PseudoStreamOriented, Status,
 SupportsBroadcasting, SupportsConnectData,
 SupportsDisconnectData, SupportsEncryption,
 SupportsExpeditedData, SupportsFragmentation,
 SupportsGracefulClosing, SupportsGuaranteedBandwidth,
 SupportsMulticasting, SupportsQualityofService,
 @{N="InstallDate"; E={$($_.ConvertToDateTime($_.InstallDate))}}
}
}}

You use Get-WmiObject twice in this function. The first time you retrieve the net-

work adapters in a computer using Win32_NetworkAdapter. The results are sorted by

DeviceId and then piped into ForEach-Object. String substitution is used to display

the network connection (the connection name in Windows) and the adapter name.

 The second call to Get-WmiObject uses an association query to determine the

instances of Win32_NetworkProtocol associated with the particular adapter. The

results are piped through Select-Object to filter the display to show the properties of

interest and to convert the protocols’ installation date to a readable format.

DISCUSSION

This function could be modified to take a network adapter’s DeviceId as a parame-

ter. This would enable checks to be made on single adapters if required. The other

potential modification would be to add some of the network adapter’s properties to

the protocol object using Add-Member. This would then output a single object for fur-

ther analysis.

 Network adapters, adapter configurations, and protocols define how communica-

tions take place. You need to create explicit network connections between systems to

facilitate the functioning of particular applications.

Listing 11.3 List an adapter’s associated protocols

298 CHAPTER 11 Configuring network adapters

 Listing network connections

The connections between your servers would look like a ball of spaghetti if you traced

them. No, I’m not talking about the network cables! There are various mappings

made between systems to enable applications to work. These connections are often

made when an application is installed and then forgotten about. Do you know all the

network mappings made from your servers?

PROBLEM

You need to move an application to a new server. It has become so popular that usage

has exceeded the original assumptions and the current hardware is proving to be

insufficient. There are some connections between the server and other systems that

need to be analyzed so that they can be reproduced on the new server.

SOLUTION

The get-networkconnection function in listing 11.4 looks a little different from pre-

vious functions. After the param block, there are three script blocks:

■ Begin

■ Process

■ End

When Begin, Process, and End blocks aren’t defined, the code is treated as an End

block.

function get-networkconnection {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
BEGIN {$data = @()}

PROCESS {
 Get-WmiObject -Class Win32_NetWorkConnection `
 -ComputerName $computername | foreach {

 $connection = New-Object -TypeName PsObject `
 -Property @{
 Local = $_.LocalName
 Remote = $_.RemoteName
 Type = $_.ConnectionType
 Description = $_.Description
 Display = $_.DisplayType
 Provider = $_.ProviderName
 Resource = $_.ResourceType
 User = $_.Username
 DiskSize = 0
 FreeSpace = 0
 }

Listing 11.4 List the network connections from a machine

TECHNIQUE 77

299TECHNIQUE 77 Listing network connections

 if ($_.ResourceType -eq "Disk"){
 $disk = Get-WmiObject -Class Win32_MappedLogicalDisk `
 -ComputerName $computername -Filter "DeviceId='$($_.LocalName)'"

 $connection.Disksize = [math]::round($($disk.Size / 1GB), 3)
 $connection.FreeSpace = [math]::round($($disk.FreeSpace / 1GB), 3)
 }

 $data += $connection
 }
}

END {$data}
}

The Begin block is executed once, and only once, when the first object on the pipe-

line enters the function. If there are multiple instances of the function on the pipe-

line, the Begin block will execute once for each instance of the function as the objects

on the pipeline reach that instance. In this case, the Begin block initializes an array

that will be used to accumulate your results.

 The Process block executes once for each object on the pipeline that enters the

function. This function’s Process block retrieves the network connections using the

Win32_NetworkConnection class. The results are piped into ForEach-Object. A new

PowerShell object is created and the properties are set using the information in the

WMI object on the pipeline ($_). The DiskSize and FreeSpace properties are set to 0.

 The WMI object’s ResourceType parameter is tested to determine whether you’re

dealing with a disk connection (the other connection type that may be of interest is

print). The Win32_MappedLogicalDisk class is used to return information on the

remote disk. The DiskSize and FreeSpace properties on your connection object are

populated after the results have been converted to gigabytes.

 The last act of the Process block is to add the connection object you created into

the array. Remember that in PowerShell everything is an object, so arrays can happily

contain objects.

 When the last object on the pipeline has been processed, the End block is exe-

cuted once. The data in the array is pushed onto the pipeline, where the default dis-

play processes take over and display the data.

DISCUSSION

The function accepts computer names on the pipeline, so it can be used like this:

"server02", "10.10.54.201" | get-networkconnection

One extension to the function would be to use the functionality developed in chap-

ter 10 to add information about whether the connection is to a printer. Extra

properties would need to be added to the object in $connection to accommodate

this information.

 You’ve now gathered information on your adapters and their configuration. In the

next section, we’ll look at configuring the adapters.

300 CHAPTER 11 Configuring network adapters

11.2 Configuring network adapters

Most of the network adapter configuration activity will be around IP addresses and the

related properties, which we’ll look at in the next section. In this section, we’ll look at

configuring the adapters themselves.

 You can work directly with the adapters to enable or disable them. These two tech-

niques are presented separately to give a little more safety in their use. The whole

function has to be called, rather than choosing a switch on a single function.

WARNING The WMI methods presented in this chapter don’t have a safety net
like PowerShell cmdlets. There are no -WhatIf or -Confirm parameters.

The other task you can perform is renaming the adapter. We’ll refer back to this tech-

nique in chapters 13 and 16.

 First up is enabling an adapter.

 Enabling network adapters

Network adapters are no use to you if you can’t get network traffic through them. You

need to ensure that your adapters are enabled. Disabled adapters can be discovered

using listing 11.1.

get-nic | where {!$_.NetEnabled}

If all of the network adapters are disabled, you’ll need to issue this command when

physically logged on to the server.

PROBLEM

Communication has been broken with the server because the network adapter has

been disabled while you performed some maintenance on the server. You have to

enable the adapter so that users can reconnect to their applications.

SOLUTION

The enable-connection function in the following listing has parameters that will

identify a network adapter by device (DeviceId) or connection (NetConnectionid).

These are kept mutually exclusive by being in different parameter sets.

function enable-connection {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [parameter(ParameterSetName="Device")]
 [int]$device,

 [parameter(ParameterSetName="Connection")]
 [string]$NetConnectionID

)

Listing 11.5 Enable a network adapter

TECHNIQUE 78

301TECHNIQUE 79 Disabling network adapters

PROCESS {
 switch ($psCmdlet.ParameterSetName) {
 Device {$filt = "DeviceID=$device"}
 Connection {$filt = "NetConnectionID='$NetConnectionID'"}
 }

Get-WmiObject -Class Win32_NetWorkAdapter `
-ComputerName $computername -Filter $filt |
Invoke-WmiMethod -Name Enable

}}

A Switch statement is used to create a WMI filter. The filter is used with

Win32_NetworkAdapter to select the adapter you want to enable. Invoke-WmiMethod

accepts the WMI object and calls the Enable method. A return code of 0 indicates success.

DISCUSSION

The following two examples show how you can use the function with either a device

identity (first) or a connection (second):

enable-connection -computer win7 -device 11
enable-connection -computer win7 -NetConnectionID "VWireless"

How did your adapter become disabled in the first place? That’s answered in the next

technique.

 Disabling network adapters

Disabling a network adapter may seem like an odd thing to do, but there are times

when it becomes necessary, such as when you’re doing the following:

■ Performing maintenance on an application

■ Investigating a problem

■ Updating the Active Directory schema

The disablement in these cases is expected to be a temporary measure. There are also

times when an almost permanent disabling of the adapter is required.

PROBLEM

You have two adapters in all of the virtual machines in a test environment. The first is

an Ethernet adapter that enables normal communication. The second is a link to the

wireless adapter in the host that enables Internet access for activation and so on. You

want this wireless link to be disabled.

SOLUTION

You can adapt listing 11.5 to provide a way of disabling network adapters. The func-

tion shown in the following listing differs in the method that’s called.

function disable-connection {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,

Listing 11.6 Disable a network adapter

TECHNIQUE 79

302 CHAPTER 11 Configuring network adapters

 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [parameter(ParameterSetName="Device")]
 [int]$device,

 [parameter(ParameterSetName="Connection")]
 [string]$NetConnectionID

)
PROCESS {
 switch ($psCmdlet.ParameterSetName) {
 Device {$filt = "DeviceID=$device"}
 Connection {$filt = "NetConnectionID='$NetConnectionID'"}
 }

Get-WmiObject -Class Win32_NetWorkAdapter `
-ComputerName $computername -Filter $filt |
Invoke-WmiMethod -Name Disable

}}

The network adapter’s WMI object is retrieved using the appropriate filter based on

the parameter choice. This object is then piped into Invoke-WmiMethod, where the

Disable method is called.

DISCUSSION

The function can be used with either a device identifier or the network connection

identifier, as shown in these two examples:

disable-connection -computer win7 -device 11
disable-connection -computer win7 -NetConnectionID "VWireless"

WARNING Be careful not to disable the network adapter you’re connecting
through. You’ll need to visit the machine to re-enable it.

When you add network adapters, especially in a virtual environment, they’re given

names that don’t help you in distinguishing them. You need to be able to change the

name given to the adapter.

 Renaming network adapters

There are a number of situations in which you may want to rename network adapters:

■ In clusters, where you want to differentiate the public and private networks

■ In virtual environments, where your adapters are called “Local Area Connec-

tion n” (where n is a digit)

■ In a server that has connections to multiple networks (multihomed server),

such as where public and management networks exist

As you’ll see in chapter 13, you want to be able to do this as part of a server setup routine.

PROBLEM

A new server has been commissioned with multiple network adapters. The adapters

have to be renamed to differentiate their purposes.

TECHNIQUE 80

303TECHNIQUE 80 Renaming network adapters

SOLUTION

There isn’t a method to perform the renaming, but you can change the value of a

property to perform this action, as shown in the following listing.

function rename-connection {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [parameter(ParameterSetName="Device")]
 [int]$device,

 [parameter(ParameterSetName="Connection")]
 [string]$NetConnectionID,

 [parameter(Mandatory=$true)]
 [string]$newname
)
PROCESS {
 switch ($psCmdlet.ParameterSetName) {
 Device {$filt = "DeviceID=$device"}
 Connection {$filt = "NetConnectionID='$NetConnectionID'"}
 }

Get-WmiObject -Class Win32_NetWorkAdapter `
-ComputerName $computername -Filter $filt |
Set-WmiInstance -Arguments @{NetConnectionID=$newname}

}}

The adapter to be renamed is identified by the device identifier or the current name

(NetConnectionId). The new name is a mandatory parameter, so you’ll be

prompted for it if you forget. A Switch statement is used to create a WMI filter from

the input parameters.

Get-WmiObject pipes the object representing the adapter to Set-WmiInstance.

The adapter’s new name is used in a hash table as the value, and the property name

you’re changing—NetConnectionId—is the key. Set-WmiInstance uses the hash table

as input to its Arguments parameter and makes the change.

DISCUSSION

It’s possible to perform multiple changes with one call of Set-WmiInstance by provid-

ing the required number of key-value pairs in the hash table. In this case you only

need the one pair.

 The function is used as follows:

rename-connection -computer win7 `
-NetConnectionID "Local Area connection 2" -newname "VWireless"

The new name will be prompted for, even if you run the function in ISE or another

editor environment instead of from the console.

Listing 11.7 Rename a network adapter

304 CHAPTER 11 Configuring network adapters

 Your adapters are now enabled and named. The next step is to set the IP address

information so that users can communicate with the server.

11.3 Enabling and setting network addresses

Networks identify computers so that they can communicate (that’s a gross simplifica-

tion, but it’s sufficient for this book). Addresses can be supplied automatically by

Dynamic Host Configuration Protocol (DHCP) or you can manually set a static

address, which is the preferred solution for servers.

 Enabling DHCP is a quick way to clear the old address from an adapter. The first

technique in this section shows how to perform this task. If your system should use

DHCP you need to be able to view the DHCP configuration, which you’ll learn to do in

the second technique. This is followed by a method you can use to control DHCP

leases through WMI. No more ipconfig.exe for you!

NOTE One of the major pieces of functionality missing from WMI and Power-
Shell is the ability to manage DHCP servers. This is addressed in Windows
Server 8.

The alternative to DHCP is to set a static address, which means that the other proper-

ties also have to be set manually. This section also covers techniques to set a static IP

address and other properties, such as the default gateway. You’ll have to dip into using

regular expressions for these techniques but it’s relatively painless.

DHCP is simpler to configure, which makes it the ideal place to start.

 Enabling DHCP

Life used to be simple. We used static addresses for servers and DHCP for client

machines. The rules have changed a bit with Windows Server 2008, where using DHCP

for servers isn’t so bad. You can even use them in cluster scenarios.

IP addresses and related settings are configured using the

Win32_NetworkAdapterConfiguration class. This is an important point to remember

and can save lots of frustration when scripts don’t work because you’re using

Win32_NetworkAdapter!

PROBLEM

You need to change the configuration on a network adapter to use DHCP addresses

rather than a static address.

SOLUTION

The enable-dhcp function in the following listing solves this problem.

function enable-dhcp {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]

Listing 11.8 Enable DHCP on an adapter

TECHNIQUE 81

305TECHNIQUE 82 Displaying DHCP configuration

 [string]$computername="$env:COMPUTERNAME",
 [int]$index

)
PROCESS {
 Get-WmiObject -Class Win32_NetWorkAdapterConfiguration `
 -ComputerName $computername -Filter "Index=$index" |
 Invoke-WmiMethod -Name EnableDHCP

}}

The -index parameter is used to identify the adapter you want to configure.

Win32_NetworkAdapter uses DeviceID and Win32_NetworkAdapterConfiguration

uses Index. They both have the same numeric value for a given adapter.

Get-WmiObject pipes the adapter’s object to Invoke-WmiMethod, which calls the

object’s EnableDHCP method.

DISCUSSION

In some cases you may find that not all manually configured settings are removed

when DHCP is enabled. If the DHCP scope doesn’t set DNS servers they’ll retain the

static settings.

 You may want to extend this function by using the SetTCPIPNetBIOS method with

an argument of 0 to control the setting through DHCP. See technique 85 for the

details of using the method.

 When DHCP is enabled there are a number of configuration settings you may want

to investigate.

 Displaying DHCP configuration

How can you test that an adapter is configured for DHCP? This code snippet shows

how:

Get-WmiObject Win32_NetworkAdapterConfiguration `
-ComputerName win7 | where {$_.DHCPEnabled}

When troubleshooting, you may want to test the DHCP configuration of a system.

PROBLEM

Users are reporting that they can’t connect to a server. You’ve discovered that the net-

work adapter is configured to use DHCP. You need to display the DHCP configuration.

SOLUTION

Listing 11.2 could be used to perform this task, but it examines all adapters and pro-

duces a lot of information you don’t need at this point. The following listing produces

just the output you need.

function get-dhcpsetting {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,

Listing 11.9 Display DHCP configuration

TECHNIQUE 82

306 CHAPTER 11 Configuring network adapters

 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject -Class Win32_NetWorkAdapterConfiguration `
 -ComputerName $computername -Filter "DHCPEnabled='$true'" |
 select ServiceName, Description, Index,
 DHCPEnabled, DHCPServer,
 IPAddress, IPSubnet,
 @{N="DHCPLeaseStart"; E={$_.ConvertToDateTime($_.DHCPLeaseObtained)}},
 @{N="DHCPLeaseEnd"; E={$_.ConvertToDateTime($_.DHCPLeaseExpires)}}
}}

You apply a filter of "DHCPEnabled='$true'" to the Win32_NetworkAdapter-

Configuration class. This will only return information for those adapters that have

DHCP enabled. Filtering data at the remote system speeds up your processing by

reducing the data that’s returned.

 The Select-Object cmdlet then filters the properties you want to see. The DHCP

lease start and end times are converted to a readable format. An example of the out-

put from this function is shown in the discussion of technique 83.

DISCUSSION

If the adapter is configured for DHCP and an address of the form 169.254.x.x is

returned, this means your server couldn’t communicate with the DHCP server. The IP

address and subnet should be checked to ensure that the adapter has been assigned

an address from the correct scope.

DHCP leases don’t last forever (usually), and it may be necessary to control the leases.

 Controlling DHCP leases

IT administrators learn to use ipconfig.exe to release and renew DHCP leases. This is

great for the local machine, but doesn’t work remotely.

PROBLEM

You need to be able to control DHCP leases on local and remote systems. This could

involve releasing a DHCP lease when you want to put a static address on an adapter, or

it may require you to force the renewal of a lease.

SOLUTION

Listing 11.10 provides a solution for this problem. The network adapter you need to

work with is identified by the -index parameter. Two switch parameters are used to

determine whether you are releasing or renewing a lease. They’re in different param-

eter sets, so the release and renew choices are mutually exclusive.

function set-dhcp {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]

Listing 11.10 Release or renew DHCP lease

TECHNIQUE 83

307TECHNIQUE 84 Setting an IP address

 [string]$computername="$env:COMPUTERNAME",
 [int]$index,

 [parameter(ParameterSetName="Release")]
 [switch]$release,

 [parameter(ParameterSetName="Renew")]
 [switch]$renew

)
PROCESS {
 $nic = Get-WmiObject -Class Win32_NetWorkAdapterConfiguration `
 -ComputerName $computername -Filter "Index=$index"

 switch ($psCmdlet.ParameterSetName) {
 Release {$nic | Invoke-WmiMethod -Name ReleaseDHCPLease}
 Renew {$nic | Invoke-WmiMethod -Name RenewDHCPLease}
 }
}}

The Win32_NetworkAdapterConfiguration object is stored in the $nic variable. A

Switch statement based on the parameter set name is used to determine whether

you’re releasing or renewing. $nic is piped to Invoke-WmiMethod, which calls the

appropriate method to perform the desired action.

DISCUSSION

After releasing a DHCP lease you can test the results using the get-dhcpsetting func-

tion from technique 82:

PS> get-dhcpsetting -computer win7

ServiceName : netvsc
Description : Microsoft Virtual Machine Bus Network Adapter #2
Index : 11
DHCPEnabled : True
DHCPServer : 255.255.255.255
IPAddress : {169.254.201.55, fe80::bc37:dcdf:70f7:c937}
IPSubnet : {255.255.0.0, 64}
DHCPLeaseStart : 14/03/2011 20:29:00
DHCPLeaseEnd : 15/03/2011 20:29:00

Notice the DHCPServer and IPAddress values. They indicate that DHCP is disabled

even though the lease start and end times appear valid.

 The alternative to using DHCP is to manually set a static IP address.

 Setting an IP address

A server will have its IP address set when it’s first created. Servers don’t normally

change their IP addresses. Very occasionally you may have to perform this task, and

when you do, you need to be able to perform the task remotely rather than visit the

hundreds or even thousands of servers in the estate.

PROBLEM

Your network team has decided that the IP addressing scheme needs to change due to

company growth requiring many more servers than originally thought. You need to be

able to change the IP addresses of your servers remotely.

TECHNIQUE 84

308 CHAPTER 11 Configuring network adapters

SOLUTION

You’ll be using the Win32_NetworkAdapterConfiguration class again to solve this

problem. The PowerShell function to perform this is supplied in the following listing.

function set-IPAddress {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [parameter(Mandatory=$true)]
 [int]$index,

 [parameter(Mandatory=$true)]
 [string]
 [ValidatePattern("\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b")]
 $ipaddress,

 [parameter(Mandatory=$true)]
 [string]
 [ValidatePattern("\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b")]
 $subnet
)
PROCESS {
$nic = Get-WmiObject -Class Win32_NetWorkAdapterConfiguration `
-ComputerName $computername -Filter "Index=$index" -EnableAllPrivileges
$nic.EnableStatic($ipaddress, $subnet)

}}

The first point to note about the parameters is that all but the -computer are

mandatory. You can’t set the address if the new address isn’t supplied. You could

have left the subnet as non-mandatory but it’s better to think about both together to

ensure consistency.

 The second point is that you’re using the ValidatePattern advanced parameter

with the -ipaddress and -subnet parameters. This uses a regular expression to vali-

date the input. If you aren’t a regular expression expert (I don’t like them myself), the

regular expression breaks down as follows:

■ Four groups of 1–3 digits

■ A dot separator

■ \b to indicate that the first and last matches must occur on the boundaries of

the string

NOTE Thanks to PowerShell MVP Tobias Weltner for the regular expression.

The WMI object representing the network adapter configuration is put into the $nic

variable. The EnableStatic method is called on the object with the IP address and

subnet as parameters.

Listing 11.11 Set an IP address

309TECHNIQUE 85 Setting other properties

 I tried using Invoke-WMImethod, but it

failed to work with this method. There’s a

lot of discussion surrounding Invoke-

WmiMethod in the PowerShell community, as

we haven’t been able to completely under-

stand its quirks. There’s a bug that causes it

to fail sometimes with multiple parameters,

which is what I suspect was happening in

this situation.

DISCUSSION

The addresses you’re changing are the ones

shown in the IP address dialog box from the

IPv4 properties of a network adapter, as

shown in figure 11.2.

 The function can be used as follows:

set-IPAddress -computer win7 -index 13 `
-ipaddress "100.99.98.97" -subnet "255.255.255.0"

WARNING The regular expression can check that the string follows the cor-
rect pattern for an IP address. It can’t validate that a correct address is pre-
sented. If you used “700.99.98.97” in the previous example, it would pass
validation even though it isn’t a valid address.

There are a few other properties that you need to think about setting as well.

 Setting other properties

This technique could be combined with technique 86 and the techniques in section 11.4

if you want to create a super-script that enables you to set all of the IP address properties

in one go. The mandatory property would need to be removed from the input param-

eters unless you want to perform a lot of typing.

PROBLEM

The default gateway and the use of NetBIOS over TCP/IP need to be configured to

complete the settings on your network adapter.

SOLUTION

Listing 11.11 can be modified to produce Listing 11.12. This is a common technique

in administration scripting. Take something that works and modify it to perform

another similar task.

 In this case, the parameters supply the default gateway ($gateway), which is vali-

dated against a regular expression pattern and the value for tcpnetbios, which can

be 1 (Enable) or 2 (Disable).

TECHNIQUE 85

Figure 11.2 IPv4 Properties dialog box

310 CHAPTER 11 Configuring network adapters

function set-IPdetails {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [parameter(Mandatory=$true)]
 [int]$index,

 [parameter(Mandatory=$true)]
 [string]
 [ValidatePattern("\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b")]
 $gateway,

 [parameter(Mandatory=$true)]
 [int]
 $metric,

 [int]
 [ValidateRange(1,2)]
 $tcpnetbios
)
PROCESS {
$nic = Get-WmiObject -Class Win32_NetWorkAdapterConfiguration `
-ComputerName $computername -Filter "Index=$index"
$nic.SetGateways($gateway, $metric)
$nic.SetTcpipNetbios($tcpnetbios)

}}

$nic is the variable that holds the configuration object for your adapter. The Set-

Gateways method is called to set the default gateway and the SetTcpipNetbios

method is used to set NetBIOS over TCP/IP.

DISCUSSION

The default gateway needs to be configured correctly to ensure that the system can

communicate with machines on other subnets. Any organization with more than 200

computers is probably running on multiple subnets, which make it essential that you

get this setting correct.

 The remaining configuration items you need to consider are the addresses of the

DNS and WINS servers.

11.4 Configuring network services

The primary network services in a Windows environment are DNS and DHCP. You

can’t do anything about DHCP, but you can configure the DNS servers that will be

used, which is what you’ll do in the section’s first technique. Then you’ll configure

WINS in the second technique. WINS is an older name-resolution method that’s used

in many organizations with legacy applications.

Listing 11.12 Set default gateway and TCP/IP NetBIOS setting

311TECHNIQUE 86 Setting DNS servers

 A final check on the networking configuration can be supplied by looking at the IP

routing table to see which networks your system is connecting to and the routes it tries

to apply to reach those networks. The function to perform this is presented in the sec-

tion’s last technique.

 You can use WMI to configure DNS servers directly as discussed in chapter 9 of

PowerShell in Practice. On the client side, you need to configure the DNS servers your

systems will contact.

 Setting DNS servers

DNS is the name resolution method of choice for modern Windows environments.

You need to make sure the DNS and DHCP client services are running and that you’ve

configured the correct DNS servers in your network adapter’s properties.

PROBLEM

The DNS servers have changed due to an upgrade to your domain controllers (you’re

running integrated DNS). You need to modify the DNS server that your systems use.

SOLUTION

Workstations will usually have their DNS server settings controlled by DHCP. Servers

and those workstations with static addresses can be modified using the following list-

ing. The -index parameter identifies the network adapter whose properties you’ll

modify. The -dnsserver parameter takes an array of strings representing the IP

addresses of the DNS servers.

function set-DNSserver {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [parameter(Mandatory=$true)]
 [int]$index,

 [parameter(Mandatory=$true)]
 [string[]]
 [ValidatePattern("\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b")]
 $dnsserver
)
PROCESS {
$nic = Get-WmiObject -Class Win32_NetWorkAdapterConfiguration `
-ComputerName $computername -Filter "Index=$index"
$nic.SetDNSServerSearchOrder($dnsserver)

}}

The $nic variable holds the adapter configuration object. The object’s SetDNSServer-

SearchOrder method is used to set the DNS server list. The array of addresses must

hold one or more addresses.

Listing 11.13 Configure DNS server

TECHNIQUE 86

312 CHAPTER 11 Configuring network adapters

DISCUSSION

The SetDNSServerSearchOrder method can also be used to clear the DNS server settings:

Get-WmiObject Win32_NetworkAdapterConfiguration `
-ComputerName win7 -Filter "Index=13" |
Invoke-WmiMethod -Name SetDNSServerSearchOrder

Listing 11.8 could be modified to incorporate this code, because calling the Enable-

DHCP method clears the IP address, subnet, and default gateway. It doesn’t clear the

DNS servers.

 As stated earlier, WINS is an older name-resolution method, but you still need to

know how to configure the addresses of your WINS servers.

 Setting WINS servers

You can set a number of WINS servers if you use the IPv4 Properties dialog box, but

you’re limited to setting a primary and secondary WINS server if you use WMI. This

would normally be considered sufficient.

PROBLEM

You need to set the WINS servers that your server will access because it has to commu-

nicate with a legacy application that demands the presence of WINS.

SOLUTION

The set-WINSserver function presented in listing 11.14 will solve this problem for

you. The -winsprimary parameter uses the ValidatePattern advanced parameter to

check the address. You may not want to set a secondary WINS server, so that parameter

isn’t mandatory in this function.

function set-WINSserver {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [parameter(Mandatory=$true)]
 [int]$index,

 [parameter(Mandatory=$true)]
 [string]
 [ValidatePattern("\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b")]
 $winsprimary,

 [string]
 $winsseconndary
)
PROCESS {
if ($winsseconndary -and $winsseconndary -notmatch

"\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b") {
 throw "Invalid WINS Secondary address $winsseconndary"
}

Listing 11.14 Configure WINS server

TECHNIQUE 87

313TECHNIQUE 88 Displaying the routing table

$nic = Get-WmiObject -Class Win32_NetWorkAdapterConfiguration `
-ComputerName $computername -Filter "Index=$index"
$nic.SetWINSServer($winsprimary, $winsseconndary)

}}

If an address for a WINS secondary server is presented through the -winssecondary

parameter, you use a regular expression to test that a string of the correct pattern is

presented. The SetWINSServer method is used to set the addresses.

DISCUSSION

This function will accept one or two addresses, as shown in these examples:

set-WINSserver -computer win7 -index 13 -winsprimary "10.10.10.200"

set-WINSserver -computer win7 -index 13 `
-winsprimary "10.10.10.200" -winssecondary "10.10.89.51"

You can clear the WINS server settings like this:

Get-WmiObject Win32_NetworkAdapterConfiguration `
-ComputerName win7 -Filter "Index=13" |
Invoke-WmiMethod -Name SetWINSserver -ArgumentList "", ""

You use a string to define the original WINS server settings, and empty strings are used

to remove the WINS servers that are configured. Remember that an empty string,

defined as "", is different from a NULL value defined by $null.

 The last stop on our journey around networking is to look at the routing table.

 Displaying the routing table

The routing table shows how your server is communicating with the outside world. An

example is shown in figure 11.3 (in the following discussion). One point to note is

that WMI can’t provide information on IPv6 routing, at present.

PROBLEM

You need to examine the IP routing table to determine whether network connectivity

is configured correctly on your server.

SOLUTION

The following listing uses Win32_IP4RouteTable to solve this problem. The function

is presented as a single block of code, but it could be divided into Begin, Process, and

End blocks as in listing 11.4.

function get-routetable {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
BEGIN {

Listing 11.15 Display routing table

TECHNIQUE 88

314 CHAPTER 11 Configuring network adapters

$source=@"
public class WmiIPRoute
{
 public string Destination {get; set;}
 public string Mask {get; set;}
 public string NextHop {get; set;}
 public string Interface {get; set;}
 public int Metric {get; set;}
}
"@
Add-Type -TypeDefinition $source -Language CSharpversion3
}
PROCESS {
$data = @()
Get-WmiObject -Class Win32_IP4RouteTable -ComputerName $computername |
foreach {
 $route = New-Object -TypeName WmiIPRoute
 $route.Destination = $_.Destination
 $route.Mask = $_.Mask
 $route.NextHop = $_.NextHop
 $route.Metric = $_.Metric1

 $filt = "InterfaceIndex='" + $_.InterfaceIndex + "'"
 $ip = (Get-WmiObject -Class Win32_NetworkAdapterConfiguration

 ➥ -Filter $filt -ComputerName $computername).IPAddress

 if ($_.InterfaceIndex -eq 1) {$route.Interface = "127.0.0.1"}
 elseif ($ip.length -eq 2){$route.Interface = $ip[0]}
 else {$route.Interface = $ip}

 $data += $route
}
$data | Format-Table -AutoSize
}}

A here-string (a multiline PowerShell string whose structure is @"..."@) is used to

define the C# code for a new class, WmiIPRoute, that you create for this function. This

is compiled using Add-Type. An empty array, $data, is created to store the data prior

to display.

Get-WmiObject puts all of the instances of Win32_IP4RouteTable on the pipeline.

ForEach-Object is used to create a new instance of the WmiIPRoute class and populate

its properties from the WMI object.

 The InterfaceIndex is used in a WMI filter to retrieve the IP address via

Win32_NetworkAdapterConfiguration. The IP address is set and the new route object

is added to the collection in $data.

 When all of the routes have been processed, the data is displayed using

Format-Table.

DISCUSSION

The data takes the form shown in figure 11.3. The Interface property corresponds to

the IP address on the network adapter. The NextHop property is the default gateway

you’ve configured on the adapter.

315Summary

This finishes our look at working with network adapters using WMI.

11.5 Summary

Configuring servers to communicate on the network is an essential activity. You can

use WMI to accomplish a variety of networking tasks:

■ Display information about network adapters and their IP configuration

■ Discover network protocols and connections

■ Enable, disable, and rename adapters

■ Examine the DHCP configuration, enable DHCP, and manage the leases

■ Set static IP addresses and default gateway properties

■ Configure the DNS and WINS servers that will be used by the server

■ Display the IP routing table

WMI only allows you to work with IPv4 at the moment, but as only a small fraction of

organizations have moved to IPv6 this likely won’t be an issue. The techniques pre-

sented in this chapter, together with cmdlets such as Test-Connection, provide a

good foundation for a PowerShell-based network administration toolkit.

 Chapter 12 is a little different in that we’ll look at using WMI to administer IIS.

Figure 11.3 An IPv4 routing table

316

Managing IIS

Internet Information Server (IIS) is used in many situations in Windows-based envi-

ronments. It’s used directly as a web server and it’s also used in the background in

products such as Windows Server Update Services (WSUS), Exchange 2007/2010,

and SharePoint. IIS may not be the first application that comes to mind when you

think of using PowerShell and WMI to administer remote servers, but it provides a

lot of functionality. You need to be able to administer IIS remotely the same as any

other application.

IIS 7 This chapter will only consider working with IIS 7 (Windows Server 2008
and 2008 R2). A WMI provider is available for IIS 6 on Windows Server 2003,
but it isn’t identical. The techniques in this chapter can be used as a guide for
working with the older version.

This chapter covers

■ IIS WMI providers

■ Configuring web servers

■ Website lifecycle and management

■ Application pools and web applications

http://www.iis.net
http://www.iis.net

317IIS WMI provider

There are a number of ways you can administer IIS using PowerShell, as listed in

table 12.1.

When you install IIS on a system, a .NET assembly is installed that provides administra-

tion access to IIS. The WMI provider is also installed.

NOTE Remember that a version of IIS is available on client versions of Win-
dows, including Vista and 7, as well as the server versions.

You can access the WMI provider directly through the standard PowerShell cmdlets, but

you’ll encounter a few issues, which we’ll look at later. It’s possible to wrap the use of

WMI in the .NET objects you create in PowerShell, and we’ll also look at this technique.

 Windows Server 2008 R2 supplies an IIS provider and cmdlets. An optional down-

load from www.iis.net (check the Manage category on the Download page) is available

to install this functionality on Windows Server 2008. These cmdlets can’t work

remotely, but you can use PowerShell remoting to work with them on a remote system.

 The focus of this chapter is on using WMI, so we’ll start by examining the WMI pro-

vider, its features, and its limitations. This leads to working at the web server level, where

we’ll investigate the server configuration and use WMI to restart the web service.

 Websites are covered in section 12.2, including discovering their properties, con-

trolling them (restarting is the usual control option you’ll need), and creating new

sites. In the final section of this chapter, we’ll look at how you can discover web appli-

cations and application pools. The recycling of application pools is an important topic

that we’ll cover at the end of the chapter.

 First, you need to learn a bit more about the IIS WMI provider, because it has some

quirks that you haven’t seen before.

12.1 IIS WMI provider

You access the functionality to administer your IIS servers through the IIS WMI provider.

It installs its classes into the root\webadministration namespace. Everything you’ve seen

so far would suggest that you can discover the classes in this namespace like this:

Get-WmiObject -Namespace 'root\webadministration' -List -ComputerName web01

Afraid not, as figure 12.1 shows.

Method Remote working

.NET No

WMI Partial

WMI with .NET Yes

IIS cmdlets No

IIS provider No
Table 12.1 Methods of accessing

IIS through PowerShell

www.iis.net

318 CHAPTER 12 Managing IIS

You need to use Packet Privacy to encrypt the traffic to a remote web server for this to

work, which changes the code as follows:

Get-WmiObject -Namespace 'root\webadministration' `
-List -ComputerName web01 -Authentication 6

We’ll investigate Packet Privacy authentication and how you can work with it, and then

we’ll look at how you can discover your web server configuration and how you can

control the IIS service to restart the web server.

12.1.1 Packet Privacy authentication

The various WMI authentication levels were explained in section 4.5.3. Table 12.2 is

presented as a recap.

Table 12.2 WMI authentication

Value Meaning

-1 Unchanged—authentication remains as it was before.

 0 Default COM authentication level. Authentication is negotiated. WMI uses the default Windows

Authentication setting. The None setting (1) is never the result of a negotiated authentication.

 1 None. No COM authentication is performed.

 2 Connect. COM authentication is performed only when the client establishes a relationship

with the server. No further checks are performed.

 3 Call. COM authentication is performed only at the beginning of each call, when the server

receives the request. Only packet headers are signed. No data is encrypted.

 4 Packet. COM authentication is performed on all the data that’s received from the client. Only

packet headers are signed. No data is encrypted.

 5 Packet Integrity. All the data that’s transferred between the client and the application is

authenticated and verified. All packets are signed. No data is encrypted.

 6 Packet Privacy. The properties of the other authentication levels are used, and all the data is

encrypted.

Figure 12.1 Error message when accessing the IIS WMI provider remotely

319TECHNIQUE 89 Displaying web server defaults

The IIS WMI provider insists on level 6 authentication (Packet Privacy), which ensures

the data is encrypted. In order to use this level of authentication, you need to be

logged on to the domain, have the correct level of permissions, and run PowerShell

from an elevated prompt. In a non-domain situation, you’d need to supply explicit

credentials for the remote machine as well as using Packet Privacy.

 Use Get-Credential to create the credential rather than attempting to create it in

the -Credential parameter. The latter option will fail because Get-WmiObject

attempts to contact the server before resolving the credential.

NOTE PowerShell v1 can’t be used for these techniques because its version of
Get-WmiObject can’t set the level of authentication to be used. But you could
wrap the WMI in .NET code, which would enable you to use Packet Privacy.

Now you know how to use WMI authentication. It’s time to look at accessing the WMI

classes and see what you can discover about your web server.

 Displaying web server defaults

One issue with the provider is that many of the properties you’ll want to work with are

returned as embedded objects. They can’t be accessed directly. This is illustrated in

figure 12.2, where the results of retrieving the Server class are displayed.

 The Server class returns four properties of interest:

■ ApplicationDefaults

■ ApplicationPoolDefaults

■ SiteDefaults

■ VirtualDirectoryDefaults

All that you see is a System.Management.ManagementBaseObject object. It consists of

other WMI classes that are held as embedded objects in the parent object. Many of the

TECHNIQUE 89

Figure 12.2 Embedded objects returned by Server class

320 CHAPTER 12 Managing IIS

other classes you’ll meet in this chapter also behave in this manner. You need to be able

to drill down further into the properties to discover how your web server is configured.

PROBLEM

There are a number of web servers in your internal environment that have been man-

aged by different people over a period of time. You suspect that the default configura-

tion of some of these servers has drifted from their desired state. You need to retrieve

the default configuration so comparisons can be made to determine which servers

need reconfiguring.

SOLUTION

Listing 12.1 demonstrates how you can solve this problem. The get-webserverdefault

function takes a computer name as its only parameter.

NOTE The expand-property function used in this script is described in the
discussion section that follows.

function get-webserverdefault {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"

)
PROCESS{
 $server = Get-WmiObject -Namespace 'root\webadministration' `
-Class Server -ComputerName $computername -Authentication 6

 $webdata = New-Object -TypeName PSobject
 $webdata |
 Add-Member -MemberType NoteProperty -Name "Server" `
-Value $server.__SERVER

 expand-property

 ➥ $server.ApplicationDefaults.Properties "Application"

 $apdproperties = $server.ApplicationPoolDefaults.Properties |
 where {$_.type -ne "Object"}
 expand-property

 ➥ $apdproperties "ApplicationPoolDefaults"

 expand-property

 ➥ $server.ApplicationPoolDefaults.CPU.Properties "APD_CPU"
 expand-property

 ➥ $server.ApplicationPoolDefaults.Failure.Properties "APD_Failure"
 expand-property

 ➥ $server.ApplicationPoolDefaults.ProcessModel.Properties

 ➥ "APD_ProcessModel"

 $apdproperties =

 ➥ $server.ApplicationPoolDefaults.Recycling.Properties |
 where {$_.type -ne "Object"}

Listing 12.1 Display web server default settings

Create
object

B

Add application
data

C

321TECHNIQUE 89 Displaying web server defaults

 expand-property $apdproperties "APD_Recycling"

 expand-property

 ➥ $server.ApplicationPoolDefaults.Recycling.PeriodicRestart.

 ➥ Properties "APD_Recycle_Periodic"

 $webdata |
 Add-Member -MemberType NoteProperty -Name "SiteAutoStart" `
-Value $server.SiteDefaults.ServerAutoStart

 expand-property

 ➥ $server.SiteDefaults.Limits.Properties "SiteLimits"
 expand-property

 ➥ $server.SiteDefaults.Logfile.Properties "SiteLogfile"
 expand-property

 ➥ $server.SiteDefaults.TraceFailedRequestsLogging.Properties

 ➥ "SiteTraceFailedRequestsLogging"

 expand-property

 ➥ $server.VirtualDirectoryDefaults.Properties

 ➥ "VirtualDirectoryDefaults"

 $webdata
}}

The Server class from the root\webadministration namespace holds the data you

need. The object needs to be held in a variable, $server, because you need to use it

several times as you unravel the embedded data.

 The next step is to create a PowerShell object to store the results B. The object is

initially created without any properties. Add-Member is used to extend the object by

creating additional properties. The first one is the server name, which you retrieve

from the __SERVER system property.

 You can then step through the four properties you saw in figure 12.2 to add addi-

tional data to the object. You start with the application defaults C and move on to the

application pool data. At this point, you meet another level of embedded objects,

necessitating more explicit expansion. Each time you expand an embedded object to

retrieve its properties, you ensure that you can identify the resultant data by passing a

title into the expand-property function, which acts as a prefix to the property name.

 The final property sets are the site defaults D and the virtual directory defaults E.

The function returns the $webdata object, which can be filtered using the standard

PowerShell utility and formatting cmdlets.

DISCUSSION

The workhorse of listing 12.1 is the expand-property function. This function is part

of the module of functions for this chapter. It has two parameters. The first is a prop-

erty set that you expand, and the second is a string that is used as a prefix for the prop-

erty name:

function expand-property {
 param ($properties, $title)

 foreach ($property in $properties) {
 Add-Member -InputObject $webdata -MemberType NoteProperty `

Add site
dataD

Add virtual
directory dataD

322 CHAPTER 12 Managing IIS

 -Name "$title-$($property.Name)" `
 -Value $property.Value
 }
}

You loop through the properties and use Add-Member to create a property on your

$webdata object that will hold the property you’re working with. You can use

$webdata directly in this way because expand-property is executing in a child scope

of get-webserverdefault—that’s because it was called by that function. A child scope

can access variables created in the parent scope. The expand-property function will

also be used in other scripts in the chapter.

 Compared to the description, using the function is very simple. Assuming the

module is loaded the syntax is as follows:

get-webserverdefault -computername web01

IIS servers tend not to need a lot of looking after once they’re set up and running.

There are a few things, though, such as patching, that you need to do on a regular

basis. One task you may need to perform is restarting the IIS service on your

web server.

 Restarting the web server

The one task we seem to have to keep doing is restarting the IIS service on our

web servers. This need can arise for a number of reasons, including an issue

with a website or application, or introducing a change to a website or to the web

server configuration.

 Being able to restart IIS quickly and efficiently minimizes the downtime of the ser-

vice and ensures that the system’s users suffer the minimum of inconvenience. It’s also

a good way to help maintain availability service-level agreements (SLAs).

PROBLEM

An application that’s installed on a number of web servers is undergoing a series of

upgrades. After each upgrade, the IIS service must be restarted to ensure that the

changes are brought online immediately.

SOLUTION

You could write a function that restarts the IIS service on a local, or remote, system,

but if you break down the problem a little further, the underlying issue is that you

need to stop and then restart the web server.

 Listing 12.2 shows how you can deliver a granular solution that provides for the

three possible situations that arise:

■ Stop the IIS service

■ Start the IIS service

■ Restart the IIS service

The following solution consists of three functions that perform the tasks of stopping,

starting, and restarting the service.

TECHNIQUE 90

323TECHNIQUE 90 Restarting the web server

function restart-webserver {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 stop-webserver -computer $computername
 start-webserver -computer $computername
}
}

function stop-webserver {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"

)
PROCESS{
 $www = Get-WmiObject -Class Win32_Service `
-ComputerName $computername -Filter "Name='W3SVC'"

 if ($www.State -eq "Running") {
 $ret = $www.StopService()
 if ($ret.ReturnValue -ne 0) {
 Write-Host "$($computername): IIS did not stop correctly"
 $return
 }
 }
 else {Write-Host "$($computername):

 ➥ IIS service not started"}
}
}

function start-webserver {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"

)
PROCESS{
 $www = Get-WmiObject -Class Win32_Service `
-ComputerName $computername -Filter "Name='W3SVC'"

 if ($www.State -ne "Running") {
 Write-Host "$($computername): IIS Stopped. Attempting restart"
 $ret = $www.StartService()
 if ($ret.ReturnValue -ne 0) {
 Write-Host "$($computername): IIS did not start correctly"
 $return

Listing 12.2 Restart web server

Restart-webserver
functionB

Call worker
functions

C

Stop-webserver
function

D

Get WMI
object

E

Stop
serviceF

Display error
message

G

Start-webserver
functionH

324 CHAPTER 12 Managing IIS

 }
 }
 else {Write-Host "$($computername): IIS is running" }
}}

The restart-webserver function B accepts a computer name as the input parame-

ter and then calls the functions C to stop and start the service. The computer name is

passed through to the child functions.

 The stop-webserver function D performs the task of stopping the web server.

The computer name is accepted and then used in the WMI call to Win32_Service E.

A check on the state of the service is performed, and if the service is running, an

attempt is made to stop it F; otherwise an error message is issued. The return code is

tested to determine whether the service shut down correctly G. An error message is

returned if the service didn’t close properly.

 The start-webserver function H has a similar construction, except that the

StartService method is used. The error messages are modified to reflect the task this

function is performing.

DISCUSSION

The tasks performed by this technique are straightforward, common administrative

chores that you’ll need to perform on a regular basis, making them ideal candidates

for automation. Similar functions could be created for other important services.

Approaching the solution in the most granular way ensures that you achieve the maxi-

mum flexibility and reuse in your use of PowerShell. The time spent developing a

solution at this scale is repaid, because you gain the flexibility to perform three tasks

out of the solution.

 Administering web servers is the high-level task for this chapter. We’ll now drill

down a level and look at the websites that are hosted on those servers.

12.2 Websites

Websites are where your user’s interests are concentrated because this is where they’ll

be accessing the server and performing their work. They won’t care whether the

server is running if the website itself is unavailable.

 The first technique in this section will look at retrieving a list of the websites on a

particular server, together with their properties. Subsequent techniques will exam-

ine the website lifecycle—specifically creation and deletion—and how you can con-

trol websites.

 You need the ability to discover which websites exist on a particular server before

you can administer those sites.

 Listing websites

You can list the sites on a server by using the Site class, as this code snippet demonstrates:

Get-WmiObject -Namespace 'root\webadministration' -Class Site `
 -ComputerName web01 -Authentication 6 `
-Filter "Name='Default Web Site'"

TECHNIQUE 91

325TECHNIQUE 91 Listing websites

Packet Privacy authentication is used by passing a value of 6 to the -Authentication

parameter, and a WMI filter ensures that only the information for the default website

is returned.

 You still have the problem of embedded objects to overcome, as figure 12.2

demonstrated.

PROBLEM

Web servers can be configured in a farm, where multiple servers host the same set of

sites and access is load-balanced across the farm to provide scalability and resiliency.

Comparing the configuration of the various websites across the farm can be a time-

consuming and error-prone task if performed manually. You need to be able to gener-

ate the site configuration so that an automatic comparison can be performed.

SOLUTION

The comparison operation can be performed using Compare-Object, as you saw in

chapter 2, if you can get the configuration into a suitable format. The following listing

shows how you can obtain the data you need.

function get-website {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [string]$site

)
PROCESS{
if ($site) {
 $sites = Get-WmiObject -Namespace 'root\webadministration' `
-Class Site -ComputerName $computername -Authentication 6 `
-Filter "Name='$site'"
}
else {
 $sites = Get-WmiObject -Namespace 'root\webadministration' `
-Class Site -ComputerName $computername -Authentication 6
}
$data = @()

foreach ($site in $sites){
 $webdata = New-Object -TypeName PSobject
 $webdata |
 Add-Member -MemberType NoteProperty -Name "Name" `
-Value $site.Name -PassThru |
 Add-Member -MemberType NoteProperty -Name "Id" `
-Value $site.Id -PassThru |
 Add-Member -MemberType NoteProperty -Name "ServerAutoStart" `
-Value $site.ServerAutoStart

 expand-property

 ➥ $site.ApplicationDefaults.Properties "Application"

Listing 12.3 Listing websites

Input
parameters

B

Get site
data

C

Add site
properties
to output

D

Add
application
defaults to
output

E

326 CHAPTER 12 Managing IIS

 $i = 0
 foreach ($binding in $site.Bindings) {
 $webdata |
 Add-Member -MemberType NoteProperty `
-Name "Binding$i-BindingInformation" `
 -Value $binding.BindingInformation -PassThru |
 Add-Member -MemberType NoteProperty -Name "Binding$i-Protocol" `
 -Value $binding.Protocol

 $i++
 }

 expand-property $site.Limits.Properties "Limits"
 expand-property $site.Logfile.Properties "Logfile"
 expand-property $site.TraceFailedRequestsLogging.

 ➥ Properties "TraceFailedRequestsLogging"
 expand-property $site.VirtualDirectoryDefaults.

 ➥ Properties "VirtualDirectoryDefaults"

 $data += $webdata
}
$data
}}

A good design practice for PowerShell cmdlets and functions is to return all of the

objects in question by default. An optional parameter is then used to filter the data

down to a specific subset of the possible objects. The get-website function follows

this practice by using the -Site parameter to allow a single site to be selected B.

 A WMI call is made to retrieve the data for a single desired site or for all sites on the

server C. The presence of a WMI filter determines whether one or all sites are

returned. In either case, the data is returned to the sites variable, which enables you

to use a single set of code for the remainder of the function’s processing.

 The foreach keyword loop is used to iterate through the sites D. The processing

in this loop uses a similar technique to listing 12.1. An empty object is created and

Add-Member is used to extend the object by adding the properties that define the site.

 You can deal with embedded objects, such as ApplicationDefaults E, by calling

the expand-property function from technique 89. This will drill down into the given

object and add the appropriate properties and their values to your object.

 A website can have multiple bindings F. Each binding defines a unique combina-

tion of protocol, IP address, and port that are used to communicate with the website.

Bindings are a common source of problems. This technique provides an easy way to

determine their current settings.

 Additional embedded objects have to be expanded G. In some cases, these are

identical to those discussed in relation to listing 12.1.

DISCUSSION

The function can be used in two modes. The first mode requires a website name to be

supplied, as shown in the following example:

get-website -computername web01 -site "Default Web Site"

Add binding
data to outputF

Add other
properties
to outputG

327TECHNIQUE 92 Creating a website

This option will only return the details for the website, as discussed in the solution.

 If information relating to all websites is required, you can use the second mode, as

shown in this snippet:

get-website -computername web01

The only parameter you need is the computer name if you’re dealing with a remote

computer.

 Knowing which sites exist on a server provides you with a starting point for manag-

ing the website lifecycle.

 Creating a website

You can create websites using the WMI provider, but there are some issues with per-

forming this action due to Packet Privacy being enforced by the provider. This means

you need to be a little bit sneaky in the way you approach this problem. I don’t recom-

mend this approach for all use of WMI, but it’s a useful fallback technique if you can’t

work directly with the WMI cmdlets.

PROBLEM

You have to create a website on a number of servers in your web farm. Once the site is

created, you can copy in the data and web pages. Some of the web servers are in a

remote location, so you can’t physically get to them without travelling.

SOLUTION

Your immediate thought might be to use the [wmiclass] type accelerator to create an

instance of the Site class and then configure its properties. Unfortunately, this won’t

work because the accelerator can’t work with Packet Privacy when working with a

remote machine.

 You can solve this problem, as shown in the following listing, by working directly

with the WMI-related .NET classes and therefore bypassing the restrictions in the

[wmiclass] accelerator.

function new-website {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computer="$env:COMPUTERNAME",
 [parameter(Mandatory=$true)]
 [string]$site,
 [parameter(Mandatory=$true)]
 [string]$domain,
 [parameter(Mandatory=$true)]
 [string]$dirpath
)
PROCESS{
$conopt = New-Object System.Management.ConnectionOptions

Listing 12.4 Create website

TECHNIQUE 92

Create
options

B

328 CHAPTER 12 Managing IIS

$conopt.Authentication =

 ➥ [System.Management.AuthenticationLevel]::

 ➥ PacketPrivacy

$scope = New-Object System.Management.ManagementScope
$scope.Path = "\\$computer\root\WebAdministration"
$scope.Options = $conopt

$path = New-Object System.Management.ManagementPath
$path.ClassName = "Site"

$website = New-Object System.Management.ManagementClass(

 ➥ $scope, $path, $null)

$path2 = New-Object System.Management.ManagementPath
$path2.ClassName = "BindingElement"

$bind = New-Object System.Management.ManagementClass(

 ➥ $scope, $path2, $null)
$BInstance = $bind.CreateInstance()

$Binstance.BindingInformation = "*:80:$site.$domain"
$BInstance.Protocol = "http"

$website.Create($site, $Binstance, $dirpath, $true)
}}

The standard computer name parameter is joined by parameters for the new site

name, the domain, and the directory path used by the site. These are made manda-

tory to ensure that they have to be input. You don’t set a default value when using

mandatory parameters, because the default is never accessed.

 The .NET classes you need are in the System.Management namespace (.NET

namespaces aren’t connected to WMI namespaces). You start with the Connection-

Options class B which enables you to configure the connection WMI is making. In

this case you’re setting the authentication level. Other options include a timeout,

userid, and password to be used on the connection. The timeout is especially useful,

as you’ll see in the next chapter.

 Your next step is to set the scope in which you’re working C. This defines the WMI

namespace you’ll be using. The connection options become the options of the scope.

 The ManagementPath class is used to define the WMI class you’re using, which in

this case is Site. At this point there isn’t a check to determine that the class exists in

the namespace! You can then create a .NET ManagementClass object that represents

the site D. This is equivalent to using [wmiclass]. The final parameter represents

other options, which in this case are nonexistent, so you use $null.

 You then have to repeat your use of ManagementPath and ManagementClass to cre-

ate the binding for the site E. The binding is set to port 80, and you’re only using the

HTTP protocol.

 After all that’s accomplished you can create the site using the Create method F. This

takes the site and binding objects as parameters. You also supply the path to the virtual

directory associated with the site. If this doesn’t exist you can perform a simple copy to

create an instance of it on the remote machine as a precursor step in your script. The

Create
scope

C

Create site
object

D

Create
binding

E

Create
site

F

329TECHNIQUE 93 Testing website status

final parameter is set to $true, which means the site will automatically start when IIS is

started. Set this parameter to $false if you don’t want this behavior to occur.

DISCUSSION

If you can remote desktop, or establish a PowerShell remote connection, to the sys-

tem, the website creation code can be simplified to the following:

$Site = [WMIClass]'root\webadministration:Site'
$Binding = [WMIClass]'root\webadministration:BindingElement'

$BInstance = $Binding.CreateInstance()
$Binstance.BindingInformation = "*:80:testwmi.manticore.org"
$BInstance.Protocol = "http"

$Site.Create('NewSiteWMI', $Binstance, 'C:\Inetpub\TestWMI', $true)

The [wmiclass] accelerator is used to create instances of the Site and BindingElement

classes. The binding information is created, and then the Create method on the site

object is used as previously. This version is available in code download for this chapter

as new-site.ps1.

 Once you’ve created your site you need to be able to determine if it’s running. It

should start automatically, but you shouldn’t rely on that happening. Being able to

test if a site is running is also a good troubleshooting technique.

 Testing website status

Like any applications, websites require a number of other components, such as the

network and the operating system, in order to function. In the case of a problem you

need to isolate the component causing the problem. One quick test is to see if the

website is running. If you can confirm that it shows that the network and other com-

ponents are functioning.

PROBLEM

The phone rings. “The website isn’t available,” shouts the user. You need to check

whether the website is up before performing other diagnostics.

SOLUTION

The following listing enables you to retrieve the website status, either for a single site if

the -site parameter is used, or for all sites if it’s omitted.

$ws = DATA {
ConvertFrom-StringData -StringData @'
1 = Started
2 = Starting
3 = Stopped
4 = Stopping
5 = Unknown
'@
}
function get-websitestatus {

Listing 12.5 Get website status

TECHNIQUE 93

330 CHAPTER 12 Managing IIS

[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [string]$site

)
PROCESS{
if ($site) {
 $sites = Get-WmiObject -Namespace 'root\webadministration' `
-Class Site -ComputerName $computername `
-Authentication 6 -Filter "Name='$site'"
}
else {
 $sites = Get-WmiObject -Namespace 'root\webadministration' `
-Class Site -ComputerName $computername -Authentication 6
}
$data = @()

foreach ($site in $sites){
 $wsdata = New-Object -TypeName PSobject
 Add-Member -InputObject $wsdata -MemberType NoteProperty

 ➥ -Name "Name" -Value $site.Name

 $state = $site.GetState()
 Add-Member -InputObject $wsdata -MemberType NoteProperty

 ➥ -Name "Status" -Value $ws["$($state.ReturnValue)"]

 $data += $wsdata
}
$data
}}

The function will use Get-WmiObject to return the site information for all sites or for

the specified site. A WMI filter is used to restrict the output to a single site.

 The collection of sites (one or all of them) is processed to create a new object rep-

resenting each site containing just the information you need. The first property is the

site name. You then have to use the GetState method to find out if the site is running.

NOTE It would have been so much easier if the site status had been main-
tained as a property on the site object.

GetState returns an integer code to describe the site status. You can use a hash table

lookup to decipher the code when you add the status member to your object. The

object you created is then added to your storage array.

 The array of objects is output to the pipeline when you’ve finished looping

through the sites.

DISCUSSION

The function emits a collection of objects. This means that you can perform further

processing of the output:

get-websitestatus | sort Name -descending
get-websitestatus | sort status | Format-Table -GroupBy status

331TECHNIQUE 94 Restarting a website

The first example sorts the sites into alphabetical order. The second example is more

interesting in that it sorts on the website status and then uses the -GroupBy parameter

on Format-Table to create a more report-like display, as shown in figure 12.3.

 If a website is showing problems you may need to restart it to resolve the issue.

 Restarting a website

Restarting a website is a common administrative task. Many websites are started on a

nightly basis, which makes the task an ideal candidate for automation. The Site class

doesn’t have a Restart method, but it does have Start and Stop methods.

PROBLEM

A website needs to be restarted on a regular basis as well as on demand. The web

server is in another location and you need to be able to schedule a task to perform the

action.

SOLUTION

A little thought produces the three functions in the following listing. You have a stop

and a start function, which you then combine to produce the restart function. This

provides maximum flexibility for administering the website.

function stop-website {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]

Listing 12.6 Restart website

Figure 12.3 Website status reporting using Format-Table and GroupBy

TECHNIQUE 94

Stop
websiteB

332 CHAPTER 12 Managing IIS

 [string]$computername="$env:COMPUTERNAME",
 [parameter(Mandatory=$true)]
 [string]$site

)
PROCESS{
Get-WmiObject -Namespace 'root\webadministration' `
-Class Site -ComputerName $computername -Authentication 6 `
-Filter "Name='$site'" |
Invoke-WmiMethod -Name Stop

}}

function start-website {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [parameter(Mandatory=$true)]
 [string]$site

)
PROCESS{
Get-WmiObject -Namespace 'root\webadministration' `
-Class Site -ComputerName $computername -Authentication 6 `
-Filter "Name='$site'" |
Invoke-WmiMethod -Name Start

}}

function restart-website {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [parameter(Mandatory=$true)]
 [string]$site

)
PROCESS{
Write-Verbose "Stopping Website $site on $computername"
stop-website -computer $computername -site $site
get-websitestatus -computer $computername -site $site

Write-Verbose "Starting Website $site on $computername"
start-website -computer $computername -site $site
get-websitestatus -computer $computername -site $site

}}

The script begins with the stop-website function B. The -site parameter is manda-

tory—you can’t stop a site if you don’t know its name. You use the name in the WMI filter

to retrieve the object representing the site. This is then piped into Invoke-WmiMethod,

which calls the Stop method.

 A site is started using the start-website function C. It works in exactly the same

way, but it calls the Start method.

Start
websiteC

Restart
websiteD

333TECHNIQUE 95 Listing web applications

 You can then use the two functions together to perform a restart of the site in the

restart-website function D. The site name is passed in to stop-website, and the

site status is checked using get-websitestatus from listing 12.5. Start-website is

then called and another check on the website status is performed.

DISCUSSION

The use of [CmdletBinding()] provides a suite of functionality for free. This includes

adding the -Debug and -Verbose common parameters to the function. If the -Verbose

parameter is used with the function, the Write-Verbose commands embedded in the

function will output extra informational messages.

 Websites are the outward facing portion of an IIS server—they are the parts that

the users see and interact with. You’ve seen how to list the websites on a server and

how to create, test, and restart individual websites. That covers the major administra-

tion tasks at the site level.

 Next we’ll turn our attention to the internals of IIS—the parts that users don’t see

directly. You need to learn to work with application pools.

12.3 Application pools and applications

An IIS server can host multiple websites. Each website can host multiple applications.

An application is a group of files delivering specific content or services. An applica-

tion pool defines a set of applications that share worker processes.

 Using multiple worker processes isolates applications ensuring that a problem in

one doesn’t leak into all of the applications on the server. This increases stability and

reliability of the IIS server.

 Your first technique is to discover the web applications hosted on the server.

That leads us to the application pools defined on the server and finally we’ll look

at how you can recycle them. This is analogous to a server reboot but doesn’t

cause downtime.

 Listing web applications

Web applications are the reason we have web servers. They’re the only part in which

users have an interest. The web applications are linked to sites and application pools.

Understanding web applications means that you can understand what is happening

on the servers.

PROBLEM

Users are reporting issues with the web server. It hosts a number of web applications. You

suspect that one particular application is causing the problem. The applications and

their related application pools need to be tested to determine their configuration.

SOLUTION

The following listing provides a view of the relationship between the websites, web

applications, and application pools. You’re looking at this at a server level so there’s

no parameter to select an individual application pool. This could be added using list-

ing 12.5 as a template.

TECHNIQUE 95

334 CHAPTER 12 Managing IIS

function get-application {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"

)
PROCESS{
Get-WmiObject -Namespace 'root\webadministration' `
-Class Application -ComputerName $computername `
-Authentication 6 |
select SiteName, ApplicationPool, Path, EnabledProtocols
}}

The body of the function consists of a call to the Application WMI class. Select-Object

is then used to deliver the properties you need to see. In this case, you get the site and

application pool that are related to the application.

DISCUSSION

This is probably the simplest script in the chapter, but it’s the one that probably has the

most impact. The secret of a happy IIS server is to ensure that each application is iso-

lated in its own application pool with its own worker processes. The get-application

function provides an easy way to discover whether applications are sharing application

pools and could therefore interfere with each other.

 Now that you know that application pools exist you need to investigate them a bit

more.

 Listing application pools

When an IIS server is created a default application pool is created. Application pools

are the way you can control the worker processes on your IIS server. Other applica-

tion pools can be created as required to host your applications, but they aren’t cre-

ated automatically.

 If the application pool associated with an application isn’t responding then the

application won’t work.

PROBLEM

After checking the web applications defined on the server you notice that a number of

the applications are sharing an application pool. This could be the source of the prob-

lem, so you need to dig deeper into the application pool configuration.

SOLUTION

Listing 12.8 provides a solution to this problem. You can either look at all of the appli-

cation pools on a server, or you can examine a single application pool.

NOTE This script displays the properties that I think are most useful. There
are a significant number of other properties available, and I strongly urge you
to experiment with the ApplicationPool class to discover if there’s any other
information you need for your particular environment.

Listing 12.7 List web applications

TECHNIQUE 96

335TECHNIQUE 96 Listing application pools

The script starts by defining a hash table lookup of the possible application pool

states. These are subtly different from the list of states for websites (see listing 12.5).

Don’t you just love consistency!

$as = DATA {
ConvertFrom-StringData -StringData @'
0 = starting
1 = started
2 = stopping
3 = stopped
4 = unknown
'@
}

function get-apppool {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [string]$apppool

)
PROCESS{
if ($apppool) {
 $apppools = Get-WmiObject -Namespace 'root\webadministration' `
-Class ApplicationPool -ComputerName $computername `
-Authentication 6 -Filter "Name='$apppool'"
}
else {
 $apppools = Get-WmiObject -Namespace 'root\webadministration' `
-Class ApplicationPool -ComputerName $computername `
-Authentication 6
}
$data = @()

foreach ($apppool in $apppools){

 $state = $apppool.GetState()

 $webdata = New-Object -TypeName PSobject
 $webdata |
 Add-Member -MemberType NoteProperty -Name "Name" `
 -Value $apppool.Name -PassThru |

 Add-Member -MemberType NoteProperty -Name "Status" `
 -Value $as["$($state.ReturnValue)"] -PassThru |

 Add-Member -MemberType NoteProperty -Name "AutoStart" `
-Value $apppool.AutoStart -PassThru |

 Add-Member -MemberType NoteProperty -Name "RunTime" `
 -Value $apppool.ManagedRunTimeVersion -PassThru |

 Add-Member -MemberType NoteProperty -Name "CPULimit" `
 -Value $apppool.CPU.Limit -PassThru |

Listing 12.8 List application pools

Input
parameters

B

Get
application
pools

C

Add
properties

D

336 CHAPTER 12 Managing IIS

 Add-Member -MemberType NoteProperty -Name "RapidFailprotection" `
-Value $apppool.Failure.RapidFailProtection

 $data += $webdata
}
$data
}}

The function parameters are the computer name and an optional application

poolB. All application pools, or a single application pool, depending on the use of

the parameter, are retrieved and stored in the $apppool variable using a WMI call to

the ApplicationPool class C. The foreach loop then iterates over the collection of

application pools.

 The state of the application pool is placed into the $state variable. A new object is

created and populated with the desired properties D.

NOTE The Add-Member statements are shown with a line between them to
make the code more readable. The function will still run like this because
PowerShell ignores the white space. The version in the code download
doesn’t have these gaps.

The -PassThru parameter passes the newly extended object to the pipeline, which

enables you to simplify the code required to add multiple properties to an object. The

object is added to the array you defined to act as a holding collection. At the end of

the script the array is passed to the pipeline for further processing and display.

DISCUSSION

An alternative method of setting the properties is as follows:

$webdata = New-Object -TypeName PSobject -Property @{
 Name = $apppool.Name
 Status = $as["$($state.ReturnValue)"]
 AutoStart = $apppool.AutoStart
 RunTime = $apppool.ManagedRunTimeVersion
 CPULimit = $apppool.CPU.Limit
 RapidFailprotection = $apppool.Failure.RapidFailProtection
 }

This is a lot less typing and is preferred when you understand what’s happening,

whereas the Add-Member approach is more meaningful for newcomers to PowerShell.

Regardless of your experience, I still recommend using Add-Member when you need to

add a single property to an existing object.

 One activity that occurs with some regularity is recycling application pools. This

enables you to achieve a finer level of control over the activities on your web server.

 Recycling an application pool

You’ve seen that application pools are directly related to the worker processes within

IIS. There are times you’ll need to restart the IIS server, times you’ll need to restart a

website, and times you’ll need to restart an application within a website. You can

accomplish the latter task by recycling the application pool. This limits the impact to

the minimum number of applications rather than the whole site or server.

TECHNIQUE 97

337TECHNIQUE 97 Recycling an application pool

PROBLEM

A web application is intermittently exhibiting strange behavior. There are a number

of websites on the server, each with several applications. It isn’t possible to restart the

server or the website due to the needs of other users. You need to recycle the applica-

tion pool of the application to effectively restart the application.

SOLUTION

The following listing demonstrates how you can use the ApplicationPool class to

recycle an application pool. The -apppool parameter is mandatory. You don’t want to

recycle every application pool on the IIS server at this stage.

function restart-apppool {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [parameter(Mandatory=$true)]
 [string]$apppool

)
PROCESS{
Get-WmiObject -Namespace 'root\webadministration' `
-Class ApplicationPool -ComputerName $computername `
-Authentication 6 -Filter "Name='$apppool'" |
Invoke-WmiMethod -Name Recycle

}}

This function follows a pattern you’ve seen a number of times in that you get a WMI

object that represents the application pool you’re working with. You then pipe this

into Invoke-WmiMethod and call the Recycle method.

TIP This piece of WMI code, like many in the book that deal with performing
actions, could be executed at the PowerShell prompt. Wrapping it in a func-
tion reduces the amount of typing and increases productivity. When you find
yourself using the same code repeatedly it’s time to wrap it in a function.

DISCUSSION

The ApplicationPool class has Stop and Start methods. It’s possible to create

stop-apppool and start-apppool functions using listing 12.6 as a template. I suspect

that the functions to restart a website and to recycle an application pool will be the

most-used ones from this chapter.

 This concludes our work with the IIS WMI provider, though we haven’t covered

everything it can do. The techniques presented in this chapter will enable you to dig

further into the provider to make your IIS administration easier and more productive.

Listing 12.9 Recycle application pool

338 CHAPTER 12 Managing IIS

12.4 Summary

PowerShell and WMI provide a robust mechanism to administer local and remote IIS

servers. There’s an issue with using the provider in that it expects to use Packet Privacy

authentication. You’ve seen how to use that to retrieve information, create new objects

on the server, and perform administrative actions on the server.

IIS has a number of components. You’ve learned to administer

■ The web server itself

■ Websites

■ Applications

■ Application pools

In addition, you must remember the other WMI techniques you’ve seen in previous

chapters that enable you to administer the operating system, networking, and other

aspects of the system as a whole. One of the great strengths of WMI is that it works

from the hardware to the application and enables you to use the same types of tech-

niques to perform administration at all levels.

 The next chapter looks at how you can use WMI to configure a brand new server.

This will combine some of the techniques that you’ve already seen with some new

techniques.

339

Configuring a server

I add servers to my test domain on a regular basis. An organization of any size could

be adding many servers over the course of a year, especially if they’re undertaking a

major piece of infrastructure work, such as server consolidation or the introduction

of a thin client environment using Terminal Services or Citrix. The key premise of

this chapter is that you’re adding a new server to a domain. Many of the techniques

are still valid in a workgroup environment, but most organizations with more than

a handful of computers will be using a domain.

TIP I’ve assumed in this chapter that the new server has a usable IP

address (possibly via DHCP) and that the Windows Firewall is either off or
configured to allow remote WMI-based management.

There are a number of tasks you’ll need to perform after the operating system has

been installed and prior to the installation of applications. These tasks are common

This chapter covers

■ Renaming a server and joining it to a domain

■ Configuring network adapter settings

■ Setting the license key and activating a server

■ Setting the power plan

340 CHAPTER 13 Configuring a server

across most servers, providing a good reason for automating them. As you’ll see, the

automation of these tasks builds on some of the PowerShell and WMI functions you’ve

seen in earlier chapters.

NOTE The order of the tasks described in this chapter isn’t the order in
which you have to perform them. I prefer to rename the server and set the
correct IP address before joining it to the domain. You may prefer a different
approach. The techniques can be applied in whatever order is required to sat-
isfy your process.

Modern Windows systems don’t supply an option to provide a name for the machine

during the installation process. It’s unlikely that you’ll want to use the name the install

routine invents, so your first task will be to rename the server. This technique can also

be used at other times in a server’s life, such as if it’s being repurposed. Once it’s

renamed, you can then join the machine to the domain to ensure the correct security

policies are applied and that you can administer the system more efficiently.

 You’ll need to restart the server several times during the overall process. You may

also need to shut it down to perform a cold start. We’ll look at how these tasks can be

performed using PowerShell and WMI-based functions.

TIP If you ever need to shut down a whole data center, the shutdown func-
tion presented in this chapter can be used as the basis of that process (or you
could use listing 1.4). It works—I’ve done it. Compare that to logging on to
several hundreds of machines to close them down.

I usually configure the network settings next. You saw how to configure network

adapters in chapter 11, and you’ll use those functions with a wrapper to overcome the

issue of resetting the address on the adapter you’re connecting through. You’ll also

see how to reuse the chapter 11 functions to set the DNS servers and other network-

related configuration items.

 Microsoft’s system activation process means that a license key needs to be set for

the machine. You’ll set the license key through PowerShell and WMI (though this only

works for the latest version of Windows). The same WMI classes will be used to activate

the machine. This can be always performed at a later date, as you have a number of

days grace after installation before you have to activate the server.

 Power plans are usually more important for managing client machines than serv-

ers. But there are occasions when you may need to set a plan to reduce your server’s

power consumption. We’ll finish the chapter by looking at a technique to perform

this task using PowerShell and WMI.

NOTE You can’t use these techniques to configure Windows components
such as creating a DNS server or installing IIS. Those actions need to be per-
formed using PowerShell remoting to access the ServerManager module in
Windows Server 2008 R2.

The first task on our list is renaming the server.

341TECHNIQUE 98 Renaming a server

13.1 Initial tasks

When creating a new server, I normally rename it and then join it to the domain. This

avoids having the temporary name in DNS. I also get the time-consuming reboots out

of the way by performing these two tasks up front.

 Renaming a server

PowerShell v2 doesn’t supply a cmdlet to rename a computer. You can find cmdlets to

rename Active Directory objects, but that doesn’t change the name of the server.

TIP You may see references on the internet to a Rename-Computer cmdlet.
This was available during part of the PowerShell v2 beta process but was with-
drawn before version 2 was finalized. The Rename-Computer cmdlet has been
reinstated in PowerShell v3 (at least as far as the beta version).

This gap in the functionality provides us another opportunity to dip into our WMI bag

of tricks.

PROBLEM

An operating system has been installed on a new server. The name assigned to the

computer by the Windows install process isn’t suitable for your domain, so you need

to change it.

SOLUTION

Listing 13.1 shows how you can use the Win32_ComputerSystem class to perform this

task. The rename-computer function has the current computer name and the new

name as mandatory parameters. It’s important to remember that an IP address can be

supplied as the current computer name, as shown in figure 13.1 later in the discussion.

function rename-computer {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true,
 Mandatory= $true)]
 [string]$computername,
 [parameter(Mandatory= $true)]
 [string]$newname

)
BEGIN{
 $cred = Get-Credential
}
PROCESS {
 $comp = Get-WmiObject Win32_ComputerSystem

 ➥ -ComputerName $computername -Credential $cred
 $ret = $comp.Rename($newname, $null, $null)
 if ($ret.ReturnValue -eq 0){
 Write-Host "Rename of $computer succeeded. Restarting $computer"

Listing 13.1 Rename server

TECHNIQUE 98

342 CHAPTER 13 Configuring a server

 Restart-Computer -ComputerName $computername -Credential $cred -Force
 }
 else {Write-Host "Rename of $computer failed"}
}}

If you’ve renamed a computer using the manual process, then you know that it

requires administrator privileges on the system. The machine isn’t part of the domain

yet, so you can’t use your domain accounts (these techniques are a real-life “chicken

and egg” situation—which do you perform first?). You can use Get-Credential to

supply the password in a secure manner for the Administrator account on the server,

as illustrated in figure 13.1. In my test it wasn’t necessary to supply the machine name

as part of the credential. It’s an available option if required.

TIP I put Get-Credential into the BEGIN block in listing 13.1 so it executes
once if a number of machine names are piped to the function. This may not
be appropriate if the same password hasn’t been used for all Administrator
accounts (ideally they should all be different, but it rarely happens). In that
case, move it into the PROCESS block, and you’ll be prompted for credentials
for each machine.

The Win32_ComputerSystem class is used to create a WMI object for the machine. The

credential you created in the previous step is used during the WMI call. This ensures

that the object is assigned the correct permissions. The Rename method is used with

Figure 13.1 Renaming a computer

343TECHNIQUE 99 Joining a computer to a domain

the value of the script’s newname parameter. The second and third possible parameters

on this method are set to $null as they represent an account and password that has

permission to perform the rename. You’ve already supplied this information when

you created the WMI object.

 The return code is tested, and if it’s 0 (success), a message is displayed and the

computer is restarted. If any other value is returned, a message stating that the

rename action was unsuccessful is displayed.

TIP The vast majority of rename failures can be traced to mistyping the cre-
dentials or using the wrong credentials.

DISCUSSION

This function uses the Restart-Computer cmdlet from PowerShell v2. This could be

replaced by a call to the Reboot method of Win32_ComputerSystem as shown in sec-

tion 13.2.2.

 This function could also be used if a computer is being repurposed and you need

to rename the machine. You can’t use WMI to move the server to an Organizational

Unit (OU) within Active Directory, but that capability could be added to the script, if

required, by utilizing the [adsi] type accelerator.

 An organization with multiple servers will find that administering those computers

through an Active Directory domain is more efficient. You’ll need to join your new

server to the domain before you can administer it in this way.

 Joining a computer to a domain

You can use GUI tools to join a computer to the domain, but that means creating a

remote desktop connection to the server. It’s more efficient to send a command from

a script to enable this action.

NOTE The Add-Computer cmdlet can be used to join a computer to the
domain, but it only works on the local machine. You can’t use it to join a
remote machine to the domain.

PROBLEM

You need to join your new server to the domain. The correct credentials are available

and you need to perform this action in the most efficient manner possible.

SOLUTION

You’re joining computers to domains, as shown in the following listing, which means

you’ll find the WMI method for this on the Win32_ComputerSystem class. The impor-

tant point to note about this script is that two sets of credentials are required.

function join-domain {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,

Listing 13.2 Join computer to domain

TECHNIQUE 99

http://jamesone111.wordpress.com/
http://jamesone111.wordpress.com/

344 CHAPTER 13 Configuring a server

 ValueFromPipelineByPropertyName=$true,
 Mandatory= $true)]
 [string]$computername

)
BEGIN {
$cred = Get-Credential -Credential Administrator

$domcred = Get-Credential
$domain = $domcred.GetNetworkCredential().Domain
$user = $domcred.UserName
$password = $domcred.GetNetworkCredential().Password
}
PROCESS {
$comp = Get-WmiObject Win32_ComputerSystem

 ➥ -ComputerName $computername -Credential $cred

 ➥ -Authentication 6
$ret = $comp.JoinDomainOrWorkgroup($domain, $password, $user, $null, 3)
if ($ret.ReturnValue -eq 0){
 Write-Host "Joining $computer to $domain succeeded. Restarting $computer"
 Restart-Computer -ComputerName $computername -Force
}
else {Write-Host "Joining $computer to $domain failed"}
}}

You start by getting the administrator credential for the new server—it wasn’t neces-

sary in my testing to give the machine name as part of the credential. When you join a

machine to the domain, you have to provide the credentials of a domain account that

has permissions to perform this act.

 A second Get-Credential call is performed to allow input of the domain creden-

tial—the domain name must be part of the credential. The domain is determined

from the credential information and the password is also retrieved. The password has

to be in a clear string for this technique to work—it’s encrypted within the credential.

Figure 13.2 shows the encrypted and unencrypted versions of the password in a cre-

dential object. Obtaining the password in this way means that you don’t store it any-

where for it to be compromised, and it can’t be read as you input it.

Figure 13.2 Accessing a password from a network credential

345Controlling server restarts

A WMI object based on the Win32_ComputerSystem class is obtained from the remote

machine. The administrator credential for the server is used in this call.

NOTE You have to use Packet Privacy (by using -Authentication 6 as param-
eter and value) on the WMI call. The connection has to be encrypted for this
action; otherwise an error is thrown by the WMI engine.

The JoinDomainOrWorkgroup method is used to add the computer to the domain.

The argument given a value of $null represents the OU you want the machine to be

placed in ($null indicates that you’re using the default), and the final parameter indi-

cates that you’re joining the machine to the domain and creating an account.

 A final check on the return value indicates whether the attempt to join the

machine to the domain was successful or not. You can then restart the server. If the

attempt to join the domain fails for any reason it may be necessary to restart the server

before reattempting the action.

DISCUSSION

One of the major reasons for failure when attempting to join a machine to a domain

is that the server can’t find a domain controller in the domain because DNS isn’t con-

figured correctly. This technique assumes that at least one DNS server is configured via

DHCP, as is usual in most organizations. If for some reason there isn’t one you should

perform the tasks in section 13.3 before attempting to join the server to the domain.

 I always put new systems into the default Computers container when joining them

to the domain. This ensures that Group Policies (GPOs) don’t affect the system until

I’ve finished configuring it. If you want to put the machine directly into an OU add a

line something like this to define the OU to the script:

$ou = "OU=MyOU,DC=Mydomain,DC=COM"

The call to the JoinDomainOrWorkgroup method is then changed to this:

$ret = $comp.JoinDomainOrWorkgroup($domain,

 ➥ $password, $user, $ou, 3)

A computer restart is required when you rename the computer or join it to a domain,

but you also need to be able to perform these actions at other times. When you use

the GUI tools to configure a new server the reboot is triggered by the GUI. When using

WMI you need to trigger server shutdown and restarts within the script. Controlling

server restarts with WMI is the topic we’ll cover next.

13.2 Controlling server restarts

There are two actions you need to consider when you want to control a new server.

You either want to shut it down completely, or you want to perform a restart so that

your configuration changes will be committed and used.

 PowerShell v2 supplies cmdlets to perform these actions:

■ Stop-Computer

■ Restart-Computer

346 CHAPTER 13 Configuring a server

It’s useful to be able to perform these actions directly from WMI.

 Shutting down a server

A server may need to be shut down for a number of reasons:

■ It’s a system that isn’t needed at present.

■ Configuration hasn’t been completed, and you don’t want people accessing it

until it’s ready.

■ It’s a virtual machine, and the host resources are needed for something else.

■ Hardware maintenance has to be performed.

PROBLEM

There’s an issue with the power supply in your data center. The power supply will be

switched off for safety reasons while this issue is rectified. This requires that all of the

systems be shut down during the period of the work.

SOLUTION

The following listing shows how you can shut down one or more servers. This will also

work with client machines.

function stop-server {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"

)
BEGIN{
$cred = Get-Credential
}
PROCESS {
$comp = Get-WmiObject Win32_OperatingSystem

 ➥ -ComputerName $computername -Credential $cred
$ret = $comp.Shutdown()
if ($ret.ReturnValue -eq 0){
 Write-Host "Shutting down $computername succeeded."
}
else {Write-Host "Shutting down $computername failed"}
}}

The computername parameter can be supplied on the command line for a single

machine or via the pipeline for a number of machines. You get credentials that give

you permission to shut down the server (usually the local administrator on non-

domain machines or the domain administrator if in a domain).

 The Win32_OperatingSystem class is used on the remote machine and the Shut-

down method is called. A test of the return value can be used to check for a successful

shutdown.

Listing 13.3 Shut down server

TECHNIQUE 100

347TECHNIQUE 101 Restarting a server

DISCUSSION

If the same credentials can’t be used to shut down all computers you can move the

content of the BEGIN block into the start of the PROCESS block.

PROCESS {
$cred = Get-Credential

…
}

In the perimeter network you may have different administrator passwords on the sep-

arate machines.

 You can also use the Stop-Computer cmdlet for this action. When in a domain,

you’d use this:

Stop-Computer -ComputerName web01

Otherwise you’d use this:

$cred = Get-Credential
Stop-Computer -ComputerName 10.10.54.246 -Credential $cred -Force

Stopping the server is a bit drastic and not something you’d want to do on a regular

basis. It’s more common, especially when configuring a new server, to have to restart

the server multiple times.

 Restarting a server

There’s a school of thought that states that “Windows servers should be restarted on a

regular (often nightly or weekly) basis.” I haven’t found this to be necessary with mod-

ern versions of Windows. The idea is left over from the Windows NT days when the

operating system and applications were not as reliable (there are still a few applica-

tions that need a regular restart, but this is definitely application driven rather than

operating system driven). But you still need to reboot the server after specific tasks

have been performed.

PROBLEM

A server has to be restarted due to a problem with an application. That particular

application is business critical at this time of year, so you need to initiate the restart as

quickly as possible.

SOLUTION

A minor change to technique 99 produces the following listing. The comments in the

discussion of listing 13.2 regarding the positioning of the Get-Credential command

also apply to this listing.

function restart-server {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,

Listing 13.4 Restart server

TECHNIQUE 101

348 CHAPTER 13 Configuring a server

 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"

)
BEGIN{
$cred = Get-Credential
}
PROCESS {
$comp = Get-WmiObject Win32_OperatingSystem `
-ComputerName $computername -Credential $cred
$ret = $comp.Reboot()
if ($ret.ReturnValue -eq 0){
 Write-Host "Restarting $computername succeeded."
}
else {Write-Host "Restarting $computername failed"}
}}

The change from listing 13.2 is that the Reboot method is used rather than the Shutdown

method. The return value is tested to determine whether the restart has succeeded.

DISCUSSION

It would be possible to combine listings 13.2 and 13.3 and use switches to indicate

whether a restart or shutdown is required. That was my initial approach, but I decided

that it was less confusing to have the granularity of two functions. It also reduces the

chances of error!

TIP When designing your functions I recommend that you build the maxi-
mum amount of granularity into your code. Make many small functions, each
performing a single job, rather than a small number of large functions. Main-
tenance will be much easier.

When giving credentials be careful if you use Administrator as the user account. If the

machine is a member of a domain it will attempt to use the domain administrator

account which may not have rights to the system. It’s safest to always fully define the

account that’s being used:

■ Domain\user_name for an Active Directory account

■ Computer\user_name for a local account

NOTE One thing to remember is that restarting the server doesn’t necessarily
ensure that the applications and services restart. In some cases you’ll need to
test whether specific services have restarted. You can use the Get-Service
cmdlet or listing 9.1 to perform this task.

When I create a new server I normally use DHCP to configure it with an IP address. It’s

a best practice to use a static IP address for servers. Setting the networking configura-

tion is the next task.

13.3 Configuring network adapter settings

When you configure a server’s network adapter two main groups of tasks need to be

performed:

349TECHNIQUE 102 Setting an IP address

■ Set the IP address and subnet.

■ Configure the DNS servers that the server will use and set the connection name.

If you’ve read these chapters in order you’ll remember that you created functions to

do this in chapter 11. Setting the DNS servers and connection name can be performed

using the functions directly. There’s a problem with setting the IP address, but you can

find a way around that.

 You need to know which adapter you’re working with before you start. In this sec-

tion, I’m assuming you’re working with a single adapter. Network adapter teaming

can’t be performed by WMI and will need to be configured manually.

 You can find the adapters using technique 74 in chapter 11:

get-nic -computer webr201 |
ft DeviceId, NetConnectionID -a

The results for my system show that I need to work with the adapter that has a DeviceID

of 7 and a NetConnectionID of Local Area Connection. Your results will probably

be different.

 Now that you’ve established which adapter you need to configure we’ll look at set-

ting the IP address and then the other information.

 Setting an IP address

The function in technique 84 (chapter 11) will set an IP address. It works fine when

you’re modifying the adapter on the local machine or an adapter on a remote

machine that’s not the adapter through which you’re connecting to the system. But

when you try to modify the IP address of an adapter on a remote machine, which is

also the adapter you’re attached to, you’ll find the following:

1 The IP address will be changed immediately.

2 PowerShell will appear to hang.

3 The server doesn’t immediately reset its information in DNS.

Item 1 is good. Item 3 isn’t a problem because you can work with the new IP address

instead of the name. Item 2 is a problem. What happens is that the IP address on the

remote machine is changed, and PowerShell and WMI immediately lose their connec-

tion to the machine because the address has changed. You can set WMI to time out,

but the network connection doesn’t time out as quickly, so PowerShell doesn’t regain

control of the prompt.

 The only way around this that I’ve discovered, apart from restarting PowerShell, is

to wrap the change in a PowerShell job. This immediately returns the prompt, which

means you can keep on working while the job waits for the timeout. It’s an ugly work-

around but it does work. This is the essence of administration scripting—doing what’s

necessary to get the job done. There are no points for style and artistic interpretation

in this game.

TECHNIQUE 102

350 CHAPTER 13 Configuring a server

PROBLEM

You need to change the IP address on a remote machine. It has a single network

adapter and you don’t want to wait for the timeout to occur.

SOLUTION

Listing 13.5 is a script rather than a function mainly because using a function added

some unnecessary layers of complexity. I’ve called it set-ipaddress as can be seen in

the discussion section. The script takes a computer name, IP address, subnet, and net-

work adapter index as parameters (see technique 74 in chapter 11 for details on dis-

covering the index value).

[CmdletBinding()]
param (
 [string$computername="$env:COMPUTERNAME",
 [string]$address,
 [string]$subnet,
 [int]$index
)

$script = @"
`$tspan = New-TimeSpan -Seconds 20
`$conopt = New-Object System.Management.ConnectionOptions
`$conopt.TimeOut = `$tspan

`$scope = New-Object System.Management.ManagementScope
`$scope.Path = "\\$computername\root\cimv2"
`$scope.Options = `$conopt

`$path = New-Object System.Management.ManagementPath
`$path.Path = "Win32_NetworkAdapterConfiguration.Index=$index"

`$nic =

 ➥ New-Object System.Management.ManagementObject(

 ➥ `$scope, `$path, `$null)
`$nic.EnableStatic('$address', '$subnet')
"@

$script | Set-Content -Path setnic.ps1
$path = Join-Path -Path (Get-Location) -ChildPath "setnic.ps1"

Start-Job -Name setnic -FilePath $path

The next step is to create a here-string (a PowerShell structure for multiline strings)

that holds PowerShell code. The backticks (`) are used to escape the dollar symbols

($) so that variable substitution is not attempted. This script uses the .NET classes to

wrap the WMI functionality as an example of how they can be used.

 The code starts by creating a timespan object of 20 seconds B and applying it to

the timeout property of the WMI connection. The scope defines the WMI namespace

and includes the connection options C.

 The path to the WMI instance you need is defined D, and a WMI object is created

representing that network adapter configuration E. The EnableStatic method is

used to set the IP address and subnet.

Listing 13.5 Set IP address

Create
timespan

B

Set WMI
scope

C

Set WMI
path

D

Create
object

E

Start
job

F

351TECHNIQUE 103 Configuring other settings

 The contents of the here-string are written to a file using Set-Content. The full

path to the file is created, and the final act is to start a job F using the file you’ve cre-

ated as the item to action. It’s important to remember that the file is on your local sys-

tem but because of its contents will run against the remote machine.

DISCUSSION

The script can be used as follows. This assumes that you’ve discovered the index of the

adapter you need to modify:

set-ipaddress -computername webr201 -address "10.10.54.118" `
 -subnet "255.255.255.0" -index 7

That’s the hard part out of the way. Setting the DNS servers and the connection name

is a piece of cake by comparison.

 Configuring other settings

You need to set the DNS servers so that the machine can find a domain controller for

its domain. The network connection name on the adapter should be changed so that

it’s consistent with your other servers.

PROBLEM

You need to complete the configuration of your network adapter by setting the DNS

servers and connection name.

SOLUTION

Listing 13.6 shows how you can do this at the command line. You start by loading the

module you created in chapter 11 (it’s OK to rename the module if you want, but

remember that the .psm1 file needs to be renamed as well).

 Alternatively, you could use this line:

Import-Module ./Chapter11.psm1 -Force

This will reimport the module if it’s already loaded. You may need to give the full path

on your machine.

 The second act is to define the network address of the machine (this assumes

you’ve just changed the IP address, so the name isn’t available because DNS hasn’t

caught up).

if (-not(Get-Module -Name Chapter11)){
 Import-Module ./Chapter11.psm1
}
$computername = "10.10.54.118"

"Set Connection Name"
rename-connection -computername $computername `
-NetConnectionID "Local Area Connection" -newname "Virtual LAN"

"Set DNS Servers"
$dnssvr = "10.10.54.201","10.10.54.98"
set-DNSserver -computername $computername -index 7 -dnsserver $dnssvr

Listing 13.6 Set network information

TECHNIQUE 103

352 CHAPTER 13 Configuring a server

You can then use the rename-connection (technique 80) and set-DNSserver (tech-

nique 86) functions from chapter 11. I’ve added a couple of strings as comments that

will be displayed to show progress.

DISCUSSION

This section on configuring the network addresses has illustrated two key points you

should keep in mind regarding the use of PowerShell (or any other automation tool):

■ Look for reuse when you create your scripts and functions. Technique 103 is all

about reuse in that you’re using preexisting functions to do the job.

■ Concentrate on getting the task completed. The solution in technique 102 isn’t

elegant but it works. At some stage in the future you may discover a different

way of performing the task, but for now your time is better spent on solving

other problems.

The remaining major problem to solve is how to activate the servers.

13.4 Activating a server

Product activation for Windows servers may seem to be a pain, but it’s a fact of life.

You have to do it for two reasons:

■ To ensure the software is properly licensed and you remain legal

■ To keep the servers working

How can you do it in the most efficient manner?

 My friend James O’Neill answered this in a blog post. Check http://

jamesone111.wordpress.com/ and search for “SoftwareLicensingProduct.” You’ll find

references to two WMI classes:

■ SoftwareLicensingProduct

■ SoftwareLicensingService

NOTE These classes are new in Windows 7 and Windows Server 2008 R2.
They’re not available on earlier versions of Windows.

This section is derived from James’ post. You can test the license status of Windows

like this:

Get-WmiObject SoftwareLicensingProduct |
select Name, LicenseStatus

LicenseStatus will return an integer value where 0 = Unlicensed and 1 = Licensed. A

number of results are returned that represent the various ways Windows can be

licensed or activated. The important result is the one with a partial product key:

Get-WmiObject SoftwareLicensingProduct |
where {$_.PartialProductKey} |
ft Name, ApplicationId, LicenseStatus -a

This indicates the licensing situation you’re dealing with. It would be nice, though, if

you could get a little bit more information about the licensing state of your system.

http://jamesone111.wordpress.com/
http://jamesone111.wordpress.com/

353TECHNIQUE 104 Testing license state

 Testing license state

Has your IT environment ever been audited? Can you prove that all of your servers are

properly activated? This section will help you answer that second question. As well as

being a useful test while you’re building a new server, you can also use it to test the

setup of your whole estate.

PROBLEM

You need to test the activation and license state of your servers for auditing purposes.

Some of the servers are in remote locations and you don’t have the time or resources

to physically visit them all.

SOLUTION

You’ve seen that the license status information is available through the Software-

LicensingProduct class. The following listing shows how you can use that class to gen-

erate a meaningful statement about the license status of your server.

$lstat = DATA {
ConvertFrom-StringData -StringData @'
0 = Unlicensed
1 = Licensed
2 = OOB Grace
3 = OOT Grace
4 = Non-Genuine Grace
5 = Notification
6 = Extended Grace
'@
}
function get-licensestatus {
param (
[parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS {
 Get-WmiObject SoftwareLicensingProduct -ComputerName $computername |
 where {$_.PartialProductKey} |
 select Name, ApplicationId,
 @{N="LicenseStatus"; E={$lstat["$($_.LicenseStatus)"]} }
}}

A hash table, $lstat, is defined at the beginning of the script. You can then call the

SoftwareLicensingProduct class against the computer passed as a parameter to the

function. The results are filtered on the PartialproductKey property to ensure you

only get the results you need. There are three pieces of data you need:

■ The name of the product

■ The ApplicationId, which is a GUID

■ The decoded license status

Listing 13.7 Test license status

TECHNIQUE 104

354 CHAPTER 13 Configuring a server

The decoding of the license status is managed by the calculated field in the Select-

Object statement.

DISCUSSION

Figure 13.3 shows the results of running the function. The ApplicationId is fixed for

versions of Windows. You should get the same result returned on all versions.

 The results in figure 13.3 show that you’re still in the grace period after installation

of the operating system. You need to set the license key before you can activate the

server.

 Setting the license key

A Windows license key consists of five groups of five alphanumeric characters. A valid

license key is required for each instance of Windows. The key is usually found with the

media. Keys are specific to the version of Windows and the source of the media. For

instance, you can’t use an MSDN key on a commercial version of Windows.

PROBLEM

The license key needs to be set before you can activate the system. You need to per-

form this act remotely and ensure that the license key is in the correct format.

SOLUTION

Windows 7 and Windows Server 2008 R2 have a WMI class—SoftwareLicensing-

Service—that you can use to solve this problem, as shown in the following listing.

The license key and computer name have been made mandatory parameters. This

removes the need for default values. The license key pattern is evaluated using a regu-

lar expression and the ValidatePattern method. This won’t guarantee that the key is

correct, but it will ensure it’s in the right format.

function set-licensekey {
param (
[parameter(Mandatory=$true)]
[string]
[ValidatePattern("^\S{5}-\S{5}-\S{5}-\S{5}-\S{5}")]
$Productkey,

[parameter(Mandatory=$true)]
[string]$computername="$env:COMPUTERNAME"

Listing 13.8 Set license key

Figure 13.3 Testing the license status

TECHNIQUE 105

355TECHNIQUE 106 Activating a server

)

 $product = Get-WmiObject -Class SoftwareLicensingService `
-computername $computername
 $product.InstallProductKey($ProductKey)
 $product.RefreshLicenseStatus()
}

You use the SoftwareLicensingService class to create a WMI object. You can use the

InstallProductKey method with the license key as an argument. The last line of the

function refreshes the license status information.

DISCUSSION

The function is used as follows:

set-licensekey -Productkey "XXXXX-XXXXX-XXXXX-XXXXX-XXXXX" `
-computername "10.10.54.118"

The "XXXXX-XXXXX-XXXXX-XXXXX-XXXXX" represents the license key. You didn’t really

think I’d use my real key? The computer on which you’re installing the key can be des-

ignated by IP address as here or by its name.

TIP One additional possibility is to use WMI to read the operating system type
(see technique 14 in chapter 5), retrieve the key from a secure store, and apply
it. Ideally, the script would then activate the server as well (technique 106, com-
ing up next).

The server is now properly licensed. All you have to do is activate the license.

 Activating a server

Product activation can be accomplished in a number of ways. In this section, we’ll

assume that the server has a connection to the internet so that direct activation can

occur. It’s possible to activate manually via a phone call, but you can’t get PowerShell

and WMI to do that for you—yet.

TIP Reactivation will be required if you move a virtual server between hosts
that have different CPU architectures.

Activation is based on the hardware configuration of your server. If it changes too

much be prepared to reactivate.

PROBLEM

Your server needs to be activated. Activation is required because you’ve just created a

new server and you need to ensure that it remains usable beyond the grace period.

SOLUTION

You can use the SoftwareLicensingProduct class to solve this, as shown in the next

listing. Your invoke-activation function has a mandatory parameter for the com-

puter name. I wasn’t sure which PowerShell verb to use in the name of this function—

“invoke” seems to be the closest match.

TECHNIQUE 106

356 CHAPTER 13 Configuring a server

function invoke-activation {
param (
 [parameter(Mandatory=$true)]
 [string]$computername="$env:COMPUTERNAME"
)

 $product = Get-WmiObject SoftwareLicensingProduct `
-ComputerName $computername |
 where {$_.PartialProductKey}

 $product.Activate()
}

You create a WMI object using the SoftwareLicensingProduct class. The results are

filtered down to a single instance by using the PartialProductKey property. The

Activate method is called to perform the task.

 You should be aware that it takes a little while for the activation to complete, as the

system has to link to the Microsoft website to register the activation.

DISCUSSION

Once you’ve completed the activation process, you should double-check that every-

thing has worked by using get-licensestatus from technique 104. The results

should be similar to those shown in figure 13.4. Notice how the LicenseStatus has

changed to read Licensed, as compared to Grace in figure 13.3.

Your server is now renamed, licensed, activated, and joined to the domain. You’ve

configured the network adapters. The server is ready for the installation of the appro-

priate applications.

 One last optional task is to set the power plan for the server.

 Setting a power plan

Windows power plans control how your system consumes power. You can view the

existing power plans using the Win32_PowerPlan class:

Get-WmiObject -Namespace 'root\cimv2\power' `
-Class Win32_PowerPlan -ComputerName "10.10.54.118" |
select ElementName, IsActive

A new Windows Server 2008 R2 or Windows 7 system will have three power plans defined:

Listing 13.9 Activate server

Figure 13.4 A licensed server

TECHNIQUE 107

357TECHNIQUE 107 Setting a power plan

■ Balanced

■ High performance

■ Power saver

The Balanced plan is usually the active one on new installs.

NOTE Power plans are arguably less important when you’re dealing with a
virtualized server, because it’s the power plan of the host that controls the
power consumption. You may be able to save some power by configuring the
virtual server’s power plan, but it would be very difficult to quantify.

Most organizations have a number of physical servers and you can make an impact by

configuring the power plans on those systems.

PROBLEM

You need to be able to configure the Windows power plans across your server estate to

ensure that all servers are consuming the minimum amount of power that’s consistent

with them being able to perform their functions correctly.

SOLUTION

There’s a root\cimv2\power namespace tucked away inside WMI. It’s often overlooked

because it’s a child of the more important root\cimv2 namespace. In that namespace

you’ll find a Win32_PowerPlan class. This is the core of the solution to the problem, as

shown in the following listing.

function set-powerplan {
param (
[string]$plan="Balanced",

[parameter(Mandatory=$true,
 ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
[string]$computername
)
PROCESS {
 Get-WmiObject -Namespace 'root\cimv2\power'
 -Class Win32_PowerPlan -ComputerName $computername `
 -Filter "ElementName='$plan'" |
 Invoke-WmiMethod -Name Activate
}
}

A string representing the power plan name and a computer name are the only param-

eters you need for this function. You call the Win32_PowerPlan class (notice that you

need to give the namespace because you’re not working in the default). The plan

name is used as a filter on Get-WmiObject.

 The resultant object is piped into Invoke-WmiMethod, where you call the Activate

method. This will replace any existing active plan with the one you want.

Listing 13.10 Set power plan

358 CHAPTER 13 Configuring a server

DISCUSSION

It’s possible to create power plans using the WMI classes in the root\cimv2\power

namespace. In my experience the plans that are built into Windows are sufficient for

servers. The classes in the namespace are listed in table 13.1.

This quick look at power plans concludes our look at configuring a new server. This

isn’t necessarily the complete list of things you need to do to a server, but the tech-

niques in other chapters will supply ways to complete those other tasks, such as creat-

ing registry keys (chapter 7) or creating shares (chapter 8).

13.5 Summary

Configuring a new server is a task that occurs on a regular basis in most organizations.

There are a number of steps to be completed after the operating system is installed:

■ Rename the server to something more meaningful.

■ Stop and restart the server as required.

■ Set the IP address and DNS servers.

■ Rename the network connection.

■ Join the server to the domain.

■ Install the license key.

■ Activate the server.

■ Set the power plan.

All of these activities take time. You can use PowerShell functions to perform these

tasks remotely so you don’t need to spend time accessing the server directly.

 That completes our look at server configuration. In the next chapter you’ll dis-

cover how you can work with users and groups. You’ll also learn how to work with the

security configurations of your servers.

Table 13.1 Classes in the root\cimv2\power namespace

Win32_PowerMeter Win32_PowerMeterConformsToProfile

Win32_PowerMeterEvent Win32_PowerPlan

Win32_PowerSetting Win32_PowerSettingCapabilities

Win32_PowerSettingDataIndex Win32_PowerSettingDataIndexInPlan

Win32_PowerSettingDefine-
Capabilities

Win32_PowerSettingDefinition

Win32_PowerSettingDefinition-
PossibleValue

Win32_PowerSettingDefinitionRangeData

Win32_PowerSettingElementSetting-
DataIndex

Win32_PowerSettingInSubgroup

Win32_PowerSettingSubgroup Win32_PowerSupply

359

Users and security

If it wasn’t for the users we wouldn’t have our jobs. Sometimes it may seem that the

users cause all our problems, but they’re an essential part of the IT environment.

Honest! In this chapter, we’ll focus on administrating user accounts and also on

security, related both to user accounts and external threats.

 The majority of the user administration in a Windows environment occurs

through Active Directory. The WMI connector for Active Directory is deprecated in

Windows Server 8. Active Directory administration is best performed using the

PowerShell cmdlets. However a significant amount of administration is still

required for accounts local to a specific machine, and this is where WMI and Power-

Shell can be of assistance.

TIP Chapters 5, 10, and 11 of my PowerShell in Practice book cover using
PowerShell to administer Active Directory in great detail.

This chapter covers

■ Working with local users and groups

■ Discovering antimalware software status

■ Testing firewall state

■ Listing firewall settings

360 CHAPTER 14 Users and security

Most organizations have a set of procedures that are followed when people join or

leave. This can include setting up user accounts, adding users to groups, creating

mailboxes, and setting permissions on data shares. The WMI classes associated with

users don’t really lend themselves to being involved in this activity, apart from the set-

ting of permissions on file shares, as we discussed in chapter 8.

 Do you know what local accounts have been created on your servers and why they

were created? Do you know who is a member of the local Administrators group on

your SQL Server machine? You had better be able to answer these questions, especially

the last one, because it can leave a serious security hole if the wrong people have too

much access.

WARNING The reason for asking specifically about local administrators on
SQL Server systems is that the group is automatically given sysadmin (full)
rights to SQL Server. Oops.

WMI enables you to view the list of user accounts on the server. You can also investigate

which users are logged onto the system. In addition you can delve into the user

accounts and discover their membership in local groups, their desktop and profile,

and their logon session.

 You can work with local groups to discover the members of a particular group. This

is great for checking who has been granted membership in the local Administrators

group. The techniques discussed for discovering user and group information will also

work on client machines. In some respects they may be more useful when applied to

client machines because many organizations have to grant administrator privileges to

users to ensure that their applications work, and some users like to tinker. You can use

the WMI techniques presented in this chapter to undo some of those changes without

having to visit the machines.

 Security has many aspects. In this chapter we’ll concentrate on the steps you need

to take to protect your systems directly against external threats. This involves checking

the status of the antivirus and antispyware software. Windows provides some WMI

classes to perform these tasks, and there are other classes introduced by specific prod-

ucts that can help. We’ll examine both.

 The last aspect of security we’ll examine is the firewall on the machine. Modern

versions of Windows ship with a software firewall built into the system. This can be

replaced by a third-party offering if desired. You can use WMI to discover the firewall

status and settings.

 We’ll start by looking at the local user accounts.

14.1 User accounts on the local system

Local user accounts can be defined for a number of reasons, such as allowing a third-

party organization access to a system to maintain the application or even giving a user

access to work with a specific part of an application. We’ll work on the principle that

there’s a good reason for creating local accounts.

361TECHNIQUE 108 Listing user accounts

 The first item on the agenda in this section is to discover which accounts are pres-

ent on your local system. Creating accounts using WMI isn’t something I recommend

as there are easier methods of performing the task. But WMI is useful for auditing pur-

poses—for determining what accounts have been created.

 The usual outcome of an audit of this sort is that some user accounts will be found

to be no longer required. We’ll look at a function to delete those unwanted accounts.

This will also provide you with an opportunity to discover how to use the PowerShell

utility cmdlets to link functions that work with different object types and parameters.

 While the list of user accounts is useful for housekeeping, when it comes to trou-

bleshooting you need to know which accounts are actually logged on. This technique

aids in determining whether the accounts linked to services are configured correctly.

 This section closes with a technique to discover information associated with a user,

such as the desktop and profile. The profile information is especially useful if you sus-

pect profile corruption is causing problems for the user.

 All objects in a Windows environment have a Security Identifier (SID). This is what

Windows uses under the covers to work with objects, assign permissions, manage

group membership, and so on. Table 14.1 lists the SID types you’re likely to encounter.

Most of the time you’ll be working with types 1 or 2—users and groups respectively.

Once you know what users have been created on your system you can determine

which accounts are valid and which should be removed.

 Listing user accounts

Windows has a simple model for granting permissions. Put the users into a group and

apply the permissions to the group. In many of the organizations I’ve worked with this

model has been ignored either through lack of knowledge or for expediency. This can

lead to the situation where a lot of accounts are defined on local systems that you

Value Meaning

1 SidTypeUser

2 SidTypeGroup

3 SidTypeDomain

4 SidTypeAlias

5 SidTypeWellKnownGroup

6 SidTypeDeletedAccount

7 SidTypeInvalid

8 SidTypeUnknown

9 SidTypeComputer

TECHNIQUE 108

Table 14.1 SID types

362 CHAPTER 14 Users and security

don’t need. In a domain environment all permissions should be managed through

domain-level accounts rather than local accounts.

PROBLEM

You need to investigate the user accounts that have been created on your local systems

to ensure that your security model isn’t being bypassed. Ideally you need an efficient

method of removing unrequired local user accounts.

SOLUTION

The following listing illustrates how you can solve this problem. The

Win32_UserAccount class was created to supply this information.

function get-useraccount{
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 Get-WmiObject -Class Win32_UserAccount -ComputerName $computername |
 select AccountType, Description, Disabled, Domain, FullName,
 InstallDate, LocalAccount, Lockout, Name, PasswordChangeable,
 PasswordExpires, PasswordRequired, SID, SIDType
}}

The function has a computer name as a parameter, and then it accesses the

Win32_UserAccount class to discover the users. The properties of immediate interest

are chosen using Select-Object.

DISCUSSION

Figure 14.1 illustrates the output from this function. I’ve applied a further restriction

to the output using Format-Table (aliased to ft). The domain, name, and description

are displayed. The -a is a shortened form of -AutoSize.

TIP PowerShell will accept the minimum number of characters in a parame-
ter name to unambiguously identify the parameter. It’s a great idea at the
command line but shouldn’t be used in scripts.

Listing 14.1 List user accounts on the local machine

Figure 14.1 Discovering local user accounts

363TECHNIQUE 108 Listing user accounts

One property that isn’t shown in the figure is AccountType. You’d generally expect

the AccountType property to have a value of 512, which indicates a normal user

account.

 The Win32_UserAccount class enables you to rename a user account but you can’t

do much else with it directly. The WMI provider doesn’t support deleting accounts

which means you need to drop out of WMI to perform that task. Let’s take a little side

trip. I happen to have a function that you can use to delete local accounts, as the next

listing shows.

function remove-user {
[CmdletBinding(SupportsShouldProcess=$true)]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername,

 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$id
)
BEGIN {Add-Type -AssemblyName System.DirectoryServices.AccountManagement}

PROCESS {
 switch ($computername){
 "." {$computername = $env:COMPUTERNAME}
 "localhost" {$computername = $env:COMPUTERNAME}
 }

 $ctype = [System.DirectoryServices.AccountManagement.ContextType]::Machine

$context = New-Object -TypeName

 ➥ System.DirectoryServices.

 ➥ AccountManagement.PrincipalContext

 ➥ -ArgumentList $ctype, $computername

$user = [System.DirectoryServices.AccountManagement.

 ➥ UserPrincipal]::FindByIdentity($context, $id)

if ($psCmdlet.ShouldProcess("$id", "Will be deleted")) {
 $user.Delete()
 }
}}

The function takes a computer name and ID as parameters. It uses the

System.DirectoryServices.AccountManagement classes to specify that you’re deal-

ing with a local account (machine context type) and then find the account of inter-

est. The account is then deleted. Just to be safe, I’ve added the ability to use the

-WhatIf parameter.

 Ideally you’ll want the WMI function that discovers the local user accounts to be

able to talk to the function that deletes them. Unfortunately, the WMI function out-

puts all user accounts and it doesn’t output a property called computername or id. Not

good. Will you have to rewrite one of the functions or write a brand new function?

Listing 14.2 Delete local user account

http://wwp.greenwichmeantime.com/info/timezone.htm

364 CHAPTER 14 Users and security

 If you remember back to chapter 2, we discussed the utility cmdlets, such as

Where-Object and Select-Object. These are designed to be the glue between your

processing cmdlets or functions.

 You can use Where-Object to restrict the output of get-useraccount:

get-useraccount |
where {$_.Name -eq "BITSTEST"}

You now have a single user account on the pipeline. You can use calculated fields in

Select-Object to redefine the names of the properties:

get-useraccount |
where {$_.Name -eq "BITSTEST"} |
select @{N="computer"; E={$_.Domain}},
@{N="id"; E={$_.Name}}

Your object now consists of two properties—computer (name) and id (user account

name). This can be piped into the remove-user function to perform the deletion:

get-useraccount |
where {$_.Name -eq "BITSTEST"} |
select @{N="computer"; E={$_.Domain}},
 @{N="id"; E={$_.Name}} |
remove-user -WhatIf

I used the -Whatif parameter during testing. It’s always a good idea to experiment

with it present, just to avoid unpleasant surprises. This PowerShell pipeline could now

be put into a function to make an admin tool for deleting local user accounts on

remote machines.

 This exercise demonstrates a very important point about using PowerShell. You’ll

acquire functionality from a number of sources. The output and property names you

need won’t always match up and you have two choices:

■ Rewrite everything to produce a unified set of properties and parameters

■ Use the utility cmdlets to integrate the various cmdlets and functions

The second option maximizes your return from the time spent doing the integration.

You end up being able to automate more in a shorter time and so get the maximum

benefit from the time you spend working on the problem.

 You can now find the user accounts that exist on the server, but can you find the

users that are currently logged on to the system?

 Finding logged on users

The list of user accounts defined on a system gives you one part of the jigsaw, but it

doesn’t tell you if those users are active. When you’re troubleshooting a problem, you

may need to determine whether an account has established a logon session with the

system. As an example, if SQL Server won’t start, it may be because the service account

hasn’t successfully connected to the server.

TECHNIQUE 109

365TECHNIQUE 109 Finding logged on users

PROBLEM

You need to discover which accounts are logged on to a system. This may include indi-

vidual user accounts as well as service accounts.

SOLUTION

You don’t have any direct way to determine this information, but WMI maintains links

between classes using association classes. The following listing uses an association class

to discover the information you need to solve this problem.

function get-loggedonuser{
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [[string]$computername="$env:COMPUTERNAME")

PROCESS{
 Get-WmiObject -Class Win32_LoggedOnUser -ComputerName $computername |
 foreach {
 $ud = $_.Antecedent -split ","
 $user = New-Object -TypeName PSObject -Property @{
 Domain = (($ud[0] -split "\.")[2] -split "=")[1] -replace '"', ''
 User = ($ud[1] -split "=")[1] -replace '"', ''
 Id = (($_.Dependent -split "\.")[2] -split "=")[1] -replace '"', ''
 }
 $user.PSTypeNames[0] = "LoggedOnUser"
 $user
 }
}#process
}

The function uses the Win32_LoggedOnUser class to retrieve data from the system of inter-

est. An instance of the class is returned for every user account that’s logged on to the

system. Each instance associates a user account with a logon session. The Antecedent

property stores the user account. Here’s an example:

\\.\root\cimv2:Win32_Account.Domain="RSLAPTOP01",Name="SYSTEM"

The Dependent property stores the logon session, like this:

\\.\root\cimv2:Win32_LogonSession.LogonId="999"

You pipe each of the returned WMI objects into ForEach-Object. The first task is to

split the Antecedent property on the comma. A new PowerShell object is created to

store the output and the properties are populated.

 The Domain property is found by taking the first element of the array created by

splitting the Antecedent property. That’s then split again on the period (.). The slash

(\) is an escape character to ensure you split on the literal character, which gives you

Domain="RSLAPTOP01" as the third element (index 2). That’s split on the equal sign

Listing 14.3 Discover logged on users

366 CHAPTER 14 Users and security

(=)and the double quotes are removed. The domain should be the machine name for

a local user.

 The User name is also present in the Antecedent property. You go back to your

original split of this property and use the second element (index 1). This is split on

the equal sign (=)and the double quotes are removed.

 The session Id can be found on the dependent property. You can split on the

period (.) and then split the third element on the equal sign (=) and remove the dou-

ble quotes.

TIP Work through this example to ensure that you fully understand how to
arrive at the answer. PowerShell is object-based but that doesn’t mean you can
avoid string handling completely.

The object type is renamed and output to complete the processing.

DISCUSSION

Renaming the type of the output object is very useful if you intend on creating default

display formats for your output. You’ve seen default display formats in action when

you use Win32_ComputerSystem—compare the six properties displayed by default with

the full set of properties.

 Default display formats are based on the .NET type name of the object to be for-

matted (you’ll see an example of a format file in chapter 18). You can’t create a

default display format for a PSObject because that type is used for numerous different

sets of data. But if you rename the type you can then create individual default formats

as required. The original type name can be seen like this:

New-Object PSObject | gm

It returns a type of System.Management.Automation.PSCustomObject. When you

change the object type and test again

get-loggedonuser | gm

you get a type name of LoggedOnUser.

 You can also access other information regarding user accounts on your system.

 Discovering user information

You’ve seen the concept of associations between WMI classes a number of times

throughout the book. The concept applies to the Win32_UserAccount class too. There

are a number of classes associated with users, as you’d expect.

 You can display the associated classes using this piece of PowerShell.

Get-WmiObject -Query "ASSOCIATORS OF

 ➥ {Win32_UserAccount.Domain='RSLAPTOP01',Name='Richard'} WHERE

 ➥ ClassDefsOnly"

This takes a while to run, but it produces the following list:

TECHNIQUE 110

367TECHNIQUE 110 Discovering user information

■ Win32_Desktop

■ Win32_ComputerSystem

■ Win32_LogonSession

■ Win32_Group

■ Win32_SID

■ Win32_NTLogEvent

You can ignore Win32_ComputerSystem, Win32_SID, and Win32_NTLogEvent for

our current purposes. The computer system you already know, the SID is also deliv-

ered by Win32_UserAccount, and the event log entries will be investigated further in

the next chapter.

 When you’re investigating issues that users may be having, you need to look

beyond the account. You need to consider other aspects related to users, such as the

profile, desktop, and group membership.

PROBLEM

A full investigation into the user configuration on a system is required. You need to be

able to retrieve as much information on the configuration of the user account and

associated items as is practicable.

SOLUTION

Listing 14.4 may seem to be a very long script to solve this problem. A lot of the length

comes from the use of Add-Member to add properties to the object you’re creating.

NOTE The following listing is truncated for brevity. A number of properties
are added that aren’t shown in the listing. The listing in the code download
has the full property set.

The goal of this function is to output a single object that includes all of the informa-

tion you need. This will enable you to put the data onto the PowerShell pipeline for

further processing.

function get-userinfo{
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [parameter(Mandatory=$true)]
 [string]$user
)
PROCESS{
 if ($computername -eq "." -or

 ➥ $computername -eq "localhost"){
 $domain = $env:COMPUTERNAME}
 else {$domain = $computername}

Listing 14.4 Get user information

Set
domain

B

368 CHAPTER 14 Users and security

 $userfilt = "Name='$user'"
 $userinfo = Get-WmiObject -Class Win32_UserAccount `
 -ComputerName $computername -Filter $userfilt |
 select Name, Domain, FullName, Description,
 LocalAccount, Disabled, Lockout,
 PasswordChangeable, PasswordExpires,
 PasswordRequired, SID

 if (!$userinfo){Throw "User NOT found"}

 $qdesktop = "ASSOCIATORS OF

 ➥ {Win32_UserAccount.Domain='$domain',Name='$user'}

 ➥ WHERE ResultClass = Win32_Desktop"
 $desktop =

 ➥ Get-WmiObject -ComputerName $computername -Query $qdesktop

 $userinfo |
 Add-Member -MemberType NoteProperty -Name DeskScreenSaverActive `
 -Value $desktop.ScreenSaverActive -PassThru |

 Add-Member -MemberType NoteProperty -Name DeskScreenSaverExecutable `
 -Value $desktop.ScreenSaverExecutable -PassThru |

 Add-Member -MemberType NoteProperty -Name DeskScreenSaverSecure `
 -Value $desktop.ScreenSaverSecure -PassThru |

 Add-Member -MemberType NoteProperty -Name DeskScreenSaverTimeout `
 -Value $desktop.ScreenSaverTimeout -PassThru |

 Add-Member -MemberType NoteProperty -Name DeskWallpaper `
 -Value $desktop.Wallpaper

 $profilt = "SID='$($userinfo.SID)'"
 Write-Debug $profilt
 $profile = Get-WmiObject -Class Win32_UserProfile `
 -Filter $profilt -ComputerName $computername

 $userinfo |
 Add-Member -MemberType NoteProperty -Name ProfileLastUseTime `
 -Value $($profile.ConvertToDateTime($profile.LastUseTime)) -PassThru |

 Add-Member -MemberType NoteProperty -Name ProfileLocalPath `
 -Value $profile.LocalPath -PassThru |

 Add-Member -MemberType NoteProperty -Name ProfileSpecial `
 -Value $profile.Special

 $qlogon = "ASSOCIATORS OF

 ➥ {Win32_UserAccount.Domain='$domain',Name='$user'}

 ➥ WHERE ResultClass = Win32_LogonSession"
 $logons = Get-WmiObject -ComputerName $computername -Query $qlogon

 $ls = 1
 foreach ($logon in $logons) {
 $userinfo |
 Add-Member -MemberType NoteProperty `
 -Name "Logon$ls-AuthenticationPackage" `
 -Value $logon.AuthenticationPackage -PassThru |

 Add-Member -MemberType NoteProperty `
 -Name "Logon$ls-LogonId" -Value $logon.LogonId -PassThru |

Get
userC

Get
desktop
data

D

Get
profile

E

Get
logon
session

F

369TECHNIQUE 110 Discovering user information

 Add-Member -MemberType NoteProperty -Name "Logon$ls-StartTime" `
 -Value $($logon.ConvertToDateTime($logon.StartTime))

 $ls++
 }

 $qgroups = "ASSOCIATORS OF

 ➥ {Win32_UserAccount.Domain='$domain',Name='$user'}

 ➥ WHERE ResultClass = Win32_Group"
 $groups = Get-WmiObject -ComputerName $computername -Query $qgroups

 $groupnames = @()
 foreach ($group in $groups){$groupnames += $group.Name}
 $userinfo |
 Add-Member -MemberType NoteProperty -Name Groups -Value $groupnames

 $userinfo

}#process
}

The function commences by taking a computer name and user name as parameters.

The user name is a mandatory parameter to ensure you have something to work with.

You need to ensure that the computer name is in a format you can work with; convert-

ing it to the actual computer name ensures that you can also use it as the domain

name when required B.

 The next step is to get the Win32_UserAccount object representing the user C.

The output object ($userinfo) is created by selecting the properties you want. If the

user account can’t be found an error is thrown and the function stops processing.

 A WQL query is created and run to get the Win32_Desktop associated with the

user D. Properties are added to the $userinfo object using Add-Member.

 The user profile information is added in a similar manner, except this time you

create a WMI filter based on the SID of the user E. There isn’t a direct association

between the user account and the profile. This is just one of WMI’s little mysteries.

 You’re back to using an "ASSOCIATORS OF" type WQL query when you want to

retrieve the logon sessions associated with the user account F. There may well be

more than one logon session associated with an account, so you need to use foreach

to iterate through the sessions. Add-Member continues to be used to add more prop-

erties to the $userinfo object, but you differentiate each logon session using an

integer counter.

 The function ends by getting the groups the user is a member of by associating

the Win32_Group class G. In this case you only need the group names. You can

iterate through the groups, add the group name to an array, and then add the array

as the value of a new property. The $userinfo object is then output to the Power-

Shell pipeline.

DISCUSSION

This technique returns a lot of information. There are a few options for restricting the

data returned:

Get group
membership

G

370 CHAPTER 14 Users and security

■ Break the script into a number of smaller functions. This has the drawback of

losing the ability to retrieve all information in one pass.

■ Add more parameters to switch functionality on or off.

■ Use Where-Object to restrict the output.

These options show PowerShell at its best—very flexible and able to meet your partic-

ular needs.

 You saw at the end of listing 14.4 how you can discover the groups associated with a

user. We need to investigate local groups a little bit more.

14.2 Groups on the local system

I’ve mentioned groups several times in the chapter. Groups are an important concept

in Windows environments. Without them we’d have to administer each user account

individually, which would increase our workload significantly.

 Groups are important for allocating permissions, but there are only two things you

really need to consider in this section—discovering which groups are present on the

system, and then discovering the membership of those groups.

 Listing local groups

Active Directory groups are used for the majority of administration needs, but there

are a number of scenarios where you’ll need to investigate local groups and their

membership. The first task is to discover what local groups are present on the system.

PROBLEM

The list of local groups on your servers has to be determined so that you can properly

audit the security settings on the system. You need to ensure that additional groups

haven’t been created to bypass your Active Directory–based security.

SOLUTION

The following listing shows how you can obtain a list of groups. You only need a com-

puter name as a parameter.

function get-group{
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 Get-WmiObject -Class Win32_Group -ComputerName $computername |
 select Description, Domain, InstallDate, LocalAccount,
 Name, SID, SIDType
}}

The Win32_Group class supplies everything you need to solve the problem. A call to

Get-WmiObject with the ComputerName parameter, ensuring you target the correct sys-

tem, is followed by Select-Object to filter the properties you wish to output.

Listing 14.5 List local groups

TECHNIQUE 111

371TECHNIQUE 112 Listing group membership

DISCUSSION

One point that must be remembered when looking at local users and groups with

WMI is that the Domain property will have a value of the local computer name, but for

domain-level accounts, the Domain property will carry the name of the domain. This

can appear confusing if the results are just skimmed.

 It’s one thing to know what groups are on the system. It’s more important, though,

to understand the membership of those groups.

 Listing group membership

There are some local groups, such as the Administrators group, for which it’s very

important that you keep a tight control on membership. You could use Restrictive

Groups in GPOs, but that can lead to administrative overhead. It can also lead to

group membership being wiped out if you get the GPO wrong. I prefer to audit the

group membership on a regular basis.

PROBLEM

You need to determine the group membership for the local groups on a specified sys-

tem. This ensures that too many privileges haven’t been granted.

SOLUTION

The following listing demonstrates how to solve this problem. The computer name is

the only parameter again.

function get-groupmembership{
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 Get-WmiObject -Class Win32_Group -ComputerName $computername |
 foreach {
 $group = $_.Name
 $domain = $_.Domain
 $query = "ASSOCIATORS OF {

 ➥ Win32_Group.Domain='$domain',Name='$group'}

 ➥ WHERE ResultClass = Win32_UserAccount"
 Get-WmiObject -ComputerName $computername -query $query |
 foreach {
 $member = New-Object -TypeName PSObject -Property @{
 GroupName = $group
 GroupDomain = $domain
 UserName = $_.Name
 UserDomain = $_.Domain
 }
 $member
 }
}
}}

Listing 14.6 List group membership

TECHNIQUE 112

372 CHAPTER 14 Users and security

You retrieve the list of groups on the system using Win32_Group (alternatively, it would

have been possible to use a call to the get-group function from listing 14.5). You then

iterate through the groups, and for each of them you find the associated users.

 An object is created that contains the user name, the group name, and their

respective domains. The function outputs the object as its last act.

DISCUSSION

If you only want to check the membership of one or two groups you could modify the

function to filter out the other groups using Where-Object. The local Administrators

group should always be included in any audit activity.

 The other aspect of the computers that you need to consider is their security set-

tings. This includes the antimalware and the firewall installed on the server.

14.3 Security

Security is a massive subject, and I could fill the book just on that topic. In this book,

we’ll touch on various security-related topics as we progress because I prefer to deal

with security as something that everyone needs to consider, whatever they’re doing,

rather than as something that those funny guys in the corner do.

 In this section we’ll look at some security products that are likely to be present on

your Windows systems, including

■ Antivirus

■ Antispyware

■ Firewall

NOTE Antivirus and antispyware will be grouped together as antimalware in
parts of this section.

You’ve already seen a number of times that WMI documentation is a bit sparse in

places—well, OK, it’s nonexistent in many places. As there doesn’t seem to be much

documentation available for these areas I tried a bit of digging, like this:

Get-WmiObject -Namespace root -Recurse -List *firewall*

I started at the top of the WMI tree and worked through the namespaces. I ended up

with four namespaces to consider, as listed in table 14.2. These namespaces are only

accessible if PowerShell is running with elevated privileges.

Table 14.2 WMI security namespaces

Namespace Notes

ROOT\SecurityCenter Windows Vista and earlier

ROOT\SecurityCenter2 Windows Vista SP1 and later

ROOT\Microsoft\SecurityClient Forefront Endpoint Protection 2010

ROOT\Microsoft\PolicyPlatform\WindowsFirewallConfiguration Forefront Endpoint Protection 2010

373TECHNIQUE 113 Testing antivirus status

Two of the namespaces are standard for Windows. There are three active classes in the

ROOT\SecurityCenter* namespaces:

■ AntiSpywareProduct

■ AntiVirusProduct

■ FirewallProduct

The specific namespace to use is dependent on the version of Windows, as shown in

table 14.2. You can use the Windows build numbers to quickly determine the version,

as shown in table 14.3. An example of how to apply this is shown in listing 14.7.

The other two namespaces are installed with my antivirus software. Similar classes may

be present with other such products.

 Now that you know the WMI classes that are available, what are you going to do

with them? The obvious starting point is to ensure that the various types of antimal-

ware software are working. You’ll work with these WMI classes to create techniques

that test that the antivirus, antispyware, and antimalware software is working correctly

and that the files are up to date.

 Modern Windows systems incorporate a firewall to increase the security of the sys-

tem. You’ll use PowerShell and WMI to test the firewall status and determine the fire-

wall settings so you know which applications are being blocked and which are allowed

through the firewall.

 The standard Windows namespaces enable you to test your antivirus software.

 Testing antivirus status

Viruses are a fact of life. Cleaning up an enterprise after it has suffered a major virus

infection isn’t a pleasant task; even cleaning up a single machine can be a painfully

tedious procedure, as I discovered recently. You need to ensure that your antivirus

software is working. Many enterprise level antivirus products have a central reporting

console, but being able to test individual systems can supply a quicker answer.

PROBLEM

A test needs to devised that will quickly show if the antivirus software on one or more

systems is working and up to date. Ideally this should work across multiple antivirus

products.

Build number OS version

6000 Windows Vista RTM

6001 Windows Vista SP1

6002 Windows Vista SP2

7600 Windows 7 RTM

7601 Windows 7 SP1

TECHNIQUE 113

Table 14.3 Windows build numbers

374 CHAPTER 14 Users and security

SOLUTION

Listing 14.7 illustrates the solution to this problem. The difficult part is deciding

which of the WMI namespaces to use. This is resolved by using the

Win32_OperatingSystem class—you test the BuildNumber property to determine the

operating system version, and hence which namespace to use.

function get-antivirus{
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 $os = Get-WmiObject -Class Win32_OperatingSystem `
 -ComputerName $computername

 if ($os.BuildNumber -ge 6001) {
 $av = Get-WmiObject -Namespace 'ROOT\SecurityCenter2' `
 -Class AntiVirusProduct -ComputerName $computername
 }
 else {
 $av = Get-WmiObject -Namespace 'ROOT\SecurityCenter' `
 -Class AntiVirusProduct -ComputerName $computername
 }
 $av | select displayName, instanceGuid, pathToSignedProductExe,
 pathToSignedReportingExe, productState

}}

The AntiVirusProduct class of the appropriate namespace is interrogated. You can

then pipe the object into Select-Object to restrict the display to the properties of

interest.

DISCUSSION

Product state is a numeric value—I get 397312 on my system. I’m assuming that this is

OK, as the GUI shows that my antivirus software is up to date and working. There doesn’t

seem to be a definitive statement I can find that describes how the product state value

is produced. I’ve seen a lot of speculation but little corroborated data. What little infor-

mation there is supports the notion that 397312 is a good result and that other values

indicate an issue with the antivirus software that should be investigated.

 Unfortunately, viruses aren’t the only malware. You also need to determine the sta-

tus of your antispyware software.

 Testing antispyware status

Spyware does exactly what it says. It spies on what you’re doing, recording information

about your activities and reporting to ... someone. This information could just identify

websites visited, or it could be actual keystrokes, in which case your passwords are

Listing 14.7 Get antivirus status

TECHNIQUE 114

375TECHNIQUE 114 Testing antispyware status

exposed. Many antivirus products also function as antispyware, but there are also inde-

pendent antispyware products, such as Windows Defender.

PROBLEM

The antispyware product on your systems needs to be checked to determine if it’s

working correctly and that it’s up to date.

SOLUTION

You can adapt listing 14.7 to produce the following listing. The same test for com-

puter operating system version is performed as in the original listing, and depending

on the result, the AntiSpywareProduct class is used in the appropriate namespace.

function get-antispyware{
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 $os = Get-WmiObject -Class Win32_OperatingSystem `
 -ComputerName $computername

 if ($os.BuildNumber -ge 6001) {
 $aspys = Get-WmiObject -Namespace 'ROOT\SecurityCenter2' `
 -Class AntiSpywareProduct -ComputerName $computername
 }
 else {
 $aspys = Get-WmiObject -Namespace 'ROOT\SecurityCenter' `
 -Class AntiSpywareProduct -ComputerName $computername
 }

 foreach ($aspy in $aspys) {
 $aspy | select displayName, instanceGuid, pathToSignedProductExe,
 pathToSignedReportingExe, productState
 }

}}

There could well be multiple results from this listing, so you use foreach to iterate

through the set of results. Each instance of antispyware software is piped through

Select-Object and the desired properties are displayed.

DISCUSSION

The productState property has the same meaning as discussed in listing 14.7. I rec-

ommend double-checking the result against a known healthy instance of your antispy-

ware software to determine the value to look for.

 It’s very possible that you may acquire other WMI functionality through the

installation of a specific antivirus product. This could cover both antimalware and the

firewall.

Listing 14.8 Get antispyware status

376 CHAPTER 14 Users and security

 Testing antimalware status

The ROOT\Microsoft\SecurityClient namespace is installed by Microsoft Forefront

Endpoint Protection 2010. It supplies the following classes:

■ ProtectionTechnologyStatus

■ FirewallState

■ AntimalwareHealthStatus

■ AntimalwareInfectionStatus

■ Malware

■ AntimalwareDetectionStatus

Using the ProtectionTechnologyStatus class is equivalent to using the Antimalware-

HealthStatus and FirewallState classes. Hopefully you’ll never have to use the Anti-

malwareInfectionStatus class, because its job is to report on the status of infections

and pending cleanup operations.

 We’ll concentrate on the health status of the antimalware software and the firewall.

PROBLEM

You’re using Forefront Endpoint 2010 as your antivirus software, and you want to dis-

cover more about its health than is shown by listings 14.7 and 14.8.

SOLUTION

The AntimalwareHealthStatus class can be used for this. The following listing dem-

onstrates how it’s used.

function get-antimalwarehealth{
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 Get-WmiObject -Namespace 'ROOT\Microsoft\SecurityClient' `
 -Class AntimalwareHealthStatus -ComputerName $computername |
 select AntispywareEnabled, AntispywareSignatureAge,
 AntispywareSignatureUpdateDateTime, AntispywareSignatureVersion,
 AntivirusEnabled, AntivirusSignatureAge,
 AntivirusSignatureUpdateDateTime, AntivirusSignatureVersion,
 BehaviorMonitorEnabled, Enabled, EngineVersion,
 IoavProtectionEnabled, LastFullScanAge, LastFullScanDateTimeEnd,
 LastFullScanDateTimeStart, LastFullScanSource,
 LastQuickScanAge, LastQuickScanDateTimeEnd,
 LastQuickScanDateTimeStart, LastQuickScanSource,
 Name, NisEnabled, NisEngineVersion, NisSignatureVersion,
 OnAccessProtectionEnabled, ProductStatus,
 RealTimeScanDirection, RtpEnabled

}}

Listing 14.9 Antimalware health check

TECHNIQUE 115

377TECHNIQUE 116 Testing firewall status

A single parameter takes the computer name, which is used in the Get-WmiObject

call. The namespace and class are given as part of the call. Select-Object is used to

filter the properties you need returned. The useful information is buried in amongst a

lot of properties you don’t need. The properties related to signature update times,

scan times, and ages will be most useful. One advantage of wrapping these WMI calls

in a function is that you only have to type out the property selection once.

DISCUSSION

There is a property called PackedXML that returns the data in XML format. It has been

excluded from the display.

 Dates look like this:

2011-05-16T04:49:41.000Z

This can be translated as Year-Month-Day, followed by a T to signify time, which is dis-

played as Hours:Minutes:Seconds. The Z indicates that the time is given as Coordi-

nated Universal Time (UTC). UTC is also known as GMT or Zulu time (military),

which is where the Z comes from. The time zones and their corresponding letter

codes can be found here: http://wwp.greenwichmeantime.com/info/timezone.htm.

 The time can be put into Get-Date (or the .NET DateTime class) to resolve to local

time as shown in figure 14.2. There’s a difference between the input and output of

one hour due to the clock’s advancement for daylight saving time at the time of writ-

ing (I’m UK-based, so this figure is based on GMT).

 We’ve considered the status of the antimalware software in a number of ways. We

need to consider the firewall next.

 Testing firewall status

Modern versions of Windows ship with a software-based firewall. This will default to on

or off depending on the version of Windows. The FirewallProduct class in the

ROOT\SecurityCenter* namespaces doesn’t seem to report in versions of Windows

later than Windows XP.

Figure 14.2 Working

with dates from the

AntimalwareHealth-

Status class

TECHNIQUE 116

http://wwp.greenwichmeantime.com/info/timezone.htm

378 CHAPTER 14 Users and security

PROBLEM

The firewall status needs to be checked across your systems.

SOLUTION

The following listing solves the problem by using the FirewallState class. The class

can be found in the ROOT\Microsoft\SecurityClient namespace.

function get-firewallstate{
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 Get-WmiObject -Namespace 'ROOT\Microsoft\SecurityClient' `
-Class FirewallState -ComputerName $computername |
 select Name, Enabled, FirewallServiceRunning

}}

The only useful properties in this class are the name of the firewall product and Bool-

ean values that indicate if the firewall is enabled and if its service is running.

DISCUSSION

This class also has a PackedXML property, as explained in listing 14.9.

 The state of the firewall is important, but the firewall settings are also vital to the

security of your systems.

 Listing firewall settings

There’s another namespace that you can use to investigate the firewall settings—

ROOT\Microsoft\PolicyPlatform\WindowsFirewallConfiguration. This namespace, also

from Forefront Endpoint 2010, contains the following classes:

■ Firewall_PredefinedRuleGroup

■ Firewall_Profile_Parameters

■ Firewall_Profile_Public

■ Firewall_Profile_Private

■ Firewall_Profile_Domain

■ Firewall_PredefinedRuleGroup_Baseline

With Windows Vista and later, networks are categorized as being one of three types:

■ Public

■ Private

■ Domain

Listing 14.10 Get firewall status

TECHNIQUE 117

379TECHNIQUE 117 Listing firewall settings

Separate firewall rules can be created for each type of network. The

Firewall_Profile_* classes relate directly to the network type.

PROBLEM

You want to investigate the firewall settings on your system to ensure that you aren’t

inadvertently blocking a critical application.

SOLUTION

The following listing provides one solution to this problem. The computer name is

the only parameter to this function.

function get-firewallsetting{
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 Get-WmiObject `
 -Namespace 'ROOT\Microsoft\PolicyPlatform\WindowsFirewallConfiguration' `
 -Class Firewall_Profile_Parameters -ComputerName $computername |
 select __Class, AllowedIcmpTypes, BlockAllInboundTraffic,
 DefaultInboundActionIsDeny, DefaultOutboundActionIsAllow,
 DisableInboundNotifications, DisableUnicastResponsesToMulticastBroadcast,
 EnableFirewall, LocalLegacyAppRulesMergeAllowed,
 LocalLegacyPortRulesMergeAllowed, LocalRulesMergeAllowed

}}

This function calls the Firewall_Profile_Parameters WMI class and uses Select-

Object to filter the properties you want to display.

WARNING The classes in this namespace require PowerShell to be started
with elevated privileges.

DISCUSSION

The Firewall_Profile_Parameters class calls the three profile classes we discussed

earlier. If you only want settings for a particular network, you can use one of these

classes as appropriate:

■ Firewall_Profile_Public

■ Firewall_Profile_Private

■ Firewall_Profile_Domain

This completes our look at users and security settings. I’ve attempted to pick the prop-

erties I think will be most useful. You should investigate the classes further to deter-

mine whether there’s any information vital to your needs that I haven’t mentioned.

Listing 14.11 Get firewall settings

380 CHAPTER 14 Users and security

14.4 Summary

Users and security go hand in hand. Sometimes you’re protecting the users from

themselves, and other times you’re protecting them from external threats.

WMI enables you to work with local user accounts and local groups. You can’t cre-

ate new accounts but you can do several other things:

■ Discover the local accounts and groups on a system, and delete them if neces-

sary

■ Check the group membership of local accounts

■ Discover other information, such as profile and desktop settings

■ Test the membership of powerful groups, such as the local administrators group

Protecting users from external threats includes installing a firewall and antimalware

software. There are WMI classes to do the following:

■ Test the status of antivirus and antispyware software

■ Check that the signature data is up to date

■ Test the firewall status

■ List firewall settings

You don’t get many opportunities to directly administer these products through WMI

but you can easily test their functioning. This can be a very useful test when checking

for possible problems.

 The next chapter continues our investigation of our systems and looks at using

WMI to work with event logs, scheduled jobs, and performance counters.

381

Logs, jobs,
 and performance

Things go wrong even in the best-run IT operations. When they do, you need to be

able to investigate and troubleshoot the problem. One of the first places to look is

the event logs. These logs record information (events) from a number of sources

across the system. WMI can be used to access and manage the logs, but in many

cases the PowerShell event log cmdlets are easier to use. We’ll look at how you can

use PowerShell and WMI to discover some information that the cmdlets don’t

return and how to back up the logs.

 The ability to schedule jobs, which are also known as scheduled tasks, to run at a

specified time has been available in Windows for a long time. But a change to the

scheduled jobs infrastructure was introduced with Windows Vista. As you’ll

This chapter covers

■ Discovering event log sources

■ Backing up event logs

■ Managing simple scheduled jobs

■ Investigating performance counters, system

assessment reports, and stability indices

382 CHAPTER 15 Logs, jobs, and performance

discover, you can still create, access, and manage the older, simpler job types through

WMI and PowerShell.

 If there is one certainty in IT, it’s that users will complain about the performance of

their systems. It doesn’t matter what you do, they’ll claim its running slower! We’ll look

at how you can view performance information on remote systems using WMI classes.

 System performance is closely related to the installed hardware. In the final sec-

tion of this chapter, we’ll look at techniques for using PowerShell and WMI to access

this information. The information provided by these techniques may indicate an area

of hardware that’s causing problems. The other thing we’ll look at is the stability of

the system. The latest Windows versions provide stability indices that can be accessed

through WMI. These indices are a good starting point for getting a general overview of

the system’s health.

 I’ve spent a lot of time investigating the contents of event logs over the years.

They’re an invaluable resource for discovering what’s happening on your systems,

especially when troubleshooting, so they’re the logical place to start.

15.1 Event logs

Event logs used to be simple. You had the Application, System, and Security logs. But

new logs have been introduced in the later versions of Windows, and now a standard

installation of Windows 7 will have nine event logs. Nine classic-type event logs, that is.

If you include the entire collection of new-style event logs introduced with Windows

Vista, you get up to a total of 166 event logs on a standard install of Windows 7.

 In the days of VBScript you had to use WMI to work with event logs. This changed with

the introduction of PowerShell v1, which included a Get-EventLog cmdlet for reading

events from the log. Much easier and simpler to use! This support ramped up a level

when PowerShell v2 arrived. A suite of cmdlets was made available, as listed in table 15.1.

Their purposes should be clear from their names, apart from possibly Show-EventLog,

which displays the event log viewer GUI application, and Limit-Eventlog, which is used

to configure event log settings.

All of these cmdlets can access event logs on remote computers. The following code

can be used to test for the presence of a ComputerName parameter.

Get-Help *eventlog -Parameter computername | sort name

TIP These cmdlets and WMI only work with the original, classic-style event
logs.

Table 15.1 Event log cmdlets

Clear-EventLog Get-EventLog Limit-EventLog

New-EventLog Remove-EventLog Show-EventLog

Write-EventLog

383Event logs

The event logs available on a machine can be discovered using a cmdlet:

Get-EventLog -List | select -f 1 | fl *

This code shows that the properties listed in table 15.2 are available (-f is a short form

of -first; PowerShell will accept shortened forms of parameter names as long as

they’re unambiguous). These properties can be configured using Limit-Eventlog or

the Win32_NTLogEventLog WMI class.

Don’t forget to check the new Windows Vista–style event logs. Use this code:

Get-WinEvent -ListLog * | select -f 1 | fl *

Staying with the classic event logs, you can retrieve a lot more useful information

with WMI:

gwmi Win32_NTEventlogFile | select -f 1 | fl *

This produces the property list seen in table 15.3. The Name property gives the full file

path to the event log file. The other really useful property is Sources, which displays

the identities of the event sources writing to the log.

One use of event logs that’s often overlooked is using them to log script usage. A call

to Write-Eventlog can be used to write data about specific scripts as they run. Either

the Application event log or a specific event log can be used.

 But before you can write to an event log, you need to discover some information.

Table 15.2 Event log properties

LogDisplayName Log MachineName

MaximumKilobytes OverflowAction MinimumRetentionDays

EnableRaisingEvents

Table 15.3 WMI properties of event logs

LogfileName Name Archive Caption

Compressed CreationDate CSName Description

Drive EightDotThreeFileName Encrypted Extension

FileName FileSize FileType FSName

Hidden InstallDate LastAccessed LastModified

MaxFileSize NumberOfRecords OverwriteOutDated OverWritePolicy

Path Readable Sources System

Writeable

384 CHAPTER 15 Logs, jobs, and performance

 Discovering event log sources

When you write to an event log you need to know which source to use. A source is

effectively a label and a route to use when writing. Try this snippet to see some exam-

ples of the sources available:

Get-EventLog -LogName Application |
Format-Table TimeGenerated, Source, Message -AutoSize

Source information isn’t available using the event log cmdlets, but you can discover it

using WMI.

PROBLEM

You want to discover the event log sources available on a server. Sources are event log–

specific, so you need to be able to recover data for all event logs or for a specific event log.

SOLUTION

Listing 15.1 illustrates a solution to this problem using the Win32_NTEventLogFile

class. The function can take a computer name as a parameter as well as an optional

event log name. The -computername parameter is aliased to CN or Computer as an

example of how to use this advanced function attribute.

function get-eventlogsource{
[CmdletBinding()]
param (
[parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [Alias("CN", "Computer")]
 [string]$computername="$env:COMPUTERNAME",

 [string]$logname
)
PROCESS{
if ($logname) {
 $logs = Get-WmiObject -Class Win32_NTEventlogFile `
 -ComputerName $computername -Filter "LogfileName = '$logname'"
}
else {
 $logs = Get-WmiObject -Class Win32_NTEventlogFile
 -ComputerName $computername
}

foreach ($log in $logs) {
 $logsource = New-Object -TypeName PSObject
 $logsource |
 Add-Member -MemberType NoteProperty -Name Computer
 -Value $computername -PassThru |
 Add-Member -MemberType NoteProperty -Name Logfile
 -Value $log.LogfileName

 $i = 1
 $log | select -ExpandProperty Sources | foreach {

Listing 15.1 Listing event log sources

TECHNIQUE 118

Get
data

B

Loop through
logs and sources

C

385TECHNIQUE 119 Backing up event logs

 Add-Member -InputObject $logsource `
 -MemberType NoteProperty -Name "Source$i" `
 -Value $_
 $i++
 }
 $logsource
}
}#process
}

The log file information is retrieved B for all log files or for a single log file, depend-

ing on whether the -logname parameter has been used.

 You create an empty object and add the computer name and log name for each

event log C. You can then loop through the sources for that event log and add their

names as a unique property on the object. The object is added to the PowerShell pipe-

line at the completion of processing D.

DISCUSSION

Once event logs are created, there is usually very little to be done in terms of configu-

ration. Any changes, such as modifying the maximum file size, can be achieved using

Limit-EventLog or through WMI:

Get-WmiObject -Class Win32_NTEventLogFile -Filter "LogFileName='Scripts'" |
Set-WmiInstance -Arguments @{MaxFileSize=40MB}

A particular event log is selected and passed to Set-WmiInstance. A hash table of the

properties to be changed and their new values is used as the argument.

WARNING This snippet needs to be executed when PowerShell is running
with elevated privileges.

Multiple properties can be set simultaneously. Applying a standard set of changes to

the event logs when a server is created is a very efficient way to make those changes.

 Protecting and collecting the data held in the event logs is a necessity if an organi-

zation needs to be able to investigate historic events on a server.

 Backing up event logs

There are two ways you can approach the backing up of event logs. The first, more

complicated, way would be to read the events using Get-Eventlog and then write the

information into a SQL Server database. This has the advantage of bringing the logs

for a number of machines together for further analysis.

 The second, simpler, technique is to perform a backup of the event log. You can

then search the backup file using the PowerShell event log cmdlets.

PROBLEM

Your organization has created a policy that states event logs must be backed up to pre-

vent information being lost when the logs cycle round as they fill up. You also need to

be able to clear the event log when the backup has been performed.

Output
data

d

TECHNIQUE 119

386 CHAPTER 15 Logs, jobs, and performance

SOLUTION

Listing 15.1 can be amended to create a solution for this problem, as shown in the fol-

lowing code. You add parameters defining a destination folder for the backup files

and an optional switch that enables you to clear the log files.

function backup-eventlog{
[CmdletBinding()]
param (
[parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME" ,

 [string]$logname,
 [string]$destination="C:\Backup",
 [switch]$clear
)
PROCESS{
if ($logname) {
 $logs = Get-WmiObject -Class Win32_NTEventlogFile `
 -ComputerName $computername -Filter "LogfileName = '$logname'"
}
else {
 $logs = Get-WmiObject -Class Win32_NTEventlogFile `
 -ComputerName $computername
}

foreach ($log in $logs) {
 $filename = Join-Path -Path $destination `
 -ChildPath "$($log.LogFileName)-$((Get-Date -Format 's').

 ➥ Replace(':','-')).evt"

 Write-Debug $filename
 $log.BackUpEventLog($filename)
 if ($clear){$log.ClearEventLog()}
}
}#process
}

WMI objects representing the log, or logs, are created B. You can then loop through

the collection of logs. A filename is formed that incorporates the destination folder,

the name of the log file, and the date C. The file is given an extension of .evt. An

example file name would be C:\Backup\Application-2011-06-03T11-30-42.evt.

TIP The colons (:) are removed from the time portion of the date because
that character isn’t allowed in filenames.

The filename is written out to screen when the function is executed with the -debug

switch. Win32_NTEventlogFile has a BackUpEventLog method that you can use to per-

form the backup D. It takes the filename of the backup file as its argument.

 The function will use the ClearEventLog method to wipe the contents of the event

log if required. If you’re using these methods in your own scripts, double-check that

Listing 15.2 Backing up event logs

Get
data

B

Create
filename

C

Perform
backup

D

387TECHNIQUE 120 Creating a scheduled job

you use them in the correct order. It’s very embarrassing to clear the log file before

performing the backup!

DISCUSSION

You could use Clear-EventLog to perform the data removal, but it’s more efficient to

use the WMI method because you’ve already invested the computer resources in creat-

ing the WMI object.

 A possible refinement to the function would be to delete backup files that are older

than a given period. If the organization’s policy was to keep log information for 30 days,

you could add this line to the function:

Get-ChildItem -Path $destination |
where {$_.CreationTime -lt (Get-Date).AddDays(-30)} |
Remove-Item

The backup files can be read in a similar way to reading the event log. The only differ-

ence is that you use the Get-WinEvent cmdlet. To read a backup file of the Applica-

tion log you’d use code similar to this example:

Get-WinEvent -Path c:\backup\application-2011-06-03T11-30-42.evt -Oldest

Running backups manually is acceptable if it’s an ad hoc process. In a production

environment you need a way to be able to schedule this type of task.

15.2 Scheduled jobs

The Win32_ScheduledJob class only shows those tasks created with the AT command

or WMI. It doesn’t work with tasks created in the GUI or with the COM objects intro-

duced in Windows Vista. If a job is accessed or modified through the GUI, it isn’t

accessible using WMI anymore.

NOTE We’re discussing operating system scheduled tasks, not PowerShell
background jobs, though it’s possible to start a PowerShell job through a
scheduled task.

You can manage the lifecycle of creation, discovery, and deletion through WMI start-

ing with creation.

 Creating a scheduled job

There are a large number of utility commands available that you can use within a

scheduled job. If you want to run a PowerShell script through a scheduled task, you

need to investigate the PowerShell startup parameters. This can be achieved by typing

powershell /? at the PowerShell prompt.

 To start a PowerShell session and run a script, you can do this:

powershell -nologo -noexit -file "c:\scripts\test.ps1"

The -noexit parameter can be dropped if your script creates an output file and you

don’t want PowerShell sessions remaining open. Alternatively, Stop-Process can be

used to shut down the sessions.

TECHNIQUE 120

388 CHAPTER 15 Logs, jobs, and performance

PROBLEM

You need to create simple scheduled jobs on the local and remote machines. Which

commands are executed should be an option within the script.

SOLUTION

The parameters in listing 15.3 are an interesting mixture. The standard computer

name parameter is present, and the remainder relate to the scheduled job. The

default is running a dir command on the root of the C: drive if a command isn’t pre-

sented. This is a safe command that won’t do any damage. Alternatively, you could

make the parameter mandatory to force the user to present a value.

function new-scheduledjob{
[CmdletBinding()]
param (
[parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",

 [string]$command="cmd /K dir c:",

 [ValidatePattern("[0-9]{1,2}:[0-9][0-9]")]
 [string]$time="12:30",
 [bool]$repeat=$true,
 [int]$day = 1,
 [int]$monthly = 0,
 [bool]$interact=$false

)
PROCESS{
$tz = Get-WmiObject -Class Win32_TimeZone -ComputerName $computername
if ((Get-Date).IsDaylightSavingTime()) {$bias = $tz.DaylightBias}
else {$bias = $tz.StandardBias}

switch ($bias.ToString().Length) {
 1 {$bias = "+000"}
 3 {$bias = $bias.ToString().Insert(1,"0")}
 default {$bias = $bias.ToString()}
}

$start = "********$($time.Replace(':',''))00.000000$bias"

Invoke-WmiMethod -ComputerName $computername `
-Class Win32_ScheduledJob -Name Create `
-ArgumentList $command, $monthly, $day, $interact, $repeat, $start
}#process
}

The time of day when the job is to be run is validated by a regular expression. There

are so many ways to present a time that it’s best to pick one and force compliance.

When turning this into a production script, add some help that explains the format.

 The -day parameter represents the day of the week, and the -month parameter

represents the day of the month. You want the job to run repeatedly and you don’t

want to interact with it while it’s running.

Listing 15.3 Creating a scheduled job

389TECHNIQUE 120 Creating a scheduled job

 The Win32-TimeZone class on the system is interrogated to discover the time zone

bias, which is the offset from GMT. There is a standard format to the start time of a

scheduled job. You use string substitution to add the time and the bias into the string.

Invoke-WmiMethod can be used directly on the Win32_ScheduledJob class with the

required arguments.

DISCUSSION

The -day parameter is a numeric value to designate the days of the week on which the

job should be run. The values are rising powers of 2: Monday = 1, Tuesday = 2,

Wednesday = 4, and so on. If you want to run the job on multiple days, use a binary OR

to derive a composite value.

 In a similar manner, the days of the month are based on powers of 2 from day 1,

which has a value of 1, to day 31, which has a value of 1073741824. Binary OR is again

used to create a composite value for running the job on multiple days of the month.

TIP In order to make these parameters easy to use, I have provided new-day
and new-monthday functions in the code download for the chapter. These will
calculate the correct values for you.

It’s possible to create a WMI object for the Win32_ScheduledJob class and call the

Create method on that, rather than using Invoke-WmiMethod. By doing so, the fol-

lowing code,

Invoke-WmiMethod -ComputerName $computername `
-Class Win32_ScheduledJob -Name Create `
-ArgumentList $command, $monthly, $day, $interact, $repeat, $start

is replaced with these two lines:

$newjob = [wmiclass]"\\$computername\root\cimv2:Win32_ScheduledJob"
$newjob.Create($command, $start, $repeat, $day, $monthly, $interact)

You can see in these two examples that the order in which the arguments are pre-

sented is different. This is one of the delightful quirks built into PowerShell and WMI

just to keep you awake.

 There’s a way you can discover the order of the arguments. If Invoke-WmiMethod

fails with the argument list as presented in the documentation, try running these two

commands (modified for the appropriate WMI class and method):

([wmiclass]"Win32_ScheduledJob").Create.OverloadDefinitions

([wmiclass]"Win32_ScheduledJob").GetMethodParameters("Create")

In both cases, the order of the arguments will be shown. The first method (using

OverloadDefinitions) presents the arguments in the same order as the documenta-

tion. This is the order you should use to create a WMI object and call the method on

the object.

 The second method (using GetMethodParameters) presents the parameters in the

order expected by Invoke-WmiMethod.

390 CHAPTER 15 Logs, jobs, and performance

 Table 15.4 summarizes the results of running the previous two commands. It pres-

ents the parameters required by the Create method of Win32_ScheduledJob. The

parameters are listed in the order in which they must be used if you’re creating a WMI

object and using the Create method directly (in the method 1 column) or if you’re

using Invoke-WmiMethod (the method 2 column).

You now have two code options for creating scheduled jobs. It’s time to check whether

there are any other jobs on your systems that you might not know about.

 Discovering scheduled jobs

A large part of any administrator’s time is spent checking the configuration of systems

or investigating them to discover the cause of problems. One aspect that’s often over-

looked is the time of day when scheduled jobs are executed.

PROBLEM

One of your servers is having intermittent performance issues. The users are com-

plaining that periodically the applications hosted on that server will slow down. You

need to determine whether there are any scheduled jobs running at those times.

SOLUTION

The following listing can produce a report of all scheduled jobs, or a specific job if you

know its JobId.

function get-scheduledjob{
[CmdletBinding()]
param (
[parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [int]$jobid
)
PROCESS{
if ($jobid) {
 $jobs = Get-WmiObject -Class Win32_ScheduledJob `

Table 15.4 Parameter order for the Create method

Order Method 1 Method 2

1 Command Command

2 StartTime DaysOfMonth

3 RunRepeatedly DaysOfWeek

4 DaysOfWeek InteractWithDesktop

5 DaysOfMonth RunRepeatedly

6 InteractWithDesktop StartTime

Listing 15.4 Discovering scheduled tasks

TECHNIQUE 121

391TECHNIQUE 122 Deleting scheduled jobs

 -ComputerName $computername -Filter "JobId = $jobid"
}
else {
 $jobs = Get-WmiObject -Class Win32_ScheduledJob `
 -ComputerName $computername
}

foreach ($job in $jobs){
 $job | select Status, JobId, JobStatus,
 ElapsedTime, StartTime, Owner, Caption, Command,
 DaysOfMonth, DaysOfWeek, Description,
 InstallDate, InteractWithDesktop, Name,
 Notify, Priority, RunRepeatedly,
 TimeSubmitted, UntilTime
}
}#process
}

The required job information is recovered using Win32_ScheduledJob. Each of the

WMI objects for the retrieved jobs is passed through Select-Object to filter the

desired properties for output.

DISCUSSION

The daysofmonth and daysofweek properties are based on powers of 2, as discussed in

technique 120. If the script is run on days 1, 5, 9, and 26 of the month, a value

of 33554705 will be returned in the daysofmonth property. This can be deciphered

using this code:

$value = 33554705
1..31 | foreach {
 $calc = $value -band [math]::Pow(2, $($_ -1))
 if ($calc -ne 0){$_}
}

The values 1 to 31 are input into the PowerShell pipeline. Each value is used to create

a power of 2 value and then a band (binary and) is performed using the value from the

daysofmonth property. If you get a result that’s nonzero, you output the day value.

This code also works for the daysofweek property.

 If you do find jobs that shouldn’t be running you need a method to delete them.

 Deleting scheduled jobs

Were you continually told to tidy up as a child? The same applies to server administra-

tion. You’ll be continually pressured to fix somebody’s problem or to get a new appli-

cation into service. Do you have the time to clean up old applications, data, or even

scheduled jobs?

PROBLEM

It has been discovered that a number of scheduled jobs that are no longer required

still exist on your servers. They should have been removed when an application was

retired. These jobs are scheduled to run during the working day and are consuming

resources best devoted to other applications.

TECHNIQUE 122

392 CHAPTER 15 Logs, jobs, and performance

SOLUTION

The following listing will perform this cleanup task in an efficient manner.

function remove-scheduledjob{
[CmdletBinding()]
param (
[parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [int]$jobid
)
PROCESS{
if ($jobid) {
 Get-WmiObject -Class Win32_ScheduledJob `
 -ComputerName $computername -Filter "JobId = $jobid" |
 Remove-WmiObject
}
else {
 Get-WmiObject -Class Win32_ScheduledJob -ComputerName $computername |
 Remove-WmiObject
}
}#process
}

The function can accept a -jobid as an optional parameter. The WMI object for the

specific job is retrieved, or by default all jobs are retrieved. Remove-WmiObject is used

to perform the deletion.

DISCUSSION

The Win32_ScheduledJob class does have a Delete method if you’d prefer to use that.

I think it’s better, and safer, to use Get-WmiObject and pipe into Remove-WmiObject,

because it’s easier to test that the correct objects have been selected. Remove-WmiObject

also has the -WhatIf parameter for further safety. I used both of these techniques as I

developed and tested the function.

 In technique 121, we discussed the possibility of unnecessary scheduled jobs

impacting system performance. We need to look at how you can measure the perfor-

mance of your systems and at what we actually mean by performance.

15.3 System performance

Measuring system performance has traditionally involved looking at the performance

counters. These can be accessed through the performance monitor (sysmon for those

who remember earlier versions of Windows) and they can be saved as required. You

can also use the Get-Counter cmdlet (which works against remote machines), or you

can use the WMI Win32_Perf* classes, as you’ll see in technique 123.

 Windows Vista introduced the system assessment report. This rates a number of sys-

tem hardware components, including memory, CPU, disk, and graphics, to produce an

overall rating for the system. The higher the score, the better the system should perform.

Listing 15.5 Removing scheduled task

393TECHNIQUE 123 Reading performance counters

 I’m often asked about system stability. The number of unscheduled restarts is one

way to measure stability. Later versions of Windows calculate a stability index on an

hourly basis. This is calculated based on failures and changes, with recent events being

more heavily weighted. The maximum possible score is 10.

 Performance counters are still required to dig into individual aspects of the system.

 Reading performance counters

If you’ve spent any time investigating system performance you’ll know that there’s a

huge list of available Windows performance counters. The problem of finding the cor-

rect counter to use is increased when you consider that applications such as SQL

Server, IIS, and Exchange add their own raft of counters. WMI enables you to access

some, but not all, of the counters.

 You can see which counters are available on a specific system like this:

Get-WmiObject -List Win32_PerfFormattedData* | select name

Here’s an extract from the results:

Win32_PerfFormattedData_PerfDisk_LogicalDisk
Win32_PerfFormattedData_PerfDisk_PhysicalDisk
Win32_PerfFormattedData_PerfOS_PagingFile
Win32_PerfFormattedData_PerfOS_Processor
Win32_PerfFormattedData_PerfOS_Memory

You should use the -Recurse parameter when searching for these classes as they won’t

necessarily be added to the default WMI namespace.

TIP The Win32_PerfFormattedData class is a superclass that will call the
other performance formatted data classes. There will be a lot of data to wade
through.

There are also related classes that return the raw performance counter data. These

classes are difficult to use, because each value has to be processed through a calcula-

tion to derive a meaningful result. It’s easier to use the formatted WMI classes

or Get-Counter.

PROBLEM

You need to monitor the processor performance of one of your systems. The server

has multiple processors (or cores), and you need to display the information for each

processor core and the total to ensure that the application is using the processor

resources in an optimum manner.

SOLUTION

The following listing presents a function that takes a computer name and a number as

parameters. The number determines how many times you’ll sample the processor

information.

TECHNIQUE 123

394 CHAPTER 15 Logs, jobs, and performance

function get-cpucounter{
[CmdletBinding()]
param (
[parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME",
 [int]$number=1
)
BEGIN{
$source=@"
public class CPUcounter
{
 public string Timestamp {get; set;}
 public string Name {get; set;}
 public ulong PercProcTime {get; set;}
}
"@
Add-Type -TypeDefinition $source -Language CSharpversion3
}#begin
PROCESS{
1..$number | foreach {

$date = (Get-Date).ToString()

Get-WmiObject -Class Win32_PerfFormattedData_PerfOS_Processor `
 -ComputerName $computername | foreach {
 $value = New-Object -TypeName CPUCounter -Property @{
 TimeStamp = $date
 Name = $_.Name
 PercProcTime = $_.PercentProcessorTime
 }
 $value
}

Start-Sleep -Seconds 1
}
}#process
}

Some inline C# code is used to create a new .NET class to store your results B. The

class defines three properties—a timestamp, the name of the processor, and the per-

centage processor time (how much it was used during the measurement period). This

is compiled using Add-Type. Creating a class in this manner enables you to strongly

type the properties, which supplies another level of error checking.

 The range operator (..) is used to put the required series of numbers onto the

pipeline. PowerShell will process each value, and for each of them retrieve the proces-

sor performance data using Win32_PerfFormattedData_PerfOS_Processor. One

object per processor, plus one for the total, will be returned. You create an object

using your specially created .NET class, populate its properties C, and output it. A

one-second pause is activated before you start again D.

 On my development system, using this code,

1..10 | foreach {Measure-Command -Expression {Get-WmiObject

 ➥ -Class Win32_PerfFormattedData_PerfOS_Processor }}

Listing 15.6 Accessing performance counters

Create
class

B

Create object and
set propertiesC

Pause
executionD

395TECHNIQUE 124 Windows system assessment report

shows that the Get-WmiObject command takes about 300 milliseconds to retrieve the

data. The function could be altered to change the delay, or you could even make it a

parameter.

DISCUSSION

Figure 15.1 displays the results from using this function. The results show that process-

ing is relatively equally distributed across the two cores. I wouldn’t expect to see the

values being identical across all processors or cores all of the time.

TIP In case you’re wondering how I managed to drive processor performance
so high, I set a few continuously looping recursive directory listings going. They’re
a good way to tax the system without spending a lot of money on simulation tools.

Each of the WMI performance counter classes will need to be investigated to deter-

mine the properties that you need to record. For example, the class used here also

returns information regarding interrupts.

 One common scenario that you’ll get is users claiming a difference in perfor-

mance between two systems. You can use the Windows system assessment report to

provide a high-level comparison between the hardware of the two systems.

 Windows system assessment report

The assessment report was introduced with Windows Vista. It examines a number of

hardware components to determine an overall score for the system.

TIP The overall score is determined by the lowest of the individual compo-
nent scores. Always examine the full report to determine whether a single
component is adversely affecting performance.

Accessing this information for the local machine through the GUI is acceptable, but

you need a way to perform this action remotely as well.

PROBLEM

You need to create Windows system assessment reports for a number of remote

machines. This will enable you to determine which machines should be refreshed and

which are worth reusing.

Figure 15.1 CPU

performance counters

TECHNIQUE 124

396 CHAPTER 15 Logs, jobs, and performance

SOLUTION

The following listing utilizes the Win32_WinSat class to solve this problem. A hash

table lookup is created to decode the assessment state property.

$satstate = DATA {
ConvertFrom-StringData -StringData @'
0 = StateUnknown
1 = Valid
2 = IncoherentWithHardware
3 = NoAssessmentAvailable
4 = Invalid
'@
}

function get-systemassessment{
[CmdletBinding()]
param (
[parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME"
)
PROCESS{
 Get-WmiObject -Class Win32_WinSat -ComputerName $computername |
 select CPUScore, D3DScore, DiskScore, GraphicsScore,
 MemoryScore, TimeTaken,
 @{N="AssessmentState"; E={$satstate["$($_.WinSATAssessmentState)"]}},
 @{N="BaseScore"; E={$_.WinSPRLevel}}

}#process
}

The function returns the data from the WMI class and uses Select-Object to output

the properties and two calculated fields. One calculated field decodes the assessment

state and the other renames the overall score.

DISCUSSION

This report shouldn’t be taken in isolation when looking at system performance. The

age of the system and any remaining warranty should also be considered.

 Proving the stability of a system is more complex than simply measuring how long

it has been running.

 Stability index data

System stability is a measure of a number of factors, including up-time, changes, and

environmental factors. You can’t measure the environmental factors directly but you

can look at the internal system stability.

PROBLEM

You need to measure the stability index for your Windows systems. The index value

can range from 1 to 10, with 1 being set immediately after a reboot and 10 being

Listing 15.7 System assessment information

TECHNIQUE 125

397TECHNIQUE 125 Stability index data

returned when the system has run continuously for 30 days with no restarts or

changes. This metric will be used as part of your periodic reporting on the health of

your systems.

SOLUTION

The WMI class Win32_ReliabilityStabilityMetrics is used to solve this problem in

the following listing. You can retrieve this information for the local or remote systems.

function get-stabilityindex {
[CmdletBinding()]
param (
 [parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [string]$computername="$env:COMPUTERNAME "
)
 Get-WmiObject -Class Win32_ReliabilityStabilityMetrics `
 -ComputerName $computername |
 select @{N="TimeGenerated";

 ➥ E={$_.ConvertToDatetime($_.TimeGenerated)}},
 SystemStabilityIndex
}

The returned object has two properties of interest—the stability index and the time at

which it was generated. You need to convert the date information from WMI format to

your normal format. The results of running the function are illustrated in figure 15.2.

DISCUSSION

Over a year’s worth of data is retained, even though Windows only uses the last 28

days’ worth of events to compute the index. You may need to restrict the results,

especially if you’re only interested in recent data. You can pull back a full month’s

data like this:

get-stabilityindex |
where {$_.TimeGenerated -lt ([datetime]"1 June 2011")

 ➥ -and $_.TimeGenerated -ge ([datetime]"1 May 2011")}

Listing 15.8 Retrieving stability index data

Figure 15.2 System stability index results

398 CHAPTER 15 Logs, jobs, and performance

Alternatively, you could calculate an average value across the month:

get-stabilityindex |
where {$_.TimeGenerated -lt ([datetime]"1 June 2011")

 ➥ -and $_.TimeGenerated -ge ([datetime]"1 May 2011")} |
Measure-Object -Average SystemStabilityIndex

This concludes our look at event logs, scheduled tasks, and system performance, but

there’s always more to discover. The techniques presented in this chapter will be a

good foundation for your investigations.

15.4 Summary

Working with event logs, scheduled jobs, and performance indicators is an essential

part of the administrator’s role. PowerShell and WMI provide a number of tools to

help you in these tasks:

■ Event log discovery and configuration

■ Backup and clearing of event logs

■ Lifecycle management for scheduled jobs, including creation, discovery, and

deletion

■ Retrieval of data from performance counters

■ Production of system assessment reports and stability index data

These techniques enable you to gather data for possible forensic investigations, per-

form out-of-hours tasks through scheduling jobs, and determine how your systems are

performing in real time and with a historic perspective.

 In the next chapter, we’ll look at managing Hyper-V through WMI both directly

and using the PowerShell Hyper-V library.

399

Administering Hyper-V
 with PowerShell and WMI

Virtualization technologies have caused a major change in the way we deliver

and administer server-based infrastructure to our users. Virtualization provides a

way for us to run multiple servers on the same hardware and maximize the use of

that hardware.

 Robert Heinlein frequently has his characters quote, “There ain’t no such

thing as a free lunch.” This is also true in IT. The fact that we can run multiple

servers on a single piece of hardware doesn’t make our jobs any easier. In fact, they

become harder:

This chapter covers

■ Creating and configuring virtual machines

■ Controlling virtual machines

■ Starting a sequence of virtual machines

■ Administering virtual disks

400 CHAPTER 16 Administering Hyper-V with PowerShell and WMI

■ We have more servers to administer (the hosts always seem to be forgotten

when adding up the number of servers).

■ The risks increase. With 6, 12, or more servers running on a single piece of

hardware, a failure in that hardware means more servers offline, more down-

time, and more potential loss of business for the organization. Managing the

high availability requirements increases the complexity.

■ A virtual server doesn’t have a power button we can press to start it or a cover we

can take off to add more memory. We need tools to enable us to administer

these servers.

Hyper-V is Microsoft’s virtualization platform. Introduced in Windows Server 2008, it

was refined in Windows Server 2008 R2 (which is the version I recommend until Win-

dows Server 8 becomes available). There are a number of options for automating the

administration of virtual machines running under Hyper-V:

■ Hyper-V cmdlets in Windows Server 8

■ System Center Virtual Machine Manager (VMM) cmdlets—These cmdlets supply a set

of canned functionality. The drawback is that it costs extra to buy System Center

VMM.

■ Hyper-V Management Library—This is similar to the preceding option, in that the

library (available from www.codeplex.com) provides a wrapper around the raw

WMI by supplying a large number of functions. The functions are supplied as a

PowerShell module and behave in a similar way to cmdlets.

■ WMI—This is the most complex option because you have to create all of the

functionality yourself. You’ve seen in previous chapters that using WMI with

PowerShell is easier, but it still involves a lot of work

These options are illustrated in figure 16.1. At the bottom of the diagram, you’re

accessing PowerShell and WMI directly—this approach provides the minimum ease of

use. At the next level up, you’re using modules (or snap-ins) to make life easier. At the

top of the diagram, you use scripts to call

the modules, which gives you ease of use

and the means to extend, and adapt, the

functionality to meet your exact needs.

 One thing you mustn’t forget is admin-

istering the host systems. Hyper-V is a Win-

dows feature, which means you can use the

techniques you’ve already learned to per-

form the administration tasks. You’ll be

reusing a number of functions developed

in earlier chapters.

 In this chapter, we’ll look at using the

Hyper-V Management Library by James

O’Neill. It’s got great functionality and it’s Figure 16.1 PowerShell, modules, and scripts

www.codeplex.com

401TECHNIQUE 126 Creating a virtual machine

free! It wraps the WMI calls to make them easier to use. The code is worth examining

to see how you could put something like this together. The library supplies 122 func-

tions that are ready to use, and if you don’t use VMM I very strongly recommend that

you use this library. As you’ll see throughout the chapter, it saves a lot of effort.

 After you have Hyper-V up and running, your first task will be to create virtual

machines. You’ll also learn to configure them by adding (or removing) resources such

as CPU, memory, disks, or network adapters.

 Controlling the virtual machines is the next requirement. Stopping them is easy,

but learning how to start them involves some work on your part. You can then move

on to the more complex situation where you want to start a number of machines in a

certain order.

 Virtual disks are a major component of the Hyper-V infrastructure. You’ll discover

how to monitor, check usage, and compact as required.

 First, though, you need to create a virtual machine.

16.1 Creating and configuring virtual machines

Creating a new virtual machine is a trivial task, but it becomes nontrivial when you

realize that all you get is an empty shell. You need to configure the virtual machine

with CPUs, memory, disks, and network adapters. Some configuration items are added

automatically, but most you’ll have to add explicitly.

TIP Remember that the virtual machine must be switched off for configura-
tion items to be applied. We aren’t at the hot-plug device quite yet.

Once you have your virtual machine configured you need to install an operating sys-

tem. You could use an automated install process or add a file containing an image of

installation media (an .iso file) to the virtual DVD drive. Starting the virtual machine

then initiates the installation process. Once you’ve installed the operating system you

can use the techniques in chapter 13 to configure the server.

 Let’s start on this journey by looking at how to create a virtual machine.

 Creating a virtual machine

Using the wizard in Hyper-V Manager to create a virtual machine isn’t too painful, but

you can make life easier for yourself by creating a function to do all the hard work.

When I create a machine, I always add a network adapter and at least one disk. The

amount of memory and the number of CPUs are more variable.

PROBLEM

You need to create a virtual machine. Ideally, the method you choose should be

repeatable and should ensure that the machine matches your organization’s

standards.

SOLUTION

Listing 16.1 presents a solution to this problem. The first thing to notice is the name

of the function—new-pawVM. The noun is still VM—I’m just adding a prefix.

TECHNIQUE 126

402 CHAPTER 16 Administering Hyper-V with PowerShell and WMI

TIP Add a prefix to the noun in your function name if you need to distin-
guish it from another function with the same name. You can use the -prefix
parameter in Import-Module to do this at load time.

The parameters set the Hyper-V host and virtual machine names, the path to the

folder that contains the files comprising the virtual machine, the number of CPUs,

and the amount of memory to be allocated to the new virtual machine.

function new-pawVM{
[CmdletBinding()]
param (
 [string]$hvhost="$env:COMPUTERNAME",
 [string]$vm,
 [string]$path = "D:\Virtual Machines\",

 [ValidateRange(1,4)]
 [int]$cpu,
 [long]$ram
)
BEGIN{
 $vswitch = "Local Area Connection - Virtual Network"
}

PROCESS{

$vpath = Join-Path -Path $path -ChildPath $vm
New-Item -Path $path -Name $vm -ItemType Directory

$newvm = New-VM -Name $vm -Path $vpath -Server $hvhost

Set-VMCPUCount -VM $newvm -CPUCount $cpu `
-Server $hvhost -Force

$hostram = (Get-WmiObject -Class Win32_ComputerSystem `
 -ComputerName $hvhost).TotalPhysicalMemory
if($ram -gt ($hostram/4)){$ram = math::Truncate($hostram/4)}

Set-VMMemory -VM $newvm -Memory $ram `
-Server $hvhost -Force

Add-VMNIC -VM $newvm -VirtualSwitch $vswitch -Server $hvhost -Force

Add-VMNewHardDisk -VM $vm -VHDPath "$vpath\$vm.vhd" `
-ControllerID 0 -LUN 0 -Size 125GB `
-Server $hvhost -Force

Add-VMDrive -VM $vm -ControllerID 1 -LUN 1 `
-OpticalDrive -Server $hvhost -Force
}}

The command to set the virtual switch, specifying which network you want the virtual

machine to join, is in the BEGIN block. It could be part of the PROCESS block if it was

likely to become a parameter.

 The name of the new virtual machine is joined to the path to the virtual machine stor-

age area. You can then create the virtual machine shell B. The number of CPUs is also

Listing 16.1 Create a standard virtual machine

Create
virtual
machine

B

Add
CPUsC

Add
memory

D

Add
disksE

403TECHNIQUE 126 Creating a virtual machine

set C. I can set a maximum number of 4 on my host machine, and this is tested in the

-cpu parameter validation. Change this value to match the capabilities of your host.

 The total amount of physical memory in the host server is obtained, and if you’re

attempting to give the virtual machine an amount of memory that’s more than 25 per-

cent of the host’s memory it’s scaled back to the 25 percent mark. The memory of the

virtual machine can then be set D. A virtual network card (NIC) is added to the virtual

machine using the virtual switch defined earlier.

 A virtual hard disk E and virtual DVD drive are added to complete the virtual

machine’s configuration. The virtual disk size is hard-coded, but this could be param-

eterized if more flexibility is required.

DISCUSSION

Here’s an example of using this function:

new-pawvm -vm Test51 -cpu 2 -ram 2GB

It’s a very simple command to create a fairly complex object. The function could be

modified to standardize the machines even further. These lines,

[ValidateRange(1,4)]
[int]$cpu,
[long]$ram

could be changed to

[ValidateSet(1,2,4)]
[int]$cpu

In the body of the function you could change these lines

$hostram = (Get-WmiObject -Class Win32_ComputerSystem `
 -ComputerName $hvhost).TotalPhysicalMemory
if($ram -gt ($hostram/4)){$ram = math::Truncate($hostram/4)}

Set-VMMemory -VM $newvm -Memory $ram -Server $hvhost -Force

to this:

switch ($cpu){
 1 {Set-VMMemory -VM $newvm -Memory 1GB -Server $hvhost -Force}
 2 {Set-VMMemory -VM $newvm -Memory 2GB -Server $hvhost -Force}
 4 {Set-VMMemory -VM $newvm -Memory 4GB -Server $hvhost -Force}
}

The amount of memory in the machine is standardized based on the number of CPUs.

 When a new virtual machine is created, IDE controllers 0 and 1 are added automat-

ically. Each has two disk logical units (LUNs), labeled 0 and 1. I deliberately created

the hard disk and DVD drive on different controllers and LUNs to emphasize this. The

final configuration is shown in figure 16.2.

 Over the lifetime of the virtual machine you may need to modify the amount of

memory and number of CPUs allocated to the machine. Adjusting memory is

straightforward using the Set-VMMemory function from the Hyper-V module (it’s pos-

sible to check the total amount of physical RAM in the machine to ensure that you

404 CHAPTER 16 Administering Hyper-V with PowerShell and WMI

don’t overcommit). For modifying the number of CPUs you need to ensure that you

don’t breach the limits set for virtual machines.

 Adding extra CPUs

It isn’t possible to allocate more virtual CPUs than there are physical cores in the host

system. You checked the number of CPUs at creation (in technique 126), but you also

need to test the number when modifying.

PROBLEM

A test is needed to compare the number of virtual CPUs being allocated to a virtual

machine against the maximum number that can be allocated.

SOLUTION

Listing 16.2 uses a ValidateRange() test on the -cpu parameter to test that the num-

ber of CPUs that you propose to add is valid for that host. I’ve hardcoded that number

into the test in this listing, but it would be possible to use ValidateScript() to test

against a WMI call to get the number of cores (see technique 4 in chapter 5).

Figure 16.2 Properties of the new virtual machine

TECHNIQUE 127

405TECHNIQUE 128 Attaching an .iso image to a DVD drive

function set-pawCPU{
[CmdletBinding()]
param (
 [string]$hvhost="$env:COMPUTERNAME",
 [string]$vm,

 [ValidateRange(1,4)]
 [int]$cpu
)
BEGIN{}

PROCESS{

$count = (Get-VMCPUCount -VM $vm).VirtualQuantity
Write-Host "Current CPUs = $count"

Set-VMCPUCount -VM $vm -CPUCount $cpu -Server $hvhost -Force

$count = (Get-VMCPUCount -VM $vm).VirtualQuantity
Write-Host "New CPUs = $count"

}}

You then get the current number of virtual CPUs allocated to the machine, make the

changes, and display the new number of CPUs.

DISCUSSION

If you need to know how many virtual CPUs have been allocated to the virtual

machines on your host you can use this snippet:

Get-VM |
Get-VMCPUCount |
Measure-Object -Sum VirtualQuantity

You’ll receive a count of the number of virtual machines and the total number of vir-

tual CPUs allocated.

 You now have a virtual machine, but before you can do anything with it, you need

to install an operating system.

 Attaching an .iso image to a DVD drive

When you created your virtual machine in listing 16.1, you didn’t attach an .iso image

to the DVD drive. If you attach the operating system image and start the virtual

machine it will kick straight into the install routine.

PROBLEM

You need to be able to add .iso files (DVD images) to the DVD drive so that you can

install software and operating systems.

SOLUTION

The following listing shows how this is accomplished. The virtual machine to which

you’ll attach the image, and the image to be attached, are specified in the parameters.

It’s assumed that there’s only a single DVD drive allocated to the virtual machine.

Listing 16.2 Set the number of virtual CPUs

TECHNIQUE 128

406 CHAPTER 16 Administering Hyper-V with PowerShell and WMI

function add-pawiso{
[CmdletBinding()]
param (
 [string]$hvhost="$env:COMPUTERNAME",
 [string]$vm,

 [ValidateSet("W2K8R2")]
 [string]$source
)
BEGIN{}

PROCESS{

$dvd = Get-VMDisk -VM $vm -Server $hvhost |
where {$_.DriveName -eq "DVD Drive"}

switch ($source) {
"W2K8R2" {$file = (Get-ChildItem -Path "C:\Source\Window

 ➥ 2008R2*.iso").Fullname}
}

Write-Debug $file
Add-VMDisk -VM $vm -ControllerID $($dvd.ControllerID) `
-LUN $($dvd.DriveLUN) -Path $file -OpticalDrive

Get-VMDisk -VM $vm -Server $hvhost | where {$_.DriveName -eq "DVD Drive"}
}}

The .iso image to attach is defined by a short code. After you create an object repre-

senting the DVD drive you use a switch statement to find the full name of the .iso image

file. The image is attached using Add-VMDisk, and the function uses Get-VMDisk to show

that the file image is attached.

DISCUSSION

The function is used as follows:

add-pawiso -vm test51 -source w2k8r2

The length of the .iso image’s name for Windows Server 2008 R2 (92 characters)

means you likely won’t want to type it out! Other codes can be used to point to other

images (put one per directory for simplicity). If an invalid code is used the function

will throw an error and present you with the list of valid codes.

 The following function can be used to remove the image once the software instal-

lation has occurred:

function remove-pawiso{
[CmdletBinding()]
param (
 [string]$hvhost="$env:COMPUTERNAME",
 [string]$vm
)
PROCESS{
Get-VMDisk -VM $vm -Server $hvhost |
where {$_.DiskPath -like "*.iso"} |

Listing 16.3 Attach an .iso image

407TECHNIQUE 129 Adding a virtual disk

foreach {
 Remove-VMDrive -Diskonly -VM $_.VMElementName `
 -ControllerID $_.ControllerId -LUN $_.DriveLun -Force
}

Get-VMDisk -VM $vm -Server $hvhost |
where {$_.DriveName -eq "DVD Drive"}
}}

The function is used like this:

remove-pawiso -vm test51

You may need to add complete new disks as well as .iso images, depending on what

you want your virtual machine to accomplish.

 Adding a virtual disk

There are a number of reasons for adding another hard disk to a system. You may

need the extra storage for files, or you may want to separate a particular part of the

functionality, such as Exchange log files or SQL Server tempdb.

PROBLEM

An extra hard disk must be added to the virtual machine. This will be the first SCSI

disk attached to the virtual machine, so you also need to add a SCSI controller.

SOLUTION

The new-pawSCSIdisk function in the following listing takes a Hyper-V host and a vir-

tual machine name as arguments to the parameters. Get-VMDisk is used to discover

the path to the folder containing the machine’s virtual disks.

function new-pawSCSIdisk{
[CmdletBinding()]
param (
 [string]$hvhost="$env:COMPUTERNAME",
 [string]$vm
)
PROCESS{
 $disk = Get-VMDisk -VM $vm |
 where {$_.DiskName -eq "Hard Disk Image"} |
 select -First 1
 $path = Split-Path -Path $disk.DiskPath -Parent

 Add-VMSCSIController -VM $vm -Server $hvhost -Force
 Add-VMNewHardDisk -VM $vm -VHDPath "$path\$vm-SCSI.vhd" `
 -ControllerID 0 -LUN 0 -Size 125GB -SCSI `
 -Server $hvhost -Force

}}

A virtual SCSI controller is added, followed by a new virtual disk. Compare the state-

ment in this function with that in listing 16.1 to see that the -SCSI parameter is used

to create a SCSI disk rather than the IDE disk created earlier.

Listing 16.4 Add a SCSI disk

TECHNIQUE 129

408 CHAPTER 16 Administering Hyper-V with PowerShell and WMI

DISCUSSION

This function is called as follows:

new-pawSCSIdisk -vm test51

You can add further disks by wrapping this function in a wrapper function that then

tests to see which LUNs are available.

 When you created the first hard disk for the virtual machine, the assumption was

that the disk would be formatted when the operating system was installed. Additional

hard disks have to be explicitly formatted—see technique 30 in chapter 6.

 The other piece of virtual hardware you need to consider adding is a network

adapter.

 Adding a network adapter

I normally create virtual machines with a single network adapter, which gives connec-

tivity to my virtual environment’s internal network. When I’ve finished configuring

the machine, I add another network adapter to give me internet access for Windows

product activation. I use Network Address Translation (NAT) to span the virtual

machines onto my host’s wireless adapter.

PROBLEM

A new network adapter must be added to the virtual machine so that it can link to the

internet.

SOLUTION

The following listing shows how you can accomplish this task. After accepting a host

and virtual machine name, the function defines the virtual switch to use and creates

an object representing the virtual machine.

function new-pawNIC{
[CmdletBinding()]
param (
 [string]$hvhost="$env:COMPUTERNAME",
 [string]$vm
)

PROCESS{

$vswitch = "New Virtual Network for Wireless"

$target = Get-VM -Name $vm -Server $hvhost

Add-VMNIC -VM $target -VirtualSwitch $vswitch -Server $hvhost -Force

start-pawvm -hvhost $hvhost -vm $vm

Write-Host "Waiting for 3 minutes"
Start-Sleep -Seconds 180

$nic = Get-WmiObject Win32_NetworkAdapterConfiguration
-ComputerName $vm |

Listing 16.5 Add a network adapter

TECHNIQUE 130

Start virtual
machine

B

Get new
adapterC

409TECHNIQUE 130 Adding a network adapter

where{$_.DHCPEnabled -and $_.IPAddress[0].ToString() -like "169.254*"}

$ping = Test-Connection $vm -count 1
$nets = $ping.IPV4Address.IPAddressToString -split "\."

$ipaddress = "192.168.2.$($nets[3])"
$subnet = "255.255.255.0"

$nic.EnableStatic($ipaddress, $subnet)
$nic.SetGateways("192.168.2.1", 1)
$nic.SetDNSServerSearchOrder("192.168.2.1")

Get-WmiObject Win32_NetworkAdapter -ComputerName $vm `
-Filter "DeviceID=$($nic.Index)" |
Set-WmiInstance -Arguments @{NetConnectionID='Virtual Wireless LAN 99'}

}}

A virtual network adapter is added and the virtual machine is started B. The start-

pawvm function is defined in listing 16.6 in the next technique. When the machine has

started you can discover the new adapter C (an address that starts with 169.254 is

taken by an adapter that’s configured to use DHCP but that can’t find a DHCP server).

Test-Connection is used to find the IP address on the internal network D. The

last octet of the address is taken to use in the address to be configured on the new

adapter. A subnet mask is defined, and the adapter configured E. The appropriate

default gateway and DNS server are applied. The network connection ID is changed as

the last act of the function.

WARNING The name that’s used for the NetConnectionID must not have
been used before. If it has, you’ll see a COM exception if running locally or an
error about the number arguments if running against a remote machine.

DISCUSSION

The function can be used like this:

new-pawNIC -vm Win7

A number of actions can be performed directly on the adapters of the various virtual

machines on the host. You can view all adapters or select some properties of interest:

get-vmnic
get-vmnic | select VMElementName, SwitchName

You can test whether the adapter belongs to a particular switch:

get-vmnic |
where {$_.SwitchName -like "Local Area Connection - Virtual Network"}

Alternatively, you can get all adapters not on a given switch:

get-vmnic |
where {$_.SwitchName -notlike "Local Area Connection - Virtual Network"}

Finally, you can remove all adapters associated with a virtual switch prior to the

removal of that switch:

Get IP
addressD

Configure
adapterE

410 CHAPTER 16 Administering Hyper-V with PowerShell and WMI

get-vmnic |
where {$_.SwitchName -notlike

 ➥ "Local Area Connection - Virtual Network"} |
Remove-VMNIC

Once the virtual machine has been created and configured you have to learn to con-

trol it.

16.2 Controlling virtual machines

Virtual machines are no different from physical machines in that your control at the

machine level is generally restricted to starting and stopping virtual machines. You

can safely stop a virtual machine using the Stop-Computer cmdlet or a WMI shutdown

command as in listing 13.3. Starting a virtual machine can’t be done directly from

PowerShell, so you need to use the Hyper-V library.

 In my test environment I have two Exchange servers, but I need a domain control-

ler to start first. A similar situation exists with SharePoint and SQL Server, where the

database server must start before the SharePoint server. Starting machines in a prede-

termined order is an interesting problem that you’ll solve in technique 132.

 Also, if virtual machines are offline for an extended period of time, the patch lev-

els will become out of date. The ideal solution is to have an automated solution that

periodically brings virtual machines online, ensures that the patches are applied, and

then closes down the machines.

 A quick test you can apply to determine the state of a virtual machine is to use the

Get-VM cmdlet. If you only want to see which machines are running you can use this:

Get-VM -Running

You can now determine which machines to start because you know which ones are

currently active.

 Starting a virtual machine

Starting physical machines is easy—you press the power-on button. Virtual machines

don’t have buttons, so you need to send the virtual host a command to start the machine.

PROBLEM

You need to be able to start a virtual machine on a remote host. The function you use

should report the progress and let you know when the virtual machine is up and running.

SOLUTION

The following listing solves this problem. It accepts a Hyper-V host and virtual

machine name as parameters and loads the Hyper-V module if it’s not already loaded.

function start-pawVM{
[CmdletBinding()]
param (
 [string]$hvhost="$env:COMPUTERNAME",

Listing 16.6 Start a virtual machine

TECHNIQUE 131

411TECHNIQUE 131 Starting a virtual machine

 [string]$vm
)
PROCESS{
if (-not(Get-Module -Name hyperv)){Import-Module -Name hyperv -Force}

$machine = Get-VM -Name $vm -Server $hvhost
if ($machine.EnabledState -eq 3){
 Start-VM -VM $vm
 do{
 Write-Host "System $vm starting $(get-date -Format T)"
 if (-not (Test-Connection -ComputerName $vm -Count 1 -Quiet)) {
 Start-Sleep -Seconds 5
 }
 else {
 Write-Host "System $vm started $(get-date -Format T)"
 break
 }
 }until(1 -gt 2)
}
else {
 write-Host "$vm is not stopped. Check Status"
}
}}

You get an object representing the virtual machine and test its status. If the status is 3,

it means the machine is stopped so you can start it. If the status isn’t 3, you output a

message saying that the machine’s status needs to be checked—this includes the situa-

tion where the machine is running.

 Assuming that the status is correct (it’s stopped), you issue a Start-VM command.

A do loop is used to write a message stating that the machine is starting and giving the

date and time. Test-Connection is used to determine connectivity to the virtual

machine. If you don’t get a result it means that the machine is still starting, in which

case the function pauses for five seconds before processing the loop again.

TIP Setting the until condition on the do loop to be impossible forces the
loop to run indefinitely.

If you do get a response from Test-Connection it means the machine is available, so

you send a message to that effect and break out of the loop.

DISCUSSION

When you use the Start-VM command you receive a message that a background job

has started. These jobs can be viewed as follows:

Get-WmiObject -Namespace root\virtualization -Class Msvm_ConcreteJob

One drawback to this approach is that the Msvm_ConcreteJob WMI class doesn’t tell

you to which machine the job is related.

 Starting a single machine is useful. Starting multiple machines in the correct order

with a single command is even more useful.

412 CHAPTER 16 Administering Hyper-V with PowerShell and WMI

 Starting multiple machines

There are multiple scenarios where you may want to start multiple machines in a par-

ticular order, such as starting one domain controller and two Exchange servers. Alter-

natively, you may just need to start multiple machines in a sequential manner so that

you can control resource usage on the host.

PROBLEM

There’s a relationship between the functionality of a number of virtual machines,

which means you have to start the machines in the correct order for them to work

correctly.

SOLUTION

The following listing demonstrates a solution to this problem. The first parameter is

the Hyper-V host, as seen previously.

function start-pawVMset{
[CmdletBinding()]
param (
 [string]$hvhost="$env:COMPUTERNAME",
 [string[]]$vmset
)
PROCESS{
if (-not(Get-Module -Name hyperv)){Import-Module -Name hyperv -Force}

foreach ($vm in $vmset){
 start-pawVM -hvhost $hvhost -vm $vm
}
}}

The second parameter shows a coding syntax you’ve not seen often:

[string[]]$vmset. Read this from the inside out. String[] represents a string array,

which means that the parameter expects an array (multiple virtual machine names).

An array containing a single name is acceptable.

 You loop through the list of machines in that array and call the start-pawVM func-

tion (from listing 16.6) for each one.

DISCUSSION

The function is used in this manner:

start-pawVMset -vmset dc02, exch07, exch071

In this case, my domain controller is up and running before my Exchange servers

start. This ensures that the Exchange servers can contact the domain controller, and

there won’t be any problems with the Exchange services starting.

 The function can also be used to start a set of unrelated machines; for instance, I

could start all of my SQL Server systems in one pass.

 Starting machines is a good idea, but sometimes you have to stop them as well.

Listing 16.7 Start multiple virtual machines

TECHNIQUE 132

413TECHNIQUE 133 Stopping virtual machines

 Stopping virtual machines

There are a number of methods available for stopping virtual machines. A brute force

approach is to stop the host, but that will probably leave you with more work tidying

up the state of the virtual machines when you want to start them again. You can shut

down all running virtual machines like this:

Get-VM -Running | Stop-VM -Force

Alternatively, either of the following examples will close down a single machine:

Stop-VM -VM dc02 -Force
Stop-computer dc02

The drawback to these approaches is that you don’t get any reporting on progress.

PROBLEM

A function is needed that will shut down, in a controlled manner, one or more virtual

machines. The close-down procedure must report progress and inform you when the

virtual machine is completely shut down.

SOLUTION

The solution to this problem can be found by adapting the code in listing 16.7 as

shown in the following listing. The parameters are the virtual host and the set of

machines you wish to close down.

function stop-pawVMset{
[CmdletBinding()]
param (
 [string]$hvhost="$env:COMPUTERNAME",
 [string[]]$vmset
)
PROCESS{
if (-not(Get-Module -Name hyperv)){Import-Module -Name hyperv -Force}

foreach ($vm in $vmset){
 $machine = Get-VM -Name $vm -Server $hvhost
 if ($machine.EnabledState -eq 2){
 Stop-VM -VM $vm -Force
 do{
 $machine = Get-VM -Name $vm -Server $hvhost
 if ($machine.EnabledState -eq 3){
 Write-Host "System $vm stopped $(Get-Date -Format T)"
 break
 }
 else{
 Write-Host "System $vm stopping $(Get-Date -Format T)"
 Start-Sleep -Seconds 2
 }
 }until(1 -gt 2)
 }
 else {

Listing 16.8 Stop a virtual machine

TECHNIQUE 133

414 CHAPTER 16 Administering Hyper-V with PowerShell and WMI

 write-Host "$vm is not running. Check Status"
 }
}
}}

The function iterates through the set of machines and for each machine tests that the

machine is running and then calls Stop-VM. The machine state is tested periodically

during the close-down process (every 2 seconds in the code, but this can easily be

changed to allow for latency on really remote machines). When the machine state

reaches 3 (stopped) a message is written out confirming that the machine is stopped,

and the function breaks out of the loop.

DISCUSSION

The function can be used directly:

stop-pawVMset -vmset exch071, exch07, dc02

Alternatively, you can predefine the list of machines in a variable:

$close = "exch071", "exch07", "dc02"
stop-pawVMset -vmset $close

Virtual machines consist of one or more virtual disks. You need to be able to adminis-

ter those virtual disks.

16.3 Managing virtual disks

The final area to be covered in this chapter is virtual disks. These are files on the host

that the virtual machine treats as disks. You’ve already seen how to create virtual disks

as you create the machine and how to add virtual disks to an existing machine. We

now need to turn our attention to managing virtual disks.

 You need to be able to view the status of the virtual disks attached to a virtual

machine, determine how much free space is available within your virtual disk, and

compact the virtual disk to save space and make the disk more efficient.

 The first job is to test the status of the virtual disk.

 Testing virtual disk status

Understanding the status of the virtual disks in your system can go a long way when

troubleshooting problems. If the disks have problems you’ll definitely see those prob-

lems show up in the virtual machine, which could affect a business-critical application.

PROBLEM

You need to be able to determine the status of the various virtual storage devices

attached to your virtual machine. This includes DVD drives and virtual hard disks. You

also need the option to display information about disk usage.

SOLUTION

The following listing presents a solution to the problem. Two parameter sets are pre-

sented to make the selection of DVD or hard disks mutually exclusive options. A further

parameter enables you to discover further information about the virtual hard disk.

TECHNIQUE 134

415TECHNIQUE 134 Testing virtual disk status

function test-pawVHD{
[CmdletBinding()]
param (
 [string]$hvhost="$env:COMPUTERNAME",

 [parameter(ParameterSetName="DVD")]
 [switch]$dvd,

 [parameter(ParameterSetName="HD")]
 [switch]$hd,

 [parameter(ParameterSetName="HD")]
 [switch]$info

)
$vmdisks = Get-VMDisk -Server $hvhost

switch ($psCmdlet.ParameterSetName) {
 "DVD" {$disks = $vmdisks |
 where {$_.DriveName -eq "DVD Drive"} |
 select @{N="VMname"; E={$_.VMElementName}},
 ControllerName, DriveName}

 "HD" {$disks = $vmdisks |
 where {$_.DriveName -eq "Hard Drive"} |
 select @{N="VMname"; E={$_.VMElementName}},
 ControllerName, DriveName, DiskPath

 foreach ($disk in $disks) {

 $tp = Test-Path -Path $disk.DiskPath
 $disk | Add-Member -MemberType NoteProperty `
 -Name "PathFound" -Value $tp

 if($tp -and $info){
 $vhdinfo = Get-VHDInfo -VHDPaths "$($disk.DiskPath)"
 $disk |
 Add-Member -MemberType NoteProperty `
 -Name "FileSize" -Value $vhdinfo.FileSize -PassThru |
 Add-Member -MemberType NoteProperty `
 -Name "MaxSize" -Value $vhdinfo.MaxInternalSize -PassThru |
 Add-Member -MemberType NoteProperty `
 -Name "Inuse" -Value $vhdinfo.Inuse -PassThru |
 Add-Member -MemberType NoteProperty `
 -Name "InSavedState" -Value $vhdinfo.InSavedState -PassThru |
 Add-Member -MemberType NoteProperty `
 -Name "Type" -Value $vhdinfo.TypeName
}
 }
 }
}
$disks

}

You start by retrieving all of the virtual disks defined on the host. A switch statement

determines whether you’re working with DVDs or hard disks based on the parameter

Listing 16.9 Test virtual disk status

416 CHAPTER 16 Administering Hyper-V with PowerShell and WMI

set. Using parameter set names makes the choices mutually exclusive. Virtual DVDs

have the virtual machine name, controller name, and drive name selected.

 The processing for a hard disk is slightly more complicated. You select the same

information as for DVDs but add the path to the virtual disk file. Test-Path is used to

determine whether the file exists. If the file exists and you’ve selected the option for

more information, you add properties to the object you’re creating to hold disk size,

usage, and status.

DISCUSSION

The following examples illustrate how to use the function:

test-pawVHD -dvd

The preceding example displays the DVD devices allocated to virtual machines. If you

want to display the information about virtual hard disks you’d use this syntax:

test-pawVHD -hd | ft -a

The choice between displaying information on DVD or hard disk is mutually exclusive,

as can be illustrated by trying this:

test-pawVHD -hd -dvd

It generates an error.

 Finally, using this syntax,

test-pawVHD -hd -info

generates output in the following format for every virtual hard disk on every virtual

machine on the host:

VMname : Exch071
ControllerName : IDE Controller 0
DriveName : Hard Drive
DiskPath : C:\Virtual Machines\Exch071\Exch071.vhd
PathFound : True
FileSize : 22241793536
MaxSize : 136365211648
Inuse : FALSE
InSavedState : FALSE
Type : Dynamic

The file sizes are in bytes but you could easily convert to MB or GB. Examples of such

conversion can be found in earlier chapters, such as listing 6.2 in technique 21. Alter-

natively, you could use the following technique.

 Examining virtual disk usage

Virtual disks have storage limitations in exactly the same way as physical disks. An

important part of administering the virtual machines is testing their storage capacity.

PROBLEM

You need to be able to check on the free space of the virtual disks in your environ-

ment. This will feed into the capacity-planning reports you need to maintain.

TECHNIQUE 135

417TECHNIQUE 136 Compacting virtual disks

SOLUTION

There are two ways you can solve this problem. If a virtual machine is running you can

use technique 27 from chapter 6 to determine the disk space information. The follow-

ing listing will work for virtual disks connected to machines that are either running or

switched off.

function get-pawdisksize{
[CmdletBinding()]
param (
 [string]$hvhost="$env:COMPUTERNAME",
 [string]$vm
)
PROCESS{

Get-VMDisk -VM $vm -Server $hvhost |
where {$_.DriveName -eq "Hard Drive"} |
foreach {
 Get-VHDInfo -VHDPaths $($_.DiskPath) |
 select Path,
 @{N="MaxSize"; E={[math]::round(($_.MaxInternalSize / 1GB), 4)}},
 @{N="Size"; E={[math]::round(($_.FileSize / 1GB), 4)}},
 @{N="PercFree"; E= {100-(($_.FileSize / $_.MaxInternalSize)*100)}},
 Type
}
}}

The function takes the usual host and virtual machine names as parameters. Get-VMDisk

is used to retrieve the disk information, with Where-Object used to restrict the returned

information to virtual hard disks (you filter out DVD drives).

 The pipeline is completed by piping the disks into Foreach-Object, where the

DiskPath property is used in Get-VHDInfo to discover the disk capacity information.

The usual calculations are performed to convert the results from bytes to more mean-

ingful gigabytes.

DISCUSSION

The calculations round to four decimal places to ensure that new disks register. This

could be altered to two decimal places if preferred (new disks will register as 0

used space).

 Knowing the available capacity of a virtual disk is one part of the puzzle. You also

need to know if the space allocated to the virtual disk is being used efficiently.

 Compacting virtual disks

Virtual disks are files in the host’s storage system (the specification of .vhd files is avail-

able from Microsoft if you want to dig deeper). All disks, physical or virtual, suffer

from fragmentation. This was discussed in detail in chapter 6 (technique 31).

 When physical disks are defragmented the file fragments are made contiguous, but

no allowance is made for moving white space to the end of the disk. You can compact

virtual disks to remove the white space and make more efficient use of the host’s storage.

Listing 16.10 Determine virtual disk usage

TECHNIQUE 136

418 CHAPTER 16 Administering Hyper-V with PowerShell and WMI

PROBLEM

You need to be able to compact virtual hard disks to optimize the host’s storage. The

option should be presented to defragment the virtual disk at the same time.

SOLUTION

The function presented in the listing 16.11 solves this problem.

NOTE The defragmentation and compaction require the virtual machine to
be offline.

The parameters are the virtual machine whose disks you’ll compact and an optional

switch to prevent defragmentation. By default defragmentation will occur.

function compress-pawVHD{
[CmdletBinding()]
param (
 [string]$vm,
 [switch]$nodefrag
)
PROCESS{
if (-not(Get-Module -Name hyperv)){Import-Module -Name hyperv -Force}
if (-not(Get-Module -Name Chapter06)){
 Import-Module "C:\Scripts\PowerShell-WMI\Chapter06\Chapter06.psm1" `
 -Force
}

$dl = get-nextdriveletter
$pn = get-nextpartition

if (-not $nodefrag) {

 Get-VMDisk -VM $vm |
 where {$_.DriveName -eq "Hard Drive"} |
 foreach {
 Mount-VHD -Path $($_.DiskPath) -Partition $pn -letter $dl

 $mount = Get-VHDMountPoint -VHDPaths $($_.DiskPath) |
 where {$_.VolumeName -notlike "System Reserved" }

 Write-Verbose "Defragging disk $($mount.DeviceID)"
 $def = invoke-defraganal -drive $($mount.DeviceID) -defrag

 Dismount-VHD -VHDPaths $($_.DiskPath) -Force
 }
}

Write-Verbose "Compacting disks for $vm"
Get-VMDisk -VM $vm |
where {$_.DriveName -eq "Hard Drive"} |
foreach {
 Compress-VHD -VHDPaths $($_.DiskPath) -Wait
}

}}

Listing 16.11 Compact a hard disk

Get drive
letter

B

Mount
driveC

Defragment
drive

D

Compact
driveE

419TECHNIQUE 136 Compacting virtual disks

The function loads this chapter’s module and also the module from chapter 6 if it’s

not already loaded. You also need to mount the virtual disk as part of the host’s filesys-

tem if you want to perform a defragmentation. In order to achieve this you need the

next drive letter and partition number B. The two functions used for this are shown

in listings 16.12 and 16.13 respectively.

 If you’re performing a defragmentation C (the default action and recom-

mended), you get the virtual hard disks. Note I’ve had to use a double negative in the

logic! It’s not a best practice but it works.

 Each virtual hard disk associated with the virtual machine is mounted using

Mount-VHD. The virtual disk is mounted as two disks (one small System Reserved disk and

the main disk). You can use Get-MountPoint to discover the main disk’s DeviceId,

which you feed into the invoke-defraganal function (from chapter 6) D. Once the

defragmentation is complete you can dismount the virtual disk.

 The virtual hard disks associated with the machine are presented to compress-VHD

to perform the compaction and reclaim the space E. The -wait parameter shows a

progress bar for the compaction.

DISCUSSION

The function is easy to use:

compress-pawVHD -vm W08R2SQL08 -verbose

I recommend using the -verbose switch so you receive more information regarding

the function’s progress.

WARNING Performing a defragmentation can take a long time and you don’t
get any information regarding its progress.

The defragmentation option is the default for this function. If you want to perform a

compaction without defragmentation use the -nodefrag switch:

compress-pawVHD -vm Win7 -nodefrag

Compaction is a much quicker process than defragmentation.

WARNING Fragmented .vhd files may throw an error when you’re attempting
to compress them. The host filesystem needs to be defragmented in this case.

The function to discover the next drive letter simply gets the currently used drive let-

ters, sorts them in descending order, and then calculates the next letter, as shown in

the following listing. A test is performed to determine whether you’ve already used Z,

in which case you have a problem and another solution is required.

function get-nextdriveletter {

$disk = Get-WmiObject -Class Win32_LogicalDisk |
sort DeviceId -Descending |
select -First 1 -Property DeviceID

Listing 16.12 Get next drive letter

420 CHAPTER 16 Administering Hyper-V with PowerShell and WMI

$letter = ($disk.DeviceID).Substring(0,1).ToUpper()
if ($letter -eq "Z"){
 Write-Host "No more drive letters available"
}
else {
 $nextletter = [char](([byte][char]$letter) + 1)
 $nextletter
}}

The next partition index is calculated in a similar manner, as shown in the next listing

This is an easier calculation because you’re dealing with integers.

function get-nextpartition {

$disk = Get-WmiObject -Class Win32_DiskPartition |
sort Index -Descending |
select -First 1 -Property Index

$nextindex = ($disk.Index) + 1
$nextindex

}

This concludes our examination of the Hyper-V library and how you can use it.

There’s a lot more you can do with these functions—the more you experiment with

them, the more functionality you’ll discover.

16.4 Summary

Virtualization is an essential part of most organizations’ infrastructure. Being able to

automate the administration of the virtual environment is an increasingly important

ability. Hyper-V is a Windows feature, which means you can use the same techniques

to administer your virtual machines and their hosts.

 These are some common tasks that you’ve automated in this chapter:

■ The creation and configuration of virtual machines

■ Controlling individual machines and groups of machines

■ Testing virtual disks and determining their remaining capacity

■ Defragmenting and compacting virtual disks to improve performance

At the heart of these techniques is the PowerShell Hyper-V library. This free-to-download

PowerShell module will prove to be of great assistance as you develop further techniques

for automating the administration of your virtual environment.

 The topic of the next chapter is working with WMI directly through Windows

Remote Management, rather than using the remoting capabilities of PowerShell or

the WMI cmdlets.

Listing 16.13 Get next partition index

Part 3

The future:
 PowerShell v3 and WMI

WMI has always been a first-class citizen in the PowerShell universe. Its

importance has increased immensely with the introduction of PowerShell v3.

But before we dive into the new functionality, we’ll look at using WMI over the

WSMAN protocol in chapter 17. WSMAN increases in importance in PowerShell

v3, so a sound grounding in the protocol is a must.

WARNING The last two chapters of the book are based on a beta
release of PowerShell v3. Changes could occur before the final versions
of PowerShell v3 and Windows 8 are released.

PowerShell v3 introduces a number of improvements to WMI usage:

■ New WMI namespaces and classes

■ A new API for accessing WMI locally and remotely

■ A new set of cmdlets (CIM) for working with WMI

■ Creation of cmdlets from WMI classes

Many of the new cmdlets introduced with PowerShell v3 are created from WMI

classes. In chapter 18, we’ll look at how you can create your own cmdlets from

WMI classes (including legacy classes). The creation of format and type files to

control the display will also be demonstrated. This is a technique with general

application in PowerShell.

 Chapter 19 starts by showing how you can create cmdlets from WMI methods.

We’ll then look at the new CIM cmdlets, compare them with the WMI and

WSMAN cmdlets we’ve already seen, and close with a look at the capabilities for

remote administration introduced with the CIM API and cmdlets.

WMI has always been viewed as powerful, and these enhancements take it to a com-

pletely new level. It’s going to be a fun time as these techniques evolve.

423

WMI over WSMAN

In the previous chapters, we’ve looked at using the capabilities built into the WMI

cmdlets to provide access to remote systems. Using the -ComputerName parameter is

a simple method of creating a connection to a remote machine, and this is the

approach we’ve used in the majority of the techniques explored in previous chap-

ters. But there are a number of scenarios where this approach isn’t enough:

■ WMI uses Distributed COM (DCOM) to connect to a remote machine. This

may not be available or may be blocked by a firewall.

■ You may want to run multiple WMI commands against the same machine—

this involves creating and destroying multiple connections. It would be more

efficient to create one session and run multiple commands. Some informa-

tion about the connection is cached, but it’s still quicker to create one ses-

sion and run multiple commands.

■ You may need to perform out-of-band hardware management (accessing the

hardware by dedicated management links that aren’t used by general users)

or access non-Windows machines.

This chapter covers

■ WSMAN protocols

■ Using WMI through WSMAN

■ Using CredSSP

■ Comparing WSMAN and other remoting techniques

424 CHAPTER 17 WMI over WSMAN

Where DCOM isn’t available, you’ll need to use PowerShell remoting (section 2.8 in

chapter 2) or, if remoting isn’t available, use WSMAN protocols to directly access the

WMI resources. We’ll investigate the full PowerShell remoting options and look at how

the WSMAN protocols can be used to directly access resources on a remote machine.

NOTE This chapter will look only at working with the WMI provider through
WSMAN.

The WSMAN configuration is exposed as a PowerShell drive enabling you to configure

WSMAN settings on local and remote machines.

 By using WSMAN directly, you can perform three distinct types of tasks:

■ Information discovery

■ Modification of WMI objects

■ Removal of WMI objects

One potential issue with any remoting scenario is trying to directly access one or more

other machines from the remote machine. This is blocked by default, but the use of

the Credential Security Support Provider (CredSSP) enables this restriction to be

overcome by delegating the user’s credentials from the local to the remote machine.

This capability was introduced to PowerShell with the release of PowerShell v2 in Win-

dows 7 and Windows Server 2008 R2.

 After we review the remoting protocol and WSMAN and CredSSP usage, the chap-

ter closes with a review of the options for accessing remote machines and some recom-

mendations for their use.

 We’ll start by looking at the options available to you.

17.1 Remoting protocols

PowerShell has a number of protocols that can be used to connect to, and work with,

remote machines. In this section, we’ll review these protocols so that using WSMAN

can be put into context and to determine the best approach for working in a particu-

lar scenario.

 You’ve seen throughout the book that the WMI cmdlets can access remote comput-

ers directly. As an example, the following command returns information about the

logical disks on a computer called DC02:

Get-WmiObject -Class Win32_LogicalDisk -ComputerName DC02

WMI uses DCOM to access the remote machine, which requires the COM- and DCOM-

related services to be running on the remote system. It also requires that any firewalls

be configured to allow this traffic.

 An alternative is to use PowerShell remoting. This can be achieved as a one-off

command using Invoke-Command or by creating a session to the remote machine. If

you use Invoke-Command, the WMI command is modified to use this syntax:

Invoke-Command `
-ScriptBlock {Get-WmiObject -Class Win32_LogicalDisk} `
-ComputerName DC02

http://schemas.dmtf.org/wbem/wsman/

425Remoting protocols

Each returned object has a property that shows the computer name that was accessed.

It’s of this form:

PSComputerName : dc02

To do this, you need to have enabled the PowerShell remoting functionality on the

remote machine using Enable-PSRemoting run in a PowerShell console with elevated

privileges.

 A third option is to communicate directly with the WinRM service and access the

data:

Get-WSManInstance -ComputerName DC02 `
-ResourceURI wmicimv2/Win32_LogicalDisk `
-SelectorSet @{DeviceId='C:'}

TIP Try running these commands in your environment to see the differ-
ences in the results. They can be run on the local machine, but you’ll need to
start PowerShell with elevated privileges for the WSMAN example.

There are differences between the data returned by Get-WmiObject and that returned

by PowerShell remoting or by using WSMAN:

■ Get-WmiObject returns objects from local or remote machines. These are live

objects with methods and properties that can be manipulated as allowed by the

WMI class.

■ PowerShell remoting returns inert objects that have just the properties available.

■ WSMAN cmdlets return XML renderings of the object. These are inert, meaning

that methods don’t work and properties can’t be modified.

You need to understand the differences and similarities of using full PowerShell

remoting compared to using WSMAN.

17.1.1 PowerShell remoting

Remoting was probably the most eagerly awaited addition to PowerShell when ver-

sion 2 was released. It’s based on the WS-Management (Web Services Management,

usually abbreviated to WSMAN) protocols established by the Distributed Management

Task Force (http://dmtf.org/). WSMAN is a SOAP-based protocol for the manage-

ment of servers, devices, applications, and web services.

 Microsoft implemented WSMAN as the Windows Remote Management (WinRM)

service. The architecture is illustrated in figure 17.1.

 A PowerShell session on the local machine passes the commands to the PowerShell

remoting protocol on the local machine. The protocol is installed as part of WinRM.

The remoting protocol communicates via SOAP with the WinRM service on the

remote machine. The commands are then passed to a PowerShell session for execu-

tion. The results are passed back via WinRM.

 The communication between the machines is performed using HTTP or

HTTPS (if the appropriate certificate is installed). Configuration is performed by

http://dmtf.org/

426 CHAPTER 17 WMI over WSMAN

Enable-PsRemoting in the first instance and then by the WSMAN cmdlets or pro-

vider if any fine-tuning of the WSMAN/WinRM configuration is required.

 Individual commands can be run on the remote machine using Invoke-Command,

or you can create a PowerShell session to the remote machine and work through that.

Using a session is more efficient if you’ll be running multiple commands on the

remote machine. This was described in detail in section 2.8.

17.1.2 WSMAN

When you use WSMAN, you access the resource directly from the WinRM service, as

shown in figure 17.2. You don’t need to access PowerShell on the remote machine.

This means that you could administer remote machines that don’t use the Windows

operating system, assuming that they have an instance of WSMAN running and have a

CIM (WMI) provider.

 In the introduction to section 17.1, you saw how to access a WMI resource using

Get-WSManInstance. The -SelectorSet parameter is analogous to the -Filter param-

eter in Get-WmiObject, but it uses the WMI class key as its filter. For instance, this works:

Get-WSManInstance -ComputerName DC02 `
-ResourceURI wmicimv2/Win32_Service `
-SelectorSet @{Name='WinRm'}

But this code doesn’t:

Get-WSManInstance -ComputerName DC02 `
-ResourceURI wmicimv2/Win32_Process `
-SelectorSet @{Name=

 ➥ 'Microsoft.ActiveDirectory.WebServices.exe'}

Figure 17.1 The PowerShell remoting architecture, showing the information flow from

a PowerShell session on the local machine through the PowerShell remoting protocol to

WinRM on the remote machine and terminating at a remote PowerShell session

427Remoting protocols

You need to use this format:

Get-WSManInstance -ComputerName DC02 `
-ResourceURI wmicimv2/Win32_Process `
-SelectorSet @{Handle=1420}

Section 3.2.4 shows how to discover the WMI key for a class. Review that section if you

didn’t read it earlier.

 You can perform other administration tasks in addition to discovering informa-

tion. These other tasks require you to be familiar with the WSMAN cmdlets.

17.1.3 WSMAN cmdlets

The WSMAN cmdlets can be discovered using Get-Command:

Get-Command *wsman* -CommandType cmdlet |
Select name

They’re listed for convenience in table 17.1. We’ll be working mainly with Get-WSMan-

Instance and Invoke-WSManAction in this chapter. These cmdlets can be compared

to Get-WmiObject and Invoke-WmiMethod respectively.

Table 17.1 Cmdlets for working directly with WSMAN

Connect-WSMan Disable-WSManCredSSP Disconnect-WSMan

Enable-WSManCredSSP Get-WSManCredSSP Get-WSManInstance

Invoke-WSManAction New-WSManInstance New-WSManSessionOption

Remove-WSManInstance Set-WSManInstance Set-WSManQuickConfig

Test-WSMan

Figure 17.2 Using WinRM to access resources. The local PowerShell session talks

through the local PowerShell remoting protocol to the remote WinRM service, which

accesses the resources directly.

428 CHAPTER 17 WMI over WSMAN

The Get-WSManInstance cmdlet has an -Enumerate parameter. It’s used when there

are multiple instances of a particular resource and the -SelectorSet parameter isn’t

used. To see all of the logical disks on a remote system you’d use this syntax:

Get-WSManInstance -ComputerName DC02 `
-ResourceURI wmicimv2/Win32_LogicalDisk -Enumerate

If you want information on a particular disk, you’d use this:

Get-WSManInstance -ComputerName DC02 `
-ResourceURI wmicimv2/Win32_LogicalDisk `
-SelectorSet @{DeviceID='C:'}

New-WSManInstance and Remove-WSmanInstance are used to manage resources,

such as WSMAN listeners. They can’t be used to manipulate WMI-based objects.

Set-WSManInstance can be used to perform some changes to WMI-based objects as

well as WSMAN resources. The *CredSSP cmdlets are explained in section 17.3.

Connect-WSMan and Disconnect-WSMan enable you to connect to the WinRM ser-

vice on a remote machine. The configuration information for the remote machine is

then available through the WSMAN provider.

17.1.4 WSMAN provider

PowerShell provides access to data stores through providers. The providers expose the

data store in a similar manner to the filesystem. A well written provider should supply

access to the data store through the core cmdlets, such as *Item and *ItemProperty

(see Get-Help about_core_commands for the full list).

 A quick overview of the properties exposed in the provider can be found like this:

Get-ChildItem -Path wsman: -Recurse | ft Name, Value -a

The top-level containers for the provider are shown in figure 17.3.

 There are a number of default settings:

■ Port 5985 for HTTP and 5986 for HTTPS.

■ Machine names, not IP addresses, identify remote machines.

■ Credential delegation through CredSSP is disabled.

■ Nondomain machines must be in the trusted hosts list.

Figure 17.3

Top-level containers

in the WSMAN drive

429Using WSMAN

These defaults (apart from the last one) can be changed, though nondomain

machines can be added to the trusted hosts list.

TIP I don’t recommend changing the ports or any other of the default set-
tings unless there’s a security imperative in your organization that mandates
the change.

If changes have to be made, they can be performed using code like this:

Set-Item -Path wsman:\localhost\listener\listener*\port `
-Value 8080

Set-Item -Path WSMan:\localhost\Client\DefaultPorts\HTTP `
-Value 8080

The first line changes the port that WinRM listens on, and the second line makes it the

default.

TIP If you have to change the ports, be consistent across your environment
to avoid troubleshooting problems.

The WSMAN provider connects to the WinRM service on the local machine:

PS> dir wsman:

 WSManConfig:

ComputerName Type
------------ ----
localhost Container

If you use the Connect-WSMan cmdlet, you can create a connection to the WinRM ser-

vice on a remote machine:

PS> Connect-WSMan -ComputerName dc02
PS> dir wsman:

 WSManConfig:

ComputerName Type
------------ ----
localhost Container
dc02 Container

The WinRM settings can be configured on the remote machine using the provider.

The connection can be destroyed using Disconnect-WSMan -ComputerName dc02.

 You’ve seen what the WSMAN protocol is and how you can configure it. It’s time to

put it to work.

17.2 Using WSMAN

Any administration tool is only as good as the tasks you can accomplish with it. Using

the WSMAN cmdlets enables you to perform similar tasks to those you could do by

using WMI directly without the use of DCOM.

430 CHAPTER 17 WMI over WSMAN

 In this section, you’ll discover how you can use aliases for the WSMAN resource

URIs and how to test that the WSMAN protocols are available.

TIP This is also a good test when troubleshooting PowerShell remoting or
the CIM cmdlets in PowerShell v3.

The bulk of your administrative work likely involves discovering information about a

machine or managing the resources on that machine. We’ll investigate how those

tasks can be accomplished using WSMAN—specifically, how you can discover, modify,

and delete WMI objects.

17.2.1 WSMAN URIs

In the examples you’ve seen so far, the code using the WSMAN cmdlet has contained a

Uniform Resource Identifier (URI), which has been stated like this:

-ResourceURI wmicimv2/Win32_LogicalDisk

That coding is an alias for this URI:

http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_LogicalDisk

The full URI consists of three parts:

■ A root—http://schemas.microsoft.com

■ A namespace—wbem/wsman/1/wmi/root/cimv2

■ A class—Win32_LogicalDisk

The aliases are a lot easier to use and involve a lot less typing than using the full URI

(and they reduce the chances of error). Table 17.2 lists the available aliases and their

corresponding full URIs.

Before you can get into using these aliases, you need to make sure that the WinRM ser-

vice is up and running.

Table 17.2 WSMAN URI aliases

Alias Full resource URI

wmi http://schemas.microsoft.com/wbem/wsman/1/wmi

wmicimv2 http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2

cimv2 http://schemas.dmtf.org/wbem/wscim/1/cim-schema/2

winrm http://schemas.microsoft.com/wbem/wsman/1

wsman http://schemas.microsoft.com/wbem/wsman/1

shell http://schemas.microsoft.com/wbem/wsman/1/windows/shell

http://schemas.microsoft.com

431TECHNIQUE 137 Testing WSMAN

 Testing WSMAN

It is always a good idea to test the tools you’ll be using, and the WSMAN protocols are

no exception. You could use the Get-Service cmdlet to determine whether the

WinRM service was running on a remote system, but you need a little bit more to be

sure you can communicate with the service.

PROBLEM

You need to perform an end-to-end test to ensure that the WSMAN communication is

configured correctly. It’s only necessary to test the remote machine to determine that

you can communicate with it, but testing the local machines supplies information that

may be useful in troubleshooting.

SOLUTION

The function takes the usual -computername parameter to identify the remote

machine, as shown in the following listing. When using WSMAN, this has to be a name

by default, not an IP address.

function test-wsmanlink{
[CmdletBinding()]
param(
 [string]$computername
)

"Testing local machine: $env:COMPUTERNAME"
Test-WSMan -ComputerName "localhost" -Authentication default

"Testing remote machine: $computername"
Test-WSMan -ComputerName $computername -Authentication default

}

The Test-WSMan cmdlet submits an identification request that determines whether

the WinRM service is running on a local or remote computer. If the tested computer is

running the service, the cmdlet displays the WSMAN identity schema, the protocol ver-

sion, the product vendor, and the product version of the tested service.

 The -Authentication default statement is added to the command to ensure that

the product version information is displayed; without that, you’d just get zeros.

DISCUSSION

One interesting point is that $env:COMPUTERNAME is used to identify the local machine

when returning information. You can use localhost in the Test-WSMan call, but it

doesn’t tell you which machine you’re on!

 The output from Test-WSMan for the remote machine looks like this:

Testing remote machine: dc02
wsmid : http://schemas.dmtf.org/wbem/wsman/

 ➥ identity/1/wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 6.1.7601 SP: 1.0 Stack: 2.0

Listing 17.1 Test WSMAN links

TECHNIQUE 137

432 CHAPTER 17 WMI over WSMAN

Now that you know that WSMAN is working, how can you use it to get at the data?

 Retrieving WMI data using WSMAN

One of the primary uses for WMI is to retrieve data from remote systems. You can

duplicate this action using WSMAN. The code becomes a little more complex, but the

relationship to Get-WmiObject is readily discernible.

PROBLEM

You want to determine which network adapters in your machines have TCP/IP

enabled and what their IP properties are. This could be performed using ipconfig.exe

for the local machine, but you need to be able to access remote systems as well.

SOLUTION

The following listing shows how you can solve the problem using the Get-

WSManInstance cmdlet. You’ll be using the Win32_NetworkAdapter and

Win32_NetworkAdapterConfiguration classes in listing 17.2. These classes will be

used in a similar way to when you solve the problem directly with WMI.

function get-ipinfo{
[CmdletBinding()]
param (
[parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [Alias("CN", "Computer")]
 [string]$computername="$env:COMPUTERNAME"
)

Get-WSManInstance -ResourceURI wmicimv2/* -Enumerate -Dialect WQL `
 -Filter "SELECT * FROM Win32_NetworkAdapterConfiguration WHERE

 ➥ IPenabled='$true'" -ComputerName $computername |
foreach {
$nic = Get-WSManInstance -ResourceURI wmicimv2/* `
-Enumerate -Dialect Association `
-Filter "{Object=Win32_NetworkAdapterConfiguration?

 ➥ Index=$($_.Index);ResultClassName=

 ➥ Win32_NetworkAdapter}" `
-ComputerName $computername

 $output= New-Object -TypeName PSObject -Property @{
 NICCardName = $nic.NetConnectionId
 DHCPEnabled = $($_.DHCPEnabled)
 IPAddress = $($_.IPAddress)
 SubnetMask = $($_.IPSubnet)
 Gateway = $($_.DefaultIPGateway)
 DHCPServer = $($_.DHCPServer)
 DNSDomain = $($_.DNSDomain)
 DNSDomainSuffixSearchOrder = $($_.DNSDomainSuffixSearchOrder)
 DNSServerSearchOrder = $($_.DNSServerSearchOrder)
 }
$output
}
}

Listing 17.2 Retrieve IP configuration with WSMAN

TECHNIQUE 138

Get
parameters

B

Get
adaptersC

Get
configurationD

Output
resultsE

433TECHNIQUE 139 Modifying WMI instances through WSMAN

The usual -computername parameter is used to provide access to remote machines.

The parameter is provided with two aliases as a reminder of how to code parameter

aliases B.

 You start with a call to Get-WSManInstance that accesses the

Win32_NetworkAdapterConfiguration class C. The resource URI is coded as

wmicimv2/*, which means you’re looking at WMI’s root\cimv2 namespace. The

-Enumerate parameter is used because you expect (or even just suspect) that there’s

more than one WSMAN instance involved.

 The -Filter parameter performs the selection for you. It uses the same syntax

you’d use in a WMI query. The command could be rewritten like this:

Get-WmiObject -ComputerName $computer `
-Query "SELECT * FROM Win32_NetworkAdapterConfiguration

 ➥ WHERE IPenabled='$true'"

You pipe the results into ForEach-Object. Each of the adapter configurations has the

corresponding Win32_NetworkAdapater class retrieved D. The -Dialect parameter

informs the cmdlet you’re looking for associations, and the -Filter defines the cur-

rent object using the Index property (its key) and the class you’re looking for—in this

case, Win32_NetworkAdapter.

 An object is created using New-Object and the -Property parameter E. The prop-

erties are defined and populated, and the object is output at the end of the processing.

DISCUSSION

There’s little difference between using WMI directly or through WSMAN when retriev-

ing information.

 The fact that you get an inert object returned isn’t an issue because you’re only

looking to read the data. It does become an issue when you want to modify or remove

an instance.

 Modifying WMI instances through WSMAN

Changing the configuration of your systems is something you can’t get away from. Ide-

ally you’d create a server, install the applications, and it would remain unchanged from

that time until it was decommissioned. Unfortunately, it doesn’t work that way, and you

need to be able to make modifications. You’ve seen throughout the book how to use WMI

directly to achieve this. Now we’ll look at using WSMAN as the transport mechanism.

PROBLEM

A new disk has been added to the server. The junior administrator (what would we do

without them to blame?) has allocated an incorrect drive letter to a removable disk.

You need to change the drive letter to bring the system into compliance with your

organization’s standards.

SOLUTION

The function provided in the following listing will change the drive letter associated

with a volume. A computer name, for accessing remote systems, and a new drive letter

are the function’s parameters.

TECHNIQUE 139

434 CHAPTER 17 WMI over WSMAN

function set-driveletter{
[CmdletBinding()]
param (
[parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [Alias("CN", "Computer")]
 [string]$computername="$env:COMPUTERNAME",
 [string]$olddrive,
 [string]$newdrive = "Z:"
)
Get-WSManInstance -ResourceURI wmicimv2/* -Enumerate -Dialect WQL `
-Filter "SELECT * FROM Win32_Volume WHERE DriveType=2

 ➥ AND DriveLetter = '$olddrive'" -ComputerName $computername |
foreach {
 Set-WSManInstance -ResourceURI wmicimv2/Win32_Volume `
 -SelectorSet @{DeviceID=$($_.DeviceID)} `
 -ValueSet @{DriveLetter=$newdrive} -ComputerName $computername
}
}

The function uses Get-WSManInstance to discover those volumes with a drive type of 2

(removable media—in this case, USB drives). A similar syntax to listing 17.2 is used,

with the work being performed by the WQL statement defined in the -Filter param-

eter. This is the equivalent of

Get-WmiObject -Query "SELECT * FROM Win32_Volume WHERE DriveType=2"

The result from Get-WSManInstance is piped into ForEach-Object. A call to Set-WSMan-

Instance is used to perform the change of drive letter. The -SelectorSet parameter

is used to identify the exact volume. The DeviceID (the key to the Win32_Volume class)

is obtained from the information on the pipeline.

TIP It would be possible to modify the function to accept a DeviceID as a
parameter instead of discovering it.

Set-WSManInstance has a -ValueSet parameter, which defines the new values of the

properties that are going to be changed. It accepts a hash table so you can change

multiple properties at once. Here’s an example:

-ValueSet @{DriveLetter=$newdrive; Label="MyNewUSBdrive"}

This would change the drive letter and the volume label in one pass.

DISCUSSION

The function does assume that there’s only one volume that will meet the filter crite-

rion specified in Get-WSManInstance. Identifying the correct resource is the primary

issue when attempting to perform modifications through the WSMAN cmdlets. I’ve

found it easier to develop the functions by identifying the correct instance using Get-

WSManInstance and then piping the results to the change process. Many of the pure

WMI functions in the rest of the book work in a similar manner.

Listing 17.3 Change a drive letter

435TECHNIQUE 140 Deleting WMI instances through WSMAN

 Discovery and modification will form a large part of your interaction with WMI

objects. But at some stage you’ll be called upon to delete objects.

 Deleting WMI instances through WSMAN

When you’re working directly with WMI, you can use the Remove-WMIObject cmdlet to

delete WMI objects. Remember that not all WMI-related objects can be deleted; for

instance, deleting the Win32_OperatingSystem object would not be a good idea.

 Using the WSMAN cmdlets, you have to be a little less direct in your processing

approach as the Remove-WSManInstance cmdlet will only work on WSMAN configura-

tion items.

PROBLEM

Your junior administrator has been at it again and has left a large number of instances

of notepad.exe running on a server. You need a way to delete those instances

remotely.

SOLUTION

The following listing provides an answer to this problem. When dealing with WSMAN

instances, you have to work with the WMI class key if you want to use the -SelectorSet

parameter. This constrains your function to a structure of discovery and action that

you’ve used in previous listings in this chapter.

function remove-notepad{
[CmdletBinding()]
param (
[parameter(ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [Alias("CN", "Computer")]
 [string]$computername="$env:COMPUTERNAME"
)

Get-WSManInstance -ResourceURI wmicimv2/* -Enumerate -Dialect WQL `
-Filter "SELECT * FROM Win32_Process WHERE Name='Notepad.exe'" `
-ComputerName $computername |
foreach {

Invoke-WSManAction -ResourceURI wmicimv2/Win32_Process `
-Action Terminate -SelectorSet @{Handle=$($_.Handle)} `
-ComputerName $computername

}
}

The function has a computer name as a parameter. You can then use Get-WSManInstance

to discover the instances of the Notepad.exe process running on the remote machine.

Alternative ways to retrieve this information are available, such as the following:

Get-Process notepad -ComputerName $computer

Get-WmiObject -Class Win32_Process `
-Filter "Name='notepad.exe'" -ComputerName $computer

Listing 17.4 Delete objects through WSMAN

TECHNIQUE 140

436 CHAPTER 17 WMI over WSMAN

Get-WSManInstance results are piped into ForEach-Object, where a call to Invoke-

WSManAction is made. This uses the Handle property of the pipeline object to identify

the individual instance of Notepad. The -Action parameter defines the WMI method

to call, which in this case is Terminate, which stops and deletes the process.

DISCUSSION

The process followed here is analogous to the one you employed when using the WMI

cmdlets; namely, get the object and pipe it to Invoke-WmiMethod. It’s slightly more

cumbersome to code, but in my opinion a lot safer, as the “get” process can be tested

during development to ensure that the correct objects are being accessed.

 All of the PowerShell remoting techniques are designed to connect the local com-

puter to a remote computer. You may connect to multiple computers simultaneously,

but the tasks are performed on the machine to which you connect. There are times

when this causes problems and you need to run a command on a remote machine

that accesses a third machine.

17.3 Using CredSSP to access remote machines

If you access a machine remotely through PowerShell you can run commands on that

machine. If you attempt to run a command that needs a direct connection to a third

machine it will fail; for example, running a job on the third machine, accessing a

share on a remote machine, or running a cmdlet with the -ComputerName parameter

to perform an action against the third machine. This is a deliberate security device

built into the Windows operating system to prevent malicious software or people per-

forming actions across the domain if a machine is compromised.

 As an illustration, suppose you have two remote machines, dc02 and web01. Both

are configured for PowerShell remoting, meaning that you can run commands

against both machines, as illustrated in figure 17.4.

Figure 17.4 Executing remote commands against two machines

437TECHNIQUE 140 Using CredSSP to access remote machines

If you attempt to run a command on one machine that accesses another you’ll get an

error, as shown in figure 17.5. Attempting to access a third machine from a remote

machine is known as a double hop.

NOTE If the remote machine is a domain controller and you have domain
administrator rights (or higher), some double-hop commands will work, but
not all.

The error occurs because your credentials aren’t available on the remote machine.

You’re attempting to access resources for which you can’t be authorized.

 There’s a mechanism to overcome this restriction, known as the Credential Secu-

rity Support Provider (CredSSP). This enables you to delegate your credentials to a

remote machine so that it can access other remote machines on your behalf. The

default CredSSP settings are illustrated in figure 17.6.

 You can enable credential delegation by running this command on the local

machine:

Enable-WSManCredSSP -Role client -DelegateComputer web01 -Force

Figure 17.5 Error when attempting double-hop access

Figure 17.6 Default CredSSP response

438 CHAPTER 17 WMI over WSMAN

The following has to be run on the remote machine (in this example, web01):

Enable-WSManCredSSP -Role server -Force

Both commands must be run from a PowerShell prompt with elevated privileges. The

first command enables the delegation of credentials, and the second enables the

remote system to receive delegated credentials. You need to use -Authentication

CredSSP and the -Credential parameter when calling Invoke-Command, as shown in

figure 17.7.

 The user’s credentials must be presented to Invoke-Command. The easiest way is to

save them in a credential object for multiple re-use. Remember to include the domain

or you’ll get local credentials that won’t work in this scenario. Invoke-Command can be

called as shown. The *WSManInstance cmdlets can also use the CredSSP mechanism to

perform double-hop access.

 When the need for delegated credentials has ceased, remember to use the follow-

ing commands:

Disable-WSManCredSSP -Role client
Disable-WSManCredSSP -Role server

These are run on the local and remote machine respectively to stop delegation.

WARNING The use of CredSSP is not recommended as an everyday practice. It
should be reserved for a situation in which there is no other way to access the
remote machines. CredSSP should not be permanently switched on.

The need to access remote machines to enable CredSSP makes using it more difficult.

CredSSP can’t be enabled using PowerShell remoting techniques because the remote

Figure 17.7 Using CredSSP to access a system via a double hop

439How to choose between WMI, remoting, and WSMAN

session doesn’t run with elevated privileges. It’s possible to use a scheduled job to per-

form this action, but that could be viewed as a security risk.

 This completes our examination of using WSMAN directly. Before we close the

chapter, let’s review the various remoting mechanisms.

17.4 How to choose between WMI, remoting, and WSMAN

This chapter raises the question of how you should access remote machines. You’ve

seen three mechanisms:

■ Using DCOM via the WMI cmdlets

■ Using PowerShell remoting via Invoke-Command or PowerShell remote sessions

■ Using WSMAN cmdlets

The obvious question is, “Which approach should I use?” The answer, as always, is, “It

depends.” A comparison of the techniques is presented in table 17.3.

The bulk of the functions presented in this book have used the first option (DCOM

and the WMI cmdlets). This is a simple to use, powerful, and well-understood mecha-

nism, but it isn’t firewall-friendly. I still recommend it for use within the domain.

 PowerShell remoting is one of the “big things” in PowerShell v2, and as such it’s

getting a lot of attention. GPOs can be used to configure remoting in a domain envi-

ronment. I would use remoting when I need to access the same machine multiple

times in a single session.

WSMAN is the weakest of the three mechanisms at the moment, and I would only

use it when conditions prevent other mechanisms from working. I strongly recom-

mend learning how it works, as it offers the potential of access to non-Windows sys-

tems, which gives you a single administration tool that can be used across a

heterogeneous environment.

 Microsoft is making PowerShell functionality available through web services, such

as Exchange 2010 and Active Directory in Windows Server 2008 R2. At the moment,

Table 17.3 Comparison of remote access techniques

Mechanism Pros Cons

DCOM and WMI cmdlets Simple

Understood and obvious

Returns live objects

Needs DCOM available

Not firewall-friendly

PowerShell remoting Uses HTTP, so firewall-friendly

Can enter the session

Needs to be enabled

Returns “inert objects”

Needs PowerShell v2

WSMAN Uses HTTP, so firewall-friendly Syntax is complicated

Not well understood

Returns XML

440 CHAPTER 17 WMI over WSMAN

this seems to be the preferred direction, which means learning how to use WSMAN

could be advantageous. Knowledge of WSMAN will definitely be useful when it comes

to using the CIM cmdlets and CIM sessions introduced in PowerShell v3, as you’ll see

in chapters 18 and 19.

17.5 Summary

The major efficiency to be gained from using PowerShell is the ability to administer

remote servers. You can use the WMI cmdlets to perform this action directly as long as

the DCOM-related services are available and not blocked by a firewall. If DCOM isn’t

available, you’ll need to use one of the following:

■ PowerShell remoting

■ WSMAN

The WSMAN cmdlets can be used to retrieve information, modify WMI objects, and

remove WMI objects. In a remoting scenario, you can’t directly access a third machine

from your remote server. This restriction can be overcome using CredSSP, but there

are security implications that must be observed.

 The recommended approach to accessing remote machines is to use the WMI cmd-

lets for single access. If multiple commands will be run against a remote machine, use

PowerShell remoting.

WSMAN should be learned, because it provides the potential for out-of-band hard-

ware management, for accessing non-Windows systems, and for use with the CIM cmd-

lets in PowerShell v3.

441

Your own WMI cmdlets

In the previous 17 chapters of the book, you’ve seen how to use the WMI cmdlets

provided in PowerShell v2. PowerShell v3, introduced with Windows 8, enables you

to take this a step further and create your own WMI cmdlets! The ability to create

cmdlets directly from the WMI classes will radically alter the way we work with WMI

in the future. This functionality is referred to as cmdlets-over-objects—you create a

cmdlet directly from the WMI object. The use of WMI and CIM is massively

expanded in the Windows 8 product line. In fact, much of the new PowerShell

functionality introduced in the Windows 8 family is cmdlets produced directly from

WMI classes.

 In one respect, this makes our job easier, because we have a lot of new function-

ality out of the box, but in another respect it makes things more difficult, as we

have new technologies and concepts to learn. This chapter and the next will show

how it all works, when you should use the new options, and when you should stick

with the traditional ways.

This chapter covers

■ Creating cmdlets from WMI classes

■ Creating a module to load multiple cmdlets

■ Creating format and type files

442 CHAPTER 18 Your own WMI cmdlets

WARNING This material is based on beta versions of PowerShell v3, and there
may be changes between the time of writing and the release of Windows 8 and
PowerShell v3.

We looked at retrieving information about your operating system in technique 14 (chap-

ter 5). This was based on the Win32_OperatingSystem class, as shown in figure 18.1.

 Figure 18.1 demonstrates using WMI to fetch information about the operating sys-

tem using this code:

Get-WmiObject -Class Win32_OperatingSystem |
Format-Table CSName, Caption, ServicePackMajorVersion,
OSArchitecture,LastBootUpTime -AutoSize

You call the Win32_OperatingSystem class and use Format-Table to control the dis-

play. This is standard PowerShell that you’ve seen many times now. But wouldn’t it be

nice (no I’m not singing that) to use a cmdlet instead, with the option of searching

using parameters, as shown in figure 18.2.

 The cmdlet Get-Win32OperatingSystem displays information about the operating

system that’s similar to what the Win32_OperatingSystem class offers. At this point you

may well be jumping up and down shouting, “He’s using an advanced function!”

Figure 18.1 Using the Win32_OperatingSystem class to display data, including boot time

Figure 18.2 Using the Get-Win32OperatingSystem cmdlet used to display information

443TECHNIQUE 141 Creating a simple cmdlet

Nope. I’m not. I’m using a module created directly from the WMI class. How this

works is the subject of this chapter.

 We’ll start by examining how to create a cmdlet from a WMI class. The

Win32_OperatingSystem class will be used in these examples, and we’ll look at the

examples first. The tools that can be used to make this even easier will be discussed

later in the chapter.

WMI provides many properties as integer codes. In earlier chapters we used hash

tables or .NET enumerations to decode these values. The cmdlet will be extended to

decode the OperatingSystemSKU property as an example.

NOTE These examples are based on the CIM cmdlets and the new API for
using WMI that’s introduced in PowerShell v3. This is detailed in chapter 19.

A single cmdlet is good, but a module of cmdlets is even better. The second section of

the chapter introduces a cmdlet based on the Win32_ComputerSystem class and also

explains how you can load both cmdlets as a single module.

WMI classes have default display formatting, as you’ve seen. The penultimate part

of the chapter covers adding a format file and a type file (to add extra properties to

the objects you produce). The chapter closes with an overview of a tool that makes

creating cmdlets from WMI classes much easier.

 We’ll start looking at all of this new functionality by showing you how to create a

cmdlet from WMI.

18.1 Creating a WMI cmdlet

In this section, you’ll use the Win32_OperatingSystem WMI class to create a cmdlet.

The initial version will provide an alternative means of retrieving the operating system

data. You’ll then enhance it by creating a number of search parameters based on

property values. One of the property values will involve the decoding of an integer-

coded property as an example.

 Creating a simple cmdlet

In the first two parts of the book, you used a PowerShell cmdlet to access a WMI class:

Get-WmiObject -Class Win32_OperatingSystem

SystemDirectory : C:\Windows\system32
Organization :
BuildNumber : 7601
RegisteredUser : Richard
SerialNumber : 00426-065-1155216-86881
Version : 6.1.7601

The output is a default set of properties, as shown. You can provide wrapper functions

to control the output, provide input parameters, and process flow control. These can

also be combined into modules as demonstrated in chapters 5–16. The next evolution

in this process, introduced with PowerShell v3, is to create the cmdlet directly from

the WMI class.

TECHNIQUE 141

444 CHAPTER 18 Your own WMI cmdlets

PROBLEM

The functions you’re using to retrieve operating system information need to be

updated to work with the Windows 8 generation of operating systems. You need to

convert the functions to PowerShell cmdlets based on the WMI class.

SOLUTION

The core of the solution is contained in an XML file shown in the following listing.

That’s right—XML. The bad news about this functionality is that you have to work with

XML. The good news is that it’s relatively easy.

<?xml version="1.0" encoding="utf-8"?>
<PowerShellMetadata xmlns:xsi=

 ➥ "http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.microsoft.com/cmdlets-over-objects/2009/11">
 <Class ClassName="root\cimv2\Win32_OperatingSystem">
 <Version>1.0.0.0</Version>
 <DefaultNoun>Win32OperatingSystem</DefaultNoun>
 <InstanceCmdlets>
 <GetCmdletParameters

 ➥ DefaultCmdletParameterSet="ByName">
 <QueryableProperties>
 <Property PropertyName="Name">
 <Type PSType="System.String" />
 <RegularQuery AllowGlobbing="true">
 <CmdletParameterMetadata PSName="Name"

 ➥ Position="0"

 ➥ ValueFromPipelineByPropertyName="true"

 ➥ CmdletParameterSets="ByName" />
 </RegularQuery>
 </Property>
 </QueryableProperties>
 </GetCmdletParameters>
 </InstanceCmdlets>
 </Class>
</PowerShellMetadata>

The first two lines are standard and will be used in all examples in this chapter and

chapter 19 relating to this technology. They define the XML schema you’ll use so that

the XML can be checked when you build the cmdlet.

 Next, the WMI class is defined B. The WMI path, including the namespace and

class, has to be provided. The default noun for the cmdlet is required C. The noun

will become more important in chapter 19 when you use the class methods. The

remainder of the XML defines the way parameters are presented to the cmdlet D.

This information should be familiar from the parameter options in PowerShell

advanced functions, such as Position="0".

 The ultimate definition of your module will be a folder on the module path. The

module path can be found using this line:

$env:psmodulepath -split ";"

Listing 18.1 Simple WMI-based cmdlet

WMI
class
B

Cmdlet
nounC

Cmdlet
parametersD

445TECHNIQUE 141 Creating a simple cmdlet

PowerShell v3 automatically loads all modules it finds on the module path when a

PowerShell console or the ISE is started. This isn’t something I want to occur while I’m

developing modules, so I create the module in a development folder and move it to

the module path when I’m happy it’s working properly.

 The XML file shown in listing 18.1 is saved as Win32OperatingSystem.cdxml. The

.cdxml extension is new to PowerShell v3 and means “Cmdlet Definition XML.” Once

you have the file saved, you can import it into your PowerShell session by changing

the location to the folder in which you created the file, and then typing

Import-Module ./Win32OperatingSystem.cdxml

Alternatively, the full path to the file can be supplied.

 The module loads and you can use the standard commands, such as Get-Module

and Get-Command, on it, as shown in figure 18.3.

 Notice that the module type is shown as CIM, and Get-Command shows the Capability

as CIM. These are indicators that you’re dealing with cmdlets-over-objects—cmdlets cre-

ated from WMI classes.

NOTE The download code for chapters 18 and 19 is combined, with a subfolder
for each stage of development. The final version is also available in a subfolder
called SystemInfo that can be copied directly into your module path.

The important thing to note is that you have a single .cdxml file that you can directly

import as a module. Think of it as a .psm1 file for cmdlets-over-objects.

 Now that you’ve built it and loaded it, how do you use it?

DISCUSSION

When the Get-Win32OperatingSystem | Format-List * command is used, the result

is almost identical to running this command:

Get-WmiObject -Class Win32_OperatingSystem | Format-List *

Figure 18.3 Performing standard PowerShell actions on your module

446 CHAPTER 18 Your own WMI cmdlets

These are the slight differences:

■ No system parameters are displayed—those are the properties with the double

underscore (__) prefix.

■ Dates are converted from the WMI format to a normal format. This is equivalent

to using the ConvertToDateTime() method.

The date formatting means that you’ll see is this:

InstallDate : 16/03/2011 19:10:44
LastBootUpTime : 06/09/2011 18:46:20
LocalDateTime : 06/09/2011 19:30:52

The following is what you’d see with a direct call to the WMI object using Get-WmiObject:

InstallDate : 20110316191044.000000+000
LastBootUpTime : 20110906184620.919125+060
LocalDateTime : 20110906193539.192000+060

These changes alone, especially the conversions of dates, are a major productivity

gain. The other fundamental change is that the object type is now

Microsoft.Management.Infrastructure.CimInstance#

 ➥ ROOT\cimv2\Win32_OperatingSystem

rather than the type you’re used to seeing, which is

System.Management.ManagementObject#root\cimv2\Win32_OperatingSystem

The differences between these two types are discussed further in chapter 19, where

the CIM cmdlets are covered.

 We can now look at extending the functionality of your basic cmdlet.

 Extending the cmdlet

The basic cmdlet can be extended in a number of ways. In this section, you’ll add

more parameters to make searching easier. You could also extend the module by cre-

ating cmdlets to utilize the methods available on the WMI classes. This more advanced

feature will be added in chapter 19.

PROBLEM

Your basic cmdlet is the equivalent of using the WMI class in Get-WmiObject. You need

to add extra parameters to filter on the operating system type (the Caption property)

and the SKU (the OperatingSystemSKU property).

NOTE Any property could be used in this manner. You could, for instance,
create a cmdlet that looks for computer systems with more than a certain
amount of physical memory (see technique 143).

SOLUTION

The solution involves enhancing the XML file you created in listing 18.1. The resultant

file is shown in the following listing. The description will concentrate on the additions

to the XML file.

TECHNIQUE 142

447TECHNIQUE 142 Extending the cmdlet

<?xml version="1.0" encoding="utf-8"?>
<PowerShellMetadata xmlns:xsi=

 ➥ "http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.microsoft.com/cmdlets-over-objects/2009/11">
 <Class ClassName="root\cimv2\Win32_OperatingSystem">
 <Version>1.0.0.0</Version>
 <DefaultNoun>Win32OperatingSystem</DefaultNoun>
 <InstanceCmdlets>
 <GetCmdletParameters DefaultCmdletParameterSet="ByName">
 <QueryableProperties>
 <Property PropertyName="Name">
 <Type PSType="System.String" />
 <RegularQuery AllowGlobbing="true">
 <CmdletParameterMetadata PSName="Name"
 ➥ Position="0"

 ➥ ValueFromPipelineByPropertyName="true"

 ➥ CmdletParameterSets="ByName" />
 </RegularQuery>
 </Property>

 <Property PropertyName="Caption">
 <Type PSType="System.String" />
 <RegularQuery AllowGlobbing="true">
 <CmdletParameterMetadata PSName="Caption"

 ➥ Position="1"

 ➥ CmdletParameterSets="ByCaption" />
 </RegularQuery>
 </Property>

 <Property PropertyName="OperatingSystemSKU">
 <Type PSType="OperatingSystem.OperatingSystemSKU" />
 <RegularQuery>
 <CmdletParameterMetadata IsMandatory="false"

 ➥ CmdletParameterSets="BySKU" />
 </RegularQuery>
 </Property>
 </QueryableProperties>
 </GetCmdletParameters>
 </InstanceCmdlets>
 </Class>

 <Enums>
 <Enum EnumName="OperatingSystem.OperatingSystemSKU"

 ➥ UnderlyingType="uint32">
 <Value Name="UltimateEdition" Value="1" />
 <Value Name="StandardServerEdition" Value="7" />
 <Value Name="DatacenterServerEdition" Value="8" />
 <Value Name="EnterpriseServerEdition" Value="10" />
 </Enum>
 </Enums>
</PowerShellMetadata>

The XML file starts off identical to listing 18.1. The caption parameter is added by

defining an additional property B, because you’re creating these parameters directly

from the properties of the class. The parameter is set as second by using Position=1.

Listing 18.2 Extended WMI-based cmdlet

Add caption
parameter

B

Add Operating-
SystemSKU
parameter

C

Add
enumeration

D

448 CHAPTER 18 Your own WMI cmdlets

 Another parameter, OperatingSystemSKU, is added in a similar manner C. The point

to note here is that the property type is set as OperatingSystem.OperatingSystemSKU.

Don’t go searching for this in .NET as you won’t find it—you have to create it yourself.

 You’ve seen enumerations used many times in the code you’ve created in previous

chapters. They’re a simple data structure to store a preset suite of values. They normally

hold an integer value that’s associated with a string value. The enumeration to hold the

operating SKU values is defined after the properties D. The numeric values don’t have

to be consecutive. It’s possible to define multiple enumerations at this stage.

WARNING Ensure that the string part of your enumeration doesn’t contain any
spaces. If it does, an error will be thrown when you try to create the cmdlet. For
example, "UltimateEdition" will work, but "Ultimate Edition" will fail.

The file is saved as Win32OperatingSystem.cdxml, as you did in technique 141. I use

individual folders to separate the versions.

DISCUSSION

These additional parameters give you more options and ways to use the cmdlet. For

example, these are all valid ways to call the cmdlet:

Get-Win32OperatingSystem
Get-Win32OperatingSystem -OperatingSystemSKU 1
Get-Win32OperatingSystem -OperatingSystemSKU "UltimateEdition"
Get-Win32OperatingSystem -Caption "Microsoft Windows 7 Ultimate "

NOTE There’s a space at the end of the value passed to the Caption property
in that last cmdlet call! It has to be exactly right!

The OperatingSystemSKU parameter will accept the numeric or string value of the

enumeration for maximum flexibility. The last example is equivalent to this:

Get-WmiObject -Class Win32_OperatingSystem `
-Filter "Caption = 'Microsoft Windows 7 Ultimate '"

The additional parameters enable you to use the cmdlet to perform queries. These

are WMI queries under the hood, but you don’t have to write the queries yourself. The

hard work is done when you create the cmdlet. This is part of the increased ease of use

that is brought to WMI by creating cmdlets from the WMI classes.

 In the Caption parameter, the AllowGlobbing option is set to true so you can do this:

Get-Win32OperatingSystem -Caption "*Ultimate*"

Globbing is shorthand for saying you allow the use of wildcards.

 You now have a very useful cmdlet, so it’s time to find it a friend and work out how

to build multiple cmdlets into a module.

18.2 Creating multiple cmdlets

You need to be able to extend the functionality of section 18.1 with the eventual goal of

having a suite of cmdlets that can supply all the information you’re likely to need about

449TECHNIQUE 143 Creating cmdlets from multiple WMI classes

your systems. Technique 143 shows how to create a cmdlet that retrieves computer sys-

tem information using the Win32_ComputerSystem class. This will result in the creation

of a second .cdxml file and therefore another module. An overarching super-module is

required if your intention is to combine the functionality from different WMI classes.

The creation of such a super-module is demonstrated in technique 144.

 Creating cmdlets from multiple WMI classes

You’ve created modules of advanced functions in chapters 5–16, but they’ve all been

created on the basis of one function equals one file. This level of granularity makes

the functions easy to maintain and troubleshoot.

PROBLEM

The overarching task is to create PowerShell functionality to use for system configura-

tion recording and reporting. The operating system information you can find using

the cmdlet from the previous technique is a start. Your next job is to add a cmdlet that

will report on computer system information.

SOLUTION

You have to create another XML file because you can’t have multiple class statements

in a single XML file. This leads to the production of the following listing.

<?xml version="1.0" encoding="utf-8"?>
<PowerShellMetadata xmlns:xsi=

 ➥ "http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.microsoft.com/cmdlets-over-objects/2009/11">
 <Class ClassName="root\cimv2\Win32_ComputerSystem">
 <Version>1.0.0.0</Version>
 <DefaultNoun>Win32ComputerSystem</DefaultNoun>
 <InstanceCmdlets>
 <GetCmdletParameters DefaultCmdletParameterSet="ByName">
 <QueryableProperties>
 <Property PropertyName="Name">
 <Type PSType="System.String" />
 <RegularQuery AllowGlobbing="true">
 <CmdletParameterMetadata PSName="Name"

 ➥ Position="0"

 ➥ ValueFromPipelineByPropertyName="true"

 ➥ CmdletParameterSets="ByName" />
 </RegularQuery>
 </Property>
 <Property PropertyName="TotalPhysicalMemory">
 <Type PSType="System.UInt64" />
 <MaxValueQuery>
 <CmdletParameterMetadata PSName="MaxSize"

 ➥ CmdletParameterSets="BySize" />
 </MaxValueQuery>
 <MinValueQuery>
 <CmdletParameterMetadata PSName="MinSize"

Listing 18.3 Add a computer system cmdlet

TECHNIQUE 143

WMI
class
B

Noun C

Filter
parameter

D

450 CHAPTER 18 Your own WMI cmdlets

 ➥ CmdletParameterSets="BySize" />
 </MinValueQuery>
 </Property>
 </QueryableProperties>
 </GetCmdletParameters>
 </InstanceCmdlets>
 </Class>
</PowerShellMetadata>

One of the good things about using an XML format is that the schema provides the

framework in which you work. In this case, you can take listing 18.1 as a template

and make the required changes. The first change is to the WMI class. You need to

use the Win32_ComputerSystem class B. The default noun is changed to

Win32ComputerSystem C.

 In this case, you want to be able to test for systems that have a defined range of

physical memory D. The Win32_ComputerSystem class has a TotalPhysicalMemory

property. It’s a 64-bit integer (uint64) that records the physical memory in bytes. You

can add the query metadata that allows you to search for minimum or maximum

amounts of memory. Save listing 18.3 as Win32ComputerSystem.cdxml.

 Adding other parameters is a simple case of adding the XML using the existing

code as a template, and then rebuilding the module. The small amount of XML

required to add a lot of powerful functionality makes this process very cost effective.

DISCUSSION

The really great thing about creating modules like this is that you can test each piece

of functionality separately. Navigate to the folder where you saved the

Win32ComputerSystem.cdxml file and run this:

Import-Module .\Win32ComputerSystem.cdxml

The following commands will give it a good workout, though I recommend that you

modify the memory values to bracket what’s installed in your systems:

Get-Win32ComputerSystem
Get-Win32ComputerSystem -MinSize 1gb
Get-Win32ComputerSystem -MaxSize 2gb
Get-Win32ComputerSystem -MaxSize 3gb
Get-Win32ComputerSystem -MaxSize 1gb

Examine the output of these carefully. On my test machine, the last example doesn’t

return anything because the filters are based on greater-than or equals (MaxSize) or

less-than (MinSize) rather than a direct equality.

 Next, we need to look at how you can load multiple cmdlets.

 Building a super- module

With all new technologies, there are challenges around how to implement it and how

to use it to make our lives as administrators easier. The ability to create cmdlets from

objects (WMI classes) is going to be very useful, but importing the modules and sub-

modules individually could be painful.

TECHNIQUE 144

451Creating format and type files

 Submodules? So far you have two modules: Win32OperatingSystem.cdxml and

Win32ComputerSystem.cdxml. It’s time to create a super-module that calls the others

as nested modules.

PROBLEM

Your organization is determined to derive the maximum benefit from PowerShell v3,

so you’ll be investing heavily in creating modules from your WMI classes. You need a

process to create the modules and import the super-module that calls them all.

SOLUTION

One of the great things about PowerShell is that there are usually multiple ways to per-

form a task. This is true of turning XML definition files into cmdlets. The way I’ve cho-

sen to do it is presented in the following listing. It enables you to add extra

submodules with minimum effort.

Import-Module ./Win32OperatingSystem.cdxml
Import-Module ./Win32ComputerSystem.cdxml

It really is that easy. Put all of your .cdxml files into a folder on your module path. Call

the folder SystemInfo. Add a SystemInfo.psm1 file with the contents of listing 18.4 to

that folder. I know it’s only two lines of code, but I wanted to emphasize how easy this is.

DISCUSSION

It would be possible to use a module manifest file (.psd1) instead of the .psm1 file in

listing 18.4, but they’re more complicated to code and they create complications

when you get to the format and type files in the next section.

 This system is easily extendable by creating other .cdxml files using the

Win32_Processor class or the disk classes, for example, and adding the appropriate

lines to listing 18.4. Once you have the basics, as presented in sections 18.1 and 18.2,

in place, the rest is easy because you already have XML files to use as templates. This is

why I think creating your own cmdlets will become the way to work with WMI.

 Retrieving the data is the first step. Presenting that data is the second step, for

which you need to create format and type files. This is next on the agenda.

18.3 Creating format and type files

Many PowerShell cmdlets produce objects with more properties than can be sensibly

displayed on screen. Get-ChildItem $pshome shows a number of files with formats or

types in their name. These are used to control the default display of cmdlet output.

 Figure 18.4 shows the default output produced by the Get-Win32OperatingSystem

cmdlet you’ve created. This isn’t necessarily the set of information you want by

default. Suppose you actually want your default display to be the equivalent of

Get-Win32OperatingSystem |
Format-Table ComputerName, Caption, ServicePackMajorVersion,
OSArchitecture, LastBootUpTime

Listing 18.4 Build multiple cmdlets

452 CHAPTER 18 Your own WMI cmdlets

Getting this information displayed doesn’t involve changing the properties on the

object that’s produced—you’re only changing the data that’s displayed by default.

WARNING Don’t change the format files supplied by PowerShell. This will
cause problems. Create new format files and load them using a module or
Update-FormatData.

The change in default format for the output can be achieved by creating a format file

and loading it when the module loads. Format files are XML-based and can be easily

created using existing files as a template. You can also modify the output by adding

members to the object using a type file. This has the same effect as the actions in pre-

vious functions using Add-Member, but the work takes place as the object is generated.

 Adding a format file

A common question for newcomers to PowerShell and WMI is, “Why do I only see a few

properties when I get a WMI class?” The answer is that a default format file is controlling

the output. If you want to change the default, you need to work with format files.

PROBLEM

The default output produced by your Get-Win32OperatingSystem cmdlet doesn’t

meet your needs. You could use Select-Object or a format cmdlet to control the out-

put, but it’s more efficient to change the default display format.

SOLUTION

The solution to the problem involves producing a format file, as shown in listing 18.5.

It’s saved as Win32OperatingSystem.format.ps1xml in the folder where you create the

XML definition files for your cmdlets. You’ll need to modify the SystemInfo.psm1 file

to load the new format file.

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>

Listing 18.5 Create a format file

Figure 18.4 Default formatting for the Get-Win32OperatingSystem cmdlet

TECHNIQUE 145

453TECHNIQUE 145 Adding a format file

<View>
 <Name>Formatting For Win32_OperatingSystem

 ➥ (Table View)</Name>
 <ViewSelectedBy>
 <TypeName>Microsoft.Management.Infrastructure.

 ➥ CimInstance#root/cimv2/Win32_OperatingSystem</TypeName>
 </ViewSelectedBy><TableControl><TableHeaders>
 <TableColumnHeader><Label>OS</Label><Width>30</Width>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>SP</Label><Width>2</Width><Alignment>right</Alignment>
 </TableColumnHeader>
 <TableColumnHeader><Label>Arch</Label><Width>6</Width>
 </TableColumnHeader>
 <TableColumnHeader><Width>19</Width></TableColumnHeader>
 </TableHeaders>
 <TableRowEntries><TableRowEntry>
 <TableColumnItems>
 <TableColumnItem><PropertyName>SKU</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>ServicePackMajorVersion</PropertyName>
 </TableColumnItem>
 <TableColumnItem><PropertyName>OSArchitecture</PropertyName>
 </TableColumnItem>
 <TableColumnItem><PropertyName>LastBootUpTime</PropertyName>
 </TableColumnItem>
 </TableColumnItems>
 </TableRowEntry></TableRowEntries></TableControl>
</View>
<View>
 <Name>Formatting For Win32_OperatingSystem

 ➥ (List View)</Name>
 <ViewSelectedBy>
 <TypeName>Microsoft.Management.Infrastructure.

 ➥ CimInstance#root/cimv2/Win32_OperatingSystem</TypeName>
 </ViewSelectedBy>
 <ListControl><ListEntries><ListEntry><ListItems>
 <ListItem><PropertyName>Caption</PropertyName></ListItem>
 <ListItem>
 <PropertyName>ServicePackMajorVersion</PropertyName>
 </ListItem>
 <ListItem><PropertyName>OSArchitecture</PropertyName></ListItem>
 <ListItem><PropertyName>LastBootUpTime</PropertyName></ListItem>
 </ListItems></ListEntry></ListEntries></ListControl>
</View>
</ViewDefinitions>
</Configuration>

The format file may seem complicated, but it breaks down into a set of easy to under-

stand components. It may be beneficial to refer to figure 18.5, where the output

resulting from this format file is shown.

 Format files can be used to define both table and list displays. In this case, you

start with the table display B. This means that in the absence of any other formatting

Table
viewB

Column
headerC

New
property

D

Column
contents E

List
viewF

454 CHAPTER 18 Your own WMI cmdlets

commands you’ll get a table display. The object type that this format will be applied

to is defined.

 The table itself is defined as a number of column headers C, where items such

as the label (such as SP for the ServicePackMajorVersion property), width, and

alignment can be defined. In the absence of a label, the property name will be used.

The contents of the table columns are defined as either new types added to the

object D, or existing properties E. The addition of the SKU property is covered in

the next section.

 After defining a shiny new format for table type displays you can’t ignore lists, so you

define the properties that will appear in the default list view F. This format can also be

overridden by explicit selection of properties via Select-Object or a format cmdlet.

DISCUSSION

You have to be careful when loading format files as part of a module. Using a module

manifest (.psd1) file appends the new format data to any formatting data that exists

for the type. This doesn’t matter if the type is being created in the module, but it does

become an issue when you’re modifying an existing type because your formatting

won’t be used by default. The SystemInfo.psm1 file that was created in listing 18.4 is

modified to become the following:

Import-Module ./Win32OperatingSystem.cdxml
Import-Module ./Win32ComputerSystem.cdxml
Update-FormatData -PrependPath ./Win32OperatingSystem.format.ps1xml

This forces PowerShell to use the new formatting information first. The drawback is

that the format information isn’t removed if you unload the module.

 Choosing to change the default formatting in this manner has a number of

consequences:

■ Get-Win32OperatingSystem will use the new format.

■ Get-CimInstance will use the new format (see chapter 19) if the module is

loaded.

■ Get-WmiObject will ignore the new format because it’s a different .NET type.

You need to complete your definition of the new format by defining the SKU type.

 Adding a type file

PowerShell has been designed to be extremely extensible. This extensibility ranges

from adding extra cmdlets to adding properties to the objects you’re working with.

The most efficient way to add properties that are always available to an object is to cre-

ate a type file. If this module will be used on multiple machines the format and type

files need to be available on those machines.

WARNING Don’t change the type files supplied by PowerShell. This will cause
problems. Create new type files and load them using a module or Update-
TypeData.

TECHNIQUE 146

455TECHNIQUE 146 Adding a type file

Type files are also XML-based, but as with format files, if a template is followed the cre-

ation becomes simpler.

PROBLEM

The default formatting for the Get-Win32OperatingSystem cmdlet requires the

operating system name to be displayed. This information is contained within the

Caption property, but it’s very verbose. A shorter name will enable you to display

more information.

SOLUTION

The solution is shown in the following listing, where you create a type file for the SKU

property. This is a new property that you’re adding to the object.

<Types>
 <Type>
 <Name>Microsoft.Management.Infrastructure.CimInstance#

 ➥ root/cimv2/Win32_OperatingSystem</Name>
 <Members>
 <ScriptProperty>
 <Name>SKU</Name>
 <GetScriptBlock>
 [Microsoft.PowerShell.Cmdletization.GeneratedTypes.

 ➥ OperatingSystem.OperatingSystemSKU][System.uint32]

 ➥ $this.OperatingSystemSKU
 </GetScriptBlock>
 </ScriptProperty>
 </Members>
 </Type>
</Types>

The XML starts by defining the existing object type to which this file applies. You then

have a script block that defines the property name and how the value is defined. The

value is derived from the OperatingSystemSKU property using the enumeration you

created in listing 18.2.

 The type file is saved as Win32OperatingSystem.types.ps1xml in the folder with the

format file and XML cmdlet definitions. The SystemInfo.psm1 file (listing 18.4) is

modified as follows:

Import-Module ./Win32OperatingSystem.cdxml
Import-Module ./Win32ComputerSystem.cdxml
Update-FormatData -PrependPath ./Win32OperatingSystem.format.ps1xml
Update-TypeData ./Win32OperatingSystem.types.ps1xml

DISCUSSION

The format and type files you’ve created are automatically loaded when your

module is imported into PowerShell. They function in the background and don’t

require any intervention by the user. When you use the Get-Win32OperatingSystem

cmdlet you now receive the data in the default format you’ve defined, as shown in

figure 18.5.

Listing 18.6 Create a type file

456 CHAPTER 18 Your own WMI cmdlets

The New-CimSession cmdlet provides access to remote machines (similar to remoting

and the WSMAN cmdlets) and is explained in chapter 19. Notice the date format. The

other big thing is that the cmdlets you’re creating will work over DCOM or WSMAN.

PowerShell v3 brings some big bonuses for ease of use.

 You’ve now seen how to create the following types of XML files:

■ Cmdlet definition files—.cdxml

■ Format files—.format.ps1xml

■ Type files—types.ps1xml

You don’t have a tool to create the format and type files easily, but there’s help for cre-

ating the cmdlet definition files.

18.4 Using the CIM IDE

In sections 18.1 and 18.2 you’ve created a number of versions of the cmdlet definition

file (Win32OperatingSystem.cdxml). It’s possible to create these files by hand using

an XML editor or even Notepad—I used Notepad to create the first versions of these

files. The advantages of using a simple editor are that it’s cheap and always available,

but the drawback is that it makes the work of producing .cdxml files harder.

 There’s a tool available that can ease the effort involved in creating a cmdlet defi-

nition file. It’s called the CIM IDE, and it’s available from MSDN at http://

archive.msdn.microsoft.com/cimide. Download and install the CIM IDE following the

instructions in the Installation.txt file.

NOTE The CIM IDE is a plugin to Visual Studio 2010. You’ll need Visual Stu-
dio installed before you can use the IDE.

Once you have the CIM IDE installed, open Visual Studio and create a new project.

Two new templates are available under a CIM folder—CIM Authoring and CIM Provid-

ers. You’ll be using the CIM Authoring template here.

Figure 18.5 The cmdlet accessing multiple machines with the desired default output

http://archive.msdn.microsoft.com/cimide
http://archive.msdn.microsoft.com/cimide

457Using the CIM IDE

Next, you’ll need a MOF file of the WMI class you want to work with. I’ve included MOF

files for Win32_ComputerSystem and Win32_OperatingSystem in the download code.

Drag the MOF file onto the module name in the Solution Explorer pane at the right

side of the IDE, as shown in figure 18.6.

 Right click the Win32_OperatingSystem node in the CIM Explorer (at the left side)

and select PowerShell metadata. This enables details such as version number, default

noun, and filename to be set. A skeleton .cdxml file (visible in Solution Explorer) and

the PowerShell metadata (visible in CIM Explorer, marked with the PowerShell icon)

are generated.

 The main working area is the PS Metadata Details tab shown in the middle pane. If

it isn’t visible double-click the metadata file in CIM Explorer. The PS Metadata Details

tab supplies functionality to add the following:

■ Query parameters, as in section 18.1

■ Instance cmdlets utilizing the WMI class methods, as in section 19.1

When you’re adding a query parameter, the GUI provides a simple technique for

defining the parameter metadata:

■ The property name and type can be selected.

■ The parameter name defaults to the property name but can be overridden.

■ Aliases can be defined for the parameter.

■ The parameter sets to which the parameter belongs can be defined.

■ Parameter options can be set:

Figure 18.6 Using the CIM IDE

458 CHAPTER 18 Your own WMI cmdlets

– Mandatory

– Accept pipeline input

– Validate not null

– Allow empty string or collection

– Validation parameters, such as maximum or minimum counts, a range or set

of values

– The use of wildcards (globbing)

The Instance Cmdlets option enables you to access the methods of the WMI class.

Click Add New and the dialog box shown in figure 18.6 appears, where you can do the

following:

■ Select the method

■ Define the verb and noun for the cmdlet and any aliases

■ Set Result to Interpret as error code

■ Set the impact parameters (-WhatIf and -Confirm)

■ If the method requires parameters use the Parameters option to provide their

definitions (in a dialog box to the one for query parameters in figure 18.6)

Once the cmdlet definition file has been produced it can be copied from the Visual

Studio project folder to your PowerShell module folder and it’s ready to use.

 Visual Studio can also be used to edit format and type XML files, though there are

no templates to assist with that.

18.5 Summary

This chapter has introduced the new functionality in PowerShell v3 that enables the cre-

ation of cmdlets from WMI classes. This is a huge change in working with PowerShell and

WMI. It will make you much more productive and make using WMI much easier.

 You’ve seen how to create multiple cmdlets, build a module, and modify the

default display formatting. In chapter 19 we’ll show you how to extend this further by

utilizing the methods available on WMI classes and we’ll look at the new administra-

tion opportunities presented by the new APIs for using WMI and the CIM cmdlets.

459

CIM cmdlets and sessions

In this chapter, we’re going to continue our investigation of the CIM API intro-

duced in PowerShell v3. In chapter 18, you saw how to create cmdlets directly from

WMI classes. In this chapter, you’ll learn how to extend the use of PowerShell v3’s

cmdlets-over-objects functionality to utilize the methods presented by WMI classes.

You’ll create additional cmdlets to provide a mechanism to utilize those methods.

WMI methods may or may not require parameters. You’ll learn how to work with

both of these scenarios.

NOTE This chapter builds on chapter 18 and should be read after that
chapter.

The CIM cmdlets are analogous to the WMI cmdlets that you’ve been using in Pow-

erShell v2, but there are some subtle differences in the way you can access informa-

tion. These differences provide a great opportunity to brush up on WQL. I strongly

This chapter covers

■ Using WMI methods in cmdlets created from

WMI objects

■ Demonstrating the PowerShell v3 CIM cmdlets

■ Using CIM sessions to access remote machines

460 CHAPTER 19 CIM cmdlets and sessions

advise mastering WQL, as the changes introduced with PowerShell v3 will ensure it

becomes an important part of your administration toolset.

WMI has always had great support for working with remote machines. The only

snag is that it has required you to use the DCOM protocol. The CIM cmdlets continue

to support DCOM, but you can also use WSMAN in a much simpler way that’s similar to

the way you use PowerShell remoting sessions.

 We’ll open the chapter by showing you how to create cmdlets to use WMI methods.

19.1 Using WMI methods

In chapter 18, you saw how to use the PowerShell cmdlets-over-objects functionality to

create cmdlets based on WMI classes. This provides an abstraction layer that makes the

WMI classes easier to use (which is the whole purpose of this book!). It’s highly unlikely

that you’ll end up with all WMI classes being wrapped in cmdlets, but performing this

task for your commonly used WMI classes (or those critical to your role) will make life

easier. This process had already started in PowerShell v2 with Test-Connection and

Get-HotFix acting as wrappers for WMI classes. In fact, many of the new PowerShell

modules introduced with Windows Server 8 are created from WMI classes. They make

a great reference source.

 The cmdlets that you’ve created up to now return information. This is great, but

you need to be able to do stuff to your servers. Otherwise the boss won’t believe you’re

worth keeping around. When you use Get-WmiObject, the PowerShell object that’s

returned gives you access to most, if not all, of the methods available to that WMI class.

That’s how you get things done, as you saw in part 2 of this book.

 You can extend the XML source files that you created in chapter 18 to provide

access to the WMI classes’ methods. One difference in the way you use WMI in Power-

Shell v3 as compared to v2 is in the way that the methods of a WMI class are accessed.

You won’t add methods to the objects your cmdlets return. You’ll create another cmd-

let, in the same module, to execute the method!

 You’ll start by utilizing simple methods that don’t take parameters (technique 147)

and then extend this to methods that need one or more parameters (technique 148).

When we deal with parameters, we’ll also look at how to validate the data input to the

parameter.

 Adding a method

The first type of method we’ll consider is one you’ll meet in various scenarios and

WMI classes. It’s a simple method that doesn’t require any further input. You just call it

and it does its stuff.

PROBLEM

Your Get-Win32OperatingSystem cmdlet (from chapter 18) enables you to retrieve

information about remote systems. Due to application changes, there’s a requirement

to reboot remote systems on a periodic basis. This functionality needs to be produced

quickly and be firewall friendly.

TECHNIQUE 147

461TECHNIQUE 147 Adding a method

NOTE For this technique, we’ll assume that there isn’t a native PowerShell mech-
anism to accomplish this task. PowerShell v3 betas have a Restart-Computer
cmdlet, but it’s possible that it may be removed, as happened in PowerShell v2.

SOLUTION

The Win32_OperatingSystem class has a Reboot method that’s used in the following

listing to solve the problem. The listing is identical to listing 18.2 in the early sections

(these sections are truncated to concentrate on the new section of code). The listing

in the download is complete.

<?xml version="1.0" encoding="utf-8"?>
<PowerShellMetadata xmlns:xsi=

 ➥ "http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.microsoft.com/cmdlets-over-objects/2009/11">
 <Class ClassName="root\cimv2\Win32_OperatingSystem">
 <Version>1.0.0.0</Version>
 <DefaultNoun>Win32OperatingSystem</DefaultNoun>
 <InstanceCmdlets>
 <GetCmdletParameters DefaultCmdletParameterSet="ByName">
 .. as listing 18.2

 </GetCmdletParameters>

 <Cmdlet>
 <CmdletMetadata Verb="Restart"

 ➥ Noun="Win32OperatingSystem"

 ➥ ConfirmImpact="None" />
 <Method MethodName="Reboot">
 <ReturnValue>
 <Type PSType="System.UInt32" />
 <CmdletOutputMetadata>
 <ErrorCode />
 </CmdletOutputMetadata>
 </ReturnValue>
 </Method>
 </Cmdlet>

 </InstanceCmdlets>
 </Class>

 <Enums>
 .. as listing 18.2
 </Enums>
</PowerShellMetadata>

To generate a cmdlet representing the Reboot method, you put the XML between

<Cmdlet> tags B. The cmdlet verb is defined—in this case we use Restart. The method

name is Reboot C, but if you use that as the verb, PowerShell will throw a warning when

you import the module, because Reboot isn’t an approved PowerShell verb.

TIP Use Get-Verb to view the list of approved verbs. The warning can be sup-
pressed by using the -DisableNameChecking parameter of Import-Module.

Listing 19.1 Add a restart operating system method

Method
definition starts

B

Method
nameC

Return
typeD

462 CHAPTER 19 CIM cmdlets and sessions

A return code is defined to be an integer value D. That’s all you have to do. You still

have a single file—Win32OperatingSystem.cdxml—but it now supplies two cmdlets!

The Listing 19.1 folder in the download code contains these files:

■ SystemInfo.psm1

■ Win32ComputerSystem.cdxml

■ Win32OperatingSystem.cdxml

■ Win32OperatingSystem.format.ps1xml

■ Win32OperatingSystem.types.ps1xml

Import the module and test the contents:

PS> Import-Module .\SystemInfo.psm1
PS> Get-Command -Module systeminfo

Capability Name
---------- ----
CIM Get-Win32ComputerSystem
CIM Get-Win32OperatingSystem
CIM Restart-Win32OperatingSystem

One very powerful feature of working with this functionality is that as well as the default

common parameters, the query parameters you created for Get-Win32Operating-

System are automatically added to your Restart-Win32OperatingSystem cmdlet:

PS> Get-Help Restart-Win32OperatingSystem

NAME
 Restart-Win32OperatingSystem

SYNTAX
 Restart-Win32OperatingSystem [[-Name] <string[]>]
 [-CimSession <CimSession[]>] [-ThrottleLimit <int>]
 [-AsJob] [-PassThru] [<CommonParameters>]

 Restart-Win32OperatingSystem [[-Caption] <string[]>]
 [-CimSession <CimSession[]>] [-ThrottleLimit <int>]
 [-AsJob] [-PassThru] [<CommonParameters>]

 Restart-Win32OperatingSystem
 [-OperatingSystemSKU <OperatingSystemSKU[]>
 {UltimateEdition | StandardServerEdition
 | DatacenterServerEdition | EnterpriseServerEdition}]
 [-CimSession <CimSession[]>] [-ThrottleLimit <int>]
 [-AsJob] [-PassThru] [<CommonParameters>]

 Restart-Win32OperatingSystem -InputObject
 <CimInstance#Win32_OperatingSystem[]>
 [-CimSession <CimSession[]>]
 [-ThrottleLimit <int>] [-AsJob] [-PassThru] [<CommonParameters>]

That’s a massive return on the few lines of code you wrote.

DISCUSSION

The use of the new cmdlet is illustrated in figure 19.1.

463TECHNIQUE 147 Adding a method

Remote systems are accessed by creating a CIM session (analogous to a Power-

Shell remoting session). These are covered in detail in section 19.3. The code in

the figure starts by creating a session to a computer called WebR201 and uses

Get-Win32OperatingSystem to display the LastBootUpTime, among other details.

Restart-Win32OperatingSystem is used, and another call to Get-

Win32OperatingSystem shows the revised boot time. Notice that there was no need

to reestablish the CIM session. It automatically reconnects. There is an appreciable

delay (up to a few minutes) once the target system has rebooted while the session is

reestablished, but the reestablishment will happen.

CIM sessions to remote machines use WSMAN by default, but they can be con-

strained to use DCOM as shown in figure 19.2.

NOTE Connectivity to systems by the CIM cmdlets, including New-CIMSession,
always uses WSMAN by default if the -ComputerName parameter is used, even if
the computer name supplied is the local machine. If the -ComputerName param-
eter isn’t used, then a COM connection is made to the local machine.

A session option to use the DCOM protocol is created. This is used to create a CIM ses-

sion to a machine called Win7. The difference between this system and WebR201,

used in figure 19.1, is that this system is running PowerShell v2 and version 2.0 of the

WSMAN stack. In this case, you need to use DCOM.

Get-Win32OperatingSystem is used with the session to retrieve the LastBootUpTime.

A call to Restart-Win32OperatingSystem causes the system to reboot. Once it comes

back online, you can attempt to use Get-Win32OperatingSystem again. This results in

a nasty, big error message. The error’s meaning isn’t obvious from the message, but it

actually means that the session link to the remote machine has been broken and needs

to be reestablished.

Figure 19.1 Using the Restart-Win32OperatingSystem cmdlet

464 CHAPTER 19 CIM cmdlets and sessions

TIP WSMAN-based sessions automatically reconnect, but DCOM sessions
don’t.

Once you have reestablished the CIM session, you can use Get-

Win32OperatingSystem again. The flexibility of the CIM cmdlets is shown at the bot-

tom of the figure, where WSMAN and DCOM sessions are used together.

 That’s the simple type of method dealt with, but real admins need methods with

parameters.

 Adding a method that uses parameters

Many of the methods to be found on WMI objects require one or more parameters. So

far you’ve seen how to add a method that doesn’t require parameters. There are many

methods on WMI classes that don’t require parameters, enabling you to build a set of

functionality very simply. Eventually, though, you’ll come across a method that does

require parameters.

Figure 19.2 Using DCOM with CIM sessions

TECHNIQUE 148

465TECHNIQUE 148 Adding a method that uses parameters

 An example is the Win32Shutdown method of the Win32_OperatingSystem class. It

can take the values shown in table 19.1 and perform different actions depending on

the value. If you can harness this type of method, you can easily add powerful func-

tionality to your module.

Technique 147 demonstrated how to restart a remote system, but there are times

when you’ll need to shut down the remote system completely.

PROBLEM

The functionality of your module needs to be expanded by adding the capability to

shut down a remote machine. This could be achieved using the Stop-Computer cmd-

let, but you want to ensure that potential firewall issues don’t interfere by using the

WSMAN protocol.

SOLUTION

Listing 19.2 extends listing 19.1 by adding the functionality to use the Win32Shutdown

method. The listing has been compressed by removing statements that have been

shown in previous listings so that we can concentrate on the new items. The full listing

is available in the download code that accompanies the book.

<?xml version="1.0" encoding="utf-8"?>
<PowerShellMetadata xmlns:xsi=

 ➥ "http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.microsoft.com/cmdlets-over-objects/2009/11">
 <Class ClassName="root\cimv2\Win32_OperatingSystem">
 <Version>1.0.0.0</Version>
 <DefaultNoun>Win32OperatingSystem</DefaultNoun>
 <InstanceCmdlets>
 <GetCmdletParameters DefaultCmdletParameterSet="ByName">
 .. as listing 19.1
 </GetCmdletParameters>

Value Meaning

0 Log off

4 Forced log off

1 Shutdown

5 Forced shutdown

2 Reboot

6 Forced reboot

8 Power off

12 Forced power off

Listing 19.2 Add a method with parameters

Table 19.1 Values for the Win32Shutdown method

466 CHAPTER 19 CIM cmdlets and sessions

 <Cmdlet>
 <CmdletMetadata Verb="Restart" />
 .. as listing 19.1
 </Cmdlet>

 <Cmdlet>
 <CmdletMetadata Verb="Stop"

 ➥ ConfirmImpact="High" />
 <Method MethodName="Win32Shutdown">
 <ReturnValue>
 <Type PSType="System.UInt32" />
 <CmdletOutputMetadata>
 <ErrorCode />
 </CmdletOutputMetadata>
 </ReturnValue>
 <Parameters>
 <Parameter ParameterName="Flags">
 <Type PSType="System.Int32" />
 <CmdletParameterMetadata PSName="Flags">
 <ValidateNotNull />
 <ValidateSet>
 <AllowedValue>4</AllowedValue>
 <AllowedValue>5</AllowedValue>
 <AllowedValue>6</AllowedValue>
 <AllowedValue>12</AllowedValue>
 </ValidateSet>
 </CmdletParameterMetadata>
 </Parameter>
 </Parameters>
 </Method>
 </Cmdlet>
 </InstanceCmdlets>

 </Class>
 <Enums>
 .. as listing 19.1
 </Enums>
</PowerShellMetadata>

The XML file is identical to listing 19.1 until you get to the point where you want to

add the cmdlet that uses the Win32Shutdown method. The new cmdlet is assigned the

verb Stop B, and it’s linked to the Win32Shutdown method C. A return value is

defined D.

 This method has a single parameter E. It’s given the same name that’s used in the

WMI documentation, but that isn’t mandatory. A different name could be used if pre-

ferred. My recommendation is to conform to the WMI documentation for ease of

maintenance. The type of data to be input through the parameter (in this case an

integer) is also defined.

 When you used PowerShell advanced functions in chapters 5–16 you utilized the

input validation techniques when defining parameters. You can do exactly the same

with the cmdlets you create from WMI objects F. The code will test that the parameter

isn’t null and that it contains one of the allowed values taken from table 19.1.

Cmdlet
start

B

Method
name

C

Return
valueD

Parameter
nameE

ValidationF

467TECHNIQUE 148 Adding a method that uses parameters

DISCUSSION

Once the module has been imported, you’ll find that it contains three cmdlets:

■ Get-Win32OperatingSystem

■ Restart-Win32OperatingSystem

■ Stop-Win32OperatingSystem

You created the Get cmdlet in chapter 18, and the Restart and Stop cmdlets were

added in this section. Building functionality in this granular manner makes develop-

ment and testing easier and more efficient, as it’s a simple matter to isolate the new

aspects of the module.

 You can use the Stop-Win32OperatingSystem cmdlet as follows:

$cs = New-CimSession -ComputerName WebR201
Stop-Win32OperatingSystem -CimSession $cs -Flags 6

Creating CIM sessions is covered in section 19.3. The cmdlet is used with the appropri-

ate Flag value to trigger the desired action. If you input a value for the -Flags param-

eter that isn’t in the allowed set you’ll get an error message:

PS> Stop-Win32OperatingSystem -Flags 9
Stop-Win32OperatingSystem : Cannot validate argument on parameter 'Flags'.

The argument "9" does not belong to the set "4,5,6,12" specified by the
ValidateSet attribute. Supply an argument that is in the set and then
try the command again.

The system very helpfully informs you of the values the cmdlet will accept.

TIP If you need to discover the acceptable values for a parameter, input an
incorrect value and the error message will supply the correct set.

Some methods require more than one parameter, in which case the information

between the <Parameter> and </Parameter> tags needs to be duplicated and modi-

fied as required. You could extend the module to cover the other methods on the

Win32_OperatingSystem module:

■ SetDateTime

■ Shutdown

■ Win32ShutdownTracker

As these are similar activities, I’ll just supply the code in the final version of the mod-

ule, to be found in the SystemInfo folder of the chapter 18–19 code download.

 When you incorporate a method from a WMI object into your code, you generate

an extra cmdlet to perform the action. Some methods require parameters, as you’ve

seen. Adding multiple parameters is equally easy.

 This provides a very granular method of adding functionality to modules. You

can quickly get the functionality into production as it becomes available, allowing

the module to repay the investment in development sooner than if development

were slower.

468 CHAPTER 19 CIM cmdlets and sessions

 In this section, and in chapter 18, you’ve seen and used a number of the CIM-

related cmdlets. It’s time to investigate these in depth and see how they relate to the

WMI cmdlets you know and love.

19.2 CIM cmdlets

The other big WMI-related change with PowerShell v3 is the introduction of the CIM

cmdlets. These are analogous to the WMI cmdlets, and they can work with the legacy

WMI classes and provide access to the new CIM API. These cmdlets are discussed in sec-

tion 19.2.2. Windows 8 also supplies a number of new WMI namespaces.

WARNING On pre-Windows 8 systems, PowerShell v3 won’t install the new
WMI providers, or namespaces, that are introduced with Windows 8. If the
new cmdlets access currently available classes, they will work; otherwise an
error will occur.

You need to understand the similarities and differences between the CIM cmdlets and

the WMI cmdlets you’ve been using. The second part of this section will compare and

contrast the two sets of cmdlets to illustrate how to best use each set.

 Our old friends, the WMI cmdlets, don’t get any new parameters and are used in

the same manner as in PowerShell v2.

19.2.1 WMI and CIM objects

The WMI cmdlets that you’ve been using in PowerShell v2 remain in PowerShell v3:

■ Get-WmiObject

■ Invoke-WmiMethod

■ Set-WmiInstance

■ Remove-WmiObject

■ Register-WmiEvent

The WMI cmdlets are unchanged as far as using them is concerned.

 I’ve mentioned several times that there’s a new API for accessing the CIM cmdlets.

They also use a different set of .NET classes. Consider the types returned by the WMI

cmdlets:

Get-WmiObject Win32_OperatingSystem | Get-Member

You’d get this type returned:

System.Management.ManagementObject#root\cimv2\Win32_OperatingSystem

The corresponding CIM cmdlet is as follows:

Get-CimInstance Win32_OperatingSystem | Get-Member

This returns a completely different type:

TypeName: Microsoft.Management.Infrastructure.CimInstance#

 ➥ root/cimv2\Win32_OperatingSystem

469CIM cmdlets

TIP Remember that the CIM cmdlets return objects that have been deserial-
ized from XML. The classes’ methods aren’t included on the returned object.

The best way to see the differences is to use Get-WmiObject and Get-CimInstance

against the same class and compare the results. Try this:

Get-WmiObject -Class Win32_LogicalDisk -Filter "DeviceID='C:'" | fl *
Get-CimInstance -ClassName Win32_LogicalDisk -Filter "DeviceID='C:'" | fl *

The best way to perform the comparison is to use two PowerShell consoles and run

one command in each. These are some of the differences:

■ The CIM cmdlet doesn’t display the system properties (those with a double-

underscore prefix).

■ The CIM cmdlet has a ComputerName property, whereas the WMI cmdlet has a

PSComputerName property.

■ The CIM cmdlet doesn’t display the WMI class qualifiers.

■ The class and namespace information is different for the two cmdlets.

On a Windows 8 system try this code:

Get-WmiObject -Class Win32_LogicalDisk -Filter "DeviceID='C:'"
Get-CimInstance -ClassName Win32_LogicalDisk

The new root\standardcimv2 namespace adds a number of additional WMI classes for the

modules shipped with PowerShell v3. These can be accessed using Get-CimInstance, as

well as by the module (many of the new modules in Windows Server 8 are cmdlets created

from WMI classes):

Get-CimInstance -NameSpace ROOT/StandardCimv2 `
-ClassName MSFT_NetAdapter

You can also use Get-WmiObject on these new classes:

Get-WmiObject -Namespace ROOT/StandardCimv2 -Class MSFT_NetAdapter

The classes are accessible on remote systems using the -ComputerName parameter:

Get-WmiObject -NameSpace ROOT/StandardCimv2 `
-Class MSFT_NetAdapter -ComputerName server8build

If you try to access this class on a Windows 7 machine (even though it has PowerShell

v3 installed), like this

Get-WmiObject -NameSpace ROOT/StandardCimv2 `
-Class MSFT_NetAdapter -ComputerName win7test

the following error message will be returned:

Get-WmiObject : Invalid namespace "ROOT/StandardCimv2"

This is all great. You get more WMI classes to work with, and you can access them using

the standard WMI tools that you’ve seen throughout the book. The only catch is that

the new classes are only available on Windows 8 and above.

470 CHAPTER 19 CIM cmdlets and sessions

 The big question is what can the CIM cmdlets do for you and how do you use them.

19.2.2 CIM and WMI cmdlets

The new CIM cmdlets are listed in table 19.2. Comparing them with the WMI cmdlets

and the WSMAN cmdlets (table 17.1 in chapter 17) will show many points of similarity

in the names and functionality, as you can see in table 19.3. The cmdlets for working

with CIM sessions will be discussed in section 19.3.

TIP In PowerShell v2, the Remove-WSManInstance cmdlet can only be used
to remove WSMAN configuration information.

The best way to compare the WMI and CIM cmdlets is to see them in action (the

WSMAN cmdlets were discussed in chapter 17). As usual, notepad.exe has volunteered

to be the central part of the examples. You can start an instance of Notepad like this:

Start-Process notepad

There are a number of ways you can use Get-WmiObject to return information on the

Notepad process. The one with the least typing involves using a filter:

Get-WmiObject -Class Win32_Process -Filter "Name='notepad.exe'"

This is equivalent to using the following WQL query:

Get-WmiObject -Query "SELECT * FROM Win32_Process `
WHERE Name='notepad.exe'"

Queries and filters can be used in Get-CimInstance to produce the same result:

Table 19.2 CIM cmdlets

Export-CimCommand Get-CimAssociatedInstance Get-CimClass

Get-CimInstance Get-CimSession Invoke-CimMethod

New-CimInstance New-CimSession New-CimSessionOption

Register-
CimIndicationEvent

Remove-CimInstance Remove-CimSession

Set-CimInstance

Table 19.3 Comparison of WMI, WSMAN, and CIM cmdlets

WMI cmdlets WSMAN cmdlets CIM cmdlets

Get-WmiObject Get-WSManInstance Get-CimInstance

Invoke-WmiMethod Invoke-WSManAction Invoke-CimMethod

Set-WmiInstance Set-WSManInstance Set-CimInstance

Remove-WmiObject (Remove-WSManInstance) Remove-CimInstance

471CIM cmdlets

Get-CimInstance -ClassName Win32_Process

 ➥ -Filter "Name='notepad.exe'"
Get-CimInstance -Query "SELECT * FROM Win32_Process `
WHERE Name='notepad.exe'"

TIP The -Filter parameter was added in PowerShell v3 CTP 2. Early com-
mentary on PowerShell v3 may state that these cmdlets don’t have a -Filter
parameter.

Notice that the WMI cmdlets use the -Class parameter, but the CIM cmdlets use the

-ClassName parameter. The CIM cmdlets have a -Class parameter, but it’s used in a

different manner, as you’ll see shortly.

 One drawback with the WMI cmdlets is that you have to completely refetch the

data from the server to refresh the data. The CIM cmdlets provide an easier way to

refresh the data. Start by creating a CIM instance. In this case, you’ll only be using a

single process, but it would work just as effectively if multiple, or even all, processes

were selected:

$proc = Get-CimInstance -ClassName Win32_Process `
-Filter "Name='System Idle Process'"

You can then display the contents of the variable:

$proc | Format-Table Name, KernelModeTime -AutoSize

Name KernelModeTime
---- --------------
System Idle Process 183482968750

The data is refreshed by simply piping it through Get-CimInstance:

$proc | Get-CimInstance |
Format-Table Name, KernelModeTime -AutoSize

Name KernelModeTime
---- --------------
 System Idle Process 183838906250

The variable $proc still contains the original data.

 You can create a process using WMI:

Invoke-WmiMethod -Class Win32_Process -Name Create `
-ArgumentList notepad.exe

The Create method of the Win32_Process class is called with the path to notepad.exe

being passed as the argument. You don’t need the full path because notepad.exe is in

Windows\System32, which is on the search path by default.

 You can use Invoke-CimMethod in the same way:

Invoke-CimMethod -ClassName Win32_process -MethodName Create `
-Arguments @{CommandLine = "notepad.exe"}

The only slight difference is that you have to provide the parameter name that the

Create method expects (CommandLine).

472 CHAPTER 19 CIM cmdlets and sessions

 When it comes to removing WMI objects you have a number of options. When you’re

dealing with processes, you can get the object and pipe it to Invoke-WmiMethod:

Get-WmiObject -Class Win32_Process -Filter "Name='notepad.exe'" |
Invoke-WmiMethod -Name Terminate

Alternatively, you can pipe it to Remove-WmiObject:

Get-WmiObject Win32_Process -Filter "Name='notepad.exe'" |
Remove-WmiObject

This is my preferred way of removing WMI objects, because I can test the filter before

piping to ensure I’m working with the correct object.

 You can perform similar actions with the CIM cmdlets:

Get-CimInstance -ClassName Win32_Process `
-Filter "Name='notepad.exe'" |
Invoke-CimMethod -MethodName Terminate

Get-CimInstance -ClassName Win32_Process `
 -Filter "Name='notepad.exe'" |
Remove-CimInstance

The -Class parameter can be used to provide much improved error messages. If you

try to use a nonexistent method—for example the “DieYouHorribleProcess”

method—you’ll get results like the following by default:

PS> Invoke-CimMethod -Class Win32_Process `
-MethodName DieYouHorribleProcess `
-Argument @{CommandLine='notepad.exe'}
Invoke-CimMethod : Not found
At line:1 char:1
+ Invoke-CimMethod -Class Win32_Process
-MethodName DieYouHorribleProcess -Argumen ...
+ ~~
~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : ObjectNotFound: (:) 
[Invoke-CimMethod], CimException
    + FullyQualifiedErrorId : HRESULT 80041002,
Microsoft.Management.Infrastructure.

  ➥ CimCmdlets.InvokeCimMethodCommand

As you can see, the error message here just states that something is not found. Not the

most helpful of messages. You can use Get-CimClass (similar to using Get-WmiObject

-Class -List) to get the class definitions:

PS> $c = Get-CimClass Win32_Process

If you then try using the non-existent method, you’ll get the following results:

PS> Invoke-CimMethod -Cimclass $c `
-MethodName DieYouHorribleProcess `
-Argument @{CommandLine='notepad.exe'}
Invoke-CimMethod : Method 'DieYouHorribleProcess' 
is not declared in class 'Win32_Process'.
At line:1 char:1

    



473CIM cmdlets

+ Invoke-CimMethod -Cimclass $c 
-MethodName DieYouHorribleProcess 
-Argument @{Comm ...
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : NotSpecified: (:)
[Invoke-CimMethod], ArgumentException
 + FullyQualifiedErrorId : System.ArgumentException,Microsoft.Management.

 ➥ Infrastructure.CimCmdlets.InvokeCimMethodCommand

You receive a much more helpful message stating that the method isn’t declared in

the Win32_Process class.

 In chapter 3, we looked at documenting WMI namespaces and classes. Get-CimClass

can aid this process. The following example shows how you can expand the information

for properties, methods, and qualifiers:

Get-CimClass -ClassName Win32_Process | foreach {
 $_ | select ClassName, SuperClassName, Namespace | Format-List

 "Methods"
 $_ | select -ExpandProperty Methods | Format-List

 "Properties"
 $_ | select -ExpandProperty Properties | Format-List

 "Qualifiers"
 $_ | select -ExpandProperty Qualifiers | Format-List

}

I recommend using this cmdlet as a tool for investigating WMI. It’s much simpler than

the scripts you’ve had to use in the past.

19.2.3 Jobs and events

The WMI cmdlets in table 19.3 have an -AsJob parameter that enables you to run the

cmdlets asynchronously:

Get-WmiObject -Class Win32_ComputerSystem -AsJob
Get-Job
Receive-Job -Id 2

The CIM cmdlets can’t be started directly as jobs, but you can overcome this by using

Start-Job:

Start-Job -ScriptBlock {
Get-CimInstance -ClassName Win32_ComputerSystem}
Get-Job
Receive-Job -Id 4

The same end result is achieved, because you’ve performed the task within a job. The

execution methods are different, but by using the standard job cmdlets you retain

consistency with other cmdlets and, in my opinion, have a simpler environment.

WMI has excellent event support. You’ve seen numerous examples of accessing

events in the chapters in part 2. The CIM cmdlets can also be used to access events. In

WMI you’ve used the system event classes:

474 CHAPTER 19 CIM cmdlets and sessions

Get-WmiObject -List __Instance*event* | select Name

Name

__InstanceOperationEvent
__InstanceModificationEvent
__InstanceCreationEvent
__InstanceDeletionEvent

The CIM cmdlets utilize similar classes:

Get-CimClass -ClassName *modification | Select ClassName

ClassName

CIM_ClassModification
CIM_InstModification

When working with WMI events through the CIM cmdlets you start by defining a WQL

query in exactly the same way as when working with the WMI cmdlets. Here’s an example:

$q = "SELECT * FROM CIM_InstModification WHERE `
TargetInstance ISA 'Win32_LocalTime'"

An event registration is performed using the query:

Register-CimIndicationEvent -Query $q

The events can be viewed using Get-Event. Because they’re triggered every second,

it’s more meaningful to just view the timestamp on the event:

Get-Event | select TimeGenerated

The event system is cleaned up in the usual way:

Get-Event | Remove-Event
Unregister-Event *

As you can see, the CIM cmdlets are analogous to the WMI and WSMAN cmdlets. The big-

gest difference is the way that the WMI and CIM cmdlets connect directly to remote

machines using the -ComputerName parameter. When using the WMI cmdlets, this is per-

formed over the DCOM protocol. The CIM cmdlets use the WSMAN protocols, but they

can also use DCOM via CIM sessions, which make them more powerful and flexible.

19.3 CIM sessions

In PowerShell v2, you have three ways to access a remote system using WMI:

■ Use the -ComputerName parameter on the WMI cmdlets to access the remote sys-

tem via DCOM.

■ Use PowerShell remoting via WinRM and PowerShell on the remote system.

This can be used for a single command or to establish a session to the remote

machine for repeated use.

■ Use the WSMAN cmdlets to access the WMI providers directly from the WinRM

service (which was the subject of chapter 17).

475CIM sessions

PowerShell v3 retains all of these options and adds another—the use of CIM sessions.

BIG WIN This option will prove to be one of the big wins for administrators in
PowerShell v3, as it enables us to access systems running Windows 8 operating
systems and older legacy versions of Windows without needing to upgrade
them to PowerShell v3.

In this section, we’ll examine the theory behind CIM sessions and then look at how to

use them. This discussion follows the lifecycle of creating, accessing, and removing

CIM sessions.

19.3.1 CIM sessions explained

I’ll briefly explain the structure of the environment I used to test this functionality

because it’s important to understanding the following sections. The systems I used are

detailed in table 19.4.

The important point regarding CIM sessions is that they use a completely new applica-

tion programming interface (API), which is made available through new .NET classes

introduced with PowerShell v3. This new API is referred to as the Management Infra-

structure Client API, abbreviated to MI. The API enables the following:

■ Standards-based and -compliant access to any CIM Object Manager (CIMOM).

WMI is Microsoft’s implementation of CIMOM, but you now get access to CIM on

non-Windows machines, such as Open Pegasus (www.openpegasus.org) on

Linux systems.

■ Support for all the standard operations supported by the WS-Management

(WSMAN) protocols. A set of cmdlets are provided that are analogous to the

WSMAN cmdlets (see table 19.1).

■ Use of the WS-Management protocol, which is an industry standard and fire-

wall-friendly protocol. This is implemented as the WinRM service in a Microsoft

environment. WinRM provides the basis of PowerShell remoting, WSMAN

remote access, and CIM sessions.

■ Access to a full range of classic Windows operating systems through DCOM

when PowerShell v3 isn’t installed.

Table 19.4 Systems involved in testing CIM sessions

Machine Type Operating system PowerShell version

Server02 Physical—Hyper-V host

and domain controller

Windows Server 2008 R2 SP 1 PowerShell v2

Win7Test Virtual Windows 7 SP 1, 64-bit PowerShell v3

Server8BUILD Virtual Windows Server 8 PowerShell v3

Win8BUILD32 Virtual Windows 8, 32-bit PowerShell v3

www.openpegasus.org

476 CHAPTER 19 CIM cmdlets and sessions

In short, you can now access WMI over the WinRM service and still drop back to using

DCOM if you need to access legacy systems. It’s this flexibility that provides the power

of the new API. The combinations can get a bit confusing, but the summary presented

in table 19.5 puts them into context.

The next step is learning how to create CIM sessions.

 Creating a CIM session

Table 19.2 shows that you have four cmdlets to use when working with CIM sessions:

■ New-CimSession

■ New-CimSessionOption

■ Get-CimSession

■ Remove-CimSession

The New-* cmdlets are used when creating sessions. The Get- and Remove-CimSession

cmdlets are used to enumerate and destroy sessions respectively.

 Creating a CimSession appears to be straightforward:

PS> New-CimSession -ComputerName Server8BUILD

Id : 1
Name : CimSession1
InstanceId : 5ed6fca5-df1f-4767-be7a-c4db9569333e
ComputerName : Server8BUILD
Protocol : WSMAN

Notice that the protocol defaults to WSMAN. If you use this syntax to connect to a machine

running Windows Server 2008 R2 and PowerShell v2, you’ll get an error, as follows:

Get-CimInstance : The WS-Management service cannot process the request. A
DMTF resource URI was used to access a non-DMTF class. Try again using a
non-DMTF resource URI.

The same error will be returned if you try to use this syntax:

Get-CimInstance -ClassName Win32_OperatingSystem

 ➥ -ComputerName server02

Table 19.5 Protocols and parameters for remote access mechanisms

Access by Protocol Parameters

WMI cmdlets DCOM ComputerName

Invoke-Command WSMAN ComputerName

Session

PSSession cmdlets WSMAN ComputerName

Session

CIM cmdlets WSMAN

DCOM

CimSession or Computername CimSession
or used without Computername

TECHNIQUE 149

477TECHNIQUE 149 Creating a CIM session

The way to resolve this is to force the CIM session to use DCOM, as shown in figure 19.3.

 Start by creating a CIM session option. The option forces use of the DCOM proto-

col. A session connecting to Server02 is created using that option. You can then access

the session to retrieve data.

 This just leaves one tiny problem. You need to know the configuration, operating

system, WSMAN version, and PowerShell version before you create the session. Or do

you?

PROBLEM

The cmdlets you created from WMI objects in chapter 18 and section 19.1 don’t have a

-ComputerName parameter. They use CIM sessions to access remote computers. The

Win32_OperatingSystem and Win32_ComputerSystem classes are available on both

Windows 8 and earlier versions of Windows. The only available access mechanism for

CIM cmdlets in earlier versions of Windows is DCOM. Windows 8 and above can use

WSMAN. You need a mechanism to create CIM sessions that takes into account the con-

figuration of the remote machine and that utilizes the appropriate protocol.

SOLUTION

The following listing demonstrates how you can build on your knowledge of the

WSMAN cmdlets to determine which protocol to use. Refer to technique 137 in chap-

ter 17 for an in-depth explanation of the Test-WSMan cmdlet.

function set-cimsession {
[CmdletBinding()]
param (
 [string]$computername="$env:COMPUTERNAME"
)
BEGIN {
 $opt = New-CimSessionOption -Protocol DCOM
}

PROCESS {
switch ($computername){
 "." {$computername="$env:COMPUTERNAME" }
 "localhost" {$computername="$env:COMPUTERNAME" }
}

Listing 19.3 Set CIM session protocol

Figure 19.3 Using the New-CimSessionOption cmdlet to force a CIM session to use the DCOM

protocol

Set default
computer name

B

Create DCOM
optionC

478 CHAPTER 19 CIM cmdlets and sessions

if (-not (Test-Connection -ComputerName $computername -Quiet -Count 1)){
 Throw "Computer: $($computername)

 ➥ could not be contacted"
}

$twsman = Test-WSMan -ComputerName $computername `
-Authentication Default
$pva = $twsman.ProductVersion -split ": "
$stack = $pva[-1]
Write-Debug $stack

switch ($stack){
 "2.0" {$ncs = New-CimSession -ComputerName $computername `
 -SessionOption $opt }
 "3.0" {$ncs = New-CimSession -ComputerName $computername }
 default {Throw "Error - could not
 recognize WSMAN stack for $computername"}
}
$ncs
} # end process
}

The function takes a single parameter—the name of the remote computer to which

you wish to connect B. The function will convert “.” or “localhost” to $env:COMPUTER-

NAME. This is because Test-Connection throws an error when “.” is used.

TIP $env: is a shortcut to using the environmental variables via the Environ-
ment provider and PowerShell drive. The full list of environmental variables
can be viewed using Get-ChildItem -Path env:.

The only CIM session option to be configured is the protocol, and that’s set using

New-CimSessionOption C. WSMAN is the default protocol, and your option is to use

DCOM instead. The function starts by testing that the remote machine can be pinged

using Test-Connection D. The -Quiet parameter ensures that a Boolean (True or

False) result is returned. If a result of False is returned—meaning the remote

machine isn’t contactable—an error is thrown and the function terminates.

Test-WSMan is used to determine the version of the WSMAN stack on the remote

machine E. The -Authentication Default parameter is used to ensure that the ver-

sion information is returned. A split of the ProductVersion property is performed,

and the last item is allocated to a variable ($stack).

Switch is used to test the value of the $stack variable F. If version 2.0 (PowerShell

v2) is found, DCOM is set as the protocol using the option you created earlier (at B).

Version 3.0 (PowerShell v3) can use WSMAN as its protocol.

 The function finally returns the created session to its caller. The variable is

returned by placing it on a line by itself G. If the function is used in a standalone

manner, the details of the session are displayed on screen.

DISCUSSION

The problem originally appeared to involve a number of possible variables that had to

be checked, including operating system version, PowerShell version, and the version

Test connection
to computerD

Test WSMAN
stackE

Create
sessionF

Return
sessionG

479TECHNIQUE 150 Accessing CIM sessions

of the WSMAN stack. But only the version of the WSMAN stack is a determining factor

for the protocol you can use.

 When you run Test-WSMan, Server02 (Windows Server 2008 R2 SP 1) returns this data:

ProductVersion : OS: 6.1.7601 SP: 1.0 Stack: 2.0

Win7Test (Windows 7 SP1 with PowerShell v3) returns this:

ProductVersion : OS: 6.1.7601 SP: 1.0 Stack: 3.0

The important difference is in the Stack version. PowerShell v3 uses version 3.0. This

provides the differentiator. If further stack versions are introduced, the switch state-

ment can be extended to accommodate them.

 The hard work of creating a CIM session has been accomplished. You can sit back

and enjoy yourself for a while. Oh, hang on, you haven’t figured out how to use the

session yet.

 Accessing CIM sessions

You have a shiny new cmdlet created from a WMI class, and you have a CIM session.

You can put the two together like this (as you’ve seen in the examples in chapter 18

and earlier in this chapter):

$cs7 = set-cimsession -computername Win7test
Get-Win32OperatingSystem -CimSession $cs7

Does this seem familiar? Think of creating PowerShell remoting sessions and using

Invoke-Command, and you have the correct comparison.

 You can also be a little sneaky and take advantage of the fact that PowerShell will

treat an expression in parentheses as an object:

Get-Win32OperatingSystem -CimSession

 ➥ (set-cimsession -computername Win7test)

In this example, the (set-cimsession -computername Win7test) expression is eval-

uated first to produce a CIM session object that’s used by the cmdlet.

 You can create sessions to multiple computers as follows:

$cs = New-CimSession -ComputerName server02, win7test

All sessions will default to WSMAN in this case.

 Ideally you’ll want to automate some, or all of the session creation process.

PROBLEM

When accessing remote systems using the *CIMInstance cmdlets, or cmdlets you’ve

created yourself, you need to be able to reuse sessions without having to remember

which machines you’ve created sessions for. The session protocol should be deter-

mined automatically as part of the creation process.

SOLUTION

The following listing shows how you can solve this problem by building on the func-

tion you created in technique 149. This function pulls together a lot of the ideas

you’ve seen throughout the chapter.

TECHNIQUE 150

480 CHAPTER 19 CIM cmdlets and sessions

function get-systeminfo {
[CmdletBinding()]
param (
 [string]$computername="$env:COMPUTERNAME"
)
BEGIN {
 Import-Module systeminfo -Force
}

PROCESS {
switch ($computername){
 "." {$computername="$env:COMPUTERNAME" }
 "localhost" {$computername="$env:COMPUTERNAME" }
}

if (-not (Test-Connection -ComputerName $computername -Quiet -Count 1)){
 Throw "Computer: $($computername)

 ➥ could not be contacted"
}

if (-not(Test-Path -Path variable:\"cs_$computername")){
 New-Variable -Name "cs_$computername" `
 -Value (set-cimsession -computer $computername)
}

Get-Win32OperatingSystem `
-CimSession (Get-Variable -Name "cs_$computername").Value |
Out-Default

Get-CimInstance -ClassName Win32_ComputerSystem `
-CimSession (Get-Variable -Name "cs_$computername").Value |
Out-Default
} # end process
}

The function takes a computer name as a parameter, with the name of the local com-

puter taken from the environmental variables acting as a default value. You’re using

the systeminfo module created in chapter 18, so it’s imported B. The -Force param-

eter ensures that the import occurs even if it’s already loaded.

TIP Many cmdlets have a -Force parameter to ensure that restrictions can be
overcome. If your syntax isn’t working, check to see if the cmdlet is a Jedi and
can use the force.

The remote system is pinged to determine if it’s contactable C. If it is, the function

then uses Test-Path to determine whether the variable cs_$computername is present

D. If not, the variable will be created (note that the variable name doesn’t have a $

prefix) with a value set to a CIM session created using set-cimsession from tech-

nique 149. Test-Path is normally seen used on the filesystem, but it should function

on any correctly written provider.

 You can then use your session with a WMI object-based cmdlet E or a PowerShell

CIM cmdlet F. In both cases, the CIM session is set by using (Get-Variable -Name

"cs_$computername").Value.

Listing 19.4 Access CIM sessions

Force module
import

B

Test
connection

C

Test variable
existenceD

Use your
cmdletE

Use
PowerShell
cmdletF

481Summary

DISCUSSION

When accessing a single remote machine, the function can be used like this:

get-systeminfo -computername win7test

If multiple machines are to be accessed, you can put the names into a CSV file and

pipe them into the function:

Import-CSV myfile.csv |
 foreach {get-systeminfo -computer $_.ComputerName}

Closing your PowerShell session will remove the CIM sessions, but you should be a bit

better organized and be able to clean up after yourself.

19.3.2 Removing CIM sessions

Removing CIM sessions is a simple matter of using Remove-CimSession. The fun bit

comes in identifying the correct session to close. The existing CIM sessions can be dis-

covered using Get-CimSession. Each session returns information like this:

Id : 1
Name : CimSession1
InstanceId : 5c95e7ad-f347-4409-a644-65ce9f726b55
ComputerName : win7test
Protocol : WSMAN

You can remove sessions using a number of criteria. For example, you can remove

individual sessions based on Id:

Remove-CimSession -Id 1

$cs = Get-CimSession -Id 2
Remove-CimSession -CimSession $cs

Get-CimSession -Id 3 | Remove-CimSession

Or, you can remove all of the sessions associated with a particular computer:

Remove-CimSession -ComputerName server02

Alternatively, you can remove all sessions:

Get-CimSession | Remove-CimSession

Get-CimSession also allows you to select sessions based on computer name, instance

ID (GUID), or name. Selections based on any of these criteria could be piped to

Remove-CimSession.

19.4 Summary

The cmdlets that you create from WMI objects can be extended to utilize the WMI

object’s methods. This creates an additional cmdlet in the module for each method

you include, providing a very granular and simple way to access the functionality. You

can use these cmdlets across CIM sessions, which gives you an instance remoting capa-

bility that can bypass some of the issues with DCOM and firewalls.

482 CHAPTER 19 CIM cmdlets and sessions

 The CIM cmdlets are analogous to the WMI and WSMAN cmdlets, but they have

some subtle differences that could cause problems if you forget them. You can use

these cmdlets to access the new WMI classes as well as the legacy ones.

CIM sessions are an additional tool for accessing remote machines. You can use

them with the CIM cmdlets as well as the cmdlets you create from WMI classes. They

can access systems using DCOM or WSMAN to provide maximum flexibility. Just

remember that these sessions return XML-based objects, which means you have a dif-

ferent way to utilize WMI methods. It’s not difficult, just different.

483

afterword
This is not the end

You’ve come a long way since you started on this journey. You’ve learned how to

use PowerShell and WMI to manage many parts of your environment, including

the following:

■ Computer systems and hardware

■ Performance counters and stability measures

■ Filesystem, event logs, and page files

■ Printers and scheduled jobs

■ Disk systems

■ Network configurations

■ IIS, DNS, and Hyper-V

■ The registry

■ Local accounts and groups

Is this the end? Very definitely not! WMI is constantly changing as new versions of

Windows and applications are released. You need to keep on top of the changes to

ensure that you can manage your systems as efficiently as possible and that you

find all the new toys to play with. The real fun in all of this is getting something

new to work.

 The third part of this book opened the door to some of the most exciting devel-

opments of all, with the CIM APIs released in PowerShell v3 and Windows 8. With

these you can create your own cmdlets from WMI objects and finally break free of

the restrictions of DCOM. WMI has always been a powerful tool for performing

management tasks remotely, and it has taken a huge step forward in capability with

these new releases.

 Having said all that, there’s still much to investigate. I deliberately didn’t

include any content on working with clusters or NLB in this book. A lot of WMI is

484 AFTERWORD This is not the end

used in the System Center family of products, and it’s waiting for an intrepid explorer

to investigate and publish the details. The classes that lurk in the root\wmi namespace

need investigating and documenting. And that’s just the tip of the iceberg.

 When Windows 8 arrives, there will be a number of new namespaces to investigate.

Some of these can be accessed via the modules that are provided, but there will still be

activities where you’re better off dropping back to WMI or CIM and using the classes

directly. The CIM APIs also provide an opportunity to manage non-Windows devices

with PowerShell and WMI. This will provide many new opportunities.

 Creating your own WMI providers has become much easier with PowerShell v3 and

Windows 8. I haven’t determined the exact scenarios, but I have a few possibilities in

mind.

 The enjoyment produced by writing a script (or module) to solve a unique prob-

lem is very real. I’ve produced over 150 scripts for this book alone, not to mention

those created for my blogs and work. Savor it and then move on to the next problem.

PowerShell and WMI, like all skills, need constant practice. Don’t be too upset looking

back on scripts you created six months ago when you were just beginning with Power-

Shell and WMI. Think instead of the things you’ve learned and how much you’ve

accomplished with those scripts.

 I said at the beginning of the book that there’s a fantastic PowerShell community.

Join it. Bring your scripts and problems and share them with the community. If you

get really excited about something you’ve discovered, I and many others are always

looking for speakers for User Group meetings. Help build a bigger and better Power-

Shell community.

 The closing words of this book belong to Jeffrey Snover, the man who invented

PowerShell:

 “Experiment! Enjoy! Engage!”

 RICHARD SIDDAWAY

485

appendix A
PowerShell reference

This appendix supplies a number of templates, syntax formats, and other useful

information that you can use when creating your PowerShell scripts.

A.1 Automatic variables

There are a large number of variables that PowerShell automatically creates. The

list can be seen by using

Get-Help about_Automatic_Variables

Reviewing the contents of this help file is highly recommended.

A.2 Calculated fields

Use calculated fields to create new properties or to perform calculations:

Get-WmiObject -Class Win32_OperatingSystem |
select @{Name="BootTime";
Expression={$_.ConvertToDateTime($_.LastBootUpTime)}}

A.3 Flow syntax

The if and switch statements are used to control flow:

if (<condition>){ .. statements .. }
elseif (<condition>){ .. statements .. }
else { .. statements .. }

switch (variable or pipeline) {
 value { .. statements .. }
 {expression} { .. statements .. }
 default { .. statements .. }
}

In the switch statement, use break in each statement block to prevent further

processing.

486 APPENDIX A PowerShell reference

A.4 Function template

The following listing provides a template for advanced functions, containing all vali-

dation options as well as comment-based help options.

function verb-noun{
[CmdletBinding(SupportsShouldProcess=$true,
 ConfirmImpact="Medium Low High None",
 DefaultParameterSetName="XXXXX")]
param (
[parameter(Position=0,
 Mandatory=$true,
 ParameterSetName="YYYYYYYYYY",
 ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true,
 ValueFromRemainingArguments=$true,
 HelpMessage="Put your message here")]
 [Alias("CN", "ComputerName")]
 [AllowNull()]
 [AllowEmptyString()]
 [AllowEmptyCollection()]
 [ValidateCount(1,10)]
 [ValidateLength(1,10)]
 [ValidatePattern("[A-Z]{2,8}[0-9][0-9]")]
 [ValidateRange(0,10)]
 [ValidateScript({$_ -ge (get-date)})]
 [ValidateSet("Low", "Average", "High")]
 [ValidateNotNull()]
 [ValidateNotNullOrEmpty()]
 [string]$computer="."
)
BEGIN{}#begin
PROCESS{

if ($psCmdlet.ShouldProcess("## object ##", "## message ##")) {
 ## action goes here
}

}#process
END{}#end

<#
.SYNOPSIS

.DESCRIPTION

.PARAMETER <Parameter-Name>

.EXAMPLE

.INPUTS

.OUTPUTS

.NOTES

.LINK

#>

}

Listing A.1 Advanced function template

487Operators

A.5 Hash tables

Create hash tables from here strings:

$arch = DATA {
ConvertFrom-StringData -StringData @'
0 = x86
9 = x64
'@
}

A.6 Loops

PowerShell supplies a number of looping mechanisms. The syntax of these mecha-

nisms is summarized in the following examples:

1..10 | foreach-object {$_}
1..10 | foreach {$_}

$xs = 1..10
foreach ($x in $xs){$x}

for ($i=0; $i -le $($xs.length-1); $i++){$xs[$i]}

$i = 0
while ($i -le $($xs.length-1)){$xs[$i]; $i++}

$i = 0
do {$xs[$i]; $i++} while ($i -le $($xs.length-1))

$i = 0
do {$xs[$i]; $i++} until ($i -gt $($xs.length-1))

A.7 Operators

PowerShell uses a wide variety of operators. These are listed in table A.1. Operators

are case-insensitive by default. The c and i prefixes create case-sensitive and case-

insensitive versions of the operators.

Table A.1 PowerShell operators

Type Operators

Arithmetic + - * /

% is modulo operator

Assignment =, +=, -=, *=, /=, %=

Bitwise -band, -bor, -bxor

Comparison: Equality -eq, -ceq, -ieq

Comparison: Inequality -ne, -cne, -ine

Comparison: Greater -gt, -cgt, -igt; -ge, -cge, -ige

Comparison: Less -lt, -clt, -ilt; -le, -cle, -ile

488 APPENDIX A PowerShell reference

A.8 PowerShell install folder

In case you were wondering how find the PowerShell install folder, there’s an auto-

matic variable that will give you this information:

PS> $pshome
C:\Windows\System32\WindowsPowerShell\v1.0

A.9 Size constants

There are a number of size constants defined in PowerShell as shown in table A.2.

Contains: Wildcard match -like, -clike, -ilike; -notlike, -cnotlike, -inotlike

Contains: Regex -match, -cmatch, -imatch; -notmatch, -cnotmatch,

-inotmatch

Contains -contains, -ccontains, -icontains; -notcontains,

-cnotcontains, -inotcontains

Logical -and, -or, -xor, -not

! is alternative to -not

Pipeline | pipeline symbol

$_ current object on the pipeline

Range ..

String -replace, -creplace, -ireplace; -split; -join

Type -is, -isnot, -as

Unary -, +, --, ++, [<type>]

Special &, -f, $(), @(), @{},

Note: , as a unary operator creates an array.

Table A.2 PowerShell constants

Constant Meaning Usage Size

KB Kilobyte 1kb = 1,024

MB Megabyte 1mb = 1,048,576

GB Gigabyte 1gb = 1,073,741,824

TB Terabyte 1tb = 1,099,511,627,776

PB Petabyte 1pb = 1,125,899,906,842,624

Table A.1 PowerShell operators (continued)

Type Operators

489Type shortcuts

A.10 Type shortcuts

A number of type shortcuts or accelerators have been mentioned throughout the

book. They are used as shortcuts for .NET types. You can use the shortcut instead of

typing the whole name of the type. The most commonly used are probably [adsi] for

System.DirectoryServices.DirectoryEntry and the datatype shortcuts [int] and

[string] for integer and string respectively.

 A full list does not seem to have been published, but Oisin Grehan, a PowerShell

MVP, has shown how to obtain the list from PowerShell itself on his Nivot Ink blog

(http://www.nivot.org/). The full list for PowerShell v2 is shown in table A.3.

Table A.3 PowerShell type shortcuts (accelerators)

Shortcut .NET type

adsi System.DirectoryServices.DirectoryEntry

adsisearcher System.DirectoryServices.DirectorySearcher

array System.Array

bool System.Boolean

byte System.Byte

char System.Char

decimal System.Decimal

double System.Double

float System.Single

hashtable System.Collections.Hashtable

int System.Int32

ipaddress System.Net.IPAddress

long System.Int64

powershell System.Management.Automation.PowerShell

pscustomobject System.Management.Automation.PSObject

psmoduleinfo System.Management.Automation.PSModuleInfo

psobject System.Management.Automation.PSObject

psprimitivedictionary System.Management.Automation.PSPrimitiveDictionary

ref System.Management.Automation.PSReference

regex System.Text.RegularExpressions.Regex

runspace System.Management.Automation.Runspaces.Runspace

http://www.nivot.org/

490 APPENDIX A PowerShell reference

runspacefactory System.Management.Automation.Runspaces.Runspace
Factory

scriptblock System.Management.Automation.ScriptBlock

single System.Single

string System.String

switch System.Management.Automation.SwitchParameter

type System.Type

wmi System.Management.ManagementObject

wmiclass System.Management.ManagementClass

wmisearcher System.Management.ManagementObjectSearcher

xml System.Xml.XmlDocument

Table A.3 PowerShell type shortcuts (accelerators) (continued)

Shortcut .NET type

491

appendix B
WMI reference

This appendix supplies a collection of WMI-related reference material to help you

when writing PowerShell scripts that use WMI.

B.1 Useful WMI namespaces

There are a number of WMI namespaces that you’ll often use. These are collected

in table B.1.

Table B.1 Useful WMI namespaces

Namespace Comments

Root\cim2 Default WMI namespace; contains the majority of

the Win32 classes

Root\wmi Contains many hardware-related classes but is

mainly undocumented

root\MicrosoftDNS DNS server management

root\virtualization Hyper-V management

Root\MSCluster Cluster

Root\MicrosoftNLB NLB management

Root\webadministration IIS management

root\StandardCimv2 New classes introduced with Windows 8; drives

many of the new modules

root\Hardware Hardware-related data

root\Microsoft\Windows\dns PowerShell v3 DNS client configuration and utilities

root\Microsoft\Windows\PowerShellv3 Information on PowerShell modules

root\Microsoft\Windows\Storage Windows storage server management

root\Microsoft\Windows\Smb SMB management

492 APPENDIX B WMI reference

B.2 Useful classes

The list in table B.2 doesn’t include classes from specific providers, such as DNS or IIS.

Those namespaces should be investigated directly. All classes are in the root\cimv2

namespace unless stated otherwise.

Table B.2 Useful classes

Component WMI class Chapter

Computer make and model,

computer type, domain role

Win32_ComputerSystem Chapter 5

Chassis type Win32_SystemEnclosure Chapter 5

Motherboard Win32_BaseBoard, Win32_OnBoardDevice Chapter 5

Buses Win32_Bus Chapter 5

CPU Win32_Processor, Win32_CacheMemory Chapter 5

BIOS Win32_BIOS Chapter 5

Memory Win32_PhysicalMemoryArray,

Win32_PhysicalMemory

Chapter 5

Display settings Win32_DesktopMonitor,

Win32_VideoController

Chapter 5

Input device Win32_Keyboard, Win32_PointingDevice Chapter 5

Hardware ports Win32_ParallelPort, Win32_SerialPort,

Win32_USBHub, Win32_USBController,

Win32_1394Controller,

Win32_1394ControllerDevice

Chapter 5

Battery Win32_Battery Chapter 5

Battery status, test power

source

root\wmi\BatteryStatus Chapter 5

Power plans root\cimv2\power\Win32_PowerPlan Chapter 5

Operating system, service

pack, boot time

Win32_OperatingSystem Chapter 5

Hotfix Win32_QuickFixEngineering (see get-hotfix also) Chapter 5

Bootup configuration Win32_BootConfigurations Chapter 5

Recovery configuration Win32_OSRecoveryConfiguration Chapter 5

System time Win32_LocalTime, Win32_UTCTime,

Win32_TimeZone

Chapter 5

Installed software Win32_Product Chapter 5

COM applications Win32_COMApplication Chapter 5

493Useful classes

Disk controller Win32_IDEController, Win32_SCSIController Chapter 6

Physical disk Win32_DiskDrive Chapter 6

Disk partition Win32_DiskDriveToDiskPartition,

Win32_DiskPartition,

Win32_LogicalDiskToPartition

Chapter 6

Logical disk Win32_LogicalDisk Chapter 6

Mount point Win32_MountPoint Chapter 6

Volume Win32_Volume Chapter 6

CD drive Win32_CDROMDrive Chapter 6

Registry: file data Win32_Registry Chapter 7

Registry: access data root\default:StdRegprov,
root\cimv2:StdRegprov

Chapter 7

Files CIM_DATAFILE Chapter 8

Folder Win32_Directory Chapter 8

File security Win32_LogicalFileSecuritySetting Chapter 8

Shares Win32_Share Chapter 8

Page file Win32_PageFileUsage, Win32_PageFile,

Win32_PageFileSetting,

Win32_PageFileElementSetting

Chapter 8

Services Win32_Service Chapter 9

Service load order Win32_LoadOrderGroup,

Win32_LoadOrderGroupServiceMembers

Process Win32_Process Chapter 9

Printers Win32_Printer, Win32_PrintJob,

Win32_TCPIPPrinterPort,

Win32_PrinterDriver

Chapter 10

Network adapters Win32_NetworkAdapter,

Win32_NetworkAdapterConfiguration

Chapter 11

Network connections Win32_NetworkConnection Chapter 11

Network protocols Win32_NetworkProtocol Chapter 11

Client software Win32_NetworkClient Chapter 11

Routing table Win32_IP4RouteTable Chapter 11

Table B.2 Useful classes (continued)

Component WMI class Chapter

494 APPENDIX B WMI reference

B.3 WQL

Tables B.3 through B.5 summarize the WQL query language, focusing on keywords,

operators, and wildcard characters respectively.

System activation SoftwareLicensingProduct,

SoftwareLicensingService

Chapter 13

Local user account Win32_UserAccount, Win32_LoggedOnUser Chapter 14

Local groups Win32_Group, Chapter 14

ROOT\SecurityCenter2\AntiVirusProduct,

ROOT\SecurityCenter2\AntiSpywareProduct

Chapter 14

Event logs Win32_NTEventlogFile Chapter 15

Scheduled jobs Win32_ScheduledJob Chapter 15

System stability Win32_WinSat Chapter 15

System reliability Win32_ReliabilityStabilityMetrics Chapter 15

Table B.3 WQL keywords

Keyword Meaning

AND Combines two Boolean expressions and returns TRUE when both expressions

are TRUE.

ASSOCIATORS OF Retrieves all instances that are associated with a source instance.

__CLASS References the class of the object in a query.

FROM Specifies the class that contains the properties listed in a SELECT statement.

Can only query one class at a time.

GROUP Clause Causes WMI to generate one notification to represent a group of events. Use this

clause with event queries.

HAVING Filters the events that are received during the grouping interval that is specified

in the WITHIN clause.

IS Comparison operator used with NOT and NULL. The syntax for this statement is

the following: IS [NOT] NULL (where NOT is optional).

ISA Operator that applies a query to the subclasses of a specified class.

KEYSONLY Used in REFERENCES OF and ASSOCIATORS OF queries to ensure that the

resulting instances are only populated with the keys of the instances, which

reduces the overhead of the call.

LIKE Operator that determines whether or not a given character string matches a

specified pattern.

Table B.2 Useful classes (continued)

Component WMI class Chapter

495WQL

NOT Comparison operator that’s used in a WQL SELECT query.

NULL Indicates that an object does not have an explicitly assigned value. NULL is not

equivalent to 0 or blank.

OR Combines two conditions. When more than one logical operator is used in a

statement, the OR operators are evaluated after the AND operators.

REFERENCES OF Retrieves all association instances that refer to a specific source instance. Use

this statement with schema and data queries. The REFERENCES OF statement

is similar to the ASSOCIATORS OF statement, but it doesn’t retrieve endpoint

instances; it retrieves the association instances.

SELECT Specifies the properties that are used in a query.

TRUE Boolean operator that evaluates to -1.

WHERE Narrows the scope of a data, event, or schema query.

WITHIN Specifies a polling or grouping interval. Use this clause with event queries.

FALSE Boolean operator that evaluates to 0.

Table B.4 WQL operators

Operator Description

= Equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

!= or <> Not equal to

LIKE Matches a pattern

Table B.5 WQL/WMI wildcards

Character Description

[] Any one character within the specified range ([a=f]) or set ([abcdef]).

^ Any one character not within the range ([^a=f]) or set ([^abcdef]).

% Any string of zero or more characters.

_ (underscore) Any one character. Any literal underscore used in the query string must be

escaped by placing it inside square brackets ([]).

Table B.3 WQL keywords (continued)

Keyword Meaning

496

appendix C
Best practices

Best practice is a topic that can, and will, cause arguments, especially among the

many passionate members of the PowerShell community. Many people, including

myself, have a view of what constitutes best practice. In this appendix, I’ll present

some suggestions that distill both my observation of and my experience with Power-

Shell. These suggestions are based on using PowerShell for over six years, writing

and speaking about it, talking to many PowerShell users, and observing the scripts

that are available.

WARNING Some the functions in the book do not follow all of these sug-
gestions. This is to reduce the length of the examples (for readability) and
to concentrate on the working parts of the functions.

The contents of this appendix are not meant to be prescriptive but to provide a

framework for you to adopt or adapt to suit your needs. Be prepared, and know

when to step outside of these best practices to solve the problem you have right

now. These best practices cover the majority of cases but not necessarily every case.

 The first section covers PowerShell in general and the second section extends

to WMI.

C.1 PowerShell best practices

This list of tips and suggestions for using PowerShell provides a framework of best

practices that will help you produce better scripts in a shorter time. Always remem-

ber that your particular situation may cause you to ignore them—getting the job

done is the important point.

■ Don’t use aliases in scripts and functions. Don’t create new aliases unless you

publish them with your module.

■ Use full parameter names.

497PowerShell best practices

■ If you use proxy functions, ensure they are published with your module.

■ Read the help files. There’s a mass of useful information, especially in the

examples, that will help you overcome problems.

■ Use the pipeline. It reduces code, passes objects directly between cmdlets, and

lets PowerShell work in the way it’s designed.

■ Use advanced functions. The validation methods and the -debug and -whatif

parameters all become available to your function for a few lines of code that can

be put in a template (see appendix A). Don’t waste time reinventing the wheel.

■ Advanced functions should be like cmdlets—small pieces of functionality that

perform a single job.

■ Create objects for output. The output can then be filtered, displayed, or even

passed to other PowerShell commands (functions, scripts, or cmdlets). Some

scripts in the book may not adhere to this rule, but that’s to reduce repetition

and conserve space.

■ Use string substitution and multiplication. It’s much easier and simpler than

using string concatenation.

■ Use the built-in constants. Don’t divide by 1024—use 1MB! Remember that kb,

mb, gb, tb, and pb are all recognized by PowerShell.

■ Use remoting sessions. If you are accessing a remote machine once, use the

computername parameter (on a cmdlet or via Invoke-Command). If you are

accessing multiple machines or the same machine multiple times, use Power-

Shell remoting.

■ Use PowerShell jobs for long-running tasks.

■ Use standard verbs, and always use a verb-noun syntax for functions that are

exposed. Hidden helper type functions do not have to follow this convention,

but it will make maintenance easier if they do.

■ Test-Path is often overlooked. It should be used to check on a file’s existence

before attempting to read the file.

■ Add help files to modules and functions. Comment-based help is the easiest

to add.

■ Use Write-Debug and Write-Verbose to comment your functions rather than

simple comments. Write-Warning can be used to pass information back to the

console.

■ Filter early and format late. In other words, restrict the data set you’re working

on as soon as is practicable, but don’t format for display until the end of your script.

Better still, output objects and format independently for maximum flexibility.

■ Use double quotes for strings unless you are sure you will never want to substi-

tute into the string. WMI filters (see listing 11.1) and WQL queries (see list-

ing 3.3) will modify this behavior, as demonstrated in the listings.

■ Be careful with code downloaded from the internet. Always ensure that you

understand how it works, and always, always test it very carefully.

498 APPENDIX C Best practices

■ Use code-signing techniques to ensure that your code has not been changed.

■ Restrict access to production code. Only those who need to use it should have

access. Be even more careful about who has permission to modify production

code.

■ Keep the logic simple. For instance, avoid double negatives in if statements.

C.2 WMI best practices

These tips bring together the things you need to remember when using WMI. The

technology has some quirks, but if you keep these tips in mind when writing your

scripts, you shouldn’t meet too many problems.

■ Use Test-Connection -ComputerName $computer -Count 1 -Quiet to test the

availability of a remote machine before using WMI.

■ Ensure that DCOM is working and the firewall is opened for WMI on remote

machines.

■ Ensure that WinRM is running on remote machines for access via WSMAN or

CIM cmdlets.

■ WMI filters are quicker to type than WQL queries. The results are the same, but

you get there quicker. Save queries for WSMAN, WMI events, and WMI associations.

■ Wrap WMI in functions for ease of use. In PowerShell v2 use functions, but in

PowerShell v3 use the “cmdlet from object” functionality to create a module for

the class (see chapters 18 and 19).

■ Use WMI cmdlets ahead of WSMAN cmdlets if possible. In PowerShell v3, use the

CIM cmdlets.

■ Use the WMI and CIM cmdlets rather than .NET code.

■ When running against a remote machine, reducing the amount of data

returned by using -Filter or -Query is much quicker than returning all

instances of a WMI class and then filtering with Where-Object. There is no

appreciable difference in performance between using -Filter or -Query.

■ Test the return codes from WMI methods. A return code of 0 is good. Any other

value is bad.

■ Many WMI classes can only be accessed when PowerShell is running with ele-

vated privileges. The -EnableAllPrivileges parameter is also sometimes

required. The page file classes on Windows 7 and above are a good example

where both are required.

■ Use Get-WmiObject -List *network* or similar to get all classes containing a

particular string in their name.

■ If you are using -Query and -ComputerName, you may see error messages unless

you put the -ComputerName parameter first. This is an intermittent error.

■ Credentials should be created before being used. Attempting to create a cre-

dential as a subexpression in the WMI cmdlets can lead to errors if the WMI

499WMI best practices

connection is made before the credential is available, because the connection

will use the user’s security context.

■ Use Get-WmiObject | Remove WmiObject when deleting. It allows you to see

what is going to be removed and allows more testing using the -WhatIf parame-

ter on Remove-WmiObject.

■ Make sure WinRM is running on remote machines to use WSMAN connectivity.

Enabling PowerShell remoting is the simplest way to configure the service and

firewall.

■ CIM sessions using WSMAN will reconnect if the remote machine restarts. Those

using DCOM need to be re-created.

■ Remember that a WMI method’s parameter order can change when using

Invoke-WmiMethod. Use ([wmiclass]"<class name>").GetMethodParameters

("<method name>") to discover the correct order.

■ If you are making a change that may break the link to the remote machine, put

the code into a PowerShell job. This allows the network timeout to occur in the

job so that your main script can keep working.

■ Be prepared for a lack of WMI documentation. The only way around this it to

perform internet searches to determine if someone else has information or has

experimented with it.

■ Remember the ASSOCIATORS and REFERENCES keywords in WQL. These can

reduce the effort in linking classes.

500

appendix D
Useful links

These are the links that I’ve found useful during my investigations of PowerShell

and WMI. I consulted many of them during the writing of this book.

D.1 WMI

WMI SDK

http://msdn2.microsoft.com/en-us/library/aa394582.aspx

WQL

http://msdn.microsoft.com/en-us/library/aa394606(VS.85).aspx

WMI .NET CLASSES

System.Management.ManagementObject:

http://msdn.microsoft.com/en-us/library/

system.management.managementobject.aspx

System.Management.ManagementClass:

http://msdn.microsoft.com/en-us/library/

system.management.managementclass.aspx

System.Management.ManagementObjectSearcher:

http://msdn.microsoft.com/en-us/library/

system.management.managementobjectsearcher.aspx

WINDOWS SCRIPTING GUIDE

http://www.microsoft.com/technet/scriptcenter/guide/

sas_ent_qpyo.mspx?mfr=true

WMIEXPLORER

http://thepowershellguy.com/blogs/posh/archive/2007/03/22/

powershell-wmi-explorer-part-1.aspx

http://msdn2.microsoft.com/en-us/library/aa394582.aspx
ttp://msdn.microsoft.com/en-us/library/aa394606(VS.85).aspx
http://msdn.microsoft.com/en-us/library/system.management.managementobject.aspx
http://msdn.microsoft.com/en-us/library/system.management.managementobject.aspx
http://msdn.microsoft.com/en-us/library/system.management.managementclass.aspx
http://msdn.microsoft.com/en-us/library/system.management.managementclass.aspx
http://msdn.microsoft.com/en-us/library/system.management.managementobjectsearcher.aspx
http://msdn.microsoft.com/en-us/library/system.management.managementobjectsearcher.aspx
http://www.microsoft.com/technet/scriptcenter/guide/sas_ent_qpyo.mspx?mfr=true
http://www.microsoft.com/technet/scriptcenter/guide/sas_ent_qpyo.mspx?mfr=true
http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-part-1.aspx
http://thepowershellguy.com/blogs/posh/archive/2007/03/22/powershell-wmi-explorer-part-1.aspx

501PowerShell blogs

D.1.1 Forums for WMI questions

THIS BOOK’S FORUM

http://www.manning-sandbox.com/forum.jspa?forumID=719&start=0

MY FORUM

http://powershell.com/cs/forums/217.aspx

USING POWERSHELL AND WMI

http://powershell.com/cs/forums/78.aspx

D.2 Microsoft MSDN .NET

.NET FRAMEWORK

http://msdn.microsoft.com/en-us/library/w0x726c2.aspx

.NET FRAMEWORK CLASS LIBRARY

http://msdn.microsoft.com/en-us/library/ms229335.aspx

D.3 PowerShell blogs

This isn’t meant to be an exhaustive list, but it represents a good cross section of the

PowerShell community. These blogs will include links to many other areas of the

PowerShell community.

RICHARD SIDDAWAY

Richard Siddaway’s Blog (my primary blog):

http://msmvps.com/blogs/RichardSiddaway/Default.aspx

PowerShell and Windows Admins (this one concentrates on PowerShell and WMI):

http://itknowledgeexchange.techtarget.com/powershell/

PowerShell Admin Modules (many of the code examples from my blogs will be pub-

lished as PowerShell modules):

http://psam.codeplex.com/

POWERSHELL TEAM BLOG

http://blogs.msdn.com/PowerShell/

WMI TEAM BLOG

http://blogs.msdn.com/b/wmi/

MICROSOFT SCRIPTING GUY

http://blogs.technet.com/b/heyscriptingguy/

JEFFERY HICKS

http://jdhitsolutions.com/blog/

DON JONES

http://www.windowsitpro.com/blogcontent/seriespath/

powershell-with-a-purpose-blog-36

http://www.manning-sandbox.com/forum.jspa?forumID=719&start=0
http://powershell.com/cs/forums/217.aspx
http://powershell.com/cs/forums/78.aspx
http://msdn.microsoft.com/en-us/library/w0x726c2.aspx
http://msdn.microsoft.com/en-us/library/ms229335.aspx
http://msmvps.com/blogs/RichardSiddaway/Default.aspx
http://itknowledgeexchange.techtarget.com/powershell/
http://psam.codeplex.com/
http://blogs.msdn.com/PowerShell/
http://blogs.msdn.com/b/wmi/
http://blogs.technet.com/b/heyscriptingguy/
http://jdhitsolutions.com/blog/
http://www.windowsitpro.com/blogcontent/seriespath/powershell-with-a-purpose-blog-36
http://www.windowsitpro.com/blogcontent/seriespath/powershell-with-a-purpose-blog-36

502 APPENDIX D Useful links

JAMES O’NEILL

http://jamesone111.wordpress.com/

DMITRY SOTNIKOV

http://dmitrysotnikov.wordpress.com/

LEE HOLMES

http://www.leeholmes.com/blog/

THOMAS LEE

http://tfl09.blogspot.com/

SHAY LEVY

http://blogs.microsoft.co.il/blogs/ScriptFanatic/

Shay also has a PowerShell IE toolbar download available with many useful links.

JONATHAN MEDD

http://www.jonathanmedd.net/

MICROSOFT PERFORMANCE TEAM

http://blogs.technet.com/b/askperf/

D.3.1 Other PowerShell downloads

POWERGUI

http://www.powergui.org

Check on a regular basis for new power packs.

POWERSHELL PLUS

http://www.idera.com/Products/PowerShell/

POWERSHELL MANAGEMENT LIBRARY FOR HYPER-V

http://pshyperv.codeplex.com/

D.4 Code sources

CODEPLEX

http://www.codeplex.com/

Check CodePlex on a regular basis for new PowerShell and WMI projects.

TECHNET SCRIPT CENTER

http://technet.microsoft.com/en-gb/scriptcenter/default.aspx

Code examples can be found here.

GOOD POWERSHELL CODE REPOSITORIES

PowerShell.com:

www.powershell.com

PowerShell Code Repository:

www.poshcode.org

http://jamesone111.wordpress.com/
http://dmitrysotnikov.wordpress.com/
http://www.leeholmes.com/blog/
http://tfl09.blogspot.com/
http://blogs.microsoft.co.il/blogs/ScriptFanatic/
http://www.jonathanmedd.net/
http://blogs.technet.com/b/askperf/
http://www.powergui.org
http://www.idera.com/Products/PowerShell/
http://pshyperv.codeplex.com/
http://www.codeplex.com/
http://technet.microsoft.com/en-gb/scriptcenter/default.aspx
www.powershell.com
www.poshcode.org

503User groups

D.5 Podcasts

POWERSCRIPTING

http://powerscripting.wordpress.com/

GET-SCRIPTING

http://get-scripting.blogspot.com/

D.6 User groups

POWERSHELL COMMUNITY GROUPS

http://powershellgroup.org/

http://powerscripting.wordpress.com/
http://get-scripting.blogspot.com/
http://powershellgroup.org/

505

index

A

accelerators. See type accelerators
access mask, for folders 239–240
access rights, for registry

216–221
reading 216–219
taking ownership of registry

key 219–221
accessing

CIM sessions 479–481
code 106–107

AccountType property 363
Action parameter 98, 436
Activate method 356–357
activating servers 352–358

setting license key 354–355
testing license state 353–354

adapters, network 289–315
configurations for 294–296
connections for 298–299
disabling 301–302
enabling 300–301
listing 291–293
network protocols for

296–297
renaming 302–304

AddDays method 230
AddMountPoint method 192
administrators

automating tasks 7–10
challenges for 4–7

complexity of tasks 7
many changes 6
many machines 5–6

advanced functions 497

advantages, of PowerShell 13
aliases 30–32
Amended parameter 74–75
AND keyword 494–495
Antecedent property 365–366
antimalware, testing status

of 376–377
AntimalwareHealthStatus

class 376–377
AntimalwareInfectionStatus

class 376
antispyware, testing status

of 374–375
AntiSpywareProduct class 375
antivirus, testing status of
373–374
AntiVirusProduct class 374
application pools, on IIS

listing 334–336
recycling 336–337

ApplicationPool class
334, 336–337

Arguments parameter 303
AsJob parameter 59, 85, 473
ASSOCIATORS keyword 499
ASSOCIATORS OF

keyword 494–495
associators, for WMI 94–96
AT command 387
attributes, for folders 237–239
auditing hundreds of machines

example 21–23
Authentication default

statement 431
authentication parameter, for

WMI 129–131

automatic variables 485
AutomaticManagedPageFile

property 249
automating

overview 7–10
with PowerShell 16–19

Autosize parameter 22

B

backing up, event logs 385–387
BackUpEventLog method 386
Base class 266
Base column 77
battery, documenting

details 155–156
status 156–157

BatteryStatus class 127, 156–158
BatteryStatusChange class 158
BEGIN block 402
BIOS information,

documenting 146–148
BIOScharacteristics

property 147
blogs 501–502
boot configuration,

documenting 164–165
BuildNumber property 374
built-in constants 497

C

calculated fields 114–116, 485
capabilities, of printers 274–276
Caption parameter 448

INDEX506

Caption property 112, 185, 446,
448, 455

CD drives 197–199
central processing units. See

CPUs
challenges, for

administrators 4–7
complexity of tasks 7
many changes 6
many machines 5–6

Change method 256
Chassis type 139, 141, 492
CheckAccess method 219
Chkdsk method 194
CHM file 43
CIM cmdlets 459–482, 498

-AsJob parameter for 473–474
and WMI cmdlets 470–473
CIM sessions 474–481

accessing 479–481
creating 476–479
overview 475–476
removing 481

methods for 460–468
adding 460–464
parameters for 464–468

objects for 468–470
CIM IDE, for custom

cmdlets 456–458
CIM sessions 474–481

accessing 479–481
creating 476–479
overview 475–476
removing 481

CIM_ class 15
CIM_DataFile class 133, 226,

228, 247
CIM_DirectoryContainsFile

class 235–236, 246
CIM_LogicalDiskBasedOn-

Partition class 180
CLASS keyword 494
Class parameter 90, 471–472
class properties, for WMI 79–80
Class type 70
classes, for WMI 69–76, 492

by providers 71–73
in namespace 73–74
qualifiers for 74–76
system classes 70–71

ClassName parameter 471
ClearEventLog method 386
cmdlets 26–32

aliases 30–32
custom 441–458

CIM IDE for 456–458
creating 443–446
extending 446–448
format files for 452–454
from multiple WMI

classes 449–450
super- modules 450–451
type files for 454–456

for WMI 84–87
Get-WmiObject cmdlet

84–85
Invoke-WmiMethod

cmdlet 86–87
Remove-WmiObject

cmdlet 87
Set-WmiInstance

cmdlet 85–86
for WSMAN 427–428
Foreach-Object cmdlet 30
remote administration by

55–57
utility cmdlets 27–28
Where-Object cmdlet 28–30

code
links for 502
security of

access to 106–107
signing 105–106
using downloaded 103–105

code examples
auditing hundreds of

machines 21–23
shutting down data

center 20–21
COM object 28
CommandType parameter 33
community, help from 46–47
compacting, virtual disks

417–420
comparison operators, for

WQL 91–93
complexity of tasks, challenges

for administrators 7
Compress file 232
Compress() method 232–233,

238
compressing files 232–234
computer type,

documenting 142–144
ComputerName parameter

55–58, 110, 252, 370, 463
ComputerName property

268, 469
configuration settings, for

WMI 128–129

configuring
DHCP 305–306
network adapters 294–296
services 255–257

Connect-WSMan 427–429
ConnectionOptions class 328
connections, for network

adapters 298–299
ConsumerClassNames

property 73
ConvertFromDateTime

method 133
ConvertToDateTime

method 133, 147, 162, 446
Copy method 236
counters, for performance

393–395
CPU type 145
CPUs (central processing units),

for virtual machines
404–405

Create class 394
Create method 242, 261–262,

328–329, 389–390, 471
Create object 220, 320
CreateKey method 211–212
Credential parameter

130, 319, 438
CredSSP (Credential Security

Support Provider), using
with WSMAN 436–439

CSV file 10, 20, 22, 51, 53, 108,
122, 142, 481

custom cmdlets 441–458
CIM IDE for 456–458
creating 443–446
extending 446–448
format files for 452–454
from multiple WMI

classes 449–450
super- modules 450–451
type files for 454–456

D

data conversions, for WMI
131–134

dates 132–134
sizes 132

data input 107–111
parameters 109–111
reading files 108–109

data types, of registry 203–206
dates, data conversions for

WMI 132–134

INDEX 507

DateTime class 133, 222, 377
debug parameter 52–53, 497
Debug statement 122
debugging 121–122
Default parameter 478
default, printer 282–283
Define parameter 275
Defrag method 196–197
DefragAnalysis method 197
Delete method 231, 392
DeleteKey method 215–216
DeleteValue method 215
deleting scheduled jobs

391–392
Dependent property 365
Descriptor property 240
DeviceId parameter 274
DeviceId property 278, 295
DeviceType property 142
DHCP

controlling leases for 306–307
displaying configuration

for 305–306
enabling 304–305

Dialect parameter 433
Disable method 302
Disable-WSManCredSSP

427, 438
DisableNameChecking

parameter 461
disabling network adapters

301–302
Disconnect-WSMan 427–429
disk controllers,

discovering 174–175
disk drives, linking partitions

to 177–179
disk systems 171–199

CD drives 197–199
logical disks 181–185

logical disk
information 181–182

mount points 184–185
root directory data 182–183

managing 191–197
analyzing fragmentation

195–197
formatting disk 192–194
performing Chkdsk

194–195
physical disks 172–180

disk controllers 174–175
enumerating disk

partitions 179

linking partitions to disk
drives 177–179

linking partitions to logical
disks 180

physical drive
information 175–177

volumes 185–191
enumerating volume

information 185–187
volume change events

187–191
DiskPath property 417
display settings,

documenting 151–152
DMTF class 476
DNS servers, setting 311–312,

351–352
documenting 137–170

hardware 139–150
BIOS information 146–148
computer type 142–144
domain role 144–145
memory

configuration 148–150
processor information

145–146
system information

140–142
operating system 160–168

boot configuration
164–165

discovering hotfixes
163–164

operating system
version 160–163

recovery
configuration 165–167

testing system time
167–168

peripherals 150–154
display settings 151–152
input devices 152–153
ports 153–154

power supplies 154–160
battery details 155–156
battery status 156–157
power plans 158–160
testing power source

157–158
software 168–169
with WMI 82–84

Domain property 365, 371
domain role,

documenting 144–145

domains, adding servers to
343–345

double hop 437–438
double quotes 497
downloaded code, security

of 103–105
DriveLetter property 191
DriverName property 285
drivers, for printers 277–279
DVD drive, attaching .iso images

to 405–407

E

editors, for reusing code 48–49
Enable method 301
Enable-WSManCredSSP

427, 437–438
EnableAllPrivileges

parameter 249, 498
EnableDHCP method 305, 312
EnableStatic method 308, 350
enabling

DHCP 304–305
network adapters 300–301

Encrypt() 233
encrypted property 229
Enumerate parameter 428, 433
enumerating

CD drives 198–199
partitions 179
volumes 185–187

EnumKey method 207, 210
EnumValues method 205
error handling 123–125
ErrorAction parameter 123
event logs 382–387

backing up 385–387
discovering sources for

384–385
Event type 245
EventQueryList property 73
events

for filesystem 244–248
for processes 265–270

monitoring processes
268–270

overview 266–268
for registry 221–223
for WMI 96–99

ExpandProperty parameter
177, 199, 276

ExpandProperty property 240
extending, custom cmdlets

446–448

INDEX508

F

FALSE keyword 495
FilePath parameter 58, 220
files 226–234

compressing 232–234
discovering in folders

235–237
finding 227–230
performing actions on

230–232
filesystem 224–250

events for 244–248
files in 226–234

compressing 232–234
finding 227–230
performing actions

on 230–232
folders 234–240

access mask for 239–240
discovering files in 235–237
with attributes 237–239

page file in 248–249
shares in 240–244

creating 242–243
listing 241–242
modifying 243–244

Filter parameter 90, 92–93, 100,
228, 426, 433–434

Filter statement 91–92
filtering data, for WMI 131
Firewall_Profile_Parameters

class 379
FirewallProduct class 378
firewalls

listing settings for 378–380
testing status of 378

FirewallState class 376, 378
Flags parameter 467
folders 234–240

access mask for 239–240
discovering files in 235–237
with attributes 237–239

for loop 39
Force parameter 480
Foreach-Object cmdlet 30
format files, for custom

cmdlets 118–120, 452–454
Format method 192–193
formatting disks 192–194
forums, for WMI 501
fragmentation, analyzing

195–197
Framework object 76, 97
FROM keyword 494

Function parameter 186
function template 486
functions, reusing code 50–53

G

Get-Command cmdlet 44–45
Get-Credential command 347
Get-Help cmdlet 43–44
Get-Member cmdlet 45–46
Get-MountPoint 419
Get-VM cmdlet 410
Get-VMDisk 406–407, 415,

417–418
Get-WmiObject cmdlet 84–85
Get-WmiObject command 395
Get-WSManCredSSP 427
Get-WSManInstance 425–428,

432–436
GetOwner() method 260
GetState method 330
GMT property 163
GROUP Clause keyword 494
GroupBy parameter 331
groups 370–372

H

Handle property 436
hardware, documenting

139–150
BIOS information 146–148
computer type 142–144
domain role 144–145
memory configuration

148–150
processor information

145–146
system information 140–142

hash tables 147, 149, 487
HAVING keyword 494
help 42–47

from community 46–47
Get-Command cmdlet 44–45
Get-Help cmdlet 43–44
Get-Member cmdlet 45–46

Help file 32, 44
hotfixes, documenting 163–164
Hyper-V module 403, 410
Hyper-V virtualization

platform 399–420
virtual disks 414–420

compacting 417–420

testing status of 414–416
usage of 416–417

virtual machines 401–414
adding CPUs 404–405
adding network

adapters 408–410
adding virtual disks

407–408
attaching .iso image to DVD

drive 405–407
creating 401–404
starting 410–411
starting multiple 412
stopping 413–414

I

IDE disk 407
if statements 40–41, 485
IIS (Internet Information

Server) 316–338
applications 333–337

listing application
pools 334–336

listing web
applications 333–334

recycling application
pools 336–337

displaying defaults 319–322
restarting 322–324
websites 324–333

creating 327–329
listing 324–327
restarting 331–333
testing 329–331

WMI provider for 317–324
Import-Module 402, 411–413,

418
IncludeEqual parameter 70
Index property 433
input devices,

documenting 152–153
input, for scripting

language 41–42
install folder 488
Installation.txt file 456
InstallProductKey method 355
Interface property 314
Internet Information Server. See

IIS
Invoke-Command 424, 426,

438–439
invoke-defraganal function 419
Invoke-WmiMethod 86–87,

427, 436

INDEX 509

Invoke-WSManAction
427, 435–436

IP addresses
for servers 349–351
setting 307–309

IS keyword 494
ISA keyword 494
IsDaylightSavingTime

method 168
ISO file 198
.iso images, attaching to DVD

drive 405–407
issues, with WMI 127–128

J

jobs 58–60
JoinDomainOrWorkgroup

method 345

K

key properties, for WMI 81–82
keys, in registry 211–216

creating 211–212
deleting 215–216
deleting values for 214–215
enumerating 209–211
reading 206–208
setting values for 212–214
taking ownership of 219–221

KEYSONLY keyword 494
keywords, for WQL 89–90

L

LastModified property 134
leases, for DHCP 306–307
licenses, for servers

setting key for 354–355
testing state of 353–354

LIKE keyword 494
linking partitions

to disk drives 177–179
to logical disks 180

links 500–503
blogs 501–502
for code 502
for WMI 500–501
Microsoft MSDN .NET 501
Podcasts 503
user groups 503

List parameter 68, 70, 73,
75, 272

listing
application pools 334–336
network adapters 291–293
printers 272–274

drivers for 277–279
ports for 276–277
print jobs 280–282

processes 260–261
scheduled jobs 390–391
services 254–255
shares 241–242
websites 324–327

load order, for services 257–259
logged on users, finding

364–366
logical disks 181–185

linking partitions to 180
logical disk information

181–182
mount points 184–185
root directory data 182–183

logical operators, for WQL 91
logical units. See LUNs
logs, event logs 382–387

backing up 385–387
discovering sources for

384–385
Lookup table 204
loops 38–40, 487

for loop 39
foreach 38–39

LUNs (logical units) 403

M

ManagementClass object 328
ManagementPath class 328
MemberType method 86
MemberType parameter

45, 77, 86
memory configuration,

documenting 148–150
methods

for CIM cmdlets 460–468
adding 460–464
parameters for 464–468

for WMI 76–79
Microsoft class 15
Microsoft MSDN .NET,

links 501
Milliseconds parameter 126
modules, reusing code 53–55
MOF file 64–65, 457
monitoring, events 221–223

mount points 184–185
MSFT_PrinterDriver class 279

N

Name property 278, 383
Namespace parameter 74
namespaces, for WMI

66–69, 491
classes in 73–74
discovering 66–68
registrations of 68–69

Neither parameter 287
NET class 34–37, 266,

327–328, 394
NET objects 34–37

creating 34–35
creating own objects 35–37
overview 34
PowerShell objects 34

NET type 88, 366, 454, 489
NET, and PowerShell 12–13
network adapters

adding to virtual
machines 408–410

for servers 348–352
setting DNS servers

351–352
setting IP address 349–351

network card. See NIC
networking

adapters 289–315
configurations for 294–296
connections for 298–299
disabling 301–302
enabling 300–301
listing 291–293
network protocols for

296–297
renaming 302–304

DHCP
controlling leases for

306–307
displaying configuration

for 305–306
enabling 304–305

DNS servers, setting 311–312
IP addresses, setting 307–309
routing table, displaying

313–315
WINS servers, setting

312–313
new-pawVM function 401–402
New-WSManInstance 427–428
New-WSManSessionOption 427

INDEX510

NextHop property 314
NIC (network card) 403
nodefrag switch 419
nondomain machines 429
NOT keyword 495
NTFS file 234
NULL keyword 495
Number property 36–37
NumberofLogicalProcessors

property 142

O

objects, for CIM cmdlets
468–470

OF statement 495
operating system,

documenting 160–168
boot configuration 164–165
discovering hotfixes 163–164
operating system version

160–163
recovery configuration

165–167
testing system time 167–168

OperatingSystemSKU
parameter 447–448

OperatingSystemSKU
property 443, 446, 455

operators, for WQL 90–94, 487
comparison operators 91–93
logical operators 91
wildcards 93–94

optimizing code 107–113
data input 107–111

parameters 109–111
reading files 108–109

string substitution 111–113
OR keyword 495
OR statement 91
output, for scripting

language 41–42
Owner property 218, 282
owners, for processes 260–261
ownership, of keys in

registry 219–221

P

PackedXML property 378
packet privacy authentication,

WMI provider for IIS
318–319

page file, managing 248–249

param() 122
parameters

data input using 109–111
for CIM cmdlets

methods 464–468
PartComponent property 236
PartialProductKey property 356
partitions

enumerating 179
linking

to disk drives 177–179
to logical disks 180

PassThru parameter 336
Path property 237, 274, 293
PercFree property 115
performance 392–398

reading counters for 393–395
stability index 396–398
Windows system assessment

report 395–396
peripherals, documenting

150–154
display settings 151–152
input devices 152–153
ports 153–154

physical disks 172–180
disk controllers 174–175
enumerating disk

partitions 179
linking partitions to disk

drives 177–179
linking partitions to logical

disks 180
physical drive

information 175–177
pipeline, overview 32–34
Podcasts 503
ports

documenting 153–154
for printers, listing 276–277

power plans
documenting 158
for servers, setting 356–358

power source,
documenting 157–160

power supplies,
documenting 154–160

battery details 155–156
battery status 156–157
power plans 158–160
testing power source 157–158

PowerOnLine property 158
PowerShell 10–13

advantages of 13
and .NET 12–13, 34–37

creating own objects 35–37
overview 34
PowerShell objects 34

automation with 16–19
overview 26
scope 11–12
tips for 496–498

PowerShell command 9, 12, 18,
42, 44, 49, 51, 122

PowerShell file 52, 54
PowerShell method 84
PowerShell object 34, 76, 78,

102, 116, 134, 299, 321
PowerShell statement 33, 88,

126, 128, 187
PowerShell type 113, 116,

118, 489
prefix parameter 402
PrePendPath parameter 119
printers 271–288

listing 272–274
drivers for 277–279
ports for 276–277
print jobs 280–282

printing test page 284–285
remote controlling 285–287
renaming 287
setting default 282–283
testing

capabilities of 274–276
status of 279–280

PrinterState property 279
PrintTestpage method 285
PriorityClass property 262
PROCESS block 402
Process method 72, 77
processes 259–265

creating 261–263
events for 265–270

monitoring processes
268–270

overview 266–268
listing owners for 260–261
terminating 263–265

processor information,
documenting 145–146

ProductVersion property 478
properties, for WMI

class properties 79–80
key properties 81–82
system properties 80–81

Property parameter 36, 433
ProtectionTechnologyStatus

class 376

INDEX 511

protocols, for network
adapters 296–297

Provider type 66, 82
providers

classes by 71–73
for WMI 65–66
for WSMAN 428–429

PSComputerName property 469
PSObject class 35

Q

Qualifier parameter 233
qualifiers, for WMI 74–76
Query parameter 88, 90, 92
Quiet parameter 478

R

reading, registry 206–211
enumerating keys and values

in 209–211
keys 206–208
values 208–211

Reboot method 343, 348, 461
recovery configuration,

documenting 165–167
Recurse parameter 393
Recycle method 337
recycling, application

pools 336–337
REFERENCES keyword 499
REFERENCES OF

keyword 494–495
references, for WMI 94–96
registering namespaces 68–69
registry 200–223

access rights for 216–221
reading 216–219
taking ownership of

registry key 219–221
accessing 201–206

discovering data types
203–206

testing size of 202–203
events for 221–223
keys in 211–216

creating 211–212
deleting 215–216
deleting values for 214–215
setting values for 212–214

reading 206–211
enumerating keys and

values in 209–211

keys 206–208
values 208–211

Registry file 493
RELPATH property 178
RemainingCapacity

property 157
remote access

options for 439–440
with WSMAN 425–427

remote access techniques 439
remote administration 55–58

by cmdlet 55–57
remote sessions 57–58

remote controlling,
printers 285–287

remoting sessions 57–58, 497
Remove-WMIObject 435
Remove-WSManInstance

427, 435
Rename method 342
RenamePrinter method 287
renaming

network adapters 302–304
printers 287
servers 341–343

Replace() method 236
reputation, of WMI 16
ResourceType parameter 299
Restart method 331
restarting

IIS 322–324
servers 347–348
websites 331–333

Resume method 282, 285
return codes, for WMI 125–126
Return type 461
reusing code 47–55

editors for 48–49
functions 50–53
modules 53–55
scripts 49–50

root directory data 182–183
routing table, displaying

313–315

S

Saves command 28
scheduled jobs 387–392

creating 387–390
deleting 391–392
listing 390–391

scope, of PowerShell 11–12
scripting language 37–42

if statement 40–41

input and output 41–42
loops 38–40

for loop 39
foreach 38–39

switch statement 41
Scripts file 86
scripts, reusing code 49–50
SCSI parameter 407
security 103–107, 372–380

firewalls
listing settings for 378–380
testing status of 378

of code
access to 106–107
signing 105–106
using downloaded 103–105

testing for
antimalware status 376–377
antispyware status 374–375
antivirus status 373–374

SELECT keyword 495
SELECT statement 494
Select-Object statement 354
Selected.System.Manage-

ment.ManagementObject
type 292

SelectorSet parameter 426, 428,
434–435

Sender property 268
Server class 319, 321
Server database 114, 385
servers 339–358

activating 352–358
setting license key 354–355
testing license state

353–354
adding to domain 343–345
network adapter settings

for 348–352
setting DNS servers

351–352
setting IP address 349–351

power plans for, setting
356–358

renaming 341–343
restarting 347–348
shutting down 346–347

ServicePackMajorVersion
property 454

services 252–259
configuring 255–257
listing 254–255
load order for 257–259

Set-VMMemory function 403
Set-WmiInstance cmdlet 85–86

INDEX512

Set-WSManInstance
427–428, 434

Set-WSManQuickConfig 427
SetDefaultPrinter method 283
SetDNSServerSearchOrder

method 311–312
SetGateways method 310
SetInfo method 244
SetSecurityDescriptor

method 219
SetShareInfo method 243
SetTCPIPNetBIOS method 305
SetTcpipNetbios method 310
SetWINSServer method 313
shares 240–244

creating 242–243
listing 241–242
modifying 243–244

ShowWindow property 262
Shutdown method 346, 348
shutting down data center

example 20–21
shutting down servers 346–347
signing code 105–106
Site class 324, 327, 331
Site parameter 326
size constants 488
sizes

data conversions for WMI 132
of registry 202–203

SKU property 454–455
SNMPCommunity property 277
software, documenting 168–169
SoftwareLicensingProduct

class 353, 355–356
SoftwareLicensingService

class 355
SourceEventArgs.NewEvent

property 247
SourceIdentifier property 269
sources, for event logs 384–385
stability index 396–398
Start method 332, 337
start-pawVM function 412
Start-VM command 411
StartMode property 255
StartService method 30, 324
State column 59
Static parameter 46, 110
status

of printers 279–280
of virtual disks 414–416

Status property 203
StdRegprov class 205
Stop method 331–332
Stop-Computer cmdlet 410

StopService method 256
string substitution 111–113
super- modules, for custom

cmdlets 450–451
Switch statement 25, 41, 275,

284, 301, 303, 307
system classes, for WMI 70–71
system information,

documenting 140–142
system properties, for WMI

80–81
system time, documenting

167–168
System.Array 489
System.Boolean 489
System.Byte 489
System.Char 489
System.Collections.Hashtable

489
System.Decimal 489
System.DirectoryServices

.DirectoryEntry 489
System.DirectoryServices

.DirectorySearcher 489
System.Double 489
System.Int32 489
System.Int64 489
System.Management.Automation

.PowerShell 489
System.Management.Automation

.PSModuleInfo 489
System.Management.Automation

.PSObject 489
System.Management.Automation

.PSPrimitiveDictionary 489
System.Management.Automation

.PSReference 489
System.Management.Automation

.Runspaces.Runspace 489
System.Management.Automation

.Runspaces.RunspaceFactory
490

System.Management.Automation
.ScriptBlock 490

System.Management.Automation
.SwitchParameter 490

System.Management.Event-
ArrivedEventArgs class 248

System.Management.Manage-
mentBaseObject object 319

System.Management
.ManagementClass 490

System.Management
.ManagementObject 490

System.Management.Manageme
ntObjectSearcher 490

System.Net.IPAddress 489
System.Single 489–490
System.String 490
System.Text.RegularExpressions

.Regex 489
System.Type 490
System.Xml.XmlDocument 490

T

TCPIPNetBIOS property 295
Terminate method 98
terminating processes 263–265
test page, printing 284–285
Test-Connection 409, 411
Test-Path 415–416, 497
Test-WSMan 427, 431
testing

antimalware status 376–377
antispyware status 374–375
antivirus status 373–374
firewall status 378
printers

capabilities of 274–276
status of 279–280

websites 329–331
WSMAN 431–432

ThrowTerminatingError
method 111

Time property 163
TimeSpan object 163
TimeZone class 389
tips 496–499

for PowerShell 496–498
for WMI 498–499

TotalDays property 163
TotalPhysicalMemory

property 450
TRUE keyword 495
type accelerators, for WMI

87–89
[wmi] type accelerator 89
[wmiclass] type

accelerator 88
[wmisearcher] type

accelerator 88
type files 116–118, 454–456
type shortcuts 489

U

Uncompress method 234
URIs (Uniform Resource

Identifiers) 430
usage, of virtual disks 416–417

INDEX 513

user groups 503
users

discovering information
for 366–370

finding logged on 364–366
groups of 370–372
listing accounts 361–364

utility cmdlets 27–28

V

ValidatePattern method 354
ValidateRange() 404
ValidateScript() 404
ValidateSet() 193, 238, 275
values, in registry

deleting 214–215
reading 208–211
setting 212–214

ValueSet parameter 434
variables, automatic 485
VBScript type 34
verb-noun syntax 497
Verbose parameter

121, 189, 333
verbose switch 419
View parameter 46, 77–78
virtual disks 414–420

adding 407–408
compacting 417–420
testing status of 414–416
usage of 416–417

virtual machines 401–414
adding CPUs 404–405
adding network

adapters 408–410
adding virtual disks 407–408
attaching .iso image to DVD

drive 405–407
creating 401–404
starting 410–411
starting multiple 412
stopping 413–414

volumes 185–191
enumerating 185–187
volume change events

187–191

W

wait parameter 419
web applications, listing

333–334
Web Services Management. See

WSMAN

websites 324–333
creating 327–329
listing 324–327
restarting 331–333
testing 329–331

WhatIf parameter 363, 392, 499
WHERE keyword 495
Where-Object 28–30, 417, 498
wildcards, for WQL 93–94
Win32_Directory 183–184
Win32_DiskDrive class 176–178
Win32_DiskPartition class

177, 179
Win32_FloppyController

class 173
Win32_IDEController #2

class 175
Win32_LogicalDisk class

181–182
Win32_LogicalDiskToPartition

173, 180
Win32_NetworkAdapater

class 433
Win32_NetworkAdapterConfigu

ration class 433
Win32_PhysicalMedia class

173, 178
Win32_SCSIController #3

class 175
Win32_Volume class 434
Windows Management Instru-

mentation. See WMI
Windows system assessment

report 395–396
WINS servers, setting 312–313
WITHIN keyword 495
WMI 491–494

and WSMAN
deleting instances

with 435–436
modifying instances

with 433–435
retrieving data using

432–433
classes 492
custom cmdlets for, from

multiple classes 449–450
links for, forums 500–501
namespaces 491
tips for 498–499
WQL query language 494

WMI (Windows Management
Instrumentation) 14–16,
62–100, 126–134

associators 94–96

authentication
parameter 129–131

classes 69–76
by providers 71–73
in namespace 73–74
qualifiers for 74–76
system classes 70–71

cmdlets 84–87
Get-WmiObject cmdlet

84–85
Invoke-WmiMethod

cmdlet 86–87
Remove-WmiObject

cmdlet 87
Set-WmiInstance

cmdlet 85–86
configuration settings

128–129
data conversions 131–134

dates 132–134
sizes 132

documenting with 82–84
events 96–99
filtering data 131
issues with 127–128
methods 76–79
namespaces 66–69

discovering 66–68
registrations of 68–69

overview 14–16
properties

class properties 79–80
key properties 81–82
system properties 80–81

providers 65–66
references 94–96
reputation of 16
return codes for 125–126
type accelerators 87–89

[wmi] type accelerator 89
[wmiclass] type

accelerator 88
[wmisearcher] type

accelerator 88
WQL 89–94

keywords 89–90
operators 90–94

WMI cmdlets 470–473, 498
WMI command 423–424
WMI database 131
WMI file 231, 244
WMI method 125–126, 203,

300, 343, 387, 459–460
WMI object 203, 220, 236, 270,

276, 285, 287, 299
WMI property 84

INDEX514

WMI provider, for IIS 317–324
WMI Query Language. See WQL
WMI shutdown command 410
WMI type 88
[wmi] type accelerator, for

WMI 89
[wmiclass] type accelerator, for

WMI 88
WmiIPRoute class 314
[wmisearcher] type accelerator,

for WMI 88
WQL (WMI Query

Language) 89–94
keywords 89–90
operators 90–94

comparison operators
91–93

logical operators 91
wildcards 93–94

WQL keywords 494
WQL operators 494
WQL query language 494
WQL statement 90, 434
WQL/WMI wildcards 494
Wrap parameter 23, 75
Write-Debug 122, 497
Write-Verbose 497
Write-Warning 497
WSMAN (Web Services Manage-

ment) protocol 423–440
and WMI

deleting WMI instances
with 435–436

modifying WMI instances
with 433–435

retrieving WMI data
using 432–433

cmdlets 427–428
providers for 428–429
remoting with 425–427
testing 431–432
URIs for 430
using CredSSP 436–439

WSMAN cmdlets 498

X

XML file 444–447, 449, 451,
456, 458

Richard Siddaway

W
MI, on its own, is simply a collection of Windows
management facilities. Paired with PowerShell, however,
WMI becomes a brilliant toolset for automating servers,

networks, and remote Windows computers.

PowerShell and WMI is an industrial strength guide for adminis-
trators of Windows networks, servers, and desktops. You’ll start
with practical overviews of PowerShell and of WMI. h en you’ll
explore 150 specii c examples—all with ready-to-use scripts—
designed to simplify your day-to-day system management. Each
tested technique is coni gured to load as part of a PowerShell
module.

What’s Inside
● Managing Windows, IIS, and Hyper-V

● Remote desktops and devices
● Logs, jobs, and performance
● New PowerShell v3 WMI functionality

A set of handy appendixes include references for PowerShell and
WMI. Prior exposure to PowerShell and WMI is helpful but not
required.

Richard Siddaway is a veteran IT architect, server administrator,
support engineer, and PowerShell MVP. He’s the author of
PowerShell in Practice, published in 2010 by Manning.

To download their free eBook in PDF and mobile formats, owners of this
book should visit manning.com/PowerShellandWMI

$59.99 / Can $62.99 [INCLUDING eBOOK]

PowerShell AND WMI

WINDOWS ADMINISTRATION

M A N N I N G

“PowerShell, WMI, and
Richard Siddaway—an

 unbeatable combination.”

— From the Foreword by
Ed Wilson

Microso� Scripting Guy

“h e dei nitive dive into
using WMI with PowerShell.”

—Adam Bell
ZOE Systems Pty Ltd

“Belongs on the desk of
every Windows administrator

and engineer.”
—James Berkenbile

Berkenbile Consulting

“A great resource.”
—Jonathan Medd

Get-Scripting Podcast

SEE INSERT

	PowerShell and WMI
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Source code downloads
	Code and typographical conventions
	Author Online

	about the author
	about the cover illustration
	Part 1 Tools of the trade
	Chapter 1 Solving administrative challenges
	1.1 Administrative challenges
	1.1.1 Too many machines
	1.1.2 Too many changes
	1.1.3 Complexity and understanding

	1.2 Automation: the way forward
	1.3 PowerShell overview
	1.3.1 PowerShell scope
	1.3.2 PowerShell and .NET
	1.3.3 Breaking the curve

	1.4 WMI overview
	1.4.1 What is WMI?
	1.4.2 Is WMI really too hard?

	1.5 Automation with WMI and PowerShell
	1.6 Putting PowerShell and WMI to work
	1.6.1 Example 1: Shutting down a data center
	1.6.2 Example 2: Auditing hundreds of machines

	1.7 Summary

	Chapter 2 Using PowerShell
	2.1 PowerShell in a nutshell
	2.2 Cmdlets
	2.2.1 Utility cmdlets
	2.2.2 Where-Object
	2.2.3 Foreach-Object
	2.2.4 Aliases

	2.3 Pipeline
	2.4 .NET for administrators
	2.4.1 Objects
	2.4.2 PowerShell objects
	2.4.3 Creating .NET objects
	2.4.4 Creating your own objects

	2.5 PowerShell scripting language
	2.5.1 Loops
	2.5.2 Branching
	2.5.3 Input and output

	2.6 Finding help
	2.6.1 Get-Help
	2.6.2 Get-Command
	2.6.3 Get-Member
	2.6.4 PowerShell community

	2.7 Code reuse
	2.7.1 Editors
	2.7.2 Scripts
	2.7.3 Functions
	2.7.4 Modules

	2.8 PowerShell remoting
	2.8.1 Remoting by cmdlet
	2.8.2 PowerShell remote sessions

	2.9 PowerShell jobs
	2.10 Summary

	Chapter 3 WMI in depth
	3.1 The structure of WMI
	3.1.1 Providers
	3.1.2 Namespaces
	3.1.3 Classes

	3.2 Methods and properties
	3.2.1 Methods
	3.2.2 Class properties
	3.2.3 System properties
	3.2.4 Key properties

	3.3 Documenting WMI
	3.4 WMI cmdlets and accelerators
	3.4.1 Cmdlets
	3.4.2 Type accelerators

	3.5 Using WQL
	3.5.1 Keywords
	3.5.2 Operators

	3.6 WMI references and associators
	3.7 WMI events
	3.8 Summary

	Chapter 4 Best practices and optimization
	4.1 Security
	4.1.1 Using internet code
	4.1.2 Code security
	4.1.3 Access to code

	4.2 Optimizing PowerShell code
	4.2.1 Data input
	4.2.2 String substitution

	4.3 Calculated fields, types, and formatting
	4.3.1 Calculated fields
	4.3.2 Type files
	4.3.3 Format files

	4.4 Debugging and error handling
	4.4.1 Debugging
	4.4.2 Error handling
	4.4.3 WMI return codes

	4.5 Getting the most from WMI
	4.5.1 Issues with learning to use WMI
	4.5.2 WMI configuration settings
	4.5.3 Authentication
	4.5.4 Data filtering
	4.5.5 Data conversions

	4.6 Summary

	Part 2 WMI in the enterprise
	Chapter 5 System documentation
	5.1 System hardware and configuration
	Technique 1: Get computer system information
	Technique 2: Get computer type
	Technique 3: Get domain role
	Technique 4: Get processor information
	Technique 5: Get BIOS information
	Technique 6: Get memory configuration

	5.2 Peripherals
	Technique 7: Get display settings
	Technique 8: Get input devices
	Technique 9: Get ports

	5.3 Power supplies
	Technique 10: Get battery details
	Technique 11: Get battery status
	Technique 12: Test power source
	Technique 13: Get power plans

	5.4 Operating system
	Technique 14: Get operating system version
	Technique 15: Discover hotfixes
	Technique 16: Get boot configuration
	Technique 17: Find recovery configuration
	Technique 18: Test system time

	5.5 Software
	Technique 19: Discover installed software

	5.6 Summary

	Chapter 6 Disk systems
	6.1 Physical disks
	Technique 20: Discover disk controllers
	Technique 21: Physical drive information
	Technique 22: Link partitions to disk drives
	Technique 23: Enumerating disk partitions
	Technique 24: Link partitions to logical disks

	6.2 Logical disks
	Technique 25: Logical disk information
	Technique 26: Root directory data
	Technique 27: Mount points

	6.3 Volumes
	Technique 28: Enumerate volume information
	Technique 29: Using volume change events

	6.4 Managing disks
	Technique 30: Formatting a disk
	Technique 31: Performing Chkdsk
	Technique 32: Analyzing and removing fragmentation

	6.5 CD drives
	Technique 33: Enumerating CD drives

	6.6 Summary

	Chapter 7 Registry administration
	7.1 Accessing the registry
	Technique 34: Test registry size
	Technique 35: Discovering registry data types

	7.2 Reading the registry
	Technique 36: Reading registry keys
	Technique 37: Reading registry values
	Technique 38: Enumerating keys and values

	7.3 Creating and modifying registry keys and values
	Technique 39: Creating registry keys
	Technique 40: Setting registry values

	7.4 Deleting registry keys
	Technique 41: Deleting registry values
	Technique 42: Deleting registry keys

	7.5 Registry access rights
	Technique 43: Reading access rights
	Technique 44: Taking ownership of a registry key

	7.6 Registry events
	Technique 45: Monitoring registry events

	7.7 Summary

	Chapter 8 Filesystem administration
	8.1 Working with files
	Technique 46: Finding files
	Technique 47: Performing actions on files
	Technique 48: Compressing files

	8.2 Folder administration
	Technique 49: Discovering the files in a folder
	Technique 50: Discovering folders with specific attributes
	Technique 51: Decoding the access mask

	8.3 Listing, creating, and modifying shares
	Technique 52: Listing shares
	Technique 53: Creating shares
	Technique 54: Modifying shares

	8.4 Filesystem events
	Technique 55: Working with filesystem events

	8.5 Page file management
	8.6 Summary

	Chapter 9 Services and processes
	9.1 Services
	Technique 56: Listing services
	Technique 57: Configuring services
	Technique 58: Discovering the service load order

	9.2 Processes
	Technique 59: Listing process owners
	Technique 60: Creating a process
	Technique 61: Terminating a process

	9.3 Process-related events
	Technique 62: Investigating an event
	Technique 63: Monitoring processes

	9.4 Summary

	Chapter 10 Printers
	10.1 Printer configuration
	Technique 64: Discovering printers
	Technique 65: Testing printer capabilities
	Technique 66: Discovering printer ports
	Technique 67: Discovering printer drivers

	10.2 Printer status
	Technique 68: Testing printer status
	Technique 69: Listing print jobs

	10.3 Managing printers
	Technique 70: Setting a default printer
	Technique 71: Printing a test page
	Technique 72: Controlling printers
	Technique 73: Renaming a printer

	10.4 Summary

	Chapter 11 Configuring network adapters
	11.1 Discovering network adapters
	Technique 74: Identifying network adapters
	Technique 75: Discovering adapter configurations
	Technique 76: Listing an adapter’s network protocols
	Technique 77: Listing network connections

	11.2 Configuring network adapters
	Technique 78: Enabling network adapters
	Technique 79: Disabling network adapters
	Technique 80: Renaming network adapters

	11.3 Enabling and setting network addresses
	Technique 81: Enabling DHCP
	Technique 82: Displaying DHCP configuration
	Technique 83: Controlling DHCP leases
	Technique 84: Setting an IP address
	Technique 85: Setting other properties

	11.4 Configuring network services
	Technique 86: Setting DNS servers
	Technique 87: Setting WINS servers
	Technique 88: Displaying the routing table

	11.5 Summary

	Chapter 12 Managing IIS
	12.1 IIS WMI provider
	12.1.1 Packet Privacy authentication
	Technique 89: Displaying web server defaults
	Technique 90: Restarting the web server

	12.2 Websites
	Technique 91: Listing websites
	Technique 92: Creating a website
	Technique 93: Testing website status
	Technique 94: Restarting a website

	12.3 Application pools and applications
	Technique 95: Listing web applications
	Technique 96: Listing application pools
	Technique 97: Recycling an application pool

	12.4 Summary

	Chapter 13 Configuring a server
	13.1 Initial tasks
	Technique 98: Renaming a server
	Technique 99: Joining a computer to a domain

	13.2 Controlling server restarts
	Technique 100: Shutting down a server
	Technique 101: Restarting a server

	13.3 Configuring network adapter settings
	Technique 102: Setting an IP address
	Technique 103: Configuring other settings

	13.4 Activating a server
	Technique 104: Testing license state
	Technique 105: Setting the license key
	Technique 106: Activating a server
	Technique 107: Setting a power plan

	13.5 Summary

	Chapter 14 Users and security
	14.1 User accounts on the local system
	Technique 108: Listing user accounts
	Technique 109: Finding logged on users
	Technique 110: Discovering user information

	14.2 Groups on the local system
	Technique 111: Listing local groups
	Technique 112: Listing group membership

	14.3 Security
	Technique 113: Testing antivirus status
	Technique 114: Testing antispyware status
	Technique 115: Testing antimalware status
	Technique 116: Testing firewall status
	Technique 117: Listing firewall settings

	14.4 Summary

	Chapter 15 Logs, jobs, and performance
	15.1 Event logs
	Technique 118: Discovering event log sources
	Technique 119: Backing up event logs

	15.2 Scheduled jobs
	Technique 120: Creating a scheduled job
	Technique 121: Discovering scheduled jobs
	Technique 122: Deleting scheduled jobs

	15.3 System performance
	Technique 123: Reading performance counters
	Technique 124: Windows system assessment report
	Technique 125: Stability index data

	15.4 Summary

	Chapter 16 Administering Hyper-V with PowerShell and WMI
	16.1 Creating and configuring virtual machines
	Technique 126: Creating a virtual machine
	Technique 127: Adding extra CPUs
	Technique 128: Attaching an .iso image to a DVD drive
	Technique 129: Adding a virtual disk
	Technique 130: Adding a network adapter

	16.2 Controlling virtual machines
	Technique 131: Starting a virtual machine
	Technique 132: Starting multiple machines
	Technique 133: Stopping virtual machines

	16.3 Managing virtual disks
	Technique 134: Testing virtual disk status
	Technique 135: Examining virtual disk usage
	Technique 136: Compacting virtual disks

	16.4 Summary

	Part 3 The future: PowerShell v3 and WMI
	Chapter 17 WMI over WSMAN
	17.1 Remoting protocols
	17.1.1 PowerShell remoting
	17.1.2 WSMAN
	17.1.3 WSMAN cmdlets
	17.1.4 WSMAN provider

	17.2 Using WSMAN
	17.2.1 WSMAN URIs
	Technique 137: Testing WSMAN
	Technique 138: Retrieving WMI data using WSMAN
	Technique 139: Modifying WMI instances through WSMAN
	Technique 140: Deleting WMI instances through WSMAN

	17.3 Using CredSSP to access remote machines
	17.4 How to choose between WMI, remoting, and WSMAN
	17.5 Summary

	Chapter 18 Your own WMI cmdlets
	18.1 Creating a WMI cmdlet
	Technique 141: Creating a simple cmdlet
	Technique 142: Extending the cmdlet

	18.2 Creating multiple cmdlets
	Technique 143: Creating cmdlets from multiple WMI classes
	Technique 144: Building a super- module

	18.3 Creating format and type files
	Technique 145: Adding a format file
	Technique 146: Adding a type file

	18.4 Using the CIM IDE
	18.5 Summary

	Chapter 19 CIM cmdlets and sessions
	19.1 Using WMI methods
	Technique 147: Adding a method
	Technique 148: Adding a method that uses parameters

	19.2 CIM cmdlets
	19.2.1 WMI and CIM objects
	19.2.2 CIM and WMI cmdlets
	19.2.3 Jobs and events

	19.3 CIM sessions
	19.3.1 CIM sessions explained
	Technique 149: Creating a CIM session
	Technique 150: Accessing CIM sessions

	19.3.2 Removing CIM sessions

	19.4 Summary

	afterword: This is not the end
	appendix A: PowerShell reference
	A.1 Automatic variables
	A.2 Calculated fields
	A.3 Flow syntax
	A.4 Function template
	A.5 Hash tables
	A.6 Loops
	A.7 Operators
	A.8 PowerShell install folder
	A.9 Size constants
	A.10 Type shortcuts

	appendix B: WMI reference
	B.1 Useful WMI namespaces
	B.2 Useful classes
	B.3 WQL

	appendix C: Best practices
	C.1 PowerShell best practices
	C.2 WMI best practices

	appendix D: Useful links
	D.1 WMI
	D.1.1 Forums for WMI questions

	D.2 Microsoft MSDN .NET
	D.3 PowerShell blogs
	D.3.1 Other PowerShell downloads

	D.4 Code sources
	D.5 Podcasts
	D.6 User groups

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

