
US $49.99

Shelve in
Mobile Computing

User level:
Intermediate–Advancedwww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro Android 5 shows you how to build real-world and fun mobile apps
using the Android 5.0 SDK. This book covers everything from the

fundamentals of building apps for embedded devices, smartphones, and
tablets to advanced concepts such as custom components, multi-tasking,
sensors/augmented reality, better accessories support and much more.

• Using the tutorials and expert advice, you’ll quickly be able to
build cool mobile apps and run them on dozens of Android-based
smartphones

• You’ll explore and use the Android APIs, including those for media
and sensors

• And you’ll check out what’s new in Android, including the improved
user interface across all Android platforms, integration with services,
and more

By reading this definitive tutorial and reference, you’ll gain the knowledge and
experience to create stunning, cutting-edge Android apps that can make you
money, while keeping you agile enough to respond to changes in the future.

• How to use Android to build Java-based mobile apps for Android
smartphones and tablets

• How to build irresistible user interfaces (UIs) and user experiences (UXs)
across Android devices

• How to populate your application with data from data sources, using
Content Providers

• How to build multimedia and game apps using Android’s media APIs
• How to use Android’s location-based services, network-based services,

and security
• How to use key Android features, such as Fragments and the ActionBar Pro

Android 5
Dave MacLean | Satya Komatineni | Grant Allen

Use this definitive Android reference
to take your apps further

M
acLean

Kom
atineni

Allen
ProAndroid 5

SOURCE CODE ONLINE
9 781430 246800

54999
ISBN 978-1-4302-4680-0

Foreword by Grant Allen, Google

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors ��xxvii

About the Technical Reviewer ��xxix

Acknowledgments ��xxxi

Foreword ��xxxiii

Introduction ���xxxv

Chapter 1 ■ : Hello Android ��� 1

Chapter 2 ■ : Introduction to Android Application Architecture ������������������������������ 29

Chapter 3 ■ : Building Basic User Interfaces and Using Controls ��������������������������� 69

Chapter 4 ■ : Adapters and List Controls �� 99

Chapter 5 ■ : Building More Advanced UI Layouts �� 119

Chapter 6 ■ : Working with Menus and Action Bars ��� 141

Chapter 7 ■ : Styles and Themes ��� 163

Chapter 8 ■ : Fragments �� 169

Chapter 9 ■ : Responding to Configuration Changes ��� 197

Chapter 10 ■ : Working with Dialogs �� 205

Chapter 11 ■ : Working with Preferences and Saving State ��������������������������������� 219

www.allitebooks.com

http://www.allitebooks.org

vi Contents at a Glance

Chapter 12 ■ : Using the Compatibility Library for Older Devices ������������������������� 239

Chapter 13 ■ : Exploring Packages, Processes, Threads, and Handlers ��������������� 247

Chapter 14 ■ : Building and Consuming Services ��� 265

Chapter 15 ■ : Advanced AsyncTask and Progress Dialogs ���������������������������������� 317

Chapter 16 ■ : Broadcast Receivers and Long-Running Services ������������������������� 343

Chapter 17 ■ : Exploring the Alarm Manager �� 365

Chapter 18 ■ : Exploring 2D Animation ��� 373

Chapter 19 ■ : Exploring Maps and Location-Based Services ������������������������������ 405

Chapter 20 ■ : Understanding the Media Frameworks�� 451

Chapter 21 ■ : Home Screen Widgets �� 471

Chapter 22 ■ : Touch Screens �� 491

Chapter 23 ■ : Implementing Drag and Drop ��� 519

Chapter 24 ■ : Using Sensors �� 539

Chapter 25 ■ : Exploring Android Persistence and Content Providers ������������������ 559

Chapter 26 ■ : Understanding Loaders �� 607

Chapter 27 ■ : Exploring the Contacts API �� 621

Chapter 28 ■ : Exploring Security and Permissions �� 653

Chapter 29 ■ : Using Google Cloud Messaging with Android �������������������������������� 667

Chapter 30 ■ : Deploying Your Application: Google Play Store and Beyond ���������� 677

Index ��� 697

www.allitebooks.com

http://www.allitebooks.org

xxxv

Introduction

Welcome to the wonderful world of Android. A world where, with a bit of knowledge and
effort, you too can write Android applications. To write good applications, however, you
will need to dig deeper, to understand the fundamentals of the Android architecture, to
understand how applications can work together, to understand how mobile applications are
different from all previous forms of programming. The online documentation on Android is
fair, but it does not go far enough. You can read the source code, but that's not at all easy.

This book is the culmination of seven years of researching, developing, testing, refining, and
writing about Android. We’ve read all the online documentation, scoured through source
code, explored the far reaches of the Internet, and have compiled this book. We’ve filled in
the gaps, anticipated the questions you have, and provided answers. Along the way we’ve
seen APIs come and go and be revised. We’ve seen major changes in how applications
are constructed. At first we all used Activities, but when tablets came along we started
using Fragments. We've taken everything we’ve learned and filled this book with practical
guidance to using the latest Android APIs to write interesting applications.

You will still find coverage of the beginning topics, to help the new learner get started
developing for Android. You will also find coverage of the more advanced topics, such as
Google Maps Android API v2, which is very different from v1. We’ve updated this edition
with the latest information on the available APIs. You will find in-depth coverage of intents,
services, broadcast receivers, communication, fragments, widgets, sensors, animation,
security, loaders, persistence, Google Cloud Messaging, audio and video, and more. And for
every topic there are sample programs that illustrate each API in meaningful ways. All source
code is downloadable, so you can copy and paste it into your applications to get a great
head start.

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1
Hello Android

Welcome to the book, and welcome to the world of Android development. In a little under
ten years, Android has helped change the face of modern mobile computing and telephony
and launched a revolution in how applications are developed, and by whom. With this book
in your hands, you are now part of the great Android explosion! We’re going to assume
that you want to get straight at working with Android, so we're not going to bore you with a
fireside chat about Android's history, major characters, plaudits, or any other prose. We're
going to get straight to it!

In this chapter, you’ll start by seeing what you need to begin building applications with
the Android software development kit (SDK) and set up your choice of development
environment. Next, you step through a “Hello World!” application. Then the chapter explains
the Android application life cycle and ends with a discussion about running your applications
with Android Virtual Devices (AVDs) and on real devices. So let’s get started.

Prerequisites for Android Development
To build applications for Android, you need the Java SE Development Kit (JDK), the Android
SDK, and a development environment. Strictly speaking, you can develop your applications
using nothing more than a primitive text editor and a handful of command-line tools like
Ant. For the purposes of this book, we’ll use the commonly available Eclipse IDE, though
you are free to adopt Android Studio and its IntelliJ underpinnings—we’ll even walk through
Android Studio for those who have not seen it. With the exception of a few add-on tools, the
examples we share in the book will work equally well between these two IDEs.

The Android SDK requires JDK 6 or 7 (the full JDK, not just the Java Runtime Environment
[JRE]) and optionally a supported IDE. Currently, Google directly supports two alternative
IDEs, providing some choice. Historically, Eclipse was the first IDE supported by Google
for Android development, and developing for Android 4.4 KitKat or 5.0 Lollipop requires
Eclipse 3.6.2 or higher (this book uses Eclipse 4.2 or 4.4, also known as Juno and Luna,
respectively, and other versions). The alternative environment released and supported by
Google for Android is now known as Android Studio. This is a packaged version of IDEA
IntelliJ with built-in Android SDK and developer tools.

www.allitebooks.com

http://www.allitebooks.org

2 CHAPTER 1: Hello Android

Note At the time of this writing, Java 8 was available but not yet supported by the Android SDK.
In previous versions of the Android SDK, Java 5 was also supported, but this is no longer the case.
The latest version of Eclipse (4.4, a.k.a. Juno) was also available, but Android has historically not
been reliable on the latest Eclipse right away. Check the system requirements here to find the latest:
http://developer.android.com/sdk/index.html.

The Android SDK is compatible with Windows (Windows XP, Windows Vista, and Windows 7),
Mac OS X (Intel only), and Linux (Intel only). In terms of hardware, you need an Intel machine,
the more powerful the better.

To make your life easier, if you choose Eclipse as your IDE, you will want to use Android
development tools (ADT). ADT is an Eclipse plug-in that supports building Android
applications with the Eclipse IDE.

The Android SDK is made up of two main parts: the tools and the packages. When you first
install the SDK, all you get are the base tools. These are executables and supporting files
to help you develop applications. The packages are the files specific to a particular version
of Android (called a platform) or a particular add-on to a platform. The platforms include
Android 1.5 through 4.4.2. The add-ons include the Google Maps API, the Market License
Validator, and even vendor-supplied ones such as Samsung’s Galaxy Tab add-on. After you
install the SDK, you then use one of the tools to download and set up the platforms and
add-ons.

Remember, you only need to set up and configure one of Eclipse or Android Studio. You can
use both if you are so inclined, but it’s certainly not required. Let’s get started!

Setting Up Your Eclipse Environment
In this section, you walk through downloading JDK 6, the Eclipse IDE, the Android SDK
(tools and packages), and ADT. You also configure Eclipse to build Android applications.
Google provides a page to describe the installation process (http://developer.android.
com/sdk/installing.html) but leaves out some crucial steps, as you will see.

Downloading JDK
The first thing you need is the JDK. The Android SDK requires JDK 6 or higher; we’ve
developed our examples using JDK 6 and 7, depending on the version of Eclipse or Android
Studio in use. For Windows and Mac OS X, download JDK 7 from the Oracle web site
(www.oracle.com/technetwork/java/javase/ downloads/index.html) and install it. You only
need the JDK, not the bundles. To install the JDK for Linux, open a Terminal window and
instruct your package manager to install it. For example, in Debian or Ubuntu try the following:

sudo apt-get install sun-java7-jdk

www.allitebooks.com

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing.html
http://developer.android.com/sdk/installing.html
http://www.oracle.com/technetwork/java/javase/
http://www.allitebooks.org

3CHAPTER 1: Hello Android

This should install the JDK plus any dependencies such as the JRE. If it doesn’t, it probably
means you need to add a new software source and then try that command again. The web
page https://help.ubuntu.com/community/Repositories/Ubuntu explains software sources
and how to add the connection to third-party software. The process is different depending
on which version of Linux you have. After you’ve done that, retry the command.

With the introduction of Ubuntu 10.04 (Lucid Lynx), Ubuntu recommends using OpenJDK
instead of the Oracle/Sun JDK. To install OpenJDK, try the following:

sudo apt-get install openjdk-7-jdk

If this is not found, set up the third-party software as outlined previously and run the
command again. All packages on which the JDK depends are automatically added for you.
It is possible to have both OpenJDK and the Oracle/Sun JDK installed at the same time. To
switch active Java between the installed versions of Java on Ubuntu, run this command at a
shell prompt

sudo update-alternatives --config java

and then choose which Java you want as the default.

Now that you have a Java JDK installed, it’s time to set the JAVA_HOME environment variable
to point to the JDK install folder. To do this on a Windows XP machine, choose Start ➤ My
Computer, right-click, select Properties, choose the Advanced tab, and click Environment
Variables. Click New to add the variable or Edit to modify it if it already exists. The value of
JAVA_HOME is something like C:\Program Files\Java\jdk1.7.0_79.

For Windows Vista and Windows 7, the steps to get to the Environment Variables screen
are a little different. Choose Start ➤ Computer, right-click, choose Properties, click the link
for Advanced System Settings, and click Environment Variables. After that, follow the same
instructions as for Windows XP to change the JAVA_HOME environment variable.

For Mac OS X, you set JAVA_HOME in the .bashrc file in your home directory. Edit or create the
.bashrc file, and add a line that looks like this

export JAVA_HOME=path_to_JDK_directory

where path_to_JDK_directory is probably /Library/Java/Home. For Linux, edit your .bashrc
file and add a line like the one for Mac OS X, except that your path to Java is probably
something like /usr/lib/jvm/java-6-sun or /usr/lib/jvm/java-6-openjdk.

Downloading Eclipse
After the JDK is installed, you can download the Eclipse IDE for Java Developers.
(You don’t need the edition for Java EE; it works, but it’s much larger and includes things
you don’t need for this book.) The examples in this book use Eclipse 4.2 or 4.4 (on both
Linux and Windows environments). You can download all versions of Eclipse from
www.eclipse.org/downloads/.

www.allitebooks.com

https://help.ubuntu.com/community/Repositories/Ubuntu
http://www.eclipse.org/downloads/
http://www.allitebooks.org

4 CHAPTER 1: Hello Android

Note As an alternative to the individual steps presented here, you can also download the ADT
Bundle from the Android developer site. This includes Eclipse with built-in developer tools and the
Android SDK in one package. It’s a great way to get started quickly, but if you have an existing
environment, or just want to know how all the components are stitched together, then following the
step-by-step instructions is the way to go.

Figure 1-1. Base contents of the Android SDK

The Eclipse distribution is a .zip file that can be extracted just about anywhere. The
simplest place to extract to on Windows is C:\, which results in a C:\eclipse folder where
you find eclipse.exe. Depending on your security configuration, Windows may insist on
enforcing UAC when running from C:\. For Mac OS X, you can extract to Applications. For
Linux, you can extract to your home directory or have your administrator put Eclipse into a
common place where you can get to it. The Eclipse executable is in the eclipse folder for
all platforms. You may also find and install Eclipse using Linux’s Software Center for adding
new applications, although this may not provide you with the latest version.

When you first start up Eclipse, it asks you for a location for the workspace. To make things
easy, you can choose a simple location such as C:\android or a directory under your home
directory. If you share the computer with others, you should put your workspace folder
somewhere underneath your home directory.

Downloading the Android SDK
To build applications for Android, you need the Android SDK. As stated before, the SDK
comes with the base tools; then you download the package parts that you need and/or want
to use. The tools part of the SDK includes an emulator so you don’t need a mobile device
with the Android OS to develop Android applications. It also has a setup utility to allow you
to install the packages that you want to download.

You can download the Android SDK from http://developer.android.com/sdk. It ships as a
.zip file, similar to the way Eclipse is distributed, so you need to unzip it to an appropriate
location. For Windows, unzip the file to a convenient location (we used the C: drive), after
which you should have a folder called something like C:\android-sdk-windows that contains
the files as shown in Figure 1-1. For Mac OS X and Linux, you can unzip the file to your home
directory. Notice that Mac OS X and Linux do not have an SDK Manager executable; the
equivalent of the SDK Manager in Mac OS X and Linux is to run the tools/android program.

www.allitebooks.com

http://developer.android.com/sdk
http://www.allitebooks.org

5CHAPTER 1: Hello Android

An alternative approach (for Windows only) is to download an installer EXE instead of the zip
file and then run the installer executable. This executable checks for the Java JDK, unpacks
the embedded files for you, and runs the SDK Manager program to help you set up the rest
of the downloads.

Whether through using the Windows installer or by executing the SDK Manager, you should
install some packages next. When you first install the Android SDK, it does not come with
any platform versions (that is, versions of Android). Installing platforms is pretty easy. After
you’ve launched the SDK Manager, you see what is installed and what’s available to install,
as shown in Figure 1-2. You must add Android SDK tools and platform-tools in order for your
environment to work. Because you use it shortly, add at least the Android 1.6 SDK platform,
as well as the latest platform shown in your installer.

Click the Install button. You need to click Accept for each item you’re installing (or Accept
All) and then click Install. Android then downloads your packages and platforms to make
them available to you. The Google APIs are add-ons for developing applications using
Google Maps. You can always come back to add more packages later.

Figure 1-2. Adding packages to the Android SDK

www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1: Hello Android

Updating Your PATH Environment Variable
The Android SDK comes with a tools directory that you want to have in your PATH. You also
need in your PATH the platform-tools directory you just installed. Let’s add them now or, if
you’re upgrading, make sure they’re correct. While you’re there, you can also add a JDK bin
directory, which will make life easier later.

For Windows, get back to the Environment Variables window. Edit the PATH variable and
add a semicolon (;) on the end, followed by the path to the Android SDK tools folder,
followed by another semicolon, followed by the path to the Android SDK platform-tools
folder, followed by another semicolon, and then %JAVA_HOME%\bin. Click OK when you’re
done. For Mac OS X and Linux, edit your .bashrc file and add the Android SDK tools
directory path to your PATH variable, as well as the Android SDK platform-tools directory
and the $JAVA_HOME/bin directory. Something like the following works for Linux:

export PATH=$PATH:$HOME/android-sdk-linux_x86/tools:$HOME/android-sdk-linux_x86/platform-
tools:$JAVA_HOME/bin

Just make sure that the PATH component that’s pointing to the Android SDK tools
directories is correct for your particular setup.

The Tools Window
Later in this book, there are times when you need to execute a command-line utility
program. These programs are part of the JDK or part of the Android SDK. By having these
directories in your PATH, you don’t need to specify the full pathnames in order to execute
them, but you need to start up a tools window in order to run them (later chapters refer to
this tools window). The easiest way to create a tools window in Windows is to choose Start
➤ Run, type in cmd, and click OK. For Mac OS X, choose Terminal from your Applications
folder in Finder or from the Dock if it’s there. For Linux, run your favorite terminal.

You may need to know the IP address of your workstation later. To find this in Windows,
launch a tools window and enter the command ipconfig. The results contain an entry
for IPv4 (or something like that) with your IP address listed next to it. An IP address looks
something like this: 192.168.1.25. For Mac OS X and Linux, launch a tools window and use
the command ifconfig. You find your IP address next to the label inet addr.

You may see a network connection called localhost or lo; the IP address for this network
connection is 127.0.0.1. This is a special network connection used by the operating system
and is not the same as your workstation’s IP address. Look for a different number for your
workstation’s IP address.

7CHAPTER 1: Hello Android

Installing ADT
Now you need to install ADT (very recently renamed to GDT, the Google Developer Tools), an
Eclipse plug-in that helps you build Android applications. Specifically, ADT integrates with
Eclipse to provide facilities for you to create, test, and debug Android applications. You need
to use the Install New Software facility in Eclipse to perform the installation. (The instructions
for upgrading ADT appear later in this section.) To get started, launch the Eclipse IDE and
follow these steps:

1. Select Help ➤ Install New Software.

2. Select the Work With field, type in

https://dl-ssl.google.com/android/eclipse/,

and press Enter. Eclipse contacts the site and populates the list as shown
in Figure 1-3.

Figure 1-3. Installing ADT using the Install New Software feature in Eclipse

https://dl-ssl.google.com/android/eclipse/

8 CHAPTER 1: Hello Android

3. You should see an entry named Developer Tools with four child
nodes: Android DDMS, Android Development Tools, Android
Hierarchy Viewer, and Android Traceview. Just before publishing
this book, Google updated the ADT to be part of the more generic
Google Developer Tools plugin for Eclipse, or GDT. Look for the same
options in the GDT. Select the parent node Developer Tools, make
sure the child nodes are also selected, and click the Next button.
The versions you see may be newer than these, and that’s okay.
You may also see additional tools. These tools are explained further
in Chapter 11.

4. Eclipse asks you to verify the tools to install. Click Next.

5. You’re asked to review the licenses for ADT as well as for the tools
required to install ADT. Review the licenses, click “I accept,” and then
click the Finish button.

Eclipse downloads the developer tools and installs them. You need to restart Eclipse for the
new plug-in to show up in the IDE.

If you already have an older version of ADT in Eclipse, go to the Eclipse Help menu and
choose Check for Updates. You should see the new version of ADT and be able to follow the
installation instructions, picking up at step 3.

Note If you’re doing an upgrade of ADT, you may not see some of these tools in the list of tools
to be upgraded. If you don’t see them, then after you’ve upgraded the rest of the ADT, go to Install
New Software and select https://dl-ssl.google.com/android/eclipse/ from the Works
With menu. The middle window should show you other tools that are available to be installed.

The final step to make ADT functional in Eclipse is to point it to the Android SDK. In Eclipse,
select Window ➤ Preferences. (On Mac OS X, Preferences is under the Eclipse menu.) In the
Preferences dialog box, select the Android node and set the SDK Location field to the path
of the Android SDK (see Figure 1-4) and then click the Apply button. Note that you may see
a dialog box asking if you want to send usage statistics to Google concerning the Android
SDK; that decision is up to you.

https://dl-ssl.google.com/android/eclipse/

9CHAPTER 1: Hello Android

You may want to make one more Preferences change on the Android ➤ Build page. The
Skip Packaging option should be checked if you’d like to make your file saves faster. By
default, the ADT readies your application for launch every time it builds it. By checking this
option, packaging and indexing occur only when truly needed.

From Eclipse, you can launch the SDK Manager. To do so, choose Window ➤ Android SDK
Manager. You should see the same window as in Figure 1-2.

If you’ve chosen Eclipse as your IDE, you are almost ready for your first Android
application—you can skip the following section on Android Studio and head straight to the
“Learning Android’s Fundamental Components” section.

Setting Up Your Android Studio Environment
In 2013, Google introduced a second supported development environment, known as
Android Studio (or Android Developer Studio at the time of launch). This is based around a
popular Java IDE: IDEA IntelliJ. The most important thing to know about Android Studio is
that it is still a work in progress. As of this book’s writing, the latest version is 1.2. Anyone
familiar with the vagaries of version numbers knows that starting with a low number usually
means “beware!”

Figure 1-4. Pointing ADT to the Android SDK

10 CHAPTER 1: Hello Android

The second most important thing to remember is that Android Studio currently assumes a
64-bit development environment. That means dependencies like Java also need to be 64-bit.

The next sections briefly cover the setup of Android Studio for those interested or gung-ho
enough to use it. Be mindful that the rest of the book predominantly shows examples and
options using Eclipse.

Java requirements for Android Studio
Like Eclipse, Android Studio relies on a working Java installation. Android Studio will attempt
to automatically discover your Java environment during installation, so it pays to have Java
installed and configured.

For Java installation, remember that Android Studio is 64-bit. In all other respects, you can
follow the preceding section titled “Downloading JDK”—we won’t repeat that word-for-word
here to save some trees. Ensure you follow all the instructions there, including setting the
JAVA_HOME environment variable, as this is the main indicator used by the Android Studio
installer to find your Java installation.

Downloading and Installing Android Studio
Google makes Android Studio available from the main Android development site, currently at
the URL http://developer.android.com/sdk/installing/studio.html. That may change at
any time, but a quick search on the developer.android.com site should find it. Android Studio
is packaged as a monolithic bundle, with nearly all the components you need. The Java SDK
is the exception—we’ll cover that shortly. The package downloaded from the preceding URL
will be named something like android-studio-bundle-132.893413-windows.exe for windows,
or a similar name with a different extension for OS X and Linux, and includes the following:

Current latest build of the Android Studio bundle of IntelliJ IDEA	

Built-in Android SDK	

All related Android build tools	

Android Virtual Device images	

We’ll talk more about these components in later chapters. For a Windows installation run
the executable and follow the prompts to choose an installation path, and decide whether
Android Studio is made available to all users on the Windows machine, or just the current
user. For OS X, open the .dmg file and copy the Android Studio entry to your Applications
folder. Under Linux, extract the contents of the .tgz file to your desired location.

Once installed, you can start Android Studio under Windows from the start menu folder you
chose when prompted; under OS X from the Applications folder; and under Linux by running
the ./android-studio/bin/studio.sh file under your installation directory. Whatever the
operating system, you should see the Android Studio home screen as depicted in Figure 1-5.

http://developer.android.com/sdk/installing/studio.html

11CHAPTER 1: Hello Android

Learning Android’s Fundamental Components
Every application framework has some key components that developers need to understand
before they can begin to write applications based on the framework. For example, you
need to understand JavaServer Pages (JSP) and servlets in order to write Java 2 Platform,
Enterprise Edition (J2EE) applications. Similarly, you need to understand views, activities,
fragments, intents, content providers, services, and the AndroidManifest.xml file when
you build applications for Android. You briefly cover these fundamental concepts here and
explore them in more detail throughout the book.

Figure 1-5. Android Studio when first launched

12 CHAPTER 1: Hello Android

View
Views are user interface (UI) elements that form the basic building blocks of a user interface.
A view can be a button, a label, a text field, or many other UI elements. If you’re familiar with
views in J2EE and Swing, then you understand views in Android. Views are also used as
containers for views, which means there’s usually a hierarchy of views in the UI. In the end,
everything you see is a view.

Activity
An activity is a UI concept that usually represents a single screen in your application. It
generally contains one or more views, but it doesn’t have to. An activity is pretty much like it
sounds—something that helps the user do one thing, which could be viewing data, creating
data, or editing data. Most Android applications have several activities within them.

Fragment
When a screen is large, it becomes difficult to manage all of its functionality in a single
activity. Fragments are like sub-activities, and an activity can display one or more fragments
on the screen at the same time. When a screen is small, an activity is more likely to contain
just one fragment, and that fragment can be the same one used within larger screens.

Intent
An intent generically defines an “intention” to do some work. Intents encapsulate several
concepts, so the best approach to understanding them is to see examples of their use. You
can use intents to perform the following tasks:

Broadcast a message	

Start a service	

Launch an activity	

Display a web page or a list of contacts	

Dial a phone number or answer a phone call	

Intents are not always initiated by your application—they’re also used by the system to notify
your application of specific events (such as the arrival of a text message).

Intents can be explicit or implicit. If you simply say that you want to display a URL, the system
decides what component will fulfill the intention. You can also provide specific information
about what should handle the intention. Intents loosely couple the action and action handler.

13CHAPTER 1: Hello Android

Content Provider
Data sharing among mobile applications on a device is common. Therefore, Android defines
a standard mechanism for applications to share data (such as a list of contacts) without
exposing the underlying storage, structure, and implementation. Through content providers,
you can expose your data and have your applications use data from other applications.

Service
Services in Android resemble services you see in Windows or other platforms—they’re
background processes that can potentially run for a long time. Android defines two types of
services: local services and remote services. Local services are components that are only
accessible by the application that is hosting the service. Conversely, remote services are
services that are meant to be accessed remotely by other applications running on the device.

An example of a service is a component that is used by an e-mail application to poll for
new messages. This kind of service may be a local service if the service is not used by
other applications running on the device. If several applications use the service, then it’s
implemented as a remote service.

AndroidManifest.xml
AndroidManifest.xml, which is similar to the web.xml file in the J2EE world, defines the
contents and behavior of your application. For example, it lists your application’s activities
and services, along with the permissions and features the application needs to run.

AVDs
An AVD allows developers to test their applications without hooking up an actual Android
device (typically a phone or a tablet). AVDs can be created in various configurations to
emulate different types of real devices.

Hello World!
Now you’re ready to build your first Android application. You start by building a simple “Hello
World!” program. Create the skeleton of the application by following these steps:

1. Launch Eclipse, and select File ➤ New ➤ Project. In the New Project
dialog box, select Android Application Project and then click Next. You
see the New Android Project dialog box, as shown in Figure 1-6. (Eclipse
may have added Android Project to the New menu, so you can use it if
it’s there.) There’s also a New Android Project button on the toolbar.

14 CHAPTER 1: Hello Android

2. As shown in Figure 1-6, enter HelloAndroid as the project name.
You need to distinguish this project from other projects you create in
Eclipse, so choose a name that will make sense to you when you are
looking at all the projects in your Eclipse environment. You will also
see the available Build Targets. Select Android 2.2. This is the version
of Android you use as your base for the application. You can run
your application on later versions of Android, such as 4.3 and 4.4;
but Android 2.2 has all the functionality you need for this example,
so choose it as your target. In general, it’s best to choose the lowest
version number you can, because that maximizes the number of
devices that can run your application.

3. Leave the Project Name to auto-complete itself based on your
Application Name.

4. Use com.androidbook.hello as the package name. Like all Java
applications, your application must have a base package name,
and this is it. This package name will be used as an identifier for
your application and must be unique across all applications. For
this reason, it’s best to start the package name with a domain name
that you own. If you don’t own one, be creative to ensure that your
package name won’t likely be used by anyone else. Click Next.

Figure 1-6. Using the New Project Wizard to create an Android application

15CHAPTER 1: Hello Android

5. The next window provides options for customer launcher icons, the
actual directory for the workspace in which you source code and
other files are stored, and several other options. Leave all of these at
the default, and click Next.

6. The next window shows you the Configure Launcher Icon options
and settings, as shown in Figure 1-7. Feel free to play with the
options here, though any changes you make are cosmetic and affect
the look of the launcher icon when your application is deployed, and
not its actual logic. Click Next when ready.

7. You’ll next see the Create Activity screen. Choose Blank Activity as the
activity type, and click Next to move to the last screen of the wizard.

8. The final screen of the New Android Application wizard will be the
Blank Activity details page. Type HelloActivity as the Activity Name.
You’re telling Android that this activity is the one to launch when
your application starts up. You may have other activities in your
application, but this is the first one the user sees. Allow the Layout
Name to auto-populate with the value activity_hello.

Figure 1-7. The Android launcher configuration options for a new Android project

www.allitebooks.com

http://www.allitebooks.org

16 CHAPTER 1: Hello Android

9. Click the Finish button, which tells ADT to generate the project
skeleton for you. For now, open the HelloActivity.java file under
the src folder and modify the onCreate() method as follows:

/** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 /** create a TextView and write Hello World! */
 TextView tv = new TextView(this);
 tv.setText("Hello World!");
 /** set the content view to the TextView */
 setContentView(tv);
 }

You will need to add an import android.widget.TextView; statement at the top of the file
with the other imports to get rid of the error reported by Eclipse. Save the HelloActivity.
java file.

To run the application, you need to create an Eclipse launch configuration, and you need a
virtual device on which to run it. We’ll run quickly through these steps and come back later to
more details about AVDs. Create the Eclipse launch configuration by following these steps:

1. Select Run ➤ Run Configurations.

2. In the Run Configurations dialog box, double-click Android
Application in the left pane. The wizard inserts a new configuration
named New Configuration.

3. Rename the configuration RunHelloWorld.

4. Click the Browse button, and select the HelloAndroid project.

5. Leave Launch Action set to Launch Default Activity. The dialog
should appear as shown in Figure 1-8.

17CHAPTER 1: Hello Android

6. Click Apply and then Run. You’re almost there! Eclipse is ready to run
your application, but it needs a device on which to run it. As shown
in Figure 1-9, you’re warned that no compatible targets were found
and asked if you’d like to create one. Click Yes.

Figure 1-8. Configuring an Eclipse run configuration to run the “Hello World!” application

Figure 1-9. Error message warning about targets and asking for a new AVD

18 CHAPTER 1: Hello Android

Figure 1-10. The existing AVDs

8. Fill in the Create AVD form as shown in Figure 1-11. Set Name to
KitKat, choose Android 4.4 - API Level 19 (or some other version)
for the Target, set SD Card Size to 64 (for 64MB), and choose other
values as shown. Click Create AVD. The Manager may confirm the
successful creation of your AVD. Close the AVD Manager window by
clicking X in the upper-right corner.

7. You’re presented with a window that shows the existing AVDs
(see Figure 1-10). You need to add an AVD suitable for your new
application. Click the New button.

19CHAPTER 1: Hello Android

Figure 1-11. Configuring an AVD

Note You’re choosing a newer version of the SDK for your AVD, but your application can also run
on an older one. This is okay because AVDs with newer SDKs can run applications that require older
SDKs. The opposite, of course, is not true: an application that requires features of a newer SDK
won’t run on an AVD with an older SDK.

9. Select your new AVD from the bottom list. Note that you may need
to click the Refresh button to make any new AVDs to show up in the
list. Click the OK button.

10. Eclipse launches the emulator with your very first Android app (see
Figure 1-12)!

20 CHAPTER 1: Hello Android

Note It may take the emulator a while to emulate the device bootup process. Once the bootup
process has completed, you typically see a locked screen. Click the Menu button or drag the unlock
image to unlock the AVD. After unlocking, you should see HelloAndroidApp running in the emulator,
as shown in Figure 1-11. Be aware that the emulator starts other applications in the background
during the startup process, so you may see a warning or error message from time to time. If you
do, you can generally dismiss it to allow the emulator to go to the next step in the startup process.
For example, if you run the emulator and see a message like “application abc is not responding,”
you can either wait for the application to start or simply ask the emulator to forcefully close the
application. Generally, you should wait and let the emulator start up cleanly.

Figure 1-12. HelloAndroidApp running in the emulator

Now you know how to create a new Android application and run it in the emulator. Next,
we’ll look more closely at AVDs, and also how to deploy to a real device.

21CHAPTER 1: Hello Android

AVDs
An AVD represents a device and its configuration. For example, you could have an AVD
representing a really old Android device running version 1.5 of the SDK with a 32MB SD
card. The idea is that you create AVDs you are going to support and then point the emulator
to one of those AVDs when developing and testing your application. Specifying (and
changing) which AVD to use is very easy and makes testing with various configurations a
snap. Earlier, you saw how to create an AVD using Eclipse. You can make more AVDs in
Eclipse by choosing Window ➤ Android Virtual Device Manager. You can also create AVDs
using the command line with the utility named android under the tools directory (e.g.,
c:\android-sdk-windows\tools\). android allows you to create a new AVD and manage
existing AVDs. For example, you can view existing AVDs, move AVDs, and so on by invoking
android with the “avd” option. You can see the options available for using android by
running android -help. For now, let’s just create an AVD.

Running on a Real Device
The best way to test an Android app is to run it on a real device. Any commercial Android
device should work when connected to your workstation, but you may need to do a little
work to set it up. If you have a Mac, you don’t need to do anything except plug it in using
the USB cable. Then, on the device itself, choose Settings ➤ Applications ➤ Development
(though this may vary by phone and version) and enable USB debugging. On Linux, you
probably need to create or modify this file: /etc/udev/rules.d/51-android.rules. We put
a copy of this file on our web site with the project files; copy it to the proper directory, and
modify the username and group values appropriately for your machine. Then, when you plug
in an Android device, it will be recognized. Next, enable USB debugging on the device.

For Windows, you have to deal with USB drivers. Google supplies some with the Android
packages, which are placed under the usb_driver subdirectory of the Android SDK
directory. Other device vendors provide drivers for you, so look for them on their web sites.
You can also visit the XDA forums, forum.xda-developers.com, where advice on sourcing
and configuring drivers for a variety of phones and devices is discussed. When you have the
drivers set up, enable USB debugging on the device, and you’re ready.

Now that your device is connected to your workstation, when you try to launch an app,
either it launches directly on the device or (if you have an emulator running or other devices
attached) a window opens in which you choose which device or emulator to launch into. If
not, try editing your Run Configuration to manually select the target.

Exploring the Structure of an Android Application
Although the size and complexity of Android applications can vary greatly, their structures
are similar. Figure 1-13 shows the structure of the “Hello World!” app you just built.

22 CHAPTER 1: Hello Android

Figure 1-13. The structure of the “Hello World!” application

Android applications have some artifacts that are required and some that are optional.
Table 1-1 summarizes the elements of an Android application.

Table 1-1. The Artifacts of an Android Application

Artifact Description Required?

AndroidManifest.xml The Android application descriptor file. This file defines the
activities, content providers, services, and intent receivers
of the application. You can also use this file to declaratively
define permissions required by the application, as well as
instrumentation and testing options.

Yes

src A folder containing all of the source code of the application. Yes

assets An arbitrary collection of folders and files. No

res A folder containing the resources of the application. This is the
parent folder of drawable, animator, layout, menu, values, xml,
and raw.

Yes

(continued)

23CHAPTER 1: Hello Android

As you can see from Table 1-1, an Android application is primarily made up of three
mandatory pieces: the application descriptor, a collection of various resources, and the
application’s source code. If you put aside the AndroidManifest.xml file for a moment, you
can view an Android app in this simple way: you have some business logic implemented in
code, and everything else is a resource.

Android has also adopted the approach of defining views via markup in XML. You benefit
from this approach because you don’t have to hard-code your application’s views; you can
modify the look and feel of the application by editing the markup.

It is also worth noting a few constraints regarding resources. First, Android supports only
a single-level list of files within the predefined folders under res. For example, there are
some similarities between the assets folder and the raw folder under res. Both folders can
contain raw files, but the files in raw are considered resources, and the files in assets are
not. So the files in raw are localized, accessible through resource IDs, and so on. But the
contents of the assets folder are considered general-purpose content to be used without
resource constraints and support. Note that because the contents of the assets folder are
not considered resources, you can put an arbitrary hierarchy of folders and files in this folder.
(Chapter 3 talks a lot more about resources.)

Table 1-1. (continued)

Artifact Description Required?

drawable A folder containing the images or image-descriptor files used by
the application.

No

animator A folder containing the XML-descriptor files that describe the
animations used by the application.

No

layout A folder containing views of the application. No

menu A folder containing XML-descriptor files for menus in the
application.

No

values A folder containing other resources used by the application.
Examples of resources found in this folder include strings,
arrays, styles, and colors.

No

xml A folder containing additional XML files used by the application. No

raw A folder containing additional data—possibly non-XML data—
that is required by the application.

No

http://dx.doi.org/10.1007/9781430246800_3

24 CHAPTER 1: Hello Android

Note You may have noticed that XML is used quite heavily with Android. You know that XML can
be a bloated data format, so does it make sense to rely on XML when you know your target is a
device with limited resources? It turns out that the XML you create during development is actually
compiled down to binary using the Android Asset Packaging Tool (AAPT). Therefore, when your
application is installed on a device, the files on the device are stored as binary. When the file is
needed at runtime, the file is read in its binary form and is not transformed back into XML. This
gives you the benefits of both worlds—you get to work with XML, and you don’t have to worry
about taking up valuable resources on the device.

Examining the Application Life Cycle
The life cycle of an Android application is strictly managed by the system, based on the
user’s needs, available resources, and so on. A user may want to launch a web browser,
for example, but the system ultimately decides whether to start the application. Although
the system is the ultimate manager, it adheres to some defined and logical guidelines to
determine whether an application can be loaded, paused, or stopped. If the user is currently
working with an activity, the system gives high priority to that application. Conversely, if an
activity is not visible and the system determines that an application must be shut down to
free up resources, it shuts down the lower-priority application.

The concept of application life cycle is logical, but a fundamental aspect of Android
applications complicates matters. Specifically, the Android application architecture is
component- and integration-oriented. This allows a rich user experience, seamless reuse,
and easy application integration but creates a complex task for the application life-cycle
manager.

Let’s consider a typical scenario. A user is talking to someone on the phone and needs to
open an e-mail message to answer a question. The user goes to the home screen, opens
the mail application, opens the e-mail message, clicks a link in the e-mail, and answers
the friend’s question by reading a stock quote from a web page. This scenario requires
four applications: the home application, a talk application, an e-mail application, and a
browser application. As the user navigates from one application to the next, the experience
is seamless. In the background, however, the system is saving and restoring application
state. For instance, when the user clicks the link in the e-mail message, the system saves
metadata on the running e-mail message activity before starting the browser-application
activity to launch a URL. In fact, the system saves metadata on any activity before starting
another so that it can come back to the activity (when the user backtracks, for example). If
memory becomes an issue, the system has to shut down a process running an activity and
resume it as necessary.

Android is sensitive to the life cycle of an application and its components. Therefore, you
need to understand and handle life-cycle events in order to build a stable application.
The processes running your Android application and its components go through various
life-cycle events, and Android provides callbacks that you can implement to handle state
changes. For starters, you should become familiar with the various life-cycle callbacks for an
activity (see Listing 1-1).

25CHAPTER 1: Hello Android

Listing 1-1. Life-Cycle Methods of an Activity

protected void onCreate(Bundle savedInstanceState);

protected void onStart();

protected void onRestart();

protected void onResume();

protected void onPause();

protected void onStop();

protected void onDestroy();

Listing 1-1 shows the list of life-cycle methods that Android calls during the life of an activity.
It’s important to understand when each of the methods is called by the system in order to
ensure that you implement a stable application. Note that you do not need to react to all of
these methods. If you do, however, be sure to call the superclass versions as well. Figure 1-14
shows the transitions between states.

Figure 1-14. State transitions of an activity

The system can start and stop your activities based on what else is happening. Android calls
the onCreate() method when the activity is freshly created. onCreate() is always followed by
a call to onStart(), but onStart() is not always preceded by a call to onCreate() because
onStart() can be called if your application was stopped. When onStart() is called, your
activity is not visible to the user, but it’s about to be. onResume() is called after onStart(),
just when the activity is in the foreground and accessible to the user. At this point, the user
can interact with your activity.

When the user decides to move to another activity, the system calls your activity’s onPause()
method. From onPause(), you can expect either onResume() or onStop() to be called.
onResume() is called, for example, if the user brings your activity back to the foreground.
onStop() is called if your activity becomes invisible to the user. If your activity is brought
back to the foreground after a call to onStop(), then onRestart() is called. If your activity sits
on the activity stack but is not visible to the user, and the system decides to kill your activity,
onDestroy() is called.

www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 1: Hello Android

As a developer, you needn’t deal with every possible scenario; you mostly handle
onCreate(), onResume(), and onPause(). You handle onCreate() to create the user interface
for your activity. In this method, you bind data to your widgets and wire up any event
handlers for your UI components. In onPause(), you want to persist critical data to your
application’s data store: it’s the last safe method that is called before the system kills your
application. onStop() and onDestroy() are not guaranteed to be called, so don’t rely on
these methods for critical logic.

The takeaway from this discussion? The system manages your application, and it can start,
stop, or resume an application component at any time. Although the system controls your
components, they don’t run in complete isolation with respect to your application. In other
words, if the system starts an activity in your application, you can count on an application
context in your activity.

Simple Debugging
The Android SDK includes a host of tools that you can use for debugging purposes. These
tools are integrated with the Eclipse IDE (see Figure 1-15 for a small sample).

Figure 1-15. Debugging tools that you can use while building Android applications

One of the tools that you use throughout Android development is LogCat. This tool displays
the log messages you emit using android.util.Log, exceptions, System.out.println,
and so on. Although System.out.println works, and the messages appear in the LogCat
window, to log messages from your application you should use the android.util.Log class.
This class defines the familiar informational, warning, and error methods that you can filter in
the LogCat window to see just what you want to see. Here is a sample Log command:

Log.v("string TAG", "This is my verbose message to write to the log");

This example shows the static v() method of the Log class, but there are others for different
levels of severity. It’s best to use the appropriate call level for the message you want to log,
and it generally isn’t a good idea to leave a verbose call in an app that you want to deploy to
production. Keep in mind that logging uses memory and takes CPU resources.

What’s particularly nice about LogCat is that you can view log messages when you’re
running your application in the emulator, but you can also view log messages when you’ve
connected a real device to your workstation and it’s in debug mode. In fact, log messages
are stored such that you can even retrieve the most recent messages from a device that was

27CHAPTER 1: Hello Android

disconnected when the log messages were recorded. When you connect a device to your
workstation and you have the LogCat view open, you see the last several hundred messages.

Launching the Emulator
Earlier you saw how to launch the emulator from your project in Eclipse. In most cases, you
want to launch the emulator first and then deploy and test your applications in a running
emulator. To launch an emulator any time, first go to the AVD Manager by running the
Android program with the avd option from the tools directory of the Android SDK or from the
Window menu in Eclipse. Once in the Manager, choose the desired AVD from the list, and
click Start.

When you click the Start button, the Launch Options dialog opens (see Figure 1-16). This
allows you to scale the size of the emulator’s window to suit your display and change the
startup and shutdown options. The scaling results can sometimes be unexpectedly large or
small, so pick the value that works for you based on your screen size and screen density.

Figure 1-16. The Launch Options dialog

You can also work with snapshots in the Launch Options dialog. Saving to a snapshot
causes a somewhat longer delay when you exit the emulator. As the name suggests, you
are writing out the current state of the emulator to a snapshot image file, which can then be
used the next time you launch to avoid going through an entire Android bootup sequence.
Launching goes much faster if a snapshot is present, making the delay at save time well
worth it—you basically pick up where you left off.

If you want to start completely fresh, you can choose Wipe User Data. You can also deselect
Launch from Snapshot to keep the user data and go through the bootup sequence. Or you

28 CHAPTER 1: Hello Android

can create a snapshot that you like and enable only the Launch from Snapshot option; this
reuses the snapshot over and over so your startup is fast and the shutdown is fast too,
because it doesn’t create a new snapshot image file every time it exits. The snapshot image
file is stored in the same directory as the rest of the AVD image files. If you didn’t enable
snapshots when you created the AVD, you can always edit the AVD and enable them there.

References
Here are some helpful references to topics you may wish to explore further:

	http://developer.samsung.com/: Samsung’s developer site, with many
Android-related development tools.

	http://developer.htc.com/: HTC site for Android developers.

	http://developer.android.com/guide/developing/tools/index.html:
Developer documentation for the Android debugging tools.

	www.droiddraw.org/: DroidDraw site. This is a UI designer for Android
applications that uses drag-and-drop to build layouts.

Summary
This chapter covered the following topics to get you set up for Android development:

Downloading and installing the JDK, Eclipse or Android Studio, and the 	
Android SDK

How to modify your PATH variable and launch a tools window	

Installing and upgrading the ADT fundamental concepts of views, 	
activities, fragments, intents, content providers, services, and the
AndroidManifest.xml file

Android Virtual Devices (AVDs), which can be used to test apps when 	
you don’t have a device (or the particular device you want to test with)

Building a “Hello World!” app and deploying it to an emulator	

The basic requirements to initialize any application (project name, 	
Android target, application name, package name, main activity,
minimum SDK version)

Where the run configurations are and how to change them	

Connecting a real device to your workstation and running your new apps 	
on it

The inner structure of an Android app, and the life cycle of an activity	

LogCat, and where to look for the internal messages from apps	

Options available when launching an emulator, such as snapshots and 	
adjusting the screen display size

http://developer.samsung.com/
http://developer.htc.com/
http://developer.android.com/guide/developing/tools/index.html
http://www.droiddraw.org/

29

Chapter 2
Introduction to Android
Application Architecture

The first chapter covered the environment and tools necessary to develop Android
applications. This chapter will be a broad introductory tour of Android’s application
architecture. We will do that by doing three things. First, we will present the architecture of
an Android app by building one. We will then present the essential components of Android
architecture, namely, activities, resources, intents, activity life cycle, and saving state. We will
conclude the chapter with a learning roadmap on how to use the rest of the book to create
simple to sophisticated mobile apps.

In the first section of this chapter, a one-page calculator app will give you a bird’s eye view
of writing applications using the Android SDK. Creating this app will demonstrate how to
create the UI, write Java code to control the UI, and build and deploy the app.

In addition to demonstrating the UI, this calculator app will introduce you to activities,
resources, and intents. These concepts go to the heart of Android application architecture.
We will cover these topics in detail in the second section of the chapter in order to give you
a strong footing for understanding the rest of the Android SDK. We will also cover the activity
life cycle and a brief overview of the persistence options for your application.

In the third section we will give you a roadmap for the rest of the book that addresses
basic and advanced aspects of building Android applications. This final section breaks the
chapters into a set of learning tracks. This section is a broad introduction to the entire set of
Android APIs.

Furthermore, in this chapter you will find answers to the following: How can I create UI with
a rich set of controls? How can I store state persistently? How can I read static files that are
inputs to the app? How can I reach out and read from or write to the web? What other APIs
does Android provide to make my app functional and rich?

Without further ado, let’s drop you into the simple calculator application to open up the
world of Android.

30 CHAPTER 2: Introduction to Android Application Architecture

Exploring a Simple Android Application
The calculator application we want to demonstrate for this chapter is shown in Figure 2-1.

Figure 2-1. A Calculator App

Display in Figure 2-1 is called an activity in Android. This activity has two edit controls at
the top representing two numbers. You can enter numbers in these edit boxes and use the
operator buttons at the bottom of the figure to perform arithmetical operations. The result of
an operation will be shown in the top edit control. These two edit boxes are labeled Operand 1
and Operand 2. To create this type of a calculator application using the Android SDK, you
need to perform the following steps:

1. Create a User Interface (UI) definition in a text/xml file (called a layout
or a layout file in Android).

2. Write programming logic in a Java file (usually in a class extending
the base activity class).

3. Create a configuration file describing your application (this file is
always called AndroidManifest.xml).

4. Create a project and a directory structure to place the files from
steps 1, 2, and 3.

5. Build a deployable package using the project in step 4 (it is called an
.apk file).

By going through the details of these steps you will get a feel for how Android applications
are made. We will go through these steps now.

31CHAPTER 2: Introduction to Android Application Architecture

Defining UI through Layout Files
An Android application resembles a web application in lots of ways. In a web application the
UI is your web page. UI of a web page is defined through HTML. An HTML web page is a
series of controls like paragraphs, divisions, forms, buttons, etc. UI is constructed similarly in
Android. A layout file in Android is like an HTML page, albeit the controls are drawn from the
Android SDK instead of HTML. In Android this file is called a layout file. Listing 2-1 shows
the layout file that produced the UI of Figure 2-1.

Listing 2-1. An Android Layout File that Defines UI for an Activity

<?xml version="1.0" encoding="utf-8"?>
<!--

* calculator_layout.xml
* corresponding activity: CalculatorMainActivity.java
* prefix: cl_ (Used for prefixing unique identifiers)
*
* Use:
* Demonstrate a simple calculator
* Demonstrate text views, edit text, buttons, business logic

-->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent" android:layout_height="match_parent"
 android:layout_margin="5dp" android:padding="5dp"
 android:background="@android:color/darker_gray"
 >
 <!-- Operand 1 -->
 <TextView android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Operand 1, (And Result)"
 />
 <EditText android:layout_width="match_parent" android:layout_height="wrap_content"
 android:id="@+id/editText1" android:text="0"
 android:inputType="numberDecimal"/>
 <!-- Operand 2 -->
 <TextView android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Operand 2"
 android:layout_marginTop="10dp"
 />
 <EditText android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="0"
 android:id="@+id/editText2"
 android:inputType="numberDecimal">
 </EditText>

http://schemas.android.com/apk/res/android

32 CHAPTER 2: Introduction to Android Application Architecture

 <!-- Buttons for Various Operators -->
 <TextView android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Operand1 = Operand1 Operator Operand2"
 android:layout_marginTop="10dp"
 />
<LinearLayout
 android:orientation="horizontal"
 android:layout_marginTop="10dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <Button android:text="+" android:id="@+id/plusButton"
 android:layout_weight="1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 </Button>
 <Button android:text="-" android:id="@+id/minusButton"
 android:layout_weight="1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 </Button>
 <Button android:text="*" android:id="@+id/multiplyButton"
 android:layout_weight="1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 </Button>
 <Button android:text="/" android:id="@+id/divideButton"
 android:layout_weight="1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 </Button>
</LinearLayout>
</LinearLayout>

Let’s go through this calculator XML layout file of Listing 2-1 line by line. This file looks
complicated compared to Figure 2-1. Yes, it is verbose, but you will see shortly it is simple in
its architecture.

Specifying Comments in Layout Files
As a good practice the comments at the top of the layout XML file in Listing 2-1 indicate
what this file name is, what UI activity will be used to display this file, what the purpose of
this file is, and briefly what controls are in this layout file.

Adding Views and View Groups in Layout Files
Each XML node in a layout file represents a UI control. These controls can be either views
or containers of other views. A container of other views is called a ViewGroup. For example,
a button is a view. A LinearLayout in Listing 2-1 is a ViewGroup that places all its child views
either vertically down or horizontally across. So, a LinearLayout is like an HTML div that lays
out its children either across or down.

33CHAPTER 2: Introduction to Android Application Architecture

Specifying Control Properties in Layout Files
The UI controls in the calculator layout file are LinearLayout, TextView, EditText, and a
button. Each of these controls represents a Java object when painted on the screen. Being
an object, each of these controls has properties. If the controls belong to the core Android
SDK, their properties are prefixed with "android:" as in "android:orientation" for the
LinearLayout control. The majority, if not all, of the controls that you normally use in your
apps are from the core Android SDK. When you write your own controls they are called
custom controls. These custom controls allow you to define custom properties. See the
“Roadmap” section of this chapter for more on custom controls.

Indicating ViewGroup Properties
Some of the control properties are labeled as "android:layout_," such as android:layout_
width. These properties, although mentioned in a given XML node, like a button, are
read and used by parent node, like LinearLayout, to place the children. Parent nodes
are view groups like the LinearLayout. You can see this difference in how padding and
margins are defined for the first LinearLayout node in the layout file of listing 2-1. The
property padding belongs to the topmost LinearLayout object in this example, whereas
the property for margins of that same topmost LinearLayout, the layout_margin property,
belongs to the parent of the LinearLayout, which is an implicit view group provided by the
Android framework. So for padding you say android:padding, and for margins you say
android:layout_margin. Notice the presence or lack of "layout_" prefix. If you want to know
what properties an object (or control) supports, you can use Ctrl-Space in eclipse to see
a set of suggestions for the properties for that object. Depending on your development
environment you can easily find an equivalent set of key combinations to do the same.

Controlling Width and Height of a Control
Two often-used properties for a control are its layout width and layout height. The layout parent
of a control manages these values. Values for these properties are typically match_parent and
wrap_content. If you say your TextView is set to match_parent for its width, the width of the
control matches up with the parent width. When a TextView is set for its height wrap_content,
then its height will be just sufficient to contain all its text in the vertical direction. Of course,
these two properties are available to all child controls of a layout, not just the text control.
These two layout control properties, match_parent and wrap_content, also apply to the height
of a control as well.

Introducing Resources and Backgrounds
Although we are in the middle of explaining the controls in the layout file, this is a good place
to introduce resources. Layout files are, and are made up of, resources. In the calculator
layout file, we have set the background of the entire view by setting the background on the
root LinearLayout control. This instruction looked like the following:

android:background="@android:color/darker_gray"

34 CHAPTER 2: Introduction to Android Application Architecture

Every view or control in Android supports the background property. Backgrounds are usually
identified as resources. In this example, the background is pointing to a resource, coming
from the Android package, which is of type color whose referenced value is darker gray.

A number of inputs to your application are represented as resources in Android. Some
example resources are image files, entire layout files, colors, strings, XML files, menus, and
many other things as listed in the Android SDK. For instance, the entire calculator layout file
we are talking about is itself a resource.

As you can see from the calculator layout file, resources are of different types. In Android
they are further broadly classified as “value based” or “file based.” Examples of resources
that are values are strings and colors. Examples of resources that are files are images or
layout files. Listing 2-2 shows an example of creating value-based resources that are strings
and colors.

Listing 2-2. Example of Value-Based Resources

<?xml version="1.0" encoding="utf-8"?>
<!-- this file will be in /res/values subdirectory -->
<resources>
 <string name="hello">Hello World, CalculatorMainActivity!</string>
 <string name="app_name">A Demo Calculator</string>
 <color name="red">#FF0000</color>
 <color name="blue">#0000FF</color>
</resources>

You can have any number of value-based files as long as they are all under the /res/values
subdirectory. Each file will start with the resources root node. You can use Ctrl-Space to
discover what other possible value-based resources are available.

Turning to file-based resources, Listing 2-3 shows an example of placing a number of
file-based resources under their respective resource subdirectories.

Listing 2-3. Example of File-Based Resources

/res/layout/page1_layout.xml (A layout file for say page 1)
/res/drawable/page1_background.jpg (An example image file)
/res/drawable-hdpi/page1_background.jpg (Same image file for a different density)
/res/xml/some_preferences.xml (example of an input file for your app)

Any of these resources, be it file based or value based, can be referenced in the layout
files using the “@” resource reference syntax. For example, in the calculator layout file in
Listing 2-1 the background can be set literally and explicitly as a color value between the quotes,
such as "#FFFFFF," or point to a resource reference (indicated by a starting @color/red) that
is already defined as a color resource (as in Listing 2-2). In this syntax led by “@,” the type
of referenced resource is “color.” Some of the key words for other types of resources are
string (for strings), drawable (for images), etc.

In Listing 2-1, the way to read the value of the background property of the LinearLayout,
namely, @android:color/darker_gray, is as follows: Use the value of the resource identified
as darker_gray in the Android core framework and whose resource type is color. With
this knowledge of resource reference syntax, take a look at the calculator layout file listing

35CHAPTER 2: Introduction to Android Application Architecture

one more time and you will be able to read it where each control has properties and
each property has a value that is either directly specified or references a resource that is
elsewhere defined in a resource file.

The indirection of a control property value defined as a resource reference has an advantage.
A resource can be customized for languages, device density variation, and a variety of
factors without altering the compiled Java source code. For example when you supply
background images you can place a number of these images in different directories and
name them using the convention specified by Android. Then Android knows how to locate
the right image, given its name, depending on the device your app is running on.

Working with Text Controls in the Layout File
In the calculator layout example we have used two text-based controls. One is a TextView
control, which is used as a label; the other is an EditText control, which is used for taking
input text. We have already shown you how to set the width and height of any view by using
the attributes that start with “layout_”. Every text-based control also has an attribute called
text. In our examples we have directly specified the literal text as a value for this property.
The recommendation is to use instead a resource reference. For example:

android:text="Literal text" //what we did for clarity
or
android:text="@string/LiteralTextId" //doing it properly

The latter resource ID, LiteralTextId, then can be defined in a file in the /res/values
subdirectory much like in Listing 2-2.

EditText control in the calculator layout has an attribute inputType to provide the necessary
constraints and validations that need to take place when data is typed into the editable
field. Refer to the documentation to see a large number of constraints that are available for
editable fields. Alternatively, you can use eclipse ADT to discover the available input types
on the fly during coding.

Working with Autogenerated IDs for Controls
To manipulate the controls that are in the calculator layout of Listing 2-1, we need a way to
turn them into Java objects. This is done by locating these controls using a unique ID in the
currently loaded layout file of an activity. Let’s look at one example in the layout file where an
EditText control is given an ID of editText2 as follows:

android:id="@+id/editText2"

This format tells Android that ID of this EditText control is a resource of type ID and its
integer value should be known in Java as editText2. The + is a convenience to allocate a
new unique integer for editText2. If you don’t have the + sign, then Android looks for an
integer-valued resource defined with an ID that is called editText2. With the convenience of
+ we can avoid separately defining a resource first and then use it. In some cases, you may
have a need for a well-known ID that is shared by multiple pieces of code, in which case you

www.allitebooks.com

http://www.allitebooks.org

36 CHAPTER 2: Introduction to Android Application Architecture

will remove the + and take the multiple steps of defining the ID first and then using its name
in multiple places. You will see in the programming logic section (soon to follow) how these
control IDs are used to locate the controls and manipulate them.

Implementing Programming Logic
To see the calculator layout on the screen of your device, you need a Java class derived
from the Android SDKs class activity. Such an activity represents a window in your
mobile application. So you need to craft a calculator activity by extending the Android base
activity class as shown in Listing 2-4.

Listing 2-4. Programming Logic: Implementing an Activity Class

/**
 * Activity name: CalculatorMainActivity
 * Layout file: calculator_layout.xml
 * Layout shortcut prefix for ids: cl_
 * Menu file: none
 * Purpose and Logic
 * ******************
 * 1. Demonstrate business logic for a simple calculator
 * 2. Load the calculator_layout.xml as layout
 * 3. Setup button callbacks
 * 4. Respond to button clicks
 * 5. Read values from edit text controls
 * 6. Perform operation and update result edit control
 */
public class CalculatorMainActivity extends Activity
implements OnClickListener
{
 private EditText number1EditText;
 private EditText number2EditText;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.calculator_layout);
 gatherControls();
 setupButtons();
 }
 private void gatherControls() {
 number1EditText = (EditText)this.findViewById(R.id.editText1);
 number2EditText = (EditText)this.findViewById(R.id.editText2);
 number2EditText.requestFocus();
 }
 private void setupButtons() {
 Button b = (Button)this.findViewById(R.id.plusButton);
 b.setOnClickListener(this);

 b = (Button)this.findViewById(R.id.minusButton);
 b.setOnClickListener(this);

37CHAPTER 2: Introduction to Android Application Architecture

 b = (Button)this.findViewById(R.id.multiplyButton);
 b.setOnClickListener(this);

 b = (Button)this.findViewById(R.id.divideButton);
 b.setOnClickListener(this);
 }
 @Override
 public void onClick(View v) {
 String sNum1 = number1EditText.getText().toString();
 String sNum2 = number2EditText.getText().toString();
 double num1 = getDouble(sNum1);
 double num2 = getDouble(sNum2);
 Button b = (Button)v;

 double value = 0;
 if (b.getId() == R.id.plusButton) {
 value = plus(num1, num2);
 }
 else if (b.getId() == R.id.minusButton) {
 value = minus(num1, num2);
 }
 else if (b.getId() == R.id.multiplyButton) {
 value = multiply(num1, num2);
 }
 else if (b.getId() == R.id.divideButton) {
 value = divide(num1, num2);
 }
 number1EditText.setText(Double.toString(value));
 }

 private double plus(double n1, double n2) {
 return n1 + n2;
 }
 private double minus(double n1, double n2) {
 return n1 - n2;
 }
 private double multiply(double n1, double n2) {
 return n1 * n2;
 }
 private double divide(double n1, double n2) {
 if (n2 == 0) {
 return 0;
 }
 return n1 / n2;
 }
 private double getDouble(String s) {
 if (validString(s)) {
 return Double.parseDouble(s);
 }
 return 0;
 }

38 CHAPTER 2: Introduction to Android Application Architecture

 private boolean invalidString(String s) {
 return !validString(s);
 }
 private boolean validString(String s) {
 if (s == null) {
 return false;
 }
 if (s.trim().equalsIgnoreCase("")) {
 return false;
 }
 return true;
 }
}

In this listing, the calculator activity is called CalculatorMainActivity. Once you have this
activity, you can load the calculator layout into it in order to see the calculator screen of
Figure 2-1.

Let’s learn a bit about an activity in Android. A programmer does not need to instantiate an
activity directly. An activity can be instantiated by the Android framework based on user’s
actions. In that sense, an activity is a “managed component” managed by Android.

An activity can get partially hidden or completely hidden when another UI with higher priority
sits on top of it (for example, due to a phone call). Or, an activity that is in the background
can be temporarily removed due to memory constraint. In these circumstances, the activity
can be automatically brought back when a user revisits the application.

Loading the Layout File into an Activity
As the activity is event driven, an activity relies on callbacks. The first callback of importance
is the onCreate() callback. In the calculator activity given in Listing 2-4, you can easily locate
this method. This is where we will load the calculator layout into the calculator activity. This
is done through the method setContentView(). The input to this method is an identifier for
the calculator layout file.

A nice feature of Android is what it does with the various resources including the layout files.
It autogenerates a java class called R.java where it defines integer IDs for all the
resources be they value based or file based. In the activity given in Listing 2-4, the variable
R.layout.calculator_layout points to the calculator layout file (which itself is in Listing 2-1).

When you are dipping your toes into the Android framework, the other mysterious thing
in onCreate() is the savedInstanceBundle. As the Android framework may stop and
restart (even re-create) activities, it needs a way to pass the last state of the activity to the
onCreate() method. That is what the savedInstanceBundle is. It is a collection of key value
pairs holding the previous state of the activity. You will learn about this aspect of state
management in more detail later in the chapter, and also in Chapter 9, where we cover what
happens when a device is rotated. For the implementation of the calculator example we
simply call the super class’s method to pass on that state bundle.

39CHAPTER 2: Introduction to Android Application Architecture

Gathering Controls
The next two methods, gatherControls() and setupButtons(), set up the interaction model
for the calculator. In the gatherControls() method you obtain java references for the edit
controls that you need to manipulate (read or write to) and save them locally in the calculator
activity class. You do this by using the findViewById() method on the base activity class.
The findViewById() method takes as input the ID of the control that is in the layout file. Here
also Android autogenerates these IDs and places them into the R.java class. In your eclipse
project you can see this file in the /gen subdirectory. Listing 2-5 shows the generated R.java
file for this calculator project. (If you were to try this project yourself, these IDs may differ. So
use this listing primarily to understand concepts.)

Listing 2-5. Autogenerated Resource IDs: R.java

public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int background=0x7f020000;
 public static final int icon=0x7f020001;
 }
 public static final class id {
 public static final int divideButton=0x7f050005;
 public static final int editText1=0x7f050000;
 public static final int editText2=0x7f050001;
 public static final int minusButton=0x7f050003;
 public static final int multiplyButton=0x7f050004;
 public static final int plusButton=0x7f050002;
 }
 public static final class layout {
 public static final int calculator_layout=0x7f030000;
 }
 public static final class string {
 public static final int app_name=0x7f040001;
 public static final int hello=0x7f040000;
 }
}

Notice how R.java uses a different class prefix for each resource type. This allows the
programmer in eclipse to quickly separate the IDs by what their type is. So, for example, all IDs
for layout files are prefixed with R.layout, and all image IDs are prefixed with R.drawable, and
all strings with R.string, etc. However, there is a caution while working these IDs. Even if you
have ten layout files the IDs for all the controls are generated into a single namespace such as
R.id.* (where “id” is an example of a resource type). So you may want to get into the habit of
naming controls in the layout files with some prefix indicating which layout files they belong to.

40 CHAPTER 2: Introduction to Android Application Architecture

Setting Up Buttons
Some of the controls in the calculator layout of Listing 2-1 are the calculator buttons. They
are the buttons representing operators: +, -, x, and /. We need code to be invoked when
these buttons are pressed. The way to do that is by registering a callback object on the
button controls. These callback objects must implement the View.OnClickListener interface.
The calculator activity in addition to extending the activity class also implements the
View.OnClickListener interface, allowing us to register our activity as the one that needs
to be called back when each button is pressed. As you can see in the code of the activity
(Listing 2-4), this is done by calling the setOnClickListener on each button.

Responding to Button Clicks: Tying It All Together
When any of the operator buttons is clicked, the onClick() method in the calculator activity
given in Listing 2-4 gets called. In this method we will investigate the ID of the view that
called back. This calling view should be one of the buttons. In this method we will read the
values from both the EditText controls (the operand values) and then invoke a method that
is specific to each operator. The operator method will calculate the result and update the
EditText, which is labeled Result.

Updating the AndroidManifest.XML
So far we have the UI (in terms of the layout file) and we have the business logic in terms of
the calculator activity. Every Android app must have its configuration file. This file is called
the AndroidManifest.xml. This is available in the root directory of the project. Listing 2-6
shows the AndroidManifest.xml for this project.

Listing 2-6. Application Configuration File: AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.calculator"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="14" />
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".CalculatorMainActivity"
 android:theme="@android:style/Theme.Light"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 </application>
</manifest>

http://schemas.android.com/apk/res/android

41CHAPTER 2: Introduction to Android Application Architecture

The package attribute of this manifest file follows a naming structure similar to the java
namespaces. In the calculator app, the package is set to com.androidbook.calculator. This
is like giving a name and a unique identifier to your app. Once you sign this app and install it
on an app publisher like the Google Play Store, only you will be able to update it or release
subsequent versions of it. The uses-sdk directive indicates the API for which this app is
backward compatible. The application node has a number of properties including its label
and an icon that will show up in the Android device apps menu. Inside an application node
we need to define all of the activities that make up this application. Each activity is identified
by its respective java classname. If the activity classname is not fully qualified, then the java
package is assumed to be the same as the application package identified. Theme for the
activity indicates a set of properties that the views belonging to that activity will inherit. It is
like setting a CSS style on the HTML UI. Android comes with a few default styles. Choosing
a light theme is good for contrast while taking screen shots (as shown in Figure 2-1).
Chapter 7 is dedicated to using styles and themes in your apps.

In the Android application manifest file an activity can specify a series of intent filters. Intent
is a programming concept that is unique to Android. Android relies heavily on these intents.
Android uses intent objects to invoke application components including activities. An intent
object can contain an explicit activity classname so that when you invoke that intent you end
up invoking the activity. Or instead of having an explicit classname, an intent can indicate a
generic action like VIEW to view a web page. When you invoke such an intent with a generic
action Android will present all possible activities that can satisfy that action. Activities
register with Android through the manifest file that they can respond to some actions
through an intent filter. Listing 2-7 shows how you can invoke an activity through an intent
object.

Listing 2-7. Using an Intent Object to Invoke an Activity

//currentActivity refers to the activity in which this code runs
Intent i = new Intent(currentActivity,SomeTargetActivity.class);
currentActivity.startActivity(i); //start the target activity

Although we used currentActivity as the value of the first argument to create an intent,
all it needs is a base class reference called Context. A context reference represents the
application context in which a component like an activity runs. Coming back to the intent
object, it has a number of flags and extra data elements that you can use to control the
behavior of the target activity that the intent is invoking. Listing 2-8 shows an example.

Listing 2-8. Using Extras on an Intent Object

//currentActivity refers to the activity in which this code runs
Intent intent = new Intent(currentActivity,SomeTargetActivity.class);
intent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP
 | Intent.FLAG_ACTIVITY_SINGLE_TOP);
intent.putExtra("some-key", "some-value");
currentActivity.startActivity(intent);

42 CHAPTER 2: Introduction to Android Application Architecture

In this example, we want the target activity to be brought to the top of the window or activity
stack and close any other activities that were on top of it before. As one invokes activities from
other activities they sit on top of each other. This stack allows the back button to navigate
back to the previous activity in the stack. When you go back, the current top activity is finished
and the previous activity is shown in the foreground. The code in Listing 2-8 is like going back
to the last position of the target activity, making that the top instance, and removing/finishing
all recent activities above that. Extras on intent are a set of key value pairs that you can pass
to the target activity from the source activity. Activities are pretty isolated from each other.
They don’t share their local variables between each other. Instead, they should pass their data
through objects that can be serialized and deserialized. Android uses an interface similar to
Serializable called Parcelable that allows greater flexibility and efficiency.

Ultimately, every activity is almost always started by an intent object. You can get the intent
object anywhere in your target activity by calling getIntent(). Once you get the intent
object, you can get its extras and see if there is any pertinent data that you need.

Complete study of intents and their variations is a large topic. We will return to talk more
about intents later in this chapter after concluding our discussion on the calculator app.
We have also included a URL for the free dedicated chapter on intents from our previous
editions at the end of this chapter.

Placing the Files in the Android Project
Let’s return to our main line of thought, the calculator app. By now you have the three files
you need to create the calculator application. Use what you have learned in the first chapter
to create an empty Android project and adjust that project to place these three files. These
files are given in Listing 2-9 along with their parent directories.

Listing 2-9. Placement of Files for the Calculator App

/res/layout/calculator_layout.xml
/src/com/androidbook/calculator/CalculatorActivity.java
/AndroidManifest.xml

Figure 2-2 shows the structure of your Android project in eclipse. You can see the relative
locations of the files of Listing 2-9.

43CHAPTER 2: Introduction to Android Application Architecture

The directory structure in Figure 2-1 also shows you where other resources like images and
strings are placed. You can also see the directory structure for the device-dependent image
files in Figure 2-2. This is how Android solves the localization multilingual support as well by
using different resource subdirectory suffixes. You will learn about the other subdirectories of
an Android project as you go through this book.

Figure 2-2. A calculator app directory structure

44 CHAPTER 2: Introduction to Android Application Architecture

Testing the Calculator App on a Real Device
All that is left now is to build the APK file, sign it, and be ready to deploy. The simplest
way to test your project is to have eclipse deploy the APK to the emulator and test it. The
simplest way to test this file (once it is signed) on a device is to e-mail it to yourself and
open the e-mail on your device. There is a security setting on the device to allow APKs from
unverified sources. As long as this is allowed, you will be able to install the APK file and run it
on your device. Or you can also connect the device to the USB port and have eclipse deploy
the APK directly to the device. You can even debug it on the device through eclipse. You can
also copy the APK file from your PC or Mac to the device SD card and install it from there.

This concludes our section on the calculator app, which illustrated the nature of Android
apps. We will move to the second section of the chapter now where we will talk about
activities in a lot more depth and also revisit resources, intents, and saving state. Let’s start
with activities.

Android Activity Life Cycle
An Android activity is a self-standing component of an Android application that can be
started, stopped, paused, restarted, or reclaimed depending on various events including
user-initiated and system-initiated ones. So it is really important to review the architecture
of the life cycle of an activity by looking at all of its callbacks. Figure 2-3 shows the life cycle
of an activity by documenting the order of its callbacks and the circumstances under which
those callbacks are executed. Let’s consider these callback methods one by one.

45CHAPTER 2: Introduction to Android Application Architecture

Activity Launched

onCreate()
(initialize and load your layouts.

Activity life time starts)

onStart()
(Visible life time starts. View hierarchy

in place. View state is not fully
restored.)

onRestoreInstanceStae()

onResume()
(UI state is restored. Views Reshown,

Foreground lifetime starts)

Activity Running
(fully visible)

Another Activity comes to the
foreground

onPause()
(Views are partially visible, May be
brought back through onResume,

Save persistent data that cannot be
lost.)

onSaveInstanceState()

Activity is no longer visible

onStop()
(View hierarchy is still valid. Can

trigger onStart)

onRetainNonConfigurationInstance()

Activity is being finished or destroyed

onDestroy()
(Activity and view state is going to be

gone.)

Activity shutdown

onRestart()

App Process
Killed

Us
er

 N
av

ig
at

es
 to

 th
e

ac
tiv

ity

Us
er

 R
tu

rn
s

to
 th

e
ac

tiv
ity

Us
er

 N
av

ig
at

es
 to

 th
e

ac
tiv

ity

Ap
ps

 w
ith

 h
ig

he
r p

rio
rit

y
ne

ed
s

m
em

or
y

Figure 2-3. Annotated Android activity life cycle

www.allitebooks.com

http://www.allitebooks.org

46 CHAPTER 2: Introduction to Android Application Architecture

void onCreate(Bundle savedInstanceState)
The activity’s life cycle starts with this method. In this method you should load your view
hierarchies by loading the layouts into the content view of the activity. You also initialize any
activity level variables that may be used during the lifetime of the activity. Like many of the
callbacks you also call the parent’s onCreate() method first.

When onCreate is called, an activity may be in one of three states. The activity may have
been a brand-new activity starting out its life for the first time. Or it may be an activity that
is automatically restarted because of a configuration change such a device rotating from
one orientation to another. Or it is an activity that is restarted following a previous process
shutdown due to low-memory conditions and being in the background. In the onCreate
callback, you should take these scenarios into account if what you need to do in each
scenario is different.

Now we can understand the argument to this method involving the savedInstanceBundle.
You can use this bundle to look into the previous state of the activity. This bundle may have
been originally used to save the state of the activity during a configuration change or when
the activity and its process shut down due to low-memory conditions. The state that is saved
into this bundle argument is usually called the instance state of the activity. The instance
state is somewhat temporary in nature; specifically, it is tied to this instance of the application
during this invocation. This type of state is not expected to be written to permanent storage
like files. The user will not be too disconcerted if this state is to revert to an initial state when
the application is revived. In the callback we will explain soon called onPause() you can
save the state that must be persisted to long-term storage. If that happens, you can use the
onCreate() method to load that state as well as part of the start-up.

There is another consideration that this method can take into account. When an activity
is restarted or re-created because of an orientation change, the old activity is destroyed
and a new activity is created in its place. This means the new activity has a new reference
in memory. The old activity reference is no longer valid. It would be wrong to have an
external thread or a global object that is holding onto the old activity. So there needs to
be a mechanism when the activity is re-created to tell the external object that there is a
new activity reference. To do that, the re-created activity needs to know the reference of
that external object. This external object reference is called “non-configuration instance
reference.” There is a callback method called onRetainNonConfigurationInstance() that can
return a reference to this external object; we shall cover this shortly. Android SDK then keeps
this reference and makes it available to the re-created activity through a method called
getLastNonConfigurationInstance(). Note that in Chapter 8, we will show you how to do
this better through what are called headless retained fragments. We will return to this topic
also in Chapter 15 on AsyncTask.

There is another nuance to the onCreate method. You may want to ensure that in the layouts
you have right views and fragments (which you will learn in Chapter 8) to match when the
state was saved. Because a subsequent onRestoreInstanceState() (which is called after
onStart()) assumes that all the view and fragment hierarchies are present to restore their
respective states, the mere presence of the previous state will not re-create the views. So it
is up to this method to load the right layouts to be shown. This is usually not an issue if you
don’t delete or add views during the interaction with the activity.

47CHAPTER 2: Introduction to Android Application Architecture

void onStart()
After being created, this method pushes the activity into a visible state. In other words
this method starts the “visible life cycle” of the activity. This method is called right after
onCreate(). This method assumes that the view hierarchies are loaded and available from
the onCreate(). You normally don’t need to do override this method and if you do, make
sure you call the parent’s onStart() first. In Figure 2-2 note that this method can also be
called from another callback called onRestart.

You must be aware that the onRestoreInstanceState method is called after this method.
So you shouldn’t make assumptions about the state of the views in this method. So try not
to manipulate the state of the views in this method. Do that refinement in the subsequent
onRestoreInstanceState or the onResume method. Because this is a counterpart of the
onStop(), do the reverse should you have stopped something in onStop() or in onPause().
If you see something is being done in this method, look at it with caution and make sure it
is what you want. Also know that the start-and-stop cycle can happen multiple times during
the overall current cycle of the activity.

This method can also be called when the activity is shown after being hidden first, because
another activity has come to the top of the visibility stack. In those cases this method is
called after the onRestart(), which itself is triggered after the onStop(). So there are two
paths into this method: either onCreate() or onRestart(). In both cases the view hierarchies
are expected to be established and available prior to this callback.

void onRestoreInstanceState(Bundle savedInstanceState)
If an activity is to be legitimately closed by a user, then the state that user is willing to
discard is the instance state. For example, when the user chooses a back button, then
he/she is informing Android that he/she no longer is interested in this activity and that
the activity can be closed, discarding all its state that is not yet saved. So this state,
which is transitory and only valid for the life of the activity while it is in memory, is the
instance state.

If the system choses to close the activity, because there is a change in orientation, then the
user will expect that transitory (instance) state right back when the activity is restarted. To
facilitate this, Android calls this onRestoreInstanceState method with a bundle that contains
the saved instance state. (See the onSavedInstanceState method explanation.)

In contrast to instance state, the persistent state of an activity is something the user
expects to see even after the activity finishes and is no longer in play. This persistence
state may have been created during the activity or may even exist before the activity is
created. This type of state, especially when it is created with the help of the activity, must
be explicitly saved to an external persistent store like a file. If the activity doesn’t use an
explicit “save” button for such needs, then the “onPause” method needs to be used to save
such implicit persistent states. This is because no method after onPause is guaranteed to
be called in case of low-memory conditions. You shouldn’t rely on the instance state if the
information is too important to lose.

48 CHAPTER 2: Introduction to Android Application Architecture

void onResume()
The callback method onResume is the precursor to having the activity fully visible. This is
also the start of the foreground cycle for the activity. In this foreground cycle the activity can
move between onResume() and onPause() multiple times as other activities, notifications, or
dialogs with more urgency come on top and go.

By the time this method is called, we can expect the views and their state fully restored.
You can take this opportunity to tweak final state changes. As this method doesn’t have
a bundle, you need to rely on the information from onCreate or onRestoreInstanceState
methods to fine-tune state if further needed.

If you had stopped any counters or animations during onPause you can restart them here.
You can also keep track of the case if the views are really destroyed or not by following the
previous callback methods (whether onResume is a result of onCreate, onRestart, or onPause)
and do the minimum possible to adjust the view state. Typically you will not do state
management here but only those tasks that need to be turned on or off based on visibility.

void onPause()
This callback indicates that the activity is about to go into background. You should stop
any counters or animations that were running when the activity was fully visible. The activity
may go to onResume or proceed to onStop. Going to onResume will bring the activity to the
foreground. Going to onStop will take the activity into a background state.

As per the SDK, it is also the last method that is guaranteed to be called before the activity
and the process is completely reclaimed. So it is the last opportunity that a developer has to
save any non-instance and persistent data to a file.

Android SDK also waits for this method to return before making the foreground activity fully
active. So you want to be brief in this method. Also notice that this method has no bundle
that is passed. This is an indication that this method is for storing persistent data and also in
an external storage medium such as a file or a network.

You can also use this method to stop any counters, animations, or status displays of a
background task. You can resume them in onResume.

void onStop()
The callback method onStop() moves the activity from partially visible to the background
state while keeping all of the view hierarchies intact. This is the counterpart of onStart.
The activity can be taken back to the visible cycle by calling onStart. This state transition
of going from onStop to onStart during the same activity life cycle goes through the
onRestart() method.

After this call, the activity is no longer visible. But keep in mind that this may not be called
after onPause under low-memory conditions. Because of this uncertainty do not use this
method to start or stop services that are outside of this process. Do that in onPause instead
and resume them in onResume. However, you can use this method to control services or work

49CHAPTER 2: Introduction to Android Application Architecture

that is inside your process. This is because, as long as the process is active, this method is
going to get called. If the whole process is taken down then those dependent tasks or global
variables will go away anyway.

void onSaveInstanceState(Bundle saveStateBundle)
The control goes to onDestroy() coming out of onStop if the process is still in memory.
However, if Android realizes that activity is being closed without the user’s expectation then
it would call the onSaveInstanceState() before calling onDestroy(). Orientation change is a
very concrete example of this. The SDK warns that the timing of onSaveInstanceState() is
not predictable whether before or after onStop().

The default implementation of this method already saves the state of views. However if there
is some explicit state that is not known to the views you need to save it in the bundle object
and retrieve it back in the onRestoreInstanceState method. You do need to call the parent’s
onSaveInstanceState() method first so that views have an opportunity to save their state
themselves. There are some restrictions and rules for the views to be able to save their state.
The chapters on UI controls (Chapters 3, 4, and 5) and configuration change (Chapter 9) go
into more detail on this subject.

void onRestart()
This method is called when the activity transitions from background state to partially visible
state, i.e., going from onStop to onStart. You can use this knowledge in onStart if you want
to optimize code there based on whether it is a fresh start or a restart. When it is a restart
the view and their state are fairly intact.

You can do things in this method that would have been done in onStart, but optimized when
the activity is not visible, but too expensive to be done multiple times in onResume.

Object onRetainNonConfigurationInstance()
This callback method is in place to deal with activity re-creation due to configuration
changes. This method returns an object reference in your process memory that needs to be
retied to the activity once it is re-created. We explained this in more detail previously when
we described the onCreate method.

When the activity is re-created, the object that is returned from this method is made
available through the method getLastNonConfigurationInstance(). Now in onCreate() the
new activity can use the previously established resources and object references. Importantly,
if those previous resources are holding to the old activity reference, then the resources can
be told to use the new one.

This dilemma exists because during an orientation change Android doesn’t kill the process,
but just discards the old activity, re-creates the activity in the new orientation, and expects
the programmer to supply new layouts, etc., to suit the new configuration. So the working
objects are still there holding onto an old activity. This is the method in association with its
“get” counterpart to overcome this obstacle.

50 CHAPTER 2: Introduction to Android Application Architecture

When you read Chapter 8, you will learn that this method is deprecated and you will use in
its place what are called headless retained fragments. These headless retained fragments
have the additional benefit of being able to track the activity life cycle and not just the
reference to the activity.

void onDestroy()
onDestroy() is the counterpart of onCreate(). The activity is going to finish after onDestroy.
An activity can finish for two primary reasons.

One is an explicit close. This can happen when the user has explicitly caused the activity to
finish either by clicking a button that is provided to indicate that the user is done or by using
a back button leaving the activity to go to the previous activity. Under such circumstances
the activity will not be brought back by the system unless the user chooses the activity
again. In this scenario the activity life cycle ends with the onDestroy method.

The second reason an activity can close is involuntary. When the orientation of a device
changes, the Android SDK will forcefully close the activity and call the onDestroy method
followed by re-creating the activity and calling the onCreate again.

When an activity is in the background and if the system needs memory, Android may shut
down the process and may not have an opportunity to call the onDestroy method. Due to
this uncertainty, much like onStop, don’t use this method to control tasks or services that are
outside the process in which the activity had been running. However, if the process is still in
memory the onDestroy will be called as part of the life cycle and you can place cleanup code
in onDestroy as long as that code belongs to this process.

General Notes on Activity Callbacks
Use Figure 2-3 to guide you to see the order of these callbacks and how best to use them.
If you were to override a callback you need to call back the parent method. The SDK
documentation explicitly indicates which derived methods are required to call back their
parent equivalents. Also refer to the SDK documentation to learn during which callbacks
the system will not kill the process due to low-memory conditions. Also notice that only a
handful of callbacks carry instance state bundle.

More on Resources
We want to tell you little more about how resources are used in Android applications. In the
calculator layout file, you have seen some of the resources used like strings, images, IDs, etc.

Other resources that are not so obvious include dimensions, drawables, string arrays,
language terms for plurals, xml files, and all types of input files. In Android, something is
treated as a resource a) if it is an input to your program and is part of the apk file and b) if
the value or content of the input can have different values based on language, locale, or
orientation of the device, generally called a configuration change.

51CHAPTER 2: Introduction to Android Application Architecture

Directory Structure of Resources
All resources in Android are placed under the /res subdirectory of the root of your
application package. Listing 2-10 shows an example of what a /res may look like:

Listing 2-10. Android Resource and Assets Directory Structure

/res/values/strings.xml
 /colors.xml
 /dimens.xml
 /attrs.xml
 /styles.xml
 /drawable/*.png
 /*.jpg
 /*.gif
 /*.9.png
 /*.xml
 /anim/*.xml`
 /layout/*.xml
 /raw/*.*
 /xml/*.xml
/assets/*.*/*.*

We will cover attrs.xml and styles.xml in Chapter 7. The xml files in the anim subdirectory
define animations that can be applied to various views. We will cover these animation-related
resources in the animations chapter (Chapter 18). The xml files in the xml subdirectory get
compiled away to binary and their resource IDs can be used to read them. We will show an
example of this shortly. The /raw subdirectory holds files that get placed, as they are, without
getting converted to any binary format.

The /assets directory, which is a sibling of /res, is not part of the resource hierarchy. This
means that the files in this subdirectory do not change based on language or a locale.
Android does not generate any IDs for these files. This directory is more like a static local
storage for any files that are used as inputs, such as configuration files for your application.

Except for the assets directory, every other artifact in the /res subdirectory will end up
generating an ID in R.* namespace, as you have seen before. Each distinct resource type
will have its own namespace under R.*, as in R.id, R.string, or R.drawable, etc.

Reading Resources from Java Code
In layout files, as you have seen the in calculator layout, one resource can refer to other
resources. For example, the calculator layout resource file referenced the string and color
references. This approach is common. Alternatively, you can also use Java API to retrieve
the resource values using the method Activity.getResources(). This method returns a
reference to the Android SDK java class resources. You can use methods on this class
to get to the values of each resource identified in your local R.* namespace. Listing 2-11
shows an illustration of this approach:

52 CHAPTER 2: Introduction to Android Application Architecture

Listing 2-11. Reading Resource Values in Java Code

Resources res = activity.getResources();
//Retrieving a color resource
int somecolor = res.getColor(R.color.main_back_ground_color);
// Using a drawable resource
ColorDrawable redDrawable=(ColorDrawable)res.getDrawable(R.drawable.red_rectangle);

Runtime Behavior of Drawable Resources
The drawable directory is an interesting case worth covering to demonstrate the fluency of
Android’s architecture. As shown earlier, this directory can contain images that can be set
as backgrounds. This directory also allows XML files that know how to get converted to
drawable java objects which can then be used as backgrounds that are rendered at runtime.
Listing 2-12 shows an example of this:

Listing 2-12. Example of a Shape Drawable XML Resource File

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <solid android:color="#f0600000"/>
 <stroke android:width="3dp" android:color="#ffff8080"/>
 <corners android:radius="13dp" />
 <padding android:left="10dp" android:top="10dp"
 android:right="10dp" android:bottom="10dp" />
</shape>

If you place a file like this in the drawable subdirectory and call it background1.xml, it will
result in an ID called R.drawable.background1. You can then use that ID as if it were a
background image for any view that is drawn with a rectangular border. Other possible
shapes are ovals, lines, and rings.

Similar to the shape xml file, each allowed XML file in the drawable directory defines a
drawable that defines a particular way to draw. Examples of these drawables include
bitmaps that can be decorated with certain behavior, or images that can transition from one
image to another, layered drawables that are collections of other drawables, drawables that
can be selected based on input parameters, drawables that can respond to progress by
showing multiple images, drawables that can clip other drawables, etc... See the following
URL for a number of sophisticated things you can do using these runtime drawable objects:

http://androidbook.com/item/4236

http://schemas.android.com/apk/res/android
http://androidbook.com/item/4236

53CHAPTER 2: Introduction to Android Application Architecture

Using Arbitrary XML Files as Resources
Android also allows arbitrary XML files to be used as resources which can then be localized or
tuned for each device. Listing 2-13 is an example of reading and processing an XML-based
resource file from the /res/xml subdirectory.

Listing 2-13. Reading an XML Resource File

private String readAnXMLFile(Activity activity) throws XmlPullParserException, IOException {
 StringBuffer sb = new StringBuffer();
 Resources res = activity.getResources();
 XmlResourceParser xpp = res.getXml(R.xml.test);

 xpp.next();
 int eventType = xpp.getEventType();
 while (eventType != XmlPullParser.END_DOCUMENT) {
 if(eventType == XmlPullParser.START_DOCUMENT) {
 sb.append("******Start document");
 }
 else if(eventType == XmlPullParser.START_TAG) {
 sb.append("\nStart tag "+xpp.getName());
 }
 else if(eventType == XmlPullParser.END_TAG) {
 sb.append("\nEnd tag "+xpp.getName());
 }
 else if(eventType == XmlPullParser.TEXT) {
 sb.append("\nText "+xpp.getText());
 }
 eventType = xpp.next();
 }//eof-while
 sb.append("\n******End document");
 return sb.toString();
}//eof-function

Working with Raw Resource Files
Android also allows any type of non-compiled files as resources. Listing 2-14 is an example of
reading a file that is placed in the /res/raw subdirectory. Being a resource even the raw files
that are in this directory can be customized for language or a device configuration. Android
generates IDs automatically for these files as well, as they are resources like any other resource.

Listing 2-14. Reading a Raw Resource File

String getStringFromRawFile(Activity activity) throws IOException {
 Resources r = activity.getResources();
 InputStream is = r.openRawResource(R.raw.test);
 //assuming you have a function to convert a stream to a string
 String myText = convertStreamToString(is);
 is.close(); //take care of exceptions etc.
 return myText;
}

54 CHAPTER 2: Introduction to Android Application Architecture

Reading Files from the Assets Directory
Although usually clubbed with resources, the /assets directory is a bit different. This
directory does not sit under the /res path, so the files in this directory do not behave like
resource files. Android does not generate resource IDs for these files in the R.* namespace.
These files are not customizable based on locale or device configuration. Listing 2-15 shows
an example of reading a file that is placed in the /assets subdirectory.

Listing 2-15. Reading a File from Assets Directory

String getStringFromAssetFile(Activity activity) {
 AssetManager am = activity.getAssets();
 InputStream is = am.open("test.txt");
 String s = convertStreamToString(is);
 is.close();
 return s;
}

Thus far, we have used an activity reference to get hold of the resources or an AssetManager
object as in Listing 2-15. In reality, all we need is the base class of the activity, the
context object.

Reading Resources and Assets Without an Activity Reference
Sometimes you may need to read an XML resource file or an asset file from the bowels of
source code, where it is intrusive to pass the activity reference. For these cases, you can use
the following approach to obtain the application context and then use that reference instead
to get to the assets and resources.

When Android loads your application (in order to invoke any of its components), it
instantiates and calls an application object to inform that the application could initialize itself.
This application classname is specified in the Android manifest file. If MyApplication.java is
your application java class, then it can be specified in the Android manifest file as shown in
Listing 2-16.

Listing 2-16. Specifying an Application Class in the Manifest File

<application android:name=".MyApplication"
 android:icon="@drawable/icon" .../>

Listing 2-17 shows how we can code the MyApplication and also shows how we can
capture the application context in a global variable.

55CHAPTER 2: Introduction to Android Application Architecture

Listing 2-17. Sample Code for an Application that Captures Application Context

public class MyApplication extends Application {
 //Make sure to check for null for this variable
 public static volatile Context s_appContext = null;

 @Override
 public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);
 }
 @Override
 public void onCreate() {
 super.onCreate();
 MyApplication.s_appContext = this.getApplicationContext();
 }
 @Override
 public void onLowMemory() {
 super.onLowMemory();
 }
 @Override
 public void onTerminate() {
 super.onTerminate();
 }
}

With the application context captured in a global variable, we now can get to the asset
manager to read our assets as in Listing 2-18.

Listing 2-18. Using Application Object to Get to Application Asset Files

AssetManager am = MyApplication.s_appContext.getAssets();
InputStream is = am.open(filename);

Understanding Resource Directories, Language, and Locale
Let’s wrap up the idea of Android resources by pointing out how resource directories are
used to load resources based on language, locale, or a configuration change of the device
like say orientation. See how in Listing 2-19 a layout file with the same name is located in
multiple layout directories starting with same prefix of layout but with different qualifiers such
as “port” for portrait and “land” for landscape. There are a large number of these qualifiers
available in the SDK documentation. We also cover some of these aspects in Chapter 9
(Configuration Changes). Listing 2-19 shows an example of how layout files are arranged by
portrait or landscape configuration:

Listing 2-19. Demonstrating Resource Qualifiers

\res\layout\main_layout.xml
\res\layout-port\main_layout.xml
\res\layout-land\main_layout.xml

www.allitebooks.com

http://www.allitebooks.org

56 CHAPTER 2: Introduction to Android Application Architecture

More on Intents
We have talked about how intents are used to invoke activities. We want cover few more
essential aspects of intents now. Listing 2-20 shows how intents are used to invoke a
number of prebuilt Google applications.

Listing 2-20. Sample Code Using Intents

public class IntentsUtils {
 public static void invokeWebBrowser(Activity activity) {
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse("http://www.google.com"));
 activity.startActivity(intent);
 }
 public static void invokeWebSearch(Activity activity) {
 Intent intent = new Intent(Intent.ACTION_WEB_SEARCH);
 intent.setData(Uri.parse("http://www.google.com"));
 activity.startActivity(intent);
 }
 public static void dial(Activity activity) {
 Intent intent = new Intent(Intent.ACTION_DIAL);
 activity.startActivity(intent);
 }
 public static void call(Activity activity) {
 Intent intent = new Intent(Intent.ACTION_CALL);
 intent.setData(Uri.parse("tel:555–555–5555"));
 activity.startActivity(intent);
 }
 public static void showMapAtLatLong(Activity activity) {
 Intent intent = new Intent(Intent.ACTION_VIEW);
 //geo:lat,long?z=zoomlevel&q=question-string
 intent.setData(Uri.parse("geo:0,0?z=4&q=business+near+city"));
 activity.startActivity(intent);
 }
}

Notice how these intents do not invoke a specific activity by its classname but rather use the
target qualities of suitable activities. For example to invoke a browser to view a web page, the
intent simply says the action is ACTION_VIEW and the data portion of the intent is set to the
web address. Android then looks around to see all the activities that know how to show
the type of data requested in the data attribute. It will then give the user an option which
of the activities that the user wants to choose to open the URL. These types of intents that
don’t specify the classname of the component to invoke are called implicit intents. We will
cover this in a little bit more detail shortly.

Starting Activities for Results
Listing 2-21 shows an example of an activity where one of its methods is invoking a target
activity in order to obtain a result when that target activity is completed. This is done through
the method invokePick() in as shown in Listing 2-21.

http://www.google.com/
http://www.google.com/

57CHAPTER 2: Introduction to Android Application Architecture

Listing 2-21. Using Intents to Get Results from Activities

public class SomeActivity extends Activity {
.....
//Call this method to start a target activity that knows how to pick a note
//Use a data URI that tells the target activity which list of notes to show
public static void invokePick(Activity activity) {
 Intent pickIntent = new Intent(Intent.ACTION_PICK);
 int requestCode = 1;
 pickIntent.setData(Uri.parse(
 "content://com.google.provider.NotePad/notes"));
 activity.startActivityForResult(pickIntent, requestCode);
}

//the following method will be called when the target activity finishes
//Notice the outputIntent object that is passed back which could
//contain additional information

@Override
protected void
onActivityResult(int requestCode,int resultCode, Intent outputIntent) {
 super.onActivityResult(requestCode, resultCode, outputIntent);
 parseResult(this, requestCode, resultCode, outputIntent);
}
public static void parseResult(Activity activity
 , int requestCode, int resultCode , Intent outputIntent)
{
 if (requestCode != 1) {
 Log.d("Test", "Someone else called this. not us");
 return;
 }
 if (resultCode != Activity.RESULT_OK) {
 Log.d("Test", "Result code is not ok:" + resultCode);
 return;
 }
 Log.d("Test", "Result code is ok:" + resultCode);
 Uri selectedUri = outputIntent.getData();
 Log.d("Test", "The output uri:" + selectedUri.toString());

 //Proceed to display the note
 outputIntent.setAction(Intent.ACTION_VIEW);
 startActivity(outputIntent);
}

58 CHAPTER 2: Introduction to Android Application Architecture

The constants RESULT_OK, RESULT_CANCELED, and RESULT_FIRST_USER are all defined in the
activity class. The constant RESULT_FIRST_USER is used as a starting number for
user-defined activity results. The numerical values of these constants are shown in
Listing 2-22:

Listing 2-22. Result Values from Returned Activities

RESULT_OK = -1;
RESULT_CANCELED = 0;
RESULT_FIRST_USER = 1;

To make the PICK functionality work, the implementing or the target activity that is
responding should have code that explicitly addresses the needs of an ACTION_PICK. Let’s
look at an example of how this is done in the Google sample NotePad application. (See the
references section, where you can find this application.) When the item is selected in the
list of items, the intent that invoked the target activity is checked to see whether it’s an
ACTION_PICK intent. If it is, the data URI of the selected note item is set in a new intent and
returned through setResult() as shown in Listing 2-23. The calling activity then can investigate
the returned intent to see what data it has in it. See the method parseResult() in Listing 2-21.

Listing 2-23. Target Activity Returning a Result through a Data URI

@Override
protected void onListItemClick(ListView l, View v, int position, long id) {
 Uri uri = ContentUris.withAppendedId(getIntent().getData(), id);

 String action = getIntent().getAction();
 if (Intent.ACTION_PICK.equals(action) ||
 Intent.ACTION_GET_CONTENT.equals(action)) {
 // The caller is waiting for us to return a note selected by
 // the user. They have clicked on one, so return it now.
 setResult(RESULT_OK, new Intent().setData(uri));
 finish();
 }
 ...other ways of how this activity may have been invoked
}

Exercising the GET_CONTENT Action
ACTION_GET_CONTENT is similar to ACTION_PICK. In the case of ACTION_PICK, you are specifying
a data URI that points to a collection of items, like a list of notes from a NotePad-like
application. You will expect the intent action to pick one of the notes and return it to the
caller. In the case of ACTION_GET_CONTENT, you indicate to Android that you need an item of a
particular MIME type. Android searches for activities that can either create one of those items
or choose from an existing set of items that satisfy that MIME type.

59CHAPTER 2: Introduction to Android Application Architecture

Using ACTION_GET_CONTENT, you can pick a note from a collection of notes supported by the
NotePad application using the code shown in Listing 2-24:

Listing 2-24. Invoking Activities for Creating Content

public static void invokeGetContent(Activity activity) {
 Intent pickIntent = new Intent(Intent.ACTION_GET_CONTENT);
 int requestCode = 2;
 pickIntent.setType("vnd.android.cursor.item/vnd.google.note");
 activity.startActivityForResult(pickIntent, requestCode);
}

Notice how the intent type is set to the MIME type of a single note. Contrast this with the
ACTION_PICK code, where it explicitly indicated a URL that points to a collection of notes (like
a web URL that can retrieve a page worth of data).

For an activity to respond to ACTION_GET_CONTENT, the activity has to register an intent filter
indicating that the activity can provide an item of that MIME type. Listing 2-25 shows how the
SDK’s NotePad application accomplishes this:

Listing 2-25. Activity Filter for Get Content

<activity android:name="NotesList" android:label="@string/title_notes_list">
......
<intent-filter>
 <action android:name="android.intent.action.GET_CONTENT" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />
 </intent-filter>
......
</activity>

The rest of the code for responding to onActivityResult() is identical to the previous
ACTION_PICK example. If there are multiple activities that can return the same MIME type,
Android will show you the chooser dialog to let you pick an activity.

Relating Intents and Activities
An intent is used to start not only activities but also other components like a service
or a broadcast receiver. These components are covered in later chapters. You can see
these components as having certain attributes. One attribute of a component may be the
category to which this component belongs. Another attribute may be what type of data this
component can view, edit, update, or delete. Another attribute may be what type of actions
a component can respond to. If you were to look upon these components as entities in a
database, their attributes can be seen as columns. Then an intent can be seen as a where
clause that specifies all or some of those characteristics to choose a component like an
activity to start. Listing 2-26 is an example of demonstrating how to query for all activities
that are categorized as CATEGORY_LAUNCHER.

60 CHAPTER 2: Introduction to Android Application Architecture

Listing 2-26. Querying Activities that Match an Intent

Intent mainIntent = new Intent(Intent.ACTION_MAIN, null);
mainIntent.addCategory(Intent.CATEGORY_LAUNCHER);
PackageManager pm = getPackageManager();
List<ResolveInfo> list = pm.queryIntentActivities(mainIntent, 0);

PackageManager is a key class that allows you to discover activities that match certain intents
without invoking them. You can cycle through the received activities and invoke them as you
see fit, based on the ResolveInfo API. Listing 2-27 is an extension to the preceding code
that walks through the list of activities and invokes one of the activities if it matches a name.
In the code, we have used an arbitrary name to test it:

Listing 2-27. Walking Through a Matched Activity List for an Intent

for(ResolveInfo ri: list) {
 //ri.activityInfo.
 Log.d("test",ri.toString());
 String packagename = ri.activityInfo.packageName;
 String classname = ri.activityInfo.name;
 Log.d("test", packagename + ":" + classname);
 if (classname.equals("com.ai.androidbook.resources.TestActivity")) {
 Intent ni = new Intent();
 ni.setClassName(packagename,classname);
 activity.startActivity(ni);
 }
}

Understanding Explicit and Implicit Intents
When you specify an explicit activity name (or a component name like a service or a
broadcast receiver) in an intent, such an intent is called an explicit intent. When this intent is
used to start an activity, that activity is invoked irrespective of what else is there in that intent
such as its category or data.

As you have seen, an intent does not have to have an activity specified explicitly to invoke it.
An intent can rely on an activity’s action attribute, category attribute, or data attribute. These
intents that omit the explicit activity or component class are called implicit intents. When you
use an implicit intent to invoke an activity it is paramount that the activity must have as one
of its categories CATEGORY_DEFAULT. If you expect your activity to be explicitly started
by an intent, then you don’t need to specify any category at all to that activity. Listing 2-28
shows an example of minimally registering an activity in an Android manifest file so that it
can be invoked by an explicit intent.

Listing 2-28. Minimal Activity Definition

<activity android:name="com.androidbook.asynctask.TestProgressBarDriverActivity"
 android:label="Test Progress bars"/>

61CHAPTER 2: Introduction to Android Application Architecture

If you want to invoke this activity through an implicit intent without specifying its classname,
like through an action say, then you need to add the following intent filters, one for the action
and one for the needed mandatory category of default, as shown in Listing 2-29.

Listing 2-29. An Activity Definition with Filters

<activity android:name="com.androidbook.asynctask.TestProgressBarDriverActivity"
 android:label="Test Progress bars">
 <intent-filter>
 <action android:name="com.androidbook.intent.action.ME" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</activity>

Saving State in Android
As you reviewed the calculator app, your next likely need is how to store the data of an
Android app. Let’s briefly cover the available options. There are five ways to store data in
Android: 1) shared preferences, 2) internal files, 3) external files, 4) SQLlite, and 5) network
storage in the cloud.

Shared preferences API is a sophisticated API in the Android SDK to save, display, and
manipulate preferences for your applications. Although this feature is intended and
tailored for preferences it can be used for saving arbitrary state of your application. Shared
preferences are internal to the application and device. Android does not make this data
available to other applications. A user is not expected to directly manipulate this data by
mounting onto a USB port. This data is removed automatically when the application is
removed. These shared preferences are covered in detail in Chapter 11.

While shared preferences data is structured key/value pair data and follows a few other
semantics imposed, internal files are stand-alone files that you can write to without a
predefined structure. We haven’t found a compelling advantage of using internal files over
shared preferences, or the other way, especially for small- to medium-sized state. So for
most apps you can choose one or the other.

Unlike internal files, which are stored on the internal storage of the device, external files are
stored on the SD card. These become public files that other apps including the user could
see outside the context of your application. The external files can be used to store data that
makes sense even outside of your app such as image files or video files. For strictly the
internal state of the app, internal files are a better option.

The external files may also be an option if the state is very large running into tens of
megabytes. Usually when that happens you don’t want to save the state as a monolithic file
anyway and opt for more granular storage as a relational database like the SQLlite.

We will give a quick overview and brief code samples in Chapter 25 on how to use
preferences, internal files, and external files to store your app state. One of the tricks is to
persist java object tree directly using JSON and GSOn while giving consideration to see
if this level of granularity is appropriate. If you are not familiar with JSON, it is an object
transport and storage format for JavaScript-based objects. It is also generally applicable any
object structure as well including java objects and often used that way lately. The GSON is a
Google library that converts Java objects to and from JSON strings.

62 CHAPTER 2: Introduction to Android Application Architecture

SQLlite is a really good option that is recommended to store the state of an app. The short
drawback is your logic to save and read data become verbose and cumbersome. You can
probably use O/R mapping libraries to overcome this mismatch between java objects and its
relational representation. SQLlite is also often used to store data that needs to be shared by
multiple applications through a concept called content providers. This is the central topic of
Chapter 25.

Finally, cloud-based network storage is coming into its own. For example a number of
MBAAS (Mobile Backend as a Service) platforms such as parse.com support storing the
mobile data directly in the cloud for both online and offline usage. This model is going to be
increasingly relevant as you start making your app available on multiple devices for the same
user or being able to collaborate with other users. This topic is covered in great detail in our
companion book Expert Android from Apress.

Many time for your apps the GSON option to store app state in an internal file is really the
quickest and most practical way to go. Of course you do want to analyze the granularity of
the solution and see if this simpler approach won’t become a burden on computing power
or battery life. If your app gains lot of popularity you may want to use a second release
with SQLlite by optimizing storage speed or use cloud storage if that is more appropriate
for that release.

Roadmap for Learning Android and the Rest
of the Book
Let’s quickly review what we have covered so far. In the one-pager application you have
seen how the UI is put together, how the business logic is coded in Java, and then how
the application is defined to the Android sdk using the Android manifest file. We explained
what resources are, how they reference each other, how they are referenced in layout files,
and even how to read your input files as resources. We have shown you what intents are,
their intricacies, and how to use them to invoke or discover activities. We have covered the
activity’s life cycle, which is really important to understand Android architecture. We have
also given a quick rundown of how you can save the state of your application. This is a
pretty good foundation to plan and write simple applications.

We now want to follow up this bird’s eye view of Android applications with a roadmap of
becoming an expert app developer on the Android platform. This roadmap divides the
chapters of this book into the following six key learning tracks:

Track 1: UI essentials for your Android applications	

Track 2: Saving state	

Track 3: Preparing/taking your application to Google Play	

Track 4: Making your application robust	

Track 5: Bringing finesse to your apps	

Track 6: Integrating with other devices and the cloud	

63CHAPTER 2: Introduction to Android Application Architecture

Among these six tracks, the first three are the basic tracks that you must know well to write
Android apps that are useful to you and the larger community. Tracks 4, 5, and 6 are there
to make your apps better and feature rich in subsequent releases. We will talk about what
chapters make up each track and what you are expected to gain from that track.

Track 1: UI Essentials for Your Android Applications
Android has a number of UI controls and layouts out of the box to write very feature
rich-applications. Some examples are buttons, various TextViews, EditText controls,
checkboxes, RadioButtons, date and time controls, list controls, controls to show analog
and digital clocks, controls to show images and videos, controls to pick numbers, etc. We
will cover a number of these in Chapter 3. In that chapter, we will also cover the essential
layouts that are needed to compose the UI from those controls.

Once you are able to use the basic controls to construct your UI, the one control that you
absolutely need in your apps is the list control. We did not cover list control as a basic
control because it is a bit involved. Also Android has a number of features and approaches
to do list-based applications. So we have dedicated a separate chapter for list controls
and the data adapters that are necessary to populate those list controls. These aspects are
covered in Chapter 4.

Once you master the basic controls, basic layouts, and list controls, you will start looking
around for more sophisticated layouts like the grid and table layouts. These are covered in
Chapter 5 under “Using Advanced Layouts.”

Menus are covered in Chapter 6. Android’s menu infrastructure includes context menus,
pop-up menus, option icons in an action bar, etc.

Your mobile app is not really complete without refining it through styling, much like CSS.
Chapter 7 covers how styles and themes work in Android.

Dialogs are essential in any UI. Dialogs are a bit involved in Android. To understand dialogs
in Android you have to first understand the concept of fragments. Architecture of dialogs
is only one aspect of fragments. Fragments are now core to the Android UI. Chapter 8
explains what fragments are and in Chapter 10 we cover dialogs, building upon Chapter 8.

In mobile apps, you cannot write an app without understanding what happens to your
application when the device orientation changes. Programming correctly for orientation
change is not trivial in Android. How to program for orientation and other device
configuration changes is covered in Chapter 9.

For any reasonably useful application you will likely need to know all these UI essentials.
So Track 1 is an essential track.

Track 2: Saving State
Once you know how to construct the UI of your application, the next need you will run into is
to save the state of your application. Refer to the earlier section on saving state to see what
options are available and in which chapters those options are covered. Track 2 is also an
essential track as you should know how to save state.

64 CHAPTER 2: Introduction to Android Application Architecture

Track 3: Preparing/Taking Your Application to the Market
By completing Tracks 1 and 2 you can build a pretty reasonable application that you can
deploy to the marketplace. Chapter 30 shows you how you can take your app to the Google
Play store.

Track 4: Making Your Application Robust
Track 4 is an advanced track getting into the internals of Android. You will need to go through
the chapters in this track to solidify your understanding of how Android works. We start this
track with Chapter 12 on compatibility library. This chapter teaches how to make your app run
well on older releases while using features that are available only on the newer platforms.

Android allows you to run code in your application even though you are not actively using
the application in the foreground. It could be the music you are playing in the background,
or it could be backing up your images to a cloud, etc. This type of code is called a Service
in Android. Working with services is covered in Chapter 13. These services can be triggered
by a direct user action or through alarms or broadcast events. Alarm manager is covered in
Chapter 17.

When you use intents to invoke components such as activities or services you are targeting
a single component. Android also supports a publish-and-subscribe protocol where an
intent can be used to invoke multiple components that register for it at the same time. These
components are called receivers or broadcast receivers. A broadcast receiver is a piece of
code in your application that is executed in response to a broadcasted event even if your
application had not been started or was just dormant at the time of the event. How to work
with broadcast receivers is covered in Chapter 16.

As you start using more and more features of Android such as services, broadcast receivers,
and content providers you will need to understand how Android uses a single main thread to
run the code in these components. This threading model is covered in detail in Chapter 14.
Knowing this will help you write code that is robust. In this track, you will also learn about
the very useful AsyncTask, which is used to simplify offloading work from the main thread.
This API is often used from UI to read messages from the web or check for e-mails, etc.
AsyncTask is covered in Chapter 15.

Track 5: Bringing Finesse to Your Apps
To make your apps look appealing, one of the first things you can do is to add a little or a
lot of animation. This is covered in Chapter 18. Touch-based interfaces are now the norm.
Manipulating your environment with drag and drop is more natural. You want to employ
sensors to write apps that integrate with the external world better. These touch screens,
drag and drop, and sensors are respectively covered in Chapters 22, 23, and 24.

Home screen widgets are a wonderful way to extract pieces of your app and make it
available on any home screen of your choosing. This personalization feature, when used
innovatively with value in mind, makes the interaction with the device simple and joyful.
Widgets are covered in Chapter 21.

65CHAPTER 2: Introduction to Android Application Architecture

Map- and location-based apps are made for mobile devices. This topic is covered in
Chapter 19.

You can very easily integrate audio and video into your apps on Android. This API is covered
in Chapter 20.

Track 6: Integrating with Other Devices and the Cloud
You can use Google cloud messaging to reach out to the users of your mobile applications.
Google cloud messaging is covered in Chapter 29. With NFC and Bluetooth capabilities in
Android you can start interacting with your physical environment in your apps. We hope to
post some material on these topics to the online companion for the book.

Final Track: Getting a Helping Hand from Expert Android
Now, we are going to talk about a few topics that are not covered in this book. You may
want to consider these topics, should you find them relevant to your needs. Most of these
are based on our research for the Expert Android book that we published in early 2014
through Apress.

Android has a public API to write custom components that can work and behave differently
than what come out of the box. You can write custom views where you can control what to
draw and how to draw, which can then coexist with other controls that are out of the box like
a button or a text control. You can also combine multiple existing controls into a compound
control that can then behave like an independent control. You can also design new
layouts that suit your display needs. There are a lot of tricky things to create these custom
components well. You have to understand the core Android view architecture. This material
is covered over three chapters and 100 pages in the Expert Android book from Apress.

If your apps are form based, you will need to write a lot of code to validate the form input.
You really need a framework to handle this. Expert Android has a chapter on creating a small
form processing framework that is really useful and will reduce errors and the amount of
code you need to write.

MBAAS, Mobile Backend as a Service, is a needed technology for mobile apps and is
now pretty widely available. The facilities an MBAAS offers are user logins, social logins,
user management, savind data on behalf of users in the cloud, communication with the
users, collaboration between the users themselves, etc. In Expert Android we have multiple
chapters dedicated to an MBAAS platform called Parse.

OpenGL has come a long way on Android with now-substantial support for the new
generation of programmable GPUs. Android has been supporting ES 2.0 for some time
now. In Expert Android we have over 100 pages of coverage on OpenGL. We start at the
beginning and explain all the concepts without needing to refer to external books, although
we do give an extensive bibliography on OpenGL. We cover ES 2.0 really well and provide
guidance to combine OpenGL and regular views to pave the way for 3D components.

Federated search protocol of Android is powerful as you can use it in quite a few imaginative
ways. Expert Android fully explores its fundamentals and also some alternate ways of using
it optimally.

www.allitebooks.com

http://www.allitebooks.org

66 CHAPTER 2: Introduction to Android Application Architecture

Android provides an increasingly large set of features for debugging. These topics are covered
in Expert Android. A cell phone is ultimately a talking device, although it is used less and less
often for that. We have a chapter on utilizing the telephony API in Expert Android as well.

As We Leave You Now with the Rest of the Book
Finally, you may be wondering why you should even become a mobile developer. We can cite
two strong arguments, one of which never existed before. The familiar one is to be part of
an IT organization for their mobile programming efforts. The IT opportunities are on the rise
but not fully realized yet unlike what happened with the Web programming paradigm when it
came into being. We expect this need, however, to be a gradually increasing demand.

On the other hand, the immediate and exciting opportunity is for you to become an
independent app publisher. The availability of a sales channel for the apps that you write is
a unique one in the software industry. Not every one of us is going to be a rising star in an IT
organization. The independent developer path gives an avenue for you to grow at your own
pace and in a direction that satisfies you. Luck and patience might even make you rich. At
least you can add value to the society while meeting your needs.

Should you decide to venture into the Android mobile programming space, you want to be
prepared with the right hardware that makes this experience bearable. If you are buying a
Windows laptop see if you can get one with at least 8G of memory, solid-state hard drive,
and a reasonably fast processor. Expect to spend about $1,000 to $1,500. If you are buying
a Mac laptop, a similar configuration may cost you about $2,500. A good fast configuration
is important for Android development. If you are a seasoned Java programmer, given this
investment, and this book in hand, if you follow the tracks laid out here you can become a
competent mobile Android app developer in about six months.

References
Here are additional resources for the topics discussed in this chapter.

	http://androidbook.com/free-android-chapters: You can use this URL
to download detailed chapters on resources and intents (made available
free from previous editions due to space limitations).

	http://androidbook.com/working-with-avds: You will find at this URL
notes on installing Android, working with AVDs, signing APK files, and
more to get you started with Android.

	http://androidbook.com/item/3574: This URL shows how to run an
Android application on a device from the eclipse ADT. This link also
shows you how to hook up your device through a USB port to your
development computer.

	http://androidbook.com/item/4629: This URL talks about key callback
functions on an activity. Monitoring the activity callbacks is a good way
to get a handle on the activity life cycle. You can copy the code from
here to create a base activity that can monitor and log these callbacks
for you.

http://androidbook.com/free-android-chapters
http://androidbook.com/working-with-avds
http://androidbook.com/item/3574
http://androidbook.com/item/4629

67CHAPTER 2: Introduction to Android Application Architecture

	http://androidbook.com/item/4440: This URL talks about how you can
use GSON and JSON for persistence needs of your application. This
article suggests an easy way to persist data on the device for your apps.

	Expert Android from Apress talks about passing objects through Android
bundles as parcelables in depth.

	http://developer.android.com/guide/topics/resources/index.html:
Android SDK roadmap to the documentation on resources.

	http://developer.android.com/guide/topics/resources/available-
resources.html: Android documentation of various types of resources
available.

	http://developer.android.com/guide/topics/resources/providing-
resources.html#AlternativeResources: A list of various configuration
qualifiers provided by the latest Android SDK.

	http://developer.android.com/guide/practices/screens_support.
html: Guidelines on how to design Android applications for multiple
screen sizes.

	http://developer.android.com/reference/android/content/res/
Resources.html: Various Java methods available to read resources.

	http://developer.android.com/reference/android/R.html: Resources
as defined to the core Android platform.

	http://androidbook.com/item/3542: Our research on plurals, string
arrays, resource qualifiers, and alternate resources, as well as links to
other references.

	http://androidbook.com/item/4236: Using drawable resources to
control backgrounds.

	http://developer.android.com/training/notepad/index.html:
A beginner’s guide, yet a comprehensive introduction to Android
applications through a NotePad example.

	http://developer.android.com/reference/android/content/Intent.
html: Overview of intents, including well-known actions, extras,
and so on.

	http://developer.android.com/guide/appendix/g-app-intents.html:
Lists the intents for a set of Google applications. Here, you will see here
how to invoke Browser, Map, Dialer, and Google Street View.

	http://developer.android.com/reference/android/content/
IntentFilter.html: Talks about intent filters and is useful when you
are registering intent filters for activities and other components in the
manifest file.

	http://developer.android.com/guide/topics/intents/intents-
filters.html: Goes into the resolution rules of intent filters.

http://androidbook.com/item/4440
http://developer.android.com/guide/topics/resources/index.html
http://developer.android.com/guide/topics/resources/available-resources.html
http://developer.android.com/guide/topics/resources/available-resources.html
http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/reference/android/content/res/Resources.html
http://developer.android.com/reference/android/content/res/Resources.html
http://developer.android.com/reference/android/R.html
http://androidbook.com/item/3542
http://androidbook.com/item/4236
http://developer.android.com/training/notepad/index.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/guide/appendix/g-app-intents.html
http://developer.android.com/reference/android/content/IntentFilter.html
http://developer.android.com/reference/android/content/IntentFilter.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/intents/intents-filters.html

68 CHAPTER 2: Introduction to Android Application Architecture

	http://developer.android.com/training/notepad/index.html: URL
where you can download the sample code for a NotePad application.
This is a good sample application that features a number of Android
APIs. A good place to go after the calculator application.

	http://developer.android.com/samples/index.html: This is the primary
link to browse through the various samples presented for the Android
SDK by Google.

	http://developer.android.com/training/index.html: This is the
primary learning site from Google that presents a series of lessons to
learn Android.

	https://code.google.com/p/openintents/: A web effort to make various
Android applications work together.

	http://androidbook.com/item/4623: A roadmap for learning Android.
Although some of these points are covered here, see this URL for the
latest guidance on learning and maximizing Android.

	http://androidbook.com/item/4764: This is a knowledge folder
containing a series of articles and tidbits on programming with Android
basic UI.

	http://www.androidbook.com/proandroid5/projects. Look here for a list
of downloadable projects related to this book. For this chapter, look for
a ZIP file called ProAndroid5_Ch02_Calculator.zip.

Summary
This chapter laid out everything you need to understand to create mobile applications with
the Android SDK. You have seen how UI is constructed. You know what activities are. You
know the intricacies of the activity life cycle. You understood resources and intents. You
know how to save state. Finally, you got to see the breadth of the Android SDK by reading
the learning tracks that summarized the rest of the book. We hope these first two chapters
gave you a head start for your development efforts with the Android SDK.

http://developer.android.com/training/notepad/index.html
http://developer.android.com/samples/index.html
http://developer.android.com/training/index.html
https://code.google.com/p/openintents/
http://androidbook.com/item/4623
http://androidbook.com/item/4764
http://www.androidbook.com/proandroid5/projects

69

Chapter 3
Building Basic User Interfaces
and Using Controls

The previous chapter gave you a crash course in some of the UI elements available in
Android, and how to put them together quickly to create the calculator application. While that
was fun, we hope you started thinking about what other UI widgets are available in Android,
over and above the TextView, EditText, and Button controls introduced in Chapter 2.

In this chapter, we are going to discuss user interfaces and controls in detail. We will begin
by discussing the general philosophy of UI development in Android, and then we’ll describe
many of the UI controls that ship with the Android SDK. These are the building blocks of the
interfaces you’ll create. In the subsequent chapters, we will also discuss view adapters
and layout managers, and you’ll see how they build on the basic controls we introduce in
this chapter.

By the end of this chapter, you’ll have a solid understanding of the many UI controls
available in the stock Android toolset, and how to lay out UI controls into screens and
populate them with data.

UI Development in Android
UI development in Android is fun. It’s fun because it’s relatively easy. With Android, we
have a simple-to-understand framework with a limited set of out-of-the-box controls. The
available screen area is generally limited—on phones if not on tablets—and this guides
the underlying philosophy of “simple power” for Android controls. Android also takes care
of a lot of the heavy lifting normally associated to designing and building quality UIs. This,
combined with the fact that the user usually wants to do one specific action, allows us to
easily build a good UI to deliver a good user experience.

The Android SDK ships with a host of controls that you can use to build UIs for your application.
Similar to other SDKs, the Android SDK provides text fields, buttons, lists, grids, and so on.
In addition, Android provides a collection of controls that are appropriate for mobile devices.

http://dx.doi.org/10.1007/9781430246800_2

70 CHAPTER 3: Building Basic User Interfaces and Using Controls

At the heart of the common controls are two classes: android.view.View and android.view.
ViewGroup. As the name of the first class suggests, the View class represents a general-purpose
View object. The common controls in Android ultimately extend the View class. ViewGroup is also
a view, but it contains other views too. ViewGroup is the base class for a list of layout classes.
Android, like Swing, uses the concept of layouts to manage how controls are laid out within
a container view. Using layouts, as we’ll see, makes it easy for us to control the position and
orientation of the controls in our UIs.

You can choose from several approaches to build UIs in Android. You can construct UIs
entirely in code. You can also define UIs in XML. You can even combine the two—define the
UI in XML and then refer to it, and modify it, in code. To demonstrate this, in this chapter we
are going to build a simple UI using each of these three approaches.

Before we get started, let’s define some nomenclature. In this book and other Android
literature, you will find the terms view, control, widget, container, and layout in discussions
regarding UI development. If you are new to Android programming or UI development in
general, you might not be familiar with these terms. We’ll briefly describe them before we get
started (see Table 3-1).

Table 3-1. UI Nomenclature

Term Description

View, widget, control Each of these represents a UI element. Examples include a button, a grid, a
list, a window, a dialog box, and so on. The terms view, widget, and control
are used interchangeably in this chapter.

Container This is a view used to contain other views. For example, a grid can be
considered a container because it contains cells, each of which is a view.

Layout This is a visual arrangement of containers and views and can include
other layouts. We will work with layouts in this chapter and return for a full
exploration of Android’s Layout features in Chapter 5.

Figure 3-1. The UI and layout of an activity

Figure 3-1 shows a screenshot of the application that we are going to build. Next to the
screenshot is the layout hierarchy of the controls and containers in the application.

http://dx.doi.org/10.1007/9781430246800_5

71CHAPTER 3: Building Basic User Interfaces and Using Controls

We will refer to this layout hierarchy as we discuss the sample programs. For now, know that
the application has one activity. The UI for the activity is composed of three containers: a
container that contains a person’s name, a container that contains the address, and an outer
parent container for the child containers.

Building a UI Completely in Code
The first example, Listing 3-1, demonstrates how to build the UI entirely in code. To try this,
create a new Android Application project using a project name of controls, a package name
of com.androidbook.controls, and with an activity named MainActivity and then copy the
code from Listing 3-1 into your MainActivity class.

Note We will give you a URL at the end of the chapter that you can use to download projects from
this chapter. This will allow you to import these projects into Eclipse directly instead of copying and
pasting code.

Listing 3-1. Creating a Simple User Interface Entirely in Code

package com.androidbook.controls;
import android.app.Activity;
import android.os.Bundle;
import android.view.ViewGroup.LayoutParams;
import android.widget.LinearLayout;
import android.widget.TextView;
public class MainActivity extends Activity
{
 private LinearLayout nameContainer;

 private LinearLayout addressContainer;

 private LinearLayout parentContainer;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 createNameContainer();

 createAddressContainer();

 createParentContainer();

 setContentView(parentContainer);
 }

72 CHAPTER 3: Building Basic User Interfaces and Using Controls

 private void createNameContainer()
 {
 nameContainer = new LinearLayout(this);

 nameContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.WRAP_CONTENT));
 nameContainer.setOrientation(LinearLayout.HORIZONTAL);

 TextView nameLbl = new TextView(this);
 nameLbl.setText("Name: ");

 TextView nameValue = new TextView(this);
 nameValue.setText("John Doe");

 nameContainer.addView(nameLbl);
 nameContainer.addView(nameValue);
 }

 private void createAddressContainer()
 {
 addressContainer = new LinearLayout(this);

 addressContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.WRAP_CONTENT));
 addressContainer.setOrientation(LinearLayout.VERTICAL);

 TextView addrLbl = new TextView(this);
 addrLbl.setText("Address:");

 TextView addrValue = new TextView(this);
 addrValue.setText("911 Hollywood Blvd");

 addressContainer.addView(addrLbl);
 addressContainer.addView(addrValue);
 }

 private void createParentContainer()
 {
 parentContainer = new LinearLayout(this);

 parentContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.FILL_PARENT));
 parentContainer.setOrientation(LinearLayout.VERTICAL);

 parentContainer.addView(nameContainer);
 parentContainer.addView(addressContainer);
 }
}

As shown in Listing 3-1, the activity contains three LinearLayout objects. We will be
discussing layouts in much more depth in Chapter 5, but there’s a little chicken-and-egg
issue of needing to know just a little about layouts so one can learn about the many basic

http://dx.doi.org/10.1007/9781430246800_5

73CHAPTER 3: Building Basic User Interfaces and Using Controls

controls. For now, it’s enough to know that layout objects contain logic to position objects
within a portion of the screen. A LinearLayout, for example, knows how to lay out controls
either vertically or horizontally. Layout objects can contain any type of view—even other
layouts.

The nameContainer object contains two TextView controls: one for the label Name: and the
other to hold the actual text for the name (such as John Doe). The addressContainer also
contains two TextView controls. The difference between the two containers is that the
nameContainer is laid out horizontally and the addressContainer is laid out vertically. Both
of these containers live within the parentContainer, which is the root view of the activity.
After the containers have been built, the activity sets the content of the view to the root
view by calling setContentView(parentContainer). When it comes time to render the UI of
the activity, the root view is called to render itself. The root view then calls its children to
render themselves, and the child controls call their children, and so on, until the entire UI is
rendered.

As shown in Listing 3-1, we have several LinearLayout controls. Two of them are laid out
vertically, and one is laid out horizontally. The nameContainer is laid out horizontally. This
means the two TextView controls appear side by side horizontally. The addressContainer
is laid out vertically, which means the two TextView controls are stacked one on top of
the other. The parentContainer is also laid out vertically, which is why the nameContainer
appears above the addressContainer. Note a subtle difference between the two vertically
laid-out containers, addressContainer and parentContainer. parentContainer is set to take
up the entire width and height of the screen:

parentContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.FILL_PARENT));

and addressContainer wraps its content vertically:

addressContainer.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.WRAP_CONTENT));

Said another way, WRAP_CONTENT means the view should take just the space it needs in that
dimension and no more, up to what the containing view will allow. For the addressContainer,
this means the container will take two lines vertically, because that’s all it needs for the
dummy address we have provided.

Building a UI Completely in XML
Now let’s build the same UI in XML (see Listing 3-2). XML layout files are stored under
the resources (/res/) directory in a folder called layout. To try this example, create a new
Android project in Eclipse. By default, you will get an XML layout file named activity_main.
xml, located under the res/layout folder. Double-click activity_main.xml to see the
contents. Eclipse will display a visual editor for your layout file. You probably have a string
at the top of the view that says “Hello World, MainActivity!” or something like that. Click the
activity_main.xml tab at the bottom of the view to see the XML of the activity_main.xml file.
This reveals a LinearLayout and a TextView control. Using either the Layout or activity_main.xml
tab, or both, re-create Listing 3-2 in the activity_main.xml file. Save it.

74 CHAPTER 3: Building Basic User Interfaces and Using Controls

Listing 3-2. Creating a User Interface Entirely in XML

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <!-- NAME CONTAINER -->
 <LinearLayout android:orientation="horizontal" android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Name:" />

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="John Doe" />

 </LinearLayout>

 <!-- ADDRESS CONTAINER -->
 <LinearLayout android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="Address:" />

 <TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="911 Hollywood Blvd" />
 </LinearLayout>

</LinearLayout>

Under your new project’s src directory, there is a .java file containing an Activity class
definition. Double-click that file to see its contents. Notice the statement setContentView
(R.layout.activity_main). The XML snippet shown in Listing 3-2, combined with a call
to setContentView(R.layout.activity_main), will render the same UI as before when we
generated it completely in code. The XML file is self-explanatory, but note that we have three
container views defined. The first LinearLayout is the equivalent of our parent container.
This container sets its orientation to vertical by setting the corresponding property like
this: android:orientation="vertical". The parent container contains two LinearLayout
containers, which represent nameContainer and addressContainer.

Running this application will produce the same UI as our previous example application.
The labels and values will be displayed as shown in Figure 3-1.

Building a UI in XML with Code
Listing 3-2 is a contrived example. It doesn’t make any sense to hard-code the values of
the TextView controls in the XML layout. Ideally, we should design our UIs in XML and then
reference the controls from code. This approach enables us to bind dynamic data to the
controls defined at design time. In fact, this is the recommended approach. It is fairly easy to
build layouts in XML and then use code to populate the dynamic data.

http://schemas.android.com/apk/res/android

75CHAPTER 3: Building Basic User Interfaces and Using Controls

Listing 3-3 shows the same UI with slightly different XML. This XML assigns IDs to the
TextView controls so that we can refer to them in code.

Listing 3-3. Creating a User Interface in XML with IDs

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <!-- NAME CONTAINER -->
 <LinearLayout android:orientation="horizontal" android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="@string/name_text" />

 <TextView android:id="@+id/nameValue"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 </LinearLayout>

 <!-- ADDRESS CONTAINER -->
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="@string/addr_text" />

 <TextView android:id="@+id/addrValue"
 android:layout_width="fill_parent" android:layout_height="wrap_content" />
 </LinearLayout>

</LinearLayout>

In addition to adding the IDs to the TextView controls that we want to populate from code,
we also have label TextView controls that we’re populating with text from our strings
resource file. These are the TextViews without IDs that have an android:text attribute. The
actual strings for these TextViews will come from our strings.xml file in the /res/values
folder. Listing 3-4 shows what our strings.xml file might look like.

Listing 3-4. strings.xml File for Listing 3-3

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Common Controls</string>
 <string name="name_text">Name:</string>
 <string name="addr_text">Address:</string>
</resources>

The code in Listing 3-5 demonstrates how you can obtain references to the controls defined in
the XML to set their properties. You might put this into your onCreate() method for your activity.

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

76 CHAPTER 3: Building Basic User Interfaces and Using Controls

Listing 3-5. Referring to Controls in Resources at Runtime

setContentView(R.layout.activity_main);
TextView nameValue = (TextView)findViewById(R.id.nameValue);
nameValue.setText("John Doe");
TextView addrValue = (TextView)findViewById(R.id.addrValue);
addrValue.setText("911 Hollywood Blvd.");

The code in Listing 3-5 is straightforward, but note that we load the resource by calling
setContentView(R.layout.activity_main) before calling findViewById()—we cannot get
references to views if they have not been loaded yet.

The developers of Android have done a nice job of making just about every aspect of a
control settable via XML or code. It’s usually a good idea to set the control’s attributes in the
XML layout file rather than using code. However, there will be a variety of times when you
need to use code, such as setting a value to be displayed to the user.

FILL_PARENT vs. MATCH_PARENT
The constant FILL_PARENT was deprecated in Android 2.2 and replaced with MATCH_PARENT.
This was strictly a name change, though. The value of this constant is still –1. Similarly, for
XML layouts, fill_parent was replaced with match_parent. So what value do you use?
Instead of FILL_PARENT or MATCH_PARENT, you could simply use the value –1, and you’d be
fine. However, this isn’t very easy to read, and you don’t have an equivalent unnamed value
to use with your XML layouts. There’s a better way.

Depending on which Android APIs you need to use in your application, you can either build
your application against a version of Android before 2.2 and rely on forward compatibility or
build your application against version 2.2 or later of Android and set minSdkVersion to the
lowest version of Android your application will run on. For example, if you only need APIs
that existed in Android 1.6, build against Android 1.6 and use FILL_PARENT and fill_parent.
Your application should run with no problems in all later versions of Android including
2.2 and beyond. If you need APIs from Android 2.2 or later, go ahead and build against
that version of Android, use MATCH_PARENT and match_parent, and set minSdkVersion to
something older: for example, 4 (for Android 1.6). You can still deploy an Android application
built in Android 2.2 to an older version of Android, but you’ll have to be careful about the
classes and/or methods that aren’t in the earlier releases of the Android SDK. There are
ways around this, such as using reflection or creating wrapper classes to handle differences
in Android versions. We will cover those advanced topics in later chapters.

Understanding Android’s Common Controls
We will now start our discussion of the common controls in the Android SDK. We’ll start with
text controls and then cover buttons, check boxes, radio buttons, lists, grids, date and time
controls, and a map-view control. These will go hand in hand with the layout controls we’ll
introduce in Chapter 4.

http://dx.doi.org/10.1007/9781430246800_4

77CHAPTER 3: Building Basic User Interfaces and Using Controls

Text Controls
Text controls are likely to be the first type of control that you’ll work with in Android. Android
has a complete but not overwhelming set of text controls. In this section, we are going to
discuss the TextView, EditText, AutoCompleteTextView, and MultiAutoCompleteTextView
controls. Figure 3-2 shows the controls in action.

Figure 3-2. Text controls in Android

TextView
You’ve already seen a simple XML specification for a TextView control, in Listing 3-3, and how
to handle TextViews in code in Listing 3-4. Notice how we specified the ID, width, height, and
value of the text in XML and how we set the value using the setText() method. The TextView
control knows how to display text but does not allow editing. This might lead you to conclude
that the control is essentially a dummy label. Not true. The TextView control has a few
interesting properties that make it very handy. If you know that the content of the TextView
is going to contain a web URL or an e-mail address, for example, you can set the autoLink
property to email|web, and the control will find and highlight any e-mail addresses and URLs.
Moreover, when the user clicks one of these highlighted items, the system will take care of
launching the e-mail application with the e-mail address or a browser with the URL. In XML,
this attribute would be inside the TextView tag and would look something like this:

<TextView ... android:autoLink="email|web" ... />

78 CHAPTER 3: Building Basic User Interfaces and Using Controls

You specify a pipe-delimited set of values including web, email, phone, or map, or use none
(the default) or all. If you want to set autoLink behavior in code instead of using XML, the
corresponding method call is setAutoLinkMask(). You would pass it an int representing
the combination of values sort of like before, such as Linkify.EMAIL_ADDRESSES|Linkify.
WEB_URLS. To achieve this functionality, TextView is utilizing the android.text.util.Linkify
class. Listing 3-6 shows an example of auto-linking with code.

Listing 3-6. Using Linkify on Text in a TextView

TextView tv =(TextView)this.findViewById(R.id.tv);
tv.setAutoLinkMask(Linkify.ALL);
tv.setText("Please visit my website, http://www.androidbook.com
or email me at davemac327@gmail.com.");

Notice that we set the auto-link options on our TextView before we set the text. This is
important because setting the auto-link options after setting the text won’t affect the existing
text. Because we’re using code to add hyperlinks to our text, our XML for the TextView in
Listing 3-6 does not require any special attributes and can look as simple as this:

<TextView android:id="@+id/tv" android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

If you want to, you can invoke the static addLinks() method of the Linkify class to find
and add links to the content of any TextView or any Spannable on demand. Instead of using
setAutoLinkMask(), we could have done the following after setting the text:

Linkify.addLinks(tv, Linkify.ALL);

Clicking a link will cause the default intent to be called for that action. For example, clicking
a web URL will launch the browser with the URL. Clicking a phone number will launch the
phone dialer, and so on. The Linkify class can perform this work right out of the box.

Linkify can also detect custom patterns you want to look for, decide whether they are a
match for something you decide needs to be clickable, and set up how to fire an intent to
make a click turn into some sort of action. We won’t go into those details here, but know
that these things can be done.

There are many more features of TextView to explore, from font attributes to minLines and
maxLines and many more. These are fairly self-explanatory, and you are encouraged to
experiment to see how you might be able to use them. Although you should keep in mind
that some functionality in the TextView class is not applicable to a read-only field, the
functionality is there for the subclasses of TextView, one of which we will cover next.

EditText
The EditText control is a subclass of TextView. As suggested by the name, the EditText
control allows for text editing. EditText is not as powerful as the text-editing controls that
you find on the Internet, but users of Android-based devices probably won’t type documents
directly into an EditText control—they’ll type a couple of paragraphs at most or use a more
fully functional HTML-based page instead. Therefore, the class has limited but appropriate
functionality and may even surprise you. For example, one of the most significant properties

http://www.androidbook.com/
http://davemac327@gmail.com

79CHAPTER 3: Building Basic User Interfaces and Using Controls

of an EditText is the inputType. You can set the inputType property to textAutoCorrect to
have the control correct common misspellings. You can set it to textCapWords to have the
control capitalize words. Other options expect only phone numbers or passwords.

There are older, now deprecated, ways of specifying capitalization, multiline text, and other
features. If these are specified without an inputType property, they can be read; but if
inputType is specified, these older properties are ignored.

The old default behavior of the EditText control is to display text on one line and expand
as needed. In other words, if the user types past the first line, another line will appear,
and so on. You could, however, force the user to a single line by setting the singleLine
property to true. In this case, the user will have to continue typing on the same line. With
inputType, if you don’t specify textMultiLine, the EditText will default to single-line only. So
if you want the old default behavior of multiline typing, you need to specify inputType with
textMultiLine.

One of the nice features of EditText is that you can specify hint text. This text will be
displayed slightly faded and disappears as soon as the user starts to type text. The purpose
of the hint is to let the user know what is expected in this field, without the user having to
select and erase default text. In XML, this attribute is android:hint="your hint text here"
or android:hint="@string/your_hint_name", where your_hint_name is a resource name
of a string to be found in /res/values/strings.xml. In code, you would call the setHint()
method with either a CharSequence or a resource ID.

AutoCompleteTextView
The AutoCompleteTextView control is a TextView with auto-complete functionality. In other
words, as the user types in the TextView, the control can display suggestions for selection.
Listing 3-7 demonstrates the AutoCompleteTextView control with XML and with the
corresponding code.

Listing 3-7. Using an AutoCompleteTextView Control

<AutoCompleteTextView android:id="@+id/actv"
 android:layout_width="fill_parent" android:layout_height="wrap_content" />
 AutoCompleteTextView actv = (AutoCompleteTextView) this.findViewById(R.id.actv);

ArrayAdapter<String> aa = new ArrayAdapter<String>(this,
 android.R.layout.simple_dropdown_item_1line,
 new String[] {"English", "Hebrew", "Hindi", "Spanish",
 "German", "Greek" });

actv.setAdapter(aa);

The AutoCompleteTextView control shown in Listing 3-7 suggests a language to the user. For
example, if the user types en, the control suggests English. If the user types gr, the control
recommends Greek, and so on.

If you have used a suggestion control or a similar auto-complete control, you know
that controls like this have two parts: a text-view control and a control that displays the
suggestion(s). That’s the general concept. To use a control like this, you have to create the

80 CHAPTER 3: Building Basic User Interfaces and Using Controls

control, create the list of suggestions, tell the control the list of suggestions, and possibly tell
the control how to display the suggestions. Alternatively, you could create a second control
for the suggestions and then associate the two controls.

Android has made this simple, as is evident from Listing 3-7. To use an
AutoCompleteTextView, you can define the control in your layout file and reference it in your
activity. You then create an adapter class that holds the suggestions and define the ID of
the control that will show the suggestion (in this case, a simple list item). In Listing 3-7, the
second parameter to the ArrayAdapter tells the adapter to use a simple list item to show the
suggestion. The final step is to associate the adapter with the AutoCompleteTextView, which
you do using the setAdapter() method. Don’t worry about the adapter for the moment; we’ll
cover those later in this chapter.

MultiAutoCompleteTextView
If you have played with the AutoCompleteTextView control, you know that the control offers
suggestions only for the entire text in the text view. In other words, if you type a sentence,
you don’t get suggestions for each word. That’s where MultiAutoCompleteTextView comes
in. You can use the MultiAutoCompleteTextView to provide suggestions as the user types.
For example, Figure 3-2 shows that the user typed the word English followed by a comma,
and then Ge, at which point the control suggested German. If the user were to continue, the
control would offer additional suggestions.

Using the MultiAutoCompleteTextView is like using the AutoCompleteTextView. The difference
is that you have to tell the control where to start suggesting again. For example, in Figure 3-2,
you can see that the control can offer suggestions at the beginning of the sentence and after it
sees a comma. The MultiAutoCompleteTextView control requires that you give it a tokenizer that
can parse the sentence and tell it whether to start suggesting again. Listing 3-8 demonstrates
using the MultiAutoCompleteTextView control with the XML and then the Java code.

Listing 3-8. Using the MultiAutoCompleteTextView Control

<MultiAutoCompleteTextView android:id="@+id/mactv"
 android:layout_width="fill_parent" android:layout_height="wrap_content" />

MultiAutoCompleteTextView mactv = (MultiAutoCompleteTextView) this
 .findViewById(R.id.mactv);
ArrayAdapter<String> aa2 = new ArrayAdapter<String>(this,
 android.R.layout.simple_dropdown_item_1line,
new String[] {"English", "Hebrew", "Hindi", "Spanish", "German", "Greek" });

mactv.setAdapter(aa2);

mactv.setTokenizer(new MultiAutoCompleteTextView.CommaTokenizer());

The only significant differences between Listings 3-7 and 3-8 are the use of
MultiAutoCompleteTextView and the call to the setTokenizer() method. Because of the
CommaTokenizer in this case, after a comma is typed into the EditText field, the field will
again make suggestions using the array of strings. Any other characters typed in will not
trigger the field to make suggestions. So even if you were to type French Spani, the partial

81CHAPTER 3: Building Basic User Interfaces and Using Controls

word Spani would not trigger the suggestion because it did not follow a comma. Android
provides another tokenizer for e-mail addresses called Rfc822Tokenizer. You can always
create your own tokenizer if you want to.

Button Controls
Buttons are common in any widget toolkit, and Android is no exception. Android offers the
typical set of buttons as well as a few extras. In this section, we will discuss three types of
button controls: the basic button, the image button, and the toggle button. Figure 3-3 shows
a UI with these controls. The button at the top is the basic button, the middle button is an
image button, and the last one is a toggle button.

Figure 3-3. Android button controls

Let’s get started with the basic button.

The Button Control
The basic button class in Android is android.widget.Button. There’s not much to this type
of button, beyond how you use it to handle click events. Listing 3-9 shows a fragment of an
XML layout for the Button control, plus some Java that we might set up in the onCreate()
method of our activity. Our basic button would look like the top button in Figure 3-3.

Listing 3-9. Handling Click Events on a Button

<Button android:id="@+id/button1"
 android:text="@string/basicBtnLabel"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />

82 CHAPTER 3: Building Basic User Interfaces and Using Controls

Button button1 = (Button)this.findViewById(R.id.button1);
button1.setOnClickListener(new OnClickListener()
{
 public void onClick(View v)
 {
 Intent intent = new Intent(Intent.ACTION_VIEW,
 Uri.parse("http://www.androidbook.com"));
 startActivity(intent);
 }
});

Listing 3-9 shows how to register for a button-click event. You register for the on-click event
by calling the setOnClickListener() method with an OnClickListener. In Listing 3-9, an
anonymous listener is created on the fly to handle click events for button1. When the button
is clicked, the onClick() method of the listener is called and, in this case, launches the
browser to our web site.

Since Android SDK 1.6, there is an easier way to set up a click handler for your button or
buttons. Listing 3-10 shows the XML for a Button where you specify an attribute for the
handler, plus the Java code that is the click handler.

Listing 3-10. Setting Up a Click Handler for a Button

<Button ... android:onClick="myClickHandler" ... />

 public void myClickHandler(View target) {
 switch(target.getId()) {
 case R.id.button1:
 ...

The handler method will be called with target set to the View object representing the button
that was clicked. Notice how the switch statement in the click handler method uses the
resource IDs of the buttons to select the logic to run. Using this method means you won’t
have to explicitly create each Button object in your code, and you can reuse the same
method across multiple buttons. This makes things easier to understand and maintain. This
works with the other button types as well.

The ImageButton Control
Android provides an image button via android.widget.ImageButton. Using an image button
is similar to using the basic button (see Listing 3-11). Our image button would look like the
middle button in Figure 3-3.

Listing 3-11. Using an ImageButton

<ImageButton android:id="@+id/imageButton2"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:onClick="myClickHandler"
 android:src="@drawable/icon" />

ImageButton imageButton2 = (ImageButton)this.findViewById(R.id.imageButton2);
imageButton2.setImageResource(R.drawable.icon);

http://www.androidbook.com/

83CHAPTER 3: Building Basic User Interfaces and Using Controls

Here we’ve created the image button in XML and set the button’s image from a drawable
resource. The image file for the button must exist under /res/drawable. In our case, we’re
simply reusing the Android icon for the button. We also show in Listing 3-11 how you can
set the button’s image dynamically by calling setImageResource() method on the button and
passing it a resource ID. Note that you only need to do one or the other. You don’t need to
specify the button image both in the XML file and in code.

One of the nice features of an image button is that you can specify a transparent
background for the button. The result will be a clickable image that acts like a button but
can look like whatever you want it to look like. Just set android:background="@null" for the
image button.

Because your image may be something very different than a standard button, you can
customize how the button looks in the two other states it can be in when used in your UI.
Besides appearing as normal, buttons can have focus, and they can be pressed. Having
focus simply means the button is currently where events will go. You can direct focus to a
button using the arrow keys on the keypad or D-pad, for example. Pressed means that the
button’s appearance changes when it has been pressed but before the user has let go. To
tell Android what the three images are for our button, and which one is which, we set up a
selector. This is a simple XML file, imagebuttonselector, that resides in the /res/drawable
folder of our project. This is somewhat counterintuitive, because this is an XML file and not
an image file, yet that is where the selector file must go. The content of a selector file will
look like Listing 3-12.

Listing 3-12. Using a Selector with an ImageButton

<?xml version="1.0" encoding="utf-8"?>
 <selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_pressed="true"
 android:drawable="@drawable/button_pressed" /> <!-- pressed -->
 <item android:state_focused="true"
 android:drawable="@drawable/button_focused" /> <!-- focused -->
 <item android:drawable="@drawable/icon" /> <!-- default -->
 </selector>

There are several things to note about the selector file. First, you do not specify a
<resources> tag as in values XML files. Second, the order of the button images is important.
Android will test each item in the selector, in order, to see if it matches. Therefore, you want
the normal image to be last so it is used only if the button is not pressed and if the button
does not have focus. If the normal image was listed first, it would always match and be
selected even if the button is pressed or has focus. Of course, the drawables you refer to
must exist in the /res/drawables folder. In the definition of your button in the layout XML
file, you want to set the android:src property to the selector XML file as if it were a regular
drawable, like so:

<Button ... android:src="@drawable/imagebuttonselector" ... />

http://schemas.android.com/apk/res/android

84 CHAPTER 3: Building Basic User Interfaces and Using Controls

The ToggleButton Control
The ToggleButton control, like a check box or a radio button, is a two-state button. This
button can be in either the On or Off state. As shown in Figure 3-3, the ToggleButton’s
default behavior is to show a colored bar when in the On state and a grayed-out bar when
in the Off state. Moreover, the default behavior also sets the button’s text to On when it’s in
the On state and Off when it’s in the Off state. You can modify the text for the ToggleButton
if On/Off is not appropriate for your application. For example, if you have a background
process that you want to start and stop via a ToggleButton, you could set the button’s text
to Stop and Run by using android:textOn and android:textOff properties.

Listing 3-13 shows an example. Our toggle button is the bottom button in Figure 3-3, and it
is in the On position, so the label on the button says Stop.

Listing 3-13. The Android ToggleButton

<ToggleButton android:id="@+id/cctglBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Toggle Button"
 android:textOn="Stop"
 android:textOff="Run"/>

Because ToggleButtons have on and off text as separate attributes, the android:text
attribute of a ToggleButton is not really used. It’s available because it has been inherited
(from TextView), but in this case, you don’t need to use it.

The CheckBox Control
The CheckBox control is another two-state button that allows the user to toggle its state.
The difference is that, for many situations, the users don’t view it as a button that invokes
immediate action. From Android’s point of view, however, it is a button, and you can do
anything with a check box that you can do with a button.

In Android, you can create a check box by creating an instance of android.widget.CheckBox.
See Listing 3-14 and Figure 3-4.

Listing 3-14. Creating Check Boxes

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<CheckBox android:id="@+id/chickenCB"
 android:text="Chicken"
 android:checked="true"
 android:layout_width=""wrap_content"
 android:layout_height="wrap_content" />

http://schemas.android.com/apk/res/android

85CHAPTER 3: Building Basic User Interfaces and Using Controls

<CheckBox android:id="@+id/fishCB"
 android:text="Fish"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

<CheckBox android:id="@+id/steakCB"
 android:text="Steak"
 android:checked="true"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</LinearLayout>

Figure 3-4. Using the CheckBox control

You manage the state of a check box by calling setChecked() or toggle(). You can obtain
the state by calling isChecked().

If you need to implement specific logic when a check box is checked or unchecked, you
can register for the on-checked event by calling setOnCheckedChangeListener() with an
implementation of the CompoundButton.OnCheckedChangeListener interface. You’ll then have
to implement the onCheckedChanged() method, which will be called when the check box is
checked or unchecked. Listing 3-15 show some code that deals with a CheckBox.

Listing 3-15. Using Check Boxes in Code

public class CheckBoxActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.checkbox);

 CheckBox fishCB = (CheckBox)findViewById(R.id.fishCB);

 if(fishCB.isChecked())
 fishCB.toggle(); // flips the checkbox to unchecked if it was checked

86 CHAPTER 3: Building Basic User Interfaces and Using Controls

 fishCB.setOnCheckedChangeListener(
 new CompoundButton.OnCheckedChangeListener() {

 @Override
 public void onCheckedChanged(CompoundButton arg0, boolean isChecked) {
 Log.v("CheckBoxActivity", "The fish checkbox is now "
 + (isChecked?"checked":"not checked"));
 }});
 }
}

The nice part of setting up the OnCheckedChangeListener is that you are passed the new
state of the CheckBox button. You could instead use the OnClickListener technique as
we used with basic buttons. When the onClick() method is called, you would need
to determine the new state of the button by casting it appropriately and then calling
isChecked() on it. Listing 3-16 shows what this code might look like if we added android:on
Click="myClickHandler" to the XML definition of our CheckBox buttons.

Listing 3-16. Using Check Boxes in Code with android:onClick

public void myClickHandler(View view) {
 switch(view.getId()) {
 case R.id.steakCB:
 Log.v("CheckBoxActivity", "The steak checkbox is now " +
 (((CheckBox)view).isChecked()?"checked":"not checked"));
 }
}

The Switch Control
The Switch widget was introduced in Android 4.0 and provides very similar behavior to the
CheckBox. In fact, the two widgets are so similar, you’ll almost certainly get a sense of deja
vu when reviewing the code for a Switch object. Many people (including some of this book’s
authors) believe that the Switch was introduced for aesthetic reasons more than anything. The
trend in UI design in the last few years has been toward the skewmorphic ideal of widgets
looking like real-world things, and a Switch is a concrete selector in the real world—not many
kitchen appliances have a CheckBox after all.

The Switch similarities to the CheckBox control extend to common methods for examining
and changing state. This mimicking of methods includes setChecked() to turn the Switch on,
isChecked() to test current state, and so on. One aesthetic difference offered by the Switch
widget is the ability to change the associated text between states. Additional methods are
available to control this text:

	getTextOn(): returns the text displayed if the Switch is on.

	getTextOff(): returns the text displayed if the Switch is off.

	setTextOn(): sets the text to be displayed if the Switch is on. While good
design would usually mean one wouldn’t change the text, there are a few
cases where a live update of some metric in the switch text can be helpful.

	setTextOff(): sets the text to be displayed if the Switch is off.

87CHAPTER 3: Building Basic User Interfaces and Using Controls

An example layout including a Switch is shown in Listing 3-17.

Listing 3-17. Creating a Layout Using a Switch

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <Switch
 android:id="@+id/switchdemo"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="This switch is: off" />

</LinearLayout>

Caution Remember that “switch” is a reserved word in Java. So we use an ID that doesn’t clash.

The code for our example Switch in Listing 3-18 should provoke those feelings of deja vu we
mentioned with respect to the CheckBox control.

Listing 3-18. Controlling Switch Behavior in Code

public class SwitchDemo extends Activity
 implements CompoundButton.OnCheckedChangeListener {
 Switch sw;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 sw=(Switch)findViewById(R.id.switchdemo);
 sw.setOnCheckedChangeListener(this);
 }

 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 if (isChecked) {
 sw.setTextOn("This switch is: on");
 }
 else {
 sw.setTextOff("This switch is: off");
 }
 }
}

The results of our Switch work are showing in Figure 3-5.

http://schemas.android.com/apk/res/android

88 CHAPTER 3: Building Basic User Interfaces and Using Controls

The RadioButton Control
RadioButton controls are an integral part of any UI toolkit. A radio button gives the users
several choices and forces them to select a single item. To enforce this single-selection
model, radio buttons generally belong to a group, and each group is forced to have only one
item selected at a time.

To create a group of radio buttons in Android, first create a RadioGroup, and then populate
the group with radio buttons. Listing 3-19 and Figure 3-6 show an example.

Listing 3-19. Using Android RadioButton Widgets

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <RadioGroup
 android:id="@+id/rBtnGrp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="vertical" >

 <RadioButton
 android:id="@+id/chRBtn"
 android:text="Chicken"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

 <RadioButton
 android:id="@+id/fishRBtn"
 android:text="Fish"
 android:checked="true"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

Figure 3-5. Using the Switch control

http://schemas.android.com/apk/res/android

89CHAPTER 3: Building Basic User Interfaces and Using Controls

 <RadioButton
 android:id="@+id/stkRBtn"
 android:text="Steak"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

 </RadioGroup>

</LinearLayout>

Figure 3-6. Using radio buttons

In Android, you implement a radio group using android.widget.RadioGroup and a radio
button using android.widget.RadioButton.

Note that the radio buttons within the radio group are, by default, unchecked to begin
with, although you can set one to checked in the XML definition, as we did with Fish in
Listing 3-19. To set one of the radio buttons to the checked state programmatically, you can
obtain a reference to the radio button and call setChecked():

RadioButton steakBtn = (RadioButton)this.findViewById(R.id.stkRBtn);
steakBtn.setChecked(true);

You can also use the toggle() method to toggle the state of the radio button. As with the
CheckBox control, you will be notified of on-checked or on-unchecked events if you call the
setOnCheckedChangeListener() with an implementation of the OnCheckedChangeListener
interface. There is a slight difference here, though. This is a different class than before.
This time, it’s technically the RadioGroup.OnCheckedChangeListener class acting for the
RadioGroup, whereas before it was the CompoundButton.OnCheckedChangeListener class.

The RadioGroup can also contain views other than the radio button. For example,
Listing 3-20 adds a TextView after the last radio button. Also note that the first radio button
(anotherRadBtn) lies outside the radio group.

90 CHAPTER 3: Building Basic User Interfaces and Using Controls

Listing 3-20. A RadioGroup with More Than Just RadioButtons

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <RadioButton android:id="@+id/anotherRadBtn"
 android:text="Outside"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

 <RadioGroup android:id="@+id/radGrp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

 <RadioButton android:id="@+id/chRBtn"
 android:text="Chicken"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

 <RadioButton android:id="@+id/fishRBtn"
 android:text="Fish"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

 <RadioButton android:id="@+id/stkRBtn"
 android:text="Steak"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

 <TextView android:text="My Favorite"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

 </RadioGroup>
</LinearLayout>

Listing 3-20 shows that you can have non-RadioButton controls inside a radio group. You
should also know that the radio group can only enforce single-selection on the radio buttons
in its own container. That is, the radio button with ID anotherRadBtn will not be affected by
the radio group shown in Listing 3-20 because it is not one of the group’s children.

You can manipulate the RadioGroup programmatically. For example, you can obtain a
reference to a radio group and add a radio button (or other type of control). Listing 3-21
demonstrates this concept.

Listing 3-21. Adding a RadioButton to a RadioGroup in Code

RadioGroup radGrp = (RadioGroup)findViewById(R.id.radGrp);
RadioButton newRadioBtn = new RadioButton(this);
newRadioBtn.setText("Pork");
radGrp.addView(newRadioBtn);

http://schemas.android.com/apk/res/android

91CHAPTER 3: Building Basic User Interfaces and Using Controls

Once a user has checked a radio button within a radio group, the user cannot uncheck it
by clicking it again. The only way to clear all radio buttons in a radio group is to call the
clearCheck() method on the RadioGroup programmatically.

Of course, you want to do something interesting with the RadioGroup. You probably
don’t want to poll each RadioButton to determine whether it’s checked. Fortunately, the
RadioGroup has several methods to help you out. We demonstrate those with Listing 3-22.
The XML for this code is in Listing 3-20.

Listing 3-22. Using a RadioGroup Programmatically

public class RadioGroupActivity extends Activity {
 protected static final String TAG = "RadioGroupActivity";

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.radiogroup);

 RadioGroup radGrp = (RadioGroup)findViewById(R.id.radGrp);

 int checkedRadioButtonId = radGrp.getCheckedRadioButtonId();

 radGrp.setOnCheckedChangeListener(new RadioGroup.OnCheckedChangeListener() {
 @Override
 public void onCheckedChanged(RadioGroup arg0, int id) {
 switch(id) {
 case -1:
 Log.v(TAG, "Choices cleared!");
 break;
 case R.id.chRBtn:
 Log.v(TAG, "Chose Chicken");
 break;
 case R.id.fishRBtn:
 Log.v(TAG, "Chose Fish");
 break;
 case R.id.stkRBtn:
 Log.v(TAG, "Chose Steak");
 break;
 default:
 Log.v(TAG, "Huh?");
 break;
 }
 }});
 }
}

We can always get the currently checked RadioButton using getCheckedRadioButtonId(),
which returns the resource ID of the checked item or –1 if nothing is checked (possible
if there’s no default and the user hasn’t chosen an option yet). We showed this in our
onCreate() method previously, but in reality, you’d want to use it at the appropriate time to

92 CHAPTER 3: Building Basic User Interfaces and Using Controls

read the user’s current choice. We can also set up a listener to be notified immediately when
the user chooses one of the RadioButtons. Notice that the onCheckedChanged() method
takes a RadioGroup parameter, allowing you to use the same OnCheckedChangeListener for
multiple RadioGroups. You may have noticed the switch option of –1. This can also occur if
the RadioGroup is cleared through code using clearCheck().

The ImageView Control
One of the basic controls we haven’t covered yet is the ImageView control. This is used to
display an image, where the image can come from a file, a content provider, or a resource
such as a drawable. You can even specify just a color, and the ImageView will display that
color. Listing 3-23 shows some XML examples of ImageViews, followed by some code that
shows how to create an ImageView.

Listing 3-23. ImageViews in XML and in Code

<ImageView android:id="@+id/image1"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:src="@drawable/icon" />

<ImageView android:id="@+id/image2"
 android:layout_width="125dip" android:layout_height="25dip"
 android:src="#555555" />

<ImageView android:id="@+id/image3"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

<ImageView android:id="@+id/image4"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:src="@drawable/manatee02"
 android:scaleType="centerInside"
 android:maxWidth="35dip" android:maxHeight="50dip"
 />

 ImageView imgView = (ImageView)findViewById(R.id.image3);

 imgView.setImageResource(R.drawable.icon);

 imgView.setImageBitmap(BitmapFactory.decodeResource(
 this.getResources(), R.drawable.manatee14));

 imgView.setImageDrawable(
 Drawable.createFromPath("/mnt/sdcard/dave2.jpg"));

 imgView.setImageURI(Uri.parse("file://mnt/sdcard/dave2.jpg"));

In this example, we have four images defined in XML. The first is simply the icon for our
application. The second is a gray bar that is wider than it is tall. The third definition does
not specify an image source in the XML, but we associate an ID with this one (image3) that
we can use from our code to set the image. The fourth image is another of our drawable

93CHAPTER 3: Building Basic User Interfaces and Using Controls

image files where we not only specify the source of the image file but also set the maximum
dimensions of the image on the screen and define what to do if the image is larger than our
maximum size. In this case, we tell the ImageView to center and scale the image so it fits
inside the size we specified.

In the Java code of Listing 3-23 we show several ways to set the image of image3. We first
of course must get a reference to the ImageView by finding it using its resource ID. The first
setter method, setImageResource(), simply uses the image’s resource ID to locate the image
file to supply the image for our ImageView. The second setter uses the BitmapFactory to
read in an image resource into a Bitmap object and then sets the ImageView to that Bitmap.
Note that we could have done some modifications to the Bitmap before applying it to our
ImageView, but in our case, we used it as is. In addition, the BitmapFactory has several
methods of creating a Bitmap, including from a byte array and an InputStream. You could
use the InputStream method to read an image from a web server, create the Bitmap image,
and then set the ImageView from there.

The third setting uses a Drawable for our image source. In this case, we’re showing the
source of the image coming from the SD card. You’ll need to put some sort of image file
out on the SD card with the proper name for this to work for you. Similar to BitmapFactory,
the Drawable class has a few different ways to construct Drawables, including from an XML
stream.

The final setter method takes the URI of an image file and uses that as the image source. For
this last call, don’t think that you can use any image URI as the source. This method is really
only intended to be used for local images on the device, not for images that you might find
through HTTP. To use Internet-based images as the source for your ImageView, you’d most
likely use BitmapFactory and an InputStream.

Date and Time Controls
Date and time controls are common in many widget toolkits. Android offers several date- and
time-based controls, some of which we’ll discuss in this section. Specifically, we are going
to introduce the DatePicker, TimePicker, DigitalClock, and AnalogClock controls.

The DatePicker and TimePicker Controls
As the names suggest, you use the DatePicker control to select a date and the TimePicker
control to pick a time. Listing 3-24 and Figure 3-7 show examples of these controls.

Listing 3-24. The DatePicker and TimePicker Controls in XML

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <TextView android:id="@+id/dateDefault"
 android:layout_width="fill_parent" android:layout_height="wrap_content" />

http://schemas.android.com/apk/res/android

94 CHAPTER 3: Building Basic User Interfaces and Using Controls

 <DatePicker android:id="@+id/datePicker"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <TextView android:id="@+id/timeDefault"
 android:layout_width="fill_parent" android:layout_height="wrap_content" />

 <TimePicker android:id="@+id/timePicker"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

</LinearLayout>

Figure 3-7. The DatePicker and TimePicker UIs

If you look at the XML layout, you can see that defining these controls is easy. As with any
other control in the Android toolkit, you can access the controls programmatically to initialize
them or to retrieve data from them. For example, you can initialize these controls as shown
in Listing 3-23.

Listing 3-25. Initializing the DatePicker and TimePicker with Date and Time, Respectively

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.datetimepicker);

 TextView dateDefault = (TextView)findViewById(R.id.dateDefault);
 TextView timeDefault = (TextView)findViewById(R.id.timeDefault);

95CHAPTER 3: Building Basic User Interfaces and Using Controls

 DatePicker dp = (DatePicker)this.findViewById(R.id.datePicker);
 // The month, and just the month, is zero-based. Add 1 for display.
 dateDefault.setText("Date defaulted to " + (dp.getMonth() + 1) + "/" +
 dp.getDayOfMonth() + "/" + dp.getYear());
 // And here, subtract 1 from December (12) to set it to December
 dp.init(2008, 11, 10, null);

 TimePicker tp = (TimePicker)this.findViewById(R.id.timePicker);

 java.util.Formatter timeF = new java.util.Formatter();
 timeF.format("Time defaulted to %d:%02d", tp.getCurrentHour(),
 tp.getCurrentMinute());
 timeDefault.setText(timeF.toString());

 tp.setIs24HourView(true);
 tp.setCurrentHour(new Integer(10));
 tp.setCurrentMinute(new Integer(10));
}

Listing 3-25 sets the date on the DatePicker to December 10, 2008. Note that for the month,
the internal value is zero-based, which means that January is 0 and December is 11. For
the TimePicker, the number of hours and minutes is set to 10. Note also that this control
supports 24-hour view. If you do not set values for these controls, the default values will be
the current date and time as known to the device.

Finally, note that Android offers versions of these controls as modal windows, such as
DatePickerDialog and TimePickerDialog. These controls are useful if you want to display
the control to the user and force the user to make a selection. We’ll cover dialogs in more
detail in Chapter 8.

The TextClock and AnalogClock Controls
Android also offers TextClock and AnalogClock controls (see Figure 3-8).

Figure 3-8. Using the AnalogClock and DigitalClock

http://dx.doi.org/10.1007/9781430246800_8

96 CHAPTER 3: Building Basic User Interfaces and Using Controls

As shown, the text clock supports seconds in addition to hours and minutes. The analog clock
in Android is a two-handed clock, with one hand for the hour indicator and the other hand for
the minute indicator. To add these to your layout, use the XML as shown in Listing 3-26.

Listing 3-26. Adding a DigitalClock or an AnalogClock in XML

<TextClock
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:format12Hour="hh:mm:ss aa" android:format24Hour="kk:mm:ss" />

<AnalogClock
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

These two controls are really just for displaying the current time, as they don’t let you
modify the date or time. In other words, they are controls whose only capability is to display
the current time. Thus, if you want to change the date or time, you’ll need to stick to the
DatePicker/TimePicker or DatePickerDialog/TimePickerDialog. The nice part about these
two clocks, though, is that they will update themselves without you having to do anything.
That is, the seconds tick away in the TextClock, and the hands move on the AnalogClock
without anything extra from us.

The MapView Control
With the introduction of Google Play Services, Android’s approach to displaying map-based
data underwent some changes. However, the vast majority of developers still favor the
original MapView Control for a range of reasons—backward compatibility, simplicity, and
so on. As the name suggests, the com.google.android.maps.MapView control can display a
map. You can instantiate this control either via XML layout or code, but the activity that uses
it must extend MapActivity. MapActivity takes care of multithreading requests to load a
map, perform caching, and so on.

Note Strictly, the MapView is part of the Google API, not the stock Android API. In order to test
code etc. for MapView, ensure your emulator is created against a version of the SDK with the
Google APIs included.

97CHAPTER 3: Building Basic User Interfaces and Using Controls

Listing 3-27 shows an example instantiation of a MapView.

Listing 3-27. Creating a MapView Control via XML Layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <com.google.android.maps.MapView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:enabled="true"
 android:clickable="true"
 android:apiKey="myAPIKey"
 />

</LinearLayout>

We’ll discuss the location-based services in detail in Chapter 19. This is also where you’ll
learn how to obtain your own mapping API key.

References
Here are some helpful references to topics you may wish to explore further:

	http://www.androidbook.com/proandroid5/projects: A list of
downloadable projects related to this book. For this chapter, look for a
ZIP file called ProAndroid5_Ch03_Controls.zip. This ZIP file contains all
projects from this chapter, listed in separate root directories. There is
also a README.TXT file that describes exactly how to import projects into
Eclipse from one of these ZIP files.

	http://developer.android.com/resources/articles/index.html:
Several “Layout Tricks”–type technical articles that are well worth
reading. They get into performance aspects of designing and building
UIs in Android. Look for other articles in this list related to building UIs.

Summary
Let’s conclude this chapter by quickly enumerating what you have learned about building
user interfaces:

How XML resources define UI appearances, and how code fills in the data	

The full range of basic User Interface controls available in Android	

A hint of what’s to come with List views in Chapter 	 4 and Layouts in
Chapter 5.

http://schemas.android.com/apk/res/android
http://dx.doi.org/10.1007/9781430246800_19
http://www.androidbook.com/proandroid5/projects
http://developer.android.com/resources/articles/index.html
http://dx.doi.org/10.1007/9781430246800_4
http://dx.doi.org/10.1007/9781430246800_5

99

Chapter 4
Adapters and List Controls

In Chapter 3, we introduced a range of basic User Interface controls with which you can
construct Android applications. If you recall the examples on TextView, one of the types of
controls we explored was the AutoCompleteTextView, which when coupled with a source
of data—an adapter—was able to prompt the user with a range of predetermined values. In
this chapter, we’ll explore adapters further, and the wider topic of list controls that enable
construction of more elaborate and sophisticated screen designs.

Understanding Adapters
Before we get into the details of list controls of Android, we need to talk about adapters. List
controls are used to display collections of data. But instead of using a single type of control
to manage both the display and the data, Android separates these two responsibilities into
list controls and adapters. List controls are classes that extend android.widget.AdapterView
and include ListView, GridView, Spinner, and Gallery (see Figure 4-1).

Figure 4-1. AdapterView class hierarchy

100 CHAPTER 4: Adapters and List Controls

AdapterView itself extends android.widget.ViewGroup, which means that ListView,
GridView, and so on are container controls. In other words, list controls contain collections
of child views. The purpose of an adapter is to manage the data for an AdapterView
and to provide the child views for it. Let’s see how this works by examining the
SimpleCursorAdapter.

Getting to Know SimpleCursorAdapter
The SimpleCursorAdapter is depicted in Figure 4-2.

Figure 4-2. The SimpleCursorAdapter

This is a very important picture to understand. On the left side is the AdapterView; in this
example, it is a ListView made up of TextView children. On the right side is the data; in
this example, it’s represented as a result set of data rows that came from a query against a
content provider.

To map the data rows to the ListView, the SimpleCursorAdapter needs to have a child layout
resource ID. The child layout must describe the layout for each of the data elements from
the right side that should be displayed on the left side. A layout in this case is just like the
layouts we’ve been working with for our activities, but it only needs to specify the layout
of a single row of our ListView. For example, if you have a result set of information from
the Contacts content provider, and you only want to display each contact name in your
ListView, you would need to provide a layout to describe what the name field should look
like. If you wanted to display the name and an image from the result set in each row of the
ListView, your layout must say how to display the name and the image.

This does not mean you must provide a layout specification for every field in your result set,
nor does it mean you must have a piece of data in your result set for everything you want
to include in each row of the ListView. For example, we’ll show you in a bit how you can
have check boxes in your ListView for selecting rows, and those check boxes don’t need
to be set from data in a result set. We’ll also show you how to get to data in the result set
that is not part of the ListView. And although we’ve just talked about ListViews, TextViews,
cursors, and result sets, please keep in mind that the adapter concept is more general than

101CHAPTER 4: Adapters and List Controls

this. The left side can be a gallery, and the right side can be a simple array of images. But
let’s keep things fairly simple for now and look at SimpleCursorAdapter in more detail.

The simplest constructor of SimpleCursorAdapter looks like this:

SimpleCursorAdapter(Context context, int childLayout, Cursor c, String[] from, int[] to)

This adapter converts a row from the cursor to a child view for the container control. The
definition of the child view is defined in an XML resource (childLayout parameter). Note that
because a row in the cursor might have many columns, you tell the SimpleCursorAdapter
which columns you want to select from the row by specifying an array of column names
(using the from parameter).

Similarly, because each column you select must be mapped to a View in the layout, you
must specify the IDs in the to parameter. There’s a one-to-one mapping between the column
you select and a View that displays the data in the column, so the from and to parameter
arrays must have the same number of elements. As we mentioned before, the child view
could contain other types of views; they don’t have to be TextViews. You could use an
ImageView, for example.

There is a careful collaboration going on between the ListView and our adapter. When
the ListView wants to display a row of data, it calls the getView() method of the adapter,
passing in the position to specify the row of data to be displayed. The adapter responds by
building the appropriate child view using the layout that was set in the adapter’s constructor
and by pulling the data from the appropriate record in the result set. The ListView, therefore,
doesn’t have to deal with how the data exists on the adapter side; it only needs to call
for child views as needed. This is a critical point, because it means our ListView doesn’t
necessarily need to create every child view for every data row. It really only needs to have
as many child views as are necessary for what’s visible in the display window. If only ten
rows are being displayed, technically the ListView needs to have only ten child layouts
instantiated, even if there are hundreds of records in our result set. In reality, more than ten
child layouts get instantiated, because Android usually keeps extras on hand to make it
faster to bring a new row to visibility. The conclusion you should reach is that the child views
managed by the ListView can be recycled. We’ll talk more about that a little later.

Figure 4-2 reveals some flexibility in using adapters. Because the list control uses an
adapter, you can substitute various types of adapters based on your data and child view.
For example, if you are not going to populate an AdapterView from a content provider or
database, you don’t have to use the SimpleCursorAdapter. You can opt for an even “simpler”
adapter—the ArrayAdapter.

Getting to Know ArrayAdapter
The ArrayAdapter is the simplest of the adapters in Android. It specifically targets list
controls and assumes that TextView controls represent the list items (the child views).
Creating a new ArrayAdapter can look as simple as this:

ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 new String[]{"Dave","Satya","Dylan"});

102 CHAPTER 4: Adapters and List Controls

We still pass the context (this) and a childLayout resource ID. But instead of passing a from
array of data field specifications, we pass in an array of strings as the actual data. We don’t
pass a cursor or a to array of View resource IDs. The assumption here is that our child layout
consists of a single TextView, and that’s what the ArrayAdapter will use as the destination
for the strings that are in our data array.

Now we’re going to introduce a nice shortcut for the childLayout resource ID. Instead of
creating our own layout file for the list items, we can take advantage of predefined layouts
in Android. Notice that the prefix on the resource for the child layout resource ID is android.
Instead of looking in our local /res directory, Android looks in its own. You can browse to
this folder by navigating to the Android SDK folder and looking under platforms/<android-
version>/data/res/layout. There you’ll find simple_list_item_1.xml and can see inside
that it defines a simple TextView. That TextView is what our ArrayAdapter will use to create
a view (in its getView() method) to give to the ListView. Feel free to browse through these
folders to find predefined layouts for all sorts of uses. We’ll be using more of these later.

ArrayAdapter has other constructors. If the childLayout is not a simple TextView, you
can pass in the row layout resource ID plus the resource ID of the TextView to receive
the data. When you don’t have a ready-made array of strings to pass in, you can use the
createFromResource() method. Listings 4-1, 4-2, and 4-3 show an example in which we
create an ArrayAdapter for a spinner.

Listing 4-1. Manifest Fragment for Creating an ArrayAdapter from a String-Resource File

<Spinner android:id="@+id/spinner"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

Listing 4-2. Code Fragment for Creating an ArrayAdapter from a String-Resource File

Spinner spinner = (Spinner) findViewById(R.id.spinner);

ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(this,
 R.array.planets, android.R.layout.simple_spinner_item);

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

spinner.setAdapter(adapter);

Listing 4-3. The Actual String-Resource File

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/values/planets.xml -->
<resources>
 <string-array name="planets">
 <item>Mercury</item>
 <item>Venus</item>
 <item>Earth</item>
 <item>Mars</item>
 <item>Jupiter</item>

103CHAPTER 4: Adapters and List Controls

 <item>Saturn</item>
 <item>Uranus</item>
 <item>Neptune</item>
 </string-array>
</resources>

The first listing is the XML layout for a spinner. The second Java listing in shows how you
can create an ArrayAdapter whose data source is defined in a string resource file. Using this
method allows you to not only externalize the contents of the list to an XML file but also use
localized versions. We’ll talk about spinners a little later, but for now, know that a spinner has
a view to show the currently selected value, plus a list view to show the values that can be
selected from. It’s basically a drop-down menu. Listing 4-3 is the XML resource file called /
res/values/planets.xml, which is read in to initialize the ArrayAdapter.

Worth mentioning is that the ArrayAdapter allows for dynamic modifications to the
underlying data. For example, the add() method will append a new value on the end of the
array. The insert() method will add a new value at a specified position within the array.
And remove() takes an object out of the array. You can also call sort() to reorder the array.
Of course, once you’ve done this, the data array is out of sync with the ListView, so that’s
when you call the notifyDataSetChanged() method of the adapter. This method will resync
the ListView with the adapter.

The following list summarizes the adapters that Android provides:

	ArrayAdapter<T>: This is an adapter on top of a generic array of arbitrary
objects. It’s meant to be used with a ListView.

	CursorAdapter: This adapter, also meant to be used in a ListView,
provides data to the list via a cursor.

	SimpleAdapter: As the name suggests, this adapter is a simple adapter.
It is generally used to populate a list with static data (possibly from
resources).

	ResourceCursorAdapter: This adapter extends CursorAdapter and knows
how to create views from resources.

	SimpleCursorAdapter: This adapter extends ResourceCursorAdapter and
creates TextView/ImageView views from the columns in the cursor. The
views are defined in resources.

We’ve covered enough of adapters to start showing you some real examples of working with
adapters and list controls (also known as AdapterViews). Let’s get to it.

Using Adapters with AdapterViews
Now that you’ve been introduced to adapters, it is time to put them to work for us, providing
data for list controls. In this section, we’re going to first cover the basic list control, the
ListView. Then, we’ll describe how to create your own custom adapter, and finally, we’ll
describe the other types of list controls: GridViews, spinners, and the gallery.

104 CHAPTER 4: Adapters and List Controls

The Basic List Control: ListView
The ListView control displays a list of items vertically. That is, if we’ve got a list of items to
view and the number of items extends beyond what we can currently see in the display, we
can scroll to see the rest of the items. You generally use a ListView by writing a new activity
that extends android.app.ListActivity. ListActivity contains a ListView, and you set
the data for the ListView by calling the setListAdapter() method.

As we described previously, adapters link list controls to the data and help prepare the child
views for the list control. Items in a ListView can be clicked to take immediate action or
selected to act on the set of selected items later. We’re going to start really simple and then
add functionality as we go.

Displaying Values in a ListView
Figure 4-3 shows a ListView control in its simplest form.

Figure 4-3. Using the ListView control

For this exercise, we will place a ListView into a default Android layout, with no special
tweaks or changes, so you can see how they fit within a typical main layout XML file.
Listing 4-4 shows the Java code for our activity.

Listing 4-4. Adding Items to a ListView

public class MainActivity extends Activity {

 private ListView listView1;
 private ArrayAdapter<String> listAdapter1;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

105CHAPTER 4: Adapters and List Controls

 listView1 = (ListView) findViewById(R.id.listView1);

 String[] someColors = new String[] { "Red", "Orange", "Yellow",
 "Green", "Blue", "Indigo", "Violet", "Black", "White"};
 ArrayList<String> colorArrayList = new ArrayList<String>();
 colorArrayList.addAll(Arrays.asList(someColors));

 listAdapter1 = new ArrayAdapter<String>(this, android.R.id.text1,
 colorArrayList);

 listView1.setAdapter(listAdapter1);
 }
...
}

Listing 4-2 creates a ListView control populated with the list of colors we specify in an array,
someColors. In our example, we take the contents of the array and map the String color
names to a TextView control (android.R.id.text1). After that, we create an array adapter
and set the list’s adapter. The adapter class has the smarts to take the rows in whatever data
source you provide to populate the UI.

We could have taken advantage of the very basic ListActivity supplying the main layout, as
there are no other UI elements or complexity to take care of. However we’ve chosen to deploy
the ListView within a typical new project and utilize the basic activity. We’re also using an
Android-provided layout for our child view (resource ID android.R.layout.simple_list_item_1),
which contains an Android-provided TextView (resource ID android.R.id.text1). All in all, pretty
simple to set up.

We can extend this example, and your understanding, by showing how to replace the
Android-provided layout for the child view with one of our own design. Create a new
empty file in the res/layout folder of your project and name it simple_list_row.xml.
Listing 4-5 shows the XML for our own layout for a simple TextView to represent each line to
be rendered in our ListView (or any other layout that refers to this simple_list_row layout).

Listing 4-5. Creating a Custom TextView Child View for List Rendering

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/rowTextView"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="12dp"
 android:textSize="24sp" >
</TextView>

We need only change the reference that binds the chosen layout for use in the ListView in
our code, to use the new simple_list_row layout, like so:

listAdapter1 = new ArrayAdapter<String>(this, R.layout.simple_list_row,
 colorArrayList);

http://schemas.android.com/apk/res/android

106 CHAPTER 4: Adapters and List Controls

Note that when we refer to our own custom layout in this way, we drop the leading “android”
reference. We can now run this example to see the complete effect, as shown in Figure 4-4.

Figure 4-4. The ListView example in action

Clickable Items in a ListView
Of course, when you run this example, you’ll see that you’re able to scroll up and down the list
to see all your color names, but that’s about it. What if we want to do something a little more
interesting with this example, like have the application respond when a user clicks one of the
items in our ListView? Listing 4-6 shows a modification to our example to accept user input.

Listing 4-6. Accepting User Input on a ListView

public class MainActivity extends Activity {

 private ListView listView1;
 private ArrayAdapter<String> listAdapter1;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

107CHAPTER 4: Adapters and List Controls

 listView1 = (ListView) findViewById(R.id.listView1);

 String[] someColors = new String[] { "Red", "Orange", "Yellow",
 "Green", "Blue", "Indigo", "Violet", "Black", "White"};
 ArrayList<String> colorArrayList = new ArrayList<String>();
 colorArrayList.addAll(Arrays.asList(someColors));

 listAdapter1 = new ArrayAdapter<String>(this, android.R.layout.simple_list_item_1,
 colorArrayList);

 listView1.setAdapter(listAdapter1);

 listView1.setOnItemClickListener(new OnItemClickListener() {

 @Override
 public void onItemClick(AdapterView<?> parent, View view, int position
 , long id) {
 String itemValue = (String) listView1.getItemAtPosition(position);
 Toast.makeText(getApplicationContext(), itemValue,
 Toast.LENGTH_LONG).show();
 }
 });
 }
...
}

Our activity is now implementing the OnItemClickListener interface, which means we’ll
receive a callback when the user clicks something in our ListView. As you can see by our
onItemClick() method, we get a lot of information about what was clicked, including the
view receiving the click, the position of the clicked item in the ListView, and the ID of the
item according to our adapter. We cast accordingly before calling the makeText() method to
work with the color’s name. The position value represents where this item is in relation to the
overall list of items in the ListView, and it’s zero-based. Therefore, the first item in the list is
at position 0.

The ID value depends entirely on the adapter and the source of the data. In our example,
we happen to be querying strings with the names of colors in an array, so the ID according
to this adapter is the position of the entry in the array from the content provider. But your
data source in other situations may not be as straightforward as this, so you should not think
that you can always know things like ordering in advance as we’ve done in this example. If
we were using an SimpleCursorAdapter that had read its values from the system’s Contacts
database, the ID given to us will be the underlying _ID of the record, and that could be any
value depending on the age of the contact in the system.

When we discussed ArrayAdapters before, we mentioned the notifyDataSetChanged()
method to have the adapter update the ListView if the data has changed. Some adapters,
such as the SimpleCursorAdapter, are aware of updates that happen to underlying
datasources such as the Contacts content provider and will dynamically update ListView
contents for you based on changes. With ArrayAdapters, however, you will need to invoke
the notifyDataSetChanged() method yourself.

108 CHAPTER 4: Adapters and List Controls

That was pretty easy to do. We generated our own ListView of color names, and by clicking
a color we showed a message to the user. But what if we want to select a bunch of names
first and then do something with the subset of people? For the next example application,
we’re going to modify the layout of a list item to include a check box, and we’re going to add
a button to the UI to then act on the subset of selected items.

Adding Other Controls with a ListView
If you want additional controls in your main layout, you can provide your own layout XML
file, put in a ListView, and add other desired controls. For example, you could add a
button below the ListView in the UI to submit an action on the selected items, as shown in
Figure 4-5.

Figure 4-5. An additional button that lets the user submit the selected item(s)

The main layout for this example is in Listing 4-7, and it contains the UI definition of the
activity—the ListView and the Button.

109CHAPTER 4: Adapters and List Controls

Listing 4-7. Overriding the ListView Referenced by Our Activity

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.artifexdigital.android.listviewdemo3.MainActivity" >

 <ListView
 android:id="@+id/listView1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1" />

 <Button
 android:id="@+id/button1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:onClick="doClick"
 android:text="Submit selection" />

</LinearLayout>

Notice the way we have to specify the height and weight of the ListView in LinearLayout.
We want our button to appear on the screen at all times no matter how many items are in
our ListView, and we don’t want to be scrolling all the way to the bottom of the page just
to find the button. To accomplish this, we set the layout_height to wrap_content and then
use layout_weight to say that this control should take up all available room from the parent
container. This trick allows room for the button and retains our ability to scroll the ListView.
We’ll talk more about layouts and weights later in this chapter.

The activity implementation would then look like Listing 4-8.

Listing 4-8. Reading User Input from the ListActivity

public class MainActivity extends Activity {

 private ListView listView1;
 private ArrayAdapter<String> listAdapter1;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 listView1 = (ListView) findViewById(R.id.listView1);

 String[] someColors = new String[] { "Red", "Orange", "Yellow",
 "Green", "Blue", "Indigo", "Violet", "Black", "White"};
 ArrayList<String> colorArrayList = new ArrayList<String>();
 colorArrayList.addAll(Arrays.asList(someColors));

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

110 CHAPTER 4: Adapters and List Controls

 listAdapter1 = new ArrayAdapter<String>(this, android.R.layout.simple_list_item_checked,
 colorArrayList);

 listView1.setAdapter(listAdapter1);

 listView1.setChoiceMode(listView1.CHOICE_MODE_MULTIPLE);

 listView1.setOnItemClickListener(new OnItemClickListener() {

 @Override
 public void onItemClick(AdapterView<?> parent, View view, int position
 , long id) {
 String itemValue = (String) listView1.getItemAtPosition(position);
 Toast.makeText(getApplicationContext(), itemValue,
 Toast.LENGTH_LONG).show();
 }
 });
 }

 public void doClick(View view) {
 int count=listView1.getCount();
 SparseBooleanArray viewItems = listView1.getCheckedItemPositions();
 for(int i=0; i<count; i++) {
 if(viewItems.get(i)) {
 String selectedColor = (String) listView1.getItemAtPosition(i);
 Log.v("ListViewDemo", selectedColor + " is checked at position " + i);
 }
 }
 }
}

Within the setup of the adapter, we’re passing another of the Android-provided views for
a ListView line item (android.R.layout.simple_list_item_checked), which results in each
row having a TextView and a CheckBox. If you look inside this layout file, you will see another
subclass of TextView, this one called CheckedTextView. This special type of TextView is
intended for use with ListViews. See, we told you there were some interesting things in that
Android layout folder! You will see that the ID of the CheckedTextView is text1, which is what
we needed to pass in our views array to the constructor of the SimpleCursorAdapter.

Because we want the user to be able to select our rows, we set the choice mode to CHOICE_
MODE_MULTIPLE. By default, the choice mode is CHOICE_MODE_NONE. The other possible value is
CHOICE_MODE_SINGLE. If you want to use that choice mode for this example, you would want
to use a different layout, most likely android.R.layout.simple_list_item_single_choice.

In this example, we’ve implemented a basic button that calls the doClick() method of our
activity. To keep things simple, we just want to write out to LogCat the names of the items that
were checked by the user. The good news is that the solution is pretty easy; the bad news is
that Android has evolved so the best solution depends on which version of Android you’re
targeting. The ListView solution we’ve shown here has worked since Android 1 (although we
took the Android 1.6 shortcut on the button callback). That is, the getCheckedItemPositions()

111CHAPTER 4: Adapters and List Controls

method is old, but it still works. The return value is an array that can tell you whether an item
has been checked. So, we iterate through the array. viewItems.get(i) will return true if the
corresponding row in our ListView has been checked. Our data is accessible directly from
the ListView, using the getItemAtPosition() method of the ListView. In our case, the object
returned from getItemAtPosition() would turn out to be a String object. As we said before,
in other situations, we might get some other type of object, such as a CursorWrapper, when
working with some specific content providers like the Contacts provider discussed later in this
book. You have to understand your data source and your adapter to know what to expect.

If we go ahead and hit the Submit Selection button shown in Figure 4-5, we can watch
the log cat window in Eclipse or Android Studio as it emits the data from our selection as
implemented in the doClick() method. This is shown in Figure 4-6.

Figure 4-6. Using user input from a ListView for further processing

Another Way to Read Selections from a ListView
Android 1.6 introduced another method for retrieving a list of the checked rows from a
ListView: getCheckItemIds(). Then, in Android 2.2, this method was deprecated and
replaced with getCheckedItemIds(). It was a subtle name change, but the way you use
the method is basically the same. Listing 4-9 shows the Java code changes we’d make to
reflect this evolution of dealing with checked items in a list. For the XML layout of list.xml,
we can continue to use the file in Listing 4-7.

Listing 4-9. Another Way of Reading User Input from the ListActivity

public class MainActivity extends Activity {

 private ListView listView1;
 private ArrayAdapter<String> listAdapter1;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 listView1 = (ListView) findViewById(R.id.listView1);

112 CHAPTER 4: Adapters and List Controls

 String[] someColors = new String[] { "Red", "Orange", "Yellow",
 "Green", "Blue", "Indigo", "Violet", "Black", "White"};
 ArrayList<String> colorArrayList = new ArrayList<String>();
 colorArrayList.addAll(Arrays.asList(someColors));

 listAdapter1 = new ArrayAdapter<String>(this, android.R.layout.simple_list_item_checked,
 colorArrayList);

 listView1.setAdapter(listAdapter1);

 listView1.setChoiceMode(listView1.CHOICE_MODE_MULTIPLE);

 listView1.setOnItemClickListener(new OnItemClickListener() {

 @Override
 public void onItemClick(AdapterView<?> parent, View view, int position
 , long id) {
 String itemValue = (String) listView1.getItemAtPosition(position);
 Toast.makeText(getApplicationContext(), itemValue,
 Toast.LENGTH_LONG).show();
 }
 });
 }

...

 public void doClick(View view) {
 if(!listAdapter1.hasStableIds()) {
 Log.v(TAG, "Data is not stable");
 return;
 }
 long[] viewItems = listView1.getCheckedItemIds();
 for(int i=0; i<viewItems.length; i++) {
 String selectedColor = (String) listView1.getItemAtPosition(i);
 Log.v("ListViewDemo", selectedColor + " is checked at position " + i);
 }
 }
 }
}

In this example application, when we click the button, our callback calls the method
getCheckedItemIds(). Whereas in our last example, we got an array of positions of the
checked items in the ListView, this time we get an array of IDs of the records from
the adapter that have been checked in the ListView. We can bypass the ListView and the
cursor now, because the IDs can be used to drive whatever action we desire.

We’ve shown you how to work with ListViews from a variety of scenarios. We’ve shown that
adapters do a lot of the work to support a ListView. Next, we’ll cover the other types of list
controls, starting with the GridView.

113CHAPTER 4: Adapters and List Controls

The GridView Control
Most widget toolkits offer one or more grid-based controls. Android has a GridView control
that can display data in the form of a grid. Note that although we use the term data here, the
contents of the grid can be text, images, and so on.

The GridView control displays information in a grid. The usage pattern for the GridView is to
define the grid in the XML layout (see Listings 4-10 and 4-11) and then bind the data to the
grid using an android.widget.ListAdapter.

Listing 4-10. Definition of a GridView in an XML Layout

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.artifexdigital.android.gridviewdemo.MainActivity" >

 <GridView
 android:id="@+id/gridView1"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="10dp"
 android:verticalSpacing="10dp"
 android:horizontalSpacing="10dp"
 android:numColumns="auto_fit"
 android:columnWidth="100dp"
 android:stretchMode="columnWidth"
 android:gravity="center" />

</RelativeLayout>

Listing 4-11. Java Implementation for the GridView

public class MainActivity extends Activity {

 private GridView gridView1;
 private ArrayAdapter<String> listAdapter1;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 gridView1 = (GridView) findViewById(R.id.gridView1);

 String[] someColors = new String[] { "Red", "Orange", "Yellow",
 "Green", "Blue", "Indigo", "Violet", "Black", "White"};

 ArrayList<String> colorArrayList = new ArrayList<String>();
 colorArrayList.addAll(Arrays.asList(someColors));

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

114 CHAPTER 4: Adapters and List Controls

 listAdapter1 = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, colorArrayList);

 gridView1.setAdapter(listAdapter1);

 }

}

Listing 4-10 defines a simple GridView in an XML layout. The grid is then loaded into the
activity’s content view. The generated UI is shown in Figure 4-7.

Figure 4-7. A GridView populated with colors

The grid shown in Figure 4-7 displays the names of the colors from our array. We have
decided to show a TextView with the color names, but you could easily generate a grid
filled with images or other controls. We’ve again taken advantage of predefined layouts in
Android. In fact, this example looks very much like Listing 4-7 except for a few important
differences. We must call setContentView() to set the layout for our GridView; there are no
default views to fall back on. And to set the adapter, we call setAdapter() on the GridView
object instead of calling setListAdapter() on Activity.

You’ve no doubt noticed that the adapter used by the grid is a ListAdapter. Lists are
generally one-dimensional, whereas grids are two-dimensional. We can conclude, then, that
the grid actually displays list-oriented data. And it turns out that the list is displayed by rows.
That is, the list goes across the first row, then across the second row, and so on.

As before, we have a list control that works with an adapter to handle the data management
and the generation of the child views. The same techniques we used before should work just
fine with GridViews. One exception relates to making selections: there is no way to specify
multiple choices in a GridView, as we did in Listing 4-7.

115CHAPTER 4: Adapters and List Controls

The Spinner Control
The Spinner control is like a drop-down menu. It is typically used to select from a relatively
short list of choices. If the choice list is too long for the display, a scrollbar is automatically
added for you. You can instantiate a Spinner via XML layout as simply as this:

<Spinner
 android:id="@+id/spinner" android:prompt="@string/spinnerprompt"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

Although a spinner is technically a list control, it will appear to you more like a simple
TextView control. In other words, only one value will be displayed when the spinner is at
rest. The purpose of the spinner is to allow the user to choose from a set of predetermined
values: when the user clicks the small arrow, a list is displayed, and the user is expected to
pick a new value. Populating this list is done in the same way as the other list controls: with
an adapter.

Because a spinner is often used like a drop-down menu, it is common to see the adapter get
the list choices from a resource file. An example that sets up a spinner using a resource file
is shown in Listing 4-12. Notice the new attribute called android:prompt for setting a prompt
at the top of the list to choose from. The actual text for our spinner prompt is in our /res/
values/strings.xml file. As you should expect, the Spinner class has a method for setting
the prompt in code as well.

Listing 4-12. Code to Create a Spinner from a Resource File

public class SpinnerActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.spinner);

 Spinner spinner = (Spinner)findViewById(R.id.spinner);

 ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(this,
 R.array.planets, android.R.layout.simple_spinner_item);

 adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

 spinner.setAdapter(adapter);
 }
}

You may recall seeing the planets.xml file in Listing 4-1. We show in this example how
a Spinner control is created; the adapter is set up and then associated to the spinner.
See Figure 4-8 for what this looks like in action.

116 CHAPTER 4: Adapters and List Controls

Figure 4-8. A spinner for choosing a planet

One of the differences from our earlier list controls is that we’ve got an extra layout to
contend with when working with a spinner. The left side of Figure 4-8 shows the normal
mode of a spinner, where the current selection is shown. In this case, the current selection
is Saturn. Next to the word is a downward-pointing arrow indicating that this control is a
spinner and can be used to pop up a list to select a different value. The first layout, supplied
as a parameter to the ArrayAdapter.createFromResource() method, defines how the spinner
looks in normal mode. On the right side of Figure 4-8, we show the spinner in the pop-up
list mode, waiting for the user to choose a new value. The layout for this list is set using the
setDropDownViewResource() method. Again in this example, we’re using Android-provided
layouts for these two needs, so if you want to inspect the definition of either of these layouts,
you can visit the Android res/layout folder. And of course, you can specify your own layout
definition for either of these to get the effect you want.

The Gallery Control
The Gallery control is a horizontally scrollable list control that always focuses at the center
of the list. This control generally functions as a photo gallery in touch mode. You can
instantiate a Gallery via either XML layout or code:

<Gallery
 android:id="@+id/gallery"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
/>

117CHAPTER 4: Adapters and List Controls

The Gallery control is typically used to display images, so your adapter is likely going to be
specialized for images. We’ll show you a custom image adapter in next section on custom
adapters. Visually, a gallery looks like Figure 4-9.

Figure 4-9. A gallery with images of manatees

Summary
In this chapter, we’ve expanded your understanding and proficiency with UI components in
the following ways:

The main list controls available in Android	

How to use adapters to populate the data in a list control	

119

Chapter 5
Building More Advanced
UI Layouts

In the previous chapters we reviewed many of the standard layouts provided with Android,
which cover a broad array of possible UI approaches. When the stock layouts offered by
Android don't quite do what you want, where do you turn? In this chapter, we will quickly
explore how Android provides you with the ability to build your own custom layouts and
manage the related adapters for populating them with useful data.

Creating Custom Adapters
Standard adapters in Android are easy to use, but they have some limitations. To address
this, Android provides an abstract class called BaseAdapter that you can extend if you need
a custom adapter. You would use a custom adapter if you had special data-management
needs or if you wanted more control over how to display child views. You might also use a
custom adapter to improve performance by using caching techniques. We’re going to show
you how to build a custom adapter next.

Listing 5-1 shows what the XML layout and the Java code could look like for a custom
adapter. For this next example, our adapter is going to deal with images of manatees, so
we’ll call it ManateeAdapter. We’re going to create it inside of an activity as well.

Listing 5-1. Our Custom Adapter: ManateeAdapter

<?xml version="1.0" encoding="utf-8"?>

<!-- This file is at /res/layout/gridviewcustom.xml -->

<GridView xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/gridview"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

http://schemas.android.com/apk/res/android

120 CHAPTER 5: Building More Advanced UI Layouts

 android:padding="10dip"

 android:verticalSpacing="10dip"

 android:horizontalSpacing="10dip"

 android:numColumns="auto_fit"

 android:gravity="center"

 />

Java Implementation

public class GridViewCustomAdapter extends Activity

{

 @Override

 protected void onCreate(Bundle savedInstanceState)

 {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.gridviewcustom);

 GridView gv = (GridView)findViewById(R.id.gridview);

 ManateeAdapter adapter = new ManateeAdapter(this);

 gv.setAdapter(adapter);

 }

 public static class ManateeAdapter extends BaseAdapter {

 private static final String TAG = "ManateeAdapter";

 private static int convertViewCounter = 0;

 private Context mContext;

 private LayoutInflater mInflater;

 static class ViewHolder {

 ImageView image;

 }

 private int[] manatees = {

 R.drawable.manatee00, R.drawable.manatee01, R.drawable.manatee02,

// ... many more manatees here - see the sample code folder

 R.drawable.manatee32, R.drawable.manatee33 };

 private Bitmap[] manateeImages = new Bitmap[manatees.length];

 private Bitmap[] manateeThumbs = new Bitmap[manatees.length];

 public ManateeAdapter(Context context) {

 Log.v(TAG, "Constructing ManateeAdapter");

 this.mContext = context;

 mInflater = LayoutInflater.from(context);

121CHAPTER 5: Building More Advanced UI Layouts

 for(int i=0; i<manatees.length; i++) {

 manateeImages[i] = BitmapFactory.decodeResource(

 context.getResources(), manatees[i]);

 manateeThumbs[i] = Bitmap.createScaledBitmap(manateeImages[i],

 100, 100, false);

 }

 }

 @Override

 public int getCount() {

 Log.v(TAG, "in getCount()");

 return manatees.length;

 }

 public int getViewTypeCount() {

 Log.v(TAG, "in getViewTypeCount()");

 return 1;

 }

 public int getItemViewType(int position) {

 Log.v(TAG, "in getItemViewType() for position " + position);

 return 0;

 }

 @Override

 public View getView(int position, View convertView, ViewGroup parent) {

 ViewHolder holder;

 Log.v(TAG, "in getView for position " + position +

 ", convertView is " +

 ((convertView == null)?"null":"being recycled"));

 if (convertView == null) {

 convertView = mInflater.inflate(R.layout.gridimage, null);

 convertViewCounter++;

 Log.v(TAG, convertViewCounter + " convertViews have been created");

 holder = new ViewHolder();

 holder.image = (ImageView) convertView.findViewById(R.id.gridImageView);

 convertView.setTag(holder);

 } else {

 holder = (ViewHolder) convertView.getTag();

 }

122 CHAPTER 5: Building More Advanced UI Layouts

 holder.image.setImageBitmap(manateeThumbs[position]);

 return convertView;

 }

 @Override

 public Object getItem(int position) {

 Log.v(TAG, "in getItem() for position " + position);

 return manateeImages[position];

 }

 @Override

 public long getItemId(int position) {

 Log.v(TAG, "in getItemId() for position " + position);

 return position;

 }

 }

}

When you run this application, you should see a display that looks like Figure 5-1.

Figure 5-1. A GridView with images of manatees

123CHAPTER 5: Building More Advanced UI Layouts

There is a lot to explain in this example, even though it looks relatively simple. We’ll start with
our Activity class, which looks a lot like the ones we’ve been working with throughout this
section of the chapter. There’s a main layout from gridviewcustom.xml, which contains just a
GridView definition. We need to get a reference to the GridView from inside the layout, so we
define and set gv. We instantiate our ManateeAdapter, passing it our context, and we set the
adapter on our GridView. This is pretty standard stuff so far, although you’ve no doubt noticed
that our custom adapter doesn’t use nearly as many parameters as predefined adapters
when being created. This is mainly because we’re in complete control over this particular
adapter, and we’re using it with only this application. If we were making this adapter more
general, we would most likely be setting more parameters. But let’s keep going.

Our job inside an adapter is to manage the passing of data into Android View objects. The
View objects will be used by the list control (a GridView in this case). The data comes from
some data source. In the earlier examples, the data came via a cursor object that was
passed into the adapter. In our custom case here, our adapter knows all about the data and
where it comes from. The list control will ask for things so it knows how to build the UI. It is
also kind enough to pass in views for recycling when it has a view it no longer needs. It may
seem a bit strange to think that our adapter must know how to construct views, but in the
end, it all makes sense.

When we instantiate our custom adapter ManateeAdapter, it is customary to pass in the
context and for the adapter to hold onto it. It is often very useful to have it available when
needed. The second thing we want to do in our adapter is to hang onto the inflater. This
will help performance when we need to create a new view to return to the list control. The
third thing that is typical in an adapter is to create a ViewHolder object, to contain the View
objects for the data we are managing. Taking this approach also acts as a performance
optimization, saving us from repeatedly looking up the Views. For this example, we are
simply storing an ImageView, but if we had additional fields to deal with, we would add
them into the definition of ViewHolder. For example, if we had a ListView where each row
contained an ImageView and two TextViews, our ViewHolder would have an ImageView and
two TextViews.

Because we’re dealing with images of manatees in this adapter, we set up an array of their
resource IDs to be used during construction to create bitmaps. We also define an array of
bitmaps to use as our data list.

As you can see from our ManateeAdapter constructor, we save the context, create and hang
onto an inflater, and then we iterate through the image resource IDs and build an array of
bitmaps. This bitmap array will be our data.

As you learned previously, setting the adapter will cause our GridView to call methods on
the adapter to set itself up with data to display. For example, our GridView gv will call the
adapter’s getCount() method to determine how many objects there are for displaying.
It will also call the getViewTypeCount() method to determine how many different types
of views could be displayed within the GridView. For our purposes in this example, we
set this to 1. However, if we had a ListView and wanted to put separators in between
regular rows of data, we would have two types of views and would need to return 2 from
getViewTypeCount(). You could have as many different view types as you like, as long as
you appropriately return the correct count from this method. Related to this method is
getItemViewType(). We just said that we could have more than one type of view to return

124 CHAPTER 5: Building More Advanced UI Layouts

from the adapter, but to keep things simpler, getItemViewType() needs to return only an
integer value to indicate which of our view types is at a particular position in the data.
Therefore, if we had two types of views to return, getItemViewType() would need to return
either 0 or 1 to indicate which type. If we have three types of views, this method needs to
return 0, 1, or 2.

If our adapter is dealing with separators in a ListView, it must treat the separators as data.
That means there is a position in the data that is taken up by a separator. When getView()
is called by a list control to retrieve the appropriate view for that position, getView() will
need to return a separator as a view instead of regular data as a view. And when asked in
getItemViewType() for the view type for that position, we need to return the appropriate
integer value that we’ve decided matches that view type. The other thing you should do if
using separators is to implement the isEnabled() method. This should return true for list
items and false for separators because separators should not be selectable or clickable.

The most interesting method in ManateeAdapter is the getView() method call. Once the
GridView has determined how many items are available, it starts to ask for the data. Now,
we can talk about recycling views. A list control can only show as many child views on the
display as will fit. That means there’s no point in calling getView() for every piece of data in
the adapter; it only makes sense to call getView() for as many items as can be displayed. As
gv gets child views back from the adapter, it is determining how many will fit on the display.
When the display is full of child views, gv can stop calling getView().

If you look at LogCat after starting this example application, you will see the various
calls, but you will also see that getView() stops being called before all images have been
requested. If you start scrolling up and down the GridView, you will see more calls to
getView() in LogCat, and you will notice that, once we’ve created a certain number of child
views, getView() is being called with convertView set to something, not null. This means
we’re now recycling child views—and that’s very good for performance.

If we get a nonnull convertView value from gv in getView(), it means gv is recycling that
view. By reusing the view passed in, we avoid having to inflate an XML layout, and we avoid
having to find the ImageView. By linking a ViewHolder object to the View that we return, we
can be much faster at recycling the view the next time it comes back to us. All we have to do
in getView() is reacquire the ViewHolder and assign the right data into the view.

For this example, we wanted to show that the data placed into the view is not necessarily
exactly what exists in the data. The createScaledBitmap() method is creating a smaller
version of the data for display purposes. The point is that our list control does not call
the getItem() method. This method would be called by our other code that wants to do
something with the data if the user acts on the list control. Once again, for any adapter, it is
very important that you understand what it is doing. You don’t necessarily want to rely on
data in the view from the list control, as created by getView() in the adapter. Sometimes,
you will need to call the adapter’s getItem() method to get the actual data to be operated
on. And sometimes, as we did in the earlier ListView examples, you’ll want to go to a cursor
for the data. It all depends on the adapter and where the data is ultimately coming from.
Although we used the createScaledBitmap() method in our example, Android 2.2 introduced
another class that might have been helpful here: ThumbnailUtils. This class has some static
methods for generating thumbnail images from bitmaps and videos.

125CHAPTER 5: Building More Advanced UI Layouts

The last thing to point out from this example is the getItemId() method call. In our earlier
examples with ListViews and contacts, the item ID was the _ID value from the content
provider. For this example, we don’t really need to use anything other than position for the
item ID. The point of item IDs is to provide a mechanism to refer to the data separately from
its position. This is especially true when the data has a life away from this adapter, as is
the case with our contacts. When we have this kind of direct control over the data, as we
do with our images of manatees, and we understand how to get to the actual data in our
application, it is a common shortcut to simply use position as the item ID. This is particularly
true in our case, because we don’t even allow adding or removal of data.

Other Controls in Android
There are many, many controls in Android that you can use. We’ve covered quite a few so
far, and more will be covered in later chapters (such as MapView in Chapter 19 and VideoView
and MediaController in Chapter 20). You will find that the other controls, because they’re all
descended from View, have a lot in common what the ones we’ve covered here. For now,
we’ll just mention a few of the controls you might want to explore further on your own.

ScrollView is a control for setting up a View container with a vertical scrollbar. This is useful
when you have too much to fit onto a single screen.

The ProgressBar and RatingBar controls are like sliders. The first shows the progress of
some operation visually (perhaps a file download or music playing), and the second shows a
rating scale of stars.

The Chronometer control is a timer that counts up. There’s a CountDownTimer class if you
want something to help you display a countdown timer, but it’s not a View class.

The Switch control, which functions like a ToggleButton but visually has a side-to-side
presentation, was introduced in Android 4.0, along with the Space view, a lightweight view
that can be used in layouts to more easily create spaces between other views.

WebView is a very special view for displaying HTML. It can do a lot more than that, including
handling cookies and JavaScript and linking to Java code in your application. But before
you go implementing a web browser inside your application, you should carefully consider
invoking the on-device web browser to let it do all that heavy lifting.

That completes our introduction of controls in this chapter. We’ll now move on to styles and
themes for modifying the look and feel of our controls and then to layouts for arranging our
controls on screens.

Styles and Themes
Android provides several ways to alter the style of views in your application. We’ll first
cover using markup tags in strings and then how to use Spannables to change specific
visual attributes of text. But what if you want to control how things look using a common
specification for several views or across an entire activity or application? We’ll discuss
Android styles and themes to show you how.

126 CHAPTER 5: Building More Advanced UI Layouts

Using Styles
Sometimes, you want to highlight or style a portion of the View’s content. You can do this
statically or dynamically. Statically, you can apply markup directly to the strings in your string
resources, as shown here:

<string name="styledText"><i>Static</i> style in a TextView.</string>

You can then reference it in your XML or from code. Note that you can use the following
HTML tags with string resources: <i>, , and <u> for italics, bold, and underlined,
respectively, as well as <sup> (superscript), <sub> (subscript), <strike> (strikethrough), <big>,
<small>, and <monospace>. You can even nest these to get, for example, small superscripts.
This works not just in TextViews but also in other views, like buttons. Figure 5-2 shows what
styled and themed text looks like, using many of the examples in this section.

Styling a TextView control’s content programmatically requires a little additional work but
allows for much more flexibility (see Listing 5-2), because you can style it at runtime. This
flexibility can only be applied to a Spannable, though, which is how EditText normally
manages the internal text, whereas TextView does not normally use Spannable. Spannable

Figure 5-2. Examples of styles and themes

127CHAPTER 5: Building More Advanced UI Layouts

is basically a String to which you can apply styles. To get a TextView to store text as a
Spannable, you can call setText() this way:

tv.setText("This text is stored in a Spannable", TextView.BufferType.SPANNABLE);

Then, when you call tv.getText(), you’ll get a Spannable.

As shown in Listing 5-2, you can get the content of the EditText (as a Spannable object) and
then set styles for portions of the text. The code in the listing sets the text styling to bold and
italics and sets the background to red. You can use all the styling options as we have with
the HTML tags as described previously, and then some.

Listing 5-2. Applying Styles Dynamically to the Content of an EditText

EditText et =(EditText)this.findViewById(R.id.et);
et.setText("Styling the content of an EditText dynamically");
Spannable spn = (Spannable) et.getText();
spn.setSpan(new BackgroundColorSpan(Color.RED), 0, 7,
 Spannable.SPAN_EXCLUSIVE_EXCLUSIVE);
spn.setSpan(new StyleSpan(android.graphics.Typeface.BOLD_ITALIC),
 0, 7, Spannable.SPAN_EXCLUSIVE_EXCLUSIVE);

These two techniques for styling work only on the one view they’re applied to. Android
provides a style mechanism to define a common style to be reused across views, as well
as a theme mechanism, which basically applies a style to an entire activity or the entire
application. To begin with, we need to talk about styles.

A style is a collection of View attributes that is given a name so you can refer to that
collection by its name and assign that style by name to views. For example, Listing 5-3
shows a resource XML file, saved in /res/values, that we could use for all error messages.

Listing 5-3. Defining a Style to Be Used Across Many Views

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="ErrorText">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:textColor">#FF0000</item>
 <item name="android:typeface">monospace</item>
 </style>
</resources>

The size of the view is defined as well as the font color (red) and typeface. Notice how the
name attribute of the item tag is the XML attribute name we used in our layout XML files, and
the value of the item tag no longer requires double quotes. We can now use this style for an
error TextView, as shown in Listing 5-4.

128 CHAPTER 5: Building More Advanced UI Layouts

Listing 5-4. Using a Style in a View

<TextView android:id="@+id/errorText"
 style="@style/ErrorText"
 android:text="No errors at this time"
 />

It is important to note that the attribute name for a style in this View definition does not start
with android:. Watch out for this, because everything seems to use android: except the style.
When you’ve got many views in your application that share a style, changing that style in one
place is much simpler; you need to modify the style’s attributes only in the one resource file.
You can, of course, create many different styles for various controls. Buttons could share a
common style, for example, that’s different from the common style for text in menus.

One really nice aspect of styles is that you can set up a hierarchy of them. We could define
a new style for really bad error messages and base it on the style of ErrorText. Listing 5-5
shows how this might look.

Listing 5-5. Defining a Style from a Parent Style

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="ErrorText.Danger" >
 <item name="android:textStyle">bold</item>
 </style>
</resources>

This example shows that we can simply name our child style using the parent style as
a prefix to the new style name. Therefore, ErrorText.Danger is a child of ErrorText and
inherits the style attributes of the parent. It then adds a new attribute for textStyle. This can
be repeated again and again to create a whole tree of styles.

As was the case for adapter layouts, Android provides a large set of styles that we can use.
To specify an Android-provided style, use syntax like this:

style="@android:style/TextAppearance"

This style sets the default style for text in Android. To locate the master Android styles.xml
file, visit the Android SDK/platforms/<android-version>/data/res/values/ folder. Inside this
file, you will find quite a few styles that are ready-made for you to use or extend. Here’s a
word of caution about extending the Android-provided styles: the previous method of using
a prefix won’t work with Android-provided styles. Instead, you must use the parent attribute
of the style tag, like this:

<style name="CustomTextAppearance" parent="@android:style/TextAppearance">
 <item ... your extensions go here ... />
</style>

129CHAPTER 5: Building More Advanced UI Layouts

You don’t always have to pull in an entire style on your view. You could choose to borrow
just a part of the style instead. For example, if you want to set the color of the text in your
TextView to a system style color, you could do the following:

<EditText android:id="@+id/et2"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:textColor="?android:textColorSecondary"
 android:text="@string/hello_world" />

Notice that in this example, the name of the textColor attribute value starts with the ?
character instead of the @ character. The ? character is used so Android knows to look for a
style value in the current theme. Because we see ?android, we look in the Android system
theme for this style value.

Using Themes
One problem with styles is that you need to add an attribute specification of style=
"@style/..." to every view definition that you want it to apply to. If you have some style
elements you want applied across an entire activity, or across the whole application, you
should use a theme instead. A theme is really just a style applied broadly; but in terms of
defining a theme, it’s exactly like a style. In fact, themes and styles are fairly interchangeable:
you can extend a theme into a style or refer to a style as a theme. Typically, only the names
give a hint as to whether a style is intended to be used as a style or a theme.

To specify a theme for an activity or an application, add an attribute to the <activity> or
<application> tag in the AndroidManifest.xml file for your project. The code might look
like this:

<activity android:theme="@style/MyActivityTheme">
<application android:theme="@style/MyApplicationTheme">
<application android:theme="@android:style/Theme.NoTitleBar">

You can find the Android-provided themes in the same folder as the Android-provided styles,
with the themes in a file called themes.xml. When you look inside the themes file, you will see
a large set of styles defined, with names that start with Theme. You will also notice that within
the Android-provided themes and styles, there is a lot of extending going on, which is why
you end up with styles called Theme.Dialog.AppError, for example.

This concludes our discussion of the Android control set. As we mentioned in the beginning
of the chapter, building UIs in Android requires you to master two things: the control set
and the layout managers. In the next section, we are going to discuss the Android layout
managers.

130 CHAPTER 5: Building More Advanced UI Layouts

Understanding Layout Managers
Android offers a collection of view classes that act as containers for views. These container
classes are called layouts (or layout managers), and each implements a specific strategy to
manage the size and position of its children. For example, the LinearLayout class lays out its
children either horizontally or vertically, one after the other. All layout managers derive from
the View class, therefore you can nest layout managers inside of one another.

The layout managers that ship with the Android SDK include the commonly used ones
defined in Table 5-1.

Table 5-1. Android Layout Managers

Layout Manager Description

LinearLayout Organizes its children either horizontally or vertically

TableLayout Organizes its children in tabular form

RelativeLayout Organizes its children relative to one another or to the parent

FrameLayout Allows you to dynamically change the control(s) in the layout

GridLayout Organizes its children in a grid arrangement

We will discuss these layout managers in the sections that follow. The layout manager called
AbsoluteLayout has been deprecated and will not be covered in this book.

The LinearLayout Layout Manager
The LinearLayout layout manager is the most basic. This layout manager organizes its
children either horizontally or vertically based on the value of the orientation property.
We’ve used LinearLayout in several of our examples so far. Listing 5-6 shows LinearLayout
with a horizontal configuration.

Listing 5-6. LinearLayout with a Horizontal Configuration

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent" android:layout_height="wrap_content">

 <!-- add children here-->

</LinearLayout>

You can create a vertically oriented LinearLayout by setting the value of orientation to
vertical. Because layout managers can be nested, you could, for example, construct
a vertical layout manager that contained horizontal layout managers to create a fill-in
form, where each row had a label next to an EditText control. Each row would be its own
horizontal layout, but the rows as a collection would be organized vertically.

http://schemas.android.com/apk/res/android

131CHAPTER 5: Building More Advanced UI Layouts

Understanding Weight and Gravity
The orientation attribute is the first important attribute recognized by the LinearLayout
layout manager. Other important properties that can affect size and position of child controls
are weight and gravity.

You use weight to assign size importance to a control relative to the other controls in the
container. Suppose a container has three controls: one has a weight of 1, whereas the
others have a weight of 0. In this case, the control whose weight equals 1 will consume
the empty space in the container. Gravity is essentially alignment. For example, if you want
to align a label’s text to the right, you would set its gravity to right. There are quite a few
possible values for gravity, including left, center, right, top, bottom, center_vertical,
clip_horizontal, and others. See developer.android.com for details on these and the other
values of gravity.

Figure 5-3. Using the LinearLayout layout manager

Note Layout managers extend android.widget.ViewGroup, as do many control-based
container classes such as ListView. Although the layout managers and control-based containers
extend the same class, the layout manager classes, by convention if not strict requirement, deal
with the sizing and position of controls and not user interaction with child controls.

Now let’s look at an example involving the weight and gravity properties (see Figure 5-3).

Figure 5-3 shows three UIs that utilize LinearLayout, with different weight and gravity
settings. The UI on the left uses the default settings for weight and gravity. The XML layout
for this first UI is shown in Listing 5-7.

132 CHAPTER 5: Building More Advanced UI Layouts

Listing 5-7. Three Text Fields Arranged Vertically in a LinearLayout, Using Default Values for Weight and Gravity

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="one"/>
 <EditText android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="two"/>
 <EditText android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="three"/>
</LinearLayout>

The UI in the center of Figure 5-3 uses the default value for weight but sets android:gravity
for the controls in the container to left, center, and right, respectively. The last example
sets the android:layout_weight attribute of the center component to 1.0 and leaves the
others to the default value of 0.0 (see Listing 5-8). By setting the weight attribute to 1.0
for the middle component and leaving the weight attributes for the other two components
at 0.0, we are specifying that the center component should take up all the remaining
whitespace in the container and that the other two components should remain at their
ideal size.

Similarly, if you want two of the three controls in the container to share the remaining
whitespace among them, you would set the weight to 1.0 for those two and leave the third
one at 0.0. Finally, if you want the three components to share the space equally, you’d set all
of their weight values to 1.0. Doing this would expand each text field equally.

Listing 5-8. LinearLayout with Weight Configurations

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:layout_width="fill_parent" android:layout_weight="0.0"
 android:layout_height="wrap_content" android:text="one"
 android:gravity="left"/>

 <EditText android:layout_width="fill_parent" android:layout_weight="1.0"
 android:layout_height="wrap_content" android:text="two"
 android:gravity="center"/>

 <EditText android:layout_width="fill_parent" android:layout_weight="0.0"
 android:layout_height="wrap_content" android:text="three"
 android:gravity="right"
 />
</LinearLayout>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

133CHAPTER 5: Building More Advanced UI Layouts

android:gravity vs. android:layout_gravity
Note that Android defines two similar gravity attributes: android:gravity and
android:layout_gravity. Here’s the difference: android:gravity is a setting used by
the view, whereas android:layout_gravity is used by the container (android.view.
ViewGroup). For example, you can set android:gravity to center to have the text in the
EditText centered within the control. Similarly, you can align an EditText to the far right of
a LinearLayout (the container) by setting android:layout_gravity="right". See Figure 5-4
and Listing 5-9.

Figure 5-4. Applying gravity settings

Listing 5-9. Understanding the Difference Between android:gravity and android:layout_gravity

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <EditText android:layout_width="wrap_content" android:gravity="center"
 android:layout_height="wrap_content" android:text="one"
 android:layout_gravity="right"/>
</LinearLayout>

As shown in Figure 5-4, the text is centered in the EditText, which is aligned to the right of
the LinearLayout.

The TableLayout Layout Manager
The TableLayout layout manager is an extension of LinearLayout. This layout manager
structures its child controls into rows and columns. Listing 5-10 shows an example.

Listing 5-10. A Simple TableLayout

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent" android:layout_height="fill_parent">

 <TableRow>
 <TextView android:text="First Name:"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <EditText android:text="Edgar"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />
 </TableRow>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

134 CHAPTER 5: Building More Advanced UI Layouts

 <TableRow>
 <TextView android:text="Last Name:"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />

 <EditText android:text="Poe"
 android:layout_width="wrap_content" android:layout_height="wrap_content" />
 </TableRow>

</TableLayout>

To use this layout manager, you create an instance of TableLayout and place TableRow
elements within it. These TableRow elements contain the controls of the table. The UI for
Listing 5-10 is shown in Figure 5-5.

Figure 5-5. The TableLayout layout manager

There are a number of more complex layouts possible with TableLayout, including nesting,
asymmetrical rows and columns, and more. We have a bonus section on more options for
TableLayout on the book website, www.androidbook.com.

The RelativeLayout Layout Manager
Another interesting layout manager is RelativeLayout. As the name suggests, this layout
manager implements a policy where the controls in the container are laid out relative to
either the container or another control in the container. Listing 5-11 and Figure 5-6 show an
example.

Listing 5-11. Using a RelativeLayout Layout Manager

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

<TextView android:id="@+id/userNameLbl"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:text="Username: "
 android:layout_alignParentTop="true" />

http://www.androidbook.com/
http://schemas.android.com/apk/res/android

135CHAPTER 5: Building More Advanced UI Layouts

<EditText android:id="@+id/userNameText"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_toRightOf="@id/userNameLbl" />

<TextView android:id="@+id/pwdLbl"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:layout_below="@id/userNameText"
 android:text="Password: " />

<EditText android:id="@+id/pwdText"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_toRightOf="@id/pwdLbl"
 android:layout_below="@id/userNameText" />

<TextView android:id="@+id/pwdCriteria"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_below="@id/pwdText"
 android:text="Password Criteria... " />

<TextView android:id="@+id/disclaimerLbl"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:text="Use at your own risk... " />

</RelativeLayout>

Figure 5-6. A UI laid out using the RelativeLayout layout manager

As shown, the UI looks like a simple login form. The username label is pinned to the
top of the container, because we set android:layout_alignParentTop to true. Similarly,
the Username input field is positioned below the Username label because we set
android:layout_below. The Password label appears below the Username label, and the
Password input field appears below the Password label. The disclaimer label is pinned to the
bottom of the container because we set android:layout_alignParentBottom to true.

136 CHAPTER 5: Building More Advanced UI Layouts

Besides these three layout attributes, you can also specify layout_above, layout_toRightOf,
layout_toLeftOf, layout_centerInParent, and several more. Working with RelativeLayout
is fun due to its simplicity. In fact, once you start using it, it’ll become your favorite layout
manager—you’ll find yourself going back to it over and over again.

The FrameLayout Layout Manager
The layout managers that we’ve discussed so far implement various layout strategies. In
other words, each one has a specific way that it positions and orients its children on the
screen. With these layout managers, you can have many controls on the screen at one
time, each taking up a portion of the screen. Android also offers a layout manager that is
mainly used to display a single item: FrameLayout. You mainly use this utility layout class to
dynamically display a single view, but you can populate it with many items, setting one to
visible while the others are invisible. Listing 5-12 demonstrates using FrameLayout.

Listing 5-12. Populating FrameLayout

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/frmLayout"
 android:layout_width="fill_parent" android:layout_height="fill_parent">

 <ImageView
 android:id="@+id/oneImgView" android:src="@drawable/one"
 android:scaleType="fitCenter"
 android:layout_width="fill_parent" android:layout_height="fill_parent"/>
 <ImageView
 android:id="@+id/twoImgView" android:src="@drawable/two"
 android:scaleType="fitCenter"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 android:visibility="gone" />

</FrameLayout>

public class FrameLayoutActivity extends Activity{
 private ImageView one = null;
 private ImageView two = null;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.listing6_48);

 one = (ImageView)findViewById(R.id.oneImgView);
 two = (ImageView)findViewById(R.id.twoImgView);

http://schemas.android.com/apk/res/android

137CHAPTER 5: Building More Advanced UI Layouts

 one.setOnClickListener(new OnClickListener(){

 public void onClick(View view) {
 two.setVisibility(View.VISIBLE);

 view.setVisibility(View.GONE);
 }});

 two.setOnClickListener(new OnClickListener(){

 public void onClick(View view) {
 one.setVisibility(View.VISIBLE);

 view.setVisibility(View.GONE);
 }});
 }
}

Listing 5-12 shows the layout file as well as the onCreate() method of the activity. The idea
of the demonstration is to load two ImageView objects in the FrameLayout, with only one of
the ImageView objects visible at a time. In the UI, when the user clicks the visible image, we
hide one image and show the other one.

Look at Listing 5-12 more closely now, starting with the layout. You can see that we define
a FrameLayout with two ImageView objects (an ImageView is a control that knows how to
display images). Notice that the second ImageView’s visibility is set to gone, making the
control invisible. Now, look at the onCreate() method. In the onCreate() method, we
register listeners to click events on the ImageView objects. In the click handler, we hide one
ImageView and show the other.

As we said earlier, you generally use FrameLayout when you need to dynamically set the
content of a view to a single control. Although this is the general practice, the control will
accept many children, as we demonstrated. Listing 5-12 adds two controls to the layout but
has one of the controls visible at a time. FrameLayout, however, does not force you to have
only one control visible at a time. If you add many controls to the layout, FrameLayout will
simply stack the controls, one on top of the other, with the last one on top. This can create
an interesting UI. For example, Figure 5-7 shows a FrameLayout control with two ImageView
objects that are visible. You can see that the controls are stacked, and that the top one is
partially covering the image behind it.

138 CHAPTER 5: Building More Advanced UI Layouts

Another interesting aspect of the FrameLayout is that if you add more than one control to the
layout, the size of the layout is computed as the size of the largest item in the container. In
Figure 5-7, the top image is actually much smaller than the image behind it, but because the
size of the layout is computed based on the largest control, the image on top is stretched.

Also note that if you put many controls inside a FrameLayout with one or more of them
invisible to start, you might want to consider using setMeasureAllChildren(true) on your
FrameLayout. Because the largest child dictates the layout size, you’ll have a problem if the
largest child is invisible to begin with: when it becomes visible, it is only partially visible. To
ensure that all items are rendered properly, call setMeasureAllChildren() and pass it a value
of true. The equivalent XML attribute for FrameLayout is android:measureAllChildren="true".

The GridLayout Layout Manager
Android 4.0 brought with it a new layout manager called GridLayout. As you might expect, it
lays out views in a grid pattern of rows and columns, somewhat like TableLayout. However,
it’s easier to use than TableLayout. With a GridLayout, you can specify a row and column
value for a view, and that’s where it goes in the grid. This means you don’t need to specify
a view for every cell, just those that you want to hold a view. Views can span multiple grid
cells. You can even put more than one view into the same grid cell.

Figure 5-7. FrameLayout with two ImageView objects

139CHAPTER 5: Building More Advanced UI Layouts

When laying out views, you must not use the weight attribute, because it does not work
in child views of a GridLayout. You can use the layout_gravity attribute instead. Other
interesting attributes you can use with GridLayout child views include layout_column and
layout_columnSpan to specify the left-most column and the number of columns the view
takes up, respectively. Similarly, there are layout_row and layout_rowSpan attributes.
Interestingly, you do not need to specify layout_height and layout_width for GridLayout
child views; they default to WRAP_CONTENT.

Customizing the Layout for Various Device Configurations
By now, you know very well that Android offers a host of layout managers that help you
build UIs. If you’ve played around with the layout managers we’ve discussed, you know
that you can combine the layout managers in various ways to obtain the look and feel you
want. But even with all the layout managers, building UIs—and getting them right—can be
a challenge. This is especially true for mobile devices. Users and manufacturers of mobile
devices are getting more and more sophisticated, and that makes the developer’s job even
more challenging.

One of the challenges is building a UI for an application that displays in various screen
configurations. For example, what would your UI look like if your application were displayed
in portrait versus landscape mode? If you haven’t run into this yet, your mind is probably
racing right now, wondering how to deal with this common scenario. Interestingly, and
fortunately, Android provides some support for this use case.

Here’s how it works: when building a layout, Android will find and load layouts from
specific folders based on the configuration of the device. A device can be in one of three
configurations: portrait, landscape, or square (square is rare). To provide different layouts
for the various configurations, you have to create specific folders for each configuration
from which Android will load the appropriate layout. As you know, the default layout folder
is located at res/layout. To support portrait display, create a folder called res/layout-port.
For landscape, create a folder called res/layout-land. And for a square, create one called
res/layout-square.

A good question at this point is, “With these three folders, do I need the default layout folder
(res/layout)?” Generally, yes. Android’s resource-resolution logic looks in the configuration-
specific directory first. If Android doesn’t find a resource there, it goes to the default layout
directory. Therefore, you should place default layout definitions in res/layout and the
customized versions in the configuration-specific folders.

Another trick is to use the <include /> tag in a layout file. This allows you to create common
chunks of layout code (for example, in the default layout directory) and include them in
layouts defined in layout-port and layout-land. An include tag might look like this:

<include layout="@layout/common_chunk1" />

If the concept of include interests you, you should also check out the <merge /> tag and
the ViewStub class in the Android API. These give you even more flexibility when organizing
layouts, without duplicating views.

140 CHAPTER 5: Building More Advanced UI Layouts

Note that the Android SDK does not offer any APIs for you to programmatically specify
which configuration to load—the system simply selects the folder based on the configuration
of the device. You can, however, set the orientation of the device in code, for example, using
the following:

import android.content.pm.ActivityInfo;
...
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

This forces your application to appear on the device in landscape mode. Go ahead and try it
in one of your earlier projects. Add the code to your onCreate() method of an activity, run it
in the emulator, and see your application sideways.

Summary
Let’s conclude this chapter by quickly enumerating what you have learned about building
user interfaces:

The main types of layouts and when to use each	

Views supported in Android and how to define them both in XML 	
and via code

Styles and themes you can use to manage the look and feel of your 	
application from a common set of resources

141

Chapter 6
Working with Menus and
Action Bars

Android SDK supports regular menus, submenus, context menus, icon menus, and
secondary menus. Android 3.0 introduced the action bar, which integrates well with menus.
We will cover both menus and action bars in this chapter.

Like many other chapters in the book, we will present the essential code snippets that you
can use to work with menus and action bars. The completer code context for these snippets
is available in the downloadable application that is specifically developed for this chapter.
The link for these downloadable projects is given in the “Resources” section at the end of
this chapter.

Working with Menus Through XML Files
In Android the easiest way to work with menus is through XML menu resource files. This
XML approach to menu creation offers several advantages, such as the ability to name
menus, order them automatically, and allocate IDs. As XML menus are resources, you also
get the localization support for the menu text and icons.

Creating XML Menu Resource Files
A sample menu XML file is given Listing 6-1. You see in this listing a series of menu items
grouped together under a group XML node. You can specify an ID for the group using the
@+id resource reference approach. You can use this ID in java code to get access to the
menu group and manage it when needed. Grouping is optional and you can omit the group
XML node.

142 CHAPTER 6: Working with Menus and Action Bars

Each menu XML file has a series of menu items with their menu item IDs tied to symbolic
names. The title indicates the menu title, and the orderInCategory indicates the order in
which the menu item appears in the menu. You can refer to the Android SDK documentation
for all the possible attributes for these XML tags. The reference URL is provided in the
“Resources” section of this chapter.

Listing 6-1. Menu XML Resource File with Menu Definitions

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <group android:id="@+id/menuGroup_Main">

 <item android:id="@+id/menu_item1"

 android:orderInCategory="1"

 android:title="item1 text" />

 <item android:id="@+id/menu_item2"

 android:orderInCategory="2"

 android:enabled="true"

 android:icon="@drawable/some-file"

 android:title="item2 text" />

 <item android:id="@+id/menu_item3"

 android:orderInCategory="3"

 android:title="item3 text" />

 </group>

</menu>

All the child menu items in Listing 6-1 are allocated menu item IDs based on their names
(example: menu_item1) in this XML file. Let’s see now how we take this menu XML file and
associate it with an activity.

Populating Activity Menu from Menu XML Files
Assume that the name of the menu XML file is my_menu.xml. You need to place this file in the
/res/menu subdirectory. Placing the file in /res/menu automatically generates a resource ID
called R.menu.my_menu.

The key class in Android menu support is android.view.Menu. Every activity in Android is
associated with one menu object of this type. In the life cycle of an activity Android calls a
method called onCreateOptionsMenu() to populate this Menu object. In this method we load
the XML menu file into the Menu object. This is shown in Listing 6-2.

http://schemas.android.com/apk/res/android

143CHAPTER 6: Working with Menus and Action Bars

Listing 6-2. Using Menu Inflater

//This callback method is available on every activity class
@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater(); //from activity
 inflater.inflate(R.menu.my_menu, menu);

 //It is important to return true to see the menu
 return true;

}

Once the menu items are populated, the code should return true to make the menu visible.
If this method returns false, the menu is invisible.

Responding to XML-Based Menu Items
You respond to menu items in the onOptionsItemSelected() callback method. Android
not only generates a resource ID for the XML menu file (as used in Listing 6-2) but also
generates the necessary menu item IDs to help you distinguish between the menu items.
The code in Listing 6-3 illustrates how to respond to menu items.

Listing 6-3. Responding to Menu Items from an XML Menu Resource File

@Override
public void onOptionsItemSelected (MenuItem item){
 if (item.getItemId() == R.id.menu_item1){
 //do something
 //for items handled
 return true;
 }
 else if (item.getItemId() == R.id.menu_item2){
 //do something
 return true;
 }
 //for the rest
 ...return super.onOptionsItemSelected(item);
}

Notice how the menu item names from the XML menu resource file have automatically
generated menu item IDs in the R.id space.

144 CHAPTER 6: Working with Menus and Action Bars

Starting in SDK 3.0, you can also use the android:onClick attribute of a menu item to
directly indicate the name of a method in an activity that is attached to this menu. This
activity method is then called with the menu item object as the sole input. This feature is only
available in 3.0 and above. Listing 6-4 shows an example.

Listing 6-4. Specifying a Menu Callback Method in an XML Menu Resource File

<item android:id="... "
 android:onClick="a-method-name-in-your-activity"
 ...
</item>

It is this simple to work with menu items in Android. Let’s explore the Java API for the menus
a bit now.

Working with Menus in Java Code
As indicated the key class in Android menu support is android.view.Menu. Every activity
in Android is associated with one menu object of this type. The menu object then contains
a number of menu items and submenus. Menu items are represented by android.view.
MenuItem. Submenus are represented by android.view.SubMenu.

Prior to SDK 3.0, onCreateOptionsMenu() is called the first time an activity’s options menu is
accessed. Starting with 3.0, this method is called as part of activity creation. Also note that
this method is called only once for the life cycle of the activity. If you want to add menus
dynamically you will need to use the method onPrepareOptionsMenu(), which is covered a
little later. The code in Listing 6-5 shows how to add three menu items using a single group
ID along with incremental menu item IDs and order IDs.

Listing 6-5. Adding Menu Items

@Override
public boolean onCreateOptionsMenu(Menu menu){
 super.onCreateOptionsMenu(menu);
 menu.add(0 // Group
 ,1 // item id
 ,0 //order
 ,"item1"); // title

 menu.add(0,2,1,"item2");
 menu.add(0,3,2,"item3");
 //It is important to return true to see the menu
 return true;
}

You should also call the base-class implementation of this method to give the system an
opportunity to populate the menu with system menu items (no system menu items are
defined so far).

The arguments to create the menu item are explained in Listing 6-5. The last argument is the
name or title of the menu item. Instead of free text, you can use a string resource through
the R.java constants file. The group, menu item, and order IDs are all optional; you can use

145CHAPTER 6: Working with Menus and Action Bars

Menu.NONE if you don’t want to specify any of them. If Menu.NONE is specified for a group, then
the items are outside of any group. If Menu.NONE is specified for an item, then this might be
a submenu or a separator. If Menu.NONE is specified for the order, Android will choose some
mechanism to order them.

Working with Menu Groups
Now, let’s look at how to work with menu groups. Listing 6-6 shows how you add two
groups of menus: Group 1 and Group 2.

Listing 6-6. Using Group IDs to Create Menu Groups

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 //Group 1
 int group1 = 1;
 menu.add(group1,1,1,"g1.item1");
 menu.add(group1,2,2,"g1.item2");

 //Group 2
 int group2 = 2;
 menu.add(group2,3,3,"g2.item1");
 menu.add(group2,4,4,"g2.item2");

 return true; // it is important to return true
}

Android provides a set of methods on the android.view.Menu class that are based on group
IDs. You can manipulate a group’s menu items using the methods shown in Listing 6-7:

Listing 6-7. Menu Group–Related Methods

removeGroup(id)
setGroupCheckable(id, checkable, exclusive)
setGroupEnabled(id,enabled)
setGroupVisible(id,visible)

removeGroup() removes all menu items from that group, given the group ID. You can enable
or disable menu items in a given group using the setGroupEnabled method(). Similarly, you
can control the visibility of a group of menu items using setGroupVisible().

setGroupCheckable() is interesting. You can use this method to show a check mark on
a menu item when that menu item is selected. When applied to a group, it enables this
functionality for all menu items within that group. If this method’s exclusive flag is set, only
one menu item within that group is allowed to go into a checked state. The other menu items
remain unchecked.

You now know how to populate an activity’s main menu with a set of menu items and group
them according to their nature. The way you respond to these menu items is identical to how
you would have responded to for their XML counterparts except that the menu items IDs are
explicitly controlled by the programmer.

146 CHAPTER 6: Working with Menus and Action Bars

Responding to Menu Items Through Listeners
You usually respond to menus by overriding onOptionsItemSelected(); a menu item also
allows you to register a listener that could be used as a callback. This approach is a
two-step process. In the first step, you implement the MenuItem.OnMenuItemClickListener
interface. Then, you take an instance of this implementation and pass it to the menu item.
When the menu item is clicked, the menu item calls the onMenuItemClick() method of the
MenuItem.OnMenuItemClickListener interface (see Listing 6-8).

Listing 6-8. Using a Listener as a Callback for a Menu Item Click

//Step 1
public class MyResponse implements MenuItem.OnMenuItemClickListener{
 public MyResponse(...someargs...){} //a constructor
 @override
 public boolean OnMenuItemClick(MenuItem item) {
 //do your thing
 return true;
 }
}

//Step 2
MyResponse myResponse = new MyResponse(..your args..);//supply your args
menuItem.setOnMenuItemClickListener(myResponse);
...

The onMenuItemClick() method is called when the menu item has been invoked. This code
executes as soon as the menu item is clicked, even before the onOptionsItemSelected()
method is called. If onMenuItemClick() returns true, no other callbacks are executed—
including the onOptionsItemSelected() callback method. This means that the listener code
takes precedence over the onOptionsItemSelected() method.

Using an Intent to Respond to Menu Items
You can also associate a menu item with an intent by using the MenuItem’s method
setIntent(intent). When an intent is associated with a menu item, and nothing
else handles the menu item, then the default behavior is to invoke the intent
using startActivity(intent). For this to work, all the handlers—especially the
onOptionsItemSelected() method—should call the parent class’s onOptionsItemSelected()
method for those menu items that are not handled.

Understanding Expanded Menus
If an application has more menu items than it can display on the main screen, Android
shows a More menu item to allow the user to see the rest. This menu, called an expanded
menu, appears automatically when there are too many menu items to display in the limited
amount of space.

147CHAPTER 6: Working with Menus and Action Bars

Working with Icon Menus
Android supports not only text but also images or icons as part of its menu repertoire.
Creating an icon menu item is straightforward. You create a regular text-based menu item as
before, and then you use the setIcon() method on the MenuItem class to set the image. You
need to use the image’s resource ID, so you must generate it first by placing the image or
icon in the /res/drawable directory. For example, if the icon’s file name is balloons, then the
resource ID is R.drawable.balloons. Listing 6-9 demonstrates how to add an icon to a menu
item.

Listing 6-9. Attaching an Icon to a Menu Item

//add a menu item and remember it so that you can use it
//subsequently to set the icon on it.
MenuItem item = menu.add(...);//supply the menu item details
item.setIcon(R.drawable.balloons);

The icon shows as long as the menu item is displayed on the main application screen. If
it’s displayed as part of the expanded menu, the icon doesn’t show, just the text. There is
an icon tag available as well to indicate the icon in an XML menu resource file. There are
conditions under which Android may choose not to show the icons and recommends that
text is always provided.

Working with Submenus
A Menu object can have multiple SubMenu objects. Each SubMenu object is added to the Menu
object through a call to the Menu.addSubMenu() method (see Listing 6-10). You add menu
items to a submenu the same way that you add menu items to a menu. This is because
SubMenu is also derived from a Menu object. However, you cannot add additional submenus to
a submenu.

Listing 6-10. Adding Submenus

private void addSubMenu(Menu menu){
 //Secondary items are shown just like everything else
 int base=Menu.FIRST + 100;
 SubMenu sm = menu.addSubMenu(base,base+1,Menu.NONE,"submenu");
 sm.add(base,base+2,base+2,"sub item1");
 sm.add(base,base+3,base+3,"sub item2");
 sm.add(base,base+4,base+4,"sub item3");

 //the following is ok
 sm.setIcon(R.drawable.icon48x48_1);

 //This will result in runtime exception
 //sm.addSubMenu("try this");
}

148 CHAPTER 6: Working with Menus and Action Bars

Note SubMenu, as a subclass of the Menu object, continues to carry the addSubMenu() method.
The compiler won’t complain if you add a submenu to another submenu, but you’ll get a runtime
exception if you try to do it.

The Android SDK documentation also suggests that submenus do not support icon menu
items. When you add an icon to a menu item and then add that menu item to a submenu,
the menu item ignores that icon, even if you don’t see a compile-time or runtime error.
However, the submenu itself can have an icon.

Working with Context Menus
Android supports the idea of context menus through an action called a long click. A long
click is a long press held down slightly longer than usual on any Android view. An activity
owns a regular options menu, whereas a view owns a context menu. This is to be expected,
because the long clicks that activate context menus apply to the view being clicked. So an
activity can have only one options menu but many context menus.

Registering a View for a Context Menu
The first step in implementing a context menu is to register a view for the context menu in an
activity’s onCreate() method. You can register a TextView for a context menu by using the
code in Listing 6-11. You first find the TextView and then call registerForContextMenu() on
the activity using the TextView as an argument. This sets up the TextView for context menus.

Listing 6-11. Registering a TextView for a Context Menu

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView tv = (TextView)this.findViewById(R.id.textViewId);
 registerForContextMenu(tv);
}

Populating a Context Menu
Once a view like the TextView in this example is registered for context menus, Android
calls the onCreateContextMenu() method with this view as the argument. This is where you
can populate the context menu items for that context menu. The onCreateContextMenu()
callback method provides three arguments to work with. Listing 6-12 demonstrates the
onCreateContextMenu() method.

149CHAPTER 6: Working with Menus and Action Bars

Listing 6-12. The onCreateContextMenu() Method

@Override
public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo menuInfo){
 menu.setHeaderTitle("Sample Context Menu");
 menu.add(200, 200, 200, "item1");
}

The first argument is a preconstructed ContextMenu object, the second is the view (such
as the TextView) that generated the callback, and the third is the ContextMenuInfo class.
For a lot of simple cases, you can just ignore the ContextMenuInfo object. However, some
views may pass extra information through this object. In those cases, you need to cast the
ContextMenuInfo class to a subclass and then use the additional methods to retrieve the
additional information.

Some examples of classes derived from ContextMenuInfo include AdapterContextMenuInfo
and ExpandableListContextMenuInfo. Views that are AdapterViews such as the ListView in
Android use the AdapterContextMenuInfo class to pass the row ID within that view for which
the context menu is being displayed. In a sense, you can use this class to further clarify the
object underneath the touch or the click, even within a given composite view.

Responding to Context Menu Items
Android provides a callback method similar to onOptionsItemSelected() called
onContextItemSelected(). Listing 6-13 demonstrates onContextItemSelected().

Listing 6-13. Responding to Context Menus

//This method is available for all activities @Override
 public boolean onContextItemSelected(MenuItem item) {
 if (item.getItemId() == some-menu-item-id) {
 //handle this menu item
 return true;
 }
... other exception processing
}

Incorporating Dynamic Menus
So far, we’ve talked about static menus—you set them up once, and they don’t change
dynamically according to what’s onscreen. If you want to create dynamic menus, use
the onPrepareOptionsMenu() method that Android provides on an activity class. This
method resembles onCreateOptionsMenu() except that it is called every time a menu is
displayed prior to displaying. You should use onPrepareOptionsMenu() along with the
onCreateOptionsMenu() to effectively manage your menu if it has dynamic menu options.
onPrepareOptionMenu() is where you want to enable or disable some menu items or menu
groups based on what you are displaying. For 3.0 and above when you want to change a
menu, because a menu-related component like the action bar is always displayed, you have

150 CHAPTER 6: Working with Menus and Action Bars

to explicitly call a new provisioned method called Activity.invalidateOptionsMenu(), which
in turn invokes the onCreateOptionsMenu() and redraws the menu and thereby also results
in calling onPrepareOptionsMenu() prior to the display. You can call this method any time
something changes in your application state that would require a change to the menu.

Working with Pop-up Menus
Android 3.0 introduced another type of menu called a pop-up menu. SDK 4.0 enhanced
this slightly by adding a couple of utility methods (for example, PopupMenu.inflate) to the
PopupMenu class. (See the PopupMenu API documentation to learn about these methods.
Listing 6-14 also draws attention to this difference.)

A pop-up menu can be invoked against any view in response to any UI event. An example
of a UI event is a button click or a click on an image view. Figure 6-1 shows a pop-up menu
invoked against a view.

Figure 6-1. Pop-up menu attached to a text view

To create a pop-up menu like the one in Figure 6-1, start with a regular XML menu file
and use the Java code in Listing 6-14 to load this menu XML as a pop-up menu. See the
downloadable project for this chapter if you want to see the full implementation.

151CHAPTER 6: Working with Menus and Action Bars

Listing 6-14. Working with a Pop-up Menu

//Other activity code goes here...
//Invoke the following method to show a popup menu
private void showPopupMenu() {
 //Get hold of a view to anchor the popup
 TextView tv = findViewById(R.id.SOME_TEXT_VIEW_ID);

 //instantiate a popup menu. var "this" stands for activity
 PopupMenu popup = new PopupMenu(this, tv);

 //the following code for 3.0 sdk
 //popup.getMenuInflater().inflate(R.menu.popup_menu, popup.getMenu());
 //Or in sdk 4.0 and above
 popup.inflate(R.menu.popup_menu);
 popup.setOnMenuItemClickListener(new PopupMenu.OnMenuItemClickListener() {
 public boolean onMenuItemClick(MenuItem item) {
 //do something here
 return true; } });
 popup.show();
}

As you can see, a pop-up menu behaves much like an options menu. The key differences
are as follows:

A pop-up menu is used on demand, whereas an options menu is always 	
available.

A pop-up menu is anchored to a view, whereas an options menu 	
belongs to the entire activity.

A pop-up menu uses its own menu item callback, whereas the options 	
menu uses the onOptionsItemSelected() callback on the activity.

Exploring Action Bars
Introduced in Android 3.0 and expanded in Android 4.0, an ActionBar extends the reach of
menus into the title bar of an activity. This allows frequently used actions easily available to
the user without searching through option menus or context menus. In addition to icons and
menu items, an action bar can accommodate other views such as tabs, or a list, or a search
box to help with navigation. Figure 6-2 shows an action bar in tabbed navigation mode.

Figure 6-2. An activity with a tabbed action bar

152 CHAPTER 6: Working with Menus and Action Bars

You can see the various parts of an action bar here. The icon at upper left on the action bar
is called a Home icon. Clicking this Home icon sends a callback to the option menu with
menu ID android.R.id.home. Followed by the home icon is the title area for this activity. Then
you see a set of tabs (or a drop-down list if this were to be a list-based action bar). In the
middle, you see search view. Towards the end, you see a set of action icons. The last part of
this action bar is a dotted vertical line representing the menu for this activity. When you click
on that icon, a standard drop-down menu will appear (See Figure 6-3).

The action bar you see in Figure 6-1 is a tabbed action bar. The two other modes of an
action bar are a standard and a list. In a list action bar, the tabs are replaced by a drop-down
list. In a standard action bar, there is no area set aside for a list or tabs. Now, let’s show you
how to implement a simple standard action bar.

Implementing a Standard Action Bar
Listing 6-15 presents sample source code for implementing a standard navigation action bar
for an activity.

Listing 6-15. Standard Navigation Action Bar Activity

public class StandardNavigationActionBarActivity extends Activity {
 // other code
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 ActionBar bar = this.getActionBar();
 bar.setTitle("Some title of your choosing");
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_STANDARD);
 }
 public boolean onCreateOptionsMenu(Menu mainMenu) {
 //load the menu xml file into the mainMenu object as usual here
 return true;
 }
}

As you can see from Listing 6-15, it is easy to work with an action bar. Notice in that listing
how we have used the getActionBar() to get access to the action bar object and then set its
title and navigation mode. Any menu you set in the onCreateOptionsMenu() can be invoked
directly from the action bar as shown in Figure 6-3. (However, when a menu is presented in
this fashion from an action bar, due to space limitations, the system may not show the icons
along with menu text.)

153CHAPTER 6: Working with Menus and Action Bars

With the introduction of action bar, the menu XML file is enhanced with new attributes to
indicate some menu items to be shown in the action bar directly as icons. (You can see
these icons in action bar above the expanded menu in Figure 6-3). The XML menu file
example in Listing 6-16 demonstrates how a menu item can be specified to become an icon
directly on the action bar.

Listing 6-16. Menu XML File for This Project

<!-- /res/menu/menu.xml -->
<menu
xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- This group uses the default category. -->
 <group android:id="@+id/menuGroup_Main">
 <!-- a regular menu item -->
 <item android:id="@+id/menu_da_clear"
 android:title="clear" />
 <!--item to be shown directly on the action bar-->
 <item android:id="@+id/menu_action_icon1"
 android:title="Action Icon1"
 android:icon="@drawable/creep001"
 android:showAsAction="ifRoom"/>
 <!-- ..other menu items-->
 </group>
</menu>

The menu items that are to be shown on the action bar are indicated with the tag
showAsAction. In the preceding code, this attribute is set to "ifRoom". The other possible
values for this XML tag are as follows: always, never, withText, collapseActionView. You
can also accomplish the same effect with a Java API available on the MenuItem class. The
option always means “show this item as a button in the action bar.” The option never means
“never show this item.” The option withText means “show this item with its text label and
the icon.” The option collapseActionView means “collapse the space taken by the action
view of this action menu item when not selected.” Because these actions are merely menu
items, they behave as such and call the onOptionsItemSelected() callback method of the
activity class.

Figure 6-3. An activity with an action bar and expanded menu

http://schemas.android.com/apk/res/android

154 CHAPTER 6: Working with Menus and Action Bars

Implementing a Tabbed Action Bar
Listing 6-17 shows how to setup a tabbed action bar.

Listing 6-17. Tab-Navigation–Enabled Action Bar Activity

//Activity Source code
public class TabNavigationActionBarActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 workwithTabbedActionBar();
 }
 public void workwithTabbedActionBar() {
 ActionBar bar = this.getActionBar();
 bar.setTitle(tag);
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

 TestTabListener tl = new TestTabListener();

 Tab tab1 = bar.newTab();
 tab1.setText("Tab1"); tab1.setTabListener(tl); bar.addTab(tab1);
 Tab tab2 = bar.newTab();
 tab2.setText("Tab2"); tab2.setTabListener(tl); bar.addTab(tab2);
 }
}//eof-class

A tabbed action bar, as the name suggests, has multiple tabs. In Listing 6-17 you see
that there are a few additional methods and classes that are used to work with tabbed
action bars. Unlike a standard action bar, a tabbed action bar requires a tab listener for
each tab. This listener needs to implement the TabListener interface. In Listing 6-18 the
class TestTabListener implements the TabListener interface. If you forget to call the
setTabListener() method on a tab that is added to the action bar, you get a runtime error
indicating that a listener is needed. Listing 6-18 shows the code for the TestTabListener class.

Listing 6-18. Tab Listener to Respond to Tab Actions

public class TestTabListener implements ActionBar.TabListener {
 // constructor code
 public TestTabListener(){}
 // callbacks
 public void onTabReselected(Tab tab, FragmentTransaction ft) {
 //apply necessary logic here
 }
 public void onTabSelected(Tab tab, FragmentTransaction ft) {
 //apply necessary logic here
 }
 public void onTabUnselected(Tab tab, FragmentTransaction ft) {
 //apply necessary logic here
 }
}

155CHAPTER 6: Working with Menus and Action Bars

As tabs are selected and unselected, the callback methods in Listing 6-18 will be called.
Action bar is a property of the activity and does not cross activity boundaries. In other
words, one cannot use an action bar to control or influence multiple activities. Each activity
must provision its own action bars. Any commonality of actions between action bars is left
to the programmer to orchestrate.

In Listing 6-17, once we obtained the action bar for an activity, we set its navigation mode to
ActionBar.NAVIGATION_MODE_TABS. The other two possible action bar navigation modes are
NAVIGATION_MODE_LIST and NAVIGATION_MODE_STANDARD. Let’s see now how to implement a
list-based action bar.

Implementing a List-Based Action Bar
To be able to initialize an action bar with list navigation mode, you need the following
two things:

A spinner adapter that can be used populate the drop-down list of 	
navigation choices.

A list navigation listener so that when one of the list items is picked you 	
can get a callback.

Listing 6-19 presents the SimpleSpinnerArrayAdapter that implements the SpinnerAdapter
interface. As stated earlier, the goal of this class is to give a list of items to show.

Listing 6-19. Creating a Spinner Adapter for List Navigation

public class SimpleSpinnerArrayAdapter extends ArrayAdapter<String>

implements SpinnerAdapter {

 public SimpleSpinnerArrayAdapter(Context ctx) {

 super(ctx,

 android.R.layout.simple_spinner_item,

 new String[]{"one","two"});

 this.setDropDownViewResource(

 android.R.layout.simple_spinner_dropdown_item);

 }

 public View getDropDownView(int position, View convertView, ViewGroup parent) {

 return super.getDropDownView(

 position, convertView, parent);

 }

}

There is no SDK class that directly implements the SpinnerAdapter interface required
by list navigation. So, you derive this class from an ArrayAdapter and provide a simple
implementation for the SpinnerAdapter. At the end of the chapter is a reference URL on
spinner adapters for further reading. Let’s move on now to the list navigation listener. This is
a simple class implementing the ActionBar.OnNavigationListener. Listing 6-20 shows the
code for this class.

156 CHAPTER 6: Working with Menus and Action Bars

Listing 6-20. Creating a List Listener for List Navigation

public class ListListener implements ActionBar.OnNavigationListener {
 //simple constructor...
 public ListListener(){}
 //needed callback to respond to actions
 public boolean onNavigationItemSelected(int itemPosition, long itemId) {
 //respond and return true
 return true;
 }
}

You now have what you require to set up a list navigation action bar. The source code
necessary for working with a list-based action bar is shown in Listing 6-21.

Listing 6-21. List Navigation Action Bar Activity

//Activity Source code
public class TabNavigationActionBarActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 workwithTabbedActionBar();
 }
 public void workwithListActionBar() {
 ActionBar bar = this.getActionBar();
 bar.setTitle("title");
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_LIST);
 bar.setListNavigationCallbacks(
 new SimpleSpinnerArrayAdapter(this),
 new ListListener());
 }
}//eof-class

Figure 6-4 shows how a list bar action bar looks when expanded.

Figure 6-4. An activity with an opened navigation list

That concludes how we can use an action bar for regular menus, tabbed navigation, and
list-based navigation. Let’s see now how we can embed a search view like the one shown in
Figure 6-2.

157CHAPTER 6: Working with Menus and Action Bars

Exploring Action Bar and Search View
This section shows how to use a search widget in the action bar. You need the following to
use search in your action bar:

1. Define a menu item in a menu XML file pointing to a search view
class provided by the SDK. You also need an activity into which you
can load this menu. This is often called the search invoker activity.

2. Create another activity that can take the query from the search view
in step 1 and provide results. This is often called the search results
activity.

3. Create an XML file that allows you to customize the search view in
the action bar. This file is often called searchable.xml and resides in
the res/xml subdirectory.

4. Declare the search results activity in the manifest file. This definition
needs to point to the XML file defined in step 3.

5. In your menu setup for the search invoker activity, indicate that the
search view needs to target the search results activity from step 2.

Let’s start with the Search view widget.

Defining a Search View Widget as a Menu Item
To define a search view to appear in the action bar of your activity, you need to define a
menu item in one of your menu XML files, as shown in Listing 6-22.

Listing 6-22. Search View Menu Item Definition

<item android:id="@+id/menu_search"
 android:title="Search"
 android:showAsAction="ifRoom"
 android:actionViewClass="android.widget.SearchView"
 />

The key element in Listing 6-22 is the actionViewClass attribute pointing to
android.widget.SearchView. You saw the other attributes earlier in the chapter when you
declared your normal menu items to appear as action icons in the action bar.

158 CHAPTER 6: Working with Menus and Action Bars

Creating a Search Results Activity
To enable search in your application, you need an activity that can respond to a search
query. This can be like any other activity. An example is shown in Listing 6-23.

Listing 6-23. Search Results Activity

public class SearchResultsActivity extends Activity {
 public static String tag = "SearchResultsActivity ";
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 final Intent queryIntent = getIntent();
 doSearchQuery(queryIntent);
 }
 @Override
 public void onNewIntent(final Intent newIntent) {
 super.onNewIntent(newIntent);
 final Intent queryIntent = getIntent();
 doSearchQuery(queryIntent);
 }
 private void doSearchQuery(final Intent queryIntent) {
 final String queryAction = queryIntent.getAction();
 if (!(Intent.ACTION_SEARCH.equals(queryAction))) {
 Log.d(tag,"intent NOT for search");
 return;
 }
 final String queryString = queryIntent.getStringExtra(SearchManager.QUERY);
 Log.d(tag, queryString);
 }
}//eof-class

In Listing 6-23, the activity checks to see whether the action that invoked it is initiated by
search. Or, this activity could have been newly created or just brought to the top, in which
case it needs to do something identical to the onCreate() method in its onNewIntent()
method as well. On the other hand, if this activity is invoked by search, it retrieves the query
string using an extra parameter called SearchManager.QUERY. Then the activity logs what that
string is. In a real scenario, you would use that string to paint matching results.

Specifying a Searchable XML File
As indicated in the earlier steps, let’s look at the XML file that is required and customizes the
search widget; see Listing 6-24.

Listing 6-24. Searchable XML File

<!-- /res/xml/searchable.xml -->
<searchable xmlns:android="http://schemas.android.com/apk/res/android"
 android:label="@string/search_label"
 android:hint="@string/search_hint"
/>

http://schemas.android.com/apk/res/android

159CHAPTER 6: Working with Menus and Action Bars

The hint attribute will appear on the search view widget as a hint that disappears when you
start typing. The label doesn’t play a significant role in the action bar. However, when you
use the same search results activity in a search dialog, the dialog has the label defined here.
You can learn more about searchable XML attributes at the following URL:

http://developer.android.com/guide/topics/search/searchable-config.html

Defining the Search Results Activity in the Manifest File
Now let’s see how to tie this XML file to the search results activity. This is done in the
manifest file as part of defining the search results activity: see Listing 6-25. Notice the
metadata definition pointing to the searchable XML file resource.

Listing 6-25. Tying an Activity to Its Searchable.xml

<activity android:name=".SearchResultsActivity"
 android:label="Search Results">
 <intent-filter>
 <action android:name="android.intent.action.SEARCH"/>
 </intent-filter>
 <meta-data android:name="android.app.searchable"
 android:resource="@xml/searchable"/>
</activity>

Identifying the Search Target for the Search View Widget
So far, you have the search view in your action bar, and you have the activity that can
respond to search. You need to tie together these two pieces using Java code. You do this
in the onCreateOptions() callback of the search-invoking activity as part of setting up your
menu. The function in Listing 6-26 can be called from onCreateOptions() to link the search
view widget and the search results activity.

Listing 6-26. Tying the Search View Widget to the Search Results Activity

private void setupSearchView(Menu menu) {
 //Step1: Locate the search view widget
 SearchView searchView = (SearchView) menu.findItem(R.id.menu_search).getActionView();
 //report error and return if searchView is null

 //Step2: get SearchManager and searchableInfo
 SearchManager
 searchManager = (SearchManager)getSystemService(Context.SEARCH_SERVICE);
 ComponentName cn = new ComponentName(this,SearchResultsActivity.class);
 SearchableInfo info = searchManager.getSearchableInfo(cn);
 //report error and return if searchable info is null

 //Step3: set searchableInfo on the searchview widget
 searchView.setSearchableInfo(info);
 // Do not iconify the widget; expand it by default
 searchView.setIconifiedByDefault(false);
}

http://developer.android.com/guide/topics/search/searchable-config.html

160 CHAPTER 6: Working with Menus and Action Bars

Let’s walk through what is happening in Listing 6-26. The goal of this code is to tell the
search view where it can find the searchable.xml that defines the search behavior. To do
this, the first step is to get a reference to the SearchView. This is done through the Menu
object. The second step is to ask the system-wide search manager what searchable
XML file is tied to the activity SearchResultsActivity. This is done by calling the method
getSearchableInfo on the SearchManager system service. Once we have the SearchableInfo
object representing the XML file, we pass that information to the SearchView object. With all
this in place, now if you type something in the search box, that information will be passed to
the search results activity, which will show the results.

Android Search API is a large API with a lot of nuances that, due to space, we have
not included in this book. There are three suggestions. We have provided a URL in the
“Resources” section that points to a series of articles and notes on the Google search API.
We also have a large chapter on Search from the previous edition made available online. The
link to this is also in the “Resources” section. We have also updated that Search material
from the previous edition and added that content to the Expert Android edition from Apress.

Resources
As you learn about and work with Android menus and action bars, you may want to keep the
following URLs handy:

	http://developer.android.com/guide/topics/ui/menus.html: Primary
document from Google describing how to work with menus.

	http://developer.android.com/guide/topics/resources/menu-
resource.html: Information about various XML tags you can use in a
menu resource.

	http://developer.android.com/reference/android/app/ActionBar.html:
API URL for the ActionBar class.

	http://www.androidbook.com/item/3624: Our research on action bar,
including a list of further references, sample code, links to examples,
and UI figures representing various action bar modes.

	http://www.androidbook.com/item/3627: To set up list navigation mode,
you need to understand how drop-down lists and spinners work. This
brief article shows a few samples and reference links on how to use
spinners in Android.

	http://www.androidbook.com/item/3885: Explains how search works, to
help you utilize the action bar to its full extent.

	http://www.androidicons.com: Web site from which a couple of the
icons used in this chapter are borrowed. These icons are under Creative
Commons License 3.0.

	http://www.androidbook.com/item/3302: “Pleasing Android Layouts.”
A few notes and sample code for simple layouts.

http://developer.android.com/guide/topics/ui/menus.html
http://developer.android.com/guide/topics/resources/menu-resource.html
http://developer.android.com/guide/topics/resources/menu-resource.html
http://developer.android.com/reference/android/app/ActionBar.html
http://www.androidbook.com/item/3624
http://www.androidbook.com/item/3627
http://www.androidbook.com/item/3885
http://www.androidicons.com/
http://www.androidbook.com/item/3302

161CHAPTER 6: Working with Menus and Action Bars

	http://www.androidbook.com/item/4060: You will find here a free copy
of the Search chapter from the previous edition. This provides extensive
coverage on Android search.

	http://androidbook.com/proandroid5/projects: Project download
URL for this book. The downloadable project ZIP files for this chapter
are ProAndroid5_ch06_TestMenus.zip and ProAndroid5_ch06_
TestActionBar.zip.

Summary
Menus and action bars are an integral part of writing mobile apps. This chapter covers
regular menus, context menus, pop-up menus, standard action bars, tabbed action bars,
and list-based action bars. This chapter also covers the basics of how to embed a search
view widget in an action bar.

http://www.androidbook.com/item/4060
http://androidbook.com/proandroid5/projects

163

Chapter 7
Styles and Themes

Thus far, we have covered some fundamentals of the Android user interface (UI). In this
chapter, we are going to discuss styles and themes, which help to encapsulate control-
appearance attributes for easier setup and maintenance. Android provides several ways to
alter the style of views in your application, in XML and in code. We’ll first cover using markup
tags in strings and then how to use spannables to change specific visual attributes of text.
But what if you want to control how things look using a common specification for several
views or across an entire activity or application? We’ll discuss Android styles and themes to
show you how.

Using Styles
Sometimes, you want to highlight or style a portion of the View’s content. You can do this
statically or dynamically. Statically, you can apply markup directly to the strings in your string
resources, as shown here:

<string name="styledText"><i>Static</i> style in a TextView.</string>

You can then reference it in your XML or from code. Note that you can use the following
HTML tags with string resources: <i>, , and <u>, for italics, bold, and underlined,
respectively, as well as <sup> (superscript), <sub> (subscript), <strike> (strikethrough), <big>,
<small>, and <monospace>. You can even nest these to get, for example, small superscripts.
This works not just in TextViews but also in other views, like buttons. Figure 7-1 shows what
styled and themed text looks like, using many of the examples in this section.

164 CHAPTER 7: Styles and Themes

Styling a TextView control’s content programmatically requires a little additional work but
allows for much more flexibility (see Listing 7-1), because you can style it at runtime. This
flexibility can only be applied to a spannable, though, which is how EditText normally
manages the internal text, whereas TextView does not normally use Spannable. Spannable is
basically a String that you can apply styles to. To get a TextView to store text as a spannable,
you can call setText this way:

tv.setText("This text is stored in a Spannable", TextView.BufferType.SPANNABLE);

Then, when you call tv.getText, you’ll get a spannable.

As shown in Listing 7-1, you can get the content of the EditText (as a Spannable object) and
then set styles for portions of the text. The code in the listing sets the text styling to bold and
italics and sets the background to red. You can use all the styling options as we have with
the HTML tags as described previously, and then some.

Listing 7-1. Applying Styles Dynamically to the Content of an EditText

EditText et =(EditText)this.findViewById(R.id.et);
et.setText("Styling the content of an EditText dynamically");
Spannable spn = (Spannable) et.getText();

Figure 7-1. Examples of styles and themes

165CHAPTER 7: Styles and Themes

spn.setSpan(new BackgroundColorSpan(Color.RED), 0, 7,
 Spannable.SPAN_EXCLUSIVE_EXCLUSIVE);
spn.setSpan(new StyleSpan(android.graphics.Typeface.BOLD_ITALIC),
 0, 7, Spannable.SPAN_EXCLUSIVE_EXCLUSIVE);

These two techniques for styling only work on the one view they’re applied to. Android
provides a style mechanism to define a common style to be reused across views, as well
as a theme mechanism, which basically applies a style to an entire activity or the entire
application. To begin with, we need to talk about styles.

A style is a collection of View attributes that is given a name so you can refer to that
collection by its name and assign that style by name to views. For example, Listing 7-2
shows a resource XML file, saved in /res/values, that we could use for all error messages.

Listing 7-2. Defining a Style to Be Used Across Many Views

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="ErrorText">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:textColor">#FF0000</item>
 <item name="android:typeface">monospace</item>
 </style>
</resources>

The size of the view is defined as well as the font color (red) and typeface. Notice how the
name attribute of the item tag (e.g., android:layout_width) is the XML attribute name we used
in our layout XML files in earlier chapters, and the value of the item tag no longer requires
double quotes. We can now use this style for an error TextView, as shown in Listing 7-3.

Listing 7-3. Using a Style in a View

<TextView android:id="@+id/errorText"
 style="@style/ErrorText"
 android:text="No errors at this time"
 />

It is important to note that the attribute name for a style in this View definition does not start
with android:. Watch out for this, because everything seems to use android: except the
style. When you’ve got many views in your application that share a style, changing that
style in one place is much simpler; you only need to modify the style’s attributes in the one
resource file.

You can, of course, create many different styles for various controls. For example, buttons
could share a common style that is different from the common style for text in menus.
It is common to see text attributes managed with styles, including android:textColor,
android:textStyle, and android:textSize. Other common attributes used with styles include
the padding values, android:background, and colors.

166 CHAPTER 7: Styles and Themes

One really nice aspect of styles is that you can set up a hierarchy of them. We could define
a new style for really bad error messages and base it on the style of ErrorText. Listing 7-4
shows how this might look.

Listing 7-4. Defining a Style from a Parent Style

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="ErrorText.Danger" >
 <item name="android:textStyle">bold</item>
 </style>
</resources>

This example shows that we can simply name our child style using the parent style as
a prefix to the new style name. Therefore, ErrorText.Danger is a child of ErrorText and
inherits the style attributes of the parent. It then adds a new attribute for textStyle. This can
be repeated again and again to create a whole tree of styles.

As was the case for adapter layouts, Android provides a large set of styles that we can use.
To specify an Android-provided style, use syntax like this:

style="@android:style/TextAppearance"

This style sets the default style for text in Android. To locate the master Android styles.xml
file, visit the Android SDK/platforms/<android-version>/data/res/values/ folder, where
you installed the Android SDK; <android-version> is the particular version of Android you
want to see styles for. Inside this file, you will find quite a few styles that are ready-made for
you to use or extend. A quick note about @android:style/TextAppearance: this style does
not set android:layout_height or android:layout_width, so a View specification would
need more than this style to compile properly.

Here’s a word of caution about extending the Android-provided styles: the previous method
of using a prefix won’t work with Android-provided styles. Instead, you must use the parent
attribute of the style tag, like this:

<style name="CustomTextAppearance" parent="@android:style/TextAppearance">
 <item ... your extensions go here ... />
</style>

You don’t always have to pull in an entire style on your view. You could choose to borrow
just a part of the style instead. For example, if you want to set the color of the text in your
TextView to a system style color, you could do the following:

<TextView android:id="@+id/tv2"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:textColor="?android:textColorSecondary"
 android:text="@string/hello_world" />

Notice that in this example, the name of the textColor attribute value starts with the ?
character instead of the @ character. The ? character is used so Android knows to look for a
style value in the current theme. Because we see ?android, we look in the Android system
theme for this style value.

167CHAPTER 7: Styles and Themes

Using Themes
One problem with styles is that you need to add an attribute specification of style="@style/..."
to every view definition that you want it to apply to. If you have some style elements you want
applied across an entire activity, or across the whole application, you should use a theme
instead. A theme is really just a style applied broadly; but in terms of defining a theme, it’s exactly
like a style. In fact, themes and styles are fairly interchangeable: you can extend a theme into a
style or refer to a style as a theme. Typically, only the names give a hint as to whether a style is
intended to be used as a style or a theme.

To specify a theme for an activity or an application, you would add an attribute to the
<activity> or <application> tag in the AndroidManifest.xml file for your project. The code
might look like one of these:

<activity android:theme="@style/MyActivityTheme">
<application android:theme="@style/MyApplicationTheme">
<application android:theme="@android:style/Theme.NoTitleBar">

You can find the Android-provided themes in the same folder as the Android-provided styles,
with the themes in a file called themes.xml. When you look inside the themes file, you will see
a large set of styles defined, with names that start with Theme. It might be good to read that
last line a few times. Put another way, all styles and themes are of type style, even if the style
name has “Theme” in it. You will also notice that within the Android-provided themes and
styles, there is a lot of extending going on, which is why you end up with styles called
Theme.Dialog.AppError, for example.

References
Here are some helpful references to topics you may wish to explore further:

	www.androidbook.com/proandroid5/projects: A list of downloadable
projects related to this book. For this chapter, look for a ZIP file called
ProAndroid5_Ch07_Styles.zip. This ZIP file contains all projects
from this chapter, listed in separate root directories. There is also a
README.TXT file that describes exactly how to import projects into
your IDE from one of these ZIP files.

	http://developer.android.com/guide/topics/ui/themes.html:
The Android guide to styles and themes.

Summary
Let’s conclude this chapter by quickly enumerating what you have learned about styles and
themes:

Styles are just collections of view attributes for easy reuse across views, 	
activities, and applications.

You can make your own styles, use a predefined style, or extend an 	
existing style.

Themes are what you call a style when it is applied to an activity or 	
application.

http://www.androidbook.com/proandroid5/projects
http://developer.android.com/guide/topics/ui/themes.html

169

Chapter 8
Fragments

So far, we’ve explored several bits and pieces of an Android application, and you’ve run
some simple applications tailored to a smartphone-sized screen. All you had to think about
was how to lay out the UI controls on the screen for an activity, and how one activity flowed
to the next, and so on. For the first two major releases of Android, small screens were it.
Then came the Android tablets: devices with screen sizes of 10". And that complicated
things. Why? Because now there was so much screen real estate that a simple activity had
a hard time filling a screen while at the same time keeping to a single function. It no longer
made sense to have an e-mail application that showed only headers in one activity (filling a
large screen), and a separate activity to show an individual e-mail (also filling a large screen).
With that much room to work with, an application could show a list of e-mail headers down
the left side of the screen and the selected e-mail contents on the right side of the screen.
Could it be done in a single activity with a single layout? Well, yes, but you couldn’t reuse
that activity or layout for any of the smaller-screen devices.

One of the core classes introduced in Android 3.0 was the Fragment class, especially
designed to help developers manage application functionality so it would provide great
usability as well as lots of reuse. This chapter will introduce you to the fragment, what it
is, how it fits into an application’s architecture, and how to use it. Fragments make a lot
of interesting things possible that were difficult before. At about the same time, Google
released a fragment SDK that works on old Androids. So even if you weren’t interested in
writing applications for tablets, you may have found that fragments made your life easier on
non-tablet devices. Now it’s easier than ever to write great applications for smartphones and
tablets and even TVs and other devices.

Let’s get started with Android fragments.

What Is a Fragment?
This first section will explain what a fragment is and what it does. But first, let’s set the stage
to see why we need fragments. As you learned earlier, an Android application on small-
screen devices uses activities to show data and functionality to a user, and each activity has
a fairly simple, well-defined purpose. For example, an activity might show the user a list of

170 CHAPTER 8: Fragments

contacts from their address book. Another activity might allow the user to type an e-mail.
The Android application is the series of these activities grouped together to achieve a larger
purpose, such as managing an e-mail account via the reading and sending of messages.
This is fine for a small-screen device, but when the user’s screen is very large (10" or larger),
there’s room on the screen to do more than just one simple thing. An application might want
to let the user view the list of e-mails in their inbox and at the same time show the currently
selected e-mail text next to the list. Or an application might want to show a list of contacts
and at the same time show the currently selected contact in a detail view.

As an Android developer, you know that this functionality could be accomplished by defining
yet another layout for the xlarge screen with ListViews and layouts and all sorts of other
views. And by “yet another layout” we mean layouts in addition to those you’ve probably
already defined for the smaller screens. Of course, you’ll want to have separate layouts for
the portrait case as well as the landscape case. And with the size of an xlarge screen, this
could mean quite a few views for all the labels and fields and images and so on that you’ll
need to lay out and then provide code for. If only there were a way to group these view
objects together and consolidate the logic for them, so that chunks of an application could
be reused across screen sizes and devices, minimizing how much work a developer has to
do to maintain their application. And that is why we have fragments.

One way to think of a fragment is as a sub-activity. And in fact, the semantics of a fragment
are a lot like an activity. A fragment can have a view hierarchy associated with it, and it has
a life cycle much like an activity’s life cycle. Fragments can even respond to the Back button
like activities do. If you were thinking, “If only I could put multiple activities together on a
tablet’s screen at the same time,” then you’re on the right track. But because it would be too
messy to have more than one activity of an application active at the same time on a tablet
screen, fragments were created to implement basically that thought. This means fragments
are contained within an activity. Fragments can only exist within the context of an activity;
you can’t use a fragment without an activity. Fragments can coexist with other elements of
an activity, which means you do not need to convert the entire user interface of your activity
to use fragments. You can create an activity’s layout as before and only use a fragment for
one piece of the user interface.

Fragments are not like activities, however, when it comes to saving state and restoring it
later. The fragments framework provides several features to make saving and restoring
fragments much simpler than the work you need to do on activities.

How you decide when to use a fragment depends on a few considerations, which are
discussed next.

When to Use Fragments
One of the primary reasons to use a fragment is so you can reuse a chunk of user interface
and functionality across devices and screen sizes. This is especially true with tablets. Think of
how much can happen when the screen is as large as a tablet’s. It’s more like a desktop than a
phone, and many of your desktop applications have a multipane user interface. As described
earlier, you can have a list and a detail view of the selected item on screen at the same time.
This is easy to picture in a landscape orientation with the list on the left and the details on the
right. But what if the user rotates the device to portrait mode so that now the screen is taller

171CHAPTER 8: Fragments

than it is wide? Perhaps you now want the list to be in the top portion of the screen and the
details in the bottom portion. But what if this application is running on a small screen and
there’s just no room for the two portions to be on the screen at the same time? Wouldn’t you
want the separate activities for the list and for the details to be able to share the logic you’ve
built into these portions for a large screen? We hope you answered yes. Fragments can help
with that. Figure 8-1 makes this a little clearer.

Figure 8-1. Fragments used for a tablet UI and for a smartphone UI

In landscape mode, two fragments may sit nicely side by side. In portrait mode, we might be
able to put one fragment above the other. But if we’re trying to run the same application on
a device with a smaller screen, we might need to show either fragment 1 or fragment 2 but
not both at the same time. If we tried to manage all these scenarios with layouts, we’d be
creating quite a few, which means difficulty trying to keep everything correct across many
separate layouts. When using fragments, our layouts stay simple; each activity layout deals
with the fragments as containers, and the activity layouts don’t need to specify the internal
structure of each fragment. Each fragment will have its own layout for its internal structure
and can be reused across many configurations.

Let’s go back to the rotating orientation example. If you’ve had to code for orientation
changes of an activity, you know that it can be a real pain to save the current state of the
activity and to restore the state once the activity has been re-created. Wouldn’t it be nice if
your activity had chunks that could be easily retained across orientation changes, so you
could avoid all the tearing down and re-creating every time the orientation changed? Of
course it would. Fragments can help with that.

Now imagine that a user is in your activity, and they’ve been doing some work. And imagine
that the user interface has changed within the same activity, and the user wants to go back a
step, or two, or three. In an old-style activity, pressing the Back button will take the user out
of the activity entirely. With fragments, the Back button can step backward through a stack
of fragments while staying inside the current activity.

Next, think about an activity’s user interface when a big chunk of content changes; you’d like
to make the transition look smooth, like a polished application. Fragments can do that, too.

Now that you have some idea of what a fragment is and why you’d want to use one, let’s dig
a little deeper into the structure of a fragment.

172 CHAPTER 8: Fragments

The Structure of a Fragment
As mentioned, a fragment is like a sub-activity: it has a fairly specific purpose and almost
always displays a user interface. But where an activity is subclassed from Context, a
fragment is extended from Object in package android.app. A fragment is not an extension of
Activity. Like activities, however, you will always extend Fragment (or one of its subclasses)
so you can override its behavior.

A fragment can have a view hierarchy to engage with a user. This view hierarchy is like any
other view hierarchy in that it can be created (inflated) from an XML layout specification
or created in code. The view hierarchy needs to be attached to the view hierarchy of the
surrounding activity if it is to be seen by the user, which you’ll get to shortly. The view
objects that make up a fragment’s view hierarchy are the same sorts of views that are used
elsewhere in Android. So everything you know about views applies to fragments as well.

Besides the view hierarchy, a fragment has a bundle that serves as its initialization
arguments. Similar to an activity, a fragment can be saved and later restored automatically
by the system. When the system restores a fragment, it calls the default constructor (with
no arguments) and then restores this bundle of arguments to the newly created fragment.
Subsequent callbacks on the fragment have access to these arguments and can use them
to get the fragment back to its previous state. For this reason, it is imperative that you

Ensure that there’s a default constructor for your fragment class.	

Add a bundle of arguments as soon as you create a new fragment so 	
these subsequent methods can properly set up your fragment, and so
the system can restore your fragment properly when necessary.

An activity can have multiple fragments in play at one time; and if a fragment has been
switched out with another fragment, the fragment-switching transaction can be saved on
a back stack. The back stack is managed by the fragment manager tied to the activity.
The back stack is how the Back button behavior is managed. The fragment manager is
discussed later in this chapter. What you need to know here is that a fragment knows which
activity it is tied to, and from there it can get to its fragment manager. A fragment can also
get to the activity’s resources through its activity.

Also similar to an activity, a fragment can save state into a bundle object when the
fragment is being re-created, and this bundle object gets given back to the fragment’s
onCreate() callback. This saved bundle is also passed to onInflate(), onCreateView(),
and onActivityCreated(). Note that this is not the same bundle as the one attached as
initialization arguments. This bundle is one in which you are likely to store the current state of
the fragment, not the values that should be used to initialize it.

A Fragment’s Life Cycle
Before you start using fragments in sample applications, you need understand the life cycle
of a fragment. Why? A fragment’s life cycle is more complicated than an activity’s life cycle,
and it’s very important to understand when you can do things with fragments. Figure 8-2
shows the life cycle of a fragment.

173CHAPTER 8: Fragments

If you compare this to Figure 2-3 (the life cycle for an activity), you’ll notice several differences,
due mostly to the interaction required between an activity and a fragment. A fragment is very
dependent on the activity in which it lives and can go through multiple steps while its activity
goes through one.

At the very beginning, a fragment is instantiated. It now exists as an object in memory.
The first thing that is likely to happen is that initialization arguments will be added to your
fragment object. This is definitely true in the situation where the system is re-creating your
fragment from a saved state. When the system is restoring a fragment from a saved state,
the default constructor is invoked, followed by the attachment of the initialization arguments
bundle. If you are doing the creation of the fragment in code, a nice pattern to use is that in
Listing 8-1, which shows a factory type of instantiator within the MyFragment class definition.

Listing 8-1. Instantiating a Fragment Using a Static Factory Method

public static MyFragment newInstance(int index) {
 MyFragment f = new MyFragment();
 Bundle args = new Bundle();
 args.putInt("index", index);
 f.setArguments(args);
 return f;
}

Figure 8-2. Life cycle of a fragment

174 CHAPTER 8: Fragments

From the client’s point of view, they get a new instance by calling the static newInstance()
method with a single argument. They get the instantiated object back, and the initialization
argument has been set on this fragment in the arguments bundle. If this fragment is saved
and reconstructed later, the system will go through a very similar process of calling the
default constructor and then reattaching the initialization arguments. For your particular
case, you would define the signature of your newInstance() method (or methods) to take
the appropriate number and type of arguments, and then build the arguments bundle
appropriately. This is all you want your newInstance() method to do. The callbacks that
follow will take care of the rest of the setup of your fragment.

The onInflate() Callback
The next thing that happens is layout view inflation. If your fragment is defined by a
<fragment> tag in a layout, your fragment’s onInflate() callback will be called. This passes
in a reference to the surrounding activity, an AttributeSet with the attributes from the
<fragment> tag, and a saved bundle. The saved bundle is the one with the saved state
values in it, put there by onSaveInstanceState() if this fragment existed before and is being
re-created. The expectation of onInflate() is that you’ll read attribute values and save them
for later use. At this stage in the fragment’s life, it’s too early to actually do anything with
the user interface. The fragment is not even associated to its activity yet. But that’s the next
event to occur to your fragment.

The onAttach() Callback
The onAttach() callback is invoked after your fragment is associated with its activity. The
activity reference is passed to you if you want to use it. You can at least use the activity
to determine information about your enclosing activity. You can also use the activity
as a context to do other operations. One thing to note is that the Fragment class has a
getActivity() method that will always return the attached activity for your fragment should
you need it. Keep in mind that all during this life cycle, the initialization arguments bundle is
available to you from the fragment’s getArguments() method. However, once the fragment is
attached to its activity, you can’t call setArguments() again. Therefore, you can’t add to the
initialization arguments except in the very beginning.

The onCreate() Callback
Next up is the onCreate() callback. Although this is similar to the activity’s onCreate(), the
difference is that you should not put code in here that relies on the existence of the activity’s
view hierarchy. Your fragment may be associated to its activity by now, but you haven’t yet
been notified that the activity’s onCreate() has finished. That’s coming up. This callback gets
the saved state bundle passed in, if there is one. This callback is about as early as possible
to create a background thread to get data that this fragment will need. Your fragment code
is running on the UI thread, and you don’t want to do disk input/output (I/O) or network
accesses on the UI thread. In fact, it makes a lot of sense to fire off a background thread to
get things ready. Your background thread is where blocking calls should be. You’ll need to
hook up with the data later, perhaps using a handler or some other technique.

175CHAPTER 8: Fragments

The onCreateView() Callback
The next callback is onCreateView(). The expectation here is that you will return a view
hierarchy for this fragment. The arguments passed into this callback include a LayoutInflater
(which you can use to inflate a layout for this fragment), a ViewGroup parent (called container
in Listing 8-2), and the saved bundle if one exists. It is very important to note that you should
not attach the view hierarchy to the ViewGroup parent passed in. That association will happen
automatically later. You will very likely get exceptions if you attach the fragment’s view
hierarchy to the parent in this callback—or at least odd and unexpected application behavior.

Listing 8-2. Creating a Fragment View Hierarchy in onCreateView()

@Override
public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 if(container == null)
 return null;

 View v = inflater.inflate(R.layout.details, container, false);
 TextView text1 = (TextView) v.findViewById(R.id.text1);
 text1.setText(myDataSet[getPosition()]);
 return v;
}

The parent is provided so you can use it with the inflate() method of the LayoutInflater. If
the parent container value is null, that means this particular fragment won’t be viewed because
there’s no view hierarchy for it to attach to. In this case, you can simply return null from here.
Remember that there may be fragments floating around in your application that aren’t being
displayed. Listing 8-2 shows a sample of what you might want to do in this method.

Here you see how you can access a layout XML file that is just for this fragment and inflate
it to a view that you return to the caller. There are several advantages to this approach. You
could always construct the view hierarchy in code, but by inflating a layout XML file, you’re
taking advantage of the system’s resource-finding logic. Depending on which configuration
the device is in, or for that matter which device you’re on, the appropriate layout XML file will
be chosen. You can then access a particular view within the layout—in this case, the text1
TextView field—to do what you want with. To repeat a very important point: do not attach the
fragment’s view to the container parent in this callback. You can see in Listing 8-2 that you use
a container in the call to inflate(), but you also pass false for the attachToRoot parameter.

The onViewCreated() Callback
This one is called right after onCreateView() but before any saved state has been put into the
UI. The view object passed in is the same view object that got returned from onCreateView().

Note One of the ways to load data in a background thread is to use the Loader class. This will be
covered in Chapter 28.

176 CHAPTER 8: Fragments

The onActivityCreated() Callback
You’re now getting close to the point where the user can interact with your fragment. The
next callback is onActivityCreated(). This is called after the activity has completed its
onCreate() callback. You can now trust that the activity’s view hierarchy, including your own
view hierarchy if you returned one earlier, is ready and available. This is where you can do
final tweaks to the user interface before the user sees it. It’s also where you can be sure that
any other fragment for this activity has been attached to your activity.

The onViewStateRestored() Callback
This one is relatively new, introduced with JellyBean 4.2. Your fragment will have this
callback called when the view hierarchy of this fragment has all state restored (if applicable).
Previously you had to make decisions in onActivityCreated() about tweaking the UI for a
restored fragment. Now you can put that logic in this callback knowing definitely that this
fragment is being restored from a saved state.

The onStart() Callback
The next callback in your fragment life cycle is onStart(). Now your fragment is visible to
the user. But you haven’t started interacting with the user just yet. This callback is tied to
the activity’s onStart(). As such, whereas previously you may have put your logic into the
activity’s onStart(), now you’re more likely to put your logic into the fragment’s onStart(),
because that is also where the user interface components are.

The onResume() Callback
The last callback before the user can interact with your fragment is onResume(). This callback
is tied to the activity’s onResume(). When this callback returns, the user is free to interact
with this fragment. For example, if you have a camera preview in your fragment, you would
probably enable it in the fragment’s onResume().

So now you’ve reached the point where the app is busily making the user happy. And then
the user decides to get out of your app, either by Back’ing out, or by pressing the Home
button, or by launching some other application. The next sequence, similar to what happens
with an activity, goes in the opposite direction of setting up the fragment for interaction.

The onPause() Callback
The first undo callback on a fragment is onPause(). This callback is tied to the activity’s
onPause(); just as with an activity, if you have a media player in your fragment or some
other shared object, you could pause it, stop it, or give it back via your onPause() method.
The same good-citizen rules apply here: you don’t want to be playing audio if the user is
taking a phone call.

177CHAPTER 8: Fragments

The onSaveInstanceState() Callback
Similar to activities, fragments have an opportunity to save state for later reconstruction.
This callback passes in a Bundle object for this fragment to be used as the container for
whatever state information you want to hang onto. This is the saved-state bundle passed
to the callbacks covered earlier. To prevent memory problems, be careful about what you
save into this bundle. Only save what you need. If you need to keep a reference to another
fragment, don’t try to save or put the other fragment, rather just save the identifier for the
other fragment such as its tag or ID. When this fragment runs onViewStateRestored(), then
you could re-establish connections to the other fragments that this fragment depends on.

Although you may see this method usually called right after onPause(), the activity to which
this fragment belongs calls it when it feels that the fragment’s state should be saved. This
can occur any time before onDestroy().

The onStop() Callback
The next undo callback is onStop(). This one is tied to the activity’s onStop() and serves
a purpose similar to an activity’s onStop(). A fragment that has been stopped could go
straight back to the onStart() callback, which then leads to onResume().

The onDestroyView() Callback
If your fragment is on its way to being killed off or saved, the next callback in the undo
direction is onDestroyView(). This will be called after the view hierarchy you created on your
onCreateView() callback earlier has been detached from your fragment.

The onDestroy() Callback
Next up is onDestroy(). This is called when the fragment is no longer in use. Note that it is
still attached to the activity and is still findable, but it can’t do much.

The onDetach() Callback
The final callback in a fragment’s life cycle is onDetach(). Once this is invoked, the fragment
is not tied to its activity, it does not have a view hierarchy anymore, and all its resources
should have been released.

Using setRetainInstance()
You may have noticed the dotted lines in the diagram in Figure 8-2. One of the cool
features of a fragment is that you can specify that you don’t want the fragment completely
destroyed if the activity is being re-created and therefore your fragments will be coming
back also. Therefore, Fragment comes with a method called setRetainInstance(), which
takes a boolean parameter to tell it “Yes; I want you to hang around when my activity
restarts” or “No; go away, and I’ll create a new fragment from scratch.” A good place to call
setRetainInstance() is in the onCreate() callback of a fragment, but in onCreateView()
works, as does onActivityCreated().

178 CHAPTER 8: Fragments

If the parameter is true, that means you want to keep your fragment object in memory and not
start over from scratch. However, if your activity is going away and being re-created, you’ll
have to detach your fragment from this activity and attach it to the new one. The bottom line
is that if the retain instance value is true, you won’t actually destroy your fragment instance,
and therefore you won’t need to create a new one on the other side. The dotted lines on
the diagram mean you would skip the onDestroy() callback on the way out, you’d skip the
onCreate() callback when your fragment is being re-attached to your new activity, and all other
callbacks would fire. Because an activity is re-created most likely for configuration changes,
your fragment callbacks should probably assume that the configuration has changed, and
therefore should take appropriate action. This would include inflating the layout to create a
new view hierarchy in onCreateView(), for example. The code provided in Listing 8-2 would
take care of that as it is written. If you choose to use the retain-instance feature, you may
decide not to put some of your initialization logic in onCreate() because it won’t always get
called the way the other callbacks will.

Sample Fragment App Showing the Life Cycle
There’s nothing like seeing a real example to get an appreciation for a concept. You’ll use a
sample application that has been instrumented so you can see all these callbacks in action.
You’re going to work with a sample application that uses a list of Shakespearean titles in
one fragment; when the user clicks one of the titles, some text from that play will appear in a
separate fragment. This sample application will work in both landscape and portrait modes
on a tablet. Then you’ll configure it to run as if on a smaller screen so you can see how to
separate the text fragment into an activity. You’ll start with the XML layout of your activity in
landscape mode in Listing 8-3, which will look like Figure 8-3 when it runs.

Listing 8-3. Your Activity’s Layout XML for Landscape Mode

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout-land/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <fragment class="com.androidbook.fragments.bard.TitlesFragment"
 android:id="@+id/titles" android:layout_weight="1"
 android:layout_width="0px"
 android:layout_height="match_parent" />
 <FrameLayout
 android:id="@+id/details" android:layout_weight="2"
 android:layout_width="0px"
 android:layout_height="match_parent" />

</LinearLayout>

http://schemas.android.com/apk/res/android

179CHAPTER 8: Fragments

Note At the end of the chapter is the URL you can use to download the projects in this chapter.

This will allow you to import these projects into your IDE (such as Eclipse or Android Studio) directly.

Figure 8-3. The user interface of your sample fragment application

This layout looks like a lot of other layouts you’ve seen throughout the book, horizontally left
to right with two main objects. There’s a special new tag, though, called <fragment>, and
this tag has a new attribute called class. Keep in mind that a fragment is not a view, so the
layout XML is a little different for a fragment than it is for everything else. The other thing to
keep in mind is that the <fragment> tag is just a placeholder in this layout. You should not
put child tags under <fragment> in a layout XML file.

The other attributes for a fragment look familiar and serve a purpose similar to that for a
view. The fragment tag’s class attribute specifies your extended class for the titles of your
application. That is, you must extend one of the Android Fragment classes to implement
your logic, and the <fragment> tag must know the name of your extended class. A fragment
has its own view hierarchy that will be created later by the fragment itself. The next tag is
a FrameLayout—not another <fragment> tag. Why is that? We’ll explain in more detail later,
but for now, you should be aware that you’re going to be doing some transitions on the text,
swapping out one fragment with another. You use the FrameLayout as the view container
to hold the current text fragment. With your titles fragment, you have one—and only one—

180 CHAPTER 8: Fragments

fragment to worry about: no swapping and no transitions. For the area that displays the
Shakespearean text, you’ll have several fragments.

The MainActivity Java code is in Listing 8-4. Actually, the listing only shows the interesting
code. The code is instrumented with logging messages so you can see what’s going on
through LogCat. Please review the source code files for ShakespeareInstrumented from the
web site to see all of it.

Listing 8-4. Interesting Source Code from MainActivity

public boolean isMultiPane() {
 return getResources().getConfiguration().orientation
 == Configuration.ORIENTATION_LANDSCAPE;
}

/**
 * Helper function to show the details of a selected item, either by
 * displaying a fragment in-place in the current UI, or starting a
 * whole new activity in which it is displayed.
 */
public void showDetails(int index) {
 Log.v(TAG, "in MainActivity showDetails(" + index + ")");

 if (isMultiPane()) {
 // Check what fragment is shown, replace if needed.
 DetailsFragment details = (DetailsFragment)
 getFragmentManager().findFragmentById(R.id.details);
 if ((details == null) ||
 (details.getShownIndex() != index)) {
 // Make new fragment to show this selection.
 details = DetailsFragment.newInstance(index);

 // Execute a transaction, replacing any existing
 // fragment with this one inside the frame.
 Log.v(TAG, "about to run FragmentTransaction...");
 FragmentTransaction ft
 = getFragmentManager().beginTransaction();
 ft.setTransition(
 FragmentTransaction.TRANSIT_FRAGMENT_FADE);
 //ft.addToBackStack("details");
 ft.replace(R.id.details, details);
 ft.commit();
 }

 } else {
 // Otherwise you need to launch a new activity to display
 // the dialog fragment with selected text.
 Intent intent = new Intent();
 intent.setClass(this, DetailsActivity.class);
 intent.putExtra("index", index);
 startActivity(intent);
 }
}

181CHAPTER 8: Fragments

This is a very simple activity to write. To determine multipane mode (that is, whether you
need to use fragments side by side), you just use the orientation of the device. If you’re
in landscape mode, you’re multipane; if you’re in portrait mode, you’re not. The helper
method showDetails() is there to figure out how to show the text when a title is selected.
The index is the position of the title in the title list. If you’re in multipane mode, you’re going
to use a fragment to show the text. You’re calling this fragment a DetailsFragment, and
you use a factory-type method to create one with the index. The interesting code for the
DetailsFragment class is shown in Listing 8-5 (minus all of the logging code). As we did
before in TitlesFragment, the various callbacks of DetailsFragment have logging added so
we can watch what happens via LogCat. You’ll come back to your showDetails()
method later.

Listing 8-5. Source Code for DetailsFragment

public class DetailsFragment extends Fragment {

 private int mIndex = 0;

 public static DetailsFragment newInstance(int index) {
 Log.v(MainActivity.TAG, "in DetailsFragment newInstance(" +
 index + ")");

 DetailsFragment df = new DetailsFragment();

 // Supply index input as an argument.
 Bundle args = new Bundle();
 args.putInt("index", index);
 df.setArguments(args);
 return df;
 }

 public static DetailsFragment newInstance(Bundle bundle) {
 int index = bundle.getInt("index", 0);
 return newInstance(index);
 }

 @Override
 public void onCreate(Bundle myBundle) {
 Log.v(MainActivity.TAG,
 "in DetailsFragment onCreate. Bundle contains:");
 if(myBundle != null) {
 for(String key : myBundle.keySet()) {
 Log.v(MainActivity.TAG, " " + key);
 }
 }
 else {
 Log.v(MainActivity.TAG, " myBundle is null");
 }
 super.onCreate(myBundle);

 mIndex = getArguments().getInt("index", 0);
 }

182 CHAPTER 8: Fragments

 public int getShownIndex() {
 return mIndex;
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 Log.v(MainActivity.TAG,
 "in DetailsFragment onCreateView. container = " +
 container);

 // Don't tie this fragment to anything through the inflater.
 // Android takes care of attaching fragments for us. The
 // container is only passed in so you can know about the
 // container where this View hierarchy is going to go.
 View v = inflater.inflate(R.layout.details, container, false);
 TextView text1 = (TextView) v.findViewById(R.id.text1);
 text1.setText(Shakespeare.DIALOGUE[mIndex]);
 return v;
 }
}

The DetailsFragment class is actually fairly simple as well. Now you can see how to instantiate
this fragment. It’s important to point out that you’re instantiating this fragment in code because
your layout defines the ViewGroup container (a FrameLayout) that your details fragment is going
to go into. Because the fragment is not itself defined in the layout XML for the activity, as your
titles fragment was, you need to instantiate your details fragments in code.

To create a new details fragment, you use your newInstance() method. As discussed earlier,
this factory method invokes the default constructor and then sets the arguments bundle with
the value of index. Once newInstance() has run, your details fragment can retrieve the value
of index in any of its callbacks by referring to the arguments bundle via getArguments().
For your convenience, in onCreate() you can save the index value from the arguments
bundle to a member field in your DetailsFragment class.

You might wonder why you didn’t simply set the mIndex value in newInstance(). The reason
is that Android will, behind the scenes, re-create your fragment using the default constructor.
Then it sets the arguments bundle to what it was before. Android won’t use your newInstance()
method, so the only reliable way to ensure that mIndex is set is to read the value from the
arguments bundle and set it in onCreate(). The convenience method getShownIndex()
retrieves the value of that index. Now the only method left to describe in the details fragment is
onCreateView(). And this is very simple, too.

The purpose of onCreateView() is to return the view hierarchy for your fragment. Remember
that based on your configuration, you could want all kinds of different layouts for this fragment.
Therefore, the most common thing to do is utilize a layout XML file for your fragment. In your
sample application, you specify the layout for the fragment to be details.xml using the
resource R.layout.details. The XML for details.xml is in Listing 8-6.

183CHAPTER 8: Fragments

Listing 8-6. The details.xml Layout File for the Details Fragment

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/details.xml -->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ScrollView android:id="@+id/scroller"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView android:id="@+id/text1"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
 </ScrollView>
</LinearLayout>

For your sample application, you can use the exact same layout file for details whether you’re
in landscape mode or in portrait mode. This layout is not for the activity, it’s just for your
fragment to display the text. Because it could be considered the default layout, you can store
it in the /res/layout directory and it will be found and used even if you’re in landscape mode.
When Android goes looking for the details XML file, it tries the specific directories that closely
match the device’s configuration, but it will end up in the /res/layout directory if it can’t find
the details.xml file in any of the other places. Of course, if you want to have a different layout
for your fragment in landscape mode, you could define a separate details.xml layout file and
store it under /res/layout-land. Feel free to experiment with different details.xml files.

When your details fragment’s onCreateView() is called, you will simply grab the appropriate
details.xml layout file, inflate it, and set the text to the text from the Shakespeare class.
The entire Java code for Shakespeare is not shown here, but a portion is in Listing 8-7 so
you understand how it was done. For the complete source, access the project download
files, as described in the “References” section at the end of this chapter.

Listing 8-7. Source Code for Shakespeare.java

public class Shakespeare {
 public static String TITLES[] = {
 "Henry IV (1)",
 "Henry V",
 "Henry VIII",
 "Romeo and Juliet",
 "Hamlet",
 "The Merchant of Venice",
 "Othello"
 };
 public static String DIALOGUE[] = {
 "So shaken as we are, so wan with care,\n...
... and so on ...

Now your details fragment view hierarchy contains the text from the selected title. Your
details fragment is ready to go. And you can return to MainActivity’s showDetails() method
to talk about FragmentTransactions.

http://schemas.android.com/apk/res/android

184 CHAPTER 8: Fragments

FragmentTransactions and the Fragment Back Stack
The code in showDetails() that pulls in your new details fragment (partially shown again in
Listing 8-8) looks rather simple, but there’s a lot going on here. It’s worth spending some
time to explain what is happening and why. If your activity is in multipane mode, you want
to show the details in a fragment next to the title list. You may already be showing details,
which means you may have a details fragment visible to the user. Either way, the resource
ID R.id.details is for the FrameLayout for your activity, as shown in Listing 8-3. If you have
a details fragment sitting in the layout because you didn’t assign any other ID to it, it will
have this ID. Therefore, to find out if there’s a details fragment in the layout, you can ask
the fragment manager using findFragmentById(). This will return null if the frame layout is
empty or will give you the current details fragment. You can then decide if you need to place
a new details fragment in the layout, either because the layout is empty or because there’s
a details fragment for some other title. Once you make the determination to create and use
a new details fragment, you invoke the factory method to create a new instance of a details
fragment. Now you can put this new fragment into place for the user to see.

Listing 8-8. Fragment Transaction Example

public void showDetails(int index) {
 Log.v(TAG, "in MainActivity showDetails(" + index + ")");

 if (isMultiPane()) {
 // Check what fragment is shown, replace if needed.
 DetailsFragment details = (DetailsFragment)
 getFragmentManager().findFragmentById(R.id.details);
 if (details == null || details.getShownIndex() != index) {
 // Make new fragment to show this selection.
 details = DetailsFragment.newInstance(index);

 // Execute a transaction, replacing any existing
 // fragment with this one inside the frame.
 Log.v(TAG, "about to run FragmentTransaction...");
 FragmentTransaction ft
 = getFragmentManager().beginTransaction();
 ft.setTransition(
 FragmentTransaction.TRANSIT_FRAGMENT_FADE);
 //ft.addToBackStack("details");
 ft.replace(R.id.details, details);
 ft.commit();
 }
 // The rest was left out to save space.
}

A key concept to understand is that a fragment must live inside a view container, also known
as a view group. The ViewGroup class includes such things as layouts and their derived classes.
FrameLayout is a good choice as the container for the details fragment in the main.xml layout
file of your activity. A FrameLayout is simple, and all you need is a simple container for your
fragment, without the extra baggage that comes with other types of layouts. The FrameLayout is
where your details fragment is going to go. If you had instead specified another <fragment> tag
in the activity’s layout file instead of a FrameLayout, you would not be able to replace the current
fragment with a new fragment (i.e., swap fragments).

185CHAPTER 8: Fragments

The FragmentTransaction is what you use to do your swapping. You tell the fragment
transaction that you want to replace whatever is in your frame layout with your new details
fragment. You could have avoided all this by locating the resource ID of the details TextView
and just setting the text of it to the new text for the new Shakespeare title. But there’s
another side to fragments that explains why you use FragmentTransactions.

As you know, activities are arranged in a stack, and as you get deeper and deeper into an
application, it’s not uncommon to have a stack of several activities going at once. When you
press the Back button, the topmost activity goes away, and you are returned to the activity
below, which resumes for you. This can continue until you’re at the home screen again.

This was fine when an activity was just single-purpose, but now that an activity can have
several fragments going at once, and because you can go deeper into your application
without leaving the topmost activity, Android really needed to extend the Back button stack
concept to include fragments as well. In fact, fragments demand this even more. When
there are several fragments interacting with each other at the same time in an activity, and
there’s a transition to new content across several fragments at once, pressing the Back
button should cause each of the fragments to roll back one step together. To ensure that
each fragment properly participates in the rollback, a FragmentTransaction is created and
managed to perform that coordination.

Be aware that a back stack for fragments is not required within an activity. You can code
your application to let the Back button work at the activity level and not at the fragment
level at all. If there’s no back stack for your fragments, pressing the Back button will pop
the current activity off the stack and return the user to whatever was underneath. If you
choose to take advantage of the back stack for fragments, you will want to uncomment in
Listing 8-8 the line that says ft.addToBackStack("details"). For this particular case, you’ve
hardcoded the tag parameter to be the string "details". This tag should be an appropriate
string name that represents the state of the fragments at the time of the transaction. The tag
is not necessarily a name for a specific fragment but rather for the fragment transaction and
all the fragments in the transaction. You will be able to interrogate the back stack in code
using the tag value to delete entries, as well as pop entries off. You will want meaningful tags
on these transactions to be able to find the appropriate ones later.

Fragment Transaction Transitions and Animations
One of the very nice things about fragment transactions is that you can perform transitions
from an old fragment to a new fragment using transitions and animations. These are not like
the animations coming later, in Chapter 18. These are much simpler and do not require in-depth
graphics knowledge. Let’s use a fragment transaction transition to add special effects when
you swap out the old details fragment with a new details fragment. This can add polish to
your application, making the switch from the old to the new fragment look smooth.

One method to accomplish this is setTransition(), as shown in Listing 8-8. However, there
are a few different transitions available. You used a fade in your example, but you can also
use the setCustomAnimations() method to describe other special effects, such as sliding
one fragment out to the right as another slides in from the left. The custom animations use
the new object animation definitions, not the old ones. The old anim XML files use tags
such as <translate>, whereas the new XML files use <objectAnimator>. The old standard

186 CHAPTER 8: Fragments

XML files are located in the /data/res/anim directory under the appropriate Android SDK
platforms directory (such as platforms/android-11 for Honeycomb). There are some
new XML files located in the /data/res/animator directory here, too. Your code could be
something like

ft.setCustomAnimations(android.R.animator.fade_in, android.R.animator.fade_out);

which will cause the new fragment to fade in as the old fragment fades out. The first parameter
applies to the fragment entering, and the second parameter applies to the fragment exiting.
Feel free to explore the Android animator directory for more stock animations. If you’d like to
create your own, there’s section on the object animator in Chapter 18 to help you. The other
very important bit of knowledge you need is that the transition calls need to come before the
replace() call; otherwise, they will have no effect.

Using the object animator for special effects on fragments can be a fun way to do
transitions. There are two other methods on FragmentTransaction you should know about:
hide() and show(). Both of these methods take a fragment as a parameter, and they do
exactly what you’d expect. For a fragment in the fragment manager associated to a view
container, the methods simply hide or show the fragment in the user interface. The fragment
does not get removed from the fragment manager in the process, but it certainly must be
tied into a view container in order to affect its visibility. If a fragment does not have a view
hierarchy, or if its view hierarchy is not tied into the displayed view hierarchy, then these
methods won’t do anything.

Once you’ve specified the special effects for your fragment transaction, you have to tell it
the main work that you want done. In your case, you’re replacing whatever is in the frame
layout with your new details fragment. That’s where the replace() method comes in. This is
equivalent to calling remove() for any fragments that are already in the frame layout and then
add() for your new details fragment, which means you could just call remove() or add() as
needed instead.

The final action you must take when working with a fragment transaction is to commit it. The
commit() method does not cause things to happen immediately but rather schedules the
work for when the UI thread is ready to do it.

Now you should understand why you need to go to so much trouble to change the content in a
simple fragment. It’s not just that you want to change the text; you might want a special graphics
effect during the transition. You may also want to save the transition details in a fragment
transaction that you can reverse later. That last point may be confusing, so we’ll clarify.

This is not a transaction in the truest sense of the word. When you pop fragment
transactions off the back stack, you are not undoing all the data changes that may have
taken place. If data changed within your activity, for example, as you created fragment
transactions on the back stack, pressing the Back button does not cause the activity data
changes to revert back to their previous values. You are merely stepping back through the
user interface views the way you came in, just as you do with activities, but in this case
it’s for fragments. Because of the way fragments are saved and restored, the inner state
of a fragment that has been restored from a saved state will depend on what values you
saved with the fragment and how you manage to restore them. So your fragments may look
the same as they did previously but your activity will not, unless you take steps to restore
activity state when you restore fragments.

187CHAPTER 8: Fragments

In your example, you’re only working with one view container and bringing in one details
fragment. If your user interface were more complicated, you could manipulate other
fragments within the fragment transaction. What you are actually doing is beginning the
transaction, replacing any existing fragment in your details frame layout with your new
details fragment, specifying a fade-in animation, and committing the transaction. You
commented out the part where this transaction is added to the back stack, but you could
certainly uncomment it to take part in the back stack.

The FragmentManager
The FragmentManager is a component that takes care of the fragments belonging to an
activity. This includes fragments on the back stack and fragments that may just be hanging
around. We’ll explain.

Fragments should only be created within the context of an activity. This occurs either
through the inflation of an activity’s layout XML or through direct instantiation using code like
that in Listing 8-1. When instantiated through code, a fragment usually gets attached to the
activity using a fragment transaction. In either case, the FragmentManager class is used to
access and manage these fragments for an activity.

You use the getFragmentManager() method on either an activity or an attached fragment to
retrieve a fragment manager. You saw in Listing 8-8 that a fragment manager is where you get
a fragment transaction. Besides getting a fragment transaction, you can also get a fragment
using the fragment’s ID, its tag, or a combination of bundle and key. The fragment’s ID will either
be the fragment’s resource ID if the fragment was inflated from XML, or it will be the container’s
resource ID if the fragment was placed into a view using a fragment transaction. A fragment’s
tag is a String that you can assign in the fragment’s XML definition, or when the fragment is
placed in a view via a fragment transaction. The bundle and key method of retrieving a fragment
only works for fragments that were persisted using the putFragment() method.

For getting a fragment, the getter methods include findFragmentById(),
findFragmentByTag(), and getFragment(). The getFragment() method would be used in
conjunction with putFragment(), which also takes a bundle, a key, and the fragment to be
put. The bundle is most likely going to be the savedState bundle, and putFragment() will
be used in the onSaveInstanceState() callback to save the state of the current activity (or
another fragment). The getFragment() method would probably be called in onCreate() to
correspond to putFragment(), although for a fragment, the bundle is available to the other
callback methods, as described earlier.

Obviously, you can’t use the getFragmentManager() method on a fragment that has not been
attached to an activity yet. But it’s also true that you can attach a fragment to an activity
without making it visible to the user yet. If you do this, you should associate a String tag
to the fragment so you can get to it in the future. You’d most likely use this method of
FragmentTransaction to do this:

public FragmentTransaction add (Fragment fragment, String tag)

In fact, you can have a fragment that does not exhibit a view hierarchy. This might be done
to encapsulate certain logic together such that it could be attached to an activity, yet still
retain some autonomy from the activity’s life cycle and from other fragments. When an

188 CHAPTER 8: Fragments

activity goes through a re-create cycle due to a device-configuration change, this non-UI
fragment could remain largely intact while the activity goes away and comes back again.
This would be a good candidate for the setRetainInstance() option.

The fragment back stack is also the domain of the fragment manager. Whereas a fragment
transaction is used to put fragments onto the back stack, the fragment manager can take
fragments off the back stack. This is usually done using the fragment’s ID or tag, but it can
be done based on position in the back stack or just to pop the topmost fragment.

Finally, the fragment manager has methods for some debugging features, such as turning
on debugging messages to LogCat using enableDebugLogging() or dumping the current
state of the fragment manager to a stream using dump(). Note that you turned on fragment
manager debugging in the onCreate() method of your activity in Listing 8-4.

Caution When Referencing Fragments
It’s time to revisit the earlier discussion of the fragment’s life cycle and the arguments and
saved-state bundles. Android could save one of your fragments at many different times. This
means that at the moment your application wants to retrieve that fragment, it’s possible that
it is not in memory. For this reason, we caution you not to think that a variable reference to a
fragment is going to remain valid for a long time. If fragments are being replaced in a container
view using fragment transactions, any reference to the old fragment is now pointing to a
fragment that is possibly on the back stack. Or a fragment may get detached from the activity’s
view hierarchy during an application configuration change such as a screen rotation. Be careful.

If you’re going to hold onto a reference to a fragment, be aware of when it could get saved
away; when you need to find it again, use one of the getter methods of the fragment
manager. If you want to hang onto a fragment reference, such as when an activity is going
through a configuration change, you can use the putFragment() method with the appropriate
bundle. In the case of both activities and fragments, the appropriate bundle is the
savedState bundle that is used in onSaveInstanceState() and that reappears in onCreate()
(or, in the case of fragments, the other early callbacks of the fragment’s life cycle). You will
probably never store a direct fragment reference into the arguments bundle of a fragment; if
you’re tempted to do so, please think very carefully about it first.

The other way you can get to a specific fragment is by querying for it using a known tag or
known ID. The getter methods described previously will allow retrieval of fragments from the
fragment manager this way, which means you have the option of just remembering the tag
or ID of a fragment so that you can retrieve it from the fragment manager using one of those
values, as opposed to using putFragment() and getFragment().

Saving Fragment State
Another interesting class was introduced in Android 3.2: Fragment.SavedState. Using the
saveFragmentInstanceState() method of FragmentManager, you can pass this method a
fragment, and it returns an object representing the state of that fragment. You can then use
that object when initializing a fragment, using Fragment’s setInitialSavedState() method.
Chapter 9 discusses this in more detail.

189CHAPTER 8: Fragments

ListFragments and <fragment>
There are still a few more things to cover to make your sample application complete. The
first is the TitlesFragment class. This is the one that is created via the main.xml file of your
main activity. The <fragment> tag serves as your placeholder for where this fragment will go
and does not define what the view hierarchy will look like for this fragment. The interesting
code for your TitlesFragment is in Listing 8-9. For all of the code please refer to the source
code files. TitlesFragment displays the list of titles for your application.

Listing 8-9. TitlesFragment Java Code

public class TitlesFragment extends ListFragment {
 private MainActivity myActivity = null;
 int mCurCheckPosition = 0;

 @Override
 public void onAttach(Activity myActivity) {
 Log.v(MainActivity.TAG,
 "in TitlesFragment onAttach; activity is: " + myActivity);
 super.onAttach(myActivity);
 this.myActivity = (MainActivity)myActivity;
 }

 @Override
 public void onActivityCreated(Bundle savedState) {
 Log.v(MainActivity.TAG,
 "in TitlesFragment onActivityCreated. savedState contains:");
 if(savedState != null) {
 for(String key : savedState.keySet()) {
 Log.v(MainActivity.TAG, " " + key);
 }
 }
 else {
 Log.v(MainActivity.TAG, " savedState is null");
 }
 super.onActivityCreated(savedState);

 // Populate list with your static array of titles.
 setListAdapter(new ArrayAdapter<String>(getActivity(),
 android.R.layout.simple_list_item_1,
 Shakespeare.TITLES));

 if (savedState != null) {
 // Restore last state for checked position.
 mCurCheckPosition = savedState.getInt("curChoice", 0);
 }

 // Get your ListFragment's ListView and update it
 ListView lv = getListView();
 lv.setChoiceMode(ListView.CHOICE_MODE_SINGLE);
 lv.setSelection(mCurCheckPosition);

190 CHAPTER 8: Fragments

 // Activity is created, fragments are available
 // Go ahead and populate the details fragment
 myActivity.showDetails(mCurCheckPosition);
 }
 @Override
 public void onSaveInstanceState(Bundle outState) {
 Log.v(MainActivity.TAG, "in TitlesFragment onSaveInstanceState");
 super.onSaveInstanceState(outState);
 outState.putInt("curChoice", mCurCheckPosition);
 }

 @Override
 public void onListItemClick(ListView l, View v, int pos, long id) {
 Log.v(MainActivity.TAG,
 "in TitlesFragment onListItemClick. pos = "
 + pos);
 myActivity.showDetails(pos);
 mCurCheckPosition = pos;
 }

 @Override
 public void onDetach() {
 Log.v(MainActivity.TAG, "in TitlesFragment onDetach");
 super.onDetach();
 myActivity = null;
 }
}

Unlike DetailsFragment, for this fragment you don’t do anything in the onCreateView()
callback. This is because you’re extending the ListFragment class, which contains a
ListView already. The default onCreateView() for a ListFragment creates this ListView for
you and returns it. It’s not until onActivityCreated() that you do any real application logic.
By this time in your application, you can be sure that the activity’s view hierarchy, plus this
fragment’s, has been created. The resource ID for that ListView is android.R.id.list1,
but you can always call getListView() if you need to get a reference to it, which you do
in onActivityCreated(). Because ListFragment manages the ListView, do not attach the
adapter to the ListView directly. You must use the ListFragment’s setListAdapter() method
instead. The activity’s view hierarchy is now set up, so you’re safe going back into the
activity to do the showDetails() call.

At this point in your sample activity’s life, you’ve added a list adapter to your list view,
you’ve restored the current position (if you came back from a restore, due perhaps to a
configuration change), and you’ve asked the activity (in showDetails()) to set the text to
correspond to the selected Shakespearean title.

Your TitlesFragment class also has a listener on the list so when the user clicks another title,
the onListItemClick() callback is called, and you switch the text to correspond to that title,
again using the showDetails() method.

Another difference between this fragment and the earlier details fragment is that when this
fragment is being destroyed and re-created, you save state in a bundle (the value of the
current position in the list), and you read it back in onCreate(). Unlike the details fragments

191CHAPTER 8: Fragments

that get swapped in and out of the FrameLayout on your activity’s layout, there is just one titles
fragment to think about. So when there is a configuration change and your titles fragment is
going through a save-and-restore operation, you want to remember where you were. With the
details fragments, you can re-create them without having to remember the previous state.

Invoking a Separate Activity When Needed
There’s a piece of code we haven’t talked about yet, and that is in showDetails() when
you’re in portrait mode and the details fragment won’t fit properly on the same page as
the titles fragment. If the screen real estate won’t permit feasible viewing of a fragment
that would otherwise be shown alongside the other fragments, you will need to launch a
separate activity to show the user interface of that fragment. For your sample application, you
implement a details activity; the code is in Listing 8-10.

Listing 8-10. Showing a New Activity When a Fragment Doesn’t Fit

public class DetailsActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 Log.v(MainActivity.TAG, "in DetailsActivity onCreate");
 super.onCreate(savedInstanceState);

 if (getResources().getConfiguration().orientation
 == Configuration.ORIENTATION_LANDSCAPE) {
 // If the screen is now in landscape mode, it means
 // that your MainActivity is being shown with both
 // the titles and the text, so this activity is
 // no longer needed. Bail out and let the MainActivity
 // do all the work.
 finish();
 return;
 }

 if(getIntent() != null) {
 // This is another way to instantiate a details
 // fragment.
 DetailsFragment details =
 DetailsFragment.newInstance(getIntent().getExtras());

 getFragmentManager().beginTransaction()
 .add(android.R.id.content, details)
 .commit();
 }
 }
}

There are several interesting aspects to this code. For one thing, it is really easy to implement.
You make a simple determination of the device’s orientation, and as long as you’re in portrait
mode, you set up a new details fragment within this details activity. If you’re in landscape
mode, your MainActivity is able to display both the titles fragment and the details fragment,

192 CHAPTER 8: Fragments

so there is no reason to be displaying this activity at all. You may wonder why you would
ever launch this activity if you’re in landscape mode, and the answer is, you wouldn’t.
However, once this activity has been started in portrait mode, if the user rotates the device
to landscape mode, this details activity will get restarted due to the configuration change. So
now the activity is starting up, and it’s in landscape mode. At that moment, it makes sense to
finish this activity and let the MainActivity take over and do all the work.

Another interesting aspect about this details activity is that you never set the root content
view using setContentView(). So how does the user interface get created? If you look
carefully at the add() method call on the fragment transaction, you will see that the view
container to which you add the fragment is specified as the resource android.R.id.content.
This is the top-level view container for an activity, and therefore when you attach your
fragment view hierarchy to this container, your fragment view hierarchy becomes the only
view hierarchy for the activity. You used the very same DetailsFragment class as before
with the other newInstance() method to create the fragment (the one that takes a bundle
as a parameter), then you simply attached it to the top of the activity’s view hierarchy. This
causes the fragment to be displayed within this new activity.

From the user’s point of view, they are now looking at just the details fragment view, which is the
text from the Shakespearean play. If the user wants to select a different title, they press the Back
button, which pops this activity to reveal your main activity (with the titles fragment only). The
other choice for the user is to rotate the device to get back to landscape mode. Then your details
activity will call finish() and go away, revealing the also-rotated main activity underneath.

When the device is in portrait mode, if you’re not showing the details fragment in your main
activity, you should have a separate main.xml layout file for portrait mode like the one in
Listing 8-11.

Listing 8-11. The Layout for a Portrait Main Activity

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <fragment class="com.androidbook.fragments.bard.TitlesFragment"
 android:id="@+id/titles"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

</LinearLayout>

Of course, you could make this layout whatever you want it to be. For your purposes here,
you simply make it show the titles fragment by itself. It’s very nice that your titles fragment
class doesn’t need to include much code to deal with the device reconfiguration.

Take a moment to view this application’s manifest file. In it you find the main activity with
a category of LAUNCHER so that it will appear in the device’s list of apps. Then you have the
separate DetailsActivity with a category of DEFAULT. This allows you to start the details
activity from code but will not show the details activity as an app in the App list.

http://schemas.android.com/apk/res/android

193CHAPTER 8: Fragments

Persistence of Fragments
When you play with this sample application, make sure you rotate the device (pressing Ctrl+F11
rotates the device in the emulator). You will see that the device rotates, and the fragments
rotate right along with it. If you watch the LogCat messages, you will see a lot of them for this
application. In particular, during a device rotation, pay careful attention to the messages about
fragments; not only does the activity get destroyed and re-created, but the fragments do also.

So far, you only wrote a tiny bit of code on the titles fragment to remember the current
position in the titles list across restarts. You didn’t do anything in the details fragment code
to handle reconfigurations, and that’s because you didn’t need to. Android will take care
of hanging onto the fragments that are in the fragment manager, saving them away, then
restoring them when the activity is being re-created. You should realize that the fragments
you get back after the reconfiguration is complete are very likely not the same fragments in
memory that you had before. These fragments have been reconstructed for you. Android
saved the arguments bundle and the knowledge of which type of fragment it was, and it
stored the saved-state bundles for each fragment that contain saved-state information about
the fragment to use to restore it on the other side.

The LogCat messages show you the fragments going through their life cycles in sync with
the activity. You will see that your details fragment gets re-created, but your newInstance()
method does not get called again. Instead, Android uses the default constructor, attaches
the arguments bundle to it, and then starts calling the callbacks on the fragment. This is why
it is so important not to do anything fancy in the newInstance() method: when the fragment
gets re-created, it won’t do it through newInstance().

You should also appreciate by now that you’ve been able to reuse your fragments in a few
different places. The titles fragment was used in two different layouts, but if you look at the
titles fragment code, it doesn’t worry about the attributes of each layout. You could make
the layouts rather different from each other, and the titles fragment code would look the same.
The same can be said of the details fragment. It was used in your main landscape layout and
within the details activity all by itself. Again, the layout for the details fragment could have
been very different between the two, and the code of the details fragment would be the same.
The code of the details activity was very simple, also.

So far, you’ve explored two of the fragment types: the base Fragment class and the ListFragment
subclass. Fragment has other subclasses: the DialogFragment, PreferenceFragment, and
WebViewFragment. We’ll cover DialogFragment and PreferenceFragment in Chapters 10 and 11,
respectively.

Communications with Fragments
Because the fragment manager knows about all fragments attached to the current activity,
the activity or any fragment in that activity can ask for any other fragment using the getter
methods described earlier. Once the fragment reference has been obtained, the activity
or fragment could cast the reference appropriately and then call methods directly on that
activity or fragment. This would cause your fragments to have more knowledge about
the other fragments than might normally be desired, but don’t forget that you’re running
this application on a mobile device, so cutting corners can sometimes be justified.

194 CHAPTER 8: Fragments

A code snippet is provided in Listing 8-12 to show how one fragment might communicate
directly with another fragment. The snippet would be part of one of your extended Fragment
classes, and FragmentOther is a different extended Fragment class.

Listing 8-12. Direct Fragment-to-Fragment Communication

FragmentOther fragOther =
 (FragmentOther)getFragmentManager().findFragmentByTag("other");
fragOther.callCustomMethod(arg1, arg2);

In Listing 8-12, the current fragment has direct knowledge of the class of the other fragment
and also which methods exist on that class. This may be okay because these fragments are
part of one application, and it can be easier to simply accept the fact that some fragments
will know about other fragments. We’ll show you a cleaner way to communicate between
fragments in the DialogFragment sample application in Chapter 10.

Using startActivity() and setTargetFragment()
A feature of fragments that is very much like activities is the ability of a fragment to start an
activity. Fragment has a startActivity() method and startActivityForResult() method.
These work just like the ones for activities; when a result is passed back, it will cause the
onActivityResult() callback to fire on the fragment that started the activity.

There’s another communication mechanism you should know about. When one fragment
wants to start another fragment, there is a feature that lets the calling fragment set its
identity with the called fragment. Listing 8-13 shows an example of what it might look like.

Listing 8-13. Fragment-to-Target-Fragment Setup

mCalledFragment = new CalledFragment();
mCalledFragment.setTargetFragment(this, 0);
fm.beginTransaction().add(mCalledFragment, "work").commit();

With these few lines, you’ve created a new CalledFragment object, set the target fragment
on the called fragment to the current fragment, and added the called fragment to the
fragment manager and activity using a fragment transaction. When the called fragment
starts to run, it will be able to call getTargetFragment(), which will return a reference to
the calling fragment. With this reference, the called fragment could invoke methods on the
calling fragment or even access view components directly. For example, in Listing 8-14, the
called fragment could set text in the UI of the calling fragment directly.

Listing 8-14. Target Fragment-to-Fragment Communication

TextView tv = (TextView)
 getTargetFragment().getView().findViewById(R.id.text1);
tv.setText("Set from the called fragment");

195CHAPTER 8: Fragments

References
Here are some helpful references to topics you may wish to explore further:

	www.androidbook.com/proandroid5/projects: A list of downloadable
projects related to this book. The file called ProAndroid5_Ch08_
Fragments.zip contains all projects from this chapter, listed in separate
root directories. There is also a README.TXT file that describes exactly
how to import projects into an IDE from one of these zip files. It includes
some projects that use the Fragment Compatibility SDK for older
Androids as well.

	http://developer.android.com/guide/components/fragments.html:
The Android Developer’s Guide page to fragments.

	http://developer.android.com/design/patterns/multi-pane-layouts.html:
Android design guidelines for multipane layouts.

	http://developer.android.com/training/basics/fragments/index.html:
Android training page for fragments.

Summary
This chapter introduced the Fragment class and its related classes for the manager,
transactions, and subclasses. This is a summary of what’s been covered in this chapter:

The 	 Fragment class, what it does, and how to use it.

Why fragments cannot be used without being attached to one and only 	
one activity.

That although fragments can be instantiated with a static factory method 	
such as newInstance(), you must always have a default constructor and
a way to save initialization values into an initialization arguments bundle.

The life cycle of a fragment and how it is intertwined with the life cycle of 	
the activity that owns the fragment.

	FragmentManager and its features.

Managing device configurations using fragments.	

Combining fragments into a single activity, or splitting them between 	
multiple activities.

Using fragment transactions to change what’s displayed to a user, and 	
animating those transitions using cool effects.

http://www.androidbook.com/proandroid5/projects
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/design/patterns/multi-pane-layouts.html
http://developer.android.com/training/basics/fragments/index.html

196 CHAPTER 8: Fragments

New behaviors that are possible with the Back button when using 	
fragments.

Using the 	 <fragment> tag in a layout.

Using a 	 FrameLayout as a placeholder for a fragment when you want to
use transitions.

	ListFragment and how to use an adapter to populate the data (very
much like a ListView).

Launching a new activity when a fragment can’t fit onto the current 	
screen, and how to adjust when a configuration change makes it
possible to see multiple fragments again.

Communicating between fragments, and between a fragment and 	
its activity.

197

Chapter 9
Responding to Configuration
Changes

We’ve covered a fair bit of material so far, and now seems like a good time to cover configuration
changes. When an application is running on a device, and the device’s configuration changes
(for example, is rotated 90 degrees), your application needs to respond accordingly. The
new configuration will most likely look different from the previous configuration. For example,
switching from portrait to landscape mode means the screen went from being tall and narrow to
being short and wide. The UI elements (buttons, text, lists, and so on) will need to be rearranged,
resized, or even removed to accommodate the new configuration.

In Android, a configuration change by default causes the current activity to go away and be
re-created. The application itself keeps on running, but it has the opportunity to change
how the activity is displayed in response to the configuration change. In the rare case that
you need to handle a configuration change without destroying and re-creating your activity,
Android provides a way to handle that as well.

Be aware that configuration changes can take on many forms, not just device rotation. If
a device gets connected to a dock, that’s also a configuration change. So is changing the
language of the device. Whatever the new configuration is, as long as you’ve designed your
activity for that configuration, Android takes care of most everything to transition to it, giving
the user a seamless experience.

This chapter will take you through the process of a configuration change, from the perspectives
of both activities and fragments. We’ll show you how to design your application for those
transitions and how to avoid traps that could cause your application to crash or misbehave.

The Default Configuration Change Process
The Android operating system keeps track of the current configuration of the device it’s
running on. Configuration includes lots of factors, and new ones get added all the time.
For example, if a device is plugged into a docking station, that represents a change in

198 CHAPTER 9: Responding to Configuration Changes

the device configuration. When a configuration change is detected by Android, callbacks
are invoked in running applications to tell them a change is occurring, so an application can
properly respond to the change. We’ll discuss those callbacks a little later, but for now let’s
refresh your memory with regard to resources.

One of the great features of Android is that resources get selected for your activity based
on the current configuration of the device. You don’t need to write code to figure out which
configuration is active; you just access resources by name, and Android gets the appropriate
resources for you. If the device is in portrait mode and your application requests a layout,
you get the portrait layout. If the device is in landscape mode, you get the landscape layout.
The code just requests a layout without specifying which one it should get. This is powerful
because as new configuration factors get introduced, or new values for configuration
factors, the code stays the same. All a developer needs to do is decide if new resources
need to be created, and create them as necessary for the new configuration. Then, when the
application goes through a configuration change, Android provides the new resources to the
application, and everything continues to function as desired.

Because of a great desire to keep things simple, Android destroys the current activity when
the configuration changes and creates a new one in its place. This might seem rather harsh,
but it’s not. It is a bigger challenge to take a running activity and figure out which parts
would stay the same and which would not, and then only work with the pieces that need to
change.

An activity that’s about to be destroyed is properly notified first, giving you a chance to save
anything that needs to be saved. When the new activity gets created, it has the opportunity
to restore state using data from the previous activity. For a good user experience, obviously
you do not want this save and restore to take very long.

It’s fairly easy to save any data that you need saved and then let Android throw away the rest
and start over, as long as the design of the application and its activities is such that activities
don’t contain a lot of non-UI stuff that would take a long time to re-create. Therein lies the
secret to successful configuration change design: do not put “stuff” inside an activity that
cannot be easily re-created during a configuration change.

Keep in mind that our application is not being destroyed, so anything that is in the application
context, and not a part of our current activity, will still be there for the new activity. Singletons
will still be available, as well as any background threads we might have spun off to do work
for our application. Any databases or content providers that we were working with will also
still be around. Taking advantage of these makes configuration changes quick and painless.
Keep data and business logic outside of activities if you can.

The configuration change process is somewhat similar between activities and fragments.
When an activity is being destroyed and re-created, the fragments within that activity get
destroyed and re-created. What we need to worry about then is state information about our
fragments and activity, such as data currently being displayed to the user, or internal values
that we want to preserve. We will save what we want to keep, and pick it up again on the
other side when the fragments and activities are being re-created. You’ll want to protect
data that can’t easily be re-created by not letting it get destroyed in the default configuration
change process.

199CHAPTER 9: Responding to Configuration Changes

The Destroy/Create Cycle of Activities
There are three callbacks to be aware of when dealing with default configuration changes in
activities:

	onSaveInstanceState()

	onCreate()

	onRestoreInstanceState()

The first is the callback that Android will invoke when it detects that a configuration change
is happening. The activity has a chance to save state that it wants to restore when the new
activity gets created at the end of the configuration change. The onSaveInstanceState()
callback will be called prior to the call to onStop(). Whatever state exists can be accessed
and saved into a Bundle object. This object will get passed in to both of the other callbacks
(onCreate() and onRestoreInstanceState()) when the activity is re-created. You only need
to put logic in one or the other to restore your activity’s state.

The default onSaveInstanceState() callback does some nice things for you. For example, it
goes through the currently active view hierarchy and saves the values for each view that has
an android:id. This means if you have an EditText view that has received some user input,
that input will be available on the other side of the activity destroy/create cycle to populate the
EditText before the user gets control back. You do not need to go through and save this state
yourself. If you do override onSaveInstanceState(), be sure to call super.onSaveInstanceState()
with the bundle object so it can take care of this for you. It’s not the views that are saved, only
the attributes of their state that should persist across the destroy/create boundary.

To save data in the bundle object, use methods such as putInt() for integers and
putString() for strings. There are quite a few methods in the android.os.Bundle class; you
are not limited to integers and strings. For example, putParcelable() can be used to save
complex objects. Each put is used with a string key, and you will retrieve the value later
using the same key used to put the value in. A sample onSaveInstanceState() might look
like Listing 9-1.

Listing 9-1. Sample onSaveInstanceState()

@Override
public void onSaveInstanceState(Bundle icicle) {
 super.onSaveInstanceState(icicle);
 icicle.putInt("counter", 1);
}

Sometimes the bundle is called icicle because it represents a small frozen piece of an
activity. In this sample, you only save one value, and it has a key of counter. You could save
more values by simply adding more put statements to this callback. The counter value in
this example is somewhat temporary because if the application is completely destroyed, the
current value will be lost. This could happen if the user turned off their device, for example.
In Chapter 11, you’ll learn about ways to save values more permanently. This instance state
is only meant to hang onto values while the application is running this time. Do not use this
mechanism for state that is important to keep for a longer term.

200 CHAPTER 9: Responding to Configuration Changes

To restore activity state, you access the bundle object to retrieve values that you believe are
there. Again, you use methods of the Bundle class such as getInt() and getString() with
the appropriate key passed to tell which value you want back. If the key does not exist in
the Bundle, a value of 0 or null is passed back (depending on the type of the object being
requested). Or you can provide a default value in the appropriate getter method. Listing 9-2
shows a sample onRestoreInstanceState() callback.

Listing 9-2. Sample onRestoreInstanceState()

@Override
public void onRestoreInstanceState(Bundle icicle) {
 super.onRestoreInstanceState(icicle);
 int someInt = icicle.getInt("counter", -1);
 // Now go do something with someInt to restore the
 // state of the activity. -1 is the default if no
 // value was found.
}

It’s up to you whether you restore state in onCreate() or in onRestoreInstanceState().
Many applications will restore state in onCreate() because that is where a lot of initialization
is done. One reason to separate the two would be if you’re creating an activity class that
could be extended. The developers doing the extending might find it easier to just override
onRestoreInstanceState() with the code to restore state, as compared to having to override
all of onCreate().

What’s very important to note here is that you need to be very concerned with references to
activities and views and other objects that need to be garbage-collected when the current
activity is fully destroyed. If you put something into the saved bundle that refers back to the
activity being destroyed, that activity can’t be garbage collected. This is very likely a memory
leak that could grow and grow until your application crashes. Objects to avoid in bundles
include Drawables, Adapters, Views, and anything else that is tied to the activity context.
Instead of putting a Drawable into the bundle, serialize the bitmap and save that. Or better yet,
manage the bitmaps outside of the activity and fragment instead of inside. Add some sort of
reference to the bitmap to the bundle. When it comes time to re-create any Drawables for the
new fragment, use the reference to access the outside bitmaps to regenerate your Drawables.

The Destroy/Create Cycle of Fragments
The destroy/create cycle for fragments is very similar to that of activities. A fragment in the
process of being destroyed and re-created will have its onSaveInstanceState() callback
called, allowing the fragment to save values in a Bundle object for later. One difference is
that six fragment callbacks receive this Bundle object when a fragment is being re-created:
onInflate(), onCreate(), onCreateView(), onActivityCreated(), onViewCreated(), and
onViewStateRestored(). The last two callbacks are more recent, from Honeycomb 3.2 and
JellyBean 4.2 respectively. This gives us lots of opportunities to rebuild the internal state of
our reconstructed fragment from its previous state.

Android guarantees only that onSaveInstanceState() will be called for a fragment sometime
before onDestroy(). That means the view hierarchy may or may not be attached when
onSaveInstanceState() is called. Therefore, don’t count on traversing the view hierarchy

201CHAPTER 9: Responding to Configuration Changes

inside of onSaveInstanceState(). For example, if the fragment is on the fragment back
stack, no UI will be showing, so no view hierarchy will exist. This is OK of course because
if no UI is showing, there is no need to attempt to capture the current values of views to
save them. You need to check if a view exists before trying to save its current value, and not
consider it an error if the view does not exist.

Just like with activities, be careful not to include items in the bundle object that refer to an
activity or to a fragment that might not exist later when this fragment is being re-created. Keep
the size of the bundle as small as possible, and as much as possible store long-lasting data
outside of activities and fragments and simply refer to it from your activities and fragments.
Then your destroy/create cycles will go that much faster, you’ll be much less likely to create a
memory leak, and your activity and fragment code should be easier to maintain.

Using FragmentManager to Save Fragment State
Fragments have another way to save state, in addition to, or instead of, Android notifying the
fragments that their state should be saved. With Honeycomb 3.2, the FragmentManager class got
a saveFragmentInstanceState() method that can be called to generate an object of the class
Fragment.SavedState. The methods mentioned in the previous sections for saving state do so
within the internals of Android. While we know that the state is being saved, we do not have any
direct access to it. This method of saving state gives you an object that represents the saved
state of a fragment and allows you to control if and when a fragment is created from that state.

The way to use a Fragment.SavedState object to restore a fragment is through the
setInitialSavedState() method of the Fragment class. In Chapter 8, you learned that it is
best to create new fragments using a static factory method (for example, newInstance()).
Within this method, you saw how a default constructor is called and then an arguments
bundle is attached. You could instead call the setInitialSavedState() method to set it up
for restoration to a previous state.

There are a few caveats you should know about this method of saving fragment state:

The fragment to be saved must currently be attached to the fragment 	
manager.

A new fragment created using this saved state must be the same class 	
type as the fragment it was created from.

The saved state cannot contain dependencies on other fragments. 	
Other fragments may not exist when the saved fragment is re-created.

Using setRetainInstance on a Fragment
A fragment can avoid being destroyed and re-created on a configuration change. If
the setRetainInstance() method is called with an argument of true, the fragment will
be retained in the application when its activity is being destroyed and re-created. The
fragment’s onDestroy() callback will not be called, nor will onCreate(). The onDetach()
callback will be called because the fragment must be detached from the activity that’s going
away, and onAttach() and onActivityCreated() will be called because the fragment is
attached to a new activity. This only works for fragments that are not on the back stack. It is
especially useful for fragments that do not have a UI.

202 CHAPTER 9: Responding to Configuration Changes

This feature is very powerful in that you can use a non-UI fragment to handle references
to your data objects and background threads, and call setRetainInstance(true) on this
fragment so it won’t get destroyed and re-created on a configuration change. The added
bonus is that during the normal configuration change process, the non-UI fragment callbacks
onDetach() and onAttach() will switch the activity reference from the old to the new.

Deprecated Configuration Change Methods
A couple of methods on Activity have been deprecated, so you should no longer use them:

	getLastNonConfigurationInstance()

	onRetainNonConfigurationInstance()

These methods previously allowed you to save an arbitrary object from an activity that was
being destroyed, to be passed to the next instance of the activity that was being created.
Although they were useful, you should now use the methods described earlier instead to
manage data between instances of activities in the destroy/create cycle.

Handling Configuration Changes Yourself
So far, you’ve seen how Android handles configuration changes for you. It takes care of
destroying and re-creating activities and fragments, pulling in the best resources for the new
configuration, retaining any user-entered data, and giving you the opportunity to execute
some extra logic in some callbacks. This is usually going to be your best option. But when it
isn’t, when you have to handle a configuration change yourself, Android provides a way out.
This isn’t recommended because it is then completely up to you to determine what needs
to change due to the change, and then for you to take care of making all the changes. As
mentioned before, there are many configuration changes besides just an orientation change.
Luckily, you don’t necessarily have to handle all configuration changes yourself.

The first step to handling configuration changes yourself is to declare in the <activity>
tag in AndroidManifest.xml file which changes you’re going to handle using the
android:configChanges attribute. Android will handle the other configuration changes using
the previously described methods. You can specify as many configuration change types as
needed by or’ing them together with the ‘|’ symbol, like this:

<activity ... android:configChanges="orientation|keyboardHidden" ... >

The complete list of configuration change types can be found on the reference page for
R.attr. Be aware that if you target API 13 or higher and you need to handle orientation, you
also need to handle screenSize.

The default process for a configuration change is the invoking of callbacks to destroy and
re-create the activity or fragment. When you’ve declared that you will handle the specific
configuration change, the process changes so only the onConfigurationChanged() callback
is invoked instead, on the activity and its fragments. Android passes in a Configuration
object so the callback knows what the new configuration is. It is up to the callback to
determine what might have changed; however, since you likely handle only a small number
of configuration changes yourself, it shouldn’t be too hard to figure this out.

203CHAPTER 9: Responding to Configuration Changes

You’d really only want to handle a configuration change yourself when there is very little to be
done, when you could skip destroying and re-creating. For example, if the activity layout for
portrait and landscape is the same layout and all image resources are the same, destroying
and re-creating the activity doesn’t really accomplish anything. In this case it would be fairly
safe to declare that you will handle the orientation configuration change. During an orientation
change of your activity, the activity would remain intact and simply re-render itself in the new
orientation using the existing resources such as the layout, images, strings, etc. But it’s really
not that big a deal to just let Android take care of things if you can.

References
Here are some helpful references to topics you may wish to explore further:

	www.androidbook.com/proandroid5/projects: A list of downloadable
projects related to this book. For this chapter, look for a ZIP file called
ProAndroid5_Ch09_ConfigChanges.zip. This ZIP file contains all the
projects from this chapter, listed in separate root directories. There is
also a README.TXT file that describes exactly how to import projects into
your IDE from one of these ZIP files.

	http://developer.android.com/guide/topics/fundamentals/
activities.html#SavingActivityState: The Android Developer’s Guide,
which discusses saving and restoring state.

	http://developer.android.com/guide/topics/resources/runtime-
changes.html: The Android API Guide for Handling Runtime Changes.

Summary
Let’s conclude this chapter by quickly enumerating what you have learned about handling
configuration changes:

Activities by default get destroyed and re-created during configuration 	
changes. So do fragments.

Avoid putting lots of data and logic into activities so configuration 	
changes occur quickly.

Let Android provide the appropriate resources.	

Use singletons to hold data outside of activities to make it easier to 	
destroy and re-create activities during configuration changes.

Take advantage of the default 	 onSaveInstanceState() callback to save
UI state on views with android:ids.

If a fragment can survive with no issues across an activity destroy-and-	
create cycle, use setRetainInstance() to tell Android it doesn’t need to
destroy and create the fragment.

http://www.androidbook.com/proandroid5/projects
http://developer.android.com/guide/topics/fundamentals/activities.html#SavingActivityState
http://developer.android.com/guide/topics/fundamentals/activities.html#SavingActivityState
http://developer.android.com/guide/topics/resources/runtime-changes.html
http://developer.android.com/guide/topics/resources/runtime-changes.html

205

Chapter 10
Working with Dialogs

The Android SDK offers extensive support for dialogs. A dialog is a smaller window that
pops up in front of the current window to show an urgent message, to prompt the user for
a piece of input, or to show some sort of status like the progress of a download. The user
is generally expected to interact with the dialog and then return to the window underneath
to continue with the application. Technically, Android allows a dialog fragment to also be
embedded within an activity’s layout, and we’ll cover that as well.

Dialogs that are explicitly supported in Android include the alert, prompt, pick-list, single-
choice, multiple-choice, progress, time-picker, and date-picker dialogs. (This list could vary
depending on the Android release.) Android also supports custom dialogs for other needs.
The primary purpose of this chapter is not to cover every single one of these dialogs but to
cover the underlying architecture of Android dialogs with a sample application. From there
you should be able to use any of the Android dialogs.

It’s important to note that Android 3.0 added dialogs based on fragments. The expectation
from Google is that developers will only use fragment dialogs, even in the versions of
Android before 3.0. This can be done with the fragment-compatibility library. For this reason,
this chapter focuses on DialogFragment.

Using Dialogs in Android
Dialogs in Android are asynchronous, which provides flexibility. However, if you are
accustomed to a programming framework where dialogs are primarily synchronous (such
as Microsoft Windows, or JavaScript dialogs in web pages), you might find asynchronous
dialogs a bit unintuitive. With a synchronous dialog, the line of code after the dialog is shown
does not run until the dialog has been dismissed. This means the next line of code could
interrogate which button was pressed, or what text was typed into the dialog. In Android
however, dialogs are asynchronous. As soon as the dialog has been shown, the next line
of code runs, even though the user hasn’t touched the dialog yet. Your application has to
deal with this fact by implementing callbacks from the dialog, to allow the application to be
notified of user interaction with the dialog.

206 CHAPTER 10: Working with Dialogs

This also means your application has the ability to dismiss the dialog from code, which
is powerful. If the dialog is displaying a busy message because your application is doing
something, as soon as your application has completed that task, it can dismiss the dialog
from code.

Understanding Dialog Fragments
In this section, you learn how to use dialog fragments to present a simple alert dialog and a
custom dialog that is used to collect prompt text.

DialogFragment Basics
Before we show you working examples of a prompt dialog and an alert dialog, we would
like to cover the high-level idea of dialog fragments. Dialog-related functionality uses a class
called DialogFragment. A DialogFragment is derived from the class Fragment and behaves
much like a fragment. You will then use the DialogFragment as the base class for your
dialogs. Once you have a derived dialog from this class such as

public class MyDialogFragment extends DialogFragment { ... }

you can then show this dialog fragment MyDialogFragment as a dialog using a fragment
transaction. Listing 10-1 shows a code snippet to do this.

Listing 10-1. Showing a Dialog Fragment

public class SomeActivity extends Activity
{
 //....other activity functions
 public void showDialog()
 {
 //construct MyDialogFragment
 MyDialogFragment mdf = MyDialogFragment.newInstance(arg1,arg2);
 FragmentManager fm = getFragmentManager();
 FragmentTransaction ft = fm.beginTransaction();
 mdf.show(ft,"my-dialog-tag");
 }
 //....other activity functions
}

Note We provide a link to a downloadable project at the end of this chapter in the “References”
section. You can use this download to experiment with the code and the concepts presented in
this chapter.

207CHAPTER 10: Working with Dialogs

From Listing 10-1, the steps to show a dialog fragment are as follows:

1. Create a dialog fragment.

2. Get a fragment transaction.

3. Show the dialog using the fragment transaction from step 2.

Let’s talk about each of these steps.

Constructing a Dialog Fragment
When constructing a dialog fragment, the rules are the same as when building any other kind
of fragment. The recommended pattern is to use a factory method such as newInstance()
as you did before. Inside that newInstance() method, you use the default constructor for
your dialog fragment, and then you add an arguments bundle that contains your passed-in
parameters. You don’t want to do other work inside this method because you must make
sure that what you do here is the same as what Android does when it restores your dialog
fragment from a saved state. And all that Android does is to call the default constructor and
re-create the arguments bundle on it.

Overriding onCreateView
When you inherit from a dialog fragment, you need to override one of two methods to
provide the view hierarchy for your dialog. The first option is to override onCreateView() and
return a view. The second option is to override onCreateDialog() and return a dialog (like the
one constructed by an AlertDialog.Builder, which we’ll get to shortly).

Listing 10-2 shows an example of overriding the onCreateView().

Listing 10-2. Overriding onCreateView() of a DialogFragment

public class MyDialogFragment extends DialogFragment
 implements View.OnClickListener
{
 other functions
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState)
 {
 //Create a view by inflating desired layout
 View v = inflater.inflate(R.layout.prompt_dialog, container, false);

 //you can locate a view and set values
 TextView tv = (TextView)v.findViewById(R.id.promptmessage);
 tv.setText(this.getPrompt());

 //You can set callbacks on buttons
 Button dismissBtn = (Button)v.findViewById(R.id.btn_dismiss);
 dismissBtn.setOnClickListener(this);

208 CHAPTER 10: Working with Dialogs

 Button saveBtn = (Button)v.findViewById(R.id.btn_save);
 saveBtn.setOnClickListener(this);
 return v;
 }
 other functions
}

In Listing 10-2, you are loading a view identified by a layout. Then you look for two buttons
and set up callbacks on them. This is very similar to how you created the details fragment in
Chapter 8. However, unlike the earlier fragments, a dialog fragment has another way to create
the view hierarchy.

Overriding onCreateDialog
As an alternate to supplying a view in onCreateView(), you can override onCreateDialog()
and supply a dialog instance. Listing 10-3 supplies sample code for this approach.

Listing 10-3. Overriding onCreateDialog() of a DialogFragment

public class MyDialogFragment extends DialogFragment
 implements DialogInterface.OnClickListener
{
 other functions
 @Override
 public Dialog onCreateDialog(Bundle icicle)
 {
 AlertDialog.Builder b = new AlertDialog.Builder(getActivity())
 .setTitle("My Dialog Title")
 .setPositiveButton("Ok", this)
 .setNegativeButton("Cancel", this)
 .setMessage(this.getMessage());
 return b.create();
 }
 other functions
}

In this example, you use the alert dialog builder to create a dialog object to return. This
works well for simple dialogs. The first option of overriding onCreateView() is equally easy
and provides much more flexibility.

AlertDialog.Builder is actually a carryover from pre-3.0 Android. This is one of
the old ways to create a dialog, and it’s still available to you to create dialogs within
DialogFragments. As you can see, it’s fairly easy to build a dialog by calling the various
methods available, as we’ve done here.

Displaying a Dialog Fragment
Once you have a dialog fragment constructed, you need a fragment transaction to show it.
Like all other fragments, operations on dialog fragments are conducted through fragment
transactions.

209CHAPTER 10: Working with Dialogs

The show() method on a dialog fragment takes a fragment transaction as an input. You can
see this in Listing 10-1. The show() method uses the fragment transaction to add this dialog
to the activity and then commits the fragment transaction. However, the show() method
does not add the transaction to the back stack. If you want to do this, you need to add this
transaction to the back stack first and then pass it to the show() method. The show() method
of a dialog fragment has the following signatures:

public int show(FragmentTransaction transaction, String tag)
public int show(FragmentManager manager, String tag)

The first show() method displays the dialog by adding this fragment to the passed-in transaction
with the specified tag. This method then returns the identifier of the committed transaction.

The second show() method automates getting a transaction from the transaction manager.
This is a shortcut method. However, when you use this second method, you don’t have an
option to add the transaction to the back stack. If you want that control, you need to use the
first method. The second method could be used if you wanted to simply display the dialog,
and you had no other reason to work with a fragment transaction at that time.

A nice thing about a dialog being a fragment is that the underlying fragment manager does
the basic state management. For example, even if the device rotates when a dialog is being
displayed, the dialog is reproduced without you performing any state management.

The dialog fragment also offers methods to control the frame in which the dialog’s view is
displayed, such as the title and the appearance of the frame. Refer to the DialogFragment class
documentation to see more of these options; this URL is provided at the end of this chapter.

Dismissing a Dialog Fragment
There are two ways you can dismiss a dialog fragment. The first is to explicitly call the
dismiss() method on the dialog fragment in response to a button or some action on the
dialog view, as shown in Listing 10-4.

Listing 10-4. Calling dismiss()

if (someview.getId() == R.id.btn_dismiss)
{
 //use some callbacks to advise clients
 //of this dialog that it is being dismissed
 //and call dismiss
 dismiss();
 return;
}

The dialog fragment’s dismiss() method removes the fragment from the fragment manager
and then commits that transaction. If there is a back stack for this dialog fragment, then the
dismiss() pops the current dialog out of the transaction stack and presents the previous
fragment transaction state. Whether there is a back stack or not, calling dismiss() results in
calling the standard dialog fragment destroy callbacks, including onDismiss().

210 CHAPTER 10: Working with Dialogs

One thing to note is that you can’t rely on onDismiss() to conclude that a dismiss() has been
called by your code. This is because onDismiss() is also called when a device configuration
changes and hence is not a good indicator of what the user did to the dialog itself. If the dialog
is being displayed when the user rotates the device, the dialog fragment sees onDismiss()
called even though the user did not press a button in the dialog. Instead, you should always
rely on explicit button clicks on the dialog view.

If the user presses the Back button while the dialog fragment is displayed, this causes the
onCancel() callback to fire on the dialog fragment. By default, Android makes the dialog
fragment go away, so you don’t need to call dismiss() on the fragment yourself. But if you
want the calling activity to be notified that the dialog has been cancelled, you need to invoke
logic from within onCancel() to make that happen. This is a difference between onCancel()
and onDismiss() with dialog fragments. With onDismiss(), you can’t be sure exactly what
happened that caused the onDismiss() callback to fire. You might also have noticed that
a dialog fragment does not have a cancel() method, just dismiss(); but as we said, when
a dialog fragment is being cancelled by pressing the Back button, Android takes care of
cancelling/dismissing it for you.

The other way to dismiss a dialog fragment is to present another dialog fragment. The
way you dismiss the current dialog and present the new one is slightly different than just
dismissing the current dialog. Listing 10-5 shows an example.

Listing 10-5. Setting Up a Dialog for a Back Stack

if (someview.getId() == R.id.btn_invoke_another_dialog)
{
 Activity act = getActivity();
 FragmentManager fm = act.getFragmentManager();
 FragmentTransaction ft = fm.beginTransaction();
 ft.remove(this);

 ft.addToBackStack(null);
 //null represents no name for the back stack transaction

 HelpDialogFragment hdf =
 HelpDialogFragment.newInstance(R.string.helptext);
 hdf.show(ft, "HELP");
 return;
}

Within a single transaction, you’re removing the current dialog fragment and adding the
new dialog fragment. This has the effect of making the current dialog disappear visually and
making the new dialog appear. If the user presses the Back button, because you’ve saved
this transaction on the back stack, the new dialog is dismissed and the previous dialog is
displayed. This is a handy way of displaying a help dialog, for example.

Implications of a Dialog Dismiss
When you add any fragment to a fragment manager, the fragment manager does the state
management for that fragment. This means when a device configuration changes (for example,
the device rotates), the activity is restarted and the fragments are also restarted. You saw

211CHAPTER 10: Working with Dialogs

this earlier when you rotated the device while running the Shakespeare sample application
in chapter 8.

A device-configuration change doesn’t affect dialogs because they are also managed by
the fragment manager. But the implicit behavior of show() and dismiss() means you can
easily lose track of a dialog fragment if you’re not careful. The show() method automatically
adds the fragment to the fragment manager; the dismiss() method automatically removes
the fragment from the fragment manager. You may have a direct pointer to a dialog
fragment before you start showing the fragment. But you can’t add this fragment to the
fragment manager and later call show(), because a fragment can only be added once to
the fragment manager. You may plan to retrieve this pointer through restore of the activity.
However, if you show and dismiss this dialog, this fragment is implicitly removed from the
fragment manager, thereby denying that fragment’s ability to be restored and repointed
(because the fragment manager doesn’t know this fragment exists after it is removed).

If you want to keep the state of a dialog after it is dismissed, you need to maintain the state
outside of the dialog either in the parent activity or in a non-dialog fragment that hangs
around for a longer time.

DialogFragment Sample Application
In this section, you review a sample application that demonstrates these concepts of a
dialog fragment. You also examine communication between a fragment and the activity that
contains it. To make it all happen, you need five Java files:

	MainActivity.java: The main activity of your application. It displays a
simple view with help text in it and a menu from which dialogs can be
started.

	PromptDialogFragment.java: An example of a dialog fragment that
defines its own layout in XML and allows input from the user. It has three
buttons: Save, Dismiss (cancel), and Help.

	AlertDialogFragment.java: An example of a dialog fragment that uses
the AlertBuilder class to create a dialog within this fragment. This is
the old-school way of creating a dialog.

	HelpDialogFragment.java: A very simple fragment that displays a help
message from the application’s resources. The specific help message is
identified when a help dialog object is created. This help fragment can
be shown from both the main activity and the prompt dialog fragment.

	OnDialogDoneListener.java: An interface that you require your activity
to implement in order to get messages back from the fragments. Using
an interface means your fragments don’t need to know much about the
calling activity, except that it must have implemented this interface. This
helps encapsulate functionality where it belongs. From the activity’s
point of view, it has a common way to receive information back from
fragments without needing to know too much about them.

212 CHAPTER 10: Working with Dialogs

There are three layouts for this application: for the main activity, for the prompt dialog
fragment, and for the help dialog fragment. Note that you don’t need a layout for the alert
dialog fragment because the AlertBuilder takes care of that layout for you internally. When
you’re done, the application looks like Figure 10-1.

Figure 10-1. The user interface for the dialog fragment sample application

Dialog Sample: MainActivity
Let’s get to the source code, which you can download from the book’s web site (see the
“References” section). We’ll use the DialogFragmentDemo project. Open up the source code
for MainActivity.java before we continue.

The code for the main activity is very straightforward. You display a simple page of text
and set up a menu. Each menu item invokes an activity method, and each method does
basically the same thing: gets a fragment transaction, creates a new fragment, and shows
the fragment. Note that each fragment has a unique tag that’s used with the fragment
transaction. This tag becomes associated with the fragment in the fragment manager, so you
can locate these fragments later by tag name. The fragment can also determine its own tag
value with the getTag() method on Fragment.

The last method definition in the main activity is onDialogDone(), which is a callback that is
part of the OnDialogDoneListener interface that your activity is implementing. As you can
see, the callback supplies a tag of the fragment that is calling you, a boolean value indicating
whether the dialog fragment was cancelled, and a message. For your purposes, you merely
want to log the information to LogCat; you also show it to the user using Toast. Toast will be
covered later in this chapter.

213CHAPTER 10: Working with Dialogs

Dialog Sample: OnDialogDoneListener
So that you can know when a dialog has gone away, create a listener interface that your
dialog callers implement. The code of the interface is in OnDialogDoneListener.java.

This is a very simple interface, as you can see. You choose only one callback for this
interface, which the activity must implement. Your fragments don’t need to know
the specifics of the calling activity, only that the calling activity must implement the
OnDialogDoneListener interface; therefore the fragments can call this callback to
communicate with the calling activity. Depending on what the fragment is doing, there
could be multiple callbacks in the interface. For this sample application, you’re showing the
interface separately from the fragment class definitions. For easier management of code,
you could embed the fragment listener interface inside of the fragment class definition itself,
thus making it easier to keep the listener and the fragment in sync with each other.

Dialog Sample: PromptDialogFragment
Now let’s look at your first fragment, PromptDialogFragment, whose layout is in /res/layout/
prompt_dialog.xml and Java code is under /src in PromptDialogFragment.java.

This prompt dialog layout looks like many you’ve seen previously. There is a TextView to
serve as the prompt; an EditText to take the user’s input; and three buttons for saving the
input, dismissing (cancelling) the dialog fragment, and popping a help dialog.

The PromptDialogFragment Java code starts out looking just like your earlier fragments. You
have a newInstance() static method to create new objects, and within this method you call
the default constructor, build an arguments bundle, and attach it to your new object. Next,
you have something new in the onAttach() callback. You want to make sure the activity you
just got attached to has implemented the OnDialogDoneListener interface. In order to test
that, you cast the activity passed in to the OnDialogDoneListener interface. Here’s that code:

try {
 OnDialogDoneListener test = (OnDialogDoneListener)act;
}
catch(ClassCastException cce) {
 // Here is where we fail gracefully.
 Log.e(MainActivity.LOGTAG, "Activity is not listening");
}

If the activity does not implement this interface, a ClassCastException is thrown. You could
handle this exception and deal with it more gracefully, but this example keeps the code as
simple as possible.

Next up is the onCreate() callback. As is common with fragments, you don’t build your user
interface here, but you can set the dialog style. This is unique to dialog fragments. You can
set both the style and the theme yourself, or you can set just style and use a theme value of
zero (0) to let the system choose an appropriate theme for you. Here’s that code:

int style = DialogFragment.STYLE_NORMAL, theme = 0;
setStyle(style,theme);

214 CHAPTER 10: Working with Dialogs

In onCreateView() you create the view hierarchy for your dialog fragment. Just like other
fragments, you do not attach your view hierarchy to the view container passed in (that is,
by setting the attachToRoot parameter to false). You then proceed to set up the button
callbacks, and you set the dialog prompt text to the prompt that was passed originally to
newInstance().

The onCancel() and onDismiss() callbacks are not shown because all they do is logging;
you’ll be able to see when these callbacks fire during the fragment’s lifecycle.

The final callback in the prompt dialog fragment is for the buttons. Once again, you grab
a reference to your enclosing activity and cast it to the interface you expect the activity to
have implemented. If the user pressed the Save button, you grab the text as entered and call
the interface’s callback onDialogDone(). This callback takes the tag name of this fragment, a
boolean indicating whether this dialog fragment was cancelled, and a message, which in this
case is the text typed by the user. Here it is from the MainActivity:

public void onDialogDone(String tag, boolean cancelled,
 CharSequence message) {
 String s = tag + " responds with: " + message;
 if(cancelled)
 s = tag + " was cancelled by the user";
 Toast.makeText(this, s, Toast.LENGTH_LONG).show();
 Log.v(LOGTAG, s);
}

To finish handling a click on the Save button, you then call dismiss() to get rid of the dialog
fragment. Remember that dismiss() not only makes the fragment go away visually, but also
pops the fragment out of the fragment manager so it is no longer available to you.

If the button pressed is Dismiss, you again call the interface callback, this time with no
message, and then you call dismiss(). And finally, if the user pressed the Help button, you
don’t want to lose the prompt dialog fragment, so you do something a little different. We
described this earlier. In order to remember the prompt dialog fragment so you can come
back to it later, you need to create a fragment transaction to remove the prompt dialog
fragment and add the help dialog fragment with the show() method; this needs to go onto
the back stack. Notice, too, how the help dialog fragment is created with a reference to a
resource ID. This means your help dialog fragment can be used with any help text available
to your application.

Dialog Sample: HelpDialogFragment
You created a fragment transaction to go from the prompt dialog fragment to the help dialog
fragment, and you placed that fragment transaction on the back stack. This has the effect of
making the prompt dialog fragment disappear from view, but it’s still accessible through the
fragment manager and the back stack. The new help dialog fragment appears in its place
and allows the user to read the help text. When the user dismisses the help dialog fragment,
the fragment back stack entry is popped, with the effect of the help dialog fragment being
dismissed (both visually and from the fragment manager) and the prompt dialog fragment
restored to view. This is a pretty easy way to make all this happen. It is very simple yet very
powerful; it even works if the user rotates the device while these dialogs are being displayed.

215CHAPTER 10: Working with Dialogs

Look at the source code of the HelpDialogFragment.java file and its layout (help_dialog.xml).
The point of this dialog fragment is to display help text. The layout is a TextView and a Close
button. The Java code should be starting to look familiar to you. There’s a newInstance()
method to create a new help dialog fragment, an onCreate() method to set the style and
theme, and an onCreateView() method to build the view hierarchy. In this particular case,
you want to locate a string resource to populate the TextView, so you access the resources
through the activity and choose the resource ID that was passed in to newInstance(). Finally,
onCreateView() sets up a button-click handler to capture the clicks of the Close button. In
this case, you don’t need to do anything interesting at the time of dismissal.

This fragment is called two ways: from the activity and from the prompt dialog fragment.
When this help dialog fragment is shown from the main activity, dismissing it simply pops
the fragment off the top and reveals the main activity underneath. When this help dialog
fragment is shown from the prompt dialog fragment, because the help dialog fragment
was part of a fragment transaction on the back stack, dismissing it causes the fragment
transaction to be rolled back, which pops the help dialog fragment but restores the prompt
dialog fragment. The user sees the prompt dialog fragment reappear.

Dialog Sample: AlertDialogFragment
We have one last dialog fragment to show you in this sample application: the alert dialog
fragment. Although you could create an alert dialog fragment in a way similar to the
help dialog fragment, you can also create a dialog fragment using the old AlertBuilder
framework that has worked for many releases of Android. Look at the source code in
AlertDialogFragment.java.

You don’t need a layout for this one because the AlertBuilder takes care of that for you.
Note that this dialog fragment starts out like any other, but instead of an onCreateView()
callback, you have a onCreateDialog() callback. You implement either onCreateView() or
onCreateDialog() but not both. The return from onCreateDialog() is not a view; it’s a dialog.
Of interest here is that to get parameters for the dialog, you should be accessing your
arguments bundle. In this example application, you only do this for the alert message, but
you could access other parameters through the arguments bundle as well.

Notice also that with this type of dialog fragment, you need your fragment class to
implement the DialogInterface.OnClickListener, which means your dialog fragment
must implement the onClick() callback. This callback is fired when the user acts on the
embedded dialog. Once again, you get a reference to the dialog that fired and an indication
of which button was pressed. As before, you should be careful not to depend on an
onDismiss() because this could fire when there is a device configuration change.

Dialog Sample: Embedded Dialogs
There’s one more feature of a DialogFragment that you may have noticed. In the main layout
for the application, under the text, is a FrameLayout that can be used to hold a dialog. In the
application’s menu, the last item causes a fragment transaction to add a new instance of a
PromptDialogFragment to the main screen. Without any modifications, the dialog fragment
can be displayed embedded in the main layout, and it functions as you would expect.

216 CHAPTER 10: Working with Dialogs

One thing that is different about this technique is that the code to show the embedded dialog
is not the same as the code to do a pop-up dialog. The embedded dialog code looks like this:

ft.add(R.id.embeddedDialog, pdf, EMBED_DIALOG_TAG);
ft.commit();

This looks just the same as in Chapter 8, when we displayed a fragment in a FrameLayout.
This time, however, you make sure to pass in a tag name, which is used when the dialog
fragment notifies your activity of the user’s input.

Dialog Sample: Observations
When you run this sample application, make sure you try all the menu options in different
orientations of the device. Rotate the device while the dialog fragments are displayed. You
should be pleased to see that the dialogs go with the rotations; you do not need to worry about
a lot of code to manage the saving and restoring of fragments due to configuration changes.

The other thing we hope you appreciate is the ease with which you can communicate
between the fragments and the activity. Of course, the activity has references, or can
get references, to all the available fragments, so it can access methods exposed by the
fragments themselves. This isn’t the only way to communicate between fragments and
the activity. You can always use the getter methods on the fragment manager to retrieve
an instance of a managed fragment, and then cast that reference appropriately and call a
method on that fragment directly. You can even do this from within another fragment. The
degree to which you isolate your fragments from each other with interfaces and through
activities, or build in dependencies with fragment-to-fragment communication, is based on
how complex your application is and how much reuse you want to achieve.

Working with Toast
A Toast is like a mini alert dialog that has a message and displays for a certain amount of
time and then goes away automatically. It does not have any buttons. So it can be said that
it is a transient alert message. It’s called Toast because it pops up like toast out of a toaster.

Listing 10-10 shows an example of how you can show a message using Toast.

Listing 10-10. Using Toast for Debugging

//Create a function to wrap a message as a toast
//show the toast
public void reportToast(String message)
{
 String s = MainActivity.LOGTAG + ":" + message;
 Toast.makeText(activity, s, Toast.LENGTH_SHORT).show();
}

217CHAPTER 10: Working with Dialogs

The makeText() method in Listing 10-10 can take not only an activity but any context object,
such as the one passed to a broadcast receiver or a service, for example. This extends the
use of Toast outside of activities.

References
	www.androidbook.com/proandroid5/projects: This chapter’s test

project. The name of the ZIP file is ProAndroid5_ch10_Dialogs.zip. The
download includes an example of the date- and time-picker dialogs in
PickerDialogFragmentDemo.

	http://developer.android.com/guide/topics/ui/dialogs.html:
Android SDK document that provides an excellent introduction to
working with Android dialogs. You will find here an explanation of how to
use managed dialogs and various examples of available dialogs.

	http://developer.android.com/reference/android/content/
DialogInterface.html: The many constants defined for dialogs.

	http://developer.android.com/reference/android/app/AlertDialog.
Builder.html: API documentation for the AlertDialog builder class.

	http://developer.android.com/reference/android/app/
ProgressDialog.html: API documentation for ProgressDialog.

	http://developer.android.com/guide/topics/ui/controls/pickers.
html: An Android tutorial for using the date-picker and time-picker
dialogs.

Summary
This chapter discussed asynchronous dialogs and how to use dialog fragments, including
the following topics:

What a dialog is and why you use one	

The asynchronous nature of a dialog in Android	

The three steps of getting a dialog to display on the screen	

Creating a fragment	

Two methods for how a dialog fragment can create a view hierarchy	

How a fragment transaction is involved in displaying a dialog fragment, 	
and how to get one

What happens when the user presses the Back button while viewing 	
a dialog fragment

http://www.androidbook.com/proandroid5/projects
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/reference/android/content/DialogInterface.html
http://developer.android.com/reference/android/content/DialogInterface.html
http://developer.android.com/reference/android/app/AlertDialog.Builder.html
http://developer.android.com/reference/android/app/AlertDialog.Builder.html
http://developer.android.com/reference/android/app/ProgressDialog.html
http://developer.android.com/reference/android/app/ProgressDialog.html
http://developer.android.com/guide/topics/ui/controls/pickers.html
http://developer.android.com/guide/topics/ui/controls/pickers.html

218 CHAPTER 10: Working with Dialogs

The back stack, and managing dialog fragments	

What happens when a button on a dialog fragment is clicked, and how 	
you deal with it

A clean way to communicate back to the calling activity from a dialog 	
fragment

How one dialog fragment can call another dialog fragment and still get 	
back to the previous dialog fragment

The 	 Toast class and how it can be used as a simple alert pop-up

219

Chapter 11
Working with Preferences
and Saving State

Android offers a robust and flexible framework for dealing with settings, also known as
preferences. And by settings, we mean those feature choices that a user makes and
saves to customize an application to their liking. (In this chapter, the terms settings and
preferences will be used interchangeably.) For example, if the user wants a notification
via a ringtone or vibration or not at all, that is a preference the user saves; the application
remembers the choice until the user changes it. Android provides simple APIs that hide the
management and persisting of preferences. It also provides prebuilt user interfaces that
you can use to let the user make preference selections. Because of the power built into the
Android preferences framework, we can also use preferences for more general-purpose
storing of application state, to allow our application to pick up where it left off, should our
application go away and come back later. As another example, a game’s high scores could
be stored as preferences, although you’ll want to use your own UI to display them.

This chapter covers how to implement your own settings screens for your application, how
to interact with Android system settings, and how to use settings to secretly save application
state, and it also provides best-practice guidance. You’ll discover how to make your settings
look good on small screens as well as larger screens such as those found on tablets.

Exploring the Preferences Framework
Android’s preferences framework builds from the individual settings choices, to a hierarchy
of screens that contain settings choices. Settings could be binary settings such as on/off, or
text input, or a numeric value, or could be a selection from a list of choices. Android uses a
PreferenceManager to provide settings values to applications. The framework takes care of
making and persisting changes, and notifying the application when a setting changes or is
about to change. While settings are persisted in files, applications don’t deal directly with the
files. The files are hidden away, and you’ll see shortly where they are.

220 CHAPTER 11: Working with Preferences and Saving State

As with views covered in Chapter 3, preferences can be specified with XML, or by writing
code. For this chapter, you’ll work with a sample application that demonstrates the
different types of choices. XML is the preferred way to specify a preference, so that is how
the application was written. XML specifies the lowest-level settings, plus how to group
settings together into categories and screens. For reference, the sample application for this
chapter presents the following settings as shown in Figure 11-1.

Figure 11-1. The main settings from the sample app preference UI. Due to the screen’s height, it has been shown with
the top on the left and the bottom on the right. Notice the overlap between the two images

Android provides an end-to-end preferences framework. This means the framework lets you
define your preferences, display the setting(s) to the user, and persist the user’s selection to
the data store. You define your preferences in XML under /res/xml/. To show preferences to
the user, you write an activity class that extends a predefined Android class called android.
preference.PreferenceActivity and use fragments to handle the screens of preferences.
The framework takes care of the rest (displaying and persisting). Within your application,
your code will get references to specific preferences. With a preference reference, you can
get the current value of the preference.

In order for preferences to be saved across user sessions, the current values must be saved
somewhere. The Android framework takes care of persisting preferences in an XML file
within the application’s /data/data directory on the device (see Figure 11-2).

221CHAPTER 11: Working with Preferences and Saving State

Note You will be able to inspect shared preferences files in the emulator only. On a real device,
the shared preferences files are not readable due to Android security (unless you have root
privileges, of course).

Figure 11-2. Path to an application’s saved preferences

The default preferences file path for an application is /data/data/[PACKAGE_NAME]/
shared_prefs/[PACKAGE_NAME]_preferences.xml, where [PACKAGE_NAME] is the package of the
application. Listing 11-1 shows the com.androidbook.preferences.main_preferences.xml
data file for this example.

Listing 11-1. Saved Preferences for Our Example

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<boolean name="notification_switch" value="true" />
<string name="package_name_preference">com.androidbook.win</string>
<boolean name="potato_selection_pref" value="true" />
<boolean name="show_airline_column_pref" value="true" />
<string name="flight_sort_option">2</string>
<boolean name="alert_email" value="false" />
<set name="pizza_toppings">
<string>pepperoni</string>
<string>cheese</string>
<string>olive</string>
</set>
<string name="alert_email_address">davemac327@gmail.com</string>
</map>

As you can see, values are stored in a map, with preference keys as names to the data
values. Some of the values look cryptic and do not match what is displayed to the user. For
example, the value for flight_sort_option is 2. Android does not store the displayed text as

222 CHAPTER 11: Working with Preferences and Saving State

the value of the preference; rather, it stores a value that the user won’t see, that you can use
independently of what the user sees. You want the freedom to change the displayed text
based on the user’s language, and you also want the ability to tweak the displayed text while
keeping the same stored value in the preferences file. You might even be able to do simpler
processing of the preference if the value is an integer instead of some display string. What
you don’t have to worry about is parsing this data file. The Android preferences framework
provides a nice API for dealing with preferences, which will be described in more detail later
in this chapter.

If you compare the preferences map in Listing 11-1 with the screenshots in Figure 11-1, you
will notice that not all preferences are listed with values in the preferences XML data file. This
is because the preference data file does not automatically store a default value for you. You’ll
see shortly how to deal with default values.

Now that you’ve seen where the values are saved, you need to see how to define the
screens to display to the user so they can make selections. Before you see how to collect
preferences together into screens, you’ll learn about the different types of preferences you
can use, and then you’ll see how to put them together into screens. Each persisted value in
the /data/data XML file is from a specific preference. So let’s understand what each of these
means.

Understanding CheckBoxPreference and SwitchPreference
The simplest of the preferences are the CheckBoxPreference and SwitchPreference.
These share a common parent class (TwoStatePreference) and are either on (value is
true) or off (value is false). For the sample application, a screen was created with five
CheckBoxPreferences, as shown in Figure 11-3. Listing 11-2 shows what the XML looks like
for a CheckBoxPreference.

Figure 11-3. The user interface for the check box preference

223CHAPTER 11: Working with Preferences and Saving State

Listing 11-2. Using CheckBoxPreference

<CheckBoxPreference
 android:key="show_airline_column_pref"
 android:title="Airline"
 android:summary="Show Airline column" />

Note We will give you a URL at the end of the chapter that you can use to download projects from
this chapter. This will allow you to import these projects into your IDE directly. The main sample
application is called PrefDemo. You should refer to that project until you come to the Saving State
section.

This example shows the minimum that’s required to specify a preference. The key is the
reference to, or name of, the preference, the title is the title displayed for the preference,
and summary is a description of what the preference is for or a status of the current setting.
Looking back on the saved values in Listing 11-1, you will see a <boolean> tag for “show_
airline_column_pref” (the key), and it has an attribute value of true, which indicates that the
preference is checked on.

With CheckBoxPreference, the state of the preference is saved when the user sets the state.
In other words, when the user checks or unchecks the preference control, its state is saved
immediately.

The SwitchPreference is very similar except that the visual display is different. Instead of a
check box in the user interface, the user sees an on-off switch, as shown in Figure 11-1 next
to “Notifications are”.

One other useful feature of CheckBoxPreference and SwitchPreference is that you can
set different summary text depending on whether it’s checked. The XML attributes are
summaryOn and summaryOff. If you look in the main.xml file for the CheckBoxPreference called
“potato_selection_pref” you will see an example of this.

Before you learn the other preference types, now would be a good time to understand how
to access this preference to read its value and perform other operations.

Accessing a Preference Value in Code
Now that you have a preference defined you need to know how to access the preference in
code so you can read the value. Listing 11-3 shows code to access the SharedPreferences
object in Android where the preferences exist. This code is from the MainActivity.java file
in the setOptionText() method.

224 CHAPTER 11: Working with Preferences and Saving State

Listing 11-3. Accessing the CheckBoxPreference

 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(this);
// This is the other way to get to the shared preferences:
// SharedPreferences prefs = getSharedPreferences(
// "com.androidbook.preferences.main_preferences", 0);
 boolean showAirline = prefs.getBoolean("show_airline_column_pref", false);

Using the reference to preferences, it is straightforward to read the current value of the
show_airline_column_pref preference. As shown in Listing 11-3, there are two ways to
get to the preferences. The first way shown is to get the default preferences for the current
context. In this case, the context is that of the MainActivity of our application. The second
case, which is shown commented out, retrieves the preferences using a package name.
You could use whatever package name you want in case you need to store different sets of
preferences in different files.

Once you have a reference to the preferences, you call the appropriate getter method
with the key of the preference and a default value. Since show_airline_column_pref is a
TwoStatePreference, the value returned is a boolean. The default value for show_airline_
column_pref is hard-coded here as false. If this preference has not yet been set at all, the
hard-coded value (false) will be assigned to showAirline. However, that by itself does not
persist the preference to false for future use, nor does it honor any default value that might
have been set in the XML specification for this preference. If the XML specification uses a
resource value to specify the default value, then the same resource could be referred to in
code to set the default value, as shown in the following for a different preference:

String flight_option = prefs.getString(
 resources.getString(R.string.flight_sort_option),
 resources.getString(R.string.flight_sort_option_default_value));

Notice here that the key for the preference is also using a string resource value (R.string.
flight_sort_option). This can be a wise choice since it makes typos less likely. If the
resource name is typed wrong you’ll very likely get a build error. If you use just simple
strings, it is possible for a typo to go unnoticed, except that your preferences won’t work.

We showed one way to read a default value for a preference in code. Android provides
another way that is a bit more elegant. In onCreate(), you can do the following instead:

PreferenceManager.setDefaultValues(this, R.xml.main, false);

Then, in setOptionText(), you would have done this to read the option value:

String option = prefs.getString(
 resources.getString(R.string.flight_sort_option), null);

The first call will use main.xml to find the default values and generate the preferences
XML data file for us using the default values. If we already have an instance of the
SharedPreferences object in memory, it will update that too. The second call will then find a
value for flight_sort_option, because we took care of loading defaults first.

225CHAPTER 11: Working with Preferences and Saving State

After running this code the first time, if you look in the shared_prefs folder, you will see the
preferences XML file even if the preferences screen has not yet been invoked. You will also
see another file called _has_set_default_values.xml. This file tells your application that the
preferences XML file has already been created with the default values. The third argument
to setDefaultValues()—that is, false—indicates that you want the defaults set in the
preferences XML file only if it hasn’t been done before. Android remembers this information
through the existence of this new XML file. However, Android remembers even if you upgrade
your application and add new settings with new default values, which means this trick won’t
set those new defaults. Your best option is to always use a resource for the default value,
and always provide that resource as the default value when getting the current value of a
preference.

Understanding ListPreference
A list preference contains radio buttons for each option, and the default (or current) selection
is preselected. The user is expected to select one and only one of the choices. When the
user chooses an option, the dialog is immediately dismissed and the choice is saved in the
preferences XML file. Figure 11-4 shows what this looks like.

Figure 11-4. The user interface for the ListPreference

Listing 11-4 contains an XML fragment that represents the flight-option preference setting.
This time the file contains references to strings and to arrays, which would be the more
common way to specify these rather than hard-coding the strings. As mentioned before,
the value of a list preference as stored in the XML data file under the /data/data/{package}
directory is not the same as what the user sees in the user interface. The name of the key
is stored in the data file, along with a hidden value that the user does not see. Therefore, to
get a ListPreference to work, there needs to be two arrays: the values displayed to the user

226 CHAPTER 11: Working with Preferences and Saving State

and the strings used as key values. This is where you can easily get tripped up. The entries
array holds the strings displayed to the user, and the entryValues array holds the strings that
will be stored in the preferences data XML file.

Listing 11-4. Specifying a ListPreference in XML

<ListPreference
 android:key="@string/flight_sort_option"
 android:title="@string/listTitle"
 android:summary="@string/listSummary"
 android:entries="@array/flight_sort_options"
 android:entryValues="@array/flight_sort_options_values"
 android:dialogTitle="@string/dialogTitle"
 android:defaultValue="@string/flight_sort_option_default_value" />

The elements between the two arrays correspond to each other positionally. That is, the
third element in the entryValues array corresponds to the third element in the entries array.
It is tempting to use 0, 1, 2, etc., as entryValues but it is not required, and it could cause
problems later when the arrays must be modified. If our option were numeric in nature (for
example, a countdown timer starting value), then we could have used values such as 60,
120, 300, and so on. The values don’t need to be numeric at all as long as they make sense
to the developer; the user doesn’t see these values unless you choose to expose them.
The user only sees the text from the first string array flight_sort_options. The example
application for this chapter shows it both ways.

A word of caution here: because the preferences XML data file is storing only the value and
not the text, should you ever upgrade your application and change the text of the options
or add items to the string arrays, any value stored in the preferences XML data file should
still line up with the appropriate text after the upgrade. The preferences XML data file is kept
during the application upgrade. If the preferences XML data file had a "1" in it, and that
meant “# of Stops” before the upgrade, it should still mean “# of Stops” after the upgrade.

Since the entryValues array is not seen by the end user, it is best practice to store it once
and only once within your application. Therefore, make one and only one /res/values/
prefvaluearrays.xml file to contain these arrays. The entries array is very likely to be
created multiple times per application, for different languages or perhaps different device
configurations. Therefore, make separate prefdisplayarrays.xml files for each variation that
you need. For example, if your application will be used in English and in French, there will be
separate prefdisplayarrays.xml files for English and French. You do not want to include the
entryValues array in each of these other files. It is imperative though that there are the same
numbers of array elements between entryValues and entries arrays. The elements must
line up. When you make changes, be careful to keep everything in alignment. Listing 11-5
contains the source of ListPreference files for the example.

227CHAPTER 11: Working with Preferences and Saving State

Listing 11-5. Other ListPreference Files from Our Example

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/values/prefvaluearrays.xml -->
<resources>
<string-array name="flight_sort_options_values">
 <item>0</item>
 <item>1</item>
 <item>2</item>
</string-array>
<string-array name="pizza_toppings_values">
 <item>cheese</item>
 <item>pepperoni</item>
 <item>onion</item>
 <item>mushroom</item>
 <item>olive</item>
 <item>ham</item>
 <item>pineapple</item>
</string-array>
<string-array name="default_pizza_toppings">
 <item>cheese</item>
 <item>pepperoni</item>
</string-array>
</resources>

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/values/prefdisplayarrays.xml -->
<resources>
<string-array name="flight_sort_options">
 <item>Total Cost</item>
 <item># of Stops</item>
 <item>Airline</item>
</string-array>
<string-array name="pizza_toppings">
 <item>Cheese</item>
 <item>Pepperoni</item>
 <item>Onions</item>
 <item>Portobello Mushrooms</item>
 <item>Black Olives</item>
 <item>Smoked Ham</item>
 <item>Pineapple</item>
</string-array>
</resources>

Also, don’t forget that your default value as specified in the XML source file must match an
entryValue in the array from prefvaluearrays.xml.

For a ListPreference, the value of the preference is a String. If you are using number strings
(e.g., 0, 1, 1138) as entryValues, you could convert those to integers or whatever you need
in your code, as is used in the flight_sort_options_values array.

228 CHAPTER 11: Working with Preferences and Saving State

Your code is likely going to want to display the user-friendly text from the preference’s
entries array. This example took a shortcut, because array indices were used for the
elements in flight_sort_options_values. By simply converting the value to an int,
you know which string to read from flight_sort_options. Had you used some other
set of values for flight_sort_options_values, you would need to determine the index
of the element that is your preference and then turn around and use that index to grab
the text of your preference from flight_sort_options. ListPreference’s helper method
findIndexOfValue() can help with this, by providing the index into the values array so you
can then easily get the corresponding display text from the entries array.

Returning now to Listing 11-4, there are several strings for titles, summaries, and more. The
string called flight_sort_option_default_value sets the default value to 1 to represent “#
of Stops” in the example. It is usually a good idea to choose a default value for each option.
If you don’t choose a default value and no value has yet been chosen, the methods that
return the value of the option will return null. Your code would have to deal with null values
in this case.

Understanding EditTextPreference
The preferences framework also provides a free-form text preference called
EditTextPreference. This preference allows you to capture raw text rather than ask the
user to make a selection. To demonstrate this, let’s assume you have an application that
generates Java code for the user. One of the preference settings of this application might be
the default package name to use for the generated classes. Here, you want to display a text
field to the user for setting the package name for the generated classes. Figure 11-5 shows
the UI, and Listing 11-6 shows the XML.

Figure 11-5. Using the EditTextPreference

229CHAPTER 11: Working with Preferences and Saving State

Listing 11-6. An Example of an EditTextPreference

<EditTextPreference
 android:key="package_name_preference"
 android:title="Set Package Name"
 android:summary="Set the package name for generated code"
 android:dialogTitle="Package Name" />

When Set Package Name is selected, the user is presented with a dialog to input the
package name. When the OK button is clicked, the preference is saved to the preference
store.

As with the other preferences, you can obtain the value of the preference by calling the
appropriate getter method, in this case getString().

Understanding MultiSelectListPreference
And finally, a preference called MultiSelectListPreference was introduced in Android 3.0.
The concept is somewhat similar to a ListPreference, but instead of only being able to
select one item in the list, the user can select several or none. In Listing 11-1,
the MultiSelectListPreference stores a <set name="pizza_toppings"> tag in the
preferences XML data file, instead of a single value. The other significant difference with a
MultiSelectListPreference is that the default value is an array just like the entryValues
array. That is, the array for the default values must contain zero or more of the elements from
the entryValues array for this preference. This can also be seen in the sample application for
this chapter; just view the end of the main.xml file in the /res/xml directory.

To get the current value of a MultiSelectListPreference, use the getStringSet() method of
SharedPreferences. To retrieve the display strings from the entries array, you would need to
iterate through the set of strings that is the value of this preference, determine the index of
the string, and use the index to access the proper display string from the entries array.

Updating AndroidManifest.xml
Because there are two activities in the sample application, we need two activity tags in
AndroidManifest.xml. The first one is a standard activity of category LAUNCHER. The second
one is for a PreferenceActivity, so set the action name according to convention for intents,
and set the category to PREFERENCE as shown in Listing 11-7. You probably don’t want
the PreferenceActivity showing up on the Android page with all our other applications,
which is why you don’t use LAUNCHER for it. You would need to make similar changes to
AndroidManifest.xml if you were to add other preference activities.

230 CHAPTER 11: Working with Preferences and Saving State

Figure 11-6. Using PreferenceCategory to organize preferences

Listing 11-7. PreferenceActivity Entry in AndroidManifest.xml

 <activity android:name=".MainPreferenceActivity"
 android:label="@string/prefTitle">
 <intent-filter>
 <action android:name=
 "com.androidbook.preferences.main.intent.action.MainPreferences" />
 <category
 android:name="android.intent.category.PREFERENCE" />
 </intent-filter>
 </activity>

Using PreferenceCategory
The preferences framework provides support for you to organize your preferences into
categories. If you have a lot of preferences, for example, you can use PreferenceCategory,
which groups preferences under a separator label. Figure 11-6 shows what this could look
like. Notice the separators called “MEATS” and “VEGETABLES.” You can find the specifications
for these in /res/xml/main.xml.

231CHAPTER 11: Working with Preferences and Saving State

Creating Child Preferences with Dependency
Another way to organize preferences is to use a preference dependency. This creates a
parent-child relationship between preferences. For example, you might have a preference
that turns on alerts; and if alerts are on, there might be several other alert-related
preferences to choose from. If the main alerts preference is off, the other preferences are not
relevant and should be disabled. Listing 11-8 shows the XML, and Figure 11-7 shows what it
looks like.

Listing 11-8. Preference Dependency in XML

<PreferenceScreen>
 <PreferenceCategory
 android:title="Alerts">

 <CheckBoxPreference
 android:key="alert_email"
 android:title="Send email?" />

 <EditTextPreference
 android:key="alert_email_address"
 android:layout="?android:attr/preferenceLayoutChild"
 android:title="Email Address"
 android:dependency="alert_email" />

 </PreferenceCategory>
</PreferenceScreen>

Figure 11-7. Preference dependency

Preferences with Headers
Android 3.0 introduced a new way to organize preferences. You see this on tablets under
the main Settings app. Because tablet screen real estate offers much more room than a
smartphone does, it makes sense to display more preference information at the same time.
To accomplish this, you use preference headers. Take a look at Figure 11-8.

232 CHAPTER 11: Working with Preferences and Saving State

Figure 11-8. Main Settings page with preference headers

Notice that headers appear down the left side, like a vertical tab bar. As you click each item
on the left, the screen to the right displays the preferences for that item. In Figure 11-8,
Sound is chosen, and the sound preferences are displayed at right. The right side is
a PreferenceScreen object, and this setup uses fragments. Obviously, we need to do
something different than what has been discussed so far in this chapter.

The big change from Android 3.0 was the addition of headers to PreferenceActivity. This
also means using a new callback within PreferenceActivity to do the headers setup. Now,
when you extend PreferenceActivity, you’ll want to implement this method:

public void onBuildHeaders(List<Header> target) {
 loadHeadersFromResource(R.xml.preferences, target);
}

Please refer to the PrefDemo sample application for the complete source code. The
preferences.xml file contains some new tags that look like this:

<preference-headers
 xmlns:android="http://schemas.android.com/apk/res/android">
 <header android:fragment="com.example.PrefActivity$Prefs1Fragment"
 android:icon="@drawable/ic_settings_sound"
 android:title="Sound"
 android:summary="Your sound preferences" />
 ...

http://schemas.android.com/apk/res/android

233CHAPTER 11: Working with Preferences and Saving State

Each header tag points to a class that extends PreferenceFragment. In the example just
given, the XML specifies an icon, the title, and summary text (which acts like a subtitle).
Prefs1Fragment is an inner class of PreferenceActivity that could look something like this:

public static class Prefs1Fragment extends PreferenceFragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.sound_preferences);
 }
}

All this inner class needs to do is pull in the appropriate preferences XML file, as shown.
That preferences XML file contains the types of preference specifications we covered earlier,
such as ListPreference, CheckBoxPreference, PreferenceCategory, and so on. What’s
very nice is that Android takes care of doing the right thing when the screen configuration
changes and when the preferences are displayed on a small screen. Headers behave like old
preferences when the screen is too small to display both headers and the preference screen
to the right. That is, you only see the headers; and when you click a header, you then see
only the appropriate preference screen.

PreferenceScreens
The top-level container for preferences is a PreferenceScreen. Before tablets and
PreferenceFragments, you could nest PreferenceScreens, and when the user clicked on
a nested PreferenceScreen item, the new PreferenceScreen would replace the currently
displayed PreferenceScreen. This worked fine on a small screen, but doesn’t look as good
on a tablet, especially if you started with headers and fragments. What you probably want is
for the new PreferenceScreen to appear where the current fragment is.

To make a PreferenceScreen work inside of a fragment, all you need to do is specify a
fragment class name for that PreferenceScreen. Listing 11-9 shows the XML from the
sample application.

Listing 11-9. PreferenceScreen invoked via a PreferenceFragment

<PreferenceScreen
 android:title="Launch a new screen into a fragment"
 android:fragment="com.androidbook.preferences.main.BasicFrag" />

When the user clicks on this item, the current fragment is replaced with BasicFrag, which
then loads a new XML layout for a PreferenceScreen as specified in nested_screen_
basicfrag.xml. In this case, we chose not to make the BasicFrag class an inner class of the
MainPreferenceActivity class, mainly because there is no sharing needed from the outer
class, and to show you that you can do it this way if you prefer.

234 CHAPTER 11: Working with Preferences and Saving State

Dynamic Preference Summary Text
You’ve probably seen preferences where the preference summary contains the current
value. This is actually a little harder to implement than you might think. To accomplish
this feat, you create a listener callback that detects when a preference value is about to
change, and you then update the preference summary accordingly. The first step is for your
PreferenceFragment to implement the OnPreferenceChangeListener interface. You then need
to implement the onPreferenceChange() callback. Listing 11-10 shows an example. The
pkgPref object in the callback was set earlier to the preference in the onCreate() method.

Listing 11-10. Setting Up a Preference Listener

public boolean onPreferenceChange(Preference preference,
 Object newValue) {
 final String key = preference.getKey();
 if ("package_name_preference".equals(key)) {
 pkgPref.setSummary(newValue.toString());
 }
 ...
 return true;
}

You have to register the fragment as a listener in onResume() using setOnPreferenceChange
Listener(this) on each preference you want to listen on, and unregister in onPause()
by calling it again with null. Now every time there is a pending change to a preference
you’ve registered for, this callback will be invoked passing in the preference and the
potential new value. The callback returns a boolean indicating whether to proceed
with setting the preference to the new value (true) or not (false). Assuming you would
return true to allow the new setting, this is where you can update the summary value as
well. You could also validate the new value and reject the change. Perhaps you want a
MultiSelectListPreference to have a maximum number of checked items. You could count
the selected items in the callback and reject the change if there are too many.

Saving State with Preferences
Preferences are great for allowing users to customize applications to their liking, but we can
use the Android preference framework for more than that. When your application needs to
keep track of some data between invocations of the application, preferences are one way to
accomplish the task even if the user can’t see the data in preference screens. Please find the
sample application called SavingStateDemo to follow along with the complete source code.

The Activity class has a getPreferences(int mode) method. This, in reality, simply calls
getSharedPreferences() with the class name of the activity as the tag plus the mode as
passed in. The result is an activity-specific shared preferences file that you can use to store
data about this activity across invocations. A simple example of how you could use this is
shown in Listing 11-11.

235CHAPTER 11: Working with Preferences and Saving State

Listing 11-11. Using Preferences to Save State for an Activity

 final String INITIALIZED = "initialized";
 private String someString;

[...]

 SharedPreferences myPrefs = getPreferences(MODE_PRIVATE);

 boolean hasPreferences = myPrefs.getBoolean(INITIALIZED, false);
 if(hasPreferences) {
 Log.v("Preferences", "We've been called before");
 // Read other values as desired from preferences file...
 someString = myPrefs.getString("someString", "");
 }
 else {
 Log.v("Preferences", "First time ever being called");
 // Set up initial values for what will end up
 // in the preferences file
 someString = "some default value";
 }

[...]

 // Later when ready to write out values
 Editor editor = myPrefs.edit();
 editor.putBoolean(INITIALIZED, true);
 editor.putString("someString", someString);
 // Write other values as desired
 editor.commit();

What this code does is acquire a reference to preferences for our activity class and check for
the existence of a boolean “preference” called initialized. We write “preference” in double
quotation marks because this value is not something the user is going to see or set; it’s
merely a value that we want to store in a shared preferences file for use next time. If we get
a value, the shared preferences file exists, so the application must have been called before.
You could then read other values out of the shared preferences file. For example, someString
could be an activity variable that should be set from the last time this activity ran or set to
the default value if this is the first time.

To write values to the shared preferences file, you must first get a preferences Editor. You
can then put values into preferences and commit those changes when you’re finished.
Note that, behind the scenes, Android is managing a SharedPreferences object that is
truly shared. Ideally, there is never more than one Editor active at a time. But it is very
important to call the commit() method so that the SharedPreferences object and the shared
preferences XML file get updated. In the example, the value of someString is written out to
be used the next time this activity runs.

You can access, write, and commit values any time to your preferences file. Possible uses
for this include writing out high scores for a game or recording when the application was
last run. You can also use the getSharedPreferences() call with different names to manage
separate sets of preferences, all within the same application or even the same activity.

236 CHAPTER 11: Working with Preferences and Saving State

MODE_PRIVATE was used for mode in our examples thus far. Because the shared preferences
files are always stored within your application’s /data/data/{package} directory and
therefore are not accessible to other applications, you only need to use MODE_PRIVATE.

Using DialogPreference
So far, you’ve seen how to use the out-of-the-box capabilities of the preferences framework,
but what if you want to create a custom preference? What if you want something like the
slider of the Brightness preference under Screen Settings? This is where DialogPreference
comes in. DialogPreference is the parent class of EditTextPreference and ListPreference.
The behavior is a dialog that pops up, displays choices to the user, and is closed with a button
or via the Back button. But you can extend DialogPreference to set up your own custom
preference. Within your extended class, you provide your own layout, your own click handlers,
and custom code in onDialogClosed() to write the data for your preference to the shared
preferences file.

Reference
Here are helpful references to topics you may wish to explore further:

	http://developer.android.com/design/patterns/settings.html:
Android’s Design Guide to Settings. Some good advice about laying out
Settings screens and options.

	http://developer.android.com/guide/topics/ui/settings.html:
Android’s API Guide to Settings. This page describes the Settings
framework.

	http://developer.android.com/reference/android/provider/
Settings.html: Reference page that lists the settings constants for
calling a system settings activity.

	www.androidbook.com/proandroid5/projects: A list of downloadable
projects related to this book. For this chapter, look for the file
ProAndroid5_Ch11_Preferences.zip. This ZIP file contains all the
projects from this chapter, listed in separate root directories. There is
also a README.TXT file that describes how to import projects into your
IDE from one of these ZIP files.

http://developer.android.com/design/patterns/settings.html
http://developer.android.com/guide/topics/ui/settings.html
http://developer.android.com/reference/android/provider/Settings.html
http://developer.android.com/reference/android/provider/Settings.html
http://www.androidbook.com/proandroid5/projects

237CHAPTER 11: Working with Preferences and Saving State

Summary
This chapter talked about managing preferences in Android:

Types of preferences available	

Reading the current values of preferences into your application	

Setting default values from embedded code and by writing the default 	
values from the XML file to the saved preferences file

Organizing preferences into groups, and defining dependencies between 	
preferences

Callbacks on preferences to validate changes and to set dynamic 	
summary text

Using the preferences framework to save and restore information from 	
an activity across invocations

Creating a custom preference	

239

Chapter 12
Using the Compatibility
Library for Older Devices

The Android platform has gone through an impressive evolution since it was first introduced
several years ago. While the intention has always been for Android to power lots of different
types of devices, it wasn’t architected from the beginning to meet that goal. Instead, the
Google engineers have added, removed, and changed APIs in order to provide new features.
One of the biggest changes was the creation of fragments in order to handle larger screen
sizes such as on tablets and TVs. But there have been other changes such as with ActionBar
and Menus.

The new APIs created a difficult problem for developers who wanted their applications to run
on the new devices with the new APIs, as well as older devices that did not have those APIs.
Many older devices do not get Android upgrades. Even if Google added the new APIs to a
revision of the old Android OS, the old devices aren’t going to get that new revision, because
of the testing and support required from both the device manufacturer and the cellular
carrier. The solution that Google came up with was to create compatibility libraries that could
be linked into an application so it could take advantage of the new API functionality yet
still run on an older version of Android. The library figures out how to use the older APIs to
implement the new features. If the same application runs on a newer version of Android that
already has those new features, the compatibility library calls through to the underlying APIs
present in that newer version of Android.

This chapter will dive into the compatibility libraries and explain how to use them and what
to watch out for. If you aren’t developing applications for older versions of Android, you
could safely skip this chapter as you won’t need the libraries. The libraries are only useful
if you want to include the functionality of a new API in an application that will run on an old
version of Android that doesn’t have that new API.

240 CHAPTER 12: Using the Compatibility Library for Older Devices

It All Started with Tablets
The Android operating system was doing fine until it came time to support tablets. The basic
building block of an application was the activity, meant to perform a single task for the user
and to fill the screen of the device. But tablets offered more real estate so the user could
see and do a few things at a time on one screen. So with Honeycomb (Android 3.0), Google
introduced fragments. This was a whole new concept, which changed how developers
created UIs and the logic that ran behind them. And this would have been fine, except
that there were still plenty of Android devices (e.g., smartphones) in the wild which did not
support fragments. What Google figured out is that a compatibility library could be written
to provide comparable implementations of Fragment, etc., that used the existing APIs in the
older versions of Android. If an application linked in the compatibility library, it could work
with fragments even though the older version of Android didn’t support fragments in the OS.

The Google engineers then looked at other features and APIs in new Android and provided
compatibility library features and APIs to match, so that these features could also be used
in older versions of Android without having to release updates to those older versions of
Android. In addition to support for Fragments, compatibility libraries provide support for
Loaders, RenderScript, ActionBar, and others.

The compatibility library doesn’t always make things perfectly the same between old and
new. For example, the new Activity class is aware of fragments. To use the compatibility
library, you must extend the FragmentActivity class instead of Activity; it is the
FragmentActivity class that works with fragments in old Android versions.

When you use the compatibility library, you will use those classes for your application
regardless of which version of Android it will run on. In other words, you would only use
FragmentActivity in your application and it will do the right thing in all versions of Android,
including Android 3.0 and later. You would not try to include in the same application
both Activity for Android 3.0+ and FragmentActivity for Android below 3.0. When
FragmentActivity is executing on Android 3.0 and above, it can pretty much call straight
through to the underlying Activity class. There is no real penalty to using a compatibility
library on a recent Android version.

Adding the Library to Your Project
As of this writing, there are four compatibility libraries; together the collection is called the
Android Support Library, revision 22.1.1:

v4—contains 	 FragmentActivity, Fragment, Loader, and quite a few other
classes introduced after Android 3.0. The number 4 represents Android
API version 4 (i.e., Donut 1.6). It means this library can be used for
applications that run on Android API version 4 and above.

v7—makes available the	 ActionBar, CardView, GridLayout, MediaRouter,
Palette and RecyclerView classes. This library can be used with Android
API version 7 (i.e., Eclair 2.1) and above. There are actually six libraries
here: appcompat, cardview, gridlayout, mediarouter, palette and
recyclerview

241CHAPTER 12: Using the Compatibility Library for Older Devices

v8—adds RenderScipt capability to Android API version 8 (i.e., Froyo 	
2.2) and above. RenderScript allows for parallelization of work across
device processors (CPU cores, GPUs, DSPs) and was introduced in
Android API version 11 (i.e., Honeycomb 3.0).

v13—adds some special 	 Fragment functionality for things like tabbed and
pager interfaces. This library also contains many of the classes from v4
so it can be included in your application without requiring other libraries.

v17—adds Leanback features related to Android TV applications	

For a complete list of all compatibility functionality by version number, please see the
references at the end of this chapter.

To download the Android Support Library to your computer, use the Android SDK Manager
and look for it at the bottom of the list under Extras. If you’re using Android Studio,
download the Android Support Repository. Otherwise, download Android Support Library
instead. The files will be placed under your Android SDK directory. The Android Support
Library can be found in extras/android/support/, and the Android Support Repository can
be found in extras/android/m2repository.

As you can see from the preceding bullet list, not all features of the Android Support
Library are available on all older versions of Android. Therefore you must properly set
android:minSdkVersion in your AndroidManifest.xml file. If you are using a compatibility library
feature from v7, android:minSdkVersion should not be lower than 7.

Including the v7 Support Library
There’s very little chance that you’d ever want to include the v4 library and not the v7 library.
Since the v7 library requires that the v4 library also be included to provide the necessary
classes for v7 to function properly, you’ll want to include both. If you are using Eclipse, the
ADT plug-in makes all of this pretty easy. When you create a new Android project in Eclipse,
you specify the minimum version of Android that it will run on. If ADT thinks that you might
want the compatibility library included, it will automatically include it.

For example, if you specify a target SDK of 16 (JellyBean 4.1) but a minimum SDK of 8
(Froyo 2.2), ADT will automatically set up an appcompat v7 library project, include that
library project in your new application, and also include the v4 library as well in your
application. The resources from the v7 library are therefore available to your application
without you having to do extra work. However, if you want to use either of the other two v7
libraries (gridlayout and/or mediarouter), those will require a little extra work, as will now be
explained. By creating a library project and including that in your application, it will include
the compatibility library resources that your application will need.

You will manually do something similar to what ADT did to automatically include the v7
appcompat library into your project. To start, you will choose File ➤ Import, then Existing
Android Code Into Workspace, then navigate to the extras folder where the Android SDK is
on your workstation. Locate the v7 gridlayout or mediarouter folder and choose that. See
Figure 12-1.

242 CHAPTER 12: Using the Compatibility Library for Older Devices

Click Finish and you will get a new library project. If you chose to create a library project for
v7 mediarouter, you will see that it is missing some functionality so it has errors. You need to
add in the v7 appcompat library to clear that up. Right-click the mediarouter library project
in Eclipse and choose Properties. In the list on the left choose Android. Now click the Add…
button in the Library section. See Figure 12-2.

Figure 12-1. Importing the v7 mediarouter compatibility library

243CHAPTER 12: Using the Compatibility Library for Older Devices

Select the appcompat_v7 library and click OK. That should clear up the errors in
mediarouter. Now when you want to include mediarouter in your application project, simply
follow the same procedure but right-click your application project, and when you click the
Add… button for Library, chose the mediarouter library.

With Android Studio, adding a v7 compatibility library is just as easy. By default, if you create
a new project with a minimum SDK value less than your target SDK, you will very likely
get the v7 appcompat library added in automatically. You can check this by looking for the
following line in the app’s build.gradle configuration file in the dependencies section:

compile 'com.android.support:appcompat-v7:22.0.0'

Therefore, to add one of the other v7 libraries, you would insert another similar compile
line to the dependencies section, but use the appropriate name such as cardview or
mediarouter.

Including the v8 Support Library
If you want to use the v8 renderscript compatibility library, and you develop with Eclipse,
you simply add the following three lines to the application project’s project.properties file
regardless of the target version of your application:

renderscript.target=22
renderscript.support.mode=true
sdk.buildtools=22.1.1

Figure 12-2. Adding appcompat_v7 to the v7 mediarouter compatibility library

244 CHAPTER 12: Using the Compatibility Library for Older Devices

At the time of this writing, the online Android documentation says that you should use
a target of 18 and a buildtools of 18.1.0. However, using the old values generates an
error saying to use a newer version of buildtools. If you see errors in the Eclipse Console
regarding version numbers, try using a later version as indicated by the error.

If you develop with Android Studio, to include v8 renderscript you would edit the app’s
build.gradle file and add these lines within the defaultConfig section:

renderscriptTargetApi 22
renderscriptSupportModeEnabled true

Within your code, make sure you import from android.support.v8.renderscript rather than
android.renderscript. If you are modifying an existing RenderScript application for the v8
library, make sure to clean your project; the Java files that are generated from your .rs files
need to be regenerated to also use the v8 library. You can now use RenderScript as usual
and deploy your application to older versions of Android.

Including the v13 Support Library
To include the v13 compatibility library into your application using Eclipse, navigate to the
SDK extras directory and find the v13 jar file. Copy this file to the /libs directory of your
application project. Once the v13 jar file is in place, right-click it to pull up the menu, and
then choose Build Path ➤ Add to Build Path. There’s a good chance you already have the v4
and v7 appcompat libraries in your application courtesy of ADT. You may choose to get rid
of those if you don’t need the functionality from either one. For example, if the minimum SDK
for your application is v11, you can use the native ActionBar class without the need for the
v7 appcompat support library.

The v13 jar file contains many of the same classes as v4, so you don’t want to cause any
problems by having the same classes in twice. If you’re going to have all three libraries in
your application (i.e., v4, v7, and v13), then at least ensure that v13 is ordered before v4.
This can be done in the Configure Build Path dialog box.

If you’re using Android Studio, just make sure the SDK Manager has downloaded the
Support Repository, then add the following compile line to the app’s build.gradle file just like
you do for v7 libraries:

compile 'com.android.support:support-v13:22.0.0'

Including the v17 Support Library
Finally, including the v17 compatibility library is done the same way as for the v13
support library.

Including Just the v4 Support Library
If you really must have the v4 support library and none of the others, you would follow the
same procedure as for the v13 library.

245CHAPTER 12: Using the Compatibility Library for Older Devices

Retrofitting an App with the Android Support Library
To get a better feel for how this all works, you’re going to bring back a fragment app you
worked on in Chapter 8 and will make it work for older versions of Android that don’t natively
support fragments.

Use File ➤ Import, choose General, then Existing Projects into Workspace. Navigate to the
ShakespeareInstrumented project from Chapter 8 and choose that. Check “Copy projects
into workspace” before hitting Finish.

Now you’re going to retrofit this application to work on versions of Android lower than API
version 11. The following works when you don’t need resources from the compatibility
library, since it worries only about copying in the JAR file.

1. Right-click your project and choose Android Tools ➤ Add Support
Library.... Accept the license and click OK.

2. Now go into MainActivity.java and change the base class
from Activity to FragmentActivity. You need to fix the
import line from android.app.Activity to android.support.
v4.app.FragmentActivity. Also fix the imports for Fragment,
FragmentManager, and FragmentTransaction to use the ones from
the support library.

3. Find the method calls for getFragmentManager() and change
these to getSupportFragmentManager(). Do this also for
DetailsActivity.java.

4. For DetailsFragment.java, change the import for Fragment to the
one for the support library Fragment (i.e., android.support.v4.app.
Fragment).

5. In TitlesFragment.java, change the import for ListFragment to the
one for the support library ListFragment (i.e., android.support.
v4.app.ListFragment).

The newer versions of Android use different animators from old Android. You may need to fix
animations in MainActivity.java in the showDetails() method. Pick one of the commented
out calls to setCustomAnimations(), then play with the in and out animations. Anything that
relies on an ObjectAnimator class will not work on older devices since this class was introduced
with API version 11 (i.e., Honeycomb 3.0). It will compile but since that class has not been
implemented in older Android and has not been included in the compatibility libraries, you
will get a runtime exception. In other words, avoid R.animator. Try using R.anim instead. You
can copy into your project anim resource files that you’d like to use, or you can try referring to
android.R.anim files.

Now you can go into AndroidManifest.xml and change the minSdkVersion from 11 to 8. That
should be all you need to do. Try running this application on a Froyo device or emulator. If all went
well you should now be seeing a fragment-based application running on a pre–Android 3.0 OS.

246 CHAPTER 12: Using the Compatibility Library for Older Devices

References
Here are some helpful references to topics you may wish to explore further:

	http://developer.android.com/tools/support-library/index.html:
The Android Developer’s Guide on the Support Library package.

	http://developer.android.com/tools/support-library/features.
html: Android documentation on the main features of each compatibility
library.

	http://developer.android.com/tools/support-library/setup.html:
Android documentation on setting up a compatibility library for your
project, for both Eclipse and Android Studio. At the time of this writing,
these pages were not as current as this chapter. However, things
change. If you experience trouble, check the online documentation or
contact the book’s authors.

Summary
Let’s conclude this chapter by quickly enumerating what you have learned about the Android
compatibility libraries:

To get your application working on the broadest array of devices, use 	
the compatibility libraries and code to their APIs rather than the latest
and greatest APIs.

The v7 support libraries come with resources that must be included in 	
your application for the APIs to work properly.

http://developer.android.com/tools/support-library/index.html
http://developer.android.com/tools/support-library/features.html
http://developer.android.com/tools/support-library/features.html
http://developer.android.com/tools/support-library/setup.html

247

Chapter 13
Exploring Packages,
Processes, Threads, and
Handlers

In the book thus far, we have focused on the essentials of how to program for the Android
platform. In this chapter we want to go under the hood a bit to address the process and
threading model for Android programs. This discussion will lead us to signing packages,
sharing data between packages, using compile-time libraries, the nature of Android
components and how they use threads, and finally the need for handlers and how one can
code handlers.

As you go through this chapter, keep in mind that the word “package” is overloaded.
Sometimes it refers to the Java language package, and sometimes it refers to the APK files
that Android applications are deployed as.

Understanding Packages and Processes
We will start with Android packages and the process model. When you develop an
application in Android, you end up with an .apk file. You sign this .apk file and deploy it to
the device. Each.apk file is uniquely identified by a unique java-language-style package
name, as shown in the manifest file shown in Listing 13-1.

Listing 13-1. Providing a Package Name in the Manifest File

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.testapp"
 ...>
 ...rest of the xml nodes
</manifest>

http://schemas.android.com/apk/res/android

248 CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

If you were the developer of this package, no one other than you could update this
application once it is deployed. The Android application package name is reserved for you.
This tie-up happens when you sign and register your app with various app publishers. So
choose this Android application package name very similar to the way that Java packages
are named. This needs to be unique in the world. Once you publish the app, you cannot
change this package name, as this defines your application’s identity.

Android uses the package name as the name of the process that runs the components of
this package. Android also allocates a unique user ID for this process to run under. This user
ID is essentially the user ID for the underlying Linux OS. As this user ID is determined at the
time of the install on a particular device, it will be different on each device where your app is
installed. You can discover this information by looking at the details of the installed package
through the developer tools in the Android Emulator. For example, a package detail screen
for the installed browser application looks like Figure 13-1. (Please note that this image or
tool where you look this up may vary from release to release. The image in Figure 13-1 is
taken from the developer tools application on the Android Emulator.)

Figure 13-1. Android package details

249CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

Figure 13-1 shows the name of the process as indicated by the Java package name in the
manifest file and the unique user ID allocated to this package. Any resources created by
this process or package will be secured under that Linux user ID. This screen also lists the
components inside this package. Examples of components are activities, services, and
broadcast receivers. Do note that this image may vary depending on the Android release.
Through the settings of the device or the emulator, you can also uninstall the package so
that it can be removed.

Because a process is tied to a package name, and a package name is tied to its signature,
signatures play a role in securing the data belonging to a package. A package is typically
signed with a self-signed PKI (Public Key Infrastructure) certificate. A certificate identifies
who the author of the package is. These certificates need not be issued by a certificate
authority. This means the information in the certificate is not approved or validated by any
authority. This means one can create a certificate that says that their name is Google. The
only assurance is that this package name is reserved to that user if no one had claimed it in
the marketplace before, and any subsequent updates to that package are given only to that
user (identified by that certificate).

All assets that are installed or created through this package belong to the user whose ID
is assigned to the package. If your intention is to allow a set of cooperating applications
that depend on a common set of data, you have an option to explicitly specify a user ID
that is unique to you and common for your needs. This shared user ID is also defined in the
manifest file, similar to the definition of a package name. Listing 13-2 shows an example.

Listing 13-2. Shared User ID Declaration

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.somepackage"
 sharedUserId="com.androidbook.mysharedusrid"
 ...
>
...the rest of the xml nodes
</manifest>

Multiple applications can specify the same shared user ID if they share the same signature
(signed with the same PKI certificate). Having a shared user ID allows multiple applications
to share data and even run in the same process. To avoid the duplication of a shared user
ID, use a convention similar to naming a Java class. Here are some examples of shared user
IDs found in the Android system:

"android.uid.system"
"android.uid.phone"

Note A shared ID must be specified as a raw string and not a string resource.

http://schemas.android.com/apk/res/android

250 CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

As a note of caution, if you are planning to use shared user IDs, the recommendation is to
use them from the start. Otherwise, they don’t work well when you upgrade your application
from a nonshared user ID to one with a shared ID. One of the cited reasons is that Android
will not run chown on the old resources because of the user ID change.

A Code Pattern for Sharing Data
This section explores the opportunities when two applications want to share resources
and data through the use of a shared user ID. The resources and data of each package are
owned and protected by that package’s context during runtime. You need access to the
context of the package from which you want to share the resources or data.

You can use the createPackageContext() API on any existing context object (such as your
activity) to get a reference to the target context that you want to interact with. Listing 13-3
provides an example.

Listing 13-3. Using the createPackageContext() API

//Use the appropriate try/catch to detect errors
//Identify package you want to use
String targetPackageName="com.androidbook.samplepackage1";

//Decide on an appropriate context flag
int flag=Context.CONTEXT_RESTRICTED;

//Get the target context through one of your activities
//Need to catch NameNotFoundException
Activity myContext =;
Context targetContext =
 myContext.createPackageContext(targetPackageName, flag);

//Use context to resolve file paths
Resources res = targetContext.getResources();
File path = targetContext.getFilesDir();

Notice how we are able to get a reference to the context of a given package name such
as com.androidbook.samplepackage1. This targetContext in Listing 13-3 is identical to the
context that is passed to the target application when that application is launched. As the
name of the method indicates (in its “create” prefix), each call returns a new context object.
However, the documentation assures us that this returned context object is designed to be
lightweight, meaning it doesn’t consume a lot of memory and is optimized to refer the target
package’s resources, assets, and code.

This API is applicable regardless of whether both contexts share a user ID. If you share the
user ID, it is well and good. If you don’t share a user ID, the target application would need to
declare its resources accessible to outside users.

The CONTEXT_RESTRICTED flag indicates that you are interested in just loading the resources
and the assets and not the code. So using this flag allows the system to detect if the layouts
contain references to callback code. Example of a callback would be a button in a layout
referring to a method that would be called. This callback code exists in the source context.

251CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

So, you would want the system to throw an exception so that you can detect that condition
or ignore that particular XML tag. In essence, you are telling the system that you are using
the context in a restricted sense and the target context is free to make suitable assumptions
based on that flag. The bottom line appears to be that if you are interested in not using the
code from the target context, use this flag.

CONTEXT_INCLUDE_CODE allows you to load Java classes at runtime from the target context
into your process and call that code. Documentation indicates that you may receive a
security exception if it is not safe to load the code. However, it is not clear under what
circumstances the code is considered unsafe. One educated guess is that the target context
does not have a shared user ID as that of the source context. You can overcome this
restriction by also specifying the CONTEXT_IGNOR_SECURITY along with the CONTEXT_INCLUDE_
CODE. These two flags together load the target context code into the source context code
all the time, ignoring even if the target context belongs to a different user. Although code is
borrowed and runs in the client process, it will not have permissions to the target context
data. So, be sure what that code does when let loose on your data. This approach is often
used for utility code that can be shared.

Understanding Library Projects
As we talk through sharing code and resources, one question worth asking is, will the idea of
a “library” project help? Starting with ADT 0.9.7 Eclipse plug-in, Android supports the idea of
library projects. The approach to building libraries has been changing a bit since then, while
the central idea remains in all recent releases.

A library project is a collection of Java code and resources that looks like a regular Android
project but never ends up in an .apk file by itself. Instead, the code and resources of a library
project become part of another project and get compiled into that main project’s .apk file.
As libraries are purely a compile-time concept, each development tool may craft this facility
differently.

Here are some additional facts about these library projects:

A library project can have its own package name distinct from the main 	
application.

A library project can use other JAR files.	

Eclipse ADT will compile the library Java source files into a JAR file that 	
is then compiled with the application project.

Except for the Java files (which become a jar file), the rest of the 	
files belonging to a library project (such as resources) are kept with
the library project. The presence of the library project is required in
order to compile the application project that includes that library as a
dependency.

Starting with SDK Tools 15.0, the resource IDs generated for library 	
projects in their respective R.java files are not final. (This is explained
later in the chapter.)

252 CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

Both the library project and the main project can access the resources 	
from the library project through their respective R.java files. This means
the ID names are duplicated and available in both R.java files.

If you would like to distinguish resource IDs between the two projects 	
(library and main), you can use different resource prefixes, such as lib_
for the library project resources.

A main project can reference any number of library projects.	

Components, such as an activity, of a library need to be defined in the 	
target main project manifest file. When this is done, the component
name from the library package must be fully qualified with the library
package name.

It is not necessary to define the components in a library manifest file, 	
although it may be a good practice to know quickly what components it
supports.

Creating a library project starts with creating a regular Android project 	
and then choosing the Is Library flag in its properties window.

You can set the dependent library projects for a main project through the 	
project properties screen as well.

Clearly, being a library project, any number of main projects can include 	
a library project.

One library project cannot reference another library project as of the 	
releases (Android 4.4, API 19, SDK Tools 19, ADT 22.3), although there
seems to be a desire to be able to do so in future releases.

To create a library project, you start by creating a regular Android project. Once the project
is set up, right-click the project name and click the properties context menu to show the
properties dialog for the library project. This dialog is shown in Figure 13-2. (The available
build targets in this figure may vary with your version of the Android SDK.) Simply select Is
Library from this dialog to set up this project as a library project.

253CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

You can use the following project properties dialog (see Figure 13-3) to indicate that a main
project depends on the library project that was created earlier.

Figure 13-2. Designating a project as a library project

254 CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

Notice the Add button in the dialog. You can use this to add the library in Figure 13-3 as a
reference. You don’t need to do anything else.

Once the library project is set up as a dependency for the main application project, the
library project appears as a compiled JAR file in the application project under the node
Android Dependencies.

Android doesn’t package R.class files from the libraries in their respective jar files. Instead, it
relies on the source R.java file that is re-created and made available in the main application
project for each of the libraries. That means you have an R.java file for each of the libraries in
the gen subdirectory of the main project.

To avoid hard-coded constants being in the compiled source code of the libraries, Android
creates the library R.java files such that all the constants in that file are non-final. During
the final compilation of the main project, new constant values are allocated so that these
constant values are unique across all the libraries and the main project. Had we given final
constant values during library compilation, then those numbers could collide between
libraries. Allocation of IDs uniquely for a given set of names must be done one time. Once
these numbers are allocated to the IDs during the compile of the main project, they can
become final in that main project.

Figure 13-3. Declaring a library project dependency

255CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

There is an implication tied to the fact that IDs in the library’s R.java file are not final. It is
common to use a switch statement to respond to menu items based on a menu item ID.
This language construct will fail at compile time when done in the library code if the IDs
are not final. This is because the case statement in a switch clause has to be a numerical
constant number.

So, the switch statement in Listing 13-4 will not compile unless the IDs (such as R.id.menu_
item_1) are actual literal numbers or static finals.

Listing 13-4. Sample switch Statement to Demonstrate Non-Final Variables

switch(menuItem.getItemId()) {
 case R.id.menu_item_1:
 Statement1;
 break;
 case 0x7778888: // as an example for R.id.menu_item_2:
 statement;
 statement;
 break;
 default:
 statement;
 statement;
}

Because the IDs are defined as non-final for library projects, we are forced to use if/else
statements instead of switch/case clauses. Because the same constants re-created from
the library’s R.java files are final, you can use freely the switch clause in your final project.

As you can see, library projects are compile-time constructs. Clearly, any resources that
belong to the library get absorbed and merged into the main project. There is not a question of
sharing at runtime, because there is just one package file with the name of the main package.
In short, libraries offer a way to share resources between related projects at compile time.

Understanding Components and Threads
We started off this chapter establishing that each package runs in its own process. We will now
explain the organization of threads within this process. This will lead us to why we need handlers
to offload the work from the main thread and also to communicate with the main thread.

Most code in an Android application runs in the context of a component such as an activity
or a service. Most of the time, there is only one thread running in an Android process, called
the main thread. We will talk about the implications of sharing this main thread among
various components. Primarily, this can lead to Application Not Responding (ANR) messages
(the “A” stands for “application” and not “annoying”). We will show you how you can use
handlers, messages, and threads to break the dependency on the main thread when
long-running operations are needed.

An Android process has four primary component types: Activity, Service, ContentProvider,
and a BroadcastReceiver. Most code you write in an Android application is part of one of
these components or called by one of these components. Each of these components gets

256 CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

its own XML node under an application node specification in the Android project manifest
file. To recall, here are these nodes in Listing 13-5:

Listing 13-5. How Components Are Declared in the Manifest File

<manifest...>
 <application>
 <activity/>
 <service/>
 <receiver/>
 <provider/>
 </application>
</manifest>

With some exceptions (such as external process calls to content providers), Android uses
the same thread to process (or run through) code in these components. This thread is called
the main thread of the application. When these components are called, the call can be either
a synchronous call, such as when you call a content provider for data, or a deferred one
through a message queue, such as when you invoke functionality by calling a start service or
show a dialog.

Figure 13-4 describes the relationship between threads and these four components. This
diagram shows how threads weave through the Android framework and its components.
The diagram does not indicate the order in which a thread might weave through the various
components. The diagram is merely showing that the processing continues from one
component to another in a sequential fashion.

Figure 13-4. Android components and threading framework

257CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

As indicated in Figure 13-4, the main thread does the heavy lifting. It runs through all the
components by using a message queue. As you select menus or buttons on the device
screen, the device will translate these actions as messages and drop them onto the main
queue of the process that is in focus. The main thread sits in a loop and processes each
message. If any message takes more than five seconds or so, Android throws an ANR
message.

Similarly, in response to a menu item, if you were to invoke a broadcast message, Android
again drops a message on the main queue of the package process from which the registered
receiver is to be invoked. The main thread will come around to that message at a later time
to invoke the receiver. The main thread does the work for a broadcast receiver as well. If the
main thread is busy responding to a menu action, the broadcast receiver will have to wait
until the main thread gets freed up.

The same is true with a service. When you start a local service with Activity.startService
from a menu item, a message is dropped onto the main queue, and the main thread will
come around to process it via the service code.

Calls to a local content provider are slightly different. A content provider still runs on the
main thread for a local call, but a call to it is synchronous and does not use message
queues.

You may ask, “Why is it important whether most code in an Android application runs on the
main thread or otherwise?” This is important because the main thread has the responsibility
to get back to its queue so that UI events are responded to. As a consequence, you should
not hold up the main thread. If there is something that is going to take longer than five
seconds, you should get that done in a separate thread or defer it by asking the main thread
to come back to it when it is freed up from other processing.

When external clients or components outside of the process make a call to the content
provider for data, then that call is allocated a thread from a thread pool. The same is true
with external clients connecting to services.

Let’s look at what handlers are and how they function in the next section.

Understanding Handlers
We have briefly referred to the idea of deferring work on a main thread if needed. This is
done through handlers. Handlers are extensively used throughout Android so that the main
UI thread is not held up. They also play a role in communicating with the main thread from
other spawned worker threads.

A handler is a mechanism to drop a message on the main queue (more precisely, the queue
attached to the thread on which the handler is instantiated) so that the message can be
processed at a later point in time by that circulating thread. The message that is dropped
has an internal reference pointing to the handler that dropped it.

When the main thread gets around to processing that message, it invokes the handler
that dropped the message through a callback method on the handler object. This callback
method is called handleMessage. Figure 13-5 presents this relationship between handlers,
messages, and the main thread.

258 CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

Figure 13-5 illustrates the key players that work together when we talk about handlers: main
thread, main thread queue, handler, and a message. Out of these four, we are not exposed
to the main thread or the queue directly. We primarily deal with the handler object and the
message object. Even between these two, the handler object coordinates most of the work.

Although a handler allows us to drop a message onto the queue, it is the message object
that actually holds a reference back to the handler. The message object also holds a data
structure that can be passed back to the handler.

Working with a handler and messages is best understood through an example. For the
example, we will have a menu item that invokes a function, and that function, in turn,
performs an action five times at one-second intervals and reports back to the invoking
activity each time.

If we didn’t mind holding up the main thread, we could have coded this scenario like the
pseudo code in Listing 13-6.

Figure 13-5. Handler, message, message queue relationship

259CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

Listing 13-6. Holding Up the Main Thread with a Sleep Method

public class SomeActivity {
 other methods
 void respondToMenuItem() {
 //Prove that we are on the main thread
 Utils.logThreadSignature();
 //simulate an operation that takes longer than 5 seconds
 for (int i=0;i<6;i++) {
 sleepFor(1000);// put main thread to sleep for 1 sec
 dosomething();
 SomeTextView.setText("did something. Counter:" + Integer.toString(i));
 }
 }
}

This will satisfy the requirement of the use case. However, if we do this, we are holding up
the main thread, and we are guaranteed to have an ANR. We can use a handler to avoid the
ANR in the previous example. Pseudo code to do this via a handler will look like Listing 13-7.

Listing 13-7. Instantiating a Handler from the Main Thread

void respondToMenuItem(){
 SomeHandlerDerivedFromHandler myHandler =
 new SomeHandlerDerivedFromHandler();
 myHandler.doDeferredWork(); //invoke a function in 1 sec intervals
 //note that doDeferredWork() is not part of the SDK
 //we will show you the code for this shortly
}

Now, the call respondToMenuItem() will allow the main thread to go back to its loop. The
instantiated handler knows that it is invoked on the main thread and hooks itself up to the
queue. The method doDeferredWork() will schedule work so that the main thread can get
back to this work once it is free.

To investigate this protocol, let’s see the actual source code for a proper handler. The
code in Listing 13-8 in the next section demonstrates this handler, which is called
DeferWorkHandler. In the previous pseudo code of Listing 13-7, the indicated handler
SomeHandlerDerivedFromHandler is equivalent to this DeferWorkHandler. Similarly,
the indicated method doDeferredWork() (of Listing 13-7) is implemented on the
DeferWorkHandler in Listing 13-8.

Listing 13-8. DeferWorkHandler Source Code

public class DeferWorkHandler extends Handler {
 //Keep track of how many times we sent the message
 private int count = 0;

 //A parent driver activity we can use to inform of status.
 private TestHandlersDriverActivity parentActivity = null;

260 CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

 //During construction we take in the parent driver activity.
 public DeferWorkHandler(TestHandlersDriverActivity inParentActivity){
 parentActivity = inParentActivity;
 }
 //Callback method that gets called by the main thread
 @Override
 public void handleMessage(Message msg) {
 //Use the message object to get to its data
 String pm = new String("message called:" + count + ":" +
 msg.getData().getString("message"));
 //you can access the parent activity and invoke UI calls on it here
 parentActivity.someControl.somemethod(); //example only

 //logic to invoke itself multiple times if needed
 if (count > 5) {
 return;
 }
 count++; //increment count
 sendTestMessage(1); //reinvoke again by sending a message
 }
 //method called by the client
 public void doDeferredWork() {
 count = 0;
 sendTestMessage(1);
 }
 //Preparing and sending the message
 public void sendTestMessage(long interval) {
 Message m = this.obtainMessage();
 prepareMessage(m);
 this.sendMessageDelayed(m, interval * 1000);
 }
 public void prepareMessage(Message m) {
 Bundle b = new Bundle();
 b.putString("message", "Hello World");
 m.setData(b);
 return ;
 }
}

Let’s look at the key aspects of this source code. The first is that the handler is derived from
the base class handler. In the constructor of the handler, we use a pointer to the parent
activity so that we can use the UI controls of the activity to report what needs to be reported
or to act upon. Then we code a method (doDeferredWork) to encapsulate what this handler
is expected to do for us. Notice that the doDeferredWork() is not an overridden method
and you can call this method whatever name that you would like. It is in this method that
you work with messages to eventually call the overridden handleMessage(). Also, it is in this
handleMessage() that you actually put the real code that is originally deferred from the main
thread.

The base handler offers a series of methods to send messages to the queue to be
responded to later. These methods are used in the doDeferredWork(). sendMessage() and
sendMessageDelayed() are two examples of these send methods. sendMessageDelayed(),

261CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

which we used in the example, allows us to drop a message on the main queue with a given
amount of time delay. sendMessage(), in contrast, drops the message immediately to be
processed when the main thread gets around to it.

When you call sendMessage() or sendMessageDelayed(), you will need an instance of the
message object. It is best that you ask the handler to give it to you, because when the
handler returns the message object, it hides itself in the belly of the message. That way, when
the main thread comes along, it knows which handler to call based solely on the message.
In Listing 13-8, the message is obtained using the following code:

Message m = this.obtainMessage();

The variable this refers to is the handler object instance. As the name indicates, the method
does not create a new message but instead gets one from a global message pool. At a later
point, once this message is processed, it will be recycled. The method obtainMessage() has
the variations shown in Listing 13-9.

Listing 13-9. Constructing a Message Through a Handler

obtainMessage();
obtainMessage(int what);
obtainMessage(int what, Object object);
obtainMessage(int what, int arg1, int arg2)
obtainMessage(int what, int arg1, int arg2, Object object);

Each method variation sets the corresponding fields on the message object. There are some
restrictions on the object argument when the message crosses process boundaries. In such
cases, it needs to be Parcelable. It is much safer and compatible in such cases to use the
setData() method explicitly on the message object, which takes a Bundle. In Listing 13-8,
we have used setData(). You are encouraged to use arg1 or arg2 instead if what you are
intending to pass are simple indicators that can be accommodated with integer values.

The argument what (in Listing 13-9) allows you to dequeue message or enquire if there are
messages of this type in the queue. See the operations on the handler class for more details.

Once we obtain a message from the handler, we can optionally modify the data contents
of that message. In our example, we have used the setData() function by passing it a
Bundle object. After we have categorized or identified the data of the message, we can send
the message to the queue through sendMessage() or sendMessageDelayed(). When these
methods are called, the main thread will return to attending the queue.

Once the messages are delivered to the queue, the handler sits and waits (figuratively
speaking) until the main thread retrieves those messages and calls the handler’s
handleMessage().

If you want to see this handler and main thread interaction more clearly, you can write a
logcat message when you are sending the message and in the handleMessage() callback.
You will notice the time stamps differ as the main thread would have taken a few more
milliseconds to come back to the handleMessage() method.

262 CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

In our example, each handleMessage(), after processing one message, sends another
message to the queue so that it can be called again. It does this five times, and when the
counter reaches five, it quits sending messages to the queue. This is one way to break up
the work into multiple chunks, although there are better ways to do this either through a
worker thread or through a class AsyncTask. The essential AsyncTask is covered in the next
chapter. Let’s cover the explicit worker threads option briefly now.

Using Worker Threads
When we use a handler like the one in the previous section, the code is still executed on
the main thread. Each call to handleMessage() still should return within the time stipulations
of the main thread (in other words, each message invocation should complete in less than
five seconds to avoid Application Not Responding). If your goal is to extend that time of
execution further, you will need to start a separate thread, keep the thread running until it
finishes the work, and allow for that subthread to report back to the main activity, which is
running on the main thread. This type of a subthread is often called a worker thread.

It is a no-brainer to start a separate thread while responding to a menu item. However, the
clever trick is to allow the worker thread to post a message to the queue of the main thread
that something is happening and that the main thread should look at it when it gets to that
message. It is also an error to call UI methods on a non-UI thread. So, you will need this
handler that is tied to the main thread to call UI methods from a worker thread.

A reasonable solution that involves a worker thread is as follows:

1. Create a handler in the main thread while responding to the menu
item. Keep it aside.

2. Create a separate thread (a worker thread) that does the actual work.
Pass the handler from step 1 to the worker thread. This handler
allows the worker thread to communicate with the main thread.

3. The worker thread code can now do the actual work for longer than
five seconds and, while doing it, can call the handler to send status
messages to communicate with the main thread.

4. These status messages now get processed by the main thread,
because the handler belonged to the main thread. The main thread
can process these messages while the worker thread is doing its
work.

You can see the sample code for this interaction in the downloadable project for this
chapter. An alternate and probably more straightforward way to communicate with the
UI thread from a worker thread is to get hold of the activity pointer and call the method
Activity.runOnUiThread(Runnable action). Of course you need to create a Runnable
object for coordination.

263CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

References
Here are some useful links to further strengthen your understanding of this chapter:

	http://developer.android.com/guide/publishing/app-signing.html:
A must-read for signing .apk files.

	http://developer.android.com/guide/developing/projects/projects-
eclipse.html: Primary SDK reference for Android libraries.

	http://developer.android.com/guide/topics/fundamentals.html:
SDK reference on Android component life cycles.

	http://www.androidbook.com/item/3493: A layman’s introduction to
what it means to sign digitally.

	http://www.androidbook.com/item/3279: Our research on understanding
Android packages. You will see how to sign .apk files, further links to
how to share data between packages, more on shared user IDs, and
instructions to install and uninstall packages.

	http://www.androidbook.com/item/3908: Our research notes on all
aspects of Android library support, including older screen shots, newer
screen shots, useful URLs, sample code, and more.

	http://android-developers.blogspot.com/2011/10/changes-to-
library-projects-in-android.html: What has changed in libraries at
the time of Android 4.0 and the reasons for the change? This blog also
talks about future directions for working with libraries.

	http://tools.android.com/tips/non-constant-fields: Insightful
discussion of the role of non-final variables and how they affect switch
statements.

	http://tools.android.com/knownissues: Android documentation of
known issues in the SDK Tools and the ADT releases. Also note the
domain name of this URL; this site is dedicated to all aspects of Android
tooling.

	http://docs.oracle.com/javase/7/docs/technotes/tools/windows/
keytool.html: Excellent documentation on keytool, jarsigner, and the
signing process itself.

	http://www.androidbook.com/proandroid5/projects: A list of
downloadable projects related to this book. For this chapter, look for a
file called ProAndroid5_Ch13_TestAndroidLibraries.zip. This ZIP file
contains two projects: one a library and the other that uses this library.
Also take a look at a project called ProAndroid5_Ch13_TestHandlers.zip,
which contains the code to work with handlers including worker threads.

http://developer.android.com/guide/publishing/app-signing.html
http://developer.android.com/guide/developing/projects/projects-eclipse.html
http://developer.android.com/guide/developing/projects/projects-eclipse.html
http://developer.android.com/guide/topics/fundamentals.html
http://www.androidbook.com/item/3493
http://www.androidbook.com/item/3279
http://www.androidbook.com/item/3908
http://android-developers.blogspot.com/2011/10/changes-to-library-projects-in-android.html
http://android-developers.blogspot.com/2011/10/changes-to-library-projects-in-android.html
http://tools.android.com/tips/non-constant-fields
http://tools.android.com/knownissues
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
http://www.androidbook.com/proandroid5/projects

264 CHAPTER 13: Exploring Packages, Processes, Threads, and Handlers

Summary
This chapter gave you a quick run-down on how packages, processes, components, and
threads interact in an Android application. This chapter has also documented the library
support for sharing assets between multiple applications. This chapter also has introduced
handlers, a key concept in the Android SDK. In the next chapter, we will give detailed
coverage of AsyncTask, which combines the worker threads and handlers into a simpler
programming abstraction to use.

265

Chapter 14
Building and Consuming
Services

The Android platform provides a complete software stack. This means you get an operating
system and middleware, as well as working applications (such as a phone dialer). Alongside
all of this, you have an SDK that you can use to write applications for the platform. Thus far,
we’ve seen that we can build applications that directly interact with the user through a user
interface. We have not, however, discussed background services or the possibilities of building
components that run in the background.

In this chapter, we are going to focus on building and consuming services in Android.
First we’ll discuss consuming HTTP services, and then we’ll cover a nice way to do
simple background tasks, and finally we’ll discuss interprocess communication—that is,
communication between applications on the same device.

Consuming HTTP Services
Android applications and mobile applications in general are small apps with a lot of
functionality. One of the ways that mobile apps deliver such rich functionality on such a
small device is that they pull information from various sources. For example, most Android
smartphones come with the Maps application, which provides sophisticated mapping
functionality. We, however, know that the application is integrated with the Google Maps API
and other services, which provide most of the sophistication.

That said, it is likely that the applications you write will also leverage information from other
applications and APIs. A common integration strategy is to use HTTP. For example, you might
have a Java servlet available on the Internet that provides services you want to leverage from
one of your Android applications. How do you do that with Android? Interestingly, the Android
SDK ships with a variation of Apache’s HttpClient (http://hc.apache.org/httpcomponents-
client-ga/), which is universally used. The Android version has been modified for Android,
but the APIs are very similar to the APIs in the Apache version.

http://hc.apache.org/httpcomponents-client-ga/
http://hc.apache.org/httpcomponents-client-ga/

266 CHAPTER 14: Building and Consuming Services

The Apache HttpClient is a comprehensive HTTP client. It offers full support for the HTTP
protocol. In this section, we will discuss using the HttpClient to make HTTP GET and HTTP
POST calls. If you are working with RESTful services, you would probably use the other
HTTP operations as well (PUT, DELETE, etc.).

Using the HttpClient for HTTP GET Requests
Here’s one of the general patterns for using the HttpClient:

1. Create an HttpClient (or get an existing reference).

2. Instantiate a new HTTP method, such as PostMethod or GetMethod.

3. Set HTTP parameter names/values.

4. Execute the HTTP call using the HttpClient.

5. Process the HTTP response.

Listing 14-1 shows how to execute an HTTP GET using the HttpClient.

Note We give you a URL at the end of the chapter that you can use to download projects from
this chapter. This will allow you to import these projects into your IDE directly. Also, because the
code attempts to use the Internet, you will need to add android.permission.INTERNET to your
manifest file when making HTTP calls using HttpClient.

Also note that in the following examples, all web services calls should be put into background
threads so as not to block the main UI thread. See later in this chapter, as well as Chapter 15, for an
excellent deep-dive on how to do that. For the purposes of this chapter, those details are excluded
to help with understanding services.

Listing 14-1. Using HttpClient and HttpGet: HttpGetDemo.java

public class HttpGetDemo extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 BufferedReader in = null;
 try {

 HttpClient client = new DefaultHttpClient();
 HttpGet request = new HttpGet("http://code.google.com/android/");
 HttpResponse response = client.execute(request);

http://code.google.com/android/

267CHAPTER 14: Building and Consuming Services

 in = new BufferedReader(
 new InputStreamReader(
 response.getEntity().getContent()));

 StringBuffer sb = new StringBuffer("");
 String line = "";
 String NL = System.getProperty("line.separator");
 while ((line = in.readLine()) != null) {
 sb.append(line + NL);
 }
 in.close();

 String page = sb.toString();
 System.out.println(page);
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (in != null) {
 try {
 in.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

The HttpClient is able to consume the various HTTP request types, such as HttpGet,
HttpPost, and so on. Listing 14-1 uses the HttpClient to get the contents of the
http://code.google.com/android/ URL. The actual HTTP request is executed with the call
to client.execute(). After executing the request, the code reads the entire response into a
string object. Note that the BufferedReader is closed in the finally block, which also closes
the underlying HTTP connection.

For our example we embedded the HTTP logic inside of an activity, but we don’t need to be
within the context of an activity to use HttpClient. You can use it from within the context of
any Android component or use it as part of a stand-alone class. In fact, you shouldn’t use
HttpClient directly within an activity, because a web call could take a while to complete and
cause an Application Not Responding (ANR) pop-up. We’ll cover that topic later in this chapter.
For now we’re going to cheat a little so we can focus on how to make HttpClient calls.

The code in Listing 14-1 executes an HTTP request without passing any HTTP parameters
to the server. You can pass name/value parameters as part of the request by appending
name/value pairs to the URL, as shown in Listing 14-2.

Listing 14-2. Adding Parameters to an HTTP GET Request

HttpGet request =
 new HttpGet("http://somehost/Upload.aspx?one=value1&two=value2");
client.execute(request);

http://code.google.com/android/
http://somehost/Upload.aspx?one=value1&two=value2

268 CHAPTER 14: Building and Consuming Services

When you execute an HTTP GET, the parameters (names and values) of the request are
passed as part of the URL. Passing parameters this way has some limitations. Namely, the
length of a URL should be kept below 2,048 characters. If you have more than this amount
of data to submit, you should use HTTP POST instead. The POST method is more flexible
and passes parameters as part of the request body.

Using the HttpClient for HTTP POST Requests
(a Multipart Example)
Making an HTTP POST call is very similar to making an HTTP GET call (see Listing 14-3).
This example is called SimpleHTTPPost.

Listing 14-3. Making an HTTP POST Request with the HttpClient

HttpClient client = new DefaultHttpClient();
HttpPost request = new HttpPost(
 "http://www.androidbook.com/akc/display");
List<NameValuePair> postParameters = new ArrayList<NameValuePair>();
postParameters.add(new BasicNameValuePair("url", "DisplayNoteIMPURL"));
postParameters.add(new BasicNameValuePair("reportId", "4788"));
postParameters.add(new BasicNameValuePair("ownerUserId", "android"));
postParameters.add(new BasicNameValuePair("aspire_output_format", "embedded-xml"));
UrlEncodedFormEntity formEntity = new UrlEncodedFormEntity(
 postParameters);
request.setEntity(formEntity);
HttpResponse response = client.execute(request);

The code in Listing 14-3 would replace the three lines in Listing 14-1 where the HttpGet
is used. Everything else could stay the same. To make an HTTP POST call with the
HttpClient, you have to call the execute() method of the HttpClient with an instance of
HttpPost. When making HTTP POST calls, you generally pass URL-encoded name/value
form parameters as part of the HTTP request. To do this with the HttpClient, you have to
create a list that contains instances of NameValuePair objects and then wrap that list with a
UrlEncodedFormEntity object. The NameValuePair wraps a name/value combination, and the
UrlEncodedFormEntity class knows how to encode a list of NameValuePair objects suitable
for HTTP calls (generally POST calls). After you create a UrlEncodedFormEntity, you can set
the entity type of the HttpPost to the UrlEncodedFormEntity and then execute the request.

In Listing 14-3, we created an HttpClient and then instantiated the HttpPost with the URL
of the HTTP endpoint. Next, we created a list of NameValuePair objects and populated it with
several name/value parameters. We then created a UrlEncodedFormEntity instance, passing
the list of NameValuePair objects to its constructor. Finally, we called the setEntity()
method of the POST request and then executed the request using the HttpClient instance.

HTTP POST is actually much more powerful than this. With an HTTP POST, we can pass
simple name/value parameters, as shown in Listing 14-3, as well as complex parameters
such as files. HTTP POST supports another request-body format known as a multipart
POST. With this type of POST, you can send name/value parameters as before, along with
arbitrary files. Unfortunately, the version of HttpClient shipped with Android does not

http://www.androidbook.com/akc/display

269CHAPTER 14: Building and Consuming Services

directly support multipart POST. To achieve this goal in the past, we’ve recommended that
you grab three other libraries: Apache Commons IO, Mime4j, and HttpMime.

Now we recommend that you download the Ion library, which has two dependencies.
All three jar files can be found at these two sites:

	https://github.com/koush/ion#jars (ion and androidasync)

	https://code.google.com/p/google-gson/downloads/list (gson)

Listing 14-4 demonstrates a multipart POST using Android. This example is called
MultipartHTTPPost.

Listing 14-4. Making a Multipart POST Call

public class TestMultipartPost extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 try {
 Ion.with(this, "http://www.androidbook.com/akc/update/PublicUploadTest")
 .setMultipartParameter("field1", "This is field number 1")
 .setMultipartParameter("field2", "Field 2 is shorter")
 .setMultipartFile("datafile",
 new File(Environment.getExternalStorageDirectory()+"/testfile.txt"))
 .asString()
 .setCallback(new FutureCallback<String>() {
 @Override
 public void onCompleted(Exception e, String result) {
 System.out.println(result);
 }});

 } catch(Exception e) {
 // Do something about exceptions
 System.out.println("Got exception: " + e);
 }
 }
}

Note The multipart example uses several .jar files that are not included as part of the Android
runtime. To ensure that the .jar files will be packaged as part of your .apk file, you need to
add them as external .jar files in Eclipse. To do this, right-click your project in Eclipse, select
Properties, choose Java Build Path, select the Libraries tab, and then select Add External JARs.

Following these steps will make the .jar files available during compile time as well as runtime.

https://github.com/koush/ion#jars
https://code.google.com/p/google-gson/downloads/list
http://www.androidbook.com/akc/update/PublicUploadTest

270 CHAPTER 14: Building and Consuming Services

To execute a multipart POST using the Ion library, you simply put together the appropriate
calls to build a URL, add parameters, define the return type, and set up a callback method.
This will run asynchronously and the callback will be invoked on the UI thread once a
response is received from the web server. In the example, the result string is written to
LogCat. Your application is probably going to receive back a JsonObject which the callback
would then process. But realize that the response from the web server has already been
converted into a JsonObject for you, making the processing in the callback that much easier.
Listing 14-4 adds three parts to the request: two string parts and a text file. To run this
example yourself you will need to put a testfile.txt file onto the external storage area of your
device or emulator.

Finally, if you are building an application that requires you to pass a multipart POST to
a web resource, you’ll likely have to debug the solution using a dummy implementation
of the service on your local workstation. When you’re running applications on your local
workstation, normally you can access the local machine by using localhost or IP address
127.0.0.1. With Android applications, however, you will not be able to use localhost
(or 127.0.0.1) because the device or emulator will be its own localhost. You don’t want to
point this client to a service on the Android device; you want to point to your workstation.
To refer to your development workstation from the application running in the device or
emulator, you’ll have to use your workstation’s IP address in the URL.

SOAP, JSON, and XML Parsers
What about SOAP? There are lots of SOAP-based web services on the Internet, but to date,
Google has not provided direct support in Android for calling SOAP web services. Google
instead prefers REST-like web services, seemingly to reduce the amount of computing
required on the client device. However, the tradeoff is that the developer must do more work
to send data and to parse the returned data. Ideally, you will have some options for how you
can interact with your web services. Some developers have used the kSOAP2 developer kit
to build SOAP clients for Android. We won’t be covering that approach, but it’s out there if
you’re interested.

Note The original kSOAP2 source is located here: http://ksoap2.sourceforge.net/. The
open source community has (thankfully!) contributed a version of kSOAP2 for Android, and you can
find out more about it here: http://code.google.com/p/ksoap2-android/.

One approach that’s been used successfully is to implement your own services on the
Internet, which can talk SOAP (or whatever) to the destination service. Then your Android
application only needs to talk to your services, and you now have complete control. If the
destination services change, you might be able to handle that without having to update
and release a new version of your application. You’d only have to update the services on
your server. A side benefit of this approach is that you could more easily implement a paid
subscription model for your application. If a user lets their subscription lapse, you can turn
them off at your server.

http://ksoap2.sourceforge.net/
http://code.google.com/p/ksoap2-android/

271CHAPTER 14: Building and Consuming Services

Android does have support for JavaScript Object Notation (JSON). This is a fairly common
method of packaging data between a web server and a client. The JSON parsing classes
make it very easy to unpack data from a response so your application can act on it. Or dig
deeper into the Gson package referenced earlier in this chapter. Gson is a JSON Java library
from Google, and its main benefit is how easy it is to parse JSON input into Java objects,
and vice versa. It’s also very fast.

Android also has a couple of XML parsers that you can use to interpret the responses from
the HTTP calls; the recommended one is XMLPullParser.

Dealing with Exceptions
Dealing with exceptions is part of any program, but software that makes use of external
services (such as HTTP services) must pay additional attention to exceptions because the
potential for errors is magnified. There are several types of exceptions that you can expect
while making use of HTTP services. These are transport exceptions, protocol exceptions,
and timeouts. You should understand when these exceptions could occur.

Transport exceptions can occur due to a number of reasons, but the most likely scenario with a
mobile device is poor network connectivity. Protocol exceptions (e.g., ClientProtocolException)
are exceptions at the HTTP protocol layer. These include authentication errors, invalid cookies,
and so on. You can expect to see protocol exceptions if, for example, you have to
supply login credentials as part of your HTTP request but fail to do so. Timeouts, with
respect to HTTP calls, come in two flavors: connection timeouts and socket timeouts.
A connection timeout (e.g., ConnectTimeoutException) can occur if the HttpClient is not
able to connect to the HTTP server—if, for example, the server is not available. A socket
timeout (e.g., SocketTimeoutException) can occur if the HttpClient fails to receive a response
within a defined time period. In other words, the HttpClient was able to connect to the server,
but the server failed to return a response within the allocated time limit.

Now that you understand the types of exceptions that might occur, how do you deal with
them? Fortunately, the HttpClient is a robust framework that takes most of the burden off
your shoulders. In fact, the only exception types that you’ll have to worry about are the ones
that you’ll be able to manage easily. The HttpClient takes care of transport exceptions by
detecting transport issues and retrying requests (which works very well with this type of
exception). Protocol exceptions are exceptions that can generally be flushed out during
development. Timeouts are the most likely exceptions that you’ll have to deal with. A simple
and effective approach to dealing with both types of timeouts—connection timeouts and
socket timeouts—is to wrap the execute() method of your HTTP request with a try/catch
and then retry if a failure occurs.

When using the HttpClient as part of a real-world application, you need to pay some
attention to multithreading issues that might come up. Let’s delve into these now.

Addressing Multithreading Issues
The examples we’ve shown so far created a new HttpClient for each request. In
practice, however, you could create one HttpClient for the entire application and use
that for all of your HTTP communication. It’s possible to associate a connection pool with

272 CHAPTER 14: Building and Consuming Services

this HttpClient, which you’ll now see. With one HttpClient servicing all of your HTTP
requests, you should pay attention to multithreading issues that could surface if you
make simultaneous requests through the same HttpClient. Fortunately, the HttpClient
provides facilities that make this easy—all you have to do is create the DefaultHttpClient
using a ThreadSafeClientConnManager, as shown in Listing 14-5. This example project is
HttpSingleton.

Listing 14-5. Creating an HttpClient for Multithreading: CustomHttpClient.java

public class CustomHttpClient {
 private static HttpClient customHttpClient;

 /** A private Constructor prevents instantiation */
 private CustomHttpClient() {
 }

 public static synchronized HttpClient getHttpClient() {
 if (customHttpClient == null) {
 HttpParams params = new BasicHttpParams();
 HttpProtocolParams.setVersion(params, HttpVersion.HTTP_1_1);
 HttpProtocolParams.setContentCharset(params,
 HTTP.DEFAULT_CONTENT_CHARSET);
 HttpProtocolParams.setUseExpectContinue(params, true);
 HttpProtocolParams.setUserAgent(params,
 System.getProperty("http.agent")
 // Could also have used the following which is browser-oriented as opposed to
 // device-oriented:
 // new WebView(getApplicationContext()).getSettings().getUserAgentString()
);

 ConnManagerParams.setTimeout(params, 1000);

 HttpConnectionParams.setConnectionTimeout(params, 5000);
 HttpConnectionParams.setSoTimeout(params, 10000);

 SchemeRegistry schReg = new SchemeRegistry();
 schReg.register(new Scheme("http",
 PlainSocketFactory.getSocketFactory(), 80));
 schReg.register(new Scheme("https",
 SSLSocketFactory.getSocketFactory(), 443));
 ClientConnectionManager conMgr = new
 ThreadSafeClientConnManager(params,schReg);

 customHttpClient = new DefaultHttpClient(conMgr, params);
 }
 return customHttpClient;
 }

 public Object clone() throws CloneNotSupportedException {
 throw new CloneNotSupportedException();
 }
}

273CHAPTER 14: Building and Consuming Services

If your application needs to make more than a few HTTP calls, you should create an
HttpClient that services all your HTTP requests. The simplest way to do this is to create
a singleton class that can be accessed from anywhere in the application, as we’ve shown
here. This is a fairly standard Java pattern in which we synchronize access to a getter
method, and that getter method returns the one and only HttpClient object for the
singleton, creating it the first time as necessary.

Now, take a look at the getHttpClient() method of CustomHttpClient. This method
is responsible for creating our singleton HttpClient. We set some basic parameters,
some timeout values, and the schemes that our HttpClient will support (that is, HTTP
and HTTPS). Notice that when we instantiate the DefaultHttpClient(), we pass in a
ClientConnectionManager. The ClientConnectionManager is responsible for managing
HTTP connections for the HttpClient. Because we want to use a single HttpClient for
all the HTTP requests (requests that could overlap if we’re using threads), we create a
ThreadSafeClientConnManager.

We also show you a simpler way of collecting the response from the HTTP request, using
a BasicResponseHandler. The code for our activity that uses our CustomHttpClient is in
Listing 14-6.

Listing 14-6. Using Our CustomHttpClient: HttpActivity.java

public class HttpActivity extends Activity
{
 private HttpClient httpClient;
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 httpClient = CustomHttpClient.getHttpClient();
 getHttpContent();
 }

 public void getHttpContent()
 {
 try {
 HttpGet request = new HttpGet("http://www.google.com/");
 String page = httpClient.execute(request,
 new BasicResponseHandler());
 System.out.println(page);
 } catch (IOException e) {
 // covers:
 // ClientProtocolException
 // ConnectTimeoutException
 // ConnectionPoolTimeoutException
 // SocketTimeoutException
 e.printStackTrace();
 }
 }
}

http://www.google.com/

274 CHAPTER 14: Building and Consuming Services

For this sample application, we do a simple HTTP get of the Google home page. We also
use a BasicResponseHandler object to take care of rendering the page as a big String,
which we then write out to LogCat. As you can see, adding a BasicResponseHandler to the
execute() method is very easy to do.

You may be tempted to take advantage of the fact that each Android application has an
associated Application object. By default, if you don’t define a custom application object,
Android uses android.app.Application. Here’s the interesting thing about the application
object: there will always be exactly one application object for your application, and all of
your components can access it (using the global context object). It is possible to extend the
Application class and add functionality such as our CustomHttpClient. However, in our case
there is really no reason to do this within the Application class itself, and you will be much
better off not messing with the Application class when you can simply create a separate
singleton class to handle this type of need.

Fun with Timeouts
There are other terrific advantages to setting up a single HttpClient for our application to
use. We can modify the properties of it in one place, and everyone can take advantage of
it. For example, if we want to set up common timeout values for our HTTP calls, we can do
that when creating our HttpClient by calling the appropriate setter functions against our
HttpParams object. Please refer to Listing 14-5 and the getHttpClient() method. Notice
that there are three timeouts we can play with. The first is a timeout for the connection
manager, and it defines how long we should wait to get a connection out of the connection
pool managed by the connection manager. In our example, we set this to 1 second. About
the only time we might ever have to wait is if all connections from the pool are in use. The
second timeout value defines how long we should wait to make a connection over the
network to the server on the other end. Here, we used a value of 2 seconds. And lastly, we
set a socket timeout value to 4 seconds to define how long we should wait to get data back
for our request.

Corresponding to the three timeouts described previously, we could get these
three exceptions: ConnectionPoolTimeoutException, ConnectTimeoutException, or
SocketTimeoutException. All three of these exceptions are subclasses of IOException, which
we’ve used in our HttpActivity instead of catching each subclass exception separately.

If you investigate each of the parameter-setting classes that we used in getHttpClient(),
you might discover even more parameters that you would find useful.

We’ve described for you how to set up an HttpClient with a pool of connections for use
across your application. And the implication is that every time you need to use a connection,
the various settings will apply to your particular needs. But what if you want different settings
for a particular message? Thankfully, there’s an easy way to do that as well. We showed you
how to use an HttpGet or an HttpPost object to describe the request to be made across
the network. In a similar way to how we set HttpParams on our HttpClient, you can set
HttpParams on both HttpGet and HttpPost objects. The settings you apply at the message
level will override the settings at the HttpClient level without changing the HttpClient
settings. Listing 14-7 shows what this might look like if we wanted to have a socket timeout
of 1 minute instead of 4 seconds for one particular request. You would use these lines in
place of the lines in the try block of getHttpContent() in Listing 14-6.

275CHAPTER 14: Building and Consuming Services

Listing 14-7. Overriding the Socket Timeout at the Request Level

HttpGet request = new HttpGet("http://www.google.com/");
HttpParams params = request.getParams();
HttpConnectionParams.setSoTimeout(params, 60000); // 1 minute
request.setParams(params);
String page = httpClient.execute(request,
 new BasicResponseHandler());
System.out.println(page);

Using the HttpURLConnection
Android provides another way to deal with HTTP services, and that is using the
java.net.HttpURLConnection class. This is not unlike the HttpClient classes we’ve just
covered, but HttpURLConnection tends to require more statements to get things done.
HttpURLConnection is also not threadsafe. On the other hand, this class is much smaller and
lightweight than HttpClient, so you can simply create the ones you need. Starting with the
Gingerbread release, it is also fairly stable, so you should consider it for apps on more recent
devices when you just need basic HTTP features and you want a compact application.

Using the AndroidHttpClient
Android 2.2 introduced a new subclass of HttpClient called AndroidHttpClient. The idea
behind this class is to make things easier for the developer of Android apps by providing
default values and logic appropriate for Android apps. For example, the timeout values
for the connection and the socket (that is, operation) default to 20 seconds each. The
connection manager defaults to the ThreadSafeClientConnManager. For the most part, it is
interchangeable with the HttpClient we used in the previous examples. There are a few
differences, though, that you should be aware of:

To create an 	 AndroidHttpClient, you invoke the static newInstance()
method of the AndroidHttpClient class, like this:

AndroidHttpClient httpClient = AndroidHttpClient.newInstance
("my-http-agent-string");

 Notice that the parameter to the 	 newInstance() method is an HTTP
agent string. You most likely don’t want to hardcode this, so you have
two options as follows, which unfortunately can return different strings.
The second one is probably the one you want to use as it looks more
like what a browser would send (at least in our experiments).

// The first option is a device-level agent string
String httpAgent = System.getProperty("http.agent");
// This second option looks like a browser’s agent string
httpAgent = new WebView(context).getSettings().getUserAgentString();

 Of course, you are also free to build your own agent string using
anything available to your app; it’s the server that’s going to parse it to
better understand the device, and if you control the server, you can use
whatever values you sent from the app.

http://www.google.com/

276 CHAPTER 14: Building and Consuming Services

When 	 execute() is called on this client, you must be in a thread
separate from the main UI thread. This means that you’ll get an
exception if you simply attempt to replace our previous HttpClient with
an AndroidHttpClient. It is bad practice to make HTTP calls from the
main UI thread, so AndroidHttpClient won’t let you. We’ll be covering
threading issues in the next section.

You must call 	 close() on the AndroidHttpClient instance when you are
done with it. This is so memory can be freed up properly.

There are some handy static methods for dealing with compressed 	
responses from a server, including

	modifyRequestToAcceptGzipResponse(HttpRequest request)

	getCompressedEntity(byte[] data, ContentResolver resolver)

	getUngzippedContent(HttpEntity entity)

Once you’ve acquired an instance of the AndroidHttpClient, you cannot modify any
parameter settings in it, nor can you add any parameter settings to it (such as the HTTP
protocol version, for example). Your options are to override settings within the HttpGet object
as shown previously or to not use the AndroidHttpClient.

This concludes our discussion of using HTTP services with the HttpClient. For a great
tutorial on using HttpClient and these other concepts, please check out the Apache site at
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/.

We’ve shown you how to operate with HTTP-based services. But what if we wanted to run
some background processing that lasted longer than a short while, or what if we wanted
to invoke some non-UI functionality that exists in another Android application? For these
needs, Android provides services. We will discuss them next.

Using Android Services
Android supports the concept of services. Services are components that run in the background,
without a user interface. You can think of these components as similar to Windows services or
Unix daemons. Similar to these types of services, Android services can be always available but
don’t have to be actively doing something. More important, Android services can have life cycles
separate from activities. When an activity pauses, stops, or gets destroyed, there may be some
processing that you want to continue. Services are good for that too.

Android supports two types of services: local services and remote services. A local service
is a service that is only accessible to the application that is hosting it, and it is not accessible
from other applications running on the device. Generally, these types of services simply
support the application that is hosting the service. A remote service is accessible from other
applications on the device in addition to the application hosting the service. Remote services
define themselves to clients using Android Interface Definition Language (AIDL). We’re going
to talk about both of these types of services, although in the next few chapters, we’re going
deep into local services. Therefore, we will introduce them here but not spend that much
time on them. We’ll cover remote services in more detail in this chapter.

http://hc.apache.org/httpcomponents-client-ga/tutorial/html/

277CHAPTER 14: Building and Consuming Services

Understanding Services in Android
The Android Service class is a wrapper of sorts for code that has service-like behavior.
However, a Service object does not create its own threads automatically. For a Service
object to use threads, the developer must make it happen. This means that without adding
threading to a service, the code of the service will run on the main thread. If our service is
performing operations that will complete quickly, this won’t be a problem. If our service might
run for a while, we definitely want to involve threading. Keep in mind there is nothing wrong
with using AsyncTasks to do threading within services.

Android supports the concept of a service for two reasons:

First, to allow you to implement background tasks easily.	

Second, to allow you to do interprocess communication between 	
applications running on the same device.

These two reasons correspond to the two types of services that Android supports: local
services and remote services. An example of the first case might be a local service
implemented as part of an e-mail application. The service could handle the sending of a new
e-mail to the e-mail server, complete with attachments and retries. As this could take a while
to complete, a service is a nice way of wrapping up that functionality so the main thread can
kick it off and get back to the user. Plus, if the e-mail activity goes away, you still want the
sent e-mails to be delivered. An example of the second case, as we’ll see later, is a language
translation application. Suppose you have several applications running on a device, and
you need a service to accept text that needs to be translated from one language to another.
Rather than repeat the logic in every application, you could write a remote translation service
and have the applications talk to the service.

A local service gets initialized either by a client binding to it using bindService(), or by
a client starting it using startService(). Remote services are typically always initialized
with bindService(). A bound service gets instantiated when the first client binds to it, and
destroyed when the last client unbinds from it. As clients come in and out of the foreground,
they can bind and unbind as needed, to ensure that the service isn’t running unnecessarily.
This helps to preserve battery life. However, it is unwise to bind in onResume() and unbind
in onPause() because that could cause a lot of unnecessary starting and stopping of the
service. It’s better to bind and unbind in onCreate() and onDestroy(), or in onStart() and
onStop(). Binding is only allowed from an Application Context, an Activity, another Service, or
a Content Provider. That means not from Fragments and not from Broadcast Receivers.

When a service is instead started with startService(), it will remain running until it is stopped,
either by a client or by telling itself to stop. For a local service that wants to perform work
in the background, consider instantiating it with startService() so it can remain running
even if the activity that started it goes away. Technically a Broadcast Receiver can start a
service using startService(), since the service can then continue to exist once the short-lived
Broadcast Receiver terminates. If you do create a service that will run in the background
even when the activities have gone away, you may want to implement onBind() for when the
user wants to regain control of the service. A new activity could bind to the existing service
and then call service methods on it.

278 CHAPTER 14: Building and Consuming Services

There are examples of local services that do not create background threads, but this may
not be very useful in practice. A service does not inherently create any threads, so code of
a service will by default run on the main UI thread. There may not be any real advantage to
wrapping this code in a service then, since you could just call methods of a class to execute
that logic. It is more common for a local service to have its own threads of execution,
which can be started either when the first client binds to it, or because of a startService()
command.

Now, we can begin a detailed examination of the two types of services. We will start by
talking about local services and then discuss remote services. As mentioned before, local
services are services that are called only by the application that hosts them. Remote
services are services that support a remote procedure call (RPC) mechanism. These services
allow external clients, on the same device, to connect to the service and use its facilities.
There are two main ways of calling remote services: using an AIDL interface and using a
Messenger. Both will be covered.

Note The second type of service in Android is known by several names: remote service,
AIDL-supporting service, AIDL service, external service, and RPC service. These terms all refer to
the same type of service—one that’s meant to be accessed remotely by other applications running
on the device.

Understanding Local Services
Local services are services that are generally started via Context.startService(). Once
started, these types of services will continue to run until a client calls Context.stopService()
on the service or the service itself calls stopSelf(). Note that when Context.startService()
is called and the service has not already been created, the system will instantiate the
service and call the service’s onStartCommand() method. Keep in mind that calling
Context.startService() after the service has been started (that is, while it exists) will
not result in another instance of the service, but will reinvoke the running service’s
onStartCommand() method. Here are a couple of examples of local services:

A service to monitor sensor data from the device and do analysis, 	
issuing alerts if a certain condition is realized. This service might run
constantly.

A task-executor service that lets your application’s activities submit 	
jobs and queue them for processing. This service might only run for the
duration of the operation to submit the job.

Listing 14-8 demonstrates a local service by implementing a service that executes
background tasks. We’ll end up with four artifacts required to create and consume the
service: BackgroundService.java (the service itself), main.xml (a layout file for the activity),
MainActivity.java (an activity class to call the service), and AndroidManifest.xml.
Listing 14-8 only contains BackgroundService.java. We’ll dissect this code first and then
move on to the other three.

279CHAPTER 14: Building and Consuming Services

Listing 14-8. Implementing a Local Service: BackgroundService.java

public class BackgroundService extends Service
{
 private static final String TAG = "BackgroundService";
 private NotificationManager notificationMgr;
 private ThreadGroup myThreads = new ThreadGroup("ServiceWorker");

 @Override
 public void onCreate() {
 super.onCreate();

 Log.v(TAG, "in onCreate()");
 notificationMgr =(NotificationManager)getSystemService(
 NOTIFICATION_SERVICE);
 displayNotificationMessage("Background Service is running");
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 super.onStartCommand(intent, flags, startId);

 int counter = intent.getExtras().getInt("counter");
 Log.v(TAG, "in onStartCommand(), counter = " + counter +
 ", startId = " + startId);

 new Thread(myThreads, new ServiceWorker(counter),
 "BackgroundService")
 .start();

 return START_STICKY;
 }

 class ServiceWorker implements Runnable
 {
 private int counter = -1;
 public ServiceWorker(int counter) {
 this.counter = counter;
 }

 public void run() {
 final String TAG2 = "ServiceWorker:" +
 Thread.currentThread().getId();
 // do background processing here... we'll just sleep...
 try {
 Log.v(TAG2, "sleeping for 10 seconds. counter = " +
 counter);
 Thread.sleep(10000);
 Log.v(TAG2, "... waking up");
 } catch (InterruptedException e) {
 Log.v(TAG2, "... sleep interrupted");
 }
 }
 }

280 CHAPTER 14: Building and Consuming Services

 @Override
 public void onDestroy()
 {
 Log.v(TAG, "in onDestroy(). Interrupting threads and cancelling notifications");
 myThreads.interrupt();
 notificationMgr.cancelAll();
 super.onDestroy();
 }

 @Override
 public IBinder onBind(Intent intent) {
 Log.v(TAG, "in onBind()");
 return null;
 }

 private void displayNotificationMessage(String message)
 {

 PendingIntent contentIntent =
 PendingIntent.getActivity(this, 0,
 new Intent(this, MainActivity.class), 0);

 Notification notification = new NotificationCompat.Builder(this)
 .setContentTitle(message)
 .setContentText("Touch to turn off service")
 .setSmallIcon(R.drawable.emo_im_winking)
 .setTicker("Starting up!!!")
 // .setLargeIcon(aBitmap)
 .setContentIntent(contentIntent)
 .setOngoing(true)
 .build();

 notificationMgr.notify(0, notification);
 }
}

The structure of a Service object is somewhat similar to an activity. There is an onCreate()
method where you can do initialization, and an onDestroy() where you do cleanup. Services
don’t pause or resume the way activities do, so we don’t use onPause() or onResume()
methods. In this example, we won’t be binding to the local service, but because Service
requires an implementation of the onBind() method, we provide one that simply returns null.
It’s worth mentioning that you could have a local service that implements onBind() and does
not use onStartCommand().

Going back to our onCreate() method, we don’t need to do much except to notify the
user that this service has been created. We do this using the NotificationManager. You’ve
probably noticed the notification bar at the top left of an Android screen. By pulling down on
this, the user can view messages of importance, and by touching notifications can act on
the notifications, which usually means returning to some activity related to the notification.
With services, because they can be running, or at least existing, in the background without
a visible activity, there has to be some way for the user to get back in touch with the

281CHAPTER 14: Building and Consuming Services

service, perhaps to turn it off. Therefore, we create a Notification object, populate it with a
PendingIntent, which will get us back to our control activity, and post it. This all happens
in the displayNotificationMessage() method. Note that our Notification object needs to
exist as long as our service exists, so we use setOngoing(true) to keep it in the notifications
list until we clear it ourselves from our service’s onDestroy() method. The method we used
in onDestroy() to clear our notification is cancelAll() on the NotificationManager.

There’s another thing you need to have for this example to work. You’ll need to create
a drawable named emo_im_winking and place it within your project’s drawable folder. A
good source of drawables for this demonstration purpose is to look under the Android
platform folder at Android SDK/platforms/<version>/data/res/drawable, where <version>
is the version you’re interested in. Unfortunately, you can’t reliably refer to Android system
drawables from your code, so you’ll need to copy what you want over to your project’s
drawables folder. If you choose a different drawable file for your example, just go ahead and
rename the resource ID in the constructor for the Notification.

When an intent is sent into our service using startService(), onCreate() is called if
necessary, and our onStartCommand() method is called to receive the caller’s intent. In our
case, we’re not going to do anything special with it, except to unpack the counter and use
it to start a background thread. In a real-world service, we would expect any data to be
passed to us via the intent, and this could include URIs, for example. Notice the use of a
ThreadGroup when creating the Thread. This will prove to be useful later when we want to
get rid of our background threads. Also notice the startId parameter. This is set for us by
Android and is a unique identifier of the service calls since this service was started.

Our ServiceWorker class is a typical runnable and is where the work happens for our service.
In our particular case, we’re simply logging some messages and sleeping. We’re also
catching any interruptions and logging them. One thing we’re not doing is manipulating the
user interface. We’re not updating any views for example. Because we’re not on the main
thread anymore, we cannot touch the UI directly. There are ways for our ServiceWorker to
effect changes in the user interface, and we’ll get into those details in the next few chapters.

The last item to pay attention to in our BackgroundService is the onDestroy() method. This
is where we perform the cleanup. For our example, we want to get rid of the threads we
created earlier, if any are still around. If we don’t do this, they could simply hang around
and take up memory. Second, we want to get rid of our notification message. Because our
service is going away, there’s no longer any need for the user to get to the activity to get rid
of it. In a real-world application, however, we might want to keep our workers working. If our
service is sending e-mails, we certainly don’t want to simply kill off the threads. Our example
is overly simple, because we imply through the use of the interrupt() method that you can
easily kill off background threads. In reality, however, the most you can do is interrupt. This
won’t necessarily kill off a thread, though. There are deprecated methods for killing threads,
but you should not use these. They can cause memory and stability problems for you and
your users. Interrupting works in our example, because we’re doing sleeps, which can be
interrupted.

It’s worthwhile taking a look at the ThreadGroup class because it provides ways for you to
get access to your threads. We created a single ThreadGroup object within our service and
then used that when creating our individual threads. Within our onDestroy() method of the
service, we simply interrupt() on the ThreadGroup, and it issues an interrupt to each thread
in the ThreadGroup.

282 CHAPTER 14: Building and Consuming Services

So there you have the makings of a simple local service. Before we show you the code for
our activity, Listing 14-9 shows the XML layout file for our user interface.

Listing 14-9. Implementing a Local Service: main.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button android:id="@+id/startBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Start Service" android:onClick="doClick" />
<Button android:id="@+id/stopBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Stop Service" android:onClick="doClick" />
</LinearLayout>

We’re going to show two buttons on the user interface, one to do startService() and the
other to do stopService(). We could have chosen to use a ToggleButton, but then you
would not be able to call startService() multiple times in a row. This is an important point.
There is not a one-to-one relationship between startService() and stopService(). When
stopService() is called, the service object will be destroyed, and all threads created from
all startService() calls should also go away. Now, let’s look at the code for our activity in
Listing 14-10.

Listing 14-10. Implementing a Local Service: MainActivity.java

public class MainActivity extends Activity
{
 private static final String TAG = "MainActivity";
 private int counter = 1;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void doClick(View view) {
 switch(view.getId()) {
 case R.id.startBtn:
 Log.v(TAG, "Starting service... counter = " + counter);
 Intent intent = new Intent(MainActivity.this,
 BackgroundService.class);

http://schemas.android.com/apk/res/android

283CHAPTER 14: Building and Consuming Services

 intent.putExtra("counter", counter++);
 startService(intent);
 break;
 case R.id.stopBtn:
 stopService();
 }
 }

 private void stopService() {
 Log.v(TAG, "Stopping service...");
 if(stopService(new Intent(MainActivity.this,
 BackgroundService.class)))
 Log.v(TAG, "stopService was successful");
 else
 Log.v(TAG, "stopService was unsuccessful");
 }

 @Override
 public void onDestroy()
 {
 stopService();
 super.onDestroy();
 }
}

Our MainActivity looks a lot like other activities you’ve seen. There’s a simple onCreate()
to set up our user interface from the main.xml layout file. There’s a doClick() method to
handle the button callbacks. In our example, we’re calling startService() when the Start
Service button is pressed, and we’re calling stopService() when the Stop Service button
is pressed. When we start the service, we want to pass in some data, which we do via the
intent. We chose to pass the data in the Extras bundle, but we could have added it using
setData() if we had a URI. When we stop the service, we check to see the return result. It
should normally be true, but if the service was not running, we could get a return of false.
Last, when our activity dies, we want to stop the service, so we also stop the service in our
onDestroy() method. There’s one more item to discuss, and that’s the AndroidManifest.xml
file, which we show in Listing 14-11.

Listing 14-11. Implementing a Local Service: AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.services.simplelocal"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="8" />
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".MainActivity"
 android:label="@string/app_name"
 android:launchMode="singleTop" >

http://schemas.android.com/apk/res/android

284 CHAPTER 14: Building and Consuming Services

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:name="BackgroundService"/>
 </application>

</manifest>

In addition to our regular <activity> tags in the manifest file, we now have a <service> tag.
Because this is a local service that we’re calling explicitly using the class name, we don’t
need to put much into the <service> tag. All that is required is the name of our service. But
there is one other thing to point out about this manifest file. Our service creates a notification
so that the user can get back to our MainActivity if, for example, the user pressed the
Home key on MainActivity without stopping the service.

The MainActivity is still there; it’s just not visible. One way to get back to the MainActivity
is to click the notification that our service created. The notification manager delivers our
intent back to our application and would normally cause a new instance of MainActivity to
handle the new intent. To prevent this from happening, we set an attribute in our manifest
file for MainActivity called android:launchMode, and we set it to singleTop. This will help
ensure that the existing invisible MainActivity will be brought forward and displayed, rather
than creating another MainActivity.

When you run this application, you will see our two buttons. By clicking the Start Service
button, you will be instantiating the service and calling onStartCommand(). Our code
logs several messages to LogCat, so you can follow along. Go ahead and click Start
Service several times in a row, even quickly. You will see threads created to handle each
request. You’ll also notice that the value of counter is passed along through to each
ServiceWorker thread. When you press the Stop Service button, our service will go away,
and you’ll see the log messages from our MainActivity’s stopService() method, from our
BackgroundService’s onDestroy() method, and possibly from ServiceWorker threads if they
got interrupted.

You should also notice the notification message when the service has been started. With the
service running, go ahead and press the Back button from our MainActivity and notice that
the notification message disappears. This means our service has gone away also. To restart our
MainActivity, click Start Service to get the service going again. Now, press the Home button.
Our MainActivity disappears from view, but the notification remains, meaning our service is still
in existence. Go ahead and click the notification, and you’ll again see our MainActivity.

Note that our example uses an activity to interface with the service, but any component in
your application can use the service. This includes other services, activities, generic classes,
and so on. Also note that our service does not stop itself; it relies on the activity to do that
for it. There are some methods available to a service to allow the service to stop itself,
namely stopSelf() and stopSelfResult(). Obviously, if we have multiple clients for this
service, we wouldn’t want the service to be stopped by one if the others are still using it. For
a started service with multiple clients, it is more likely you’d put logic in the service itself to
decide when the service can or should be stopped, and the service would use one of the
stop*() methods to do that.

285CHAPTER 14: Building and Consuming Services

Our BackgroundService is a typical example of a service that is used by the components
of the application that is hosting the service. In other words, the application that is running
the service is also the only consumer. Because the service does not support clients from
outside its process, the service is a local service. The critical methods of a local service are
onCreate(), onStartCommand(), onBind(), stop*(), and onDestroy().

There’s another option with a local service, and that is for the case where you’ll only have one
instance of the service with one background thread. In this case, in the onCreate() method
of the BackgroundService, we could create a thread that does the service’s heavy lifting. We
could create and start the thread in onCreate() rather than onStartCommand(). We could do
this because onCreate() is called only once, and we want the thread to be created only once
during the life of the service. One thing we wouldn’t have in onCreate(), though, is the content
of the intent passed by startService(). If we need that, we might as well use the pattern as
described previously, and we’d just know that onStartCommand() should be called only once.

Android has yet another way to implement a local service that includes a background thread
automatically: the IntentService. A subclass of Service, IntentService receives the incoming
Intent from a startService() call, creates a background (worker) thread for you, and invokes
the callback onHandleIntent(Intent intent). If another intent is delivered to this service before
the worker thread has completed the earlier intent, the new intent will sit and wait until
the previous intent has been processed, at which time the next intent in the queue will get
passed to the onHandleIntent() method. When all intents from the inbound queue have
completed processing, the service will stop itself (no need for you to do that).

This concludes our introduction to local services. Remember that we’ll get into more
details of local services in subsequent chapters. Let’s move on to AIDL services—the more
complicated type of service.

Understanding AIDL Services
In the previous section, we showed you how to write an Android service that is consumed
by the application that hosts the service. Now, we are going to show you how to build a
service that can be consumed by other processes via remote procedure call (RPC). As with
many other RPC-based solutions, in Android you need an interface definition language (IDL)
to define the interface that will be exposed to clients. In the Android world, this IDL is called
Android Interface Definition Language (AIDL). To build a remote service, you do the following:

1. Write an AIDL file that defines your interface to clients. The AIDL file
uses Java syntax and has an .aidl extension. Use the same package
name inside your AIDL file as the package for your Android project.

2. Add the AIDL file to your Eclipse project under the src directory. The
Android Eclipse plug-in will call the AIDL compiler to generate a Java
interface from the AIDL file (the AIDL compiler is called as part of the
build process).

3. Implement a service, and return the interface from the onBind() method.

4. Add the service configuration to your AndroidManifest.xml file. The
sections that follow show you how to execute each step.

286 CHAPTER 14: Building and Consuming Services

Defining a Service Interface in AIDL
To demonstrate an example of a remote service, we are going to write a stock-quoter
service. This service will provide a method that takes a ticker symbol and returns the stock
value. To write a remote service in Android, the first step is to define the service interface
definition in an AIDL file. Listing 14-12 shows the AIDL definition of IStockQuoteService. This
file goes into the same place as a regular Java file would for your StockQuoteService project.

Listing 14-12. The AIDL Definition of the Stock-Quoter Service

// This file is IStockQuoteService.aidl
package com.androidbook.services.stockquoteservice;
interface IStockQuoteService
{
 double getQuote(String ticker);
}

The IStockQuoteService accepts the stock-ticker symbol as a string and returns the
current stock value as a double. When you create the AIDL file, the Android Eclipse
plug-in runs the AIDL compiler to process your AIDL file (as part of the build process). If
your AIDL file compiles successfully, the compiler generates a Java interface suitable for
RPC communication. Note that the generated file will be in the package named in your AIDL
file—com.androidbook.services.stockquoteservice in this case.

Listing 14-13 shows the generated Java file for our IStockQuoteService interface. The
generated file will be put into the gen folder of our Eclipse project.

Listing 14-13. The Compiler-Generated Java File

 /*
 * This file is auto-generated. DO NOT MODIFY.
 * Original file: C:\\android\\StockQuoteService\\src\\com\\androidbook\\
services\\stockquoteservice\\IStockQuoteService.aidl
 */
package com.androidbook.services.stockquoteservice;
import java.lang.String;
import android.os.RemoteException;
import android.os.IBinder;
import android.os.IInterface;
import android.os.Binder;
import android.os.Parcel;
public interface IStockQuoteService extends android.os.IInterface
{
/** Local-side IPC implementation stub class. */
public static abstract class Stub extends android.os.Binder implements
com.androidbook.services.stockquoteservice.IStockQuoteService
{
private static final java.lang.String DESCRIPTOR =
"com.androidbook.services.stockquoteservice.IStockQuoteService";

287CHAPTER 14: Building and Consuming Services

/** Construct the stub at attach it to the interface. */
public Stub()
{
this.attachInterface(this, DESCRIPTOR);
}
/**
 * Cast an IBinder object into an IStockQuoteService interface,
 * generating a proxy if needed.
 */
public static com.androidbook.services.stockquoteservice.IStockQuoteService
asInterface(android.os.IBinder obj)
{
if ((obj==null)) {
return null;
}
android.os.IInterface iin = (android.os.IInterface)obj.queryLocalInterface(DESCRIPTOR);
if (((iin!=null)&&(iin instanceof com.androidbook.services.stockquoteservice.
IStockQuoteService))) {
return ((com.androidbook.services.stockquoteservice.IStockQuoteService)iin);
}
return new com.androidbook.services.stockquoteservice.IStockQuoteService.Stub.Proxy(obj);
}
public android.os.IBinder asBinder()
{
return this;
}
@Override public boolean onTransact(int code, android.os.Parcel data,
 android.os.Parcel reply, int flags) throws android.os.RemoteException
{
switch (code)
{
case INTERFACE_TRANSACTION:
{
reply.writeString(DESCRIPTOR);
return true;
}
case TRANSACTION_getQuote:
{
data.enforceInterface(DESCRIPTOR);
java.lang.String _arg0;
_arg0 = data.readString();
double _result = this.getQuote(_arg0);
reply.writeNoException();
reply.writeDouble(_result);
return true;
}
}
return super.onTransact(code, data, reply, flags);
}

288 CHAPTER 14: Building and Consuming Services

private static class Proxy implements
 com.androidbook.services.stockquoteservice.IStockQuoteService
{
private android.os.IBinder mRemote;
Proxy(android.os.IBinder remote)
{
mRemote = remote;
}
public android.os.IBinder asBinder()
{
return mRemote;
}
public java.lang.String getInterfaceDescriptor()
{
return DESCRIPTOR;
}
public double getQuote(java.lang.String ticker) throws android.os.RemoteException
{
android.os.Parcel _data = android.os.Parcel.obtain();
android.os.Parcel _reply = android.os.Parcel.obtain();
double _result;
try {
_data.writeInterfaceToken(DESCRIPTOR);
_data.writeString(ticker);
mRemote.transact(Stub.TRANSACTION_getQuote, _data, _reply, 0);
_reply.readException();
_result = _reply.readDouble();
}
finally {
_reply.recycle();
_data.recycle();
}
return _result;
}
}
static final int TRANSACTION_getQuote = (IBinder.FIRST_CALL_TRANSACTION + 0);
}
public double getQuote(java.lang.String ticker) throws android.os.RemoteException;
}

Note the following important points regarding the generated classes:

The interface we defined in the AIDL file is implemented as an 	
interface in the generated code (that is, there is an interface named
IStockQuoteService).

A 	 static abstract class named Stub extends android.os.Binder and
implements IStockQuoteService. Note that the class is an abstract class.

289CHAPTER 14: Building and Consuming Services

An inner class named 	 Proxy implements the IStockQuoteService that
proxies the Stub class.

The AIDL file must reside in the package where the generated files are 	
supposed to be (as specified in the AIDL file’s package declaration).

Now, let’s move on and implement the AIDL interface in a service class.

Implementing an AIDL Interface
In the previous section, we defined an AIDL file for a stock-quoter service and generated
the binding file. Now, we are going to provide an implementation of that service. To
implement the service’s interface, we need to write a class that extends android.app.
Service and implements the IStockQuoteService interface. The class we are going to
write we’ll call StockQuoteService. To expose the service to clients, our StockQuoteService
will need to provide an implementation of the onBind() method, and we’ll need to add
some configuration information to the AndroidManifest.xml file. Listing 14-14 shows an
implementation of the IStockQuoteService interface. This file also goes into the src folder of
the StockQuoteService project.

Listing 14-14. The IStockQuoteService Service Implementation

public class StockQuoteService extends Service
{
 private static final String TAG = "StockQuoteService";
 public class StockQuoteServiceImpl extends IStockQuoteService.Stub
 {
 @Override
 public double getQuote(String ticker) throws RemoteException
 {
 Log.v(TAG, "getQuote() called for " + ticker);
 return 20.0;
 }
 }

 @Override
 public void onCreate() {
 super.onCreate();
 Log.v(TAG, "onCreate() called");
 }

 @Override
 public void onDestroy()
 {
 super.onDestroy();
 Log.v(TAG, "onDestroy() called");
 }

290 CHAPTER 14: Building and Consuming Services

 @Override
 public IBinder onBind(Intent intent)
 {
 Log.v(TAG, "onBind() called");
 return new StockQuoteServiceImpl();
 }
}

The StockQuoteService.java class in Listing 14-14 resembles the local BackgroundService
we created earlier, but without the NotificationManager. The important difference is that we
now implement the onBind() method. Recall that the Stub class generated from the AIDL
file was an abstract class and that it implemented the IStockQuoteService interface. In our
implementation of the service, we have an inner class that extends the Stub class called
StockQuoteServiceImpl. This class serves as the remote-service implementation, and an
instance of this class is returned from the onBind() method. With that, we have a functional
AIDL service, although external clients cannot connect to it yet.

To expose the service to clients, we need to add a service declaration in the
AndroidManifest.xml file, and this time, we need an intent filter to expose the service.
Listing 14-15 shows the service declaration for the StockQuoteService. The <service> tag
is a child of the <application> tag.

Listing 14-15. Manifest Declaration for the IStockQuoteService

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.services.stockquoteservice"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <service android:name="StockQuoteService">
 <intent-filter>
 <action android:name=
 "com.androidbook.services.stockquoteservice.IStockQuoteService" />
 </intent-filter>
 </service>
 </application>
 <uses-sdk android:minSdkVersion="4" />
</manifest>

As with all services, we define the service we want to expose with a <service> tag. For an
AIDL service, we also need to add an <intent-filter> with an <action> entry for the service
interface we want to expose.

With this in place, we have everything we need to deploy the service. When you are ready to
deploy the service application from Eclipse, just go ahead and choose Run As the way you
would for any other application. Eclipse will comment in the Console that this application
has no Launcher, but it will deploy the app anyway, which is what we want. Let’s now look at
how we would call the service from another application (on the same device, of course).

http://schemas.android.com/apk/res/android

291CHAPTER 14: Building and Consuming Services

Calling the Service from a Client Application
When a client talks to a service, there must be a protocol or contract between the two. With
Android, the contract is in our AIDL file. So the first step in consuming a service is to take
the service’s AIDL file and copy it to your client project. When you copy the AIDL file to the
client project, the AIDL compiler creates the same interface-definition file that was created
when the service was implemented (in the service-implementation project). This exposes to
the client all of the methods, parameters, and return types on the service. Let’s create a new
project and copy the AIDL file:

1. Create a new Android project named StockQuoteClient.
Use a different package name, such as com.androidbook.
stockquoteclient. Use MainActivity for the Create Activity field.

2. Create a new Java package in this project named com.androidbook.
services.stockquoteservice in the src directory.

3. Copy the IStockQuoteService.aidl file from the StockQuoteService
project to this new package. Note that after you copy the file to the
project, the AIDL compiler will generate the associated Java file.

The service interface that you regenerate serves as the contract between the client and the
service. The next step is to get a reference to the service so we can call the getQuote()
method. With remote services, we have to call the bindService() method rather than the
startService() method. Listing 14-16 shows an activity class that acts as a client of the
IStockQuoteService service. Listing 14-17 contains the layout file for the activity.

Listing 14-16 shows our MainActivity.java file. Realize that the package name of the client
activity is not that important—you can put the activity in any package you’d like. However,
the AIDL artifacts that you create are package-sensitive because the AIDL compiler
generates code from the contents of the AIDL file.

Listing 14-16. A Client of the IStockQuoteService Service

public class MainActivity extends Activity {
 private static final String TAG = "StockQuoteClient";
 private IStockQuoteService stockService = null;
 private ToggleButton bindBtn;
 private Button callBtn;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 bindBtn = (ToggleButton)findViewById(R.id.bindBtn);
 callBtn = (Button)findViewById(R.id.callBtn);
 }

292 CHAPTER 14: Building and Consuming Services

 public void doClick(View view) {
 switch(view.getId()) {
 case R.id.bindBtn:
 if(((ToggleButton) view).isChecked()) {
 bindService(new Intent(
 IStockQuoteService.class.getName()),
 serConn, Context.BIND_AUTO_CREATE);
 }
 else {
 unbindService(serConn);
 callBtn.setEnabled(false);
 }
 break;
 case R.id.callBtn:
 callService();
 break;
 }
 }

 private void callService() {
 try {
 double val = stockService.getQuote("ANDROID");
 Toast.makeText(MainActivity.this,
 "Value from service is " + val,
 Toast.LENGTH_SHORT).show();
 } catch (RemoteException ee) {
 Log.e("MainActivity", ee.getMessage(), ee);
 }
 }

 private ServiceConnection serConn = new ServiceConnection() {

 @Override
 public void onServiceConnected(ComponentName name,
 IBinder service)
 {
 Log.v(TAG, "onServiceConnected() called");
 stockService = IStockQuoteService.Stub.asInterface(service);
 bindBtn.setChecked(true);
 callBtn.setEnabled(true);
 }

 @Override
 public void onServiceDisconnected(ComponentName name) {
 Log.v(TAG, "onServiceDisconnected() called");
 bindBtn.setChecked(false);
 callBtn.setEnabled(false);
 stockService = null;
 }
 };

293CHAPTER 14: Building and Consuming Services

 protected void onDestroy() {
 Log.v(TAG, "onDestroy() called");
 if(callBtn.isEnabled())
 unbindService(serConn);
 super.onDestroy();
 }
}

The activity displays our layout and grabs a reference to the Call Service button so we can
properly enable it when the service is running and disable it when the service is stopped.
When the user clicks the Bind button, the activity calls the bindService() method. Similarly,
when the user clicks UnBind, the activity calls the unbindService() method. Notice that
three parameters are passed to the bindService() method: an Intent with the name of the
AIDL service, a ServiceConnection instance, and a flag to autocreate the service.

Listing 14-17. The IStockQuoteService Service Client Layout

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >

<ToggleButton android:id="@+id/bindBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textOff="Bind" android:textOn="Unbind"
 android:onClick="doClick" />

<Button android:id="@+id/callBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Call Service" android:enabled="false"
 android:onClick="doClick" />
</LinearLayout>

With a bound service, such as an AIDL service, you need to provide an implementation of
the ServiceConnection interface. This interface defines two methods: one called by the
system when a connection to the service has been established and one called when the
connection to the service has been destroyed. In our activity implementation, we define the
ServiceConnection for the IStockQuoteService. When we call the bindService() method,
we pass in the reference to this (i.e., serConn). When the connection to the service is
established, the onServiceConnected() callback is invoked, and we then obtain a reference
to the IStockQuoteService using the Stub and enable the Call Service button.

Note that the bindService() call is an asynchronous call. It is asynchronous because the
process or service might not be running and thus might have to be created or started.
And we cannot wait on the main thread for the service to start. Because bindService()
is asynchronous, the platform provides the ServiceConnection callback, so we know

http://schemas.android.com/apk/res/android

294 CHAPTER 14: Building and Consuming Services

when the service has been started and when the service is no longer available. These
ServiceConnection callbacks will run on the main thread though, so they’ll have access to
the UI components if necessary.

Please notice the onServiceDisconnected() callback. This does not get invoked when we
unbind from the service. It is invoked if the service crashes or if Android decides to kill the
service, for example if memory is getting low. If this callback fires, we should not think that
we’re still connected, and we might need to reinvoke the bindService() call. That is why we
change the status of our buttons in the UI when this callback is invoked. But notice we said
“we might need to reinvoke the bindService() call.” Android could restart our service for us
and invoke our onServiceConnected() callback. You can try this yourself by running the client,
binding to the service, and using DDMS to do a Stop on the Stock Quote Service application.

When you run this example, watch the log messages in LogCat to get a feel for what is
going on behind the scenes.

In our service examples thus far, we have strictly dealt with passing simple Java primitive
types. Android services actually support passing complex types, too. This is very useful,
especially for AIDL services, because you might have an open-ended number of parameters
that you want to pass to a service, and it’s unreasonable to pass them all as simple primitives.
It makes more sense to package them as complex types and then pass them to the service.

Let’s see how we can pass complex types to services.

Passing Complex Types to Services
Passing complex types to and from services requires more work than passing Java
primitive types. Before embarking on this work, you should get an idea of AIDL’s support for
nonprimitive types:

AIDL supports 	 String and CharSequence.

AIDL allows you to pass other AIDL interfaces, but you need to have 	
an import statement for each AIDL interface you reference (even if the
referenced AIDL interface is in the same package).

AIDL allows you to pass complex types that implement the 	 android.
os.Parcelable interface. You need to have an import statement in your
AIDL file for these types.

AIDL supports 	 java.util.List and java.util.Map, with a few
restrictions. The allowable data types for the items in the collection
include Java primitive, String, CharSequence, and android.
os.Parcelable. You do not need import statements for List or Map, but
you do need them for the Parcelables.

Nonprimitive types, other than 	 String, require a directional indicator.
Directional indicators include in, out, and inout. in means the value
is set by the client, out means the value is set by the service, and
inout means both the client and service set the value. Android avoids
serializing the values if they’re not flowing in the indicated direction,
which helps overall performance.

295CHAPTER 14: Building and Consuming Services

The Parcelable interface tells the Android runtime how to serialize and deserialize objects
during the marshalling and unmarshalling process. Listing 14-18 shows a Person class that
implements the Parcelable interface.

Listing 14-18. Implementing the Parcelable Interface

// This file is Person.java
package com.androidbook.services.stock2;
import android.os.Parcel;
import android.os.Parcelable;

public class Person implements Parcelable {
 private int age;
 private String name;
 public static final Parcelable.Creator<Person> CREATOR =
 new Parcelable.Creator<Person>()
 {
 public Person createFromParcel(Parcel in) {
 return new Person(in);
 }

 public Person[] newArray(int size) {
 return new Person[size];
 }
 };

 public Person() {
 }

 private Person(Parcel in) {
 readFromParcel(in);
 }

 @Override
 public int describeContents() {
 return 0;
 }

 @Override
 public void writeToParcel(Parcel out, int flags) {
 out.writeInt(age);
 out.writeString(name);
 }

 public void readFromParcel(Parcel in) {
 age = in.readInt();
 name = in.readString();
 }

 public int getAge() {
 return age;
 }

296 CHAPTER 14: Building and Consuming Services

 public void setAge(int age) {
 this.age = age;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

To get started on implementing this, create a new Android Project in Eclipse called
StockQuoteService2. For Create Activity, use a name of MainActivity, and use a package of
com.androidbook.services.stock2. Then add the Person.java file from Listing 14-18 to the
com.androidbook.services.stock2 package of our new project.

The Parcelable interface defines the contract for the marshalling and unmarshalling of
objects. Underlying the Parcelable interface is the Parcel container object. The Parcel
class is a fast serialization/deserialization mechanism specially designed for interprocess
communication within Android. The class provides methods that you use to flatten your
members to the container and to expand the members back from the container. To properly
implement an object for interprocess communication, we have to do the following:

1. Implement the Parcelable interface. This means that you implement
writeToParcel() and readFromParcel(). The write method will write
the object to the parcel, and the read method will read the object
from the parcel. Note that the order in which you write properties
must be the same as the order in which you read them.

2. Add a static final property to the class with the name CREATOR. The
property needs to implement the android.os.Parcelable.Creator<T>
interface.

3. Provide a constructor for the Parcelable that knows how to create
the object from the Parcel.

4. Define a Parcelable class in an .aidl file that matches the .java file
containing the complex type. The AIDL compiler will look for this file
when compiling your AIDL files. An example of a Person.aidl file
is shown in Listing 14-19. This file should be in the same place as
Person.java.

297CHAPTER 14: Building and Consuming Services

Listing 14-19. An Example of a Person.aidl File

// This file is Person.aidl
package com.androidbook.services.stock2;
parcelable Person;

You will need an .aidl file for each Parcelable in your project. In this case, we have just one
Parcelable, which is Person. You may notice that you don’t get a Person.java file created
in the gen folder. This is to be expected. We already have this file from when we created it
previously.

Now, let’s use the Person class in a remote service. To keep things simple, we will modify
our IStockQuoteService to take an input parameter of type Person. The idea is that clients
will pass a Person to the service to tell the service who is requesting the quote. The new
IStockQuoteService.aidl looks like Listing 14-20.

Listing 14-20. Passing Parcelables to Services

// This file is IStockQuoteService.aidl
package com.androidbook.services.stock2;
import com.androidbook.services.stock2.Person;

interface IStockQuoteService
{
 String getQuote(in String ticker,in Person requester);
}

The getQuote() method now accepts two parameters: the stock’s ticker symbol and a
Person object to specify who is making the request. Note that we have directional indicators
on the parameters because the parameters include nonprimitive types and that we have an
import statement for the Person class. The Person class is also in the same package as the
service definition (com.androidbook.services.stock2).

Note Seeing Parcelable might have triggered the question, why is Android not using the
built-in Java serialization mechanism? It turns out that the Android team came to the conclusion
that the serialization in Java is far too slow to satisfy Android’s interprocess-communication
requirements. So the team built the Parcelable solution. The Parcelable approach requires
that you explicitly serialize the members of your class, but in the end, you get a much faster
serialization of your objects.

Also realize that Android provides two mechanisms that allow you to pass data to another process.
The first is to pass a bundle to an activity using an intent, and the second is to pass a Parcelable
to a service. These two mechanisms are not interchangeable and should not be confused. That is,
the Parcelable is not meant to be passed to an activity. If you want to start an activity and pass it
some data, use a Bundle. Parcelable is meant to be used only as part of an AIDL definition.

298 CHAPTER 14: Building and Consuming Services

The service implementation now looks like Listing 14-21, with the MainActivity layout in
Listing 14-22.

Listing 14-21. The StockQuoteService2 Implementation

package com.androidbook.services.stock2;
// This file is StockQuoteService2.java

import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.os.RemoteException;

public class StockQuoteService2 extends Service
{
 private NotificationManager notificationMgr;

 public class StockQuoteServiceImpl extends IStockQuoteService.Stub
 {
 public String getQuote(String ticker, Person requester)
 throws RemoteException {
 return "Hello " + requester.getName() +
 "! Quote for " + ticker + " is 20.0";
 }
 }

 @Override
 public void onCreate() {
 super.onCreate();

 notificationMgr =
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 displayNotificationMessage(
 "onCreate() called in StockQuoteService2");
 }

 @Override
 public void onDestroy()
 {
 displayNotificationMessage(
 "onDestroy() called in StockQuoteService2");
 // Clear all notifications from this service
 notificationMgr.cancelAll();
 super.onDestroy();
 }

299CHAPTER 14: Building and Consuming Services

 @Override
 public IBinder onBind(Intent intent)
 {
 displayNotificationMessage(
 "onBind() called in StockQuoteService2");
 return new StockQuoteServiceImpl();
 }

 private void displayNotificationMessage(String message)
 {
 PendingIntent contentIntent =
 PendingIntent.getActivity(this, 0, new Intent(this, MainActivity.class), 0);

 Notification notification = new NotificationCompat.Builder(this)
 .setContentTitle("StockQuoteService2")
 .setContentText(message)
 .setSmallIcon(R.drawable.emo_im_happy)
 .setTicker(message)
 // .setLargeIcon(aBitmap)
 .setContentIntent(contentIntent)
 .setOngoing(true)
 .build();

 notificationMgr.notify(R.id.app_notification_id, notification);
 }
}

Listing 14-22. The StockQuoteService2 Layout

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is where the service could ask for help." />
</LinearLayout>

The differences between this implementation and the previous one are that we brought
back the notifications, and we now return the stock value as a string and not a double. The
string returned to the user contains the name of the requester from the Person object, which
demonstrates that we read the value sent from the client and that the Person object was
passed correctly to the service.

http://schemas.android.com/apk/res/android

300 CHAPTER 14: Building and Consuming Services

There are a few other things that need to be done to make this work:

1. Find the emo_im_happy.png image file from under Android
SDK/platforms/android-19/data/res/drawable-mdpi, and copy it to
the /res/drawable directory of our project. Or change the name of
the resource in the code, and put whatever image you want in the
drawables folder.

2. Add a new <item type="id" name="app_notification_id"/> tag to
the /res/values/strings.xml file.

3. We need to modify the application in the AndroidManifest.xml file as
shown in Listing 14-23.

Listing 14-23. Modified <application> in AndroidManifest.xml File for StockQuoteService2

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.services.stock2"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="8" />
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".MainActivity"
 android:label="@string/app_name"
 android:launchMode="singleTop" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 </intent-filter>
 </activity>
 <service android:name="StockQuoteService2">
 <intent-filter>
 <action android:name="com.androidbook.services.stock2.IStockQuoteService" />
 </intent-filter>
 </service>
 </application>

</manifest>

While it is OK to use the dot notation for our android:name=".MainActivity" attribute, it is
not OK to use dot notation inside of our <action> tag inside the service’s <intent-filter>
tag. We need to spell it out; otherwise, our client will not find the service specification.

Last, we’ll use the default MainActivity.java file that simply displays a basic layout with
a simple message. We showed you earlier how to launch to the activity from a notification.
This activity would serve that purpose also in real life, but for this example, we’ll keep that
part simple. Now that we have our service implementation, let’s create a new Android project
called StockQuoteClient2. Use com.dave for the package and MainActivity for the activity
name. To implement a client that passes the Person object to the service, we need to copy
everything that the client needs from the service project to the client project. There needs
to be a new src package called com.androidbook.services.stock2 to receive these copied

http://schemas.android.com/apk/res/android

301CHAPTER 14: Building and Consuming Services

files. In our previous example, all we needed was the IStockQuoteService.aidl file. We also
need to copy the Person.java and Person.aidl files, because the Person object is now part
of the interface. After you copy these three files to the com.androidbook.services.stock2
src package of the client project, modify main.xml according to Listing 14-24, and modify
MainActivity.java according to Listing 14-25. Or simply import this project from the source
code on our web site.

Listing 14-24. Updated main.xml for StockQuoteClient2

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >

<ToggleButton android:id="@+id/bindBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textOff="Bind" android:textOn="Unbind"
 android:onClick="doClick" />

<Button android:id="@+id/callBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Call Service" android:enabled="false"
 android:onClick="doClick" />
</LinearLayout>

Listing 14-25. Calling the Service with a Parcelable

package com.dave;
// This file is MainActivity.java
import com.androidbook.services.stock2.IStockQuoteService;
import com.androidbook.services.stock2.Person;

public class MainActivity extends Activity {

 protected static final String TAG = "StockQuoteClient2";
 private IStockQuoteService stockService = null;
 private ToggleButton bindBtn;
 private Button callBtn;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 bindBtn = (ToggleButton)findViewById(R.id.bindBtn);
 callBtn = (Button)findViewById(R.id.callBtn);
 }

http://schemas.android.com/apk/res/android

302 CHAPTER 14: Building and Consuming Services

 public void doClick(View view) {
 switch(view.getId()) {
 case R.id.bindBtn:
 if(((ToggleButton) view).isChecked()) {
 bindService(new Intent(
 IStockQuoteService.class.getName()),
 serConn, Context.BIND_AUTO_CREATE);
 }
 else {
 unbindService(serConn);
 callBtn.setEnabled(false);
 }
 break;
 case R.id.callBtn:
 callService();
 break;
 }
 }

 private void callService() {
 try {
 Person person = new Person();
 person.setAge(47);
 person.setName("Dave");
 String response = stockService.getQuote("ANDROID", person);
 Toast.makeText(MainActivity.this,
 "Value from service is "+response,
 Toast.LENGTH_SHORT).show();
 } catch (RemoteException ee) {
 Log.e("MainActivity", ee.getMessage(), ee);
 }
 }

 private ServiceConnection serConn = new ServiceConnection() {

 @Override
 public void onServiceConnected(ComponentName name,
 IBinder service)
 {
 Log.v(TAG, "onServiceConnected() called");
 stockService = IStockQuoteService.Stub.asInterface(service);
 bindBtn.setChecked(true);
 callBtn.setEnabled(true);
 }

 @Override
 public void onServiceDisconnected(ComponentName name) {
 Log.v(TAG, "onServiceDisconnected() called");
 bindBtn.setChecked(false);
 callBtn.setEnabled(false);
 stockService = null;
 }
 };

303CHAPTER 14: Building and Consuming Services

 protected void onDestroy() {
 if(callBtn.isEnabled())
 unbindService(serConn);
 super.onDestroy();
 }
}

This is now ready to run. Remember to send over the service to the device or emulator
before you send over the client to run. The user interface should look like Figure 14-1.

Figure 14-2. Result from calling the service with a Parcelable

Figure 14-1. User interface of StockQuoteClient2

Let’s take a look at what we’ve got. As before, we bind to our service, and then we can
invoke a service method. The onServiceConnected() method is where we get told that our
service is running, so we can then enable the Call Service button so the button can invoke
the callService() method. As shown, we create a new Person object and set its Age and
Name properties. We then execute the service and display the result from the service call.
The result looks like Figure 14-2.

Notice that when the service is called, you get a notification in the status bar. This is coming
from the service itself. We briefly touched on Notifications earlier as a way for a service to
communicate to the user. Normally, services are in the background and do not display any
sort of UI. But what if a service needs to interact with the user? While it’s tempting to think that
a service can invoke an activity, a service should never invoke an activity directly. A service
should instead create a notification, and the notification should be how the user gets to the
desired activity. This was shown in our last exercise. We defined a simple layout and activity
implementation for our service. When we created the notification within the service, we set the
activity in the notification. The user can touch the notification, and it will take the user to our
activity that is part of this service. This will allow the user to interact with the service.

Notifications are saved so that you can get to them by pulling down from the status bar to
see them. Note the fact that we reuse the same ID for every message. This means that we
are updating the one and only notification every time, rather than creating new notification
entries. Therefore, if you go to the Notifications screen in Android after clicking Bind,

304 CHAPTER 14: Building and Consuming Services

Figure 14-3. The artifacts of the service and the client

Call Again, and Unbind a few times, you will only see one message in Notifications, and it
will be the last one sent by StockQuoteService2. If we used different IDs, we could have
multiple notification messages, and we could update each one separately. Notifications can
also be set with additional user “prompts” such as sound, lights, and/or vibration.

It is also useful to see the artifacts of the service project and the client that calls it
(see Figure 14-3).

Figure 14-3 shows the Eclipse project artifacts for the service (left) and the client (right).
Note that the contract between the client and the service consists of the AIDL artifacts and
the Parcelable objects exchanged between the two parties. This is the reason that we see
Person.java, IStockQuoteService.aidl, and Person.aidl on both sides. Because the AIDL
compiler generates the Java interface, stub, proxy, and so on from the AIDL artifacts, the
build process creates the IStockQuoteService.java file on the client side when we copy the
contract artifacts to the client project.

305CHAPTER 14: Building and Consuming Services

Now you know how to exchange complex types between services and clients. Let’s briefly
touch on another important aspect of calling services: synchronous versus asynchronous
service invocation.

All of the calls that you make on services are synchronous. This brings up the obvious
question: Do you need to implement all of your service calls in a worker thread? Not
necessarily. On most other platforms, it’s common for a client to use a service that is a
complete black box, so the client would have to take appropriate precautions when making
service calls. With Android, you will likely know what is in the service (generally because
you wrote the service yourself), so you can make an informed decision. If you know that the
method you are calling is doing a lot of heavy lifting, you should consider using a secondary
thread to make the call. If you are sure that the method does not have any bottlenecks, you
can safely make the call on the UI thread. If you conclude that it’s best to make the service
call within a worker thread, you can create the thread and then call the service. You can then
communicate the result to the UI thread.

Messengers and Handlers
There is one more way to communicate with a service in Android, and that is with Messengers
and Handlers. This mechanism is built on top of AIDL services, but without you having to see or
deal with AIDL. Like AIDL services, you use it when the service is in a separate process from the
client. Both the client and the service will implement a Messenger and a Handler, and proceed
to send messages back and forth. You don’t need to specify any .aidl files; everything is coded
in your Java classes. This is a fairly common way to do inter-process service calls on Android,
and is significantly easier than messing with AIDL yourself.

Here’s a quick overview of how it works. The client binds to the service, and sets up a
Messenger and Handler to receive responses from the service. A callback within the Handler
takes care of messages sent back by the service. The client also creates a Messenger to
send messages to the service. On the service side, there’s a similar Messenger and Handler
to receive the incoming messages from clients. A message coming in from a client includes
a Messenger to use for any replies to that client. Therefore, the service creates only one
Messenger while a client creates two. The client side is asynchronous, with the service
response coming later. A problem with the service call generates a RemoteException that
the client can capture and act upon.

Let’s see an example of how this works. This sample application has two parts: a
MessengerClient and a MessengerService. They will run as separate processes on a
device. The client will use a non-UI fragment to contain the service client connection. This
means the client activity can go away and be recreated due to a configuration change,
and the underlying service connection remains in place. This is a preferred way to connect
to a service from an activity since you don’t want to have to reconstruct the service client
connection just because the device has been rotated for example. Listing 14-26 shows the
significant code from MessengerService.java to set up the Handler and Messenger. For a full
listing, refer to the MessengerService source project for this chapter.

306 CHAPTER 14: Building and Consuming Services

Listing 14-26. Messenger/Handler-Based Service Code

public class MessengerService extends Service {
 NotificationManager mNM;
 ArrayList<Messenger> mClients = new ArrayList<Messenger>();
 int mValue = 0;
 public static final int MSG_REGISTER_CLIENT = 1;
 public static final int MSG_UNREGISTER_CLIENT = 2;
 public static final int MSG_SET_SIMPLE_VALUE = 3;
 public static final int MSG_SET_COMPLEX_VALUE = 4;
 public static final String TAG = "MessengerService";
 /**
 * Handler of incoming messages from clients.
 */
 class IncomingHandler extends Handler {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case MSG_REGISTER_CLIENT:
 mClients.add(msg.replyTo);
 Log.v(TAG, "Registering client");
 break;
 case MSG_UNREGISTER_CLIENT:
 mClients.remove(msg.replyTo);
 Log.v(TAG, "Unregistering client");
 break;
 case MSG_SET_SIMPLE_VALUE:
 mValue = msg.arg1;
 Log.v(TAG, "Receiving arg1: " + mValue);
 showNotification("Received arg1: " + mValue);
 for (int i=mClients.size()-1; i>=0; i--) {
 try {
 mClients.get(i).send(Message.obtain(null,
 MSG_SET_SIMPLE_VALUE, mValue, 0));
 } catch (RemoteException e) {
 // The client is dead. Remove it from the list;
 // we are going through the list from back to front
 // so this is safe to do inside the loop.
 mClients.remove(i);
 }
 }
 break;
 case MSG_SET_COMPLEX_VALUE:
 Bundle mBundle = msg.getData();
 Log.v(TAG, "Receiving bundle: ");
 if(mBundle != null) {
 showNotification("Got complex msg: myDouble = "
 + mBundle.getDouble("myDouble"));
 for(String key : mBundle.keySet()) {
 Log.v(TAG, " " + key);
 }
 }
 break;

307CHAPTER 14: Building and Consuming Services

 default:
 Log.v(TAG, "Got some other message: " + msg.what);
 super.handleMessage(msg);
 }
 }
 }

 // Target for clients to send messages to IncomingHandler.
 final Messenger mMessenger = new Messenger(new IncomingHandler());

 @Override
 public void onCreate() {
 mNM = (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 // Display a notification about us starting.
 Log.v(TAG, "Service is starting");
 showNotification(getText(R.string.remote_service_started));
 }

 @Override
 public void onDestroy() {
 // Cancel the persistent notification.
 mNM.cancel(R.string.remote_service_started);

 // Tell the user we stopped.
 Toast.makeText(this, R.string.remote_service_stopped, Toast.LENGTH_SHORT).show();
 }

 /**
 * When binding to the service, we return an interface to our messenger
 * for sending messages to the service.
 */
 @Override
 public IBinder onBind(Intent intent) {
 return mMessenger.getBinder();
 }

 /**
 * Show a notification while this service is running. Note that
 * we don't include an intent since we're just a service here. The
 * service stops when the client tells it to.
 */
 private void showNotification(CharSequence text) {
 Notification notification = new NotificationCompat.Builder(this)
 .setContentTitle("MessengerService")
 .setContentText(text)
 .setSmallIcon(android.R.drawable.ic_dialog_info)
 .setTicker(text)
 .setOngoing(true)
 .build();

 mNM.notify(R.string.remote_service_started, notification);
 }

}

308 CHAPTER 14: Building and Consuming Services

In this sample, clients register with the service, unregister with the service, send a simple
message, or send a complex message. When a client registers, the service remembers it by
saving the passed-in client Messenger (i.e., msg.replyTo) in mClients. If a simple message
is received, the service sends a copy of the received argument value to all known clients.
Notice how replies are sent to each client using the Messengers in mClients that came from
each client. The Message’s what field is just an int to indicate what service operation is being
called. Based upon the what operation, the service will extract the appropriate arguments.
Since a Message object has two int arguments available, the simple case uses just one of
those Message fields. When more complex data must be sent, a Bundle object is created,
populated, and attached to the Message for transmission to the service.

Be aware that a service has a 1MB buffer for passed data (in and out) for all in-process service
calls, so you’ll want to keep Message data to a minimum. If there are a lot of simultaneous
service calls, you could exceed the buffer and get a TransactionTooLargeException.

On the client side, there’s a MainActivity and a ClientFrag (the non-UI fragment). For
simplicity’s sake the activity provides the UI to the user without using a UI fragment. Listing
14-27 shows the MainActivity. For a full listing of the project, please see the MessengerClient
project for this chapter.

Listing 14-27. Messenger/Handler-Based Client Activity Code

public class MainActivity extends FragmentActivity implements ISampleServiceClient {

 protected static final String TAG = "MessengerClient";
 private TextView mCallbackText;
 private ClientFrag clientFrag;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mCallbackText = (TextView)findViewById(R.id.callback);

 // Get a non-UI fragment to handle the service interface.
 // If our activity gets destroyed and recreated, the fragment
 // will still be around and we just need to re-fetch it.
 if((clientFrag = (ClientFrag) getSupportFragmentManager()
 .findFragmentByTag("clientFrag")) == null) {
 updateStatus("Creating a clientFrag. No service yet.");
 clientFrag = ClientFrag.getInstance();
 getSupportFragmentManager().beginTransaction()
 .add(clientFrag, "clientFrag")
 .commit();
 }
 else {
 updateStatus("Found existing clientFrag, will use it");
 }
 }

309CHAPTER 14: Building and Consuming Services

 public void doClick(View view) {
 switch(view.getId()) {
 case R.id.startBtn:
 clientFrag.doBindService();
 break;
 case R.id.stopBtn:
 clientFrag.doUnbindService();
 break;
 case R.id.simpleBtn:
 clientFrag.doSendSimple();
 break;
 case R.id.complexBtn:
 clientFrag.doSendComplex();
 break;
 }
 }

 @Override
 public void updateStatus(String status) {
 mCallbackText.setText(status);
 }
}

Notice how there’s no mention of a service in this activity, just a TextView, buttons, and
a client fragment. The updateStatus() method is as a result of the ISampleServiceClient
interface that this activity implements, and all it needs to do is set the text in the UI as
passed in. The buttons simply invoke a method of the client fragment. In a real application,
there would be more business and UI logic in this activity or in other fragments that are
separate from the service call.

The client fragment is where the fun is. Listing 14-28 shows the code from the client
fragment.

Listing 14-28. Messenger/Handler-Based Client Fragment Code

public class ClientFrag extends Fragment {
 private static final String TAG = "MessengerClientFrag";
 static private ClientFrag mClientFrag = null;
 // application context will be used to bind to the service because
 // fragments can't bind and activities can go away.
 private Context appContext = null;

 // Messenger for sending to service.
 Messenger mService = null;
 // Flag indicating whether we have called bind on the service.
 boolean mIsBound;

 // Instantiation method for the client fragment. We just want one
 // and we use setRetainInstance(true) so it hangs around during
 // configuration changes.

310 CHAPTER 14: Building and Consuming Services

 public static ClientFrag getInstance() {
 if(mClientFrag == null) {
 mClientFrag = new ClientFrag();
 mClientFrag.setRetainInstance(true);
 }
 return mClientFrag;
 }

 // Handler for response messages from the service
 class IncomingHandler extends Handler {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case MessengerService.MSG_SET_SIMPLE_VALUE:
 updateStatus("Received from service: " + msg.arg1);
 break;
 default:
 break;
 }
 super.handleMessage(msg);
 }
 }

 // Need a Messenger to receive responses. Send this with the
 // Messages to the service.
 final Messenger mMessenger = new Messenger(new IncomingHandler());

 private ServiceConnection mConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder service) {
 // This is called when the connection with the service has been
 // established, giving us the service object we can use to
 // interact with the service. We are communicating with our
 // service through a Messenger, so get a client-side
 // representation of that from the raw service object.
 mService = new Messenger(service);
 updateStatus("Attached.");

 // We want to monitor the service for as long as we are
 // connected to it. This is not strictly necessary. You
 // do not need to register with the service before using
 // it. But if this failed you'd have an early warning.
 try {
 Message msg = Message.obtain(null,
 MessengerService.MSG_REGISTER_CLIENT);
 msg.replyTo = mMessenger;
 mService.send(msg);
 } catch (RemoteException e) {
 // In this case the service has crashed before we could even
 // do anything with it; we can count on soon being

311CHAPTER 14: Building and Consuming Services

 // disconnected (and then reconnected if it can be restarted)
 // so there is no need to do anything here.
 Log.e(TAG, "Could not establish a connection to the service: " + e);
 }
 }

 public void onServiceDisconnected(ComponentName className) {
 // This is called when the connection with the service has been
 // unexpectedly disconnected -- that is, its process crashed.
 mService = null;
 updateStatus("Disconnected.");
 }
 };

 public void doBindService() {
 // Establish a connection with the service. We use the String name
 // of the service since it exists in a separate process and we do
 // not want to require the service jar in the client. We also grab
 // the application context and bind the service to that since the
 // activity context could go away on a configuration change but the
 // application context will always be there.
 appContext = getActivity().getApplicationContext();
 if(mIsBound = appContext.bindService(
 new Intent("com.androidbook.messengerservice.MessengerService"),
 mConnection, Context.BIND_AUTO_CREATE)
) {
 updateStatus("Bound to service.");
 }
 else {
 updateStatus("Bind attempt failed.");
 }
 }

 public void doUnbindService() {
 if (mIsBound) {
 // If we have received the service, and hence registered with
 // it, then now is the time to unregister. Note that the
 // replyTo value is only used by the service to unregister
 // this client. No response message will come back to the client.
 if (mService != null) {
 try {
 Message msg = Message.obtain(null,
 MessengerService.MSG_UNREGISTER_CLIENT);
 msg.replyTo = mMessenger;
 mService.send(msg);
 } catch (RemoteException e) {
 // There is nothing special we need to do if the service
 // has crashed.
 }
 }

312 CHAPTER 14: Building and Consuming Services

 // Detach our existing connection.
 appContext.unbindService(mConnection);
 mIsBound = false;
 updateStatus("Unbound.");
 }
 }

 // If you can simplify and send only one or two integers, this
 // is the easy way to do it.
 public void doSendSimple() {
 try {
 Message msg = Message.obtain(null,
 MessengerService.MSG_SET_SIMPLE_VALUE, this.hashCode(), 0);
 mService.send(msg);
 updateStatus("Sending simple message.");
 } catch (RemoteException e) {
 Log.e(TAG, "Could not send a simple message to the service: " + e);
 }
 }

 // If you have more complex data, throw it into a Bundle and
 // add it to the Message. Can also pass Parcelables if you like.
 public void doSendComplex() {
 try {
 Message msg = Message.obtain(null,
 MessengerService.MSG_SET_COMPLEX_VALUE);
 Bundle mBundle = new Bundle();
 mBundle.putString("stringArg", "This is a string to pass");
 mBundle.putDouble("myDouble", 1138L);
 mBundle.putInt("myInt", 42);
 msg.setData(mBundle);
 mService.send(msg);
 updateStatus("Sending complex message.");
 } catch (RemoteException e) {
 Log.e(TAG, "Could not send a complex message to the service: " + e);
 }
 }

 private void updateStatus(String status) {
 // Make sure the latest status is updated in the GUI, which
 // is handled by the parent activity.
 ISampleServiceClient uiContext = (ISampleServiceClient) getActivity();
 if(uiContext != null) {
 uiContext.updateStatus(status);
 }
 }
}

313CHAPTER 14: Building and Consuming Services

The client fragment code is fairly straightforward. When the user clicks the Bind Service
button, the client fragment binds to the remote service and sets up the ServiceConnection.
Binding is done from the application context. This is preferred because fragments can’t
bind services, but activities and applications can. However, because the activity could go
away during a configuration change, it’s better to bind to the application which will always
be there. When the ServiceConnection gets connected, an outgoing Messenger is set up
to send the MSG_REGISTER_CLIENT register client message to the service. The client
does not wait for a reply from the service but does go back to waiting for the user’s next
interaction. This prevents the dreaded ANR pop-up. Pressing Send Simple creates a simple
message and sends it.

For a simple message, the service does a reply message which is received by the client’s
handler and processed. All the client handler does is update the TextView with the value
received from the service. Notice that the client fragment uses the parent activity’s
ISampleServiceClient interface to call an appropriate method to update the UI. This is
because the client fragment is non-UI and we would prefer not to embed UI logic within it.
An interface keeps the client fragment separate from the activity and makes it easy to let
the activity go away and come back during a configuration change. Pressing Send Complex
creates a message with a bundle containing several different values, which is sent to the
service. The service will use the double value in a notification to prove that the value was
properly transmitted from client to service. The service does not send a reply message for
the complex message.

One thing to be aware of with this mechanism for inter-process service calls: the service’s
handler is working from a queue of incoming messages and is therefore single-threaded by
default. There will not be multiple threads processing the incoming service messages unless
you create some yourself. Since the client is not blocking on a reply from the service, a client
application would not crash if the service took a while to respond to a message. However,
it would be something to keep in mind if you’ll have multiple clients of the service. AIDL
services can more easily handle requests simultaneously, so it might be a better choice if
you need more predictable response times.

If your client is sending messages to multiple services, you could use a single Messenger/
Handler pair to process reply messages from those services. You just have to put that same
Messenger into each outbound Message and each service should reply back.

The other thing to be aware of is that the client has no guarantee that the service will ever
respond. There are no timeouts inherent in a Messenger/Handler interaction. You will be
notified through onServiceDisconnected() if the service dies, but not if it hangs or takes
too long. Therefore, to be sure that the service responds in a timely fashion, the client could
choose to set a timer, or an alarm to wake it up again. If the reply comes back before the
timer/alarm goes off, the client handler could clear it. If the timer/alarm wakes up the client, it
means the service took too long and the client could then take appropriate action.

314 CHAPTER 14: Building and Consuming Services

References
Here are some helpful references to topics you may wish to explore further:

	www.androidbook.com/proandroid5/projects: A list of downloadable
projects related to this book. For this chapter, look for a ZIP file called
ProAndroid5_Ch14_Services.zip. This ZIP file contains all projects from
this chapter, listed in separate root directories. There is also a README.
TXT file that describes exactly how to import projects into your IDE from
one of these ZIP files.

	http://hc.apache.org/httpcomponents-client-ga/tutorial/html/:
Great tutorials on using the HttpClient classes, including authentication
and the use of cookies.

	http://developer.android.com/guide/components/bound-services.
html: Android Developer Guide on Bound Services.

Summary
This chapter was all about services, specifically:

We talked about consuming external HTTP services using the Apache 	
HttpClient.

With regard to using the 	 HttpClient, we showed you how to do HTTP
GET calls and HTTP POST calls.

We also showed you how to do multipart POSTs.	

You learned that SOAP can be done from Android, but it’s not the 	
preferred way to call web services.

We talked about how you could set up an Internet proxy to manage a 	
SOAP service on your application’s behalf from a server somewhere, so
your application can use RESTful services to your proxy and keep the
application simpler.

We then covered exception handling and the likely types of exceptions 	
that your application is likely to experience (timeouts mostly).

You saw how to use the 	 ThreadSafeClientConnManager to share a
common HttpClient inside your application.

You learned how to check and set timeout values for connections to the 	
network.

We covered a couple of options for making connections to web 	
services, including HttpURLConnection and AndroidHttpClient.

http://www.androidbook.com/proandroid5/projects
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/
http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/guide/components/bound-services.html

315CHAPTER 14: Building and Consuming Services

We explained the difference between local services and remote services. 	
Local services are services that are consumed by the components (such
as activities) in the same process as the service. Remote services are
services whose clients are outside the process hosting the services.

You learned that even though a service is meant to be on a separate 	
thread, it is still up to the developer to create and manage the
background threads associated with services.

You discovered how to start and stop local services, and how to create 	
and bind to a remote service.

You saw how the 	 NotificationManager is used to track running services.

We covered how to pass data to a service, using Parcelables for the 	
complex types.

You learned how to use Messengers and Handlers to call remote 	
services.

317

Chapter 15
Advanced AsyncTask and
Progress Dialogs

In Chapter 13, we covered handlers and worker threads to run long-running tasks while the
main thread kept the UI house in order. Android SDK has recognized this as a pattern and
abstracted the handler and thread details into a utility class called AsyncTask. You can use
AsyncTask to run tasks that take longer than five seconds in the context of UI. (We will cover
how to run really long-running tasks, ranging from minutes to even hours, through
“Long-Running Receivers and Services” in Chapter 16.)

This chapter will start with the basics of an AsyncTask and move to the code needed to
present progress dialogs and progress bars that show the status of an AsyncTask correctly
even if the device changes its configuration. Let’s start by introducing the AsyncTask through
pseudocode in Listing 15-1.

Listing 15-1. Usage Pattern for an AsyncTask by an Activity

public class MyActivity {
 void respondToMenuItem() { //menu handler
 performALongTask();
 }
 void performALongTask() { //using an AsyncTask
 //Derive from an AsyncTask, and Instantiate this AsyncTask
 MyLongTask myLongTask = new MyLongTask(...CallBackObjects...);
 myLongTask.execute(...someargs...); //start the work on a worker thread
 //have the main thread get back to its UI business
 }

 //Hear back from the AsyncTask
 void someCallBackFromAsyncTask(SomeParameterizedType x) {
 //Although invoked by the AsyncTask this code runs on the main thread.
 //report back to the user of the progress
 }
}

318 CHAPTER 15: Advanced AsyncTask and Progress Dialogs

Use of an AsyncTask starts with extending from AsyncTask first like the MyLongTask in
Listing 15-1. Once you have the AsyncTask object instantiated, you can call execute() method
on that object. The execute() method internally starts a separate thread to do the actual work.
The AsyncTask implementation will in turn invoke a number of callbacks to report the beginning
of the task, the progress of the task, and the end of the task. Listing 15-2 shows pseudocode
to extend an AsyncTask and the methods that need to be overridden. (Please note that this is
pseudocode and not intended to be compiled. The @override annotation is added to explicitly
state that they are overridden from the base class.)

Listing 15-2. Extending an AsyncTask: An Example

public class MyLongTask extends AsyncTask<String,Integer,Integer> {
 //... constructors stuff
 //Calling execute() will result in calling all of these methods
 @Override
 void onPreExecute(){} //Runs on the main thread

 //This is where you do all the work and runs on the worker thread
 @Override
 Integer doInBackground(String... params){}

 //Runs on the main thread again once it finishes
 @Override
 void onPostExecute(Integer result){}

 //Runs on the main thread
 @Override
 void onProgressUpdate(Integer... progressValuesArray){}
 //....other methods
}

execute() method in Listing 15-1 is called on the main thread. This call will trigger a series
of methods in Listing 15-2, starting with onPreExecute(). The onPreExecute() is called on
the main thread as well. You can use this method to set up your environment to execute
the task. You can also use this method to set up a dialog box or initiate a progress bar to
indicate to the user that the work has started. After the completion of the onPreExecute(),
execute() method will return and the main thread of the activity continues with its UI
responsibilities. By that time the execute() would have spawned a new worker thread so
that doInBackground() method is scheduled to be executed on that worker thread. You will
do all your heavy lifting in this doInBackground() method. As this method runs on a worker
thread, the main thread is not affected and you will not get the “application not responding”
message. From the doInBackground() method you have a facility (you will see this shortly) to
call the onProgressUpdate() to report the progress. This onProgressUpdate() method runs
on the main thread so that you can affect the UI on the main thread.

319CHAPTER 15: Advanced AsyncTask and Progress Dialogs

Essentials of a Simple AsyncTask
Let’s get into the details of extending the AsyncTask. The AsyncTask class uses generics to
provide type safety to its methods, including the overridden methods. You can see these
generics when you look at the partial definition (Listing 15-3) of the AsyncTask class. (Please
note that Listing 15-3 is an extremely pruned-down version of the AsyncTask class. It’s really
just the elements of its interface most commonly used by client code.)

Listing 15-3. A Quick Look at the AsyncTask Class Definition

public class AsyncTask<Params, Progress, Result> {
 //A client will call this method
 AsyncTask<Params, Progress, Result> execute(Params... params);

 //Do your work here. Frequently triggers onProgressUpdate()
 Result doInBackGround(Params... params);

 //Callback: After the work is complete
 void onPostExecute(Result result);

 //Callback: As the work is progressing
 void onProgressUpdate(Progress... progressValuesArray);
}

Studying Listing 15-3, you can see that the AsyncTask (through generics) needs the following
three parameterized types (Params, Progress, and Result) when you extend it. Let’s explain
these types briefly:

	Params (The type of parameters to the execute() method): When
extending AsyncTask, you will need to indicate the type of parameters
that you will pass to the execute() method. If you say your Params type
is String, then the execute() method will expect any number of strings
separated by commas in its invocation such as execute(s1,s2,s3) or
execute(s1,s2,s3,s4,s5).

	Progress (Parameter types to the progress callback method): This
type indicates the array of values passed back to the caller while
reporting progress through the callback onProgressUpdate(Progress...
progressValuesArray). The ability to pass an array of progress values
allows situations where multiple aspects of a task can be monitored and
reported on. For example, this feature could be used if an AsyncTask is
working on multiple subtasks.

	Result (Type used to report the result through onPostExecute()
method): This type indicates the type of the return value that is sent
back as the final result from the execution through the callback
onPostExecute(Result finalResult).

Knowing now the needed generic types for an AsyncTask, suppose we decide on the
following parameters for our specific AsyncTask: Params: A String, Result: An int,
Progress: An Integer. Then, we can declare an extended AsyncTask class as shown in
Listing 15-4.

320 CHAPTER 15: Advanced AsyncTask and Progress Dialogs

Listing 15-4. Extending the Generic AsyncTask Through Concrete Types

public class MyLongTask
extends AsyncTask<String,Integer,Integer>
{
 //...other constructors stuff
 //...other methods
 //Concrete methods based on the parameterized types
 protected Integer doInBackground(String... params);
 protected void onPostExecute(Integer result);
 protected void onProgressUpdate(Integer... progressValuesArray);

 //....other methods
}

Notice how this concrete class in Listing 15-4, MyLongTask, has disambiguated the type
names and arrived at function signatures that are type safe.

Implementing Your First AsyncTask
Let’s now look at a simple, but complete, implementation of MyLongTask. We have amply
commented the code in Listing 15-5 inline to indicate which methods run on which thread.
Also pay attention to the constructor of MyLongTask where it receives object references of the
calling context (usually an activity) and also a specific simple interface such as IReportBack
to log progress messages.

The IReportBack interface is not critical to your understanding because it is merely a
wrapper to a log. Same is true with the Utils class as well. You can see these additional
classes in both of the downloadable projects for this chapter. The URL for the downloadable
projects is in the references section at the end of this chapter. Listing 15-5 shows the
complete code for MyLongTask.

Listing 15-5. Complete Source Code for Implementing an AsyncTask

//The following code is in MyLongTask.java (ProAndroid5_Ch15_TestAsyncTask.zip)
//Use menu item: Test Async1 to invoke this code
public class MyLongTask extends AsyncTask<String,Integer,Integer>
{
 IReportBack r; // an interface to report back log messages
 Context ctx; //The activity to start a dialog
 public String tag = null; //Debug tag
 ProgressDialog pd = null; //To start, report, and stop a progress dialog

 //Constructor now
 MyLongTask(IReportBack inr, Context inCtx, String inTag) {
 r = inr; ctx = inCtx; tag = inTag;
 }
 //Runs on the main ui thread
 protected void onPreExecute() {
 Utils.logThreadSignature(this.tag);
 pd = ProgressDialog.show(ctx, "title", "In Progress...",true);
 }

321CHAPTER 15: Advanced AsyncTask and Progress Dialogs

 //Runs on the main ui thread. Triggered by publishProgress called multiple times
 protected void onProgressUpdate(Integer... progress) {
 Utils.logThreadSignature(this.tag);
 Integer i = progress[0];
 r.reportBack(tag, "Progress:" + i.toString());
 }
 protected void onPostExecute(Integer result) {
 //Runs on the main ui thread
 Utils.logThreadSignature(this.tag);
 r.reportBack(tag, "onPostExecute result:" + result);
 pd.cancel();
 }
 //Runs on a worker thread. May even be a pool if there are more tasks.
 protected Integer doInBackground(String...strings) {
 Utils.logThreadSignature(this.tag);
 for(String s :strings) {
 Log.d(tag, "Processing:" + s);
 }
 for (int i=0;i<3;i++) {
 Utils.sleepForInSecs(2);
 publishProgress(i); //this calls onProgressUpdate
 }
 return 1; //this value is then passed to the onPostExecute as input
 }
}

We will go into the details of each of the methods highlighted in Listing 15-5 after covering
briefly how a client would make use of (or call) MyLongTask.

Calling an AsyncTask
Once we have the class MyLongTask implemented, a client will utilize this class as shown in
Listing 15-6.

Listing 15-6. Calling an AsyncTask

//You will find this class AsyncTester.java(ProAndroid5_Ch15_TestAsyncTask.zip)
//Use menu item: Test Async1 to invoke this code
void respondToMenuItem() {
 //An interface to log some messages back to the activity
 //See downloadable project if you need the details.
 IReportBack reportBackObject = this;
 Context ctx = this; //activity
 String tag = "Task1"; //debug tag

 //Instantiate and execute the long task
 MyLongTask mlt = new MyLongTask(reportBackObject,ctx,tag);
 mlt.execute("String1","String2","String3");
}

322 CHAPTER 15: Advanced AsyncTask and Progress Dialogs

Notice how the execute() method is called in Listing 15-6. Because we have indicated one
of the generic types as a String and that the execute() methods takes a variable number of
arguments for this type, we can pass any number of strings to the execute() method. In the
example in Listing 15-6, we have passed three string arguments. You can pass more or less
as you need.

Once we call the execute() method on the AsyncTask, this will result in a call to the
onPreExecute() method followed by a call to the doInBackground() method. The system will
also call the onPostExecute() callback once the doInBackground() method finishes. Refer to
Listing 15-5 for how these methods are implemented.

Understanding the onPreExecute() Callback and Progress
Dialog
Going back to MyLongTask implementation in Listing 15-5, in the onPreExecute() method
we started a progress dialog to indicate that the task is in progress. Figure 15-1 shows an
image of that dialog. (Use menu item Test Async1 to invoke this view from project download
ProAndroid5_Ch15_TestAsyncTask.zip.)

Figure 15-1. A simple progress dialog interacting with an AsyncTask

323CHAPTER 15: Advanced AsyncTask and Progress Dialogs

The code segment (taken from Listing 15-5) that shows the progress dialog is reproduced in
Listing 15-7.

Listing 15-7. Showing an Indeterminate Progress Dialog

pd = ProgressDialog.show(ctx, "title", "In Progress...",true);

The variable pd was already declared in the constructor (see Listing 15-5). This call in
Listing 15-7 will create a progress dialog and display it as shown in Figure 15-1. The last
argument to the show() method in Listing 15-7 indicates if the dialog is indeterminate
(whether the dialog can estimate beforehand how much work there is). We will cover the
deterministic case in a later section.

Note Showing progress of an AsyncTask reliably is quite involved. This is because an activity
can come and go, because of either a configuration change or another UI taking precedence.
We will cover this essential need and solutions later in the chapter.

Understanding the doInBackground() Method
All the background work carried out by the AsyncTask is done in the doInBackground()
method. This method is orchestrated by the AsyncTask to run on a worker thread. As a result,
this work is allowed to take more than five seconds, unlike the work done on a main thread.

In our example from Listing 15-5, in the doInBackground() method we simply retrieve each
of the input strings to the task as if they are an array. In this method definition we haven’t
defined an explicit string array. However, the single argument to this function is defined as a
variable-length argument, as shown in Listing 15-8.

Listing 15-8. doInBackground() Method Signature

protected Integer doInBackground(String...strings)

Java then treats the argument as if it is an array inside the function. So in our code in
the doInBackground() method, we read each of the strings and log them to indicate that
we know what they are. We then wait long enough to simulate a long-running operation.
Because this method is running in a worker thread, we have no access to the UI functionality
of Android from this worker thread. For instance, you won’t be able to update any Views
directly even if you have access to them from this thread. You cannot even send a Toast
from here. The next two methods allow us to overcome this.

Triggering onProgressUpdate() through publishProgress()
In the doInBackground() method, you can trigger onProgressUpdate() by calling the
publishProgress() method. The triggered onProgressUpdate() method then runs on the main
thread. This allows the onProgressUpdate() method to update UI elements such as Views
appropriately. You can also send a Toast from here. In Listing 15-5, we simply log a message.
Once all the work is done, we return from the doInBackground() method with a result code.

324 CHAPTER 15: Advanced AsyncTask and Progress Dialogs

Understanding the onPostExecute() Method
The result code from the doInBackground() method is then passed to the onPostExecute()
callback method. This callback is also executed on the main thread. In this method, we tell
the progress dialog to close. Being on the main thread, you can access any UI elements in
this method with no restrictions.

Upgrading to a Deterministic Progress Dialog
In the previous example in Listing 15-5, we used a progress dialog (Figure 15-1) that doesn’t
tell us what portion of the work is complete. This progress dialog is called an indeterminate
progress dialog. If you set the indeterminate property to false on this progress dialog, you
will see a progress dialog that tracks progress in steps. This is shown in Figure 15-2.
(Use menu item “Test Async2” to invoke this view from project download ProAndroid5_Ch15_
TestAsyncTask.zip.)

Figure 15-2. A progress dialog showing explicit progress, interacting with an AsyncTask

325CHAPTER 15: Advanced AsyncTask and Progress Dialogs

Listing 15-9 shows the previous task from Listing 15-5 rewritten to change the behavior of the
progress dialog to a deterministic progress dialog. We have also added an onCancelListener
to see if we need to cancel the task on cancelling the dialog. A user can click the back button
in Figure 15-2 to cancel the dialog. Key portions of the code are given in Listing 15-9 (for the
full code, see the download file ProAndroid5_Ch15_TestAsyncTask.zip).

Listing 15-9. A Long Task Utilizing a Deterministic Progress Dialog

//Following code is in MyLongTask1.java(ProAndroid5_Ch15_TestAsyncTask.zip)
//Use menu item: Test Async2 to invoke this code
public class MyLongTask1 extends AsyncTask<String,Integer,Integer>
implements OnCancelListener
{
 //..other code taken from Listing 15-5
 //Also refer to the java class MyLongTask1.java in the downloadable project
 //for full code listing.
 protected void onPreExecute() {
 //....other code
 pd = new ProgressDialog(ctx);
 pd.setTitle("title");
 pd.setMessage("In Progress...");
 pd.setCancelable(true);
 pd.setOnCancelListener(this);
 pd.setIndeterminate(false);
 pd.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);
 pd.setMax(5);
 pd.show();
 }
 public void onCancel(DialogInterface d) {
 r.reportBack(tag,"Cancel Called");
 this.cancel(true);
 }
 //..other code taken from Listing 15-5
}

Notice how we have prepared the progress dialog in Listing 15-9. In this case we haven’t
used the static method show(), in contrast to what we did in Listing 15-5, on the progress
dialog. Instead, we explicitly instantiated the progress dialog. The variable ctx stands for the
context (or activity) in which this UI progress dialog operates. Then we individually set the
properties on the dialog, including its deterministic or indeterminate behavior. The method
setMax() indicates how many steps the progress dialog has. We have also passed the self
reference (the AsyncTask itself) as a listener when cancel is triggered. In the cancel callback,
we explicitly issue a cancel on the AsyncTask. The cancel() method will try to stop the
worker thread if we call it with the boolean argument of false. A boolean argument of true
will force-stop the worker thread.

326 CHAPTER 15: Advanced AsyncTask and Progress Dialogs

AsyncTask and Thread Pools
Consider the code in Listing 15-10, where a menu item is invoking two AsyncTasks one after
the other.

Listing 15-10. Invoking Two Long-Running Tasks

void respondToMenuItem() {
 MyLongTask mlt = new MyLongTask(this.mReportTo,this.mContext,"Task1");
 mlt.execute("String1","String2","String3");

 MyLongTask mlt1 = new MyLongTask(this.mReportTo,this.mContext,"Task2");
 mlt1.execute("String1","String2","String3");
}

Here we are executing two tasks on the main thread. You may expect that both the tasks
get started close to each other. The default behavior, however, is that these tasks run
sequentially using a single thread drawn out of a pool of threads. If you want a parallel
execution, you can use the executeOnExecutor() method on the AsyncTask. See SDK docs
for details on this method. Also as per the SDK documentation, it is not valid to call the
execute() method more than once on a single AsyncTask. If you want that behavior, you
have to instantiate a new task and call the execute() method again.

Issues and Solutions for Correctly Showing the
Progress of an AsyncTask
If your primary goal with this chapter is to learn just the essentials of AsyncTask, then what
we have covered so far is sufficient. However, there are some issues when an AsyncTask is
paired with a progress dialog as shown in the previous listings so far. One of those issues is
that an AsyncTask will lose the correct activity reference when the device is rotated, thereby
also losing its reference to the progress dialog. The other issue is that the progress dialog we
used earlier in the code is not a managed dialog. Let’s understand these issues now.

Dealing with Activity Pointers and Device Rotation
The activity pointer that is held by the AsyncTask becomes stale when the activity is
re-created because of a configuration change. This is because Android has created a new
activity and the old activity is no longer shown on the screen. So holding on to the old
activity and its corresponding dialog is bad for a couple of reasons. The first is that the user
is not seeing that activity or dialog that the AsyncTask is trying to update. The second reason
is that the old activity needs to be garbage collected and you are stopping it from getting
garbage collected because the AsyncTask is holding on to its reference. If you were to be
smart and use a Java weak reference for the old activity, then you wouldn’t leak memory
but you would get a null pointer exception. The case of stale pointer is true not only of the
activity pointer but any other pointer that indirectly points to the activity.

327CHAPTER 15: Advanced AsyncTask and Progress Dialogs

There are two ways to address the stale activity reference issue. The recommended way is to
use headless retained fragments. (Fragments are covered in Chapter 8. Retained fragments
are fragments that stay around while the activity is re-created due to a configuration change.
These fragments are also called headless because they don’t necessarily have to hold
any UI.) Another way to solve the stale activity pointers is to use the retained objects
callback from the activity. We will present both of these approaches for addressing the stale
activity pointer issue.

Dealing with Managed Dialogs
Even if we are able to solve the stale activity reference issue and reestablish the connectivity
to the current activity, there is a flaw in the way progress dialogs were used so far in this
chapter. We have instantiated a ProgressDialog directly. A ProgressDialog created in this
manner is not a “managed” dialog. If it is not a managed dialog, the activity will not re-create
the dialog when the device undergoes rotation or any other configuration change. So, when
the device rotates the AsyncTask is still running uninterrupted but the dialog will not show up.
There are a couple of ways to solve this problem as well. The recommended way is not to
use progress dialogs but instead use an embedded UI control in the activity itself, such as a
progress bar. Because a progress bar is part of the activity view hierarchy, the hope is that
it will be re-created. Although a progress bar sounds good, there are times when a modal
progress dialog makes more sense. For example, that would be the case if you don’t want
the user to interact with any other part of the activity while the AsyncTask is running. In those
cases, we see little contradiction in using fragment dialogs instead of progress bars.

It’s time we step into the solutions to deal with the activity references issues and the
managed dialogs issue. We will present three different solutions. The first one uses retained
objects and fragment dialogs. The second one uses headless retained fragments and
fragment dialogs. The third solution uses headless retained fragments and progress bars.

Testing Scenarios for a Well-Behaved Progress Dialog
Of the three solutions we have in this chapter, whichever you use to correctly display
a progress dialog for an AsyncTask, the solution should work in all of the following test
scenarios:

1. Without an orientation change the progress dialog must start, show
its progress, end, and also clean up the reference to the AsyncTask.
This must work repeatedly to show that there are no vestiges left
from the previous run.

2. The solution should handle the orientation changes while the task
is in the middle of its execution. The rotation should re-create
the dialog and show progress where it left off. The dialog should
properly finish and clean up the AsyncTask reference. This must work
repeatedly to show that there are no vestiges left behind.

3. The back should be disabled when the task starts to run.

328 CHAPTER 15: Advanced AsyncTask and Progress Dialogs

4. Going Home should be allowed even when the task is in the middle
of execution.

5. Going Home and revisiting the activity should show the dialog and
correctly reflect the current progress, and the progress should never
be less than the one before.

6. Going Home and revisiting the activity also should work when
the task finishes before returning. The dialog should be properly
dismissed and the AsyncTask reference removed.

This set of test cases should always be performed for all activities dealing with AsyncTasks.
Now that we have laid out how each solution should satisfy, let’s start with the first solution,
the one that uses retained objects and fragment dialogs.

Using Retained Objects and Fragment Dialogs
In this first solution, let’s show you how to use retained objects and fragment dialogs for
displaying progress correctly for an AsyncTask. This solution involves the following steps:

1. The activity must keep track of an external object through its
onRetainNonConfigurationInstance() callback. This external
object must stick around and its reference validated as the activity
is closed and brought back. That is why this object is referred
to as a retained object. This retained object can either be the
AsyncTask object itself or an intermediate object that holds a
reference to the AsyncTask. Let’s call that a root retained activity-
dependent object (or a root RADO). It is called a “root” because the
onRetainNonConfigurationInstance() can use only one retained
object reference.

2. A root RADO then will have a pointer to the AsyncTask and can set
and reset the activity pointer on AsyncTask as the activity comes
and goes. So, this root RADO acts as an intermediary between the
activity and the AsyncTask.

3. The AsyncTask then will instantiate a fragment progress dialog
instead of a plain non-managed progress dialog. The AsyncTask will
use the activity pointer that is set by the root RADO to accomplish
this, as you will need an activity to create a fragment including a
fragment dialog.

4. The activity will re-create the dialog fragment as it rotates and keeps
its state properly because dialog fragments are managed. The
AsyncTask can proceed to increment progress on the fragment dialog
as long as the activity is set and available. Note that this dialog
fragment is not, by itself, a retained fragment. It gets re-created as
part of the activity life cycle.

329CHAPTER 15: Advanced AsyncTask and Progress Dialogs

5. The fragment dialog can further disallow the cancel on it so that
the user cannot go back to the activity from the dialog while the
AsyncTask is in progress.

6. However, a user can go Home by tapping Home and use other apps.
This will push our activity, and the dialog with it, into the background.
This must be handled. When the user returns to the activity or
app, the dialog can continue to show the progress. The AsyncTask
must know how to dismiss the fragment dialog if the task finishes
while the activity is hidden. Being a fragment dialog, dismissing
this dialog throws an invalid state exception if the activity is not in
the foreground. So, the AsyncTask has to wait until the activity is
reopened and in the right state to dismiss the dialog.

Exploring Corresponding Key Code Snippets
We will present now the key pieces of code that are used to implement the outlined
approach. The rest of the implementation can be found in the downloadable project
ProAndroid5_Ch15_TestAsyncTaskWithConfigChanges.zip for this chapter. As all solutions for
this problem require the dialog to be a fragment dialog, so that the dialog can be managed,
Listing 15-11 presents the source code of this fragment dialog first.

Listing 15-11. Encapsulating a ProgressDialog in a DialogFragment

//The following code is in ProgressDialogFragment.java
//(ProAndroid5_Ch15_TestAsyncTaskWithConfigChanges.zip)
/**
 * A DialogFragment that encapsulates a ProgressDialog.
 * This is not expected to be a retained fragment dialog.
 * Gets re-created as activity rotates following any fragment protocol.
 */
public class ProgressDialogFragment extends DialogFragment {
 private static String tag = "ProgressDialogFragment";
 ProgressDialog pd; //Will be set by onCreateDialog

 //This gets called from ADOs such as retained fragments
 //typically done when activity is attached back to the AsyncTask
 private IFragmentDialogCallbacks fdc;
 public void setDialogFragmentCallbacks(IFragmentDialogCallbacks infdc) {
 Log.d(tag, "attaching dialog callbacks");
 fdc = infdc;
 }

 //This is a default constructor. Called by the framework all the time
 //for reintroduction.
 public ProgressDialogFragment() {
 //Should be safe for me to set cancelable as false;
 //wonder if that is carried through rebirth?
 this.setCancelable(false);
 }

330 CHAPTER 15: Advanced AsyncTask and Progress Dialogs

 //One way for the client to attach in the beginning when the fragment is reborn.
 //The reattachment is done through setFragmentDialogCallbacks
 //This is a shortcut. Your compiler if enabled for lint may throw an error.
 //You can use the newInstance pattern and setbundle (see the fragments chapter)
 public ProgressDialogFragment(IFragmentDialogCallbacks infdc) {
 this.fdc = infdc;
 this.setCancelable(false);
 }
 /**
 * This can get called multiple times each time the fragment is
 * re-created. So storing the dialog reference in a local variable should be safe
 */
 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 Log.d(tag,"In onCreateDialog");
 pd = new ProgressDialog(getActivity());
 pd.setTitle("title");
 pd.setMessage("In Progress...");
 pd.setIndeterminate(false);
 pd.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);
 pd.setMax(15);
 return pd;
 }
 //Called when the dialog is dismissed.I should tell my corresponding task
 //to close or do the right thing! This is done through call back to fdc
 //fdc: fragment dialog callbacks could be the Task, or Activity or the rootRADO
 //See Listing 15-12 to see how FDC is implemented by the task
 @Override
 public void onDismiss(DialogInterface dialog) {
 super.onDismiss(dialog);
 Log.d(tag,"Dialog dismissed");
 if (fdc != null) {
 fdc.onDismiss(this, dialog);
 }
 }
 @Override
 public void onCancel(DialogInterface dialog) {
 super.onDismiss(dialog);
 Log.d(tag,"Dialog cancelled");
 if (fdc != null) {
 fdc.onCancel(this, dialog);
 }
 }
 //will be called by a client like the task
 public void setProgress(int value) {
 pd.setProgress(value);
 }
}

Code in Listing 15-11 shows how to wrap a regular non-managed ProgressDialog in a
managed fragment dialog. We extend a DialogFragment and override its onCreateDialog()
to return the ProgressDialog object. In addition to that basic feature, we added the ability

331CHAPTER 15: Advanced AsyncTask and Progress Dialogs

to monitor when the progress dialog gets dismissed or cancelled. We also provide a
setProgress() method on the wrapped class to call the setProgress() on the internal
ProgressDialog. You can see the source code for the IFragmentDialogCallbacks in the
downloadable project (ProAndroid5_Ch15_TestAsyncTaskWithConfigChanges.zip), as it is not
that critical to understanding this fragment progress dialog.

Let’s see now how an AsyncTask can create and control this fragment progress dialog.
Listing 15-12 presents the pseudocode for the AsyncTask in order to aid this understanding.
For the complete source code, refer to downloadable project.

Listing 15-12. Pseudocode for an AsyncTask That Uses a Fragment Progress Dialog

//The following code is in MyLongTaskWithRADO.java
//(ProAndroid5_Ch15_TestAsyncTaskWithConfigChanges.zip)
//You can start this task through menu item: Flip Dialog with ADOs
public class MyLongTaskWithRADO extends AsyncTask<String,Integer,Integer>
implements IRetainedADO, IFragmentDialogCallbacks
{
 //....other code
 @Override public void onPreExecute() {
 //....other code
 //get the activity as it would have been set by the root RADO
 Activity act = this.getActivity();

 //Create the progress diaolg
 ProgressDialogFragment pdf = new ProgressDialogFragment();
 //the show method will add and commit the fragment dialog
 pdf.show(act.getFragmentManager(), this.PROGRESS_DIALOG_FRAGMENT_TAG_NAME);
 }
 @Override public void onProgressUpdate() {
 //if activity is available, get the fragment dialog from it
 //call setProgress() on it
 //otherwise ignore the progress
 }
 @Override public void onPostExecute() {
 //if activity is in a good state
 //dismiss the dialog and tell the root RADO to drop the pointer to the AsyncTask
 //if not remember it through a flag to close it when you come back
 }
 @Override public void attach() {
 //called when the activity is back
 //check to see if you are done
 //if so dismiss the dialog and remove yourself from the RADO
 //if not continue to update the progress
 }
}

Because this AsyncTask implements the idea of a retained activity-dependent object
(IRetainedADO), it knows when the activity is available and when it is not. It also knows the
state of the activity, such as whether the UI is ready or not. Although it takes some code
to implement activity-dependent objects (ADOs), it is not a hard concept. We leave it to
you due to space considerations to look into the downloadable project ProAndroid5_Ch15_
TestAsyncTaskWithConfigChanges .zip and see how this is done.

332 CHAPTER 15: Advanced AsyncTask and Progress Dialogs

This AsyncTask in Listing 15-12 also takes over the management of its fragment dialog so
that it acts like a cohesive unit and thereby doesn’t contaminate the main activity with the
details of this AsyncTask. Another key detail in Listing 15-12 is what happens when the
dialog is dismissed as the AsyncTask finishes. At this instant if the activity is hidden, or not
there due to rotation, it is important to dismiss the dialog when the activity is re-created. In
order to do this, the onPostExecute() remembers the last state of the AsyncTask whether it
is done or in progress. This AsyncTask then waits for the attach() method, which gets called
when the UI ready activity is reattached to this ADO. Once in the attach() method, the
AsyncTask can then dismiss the fragment dialog.

You can download the project named ProAndroid5_Ch15_TestAsyncTaskWithConfigChanges.zip
and see how the interaction presented in Listing 15-12 is fully realized.

This particular approach of using retained objects is a bit involved when compared to using
retained fragments instead. But it has the elegance of solving it in a more generic form using
the idea of ADOs, be they fragments or otherwise. We have links in the reference section
that outline this idea and provide background. With that, let’s turn our attention to the
recommended idea of retained fragments in our second solution.

Using Retained Fragments and Fragment Dialogs
In the second solution, we will stick with the fragment dialogs but we will use headless
retained fragments instead of simple retained objects. Android has deprecated the retained
objects in favor of retained fragments. In Android a retained object is just an object and
has no in-built ability to track the state of the activity. (This is why we had to invent the
framework of ADOs on top.) This deficiency is not there with the introduction of fragments in
later releases of Android. Although fragments are tightly woven into the fabric of UI, they can
exist without UI as well. These are called headless fragments. In addition to being able to
track the state of the activity, fragments can also be retained, much like retained objects.

Outlining the Retained Fragments Approach
The approach in this solution is to use a headless retained fragment as an anchor to
communicate between the activity and the AsyncTask. Here are the key aspects of this
approach:

1. Continue to use a fragment progress dialog, as in the solution before.

2. Have the activity create a headless retained fragment which then
holds a pointer to the AsyncTask. This headless retained fragment
takes the place of the retained object in the previous solution. Being a
retained fragment, the fragment object sticks around while the activity
is re-created with a new pointer. The AsyncTask then always relies on
the retained fragment to retrieve the most current activity pointer.

3. The AsyncTask relies on the headless retained fragment to be
informed of the activity state to accomplish all of the test cases
indicated in the previous solution.

333CHAPTER 15: Advanced AsyncTask and Progress Dialogs

Exploring Corresponding Key Code Snippets
We have already shown you the code for the fragment dialog during the previous solution.
As we continue to use the same object in this solution, we will focus on the retained
fragment and also how the AsyncTask uses the fragment dialog through the retained
fragment.

In the sample program (ProAndroid5_Ch15_TestAsyncTaskWithConfigChanges.zip) we have
provided in the download, we called the retained fragment AsyncTesterFragment.
Listing 15-13 shows the pseudocode for this class, which demonstrates, among other
things, what makes this class a headless fragment.

Listing 15-13. Pseudocode for a Headless Fragment

//The following code is in AsyncTesterFragment.java
//(ProAndroid5_Ch15_TestAsyncTaskWithConfigChanges.zip)
//You can start this task through menu item: Flip Dialog with Fragment
public class AsyncTesterFragment
extends Fragment (or another object that is derived from Fragment) {

 //No need to override the key onCreateView() method
 //which otherwise would have returned a view loaded from a layout.
 //Thus having no View makes this fragment a headless fragment

 //Use this name to register with the activity
 public static String FRAGMENT_NAME="AsyncTesterRetainedFragment";

 //Local variable for the asynctask. You can use a menu to start work on this task
 //Nullify this reference when the asynctask finishes
 MyLongTaskWithFragmentDialog taskReference;

 //Have an init method to help with inheritance
 public void init(arg1, arge2, etc) {
 super.init(arg1,...); //if there is one
 setArguments(....); //or pass the bundle to the super init
 }
 public static AsyncTesterFragment newInstance(arg1, arg2, ...){
 AsyncTesterFragment f = new AsyncTesterFragment();
 f.init(arg1,arg2,...);
 }
 //have more static methods to create the fragment, locate the fragment etc.
}

There are three things worth mentioning about the code in Listing 15-13. By not overriding
the onCreateView(), this fragment becomes a headless fragment. Because a fragment gets
re-created using its default constructor, we followed the newInstance() pattern and also
extended that pattern to use init() methods which can be virtual and inherited. This latter
approach is useful if you are extending the Fragment class in a deeper hierarchy.

Listing 15-14 shows a static method on this AsyncTesterFragment object that can create this
fragment, make it retain its state, and then register it with the activity.

334 CHAPTER 15: Advanced AsyncTask and Progress Dialogs

Listing 15-14. Registering a Fragment as a Retained Fragment

//The following code is in AsyncTesterFragment.java
//(ProAndroid5_Ch15_TestAsyncTaskWithConfigChanges.zip)
//You can start this task through menu item: Flip Dialog with Fragment
public static AsyncTesterFragment createRetainedAsyncTesterFragment(Activity act) {
 AsyncTesterFragment frag = AsyncTesterFragment.newInstance();
 frag.setRetainInstance(true);
 FragmentManager fm = act.getFragmentManager();
 FragmentTransaction ft = fm.beginTransaction();
 ft.add(frag, AsyncTesterFragment.FRAGMENT_TAG);
 ft.commit();
 return frag;
}

Once this retained fragment is available with the activity, it can be retrieved any time and
asked to start an AsyncTask. Listing 15-15 shows the pseudocode for the AsyncTask that is
able to interact with this retained fragment to control the fragment dialog

Listing 15-15. An AsyncTask That Uses a Fragment Dialog Through a Retained Fragment

//The following code is in MyLongTaskWithFragment.java
//(ProAndroid5_Ch15_TestAsyncTaskWithConfigChanges.zip)
//You can start this task through menu item: Flip Dialog with Fragment
public class MyLongTaskWithFragment extends AsyncTask<String,Integer,Integer> {
 //...other code
 //The following reference passed in and set from the constructor
 AsyncTesterFragment retainedFragment;

 //....other code
 @Override protected void onPreExecute() {
 other code
 //get the activity from the retained fragment
 Activity act = retainedFragment.getActivity();
 //Create the progress dialog
 ProgressDialogFragment pdf = new ProgressDialogFragment();
 //the show method will add and commit the fragment dialog
 pdf.show(act.getFragmentManager(), this.PROGRESS_DIALOG_FRAGMENT_TAG_NAME);
 }
 @Override protected void onProgressUpdate() {
 //if activity is available, get the fragment dialog from it, call setProgress() on it
 //otherwise ignore the progress
 }
 @Override protected void onPostExecute() {
 //if activity is in a good state
 //dismiss the dialog and tell the root RADO to drop the pointer to the AsyncTask
 //if not remember it through a flag to close it when you come back
 }
 @Override public void attach() {
 //called when the activity is back. check to see if this task is done
 //if so dismiss the dialog and remove yourself from the retained fragment
 //if not continue to update the progress
 }

335CHAPTER 15: Advanced AsyncTask and Progress Dialogs

 @Override protected Integer doInBackground(String...strings)
 {
 //Do the actual work here which occurs on a separate thread
 }
}

This AsyncTask in Listing 15-15 behaves much like the AsyncTask that used the retained
object. Once this task knows how to get access to the progress dialog fragment from the
retained fragment, it is pretty straightforward to set the progress on it. As before, this task
also needs to know when the activity is reattached in case the task is done beforehand.
If this happens, the AsyncTask needs to remember this and close the dialog on reattach.
The pseudocode in Listing 15-15 satisfies all the test conditions set forth earlier.

This concludes our second solution. Let’s shift now to the third solution, where we will use a
progress bar instead of a progress dialog to show the progress of an AsyncTask.

Using Retained Fragments and ProgressBars
Android SDK documentation on ProgressDialog (http://developer.android.com/guide/
topics/ui/dialogs.html) is recommending that we use a ProgressBar in a number of
scenarios instead as a better practice. The purported reason is that a progress bar is less
intrusive, as it allows interaction with other areas of the activity. A progress bar, like a progress
dialog, can be indeterminate or fixed in duration. It can also be a continuously revolving circle
or a horizontal bar. You can find these modes by looking up the docs for ProgressBar.
Listing 15-16 gives a quick rundown of a sampling of ProgressBar styles in a layout file.

Listing 15-16. Different Ways to Style a Progress Bar in a Layout File

//The following code is in spb_show_progressbars_activity_layout.xml
//(ProAndroid5_Ch15_TestAsyncTaskWithConfigChanges.zip)
//You can see these progress bars through menu item: Show Progress bars
<!-- A regular progress bar - A large spinning circle -->
<ProgressBar
 android:id="@+id/tpb_progressBar1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="@android:color/background_light"/>

<!-- Small spinning circle -->
<ProgressBar
 android:id="@+id/tpb_progressBar4"
 style="?android:attr/progressBarStyleSmall"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="@android:color/background_light"/>

<!-- Horizontal indefinite Progress bar: a line -->
<ProgressBar
 android:id="@+id/tpb_progressBar3"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="match_parent"

http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html

336 CHAPTER 15: Advanced AsyncTask and Progress Dialogs

 android:layout_height="wrap_content"
 android:indeterminate="true"
 />

 <!-- Horizontal fixed duration Progress bar: a line -->
 <ProgressBar
 android:id="@+id/tpb_progressBar3"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:indeterminate="false"
 android:max="50"
 android:progress="10"
 />

Figure 15-3 shows how the progress bar layouts shown in Listing 15-16 look when loaded
into an activity. Each type of progress bar is labeled to indicate its mode or behavior.
(Use menu item Show Progress Bars to invoke this view from project download ProAndroid5_
Ch15_TestAsyncTaskWithConfigChanges.zip.)

Figure 15-3. A sampling of progress bars in Android

337CHAPTER 15: Advanced AsyncTask and Progress Dialogs

Outlining the ProgressBar Approach
The approach to report the progress of an AsyncTask through a progress bar is similar to the
previous approach that used a retained headless fragment and a fragment progress dialog.

1. As in the previous solution, have the activity create a headless
retained fragment that holds a pointer to the AsyncTask.

2. Embed the progress bar in the activity layout. AsyncTask will get to
this progress bar through the headless retained fragment.

3. The AsyncTask relies on the headless retained fragment to be
informed of the activity state to accomplish all of the test cases
indicated earlier.

Walking Through Corresponding Key Code Snippets
Let’s walk through the key code snippets that you would need to make this solution work.
Let’s begin with the local variables the AsyncTask holds to interact with the retained fragment
and the activity (Listing 15-17).

Listing 15-17. Local Variables of an AsyncTask to Work with a ProgressBar

//The following code is in MyLongTaskWithProgressBar.java
//(ProAndroid5_Ch15_TestAsyncTaskWithConfigChanges.zip)
//You can start this task through menu item: Test ProgressBar
public class MyLongTaskWithProgressBar
extends AsyncTask<String,Integer,Integer>
implements IWorkerObject
{
 public String tag = null; //Debug tag
 private MonitoredFragment retainedFragment; //Reference to the retained fragment
 int curProgress = 0; //To track current progress
....

Listing 15-18 shows how the AsyncTask initializes the progress bar when it starts.

Listing 15-18. Initializing a ProgressBar

//Part of MyLongTaskWithProgressBar.java
private void showProgressBar() {
 Activity act = retainedFragment.getActivity();
 ProgressBar pb = (ProgressBar) act.findViewById(R.id.tpb_progressBar1);
 pb.setProgress(0);
 pb.setMax(15);
 pb.setVisibility(View.VISIBLE);
}

338 CHAPTER 15: Advanced AsyncTask and Progress Dialogs

Listing 15-19 shows how the AsyncTask sets the progress on the progress bar after locating it.

Listing 15-19. Setting Progress on a ProgressBar

//Part of MyLongTaskWithProgressBar.java
private void setProgressOnProgressBar(int i) {
 this.curProgress = i;
 ProgressBar pbar = getProgressBar();
 if (pbar == null) {
 Log.d(tag, "Activity is not available to set progress");
 return;
 }
 pbar.setProgress(i);
}

The method getProgressBar() that locates the activity is quite simple; you just use the
find() method to locate the ProgressBar view. If the activity is not available due to device
rotation, the ProgressBar reference will be null and we will ignore setting the progress.
Listing 15-20 shows how the AsyncTask closes the progress bar.

Listing 15-20. Closing the ProgressBar on AsyncTask Completion

//Part of MyLongTaskWithProgressBar.java
private void closeProgressBar(){
 ProgressBar pbar = getProgressBar();
 if (pbar == null) {
 Log.d(tag, "Sorry progress bar is null to close it!");
 return;
 }
 //Dismiss the dialog
 pbar.setVisibility(View.GONE);
 detachFromParent();
}

Once the ProgresBar is removed from the view, the code in Listing 15-20 informs the
retained fragment that it can let go of the AsyncTask pointer should it be holding it.
Depending on how the retained fragment holds this pointer, this step may or may not
be needed. But it is a good practice to tell the parent it no longer needs to hold on to a
reference that it doesn’t need anymore. So, Listing 15-21 shows how the AsyncTask informs
the parent that it no longer needs to hold a pointer to the AsyncTask.

Listing 15-21. Informing Clients, Like the Retained Fragment, of the Completion of AsyncTask

//To tell the called object that I, the AsyncTask, have finished
//The Activity or retained fragment can act as a client to this AsyncTask
//AsyncTask is imagined to be a WorkerObject and hence understands the IWorkerObjectClient

//MyLongTaskWithProgressBar implements IWorkerObject
//AsyncTesterFragment implements the IWorkerObjectClient

//Code below is taken from MyLongTaskWithProgressBar.java
//This implements the IWorkerObject contract

339CHAPTER 15: Advanced AsyncTask and Progress Dialogs

IWorkerObjectClient client = null;
int workerObjectPassbackIdentifier = -1;

public void registerClient(IWorkerObjectClient woc,
 int inWorkerObjectPassbackIdentifier) {
 client = woc;
 this.workerObjectPassbackIdentifier = inWorkerObjectPassbackIdentifier;
}
private void detachFromParent() {
 if (client == null) {
 Log.e(tag,"You have failed to register a client.");
 return;
 }
 //client is available
 client.done(this,workerObjectPassbackIdentifier);
}

Addressing Key Differences with the ProgressBar Solution
There are some unexpected differences you must be aware of when we use a progress bar
instead of a progress dialog.

Initially, in the layout file, visibility of the progress bar is set to GONE so that it represents
the state that the AsyncTask has not even started. Once the AsyncTask starts it will set the
visibility to VISIBLE and subsequently set the progress as it goes along. However, when the
activity is re-created, the state management of the activity requires that the control is visible
coming out of the onCreate() method. Because in the layout the visibility is set to be GONE,
the activity will not restore the progress bar state and you will not see the progress bar when
the device is rotated. Because of this, the AsyncTask needs to take over the control of this
progress bar state management and reinitialize it properly when the activity is reattached.
Listing 15-22 shows how we do this in the AsyncTask code.

Listing 15-22. Managing the ProgressBar State from the AsyncTask

//Taken from MyLongTaskWithProgressBar.java
//On activity start
public void onStart(Activity act) {
 //dismiss dialog if needed
 if (bDoneFlag == true) {
 Log.d(tag,"On my start I notice I was done earlier");
 closeProgressBar();
 return;
 }
 Log.d(tag,"I am reattached. I am not done");
 setProgressBarRightOnReattach();
}
private void setProgressBarRightOnReattach() {
 ProgressBar pb = getProgressBar();
 pb.setMax(15);
 pb.setProgress(curProgress);
 pb.setVisibility(View.VISIBLE);
}

340 CHAPTER 15: Advanced AsyncTask and Progress Dialogs

The onStart() method in Listing 15-22 is called by the retained fragment on the AsyncTask
when the activity is reattached to the retained fragment and the fragment detects that the
activity’s UI is ready to be used.

Another difference when using a progress bar is the behavior of the back button. Unlike a
progress dialog, for the activity, you may want to allow the back button. As the back button
completely removes the activity, you may want to take this opportunity to cancel the task.
The releaseResources()method in Listing 15-23 is called by the retained fragment when it
detects that the activity is not going to be back by monitoring the isFinishing() flag in the
onDestroy() method.

Listing 15-23. Cancelling the AsyncTask on Activity Back

//Taken from MyLongTaskWithProgressBar.java
public void releaseResources() {
 cancel(true); //cancel the task
 detachFromParent(); //remove myself
}

All three solutions outlined in this latter part of the chapter will work to correctly show the
progress of an AsyncTask. The SDK-recommended approach is to use the ProgressBar as
the right UI component to display the progress. Our preference for quick tasks that take just
a second or two is to use the progress bars as well. For a task that takes a little longer—and
you don’t want the user to disturb the state of the UI—then use the ProgressDialog in
conjunction with a headless retained fragment. When your solutions require a deep hierarchy
of objects, then use of the ADO framework could come handy irrespective of whether you
use them through retained fragments or through the retained objects. You can see all of the
solutions outlined here fully implemented in the downloadable project ProAndroid5_Ch15_
TestAsyncTaskWithConfigChanges.zip.

There are further considerations if the AsyncTask were doing updates and changing state.
If that is the case, you may want to use a background service so that it can be restarted
if the process is to be reclaimed and restarted later. The approaches presented here are
adequate for quick- to medium-level reads as you are expecting the user to wait. However,
for longer-time reads or writes, you may want to adapt a service-based solution.

References
The following references will help you learn more about the topics discussed in this chapter:

	http://developer.android.com/reference/android/os/AsyncTask.html:
A key resource that definitively documents the behavior of AsyncTask.

	http://www.shanekirk.com/2012/04/asynctask-missteps/: Another look
at a well-behaved AsyncTask.

	http://www.androidbook.com/item/3536: Research notes on AsyncTask
that we gathered in preparing this chapter.

	http://www.androidbook.com/item/3537: Android uses Java generics
often in its API. This URL documents a few basics on Java generics to
get you started.

http://developer.android.com/reference/android/os/AsyncTask.html
http://www.shanekirk.com/2012/04/asynctask-missteps/
http://www.androidbook.com/item/3536
http://www.androidbook.com/item/3537

341CHAPTER 15: Advanced AsyncTask and Progress Dialogs

	http://www.androidbook.com/fragments: As this chapter has
demonstrated, to work with an AsyncTask authoritatively you need to
know a lot about activity life cycle, fragments, their life cycle, headless
fragments, configuration changes, fragment dialogs, AsyncTask, ADOs,
and more. This URL has a number of articles focusing on all these areas.

	http://www.androidbook.com/item/4660: ADO is an abstraction that
one of our authors espoused as a handy tool to deal with configuration
change. This URL documents what ADOs are and how they could be
used, and it also provides a preliminary implementation.

	http://www.androidbook.com/item/4674: This URL documents the
background, helpful URLs, code snippets, and helpful hints to work with
a ProgressBar.

	http://www.androidbook.com/item/4680: This URL has a good bit of
research on activity life cycle in the event of configuration changes.

	http://www.androidbook.com/item/4665: It is quite hard to write
programs that work well when devices rotate. This URL outlines some
basic test cases you must successfully run for validating AsyncTask.

	http://www.androidbook.com/item/4673: This URL suggests an
enhanced pattern for constructing inherited fragments.

	http://www.androidbook.com/item/4629: The best way to understand
a fragment, including a retained fragment, is to study its callbacks
diligently. This URL provides documented sample code for all the
important callbacks of a fragment.

	http://www.androidbook.com/item/4668: The best way to understand
an activity life cycle is study its callbacks diligently. This URL provides
documented sample code for all the important activity callbacks.

	http://www.androidbook.com/item/3634: This URL outlines our research
on fragment dialogs.

	http://www.androidbook.com/proandroid5/projects: A list of
downloadable projects from this book is at this URL. For this chapter,
look for a zip file named ProAndroid5_Ch15_TestAsyncTask.zip and also
ProAndroid5_Ch15_TestAsyncTaskWithConfigChanges. The latter
zip file is the one that implements the three proposed solutions for a
well-behaved AsyncTask.

Summary
In this chapter, in addition to covering AsyncTask, we have introduced you to progress
dialogs, progress bars, headless retained fragments, and ADOs. Reading this chapter, you
not only understood AsyncTask but also got to apply your understanding of activity life cycle
and a deep understanding of fragments. We have also documented a set of key test cases
that must be satisfied for a well-behaved Android application.

http://www.androidbook.com/fragments
http://www.androidbook.com/item/4660
http://www.androidbook.com/item/4674
http://www.androidbook.com/item/4680
http://www.androidbook.com/item/4665
http://www.androidbook.com/item/4673
http://www.androidbook.com/item/4629
http://www.androidbook.com/item/4668
http://www.androidbook.com/item/3634
http://www.androidbook.com/proandroid5/projects

343

Chapter 16
Broadcast Receivers and
Long-Running Services

A broadcast receiver is another component in an Android process, along with activities,
content providers, and services. A broadcast receiver is a component that can respond
to a broadcast message sent by a client. This message is modeled as an intent. Further, a
broadcast message (intent) can be responded to by more than one receiver.

A client component such as an activity or a service uses the sendBroadcast(intent)
method, available on the Context class, to send a broadcast. Receiving components of the
broadcast intent will need to inherit from a BroadcastReceiver class available in the Android
SDK. These broadcast receivers need to be registered in the manifest file through a receiver
component tag to indicate that the receiver is interested in responding to a certain type of
broadcast intent.

Sending a Broadcast
Listing 16-1 shows sample code that sends a broadcast event. This code creates an intent
with a unique intent action string, puts an extra field called message on it, and calls the
sendBroadcast() method. Putting the extra on the intent is optional.

Listing 16-1. Broadcasting an Intent

//This code is in class: TestBCRActivity.java
//Project: TestBroadcastReceiver, Download: ProAndroid5_Ch16_TestReceivers.zip
private void testSendBroadcast(Activity activity) {
 //Create an intent with a unique action string
 String uniqueActionString = "com.androidbook.intents.testbc";
 Intent broadcastIntent = new Intent(uniqueActionString);

344 CHAPTER 16: Broadcast Receivers and Long-Running Services

 //Allow stand alone cross-processes that have broadcast receivers
 //in them to be started even though they are in stopped state.
 broadcastIntent.addFlags(Intent.FLAG_INCLUDE_STOPPED_PACKAGES);

 broadcastIntent.putExtra("message", "Hello world");
 activity.sendBroadcast(broadcastIntent);
}

In Listing 16-1, the action is an arbitrary identifier that suits your needs. To make this action
string unique, you may want to use a namespace similar to a Java package. Also, we will
talk about the cross-process FLAG_INCLUDE_STOPPED_PACKAGES later in this chapter in the
section called “Out-of-Process Receivers.”

Coding a Simple Receiver
Listing 16-2 shows a broadcast receiver that can respond to the broadcasted intent from
Listing 16-1.

Listing 16-2. Sample Broadcast Receiver Code

//This class is in TestBroadcastReceiver project in the download
//The download for this chapter is: ProAndroid5_Ch16_TestReceivers.zip
public class TestReceiver extends BroadcastReceiver {
 private static final String tag = "TestReceiver";
 @Override
 public void onReceive(Context context, Intent intent) {
 Log.d("TestReceiver", "intent=" + intent);
 String message = intent.getStringExtra("message");
 Log.d(tag, message);
 }
}

Creating a broadcast receiver is quite simple. Extend the BroadcastReceiver class and override
the onReceive() method. We are able to see the intent in the receiver and extract the message
from it. Next we need to register the broadcast receiver in the manifest file as a receiver.

Registering a Receiver in the Manifest File
Listing 16-3 shows how you can declare a receiver as the recipient of the intent whose
action is com.androidbook.intents.testbc.

Listing 16-3. A Receiver Definition in the Manifest File

<!--
In filename: AndroidManifest.xml
Project: TestBroadcastReceiver, Download: ProAndroid5_Ch16_TestReceivers.zip
-->
<manifest>
<application>

345CHAPTER 16: Broadcast Receivers and Long-Running Services

...
<activity>...</activity>
...
<receiver android:name=".TestReceiver">
 <intent-filter>
 <action android:name="com.androidbook.intents.testbc"/>
 </intent-filter>
</receiver>
...
</application>
</manifest>

The receiver element is a child node of the application element like the other component
nodes such as an activity.

With the receiver (Listing 16-2) and its registration in the manifest file (Listing 16-3) available,
you can invoke the receiver using the client code in Listing 16-1. We have included a
reference to the downloadable ZIP file ProAndroid5_Ch16_TestReceivers.zip for this chapter
at the end of this chapter. This ZIP file has two projects. The code referenced so far is in the
project TestBroadcastReceiver.

Accommodating Multiple Receivers
The idea of a broadcast is that there could be more than one receiver. Let’s replicate
TestReceiver (see Listing 16-2) as TestReceiver2 and see if both can respond to the same
broadcast message. The code for TestReceiver2 is presented in Listing 16-4.

Listing 16-4. Source code for TestReceiver2

//Filename: TestReceiver2.java
//Project: TestBroadcastReceiver, Download: ProAndroid5_Ch16_TestReceivers.zip
public class TestReceiver2 extends BroadcastReceiver {
 private static final String tag = "TestReceiver2";
 @Override
 public void onReceive(Context context, Intent intent) {
 Log.d(tag, "intent=" + intent);
 String message = intent.getStringExtra("message");
 Log.d(tag, message);
 }
}

Add this receiver to your manifest file as shown in Listing 16-5.

Listing 16-5. TestReceiver2 Definition in the Manifest File

<!--
In filename: AndroidManifest.xml
Project: TestBroadcastReceiver, Download: ProAndroid5_Ch16_TestReceivers.zip
-->
<receiver android:name=".TestReceiver2">
 <intent-filter>
 <action android:name="com.androidbook.intents.testbc"/>
 </intent-filter>
</receiver>

346 CHAPTER 16: Broadcast Receivers and Long-Running Services

Now, if you fire off the event as in Listing 16-1, both receivers will be called.

We have indicated in Chapter 13 that the main thread runs all the broadcast receivers that
belong to a single process. You can prove this by printing out the thread signature in each
of the receivers, including the main line invoking code. You will see the same thread running
through this code sequentially. The sendBroadcast() queues the broadcast message and
lets the main thread get back to its queue. Response to this queued message by a receiver
is carried out by the same main thread in order. When there are multiple receivers, it is not
good design to rely on the order of execution as to which receiver is invoked first.

Working with Out-of-Process Receivers
The intention of a broadcast is more likely that the process responding to it is an unknown
one and separate from the client process. You can prove this by replicating one of your
receivers presented so far and creating a separate .apk file from it. Then when you fire off
the event from Listing 16-1, you will see that both the in-process receivers (those that are in
the same project or .apk file) and out-of-process receivers (those that are in a separate .apk
file) are invoked. You will also see through the LogCat messages that the in-process and out-
of-process receivers run in their respective main threads.

However, after API 12 (Android 3.1) there are some wrinkles around broadcast receivers that
are in external processes. This is due to the launch model adapted by the SDK for security
concerns. You can read about this more in one of the reference links provided for this
chapter. With this change an application when installed will be in a stopped state. Intents
that can start components can now specify to target those applications that are only in
started state. By default the old behavior persists. However, for broadcast intents the system
automatically adds a flag to exclude applications that are in stopped state. To overcome the
previous point, one can explicitly set an intent flag on the broadcast intent to include those
stopped applications as valid targets. This is what you see in code Listing 16-1.

We have included an additional separate stand-alone project called
StandaloneBroadcastReceiver in the chapter’s downloadable ZIP file ProAndroid5_
Ch16_TestReceivers.zip to test this concept. To try it, you have to deploy both
the invoking project TestBroadcastReceiver and the stand-alone receiver’s project
StandloneBroadcastReceiver on the emulator. You can then use the TestBroadcastReceiver
project to send the broadcast event and monitor the LogCat for the receivers responding
from the StandaloneBroadcastReceiver.

Using Notifications from a Receiver
Broadcast receivers often need to communicate to the user about something that happened
or as a status. This is usually done by alerting the user through a notification icon in the
system-wide notification bar. We will now show you how to create a notification from a
broadcast receiver, send it, and view it through the notification manager.

347CHAPTER 16: Broadcast Receivers and Long-Running Services

Monitoring Notifications Through the Notification Manager
Android shows icons of notifications as alerts in the notification area. The notification area
is located at the top of device in a strip that looks like Figure 16-1. The look and placement
of the notification area may change based on whether the device is a tablet or a phone and
may at times also change based on Android release.

Figure 16-1. Android notification icon status bar

The notification area shown in Figure 16-1 is called the status bar. It contains system
indicators such as battery strength, signal strength, and so on. When we deliver a
notification, the notification will appear as an icon in the area shown in Figure 16-1.
The notification icon is illustrated in Figure 16-2.

Figure 16-2. Status bar showing a notification icon

The notification icon is an indicator to the user that something needs to be observed. To see
the full notification, you have to hold a finger on the icon and drag the title strip shown in
Figure 16-2 down like a curtain. This will expand the notification area, as shown in Figure 16-3.

348 CHAPTER 16: Broadcast Receivers and Long-Running Services

Figure 16-3. Expanded notification view

In the expanded view of the notification in Figure 16-3, you get to see the details supplied
to the notification. You can click the notification detail to fire off the intent to bring up the full
application to which the notification belongs. You can use this view to clear notifications.
Also depending on the device and release there may be alternate ways of opening the
notifications. Let’s see now how to generate a notification icon like the one shown in
Figures 16-2 and 16-3.

Sending a Notification
When you create a notification object, it needs to have the following elements:

An icon to display	

Ticker text like “hello world”	

The time when it is delivered	

349CHAPTER 16: Broadcast Receivers and Long-Running Services

Once you have a notification object constructed, you get the notification manager reference
by asking the context for a system service named Context.NOTIFICATION_SERVICE. Then you
ask the notification manager to send the notification. Listing 16-6 has the source code for a
broadcast receiver that sends the notification shown in Figures 16-2 and 16-2.

Listing 16-6. A Receiver That Sends a Notification

//Filename: NotificationReceiver.java
//Project: StandaloneBroadcastReceiver, Download: ProAndroid5_Ch16_TestReceivers.zip
public class NotificationReceiver extends BroadcastReceiver {
 private static final String tag = "Notification Receiver";
 @Override
 public void onReceive(Context context, Intent intent) {
 Log.d(tag, "intent=" + intent);
 String message = intent.getStringExtra("message");
 Log.d(tag, message);
 this.sendNotification(context, message);
 }
 private void sendNotification(Context ctx, String message) {
 //Get the notification manager
 String ns = Context.NOTIFICATION_SERVICE;
 NotificationManager nm =
 (NotificationManager)ctx.getSystemService(ns);
 //Prepare Notification Object Details
 int icon = R.drawable.robot;
 CharSequence tickerText = "Hello";
 long when = System.currentTimeMillis();
 //Get the intent to fire when the notification is selected
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse("http://www.google.com"));
 PendingIntent pi = PendingIntent.getActivity(ctx, 0, intent, 0);
 //Create the notification object through the builder
 Notification notification =
 new Notification.Builder(ctx)
 .setContentTitle("title")
 .setContentText(tickerText)
 .setSmallIcon(icon)
 .setWhen(when)
 .setContentIntent(pi)
 .setContentInfo("Addtional Information:Content Info")
 .build();
 //Send notification
 //The first argument is a unique id for this notification.
 //This id allows you to cancel the notification later
 //This id also allows you to update your notification
 //by creating a new notification and resending it against that id
 //This id is unique with in this application
 nm.notify(1, notification);
 }
}

http://www.google.com/

350 CHAPTER 16: Broadcast Receivers and Long-Running Services

The content view of a notification is displayed when the notification is expanded. This is
what you see in Figure 16-2. The content view needs to be a RemoteViews object. However,
we don’t pass a content view directly. Based on the parameters passed to the Builder
object, the Builder object creates an appropriate RemoteViews object and sets it on the
notification. The Builder interface also has a method to directly set the content view as a
whole if needed.

The steps for directly using remote views for a content view of a notification are as follows:

1. Create a layout file.

2. Create a RemoteViews object using the package name and the layout
file ID.

3. Call setContent() on the Notification.Builder object before calling
the build() method to create the notification object, which is then sent
to the notification manager.

Keep in mind that only a limited set of controls may participate in a remote view, such
as FrameLayout, LinearLayout, RelativeLayout, AnalogClock, Button, Chronometer,
ImageButton, ImageView, ProgressBar, TextView.

The code in Listing 16-6 creates a notification using the Builder object to set the implicit
content view (through title and text) and the intent to fire (in our case, this intent is the
browser intent). A new notification can be created to be resent through the notification
manager in order to update the previous instance of it using the unique ID of the notification.
The ID of the notification, which is set to 1 in Listing 16-6, is unique within this application
context. This uniqueness allows us to continuously update what is happening to that
notification and also cancel it if needed.

You may also want to look at the various flags available while creating a notification, such
as FLAG_NO_CLEAR and FLAG_ONGOING_EVENT, to control the persistence of these notifications.
You can use the following URL to check these flags:

http://developer.android.com/reference/android/app/Notification.html

Starting an Activity in a Broadcast Receiver
Although you’re advised to use the notification manager when a user needs to be informed,
Android does allow you to spawn an activity explicitly. You can do this by using the usual
startActivity() method but with the following flags added to the intent that is used as the
argument to the startActivity():

	Intent.FLAG_ACTIVITY_NEW_TASK

	Intent.FLAG_FROM_BACKGROUND

	Intent.FLAG_ACTIVITY_SINGLE_TOP

http://developer.android.com/reference/android/app/Notification.html

351CHAPTER 16: Broadcast Receivers and Long-Running Services

Exploring Long-Running Receivers and Services
So far, we have covered the happy path of broadcast receivers where the execution of a
broadcast receiver is unlikely to take more than 10 seconds. The problem space is a bit
complicated if we want to perform tasks that take longer than 10 seconds.

To understand why, let’s review a few facts about broadcast receivers:

A broadcast receiver, like other components of an Android process, runs 	
on the main thread. Hence holding up the code in a broadcast receiver
will hold up the main thread and will result in ANR. The time limit on a
broadcast receiver is 10 seconds compared to 5 seconds for an activity.
It is a bit of a reprieve, but not very much.

The process hosting the broadcast receiver will start and terminate 	
along with the broadcast receiver execution. Hence the process will not
stick around after the broadcast receiver’s onReceive() method returns.
Of course, this is assuming that the process contains only the broadcast
receiver. If the process contains other components, such as activities or
services, that are already running, then the lifetime of the process takes
these component life cycles into account as well.

Unlike a service process, a broadcast receiver process will not get 	
restarted.

If a broadcast receiver were to start a separate thread and return to the 	
main thread, Android will assume that the work is complete and will
shut down the process even if there are threads running, bringing those
threads to an abrupt stop.

Android automatically acquires a partial wake lock when invoking a 	
broadcast service and releases it when it returns from the service in the
main thread. A wake lock is a mechanism and an API class available in
the SDK to keep the device from going to sleep or to wake it up if it is
already asleep.

Given these predicates, how can we execute longer-running code in response to a
broadcast event?

Understanding Long-Running Broadcast Receiver Protocol
The answer lies in resolving the following:

We will clearly need a separate thread so that the main thread can get 	
back and avoid ANR messages.

To stop Android from killing the process and hence the worker thread, 	
we need to tell Android that this process contains a component, such
as a service, with a life cycle. So we need to create or start that service.
The service itself cannot directly do the work for more than 5 seconds
because that happens on the main thread, so the service needs to start
a worker thread and let the main thread go.

352 CHAPTER 16: Broadcast Receivers and Long-Running Services

For the duration of the worker thread’s execution, we need to hold on to 	
the partial wake lock so that the device won’t go to sleep. A partial wake
lock will allow the device to run code without turning on the screen and
so on, which allows for longer battery life.

The partial wake lock must be obtained in the main line code of the 	
receiver; otherwise, it will be too late. For example, you cannot do this
in the service, because it may be too late between the startService()
being issued by the broadcast receiver and the onStartCommand() of a
service that begins execution.

Because we are creating a service, the service itself can be brought 	
down and brought back up because of low-memory conditions. If this
happens, we need to acquire the wake lock again.

When the worker thread started by the 	 onStartCommand() method of the
service completes its work, it needs to tell the service to stop so that it
can be put to bed and not brought back to life by Android.

It is also possible that more than one broadcast event can occur. Given 	
that, we need to be cautious about how many worker threads we need
to spawn.

Given these facts, the recommended protocol for extending the life of a broadcast receiver
is as follows:

1. Get a (static) partial wake lock in the onReceive() method of the
broadcast receiver. The partial wake lock needs to be static to allow
communication between the broadcast receiver and the service.
There is no other way of passing a reference of the wake lock to the
service, as the service is invoked through a default constructor that
takes no parameters.

2. Start a local service so that the process won’t be killed.

3. In the service, start a worker thread to do the work. Do not do the
work in the onStart() method of the service. If you do, you are
basically holding up the main thread again.

4. When the worker thread is done, tell the service to stop itself either
directly or through a handler.

5. Have the service turn off the static wake lock.

Understanding IntentService
Recognizing the need for a service to not hold up the main thread, Android has provided a
utility local service implementation called IntentService to offload work to a worker thread
so that the main thread can be released after scheduling the work to the subthread. Under
this scheme, when you call startService() on an IntentService, the IntentService will
queue that request to a subthread using a looper and a handler so that a derived method of
the IntentService is called to do the actual work on a single worker thread.

353CHAPTER 16: Broadcast Receivers and Long-Running Services

Here is what the API documentation for IntentService says:

IntentService is a base class for Services that handle asynchronous
requests (expressed as Intents) on demand. Clients send requests through
startService(Intent) calls; the service is started as needed, handles each
Intent in turn using a worker thread, and stops itself when it runs out of work.
This “work queue processor” pattern is commonly used to offload tasks
from an application's main thread. The IntentService class exists to simplify
this pattern and take care of the mechanics. To use it, extend IntentService
and implement onHandleIntent(Intent). IntentService will receive the Intents,
launch a worker thread, and stop the service as appropriate. All requests
are handled on a single worker thread—they may take as long as necessary
(and will not block the application's main loop), but only one request will be
processed at a time.

This idea is demonstrated using a simple example in Listing 16-7. You extend the
IntentService and provide what you want to do in the onHandleIntent() method.

Listing 16-7. Using IntentService

//You can see file Test30SecBCRService.java for example
//Project: StandaloneBroadcastReceiver, Download: ProAndroid5_Ch16_TestReceivers.zip
public class MyService extends IntentService {
 public MyService()
 { super("some-java-package-like-name-used-for-debugging"); }
 protected void onHandleIntent(Intent intent) {
 //log thread signature if you want to see that it is running on a separate thread
 //Ex: Utils.logThreadSignature("MyService");
 //do the work in this subthread
 //and return
 }
}

Once you have a service like this, you can register this service in the manifest file and
use client code to invoke this service as context.startService(new Intent(context,
MyService.class)). This will result in a call to onHandleIntent() in Listing 16-7. You will
notice that if you were to use the commented out method Utils.logThreadSignature() in
Listing 16-7 in your actual code, it will print the ID of the worker thread and not the main
thread. You can see the Utils class in the project and download references listed in the
comments section of Listing 16-7.

Extending IntentService for a Broadcast Receiver
From the perspective of a broadcast receiver, an IntentService is a wonderful thing. It lets us
execute long-running code without blocking the main thread. Not only that, being a service,
an IntentService provides a process that keeps running when the broadcast code returns.
So can we use the IntentService for the needs of a long-running operation? Yes and no.

354 CHAPTER 16: Broadcast Receivers and Long-Running Services

Yes, because the IntentService does two things: First, it keeps the process running
because it is a service. Second, it lets the main thread go and avoids related ANR messages.

To understand the “no” answer, you need to understand wake locks a bit more. When a
broadcast receiver is invoked through an alarm manager, the device may not be on. So the
alarm manager partially turns on the device (just enough to run the code without any UI)
by making a call to the power manager and requesting a wake lock. The wake lock gets
released as soon as the broadcast receiver returns.

This leaves the IntentService invocation without a wake lock, so the device may go to sleep
before the actual code runs. However, IntentService, being a general-purpose extension
to a service, it does not acquire a wake lock. So we need further props on top of an
IntentService. We need an abstraction.

Mark Murphy has created a variant of the IntentService called WakefulIntentService
that keeps the semantics of using an IntentService but also acquires the wake lock and
releases it properly under a variety of conditions. You can look at his implementation at
http://github.com/commonsguy/cwac-wakeful.

Exploring Long-Running Broadcast Service Abstraction
WakefulIntentService is a good abstraction. However, we want to go a step further so that
our abstraction parallels the method of extending IntentService as in Listing 16-7 and does
everything that an IntentService does but also provides few more benefits:

Pass the original intent that was passed to the broadcast receiver to the 	
overridden method onHandleIntent. This allows us to largely hide the
broadcast receiver, simulating a programming experience that a service
is started in response to a broadcast message. This is really the goal for
this abstraction while some extras are thrown in.

Acquire and release wake locks (similar to 	 WakefulIntentService).

Deal with a service being restarted.	

Allow a uniform way to deal with the wake lock for multiple receivers 	
and multiple services in the same process.

We will call this abstract class ALongRunningNonStickyBroadcastService. As the name
suggests, we want this service to allow for long-running work. It will also be specifically built
for a broadcast receiver. This service will also be nonsticky (we will explain this concept later
in the chapter, but briefly, this indicates that Android will not start the service if there are no
messages in the queue). To allow for the behavior of an IntentService, it will extend the
IntentService and override the onHandleIntent method.

Combining these ideas, the abstract ALongRunningNonStickyBroadcastService service will
have a signature that looks like Listing 16-8.

http://github.com/commonsguy/cwac-wakeful

355CHAPTER 16: Broadcast Receivers and Long-Running Services

Listing 16-8. Long-Running Service Abstract Idea

public abstract class ALongRunningNonStickyBroadcastService extends IntentService {
//...other implementation details
//the following method will be called by the onHandleIntent of IntentService
//this is where the actual work happens in this derived abstract class
protected abstract void handleBroadcastIntent(Intent broadcastIntent);
//...other implementation details

}

The implementation details for this ALongRunningNonStickyBroadcastService are a touch
involved, and we will cover them soon after we explain why we are going after this type of
service. We want to demonstrate first the utility and simplicity of having it.

Once we have this abstract class of Listing 16-8, the MyService example in Listing 16-7 can
be rewritten as in Listing 16-9.

Listing 16-9. Long-Running Service Sample Usage

public class MyService extends ALongRunningNonStickyBroadcastService {
 //..other implementation details
 protected void handleBroadcastIntent(Intent broadcastIntent) {
 //You can use the following method to see which thread runs this code
 //Utils.logThreadSignature("MyService");
 //do the work here
 //and return
 }
 //..other implementation details
}

The simplicity of Listing 16-9 is that this code is invoked as soon as a client fires off a
broadcast intent. Especially the fact that you are receiving directly, unmodified, the same
intent that invoked the broadcast receiver. It is as if the broadcast receiver has disappeared
from the solution.

As you can see, you can extend this new long-running service class (just like IntentService
and WakefulIntentService) and override a single method and do very little to nothing in
the broadcast receiver. Your work will be done in a worker thread (thanks to IntentService)
without blocking the main thread.

Listing 16-9 is a simple example demonstrating the concept. Let’s turn to a more complete
implementation that implements a long-running service that can run for 60 seconds in
response to a broadcast event (proving that we can run for more than 10 seconds and avoid
an ANR message). We will call this service appropriately Test60SecBCRService (BCR stands
for broadcast receiver), and its implementation is shown in Listing 16-10.

Listing 16-10. Source code for Test60SecBCRService

//Filename: Test30SecBCRService.java
//Project: StandaloneBroadcastReceiver, Download: ProAndroid5_Ch16_TestReceivers.zip
public class Test60SecBCRService extends ALongRunningNonStickyBroadcastService {
 public static String tag = "Test60SecBCRService";

356 CHAPTER 16: Broadcast Receivers and Long-Running Services

 //Required by IntentService to pass the classname for debug needs
 public Test60SecBCRService(){
 super("com.androidbook.service.Test60SecBCRService");
 }
 /* Perform long-running operations in this method.
 * This is executed in a separate thread.
 */
 @Override
 protected void handleBroadcastIntent(Intent broadcastIntent) {
 //Utils class is in the download project mentioned
 Utils.logThreadSignature(tag);
 Log.d(tag,"Sleeping for 60 secs");
 //Use the thread to sleep for 60 seconds
 Utils.sleepForInSecs(60);
 String message =
 broadcastIntent.getStringExtra("message");
 Log.d(tag,"Job completed");
 Log.d(tag,message);
 }
}

As you can see, this code successfully simulates doing work for 60 seconds and still avoids
the ANR message. The utility methods in Listing 16-10 are self-explanatory and available in
the download projects for this chapter. The project name and download filename are in the
comments section of the code in Listing 16-10.

Designing A Long-Running Receiver
Once we have the long-running service in Listing 16-10, we need to be able to invoke
the service from a broadcast receiver. Again we are going after an abstraction to hide the
broadcast receiver as much as possible.

The first goal of a long-running broadcast receiver is to delegate the work to the
long-running service. To do this, the long-running receiver will need the class name of the
long-running service to invoke it. The second goal is to acquire a wake lock. The third goal
is to transfer the original intent that the broadcast receiver is invoked on to the service.
We will do this by sticking the original intent as a Parcelable in the intent extras. We will
use original_intent as the name for this extra. The long-running service then extracts
original_intent and passes it to the overridden method of the long-running service (you will
see this later in the implementation of the long-running service). This facility thus gives the
impression that the long-running service is indeed an extension of the broadcast receiver.

Let us abstract out these three things and provide a base class. The only bit of information
this long-running receiver abstraction needs is the name of the long-running service class
(LRSClass) through an abstract method called getLRSClass().

Putting these needs together, source code for the implementation of the abstract class
ALongRunningReceiver is in Listing 16-11.

357CHAPTER 16: Broadcast Receivers and Long-Running Services

Listing 16-11. ALongRunningReceiver Abstraction

//Filename: ALongRunningReceiver.java
//Project: StandaloneBroadcastReceiver, Download: ProAndroid5_Ch16_TestReceivers.zip
public abstract class ALongRunningReceiver extends BroadcastReceiver {
 private static final String tag = "ALongRunningReceiver";
 @Override
 public void onReceive(Context context, Intent intent) {
 Log.d(tag,"Receiver started");
 //LightedGreenRoom abstracts the Android WakeLock
 //to keep the device partially on.
 //In short this is equivalent to turning on
 //or acquiring the wake lock.
 LightedGreenRoom.setup(context);
 startService(context,intent);
 Log.d(tag,"Receiver finished");
 }
 private void startService(Context context, Intent intent) {
 Intent serviceIntent = new Intent(context,getLRSClass());
 serviceIntent.putExtra("original_intent", intent);
 context.startService(serviceIntent);
 }
 /*
 * Override this method to return the
 * "class" object belonging to the
 * nonsticky service class.
 */
 public abstract Class getLRSClass();
}

In the preceding broadcast receiver code, you see references to a class called
LightedGreenRoom. This is a wrapper around a static wake lock. In addition to being a wake
lock, this class tries to cater to working with multiple receivers, multiple services, etc., so
that all waki-ness is properly coordinated. For the purpose of understanding, you can treat
it as if it is a static wake lock. This abstraction is called a LightedGreenRoom because it is
aimed at saving power for the device like the various “green” movements. Furthermore it is
called “Lighted” because it starts off being “lighted” first as the broadcast receiver turns it
on as soon as it is kicked off. The last service to use it will turn it off.

Once the receiver abstraction is available, you’ll need a receiver that works hand in hand
with the 60-second long-running service in Listing 16-11. Such a receiver is provided in
Listing 16-12.

Listing 16-12. A Sample Long-Running Broadcast Receiver, Test60SecBCR

//Filename: Test60SecBCR.java
//Project: StandaloneBroadcastReceiver, Download: ProAndroid5_Ch16_TestReceivers.zip
public class Test60SecBCR extends ALongRunningReceiver {
 @Override
 public Class getLRSClass() {
 Utils.logThreadSignature("Test60SecBCR");
 return Test60SecBCRService.class;
 }
}

358 CHAPTER 16: Broadcast Receivers and Long-Running Services

Just like the service abstraction in Listings 16-10 and 16-11, the code in Listing 16-12
uses an abstraction for the broadcast receiver. The receiver abstraction starts the service
indicated by the service class returned by the getLRSClass() method.

Thus far, we have demonstrated why we needed the two important abstractions to
implement long-running services invoked by broadcast receivers:

	ALongRunningNonStickyBroadcastService (Listing 16-8)

	ALongRunningReceiver (Listing 16-11)

Abstracting a Wake Lock with LightedGreenRoom
As mentioned earlier, the primary purpose of the LightedGreenRoom abstraction is to simplify
the interaction with the wake lock, and a wake lock is used to keep the device on during
background processing. You really don’t need the details of the implementation of the
LightedGreenRoom, but merely its interface and the calls that are made against it. Just
keep in mind that it is a thin wrapper around the Android SDK wake lock. In its simplest
implementation, it can just be as simple as turning the wake lock on (acquire) and off
(release). Listing 16-13 shows how a wake lock is used typically as stated in the SDK.

Listing 16-13. Psuedocode for working with the WakeLock API

//Get access to the power manager service
PowerManager pm =
 (PowerManager)inCtx.getSystemService(Context.POWER_SERVICE);

//Get hold of a wake lock
PowerManager.WakeLock wl =
 pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK, tag);

//Acquire the wake lock
wl.acquire();

//do some work
//while this work is being done the device will be on partially

//release the Wakelock
wl.release();

Given this interaction, the broadcast receiver is supposed acquire the lock, and when the
long-running service is finished, it needs to release the lock. As said earlier there is no good
way to pass the wake lock variable to the service from the broadcast receiver. The only way
the service knows about this wake lock is to use a static or application-level variable.

Another difficulty in acquiring and releasing a wake lock is the reference count. As a
broadcast receiver is invoked multiple times, if the invocations overlap, there are going to
be multiple calls to acquire the wake lock. Similarly, there are going to be multiple calls to
release. If the number of acquire and release calls don’t match, we will end up with a wake
lock that at worst keeps the device on for far longer than needed. Also, when the service is
no longer needed and the garbage collection runs, if the wake lock counts are mismatched,

359CHAPTER 16: Broadcast Receivers and Long-Running Services

there will be a runtime exception in the LogCat. These issues have prompted us to do our
best to abstract the wake lock as a LightedGreenRoom to ensure proper usage. There will be
one of these objects per process that keeps a wake lock and ensures it is turned on and off
properly. The included project has an implementation for this class. If you find that code too
complicated due to the number of conditions it takes into account, you can just start with a
simple static variable and turn it on and off as the service starts and closes and refine it to
suit your particular conditions.

A reasonable approach for the broadcast receiver and the service to communicate with each
other is through a static variable. Instead of making WakeLock static, we have made the entire
LightedGreenRoom a static instance. However, every other variable inside LightedGreenRoom
stays local and nonstatic.

Every public method of LightedGreenRoom is also exposed as a static method for
convenience. We have used the convention of naming these methods starting with "s_".
You can choose, instead, to get rid of the static methods and directly call the single object
instance of LightedGreenRoom.

Implementing a Long-Running Service
To present the long-running service abstraction, we have to take one more detour to explain
the lifetime of a service and how it relates to the implementation of onStartCommand. This is
the method that is ultimately responsible for starting the worker thread and the semantics of
a service.

When a service is started through startService, the service gets created first, and its
onStartCommand method is called. Android has provisions to keep this process in memory
so that the service can be completed even when serving multiple incoming client requests.
However, under demanding memory conditions, Android may choose to reclaim the process
and call the onDestroy() method of the service.

Note Android tries to call the onDestroy() method for a service to reclaim its resources when
the service is not executing its onCreate(), onStart(), or onDestroy() method, or in other
words when the service is idle.

However, unlike an activity that is shut down, a service is scheduled to restart again when
resources are available if there are pending startService intents in the queue. The service
will be woken up and the next intent delivered to it via onStartCommand(). Of course,
onCreate() will be called when the service is brought back.

Because services are automatically restarted if they are not explicitly stopped, it is
reasonable to think that, unlike activities and other components, a service component is
fundamentally a sticky component.

360 CHAPTER 16: Broadcast Receivers and Long-Running Services

Understanding a Nonsticky Service
A service will not be automatically restarted if a client explicitly calls stopService. Depending
on how many clients are still connected, this stopService method can move the service into
a stopped state, at which time the service’s onDestroy method is called and the service life
cycle is complete. Once a service has been stopped like this by its last client, the service will
not be brought back.

This protocol works well when everything happens as per design, where start and stop
methods are called and executed in sequence and without a miss. Prior to Android 2.0,
devices have seen a lot of services hanging around and claiming resources even though
there was no work to be done, meaning Android brought the services back into memory
even though there were no messages in the queue. This would have happened when
stopService was not invoked either because of an exception or because the process was
taken out between onStartCommand and stopService.

Android 2.0 introduced a solution so that we can indicate to the system, if there are no
pending intents, that it shouldn’t bother restarting the service. This is done by returning the
nonsticky flag (Service.START_NOT_STICKY) from onStartCommand.

However, nonsticky is not really that nonsticky. Even if we mark the service as nonsticky, if
there are pending intents, Android will bring the service back to life. This setting applies only
when there are no pending intents.

Understanding a Sticky Service
What does it mean for a service to be really sticky then? The sticky flag (Service.START_
STICKY) means that Android should restart the service even if there are no pending intents.
When the service is restarted, call onCreate and onStartCommand with a null intent.
This will give the service an opportunity, if need be, to call stopSelf if that is appropriate.
The implication is that a service that is sticky needs to deal with null intents on restarts.

Understanding Redeliver Intents Option
Local services in particular follow a pattern where onStart and stopSelf are called in pairs.
A client calls onStart. The service, when it finishes that work, calls stopSelf. If a service
takes, say, 30 minutes to complete a task, it will not call stopSelf for 30 minutes. Meanwhile,
the service is reclaimed due to low-memory conditions and higher-priority jobs. If we use the
nonsticky flag, the service will not wake up, and we would never have called stopSelf.

Many times, this is OK. However, if you want to make sure whether these two calls happen
for sure, you can tell Android not to unqueue the start event until stopSelf is called.
This ensures that when the service is reclaimed, there is always a pending event unless the
stopSelf is called. This is called redeliver mode, and it can be indicated in reply to the
onStartCommand method by returning the Service.START_REDELIVER_INTENT flag.

361CHAPTER 16: Broadcast Receivers and Long-Running Services

Coding a Long-Running Service
Now that you have the background on IntentService, service-start flags, and the lighted
green room, we’re ready to take a look at the long-running service in Listing 16-14.

Listing 16-14. A Long-Running Service Abstraction

//Filename: ALongRunningNonStickyBroadcastService.java
//Project: StandaloneBroadcastReceiver, Download: ProAndroid5_Ch16_TestReceivers.zip
public abstract class ALongRunningNonStickyBroadcastService
extends IntentService {
 public static String tag = "ALongRunningBroadcastService";
 //This is what you override to do your work
 protected abstract void
 handleBroadcastIntent(Intent broadcastIntent);

 public ALongRunningNonStickyBroadcastService(String name){
 super(name);
 }
 /*
 * This method can be invoked under two circumstances
 * 1. When a broadcast receiver issues a "startService"
 * 2. when android restarts this service due to pending "startService" intents.
 *
 * In case 1, the broadcast receiver has already
 * set up the "lightedgreenroom" and thereby gotten the wake lock
 *
 * In case 2, we need to do the same.
 */
 @Override
 public void onCreate() {
 super.onCreate();

 //Set up the green room
 //The setup is capable of getting called multiple times.
 LightedGreenRoom.setup(this.getApplicationContext());

 //It is possible that more than one service of this type is running.
 //Knowing the number will allow us to clean up the wake locks in ondestroy.
 LightedGreenRoom.s_registerClient();
 }
 @Override
 public int onStartCommand(Intent intent, int flag, int startId) {
 //Call the IntentService "onstart"
 super.onStart(intent, startId);

 //Tell the green room there is a visitor
 LightedGreenRoom.s_enter();

362 CHAPTER 16: Broadcast Receivers and Long-Running Services

 //mark this as nonsticky
 //Means: Don't restart the service if there are no
 //pending intents.
 return Service.START_NOT_STICKY;
 }
 /*
 * Note that this method call runs in a secondary thread setup by the IntentService.
 *
 * Override this method from IntentService.
 * Retrieve the original broadcast intent.
 * Call the derived class to handle the broadcast intent.
 * finally tell the lighted room that you are leaving.
 * if this is the last visitor then the lock
 * will be released.
 */
 @Override
 final protected void onHandleIntent(Intent intent) {
 try {
 Intent broadcastIntent
 = intent.getParcelableExtra("original_intent");
 handleBroadcastIntent(broadcastIntent);
 }
 finally {
 //release the wake lock if you are the last one
 LightedGreenRoom.s_leave();
 }
 }
 /* If Android reclaims this process, this method will release the lock
 * irrespective of how many visitors there are.
 */
 @Override
 public void onDestroy() {
 super.onDestroy();
 //Do any cleanup, if needed, when a service no longer needs a wake lock
 LightedGreenRoom.s_unRegisterClient();
 }
}

This class extends IntentService and gets all the benefits of a worker thread as set up by
IntentService. In addition, it specializes the IntentService further so that it is set up as a
nonsticky service. From a developer’s perspective, the primary method to focus on is the
abstract handleBroadcastIntent() method. Listing 16-15 shows you how to set up the
receiver and the corresponding service in the manifest file.

Listing 16-15. The Long-Running Receiver and Service Definition

<!--
In filename: AndroidManifest.xml
Project: StandaloneBroadcastReceiver, Download: ProAndroid5_Ch16_TestReceivers.zip
-->
<manifest...>
......

363CHAPTER 16: Broadcast Receivers and Long-Running Services

<application....>
<receiver android:name=".Test60SecBCR">
 <intent-filter>
 <action android:name="com.androidbook.intents.testbc"/>
 </intent-filter>
</receiver>
<service android:name=".Test60SecBCRService"/>
</application>
.....
<uses-permission android:name="android.permission.WAKE_LOCK"/>
</manifest>

Notice that you will need the wake lock permission to run this long-running receiver
abstraction. Complete source code for all of the receivers and long-running services is
available in the downloadable projects for this chapter. Listing 16-15 brings out the essence
of the long-running services invoked by a broadcast receiver. This abstraction states that
you write a couple of lines to create a receiver like the Test60SecBCR (Listing 16-12), and
then write a java method similar to the one in code Test60SecBCRService (Listing 16-10).
Given the receiver and the java method that you want to run for a long time, you can execute
that method in response to the broadcast event. This abstraction ensures that the method
then can run as long as it takes without producing an ARM. The abstraction takes care of
a) keeping the process alive, b) calling the service, c) taking care of the wake lock, and d)
transferring the broadcast intent to the service. In the end this abstraction simulates “calling
a method that can execute without time limits” from a broadcast event.

Additional Topics in Broadcast Receivers
Due to space limitations, we are not able to cover all aspects of broadcast receivers in this
book. One topic we haven’t covered at all is the security opportunities available to restrict
both sending and receiving broadcasts. You can use the export attribute on a receiver to
allow whether it can be invoked from external processes or not. You can also enable or
disable a receiver either through the manifest file or programmatically. We have also not
covered a method called sendOrderBroadcast that facilitates calling broadcast receivers in
an order including chaining them. You can read up on these aspects from the main API docs
for the BroadcastReceiver class.

Furthermore, in version 4 of the Android support library SDK there is a class called
LocalBroadcastManager that is used to optimize calls to broadcast receivers that are strictly
local. Being local, all security limitations need not be considered. As per the SDK, there is
also system-level optimization for when this class is used.

Also in version 4 of the Android support library SDK, there is a class called
WakefulBroadcastReceiver that encapsulates some of the same concepts that we have
covered for long-running service needs.

364 CHAPTER 16: Broadcast Receivers and Long-Running Services

References
Here are helpful references to the topics that are covered in this chapter:

	http://developer.android.com/reference/android/content/
BroadcastReceiver.html: The BroadcastReceiver API. You will
find at this link more about ordered broadcasts and about the
BroadcastReceiver life cycle. This is an excellent resource.

	http://developer.android.com/reference/android/support/v4/
content/WakefulBroadcastReceiver.html: Android API reference.

	http://developer.android.com/reference/android/support/v4/
content/LocalBroadcastManager.html: Android API reference.

	http://developer.android.com/reference/android/app/Service.html:
The Service API. This reference is especially good to have while working
with long-running services.

	http://developer.android.com/reference/android/app/
NotificationManager.html: The NotificationManager API.

	http://developer.android.com/reference/android/app/Notification.
html: The Notification API. You will see here the various options
available for working with a notification, such as content views and
sound effects.

	http://developer.android.com/reference/android/widget/
RemoteViews.html: The RemoteViews API. RemoteViews are used to
construct custom detailed views of notifications.

	http://www.androidbook.com/item/3514: Authors’ research on
long-running services.

	http://www.androidbook.com/item/3482: Authors’ research on
broadcast receivers. This note also explains how to start an activity from
a receiver.

	http://www.androidbook.com/proandroid5/projects: A list of
downloadable projects from this book. For this chapter, look for a ZIP
file named ProAndroid5_Ch16_TestReceivers.zip. This ZIP file has two
projects: TestBroadcastReceiver and StandaloneBroadcastReceiver.
The latter is dependent on the former, so install them in that order. The
source code snippets in this chapter are annotated with their filenames
and in what projects they are available.

Summary
In this chapter, we have covered broadcast receivers, notification managers, and the role
of service abstraction in putting broadcast receivers to their best use. We also have given a
practical abstraction to simulate long running broadcast services out of broadcast receivers.

http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/support/v4/content/WakefulBroadcastReceiver.html
http://developer.android.com/reference/android/support/v4/content/WakefulBroadcastReceiver.html
http://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html
http://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/reference/android/app/Notification.html
http://developer.android.com/reference/android/app/Notification.html
http://developer.android.com/reference/android/widget/RemoteViews.html
http://developer.android.com/reference/android/widget/RemoteViews.html
http://www.androidbook.com/item/3514
http://www.androidbook.com/item/3482
http://www.androidbook.com/proandroid5/projects

365

Chapter 17
Exploring the Alarm Manager

In Android an intent object is used to start a UI activity, a background service, or a broadcast
receiver. Normally these intents are triggered by user actions. In Android you can also use
alarms to trigger broadcast intents, mind you, only broadcast intents. The invoked broadcast
receivers then can choose to start an activity or a service.

In this chapter you will learn about the alarm manager API. Alarm manager API is used to
schedule a broadcast intent to go off at a particular time. We will refer to this process of
scheduling a broadcast intent at a particular time as setting an alarm.

We will also show you how to schedule alarms that repeat at regular intervals. We will show
you how to cancel alarms that are already set.

When an intent object is stored to be used at a later time, it is called a pending intent. As alarm
managers use pending intents all the time you will get to see the usage and intricacies of
pending intents as well in this chapter.

Setting Up a Simple Alarm
We will start the chapter with setting an alarm at a particular time and having it call a
broadcast receiver. Once the broadcast receiver is invoked, you can use the information
from Chapter 16 to perform both simple and long-running operations in that broadcast
receiver.

Getting access to the alarm manager is simple and is shown in Listing 17-1.

Listing 17-1. Getting Access to an Alarm Manager

//In filename: SendAlarmOnceTester.java
AlarmManager am =
 (AlarmManager)
 anyContextObject.getSystemService(Context.ALARM_SERVICE);

366 CHAPTER 17: Exploring the Alarm Manager

The variable anyContextObject refers to a context object. For example, if you are invoking
this code from an activity menu, the context variable will be the activity. To set the alarm for
a particular date and time, you will need an instance in time identified by a Java Calendar
object. Listing 17-2 shows a utility function that gives you a calendar object for some
specified time instant after the current time.

Listing 17-2. A Few Useful Calendar Utilities

//In filename: Utils.java
public class Utils {
 public static Calendar getTimeAfterInSecs(int secs) {
 Calendar cal = Calendar.getInstance();
 cal.add(Calendar.SECOND,secs);
 return cal;
 }
}

In the downloadable project for this chapter, you will see lot more calendar-based utilities
to arrive at a time instance in a number of ways. Now, we need a receiver to set against the
alarm that we are planning to set. A simple receiver is shown in Listing 17-3.

Listing 17-3. TestReceiver to Test Alarm Broadcasts

//In filename: TestReceiver.java
public class TestReceiver extends BroadcastReceiver {
 private static final String tag = "TestReceiver";
 @Override
 public void onReceive(Context context, Intent intent) {
 Log.d (tag, "intent=" + intent);
 String message = intent.getStringExtra("message");
 Log.d(tag, message);
 }
}

You will need to register this receiver in the manifest file using the <receiver> tag, as shown
in Listing 17-4. Receivers are covered in detail in Chapter 16.

Listing 17-4. Registering a Broadcast Receiver

<!-- In filename: AndroidManifest.xml -->
<receiver android:name=".TestReceiver"/>

In Android an alarm is really a broadcast intent that is scheduled for a later time. What
receiver component this intent should invoke is explicitly (through its classname) specified
in the intent. Listing 17-5 shows an intent that can be used to invoke the broadcast receiver
that we had in Listing 17-3.

367CHAPTER 17: Exploring the Alarm Manager

Listing 17-5. Creating an Intent Pointing to TestReceiver

//In filename: SendAlarmOnceTester.java
Intent intent = new Intent(mContext, TestReceiver.class);
intent.putExtra("message", "Single Shot Alarm");

We also have an opportunity to load the intent with “extras” while creating this intent.
Because an alarm manager stores an intent for a later use, we need to create a pending
intent out of this intent of Listing 17-5. Listing 17-6 shows how to create a pending intent
from a standard intent.

Listing 17-6. Creating a Pending Intent

//In filename: SendAlarmOnceTester.java
PendingIntent pendingIntent =
 PendingIntent.getBroadcast(
 mContext, //context, or activity, or service
 1, //request id, used for disambiguating this intent
 intent, //intent to be delivered
 0); //pending intent flags

Notice that we have asked the PendingIntent class to construct a pending intent that is
suitable for a broadcast explicitly. The other variations of creating a pending intent are listed
in Listing 17-7:

Listing 17-7. Multiple APIs for Creating a Pending Intent

//useful to start an activity
PendingIntent activityPendingIntent = PendingIntent.getActivity(..args..);
//useful to start a service
PendingIntent servicePendingIntent = PendingIntent.getService(..args..);

In Listing 17-7, arguments to the methods getActivity() and getService() are similar to
the arguments to the getBroadcast() method in Listing 17-6. Note that alarms require a
broadcast pending intent and not an activity pending intent or a service pending intent.

We will discuss the request id argument, which we set to 1 in Listing 17-6, in greater detail
later in the chapter. Briefly, it is used to separate two intent objects that are equal in all
other respects.

Pending intent flags have little or no influence on the alarm manager. Recommendation
is to use no flags at all and use 0 for their values. These intent flags are typically useful in
controlling the lifetime of the pending intent. However, in this case, the lifetime is maintained
by the alarm manager. For example, to cancel a pending intent, you ask the alarm manager
to cancel it.

Once we have the time instance in milliseconds as a Calendar object and the pending intent
pointing to the receiver, we can set up an alarm by calling the set() method of the alarm
manager. This is shown in Listing 17-8.

368 CHAPTER 17: Exploring the Alarm Manager

Listing 17-8. Using the Alarm Manager set() Method

//In filename: SendAlarmOnceTester.java
Calendar cal = Utils.getTimeAfterInSecs(30);
//...other code that gets the pendingintent etc
am.set(AlarmManager.RTC_WAKEUP,
 cal.getTimeInMillis(),
 pendingIntent);

The first argument to the set()method indicates the wakeup nature of the alarm and also the
reference clock that we are going to be using for the alarm. Possible values for this argument
are AlarmManager.RTC_WAKEUP, AlarmManager.RTC, AlarmManager.ELAPSED_REALTIME,
AlarmManager.ELAPSED_REALTIME_WAKEUP.

The elapsed word in these constants refers to the time in milliseconds since the device is
recently booted. So, it refers to the device clock. The RTC time refers to the human clock/
time that you see on the device when you check your clock on the device. The WAKEUP word
in these constants refers to the nature of the alarm, such as whether the alarm should wake
up the device or just deliver it at the first opportunity when the device eventually wakes up.
Taken together, the RTC_WAKEUP indicates the use of real-time clock and the device should
wake up. The constant ELAPSED_REALTIME means use the device clock and don’t wake up
the device; instead, deliver the alarm at the first opportunity.

When this method of Listing 17-8 is called, the alarm manager will invoke the TestReceiver
in Listing 17-3, 30 seconds after the calendar time when the method was called and also
wakes up the device if it is asleep.

Setting Off an Alarm Repeatedly
Let’s now consider how we can set an alarm that goes of repeatedly; see Listing 17-9.

Listing 17-9. Setting a Repeating Alarm

public void sendRepeatingAlarm() {
 Calendar cal = Utils.getTimeAfterInSecs(30);

 //Get an intent to invoke the receiver
 Intent intent = new Intent(this.mContext, TestReceiver.class);
 intent.putExtra("message", "Repeating Alarm");

 int requestid = 2;
 PendingIntent pi = this.getDistinctPendingIntent(intent, requestid);
 // Schedule the alarm!
 AlarmManager am =
 (AlarmManager)
 this.mContext.getSystemService(Context.ALARM_SERVICE);

 am.setRepeating(AlarmManager.RTC_WAKEUP,
 cal.getTimeInMillis(),
 5*1000, //5 secs repeat
 pi);
}

369CHAPTER 17: Exploring the Alarm Manager

protected PendingIntent getDistinctPendingIntent(Intent intent, int requestId) {
 PendingIntent pi =
 PendingIntent.getBroadcast(
 mContext, //context, or activity
 requestId, //request id
 intent, //intent to be delivered
 0);
 return pi;
}

Key elements of the code in Listing 17-9 are highlighted. A repeating alarm is set by invoking
the setRepeating() method on the alarm manager object. The primary input to this method
is a pending intent pointing to a receiver. We have used the same intent that was created
in Listing 17-5, the one pointing to the TestReceiver. However, when we make a pending
intent out of the intent in Listing 17-5, we alter the unique request code to a value of 2. If we
don’t do this, we will see a bit of odd behavior which we shall explain now. Say we intend
to invoke the same receiver through two different alarms: one alarm that goes off only once
and another alarm that goes off repeatedly. Because both alarms target the same receiver
they need to be using an intent that points to the same receiver. Two intents that point to the
same receiver, without any other difference between them, is considered the same intent.
So, when we tell the alarm manager to set the alarm on intent 1 as a one-time alarm and
then set the alarm on intent 2 as a repeated alarm, we might be under the impression that
they are two different alarms. Internally, however, both alarms point to the same intent value,
as intent 1 and intent 2 are the same in their values. This is why an alarm is practically the
same as its intent on which it is set (especially by value). As a result, the later alarm overrides
the first alarm if the intents are equivalent.

Again, two intents are considered the same if they have the same action, type, data,
categories, or class. The extras are not included in figuring out the uniqueness of intents.
Further, two pending intents are considered the same if their underlying intents are the same
and the request IDs match. Because we can use the request ID to distinguish two pending
intents, the code in Listing 17-8 overcomes the similarity of source intents by using the
request id argument. This request id argument to the PendingIntent API will separate one
pending intent from the other pending intent when all else matches.

This all should make sense if you were to see the pending intent (by value not by its Java
object reference) itself as the alarm on which you are setting different times.

Cancelling an Alarm
Code in Listing 17-10 is used to cancel an alarm.

Listing 17-10. Cancelling a Repeating Alarm

public void cancelRepeatingAlarm() {
 //Get an intent that was originally
 //used to invoke TestReceiver class
 Intent intent = new Intent(this.mContext, TestReceiver.class);

370 CHAPTER 17: Exploring the Alarm Manager

 //To cancel, extra is not necessary to be filled in
 //intent.putExtra("message", "Repeating Alarm");

 PendingIntent pi = this.getDistinctPendingIntent(intent, 2);

 // Cancel the alarm!
 AlarmManager am =
 (AlarmManager)
 this.mContext.getSystemService(Context.ALARM_SERVICE);
 am.cancel(pi);
}

To cancel an alarm, we have to construct a pending intent first and then pass it to the alarm
manager as an argument to the cancel() method. However, you must pay attention to make
sure that the PendingIntent is constructed the exact same way when setting the alarm,
including the request code and targeted receiver.

In constructing the cancel intent, you can ignore the intent extras from the original intent
(Listing 17-10), because intent extras don’t play a role in the uniqueness of an intent, and
hence cancelling that intent.

Understanding Exactness of Alarms
Prior to API 19, Android fired the alarms as close as possible to the specified time. Since
API 19, alarms that are close to each other are bundled for battery life. If you need the older
behavior, there is a version of set() method called setExact(). There is also a method
called setWindow() that allows room for efficiencies and also allows a guaranteed window.
Similarly, the method setRepeating() is now inexact. Unlike the setExact() method, there
is no exact version for setRepeating(). If you have such a need, you have to use the
setExact() and repeat it yourself multiple times.

Understanding Persistence of Alarms
Another note on alarms is that they are not saved across device reboots. This means
you will need to save the alarm settings and pending intents in a persistent store and
reregister them based on device reboot broadcast actions, and possibly time-change
broadcast actions (e.g., intent.ACTION_BOOT_COMPLETED, intent.ACTION_TIME_CHANGED,
intent.ACTION_TIMEZONE_CHANGED).

References
The following references will help you learn more about the topics discussed in this chapter:

	http://developer.android.com/reference/android/app/AlarmManager.
html: The alarm manager API. You will see here signatures for methods
like set, setRepeating, and cancel.

http://developer.android.com/reference/android/app/AlarmManager.html
http://developer.android.com/reference/android/app/AlarmManager.html

371CHAPTER 17: Exploring the Alarm Manager

	http://developer.android.com/reference/android/app/PendingIntent.html:
How to construct a pending intent. Don’t pay too much attention to the
pending intent flags; they are not that critical to the alarm manager.

	http://androidbook.com/item/1040: Quick examples and references for
working with date and time classes.

	http://androidbook.com/item/3503: Our research on alarm managers.

	http://androidbook.com/proandroid5/projects: A list of downloadable
projects from this book. For this chapter, look for a ZIP file named
ProAndroid5_Ch17_TestAlarmManager.zip.

Summary
This chapter explored the Alarm Manager API, which you use to set up and cancel alarms.
This chapter showed you how to connect an alarm to a broadcast service. This chapter also
showed you how alarms are closely related to intents.

http://developer.android.com/reference/android/app/PendingIntent.html
http://androidbook.com/item/1040
http://androidbook.com/item/3503
http://androidbook.com/proandroid5/projects

373

Chapter 18
Exploring 2D Animation

Animation allows an object on a screen to change its color, position, size, or orientation
over time. Animation capabilities in Android are practical, fun, and simple. They are used
frequently in applications.

Android 2.3 and prior releases support three types of animation: frame-by-frame animation,
which occurs when a series of frames is drawn one after the other at regular intervals;
layout animation, where you animate the layout of the views inside a container such as lists
and tables; and view animation, in which any view can be animated. In layout animation
the focus is not any given view but the way views come together to form the composite
layout. Android 3.0 enhanced animation by extending it to any Java property including the
properties of UI elements. We will cover the pre-2.3 features first and then cover the 3.0
features right after. Both features are applicable based on your use case.

Exploring Frame-by-Frame Animation
Frame-by-frame animation is where a series of images are shown in succession at quick
intervals so that the final effect is that of an object moving or changing. Figure 18-1 shows
a set of circles each with a ball at a different position. With a few of these images (which are
the frames) you can use animation to have the ball going around the circle.

Figure 18-1. Example image frames for animation

374 CHAPTER 18: Exploring 2D Animation

Each circle in Figure 18-1 is a separate image. Give the image a base name of colored_ball
and store eight of these images in the /res/drawable subdirectory so that you can access
them using their resource IDs. The name of each image will have the pattern colored-ballN,
where N is the digit representing the image number. The animation activity we are planning
will look like Figure 18-2.

Figure 18-2. A frame-by-frame animation test harness

Primary control in Figure 18-2 is the animation view showing the ball placed on an oval/circle.
Button at the top is used to start and stop the animation. There is a debug scratch pad at
the top to log events. Listing 18-1 shows the layout used to create the activity in Figure 18-2.

Listing 18-1. XML Layout File for the Frame Animation Example

<?xml version="1.0" encoding="utf-8"?>
<!--
filename: /res/layout/frame_animations_layout.xml
Download: ProAndroid5_ch18_TestFrameAnimation.zip
-->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent" android:layout_height="fill_parent">
<TextView android:id="@+id/textViewId1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="Debug Scratch Pad"/>

http://schemas.android.com/apk/res/android

375CHAPTER 18: Exploring 2D Animation

<Button
 android:id="@+id/startFAButtonId"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:text="Start Animation"/>
<ImageView
 android:id="@+id/animationImage"
 android:layout_width="fill_parent" android:layout_height="wrap_content"/>
</LinearLayout>

The first control is the debug-scratch text control, which is a simple TextView. You then add
a button to start and stop the animation. The last view is the ImageView, which is used to
play the animation.

In Android, frame-by-frame animation is implemented through the class AnimationDrawable.
This class is a Drawable. These objects are commonly used as backgrounds for views.
AnimationDrawable, in addition to being a Drawable, can take a list of other Drawable
resources (like images) and render them at specified intervals. To use this AnimationDrawable
class, start with a set of Drawable resources (for example, a set of images) placed in
the /res/drawable subdirectory. You will then construct an XML file that defines the
AnimationDrawable using a list of these images (see Listing 18-2). This XML file needs to be
placed in the /res/drawable subdirectory as well.

Listing 18-2. XML File Defining the List of Frames to Be Animated

<!--
filename: /res/drawable/frame_animation.xml
Download: ProAndroid5_ch18_TestFrameAnimation.zip
-->
<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="false">
 <item android:drawable="@drawable/colored_ball1" android:duration="50" />
 <item android:drawable="@drawable/colored_ball2" android:duration="50" />
 <item android:drawable="@drawable/colored_ball3" android:duration="50" />
 <item android:drawable="@drawable/colored_ball4" android:duration="50" />
 <item android:drawable="@drawable/colored_ball5" android:duration="50" />
 <item android:drawable="@drawable/colored_ball6" android:duration="50" />
 <item android:drawable="@drawable/colored_ball7" android:duration="50" />
 <item android:drawable="@drawable/colored_ball8" android:duration="50" />
</animation-list>

Each frame points to one of the colored-ball images you have assembled through their resource
IDs. The animation-list tag gets converted into an AnimationDrawable object representing
the collection of images. You then need to set this AnimationDrawable as a background
resource for our ImageView control in the activity layout. Assuming that the file name for this
XML file is frame_animation.xml and that it resides in the /res/drawable subdirectory, you
can use the following code to set the AnimationDrawable as the background of the ImageView:

view.setBackgroundResource(R.drawable.frame_animation); //See Listing 18-3

http://schemas.android.com/apk/res/android

376 CHAPTER 18: Exploring 2D Animation

With this code, Android realizes that the resource ID R.drawable.frame_animation is an XML
resource and accordingly constructs a suitable AnimationDrawable Java object for it before
setting it as the background. Once this is set, you can access this AnimationDrawable object
by doing a get on the view object like this:

Object backgroundObject = view.getBackground();
AnimationDrawable ad = (AnimationDrawable)backgroundObject;

Once you have the AnimationDrawable object, you can use its start()and stop() methods
to start and stop the animation. Here are two other important methods on this object:

setOneShot(boolean);
addFrame(drawable, duration);

The setOneShot(true) method runs the animation once and then stops. The addFrame()
method adds a new frame using a Drawable object and sets its display duration. The
functionality of the addFrame() method resembles that of the XML tag android:drawable
in Listing 18-2. Put this all together to get the complete code for our frame-by-frame
animation activity of Figure 18-1.

Listing 18-3. Complete Code for the Frame-by-Frame Animation Test Harness

// filename: FrameAnimationActivity.java
// Download: ProAndroid5_ch18_TestFrameAnimation.zip
public class FrameAnimationActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.frame_animations_layout);
 this.setupButton();
 }
 private void setupButton(){
 Button b = (Button)this.findViewById(R.id.startFAButtonId);
 b.setOnClickListener(
 new Button.OnClickListener(){
 public void onClick(View v) {animate();}
 });
 }
 private void animate() {
 ImageView imgView = (ImageView)findViewById(R.id.animationImage);
 imgView.setVisibility(ImageView.VISIBLE);
 imgView.setBackgroundResource(R.drawable.frame_animation);

 AnimationDrawable frameAnimation = (AnimationDrawable)imgView.getBackground();
 if (frameAnimation.isRunning()) {
 frameAnimation.stop();
 }
 else {
 frameAnimation.stop();
 frameAnimation.start();
 }
 }
}//eof-class

377CHAPTER 18: Exploring 2D Animation

animate()method in Listing 18-3 locates the ImageView in the activity and sets its background to
the AnimationDrawable identified by the resource R.drawable.frame_animation. This animation
resource ID points to the earlier animation definition in Listing 18-3. The rest of the code in the
method retrieves this AnimationDrawable object and calls animation methods on that object.
In the same Listing 18-3, Start/Stop button is set up so that if animation is running, the button
could stop it; if animation is not running, the button could start it. If you set the oneshot attribute
in the animation definition in Listing 18-2 to true, the animation stops after once.

Exploring Layout Animation
LayoutAnimation is used to animate the views in an Android layout. You can use this type
of animation for example with common layout controls like ListView and GridView. Unlike
frame-by-frame animation, layout animation is not achieved through repeating frames but
by changing the transformation matrix of a view. Every view in Android has a transformation
matrix that maps the view to the screen. By changing this matrix you can accomplish
scaling, rotation, and movement (translation) of the view. This type of animation that relies on
changing properties and redrawing an image is referred to as tweening animation. Essentially
LayoutAnimation is tweening animation of the transformation matrix of the views in a layout.
A LayoutAnimation that is specified on a layout is applied to all the views in that layout.

These are the tweening animation types that can be applied to a layout:

Scale animation: Used to make a view smaller or larger either along the 	
x axis, on the y axis, or on both. You can also specify the pivot point
around which you want the animation to take place.

Rotate animation: Used to rotate a view around a pivot point by a certain 	
number of degrees.

Translate animation: Used to move a view along the x axis or the y axis.	

Alpha animation: Used to change the transparency of a view.	

These animations are defined as XML files in the /res/anim subdirectory. Listing 18-4 shows
a scale animation declared in an XML file.

Listing 18-4. A Scale Animation Defined in an XML File at /res/anim/scale.xml

<set xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="@android:anim/accelerate_interpolator">
 <scale
 android:fromXScale="1"
 android:toXScale="1"
 android:fromYScale="0.1"
 android:toYScale="1.0"
 android:duration="500"
 android:pivotX="50%"
 android:pivotY="50%"
 android:startOffset="100" />
</set>

http://schemas.android.com/apk/res/android

378 CHAPTER 18: Exploring 2D Animation

Parameters in the animation XMLs have a “from” and a “to” flavor to indicate start and end
values of that property. Other properties of an animation also include animation duration
and a time interpolator. Interpolators determine the rate of change of the animated argument
such as scale in Listing 18-4 during animation. We will cover interpolators shortly. XML file in
Listing 18-4 can be associated with a layout to animate that layout’s constituent views.

Figure 18-3. The ListView to be Animated

Note Animations like the Scale animation in Listing 18-4 are represented as Java classes in the
android.view.animation package. Java documentation for these classes describes not only
Java methods but also the allowed XML arguments for each type of animation.

We can use the ListView in Figure 18-3 to test a number of layout animations. This
activity is what you see when you run the sample project for this chapter.
ProAndroid5_ch18_TestLayoutAnimation.zip

379CHAPTER 18: Exploring 2D Animation

The layout for this activity is in Listing 18-5.

Listing 18-5. ListView XML Layout File

<?xml version="1.0" encoding="utf-8"?>
<!--
filename: /res/layout/list_layout.xml
project: ProAndroid5_ch18_TestLayoutAnimation.zip
-->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <ListView
 android:id="@+id/list_view_id"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"/>
</LinearLayout>

Listing 18-5 shows a simple LinearLayout with a single ListView in it. The activity code to
show the layout from 18-5 as Figure 18-3 is in Listing 18-6.

Listing 18-6. Layout-Animation Activity Code

//filename: LayoutAnimationActivity.java
//project: ProAndroid5_ch18_TestLayoutAnimation.zip
public class LayoutAnimationActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.list_layout);
 setupListView();
 }
 private void setupListView() {
 String[] listItems = new String[] {
 "Item 1", "Item 2", "Item 3", "Item 4", "Item 5", "Item 6",
 };
 ArrayAdapter<String> listItemAdapter =
 new ArrayAdapter<String>(this, android.R.layout.simple_list_item_1, listItems);
 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 lv.setAdapter(listItemAdapter);
 }
}

Let’s see now how to apply scale animation from Listing 18-4 to this ListView. The ListView
requires another XML file that acts as a mediator between itself and the scale animation in
Listing 18-4. This is because the animations defined in Listing 18-4 are generic and apply
to any view. On the other hand a layout is a collection of views. So the mediator layout
animation XML file in Listing 18-7 reuses the generic animation XML file and specifies
the additional attributes that are applicable to a collection of views. This mediator layout
animation XML file is shown in Listing 18-9.

http://schemas.android.com/apk/res/android

380 CHAPTER 18: Exploring 2D Animation

Listing 18-7. Layout-Controller XML File

<?xml version="1.0" encoding="utf-8"?>
<!--
filename: /res/anim/list_layout_controller.xml (ProAndroid5_ch18_TestLayoutAnimation.zip)
-->
<layoutAnimation xmlns:android="http://schemas.android.com/apk/res/android"
 android:delay="100%"
 android:animationOrder="reverse"
 android:animation="@anim/scale" />

This XML file needs to be in /res/anim subdirectory. This XML file specifies that the animation
in the list should proceed in reverse, and the animation for each item should start with a 100%
delay with respect to the total animation duration. A 100% duration ensures that the animation
of one item is complete before the animation of the next item starts. You can change this
percentage to suit the needs of your animation. Anything less than 100% will result in an
overlapping animation of items. This mediator XML file also refers to the individual animation
file, scale.xml (Listing 18-4) through the resource reference @anim/scale. Listing 18-8 shows
how to attach the animation of Listing 18-4 to the activity layout of Listing 18-5 via the
mediator of Listing 18-7.

Listing 18-8. The Updated Code for the list_layout.xml File

<?xml version="1.0" encoding="utf-8"?>
<!--
filename: /res/layout/list_layout.xml(ProAndroid5_ch18_TestLayoutAnimation.zip)
-->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent" android:layout_height="fill_parent">
 <ListView android:id="@+id/list_view_id"
 android:persistentDrawingCache="animation|scrolling"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 android:layoutAnimation="@anim/list_layout_controller" />
</LinearLayout>

In Listing 18-8 android:layoutAnimation is the tag that points to the mediating XML
file of Listing 18-7, which in turn points to the scale.xml of Listing 18-5. In Listing 18-8
Android SDK docs recommend setting the persistentDrawingCache tag on the list view to
optimize for animation and scrolling. If you were to run the application ProAndroid5_ch18_
TestLayoutAnimation.zip, you would see the scale animation take effect on the individual
list items as the activity gets loaded. We have set the animation duration to 500 ms so that
scale change can be observed as each list item is drawn.

With this sample program you can experiment with different animation types. You can try
alpha animation with the code in Listing 18-9.

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

381CHAPTER 18: Exploring 2D Animation

Listing 18-9. The alpha.xml File to Test Alpha Animation

<?xml version="1.0" encoding="utf-8"?>
<!-- file: /res/anim/alpha.xml(ProAndroid5_ch18_TestLayoutAnimation.zip) -->
<alpha xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:fromAlpha="0.0" android:toAlpha="1.0" android:duration="1000" />

Alpha animation controls fading (of color). In Listing 18-9 alpha animation color goes from
invisible to full intensity in 1 second. Don’t forget to change the mediator XML file (see
Listing 18-7) to point to the new animation file if you intend to use the same mediator file.

Listing 18-10 shows an animation that combines a change in position with a change in
color gradient.

Listing 18-10. Combining Translate and Alpha Animations Through an Animation Set

<?xml version="1.0" encoding="utf-8"?>
<!-- file:/res/anim/alpha_translate.xml(ProAndroid5_ch18_TestLayoutAnimation.zip)-->
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/accelerate_interpolator">
 <translate android:fromYDelta="-100%" android:toYDelta="0"android:duration="500"/>
 <alpha android:fromAlpha="0.0" android:toAlpha="1.0" android:duration="500"/>
</set>

Notice two animations are in the animation set of Listing 18-10. Translate animation will
move the text from top to bottom in its currently allocated display space. Alpha animation
will change the color gradient from invisible to visible as the text item descends into its
slot. To see this animation in action, change the layoutAnimation mediator XML file with
reference to file name @anim/alpha_translate.xml. Listing 18-11 shows the definition for a
rotation animation.

Listing 18-11. Rotate Animation XML File

<!-- file: /res/anim/rotate.xml(ProAndroid5_ch18_TestLayoutAnimation.zip) -->
<rotate xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:fromDegrees="0.0" android:toDegrees="360"
 android:pivotX="50%" android:pivotY="50%"
 android:duration="500" />

Listing 18-11 spins each text item in the list one full circle around the midpoint of the text
item. Let’s talk about the interpolators that you have seen used in the animation XML files.

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

382 CHAPTER 18: Exploring 2D Animation

Understanding Interpolators
Interpolators tell how a property changes over time from its start value to the end value.
Will the change occur linearly or exponentially? Will the change start quickly and slow down
toward the end?

Alpha animation in Listing 18-9 identifies the interpolator as accelerate_interpolator.
There is a corresponding Java object that defines the behavior of this interpolator. As
we’ve specified this interpolator as a resource reference in Listing 18-9, there must be a file
corresponding to the @anim/accelerate_interpolator that describes what this Java object
is and what additional parameters it might take. Listing 8-12 shows the resource XML file
definition pointed to by the resource reference @android:anim/accelerate_interpolator:

Listing 18-12. An Interpolator Definition as an XML Resource

<accelerateInterpolator
 xmlns:android="http://schemas.android.com/apk/res/android"
 factor="1" />

You can see this XML file in the subdirectory /res/anim/accelerate_interpolator.xml in
the root Android SDK package. (Caution: This file could look differently depending on the
release.) The accelerateInterpolator XML tag corresponds to the Java class android.
view.animation.AccelerateInterpolator. You can look up the corresponding Java
documentation to see what XML tags are available. This interpolator’s goal is to provide
a multiplication factor given a time interval based on a hyperbolic curve. The source code
snippet in Listing 18-13 for this interpolator illustrates this. (Caution: This code could look
different depending on the Android release.)

Listing 18-13. Sample Code from AccelerateInterpolator in the Core Android SDK

public float getInterpolation(float input) {
 if (mFactor == 1.0f) {
 return (float)(input * input);
 }
 else {
 return (float)Math.pow(input, 2 * mFactor);
 }
}

Every interpolator implements the getInterpolation method differently. In case of the
AccelerateInterpolator, if the interpolator is set up in the resource file with a factor of 1.0,
it will return the square of the input at each interval. Otherwise, it will return a power of the
input that is further scaled by the factor amount. If the factor is 1.5, you will see a cubic
function instead of a square function.

The supported interpolators include AccelerateDecelerateInterpolator, AccelerateInterpolator,
CycleInterpolator, DecelerateInterpolator, LinearInterpolator, AnticipateInterpolator,
AnticipateOvershootInterpolator, BounceInterpolator, and OvershootInterpolator.

http://schemas.android.com/apk/res/android

383CHAPTER 18: Exploring 2D Animation

To see how flexible these interpolators can be, take a quick look in Listing 18-14 at the
BounceInterpolator which bounces the object (that is, moves it back and forth) toward the
end of the animation cycle:

Listing 18-14. BounceInterpolator Implementation in the Core Android SDK

public class BounceInterpolator implements Interpolator {
 private static float bounce(float t) {
 return t * t * 8.0f;
 }
 public float getInterpolation(float t) {
 t *= 1.1226f;
 if (t < 0.3535f) return bounce(t);
 else if (t < 0.7408f) return bounce(t - 0.54719f) + 0.7f;
 else if (t < 0.9644f) return bounce(t - 0.8526f) + 0.9f;
 else return bounce(t - 1.0435f) + 0.95f;
 }
 }

You can find the behavior of these various interpolators described at the following URL:

http://developer.android.com/reference/android/view/animation/package-summary.html

Java documentation for each of these classes also points out the XML tags available to
control them.

Exploring View Animation
Through view animation you can animate a view by manipulating its transformation matrix.
A transformation matrix is like a lens that projects a view on to the display. A transformation
matrix can affect the projected views scale, size, position, and color.

Identity transformation matrix preserves the original view. You start with an identity
matrix and apply a series of mathematical transformations involving size, position, and
orientation. You then set the final matrix as the transformation matrix for the view you want
to transform.

Android exposes the transformation matrix for a view by allowing registration of an animation
object with that view. The animation object will be passed to the transformation matrix.

Consider Figure 18-4 as a demonstration of view animation. The Start Animation button
animates the list view to start small in the middle of the screen and gradually fill the full
space. Listing 18-15 shows the XML layout file used for this activity.

http://developer.android.com/reference/android/view/animation/package-summary.html

384 CHAPTER 18: Exploring 2D Animation

Figure 18-4. A View Animation Activity

Listing 18-15. XML Layout File for the View-Animation Activity

<?xml version="1.0" encoding="utf-8"?>
<!-- filen: at /res/layout/list_layout.xml(ProAndroid5_ch18_TestViewAnimation.zip) -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
<Button
 android:id="@+id/btn_animate"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Start Animation"/>
<ListView
 android:id="@+id/list_view_id"
 android:persistentDrawingCache="animation|scrolling"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"/>
</LinearLayout>

http://schemas.android.com/apk/res/android

385CHAPTER 18: Exploring 2D Animation

Listing 18-16 shows the activity code that loads this layout.

Listing 18-16. Code for the View-Animation Activity, Before Animation

//filename: ViewAnimationActivity.java(ProAndroid5_ch18_TestViewAnimation.zip)
public class ViewAnimationActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.list_layout);
 setupListView();
 this.setupButton();
 }
 private void setupListView() {
 String[] listItems = new String[] {
 "Item 1", "Item 2", "Item 3","Item 4", "Item 5", "Item 6",
 };
 ArrayAdapter<String> listItemAdapter =
 new ArrayAdapter<String>(this,android.R.layout.simple_list_item_1,listItems);
 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 lv.setAdapter(listItemAdapter);
 }
 private void setupButton() {
 Button b = (Button)this.findViewById(R.id.btn_animate);
 b.setOnClickListener(
 new Button.OnClickListener(){
 public void onClick(View v) {
 //animateListView();
 }
 });
 }
}

With this code you will see the UI as laid out in Figure 18-4. To add animation to the
ListView shown in Figure 18-4 we need a class that derives from android.view.animation.
Animation. Listing 18-17 shows this class.

Listing 18-17. Code for the ViewAnimation Class

//filename: ViewAnimation.java project: ProAndroid5_ch18_TestViewAnimation.zip
public class ViewAnimation extends Animation {
 @Override
 public void initialize(int width, int height, int parentWidth, int parentHeight){
 super.initialize(width, height, parentWidth, parentHeight);
 setDuration(2500); setFillAfter(true);
 setInterpolator(new LinearInterpolator());
 }
 @Override
 protected void applyTransformation(float interpolatedTime, Transformation t) {
 final Matrix matrix = t.getMatrix();
 matrix.setScale(interpolatedTime, interpolatedTime);
 }
}

386 CHAPTER 18: Exploring 2D Animation

In Listing 18-7 initialize method is a callback method with the dimensions of the view.
Animation parameters can be initialized here. Here the animation duration is set to 2.5
seconds. We have set the animation effect to remain intact after the animation completes by
setting FillAfter to true. We’ve set a linear interpolator. All of these properties come from
the base android.view.animation.Animation class.

The main part of the animation occurs in the applyTransformation method. Android SDK
calls this method again and again to simulate animation. Every time Android calls the
method, interpolatedTime has a different value. This value changes from 0 to 1 depending
on where the animation is in the 2.5-second duration that you set during initialization. When
interpolatedTime is 1, the animation is at the end. Our goal in this method is to change the
transformation matrix that is available through the transformation object called t. First get
the matrix and change something about it. When the view gets painted, the new matrix will
take effect. Methods available on the Matrix object are documented in the SDK at

http://developer.android.com/reference/android/graphics/Matrix.html

In Listing 18-17, the code that changes the matrix is

matrix.setScale(interpolatedTime, interpolatedTime);

setScale method takes two parameters: the scaling factor in the x direction and the scaling
factor in the y direction. Because interpolatedTime goes between 0 and 1, you can use that
value directly as the scaling factor. At the start of the animation, the scaling factor is 0 in
both the x and y directions. Halfway through the animation, this value will be 0.5 in both x
and y directions. At the end of animation, the view will be at its full size because the scaling
factor will be 1 in both the x and y directions. The end result of this animation is that the
ListView starts out tiny and grows to full size. Listing 18-18 shows the function you need to
add the activity class in Listing 18-15 and call it from the button click.

Listing 18-18. Code for the View-Animation Activity, Including Animation

private void animateListView() {
 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 lv.startAnimation(new ViewAnimation());
}

Note In this section on View Animation we are going to suggest alternate implementations for the
ViewAnimation class of Listing 18-18. In the supplied project there are variations of this class
available as ViewAnimation, ViewAnimation1, ViewAnimation2, and ViewAnimation3.
Code snippets in the subsequent discussions will indicate in comments which of these classes hold
that code. There is only one menu item in the sample project for animation. To test each variation
you have to replace the ViewAnimation() class in Listing 18-18 with the respective version of it
and rerun the program to see the altered animation.

http://developer.android.com/reference/android/graphics/Matrix.html

387CHAPTER 18: Exploring 2D Animation

When you run the code with the ViewAnimation class as in Listing 18-17, you will notice
something odd. Instead of uniformly growing larger from the middle of the screen, the
ListView grows larger from the top-left corner. This is because the origin for matrix
operations is at the top-left corner. To get the desired effect, you first have to move the
whole view so that the view’s center matches the animation center (top left). Then, you apply
the matrix and move the view back to the previous center. The rewritten code from Listing
18-16 for doing this is shown in Listing 18-19.

Listing 18-19. View Animation using preTranslate and postTranslate

//filename: ViewAnimation1.java project: ProAndroid5_ch18_TestViewAnimation.zip
public class ViewAnimation extends Animation {
 float centerX, centerY;
 public ViewAnimation(){}

 @Override
 public void initialize(int width, int height, int parentWidth, int parentHeight) {
 super.initialize(width, height, parentWidth, parentHeight);
 centerX = width/2.0f; centerY = height/2.0f;
 setDuration(2500); setFillAfter(true);
 setInterpolator(new LinearInterpolator());
 }
 @Override
 protected void applyTransformation(float interpolatedTime, Transformation t) {
 final Matrix matrix = t.getMatrix();
 matrix.setScale(interpolatedTime, interpolatedTime);
 matrix.preTranslate(-centerX, -centerY); matrix.postTranslate(centerX, centerY);
 }
}

The preTranslate and postTranslate methods set up a matrix before the scale operation
and after the scale operation. This is equivalent to making three matrix transformations in
tandem. Consider the following code in Listing 18-20

Listing 18-20. Standard pattern for Pre and Post Translate of Transformation Matrices

matrix.setScale(interpolatedTime, interpolatedTime);
matrix.preTranslate(-centerX, -centerY);
matrix.postTranslate(centerX, centerY);

Code in Listing 18-20 is equivalent to

move to a different center
scale it
move to the original center

You will see this pattern of pre and post applied often. You can also accomplish this result
using other methods on the Matrix class, but this technique is common as it is succinct.

388 CHAPTER 18: Exploring 2D Animation

The Matrix class allows you not only to scale a view but also to move it around through
translate methods or change its orientation through rotate methods. You can experiment
with these methods and see the resulting animations. The animations presented in the
preceding “Layout Animation” section are all implemented internally using the methods on
this Matrix class.

Using Camera to Provide Depth Perception in 2D
The graphics package in Android provides another transformation matrix–related feature
through the Camera class. This class provides depth perception to a 2D view. You can take
our ListView example and move it back from the screen by 10 pixels along the z axis and
rotate it by 30 degrees around the y axis. Listing 18-21 is an example of manipulating the
transformation matrix using a Camera.

Listing 18-21. Using Camera Object

//filename: ViewAnimation2.java project: ProAndroid5_ch18_TestViewAnimation.zip
public class ViewAnimation extends Animation {
 float centerX, centerY;
 Camera camera = new Camera();
 public ViewAnimation(float cx, float cy){
 centerX = cx; centerY = cy;
 }
 @Override
 public void initialize(int width, int height, int parentWidth, int parentHeight) {
 super.initialize(width, height, parentWidth, parentHeight);
 setDuration(2500); setFillAfter(true);
 setInterpolator(new LinearInterpolator());
 }
 @Override
 protected void applyTransformation(float interpolatedTime, Transformation t) {
 final Matrix matrix = t.getMatrix();
 camera.save();
 camera.translate(0.0f, 0.0f, (1300 - 1300.0f * interpolatedTime));
 camera.rotateY(360 * interpolatedTime);
 camera.getMatrix(matrix);

 matrix.preTranslate(-centerX, -centerY);
 matrix.postTranslate(centerX, centerY);
 camera.restore();
 }
}

This code animates the ListView by first placing the view 1,300 pixels back on the z axis
and then bringing it back to the plane where the z coordinate is 0. While doing this, the code
also rotates the view from 0 to 360 degrees around the y axis. The camera.translate(x,y,z)
method in Listing 18-21 tells the camera object to translate the view such that when
interpolatedTime is 0 (at the beginning of the animation), the z value will be 1300. As the
animation progresses, the z value will get smaller and smaller until the end, when the
interpolatedTime becomes 1 and the z value becomes 0.

389CHAPTER 18: Exploring 2D Animation

The method camera.rotateY(360 * interpolatedTime) takes advantage of 3D rotation
around an axis by the camera. At the beginning of the animation, this value will be 0. At the
end of the animation, it will be 360.

The method camera.getMatrix(matrix) takes the operations performed on the Camera so far
and imposes those operations on the matrix that is passed in. Once the code does that, the
matrix has the translations it needs to get the end effect of having a Camera. Now the Camera
object is no longer necessary because the matrix has all the operations embedded in it.
Then, you do the pre and post on the matrix to shift the center and bring it back. At the end,
you set the Camera to its original state that was saved earlier. With this code in Listing 18-21
you will see the ListView arriving from the center of the view in a spinning manner toward
the front of the screen. As this version of ViewAnimation takes additional construction
arguments, Listing 18-22 shows how to invoke this version of the AnimationView:

Listing 18-22. View Animation using preTranslate and postTranslate

//filename: ViewAnimationActivity.java
//project: ProAndroid5_ch18_TestViewAnimation.zip
ListView lv = (ListView)this.findViewById(R.id.list_view_id);
float cx = (float)(lv.getWidth()/2.0);
float cy = (float)(lv.getHeight()/2.0);
lv.startAnimation(new ViewAnimation(cx, cy));

As part of our discussion about view animation, we showed you how to animate any view
by extending an Animation class and then applying it to a view. In addition to letting you
manipulate matrices (both directly and indirectly through a Camera class), the Animation class
also lets you detect various stages in an animation. We will cover this next.

Exploring the AnimationListener Class
Android SDK has a listener interface, AnimationListener, to monitor animation events.
Listing 18-23 demonstrates these animation events by implementing the AnimationListener
interface.

Listing 18-23. An Implementation of the AnimationListener Interface

//filename: ViewAnimationListener.java
//project: ProAndroid5_ch18_TestViewAnimation.zip
public class ViewAnimationListener implements Animation.AnimationListener {
 public ViewAnimationListener(){}
 public void onAnimationStart(Animation animation) {
 Log.d("Animation Example", "onAnimationStart");
 }
 public void onAnimationEnd(Animation animation) {
 Log.d("Animation Example", "onAnimationEnd");
 }
 public void onAnimationRepeat(Animation animation) {
 Log.d("Animation Example", "onAnimationRepeat");
 }
}

390 CHAPTER 18: Exploring 2D Animation

The ViewAnimationListener class in Listing 18-23 just logs messages. Code in Listing 18-24
shows how to attach an animation listener to an Animation object.

Listing 18-24. Attaching an AnimationListener to an Animation Object

private void animateListView(){
 ListView lv = (ListView)this.findViewById(R.id.list_view_id);
 //Init width,height and assuming ViewAnimation from Listing 18-21
 ViewAnimation animation = new ViewAnimation(width,height);
 animation.setAnimationListener(new ViewAnimationListener());
 lv.startAnimation(animation);
}

Notes on Transformation Matrices
As you have seen in this chapter, matrices are key to transforming views and animations.
Let’s explore some key methods of the Matrix class.

	Matrix.reset(): Resets a matrix to an identity matrix, which causes no
change to the view when applied

	Matrix.setScale(...args ..): Changes size

	Matrix.setTranslate(...args ..): Changes position to simulate
movement

	Matrix.setRotate(... args ..): Changes orientation

	Matrix.setSkew(...args ..): Distorts a view

The last four methods have input parameters.

You can multiply matrices together to compound the effect of individual transformations. In
Listing 18-25, consider three matrices, m1, m2, and m3, which are identity matrices:

Listing 18-25. View Animation using preTranslate and postTranslate

m1.setScale(..scale args..);
m2.setTranslate(..translate args..)
m3.setConcat(m1,m2)

Transforming a view by m1 and then transforming the resulting view with m2 is equivalent
to transforming the same view by m3. Note that m3.setConcat(m1,m2) is different from
m3.setConcat(m2,m1). setConcat(matrix1, matrix2) multiplies two matrices in that
given order.

You have already seen the pattern used by the preTranslate and postTranslate methods
to affect matrix transformation. In fact, pre and post methods are not unique to translate,
and you have versions of pre and post for every one of the set transformation methods.
Ultimately, a preTranslate such as m1.preTranslate(m2) is equivalent to

m1.setConcat(m2,m1)

391CHAPTER 18: Exploring 2D Animation

In a similar manner, the method m1.postTranslate(m2) is equivalent to

m1.setConcat(m1,m2)

Consider the code in Listing 18-26

Listing 18-26. Pre and Post Translate Pattern

matrix.setScale(interpolatedTime, interpolatedTime);
matrix.preTranslate(-centerX, -centerY);
matrix.postTranslate(centerX, centerY);

The code in this Listing 18-26 is equivalent to the code in Listing 18-27

Listing 18-27. Equivalence of Pre and Post Translate Pattern

Matrix matrixPreTranslate = new Matrix();
matrixPreTranslate.setTranslate(-centerX, -centerY);

Matrix matrixPostTranslate = new Matrix();
matrixPostTranslate.setTranslate(centerX, centerY);

matrix.setConcat(matrixPreTranslate,matrix);
matrix.setConcat(matrix,matrixPostTranslate);

Exploring Property Animations: The New Animation API
The animation API is overhauled in 3.0 and 4.0 of Android. This new approach to animations
is called property animation. The property animation API is extensive and different enough
to refer to the previous animation API (prior to 3.x) as the legacy API even though the
previous approach is still valid and not deprecated. The old animation API is in the package
android.view.animation. The new animation API is in the package android.animation. Key
concepts in the new property animation API are:

Animators	

Value animators	

Object animators	

Animator sets	

Animator builders	

Animation listeners	

Property value holders	

Type evaluators	

View property animators	

Layout transitions	

Animators defined in XML files	

We will cover most of these concepts in the rest of the chapter.

392 CHAPTER 18: Exploring 2D Animation

Understanding Property Animation
The property animation approach changes the value of a property over time. This property
can be anything, such as a stand-alone integer, a float, or a specific property of an object
such as a view. For example, you can change an int value from 10 to 200 over a time period
of 5 seconds by using an animator class called ValueAnimator (see Listing 18-28).

Listing 18-28. A Simple Value Animator

//file: TestBasicValueEvaluator.java(ProAndroid5_ch18_TestPropertyAnimation.zip)
//Define an animator to change an int value from 10 to 200
ValueAnimator anim = ValueAnimator.ofInt(10, 200);

//set the duration for the animation
anim.setDuration(5000); //5 seconds, default 300 ms

//Provide a callback to monitor the changing value
anim.addUpdateListener(
 new ValueAnimator.AnimatorUpdateListener() {
 public void onAnimationUpdate(ValueAnimator animation) {
 Integer value = (Integer) animation.getAnimatedValue();
 // this code gets called many many times for 5 seconds.
 // The value will range from 10 to 200
 }
 }
);
anim.start();

The idea is easy to grasp. A ValueAnimator is a mechanism to do something every 10 ms
(this is the default framerate). Although this is the default framerate, depending on the
system load you may not get called that many times. For the example given we could expect
to get called 500 times over a span of 5 seconds. On an emulator our tests show that it may
be as few as 10 times. However the last call will be close to the 5-second duration.

In the corresponding callback that is called for every frame (every 10 ms), you can choose to
update a view or any other aspect to affect animation. In addition to the onAnimationUpdate,
other useful callbacks are available on the general purpose Animator.AnimatorListener
interface (Listing 18-28) from the Android SDK which can be attached to the ValueAnimator
through its base class Animator. So on a ValueAnimator, you can do addListener(Animator.
AnimatorListener listener). See Listing 18-29.

Listing 18-29. AnimatorListener Callback Interface

public static interface Animator.AnimatorListener {
 abstract void onAnimationStart(Animator animation);
 abstract void onAnimationRepeat(Animator animation);
 abstract void onAnimationCancel(Animator animation);
 abstract void onAnimationEnd(Animator animation);
}

You can use these callbacks in Listing 18-29 to further act on objects of interest during or
after an animation.

393CHAPTER 18: Exploring 2D Animation

Property Animation relies on the availability of an android.os.Looper on the thread that is
initiating the animation. This is generally the case for the UI thread. The callbacks happen on
the UI thread as well when the animating thread is the main thread.

As you use ValueAnimators and their listeners, keep in mind the lifetime of these objects.
Even if you let the reference of a ValueAnimator go from your local scope, the ValueAnimator
will live on until it finishes the animation. If you were to add a listener then all the references
that the listener holds are also valid for the lifetime of the ValueAnimator.

Planning a Test Bed for Property Animation
Starting with the basic idea of value animators, Android provides a number of derived ways
to animate any arbitrary object, especially views. To demonstrate these mechanisms, we
will take a simple text view in a linear layout and animate its alpha property (simulating
transparency animation) and also the x and y positions (simulating movement). We will use
Figure 18-5 as an anchor to explain property animation concepts.

Figure 18-5. Activity to demonstrate Property animations

394 CHAPTER 18: Exploring 2D Animation

Each button in Figure 18-5 uses a separate mechanism to animate the text view at the
bottom of the figure. The mechanisms we will demonstrate are as follows:

Button 1: Using object animators, fade out and fade in a view 	
alternatively at the click of a button.

Button 2: Using an 	 AnimatorSet, run a fade-out animation followed by
fade-in animation in a sequential manner.

Button 3: Use an 	 AnimatiorSetBuilder object to tie multiple animations
together in a “before,” “after,” or “with” relationship. Use this approach
to run the same animation as button 2.

Button 4: Define an XML file for button 2’s sequence animation and 	
attach it to the text view for the same animation affect.

Button 5: Using a 	 PropertyValuesHolder object, animate multiple
properties of the text view in the same animation. We will change the x
and y values to move the text view from bottom right to top left.

Button 6: Use 	 ViewPropertyAnimator to move the text view from bottom
right to top left (same animation as button 5).

Button 7: Use a 	 TypeEvaluator on custom point objects to move the text
view from bottom right to top left (same animation as button 5).

Button 8: Use key frames to affect movement and also alpha changes 	
on the text view (same animation as button 5, but staggered).

Constructing the activity in Figure 18-5 is straightforward. You can see the layout
for this activity and the activity code in the download project file ProAndroid5_ch18_
TestPropertyAnimation.zip. Let’s start with the first button.

Animating Views with Object Animators
The first button in Figure 18-5 (Fadeout: Animator) invokes the toggleAnimation(View)
method that is in Listing 18-30.

Listing 18-30. Basic View Animation with Object Animators

//file:TestPropertyAnimationActivity.java(ProAndroid5_ch18_TestPropertyAnimation.zip)
public void toggleAnimation(View btnView) {
 Button tButton = (Button)btnView; //The button we have pressed
 //m_tv: is the pointer to the text view
 //Animate the alpha from current value to 0 this will make it invisible
 if (m_tv.getAlpha() != 0) {
 ObjectAnimator fadeOut = ObjectAnimator.ofFloat(m_tv, "alpha", 0f);
 fadeOut.setDuration(5000);
 fadeOut.start();
 tButton.setText("Fade In");
 }

395CHAPTER 18: Exploring 2D Animation

 //Animate the alpha from current value to 1 this will make it visible
 else {
 ObjectAnimator fadeIn = ObjectAnimator.ofFloat(m_tv, "alpha", 1f);
 fadeIn.setDuration(5000);
 fadeIn.start();
 tButton.setText("Fade out");
 }
}

The code in Listing 18-30 first examines the alpha value of the text view. If this value is
greater than 0, then the code assumes that the text view is visible and runs a fade-out
animation. At the end of the fade-out animation, the text view will be invisible. If the alpha
value of the text view is 0, then the code assumes the text view is invisible and runs a fade-in
animation to make the text view visible again.

The ObjectAnimator code in Listing 18-30 is really simple. An ObjectAnimator is obtained on
the text view (m_tv) using the static method ofFloat(). The first argument to this method is
an object (m_tv). The second argument is the property name of the object that you want the
ObjectAnimator to modify or animate. In the case of the text view m_tv this property name is
alpha. The target object needs to have a public method to match this name. For a property
named alpha, the corresponding view object needs to have the following set method:

view.setAlpha(float f);

The third argument to ofFloat() is the value of the property at the end of the animation. If
you specify a fourth argument, then the third argument is the starting value and the fourth is
the target value. You can pass more arguments as long as they are all floats. The animation
will use those values as intermediate values in the animation process.

If you specify just the “to” value, then the “from” value is taken from the current value by using

view.getAlpha();

When you play this animation, the text view will gradually disappear first. The code in
Listing 18-30 then renames the button to “Fade in.” Now if you click the button again, which
is now called “Fade in,” the second animation in Listing 18-30 is run, and the text view will
appear gradually over a period of 5 seconds.

Achieving Sequential Animation with AnimatorSet
Button 2 in Figure 18-5 runs two animations one after the other: a fade-out followed by a fade-in.
We could use animation listener callbacks to wait for the first animation to finish and then start
the second animation. There is an automated way to run animations in tandem through the class
AnimatorSet to get the same effect. Button 2 demonstrates this in Listing 18-31.

396 CHAPTER 18: Exploring 2D Animation

Listing 18-31. Sequential Animation Through an AnimatorSet

//file:TestPropertyAnimationActivity.java(ProAndroid5_ch18_TestPropertyAnimation.zip)
public void sequentialAnimation(View bView) {
 ObjectAnimator fadeOut = ObjectAnimator.ofFloat(m_tv, "alpha", 0f);
 ObjectAnimator fadeIn = ObjectAnimator.ofFloat(m_tv, "alpha", 1f);
 AnimatorSet as = new AnimatorSet();
 as.playSequentially(fadeOut,fadeIn);
 as.setDuration(5000); //5 secs
 as.start();
}

In Listing 18-31, we have created two animators: a fade-out animator and a fade-in animator.
Then we created an animator set and tell it to play both animations sequentially.

You can also choose to play animations together using an animator set by calling the
method playTogether(). Both of these methods, playSequentially() and playTogether(),
can take a variable number of Animator objects.

When you play this animation, the text view will gradually disappear and then reappear,
much like the animation you saw earlier.

Setting Animation Relationships with AnimatorSet.Builder
AnimatorSet also provides a bit more elaborate way to link animations through a utility class
called AnimatorSet.Builder. Listing 18-32 demonstrates this.

Listing 18-32. Using an AnimatorSetBuilder

//filename: TestPropertyAnimationActivity.java (ProAndroid5_ch18_TestPropertyAnimation.zip)
public void testAnimationBuilder(View v) {
 ObjectAnimator fadeOut = ObjectAnimator.ofFloat(m_tv, "alpha", 0f);
 ObjectAnimator fadeIn = ObjectAnimator.ofFloat(m_tv, "alpha", 1f);
 AnimatorSet as = new AnimatorSet();
 //play() returns the nested class: AnimatorSet.Builder
 as.play(fadeOut).before(fadeIn);
 as.setDuration(5000); //5 secs
 as.start();
}

The play method on an AnimatorSet returns a class called AnimatorSet.Builder. This is
purely a utility class. The methods on this class are after(animator), before(animator),
and with(animator). This class is initialized with the first animator you supply through
the play method. Every other call on this object is with respect to this original animator.
Consider Listing 18-33:

Listing 18-33. Using AnimationSet.Builder

AnimatorSet.Builder builder = someSet.play(main_animator).before(animator1);

With this code animator1 will play after the main_animator. When we say builder.
after(animator2), the animation of animator2 will play before main_animator. The method
with(animator) plays the animations together.

397CHAPTER 18: Exploring 2D Animation

The key point with an AnimationBuilder is that the relationship established via before(),
after(), and with() is not chained but only tied to the original animator that was obtained
from play() method. Also, the animation start() method is not on the builder object but on
the original animator set. When you play this animation through Button3, the text view will
gradually disappear and then reappear, much as in the previous animation.

Using XML to Load Animators
It is only to be expected that the Android SDK allows animators to be described in XML
resource files. Android SDK has a new resource type called R.animator to distinguish
animator resource files. These XML files are stored in the /res/animator subdirectory.
Listing 18-34 is an example of an animator set defined in an XML file.

Listing 18-34. An Animator XML Resource File

<?xml version="1.0" encoding="utf-8" ?>
<!-- file: /res/animator/fadein.xml (ProAndroid5_ch18_TestPropertyAnimation.zip) -->
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:ordering="sequentially">
<objectAnimator
 android:interpolator="@android:interpolator/accelerate_cubic"
 android:valueFrom="1" android:valueTo="0"
 android:valueType="floatType" android:propertyName="alpha"
 android:duration="5000" />
<objectAnimator
 android:interpolator="@android:interpolator/accelerate_cubic"
 android:valueFrom="0" android:valueTo="1"
 android:valueType="floatType" android:propertyName="alpha"
 android:duration="5000" />
</set>

You will naturally wonder what XML nodes are available for you to define these animations.
As of 4.0 the allowed XML tags are as follows:

	animator: Binds to ValueAnimator

	objectAnimator: Binds to ObjectAnimator

	set: Binds to AnimatorSet

You can see a basic discussion of these tags at the following Android SDK URL:

http://developer.android.com/guide/topics/graphics/prop-animation.html#declaring-xml

The complete XML reference for the animation tags can be found at the following URL:

http://developer.android.com/guide/topics/resources/animation-resource.html#Property

Once you have this XML file, you can play this animation using the method shown in
Listing 18-35.

http://schemas.android.com/apk/res/android
http://developer.android.com/guide/topics/graphics/prop-animation.html#declaring-xml
http://developer.android.com/guide/topics/resources/animation-resource.html#Property

398 CHAPTER 18: Exploring 2D Animation

Listing 18-35. Loading an Animator XML Resource File

//file: TestPropertyAnimationActivity.java(ProAndroid5_ch18_TestPropertyAnimation.zip)
public void sequentialAnimationXML(View bView) {
 AnimatorSet set = (AnimatorSet)AnimatorInflater.loadAnimator(this, R.animator.fadein);
 set.setTarget(m_tv);
 set.start();
}

Notice how it is necessary to load the animation XML file first followed by explicitly setting
the object to animate. In our case, the object to animate is the text view represented by
m_tv. The method in Listing 18-35 is called by button 4 (FadeOut/FadeIn XML). When this
animation runs, the text view will fade out first and then reappear by fading in, just as in the
previous alpha animations.

Using PropertyValuesHolder
So far, we have seen how to animate a single value in a single animation. The class
PropertyValuesHolder lets us animate multiple values during the animation cycle.
Listing 18-36 demonstrates the use of the PropertyValuesHolder class.

Listing 18-36. Using the PropertyValueHolder Class

//file: TestPropertyAnimationActivity.java(ProAndroid5_ch18_TestPropertyAnimation.zip)
public void testPropertiesHolder(View v) {
 //Get the current coordinates of the text view.
 //This allows us to know starting and ending positions to animate
 float h = m_tv.getHeight(); float w = m_tv.getWidth();
 float x = m_tv.getX(); float y = m_tv.getY();

 //Set the view to the bottom right as a starting point
 m_tv.setX(w); m_tv.setY(h);

 //from the right bottom animate "x" to its original position: top left
 PropertyValuesHolder pvhX = PropertyValuesHolder.ofFloat("x", x);

 //from the right bottom animate "y" to its original position
 PropertyValuesHolder pvhY = PropertyValuesHolder.ofFloat("y", y);

 //when you do not specify the from position, the animation will take the current position
 //as the from position.

 //Tell the object animator to consider both
 //"x" and "y" properties to animate to their respective target values.
 ObjectAnimator oa = ObjectAnimator.ofPropertyValuesHolder(m_tv, pvhX, pvhY);

 //set the duration
 oa.setDuration(5000); //5 secs

399CHAPTER 18: Exploring 2D Animation

 //here is a way to set an interpolator on any animator
 oa.setInterpolator(new AccelerateDecelerateInterpolator());
 oa.start();
}

A PropertyValuesHolder class holds a property name and its target value. Then you can
define many of these PropertyValuesHolders with their own property to animate. You can
supply this set of PropertyValuesHolders to the object animator. The object animator will
then set these properties to their respective values on the target object. With each refresh of
the animation, all the values from each PropertyValuesHolder will be applied all at once. This
is more efficient than applying multiple animations in parallel.

Button 5 in Figure 18-5 runs the code in Listing 18-36. When this animation runs, the text
view will emerge from bottom right and migrate toward the top left in 5 seconds.

Understanding View Properties Animation
Android SDK has an optimized approach to animate various properties of views. This is done
through a class called ViewPropertyAnimator. Listing 18-37 uses this class to move the text
view from bottom right to top left.

Listing 18-37. Using a ViewPropertyAnimator

//file: TestPropertyAnimationActivity.java(ProAndroid5_ch18_TestPropertyAnimation.zip)
public void testViewAnimator(View v) {
 //Remember current boundaries
 float h = m_tv.getHeight(); float w = m_tv.getWidth();
 float x = m_tv.getX(); float y = m_tv.getY();

 //Position the view at bottom right
 m_tv.setX(w); m_tv.setY(h);

 //Get a ViewPropertyAnimator from the text view
 ViewPropertyAnimator vpa = m_tv.animate();

 //Set as many target values you want to set
 vpa.x(x); vpa.y(y);

 //Set duration and interpolators
 vpa.setDuration(5000); //2 secs
 vpa.setInterpolator(new AccelerateDecelerateInterpolator());

 //The animation automatically starts when the UI thread gets to it.
 //No need to explicitly call the start method.
 //vpa.start();
}

400 CHAPTER 18: Exploring 2D Animation

The steps to use ViewPropertyAnimator are as follows:

1. Get a ViewPropertyAnimator by calling the animate() method on a view.

2. Use the ViewPropertyAnimator object to set various final properties
of that view, such as x, y, scale, alpha, and so on.

3. Let the UI thread proceed by returning from the function. The
animation will automatically start.

This animation is invoked by button 6. When this animation runs, the text view will migrate
from bottom right to top left.

Understanding Type Evaluators
As we have seen, an object animator directly sets a particular value on a target object with
each animation cycle. These values so far have been single point values such as floats,
ints, and so on. What happens if your target object has a property that is an object itself?
This is where type evaluators come into play.

To illustrate this consider a view on which we want to set two values such as ‘x’ and ‘y’.
Listing 18-35 shows how we encapsulate a regular view for which we know how to change
x and y. The encapsulation will allow the animation to call once for both x and y through
the PointF abstraction available in the Android graphics package. We will provide a
setPoint(PointF) method and then, inside that method, parse out x and y and set them on
the view. Take a look at Listing 18-38.

Listing 18-38. Animating a View Through a TypeEvaluator

//file: AnimatableView.java(ProAndroid5_ch18_TestPropertyAnimation.zip)
public class MyAnimatableView {
 PointF curPoint = null; View m_v = null;
 public MyAnimatableView(View v) {
 curPoint = new PointF(v.getX(),v.getY());
 m_v = v;
 }
 public PointF getPoint() {
 return curPoint;
 }
 public void setPoint(PointF p) {
 curPoint = p;
 m_v.setX(p.x);
 m_v.setY(p.y);
 }
}

In code Listing 18-38 TypeEvaluator is a helper object that knows how to set a composite
value such as a two-dimensional or three-dimensional point during an animation cycle. In a
scenario involving composite fields (represented as an object), an ObjectAnimator will take the
starting composite value (like the PointF object which is a composite of x and y), an ending
composite value and pass them to a TypeEvaluator helper object to get the intermediate

401CHAPTER 18: Exploring 2D Animation

object value. This composite value is then set on the target object. Listing 18-39 shows how a
TypeEvlautor calculates this intermediate value through its evaluate method.

Listing 18-39. Coding a TypeEvaluator

//file: MyPointEvaluator.java(ProAndroid5_ch18_TestPropertyAnimation.zip)
public class MyPointEvaluator implements TypeEvaluator<PointF> {
 public PointF evaluate(float fraction, PointF startValue, PointF endValue) {
 PointF startPoint = (PointF) startValue;
 PointF endPoint = (PointF) endValue;
 return new PointF(
 startPoint.x + fraction * (endPoint.x - startPoint.x),
 startPoint.y + fraction * (endPoint.y - startPoint.y));
 }
}

From Listing 18-39 you can see that you need to inherit from the TypeEvaluator interface
and implement the evaluate() method. In this method, you will be passed the fraction of the
animation’s total progress. You can use that fraction to adjust your intermediate composite
value and return it as a typed value.

Listing 18-40 shows how an ObjectAnimator uses MyAnimatableView and the
MyPointEvaluator to animate composite values for a View.

Listing 18-40. Using a TypeEvaluator

//file: TestPropertyAnimationActivity.java(ProAndroid5_ch18_TestPropertyAnimation.zip)
public void testTypeEvaluator(View v) {
 float h = m_tv.getHeight(); float w = m_tv.getWidth();
 float x = m_tv.getX(); float y = m_tv.getY();

 PointF startingPoint = new PointF(w,h);
 PointF endingPoint = new PointF(x,y);

 //m_atv: You will need this code in your activity earlier as a local variable:
 MyAnimatableView m_atv = new MyAnimatableView(m_tv);

 ObjectAnimator viewCompositeValueAnimator =
 ObjectAnimator.ofObject(m_atv
 ,"point", new MyPointEvaluator()
 ,startingPoint, endingPoint);

 viewCompositeValueAnimator.setDuration(5000);
 viewCompositeValueAnimator.start();
}

Notice in Listing 18-40 that the ObjectAnimator is using the method ofObject() as
opposed to ofFloat() or ofInt(). Also notice that the starting value and ending value
for the animation are composite values represented by the class PointF. The goal of the
object animator is now to come up with an intermediate value for PointF and then pass
it to the method setPoint(PointF) on the custom class MyAnimatableView. The class

402 CHAPTER 18: Exploring 2D Animation

MyAnimatableView can accordingly set the respective individual properties on the contained
text view. This animation in Listing 18-40 using the TypeEvaluator is invoked by button 7.
When this animation runs, the view will migrate from bottom right to top left.

Understanding Key Frames
Key frames are useful places during an animation cycle to put key time markers (significant
instances in time). A key frame specifies a particular value for a property at a given moment in
time. The key marker’s time is between 0 (beginning of animation) and 1 (end of animation).
Once you gather these key-frame values, you set them against a particular property such as
alpha, x, or y. This association of key frames to their respective properties is done through
the PropertyValuesHolder class. You then tell the ObjectAnimator to animate the resulting
PropertyValuesHolder. Listing 18-41 demonstrates key-frame animation.

Listing 18-41. Animating a View Using Key Frames

//file:TestPropertyAnimationActivity.java(ProAndroid5_ch18_TestPropertyAnimation.zip)
public void testKeyFrames(View v) {
 float h = m_tv.getHeight(); float w = m_tv.getWidth();
 float x = m_tv.getX(); float y = m_tv.getY();

 //Start frame : 0.2, alpha: 0.8
 Keyframe kf0 = Keyframe.ofFloat(0.2f, 0.8f);

 //Middle frame: 0.5, alpha: 0.2
 Keyframe kf1 = Keyframe.ofFloat(.5f, 0.2f);

 //end frame: 0.8, alpha: 0.8
 Keyframe kf2 = Keyframe.ofFloat(0.8f, 0.8f);

 PropertyValuesHolder pvhAlpha =
 PropertyValuesHolder.ofKeyframe("alpha", kf0, kf1, kf2);
 PropertyValuesHolder pvhX =
 PropertyValuesHolder.ofFloat("x", w, x);

 //end frame
 ObjectAnimator anim =
 ObjectAnimator.ofPropertyValuesHolder(m_tv, pvhAlpha,pvhX);
 anim.setDuration(5000);
 anim.start();
}

The animation in Listing 18-41 is invoked by button 8. When this animation runs, you will
see the text move from right to left. When 20% of the time has passed, alpha will change
to 80%. The alpha value will reach 20% at half way and change back to 80% at the 80th
percentile of the animation time.

403CHAPTER 18: Exploring 2D Animation

Understanding Layout Transitions
The property animation API also provides layout-based animations through the
LayoutTransition class. This class is well documented as part of the standard API Java doc
at the following URL.

http://developer.android.com/reference/android/animation/LayoutTransition.html

We will summarize here only the key points of layout transitions. To enable layout transitions
on a view group (most layouts are view groups), you will need to use the code shown in
Listing 18-42.

Listing 18-42. Setting a Layout Transition

viewgroup.setLayoutTransition(
 new LayoutTransition()
);

With the code in Listing 18-42 the layout container (ViewGroup) will exhibit default transitions
as views are added and removed. A LayoutTransition object has four different default
animations that cover each of the following scenarios:

Add a view (animation for the view that is appearing due to an add 	
or a show)

Change appearing (animation for the rest of the items in the layout as 	
they could change their size or appearance due to a new item
being added)

Remove a view (animation for the view that is disappearing due to 	
a remove or a hide)

Change disappearing (animation for the rest of the items in the layout as 	
they could their size or appearance due to an item being removed)

If you want custom animators for each of these cases, you can set them on the
LayoutTransition object. Here is an example in Listing 18-43.

Listing 18-43. Layout Transition Methods

//Here is how you get a new layout transition
LayoutTransition lt = new LayoutTransition();

//You can set this layout transition on a layout
someLayout.setLayoutTransition(lt);

//obtain a default animator if you need to remember
Animator defaultAppearAnimator = lt.getAnimator(APPEARING);

//create a new animator
ObjectAnimator someNewObjectAnimator1, someOtherObjectAnimator2;

http://developer.android.com/reference/android/animation/LayoutTransition.html

404 CHAPTER 18: Exploring 2D Animation

//set it as your custom animator for the allowed set of animators
lt.setAnimator(APPEARING, someNewObjectAnimator1);
lt.setAnimator(CHANGE_APPEARING, someNewObjectAnimator1);
lt.setAnimator(DISAPPEARING, someNewObjectAnimator1);
lt.setAnimator(CHANGE_DISAPPEARING, someOtherObjectAnimator2);

Because the animator you supply to a layout transition applies to each view, the animators
are internally cloned before being applied to each view.

Resources
Here are some useful links to when you are working with the Android Animation API:

	http://www.androidbook.com/item/3901: Author research notes on
Android property animations.

	http://android-developers.blogspot.com/2011/02/animation-in-
honeycomb.html: A key blog on property animations.

	http://android-developers.blogspot.com/2011/05/introducing-
viewpropertyanimator.html: A blog on view property animations.

	http://developer.android.com/guide/topics/graphics/prop-
animation.html: Primary documentation on property animations from
the Android SDK.

	http://developer.android.com/guide/topics/graphics/animation.html:
Android documentation links to all animation types, including property
animations and old-style animations.

	http://developer.android.com/reference/android/view/animation/
package-summary.html: Java doc API for the older animation package
android.view.animation.

	http://developer.android.com/guide/topics/resources/animation-
resource.html: XML tags for various animation types.

	http://www.androidbook.com/proandroid5/projects: Downloadable
test projects for this chapter. The names of the zip files are
ProAndroid5_ch18_TestFrameAnimation.zip, ProAndroid5_ch18_
TestLayoutAnimation.zip, ProAndroid5_ch18_TestViewAnimation.zip,
and ProAndroid5_ch18_TestPropertyAnimation.zip.

Summary
In this chapter we have covered frame-by-frame animation, layout animation, view
animation, interpolators, transformation matrices, Camera, and various ways of using the
new property animation API. All concepts are presented with working code snippets and
supported by working downloadable projects.

http://www.androidbook.com/item/3901
http://android-developers.blogspot.com/2011/02/animation-in-honeycomb.html
http://android-developers.blogspot.com/2011/02/animation-in-honeycomb.html
http://android-developers.blogspot.com/2011/05/introducing-viewpropertyanimator.html
http://android-developers.blogspot.com/2011/05/introducing-viewpropertyanimator.html
http://developer.android.com/guide/topics/graphics/prop-animation.html
http://developer.android.com/guide/topics/graphics/prop-animation.html
http://developer.android.com/guide/topics/graphics/animation.html
http://developer.android.com/reference/android/view/animation/package-summary.html
http://developer.android.com/reference/android/view/animation/package-summary.html
http://developer.android.com/guide/topics/resources/animation-resource.html
http://developer.android.com/guide/topics/resources/animation-resource.html
http://www.androidbook.com/proandroid5/projects

405

Chapter 19
Exploring Maps and
Location-Based Services

In this chapter, we are going to talk about maps and location-based services. Location-
based services form one of the more exciting pieces of the Android SDK. This portion of
the SDK provides APIs to let application developers display and manipulate maps, obtain
real-time device-location information, and take advantage of other exciting features. Working
with maps changed significantly when Google introduced the MapFragment and version 2 of
the Google Maps API. This chapter will go into details of the new ways of creating maps and
manipulating them.

The location-based services facility in Android sits on two pillars: the mapping and location-
based APIs. The mapping APIs in Android provide facilities for you to display a map and
manipulate it. For example, you can zoom and pan; you can change the map mode (from
satellite view to traffic view, for example); you can add markers and custom data to the map;
and so on. The other end of the spectrum is Global Positioning System (GPS) data and
information about locations, both of which are handled by the location package.

These APIs often reach across the Internet to invoke services from Google servers, via
Google Play Services (the local uber application on the device). Therefore, you will usually
need to have Internet connectivity for these to work. In addition, Google has Terms of
Service that you must agree to before you can develop applications with these Google
services. Read the terms carefully; Google places some restrictions on what you can do with
the service data. For example, you can use location information for users’ personal use, but
certain commercial uses are restricted, as are applications involving automated control of
vehicles. The terms will be presented to you when you sign up for a Maps API key.

In this chapter, we’ll go through each of these packages. We’ll start with the mapping APIs
and show you how to use maps with your applications. As you’ll see, mapping in Android
boils down to using MapFragment class in addition to the mapping APIs, which integrate with
Google Maps. We will also show you how to place custom data onto the maps that you
display and how to show the current location of the device on a map. After talking about

406 CHAPTER 19: Exploring Maps and Location-Based Services

maps, we’ll delve into location-based services, which extend the mapping concepts. We will
show you how to use the Android Geocoder class and the LocationServices service. We will
also touch on threading issues that surface when you use these APIs.

Understanding the Mapping Package
As we mentioned, the mapping APIs are one of the components of Android’s location-based
services. The mapping package contains almost everything you’ll need to display a map on
the screen, handle user interaction with the map (such as zooming), display custom data on
top of the map, and so on. In the old version of Android Maps, your application would talk
directly to the Google Maps services for everything map-related. In the new version, your
application must talk to Google Play Services, which is a local app on the device, provided
as part of the operating system. Your app still also makes calls over the Internet for data, but
if Google Play Services is not present locally on the device, your maps will not work. If you
need maps on devices that don’t have Google Play Services you’ll need to explore one of
the other maps packages available for Android (e.g., MapQuest).

In order for your application to talk to Google Play Services, you will need to include the
Google Play Services library into your application. Android Studio does this differently than
Eclipse with ADT. See the References section below for a link to online instructions for the
latest way to do this. Before you include the Google Play Services library in your application,
you must first download it through the SDK Manager. You’ll find it under Extras.

You may have noticed that your Android SDK Manager shows Google API packages in
addition to the Android SDK platforms. Previously, you had to base your application on a
Google APIs package in order to use maps, but that is no longer true. Instead, the Maps API
integrates to Google Play Services, so your application can be based on a regular Android
package. However, to test a maps-based app in the emulator, you would need to base your
emulator’s Android Virtual Device (AVD) on a Google APIs package. More on testing apps later.

The first step to working with the maps package is to display a map. To do that, you’ll use
MapFragment (or SupportMapFragment if you want backwards compatibility with versions of
Android prior to API 12, a.k.a. Honeycomb 3.1). Using this class, however, requires some
preparation work. Specifically, before you can use Google Maps services, you’ll need to get
a Maps API key from Google. The Maps API key enables Android to interact with Google
Maps services to obtain map data. The next section explains how to obtain a Maps API key.

Obtaining a Maps API Key from Google
Google wants to be able to identify the application that is connecting to the map
services. It uses a combination of the application package and the certificate used to
sign the application, to generate a Maps API key that the application must then use to
request service. The Maps API key can be used across a number of pairs of packages
and certificates. This means you can use the same Maps API key for development and
production; the package would be the same but the certificates are probably different.
In theory you could use the same key across multiple applications but this practice is
discouraged. You don’t want to do this anyway since Google imposes certain limits on the
Maps API usage and by sharing a Maps API key with multiple applications you could more
easily exceed the limit.

407CHAPTER 19: Exploring Maps and Location-Based Services

To obtain a Maps API key, you need the certificate that you’ll use to sign your application (in
the case of a development version of your app, the debug certificate). You’ll get the SHA-1
fingerprint of your certificate, and then you’ll enter it, along with your application’s package,
on Google’s web site to generate an associated Maps API key.

First, you must locate your debug certificate, which is generated and maintained by
Eclipse. You can find the exact location using the Eclipse IDE. If you’re using an IDE other
than Eclipse, you just need to locate the keystore file where the certificates are held. From
Eclipse’s Preferences menu, go to Android ➤ Build. The debug certificate’s location will be
displayed in the Default Debug Keystore field, as shown in Figure 19-1.

Figure 19-1. The debug certificate’s location

To extract the SHA-1 fingerprint, you can run the keytool with the –list option, as
shown here:

keytool -list -alias androiddebugkey -keystore
"FULL PATH OF YOUR debug.keystore FILE" -storepass android -keypass android

Note that the alias you want from the debug store is androiddebugkey. Similarly, the
keystore password is android, and the private key password is also android. When you run
this command, the keytool provides the fingerprint (see Figure 19-2).

408 CHAPTER 19: Exploring Maps and Location-Based Services

You’ll notice that the fingerprint displayed by the keytool command is the same as displayed
in the Preferences screen as shown in Figure 19-1 so you could have just gotten it from
that screen. But now you know both ways to extract out the SHA-1 fingerprint for your
application. When you use keytool to extract out the SHA-1 fingerprint for the production
certificate, you’ll use the keystore file, alias, and password that you set up for your
production certificate.

The next step is to go to Google’s Developer Console to add your application, and following
that you enable the Maps API. The result will be your Maps API key to include in your
application. The Developer Console is here, and you will need a Google account in order to
get there:

https://console.developers.google.com

You will need to create a new project. As part of creating the new project, you need to
provide a Project Name and a Project ID. The Project ID will be pre-populated with something
strange-looking. You can put any value you want here as long as it is unique. However, the
Project ID is just for use by the Google Developer Console; it has nothing to do with the
source code of your application. Remember that you’re creating a sample project based on
the code of this chapter’s sample project, so that you can get a Maps API key to see it work.

Read through the Terms of Service. If you agree to the terms, click Create to create your new
project. This sets up a basic template of a project with Google. Next you’re going to enable
the APIs you want. For a maps application, you’ll choose Google Maps Android API v2. For
the chapter’s sample application, you also want to include the Geocoding API. You might
get a pop-up window called ‘Configure Android Key for <your app name>’. If you don’t get
a pop-up, you can navigate to the APIs & auth ➤ Credentials section of your project in the
Developers Console and generate an API key there. This is where you need to copy and
paste in both the SHA-1 fingerprint of the application signing certificate, and the package
name of the application, separated by a semicolon. The package name is the one from
your source code. Note that you can copy in more than one line, so if you have the SHA-1
fingerprint from the production application signing certificate (which is typically different from
the androiddebugkey used in development), you could add a second line for the production
application.

Once you press the Create button on this screen you will get an API key. This is what you will
include in the AndroidManifest.xml file of your application. The API key is active immediately,
so you can start using it to obtain map data from Google.

Figure 19-2. The keytool output for the list option

https://console.developers.google.com/

409CHAPTER 19: Exploring Maps and Location-Based Services

Adding the Maps API Key to Your Application
To see how the Maps API key is added to the manifest file, see the bottom of Listing 19-1.

Listing 19-1. AndroidManifest.xml for a Simple Maps Application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.maps.whereami"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="10" android:targetSdkVersion="19" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <uses-feature
 android:glEsVersion="0x00020000" android:required="true"/>

 <application
 android:allowBackup="true" android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name="com.androidbook.maps.whereami.MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <meta-data android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />
 <meta-data
 android:name="com.google.android.maps.v2.API_KEY"
 android:value="AIzaSyBDs1ZQgu9X2A4TG1a7fPl-Ge_MKlyviKM"/>
 </application>
</manifest>

As you no doubt noticed, there are other elements within the manifest file that must be
present for a maps application to work. The <meta-data> tag above the Maps API key
is required, as are the permissions near the top. Technically, the ACCESS_FINE_LOCATION
permission is not needed to show maps; it is there so location functionality (e.g., GPS) will
work. GPS is commonly used in maps applications. ACCESS_NETWORK_STATE and INTERNET
permissions are there so the maps application can download map tile data (i.e., the map
graphics) and to know what type and state of network connection the application has.
The WRITE_EXTERNAL_STORAGE permission is there so the maps application can create a
local cache of map tile files on the device’s local storage space. Without caching, a maps
application would likely spend a lot of time downloading map tiles over and over again,

http://schemas.android.com/apk/res/android

410 CHAPTER 19: Exploring Maps and Location-Based Services

which is not only inefficient for your app, but it places an unwanted burden on the Google
servers and it could consume a large portion of the user’s data plan. And finally, the
glEsVersion feature is present because rendering maps on the screen uses OpenGL, so
by requiring the feature, the application avoids getting installed on devices that could not
display maps.

Now, let’s start playing with maps.

Understanding MapFragment
The foundational building block of a map application is the MapFragment. This was introduced
in Honeycomb (Android 3.1) and replaced MapView and MapActivity functionality. Now you
can embed a MapFragment inside of a regular Android activity. If you want your application
to run on devices running an older version of Android, you can use SupportMapFragment
and embed it inside a FragmentActivity. The MapFragment contains the map view to display
maps, it handles user gestures to manipulate the map, and it manages the background
threads that talk to the Google services to retrieve map data.

MapFragment is a very nice bundle of functionality, but it’s not all that you need on your
device to make maps work. Fortunately, the integration with Google Play Services is all
handled for you; all you need to do is make a special entry into your app’s AndroidManifest.
xml file, which you saw in the previous section.

The first sample application for this chapter will simply show a map to the user and let the
user explore the map.

Note We give you a URL at the end of the chapter that you can use to download projects from this
chapter. This will allow you to import these projects into your IDE directly. Also note that if you want
to test these samples with an Android emulator, make sure the Android Virtual Device (AVD) is built
with the Google APIs.

Please refer to the sample project called WhereAmI. The application is made up of a very
basic FragmentActivity, a very simple layout, and a SupportMapFragment. The sample is
using the compatibility classes, which means it will run on Gingerbread devices as well as
the latest models. If your app only needs to run on devices newer than Honeycomb 3.0, you
could use a regular activity and a MapFragment instead.

Listing 19-2 shows the activity. All that’s needed is to set up the layout and, if needed, create
the MapFragment and insert it into the layout’s container (a FrameLayout).

411CHAPTER 19: Exploring Maps and Location-Based Services

Listing 19-2. A Basic FragmentActivity for Displaying a Map

public class MainActivity extends FragmentActivity {

 private static final String MAPFRAGTAG = "MAPFRAGTAG";
 private MyMapFragment myMapFrag;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 if ((myMapFrag = (MyMapFragment) getSupportFragmentManager()
 .findFragmentByTag(MAPFRAGTAG)) == null) {
 myMapFrag = MyMapFragment.newInstance();
 getSupportFragmentManager().beginTransaction()
 .add(R.id.container, myMapFrag, MAPFRAGTAG).commit();
 }
 }
}

If the activity is re-created due to an orientation change for example, the map fragment
will still be available and be automatically attached to the new activity by Android. If the
map fragment is not found, it means this is the first time in, or the map fragment has been
destroyed, so create a new one and attach it. It doesn’t get any easier than that. The layout
source is shown in Listing 19-3. It is simply a FrameLayout with an id of "container" that fills
the available screen space.

Listing 19-3. Layout for Simple Map Display (activity_main.xml)

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/container"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.androidbook.maps.whereami.MainActivity"
 tools:ignore="MergeRootFrame" />

If you are including the map fragment with other items in your user interface, you can simply
use the FrameLayout where you want the map fragment to appear, embedded within other
layouts. The only code remaining is that of the MapFragment, which is shown in Listing 19-4.
Figure 19-3 shows what the user sees.

Listing 19-4. Code for the MapFragment

public class MyMapFragment extends SupportMapFragment
 implements OnMapReadyCallback {
 private GoogleMap mMap = null;

 public static MyMapFragment newInstance() {
 MyMapFragment myMF = new MyMapFragment();
 return myMF;
 }

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

412 CHAPTER 19: Exploring Maps and Location-Based Services

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 getMapAsync(this);
 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 setRetainInstance(true);
 }

 @Override
 public void onResume() {
 super.onResume();
 doWhenMapIsReady();
 }

 @Override
 public void onPause() {
 super.onPause();
 if(mMap != null)
 mMap.setMyLocationEnabled(false);
 }

 @Override
 public void onMapReady(GoogleMap arg0) {
 mMap = arg0;
 doWhenMapIsReady();
 }

 /* We have a race condition where the fragment could resume
 * before or after the map is ready. So we put all our logic
 * for initializing the map into a common method that is
 * called when the fragment is resumed or resuming and the
 * map is ready.
 */
 void doWhenMapIsReady() {
 if(mMap != null && isResumed())
 mMap.setMyLocationEnabled(true);
 }
}

413CHAPTER 19: Exploring Maps and Location-Based Services

A recent development (Dec 2014) to the Maps API is the use of a callback to let the
application know when the map is ready to be acted upon. The callback is set up using
getMapAsync(), and the onMapReady() callback is called when the map can be used by the
application. In between calling getMapAsync() and invoking the onMapReady() callback,
Android is setting up communications, threads, etc., for the map. This means that the map
may or may not be ready when onResume() is invoked, which tells the fragment that the UI
is now being shown. Therefore, the application needs a separate method to work on the
map and it needs to be called both by onResume() and by onMapReady(). For this sample
application, the doWhenMapIsReady() method fills that role.

The application wants to show the user the device’s current location, so the
setMyLocationEnabled() method is called in doWhenMapIsReady(). But doWhenMapIsReady()
needs to check that the map exists and that the fragment is resuming or has resumed.
We don’t know which will occur first, but both must be true before we enable location
updates. The current location updates are disabled when the fragment goes out of view
(see onPause()). The only other code line to notice is the setRetainInstance() method call.
Since the map does not need to be destroyed and re-created for a configuration change of
the activity, it makes sense to keep the fragment and reuse it, along with the threads and
tiles and so on. You should remember that a configuration change will cause onPause()
and onResume() to be invoked during the config change. This will correctly disable location
updates and re-enable them during onResume().

Figure 19-3. A basic MapFragment displaying your location

414 CHAPTER 19: Exploring Maps and Location-Based Services

Map Controls: MyLocation, Zoom, Pan
There are a couple of artifacts on the user interface to notice. First is the MyLocation button
in the upper-right corner. When you first start the sample app you will see a very high-level
view of the world. To show the current location, tap the MyLocation button. This will relocate
the map to the current position and zoom in. Second is the blue dot. The blue dot represents
where the app thinks you are, and the circle represents how accurate it thinks this location
is. The circle may grow or shrink as the location information changes.

The user can use pinch gestures (i.e., squeezing two fingers apart or together) to zoom in
or out. There are more gestures that the user can do on the map. By swiping, the user can
pan the map; that is, they can move the map to see nearby areas. Using two fingers and a
rotation move, the user can rotate the map. That’s a lot of functionality that’s automatic from
simply creating a MapFragment.

These map controls and more are contained in an object of the UiSettings class. You can
get the map’s UiSettings by calling getUiSettings() on the GoogleMap object (i.e., mMap
in the sample app). You can then modify the settings programmatically. For example, you
could enable a compass to be displayed on the map, or you could enable/disable the zoom
plus/minus control so it is or is not displayed. The zoom plus/minus control appears in the
lower-right corner and allows the user to zoom in or out by tapping the plus or minus button,
respectively.

Map Types
The default map type is MAP_TYPE _NORMAL. This is the type that was used in Figure 19-3.
It shows the roads with the basic features of the land such as where water is, where
greenspace is, and some places and buildings. MAP_TYPE_SATELLITE shows a photographic
satellite view of the ground, so the user is able to see actual buildings, cars, and even people.
MAP_TYPE_HYBRID is a combination of these two; MAP_TYPE_TERRAIN is like a normal map but
with topographical features added such as mountains and canyons. To really see the effect of
MAP_TYPE_TERRAIN, zoom in on a place like Boulder, Colorado with a map set to Terrain.

You use the setMapType() method of a GoogleMap to change the type.

Adding a Traffic Layer
In the previous version of Android Maps, traffic was treated like the satellite and normal
modes of maps. With API v2, traffic is enabled separately using the setTrafficEnabled()
method of a GoogleMap.

Map Tiles
It’s helpful to understand what’s going on when your app displays a map. Google has
created millions of base map tiles to represent the earth’s surface. At the lowest zoom level
(i.e., zero) there is one tile to show the entire world. At zoom level 1, there are four tiles in a
2x2 configuration. At zoom level 2, there are 16 tiles in a 4x4 configuration. And so on up to
zoom level 21. Depending on what part of the world you want to display, and what the zoom

415CHAPTER 19: Exploring Maps and Location-Based Services

level is, the GoogleMap object will fetch and cache the appropriate tiles. Pan to the side,
and any additional tiles will be fetched and displayed. Pan back to where you were and your
app can retrieve map tiles from the cache instead of making more round trips to the server.

It’s interesting to note that base map tiles for the normal type of maps are not images.
Google has figured out a compressed way to describe the shapes and colors within the
tiles instead of just sending down images for each tile. As a result, normal map tiles are very
efficient in terms of cache space as well as network bandwidth. Satellite tiles on the other
hand are not as compressed, since they are images.

Now you can understand why sometimes a maps application will show a gray grid pattern
and seem to function but won’t show streets and other items. The GoogleMap object has
been instantiated, and it knows a zoom level and where it is supposed to be displaying a
map, but it is unable to retrieve and render tiles to the user. This is most often due to an
invalid Maps API key, or the API key has not been set up properly. But it could also mean
difficulty in reaching the Google Maps servers. However, if map tiles have been cached,
those tiles can be rendered to the user even if the tile servers at Google are unreachable.
There are two unfortunate things about map tile caching. The first is that there are no API
calls to manage the map tile cache, either to force map tiles to be cached, or to change the
size of the cache, or to evict tiles from the cache. You just have to trust that Google will do
the right thing. The second is that map tiles are cached per application. So just because the
Google Maps application may have cached tiles, your application does not have access to
those tiles. Your application can only see the cached tiles that it has cached.

Adding Markers to Maps
Usually you’ll want to identify points of interest on a map, and this is done using Markers.
The points could be stationary objects like addresses, landmarks, or a parking spot. But
they could also be moving objects like cars, planes, people, pets, storms, etc. You get to
choose what the marker looks like and where it is positioned on a map. And you can have
lots of markers all at the same time. We’re going to modify the sample program from above
to include a couple of markers. You’ll see how to place them, and then how to manipulate
the view to make sure the user sees the markers.

Now use the sample program called WhereAmIMarkers. You will need to modify the
AndroidManifest.xml file as before to use your Maps API key. The source code for
MyMapFragment.java has been modified as shown in Listing 19-5. The screen will appear
similar to Figure 19-4.

Listing 19-5. Code for the MapFragment Showing Markers

public class MyMapFragment extends SupportMapFragment
 implements OnMapReadyCallback {

 public static MyMapFragment newInstance() {
 MyMapFragment myMF = new MyMapFragment();
 return myMF;
 }

416 CHAPTER 19: Exploring Maps and Location-Based Services

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 getMapAsync(this);
 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 setRetainInstance(true);
 }

 @Override
 public void onMapReady(GoogleMap myMap) {
 LatLng disneyMagicKingdom = new LatLng(28.418971, -81.581436);
 LatLng disneySevenLagoon = new LatLng(28.410067, -81.583699);

 // Add a marker
 MarkerOptions markerOpt = new MarkerOptions()
 .draggable(false)
 .flat(false)
 .position(disneyMagicKingdom)
 .title("Magic Kingdom")
 .icon(BitmapDescriptorFactory.defaultMarker(BitmapDescriptorFactory.

HUE_AZURE));
 myMap.addMarker(markerOpt);

 markerOpt.position(disneySevenLagoon)
 .title("Seven Seas Lagoon");
 myMap.addMarker(markerOpt);

 // Derive a bounding box around the markers
 LatLngBounds latLngBox = LatLngBounds.builder()
 .include(disneyMagicKingdom)
 .include(disneySevenLagoon)
 .build();

 // Move the camera to zoom in on our locations
 myMap.moveCamera(CameraUpdateFactory.newLatLngBounds(latLngBox, 200, 200, 0));
 }
}

417CHAPTER 19: Exploring Maps and Location-Based Services

Once again, everything starts from acquiring the GoogleMap object from the MapFragment.
Once the map is available, you can create markers which in this case are based on a
couple of fixed LatLng objects. You’ll notice though that you don’t directly instantiate a
Marker object. Instead, you use a MarkerOptions object to specify how the marker should
be created. It is within the MarkerOptions object that you decide the position, title, marker
shape, color, etc. While you could instantiate a Marker object and then call each setter that
you want, MarkerOptions makes things much easier, especially if you need to create multiple
markers that will share common features. This sample only uses some of the MarkerOptions
features; please see the reference documentation to learn all of the options available.

The next thing you likely want to do is show the map to the user such that all the markers
are visible at the same time. This requires two things: centering the map in the middle of
the markers, and setting the zoom level as high as possible without being so close that you
can’t fit all the markers into the view. Fortunately, a helper class is available for this purpose.
The LatLngBounds object is created by passing it all of the LatLng points that should be
within the view, and it calculates the smallest box that contains them all. In this sample, both
points are passed in at once. You could also use a loop to pass in all the points and then
invoke the build() method to return the bounding box.

Once you have a bounding box, you need to adjust the map’s camera. In the old version of
Google Maps, there was only a straight-down view of a map, as if you were above the map
looking straight down. With Maps API version 2, there is the concept of a camera that can

Figure 19-4. Markers on a map

418 CHAPTER 19: Exploring Maps and Location-Based Services

look straight down, but can also look at an angle. If you use two fingers at the same time
and swipe the screen from top to bottom, you will see the viewing angle change. You have in
effect pivoted the camera so you are no longer looking straight down. The camera can also
look to the east, south or any other direction when it is angled. You can twist two fingers to
rotate the map too.

All these camera angles, zoom levels and so on are controlled using the map’s
animateCamera() or moveCamera() methods. These methods take a CameraUpdate object
as instructions, and the CameraUpdateFactory class generates those. In the sample,
the bounding box is passed to the CameraUpdateFactory and it returns an appropriate
CameraUpdate so that the camera will be positioned in the best place to see all the markers.
There are several other methods to CameraUpdateFactory to accommodate other ways of
positioning the camera. You do can simple zoomIn() and zoomOut() for example. You can
also create a CameraPosition object and use that.

All in all, you’ll agree that placing markers on a map couldn’t be easier. Or could it? We don’t
have a database of latitude/longitude pairs, but we’re guessing that we’ll need to somehow
create one or more LatLng objects using a real address. That’s when you can use the
Geocoder class, which is part of the location package that we’ll discuss next.

Understanding the Location Package
The android.location package provides facilities for location-based services. In this
section, we are going to discuss two important pieces of this package: the Geocoder class
and the LocationManager service. We’ll start with Geocoder.

Geocoding with Android
If you are going to do anything practical with maps, you’ll likely have to convert an address
(or location) to a latitude/longitude pair. This concept is known as geocoding, and the
android.location.Geocoder class provides this facility. In fact, the Geocoder class provides
both forward and backward conversion—it can take an address and return a latitude/
longitude pair, and it can translate a latitude/longitude pair into a list of addresses. The class
provides the following methods:

	List<Address> getFromLocation(double latitude, double
longitude, int maxResults)

	List<Address> getFromLocationName(String locationName, int
maxResults, double lowerLeftLatitude, double lowerLeftLongitude,
double upperRightLatitude, double upperRightLongitude)

	List<Address> getFromLocationName(String locationName, int
maxResults)

It turns out that computing an address is not an exact science because of the various ways
a location can be described. For example, the getFromLocationName() methods can take
the name of a place, the physical address, an airport code, or simply a well-known name for
the location. Thus, the methods return a list of addresses and not a single address. Because

419CHAPTER 19: Exploring Maps and Location-Based Services

the methods return a list, which could be quite long (and take a long time to return), you are
encouraged to limit the result set by providing a value for maxResults that ranges between 1
and 5. Now, let’s consider an example.

Listing 19-6 shows the XML layout and corresponding code for the activity and map
fragment shown in Figure 19-5. To run the example, you’ll need to update the manifest with
your own Maps API key.

Listing 19-6. Working with the Android Geocoder Class

<!-- This is activity_main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context="com.androidbook.maps.whereami.MainActivity"
 tools:ignore="MergeRootFrame" >

 <EditText android:id="@+id/locationName"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Enter location name"
 android:inputType="text"
 android:imeOptions="actionGo" />

 <FrameLayout android:id="@+id/container"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

</LinearLayout>

/**
 * This is from MainActivity.java
 **/
public class MainActivity extends FragmentActivity {

 private static final String MAPFRAGTAG = "MAPFRAGTAG";
 MyMapFragment myMapFrag = null;
 private Geocoder geocoder;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

420 CHAPTER 19: Exploring Maps and Location-Based Services

 if ((myMapFrag = (MyMapFragment) getSupportFragmentManager()
 .findFragmentByTag(MAPFRAGTAG)) == null) {
 myMapFrag = MyMapFragment.newInstance();
 getSupportFragmentManager().beginTransaction()
 .add(R.id.container, myMapFrag, MAPFRAGTAG).commit();
 }
 if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD
 && !Geocoder.isPresent()) {
 Toast.makeText(this, "Geocoder is not available on this device",
 Toast.LENGTH_LONG).show();
 finish();
 }
 geocoder = new Geocoder(this);
 EditText loc = (EditText)findViewById(R.id.locationName);
 loc.setOnEditorActionListener(new OnEditorActionListener() {
 @Override
 public boolean onEditorAction(TextView v, int actionId, KeyEvent event) {
 if (actionId == EditorInfo.IME_ACTION_GO) {
 String locationName = v.getText().toString();

 try {
 List<Address> addressList =
 geocoder.getFromLocationName(locationName, 5);
 if(addressList!=null && addressList.size()>0)
 {
// Log.v(TAG, "Address: " + addressList.get(0).toString());
 myMapFrag.gotoLocation(new LatLng(
 addressList.get(0).getLatitude(),
 addressList.get(0).getLongitude()),
 locationName);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 return false;
 }
 });
 }
}

public class MyMapFragment extends SupportMapFragment
 implements OnMapReadyCallback {
 private GoogleMap mMap = null;

 public static MyMapFragment newInstance() {
 MyMapFragment myMF = new MyMapFragment();
 return myMF;
 }

421CHAPTER 19: Exploring Maps and Location-Based Services

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 getMapAsync(this);
 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 setRetainInstance(true);
 }

 public void gotoLocation(LatLng latlng, String locString) {
 if(mMap == null)
 return;
 // Add a marker for the given location
 MarkerOptions markerOpt = new MarkerOptions()
 .draggable(false)
 .flat(false)
 .position(latlng)
 .icon(BitmapDescriptorFactory.defaultMarker(BitmapDescriptorFactory.

HUE_AZURE))
 .title("You chose:")
 .snippet(locString);
 // See the onMarkerClicked callback for why we do this
 mMap.addMarker(markerOpt);

 // Move the camera to zoom in on our location
 mMap.moveCamera(CameraUpdateFactory.newLatLngZoom(latlng, 15));
 }

 @Override
 public void onMapReady(GoogleMap arg0) {
 mMap = arg0;
 }
}

422 CHAPTER 19: Exploring Maps and Location-Based Services

To demonstrate the uses of geocoding in Android, type the name or address of a location
in the EditText field and then tap the Go button on the keyboard. To find the address of a
location, we call the getFromLocationName() method of Geocoder. The location can be an
address or a well-known name such as “White House.” Geocoding can be a prolonged
operation, so we recommend that you limit the results to five, as the Android documentation
suggests.

The call to getFromLocationName() returns a list of addresses. The sample application takes
the list of addresses and processes the first one if any were found. Every address has a
latitude and longitude, which you use to create a LatLng. You then call our gotoLocation()
method to navigate to the point. This new method in the map fragment creates a new
marker, adds it to the map, and moves the camera to the marker with a zoom level of 15.
The zoom level can be set to a float between 1 and 21, inclusive. As you move from 1
toward 21 by 1’s, the zoom level increases by a factor of 2. We could have presented a
dialog to display multiple found locations if we wanted to, but for now, we’ll just display the
first location returned to us.

In our example application, we only read the latitude and longitude of our returned Address.
In fact, there can be a ton of data about Addresses returned to us, including the location’s
common name, street, city, state, postal/ZIP code, country, and even phone number and
web site URL.

Figure 19-5. Geocoding to a point given the location name

423CHAPTER 19: Exploring Maps and Location-Based Services

You should understand a few points with respect to geocoding:

While the 	 Geocoder class may exist, the service may not be
implemented. If the device is Gingerbread or higher, you should check
with Geocoder.isPresent() before attempting to geocode in your
application.

A returned address is not always an exact address. Obviously, because 	
the returned list of addresses depends on the accuracy of the input, you
need to make every effort to provide an accurate location name to the
Geocoder.

Whenever possible, set the 	 maxResults parameter to a value between 1
and 5.

You should seriously consider doing the geocoding operation in a 	
different thread from the UI thread. There are two reasons for this. The
first is obvious: the operation is time-consuming, and you don’t want
the UI to hang while you do the geocoding, causing Android to kill your
activity. The second reason is that, with a mobile device, you always
need to assume that the network connection can be lost and that the
connection is weak. Therefore, you need to handle input/output (I/O)
exceptions and timeouts appropriately. Once you have computed the
addresses, you can post the results to the UI thread. See the included
sample application called WhereAmIGeocoder2 for how to do this.

Understanding Location Services
Location Services provide two main functions: a mechanism for you to obtain the device’s
geographical location and a facility for you to be notified (via an intent) when the device
enters or exits a specified geographical location. This latter operation is known as
geofencing.

In this section, you are going to learn how to find the device’s current location. To
use the service, you must first obtain a reference to it. Listing 19-7 shows a simple
usage of the FusedLocationProviderApi service. The sample project for this is called
WhereAmILocationAPI.

Listing 19-7. Using the Location Provider API

public class MyMapFragment extends SupportMapFragment
 implements GoogleApiClient.ConnectionCallbacks,
 GoogleApiClient.OnConnectionFailedListener,
 OnMapReadyCallback {
 private Context mContext = null;
 private GoogleMap mMap = null;
 private GoogleApiClient mClient = null;
 private LatLng mLatLng = null;

424 CHAPTER 19: Exploring Maps and Location-Based Services

 public static MyMapFragment newInstance() {
 MyMapFragment myMF = new MyMapFragment();
 return myMF;
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 getMapAsync(this);
 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 if(mClient == null) { // first time in, set up this fragment
 setRetainInstance(true);

 mContext = getActivity().getApplication();
 mClient = new GoogleApiClient.Builder(mContext, this, this)
 .addApi(LocationServices.API)
 .build();
 mClient.connect();
 }
 }

 @Override
 public void onConnectionFailed(ConnectionResult arg0) {
 Toast.makeText(mContext, "Connection failed", Toast.LENGTH_LONG).show();
 }

 @Override
 public void onConnected(Bundle arg0) {
 // Figure out where we are (lat, long) as best as we can
 // based on the user's selections for Location Settings
 FusedLocationProviderApi locator = LocationServices.FusedLocationApi;
 Location myLocation = locator.getLastLocation(mClient);
 // if the services are not available, could get a null location
 if(myLocation == null)
 return;
 double lat = myLocation.getLatitude();
 double lng = myLocation.getLongitude();
 mLatLng = new LatLng(lat, lng);
 doWhenEverythingIsReady();
 }

 @Override
 public void onConnectionSuspended(int arg0) {
 Toast.makeText(mContext, "Connection suspended", Toast.LENGTH_LONG).show();
 }

425CHAPTER 19: Exploring Maps and Location-Based Services

 @Override
 public void onMapReady(GoogleMap arg0) {
 mMap = arg0;
 doWhenEverythingIsReady();
 }

 private void doWhenEverythingIsReady() {
 if(mMap == null || mLatLng == null)
 return;
 // Add a marker
 MarkerOptions markerOpt = new MarkerOptions()
 .draggable(false)
 .flat(true)
 .position(mLatLng)
 .icon(BitmapDescriptorFactory.defaultMarker(BitmapDescriptorFactory.

HUE_AZURE));
 mMap.addMarker(markerOpt);

 // Move the camera to zoom in on our location
 mMap.moveCamera(CameraUpdateFactory.newLatLngZoom(mLatLng, 15));
 }
}

To acquire a location service, you first need to create a Google API client object, which
makes available to you the services from Google Play Services. This is relatively easy to
do, and once you have the client object, you need to call its connect() method. This will
later invoke the onConnected() callback asynchronously to let your application know that
the client has been connected and is now available for use. Or your application may get the
onConnectionFailed() callback, in which case you should take appropriate action. For the
sample we simply show a Toast message when the connection attempt has failed. Later on
you’ll see how to deal more robustly with a failed connection.

When the onConnected() callback is invoked, now you can work with the location provider
API. Recall that at the beginning of this chapter you set permissions in the manifest file to
access location information. Fine locations use GPS while coarse locations use cell towers
and WiFi hotspots. Using a fused location provider API means that your application isn’t
worrying about what is enabled or what permissions are set. The API calls are the same. You
just ask for locations and you will get the best location information that is available at the time.

For this sample, we call the getLastLocation() method. With luck, the location that is returned
is very current; however, be aware that the last location might be from minutes or hours
ago. The Location object can tell you, via the getTime() method, when this location fix was
obtained. You could check to see if it is new enough for your purposes before deciding to use
it. It is technically possible that getLastLocation() will return null so you should be prepared
for that case as well. This can happen if Location Services have been disabled in Settings.

You’ll see soon how to get updates to locations. For now, the sample takes whatever the last
location was and creates a map marker out of it for display to the user. You should recognize
the code to create a marker from the previous section of this chapter.

426 CHAPTER 19: Exploring Maps and Location-Based Services

How to Enable Location Services
You might think there’s a simple API to enable Location Services if they are not turned on
when your application runs. Unfortunately, this is not the case. To get Location Services
turned on, the user must do that from within the Settings screens of their device. Your
application can make this a lot simpler for the user by launching that particular Settings
screen. The location settings source screen is really just an activity, and this activity is set up
to respond to an intent.

In the sample application just covered, you will see the code from Listing 19-8 in the
activity’s onCreate() callback.

Listing 19-8. Checking to See If Location Services Are On

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 if ((myMapFrag = (MyMapFragment) getSupportFragmentManager()
 .findFragmentByTag(MAPFRAGTAG)) == null) {
 myMapFrag = MyMapFragment.newInstance();
 getSupportFragmentManager().beginTransaction()
 .add(R.id.container, myMapFrag, MAPFRAGTAG).commit();
 }

 if(!isLocationEnabled(this)) {
 // no location service providers are enabled
 Toast.makeText(context, "Location Services appear to be turned off." +
 " This app can't work without them. Please turn them on.",
 Toast.LENGTH_LONG).show();
 startActivityForResult(new Intent(
 android.provider.Settings.ACTION_LOCATION_SOURCE_SETTINGS), 0);
 }
}

@SuppressWarnings("deprecation")
public boolean isLocationEnabled(Context context) {
 int locationMode = Settings.Secure.LOCATION_MODE_OFF;
 String locationProviders;

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT){
 try {
 locationMode = Settings.Secure.getInt(
 context.getContentResolver(),
 Settings.Secure.LOCATION_MODE);
 } catch (SettingNotFoundException e) {
 e.printStackTrace();
 }

427CHAPTER 19: Exploring Maps and Location-Based Services

 return locationMode != Settings.Secure.LOCATION_MODE_OFF;
 }else{
 locationProviders = Settings.Secure.getString(
 context.getContentResolver(),
 Settings.Secure.LOCATION_PROVIDERS_ALLOWED);
 return !TextUtils.isEmpty(locationProviders);
 }
}

A change occurred in Android 19 (KitKat) where new settings values were added to the
static Settings.Secure class. This made it easier to tell if Location Services were turned on
or not, and which ones, but the user still needs to do the work to enable the services. There
are two ways in this code to check for services: use one of the new values, or do a get on
the available location providers. The first part of Listing 19-8 checks to see if the version
of Android is KitKat or higher, and if so it looks for the value of the new Setting for location
mode. The second part of the code (if the version of Android is older than KitKat) does a
get on the allowed location providers. If location mode is not off, or if there is at least one
location provider available, then Location Services are running. If not, this code launches an
intent to the Location Settings screen. At that point, this activity would be paused while the
Settings activity runs. When the Settings activity is done, our activity will resume.

If you want to handle a response from the Settings activity (i.e., be notified when that
activity is done and presumably a setting change has been made), you must implement the
onActivityResult() callback in your activity. And also keep in mind that although you hope
the user turns on location services, they may not. You will need to check again to see if the
user has enabled location services and take appropriate action based on the result. We’ll
show you how to do all of this in a later section.

Location Providers
You’ve seen the FusedLocationApi, but you should also be aware of the older, alternate
location providers. The hardware is right there on the device for getting location information,
and the location providers will give it to your application. You’ll soon see how the
FusedLocationApi handles your location needs at a higher level than these providers. But
if you need to dig into the details, for example to check the status of the available GPS
satellites, you’ll be happy to know these providers exist. Google recommends that everyone
switch over to the FusedLocationApi; but since it relies on Google Play Services, that means
applications that use FusedLocationApi will not run on a non-Google Android device.

The LocationManager service is a system-level service. System-level services are services
that you obtain from the context using the service name; you don’t instantiate them directly.
The android.app.Activity class provides a utility method called getSystemService() that
you can use to obtain a system-level service. You call getSystemService() and pass in the
name of the service you want, in this case, Context.LOCATION_SERVICE. You’ll see this shortly
in Listing 19-9.

428 CHAPTER 19: Exploring Maps and Location-Based Services

The LocationManager service provides geographical location details by using location
providers. Currently, there are three types of location providers:

	GPS providers use a Global Positioning System to obtain location
information.

	Network providers use cell-phone towers or WiFi networks to obtain
location information.

The 	 passive provider is like a location update sniffer, and it passes
to your application location updates that are requested by other
applications, without your application having to specifically request
any location updates. Of course, if no one else is requesting location
updates, you won’t get any either.

Similar to the FusedLocationApi, the LocationManager class can provide the device’s last
known location, this time via the getLastKnownLocation() method. Location information
is obtained from a provider, so the method takes as a parameter the name of the provider
you want to use. Valid values for provider names are LocationManager.GPS_PROVIDER,
LocationManager.NETWORK_PROVIDER, and LocationManager.PASSIVE_PROVIDER. Note that
there is no option for a fused provider, since that is a separate location-finding capability.

In order for your application to successfully get location information, it must have the
appropriate permissions in the AndroidManifest.xml file. android.permission.ACCESS_
FINE_LOCATION is required for GPS and for passive providers, whereas android.permission.
ACCESS_COARSE_LOCATION or android.permission.ACCESS_FINE_LOCATION can be used for
network providers, depending on what you need. For instance, assume your application will
use GPS or network data for location updates. Because you need ACCESS_FINE_LOCATION
for GPS, you’ve also satisfied permissions for network access, so you do not need to also
specify ACCESS_COARSE_LOCATION. If you’re only going to use the network provider, you could
get by with only ACCESS_COARSE_LOCATION in the manifest file.

Calling getLastKnownLocation() returns an android.location.Location instance, or null if
no location is available. The Location class provides the location’s latitude and longitude,
the time the location was computed, and possibly the device’s altitude, speed, and bearing.
A Location object can also tell you which provider it came from using getProvider(), which
will be either GPS_PROVIDER or NETWORK_PROVIDER. If you’re getting location updates via the
PASSIVE_PROVIDER, remember that you’re only really sniffing location updates, so all updates
are ultimately from either GPS or the network.

Because the LocationManager operates on providers, the class provides APIs to obtain
providers. For example, you can get all of the known providers by calling getAllProviders().
You can obtain a specific provider by calling getProvider(), passing the name of the
provider as an argument (such as LocationManager.GPS_PROVIDER). One thing to watch out
for is that getAllProviders() will return providers that you may not have access to or that
are currently disabled. Fortunately, you are able to determine the status of providers using
other methods, such as isProviderEnabled(String providerName) or getProviders(boolean
enabledOnly), which you could call with a value of true to get only providers you are able to
use immediately.

429CHAPTER 19: Exploring Maps and Location-Based Services

There’s another way to get a suitable provider, and that is to use the getProviders(Criteria
criteria, boolean enabledOnly) method of LocationManager. By specifying criteria for
location updates, and by setting enabledOnly to true so you get providers that are enabled
and ready to go, you can get a list of provider names returned to you without having to know
the specifics of which provider you got. This could be more portable, because a device may
have a custom LocationProvider that meets your needs without you having to know about it
in advance. The Criteria object can be set with parameters that include accuracy level and
the need for information about speed, bearing, altitude, cost, and power requirements. If no
providers meet your criteria, a null list will be returned, allowing you to either bail out or relax
the criteria and try again.

Sending Location Updates to Your Application
When doing development testing, your application needs location information, and the
emulator doesn’t have access to GPS or cell towers. In order for you to test your application
in the emulator, you can manually send location updates from Eclipse. Listing 19-9 shows a
simple example to illustrate how to do this. We’re going to stick with the LocationManager
approach here, and then show the FusedLocationApi approach later.

Listing 19-9. Registering for Location Updates

public class LocationUpdateDemoActivity extends Activity
{
 LocationManager locMgr = null;
 LocationListener locListener = null;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 locMgr = (LocationManager)
 getSystemService(Context.LOCATION_SERVICE);

 locListener = new LocationListener()
 {
 public void onLocationChanged(Location location)
 {
 if (location != null)
 {
 Toast.makeText(getBaseContext(),
 "New location latitude [" +
 location.getLatitude() +
 "] longitude [" +
 location.getLongitude()+"]",
 Toast.LENGTH_SHORT).show();
 }
 }

430 CHAPTER 19: Exploring Maps and Location-Based Services

 public void onProviderDisabled(String provider)
 {
 }

 public void onProviderEnabled(String provider)
 {
 }

 public void onStatusChanged(String provider,
 int status, Bundle extras)
 {
 } };
 }

 @Override
 public void onResume() {
 super.onResume();

 locMgr.requestLocationUpdates(
 LocationManager.GPS_PROVIDER,
 0, // minTime in ms
 0, // minDistance in meters
 locListener);
 }

 @Override
 public void onPause() {
 super.onPause();
 locMgr.removeUpdates(locListener);
 }
}

We’re not displaying a user interface for this example, so the standard initial layout XML file
will do, as well as a regular activity.

One of the primary uses of the LocationManager service is to receive notifications of the
device’s location. Listing 19-9 demonstrates how you can register a listener to receive
location-update events. To register a listener, you call the requestLocationUpdates()
method, passing the provider type as one of the parameters. When the location changes,
the LocationManager calls the onLocationChanged() method of the listener with the new
Location. It is very important that you remove any registrations for location updates at
the appropriate time. In our example, we do registration in onResume(), and we remove
that registration in onPause(). If we aren’t going to be around to do anything with location
updates, we should tell the provider not to send them. There’s also the possibility that our
activity could be destroyed (for example, if the user rotates their device and our activity is
restarted), in which case our old activity could still exist, be receiving updates, displaying
them with Toast, and taking up memory.

In our example, we set the minTime and minDistance to zero. This tells the LocationManager
to send us updates as often as possible. These are not desired settings for your production
application, or on real devices, but we use them here to make the demonstrations run better
in the emulators. (In real life, you would not want the hardware trying to figure out our current

431CHAPTER 19: Exploring Maps and Location-Based Services

position so often, as this drains the battery.) Set these values appropriately for the situation,
trying to minimize how often you truly need to be notified of a change in position. Google
typically recommends values no smaller than 20 seconds.

Testing Location Applications with the Emulator
Let’s test this in the emulator, using the Dalvik Debug Monitor Service (DDMS) perspective
that ships with the ADT plug-in for Eclipse. The DDMS UI provides a screen for you to send
the emulator a new location (see Figure 19-6).

Figure 19-6. Using the DDMS UI in Eclipse to send location data to the emulator

To get to the DDMS in Eclipse, use Window ➤ Open Perspective ➤ DDMS. The Emulator
Control view should already be there for you, but if not, use Window ➤ Show View ➤ Other ➤
Android ➤ Emulator Control to make it visible in this perspective. You may need to scroll
down in the emulator control to find the location controls. As shown in Figure 19-6, the
Manual tab in the DDMS user interface allows you to send a new GPS location (latitude/
longitude pair) to the emulator. Sending a new location will fire the onLocationChanged()
method on the listener, which will result in a message to the user conveying the new location.

432 CHAPTER 19: Exploring Maps and Location-Based Services

You can send location data to the emulator using several other techniques, as shown in
the DDMS user interface (see Figure 19-6). For example, the DDMS interface allows you to
submit a GPS Exchange Format (GPX) file or a Keyhole Markup Language (KML) file. You
can obtain sample GPX files from these sites:

	www.topografix.com/gpx_resources.asp

	http://tramper.co.nz/?view=gpxFiles

	www.gpsxchange.com/

Similarly, you can use the following KML resources to obtain or create KML files:

	http://bbs.keyhole.com/

	http://code.google.com/apis/kml/documentation/kml_tut.html

Note Some sites provide KMZ files. These are zipped KML files, so simply unzip them to get to the
KML file. Some KML files need to have their XML namespace values altered in order to play properly
in DDMS. If you have trouble with a particular KML file, make sure it has this:

<kml xmlns="http://earth.google.com/kml/2.x">.

You can upload a GPX or KML file to the emulator and set the speed at which the emulator
will play back the file (see Figure 19-7). The emulator will then send location updates to
your application based on the configured speed. As Figure 19-7 shows, a GPX file contains
points, shown in the top part, and paths, shown in the bottom part. You can’t play a point,
but when you click a point, it will be sent to the emulator. You click a path, and then the Play
button will be enabled so you can play the points.

http://www.topografix.com/gpx_resources.asp
http://tramper.co.nz/?view=gpxFiles
http://www.gpsxchange.com/
http://bbs.keyhole.com/
http://code.google.com/apis/kml/documentation/kml_tut.html
http://earth.google.com/kml/2.x

433CHAPTER 19: Exploring Maps and Location-Based Services

Note There have been reports that not all GPX files are understandable by the emulator control. If
you attempt to load a GPX file and nothing happens, try a different file from a different source.

Figure 19-7. Uploading GPX and KML files to the emulator for playback

Listing 19-9 includes some additional methods for LocationListener we haven’t
mentioned yet. They are the callbacks onProviderDisabled(), onProviderEnabled(),
and onStatusChanged(). For our sample, we did not do anything with these, but in your
application, you could be notified when a location provider, such as gps, is disabled or
enabled by the user, or when a status changes with one of the location providers. Statuses
include OUT_OF_SERVICE, TEMPORARILY_UNAVAILABLE, and AVAILABLE. Even if a provider is
enabled, it does not mean that it will be sending any location updates, and you can tell
that using statuses. Note that onProviderDisabled() will be invoked immediately if a
requestLocationUpdates() is called for a disabled provider.

434 CHAPTER 19: Exploring Maps and Location-Based Services

Sending Location Updates from the Emulator Console
Eclipse has some easy-to use-tools for sending location updates to your application, but
there’s another way to do it. You could launch the emulator console, using the following
command from a tools window:

telnet localhost emulator_port_number

where emulator_port_number is the number associated to the instance of the AVD that’s
already running, displayed in the title bar of the emulator window. You may need to install
telnet for your workstation if it’s not already available. Once you’re connected, you can use
the geo fix command to send in location updates. To send in latitude/longitude coordinates
with altitude (altitude is optional), use this form of the command:

geo fix lon lat [altitude]

For example, the following command will send the location of Jacksonville, Florida to your
application with an altitude of 120 meters.

geo fix -81.5625 30.334954 120

Please pay careful attention to the order of the arguments to the geo fix command.
Longitude is the first argument, and latitude is the second.

What Can You Do with a Location?
As mentioned before, Locations can tell you the latitude and longitude, when the Location
was computed, the provider that computed this Location, and optionally the altitude,
speed, bearing, and accuracy level. Depending on the provider where the Location came
from, there could be extra information as well. For example, if the Location came from a
GPS provider, there is an extras Bundle that will tell you how many satellites were used to
compute the Location. The optional values may or may not be present, depending on the
provider. To know if a Location has one of these values, the Location class provides a set of
has...() methods that return a boolean value, for example hasAccuracy(). Before relying on
the return value of getAccuracy(), it would be wise to call hasAccuracy() first.

The Location class has some other useful methods, including a static method
distanceBetween(), which will return the shortest distance between two Locations. Another
distance-related method is distanceTo(), which will return the shortest distance between
the current Location object and the Location object passed to the method. Note that
distances are in meters and that the distance calculations take into account the curvature of
the Earth. But also be aware that the distances are not provided in terms of the distance you
would have to go by car, for example.

If you want to get driving directions or driving distances, you will need to have your
beginning and ending Locations, but to do the calculations, you will likely need to use the
Google Directions API. The Directions API would allow your application to show how to get
from your beginning to your ending location. This is another of the Google API client APIs
that you can enable for your application.

435CHAPTER 19: Exploring Maps and Location-Based Services

Setting Up for Google Play Services Location Updates
You’ve seen how to get location updates with a LocationManager, but let’s return to
the FusedLocationProviderApi to see how to get location updates from it. The sample
project for this section is FusedLocationApiUpdates. This one is a bit trickier because
we are dealing with Google Play Services, an independent service running on the device.
Therefore, you can’t always be sure that you have a valid client connection, and you need
to be careful when requesting location updates. For this reason, your application will need
to worry about state.

In the earlier sample program (WhereAmILocationAPI), you checked to see if Location
Services were turned on, but the code assumed that Google Play Services were available
and ready. Now you’re going to see how to check for the existence of Google Play Services
and how the GooglePlayServicesUtil class can help you. The basic flow is to check each
dependency for location updates to occur and, if there is a way to correct a problem, help
the user fix it. If the user does not, or cannot, fix a problem, the application quits. If the user
keeps fixing problems until everything is working, then location updates get requested, and
the application displays location updates via Toast messages.

Listing 19-10 shows our main method for trying to connect. You will see inside this
method the same Location Services check from the earlier WhereAmILocationAPI sample
application. The tryToConnect() method will be called from the activity’s onResume()
callback, so that every time this activity is resumed, a new client connection will be
established to Google Play Services. We do not want to assume that an old client is still valid
and active.

Listing 19-10. Checking for the Ability to Do Location Updates

private void tryToConnect() {
 // Check that Google Play services is available
 int resultCode = GooglePlayServicesUtil
 .isGooglePlayServicesAvailable(this);
 // If Google Play services is available, then we're good
 if (resultCode == ConnectionResult.SUCCESS) {
 Log.d(TAG, "Google Play services is available.");
 if(!isLocationEnabled(this)) {
 if(lastFix == FIX.LOCATION_SETTINGS) {
 // Since we're coming through again, it means
 // recovery didn't happen. Time to bail out.
 Log.e(TAG, "Location settings didn't work");
 finish();
 }
 else {
 // no location service providers are enabled
 Toast.makeText(this, "Location Services are off. " +
 "Can't work without them. Please turn them on.",
 Toast.LENGTH_LONG).show();
 Log.i(TAG, "Location Services need to be on. " +
 "Launching the Settings screen");
 startActivityForResult(new Intent(
 android.provider.Settings
 .ACTION_LOCATION_SOURCE_SETTINGS),

436 CHAPTER 19: Exploring Maps and Location-Based Services

 LOCATION_SETTINGS_REQUEST);
 lastFix = FIX.LOCATION_SETTINGS;
 }
 }
 else {
 client.connect();
 Log.v(TAG, "Connecting to GoogleApiClient...");
 }
 }
 // Google Play services was not available for some reason
 // See if the user can do something about it
 else if(GooglePlayServicesUtil
 .isUserRecoverableError(resultCode)) {
 if(lastFix == FIX.PLAY_SERVICES) {
 // Since we're coming through again, it means
 // recovery didn't happen. Time to bail out.
 Log.e(TAG, "Recovery doesn't seem to work");
 finish();
 }
 else {
 Log.d(TAG, "Google Play services may be available. " +
 "Asking user for help");
 // This form of the dialog call will result in either a
 // callback to onActivityResult, or a dialog onCancel.
 GooglePlayServicesUtil.showErrorDialogFragment(resultCode,
 this, PLAY_SERVICES_RECOVERY_REQUEST, this);
 lastFix = FIX.PLAY_SERVICES;
 }
 } else {
 // No hope left.
 Log.e(TAG, "Google Play Services is/are not available." +
 " No point in continuing");
 finish();
 }
}

The GooglePlayServicesUtil class has several static methods to help get everything set up
for location updates. The first method is isGooglePlayServicesAvailable(), which requires
a context. The result is an integer value which is either SUCCESS or one of several other
values which could indicate for example that the services are missing, or the version is not
appropriate. For most purposes, you don’t really need to care about the other values that are
returned, as you’ll see.

If Google Play Services are available, you will check for Location Services (as before) and
if they are okay, you can invoke the connect() method on the GoogleApiClient client. The
connect() call is asynchronous and a separate callback will handle the results of the connect
call. As before, if Location Services are not turned on, you would launch the location settings
activity so the user could turn them on. In this sample, we just use a Toast message to tell
the user why they are being redirected to the Settings screen. In a production application,
you would probably want to show an alert dialog with an OK and Cancel button before
redirecting to the Settings screen.

437CHAPTER 19: Exploring Maps and Location-Based Services

If Google Play Services are not available, the next check is to see if the user could resolve
the issue, using the isUserRecoverableError() method. Here you pass in the result
code from the earlier check, which should be something other than SUCCESS. This is why
you don’t need to care what other value was returned. This method decides for you if
the user can do something about it or not. If the user can’t correct the situation (i.e.,
isUserRecoverableError() returns false), then there really isn’t anything else you can do
and you will probably want to bail out. In this sample application a log message is written
and the activity ends. You might want to be more graceful in your exit.

If the user can do something about the problem with Google Play Services,
the GooglePlayServicesUtil class has yet another static method you can use:
showErrorDialogFragment(). This will show a dialog to the user indicating what the problem
is and what they can do about it. There are a few variations on this call, and the sample is
using the one which pops a dialog fragment while listening for a dialog cancel. The dialog
fragment could launch another activity, which would result in our onActivityResult()
being called. For this reason, you want to pass in a request value (i.e., PLAY_SERVICES_
RECOVERY_REQUEST), which will be passed to onActivityResult() later. This method is
also asynchronous, and your application will see either onActivityResult() invoked later,
or the onCancel() for the dialog. The second argument to showErrorDialogFragment()
is the context, and the last argument is the listener for the dialog. Because we passed
'this' as the last argument, to represent this activity, the sample activity must implement
DialogInterface.OnCancelListener and have an onCancel() callback.

You’ll soon see the code for onActivityResult(), but you should know that when a result
is passed back to your activity, you’re going to have do these checks again, by calling
tryToConnect(). That is why this method sets a lastFix value, to keep track of which
problem is being worked on. If the same problem exists after the user has had a chance to
fix it, we could assume that the user isn’t interested in fixing the problem, or the system is
unable to fix the problem. We do not want some sort of infinite loop that the user cannot
break out of. For this sample activity, if tryToConnect() hits the same problem twice in a row,
it bails out and the activity is finished. Your application might want to take alternative action,
giving the user more options to continue to use the app.

To recap what has happened in tryToConnect(), you checked for the existence and readiness
of Google Play Services, as well as Location Services. If everything looked good, a connect
call was made on the GoogleClientApi client. If the user was able to correct anything, a suitable
intent was fired to launch an activity to take care of it. And if the situation was hopeless, the
activity ended. Now let’s look at the various callbacks that could result from these actions.

If the connection request was successful, the onConnected() callback will fire. Listing 19-11
shows what this looks like.

Listing 19-11. Client Is Connected So Request Location Updates

@Override
public void onConnected(Bundle arg0) {
 // Set up location updates
 Log.v(TAG, "Connected!");
 lastFix = FIX.NO_FAIL;
 locator.requestLocationUpdates(client, locReq, this);
 Log.v(TAG, "Requesting location updates (onConnected)...");
}

438 CHAPTER 19: Exploring Maps and Location-Based Services

This one is pretty straightforward. If we got a good connection to Google Play Services, start
asking the FusedLocationProviderApi (locator) for location updates. You’ll see more about
locReq later, but for now just know that it is a LocationRequest object with parameters that
define what kinds of location updates your application wants. This method also resets a
state variable (lastFix) which will make more sense soon.

If the connection request was not successful, the onConnectionFailed() callback will fire.
Listing 19-12 shows this callback.

Listing 19-12. Handling a Failed Connection Attempt

@Override
public void onConnectionFailed(ConnectionResult connectionResult) {
 /*
 * Google Play services can resolve some errors it detects.
 * If the error has a resolution, try sending an Intent to
 * start a Google Play services activity that can resolve
 * the error.
 */
 if (connectionResult.hasResolution()) {
 Log.i(TAG, "Connection failed, trying to resolve it...");
 if(lastFix == FIX.CONNECTION) {
 // Since we're coming through again, it means
 // recovery didn't happen. Time to bail out.
 Log.e(TAG, "Connection retry didn't work");
 finish();
 }
 try {
 // Start an activity that tries to resolve the error
 lastFix = FIX.CONNECTION;
 connectionResult.startResolutionForResult(
 this,
 CONNECTION_FAILURE_RESOLUTION_REQUEST);
 } catch (IntentSender.SendIntentException e) {
 // Log the error
 Log.e(TAG, "Could not resolve connection failure");
 e.printStackTrace();
 finish();
 }
 } else {
 /*
 * If no resolution is available, display error to the
 * user.
 */
 Log.e(TAG, "Connection failed, no resolutions available, "+
 GooglePlayServicesUtil.getErrorString(
 connectionResult.getErrorCode()));
 Toast.makeText(this, "Connection failed. Cannot continue",
 Toast.LENGTH_LONG).show();
 finish();
 }
}

439CHAPTER 19: Exploring Maps and Location-Based Services

If the connection request has failed, it is still possible that the situation can be corrected.
Once again there is a method that can tell if there is a way to resolve the problem.
The ConnectionResult object contains both an indicator if there is a resolution, as well
as the intent to fire to try to resolve the situation. In this case, the application calls
startResolutionForResult(). Similar to before, an intent will be fired, some activity will be
launched, and your application will get a result back in onActivityResult(). Notice that here
the request tag is CONNECTION_FAILURE_RESOLUTION_REQUEST. If nothing can be done, display
an error and bail out.

There could have been several intents launched, each of which should cause your
onActivityResult() callback to fire. Listing 19-13 shows what this callback looks like.
Remember that there could have been three separate intents fired to handle problems,
so this callback must expect any of the three. Also keep in mind that the intents caused
an activity to run, meaning your activity got paused, and it will resume right after the
onActivityResult() has fired. This is a major reason why the tryToConnect() method
(shown in Listing 19-10) is only called from the activity’s onResume() callback. Whenever this
activity is being resumed, it tries to make a new connection to Google Play Services and to
set up location updates. When this activity pauses, it disconnects from Google Play Services.
It is easy to reconnect rather than trying to hang on to a connection while it is not needed.

Listing 19-13. Getting News Back from the Launched Intents

@Override

protected void onActivityResult(

 int requestCode, int resultCode, Intent data) {

 /* Decide what to do based on the original request code.

 * Note that our activity got paused to launch the other

 * activity, so after this callback runs, our activity's

 * onResume() will run.

 */

 switch (requestCode) {

 case PLAY_SERVICES_RECOVERY_REQUEST :

 Log.v(TAG, "Got a result for Play Services Recovery");

 break;

 case LOCATION_SETTINGS_REQUEST :

 Log.v(TAG, "Got a result for Location Settings");

 break;

 case CONNECTION_FAILURE_RESOLUTION_REQUEST :

 Log.v(TAG, "Got a result for connection failure");

 break;

 }

 Log.v(TAG, "resultCode was " + resultCode);

 Log.v(TAG, "End of onActivityResult");

}

440 CHAPTER 19: Exploring Maps and Location-Based Services

Since onActivityResult() could be called because of a number of intents, the switch
statement is used to figure out which one is being responded to. The Google Play Services
corrective action might say it was successful by setting the resultCode to Activity.
RESULT_OK. This doesn’t necessarily mean that the user fixed the problem, but it tells you that
nothing failed. If the response to the Google Play Services corrective action is Activity.
RESULT_CANCELED, it could mean there was some sort of failure. Regardless if the user fixed
the problem or not, you’re going to return from this callback, and then onResume() will run, in
which tryToConnect() will be called again. So it really doesn’t matter what resultCode is. In
practice, even when a setting has been properly set for location updates to occur, you could
see resultCode set to RESULT_CANCELED. Similarly, if there’s a response to the other fixes, log
it and continue since onResume() will run next anyway.

Finally, refer back to the onConnected() callback in Listing 19-11, which calls
locator.requestLocationUpdates(client, locReq, this). This is where the
FusedLocationProviderApi will be asked to send location updates back to this activity.
Google Play Services is up and running, and Location Services are set appropriately.

Once location updates have been requested, any new location updates will get sent to
the onLocationChanged() callback. In this sample application, all that happens is that the
location information is displayed in a Toast message. The next section goes into more detail
on how to request location updates.

There are a few other methods in the activity that so far were not described. The onPause()
callback disconnects the client after stopping the location updates. You should notice that
the client is checked for connectedness before calling methods. The GoogleApiClient
class has a method called isConnected(), which you will use to be sure you request or
remove location updates only when there’s a connected client. Otherwise, you will get an
IllegalStateException. The two methods for setting up the menu are basic menu callbacks.
The menu is used to allow the user to switch between the various priority values. When the
user selects a menu item, the location request object is updated and passed back in to alter
the location update process. The onCancel() callback can be called from the pop-up error
dialog that is shown in tryToConnect (see Listing 19-10). If the user simply closes the error
fragment dialog box, we infer that the user doesn’t want to get updates and the application
exits.

Location Updates with FusedLocationProviderApi
With the LocationManager, you had to deal with the specific location providers (i.e., GPS
or cell/WiFi). With the FusedLocationProviderApi, you submit a LocationRequest and the
API will make choices for you of which provider would be the best, not only initially but
over time as well. In general, the trade-off when getting location updates is between power
consumption and accuracy. GPS is usually more accurate but uses the most power. On
the other hand, when indoors, GPS may be less accurate than cell/WiFi, and you’d want
to automatically switch to be more accurate while consuming the least amount of power.
The FusedLocationProviderApi could also take advantage of on-board sensors such as a
gyroscope or compass. This API hides the complexities of location fixing from you.

You should write your code so you’re requesting location updates only when it makes sense
to do so. If you are displaying the current location on a map, and the map is not visible,
you do not need to request updates. There are cases when you might want to keep getting

441CHAPTER 19: Exploring Maps and Location-Based Services

updates even when not displaying the current position, and we’ll cover that in the next
section. The point is that location updates can be a big drain on the battery, so ask for them
only when you really need them. You should not assume that the user is going to “be right
back” and therefore keep getting updates. If they set their device down and won’t be looking
at it again for some time, you’d better not be draining the battery down.

Listing 19-14 shows how the sample application sets the LocationRequest object to make a
location updates request of the FusedLocationProviderApi. This is done in the onCreate()
callback of the activity.

Listing 19-14. Setting Up a LocationRequest Object

locReq = LocationRequest.create()
 .setPriority(
 LocationRequest.PRIORITY_BALANCED_POWER_ACCURACY)
 .setInterval(10000)
 .setFastestInterval(5000);

Use the static create() method, then call the appropriate setters to fill out the request
object. This object will be passed to the requestLocationUpdates() method of the
FusedLocationProviderApi. A big difference from dealing with the older location providers
is that this request object does not make any reference to a specific location provider.
Similar to the Criteria method of finding a provider, this request object ultimately selects the
frequency of updates and the consumption of power.

You can specify the desired frequency of location updates using setInterval() and
setFastestInterval(); both take a long argument representing the number of milliseconds.
The former is saying that you want to get a location update on a regular basis, every so
many milliseconds apart. The system will try to honor this if it is able to, but there are
no guarantees. You could get updates more frequently than desired, even much more
frequently. That is where the second method comes in. You can specify the fastest interval
for receiving location updates. More on this in a bit.

The power portion of the request is handled by the setPriority() setter. There are currently
four options for the argument:

	PRIORITY_NO_POWER

	PRIORITY_LOW_POWER

	PRIORITY_BALANCED_POWER_ACCURACY

	PRIORITY_HIGH_ACCURACY

The NO_POWER option is pretty much saying that your application will be using the passive
provider described earlier. The only way to not consume any power is to piggyback off of
the location updates for another application. Therefore, the accuracy of the locations may
not be very accurate or frequent; it all depends on what other applications are requesting.
You just learned that you can request a frequency of updates using setInterval() and
setFastestInterval(). If you are piggybacking off of another application, and that
application is receiving location updates every 5 seconds, but you don’t want updates faster
than every 20 seconds, you should use setFastestInterval(20000) so your application
is not overwhelmed with updates. At the same time you could use setInterval(60000) to

442 CHAPTER 19: Exploring Maps and Location-Based Services

request a desired interval of one update every minute. If there are few other location updates
happening on the device, you won’t have to worry about reducing the frequency from 5
seconds to 20 seconds apart, but at the same time you probably won’t get updates every
minute either. You need to use both of these setters to indicate what your application wants,
but that doesn’t mean you are guaranteed to get what you want.

The LOW_POWER priority in general means that location updates will be derived only via cell
tower triangulation and WiFi hotspot location information. These are low-power ways of
determining position, with a corresponding reduction in accuracy. You could easily find
the locations to be accurate only to within 1,500 meters or worse, but then you could
get a location that’s accurate to 10 meters. All of the priorities will take advantage of the
passive provider, so if an accurate location update happens to be requested by some other
application, your application could pick it up even when your priority is set to low power.

The BALANCED priority will try to do a decent job of trading off accuracy for less power. It will
consider using all of the available methods of determining location, except for GPS.

The HIGH_ACCURACY priority will potentially use all available sources of location information,
including GPS. Because of the GPS radio, this priority could consume a lot of battery.

Location updates also depend on the location mode of the device. As you saw earlier, the
Location Settings changed in KitKat to allow the user to specify a mode of location updates
for their device. Referring now to the Settings.Secure class, the location mode setting
values are as follows:

	LOCATION_MODE_OFF

	LOCATION_MODE_BATTERY_SAVING

	LOCATION_MODE_HIGH_ACCURACY

	LOCATION_MODE_SENSORS_ONLY

and the current value can be retrieved using the code from Listing 19-8. The mode is set by
the user for the entire device, not by application. However, your application has an opportunity
to request a priority to complement the mode choice made by the user. If the device has a
mode of HIGH_ACCURACY and your application chooses a priority of LOW_POWER, your application
will not be the one draining the battery but could still get decent location updates.

The mode can work against you however. If the user chooses a mode of SENSORS_ONLY,
and the priority is set to NO_POWER, LOW_POWER or even BALANCED, location updates will be
rare, regardless of what you set in the location request with setInterval(). The preferred
mode for most useful location updates is HIGH_ACCURACY, because this mode will combine
all possible sources of location information and provide the most accurate results. Your
application will be able to get high accuracy when needed (hopefully this is a rare need) and
good accuracy the rest of the time. Your application can alter the priority to HIGH_ACCURACY
when needed, but BALANCED or LOW_POWER the other times.

Some other interesting options with a LocationRequest include setting a specific number of
location updates to receive, or to specify a time limit when the location updates should stop.
You can also set a minimum distance (in meters) within which your application does not want
updates. This is a geofence of sorts, where you tell the location service that you only want
a location update if the device moves a certain distance from its current location. That is in
effect setting up a geofence circle around the current location. More on geofences later.

443CHAPTER 19: Exploring Maps and Location-Based Services

Alternate Ways of Getting Location Updates
You’ve seen how to get location updates sent to your activity using the
requestLocationUpdates() method of the LocationManager and the FusedLocationProviderApi.
There are actually several different signatures of this method, including ones that use a
PendingIntent. This gives you the ability to direct location updates to services or broadcast
receivers. You can also direct location updates to other Looper threads instead of the main
thread, giving you lots of flexibility for your application, although some of these methods have
been available only since Android 2.3.

Using Proximity Alerts and Geofencing
Geofencing is a popular requirement for a mobile application. It means that your application
should alter its behavior depending on where it is located. A typical use case is to prevent
the device from working when it is outside of a particular location. For example, a hospital
application could restrict access to patient data when it is not at the hospital. Or your
application might want to silence notifications when the device is at the workplace.
LocationManager has a mechanism called proximity alerts, and there is a similar recent API
called GeofencingApi for the newer Location Services. We’ll briefly discuss the first, then
address the second in detail.

We mentioned earlier that the LocationManager can notify you when the device enters a
specified geographical location. The method to set this up is addProximityAlert() from the
LocationManager class. Basically, you tell the LocationManager that you want an Intent to
be fired when the location of the device goes into, or leaves, a circle of a certain radius with
a center at a latitude/longitude position. The Intent can trigger a BroadcastReceiver or a
Service to be called, or an Activity to be started. There is also an optional time limit placed
on the alert, so it could time out before the Intent fires.

Internally, the code for this method registers listeners for both the GPS and network
providers and sets up location updates for once per second and a minDistance of 1 meter.
You don’t have any way to override this behavior or set parameters. Therefore, if you leave
this running for a long time, you could end up draining the battery very quickly. If the screen
goes to sleep, proximity alerts will only be checked once every four minutes, but again,
you have no control over the time duration here. For these reasons, we have included
a demonstration application called ProximityAlertDemo with the sample applications,
but we will not dive into the details. Instead, we will turn our attention to the Location
Services approach, with another sample application called GeofencingApi. Note that the
GeofencingApi sample application will look similar to the FusedLocationProviderApi sample
application since both share the GoogleClientApi mechanism for activation.

The GeofencingApi API
At the time of this writing, a geofence is a circular region with a latitude/longitude center,
plus some time parameters. At some point in the future, the region might not be circular
but for now it is. Once a geofence has been built, it can be passed to the GeofenceApi for
monitoring. Your application can even go away and your geofence can be active. Along with
a geofence, or set of geofences, your application will pass a PendingIntent with an Intent to
be fired when something interesting happens around a geofence. The three current events

444 CHAPTER 19: Exploring Maps and Location-Based Services

are enter, exit and dwell. Enter and exit are simple to understand; the Intent will be fired
if the device goes into, or leaves, the circular region. The dwell event fires the Intent after
the device remains inside of the circular region for a period of time. This loitering delay is
specified in milliseconds. And that’s all there is to it.

See the sample application called GeofencingApiDemo. It sets up two geofences called
home and work, connects to Location Services, and registers a service intent to be fired
when the device enters, exits or dwells in either of these geofences. When triggered,
the service generates a notification per event to make it easier for you to see the results.
Geofences are often used in the background, so a service makes a lot of sense here. That is,
an application shouldn’t need to be in the foreground to have geofences. In fact, the basic
idea of a geofence is that you want your application to be wakened up if the device enters or
leaves a specific geographic region.

The setup code used earlier to make sure that Google Play Services and Location Services
are available and ready has been left out of this sample application to make it easier to
follow along, but you would want to include that code in a production application.
Listing 19-15 shows the onCreate() method of the main activity, in which the geofences
and the PendingIntent are created.

Listing 19-15. Setting Up Geofences

private GoogleApiClient mClient = null;
private List<Geofence> mGeofences = new ArrayList<Geofence>();
private PendingIntent pIntent = null;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 final float radius = 0.5f * 1609.0f; // half mile times 1609 meters per mile

 Geofence.Builder gb = new Geofence.Builder();
 // Make a half mile geofence around your home
 Geofence home = gb.setCircularRegion(28.993818, -81.383816, radius)
 .setTransitionTypes(
 Geofence.GEOFENCE_TRANSITION_ENTER |
 Geofence.GEOFENCE_TRANSITION_EXIT |
 Geofence.GEOFENCE_TRANSITION_DWELL)
 .setExpirationDuration(
 12 * 60 * 60 * 1000) // 12 hours
 .setLoiteringDelay(300000) // 5 minutes
 .setRequestId("home")
 .setNotificationResponsiveness(5000) // 5 secs
 .build();
 mGeofences.add(home);

 // Make another geofence around your work
 Geofence work = gb.setCircularRegion(28.36631, -81.52120, radius)
 .setRequestId("work")
 .build();

445CHAPTER 19: Exploring Maps and Location-Based Services

 mGeofences.add(work);
 Intent intent = new Intent(this, ReceiveTransitionsIntentService.class);

 pIntent = PendingIntent.getService(getApplicationContext(), 0, intent,
 PendingIntent.FLAG_UPDATE_CURRENT);

 mClient = new GoogleApiClient.Builder(this, this, this)
 .addApi(LocationServices.API)
 .build();

 Log.v(TAG, "Activity, client are created");
}

See how the geofence is created as a circle around a lat/lon, with the events of interest (in
this case all of them) and some time parameters. In this sample, the geofences will be active
for 12 hours, or until they are removed (see onDestroy()). It’s also possible to set geofences
to never expire. The loitering delay of 5 minutes means that the dwell event will fire if the
device stays inside the geofence for at least 5 minutes. The request ID will be passed back
to your application with the Intent so you can identify which geofence the Intent is for. The
notification responsiveness of 5 seconds means that the GeofencingApi will try to send the
Intent within 5 seconds of when the event happens. However, there are no guarantees that
the Intent will be that quick. The larger this value, the better it is on battery life, since the API
could sleep more and check things less often. On the other hand, if this value is very long,
for example several minutes, it is possible you might even miss an event if the device passes
through your geofence quickly. The choice of notification responsiveness will depend on
how big your geofences are and how you want your application to behave.

Similar to the previous sample application, a connection is attempted from onResume(), and
Listing 19-16 shows what runs when the connection is successful.

Listing 19-16. Registering Geofences with the API

@Override
public void onConnected(Bundle arg0) {
 // Set up geofences
 Log.v(TAG, "Setting up geofences (onConnected)...");
 PendingResult<Status> pResult = mFencer.addGeofences(mClient,
 mGeofences, pIntent);
 pResult.setResultCallback(this); // ResultCallback<Status> interface
}

@Override
public void onResult(Status status) {
 Log.v(TAG, "Got a result from addGeofences("
 + status.getStatusCode() + "): "
 + status.getStatus().getStatusMessage());
}

The GeofencingApi gets passed the API client handle, the list of geofences, and the
PendingIntent. The return is a PendingResult. If you want to find out if the result is ultimately
successful or not, you need to set a callback receiver using setResultCallback(). This

446 CHAPTER 19: Exploring Maps and Location-Based Services

activity has implemented the ResultCallback<Status> interface, so the onResult() callback
will be invoked with the results of the addGeofences() method call. For this sample, the
result is simply logged, but of course you would want to take steps if the result was not
successful. That’s all that the activity does. Next up is the service that receives an Intent
when an interesting event occurs.

Listing 19-17 shows the interesting callbacks and methods of the
ReceiveTransitionsIntentService, an IntentService for this application. It basically
reports out the information received, whether that is an error or a geofence event. Events
are displayed using notifications. This is for your safety since the expectation is that you will
start this application at home and drive to work. We do not want you having to watch the
device’s screen during the trip. Instead, you will be able to review all of the notifications from
each event when you are safely stopped.

Listing 19-17. Receiving Intents from the GeofencingApi

public void onCreate() {
 super.onCreate();
 notificationMgr = (NotificationManager)getSystemService(
 NOTIFICATION_SERVICE);
}

@Override
protected void onHandleIntent(Intent intent) {
 GeofencingEvent gfEvent = GeofencingEvent.fromIntent(intent);
 // First check for errors
 if (gfEvent.hasError()) {
 // Get the error code with a static method
 int errorCode = gfEvent.getErrorCode();
 // Log the error
 Log.e(TAG, "Location Services error: " +
 Integer.toString(errorCode));
 /*
 * If there's no error, get the transition type and the IDs
 * of the geofence or geofences that triggered the transition
 */
 } else {
 // Get the type of transition (entry or exit)
 int transitionType =
 gfEvent.getGeofenceTransition();
 String tranTypeStr = "UNKNOWN(" + transitionType + ")";
 switch(transitionType) {
 case Geofence.GEOFENCE_TRANSITION_ENTER:
 tranTypeStr = "ENTER";
 break;
 case Geofence.GEOFENCE_TRANSITION_EXIT:
 tranTypeStr = "EXIT";
 break;
 case Geofence.GEOFENCE_TRANSITION_DWELL:
 tranTypeStr = "DWELL";
 break;
 }

447CHAPTER 19: Exploring Maps and Location-Based Services

 Log.v(TAG, "transitionType reported: " + tranTypeStr);
 Location triggerLoc = gfEvent.getTriggeringLocation();
 Log.v(TAG, "triggering location is " + triggerLoc);

 List <Geofence> triggerList =
 gfEvent.getTriggeringGeofences();

 String[] triggerIds = new String[triggerList.size()];

 for (int i = 0; i < triggerIds.length; i++) {
 // Grab the Id of each geofence
 triggerIds[i] = triggerList.get(i).getRequestId();
 String msg = tranTypeStr + ": " + triggerLoc.getLatitude() +
 ", " + triggerLoc.getLongitude();
 String title = triggerIds[i];
 displayNotificationMessage(title, msg);
 }
 }
}

private void displayNotificationMessage(String title, String message)
{
 int notif_id = (int) (System.currentTimeMillis() & 0xFFL);

 Notification notification = new NotificationCompat.Builder(this)
 .setContentTitle(title)
 .setContentText(message)
 .setSmallIcon(android.R.drawable.ic_menu_compass)
 .setOngoing(false)
 .build();

 notificationMgr.notify(notif_id, notification);
}

When you replace the latitude and longitude of home and work in this application, you run
it on a real device, and you then move the device, you will see notifications such as those in
Figure 19-8.

448 CHAPTER 19: Exploring Maps and Location-Based Services

The first event occurred at 6:40 pm and happened because the device was already inside
the home region when the app was started. The second event at 6:45 pm is a dwell event
because the device is still within the home region after the loitering delay of 5 minutes. Had
the device left the home region before the screenshot was captured, there would have been
an exit event from home. Note that the latitude and longitude in the notification are the
actual location of the device and not necessarily the center of the region.

References
Here are helpful references you may wish to explore further.

	www.androidbook.com/proandroid5/projects. A list of downloadable
projects related to this book. For this chapter, look for a zip file called
ProAndroid5_Ch19_Maps.zip. This zip file contains all projects from this
chapter, listed in separate root directories. There is also a README.TXT
file that describes exactly how to import projects into an IDE from one
of these zip files. There are some extra sample applications in here,
including WhereAmI4, which contains custom info windows for markers.

	https://developer.android.com/guide/topics/location/index.html.
The Android developer’s guide for Location and Maps.

	https://developer.android.com/google/play-services/index.html.
The Google Play Services documentation which includes the
FusedLocationProviderApi, GeofencingApi and GoogleMap.

	https://developer.android.com/google/play-services/setup.html.
Instructions for including the Google Play Services library into your
application. Note the drop-down menu to allow choosing between
Android Studio and Eclipse with ADT.

	https://developers.google.com/maps/documentation/android/. The
Maps API documentation which is separate from the rest of the online
Android documentation.

Figure 19-8. Notifications from GeofencingApi events

http://www.androidbook.com/proandroid5/projects
http://developer.android.com/guide/topics/location/index.html
https://developer.android.com/google/play-services/index.html
https://developer.android.com/google/play-services/setup.html
https://developers.google.com/maps/documentation/android/

449CHAPTER 19: Exploring Maps and Location-Based Services

Summary
Let’s conclude this chapter by quickly enumerating what you have learned about maps
so far:

How to get your own Maps API key from Google.	

	MapFragment, the main component for all maps.

The modifications you need to make to your 	 AndroidManifest.xml file to
get a maps application to work.

Defining a layout to contain a map, and how to instantiate a map.	

Zooming in and out, panning and showing the current location.	

Including different modes such as satellite and traffic.	

How map tiles are used to render maps.	

Adding markers to your maps.	

Map cameras and methods to set a zoom level that accommodates a 	
specific set of markers.

The Geocoder, and how it converts from address to latitude/longitude, 	
or from latitude/longitude to addresses and places of interest.

Putting the 	 Geocoder into a background thread to avoid nasty
Application Not Responding (ANR) pop-ups.

The 	 LocationServices service, which uses GPS and/or network towers
to pinpoint the location of the device.

Selecting a location provider, and what to do if the desired location 	
service or provider is not enabled.

Using the emulator’s features to send location events to your application 	
for testing. This includes using special files that record entire series of
location events.

Using methods of the 	 Location class to, for example, calculate
distances between points.

How to do all of the checks and corrective actions to set up Google Play 	
Services for Location Updates.

Alerting on proximity—that is, setting up a proximity and being alerted 	
when the device enters or leaves that proximity.

Setting up geofences to act on enter, exit, and dwell events for one or 	
more regions while conserving battery life.

451

Chapter 20
Understanding the Media
Frameworks

Now we are going to explore a very interesting part of the Android SDK: the media
frameworks. We will show you how to play audio and video from a variety of sources. We’ll
also cover in the online companion section how to take photos with the camera and record
audio and video.

Using the Media APIs
Android supports playing audio and video content under the android.media package. In this
chapter, we are going to explore the media APIs from this package.

At the heart of the android.media package is the android.media.MediaPlayer class. The
MediaPlayer class is responsible for playing both audio and video content. The content for
this class can come from the following sources:

	Web: You can play content from the Web via a URL.

	.apk file: You can play content that is packaged as part of your .apk file.
You can package the media content as a resource or as an asset (within
the assets folder).

The 	 Storage Access Framework, new to Android KitKat 4.4, which
provides access to media files stored across a range of providers and
internet services.

	SD card: You can play content that resides on the device’s SD card or
emulated local storage.

The MediaPlayer is capable of decoding quite a few different content formats, including 3rd
Generation Partnership Project (3GPP, .3gp), MP3 (.mp3), MIDI (.mid and others), Ogg Vorbis
(.ogg), PCM/WAVE (.wav), and MPEG-4 (.mp4). RTSP, HTTP/HTTPS live streaming, and M3U

452 CHAPTER 20: Understanding the Media Frameworks

playlists are also supported, although playlists that include URLs are not, at least as of this
writing. For a complete list of supported media formats, go to http://developer.android.com/
guide/appendix/media-formats.html.

Whither SD Cards?
Before we dive in to the heart of the media frameworks, we should quickly address the topic
of removable storage, and SD Cards in particular. Recent trends in Android devices have
seen some manufacturers drop them from devices, while others continue to include them.
Google itself has blurred the lines of what is and isn’t removal storage by obfuscating the
low-level file systems in Android.

Regardless of your personal preference as a developer, some of your users will likely still
have devices that support SD Cards and want to use them. Many of the examples we’ll
cover here are equally applicable to sourcing media files from SD Cards. However, to save
space, and spare you unneeded repetition, we’ve placed some extra examples that go into
SD Card details and supporting material on the book’s website. Be sure to check it out at
www.androidbook.com.

Playing Media
To get started, we’ll show you how to build a simple application that plays an MP3
file located on the Web (see Figure 20-1). After that, we will talk about using the
setDataSource() method of the MediaPlayer class to play content from the .apk file.
MediaPlayer isn’t the only way to play audio, though, so we’ll also cover the SoundPool
class, as well as JetPlayer, AsyncPlayer, and, for the lowest level of working with audio, the
AudioTrack class. After that, we will discuss some of the shortfalls of the MediaPlayer class.
Finally, we’ll see how to play video content.

Figure 20-1. The user interface for the media application

http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/guide/appendix/media-formats.html
http://www.androidbook.com/

453CHAPTER 20: Understanding the Media Frameworks

Playing Audio Content
Figure 20-1 shows the user interface for our first example. This application will demonstrate
some of the fundamental uses of the MediaPlayer class, such as starting, pausing,
restarting, and stopping the media file. Look at the layout for the application’s user interface.

The user interface consists of a RelativeLayout with four buttons: one to start the player,
one to pause the player, one to restart the player, and one to stop the player. We could have
made this easy and just coupled our example with a MediaController widget that does
the same thing, but we want to show you the inner workings of controlling things yourself.
The code and layout file for the application are shown in Listing 20-1. We’re going to
assume you’re building against Android 2.2 or later for this example, because we’re using
the getExternalStoragePublicDirectory() method of the Environment class. If you want to
build this against an older version of Android, simply use getExternalStorageDirectory()
instead and adjust where you put the media files so your application will find them.

Note See the “References” section at the end of this chapter for the URL from which you can
import these projects into Eclipse directly, instead of copying and pasting code.

Listing 20-1. The Layout and Code for the Media Application

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity"
 android:orientation="vertical" >

 <Button android:id="@+id/startPlayerBtn"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Start Playing Audio"
 android:onClick="doClick" />

 <Button android:id="@+id/pausePlayerBtn"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Pause Player"
 android:layout_below="@+id/startPlayerBtn"
 android:onClick="doClick" />

 <Button android:id="@+id/restartPlayerBtn"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Restart Player"
 android:layout_below="@+id/pausePlayerBtn"
 android:onClick="doClick" />

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

454 CHAPTER 20: Understanding the Media Frameworks

 <Button android:id="@+id/stopPlayerBtn"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Stop Player"
 android:layout_below="@+id/restartPlayerBtn"
 android:onClick="doClick" />

</RelativeLayout>

// This file is MainActivity.java
import android.app.Activity;
import android.content.res.AssetFileDescriptor;
import android.media.AudioManager;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnPreparedListener;
import android.os.Bundle;
import android.os.Environment;
import android.util.Log;
import android.view.View;

public class MainActivity extends Activity implements OnPreparedListener
{
 static final String AUDIO_PATH =
 "http://www.androidbook.com/akc/filestorage/android/documentfiles/3389/play.mp3";

 private MediaPlayer mediaPlayer;
 private int playbackPosition=0;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void doClick(View view) {
 switch(view.getId()) {
 case R.id.startPlayerBtn:
 try {
 // Only have one of these play methods uncommented
 playAudio(AUDIO_PATH);
// playLocalAudio();
// playLocalAudio_UsingDescriptor();
 } catch (Exception e) {
 e.printStackTrace();
 }
 break;
 case R.id.pausePlayerBtn:
 if(mediaPlayer != null && mediaPlayer.isPlaying()) {
 playbackPosition = mediaPlayer.getCurrentPosition();
 mediaPlayer.pause();
 }
 break;

http://www.androidbook.com/akc/filestorage/android/documentfiles/3389/play.mp3

455CHAPTER 20: Understanding the Media Frameworks

 case R.id.restartPlayerBtn:
 if(mediaPlayer != null && !mediaPlayer.isPlaying()) {
 mediaPlayer.seekTo(playbackPosition);
 mediaPlayer.start();
 }
 break;
 case R.id.stopPlayerBtn:
 if(mediaPlayer != null) {
 mediaPlayer.stop();
 playbackPosition = 0;
 }
 break;
 }
 }

 private void playAudio(String url) throws Exception
 {
 killMediaPlayer();

 mediaPlayer = new MediaPlayer();
 mediaPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC);
 mediaPlayer.setDataSource(url);
 mediaPlayer.setOnPreparedListener(this);
 mediaPlayer.prepareAsync();
 }

 private void playLocalAudio() throws Exception
 {
 mediaPlayer = MediaPlayer.create(this, R.raw.music_file);
 mediaPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC);
 // calling prepare() is not required in this case
 mediaPlayer.start();
 }

 private void playLocalAudio_UsingDescriptor() throws Exception {

 AssetFileDescriptor fileDesc = getResources().openRawResourceFd(
 R.raw.music_file);
 if (fileDesc != null) {

 mediaPlayer = new MediaPlayer();
 mediaPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC);
 mediaPlayer.setDataSource(fileDesc.getFileDescriptor(),
 fileDesc.getStartOffset(), fileDesc.getLength());

 fileDesc.close();

 mediaPlayer.prepare();
 mediaPlayer.start();
 }
 }

456 CHAPTER 20: Understanding the Media Frameworks

 // This is called when the MediaPlayer is ready to start
 public void onPrepared(MediaPlayer mp) {
 mp.start();
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 killMediaPlayer();
 }

 private void killMediaPlayer() {
 if(mediaPlayer!=null) {
 try {
 mediaPlayer.release();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
 }
}

In this first scenario, you are playing an MP3 file from a web address. Therefore, you will
need to add android.permission.INTERNET to your manifest file. Listing 20-1 shows that
the MainActivity class contains three members: a final string that points to the URL
of the MP3 file, a MediaPlayer instance, and an integer member called playbackPosition.
Our onCreate() method just sets up the user interface from our layout XML file. In the
button-click handler, when the Start Playing Audio button is pressed, the playAudio()
method is called. In the playAudio() method, a new instance of the MediaPlayer is created,
and the data source of the player is set to the URL of the MP3 file.

The prepareAsync() method of the player is then called to prepare the MediaPlayer for
playback. We’re in the main UI thread of our activity, so we don’t want to take too long to
prepare the MediaPlayer. There is a prepare() method on MediaPlayer, but it blocks until
the prepare is complete. If this takes a long time, or if the server takes a while to respond,
the user could think the application is stuck or, worse, get an error message. Things like
progress dialogs can help your user understand what is happening. The prepareAsync()
method returns immediately but sets up a background thread to handle the prepare()
method of the MediaPlayer. When the preparation is complete, our activity’s onPrepared()
callback is called. This is where we ultimately start the MediaPlayer playing. We have to
tell the MediaPlayer who the listener is for the onPrepared() callback, which is why we call
setOnPreparedListener() just before the call to prepareAsync(). You don’t have to use the
current activity as the listener; we do here because it’s simpler for this demonstration.

Now look at the code for the Pause Player and Restart Player buttons. You can see that
when the Pause Player button is selected, you get the current position of the player by
calling getCurrentPosition(). You then pause the player by calling pause(). When the
player has to be restarted, you call seekTo(), passing in the position obtained earlier from
getCurrentPosition(), and then call start().

457CHAPTER 20: Understanding the Media Frameworks

The MediaPlayer class also contains a stop() method. Note that if you stop the player by
calling stop(), you need to prepare the MediaPlayer again before calling start() again.
Conversely, if you call pause(), you can call start() again without having to prepare the
player. Also, be sure to call the release() method of the media player once you are done
using it. In this example, you do this as part of the killMediaPlayer() method.

There is a second URL in the sample application source code for an audio source, but
it is not an MP3 file, it’s a streaming audio feed (Radio-Mozart). This also works with the
MediaPlayer and shows again why you need to call prepareAsync() instead of prepare().
Preparing an audio stream for playback can take a while, depending on the server, network
traffic, and so on.

Listing 20-1 shows you how to play an audio file located on the Web. The MediaPlayer class
also supports playing media local to your .apk file. Listing 20-2 shows how to reference
and play back a file from the /res/raw folder of your .apk file. Go ahead and add the raw
folder under /res if it’s not already there in the Eclipse project. Then, copy the MP3 file of
your choice into /res/raw with the file name music_file.mp3. Note also the comment in
the original code to uncomment the desired call to playLocalAudio(), and commenting out
playAudio().

Listing 20-2. Using the MediaPlayer to Play Back a File Local to the Application

private void playLocalAudio()throws Exception
{
 mediaPlayer = MediaPlayer.create(this, R.raw.music_file);
 mediaPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC);

// calling prepare() is not required in this case
 mediaPlayer.start();
}

If you need to include an audio or video file with your application, you should place the
file in the /res/raw folder. You can then get a MediaPlayer instance for the resource by
passing in the resource ID of the media file. You do this by calling the static create()
method, as shown in Listing 20-2. Note that the MediaPlayer class provides a few other
static create() methods that you can use to get a MediaPlayer rather than instantiating
one yourself. In Listing 20-2, the create() method is equivalent to calling the constructor
MediaPlayer(Context context,int resourceId) followed by a call to prepare(). You should
use the create() method only when the media source is local to the device, because it
always uses prepare() and not prepareAsync().

Understanding the setDataSource Method
In Listing 20-2, we called the create() method to load the audio file from a raw resource.
With this approach, you don’t need to call setDataSource(). Alternatively, if you instantiate
the MediaPlayer yourself using the default constructor, or if your media content is not
accessible through a resource ID or a URI, you’ll need to call setDataSource().

The setDataSource() method has overloaded versions that you can use to customize the
data source for your specific needs. For example, Listing 20-3 shows how you can load an
audio file from a raw resource using a FileDescriptor.

458 CHAPTER 20: Understanding the Media Frameworks

Listing 20-3. Setting the MediaPlayer’s Data Source using a FileDescriptor

private void playLocalAudio_UsingDescriptor() throws Exception {

 AssetFileDescriptor fileDesc = getResources().openRawResourceFd(
 R.raw.music_file);
 if (fileDesc != null) {

 mediaPlayer = new MediaPlayer();
 mediaPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC);
 mediaPlayer.setDataSource(fileDesc.getFileDescriptor(),
 fileDesc.getStartOffset(), fileDesc.getLength());

 fileDesc.close();

 mediaPlayer.prepare();
 mediaPlayer.start();
 }
}

Listing 20-3 assumes that it’s within the context of an activity. As shown, you call
the getResources() method to get the application’s resources and then use the
openRawResourceFd() method to get a file descriptor for an audio file within the /res/
raw folder. You then call the setDataSource() method using the AssetFileDescriptor,
the starting position to begin playback, and the ending position. You can also use
this version of setDataSource() if you want to play back a specific portion of an
audio file. If you always want to play the entire file, you can call the simpler version of
setDataSource(FileDescriptor desc), which does not require the initial offset and length.

In this case, we chose to use prepare() followed by start(), only to show you what it might
look like. We should be able to get away with it because the audio resource is local, but it
won’t hurt to use prepareAsync() as before.

We have one more source for audio content to talk about: the SD card. Refer to the online
companion chapter for the basics on dealing with the SD card and its file system contents.
In our example, we used setDataSource() to access content on the Internet by passing in
a URL for an MP3 file. If you’ve got an audio file on your SD card, you can use the same
setDataSource() method but instead pass it the path to your audio file on the SD card.
For example, a file called music_file.mp3 in the Music directory can be played with the
AUDIO_PATH variable set like so:

static final String AUDIO_PATH =
Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_MUSIC) +
 "/music_file.mp3";

You may have noticed that we did not implement onResume() and onPause() in our example.
This means that when our activity goes into the background, it continues to play audio—at
least, until the activity is killed, or until access to the audio source is turned off. For example,
if we do not hold a wake lock, the CPU could be shut down, thus ending the playing of
music. Many people choose to manage media playback in a service to aid in working around

459CHAPTER 20: Understanding the Media Frameworks

these issues. In our current example, additional issues include if MediaPlayer is playing an
audio stream over Wi-Fi, and if our activity does not obtain a lock on Wi-Fi, Wi-Fi could be
turned off, and we’ll lose our connection to the stream. MediaPlayer has a method called
setWakeMode() that allows us to set a PARTIAL_WAKE_LOCK to keep the CPU alive while
playing. However, in order to lock Wi-Fi, we need to do that separately through WifiManager
and WifiManager.WifiLock.

The other aspect of continuing to play audio in the background is that we need to know
when not to do so, perhaps because there’s an incoming phone call, or because an alarm
is going off. Android has an AudioManager to help with this. The methods to call include
requestAudioFocus() and abandonAudioFocus(), and there’s a callback method called
onAudioFocusChange() in the interface AudioManager.OnAudioFocusChangeListener. For more
information, see the Media page in the Android Developer’s Guide.

Using SoundPool for Simultaneous Track Playing
The MediaPlayer is an essential tool in our media toolbox, but it only handles one audio or
video file at a time. What if we want to play more than one audio track simultaneously? One
way is to create multiple MediaPlayers and work with them at the same time. If you only
have a small amount of audio to play, and you want snappy performance, Android has the
SoundPool class to help you. Behind the scenes, SoundPool uses MediaPlayer, but we don’t
get access to the MediaPlayer API, just the SoundPool API.

One of the other differences between MediaPlayer and SoundPool is that SoundPool is
designed to work with local media files only. That is, you can load audio from resource files,
files elsewhere using file descriptors, or files using a pathname. There are several other
nice features that SoundPool provides, such as the ability to loop an audio track, pause and
resume individual audio tracks, or pause and resume all audio tracks.

There are some downsides to SoundPool, though. There is an overall audio buffer size in
memory for all the tracks that SoundPool will manage of only 1MB. This might seem large
when you look at MP3 files that are only a few kilobytes in size. But SoundPool expands the
audio in memory to make the playback fast and easy. The size of an audio file in memory
depends on the bit rate, number of channels (stereo versus mono), sample rate, and length
of the audio. If you have trouble getting your sounds loaded into SoundPool, you could try
playing with these parameters of your source audio file to make the audio smaller in memory.

Our example application will load and play animal sounds. One of the sounds is of crickets
and it plays constantly in the background. The other sounds play at different intervals of
time. Sometimes all you hear are crickets; other times you will hear several animals all at the
same time. We’ll also put a button in the user interface to allow for pausing and resuming.
Listing 20-4 shows our layout XML file and the Java code of our activity. Your best bet is
to download this from our web site, in order to get the sound files as well as the code. See
the “References” section at the end of this chapter for information on how to locate the
downloadable source code.

460 CHAPTER 20: Understanding the Media Frameworks

Listing 20-4. Playing Audio with SoundPool

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 >
<ToggleButton android:id="@+id/button"
 android:textOn="Pause" android:textOff="Resume"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:onClick="doClick" android:checked="true" />
</LinearLayout>

// This file is MainActivity.java
import java.io.IOException;
import android.app.Activity;
import android.content.Context;
import android.content.res.AssetFileDescriptor;
import android.media.AudioManager;
import android.media.SoundPool;
import android.os.Bundle;
import android.os.Handler;
import android.util.Log;
import android.view.View;
import android.widget.ToggleButton;

public class MainActivity extends Activity implements SoundPool.OnLoadCompleteListener {
 private static final int SRC_QUALITY = 0;
 private static final int PRIORITY = 1;
 private SoundPool soundPool = null;
 private AudioManager aMgr;

 private int sid_background;
 private int sid_roar;
 private int sid_bark;
 private int sid_chimp;
 private int sid_rooster;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 @Override
 protected void onResume() {
 soundPool = new SoundPool(5, AudioManager.STREAM_MUSIC,
 SRC_QUALITY);
 soundPool.setOnLoadCompleteListener(this);

 aMgr =
 (AudioManager)this.getSystemService(Context.AUDIO_SERVICE);

http://schemas.android.com/apk/res/android

461CHAPTER 20: Understanding the Media Frameworks

 sid_background = soundPool.load(this, R.raw.crickets, PRIORITY);

 sid_chimp = soundPool.load(this, R.raw.chimp, PRIORITY);
 sid_rooster = soundPool.load(this, R.raw.rooster, PRIORITY);
 sid_roar = soundPool.load(this, R.raw.roar, PRIORITY);

 try {
 AssetFileDescriptor afd =
 this.getAssets().openFd("dogbark.mp3");
 sid_bark = soundPool.load(afd.getFileDescriptor(),
 0, afd.getLength(), PRIORITY);
 afd.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 //sid_bark = soundPool.load("/mnt/sdcard/dogbark.mp3", PRIORITY);

 super.onResume();
 }

 public void doClick(View view) {
 switch(view.getId()) {
 case R.id.button:
 if(((ToggleButton)view).isChecked()) {
 soundPool.autoResume();
 }
 else {
 soundPool.autoPause();
 }
 break;
 }
 }

 @Override
 protected void onPause() {
 soundPool.release();
 soundPool = null;
 super.onPause();
 }

 @Override
 public void onLoadComplete(SoundPool sPool, int sid, int status) {
 Log.v("soundPool", "sid " + sid + " loaded with status " +
 status);

 final float currentVolume =
 ((float)aMgr.getStreamVolume(AudioManager.STREAM_MUSIC)) /
 ((float)aMgr.getStreamMaxVolume(AudioManager.STREAM_MUSIC));

462 CHAPTER 20: Understanding the Media Frameworks

 if(status != 0)
 return;
 if(sid == sid_background) {
 if(sPool.play(sid, currentVolume, currentVolume,
 PRIORITY, -1, 1.0f) == 0)
 Log.v("soundPool", "Failed to start sound");
 } else if(sid == sid_chimp) {
 queueSound(sid, 5000, currentVolume);
 } else if(sid == sid_rooster) {
 queueSound(sid, 6000, currentVolume);
 } else if(sid == sid_roar) {
 queueSound(sid, 12000, currentVolume);
 } else if(sid == sid_bark) {
 queueSound(sid, 7000, currentVolume);
 }
 }

 private void queueSound(final int sid, final long delay,
 final float volume)
 {
 new Handler().postDelayed(new Runnable() {
 @Override
 public void run() {
 if(soundPool == null) return;
 if(soundPool.play(sid, volume, volume,
 PRIORITY, 0, 1.0f) == 0)
 Log.v("soundPool", "Failed to start sound (" + sid +
 ")");
 queueSound(sid, delay, volume);
 }}, delay);
 }
}

The structure of this example is fairly straightforward. We have a user interface with a single
ToggleButton on it. We’ll use this to pause and resume the active audio streams. When our
app starts, we create our SoundPool and load it up with audio samples. When the samples
are properly loaded, we start playing them. The crickets sound plays in a neverending loop;
the other samples play after a delay and then set themselves up to play again after the
same delay. By choosing different delays, we get a somewhat random effect of sounds on
top of sounds.

Creating a SoundPool requires three parameters:

The first is the maximum number of samples that the 	 SoundPool will play
simultaneously. This is not how many samples the SoundPool can hold.

The second parameter is which audio stream the samples will play on. 	
The typical value is AudioManager.STREAM_MUSIC, but SoundPool can be
used for alarms or ringtones. See the AudioManager reference page for
the complete list of audio streams.

The 	 SRC_QUALITY value should just be set to 0 when creating the SoundPool.

463CHAPTER 20: Understanding the Media Frameworks

The code demonstrates several different load() methods of SoundPool. The most basic
is to load an audio file from /res/raw as a resource. We use this method for the first four
audio files. Then we show how you could load an audio file from the /assets directory of the
application. This load() method also takes parameters that specify the offset and the length
of the audio to load. This would allow us to use a single file with multiple audio samples in it,
pulling out just what we want to use. Finally, we show in comments how you might access an
audio file from the SD card. Up through Android 4.0, the PRIORITY parameter should just be 1.

For our example, we chose to use some of the features introduced in Android 2.2,
specifically the onLoadCompleteListener interface for our activity, and the autoPause() and
autoResume() methods in our button callback.

When loading sound samples into a SoundPool, we must wait until they are properly loaded
before we can start playing them. Within our onLoadComplete() callback, we check the
status of the load, and, depending on which sound it is, we then set it up to play. If the
sound is the crickets, we play with looping turned on (a value of -1 for the fifth parameter).
For the others, we queue the sound up to play after a short period of time. The time values
are in milliseconds. Note the setting of the volume. Android provides the AudioManager
to let us know the current volume setting. We also get the maximum volume setting from
AudioManager so we can calculate a volume value for play() that is between 0 and 1 (as
a float). The play() method actually takes a separate volume value for the left and right
channels, but we just set both to the current volume. Again, PRIORITY should just be set to 1.
The last parameter on the play() method is for setting the playback rate. This value should
be between 0.5 and 2.0, with 1.0 being normal.

Our queueSound() method uses a Handler to basically set up an event into the future. Our
Runnable will run after the delay period has elapsed. We check to be sure we still have a
SoundPool to play from, then we play the sound once and schedule the same sound to play
again after the same interval as before. Because we call queueSound() with different sound
IDs and different delays, the effect is a somewhat random playing of animal sounds.

When you run this example, you’ll hear crickets, a chimp, a rooster, a dog, and a roar (a bear,
we think). The crickets are constantly chirping while the other animals come and go. One
nice thing about SoundPool is that it lets us play multiple sounds at the same time with no
real work on our part. Also, we’re not taxing the device too badly, because the sounds were
decoded at load time, and we simply need to feed the sound bits to the hardware.

If you click the button, the crickets will stop, as will any other animal sound currently being
played. However, the autoPause() method does not prevent new sounds from being played.
You’ll hear the animal sounds again within seconds (except for the crickets). Because we’ve
been queuing up sounds into the future, we will still hear those sounds. In fact, SoundPool
does not have a way to stop all sounds now and in the future. You’ll need to handle stopping
on your own. The crickets will only come back if we click the button again to resume the
sounds. But even then, we might have lost the crickets because SoundPool will throw out
the oldest sound to make room for newer sounds if the maximum number of simultaneously
playing samples is reached.

464 CHAPTER 20: Understanding the Media Frameworks

Playing Sounds with JetPlayer
SoundPool is not too bad a player, but the memory limitations can make it difficult to get the
job done. An alternative when you need to play simultaneous sounds is JetPlayer. Tailored
for games, JetPlayer is a very flexible tool for playing lots of sounds and for coordinating
those sounds with user actions. The sounds are defined using Musical Instrument Digital
Interface (MIDI).

JetPlayer sounds are created using a special JETCreator tool. This tool is provided under
the Android SDK tools directory, although you’ll also need to install Python in order to use
it, and it is limited to the Mac OSX and Windows SDK packages. The resulting JET file
can be read into your application, and the sounds set up for playback. The whole process
is somewhat involved and beyond the scope of this book, so we’ll just point you to more
information in the “References” section at the end of this chapter.

Playing Background Sounds with AsyncPlayer
If all you want is some audio played, and you don’t want to tie up the current thread, the
AsyncPlayer may be what you’re looking for. The audio source is passed as a URI to this
class, so the audio file could be local or remote over the network. This class automatically
creates a background thread to handle getting the audio and starting the playback. Because
it is asynchronous, you won’t know exactly when the audio will start. Nor will you know when
it ends, or even if it’s still playing. You can, however, call stop() to get the audio to stop
playing. If you call play() again before the previous audio has finished playing, the previous
audio will immediately stop and the new audio will begin at some time in the future when
everything has been set up and fetched. This is a very simple class that provides an automatic
background thread. Listing 20-5 shows how your code should look to implement this.

Listing 20-5. Playing Audio with AsyncPlayer

private static final String TAG = "AsyncPlayerDemo";
private AsyncPlayer mAsync = null;

[...]

 mAsync = new AsyncPlayer(TAG);
 mAsync.play(this, Uri.parse("file://” + “/perry_ringtone.mp3"),
 false, AudioManager.STREAM_MUSIC);

[...]

@Override
protected void onPause() {
 mAsync.stop();
 super.onPause();
}

465CHAPTER 20: Understanding the Media Frameworks

Low-Level Audio Playback Using AudioTrack
So far, we’ve been dealing with audio from files, be they local files or remote files. If you want
to get down to a lower level, perhaps playing audio from a stream, you need to investigate
the AudioTrack class. Besides the usual methods like play() and pause(), AudioTrack
provides methods for writing bytes to the audio hardware. This class gives you the most
control over audio playback, but it is much more complicated than the audio classes
discussed so far in this chapter. One of our online companion sample applications uses the
AudioRecord class. The AudioRecord class is very much like the AudioTrack class, so to get a
better understanding of the AudioTrack class, refer to the AudioRecord sample later on.

More About MediaPlayer
In general, the MediaPlayer is very systematic, so you need to call operations in a specific
order to initialize a MediaPlayer properly and prepare it for playback. The following list
summarizes some of the other details you should know for using the media APIs:

Once you set the data source of a MediaPlayer, you cannot easily 	
change it to another one—you’ll have to create a new MediaPlayer or
call the reset() method to reinitialize the state of the player.

After you call 	 prepare(), you can call getCurrentPosition(),
getDuration(), and isPlaying() to get the current state of the player.
You can also call the setLooping() and setVolume() methods after the
call to prepare(). If you used prepareAsync(), you should wait until
onPrepared() is called before using any of these other methods.

After you call 	 start(), you can call pause(), stop(), and seekTo().

Every MediaPlayer you create uses a lot of resources, so be sure to 	
call the release() method when you are done with the media player.
The VideoView takes care of this in the case of video playback, but
you’ll have to do it manually if you decide to use MediaPlayer instead of
VideoView. More about VideoView in the next sections.

	MediaPlayer works with several listeners you can use for additional
control over the user experience, including OnCompletionListener,
OnErrorListener, and OnInfoListener. For example, if you’re managing
a playlist of audio, OnCompletionListener will be called when a piece is
finished so you can queue up the next piece.

This concludes our discussion about playing audio content. Now we’ll turn our attention
to playing video. As you will see, referencing video content is similar to referencing audio
content.

Playing Video Content
In this section, we are going to discuss video playback using the Android SDK. Specifically,
we will discuss playing a video from a web server and playing one from an SD card. As you
can imagine, video playback is a bit more involved than audio playback. Fortunately, the
Android SDK provides some additional abstractions that do most of the heavy lifting.

466 CHAPTER 20: Understanding the Media Frameworks

Note Playing back video in the emulator is not very reliable. If it works, great. But if it doesn’t, try
running on a device instead. Because the emulator must use only software to run video, it can have
a very hard time keeping up with video, and you will likely get unexpected results.

Playing video requires more effort than playing audio, because there’s a visual component
to take care of in addition to the audio. To take some of the pain away, Android provides
a specialized view control called android.widget.VideoView that encapsulates creating
and initializing the MediaPlayer. To play video, you create a VideoView widget in your user
interface. You then set the path or URI of the video and fire the start() method. Listing 20-6
demonstrates video playback in Android.

Listing 20-6. Playing Video Using the Media APIs

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<LinearLayout
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <VideoView android:id="@+id/videoView"
 android:layout_width="200px" android:layout_height="200px" />

</LinearLayout>

// This file is MainActivity.java
import android.app.Activity;
import android.net.Uri;
import android.os.Bundle;
import android.widget.MediaController;
import android.widget.VideoView;

public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 this.setContentView(R.layout.main);

 VideoView videoView =
 (VideoView)this.findViewById(R.id.videoView);
 MediaController mc = new MediaController(this);
 videoView.setMediaController(mc);
 videoView.setVideoURI(Uri.parse(
 "http://www.androidbook.com/akc/filestorage/android/" +
 "documentfiles/3389/movie.mp4"));
 /* videoView.setVideoPath(
 Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_MOVIES) +
 "/movie.mp4");

http://schemas.android.com/apk/res/android
http://www.androidbook.com/akc/filestorage/android/

467CHAPTER 20: Understanding the Media Frameworks

 */
 videoView.requestFocus();
 videoView.start();
 }
}

Listing 20-6 demonstrates video playback of a file located on the Web at www.androidbook.com/
akc/filestorage/android/documentfiles/3389/movie.mp4, which means the application
running the code will need to request the android.permission.INTERNET permission. All of
the playback functionality is hidden behind the VideoView class. In fact, all you have to do is
feed the video content to the video player. The user interface of the application is shown in
Figure 20-2.

Figure 20-2. The video playback UI with media controls enabled

When this application runs, you will see the button controls along the bottom of the screen
for about three seconds, and then they disappear. You get them back by clicking anywhere
within the video frame. When we were doing playback of audio content, we needed to
display the button controls only to start, pause, and restart the audio. We did not need a
view component for the audio itself. With video, of course, we need button controls as well
as something to view the video in. For this example, we’re using a VideoView component
to display the video content. But instead of creating our own button controls (which we
could still do if we chose to), we create a MediaController that provides the buttons for
us. As shown in Figure 20-2 and Listing 20-6, you set the VideoView’s media controller by
calling setMediaController() to enable the play, pause, and seek-to controls. If you want
to manipulate the video programmatically with your own buttons, you can call the start(),
pause(), stopPlayback(), and seekTo() methods.

http://www.androidbook.com/akc/filestorage/android/documentfiles/3389/movie.mp4
http://www.androidbook.com/akc/filestorage/android/documentfiles/3389/movie.mp4

468 CHAPTER 20: Understanding the Media Frameworks

Keep in mind that we’re still using a MediaPlayer in this example—we just don’t see it.
You can in fact “play” videos directly in MediaPlayer. If you go back to the example
from Listing 20-1, put a movie file on your SD card, and plug in the movie’s file path in
AUDIO_PATH, you will find that it plays the audio quite nicely even though you can’t
see the video.

Whereas MediaPlayer has a setDataSource() method, VideoView does not. VideoView
instead uses the setVideoPath() or setVideoURI() methods. Assuming you put a movie
file onto your SD card, you change the code from Listing 20-6 to comment out the
setVideoURI() call and uncomment the setVideoPath() call, adjusting the path to the movie
file as necessary. When you run the application again, you will now hear and see the video in
the VideoView. Technically, we could have called setVideoURI() with the following to get the
same effect as setVideoPath():

videoView.setVideoURI(Uri.parse("file://" +
 Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_MOVIES) + "/movie.mp4"));

You might have noticed that VideoView does not have a method to read data from a file
descriptor as MediaPlayer did. You may also have noticed that MediaPlayer has a couple of
methods for adding a SurfaceHolder to a MediaPlayer (a SurfaceHolder is like a view port
for images or video). One of the MediaPlayer methods is create(Context context, Uri uri,
SurfaceHolder holder), and the other is setDisplay(SurfaceHolder holder).

Bonus Online Chapter on Recording and Advanced Media
Now that you have mastered many of the aspects of media playback, including the variety
of methods to build your own audio and video capabilities into your application, there are
a few more areas to explore on the topic that are almost a book’s worth of content in their
own right. So we have put them together into another bonus online chapter that explores
the following:

Audio recording with 	 MediaRecorder, AudioRecord, and other techniques

Video recording from the ground up	

Camera and camcorder profiles for video recording	

Using intents and the 	 MediaStore class to have other applications do all
your recording for you!

Take a look at the online material for the Audio and Video Recording bonus chapter.

469CHAPTER 20: Understanding the Media Frameworks

References
Here are some helpful references to topics you may wish to explore further:

	www.androidbook.com/proandroid5/projects: A list of downloadable
projects related to this book. For the projects in this chapter, look for a
zip file called ProAndroid5_Ch20_Media.zip. This zip file contains all the
projects from this chapter, listed in separate root directories. There is
also a README.TXT file that describes exactly how to import projects into
Eclipse from one of these zip files.

	http://developer.android.com/guide/topics/media/jet/jetcreator_
manual.html: The user manual for the JETCreator tool. You can use this
to create a JET sound file to be played using the JetPlayer. JETCreator
is only available for Windows and Mac OS. To see JetPlayer in action,
load the JetBoy sample project from the Android SDK into Eclipse, build
it, and run it. Note that the Fire button is the center directional pad key.

Summary
Here is a summary the topics covered in this media chapter on audio and video:

Playing audio through a MediaPlayer	

Several ways to source audio for 	 MediaPlayer, from local application
resources, to files, to streaming over the network

Steps to take with a MediaPlayer to get the audio to come out properly	

	SoundPool and its ability to play several sounds simultaneously

	SoundPool’s limitations in terms of the amount of audio it can handle

	AsyncPlayer, which is useful because sounds generally need to be
managed in the background

	AudioTrack, which provides low-level access to audioPlaying video
using VideoView

http://www.androidbook.com/proandroid5/projects
http://developer.android.com/guide/topics/media/jet/jetcreator_manual.html
http://developer.android.com/guide/topics/media/jet/jetcreator_manual.html

471

Chapter 21
Home Screen Widgets

Home screen widgets in Android present frequently changing information on the home
screen of Android. Home screen widgets are disconnected views displayed on the home
screen. Data content of these views is updated at regular intervals by background processes
or just kept as a static view.

For example, an e-mail home screen widget might alert you to the number of outstanding
e-mails to be read. The widget may just show you the number of e-mails and not the
messages themselves. Clicking the e-mail count may then take you to the activity that
displays actual e-mails. These could even be external e-mail sources such as Yahoo, Gmail,
and Hotmail, as long as the device has a way to access the counts through HTTP or other
connectivity mechanisms.

In the Android SDK a widget is declaratively defined. A widget definition contains the following:

A view layout to be displayed on the home screen, along with how big it 	
should be to fit on a home page.

A timer that specifies the frequency of updates.	

A broadcast receiver Java class called a widget provider that can 	
respond to timer updates in order to alter the view in some fashion by
populating with data.

An activity class that is responsible for collecting the input necessary to 	
further configure the widget to be displayed.

The timer, the receiver, and the configuration activity are optional. Once a widget is defined
and the Java classes are provided, the widget will be available for the user to drag onto a
home page. The view and the corresponding Java classes are architected in such a way
that they are disconnected from each other. For example, any Android service or activity
can retrieve the view using its layout ID, populate that view with data (just like populating a
template), and send it to the home screen. Once the view is sent to the home screen, it is
dislodged from the underlying Java code.

Before we show you how to implement a widget, we’ll first give you an overview of how a
widget is used by an end user.

472 CHAPTER 21: Home Screen Widgets

User Experience with Home Screen Widgets
Home screen widget functionality in Android allows you to choose a preprogrammed widget
to be placed on the home screen. When placed, the widget will allow you to configure it using
an activity (defined as part of the widget package), if necessary. It is important to understand
this interaction before actually going into the details of how a widget is implemented.

We are going to walk you through a widget called Birthday Widget that we have created for
this chapter. We will present the source code for it later in the chapter. First, we are going
to use this widget as an example for our walkthrough. As a consequence of source code
coming later, we need your consideration to read along and follow the pictures and not look
for this widget on your screen. If you follow the provided figures and explanation, you will
know the nature and behavior of the Birthday Widget, which will make things clear when we
code it subsequently.

Let’s start this tour by locating the widget we want and creating an instance of it on the
home screen. The way you access the available widget list is different depending on the
Android release. Usually though, the list of widgets is kept alongside the list of applications
available on your device. Here is an example from API 16 (or Jellybean version of Android) in
Figure 21-1.

Figure 21-1. Home screen widget pick list

473CHAPTER 21: Home Screen Widgets

In the list of widgets in Figure 21-1, the Birthday Widget is designed for this chapter. If you
choose this widget, Android allows you to drag it to one of pages of your home screen.
Android will create a corresponding widget instance on the home screen that looks like the
example Birthday Widget shown in Figure 21-2.

Figure 21-2. An example Birthday Widget

Birthday Widget in Figure 21-2 will indicate in its header the name of the person, how many
days away this person’s birthday is, when the date of birth falls this year, and a link to buy
gifts. You may be wondering how the name of the person and date of birth were configured.
What if you want two instances of this widget, each with the name and date of birth for a
different person? This is where the widget configuration activity comes into play and is the
topic we are covering next.

Understanding Widget Configuration Activity
A widget definition optionally includes a specification of an activity called a widget
configuration activity. When you choose a widget from the home page widget pick list to
create the widget instance, Android invokes the corresponding widget configuration activity
if one is defined for it. This activity is something you need to code.

In case of our BirthdayWidget, this configuration activity will prompt you for the name of the
person and the upcoming birth date, as shown in Figure 21-3. It is the responsibility of the
configuration activity to save this information in a persistent place so that when an update is
called on the widget provider, the widget provider will be able to locate this information and
update the number of days until the birthday.

474 CHAPTER 21: Home Screen Widgets

Note When a user chooses to create two Birthday Widget instances on the home screen, the
configuration activity will be called twice (once for each widget instance).

Figure 21-3. Birthday Widget configuration activity

Internally, Android keeps track of the widget instances by allocating them unique IDs. This
unique widget instance ID is passed to the Java callbacks and to the configurator Java class so
that initial configuration and updates can be directed to the right instance of the widget on the
homepage. In Figure 21-2, in the later part of the string satya:3, the 3 is the widget instance ID.

Understanding the Life Cycle of a Widget
The life cycle of a widget has the following phases:

1. Widget definition

2. Widget instance creation

3. onUpdate() (when the time interval expires)

4. Responses to clicks (on the widget view on the home screen)

5. Widget deletion (from the home screen)

6. Uninstallation

We will go through these phases in detail now.

475CHAPTER 21: Home Screen Widgets

Understanding Widget Definition Phase
Widget definition starts with the definition of the widget provider class in the Android
manifest file. Listing 21-1 shows the definition for the AppWidgetProvider that we have
designed for this chapter called BDayWidgetProvider in the manifest file.

Listing 21-1. Widget Definition in Android Manifest File

<!-- filename: AndroidManifest.xml, project: ProAndroid5_ch21_TestWidgets.zip -->
<manifest..>
<application>
....
 <receiver android:name=".BDayWidgetProvider">
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/bday_appwidget_provider" />
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 </receiver>
 ...
 <activity>

 </activity>
</application>
</manifest>

This definition indicates that there is a broadcast receiver Java class called BDayWidgetProvider
which receives application widget broadcast update messages. The widget class definition
in Listing 21-1 also points to an XML file @xml/bday_appwidget_provider which is /res/xml/
bday_appwidget_provider.xml. This XML file is in Listing 21-2. This widget definition file has a
number of things about this widget such as its layout resource file, update frequency, etc.

Listing 21-2. Widget View Definition in Widget Provider Information XML File

<!-- /res/xml/bday_appwidget_provider.xml(ProAndroid5_ch21_TestWidgets.zip) -->
<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="150dp"
 android:minHeight="120dp"
 android:updatePeriodMillis="43200000"
 android:initialLayout="@layout/bday_widget"
 android:configure="com.androidbook.BDayWidget.ConfigureBDayWidgetActivity"
 android:resizeMode="horizontal|vertical"
 android:previewImage="@drawable/some_preview_image_icon"
 >
</appwidget-provider>

This XML file is called the App widget provider information file. Internally, this gets translated
to the AppWidgetProviderInfo Java class. This file identifies the width and height of the
layout to be 150dp and 120dp, respectively. This definition file also indicates the update
frequency to be 12 hours translated to milliseconds. The widget definition also points to
a layout file through the initialLayout attribute. This layout file (see future Listing 21-6)
produces the widget look that is shown in Figure 21-2.

http://schemas.android.com/apk/res/android

476 CHAPTER 21: Home Screen Widgets

Understanding resize Mode Attribute
Starting with SDK 3.1, users have the ability to resize a widget that is placed on one of their
images. The user sees resize handles when they long-click the widget and can then use
these handles to resize. This resize can be horizontal, vertical, or none. You can combine
horizontal and vertical to resize the widget in both dimensions, as shown in Listing 21-2.
However, to take advantage of this, your widget controls should be laid out in such a way
that they can expand and contract using their layout parameters. There is no callback to tell
you what size your widget is.

Understanding previewImage Attribute
The preview image attribute in Listing 21-2 indicates what image or icon is used to show
your widget in the list of available widgets. If you omit it, the default behavior is to show the
main icon for your application package, which is indicated in the manifest file.

Understanding Widget Layout: initialLayout Attribute
The layout for widget views is restricted to contain only certain types of view elements. The
views allowed in a widget layout are exposed through an interface called RemoteViews, and
only certain views can be composed into this layout. Some of the allowed view elements
are shown in Listing 21-3. Note that their subclasses are not supported—only those that are
included in Listing 21-3.

Listing 21-3. Allowed View Controls in RemoteViews

FrameLayout
LinearLayout
RelativeLayout
GridLayout
AnalogClock
Button
Chronometer
ImageButton
ImageView
ProgressBar
TextView
ViewFlipper
ListView
GridView
StackView
AdapterViewFlipper

This list may grow with each release. The primary reason for restricting what is allowed in a
remote view is that these views are disconnected from the processes that actually control
them. These widget views are hosted by an application like the Home application. The
controllers for these views are background processes that get invoked by timers. For this
reason, these views are called remote views. There is a corresponding Java class called

477CHAPTER 21: Home Screen Widgets

RemoteViews that allows access to these views. In other words, programmers do not have
direct access to these views to call methods on them. You have access to these views only
through the RemoteViews (like a gatekeeper).

We will cover the relevant methods of a RemoteViews class when we explore the example in
the next main section. For now, remember that only a limited set of views in Listing 21-3 are
allowed in the widget layout file.

Understanding configure Attribute
The widget definition (Listing 21-2) uses the configure attribute to specify the configuration
activity that needs to be invoked when the user creates a widget instance. This configuration
activity specified in Listing 21-2 is the ConfigureBDayWidgetActivity. This activity
(Figure 21-3) is like any other Android activity. Form fields on this activity are used to collect
the information needed by a widget instance.

Understanding Widget Instance Creation Phase
When a user chooses a widget to create a widget instance, Android invokes the
configuration activity (Figure 21-3) if it is defined in the configuration XML file for the
widget. If this configuration activity is not defined then this phase skipped and the widget
is presented directly on the home page. When invoked this configuration activity does the
following:

1. Receive the widget instance ID from the invoking intent that started
the configuration activity.

2. Prompt the user through form fields to collect the widget-instance–
specific information.

3. Persist the widget instance information so that subsequent calls
to AppWidgetProvider’s onUpdate method have access to this
information.

4. Prepare to display the widget view for the first time by retrieving the
widget view layout and create a RemoteViews object with it.

5. Call methods on the RemoteViews object to set values on individual
view objects, such as text and images.

6. Also use the RemoteViews object to register any onClick events on
any of the subviews of the widget.

7. Tell the AppWidgetManager to paint the RemoteViews on the home
screen using the instance ID of that widget.

8. Return the widget ID, and close.

Notice that the first population of the widget in this case is done by the configuration activity
and not AppWidgetProvider’s onUpdate() method.

478 CHAPTER 21: Home Screen Widgets

Note The configuration activity is optional. If the configuration activity is not specified, the call
goes directly to the onUpdate() method of the AppWidgetProvider. It is up to onUpdate() to
update the view.

Android will undertake this process for each widget instance that the user creates. Besides
invoking the configuration activity, Android also invokes the onEnabled callback of the
AppWidgetProvider. Let’s briefly consider the callbacks on an AppWidgetProvider class by
taking a look at the shell of our BDayWidgetProvider (see Listing 21-4). We will examine the
complete listing of this file later in Listing 21-10.

Listing 21-4. A Widget Provider Shell

// filename: BDayWidgetProvider.java(ProAndroid5_ch21_TestWidgets.zip)
public class BDayWidgetProvider extends AppWidgetProvider {
 public void onUpdate(Context context, AppWidgetManager appWidgetManager,
 int[] appWidgetIds){}
 public void onDeleted(Context context, int[] appWidgetIds){}
 public void onEnabled(Context context){}
 public void onDisabled(Context context) {}
}

The onEnabled() callback method indicates that there is at least one instance of the widget
up and running on the home screen. This means a user must have dropped the widget on
the home page at least once. In this call, you will need to enable receiving messages for
this broadcast receiver component (you will see this in Listing 21-10). The SDK base class
AppWidgetProvider has the functionality to enable or disable receiving broadcast messages.

The onDeleted() callback method is called when a user drags the widget instance view to
the trash can. This is where you will need to delete any persistent values you are holding for
that widget instance.

The onDisabled() callback method is called after the last widget instance is removed from
the home screen. This happens when a user drags the last instance of a widget to the trash.
You should use this method to unregister your interest in receiving any broadcast messages
intended for this component (you will see this in Listing 21-9).

The onUpdate() callback method is called every time the timer specified in Listing 21-2
expires. This method is also called the very first time the widget instance is created if there
is no configuration activity. If there is a configuration activity, this method is not called at
the creation of a widget instance. This method will subsequently be called when the timer
expires at the frequency indicated.

479CHAPTER 21: Home Screen Widgets

Understanding onUpdate Phase
Once the widget instance is on the home screen, the next significant event is the expiration
of the timer. Android will call onUpdate() in response to that timer. Because onUpdate() is
called is through a broadcast receiver, the corresponding Java process will be loaded and
will remain live until the end of that call. Once the call returns, the process will be ready to be
taken down.

Once you have the necessary data available to update the widget in the onUpdate() method,
you can invoke the AppWidgetManager to paint the remote view. This goes to show that
the AppWidgetProvider class is stateless and may even be incapable of maintaining static
variables between invocations. This is because the Java process containing this broadcast
receiver class could be taken down and reconstructed between two invocations, resulting in
re-initialization of static variables.

As a result, you will need to come up with a scheme to remember state if that is required.
You can save the state of the widget instance in a persistent store such as a file, shared
preferences, or a SQLite database. In the examples in this chapter, we used shared
preferences as the persistence API.

Caution To save power, Google recommends that the duration of the updates be more than an
hour, so the device won’t wake up too often. Starting with the 2.0 API, there is a restriction of
30 minutes or more for the update timeout.

For durations that are shorter, such as only seconds, you need to call this onUpdate()
method yourself by using the facilities in the AlarmManager class. When you use
AlarmManager, you also have the option not to call onUpdate() but, instead, do the work of
onUpdate() in alarm callbacks. Refer to Chapter 17 for working with the alarm manager.

This is what you typically need to do in an onUpdate() method:

1. Make sure the configurator has finished its work; otherwise, just
return. This should not be problem in releases 2.0 and above, where
the duration is expected to be longer. Otherwise, based on the
update interval (when it is too small) it is possible that onUpdate() will
be called before the user has finished configuring the widget in the
configurator.

2. Retrieve the persisted data for that widget instance.

3. Retrieve the widget view layout, and create a RemoteViews
object with it.

4. Call methods on the RemoteViews to set values on individual view
objects such as text and images.

480 CHAPTER 21: Home Screen Widgets

5. Register any onClick events on any of the views by using pending
intents.

6. Tell the AppWidgetManager to paint the updated RemoteViews using the
instance ID.

As you can see, there is a lot of overlap between what a configurator does initially and what
the onUpdate() method does. You may want to reuse this functionality between the two
places.

Understanding Widget View Mouse Click Event Callbacks
As stated, the onUpdate() method keeps the widget views up to date. The widget view and
subelements in that view could have callbacks registered for a mouse click. Typically, the
onUpdate() method uses a pending intent to register an action for an event like a mouse
click. This action could then start a service or start an activity such as opening up a browser.

This invoked service or activity can then communicate back with the view, if needed, using
the widget instance ID and the AppWidgetManager. Hence, it is important that the pending
intent carries with it the widget instance ID.

Deleting a Widget Instance
Another distinct event that can happen to a widget instance is that it can get deleted. To do
this, a user has to long-press the widget on the home screen. This will enable the trash can
to show on the home screen. The user can then drag the widget instance to the trash can to
delete the widget instance from the screen.

Doing so calls the onDelete() method of the widget provider. If you have saved any state
information for this widget instance, you will need to delete that data in this onDelete
method.

Android also calls onDisable() if the widget instance that has just been deleted is the last
of the widget instances of this type. You will use this callback to clean up any persistence
attributes that are stored for all widget instances and also unregister for callbacks from the
widget onUpdate() broadcasts.

Uninstalling Widget Packages
There is a need to clean up the widgets if you are planning to uninstall and install a new
release of your .apk file containing these widgets.

It is recommended that you remove or delete all widget instances before trying to uninstall
the package. Follow the directions in the “Deleting a Widget Instance” section to delete each
widget instance until none remain.

Then, you can uninstall and install the new release. This is especially important if you are
using the Eclipse ADT to develop your widgets, because during the development time, ADT
tries to do this every time you run the application. So, between runs, make sure you remove
the widget instances.

481CHAPTER 21: Home Screen Widgets

Implementing A Sample Widget Application
So far, we have covered the theory and approach behind widgets. Let’s create the sample
widget whose behavior has been used as the example to explain widget architecture. We will
develop, test, and deploy this Birthday Widget.

Each Birthday Widget instance will show a name, the date of the next birthday, and how
many days from today until the birthday. It will also create an onClick area where you can
click to buy gifts. This click will open a browser and take you to www.google.com.

The layout of the finished widget should look like Figure 21-4.

Figure 21-4. Birthday Widget look and feel

The implementation of this widget consists of the following widget-related files. The entire
project is also available for download at the URL mentioned in the “References” section of
this chapter.

The basic files are

	AndroidManifest.xml: Where the AppWidgetProvider is defined
(see Listing 21-5)

	res/xml/bday_appwidget_provider.xml: Widget dimensions and layout
(see Listing 21-2)

	res/layout/bday_widget.xml: The widget layout (see Listing 21-6)

	res/drawable/box1.xml: Provides boxes for sections of the widget
layout (see Listing 21-7)

	src/.../BdayWidgetProvider.java: Implementation of the
AppWidgetProvider class (see Listing 21-10)

These files implement the widget configuration activity:

	src/.../ConfigureBDayWidgetActivity.java: Configuration activity
(see Listing 21-8)

	layout/edit_bday_widget.xml: Layout for taking the name and birthday
(see Listing 21-9)

http://www.google.com/

482 CHAPTER 21: Home Screen Widgets

These files store/retrieve the state of a widget instance using preferences:

	src/.../IWidgetModelSaveContract.java: Contract for saving and
retrieving a widget’s data (See in downloadable project)

	src/.../APrefWidgetModel.java: Abstract preference-based widget
model that saves widget data in preferences (see in downloadable
project)

	src/.../BDayWidgetModel.java: Widget model holding the data for a
widget view (see in downloadable project)

	src/.../Utils.java: A few utility classes (see in downloadable project)

We will walk through some of the key files and explain any additional concepts that bear
further consideration. You can get the rest of the files from the downloadable project for this
chapter.

Defining the Widget Provider
For the Birthday Widget project the manifest file is in Listing 21-5. It has the declarations for
the widget provider BDayAppWidgetProvider as a broadcast receiver and also the definition
for the configuration activity ConfigureBDayWidgetActivity. Notice how the widget provider
definition also points to the widget definition XML file @xml/bday_appwidget_provider.

Listing 21-5. Android Manifest File for BDayWidget Sample Application

<?xml version="1.0" encoding="utf-8"?>
<!-- file: AndroidManifest.xml(ProAndroid5_ch21_TestWidgets.zip) -->
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.BDayWidget"
 android:versionCode="1"
 android:versionName="1.0.0">
<application android:icon="@drawable/icon"
 android:label="Birthday Widget">
<!--
**
* Birthday Widget Provider Receiver
**
 -->
 <receiver android:name=".BDayWidgetProvider">
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/bday_appwidget_provider"/>
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE"/>
 </intent-filter>
 </receiver>

http://schemas.android.com/apk/res/android

483CHAPTER 21: Home Screen Widgets

<!--
**
* Birthday Provider Configuration activity
**
 -->
 <activity android:name=".ConfigureBDayWidgetActivity"
 android:label="Configure Birthday Widget">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_CONFIGURE"/>
 </intent-filter>
 </activity>

 </application>
 <uses-sdk android:minSdkVersion="3"/>
</manifest>

The application label identified by "Birthday Widget" in the following line

<application android:icon="@drawable/icon" android:label="Birthday Widget">

is what shows up in the widget pick list (see Figure 21-2) of the home page. You can also
indicate in the widget definition XML file (Listing 21-2) an alternate icon to be shown when
the widget is listed (also called a preview). The configuration activity definition is like any
other normal activity, except that it needs to declare itself as capable of responding to
android.appwidget.action.APPWIDGET_CONFIGURE actions.

Refer to the widget definition file @xml/bday_appwidget_provider in Listing 21-2 to see how
the widget size and a path to the layout file are specified. This layout file is just like any other
layout file for a view in Android. Listing 21-6 shows the layout file we used to produce the
widget layout shown in Figure 21-4.

Listing 21-6. Widget View Layout Definition for BDayWidget

<?xml version="1.0" encoding="utf-8"?>
<!-- res/layout/bday_widget.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 android:background="@drawable/box1">
<TextView
 android:id="@+id/bdw_w_name"
 android:layout_width="fill_parent" android:layout_height="40sp"
 android:text="Anonymous" android:background="@drawable/box1"
 android:gravity="center" android:layout_weight="0"/>
<LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 android:layout_weight="1">
 <TextView
 android:id="@+id/bdw_w_days"
 android:layout_width="wrap_content" android:layout_height="fill_parent"
 android:gravity="center" android:layout_weight="50"
 android:text="0" android:textSize="30sp" />

http://schemas.android.com/apk/res/android

484 CHAPTER 21: Home Screen Widgets

 <TextView
 android:id="@+id/bdw_w_button_buy"
 android:layout_width="wrap_content" android:layout_height="fill_parent"
 android:layout_weight="50" android:gravity="center"
 android:textSize="20sp" android:text="Buy"
 android:background="#FF6633"/>
</LinearLayout>
<TextView
 android:id="@+id/bdw_w_date"
 android:layout_width="fill_parent" android:layout_height="40sp"
 android:gravity="center" android:layout_weight="0"
 android:text="1/1/2000" android:background="@drawable/box1"/>
</LinearLayout>

Some of the controls also use a shape definition file called box1.xml to define the borders.
The code for the shape definition file is shown in Listing 21-7.

Listing 21-7. A Boundary Box Shape Definition

<!-- res/drawable/box1.xml -->
<shape xmlns:android="http://schemas.android.com/apk/res/android">
 <stroke android:width="4dp" android:color="#888888"/>
 <padding android:left="2dp" android:top="2dp"
 android:right="2dp" android:bottom="2dp"/>
 <corners android:radius="4dp"/>
</shape>

Implementing Widget Configuration Activity
For the Birthday Widget example, the configuration of the widget responsibilities are
implemented in ConfigureBDayWidgetActivity. Source code for this class is in Listing 21-8.

Listing 21-8. Implementing a Configuration Activity

// file: ConfigureBDayWidgetActivity.java(ProAndroid5_ch21_TestWidgets.zip)
public class ConfigureBDayWidgetActivity extends Activity
{
 private static String tag = "ConfigureBDayWidgetActivity";
 private int mAppWidgetId = AppWidgetManager.INVALID_APPWIDGET_ID;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.edit_bday_widget);
 setupButton(); //setup the save button

 //Get the widget instanceid from the intent extra
 Intent intent = getIntent();
 Bundle extras = intent.getExtras();

http://schemas.android.com/apk/res/android

485CHAPTER 21: Home Screen Widgets

 if (extras != null) {
 mAppWidgetId = extras.getInt(
 AppWidgetManager.EXTRA_APPWIDGET_ID,
 AppWidgetManager.INVALID_APPWIDGET_ID);
 }
 }
 private void setupButton(){
 Button b = (Button)this.findViewById(R.id.bdw_button_update_bday_widget);
 b.setOnClickListener(
 new Button.OnClickListener(){
 public void onClick(View v) {
 saveConfiguration(v);
 }
 });
 }
 //Read name and date.
 //Call updateAppWidgetLocal to save the values for this instance
 //in that method also send the view to the homepage.
 //Return the result of the configuration activity to the SDK
 //finish the activity.
 private void saveConfiguration(View v){
 String name = this.getName();
 String date = this.getDate();
 if (Utils.validateDate(date) == false){
 this.setDate("wrong date:" + date);
 return;
 }
 if (this.mAppWidgetId == AppWidgetManager.INVALID_APPWIDGET_ID){
 return;
 }
 updateAppWidgetLocal(name,date);
 Intent resultValue = new Intent();
 resultValue.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, mAppWidgetId);
 setResult(RESULT_OK, resultValue);
 finish();
 }
 private String getName(){
 EditText nameEdit =
 (EditText)this.findViewById(R.id.bdw_bday_name_id);
 String name = nameEdit.getText().toString();
 return name;
 }
 private String getDate(){
 EditText dateEdit = (EditText)this.findViewById(R.id.bdw_bday_date_id);
 String dateString = dateEdit.getText().toString();
 return dateString;
 }
 private void setDate(String errorDate){
 EditText dateEdit = (EditText)this.findViewById(R.id.bdw_bday_date_id);
 dateEdit.setText("error");
 dateEdit.requestFocus();
 }

486 CHAPTER 21: Home Screen Widgets

 private void updateAppWidgetLocal(String name, String dob){
 //Create an object to hold the data: widgetid, name, and dob
 BDayWidgetModel m = new BDayWidgetModel(mAppWidgetId,name,dob);
 //Create the view and send it to the home screen
 updateAppWidget(this,AppWidgetManager.getInstance(this),m);
 //Use the data model object to save the id, name, and dob in prefs
 m.savePreferences(this);
 }
 //A key method where a lot of magic happens
 public static void updateAppWidget(Context context,
 AppWidgetManager appWidgetManager,
 BDayWidgetModel widgetModel)
 {
 //Construct a RemoteViews Object from the widget layout file
 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.bday_widget);

 //Use the control ids in the layout to set values on them.
 //Notice that these methods are limited and available on the
 //on the RemoteViews object. In other words we are not using the
 //TextView directly to set these values.
 views.setTextViewText(R.id.bdw_w_name
 , widgetModel.getName() + ":" + widgetModel.iid);

 views.setTextViewText(R.id.bdw_w_date
 , widgetModel.getBday());

 //update the name
 views.setTextViewText(R.id.bdw_w_days,
 Long.toString(widgetModel.howManyDays()));

 //Set intents to invoke other activities when widget is clicked on
 Intent defineIntent = new Intent(Intent.ACTION_VIEW,
 Uri.parse("http://www.google.com"));
 PendingIntent pendingIntent =
 PendingIntent.getActivity(context,
 0 /* no requestCode */,
 defineIntent,
 0 /* no flags */);
 views.setOnClickPendingIntent(R.id.bdw_w_button_buy, pendingIntent);

 // Tell the widget manager to paint the remote view
 appWidgetManager.updateAppWidget(widgetModel.iid, views);
 }
}

Before we cover what this code does, the layout used by this widget configuration activity is
in Listing 21-9. This layout is straightforward. You can also see this visually in Figure 21-3.

http://www.google.com/

487CHAPTER 21: Home Screen Widgets

Listing 21-9. Layout Definition for Configuration Activity

<?xml version="1.0" encoding="utf-8"?>
<!-- res/layout/edit_bday_widget.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/root_layout_id" android:orientation="vertical"
 android:layout_width="fill_parent" android:layout_height="fill_parent">
<TextView
 android:id="@+id/bdw_text1" android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="Name:" />
<EditText
 android:id="@+id/bdw_bday_name_id" android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="Anonymous" />
<TextView
 android:id="@+id/bdw_text2" android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="Birthday (9/1/2001):" />
<EditText
 android:id="@+id/bdw_bday_date_id" android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="ex: 10/1/2009" />
<Button
 android:id="@+id/bdw_button_update_bday_widget" android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:text="update"/>
</LinearLayout>

Going back to the configuration activity code in Listing 21-8, it accomplishes the following tasks:

Reading the widget instance ID from invoking intent	

Collecting the name and date of birth using form fields	

Obtaining 	 RemoteViews by loading widget layout file

Setting text values on the 	 RemoteViews

Registering a pending intent through 	 RemoteViews

Invoking the 	 AppWidgetManager to send the RemoteViews to the widget

Saving the name and date of birth in preferences against this widget 	
instance ID. This is done through the class BDayWidgetModel. We will talk
about this shortly.

Returning at the end with a result. 	

Note The static function udpateAppWidget can be called from anywhere as long as you know
the widget ID. This suggests that you can update a widget from anywhere on your device and from
any process, both visual and nonvisual.

Notice how we are passing the widget ID back to the invoker of this configuration activity.
This is how AppWidgetManager knows that the configuration activity is completed for that
widget instance.

http://schemas.android.com/apk/res/android

488 CHAPTER 21: Home Screen Widgets

Let’s talk about saving and retrieval of the widget instance state through BDayWidgetModel
object in Listing 21-8. The role of BDayWidgetModel object is to store and retrieve three
values: The widget instance ID (primary key), name, and date of birth. This class uses
the preferences API to persist and read back these values. Alternatively, you can use any
persistence mechanism for this need. We are not including the source code for this class
as it is quite a simple need to implement. In the downloadable project for this chapter
we have an implementation for this class that is a bit more extensive, where we coded a
reusable framework to store values for any java object in the preferences. We have amply
documented the source code so that you can use it as is for other needs or tweak it further
and use reflection to simplify further. In the end you will have a model framework that is quite
extensible. As this is not the primary goal of this chapter we have not gotten into those details
here. What matters for this chapter is that these three values, the instance ID, name, and dob
be saved and retrieved. You can follow the names on the BDayWidgetModel as a guide.

Implementing a Widget Provider
Let’s see now how we will respond to the life cycle events of widgets by examining the
widget provider class. Listing 21-10 implements the widget provider class.

Listing 21-10. Source code for Sample Widget Provider: BDayWidgetProvider

// file: BDayWidgetProvider.java(ProAndroid5_ch21_TestWidgets.zip)
public class BDayWidgetProvider extends AppWidgetProvider {
 private static final String tag = "BDayWidgetProvider";
 public void onUpdate(Context context, AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 final int N = appWidgetIds.length;
 for (int i=0; i<N; i++) {
 int appWidgetId = appWidgetIds[i];
 updateAppWidget(context, appWidgetManager, appWidgetId);
 }
 }
 public void onDeleted(Context context, int[] appWidgetIds) {
 final int N = appWidgetIds.length;
 for (int i=0; i<N; i++) {
 BDayWidgetModel bwm = BDayWidgetModel.retrieveModel(context,
appWidgetIds[i]);
 bwm.removePrefs(context);
 }
 }
 public void onEnabled(Context context) {
 BDayWidgetModel.clearAllPreferences(context);
 PackageManager pm = context.getPackageManager();
 pm.setComponentEnabledSetting(
 new ComponentName("com.androidbook.BDayWidget",
 ".BDayWidgetProvider"),
 PackageManager.COMPONENT_ENABLED_STATE_ENABLED,
 PackageManager.DONT_KILL_APP);
 }

489CHAPTER 21: Home Screen Widgets

 public void onDisabled(Context context) {
 BDayWidgetModel.clearAllPreferences(context);
 PackageManager pm = context.getPackageManager();
 pm.setComponentEnabledSetting(
 new ComponentName("com.androidbook.BDayWidget",
 ".BDayWidgetProvider"),
 PackageManager.COMPONENT_ENABLED_STATE_DISABLED,
 PackageManager.DONT_KILL_APP);
 }
 private void updateAppWidget(Context context, AppWidgetManager appWidgetManager,
 int appWidgetId) {
 BDayWidgetModel bwm = BDayWidgetModel.retrieveModel(context, appWidgetId);
 if (bwm == null) {return;}
 ConfigureBDayWidgetActivity.updateAppWidget(context, appWidgetManager, bwm);
 }
}

In the “Life Cycle of a Widget” section we discussed the responsibilities of these methods.
For the Birthday Widget, all these methods make use of the BDayWidgetModel to retrieve
the data associated with a widget instance for which the callbacks are called. Some
of these methods on the BDayWidgetModel are removePrefs(), retrievePrefs(), and
clearAllPreferences().

The update callback method is called for all the widget instances of this widget type. This
method must update all the widget instances. The widget instances are passed in as an
array of IDs. For each id, the onUpdate() method will locate the corresponding widget
instance model and call the same method that is used by the configuration activity (see
Listing 21-8) to display the retrieved widget model.

In the onDeleted() method, we have instantiated a BDayWidgetModel and then asked it to
remove itself from the preferences persistence store.

In the onEnabled() method, because it is called only once when the first instance comes
into play, we have cleared all persistence of the widget models so that we start with a clean
slate. We do the same in the onDisabled() method so that no memory of widget instances
exists.

In the onEnabled() method, we enable the widget provider component so that it can receive
broadcast messages. In the onDisabled() method, we disable the component so that it
won’t look for any broadcast messages.

Collection-Based Widgets
Starting with SDK 3.0, Android has expanded the widgets to include widgets based on
collections. We don’t have room in the print copy of this book. We will include the chapter
from the previous edition on collection widgets at our online site for download.

490 CHAPTER 21: Home Screen Widgets

Resources
Here are helpful references to the topics that are covered in this chapter:

	http://developer.android.com/guide/topics/appwidgets/index.html:
Official Android SDK documentation on app widgets.

	http://developer.android.com/reference/android/content/
SharedPreferences.html: SharedPreferences API for managing state.

	http://developer.android.com/reference/android/content/
SharedPreferences.Editor.html: The SharedPreferences.Editor API,
which is related to shared preferences.

	http://developer.android.com/guide/practices/ui_guidelines/
widget_design.html: Design pleasing widget layouts.

	http://developer.android.com/reference/android/widget/
RemoteViews.html: RemoteViews API, used to paint and manipulate
widget views.

	http://developer.android.com/reference/android/appwidget/
AppWidgetManager.html: Widgets themselves are managed by a widget
manager class.

	http://www.androidbook.com/item/3938: Research notes used while
writing this chapter, including a summary, research logs, code snippets,
and useful URLs.

	http://www.androidbook.com/free-android-chapters: You can use this
URL to download a detailed chapter on list widgets.

	http://www.androidbook.com/proandroid5/projects: Downloadable
test projects for this chapter. The name of the ZIP file for this chapter is
ProAndroid5_ch21_TestWidgets.zip.

Summary
Widgets are often used alongside your applications in Android. This chapter has covered the
essentials you need to create and configure widgets. A supplemental chapter on list widgets
is provided online.

http://developer.android.com/guide/topics/appwidgets/index.html
http://developer.android.com/reference/android/content/SharedPreferences.html
http://developer.android.com/reference/android/content/SharedPreferences.html
http://developer.android.com/reference/android/content/SharedPreferences.Editor.html
http://developer.android.com/reference/android/content/SharedPreferences.Editor.html
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
http://developer.android.com/reference/android/widget/RemoteViews.html
http://developer.android.com/reference/android/widget/RemoteViews.html
http://developer.android.com/reference/android/appwidget/AppWidgetManager.html
http://developer.android.com/reference/android/appwidget/AppWidgetManager.html
http://www.androidbook.com/item/3938
http://www.androidbook.com/free-android-chapters
http://www.androidbook.com/proandroid5/projects

491

Chapter 22
Touch Screens

Many Android devices incorporate touch screens. When a device does not have a physical
keyboard, much of the user input must come through the touch screen. Therefore your
applications will often need to be able to deal with touch input from the user. You’ve
most likely already seen the virtual keyboard that displays on the screen when text input
is required from the user. We used touch with mapping applications in Chapter 19. The
implementations of the touch screen interface have been hidden from you so far, but now
we’ll show you how to take advantage of the touch screen.

This chapter is made up of three major parts. The first section will deal with MotionEvent
objects, which is how Android tells an application that the user is touching a touch screen.
We’ll also cover the VelocityTracker. The second section will deal with multitouch, where
a user can have more than one finger at a time on the touch screen. Finally, we will include
a section on gestures, a specialized type of capability in which touch sequences can be
interpreted as commands.

Understanding MotionEvents
In this section, we’re going to cover how Android tells applications about touch events from
the user. For now, we will only be concerned with touching the screen one finger at a time
(we’ll cover multitouch in a later section).

At the hardware level, a touch screen is made up of special materials that can pick up
pressure and convert that to screen coordinates. The information about the touch is turned
into data, and that data is passed to the software to deal with it.

The MotionEvent Object
When a user touches the touch screen of an Android device, a MotionEvent object is
created. The MotionEvent contains information about where and when the touch took
place, as well as other details of the touch event. The MotionEvent object gets passed to
an appropriate method in your application. This could be the onTouchEvent() method of a

492 CHAPTER 22: Touch Screens

View object. Remember that the View class is the parent of quite a few classes in Android,
including Layouts, Buttons, Lists, Clocks, and more. This means we can interact with all of
these different types of View objects using touch events. When the method is called, it can
inspect the MotionEvent object to decide what to do. For example, a GoogleMap could use
touch events to move the map sideways to allow the user to pan the map to other points of
interest. A virtual keyboard object could receive touch events to activate the virtual keys to
provide text input to some other part of the user interface (UI).

Receiving MotionEvent Objects
A MotionEvent object is one of a sequence of events related to a touch by the user. The
sequence starts when the user first touches the touch screen, continues through any
movements of the finger across the surface of the touch screen, and ends when the finger
is lifted from the touch screen. The initial touch (an ACTION_DOWN action), the movements
sideways (ACTION_MOVE actions), and the up event (an ACTION_UP action) of the finger all
create MotionEvent objects. You could receive quite a few ACTION_MOVE events as the finger
moves across the surface before you receive the final ACTION_UP event. Each MotionEvent
object contains information about what action is being performed, where the touch is
taking place, how much pressure was applied, how big the touch was, when the action
occurred, and when the initial ACTION_DOWN occurred. There is a fourth possible action, which
is ACTION_CANCEL. This action is used to indicate that a touch sequence is ending without
actually doing anything. Finally, there is ACTION_OUTSIDE, which is set in a special case where
a touch occurs outside of our window but we still get to find out about it.

There is another way to receive touch events, and that is to register a callback handler for
touch events on a View object. The class to receive the events must implement the
View.OnTouchListener interface, and the View object’s setOnTouchListener() method must be
called to set up the handler for that View. The implementing class of the View.OnTouchListener
must implement the onTouch() method. Whereas the onTouchEvent() method takes just a
MotionEvent object as a parameter, onTouch() takes both a View and a MotionEvent object
as parameters. This is because the OnTouchListener could receive MotionEvent objects for
multiple views. This will become clearer with our next example application.

If a MotionEvent handler (either through the onTouchEvent() or onTouch() method)
consumes the event and no one else needs to know about it, the method should return
true. This tells Android that the event does not need to be passed to any other views.
If the View object is not interested in this event or any future events related to this touch
sequence, it returns false. The onTouchEvent() method of the base class View doesn’t do
anything and returns false. Subclasses of View may or may not do the same. For example,
a Button object will consume a touch event, because a touch is equivalent to a click, and
therefore returns true from the onTouchEvent() method. Upon receiving an ACTION_DOWN
event, the Button will change its color to indicate that it is in the process of being clicked.
The Button also wants to receive the ACTION_UP event to know when the user has let go,
so it can initiate the logic of clicking the button. If a Button object returned false from
onTouchEvent(), it would not receive any more MotionEvent objects to tell it when the user
lifted a finger from the touch screen.

493CHAPTER 22: Touch Screens

When we want touch events to do something new with a particular View object, we can
extend the class, override the onTouchEvent() method, and put our logic there. We can also
implement the View.OnTouchListener interface and set up a callback handler on the View
object. By setting up a callback handler with onTouch(), MotionEvents will be delivered there
first before they go to the View’s onTouchEvent() method. Only if the onTouch() method
returned false would our View’s onTouchEvent() method get called. Let’s get to our example
application where this should be easier to see.

Note We will give you a URL at the end of the chapter which you can use to download projects of
this chapter. This will allow you to import these projects into your IDE directly.

Setting Up an Example Application
Listing 22-1 shows the XML of a layout file. Create a new Android project starting with
this layout.

Listing 22-1. XML Layout File for TouchDemo1

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <RelativeLayout android:id="@+id/layout1"
 android:tag="trueLayoutTop" android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1" >

 <com.androidbook.touch.demo1.TrueButton android:text="Returns True"
 android:id="@+id/trueBtn1" android:tag="trueBtnTop"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 <com.androidbook.touch.demo1.FalseButton android:text="Returns False"
 android:id="@+id/falseBtn1" android:tag="falseBtnTop"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/trueBtn1" />

 </RelativeLayout>
 <RelativeLayout android:id="@+id/layout2"
 android:tag="falseLayoutBottom" android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1" android:background="#FF00FF" >

http://schemas.android.com/apk/res/android

494 CHAPTER 22: Touch Screens

 <com.androidbook.touch.demo1.TrueButton android:text="Returns True"
 android:id="@+id/trueBtn2" android:tag="trueBtnBottom"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 <com.androidbook.touch.demo1.FalseButton android:text="Returns False"
 android:id="@+id/falseBtn2" android:tag="falseBtnBottom"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/trueBtn2" />

 </RelativeLayout>
</LinearLayout>

There are a couple of things to point out about this layout. We’ve incorporated tags on our
UI objects, and we’ll be able to refer to these tags in our code as events occur on them.
We’ve used custom objects (TrueButton and FalseButton). You’ll see in the Java code that
these are classes extended from the Button class. Because these are Buttons, we can use
all of the same XML attributes we would use on other buttons. Figure 22-1 shows what this
layout looks like, and Listing 22-2 shows our button Java code.

Figure 22-1. The UI of our TouchDemo1 application

495CHAPTER 22: Touch Screens

Listing 22-2. Java Code for the Button Classes for TouchDemo1

// This file is BooleanButton.java
public abstract class BooleanButton extends Button {
 protected boolean myValue() {
 return false;
 }

 public BooleanButton(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 String myTag = this.getTag().toString();
 Log.v(myTag, "-----------------------------------");
 Log.v(myTag, MainActivity.describeEvent(this, event));
 Log.v(myTag, "super onTouchEvent() returns " +
 super.onTouchEvent(event));
 Log.v(myTag, "and I'm returning " + myValue());
 return(myValue());
 }
}

// This file is TrueButton.java
public class TrueButton extends BooleanButton {
 protected boolean myValue() {
 return true;
 }

 public TrueButton(Context context, AttributeSet attrs) {
 super(context, attrs);
 }
}

// This file is FalseButton.java
public class FalseButton extends BooleanButton {

 public FalseButton(Context context, AttributeSet attrs) {
 super(context, attrs);
 }
}

The BooleanButton class was built so we can reuse the onTouchEvent() method, which
we’ve customized by adding the logging. Then, we created TrueButton and FalseButton,
which will respond differently to the MotionEvents passed to them. This will be made clearer
when you look at the main activity code, which is shown in Listing 22-3.

496 CHAPTER 22: Touch Screens

Listing 22-3. Java Code for Our Main Activity

// This file is MainActivity.java
import android.view.MotionEvent;
import android.view.View.OnTouchListener;
public class MainActivity extends Activity implements OnTouchListener {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 RelativeLayout layout1 =
 (RelativeLayout) findViewById(R.id.layout1);
 layout1.setOnTouchListener(this);
 Button trueBtn1 = (Button)findViewById(R.id.trueBtn1);
 trueBtn1.setOnTouchListener(this);
 Button falseBtn1 = (Button)findViewById(R.id.falseBtn1);
 falseBtn1.setOnTouchListener(this);

 RelativeLayout layout2 =
 (RelativeLayout) findViewById(R.id.layout2);
 layout2.setOnTouchListener(this);
 Button trueBtn2 = (Button)findViewById(R.id.trueBtn2);
 trueBtn2.setOnTouchListener(this);
 Button falseBtn2 = (Button)findViewById(R.id.falseBtn2);
 falseBtn2.setOnTouchListener(this);
 }

 @Override
 public boolean onTouch(View v, MotionEvent event) {
 String myTag = v.getTag().toString();
 Log.v(myTag, "-----------------------------");
 Log.v(myTag, "Got view " + myTag + " in onTouch");
 Log.v(myTag, describeEvent(v, event));
 if("true".equals(myTag.substring(0, 4))) {
 /* Log.v(myTag, "*** calling my onTouchEvent() method ***");
 v.onTouchEvent(event);
 Log.v(myTag, "*** back from onTouchEvent() method ***"); */
 Log.v(myTag, "and I'm returning true");
 return true;
 }
 else {
 Log.v(myTag, "and I'm returning false");
 return false;
 }
 }

497CHAPTER 22: Touch Screens

 protected static String describeEvent(View view, MotionEvent event) {
 StringBuilder result = new StringBuilder(300);
 result.append("Action: ").append(event.getAction()).append("\n");
 result.append("Location: ").append(event.getX()).append(" x ")
 .append(event.getY()).append("\n");
 if(event.getX() < 0 || event.getX() > view.getWidth() ||
 event.getY() < 0 || event.getY() > view.getHeight()) {
 result.append(">>> Touch has left the view <<<\n");
 }
 result.append("Edge flags: ").append(event.getEdgeFlags());
 result.append("\n");
 result.append("Pressure: ").append(event.getPressure());
 result.append(" ").append("Size: ").append(event.getSize());
 result.append("\n").append("Down time: ");
 result.append(event.getDownTime()).append("ms\n");
 result.append("Event time: ").append(event.getEventTime());
 result.append("ms").append(" Elapsed: ");
 result.append(event.getEventTime()-event.getDownTime());
 result.append(" ms\n");
 return result.toString();
 }
}

Our main activity code sets up callbacks on our buttons and the layouts so we can
process the touch events (the MotionEvent objects) for everything in our UI. We’ve
added lots of logging, so you’ll be able to tell exactly what’s going on as touch events
occur. One other good idea is to add the following tag to your manifest file so Google Play
Store will know your application requires a touch screen to work: <uses-configuration
android:reqTouchScreen="finger" />. For example, Google TVs don’t have touch screens,
so it wouldn’t make sense to try to run this app there. When you compile and run this
application, you should see a screen that looks like Figure 22-1.

Running the Example Application
To get the most out of this application, you need to open LogCat in your IDE (Eclipse or
Android Studio) to watch the messages fly by as you touch the touch screen. This works
in the emulator as well as on a real device. We also advise you to maximize the LogCat
window, so you can more easily scroll up and down to see all of the generated events from
this application. To maximize the window, just double-click the LogCat tab. Now, go to the
application UI, and touch and release on the topmost button marked Returns True (if you’re
using the emulator, use your mouse to click and release the button). You should see at
least two events logged in LogCat. The messages are tagged as coming from trueBtnTop
and were logged from the onTouch() method in MainActivity. See MainActivity.java for
the onTouch() method’s code. As you view the LogCat output, see which method calls
are producing the values. For example, the value displayed after Action comes from the
getAction() method. Listing 22-4 shows a sample of what you might see in LogCat from the
sample application.

498 CHAPTER 22: Touch Screens

Listing 22-4. Sample LogCat Messages from TouchDemo1

trueBtnTop -----------------------------
trueBtnTop Got view trueBtnTop in onTouch
trueBtnTop Action: 0
trueBtnTop Location: 42.8374 x 25.293747
trueBtnTop Edge flags: 0
trueBtnTop Pressure: 0.05490196 Size: 0.2
trueBtnTop Down time: 24959412ms
trueBtnTop Event time: 24959412ms Elapsed: 0 ms
trueBtnTop and I'm returning true
trueBtnTop -----------------------------
trueBtnTop Got view trueBtnTop in onTouch
trueBtnTop Action: 2
trueBtnTop Location: 42.8374 x 25.293747
trueBtnTop Edge flags: 0
trueBtnTop Pressure: 0.05490196 Size: 0.2
trueBtnTop Down time: 24959412ms
trueBtnTop Event time: 24959530ms Elapsed: 118 ms
trueBtnTop and I'm returning true
trueBtnTop -----------------------------
trueBtnTop Got view trueBtnTop in onTouch
trueBtnTop Action: 1
trueBtnTop Location: 42.8374 x 25.293747
trueBtnTop Edge flags: 0
trueBtnTop Pressure: 0.05490196 Size: 0.2
trueBtnTop Down time: 24959412ms
trueBtnTop Event time: 24959567ms Elapsed: 155 ms
trueBtnTop and I'm returning true

Understanding MotionEvent Contents
The first event has an action of 0, which is ACTION_DOWN. The last event has an action of 1,
which is ACTION_UP. If you used a real device, you might see more than two events. Any
events in between ACTION_DOWN and ACTION_UP will most likely have an action of 2, which is
ACTION_MOVE. The other possibilities are an action of 3, which is ACTION_CANCEL, or 4, which is
ACTION_OUTSIDE. When using real fingers on a real touch screen, you can’t always touch and
release without a slight movement on the surface, so expect some ACTION_MOVE events.

Notice the Location values. The location for a MotionEvent has an x and y component, where
x represents the distance from the left-hand side of the View object to the point touched and
y represents the distance from the top of the View object to the point touched.

In the emulator, pressure is likely 1.0 and size is likely 0.0. For a real device, the pressure
represents how hard the finger pressed down, and size represents how large the touch is.
If you touch lightly with the tip of your pinky finger, the values for pressure and size will be
small. If you press hard with your thumb, both pressure and size will be larger. Pressing
lightly with your thumb should result in a small value for pressure but a large value for
size. The documentation says that the values of pressure and size will be between 0 and
1. However, due to differences in hardware, it may be very difficult to use any absolute
numbers in your application for making decisions about pressure and size. It would be fine

499CHAPTER 22: Touch Screens

to compare pressure and size between MotionEvents as they occur in your application, but
you may run into trouble if you decide that pressure must exceed a value such as 0.8 to be
considered a hard press. On that particular device, you might never get a value above 0.8.
You might not even get a value above 0.2.

The down time and event time values operate in the same way between the emulator and
a real device, the only difference being that the real device has much larger values. The
elapsed times work the same.

The edge flags are for detecting when a touch has reached the edge of the physical
screen. The Android SDK documentation says that the flags are set to indicate that a
touch has intersected with an edge of the display (top, bottom, left, or right). However, the
getEdgeFlags() method may always return zero, depending on what device or emulator it is
used on. With some hardware, it is too difficult to actually detect a touch at the edge of the
display, so Android is supposed to pin the location to the edge and set the appropriate edge
flag for you. This doesn’t always happen, so you should not rely on the edge flags being set
properly. The MotionEvent class provides a setEdgeFlags() method so you can set the flags
yourself if you want to.

The last thing to notice is that our onTouch() method returns true, because our TrueButton
is coded to return true. Returning true tells Android that the MotionEvent object has been
consumed and there is no reason to give it to someone else. It also tells Android to keep
sending touch events from this touch sequence to this method. That’s why we got the
ACTION_UP event, as well as the ACTION_MOVE event in the case of the real device.

Now touch the Returns False button near the top of the screen. Listing 22-5 shows a sample
LogCat output for your Returns False touch.

Listing 22-5. Sample LogCat from Touching the Top Returns False Button

falseBtnTop -----------------------------
falseBtnTop Got view falseBtnTop in onTouch
falseBtnTop Action: 0
falseBtnTop Location: 61.309372 x 44.281494
falseBtnTop Edge flags: 0
falseBtnTop Pressure: 0.0627451 Size: 0.26666668
falseBtnTop Down time: 28612178ms
falseBtnTop Event time: 28612178ms Elapsed: 0 ms
falseBtnTop and I'm returning false
falseBtnTop -----------------------------------
falseBtnTop Action: 0
falseBtnTop Location: 61.309372 x 44.281494
falseBtnTop Edge flags: 0
falseBtnTop Pressure: 0.0627451 Size: 0.26666668
falseBtnTop Down time: 28612178ms
falseBtnTop Event time: 28612178ms Elapsed: 0 ms
falseBtnTop super onTouchEvent() returns true
falseBtnTop and I'm returning false
trueLayoutTop -----------------------------
trueLayoutTop Got view trueLayoutTop in onTouch
trueLayoutTop Action: 0
trueLayoutTop Location: 61.309372 x 116.281494

500 CHAPTER 22: Touch Screens

trueLayoutTop Edge flags: 0
trueLayoutTop Pressure: 0.0627451 Size: 0.26666668
trueLayoutTop Down time: 28612178ms
trueLayoutTop Event time: 28612178ms Elapsed: 0 ms
trueLayoutTop and I'm returning true
trueLayoutTop -----------------------------
trueLayoutTop Got view trueLayoutTop in onTouch
trueLayoutTop Action: 2
trueLayoutTop Location: 61.309372 x 111.90039
trueLayoutTop Edge flags: 0
trueLayoutTop Pressure: 0.0627451 Size: 0.26666668
trueLayoutTop Down time: 28612178ms
trueLayoutTop Event time: 28612217ms Elapsed: 39 ms
trueLayoutTop and I'm returning true
trueLayoutTop -----------------------------
trueLayoutTop Got view trueLayoutTop in onTouch
trueLayoutTop Action: 1
trueLayoutTop Location: 55.08958 x 115.30792
trueLayoutTop Edge flags: 0
trueLayoutTop Pressure: 0.0627451 Size: 0.26666668
trueLayoutTop Down time: 28612178ms
trueLayoutTop Event time: 28612361ms Elapsed: 183 ms
trueLayoutTop and I'm returning true

Now you’re seeing very different behavior, so we’ll explain what happened. Android receives
the ACTION_DOWN event in a MotionEvent object and passes it to our onTouch() method in the
MainActivity class. Our onTouch() method records the information in LogCat and returns
false. This tells Android that our onTouch() method did not consume the event, so Android
looks to the next method to call, which in our case is the overridden onTouchEvent() method
of our FalseButton class. Because FalseButton is an extension of the BooleanButton
class, refer to the onTouchEvent() method in BooleanButton.java to see the code. In the
onTouchEvent() method, we again write information to LogCat, we call the parent class’s
onTouchEvent() method, and then we also return false. Notice that the location information
in LogCat is exactly the same as before. This should be expected because we’re still in
the same View object, the FalseButton. We see that our parent class wants to return true
from onTouchEvent(), and we can see why. If you look at the button in the UI, it should be
a different color from the Returns True button. Our Returns False button now looks like it’s
partway through being pressed. That is, it looks like a button looks when it has been pressed
but has not been released. Our custom method returned false instead of true. Because we
again told Android that we did not consume this event, by returning false, Android never
sends the ACTION_UP event to our button, so our button doesn’t know that the finger ever
lifted from the touch screen. Therefore, our button is still in the pressed state. If we had
returned true like our parent wanted to, we would eventually have received the ACTION_UP
event, so we could change the color back to the normal button color. To recap, every time
we return false from a UI object for a received MotionEvent object, Android stops sending
MotionEvent objects to that UI object, and Android keeps looking for another UI object to
consume our MotionEvent object.

501CHAPTER 22: Touch Screens

You might have realized that when we touched our Returns True button, we didn’t get a color
change in the button. Why is that? Well, our onTouch() method was called before any actual
button methods got called, and onTouch() returned true, so Android never bothered to call
the Returns True button’s onTouchEvent() method. If you add a v.onTouchEvent(event); line
to the onTouch() method just before returning true, you will see the button change color.
You will also see more log lines in LogCat, because our onTouchEvent() method is also
writing information to LogCat.

Let’s keep going through the LogCat output. Now that Android has tried twice to find a
consumer for the ACTION_DOWN event and failed, it goes to the next View in the application that
could possibly receive the event, which in our case is the layout underneath the button. We
called our top layout trueLayoutTop, and we can see that it received the ACTION_DOWN event.

Notice that our onTouch() method got called again, although now with the layout view
and not the button view. Everything about the MotionEvent object passed to onTouch() for
trueLayoutTop is the same as before, including the times, except for the y coordinate of the
location. The y coordinate changed from 44.281494 for the button to 116.281494 for the
layout. This makes sense because the Returns False button is not in the upper-left corner of
the layout, it’s below the Returns True button. Therefore the y coordinate of the touch relative
to the layout is larger than the y coordinate of the same touch relative to the button; the touch
is further away from the top edge of the layout than it is from the top edge of the button.
Because onTouch() for the trueLayoutTop returns true, Android sends the rest of the touch
events to the layout, and we see the log records corresponding to the ACTION_MOVE and the
ACTION_UP events. Go ahead and touch the top Returns False button again, and notice that the
same set of log records occurs. That is, onTouch() is called for falseBtnTop, onTouchEvent()
is called for falseBtnTop, and then onTouch() is called for trueLayoutTop for the rest of the
events. Android only stops sending the events to the button for one touch sequence at a time.
For a new sequence of touch events, Android will send to the button unless it gets another
return of false from the called method, which it still does in our sample application.

Now touch your finger on the top layout but not on either button, and then drag your
finger around a bit and lift it off the touch screen (if you’re using the emulator, just use your
mouse to make a similar motion). Notice a stream of log messages in LogCat, where the
first record has an action of ACTION_DOWN, and then many ACTION_MOVE events are followed
by an ACTION_UP event.

Now, touch the top Returns True button, and before lifting your finger from the button, drag your
finger around the screen and then lift it off. Listing 22-6 shows some new information in LogCat.

Listing 22-6. LogCat Records Showing a Touch Outside of Our View

[... log messages of an ACTION_DOWN event followed by some ACTION_MOVE events ...]

trueBtnTop Got view trueBtnTop in onTouch
trueBtnTop Action: 2
trueBtnTop Location: 150.41768 x 22.628128
trueBtnTop >>> Touch has left the view <<<
trueBtnTop Edge flags: 0
trueBtnTop Pressure: 0.047058824 Size: 0.13333334
trueBtnTop Down time: 31690859ms
trueBtnTop Event time: 31691344ms Elapsed: 485 ms
trueBtnTop and I'm returning true

502 CHAPTER 22: Touch Screens

[... more ACTION_MOVE events logged ...]

trueBtnTop Got view trueBtnTop in onTouch
trueBtnTop Action: 1
trueBtnTop Location: 291.5864 x 223.43854
trueBtnTop >>> Touch has left the view <<<
trueBtnTop Edge flags: 0
trueBtnTop Pressure: 0.047058824 Size: 0.13333334
trueBtnTop Down time: 31690859ms
trueBtnTop Event time: 31692493ms Elapsed: 1634 ms
trueBtnTop and I'm returning true

Even after your finger drags itself off of the button, we continue to get notified of touch
events related to the button. The first record in Listing 22-6 shows an event record where
we’re no longer on the button. In this case, the x coordinate of the touch event is to the
right of the edge of our button object. However, we keep getting called with MotionEvent
objects until we get an ACTION_UP event, because we continue to return true from the
onTouch() method. Even when you finally lift your finger off of the touch screen, and even
if your finger isn’t on the button, our onTouch() method still gets called to give us the
ACTION_UP event because we keep returning true. This is something to keep in mind when
dealing with MotionEvents. When the finger has moved off of the view, we could decide to
cancel whatever operation might have been performed and return false from the onTouch()
method, so we don’t get notified of further events. Or we could choose to continue to
receive events (by returning true from the onTouch() method) and only perform the logic if
the finger returns to our view before lifting off.

The touch sequence of events got associated to our top Returns True button when we
returned true from onTouch(). This told Android that it could stop looking for an object to
receive the MotionEvent objects and just send all future MotionEvent objects for this touch
sequence to us. Even if we encounter another view when dragging our finger, we’re still tied
to the original view for this sequence.

Exercising the Bottom Half of the Example Application
Let’s see what happens with the lower half of our application. Go ahead and touch the
Returns True button in the bottom half. We see the same thing as happened with the top
Returns True button. Because onTouch() returns true, Android sends us the rest of the
events in the touch sequence until the finger is lifted from the touch screen. Now, touch
the bottom Returns False button. Once again, the onTouch() method and onTouchEvent()
methods return false (both associated with the falseBtnBottom view object). But this time,
the next view to receive the MotionEvent object is the falseLayoutBottom object, and it also
returns false. Now, we’re finished.

Because the onTouchEvent() method called the super’s onTouchEvent() method, the button
has changed color to indicate it’s halfway through being pressed. Again, the button will stay
this way, because we never get the ACTION_UP event in this touch sequence, because our
methods return false all the time. Unlike before, even the layout is not interested in this
event. If you were to touch the bottom Returns False button and hold it down and then drag
your finger around the display, you would not see any extra records in LogCat, because

503CHAPTER 22: Touch Screens

no more MotionEvent objects are sent to us. We returned false, so Android won’t bother
us with any more events for this touch sequence. Again, if we start a new touch sequence,
we can see new LogCat records showing up. If you initiate a touch sequence in the bottom
layout and not on a button, you will see a single event in LogCat for falseLayoutBottom that
returns false and then nothing after that (until you start a new touch sequence).

So far, we’ve used buttons to show you the effects of MotionEvent events from touch
screens. It’s worth pointing out that, normally, you would implement logic on buttons using
the onClick() method. We used buttons for this sample application, because they’re easy to
create and they are subclasses of View that can therefore receive touch events just like any
other view. Remember that these techniques apply to any View object in your application, be
it a standard or customized view class.

Recycling MotionEvents
You may have noticed the recycle() method of the MotionEvent class in the Android
reference documentation. It is tempting to want to recycle the MotionEvents that you receive
in onTouch() or onTouchEvent(), but don’t do it. If your callback method is not consuming
the MotionEvent object and you’re returning false, the MotionEvent object is likely to be
handed to some other method or view or our activity, so you don’t want Android recycling it
yet. Even if you consumed the event and returned true, the event object doesn’t belong to
you, so you should not recycle it.

If you look at MotionEvent documentation, you will see a few variations of a method called
obtain(). This is either creating a copy of a MotionEvent or a brand new MotionEvent. Your
copy, or your brand-new event object, is the event object that you should recycle when you
are done with it. For example, if you want to hang onto an event object that is passed to you
via a callback, you should use obtain() to make a copy, because once you return from the
callback, that event object will be recycled by Android, and you may get strange results if
you continue to use it. When you are finished using your copy, you invoke recycle() on it.

Using VelocityTracker
Android provides a class to help handle touch screen sequences, and that class is
VelocityTracker. When a finger is in motion on a touch screen, it might be nice to know how
fast it is moving across the surface. For example, if the user is dragging an object across the
screen and lets go, your application probably wants to show that object flying across the
screen accordingly. Android provides VelocityTracker to help with the math involved.

To use VelocityTracker, you first get an instance of a VelocityTracker by calling the
static method VelocityTracker.obtain(). You can then add MotionEvent objects to it with
the addMovement(MotionEvent ev) method. You would call this method in your handler
that receives MotionEvent objects, from a handler method such as onTouch(), or from a
view’s onTouchEvent(). The VelocityTracker uses the MotionEvent objects to figure out
what is going on with the user’s touch sequence. Once VelocityTracker has at least two
MotionEvent objects in it, we can use the other methods to find out what’s happening.

504 CHAPTER 22: Touch Screens

The two VelocityTracker methods—getXVelocity() and getYVelocity()—return the
corresponding velocity of the finger in the x and y directions, respectively. The value
returned from these two methods will represent pixels per time period. This could be pixels
per millisecond or per second or really anything you want. To tell the VelocityTracker
what time period to use, and before you can call these two getter methods, you need to
invoke the VelocityTracker’s computeCurrentVelocity(int units) method. The value of
units represents how many milliseconds are in the time period for measuring the velocity.
If you want pixels per millisecond, use a units value of 1; if you want pixels per second,
use a units value of 1000. The value returned by the getXVelocity() and getYVelocity()
methods will be positive if the velocity is toward the right (for x) or down (for y). The value
returned will be negative if the velocity is toward the left (for x) or up (for y).

When you are finished with the VelocityTracker object you got with the obtain() method,
call the VelocityTracker object’s recycle() method. Listing 22-7 shows a sample
onTouchEvent() handler for an activity. It turns out that an activity has an onTouchEvent()
callback, which is called whenever no views have handled the touch event. Because we’re
using a stock, empty layout, we have no views consuming our touch events.

Listing 22-7. Sample Activity That Uses VelocityTracker

import android.view.MotionEvent;
import android.view.VelocityTracker;

public class MainActivity extends Activity {
 private static final String TAG = "VelocityTracker";

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 private VelocityTracker vTracker = null;

 public boolean onTouchEvent(MotionEvent event) {
 int action = event.getAction();
 switch(action) {
 case MotionEvent.ACTION_DOWN:
 if(vTracker == null) {
 vTracker = VelocityTracker.obtain();
 }
 else {
 vTracker.clear();
 }
 vTracker.addMovement(event);
 break;
 case MotionEvent.ACTION_MOVE:
 vTracker.addMovement(event);
 vTracker.computeCurrentVelocity(1000);

505CHAPTER 22: Touch Screens

 Log.v(TAG, "X velocity is " + vTracker.getXVelocity() +
 " pixels per second");
 Log.v(TAG, "Y velocity is " + vTracker.getYVelocity() +
 " pixels per second");
 break;
 case MotionEvent.ACTION_UP:
 case MotionEvent.ACTION_CANCEL:
 Log.v(TAG, "Final X velocity is " + vTracker.getXVelocity() +
 " pixels per second");
 Log.v(TAG, "Final Y velocity is " + vTracker.getYVelocity() +
 " pixels per second");
 vTracker.recycle();
 vTracker = null;
 break;
 }
 return true;
 }
}

Obviously, when you’ve only added one MotionEvent to a VelocityTracker (the ACTION_DOWN
event), the velocities cannot be computed as anything other than zero. But we need to add
the starting point so that the subsequent ACTION_MOVE events can calculate velocities then.

VelocityTracker is somewhat costly in terms of performance, so use it sparingly. Also,
make sure that you recycle it as soon as you are done with it. There can be more than one
VelocityTracker in use in Android, but they can take up a lot of memory, so give yours back
if you’re not going to continue to use it. In Listing 22-7, we also use the clear() method
if we’re starting a new touch sequence (that is, if we get an ACTION_DOWN event and our
VelocityTracker object already exists) instead of recycling this one and obtaining a new one.

Multitouch
Now that you’ve seen single touches in action, let’s move on to multitouch. Multitouch
has gained a lot of interest ever since the TED conference in 2006 at which Jeff Han
demonstrated a multitouch surface for a computer user interface. Using multiple fingers on
a screen opens up a lot of possibilities for manipulating what’s on the screen. For example,
putting two fingers on an image and moving them apart could zoom in on the image. By
placing multiple fingers on an image and turning clockwise, you could rotate the image on
the screen. These are standard touch operations in Google Maps, for instance.

If you think about it, though, there is no magic to this. If the screen hardware can detect
multiple touches as they initiate on the screen, notify your application as those touches
move in time across the surface of the screen, and notify you when those touches lift off of
the screen, your application can figure out what the user is trying to do with those touches.
Although it’s not magic, it isn’t easy either. We’re going to help you understand multitouch
in this section.

506 CHAPTER 22: Touch Screens

The Basics of Multitouch
The basics of multitouch are exactly the same as for single touches. MotionEvent objects
get created for touches, and these MotionEvent objects are passed to your methods just like
before. Your code can read the data about the touches and decide what to do. At a basic
level, the methods of MotionEvent are the same; that is, we call getAction(), getDownTime(),
getX(), and so on. However, when more than one finger is touching the screen, the
MotionEvent object must include information from all fingers, with some caveats. The action
value from getAction() is for one finger, not all. The down time value is for the very first
finger down and measures the time as long as at least one finger is down. The location
values getX() and getY(), as well as getPressure() and getSize(), can take an argument
for the finger; therefore, you need to use a pointer index value to request the information for
the finger you’re interested in. There are method calls that we used previously that did not
take any argument to specify a finger (for example, getX(), getY()), so which finger would
the values be for if we used those methods? You can figure it out, but it takes some work.
Therefore, if you don’t take into account multiple fingers all of the time, you might end up
with some strange results. Let’s dig into this to figure out what to do.

The first method of MotionEvent you need to know about for multitouch is
getPointerCount(). This tells you how many fingers are represented in the MotionEvent
object but doesn’t necessarily tell you how many fingers are actually touching the screen;
that depends on the hardware and on the implementation of Android on that hardware. You
may find that, on certain devices, getPointerCount() does not report all fingers that are
touching, just some. But let’s press on. As soon as you’ve got more than one finger being
reported in MotionEvent objects, you need to start dealing with the pointer indexes and the
pointer IDs.

The MotionEvent object contains information for pointers starting at index 0 and going up to
the number of fingers being reported in that object. The pointer index always starts at 0; if
three fingers are being reported, pointer indexes will be 0, 1, and 2. Calls to methods such
as getX() must include the pointer index for the finger you want information about. Pointer
IDs are integer values representing which finger is being tracked. Pointer IDs start at 0 for
the first finger down but don’t always start at 0 once fingers are coming and going on the
screen. Think of a pointer ID as the name of that finger while it is being tracked by Android.
For example, imagine a pair of touch sequences for two fingers, starting with finger 1 down,
and followed by finger 2 down, finger 1 up, and finger 2 up. The first finger down will get
pointer ID 0. The second finger down will get pointer ID 1. Once the first finger goes up, the
second finger will still be pointer ID 1. At that point, the pointer index for the second finger
becomes 0, because the pointer index always starts at 0. In this example, the second finger
(pointer ID 1) starts as pointer index 1 when it first touches down and then shifts to pointer
index 0 once the first finger leaves the screen. Even when the second finger is the only
finger on the screen, it remains as pointer ID 1. Your applications will use pointer IDs to link
together the events associated to a particular finger even as other fingers are involved. Let’s
look at an example.

507CHAPTER 22: Touch Screens

Listing 22-8 shows our new XML layout plus our Java code for a multitouch application. This
is the application called MultiTouchDemo1. Figure 22-2 shows what it should look like.

Listing 22-8. XML Layout and Java for a Multitouch Demonstration

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/layout/main.xml -->
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/layout1"
 android:tag="trueLayout" android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 >

 <TextView android:text="Touch fingers on the screen and look at LogCat"
 android:id="@+id/message"
 android:tag="trueText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true" />

</RelativeLayout>

// This file is MainActivity.java
import android.view.MotionEvent;
import android.view.View.OnTouchListener;

public class MainActivity extends Activity implements OnTouchListener {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 RelativeLayout layout1 =
 (RelativeLayout) findViewById(R.id.layout1);
 layout1.setOnTouchListener(this);
 }

 public boolean onTouch(View v, MotionEvent event) {
 String myTag = v.getTag().toString();
 Log.v(myTag, "-----------------------------");
 Log.v(myTag, "Got view " + myTag + " in onTouch");
 Log.v(myTag, describeEvent(event));
 logAction(event);
 if("true".equals(myTag.substring(0, 4))) {
 return true;
 }
 else {
 return false;
 }
 }

http://schemas.android.com/apk/res/android

508 CHAPTER 22: Touch Screens

 protected static String describeEvent(MotionEvent event) {
 StringBuilder result = new StringBuilder(500);
 result.append("Action: ").append(event.getAction()).append("\n");
 int numPointers = event.getPointerCount();
 result.append("Number of pointers: ");
 result.append(numPointers).append("\n");
 int ptrIdx = 0;
 while (ptrIdx < numPointers) {
 int ptrId = event.getPointerId(ptrIdx);
 result.append("Pointer Index: ").append(ptrIdx);
 result.append(", Pointer Id: ").append(ptrId).append("\n");
 result.append(" Location: ").append(event.getX(ptrIdx));
 result.append(" x ").append(event.getY(ptrIdx)).append("\n");
 result.append(" Pressure: ");
 result.append(event.getPressure(ptrIdx));
 result.append(" Size: ").append(event.getSize(ptrIdx));
 result.append("\n");

 ptrIdx++;
 }
 result.append("Down time: ").append(event.getDownTime());
 result.append("ms\n").append("Event time: ");
 result.append(event.getEventTime()).append("ms");
 result.append(" Elapsed: ");
 result.append(event.getEventTime()-event.getDownTime());
 result.append(" ms\n");
 return result.toString();
 }

 private void logAction(MotionEvent event) {
 int action = event.getActionMasked();
 int ptrIndex = event.getActionIndex();
 int ptrId = event.getPointerId(ptrIndex);

 if(action == 5 || action == 6)
 action = action - 5;

 Log.v("Action", "Pointer index: " + ptrIndex);
 Log.v("Action", "Pointer Id: " + ptrId);
 Log.v("Action", "True action value: " + action);
 }
}

509CHAPTER 22: Touch Screens

If you only have the emulator, this application will still work, but you won’t be able to get
multiple fingers simultaneously on the screen. You’ll see output similar to what we saw in the
previous application. Listing 22-9 shows sample LogCat messages for a touch sequence
like we described earlier. That is, the first finger presses on the screen, and then the second
finger presses, the first finger leaves the screen, and the second finger leaves the screen.

Listing 22-9. Sample LogCat Output for a Multitouch Application

trueLayout -----------------------------
trueLayout Got view trueLayout in onTouch
trueLayout Action: 0
trueLayout Number of pointers: 1
trueLayout Pointer Index: 0, Pointer Id: 0
trueLayout Location: 114.88211 x 499.77502
trueLayout Pressure: 0.047058824 Size: 0.13333334
trueLayout Down time: 33733650ms
trueLayout Event time: 33733650ms Elapsed: 0 ms
Action Pointer index: 0
Action Pointer Id: 0
Action True Action value: 0

Figure 22-2. Our multitouch demonstration application

510 CHAPTER 22: Touch Screens

trueLayout -----------------------------
trueLayout Got view trueLayout in onTouch
trueLayout Action: 2
trueLayout Number of pointers: 1
trueLayout Pointer Index: 0, Pointer Id: 0
trueLayout Location: 114.88211 x 499.77502
trueLayout Pressure: 0.05882353 Size: 0.13333334
trueLayout Down time: 33733650ms
trueLayout Event time: 33733740ms Elapsed: 90 ms
Action Pointer index: 0
Action Pointer Id: 0
Action True Action value: 2
trueLayout -----------------------------
trueLayout Got view trueLayout in onTouch
trueLayout Action: 261
trueLayout Number of pointers: 2
trueLayout Pointer Index: 0, Pointer Id: 0
trueLayout Location: 114.88211 x 499.77502
trueLayout Pressure: 0.05882353 Size: 0.13333334
trueLayout Pointer Index: 1, Pointer Id: 1
trueLayout Location: 320.30692 x 189.67395
trueLayout Pressure: 0.050980393 Size: 0.13333334
trueLayout Down time: 33733650ms
trueLayout Event time: 33733962ms Elapsed: 312 ms
Action Pointer index: 1
Action Pointer Id: 1
Action True Action value: 0
trueLayout -----------------------------
trueLayout Got view trueLayout in onTouch
trueLayout Action: 2
trueLayout Number of pointers: 2
trueLayout Pointer Index: 0, Pointer Id: 0
trueLayout Location: 111.474594 x 499.77502
trueLayout Pressure: 0.05882353 Size: 0.13333334
trueLayout Pointer Index: 1, Pointer Id: 1
trueLayout Location: 320.30692 x 189.67395
trueLayout Pressure: 0.050980393 Size: 0.13333334
trueLayout Down time: 33733650ms
trueLayout Event time: 33734189ms Elapsed: 539 ms
Action Pointer index: 0
Action Pointer Id: 0
Action True Action value: 2
trueLayout -----------------------------
trueLayout Got view trueLayout in onTouch
trueLayout Action: 6
trueLayout Number of pointers: 2
trueLayout Pointer Index: 0, Pointer Id: 0
trueLayout Location: 111.474594 x 499.77502
trueLayout Pressure: 0.05882353 Size: 0.13333334
trueLayout Pointer Index: 1, Pointer Id: 1
trueLayout Location: 320.30692 x 189.67395
trueLayout Pressure: 0.050980393 Size: 0.13333334

511CHAPTER 22: Touch Screens

trueLayout Down time: 33733650ms
trueLayout Event time: 33734228ms Elapsed: 578 ms
Action Pointer index: 0
Action Pointer Id: 0
Action True Action value: 1
trueLayout -----------------------------
trueLayout Got view trueLayout in onTouch
trueLayout Action: 2
trueLayout Number of pointers: 1
trueLayout Pointer Index: 0, Pointer Id: 1
trueLayout Location: 318.84656 x 191.45105
trueLayout Pressure: 0.050980393 Size: 0.13333334
trueLayout Down time: 33733650ms
trueLayout Event time: 33734240ms Elapsed: 590 ms
Action Pointer index: 0
Action Pointer Id: 1
Action True Action value: 2
trueLayout -----------------------------
trueLayout Got view trueLayout in onTouch
trueLayout Action: 1
trueLayout Number of pointers: 1
trueLayout Pointer Index: 0, Pointer Id: 1
trueLayout Location: 314.95224 x 190.5625
trueLayout Pressure: 0.050980393 Size: 0.13333334
trueLayout Down time: 33733650ms
trueLayout Event time: 33734549ms Elapsed: 899 ms
Action Pointer index: 0
Action Pointer Id: 1
Action True Action value: 1

Understanding Multitouch Contents
We’ll now discuss what is going on with this application. The first event we see is the
ACTION_DOWN (action value of 0) of the first finger. We learn about this using the getAction()
method. Please refer to the describeEvent() method in MainActivity.java to follow along
with which methods produce which output. We get one pointer with index 0 and pointer ID 0.
After that, you’ll probably see several ACTION_MOVE events (action value of 2) for this first
finger, even though we’re only showing one of these in Listing 22-9. We still only have one
pointer and the index and ID are still both 0.

A little later we get the second finger touching the screen. The action is now a decimal value
of 261. What does this mean? The action value is actually made up of two parts: an indicator
of which pointer the action is for and what action that pointer is doing. Converting decimal
261 to hexadecimal, we get 0x00000105. The action is the smallest byte (5 in this case),
and the pointer index is the next byte over (1 in this case). Note that this tells us the pointer
index but not the pointer ID. If you pressed a third finger onto the screen, the action would
be 0x00000205 (or decimal 517). A fourth finger would be 0x00000305 (or decimal 773) and
so on. You haven’t seen an action value of 5 yet, but it’s known as ACTION_POINTER_DOWN. It’s
just like ACTION_DOWN except that it’s used in multitouch situations.

512 CHAPTER 22: Touch Screens

Now, look at the next pair of records from LogCat in Listing 22-9. The first record is for
an ACTION_MOVE event (action value of 2). Remember that it is difficult to keep fingers from
moving on a real screen. We’re only showing one ACTION_MOVE event, but you might see
several when you try this for yourself. When the first finger is lifted off of the screen, we get
an action value of 0x00000006 (or decimal 6). Like before, we have pointer index 0 and an
action value that is ACTION_POINTER_UP (similar to ACTION_UP but for multitouch situations).
If the second finger was lifted in a multitouch situation, we would get an action value of
0x00000106 (or decimal 262). Notice how we still have information for two fingers when we
get the ACTION_UP for one of them.

The last pair of records in Listing 22-9 shows one more ACTION_MOVE event for the second
finger, followed by an ACTION_UP for the second finger. This time, we see an action value of 1
(ACTION_UP). We didn’t get an action value of 262, but we’ll explain that next. Also, notice that
once the first finger left the screen, the pointer index for the second finger has changed from
1 to 0, but the pointer ID has remained as 1.

ACTION_MOVE events do not tell you which finger moved. You will always get an action value
of 2 for a move regardless of how many fingers are down or which finger is doing the
moving. All down finger positions are available within the MotionEvent object, so you need
to read the positions and then figure things out. If there’s only one finger left on the screen,
the pointer ID will tell you which finger it is that’s still moving because it’s the only finger left.
In Listing 22-9, when the second finger was the only one left on the screen, the ACTION_MOVE
event had a pointer index of 0 and a pointer ID of 1, so we knew it was the second finger
that was moving.

Not only can a MotionEvent object contain move events for more than one finger, but it can
also contain multiple move events per finger. It does this using historical values contained
within the object. Android should report all history since the last MotionEvent object. See
getHistoricalSize() and the other getHistorical...() methods.

Going back to the beginning of Listing 22-9, the first finger down is pointer index 0 and
pointer ID 0, so why don’t we get 0x00000005 (or decimal 5) for the action value when the
first finger is pressed to the screen before any other fingers? Unfortunately, this question
doesn’t have a happy answer. We can get an action value of 5 in the following scenario:
press the first finger to the screen and then the second finger, resulting in action values of
0 and 261 (ignoring the ACTION_MOVE events for the moment). Now, lift the first finger (action
value of 6), and press it back down on the screen. The pointer ID of the second finger
remained as 1. For the moment when the first finger was in the air, our application knew
about pointer ID 1 only. Once the first finger touched the screen again, Android reassigned
pointer ID 0 to the first finger and gave it pointer index 0 as well. Because now we know
there are multiple fingers involved, we get an action value of 5 (pointer index of 0 and the
action value of 5). The answer to the question, therefore, is backward compatibility, but it is
not a happy answer. The action values of 0 and 1 are pre-multitouch.

When only one finger remains on the screen, Android treats it like a single-touch case. So we
get the old ACTION_UP value of 1 instead of a multitouch ACTION_UP value of 6. Our code will
need to consider these cases carefully. A pointer index of 0 could result in an ACTION_DOWN
value of 0 or 5, depending on which pointers are in play. The last finger up will get an
ACTION_UP value of 1 no matter which pointer ID it has.

513CHAPTER 22: Touch Screens

There is another action we haven’t mentioned so far: ACTION_SCROLL (value of 8), introduced
in Android 3.1. This comes from an input device like a mouse, not a touch screen. In fact,
as you can see from the methods in MotionEvent, these objects can be used for lots of
things other than touch screen touches. We won’t be covering these other input devices in
this book.

Gestures
Gestures are a special type of a touch screen event. The term gesture is used for a variety of
things in Android, from a simple touch sequence like a fling or a pinch to the formal Gesture
class. Flings, pinches, long presses, and scrolls have expected behaviors with expected
triggers. That is, it is pretty clear to most people that a fling is a gesture where a finger
touches the screen, drags somewhat quickly off in a single direction, and then lifts up. For
example, when someone uses a fling in the Gallery application (the one that shows images
in a left-to-right chain), the images will move sideways to show new images to the user.

In the following sections, you will learn how to implement a pinch gesture, from which
you can easily implement the other common gestures. The formal Gesture class refers
to gestures drawn by a user on a touch screen, so that an application can react to those
gestures. The typical example includes drawing letters of the alphabet which the application
can understand as letters. The formal Gesture class is not covered in this book. Let's learn
to pinch!

The Pinch Gesture
One of the cool applications of multitouch is the pinch gesture, which is used for zooming.
The idea is that if you place two fingers on the screen and spread them apart, the application
should respond by zooming in. If your fingers come together, the application should zoom
out. The application is usually showing images, which could be maps.

Before we get to the pinch gesture’s native support, we first need to cover a class that’s
been around from the beginning—GestureDetector.

GestureDetector and OnGestureListeners
The first class to help us with gestures is GestureDetector, which has been around from the
very beginning of Android. Its purpose in life is to receive MotionEvent objects and tell us
when a sequence of events looks like a common gesture. We pass all of our event objects
to the GestureDetector from our callback, and it calls other callbacks when it recognizes a
gesture, such as a fling or long press. We need to register a listener for the callbacks from
the GestureDetector, and this is where we put our logic that says what to do if the user
has performed one of these common gestures. Unfortunately, this class does not tell us if a
pinch gesture is taking place; for that, we need to use a new class, which we’ll get to shortly.

There are a few ways to build the listener side. Your first option is to write a new class that
implements the appropriate gesture listener interface: for example, the GestureDetector.
OnGestureListener interface. There are several abstract methods that must be implemented
for each of the possible callbacks.

514 CHAPTER 22: Touch Screens

Your second option is to pick one of the simple implementations of a listener and override
the appropriate callback methods that you care about. For example, the GestureDetector.
SimpleOnGestureListener class has implemented all of the abstract methods to do nothing
and return false. All you have to do is extend that class and override the few methods you
need to act on those few gestures you care about. The other methods have their default
implementations. It’s more future-proof to choose the second option even if you decide to
override all of the callback methods, because if a future version of Android adds another
abstract callback method to the interface, the simple implementation will provide a default
callback method, so you’re covered.

We’re going to explore ScaleGestureDetector, plus the corresponding listener class, to see
how to use the pinch gesture to resize an image. In this example, we extend the simple
implementation (ScaleGestureDetector.SimpleOnScaleGestureListener) for our listener.
Listing 22-10 has the XML layout and the Java code for our MainActivity.

Listing 22-10. Layout and Java Code for the Pinch Gesture Using ScaleGestureDetector

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/layout" android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <TextView android:text=
 "Use the pinch gesture to change the image size"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

 <ImageView android:id="@+id/image" android:src="@drawable/icon"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="matrix" />

</LinearLayout>

// This file is MainActivity.java
public class MainActivity extends Activity {
 private static final String TAG = "ScaleDetector";
 private ImageView image;
 private ScaleGestureDetector mScaleDetector;
 private float mScaleFactor = 1f;
 private Matrix mMatrix = new Matrix();
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 image = (ImageView)findViewById(R.id.image);
 mScaleDetector = new ScaleGestureDetector(this,
 new ScaleListener());
 }

http://schemas.android.com/apk/res/android

515CHAPTER 22: Touch Screens

 @Override
 public boolean onTouchEvent(MotionEvent ev) {
 Log.v(TAG, "in onTouchEvent");
 // Give all events to ScaleGestureDetector
 mScaleDetector.onTouchEvent(ev);

 return true;
 }

 private class ScaleListener extends
 ScaleGestureDetector.SimpleOnScaleGestureListener {
 @Override
 public boolean onScale(ScaleGestureDetector detector) {
 mScaleFactor *= detector.getScaleFactor();

 // Make sure we don't get too small or too big
 mScaleFactor = Math.max(0.1f, Math.min(mScaleFactor, 5.0f));

 Log.v(TAG, "in onScale, scale factor = " + mScaleFactor);
 mMatrix.setScale(mScaleFactor, mScaleFactor);

 image.setImageMatrix(mMatrix);
 image.invalidate();
 return true;
 }
 }
}

Our layout is straightforward. We have a simple TextView with our message to use the pinch
gesture, and we have our ImageView with the standard Android icon. We’re going to resize
this icon image using a pinch gesture. Of course, feel free to substitute your own image file
instead of the icon. Just copy your image file into a drawable folder, and be sure to change
the android:src attribute in the layout file. Notice the android:scaleType attribute in the
XML layout for our image. This tells Android that we’ll be using a graphics matrix to do
scaling operations on the image. Although a graphics matrix can also do movement of our
image within the layout, we’re only going to focus on scaling for now. Also notice that we set
the ImageView size to as big as possible. As we scale the image, we don’t want it clipped by
the boundaries of the ImageView.

The code is also straightforward. Within onCreate(), we get a reference to our image and
create our ScaleGestureDetector. Within our onTouchEvent() callback, all we do is pass
every event object we get to the ScaleGestureDetector’s onTouchEvent() method and return
true so we keep getting new events. This allows the ScaleGestureDetector to see all events
and decide when to notify us of gestures.

The ScaleListener is where the zooming happens. There are actually three callbacks within
the listener class: onScaleBegin(), onScale(), and onScaleEnd(). We don’t need to do
anything special with the begin and end methods, so we didn’t implement them here.

516 CHAPTER 22: Touch Screens

Within onScale(), the detector passed in can be used to find out lots of information
about the scaling operation. The scale factor is a value that hovers around 1. That is,
as the fingers pinch closer together, this value is slightly below 1; as the fingers move
apart, this value is slightly larger than 1. Our mScaleFactor member starts at 1, so it
gets progressively smaller or larger than 1 as the fingers move together or apart. If
mScaleFactor equals 1, our image will be normal size. Otherwise, our image will be smaller
or larger than normal as mScaleFactor moves below or above 1. We set some bounds on
mScaleFactor with the elegant min/max function combination. This prevents our image from
getting too small or too large. We then use mScaleFactor to scale the graphics matrix, and
we apply the newly scaled matrix to our image. The invalidate() call forces a redraw of
the image on the screen.

To work with the OnGestureListener interface, you’d do something very similar to what
we’ve done here with our ScaleListener, except that the callbacks will be for different
common gestures such as single tap, double tap, long press, and fling.

References
Here are some helpful references to topics you may wish to explore further.

	www.androidbook.com/proandroid5/projects: Downloadable
projects related to this book. For this chapter, look for a zip file called
ProAndroid5_Ch22_Touchscreens.zip. This zip file contains all projects
from this chapter, listed in separate root directories. There is also a
README.TXT file that describes exactly how to import projects into your
IDE from one of these zip files.

	www.ted.com/talks/jeff_han_demos_his_breakthrough_touchscreen.html:
Jeff Han demonstrates his multitouch computer user interface at TED in
2006—very cool.

	http://android-developers.blogspot.com/2010/06/making-sense-
of-multitouch.html: An Android blog post about multitouch offers
yet another way to implement a GestureDetector inside an extension
of a view.

Summary
Let’s conclude this chapter by quickly enumerating what you have learned about touch
screens so far:

MotionEvent as the foundation on which touch handling is done	

Different callbacks that handle touch events on a 	 View object and
through an OnTouchListener

Different types of events that occur during a touch sequence	

How touch events travel through an entire view hierarchy, unless 	
handled along the way

http://www.androidbook.com/proandroid5/projects
http://www.ted.com/talks/jeff_han_demos_his_breakthrough_touchscreen.html
http://android-developers.blogspot.com/2010/06/making-sense-of-multitouch.html
http://android-developers.blogspot.com/2010/06/making-sense-of-multitouch.html

517CHAPTER 22: Touch Screens

Information that a 	 MotionEvent object contains about touches, including
for multiple fingers

When to recycle a 	 MotionEvent object and when not to

Determining the speed at which a finger drags across a screen	

The wonderful world of multitouch, and the internal details of 	
how it works

Implementing the pinch gesture, as well as other common gestures	

519

Chapter 23
Implementing Drag and Drop

In the last chapter, we covered touchscreens, the MotionEvent class, and gestures. You
learned how to use touch to make things happen in your application. One area that we
didn’t cover was drag and drop. On the surface, drag and drop seems like it should be fairly
simple: touch an object on the screen, drag it across the screen (usually over some other
object), and let go, and the application should take the appropriate action. In many computer
operating systems, this is a common way to delete a file from the desktop; you just drag the
file’s icon to the trash-bin icon, and the file gets deleted. In Android, you may have seen how
to rearrange icons on the home screen by dragging them to new locations or to the trash.

This chapter is going to go in depth into drag and drop. Prior to Android 3.0, developers
were on their own when it came to drag and drop. But because there are still quite a few
phones out there running Android 2.3, we’ll show you how to do drag and drop on them.
We’ll show you the old way in the first section of this chapter, and then we'll show you the
new way in the second part.

Exploring Drag and Drop
In this next example application, we’re going to take a white dot and drag it to a new
location in our user interface. We’re also going to place three counters in our user interface,
and if the user drags the white dot to one of the counters, that counter will increment and
the dot will return back to its starting place. If the dot is dragged somewhere else on the
screen, we’ll just leave it there.

Note See the “References” section at the end of this chapter for the URL from which you can
import these projects into your IDE directly. We’ll only show code in the text to explain concepts.
You'll need to download the code to create a working example application.

520 CHAPTER 23: Implementing Drag and Drop

The first sample application for this chapter is called TouchDragDemo. There are two key
files we want to talk about in this section:

	/res/layout/main.xml

	/src/com/androidbook/touch/dragdemo/Dot.java

The main.xml file contains our layout for the drag-and-drop demo. It is shown in Listing 23-1.
Some of the key concepts we want you to notice are the use of a FrameLayout as the top-level
layout, inside of which is a LinearLayout containing TextViews and a custom View class
called Dot. Because the LinearLayout and Dot coexist within the FrameLayout, their positions
and sizes don’t really impact each other, but they will be sharing the screen real estate, one
on top of the other. The UI for this application is shown in Figure 23-1.

Listing 23-1. Example Layout XML for Our Drag Example

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/main.xml -->
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="#0000ff" >

 <LinearLayout android:id="@+id/counters"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <TextView android:id="@+id/top" android:text="0"
 android:background="#111111"
 android:layout_height="wrap_content"
 android:layout_width="60dp"
 android:layout_gravity="right"
 android:layout_marginTop="30dp"
 android:layout_marginBottom="30dp"
 android:padding="10dp" />

 <TextView android:id="@+id/middle" android:text="0"
 android:background="#111111"
 android:layout_height="wrap_content"
 android:layout_width="60dp"
 android:layout_gravity="right"
 android:layout_marginBottom="30dp"
 android:padding="10dp" />

 <TextView android:id="@+id/bottom" android:text="0"
 android:background="#111111"
 android:layout_height="wrap_content"
 android:layout_width="60dp"
 android:layout_gravity="right"
 android:padding="10dp" />
 </LinearLayout>

http://schemas.android.com/apk/res/android

521CHAPTER 23: Implementing Drag and Drop

 <com.androidbook.touch.dragdemo.Dot android:id="@+id/dot"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

</FrameLayout>

Figure 23-1. User interface for TouchDragDemo

Note Technically, we could set android:clipChildren to true in the FrameLayout tag and
set the layout width and height of the dot to wrap_content, but that doesn’t feel as clean.

For each of the counters, we simply lay them out with a background, padding, margins,
and gravity to get them to show up along the right-hand side of the screen. We start them
off at zero, but as you’ll soon see, we'll be incrementing those values as dots are dragged
over to them. Although we chose to use TextViews in this example, you could use just
about any View object as a drop target. Now we will look at the Java code for our Dot class
in Listing 23-2.

Note that the package name in the layout XML file for the Dot element must match the
package name you use for your application. As mentioned, the layout of Dot is separated
from the LinearLayout. This is because we want the freedom to move the dot around the
screen, which is why we chose the layout_width and layout_height of "match_parent".
When we draw the dot on the screen, we want it to be visible, and if we constrict the size of
our dot’s view to the diameter of the dot, we won’t be able to see it when we drag it away
from our starting place.

522 CHAPTER 23: Implementing Drag and Drop

Listing 23-2. Java Code for Our Dot Class

public class Dot extends View {
 private static final String TAG = "TouchDrag";
 private float left = 0;
 private float top = 0;
 private float radius = 20;
 private float offsetX;
 private float offsetY;
 private Paint myPaint;
 private Context myContext;

 public Dot(Context context, AttributeSet attrs) {
 super(context, attrs);

 // Save the context (the activity)
 myContext = context;

 myPaint = new Paint();
 myPaint.setColor(Color.WHITE);
 myPaint.setAntiAlias(true);
 }

 public boolean onTouchEvent(MotionEvent event) {
 int action = event.getAction();
 float eventX = event.getX();
 float eventY = event.getY();
 switch(action) {
 case MotionEvent.ACTION_DOWN:
 // First make sure the touch is on our dot,
 // since the size of the dot's view is
 // technically the whole layout. If the
 // touch is *not* within, then return false
 // indicating we don't want any more events.
 if(!(left-20 < eventX && eventX < left+radius*2+20 &&
 top-20 < eventY && eventY < top+radius*2+20))
 return false;

 // Remember the offset of the touch as compared
 // to our left and top edges.
 offsetX = eventX - left;
 offsetY = eventY - top;
 break;
 case MotionEvent.ACTION_MOVE:
 case MotionEvent.ACTION_UP:
 case MotionEvent.ACTION_CANCEL:
 left = eventX - offsetX;
 top = eventY - offsetY;
 if(action == MotionEvent.ACTION_UP) {
 checkDrop(eventX, eventY);
 }
 break;

523CHAPTER 23: Implementing Drag and Drop

 }
 invalidate();
 return true;
 }

 private void checkDrop(float x, float y) {
 // See if the x,y of our drop location is near to
 // one of our counters. If so, increment it, and
 // reset the dot back to its starting position
 Log.v(TAG, "checking drop target for " + x + ", " + y);

 int viewCount = ((MainActivity)myContext).counterLayout
 .getChildCount();

 for(int i = 0; i<viewCount; i++) {
 View view = ((MainActivity)myContext).counterLayout
 .getChildAt(i);
 if(view.getClass() == TextView.class){
 Log.v(TAG, "Is the drop to the right of " +
 (view.getLeft()-20));
 Log.v(TAG, " and vertically between " +
 (view.getTop()-20) +
 " and " + (view.getBottom()+20) + "?");
 if(x > view.getLeft()-20 &&
 view.getTop()-20 < y &&
 y < view.getBottom()+20) {
 Log.v(TAG, " Yes. Yes it is.");

 // Increase the count value in the TextView by one
 int count =
 Integer.parseInt(
 ((TextView)view).getText().toString());
 ((TextView)view).setText(String.valueOf(++count));

 // Reset the dot back to starting position
 left = top = 0;
 break;
 }
 }
 }
 }

 public void draw(Canvas canvas) {
 canvas.drawCircle(left + radius, top + radius, radius, myPaint);
 }
}

When you run this application, you will see a white dot on a blue background. You can
touch the dot and drag it around the screen. When you lift your finger, the dot stays
where it is until you touch it again and drag it somewhere else. The draw() method puts
the dot at its current location of left and top, adjusted by the dot’s radius. By receiving
MotionEvent objects in the onTouchEvent() method, we can modify the left and top values
by the movement of our touch.

524 CHAPTER 23: Implementing Drag and Drop

Because the user won’t always touch the exact center of the object, the touch coordinates
will not be the same as the location coordinates of the object. That is the purpose of the
offset values: to get us back to the left and top edges of our dot from the position of the
touch. But even before we start a drag operation, we want to be sure that the user’s touch
is considered close enough to the dot to be valid. If the user touches the screen far away
from the dot, which is technically within the view layout of the dot, we don’t want that to
start a drag sequence. That is why we look to see if the touch is within the white dot itself;
if it is not, we simply return false, which prevents receiving any more touch events in that
touch sequence.

When your finger starts moving across the screen, we adjust the location of the object
by the deltas in x and y based on the MotionEvents that we get. When you stop moving
(ACTION_UP), we finalize our location using the last coordinates of your touch. We don’t
have to worry about scrollbars in this example, which could complicate the calculation of
the object’s position of our object on the screen. But the basic principle is still the same.
By knowing the starting location of the object to be moved and keeping track of the delta
values of a touch from ACTION_DOWN through to ACTION_UP, we can adjust the location of the
object on the screen.

Dropping an object onto another object on the screen has much less to do with touch than
it does with knowing where things are on the screen. As we drag an object around the
screen, we are aware of its position relative to one or more reference points. We can also
interrogate objects on the screen for their locations and sizes. We can then determine if our
dragged object is “over” another object. The typical process of figuring out a drop target
for a dragged object is to iterate through the available objects that can be dropped on and
determine if our current position overlaps with that object. Each object’s size and position
(and sometimes shape) can be used to make this determination. If we get an ACTION_UP
event, meaning that the user has let go of our dragged object, and the object is over
something we can drop onto, we can fire the logic to process the drop action.

We used this approach in our sample application. When the ACTION_UP action is detected,
we then look through the child views of the LinearLayout, and for each TextView that is
found, we compare the location of the touch to the edges of the TextView (plus a little
bit extra). If the touch is within that TextView, we grab the current numeric value of the
TextView, increment it by one, and write it back. If this happens, the position of the dot is
reset back to its starting place (left = 0, top = 0) for the next drag.

Our example shows you the basics of a way to do drag and drop in Android prior to 3.0.
With this you could implement drag-and-drop features in your application. This might be the
action of dragging something to the trash can, where the object being dragged should be
deleted, or it could be dragging a file to a folder for the purposes of moving or copying it.
To embellish your application, you could pre-identify which views are potential drop targets
and cause them to visually change as a drag starts. If you wanted the dragged object to
disappear from the screen when it is dropped, you could always programmatically remove it
from the layout (see the various removeView methods in ViewGroup).

Now that you’ve seen the hard way to do drag and drop, we’d like to show you the drag-
and-drop support that was added in Android 3.0.

525CHAPTER 23: Implementing Drag and Drop

Basics of Drag and Drop in 3.0+
Prior to Android 3.0, there was no direct support for drag and drop. You learned in the first
section of this chapter how to drag a View around the screen; you also learned that it was
possible to use the current location of the dragged object to determine if there was a drop
target underneath. When the MotionEvent for the finger-up event was received, your code
could figure out if that meant a drop had occurred. Although this was doable, it certainly
wasn’t as easy as having direct support in Android for the drag-and-drop operation. You
now have that direct support.

At its most basic, the drag-and-drop operation starts with a view declaring that a drag has
started; then all interested parties watch the drag take place until the drop event is fired. If a
view catches the drop event and wants to receive it, then a drag and drop has just occurred.
If there is no view to receive the drop, or if the view that receives it doesn’t want it, then no
drop takes place. Dragging is communicated through the use of a DragEvent object, which is
passed to all of the drag listeners available.

Within the DragEvent object are descriptors for lots of information, depending on the initiator
of the drag sequence. For example, the DragEvent can contain object references to the
initiator itself, state information, textual data, URIs, or pretty much whatever you want to
pass through the drag sequence.

Information could be passed that results in view-to-view dynamic communication; however, the
originator data in a DragEvent object is set when the DragEvent is created, and it stays the same
thereafter. In addition to this data, the DragEvent has an action value indicating what is going on
with the drag sequence, and location information indicating where the drag is on the screen.

A DragEvent has six possible actions:

	ACTION_DRAG_STARTED indicates that a new drag sequence has begun.

	ACTION_DRAG_ENTERED indicates that the dragged object has been
dragged into the boundaries of a specific view.

	ACTION_DRAG_LOCATION indicates that the dragged object has been
dragged on the screen to a new location.

	ACTION_DRAG_EXITED indicates that the dragged object has been
dragged outside the boundaries of a specific view.

	ACTION_DROP indicates that the user has let go of the dragged object. It is
up to the receiver of this event to determine whether this truly means a
drop has occurred.

	ACTION_DRAG_ENDED tells all drag listeners that the previous drag
sequence has ended. The DragEvent.getResult() method indicates a
successful drop or failure.

You might think that you need to set up a drag listener on each view in the system that
could participate in a drag sequence; but, in fact, you can define a drag listener on just
about anything in your application, and it will receive all of the drag events for all views in
the system. This can make things a little confusing because the drag listener does not need
to be associated with either the object being dragged or the drop target. The listener can
manage all of the coordination of the drag and drop.

526 CHAPTER 23: Implementing Drag and Drop

In fact, if you inspect the drag-and-drop example project that comes with the Android SDK,
you will see that it sets up a listener on a TextView that has nothing to do with the actual
dragging and dropping. The upcoming example project uses drag listeners that are tied to
specific views. These drag listeners each receive a DragEvent object for the drag events
that occur in the drag sequence. This means a view could receive a DragEvent object that
can be ignored because it is really about a different view. This also means the drag listener
must make that determination in code and that there must be enough information within the
DragEvent object for the drag listener to figure out what to do.

If a drag listener got a DragEvent object that merely said there’s an unknown object being
dragged and it’s at coordinates (15, 57), there isn’t much the drag listener can do with it. It is
much more helpful to get a DragEvent object that says a particular object is being dragged,
it’s at coordinates (15, 57), it’s a copy operation, and the data is a specific URI. When that
drops, there’s enough information to be able to initiate a copy operation.

We’re actually seeing two different kinds of dragging going on. In our first example
application, we dragged a view across a frame layout, and we could let go and that view
would stay where it was. We only got drag-and-drop behavior when we dropped our view
on top of something else. The supported form of drag and drop works differently than this.
Now, when you drag a view as part of a drag-and-drop sequence, the dragged view doesn’t
move at all. We get a shadow image of the dragged view which does travel across the
screen, but if we let go of it, that shadow view goes away. What this means is that you might
still have occasion to use the technique from the beginning of this chapter in an Android
3.0+ application, to move images around on the screen perhaps, without necessarily doing
drag and drop.

Drag-and-Drop Example Application
For your next example application, you’re going to employ a staple of 3.0, the fragment.
This, among other things, will prove that drags can cross fragment boundaries. You’ll create
a palette of dots on the left and a square target on the right. When a dot is grabbed using a
long click, you’ll change the color of that dot in the palette and Android will show a shadow
of the dot as you drag. When the dragged dot reaches the square target, the target will begin
to glow. If you drop the dot on the square target, a message will indicate that you’ve just
added one more drop to the drop count, the glowing will stop, and the original dot will go
back to its original color.

List of Files
This application builds upon concepts we’ve covered throughout this book. We’re only going
to include the interesting files in the text. For the others, just look at them in your IDE at your
leisure. Here are the ones that we’ve included in the text:

	palette.xml is the fragment layout for the dots on the left side (see
Listing 23-3).

	dropzone.xml is the fragment layout for the square target on the right
side, plus the drop-count message (see Listing 23-4).

527CHAPTER 23: Implementing Drag and Drop

The main layout file has a simple horizontal linear layout and two fragment specifications.
The first fragment will be for the palette of dots and the second will be for the dropzone.

The palette fragment layout file (Listing 23-3) gets a bit more interesting. Although this layout
represents a fragment, you don’t need to include a fragment tag within this layout. This layout
will be inflated to become the view hierarchy for your palette fragment. The dots are specified
as custom dots, and there are two of them arranged vertically. Notice that there are a couple of
custom XML attributes in the definition of your dots (dot:color and dot:radius). As you can
see, these attributes specify the color and the radius of your dots. You might also have noticed
that the layout width and height are wrap_content, not match_parent as in the earlier example
application in this chapter. The new drag-and-drop support makes things much easier.

Figure 23-2. Drag Drop Frags example application user interface

	DropZone.java inflates the dropzone.xml fragment layout file and then
implements the drag listener for the drop target (see Listing 23-5).

	Dot.java is your custom view class for the objects you’re going to drag.
It handles beginning the drag sequence, watching drag events, and
drawing the dots (see Listing 23-6).

Laying Out the Example Drag-and-Drop Application
Before we get into the code, Figure 23-2 shows what the application will look like.

528 CHAPTER 23: Implementing Drag and Drop

Listing 23-3. The palette.xml Layout File for the Dots

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/palette.xml -->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:dot=
 "http://schemas.android.com/apk/res/com.androidbook.drag.drop.demo"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <com.androidbook.drag.drop.demo.Dot android:id="@+id/dot1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="30dp"
 android:tag="Blue dot"
 dot:color="#ff1111ff"
 dot:radius="20dp" />

 <com.androidbook.drag.drop.demo.Dot android:id="@+id/dot2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="10dp"
 android:tag="White dot"
 dot:color="#ffffffff"
 dot:radius="40dp" />

</LinearLayout>

The dropzone fragment layout file in Listing 23-4 is also easy to understand. There’s a green
square and a text message arranged horizontally. This will be the dropzone for the dots
you’ll be dragging. The text message will be used to display a running count of the drops.

Listing 23-4. The dropzone.xml Layout File

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/dropzone.xml -->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal" >

 <View android:id="@+id/droptarget"
 android:layout_width="75dp"
 android:layout_height="75dp"
 android:layout_gravity="center_vertical"
 android:background="#00ff00" />

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/com.androidbook.drag.drop.demo
http://schemas.android.com/apk/res/android

529CHAPTER 23: Implementing Drag and Drop

 <TextView android:id="@+id/dropmessage"
 android:text="0 drops"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:paddingLeft="50dp"
 android:textSize="17sp" />

</LinearLayout>

Responding to onDrag in the Dropzone
Now that you have the main application layout set, let’s see how the drop target needs to be
organized by examining Listing 23-5.

Listing 23-5. The DropZone.java File

public class DropZone extends Fragment {

 private View dropTarget;
 private TextView dropMessage;

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle icicle)
 {
 View v = inflater.inflate(R.layout.dropzone, container, false);

 dropMessage = (TextView)v.findViewById(R.id.dropmessage);

 dropTarget = (View)v.findViewById(R.id.droptarget);
 dropTarget.setOnDragListener(new View.OnDragListener() {
 private static final String DROPTAG = "DropTarget";
 private int dropCount = 0;
 private ObjectAnimator anim;

 public boolean onDrag(View v, DragEvent event) {
 int action = event.getAction();
 boolean result = true;
 switch(action) {
 case DragEvent.ACTION_DRAG_STARTED:
 Log.v(DROPTAG, "drag started in dropTarget");
 break;
 case DragEvent.ACTION_DRAG_ENTERED:
 Log.v(DROPTAG, "drag entered dropTarget");
 anim = ObjectAnimator.ofFloat(
 (Object)v, "alpha", 1f, 0.5f);
 anim.setInterpolator(new CycleInterpolator(40));
 anim.setDuration(30*1000); // 30 seconds
 anim.start();
 break;

530 CHAPTER 23: Implementing Drag and Drop

 case DragEvent.ACTION_DRAG_EXITED:
 Log.v(DROPTAG, "drag exited dropTarget");
 if(anim != null) {
 anim.end();
 anim = null;
 }
 break;
 case DragEvent.ACTION_DRAG_LOCATION:
 Log.v(DROPTAG, "drag proceeding in dropTarget: " +
 event.getX() + ", " + event.getY());
 break;
 case DragEvent.ACTION_DROP:
 Log.v(DROPTAG, "drag drop in dropTarget");
 if(anim != null) {
 anim.end();
 anim = null;
 }

 ClipData data = event.getClipData();
 Log.v(DROPTAG, "Item data is " +
 data.getItemAt(0).getText());

 dropCount++;
 String message = dropCount + " drop";
 if(dropCount > 1)
 message += "s";
 dropMessage.setText(message);
 break;
 case DragEvent.ACTION_DRAG_ENDED:
 Log.v(DROPTAG, "drag ended in dropTarget");
 if(anim != null) {
 anim.end();
 anim = null;
 }
 break;
 default:
 Log.v(DROPTAG, "other action in dropzone: " +
 action);
 result = false;
 }
 return result;
 }
 });
 return v;
 }
}

Now you’re starting to get into interesting code. For the dropzone, you need to create the
target upon which you want to drag the dots. As you saw earlier, the layout specifies a
green square on the screen with a text message next to it. Because the dropzone is also a
fragment, you’re overriding the onCreateView() method of DropZone. The first thing to do
is inflate the dropzone layout and then extract out the view reference for the square target

531CHAPTER 23: Implementing Drag and Drop

(dropTarget) and for the text message (dropMessage). Then you need to set up a drag listener
on the target so it will know when a drag is underway.

The drop-target drag listener has a single callback method in it: onDrag(). This callback will
receive a view reference as well as a DragEvent object. The view reference relates to the view
that the DragEvent is related to. As mentioned, the drag listener is not necessarily connected
to the view that will be interacting with the drag event, so this callback must identify the view
for which the drag event is taking place.

One of the first things you likely want to do in any onDrag() callback is read the action
from the DragEvent object. This will tell you what’s going on. For the most part, the only
thing you want to do in this callback is log the fact that a drag event is taking place. You
don’t need to actually do anything for ACTION_DRAG_LOCATION, for example. But you do
want to have some special logic for when the object is dragged within your boundaries
(ACTION_DRAG_ENTERED) that will be turned off either when the object is dragged outside of
your boundaries (ACTION_DRAG_EXITED) or when the object is dropped (ACTION_DROP).

You’re using the ObjectAnimator class that was introduced in Chapter 18, only here you’re
using it in code to specify a cyclic interpolator that modifies the target’s alpha. This will
have the effect of pulsing the transparency of the green target square, which will be the
visual indication that the target is willing to accept a drop of the object onto it. Because you
turn on the animation, you must make sure to also turn it off when the object leaves or is
dropped, or the drag and drop is ended. In theory, you shouldn’t need to stop the animation
on ACTION_DRAG_ENDED, but it’s wise to do it anyway.

For this particular drag listener, you’re going to get ACTION_DRAG_ENTERED and ACTION_DRAG_
EXITED only if the dragged object interacts with the view with which you’re associated. And
as you’ll see, the ACTION_DRAG_LOCATION events happen only if the dragged object is inside
your target view.

The only other interesting condition is the ACTION_DROP itself (notice that DRAG_ is not part of
the name of this action). If a drop has occurred on your view, it means the user has let go of
the dot over the green square. Because you’re expecting this object to be dropped on the
green square, you can just go ahead and read the data from the first item and then log it to
LogCat. In a production application, you might pay closer attention to the ClipData object
that is contained in the drag event itself. By inspecting its properties, you could decide if you
even want to accept the drop or not.

This is a good time to point out the result boolean in this onDrag() callback method.
Depending on how things go, you want to let Android know either that you took care of the
drag event (by returning true) or that you didn’t (by returning false). If you don’t see what
you want to see inside of the drag event object, you could certainly return false from this
callback, which would tell Android that this drop was not handled.

Once you log the information from the drag event in LogCat, you increment the count of the
drops received; this is updated in the user interface, and that’s about it for DropZone.

If you look this class over, it’s really rather simple. You don’t actually have any code in here
that deals with MotionEvents, nor do you even need to make your own determination of
whether there is a drag going on. You just get appropriate callback calls as a drag sequence
unfolds.

532 CHAPTER 23: Implementing Drag and Drop

Setting Up the Drag Source Views
Let’s now consider how views corresponding to a drag source are organized, starting by
looking at Listing 23-6.

Listing 23-6. The Java for the Custom View: Dot

public class Dot extends View
 implements View.OnDragListener
{
 private static final int DEFAULT_RADIUS = 20;
 private static final int DEFAULT_COLOR = Color.WHITE;
 private static final int SELECTED_COLOR = Color.MAGENTA;
 protected static final String DOTTAG = "DragDot";
 private Paint mNormalPaint;
 private Paint mDraggingPaint;
 private int mColor = DEFAULT_COLOR;
 private int mRadius = DEFAULT_RADIUS;
 private boolean inDrag;

 public Dot(Context context, AttributeSet attrs) {
 super(context, attrs);

 // Apply attribute settings from the layout file.
 // Note: these could change on a reconfiguration
 // such as a screen rotation.
 TypedArray myAttrs = context.obtainStyledAttributes(attrs,
 R.styleable.Dot);

 final int numAttrs = myAttrs.getIndexCount();
 for (int i = 0; i < numAttrs; i++) {
 int attr = myAttrs.getIndex(i);
 switch (attr) {
 case R.styleable.Dot_radius:
 mRadius = myAttrs.getDimensionPixelSize(attr,
 DEFAULT_RADIUS);
 break;
 case R.styleable.Dot_color:
 mColor = myAttrs.getColor(attr, DEFAULT_COLOR);
 break;
 }
 }
 myAttrs.recycle();

 // Setup paint colors
 mNormalPaint = new Paint();
 mNormalPaint.setColor(mColor);
 mNormalPaint.setAntiAlias(true);

 mDraggingPaint = new Paint();
 mDraggingPaint.setColor(SELECTED_COLOR);
 mDraggingPaint.setAntiAlias(true);

533CHAPTER 23: Implementing Drag and Drop

 // Start a drag on a long click on the dot
 setOnLongClickListener(lcListener);
 setOnDragListener(this);
 }

 private static View.OnLongClickListener lcListener =
 new View.OnLongClickListener() {
 private boolean mDragInProgress;

 public boolean onLongClick(View v) {
 ClipData data =
 ClipData.newPlainText("DragData", (String)v.getTag());

 mDragInProgress =
 v.startDrag(data, new View.DragShadowBuilder(v),
 (Object)v, 0);

 Log.v((String) v.getTag(),
 "starting drag? " + mDragInProgress);

 return true;
 }
 };

 @Override
 protected void onMeasure(int widthSpec, int heightSpec) {
 int size = 2*mRadius + getPaddingLeft() + getPaddingRight();
 setMeasuredDimension(size, size);
 }

 // The dragging functionality
 public boolean onDrag(View v, DragEvent event) {
 String dotTAG = (String) getTag();
 // Only worry about drag events if this is us being dragged
 if(event.getLocalState() != this) {
 Log.v(dotTAG, "This drag event is not for us");
 return false;
 }
 boolean result = true;

 // get event values to work with
 int action = event.getAction();
 float x = event.getX();
 float y = event.getY();

 switch(action) {
 case DragEvent.ACTION_DRAG_STARTED:
 Log.v(dotTAG, "drag started. X: " + x + ", Y: " + y);
 inDrag = true; // used in draw() below to change color
 break;

534 CHAPTER 23: Implementing Drag and Drop

 case DragEvent.ACTION_DRAG_LOCATION:
 Log.v(dotTAG, "drag proceeding… At: " + x + ", " + y);
 break;
 case DragEvent.ACTION_DRAG_ENTERED:
 Log.v(dotTAG, "drag entered. At: " + x + ", " + y);
 break;
 case DragEvent.ACTION_DRAG_EXITED:
 Log.v(dotTAG, "drag exited. At: " + x + ", " + y);
 break;
 case DragEvent.ACTION_DROP:
 Log.v(dotTAG, "drag dropped. At: " + x + ", " + y);
 // Return false because we don't accept the drop in Dot.
 result = false;
 break;
 case DragEvent.ACTION_DRAG_ENDED:
 Log.v(dotTAG, "drag ended. Success? " + event.getResult());
 inDrag = false; // change color of original dot back
 break;
 default:
 Log.v(dotTAG, "some other drag action: " + action);
 result = false;
 break;
 }
 return result;
 }

 // Here is where you draw our dot, and where you change the color if
 // you're in the process of being dragged. Note: the color change
 // affects the original dot only, not the shadow.
 public void draw(Canvas canvas) {
 float cx = this.getWidth()/2 + getLeftPaddingOffset();
 float cy = this.getHeight()/2 + getTopPaddingOffset();
 Paint paint = mNormalPaint;
 if(inDrag)
 paint = mDraggingPaint;
 canvas.drawCircle(cx, cy, mRadius, paint);
 invalidate();
 }
}

The Dot code looks somewhat similar to the code for DropZone. This is in part because
you’re also receiving drag events in this class. The constructor for a Dot figures out the
attributes in order to set the correct radius and color, and then it sets up the two listeners:
one for long clicks and another for the drag events.

The two paints are going to be used to draw your circle. You use the normal paint when
the dot is just sitting there. But when the dot is being dragged, you want to indicate that by
changing the color of the original to magenta.

535CHAPTER 23: Implementing Drag and Drop

The long-click listener is where you initiate a drag sequence. The only way you let the user
start dragging a dot is if the user clicks and holds on a dot. When the long-click listener
is firing, you create a new ClipData object using a string and the dot’s tag. You happen
to know that the tag is the name of the dot as specified in the XML layout file. There are
several other ways to specify data into a ClipData object, so feel free to read the reference
documentation on other ways to store data in a ClipData object.

The next statement is the critical one: startDrag(). This is where Android will take over
and start the process of dragging. Note that the first argument is the ClipData object
from before; then it’s the drag-shadow object, then a local-state object, and finally the
number zero.

The drag-shadow object is the image that will be displayed as the dragging is taking place.
In your case, this does not replace the original dot image on the screen but shows a shadow
of a dot as the dragging is taking place, in addition to the original dot on the screen. The
default DragShadowBuilder behavior is to create a shadow that looks very much like the
original, so for your purposes, you merely call it and pass in your view. You can get fancy
here and create whatever sort of shadow view you want, but if you do override this class,
you’ll need to implement a few methods to make it work.

The onMeasure() method is here to supply dimension information to Android for the custom
view you’re using here. You have to tell Android how big your view is so it knows how to lay
it out with everything else. This is standard practice for a custom view.

Finally, there’s the onDrag() callback. As mentioned, each drag listener can receive drag
events. They all get ACTION_DRAG_STARTED and ACTION_DRAG_ENDED, for example. So, when
events happen, you must be careful what you do with the information. Because there are
two dots in play in this example application, whenever you do something with the dots, you
must be careful that you’re affecting the correct one.

When both dots receive the ACTION_DRAG_STARTED action, only one should set the color of
itself to magenta. To figure out which one is correct, compare the local state object passed
in with yourself. If you look back where you set the local-state object, you passed the current
view in. So now, when you’ve received the local-state object out, you compare it to yourself
to see if you’re the view that initiated the drag sequence.

If you aren’t the same view, you write a log message to LogCat saying this is not for you, and
you return false to say you’re not handling this message.

If you are the view that should be receiving this drag event, you collect some values from
the drag event, then you mostly just log the event to LogCat. The first exception to this is
ACTION_DRAG_STARTED. If you got this action and it’s for you, you then know that your dot has
begun a drag sequence. Therefore, you set the inDrag boolean so the draw() method later
on will do the right thing and display a different-colored dot. This different color only lasts
until ACTION_DRAG_ENDED is received, at which time you restore the original color of the dot.

If a dot gets the ACTION_DROP action, this means the user tried to drop a dot on a dot—
maybe even the original dot. This shouldn’t do anything, so you just return false from this
callback in this case.

536 CHAPTER 23: Implementing Drag and Drop

Finally, the draw() method of your custom view figures out the location of the center point
of your circle (dot) and then draws it with the appropriate paint. The invalidate() method is
there to tell Android that you’ve modified the view and that Android should redraw the user
interface. By calling invalidate(), you ensure that the user interface will be updated very
shortly with whatever is new.

You now have all the files and the background necessary to compile and deploy this
example drag-and-drop application.

Testing the Example Drag-and-Drop Application
Following is some example output from LogCat when we ran this example application.
Notice how the log message used Blue dot to indicate messages from the blue dot, White
dot for messages from the white dot, and DropTarget for the view where the drops are
allowed to go.

White dot: starting drag? true
Blue dot: This drag event is not for us
White dot: drag started. X: 53.0, Y: 206.0
DropTarget: drag started in dropTarget
DropTarget: drag entered dropTarget
DropTarget: drag proceeding in dropTarget: 29.0, 36.0
DropTarget: drag proceeding in dropTarget: 48.0, 39.0
DropTarget: drag proceeding in dropTarget: 45.0, 39.0
DropTarget: drag proceeding in dropTarget: 41.0, 39.0
DropTarget: drag proceeding in dropTarget: 40.0, 39.0
DropTarget: drag drop in dropTarget
DropTarget: Item data is White dot
ViewRoot: Reporting drop result: true
White dot: drag ended. Success? true
Blue dot: This drag event is not for us
DropTarget: drag ended in dropTarget

In this particular case, the drag was started with the white dot. Once the long click has
triggered the beginning of the drag sequence, we get the starting drag message.

Notice how the next three lines all indicate that an ACTION_DRAG_STARTED action was received
in three different views. Blue dot determined that the callback was not for it. It was also not
for DropTarget.

Next, notice how the drag-proceeding messages show the drag happening through
DropTarget, beginning with the ACTION_DRAG_ENTERED action. This means the dot was being
dragged on top of the green square. The x and y coordinates reported in the drag event
object are the coordinates of the drag point relative to the upper-left corner of the view. So,
in the example app, the first record of the drag in the drop target is at (x, y) = (29, 36), and
the drop occurred at (40, 39). See how the drop target was able to extract the tag name of
the white dot from the event’s ClipData to write it to LogCat.

537CHAPTER 23: Implementing Drag and Drop

Also see how once again, all drag listeners received the ACTION_DRAG_ENDED action. Only
White dot determined that it’s okay to display the results using getResult().

Feel free to experiment with this example application. Drag a dot to the other dot, or even
to itself. Go ahead and add another dot to palette.xml. Notice how when the dragged dot
leaves the green square, there’s a message saying that the drag exited. Note also that if you
drop a dot somewhere other than the green square, the drop is considered failed.

References
Here are some helpful references to topics you may wish to explore further:

	www.androidbook.com/proandroid5/projects: A list of downloadable
projects related to this book. For this chapter, look for a zip file called
ProAndroid5_Ch23_DragnDrop.zip. This zip file contains all the projects
from this chapter, listed in separate root directories. There is also a
README.TXT file that describes exactly how to import projects into your
IDE from one of these zip files.

	http://developer.android.com/guide/topics/ui/drag-drop.html: The
Android developer’s guide to drag and drop.

Summary
Let’s summarize the topics covered in this chapter:

Drag-and-drop support in Android 3.0, and implementing it prior to 3.0 	
using other methods

Iterating through possible drop targets to see if a drop (that is, finger 	
leaving the screen after dragging) occurred

The difficulty of doing the math to keep track of where a dragged object 	
is and whether it’s over a drop target

Drag-and-drop support in Android 3.0+, which is much nicer because it 	
eliminates a lot of guesswork

Drag listeners, which can be any objects and do not need to be 	
draggables or drop-target views

The fact that a drag can occur across fragments	

The 	 DragEvent object, which can contain lots of great information about
what is being dragged and why

How Android takes care of the math to determine whether a drop is 	
occurring on top of a view

http://www.androidbook.com/proandroid5/projects
http://developer.android.com/guide/topics/ui/drag-drop.html

539

Chapter 24
Using Sensors

Android devices often come with hardware sensors built in, and Android provides a framework
for working with those sensors. Sensors can be fun. Measuring the outside world and using
that in software in a device is pretty cool. It is the kind of programming experience you just
don’t get on a regular computer that sits on a desk or in a server room. The possibilities for
new applications that use sensors are huge, and we hope you are inspired to realize them.

In this chapter, we’ll explore the Android sensor framework. We’ll explain what sensors are
and how we get sensor data, and then discuss some specifics of the kinds of data we can
get from sensors and what we can do with it. While Android has defined several sensor
types already, there are no doubt more sensors in Android’s future, and we expect that future
sensors will get incorporated into the sensor framework.

What Is a Sensor?
In Android, a sensor is a source of data events from the physical world. This is typically a
piece of hardware that has been wired into the device, but Android also provides some logical
sensors that combine data from multiple physical sensors. Applications in turn use the sensor
data to inform the user about the physical world, to control game play, to do augmented
reality, or to provide useful tools for working in the real world. Sensors operate in one
direction only; they’re read-only. That makes using them fairly straightforward. You set up a
listener to receive sensor data, and then you process the data as it comes in. GPS hardware
is like the sensors we cover in this chapter. In Chapter 19, we set up listeners for GPS
location updates, and we processed those location updates as they came in. But although
GPS is similar to a sensor, it is not part of the sensor framework that is provided by Android.

Some of the sensor types that can appear in an Android device include

Light sensor	

Proximity sensor	

Temperature sensor	

Pressure sensor	

540 CHAPTER 24: Using Sensors

Gyroscope sensor	

Accelerometer	

Magnetic field sensor	

Gravity sensor	

Linear acceleration sensor	

Rotation vector sensor	

Relative humidity sensor	

Detecting Sensors
Please don’t assume, however, that all Android devices have all of these sensors. In fact,
many devices have just some of these sensors. The Android emulator, for example, has only
an accelerometer. So how do you know which sensors are available on a device? There are
two ways, one direct and one indirect.

The first way is that you ask the SensorManager for a list of the available sensors. It will
respond with a list of sensor objects that you can then set up listeners for and get data
from. We’ll show you how a bit later in this chapter. This method assumes that the user has
already installed your application onto a device, but what if the device doesn’t have a sensor
that your application needs?

That’s where the second method comes in. Within the AndroidManifest.xml file, you can
specify the features a device must have in order to properly support your application. If your
application needs a proximity sensor, you specify that in your manifest file with a line such as
the following:

<uses-feature android:name="android.hardware.sensor.proximity" />

The Google Play Store will only install your app on a device that has a proximity sensor, so
you know it’s there when your application runs. The same cannot be said for all other Android
app stores. That is, some Android app stores do not perform that kind of check to make sure
your app can only be installed onto a device that supports the sensors you specify.

What Can We Know About a Sensor?
While using the uses-feature tags in the manifest file lets you know that a sensor your
application requires exists on a device, it doesn’t tell you everything you may want to know
about the actual sensor. Let’s build a simple application that queries the device for sensor
information. Listing 24-1 shows the Java code of our MainActivity.

Note You can download this chapter’s projects. We will give you the URL at the end of the chapter.
This will allow you to import these projects into your IDE directly.

541CHAPTER 24: Using Sensors

Listing 24-1. Java for a Sensor List App

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView text = (TextView)findViewById(R.id.text);

 SensorManager mgr =
 (SensorManager) this.getSystemService(SENSOR_SERVICE);

 List<Sensor> sensors = mgr.getSensorList(Sensor.TYPE_ALL);

 StringBuilder message = new StringBuilder(2048);
 message.append("The sensors on this device are:\n");

 for(Sensor sensor : sensors) {
 message.append(sensor.getName() + "\n");
 message.append(" Type: " +
 sensorTypes.get(sensor.getType()) + "\n");
 message.append(" Vendor: " +
 sensor.getVendor() + "\n");
 message.append(" Version: " +
 sensor.getVersion() + "\n");
 try {
 message.append(" Min Delay: " +
 sensor.getMinDelay() + "\n");
 } catch(NoSuchMethodError e) {} // ignore if not found
 try {
 message.append(" FIFO Max Event Count: " +
 sensor.getFifoMaxEventCount() + "\n");
 } catch(NoSuchMethodError e) {} // ignore if not found
 message.append(" Resolution: " +
 sensor.getResolution() + "\n");
 message.append(" Max Range: " +
 sensor.getMaximumRange() + "\n");
 message.append(" Power: " +
 sensor.getPower() + " mA\n");
 }
 text.setText(message);
 }

 private HashMap<Integer, String> sensorTypes =
 new HashMap<Integer, String>();

 {
 sensorTypes.put(Sensor.TYPE_ACCELEROMETER, "TYPE_ACCELEROMETER");
 sensorTypes.put(Sensor.TYPE_AMBIENT_TEMPERATURE,
 "TYPE_AMBIENT_TEMPERATURE");
 /* ... the rest is omitted to save space ... */
 }
}

542 CHAPTER 24: Using Sensors

Within our onCreate() method, we start by getting a reference to the SensorManager.
There can be only one of these, so we retrieve it as a system service. We then call its
getSensorList() method to get a list of sensors. For each sensor, we write out information
about it. The output will look something like Figure 24-1.

Figure 24-1. Output from our sensor list app

There are a few things to know about this sensor information. The type value tells you
the basic type of the sensor without getting specific. A light sensor is a light sensor, but
you could get variations in light sensors from one device to another. For example, the
resolution of a light sensor on one device could be different from that on another device.
When you specify that your app needs a light sensor in a <uses-feature> tag, you don’t
know in advance exactly what type of light sensor you’re going to get. If it matters to your
application, you’ll need to query the device to find out and adjust your code accordingly.

The values you get for resolution and maximum range will be in the appropriate units for that
sensor. The power measurement is in milliamperes (mA) and represents the electrical current
that the sensor draws from the device’s battery; smaller is better.

Now that we know what sensors we have available to us, how do we go about getting data
from them? As we explained earlier, we set up a listener in order to get sensor data sent to
us. Let’s explore that now.

543CHAPTER 24: Using Sensors

Getting Sensor Events
Sensors provide data to our application once we register a listener to receive the data. When
our listener is not listening, the sensor can be turned off, conserving battery life, so make
sure you only listen when you really need to. Setting up a sensor listener is easy to do. Let’s
say that we want to measure the light levels from the light sensor. Listing 24-2 shows the
Java code for a sample app that does this.

Listing 24-2. Java Code for a Light Sensor Monitor App

public class MainActivity extends Activity implements SensorEventListener {
 private SensorManager mgr;
 private Sensor light;
 private TextView text;
 private StringBuilder msg = new StringBuilder(2048);

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mgr = (SensorManager) this.getSystemService(SENSOR_SERVICE);
 light = mgr.getDefaultSensor(Sensor.TYPE_LIGHT);
 text = (TextView) findViewById(R.id.text);
 }

 @Override
 protected void onResume() {
 mgr.registerListener(this, light,
 SensorManager.SENSOR_DELAY_NORMAL);
 super.onResume();
 }

 @Override
 protected void onPause() {
 mgr.unregisterListener(this, light);
 super.onPause();
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 msg.insert(0, sensor.getName() + " accuracy changed: " +
 accuracy + (accuracy==1?" (LOW)":(accuracy==2?" (MED)":
 " (HIGH)")) + "\n");
 text.setText(msg);
 text.invalidate();
 }

544 CHAPTER 24: Using Sensors

 public void onSensorChanged(SensorEvent event) {
 msg.insert(0, "Got a sensor event: " + event.values[0] +
 " SI lux units\n");
 text.setText(msg);
 text.invalidate();
 }
}

In this sample app, we again get a reference to the SensorManager, but instead of getting
a list of sensors, we query specifically for the light sensor. We then set up a listener in the
onResume() method of our activity, and we unregister the listener in the onPause() method.
We don’t want to be worrying about the light levels when our application is not in the
foreground.

For the registerListener() method, we pass in a value representing how often we want to
be notified of sensor value changes. This parameter could be

	SENSOR_DELAY_NORMAL (represents 200,000 microsecond delay)

	SENSOR_DELAY_UI (represents 60,000 microsecond delay)

	SENSOR_DELAY_GAME (represents 20,000 microsecond delay)

	SENSOR_DELAY_FASTEST (represents as fast as possible)

You can also specify a specific microsecond delay using one of the other registerListener
methods, as long as it’s larger than 3 microseconds; however anything less than 20,000 is
not likely to be honored. It is important to select an appropriate value for this parameter.
Some sensors are very sensitive and will generate a lot of events in a short amount of time.
If you choose SENSOR_DELAY_FASTEST, you might even overrun your application’s ability to
keep up. Depending on what your application does with each sensor event, it is possible
that you will be creating and destroying so many objects in memory that garbage collection
will cause noticeable slowdowns and hiccups on the device. On the other hand, certain
sensors pretty much demand to be read as often as possible; this is true of the rotation
vector sensor in particular. Also, don’t rely on this parameter to generate events with precise
timing. The events could come a little faster or slower.

Because our activity implements the SensorEventListener interface, we have two callbacks
for sensor events: onAccuracyChanged() and onSensorChanged(). The first method will let us
know if the accuracy changes on our sensor (or sensors, since it could be called for more
than one). The value of the accuracy parameter will be SENSOR_STATUS_UNRELIABLE,
SENSOR_STATUS_ACCURACY_LOW, SENSOR_STATUS_ACCURACY_MEDIUM, or
SENSOR_STATUS_ACCURACY_HIGH. Unreliable accuracy does not mean that the device
is broken; it normally means that the sensor needs to be calibrated. The second callback
method tells us when the light level has changed, and we get a SensorEvent object to tell us
the details of the new value or values from the sensor.

A SensorEvent object has several members, one of them being an array of float values.
For a light sensor event, only the first float value has meaning, which is the SI lux value of
the light that was detected by the sensor. For our sample app, we build up a message string
by inserting the new messages on top of the older messages, and then we display the batch
of messages in a TextView. Our newest sensor values will always be displayed at the top of
the screen.

545CHAPTER 24: Using Sensors

When you run this application (on a real device, of course, since the emulator does not have
a light sensor), you may notice that nothing is displayed at first. Just change the light that is
shining on the upper-left corner of your device. This is most likely where your light sensor is.
If you look very carefully, you might see the dot behind the screen that is the light sensor. If
you cover this dot with your finger, the light level will probably change to a very small value
(although it may not reach zero). The messages should display on the screen, telling you
about the changing light levels.

Note You might also notice that when the light sensor is covered, your buttons light up (if you
have a device with lighted buttons). This is because Android has detected the darkness and lights
up the buttons to make the device easier to use “in the dark.”

Issues with Getting Sensor Data
The Android sensor framework has problems that you need to be aware of. This is the part
that’s not fun. In some cases, we have ways of working around the problem; in others we
don’t, or it’s very difficult.

No Direct Access to Sensor Values
You may have noticed that there is no direct way to query the sensor’s current value. The
only way to get data from a sensor is through a listener. There are two kinds of sensors:
those that are streaming and those that are not. Streaming sensors will send values on
a regular basis, such as the accelerometer. The method call getMinDelay() will return a
nonzero value for streaming sensors, to tell you the minimum number of microseconds that
a sensor will use to sense the environment. For non-streaming sensors the return value is
zero, so even once you’ve set up the listener, there are no guarantees that you’ll get a new
datum within a set period of time. At least the callback is asynchronous so you won’t block
the UI thread waiting for a piece of data from a sensor. However, your application has to
accommodate the fact that sensor data may not be available at the exact moment that you
want it. Revisiting Figure 24-1, you’ll notice that the light sensor is non-streaming. Therefore,
your app will get an event only if the light level changes. For the other sensors shown, the
delay between events will be a minimum of 20 milliseconds, but could be more.

It is possible to directly access sensors using native code and the JNI feature of Android.
You’ll need to know the low-level native API calls for the sensor driver you’re interested in,
plus be able to set up the interface back to Android. So it can be done, but it’s not easy.

Sensor Values Not Sent Fast Enough
Even at SENSOR_DELAY_FASTEST, you probably won’t get new values more often than every
20 ms (it depends on the device and the sensor). If you need more rapid sensor data than
you can get with a rate setting of SENSOR_DELAY_FASTEST, it is possible to use native code
and JNI to get to the sensor data faster, but similar to the previous situation, it is not easy.

546 CHAPTER 24: Using Sensors

Sensors Turn Off with the Screen
There have been problems in Android 2.x with sensor updates that get turned off when the
screen is turned off. Apparently someone thought it was a good idea to not send sensor
updates if the screen is off, even if your application (most likely using a service) has a wake
lock. Basically, your listener gets unregistered when the screen turns off.

There are several workarounds to this problem. For more information on this issue and
possible resolutions and workarounds, please refer to Android Issue 11028:

http://code.google.com/p/android/issues/detail?id=11028

Now that you know how to get data from sensors, what can you do with the data? As we
said earlier, depending on which sensor you’re getting data from, the values returned in the
values array mean different things. The next section will explore each of the sensor types
and what their values mean.

Interpreting Sensor Data
Now that you understand how to get data from a sensor, you’ll want to do something
meaningful with the data. The data you get, however, will depend on which sensor you’re
getting the data from. Some sensors are simpler than others. In the sections that follow,
we will describe the data that you’ll get from the sensors we currently know about. As new
devices come into being, new sensors will undoubtedly be introduced as well. The sensor
framework is very likely to remain the same, so the techniques we show here should apply
equally well to the new sensors.

Light Sensors
The light sensor is one of the simplest sensors on a device, and one you’ve used in the first
sample applications of this chapter. The sensor gives a reading of the light level detected by
the light sensor of the device. As the light level changes, the sensor readings change. The
units of the data are in SI lux units. To learn more about what this means, please see the
“References” section at the end of this chapter for links to more information.

For the values array in the SensorEvent object, a light sensor uses just the first element,
values[0]. This value is a float and ranges technically from 0 to the maximum value for the
particular sensor. We say technically because the sensor may only send very small values
when there’s no light, and never actually send a value of 0.

Remember also that the sensor can tell us the maximum value that it can return and that
different sensors can have different maximums. For this reason, it may not be useful to
consider the light-related constants in the SensorManager class. For example, SensorManager
has a constant called LIGHT_SUNLIGHT_MAX, which is a float value of 120,000; however,
when we queried our device earlier, the maximum value returned was 10,240, clearly much
less than this constant value. There’s another one called LIGHT_SHADE at 20,000, which is
also above the maximum of the device we tested. So keep this in mind when writing code
that uses light sensor data.

http://code.google.com/p/android/issues/detail?id=11028

547CHAPTER 24: Using Sensors

Proximity Sensors
The proximity sensor either measures the distance that some object is from the device
(in centimeters) or represents a flag to say whether an object is close or far. Some proximity
sensors will give a value ranging from 0.0 to the maximum in increments, while others return
either 0.0 or the maximum value only. If the maximum range of the proximity sensor is
equal to the sensor’s resolution, then you know it’s one of those that only returns 0.0, or the
maximum. There are devices with a maximum of 1.0 and others where it’s 6.0. Unfortunately,
there’s no way to tell before the application is installed and run which proximity sensor you’re
going to get. Even if you put a <uses-feature> tag in your AndroidManifest.xml file for the
proximity sensor, you could get either kind. Unless you absolutely need to have the more
granular proximity sensor, your application should accommodate both types gracefully.

Here’s an interesting fact about proximity sensors: the proximity sensor is sometimes the
same hardware as the light sensor. Android still treats them as logically separate sensors,
though, so if you need data from both you will need to set up a listener for each one. Here’s
another interesting fact: the proximity sensor is often used in the phone application to
detect the presence of a person’s head next to the device. If the head is that close to the
touchscreen, the touchscreen is disabled so no keys will be accidently pressed by the ear or
cheek while the person is talking on the phone.

The source code projects for this chapter include a simple proximity sensor monitor
application, which is basically the light sensor monitor application modified to use the
proximity sensor instead of the light sensor. We won’t include the code in this chapter, but
feel free to experiment with it on your own.

Temperature Sensors
The old deprecated temperature sensor (TYPE_TEMPERATURE) provided a temperature
reading and also returned just a single value in values[0]. This sensor usually read an
internal temperature, such as at the battery. There is a new temperature sensor called
TYPE_AMBIENT_TEMPERATURE. The new value represents the temperature outside the device in
degrees Celsius.

The placement of the temperature sensor is device-dependent, and it is possible that the
temperature readings could be impacted by the heat generated by the device itself. The projects
for this chapter include one for the temperature sensor called TemperatureSensor. It takes care of
calling the correct temperature sensor based on which version of Android is running.

Pressure Sensors
This sensor measures barometric pressure, which could detect altitude for example or
be used for weather predictions. This sensor should not be confused with the ability of a
touchscreen to generate a MotionEvent with a pressure value (the pressure of the touch).
We covered this touch type of pressure sensing in Chapter 22. Touchscreen pressure
sensing doesn’t use the Android sensor framework.

The unit of measurement for a pressure sensor is atmospheric pressure in hPa (millibar), and
this measurement is delivered in values[0].

548 CHAPTER 24: Using Sensors

Gyroscope Sensors
Gyroscopes are very cool components that can measure the twist of a device about a
reference frame. Said another way, gyroscopes measure the rate of rotation about an axis.
When the device is not rotating, the sensor values will be zeros. When there is rotation in
any direction, you’ll get nonzero values from the gyroscope. Gyroscopes are often used for
navigation. But by itself, a gyroscope can’t tell you everything you need to know to navigate.
And unfortunately, errors creep in over time. But coupled with accelerometers, you can
determine the path of movement of the device.

Kalman filters can be used to link data from the two sensors together. Accelerometers
are not terribly accurate in the short term, and gyroscopes are not very accurate in the
long term, so combined they can be reasonably accurate all the time. While Kalman filters
are very complex, there is an alternative called complementary filters that are easier to
implement in code and produce results that are pretty good. These concepts are beyond the
scope of this book.

The gyroscope sensor returns three values in the values array for the x, y, and z axes.
The units are radians per second, and the values represent the rate of rotation around
each of those axes. One way to work with these values is to integrate them over time to
calculate an angle change. This is a similar calculation to integrating linear speed over time
to calculate distance.

Accelerometers
Accelerometers are probably the most utilized of the sensors on a device. Using these
sensors, your application can determine the physical orientation of the device in space
relative to gravity’s pull straight down, plus be aware of forces acting on the device.
Providing this information allows an application to do all sorts of interesting things, from
game play to augmented reality. And of course, the accelerometers tell Android when to
switch the orientation of the user interface from portrait to landscape and back again.

The accelerometer coordinate system works like this: the accelerometer’s x axis originates
in the bottom-left corner of the device and goes across the bottom to the right. The y axis
also originates in the bottom-left corner and goes up along the left of the display. The z axis
originates in the bottom-left corner and goes up in space away from the device. Figure 24-2
shows what this means.

549CHAPTER 24: Using Sensors

This coordinate system is different than the one used in layouts and 2D graphics. In that
coordinate system, the origin (0, 0) is at the top-left corner, and y is positive in the direction
down the screen from there. It is easy to get confused when dealing with coordinate systems
in different frames of reference, so be careful.

We haven’t yet said what the accelerometer values mean, so what do they mean? Acceleration
is measured in meters per second squared (m/s2). Normal Earth gravity is 9.81 m/s2, pulling
down toward the center of the Earth. From the accelerometer’s point of view, the measurement
of gravity is –9.81. If your device is completely at rest (not moving) and is on a perfectly flat
surface, the x and y readings will be 0 and the z reading will be +9.81. Actually, the values
won’t be exactly these because of the sensitivity and accuracy of the accelerometer, but they
will be close. Gravity is the only force acting on the device when the device is at rest, and
because gravity pulls straight down, if our device is perfectly flat, its effect on the x and y axes
is zero. On the z axis, the accelerometer is measuring the force on the device minus gravity.
Therefore, 0 minus –9.81 is +9.81, and that’s what the z value will be (a.k.a. values[2] in the
SensorEvent object).

The values sent to your application by the accelerometer always represent the sum of the
forces on the device minus gravity. If you were to take your perfectly flat device and lift it
straight up, the z value would increase at first, because you increased the force in the up (z)
direction. As soon as your lifting force stopped, the overall force would return to being just
gravity. If the device were to be dropped (hypothetically—please don’t do this), it would be
accelerating toward the ground, which would zero out gravity so the accelerometer would
read 0 force.

Let’s take the device from Figure 24-2 and rotate it up so it is in portrait mode and vertical.
The x axis is the same, pointing left to right. Our y axis is now straight up and down, and the
z axis is pointing out of the screen straight at us. The y value will be +9.81, and both x and z
will be 0.

What happens when you rotate the device to landscape mode and continue to hold it
vertically, so the screen is right in front of your face? If you guessed that y and z are now 0
and x is +9.81, you’d be correct. Figure 24-3 shows what it might look like.

Figure 24-2. Accelerometer coordinate system

550 CHAPTER 24: Using Sensors

When the device is not moving, or is moving with a constant velocity, the accelerometers
are only measuring gravity. And in each axis, the value from the accelerometer is gravity’s
component in that axis. Therefore, using some trigonometry, you could figure out the angles
and know how the device is oriented relative to gravity’s pull. That is, you could tell if the
device were in portrait mode or in landscape mode or in some tilted mode. In fact, this is
exactly what Android does to figure out which display mode to use (portrait or landscape).
Note, however, that the accelerometers do not say how the device is oriented with respect
to magnetic north. So while you could know that the device is being held in landscape mode
vertically, you wouldn’t know if you were facing east or west or anywhere in between. That’s
where the magnetic field sensor will come in, which we will cover in a later section.

Accelerometers and Display Orientation
Accelerometers in a device are hardware, and they’re firmly attached, and as such have a
specific orientation relative to the device that does not change as the device is turned this
way or that. The values that the accelerometers send into Android will change of course as a
device is moved, but the coordinate system of the accelerometers will stay the same relative
to the physical device. The coordinate system of the display, however, changes as the user
goes from portrait to landscape and back again. In fact depending on which way the screen
is turned, portrait could be right-side up, or 180 degrees upside-down. Similarly, landscape
could be in one of two different rotations 180 degrees apart.

When your application is reading accelerometer data and wanting to affect the user interface
correctly, your application must know how much rotation of the display has occurred to
properly compensate. As your screen is reoriented from portrait to landscape, the screen’s
coordinate system has rotated with respect to the coordinate system of the accelerometers.
To handle this, your application must use the method Display.getRotation(). The return value
is a simple integer but not the actual number of degrees of rotation. The value will be one of
Surface.ROTATION_0, Surface.ROTATION_90, Surface.ROTATION_180, or Surface.ROTATION_270.
These are constants with values of 0, 1, 2, and 3, respectively. This return value tells you
how much the display has rotated from the “normal” orientation of the device. Because
not all Android devices are normally in portrait mode, you cannot assume that portrait is at
ROTATION_0.

Figure 24-3. Accelerometer values in landscape vertical

551CHAPTER 24: Using Sensors

Accelerometers and Gravity
So far, we’ve only briefly touched on what happens to the accelerometer values when the
device is moved. Let’s explore that further. All forces acting on the device will be detected by
the accelerometers. If you lift the device, the initial lifting force is positive in the z direction,
and you get a z value greater than +9.81. If you push the device on its left side, you’ll get an
initial negative reading in the x direction.

What you’d like to be able to do is separate out the force of gravity from the other forces
acting on the device. There’s a fairly easy way to do this, and it’s called a low-pass filter.
Forces other than gravity acting on the device will do so in a way that is typically not
gradual. In other words, if the user is shaking the device, the shaking forces are reflected in
the accelerometer values quickly. A low-pass filter will in effect strip out the shaking forces
and leave only the steady force, which is gravity. Let’s use a sample application to illustrate
this concept. It’s called GravityDemo. Listing 24-3 shows the Java code.

Listing 24-3. Measuring Gravity from the Accelerometers

// This file is MainActivity.java
public class MainActivity extends Activity implements SensorEventListener {
 private SensorManager mgr;
 private Sensor accelerometer;
 private TextView text;
 private float[] gravity = new float[3];
 private float[] motion = new float[3];
 private double ratio;
 private double mAngle;
 private int counter = 0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mgr = (SensorManager) this.getSystemService(SENSOR_SERVICE);
 accelerometer = mgr.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 text = (TextView) findViewById(R.id.text);
 }

 @Override
 protected void onResume() {
 mgr.registerListener(this, accelerometer,
 SensorManager.SENSOR_DELAY_UI);
 super.onResume();
 }

 @Override
 protected void onPause() {
 mgr.unregisterListener(this, accelerometer);
 super.onPause();
 }

552 CHAPTER 24: Using Sensors

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // ignore
 }

 public void onSensorChanged(SensorEvent event) {
 // Use a low-pass filter to get gravity.
 // Motion is what's left over
 for(int i=0; i<3; i++) {
 gravity [i] = (float) (0.1 * event.values[i] +
 0.9 * gravity[i]);
 motion[i] = event.values[i] - gravity[i];
 }

 // ratio is gravity on the Y axis compared to full gravity
 // should be no more than 1, no less than -1
 ratio = gravity[1]/SensorManager.GRAVITY_EARTH;
 if(ratio > 1.0) ratio = 1.0;
 if(ratio < -1.0) ratio = -1.0;

 // convert radians to degrees, make negative if facing up
 mAngle = Math.toDegrees(Math.acos(ratio));
 if(gravity[2] < 0) {
 mAngle = -mAngle;
 }

 // Display every 10th value
 if(counter++ % 10 == 0) {
 String msg = String.format(
 "Raw values\nX: %8.4f\nY: %8.4f\nZ: %8.4f\n" +
 "Gravity\nX: %8.4f\nY: %8.4f\nZ: %8.4f\n" +
 "Motion\nX: %8.4f\nY: %8.4f\nZ: %8.4f\nAngle: %8.1f",
 event.values[0], event.values[1], event.values[2],
 gravity[0], gravity[1], gravity[2],
 motion[0], motion[1], motion[2],
 mAngle);
 text.setText(msg);
 text.invalidate();
 counter=1;
 }
 }
}

The result of running this application is a display that looks like Figure 24-4. This screenshot
was taken as the device lay flat on a table.

553CHAPTER 24: Using Sensors

Most of this sample application is the same as the Accel Sensor application from before.
The differences are in the onSensorChanged() method. Instead of simply displaying the
values from the event array, we attempt to keep track of gravity and motion. You get gravity
by using only a small portion of the new value from the event array, and a large portion of
the previous value of the gravity array. The two portions used must add up to 1.0. We used
0.9 and 0.1. You could try other values, too, such as 0.8 and 0.2. Our gravity array cannot
possibly change as fast as the actual sensor values are changing. But this is closer to reality.
And this is what a low-pass filter does. The event array values would only be changing if
forces were causing the device to move, and you don’t want to measure those forces as part
of gravity. You only want to record into your gravity array the force of gravity itself. The math
here does not mean you’re magically recording only gravity, but the values you’re calculating
are going to be a lot closer than the raw values from the event array.

Notice also the motion array in the code. By tracking the difference between the raw event
array values and the calculated gravity values, you are basically measuring the active, non-
gravity, forces on the device in the motion array. If the values in the motion array are zero or
very close to zero, it means the device is probably not moving. This is useful information.
Technically, a device moving in a constant speed would also have values in the motion array
close to zero, but the reality is that if a user is moving the device, the motion values will be
somewhat larger than zero. Users can’t possibly move a device at a perfect constant speed.

Lastly, please notice that this example does not produce new objects that need to be garbage
collected. It is very important when dealing with sensor events to not create new objects;
otherwise your application will spend too much time paused for garbage collection cycles.

Figure 24-4. Gravity, motion, and angle values

554 CHAPTER 24: Using Sensors

Using Accelerometers to Measure the Device’s Angle
We wanted to show you one more thing about the accelerometers before we move on.
If we go back to our trigonometry lessons, we remember that the cosine of an angle is the
ratio of the near side and the hypotenuse. If we consider the angle between the y axis and
gravity itself, we could measure the force of gravity on the y axis and take the arccosine to
determine the angle. We’ve done that in this code as well, although here we have to deal yet
again with some of the messiness of sensors in Android. There are constants in SensorManager
for different gravity constants, including Earth’s. But your actual measured values could
possibly exceed the defined constants. We will explain what we mean by this next.

In theory, your device at rest would measure a value for gravity equal to the constant value,
but this is rarely the case. At rest, the accelerometer sensor is very likely to give us a value
for gravity that is larger or smaller than the constant. Therefore, our ratio could end up
greater than one, or less than negative one. This would make the acos() method complain,
so we fix the ratio value to be no more than 1 and no less than –1. The corresponding
angles in degrees range from 0 to 180. That’s fine except that we don’t get negative angles
from 0 to –180 this way. To get the negative angles, we use another value from our gravity
array, which is the z value. If the z value of gravity is negative, it means the device’s face is
oriented downward. For all those values where the device face is pointed down, we make
our angle negative as well, with the result being that our angle goes from –180 to +180, just
as we would expect.

Go ahead and experiment with this sample application. Notice that the value of the angle is 90
when the device is laid flat, and it’s zero (or close to it) when the device is held straight up and
down in front of us. If we keep rotating down past flat, we will see the value of the angle exceed
90. If we tilt the device up more from the 0 position, the value of angle goes negative until we’re
holding the device above our heads and the value of the angle is –90. Finally, you may have
noticed our counter that controls how often the display is updated. Because the sensor events
can come rather frequently, we decided to only display every tenth time we get values.

Magnetic Field Sensors
The magnetic field sensor measures the ambient magnetic field in the x, y, and z axes.
This coordinate system is aligned just like the accelerometers, so x, y, and z are as shown
in Figure 24-2. The units of the magnetic field sensor are microteslas (uT). This sensor can
detect the Earth’s magnetic field and therefore tell us where north is. This sensor is also
referred to as the compass, and in fact the <uses-feature> tag uses android.hardware.
sensor.compass as the name of this sensor. Because this sensor is so tiny and sensitive, it
can be affected by magnetic fields generated by things near the device, and even to some
extent to components within the device. Therefore the accuracy of the magnetic field sensor
may at times be suspect.

We’ve included a simple CompassSensor application in the download section of the web site,
so feel free to import that and play with it. If you bring metal objects close to the device
while this application is running, you might notice the values changing in response. Certainly
if you bring a magnet close to the device you will see the values change. In fact, the Google
Cardboard “device” uses a magnet under a physical button which is then detected by the
phone as a change in the magnetic field when the button is pressed.

555CHAPTER 24: Using Sensors

You might be asking, can I use the compass sensor as a compass to detect where north
is? And the answer is: not by itself. While the compass sensor can detect magnetic fields
around the device, if the device is not being held perfectly flat in relation to the Earth’s
surface, you’d have no way of correctly interpreting the compass sensor values. But you
have accelerometers that can tell you the orientation of the device relative to the Earth’s
surface! Therefore, you can create a compass from the compass sensor, but you’ll need help
from the accelerometers too. So let’s see how to do that.

Using Accelerometers and Magnetic Field Sensors Together
The SensorManager provides some methods that allow us to combine the compass sensor
and the accelerometers to figure out orientation. As we just discussed, you can’t use just
the compass sensor alone to do the job. So SensorManager provides a method called
getRotationMatrix(), which takes the values from the accelerometers and from the
compass and returns a matrix that can be used to determine orientation.

Another SensorManager method, getOrientation(), takes the rotation matrix from the
previous step and gives an orientation matrix. The values from the orientation matrix tell you
your device’s rotation relative to the Earth’s magnetic north, as well as the device’s pitch and
roll relative to the ground.

Magnetic Declination and GeomagneticField
There’s another topic we want to cover with regard to orientation and devices. The
compass sensor will tell you where magnetic north is, but it won’t tell you where true north
is (a.k.a., geographic north). Imagine you are standing at the midpoint between the magnetic
north pole and the geographic north pole. They’d be 180 degrees apart. The further away
you get from the two north poles, the smaller this angle difference becomes. The angle
difference between magnetic north and true north is called magnetic declination. And the
value can only be computed relative to a point on the planet’s surface. That is, you have to
know where you’re standing to know where geographic north is in relation to magnetic north.
Fortunately, Android has a way to help you out, and it’s the GeomagneticField class.

In order to instantiate an object of the GeomagneticField class, you need to pass in a latitude
and longitude. Therefore, in order to get a magnetic declination angle, you need to know
where the point of reference is. You also need to know the time at which you want the value.
Magnetic north drifts over time. Once instantiated, you simply call this method to get the
declination angle (in degrees):

float declinationAngle = geoMagField.getDeclination();

The value of declinationAngle will be positive if magnetic north is to the east of geographic
north.

556 CHAPTER 24: Using Sensors

Gravity Sensors
This sensor isn’t a separate piece of hardware. It’s a virtual sensor based on the accelerometers.
In fact, this sensor uses logic similar to what we described earlier for accelerometers to produce
the gravity component of the forces acting on a device. We cannot access this logic, however,
so whatever factors and logic are used inside the gravity sensor class are what we must accept.
It’s possible, though, that the virtual sensor will take advantage of other hardware such as a
gyroscope to help it calculate gravity more accurately. The values array for this sensor reports
gravity just like the accelerometer sensor reports its values.

Linear Acceleration Sensors
Similar to the gravity sensor, the linear acceleration sensor is a virtual sensor that represents
the accelerometer forces minus gravity. Again, we did our own calculations earlier on the
accelerometer sensor values to strip out gravity to get just these linear acceleration force
values. This sensor makes that more convenient for you. And it could take advantage of other
hardware, such as a gyroscope, to help it calculate linear acceleration more accurately. The
values array reports linear acceleration just like the accelerometer sensor reports its values.

Rotation Vector Sensors
The rotation vector sensor represents the orientation of the device in space, with angles
relative to the frame of reference of the hardware accelerometer (see Figure 24-2). This
sensor returns a set of values that represents the last three components of a unit quaternion.
Quaternions are a subject that could fill a book, so we won’t be going into them here.

Thankfully, Google has provided a few methods within SensorManager to help with this
sensor. The getQuaternionFromVector() method converts a rotation vector sensor output to
a normalized quaternion. The getRotationMatrixFromVector() method converts a rotation
vector sensor output to a rotation matrix, and that can be used with getOrientation().
When converting rotation vector sensor output to an orientation vector, though, you need to
realize that it goes from –180 degrees to +180 degrees.

The ZIP file of sample apps for this chapter includes a version of VirtualJax that shows the
rotation vector in use.

References
Here are some helpful references to topics you may wish to explore further:

	www.androidbook.com/proandroid5/projects: A list of downloadable
projects related to this book. For this chapter, look for a ZIP file called
ProAndroid5_Ch24_Sensors.zip. This file contains all the projects
from this chapter, listed in separate root directories. There is also a
README.TXT file that describes exactly how to import projects into an IDE
from one of these ZIP files.

http://www.androidbook.com/proandroid5/projects

557CHAPTER 24: Using Sensors

	http://en.wikipedia.org/wiki/Lux: The Wikipedia entry for lux, the unit
of light measurement.

	www.ngdc.noaa.gov/geomag/faqgeom.shtml: Information about
geomagnetism from NOAA.

	www.youtube.com/watch?v=C7JQ7Rpwn2k: A Google Tech Talk from
David Sachs on accelerometers, gyroscopes, compasses, and Android
development.

	http://stackoverflow.com/questions/1586658/combine-gyroscope-
and-accelerometer-data: A nice posting on stackoverflow.com that
talks about combining gyroscope and accelerometer sensor data for use
in applications.

	http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation:
The Wikipedia page on quaternions and how they can be used in
representing spatial rotation, such as an Android device.

Summary
In this chapter, we covered the following topics:

What sensors are in Android.	

Finding out what sensors are on a device.	

Specifying the sensors that are required for an application before 	
it will be loadable onto an Android device.

Determining the properties of a sensor on a device.	

How to get sensor events.	

The fact that events come whenever the sensor value changes, 	
so it is important to understand there could be a lag before you get
your first value.

The different speeds of updates from a sensor and when to use 	
each one.

The details of a 	 SensorEvent and how these can be used for the various
sensor types.

Virtual sensors, made up of data from other sensors. The 	 ROTATION_
VECTOR sensor is one of these.

Determining the angle of the device using sensors, and telling which 	
direction the device is facing.

http://en.wikipedia.org/wiki/Lux
http://www.ngdc.noaa.gov/geomag/faqgeom.shtml
http://www.youtube.com/watch?v=C7JQ7Rpwn2k
http://stackoverflow.com/questions/1586658/combine-gyroscope-and-accelerometer-data
http://stackoverflow.com/questions/1586658/combine-gyroscope-and-accelerometer-data
http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

559

Chapter 25
Exploring Android Persistence
and Content Providers

There are a number of ways of saving state in the Android SDK. Some of these are 1) shared
preferences, 2) internal files, 3) external files, 4) SQLite, 5) content providers, 6) O/R mapping
tools, and 7) network storage in the cloud. We will briefly introduce each of these state-
saving options first and then cover in detail managing application state using SQLite and
content providers.

Saving State Using Shared Preferences
We have covered shared preferences in Chapter 11. Shared preferences are key/value-
based XML files owned by your application. Android has a framework on top of this general
persistence mechanism to display/update/retrieve preferences without writing a lot of code.
This latter aspect is the main topic of Chapter 11.

Chapter 11 also touched briefly on how an application can store any type of data using
the shared preference API in XML files. In this approach data is converted to a string
representation first and then stored in the preferences key/value store. This approach can be
used to store any arbitrary state of your application as long as it is small to medium in size.

The shared preference XML files are internal to the application on your device. This data is
not directly available to other applications. End user cannot directly manipulate this data
by mounting on to a USB port. This data is removed automatically when the application is
removed.

From simple to moderate application persistence needs, you can take advantage of shared
preferences by storing various trees of Java objects directly in a shared preference file. In
a given preference file you can have a key point to a serialized Java object tree. You can
also use multiple preference files for multiple Java object trees. We have used JSON/GSON
library from google to do this conversion from Java objects to their equivalent JSON string

560 CHAPTER 25: Exploring Android Persistence and Content Providers

values quite effectively. In this approach a Java object tree is streamed as a JSON string
using the google GSON library. This tree is then stored as a value in a key/value pair of a
preference file. Keep in mind that GSON and JSON conversion of a Java object may have
some limitations. Read the GSON/JSON documentation to see how complex a Java object
can get to make this approach work. We are fairly confident that for most data-based Java
objects this will work.

Listing 25-1 has some sample code for how to save a Java tree using GSON/JSON and
shared preferences.

Listing 25-1. Saving a Java Object Tree Using JSON in Shared Preferences XML Files

//Implementation of storeJSON for storing any object
public void storeJSON(Context context, Object anyObject) {

 //Get a GSON instance
 Gson gson = new Gson();

 //Convert Java object to a JSON string
 String jsonString = gson.toJson(anyObject);

 //See Chapter 11 for more details on how to get a shared preferences reference
 String filename = "somefilename.xml";
 int mode = Context.MODE_PRIVATE;
 SharedPreferences sp = context.getSharedPreferences(filename,mode);

 //Save the JSON string in the shared preferences
 SharedPreferences.Editor spe = sp.edit();
 spe.putString("json", jsonString);
 spe.commit();
}
//This code can then be used by a client like this:
//Create any data object with reasonable complexity
//Ex: MainObject mo = MainObject.createTestMainObject();
//You can then call storeJSON(some-activity, mo) below

Listing 25-2 shows some sample code for how to retrieve a Java tree using GSON/JSON
and shared preferences.

Listing 25-2. Reading a Java Object Tree Using JSON from Shared Preferences XML Files

public Object retrieveJSON(Context context, String filename, Class classRef) {
 int mode = Context.MODE_PRIVATE;
 SharedPreferences sp = context.getSharedPreferences(filename,mode);
 String jsonString = sp.getString("json", null);
 if (jsonString == null) {
 throw new RuntimeException("Not able to read the preference");
 }
 Gson gson = new Gson();
 return gson.fromJson(jsonString, classRef);
}

561CHAPTER 25: Exploring Android Persistence and Content Providers

//You can then do this in the client code
MainObject mo = (MainObject)retrieveJSON(context,"somefilename.xml", MainObject.class);
String compareResult = MainObject.checkTestMainObject(mo);
if (compareResult != null) {
 throw new RuntimeException("Something is wrong. Objects don't match");
}

This code requires that you have the GSON Java library added to your project. This GSON-
based approach is covered in detail in our companion book, Expert Android from Apress.
This is also briefly documented online at http://androidbook.com/item/4438.

Saving State Using Internal Files
In Android, you can also use internal files to store the state of your application. These
internal files are internal to the application on your device. This data is not directly available
to other applications. End user cannot directly manipulate this data by mounting on to a
USB port. This data is removed automatically when the application is removed.

Listing 25-3 shows sample code for how to save a Java tree using GSON/JSON and
internal files.

Listing 25-3. Reading/Writing JSON Strings from/to an Android Internal File

private Object readFromInternalFile(Context appContext, String filename, Class classRef)
throws Exception
{
 FileInputStream fis = null;
 try {
 fis = appContext.openFileInput(filename);
 //Read the following string from the filestream fis
 String jsonString;

 Gson gson = new Gson();
 return gson.fromJson(jsonString, classRef);
}
 finally {
 // write code to closeStreamSilently(fis);
 }
}
private void saveToInternalFile(Context appContext, String filename, Object anyObject){
 Gson gson = new Gson();
 String jsonString = gson.toJson(anyObject);

 FileOutputStream fos = null;
 try {
 fos = appContext.openFileOutput(filename
 ,Context.MODE_PRIVATE);
 fos.write(jsonString.getBytes());
 }
 finally {
 // closeStreamSilently(fos);
 }
}

http://androidbook.com/item/4438

562 CHAPTER 25: Exploring Android Persistence and Content Providers

This approach based on internal files and GSON is covered in detail in our companion book,
Expert Android from Apress (http://www.apress.com/9781430249504). This is also briefly
documented online at http://androidbook.com/item/4439.

Saving State Using External Files
In Android, external files are stored either on the SD card or on the device. These become
public files that other apps including the user could see and read outside the context of your
application. For many apps that want to manage their internal state these external files will
unnecessarily pollute the public space.

Because the data you would represent as JSON is typically very specific to your application,
it doesn’t make sense to make this available as external storage, which is typically used for
music files, video files, or files that are commonly in a format that is understandable by other
applications.

Because external storage such as an SD card can be in various states (available, not
mounted, full, etc.), it is harder to program this for simple apps when the data is small
enough. So we could not make a good case for now that the application state be maintained
on external storage.

A hybrid approach may be meaningful if the application requires music and photos and
those can go on the external storage while keeping the core state data in JSON and internal.

The android.os.Environment class and the android.content.Context class have a number
of methods to read and write to external files and directories. We have not included code
examples because the approach is very similar to internal files once you get access to these
files through the andorid.content.Context.

Saving State Using SQLite
Android apps can use SQLite databases to store their state. SQLite is well integrated into
the fabric of Android. If you want to store the internal state of your application robustly then
this is probably the best approach. However, working with any relational database including
SQLite has a lot of nuances. We will cover the essentials and nuances of using SQLite on
Android a little later in the chapter.

Saving State Using O/R Mapping Libraries
O/R mapping stands for Object-to-Relational Mapping. A key difficulty with storing state in
a relational database from a programming language like Java is the mismatch between Java
object structures and relational structures of the database. One needs to map between the
names, types, and relationships of fields as they are in the Java space and their equivalents
in the database space. This mapping is error prone. You will see this when we cover the
SQLite in detail later.

http://www.apress.com/9781430249504
http://androidbook.com/item/4439

563CHAPTER 25: Exploring Android Persistence and Content Providers

There is a need for simplifying this mapping of data between Java and SQL. This space in
the industry is called O/R mapping. A few tools are now available to solve this in Android.
It is beyond the scope of this book to cover the essentials of these O/R mapping tools. But
we will name a couple of these tools and give their online references now.

Two key tools in this space are GreenDAO (http://greendao-orm.com/) and OrmLite
(http://ormlite.com/). There are more appearing every year. So check often to see if
the new ones are faster or easier. GreenDAO uses a code generation approach based on
schema definitions. It is said to be three to four times faster than OrmLite. OrmLite fuses
the schema definition with Java classes through annotations. The latter approach is easier
programmatically. Also OrmLite works the same on any Java platform. However, possibly
due to reflection used at run time, it can be slower, but I suspect is fast enough for most
applications.

We predict that using one of these O/R mapping libraries is a key need to get your apps
faster to the market. We recommend that you isolate the persistence services and start with
OrmLite and then move to GreenDAO if your app gains enough traction or for moving to
production from your prototype.

Saving State Using Content Providers
Android provides a higher-level abstraction on top of data stores based on URIs. Using this
approach any application can read or store data using REST like URIs. This abstraction
also allows applications to share their data through APIs based on URI strings. In this
approach submitting a URI will give back a collection of rows and columns in a database
cursor. A URI can also take a set of key/value pairs and persist them in a target database if
permissions are granted. This is a general-purpose mechanism for interoperability of data
between Android applications. We will cover this in greater detail later in the chapter. This
is a preferred mechanism if your application has data that is valuable to be shared, created,
or manipulated by other applications. For example many applications that deal with notes,
documents, audio, or video implement their data as content providers. This is also the case
with most of Android’s core data-related services.

Saving State Using Network Storage
Network storage comes into play when the data created or used by an application needs to
be shared via a network by other users on either the same platform or different platforms like
in a collaborative application. This back-end service facility utilized by mobile application is
being called MBaaS (Mobile Back-end As A Service). Parse.com is an example of a MBAAS
that provides back-end services such as user management, user logins, security, social,
common network storage, server side business logic, and notifications.

Android also natively uses a concept called sync adapters to transfer data between the
device and network servers. You can read more on sync adapters at http://developer.
android.com/training/sync-adapters/index.html. This is a framework that uses
asynchronous callbacks to optimize transfer of arbitrary amounts of data efficiently by
scheduling and executing it at the most opportune moment. The framework sweats the
detail and developers just provide the transfer code.

http://greendao-orm.com/
http://ormlite.com/
http://developer.android.com/training/sync-adapters/index.html
http://developer.android.com/training/sync-adapters/index.html

564 CHAPTER 25: Exploring Android Persistence and Content Providers

That concludes the overview of various ways to save state for Android mobile applications.
We will cover now two of those approaches in detail: SQLite and content providers. We will
start with the Android SQLite API.

Storing Data Directly Using SQLite
In this section we will explore in detail how to use SQLite effectively to manage Android
application state. You will understand the extent of SQLite support in Android. We will
show you the essential code snippets. We will show you best practices for using SQLite on
Android. We will show you how best to load DDLs to create your database. We will show you
a cleaner architectural pattern to abstract persistence services. We will show how to apply
transactions through dynamic proxies. This section is a robust treatment of using SQLite on
Android. We also have a sample program that you can download to see the complete working
implementation. Let’s start with a quick overview of SQLite packages and classes in Android.

Summarizing Key SQLite Packages and Classes
Android supports SQLite through its Java package android.database.sqlite. Some of
the key classes you will need to understand for effectively using the Android SQLite API
are listed in Listing 25-4. Note that some of the classes are outside the android.database.
sqlite package.

Listing 25-4. Key SQLite Java Classes in the Android SDK

android.database.sqlite.SQLiteDatabase
android.database.sqlite.SQLiteCursor
android.database.sqlite.SQLiteQueryBuilder
android.content.ContentValues
android.database.Cursor
android.database.SQLException
android.database.sqlite.SQLiteOpenHelper

Let’s talk about each of these packages and classes briefly.

SQLiteDatabase: SQLiteDatabase is a Java class that represents the database usually
referring to a “.db” file on the file system. Using this object you can query, insert, update,
or delete for a given table in that database. You can also execute a single arbitrary SQL
statement. You can apply transactions. You can also use this object to define tables through
DDLs (Data Definition Language). DDLs are statements that let you create database entities
such as tables, views, indexes, etc. Typically there is a single instance of this object in your
application representing your database.

SQLiteCursor: This Java class represents a collection of rows that are returned from an
SQLiteDatabase. It also implements the android.database.Cursor interface. This object has
methods to navigate the rows one at a time like a forward database cursor and retrieving
the rows only as needed. This object can also jump forward or backward if needed like a
random cursor by implementing windowing qualities. This is also the object you will use to
read the column values for any current row.

565CHAPTER 25: Exploring Android Persistence and Content Providers

SQLiteQueryBuilder: This is a helper Java class to construct an SQLite query string by
incrementally specifying table names, column names, where clause, etc., as separate fields.
This class has a number of set methods to gradually build up the query as opposed to
specifying the entire SQL Query as a string. You can also use the query methods directly on
the SQLiteDatabase class if your query is simple.

ContentValues: A Java object of this class holds a set of key/value pairs that are used by a
number of SQLite classes to insert or update a row of data.

SQLException: Most Android SQLite database APIs throw this exception when there are errors.

SQLiteOpenHelper: This helper Java object provides access to an SQLiteDatabase by
examining a few things: given a filename of the database, this object checks to see if that
database is already installed and available. If it is available it checks to see if the version
is the same. If the version is also the same it provides a reference to the SQLiteDatabase
representing that database. If the version is different it provides a callback to migrate the
database prior to providing a valid reference to the database. If the database file doesn’t
exist then it provides a callback to create and populate the database. You will extend this
base class and provide implementations to these various callbacks. You will see this shortly
in the provided code snippets.

That is a quick summary of the key classes you use to save state of your application in an
SQLite database. Let us now turn to key concepts in using SQLite for managing application
state. Let’s start with creating a database.

Creating an SQLite Database
Creation of a database in Android is controlled through the SQLiteOpenHelper class. For
each database in your application you will have a Java database object that is an instance of
this class. This SQLiteOpenHelper object has a pair of get methods to get a reference to the
read-optimized (configured for) or write-optimized (configured for) SQLiteDatabase object.
Creating or getting access to your SQLite database object involves the following:

1. Extending SQLiteOpenHelper and supplying the database name and
version to the constructor of this derived class so that those values
can be passed to the base class

2. Overriding the onCreate(), onUpgrade(), and onDowngrade() methods
from SQLiteOpenHelper. You get a call to onCreate() if this database
is not there. You get a call to onUpgrade() if the version of the
database is newer, and a call to onDowngrade() if the version of the
database is older from the one that is on the device. You will use
execute DDL statements in these methods to create or adjust your
database. If your database is not new or has the same version, then
neither of these callbacks will be invoked.

3. Have a single static reference to this derived object. Call get
methods on this object to get a reference to a copy of readable or
writable database. Use these database references to perform CRUD
operations and transactions.

566 CHAPTER 25: Exploring Android Persistence and Content Providers

Listing 25-5 is a code snippet that demonstrates how these steps are implemented in
creating a database called “booksqlite.db”, a database to hold a single table of books and
their detail.

Listing 25-5. Using SQLiteOpenHelper

// File reference in project: DirectAccessBookDBHelper.Java
/**
* A complete example of SQLiteOpenHelper demonstrating
* 1. How to create a databases
* 2. How to migrate a database
* 3. How to hold a static reference
* 4. How to give out read and write database references
*
* This class also can act as a DatabaseContext.IFactory to produce read and write
* database references. This aspect is not critical to understanding but included
* for advanced readers and for some material later in the chapter.
*/
public class DirectAccessBookDBHelper extends SQLiteOpenHelper
implements DatabaseContext.IFactory
{
 //there is one and only one of these database helpers
 //for this database for this entire application
 public static DirectAccessBookDBHelper m_self =
 new DirectAccessBookDBHelper(MyApplication.m_appContext);

 //Name of the database on the device
 private static final String DATABASE_NAME = "bookSQLite.db";

 //Name of the DDL file you want to load while creating a database
 private static final String CREATE_DATABASE_FILENAME = "create-book-db.sql";

 //Current version number of the database for the App to work
 private static final int DATABASE_VERSION = 1;

 //Just a logging tag
 private static final String TAG = "DirectAccessBookDBHelper";

 //Pass the database name and version to the base class
 //This is a non public constructor
 //Clients can just use m_self and not construct this object at all directly
 DirectAccessBookDBHelper(Context context) {
 super(context,DATABASE_NAME,null,DATABASE_VERSION);
 //Initialize anything else in your system that may need a
 //reference to this object.
 //Example: DatabaseContext.initialize(this);
 }

567CHAPTER 25: Exploring Android Persistence and Content Providers

 @Override
 public void onCreate(SQLiteDatabase db) {
 try {
 //No database exists. Load DDL from a file in the assets directory
 loadSQLFrom(this.CREATE_DATABASE_FILENAME,db);
 }
 catch(Throwable t) {
 //Problem creating database
 throw new RuntimeException(t);
 }
 }
 //A function to load one SQL statement at a time using execSQL method
 private void loadSQLFrom(String assetFilename, SQLiteDatabase db) {
 List<String> statements = getDDLStatementsFrom(assetFilename);
 for(String stmt: statements){
 Log.d(TAG,"Executing Statement:" + stmt);
 db.execSQL(stmt);
 }
 }
 //Optimize this function for robustness.
 //For now it assumes there are no comments in the file
 //the statements are separated by a semicolon
 private List<String> getDDLStatementsFrom(String assetFilename) {
 ArrayList<String> l = new ArrayList<String>();
 String s = getStringFromAssetFile(assetFilename);
 for (String stmt: s.split(";")) {
 //Add the stmt if it is a valid statement
 if (isValid(stmt)) {
 l.add(stmt);
 }
 }
 return l;
 }
 private boolean isValid(String s) {
 //write logic here to see if it is null, empty etc.
 return true; //for now
 }
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 //Use old and new version numbers to run DDL statements
 //to upgrade the database
 }
 //Using your specific application object to remember the application context
 //Then using that application context to read assets
 private String getStringFromAssetFile(String filename) {
 Context ctx = MyApplication.m_appContext;
 if (ctx == null) {
 throw new RuntimeException("Sorry your app context is null");
 }

568 CHAPTER 25: Exploring Android Persistence and Content Providers

 try {
 AssetManager am = ctx.getAssets();
 InputStream is = am.open(filename);
 String s = convertStreamToString(is);
 is.close();
 return s;
 }
 catch (IOException x) {
 throw new RuntimeException("Sorry not able to read filename:" + filename,x);
 }
 }
 //Optimize later. This may not be an efficient read
 private String convertStreamToString(InputStream is) throws IOException {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 int i = is.read();
 while (i != -1) {
 baos.write(i);
 i = is.read();
 }
 return baos.toString();
 }
 //Here are some examples of how to get access to readable and
 //writable databases. These methods will make sense once we get through the
 //the transactions applied through dynamic proxies
 /*
 public ReadDatabaseContext createReadableDatabase() {
 return new ReadDatabaseContext(this.getReadableDatabase());
 }
 public WriteDatabaseContext createWritableDatabase() {
 return new WriteDatabaseContext(this.getWritableDatabase());
 }
 */
}//eof-class DatabaseHelper
//Here is the code for MyApplication to remember the context
public class MyApplication extends Application {
 public final static String tag="MyApplication";
 public static volatile Context m_appContext = null;

 @Override
 public void onCreate() {
 super.onCreate();
 MyApplication.m_appContext = this.getApplicationContext();
 }
}
//assets/create-book-db.sql
CREATE TABLE t_books (id INTEGER PRIMARY KEY,
 name TEXT, isbn TEXT, author TEXT,
 created_on INTEGER, created_by TEXT,
 last_updated_on INTEGER, last_updated_by TEXT
);

569CHAPTER 25: Exploring Android Persistence and Content Providers

Defining a Database Through DDLs
In Listing 25-5, the DirectAccessBookDBHelper is a derived class of SQLiteOpenHelper that
allows us to examine an existing database and see if it needs to be created or just migrated
based on its version.

The method onCreate()is called only if this database does not exist on the device. Without
the SQLiteOpenHelper we would have had to examine the physical location of this file and
see if it exists. In other words SQLiteOpenHelper is really a thin wrapper that is saving us a
number of “if-else” clauses to examine the database and do the necessary initialization: be it
creating it or migrating it.

A number of examples for creating an Android database on the Internet use embedded DDL
strings in Java code to create the tables needed. As DDL statements, strings in Java code
are difficult to read and error prone. A better approach is to put these database creation
scripts in a text file in the assets directory. Sample code in Listing 25-5 demonstrates how to
read a text file from an assets directory of your application and use the execSQL() function
available on the SQLiteDatabase to initialize the database.

A limitation of execSQL() is it can execute only one SQL statement at a time. That is why
the code in Listing 25-5 reads the script file and parses it into a series of statements using
a simple syntax. You may want to scour the Internet to see better parsing utilities to allow a
better script file support. Another alternative, if it works for your case, is to have a schema
class whose sole purpose is contain static public strings for your DDL as it alleviates the
need for parsing files. We have links to some of these Java-based libraries in the online
references provided at the end of this chapter. Especially, Java-based tools using ANTLR
have a lot of promise for complex database setups.

The onCreate() function also wraps its execution in a transaction so that the executed
database is consistent.

If you have a lot of scripts it is also possible to create the database entirely and keep it in the
assets folder. During deployment if the database doesn’t exist you can just copy the file to
its target location.

Migrating a Database
As stated the SQLiteOpenHelper recognizes version numbers and appropriately calls the
onUpgrade() method to upgrade the database. Here also you may want to keep series
of scripts in the assets folder that can alter the database appropriately depending on the
differences in the version numbers. Keep in mind that the version number on the device
may be smaller or larger than your target version. So you may need a set of scripts that
are unique to each conversion sequence: Going from V1 to V3 or from V2 to V3 or V3 to
V1. Going backwards may require either warnings or dynamic downloading of server-side
conversions to an older version, as the source code of an older version of the app is unlikely
to have the needed utilities to step down from a future version.

570 CHAPTER 25: Exploring Android Persistence and Content Providers

Inserting Rows
At its core, inserting a row with its column values into SQLiteDatabase is merely calling the
insert-related methods on the SQLiteDatabase object. Pseudocode that explains this is
shown in Listing 25-6.

Listing 25-6. Basics of Inserting a Row Using SQLiteDatabase

//Get a reference to the database object
//Depending on the framework you have there could be many ways of doing this
SQLiteDatatabase db = DirectAccessBookDBHelper.m_self.getReadableDatabase();
String tablename; //which table you want to insert the row into

//populate a structure with the needed columns and their values
ContentValues cv = new ContentValues();
cv.put(columnName1, column1Value); //etc.

//A column that could be null if 'cv' is empty if an empty row is needed
//Provide null if that behavior is not needed
String nullColumnName = null;

//Insert the row
long rowId = db.insertOrThrow(tablename, nullColumnName, cv);

This code is really simple. Inserting any Java object using this code is merely reading its
attributes and putting those values into the ContentValues data set and just insert. As far as
Android’s SQLite insert capabilities are concerned, that is all you need to know.

How best to structure to get to your Java objects and how to convert those values into the
content values depends on your framework. This is a tedious process to do correctly. But
again, this detail is not essential for the basic understanding of insert. You will need this
level of rigor for most of your applications. You can skip this if you think this is complicated,
but we are including it here as we feel you will need this level of rigor for most of your
applications.

So getting the right column names and values for inserting rows requires some work and you
typically need the following (irrespective of the framework you use):

1. A Java object that typically represents the row in a database, for
example, a Book object

2. A table name to hold a set of books

3. String names for the columns available in the Books table

4. Finally, calling the insert method to persist the Book object as a row in
the Books table

We will give code snippets (some in pseudocode fashion) for each of these needs.
For actual code you can download the project for this chapter. Here are a couple of classes
in Listing 25-7 that represent a Book object in Java code.

571CHAPTER 25: Exploring Android Persistence and Content Providers

Listing 25-7. Ensuring Minimal Dependency Between Domain Objects and Persistence

// File reference in project: BaseEntity.Java
public class BaseEntity {
 private int id; //database identifier

 private String ownedAccount = null; //Multi-tenant if needed
 private String createdBy;
 private Date createdOn;
 private String lastUpdatedBy;
 private Date lastUpdatedOn;

 public BaseEntity(String ownedAccount, String createdBy, Date createdOn,
 String lastUpdatedBy, Date lastUpdatedOn, int id) {
 super();
 this.ownedAccount = ownedAccount;
 this.createdBy = createdBy;
 this.createdOn = createdOn;
 this.lastUpdatedBy = lastUpdatedBy;
 this.lastUpdatedOn = lastUpdatedOn;
 this.id = id;
 }
 //For persistence
 public BaseEntity(){}

 //Usual generated get/set methods
 //eliminated here for space. See the downloads
}
// File reference in project: Book.Java
public class Book extends BaseEntity
{
 //Key data fields
 //*************************************
 private String name;
 private String author;
 private String isbn;
 //*************************************

 public Book(String ownedAccount, String createdBy, Date createdOn,
 String lastUpdatedBy, Date lastUpdatedOn, String name,
 String author, String isbn) {
 super(ownedAccount, createdBy, createdOn, lastUpdatedBy, lastUpdatedOn,-1);
 this.name = name;
 this.author = author;
 this.isbn = isbn;
 }
 //To help with persistence
 public Book() {}
 //Generated methods get and set methods...
 //....
 //The following method is here for testing purposes
 //and also to see how a book object is typically created

572 CHAPTER 25: Exploring Android Persistence and Content Providers

 public static Book createAMockBook() {
 String ownedAccount = "Account1";
 String createdBy = "satya";
 Date createdOn = Calendar.getInstance().getTime();
 String lastUpdatedBy = "satya";
 Date lastUpdatedOn = Calendar.getInstance().getTime();

 //See how many books I have and increment it by one
 //The following method returns a collection of books in the database
 //This is not essential for your understanding here
 //You will see this clarified when you read the section of transactions
 List<Book> books = Services.PersistenceServices.bookps.getAllBooks();
 int i = books.size();
 String name = String.format("Book %s",i);
 String author = "satya";
 String isbn = "isbn-12344-" + i;

 return new Book(ownedAccount,createdBy,createdOn,
 lastUpdatedBy,lastUpdatedOn,
 name,author,isbn);
 }
}

This listing has two Java classes: a BaseEntity and a Book that extends the BaseEntity.
Objects that look like a Book in Listing 25-7 are called domain objects. These are pure Java
objects that can move around in the Java space of your program without being burdened by
their behavior relating to persistence. However, who created these objects, when they were
created, and such attributes are encapsulated in the BaseEntity so that all domain objects
have this basic information.

Because the SQLite database methods require explicit column names for these objects that
aspect is defined in a separate set of classes that describe the metadata for these objects.
These supporting classes are given in Listing 25-8.

Listing 25-8. Defining Metadata for Domain Objects

// File reference in project: BaseEntitySQLiteSQLiteMetaData.Java
public class BaseEntitySQLiteSQLiteMetaData {
 static public final String OWNED_ACCOUNT_COLNAME = "owned_account";
 static public final String CREATED_BY_COLNAME = "created_by";
 static public final String CREATED_ON_COLNAME = "created_on";
 static public final String LAST_UPDATED_ON = "last_updated_on";
 static public final String LAST_UPDATED_BY = "last_updated_by";
 static public final String ID_COLNAME = "id";
}
// File reference in project: BookSQLiteSQLiteMetaData.Java
public class BookSQLiteSQLiteMetaData extends BaseEntitySQLiteSQLiteMetaData {
 static public final String TABLE_NAME = "t_books";
 static public final String NAME = "name";
 static public final String AUTHOR = "author";
 static public final String ISBN = "isbn";
}

573CHAPTER 25: Exploring Android Persistence and Content Providers

These two classes parallel their respective BaseEntity and Book object classes. You have
to pay attention that the column names match to those in the database. So this need is
fundamentally error prone. Unless you use an O/R mapping library and craft one of your
own, this issue will remain and you have to test well. It is defining these classes explicitly by
the programmer that is eliminated in the O/R mapping tools that we discussed earlier.

Now that we have a Java class to represent a book and its metadata definition, that tells us
the table name and the fields we can proceed to write the Java code to save a book object
in the database, as shown in Listing 25-9 (note that this is still pseudocode and use the
download to see any missing details).

Listing 25-9. Using Android SQLite APIs to Insert a Row

// File reference in project: BookPSSQLite.Java
private long createBook(Book book) {
 //Get access to a read database
 SQLiteDatabase db = DirectAccessBookDBHelper.m_self.getWritableDatabase();

 //Fill fields from the book object into the content values
 ContentValues bcv = new ContentValues();
 //.... fill other fields example
 bcv.put(BookSQLiteSQLiteMetaData.NAME, book.getName());
 bcv.put(BookSQLiteSQLiteMetaData.ISBN, book.getIsbn());
 bcv.put(BookSQLiteSQLiteMetaData.AUTHOR, book.getAuthor());
 //.... fill other fields

 //if bcv is an empty set, then an empty row can possibly be inserted.
 //It is not the case for our book table. If it were though, the empty bcv
 //will result in an insert statement with no column names in it.
 //At least one column name is needed by SQL insert syntax.
 //It is one of these column names that goes below. For us this is not case so a null
 String nullColumnName = null;

 long rowId = db.insertOrThrow(BookSQLiteSQLiteMetaData.TABLE_NAME,
 nullColumnName,
 bcv);
 return rowId;
}

The logic in Listing 25-9 is quite simple. Get a reference to a Book object we want to
save. Copy the field values from the book into a ContentValues key/value pair object. Use
metadata classes to define the field names correctly. Use the filled-in ContentValues object
and call the insert method. If we don’t do anything, the insert is encapsulated in an auto
commit. We will talk about how to do transactions shortly, as the theory of it is a bit involved
although the code is quite simple to write. The insert method returns the newly inserted
primary key ID for this table. This convention of returning the primary key of the table comes
from the underlying SQLite product documentation and is not Android specific.

The nullColumnName is related to the syntax of the SQL insert statement. If the row has
ten columns but only two columns and their non-null values are indicated, then a new row
is inserted with those two columns, and it is expected that the remaining eight columns
will allow nulls. If you want a row with every column as null it is possible to issue an insert

574 CHAPTER 25: Exploring Android Persistence and Content Providers

statement with no column names at all, matching the empty content values set. However, an
insert statement with no column names is not allowed. So this parameter nullColumnName
can contain one of the column names that could be null so that the insert statement syntax
requirement is satisfied. The rest of the columns will be made null by the database internally
when this row is inserted. Usually this column name is passed in as null because it is rare
that we want to insert a row where every column is empty or null.

Updating Rows
Listing 25-10 is a sample pseudocode snippet (for full code see the download project) to
show how to update a row in the database. Notice how Book object and BookSQLiteMetaData
classes are used to minimize errors in specifying table names and column names. The
approach is similar to the insert method.

Listing 25-10. Android SQLite API to Update a Record

// File reference in project: BookPSSQLite.Java
public void updateBook(Book book) {
 if (book.getId() < 0) {
 throw new SQLException("Book id is less than 0");
 }
 //Get access to a read database
 SQLiteDatabase db = DirectAccessBookDBHelper.m_self.getWritableDatabase();

 //Fill fields from the book object into the content values
 ContentValues bcv = new ContentValues();
 //.... fill other fields
 bcv.put(BookSQLiteSQLiteMetaData.NAME, book.getName());
 bcv.put(BookSQLiteSQLiteMetaData.ISBN, book.getIsbn());
 bcv.put(BookSQLiteSQLiteMetaData.AUTHOR, book.getAuthor());
 //.... fill other fields

 //You can do this
 String whereClause = String.format("%s = %s",BookSQLiteSQLiteMetaData.ID_COLNAME,

book.getId());
 String whereClauseArgs = null;
 //Or the next 4 lines (this is preferred)
 String whereClause2 = BookSQLiteSQLiteMetaData.ID_COLNAME + " = ?";
 String[] whereClause2Args = new String[1];
 whereClause2Args[1] = Integer.toString(book.getId());

 int count = db.update(BookSQLiteSQLiteMetaData.TABLE_NAME, bcv, whereClause2,

whereClause2Args);
 if (count == 0) {
 throw new SQLException(
 String.format("Failed to update book for book id:%s",book.getId()));
 }
}

575CHAPTER 25: Exploring Android Persistence and Content Providers

Deleting Rows
Listing 25-11 is an example of how to delete a row from the database.

Listing 25-11. Android SQLite API to Delete a Record

// File reference in project: BookPSSQLite.Java
public void deleteBook(int bookid){
 //Get access to a writable database
 SQLiteDatabase db = DirectAccessBookDBHelper.m_self.getWritableDatabase();

 String tname = BookSQLiteSQLiteMetaData.TABLE_NAME;
 String whereClause =
 String.format("%s = %s;",
 BookSQLiteSQLiteMetaData.ID_COLNAME,
 bookid);
 String[] whereClauseargs = null;
 int i = db.delete(tname,whereClause, whereClauseargs);
 if (i != 1) {
 throw new RuntimeException("The number of deleted books is not 1 but:" + i);
 }
}

Reading Rows
Listing 25-12 shows pseudocode snippet (for full code see the download project) to read
from SQLite using the SQLiteDatabase.query() method. This method returns a Cursor
object, which you can use to retrieve each row.

Listing 25-12. Android SQLite API to Read Records

// File reference in project: BookPSSQLite.Java
public List<Book> getAllBooks() {
 //Get access to a read database
 SQLiteDatabase db = DirectAccessBookDBHelper.m_self.getReadableDatabase();

 String tname = BookSQLiteSQLiteMetaData.TABLE_NAME;
 //Get column name array from the metadata class
 //(See the download how the column names are gathered)
 //(at the end of the day it is just a set of column names
 String[] colnames = BookSQLiteSQLiteMetaData.s_self.getColumnNames();

 //Selection
 String selection = null; //all rows. Usually a where clause. exclude where part
 String[] selectionArgs = null; //use ?s if you need it

 String groupBy = null; //sql group by clause: exclude group by part
 String having = null; //similar
 String orderby = null;
 String limitClause = null; //max number of rows

576 CHAPTER 25: Exploring Android Persistence and Content Providers

 //db.query(tname, colnames)
 Cursor c = null;

 try {
 c = db.query(tname,colnames,selection,selectionArgs,groupBy,having,orderby,limitClause);
 //This may not be the optimal way to read data through a list
 //Directly pass the cursor back if your intent is to read these one row at a time
 List<Book> bookList = new ArrayList<Book>();
 for(c.moveToFirst();!c.isAfterLast();c.moveToNext()) {
 Log.d(tag,"There are books");
 Book b = new Book();

 //..fill base fields the same way
 b.setName(c.getString(c.getColumnIndex(BookSQLiteMetaData.NAME)));
 b.setAuthor(c.getString(c.getColumnIndex(BookSQLiteMetaData.AUTHOR)));
 b.setIsbn(c.getString(c.getColumnIndex(BookSQLiteMetaData.ISBN)));
 //..fill other fields

 //Or you could delegate this work to the BookSQLiteMetaData object
 //as we have done in the sample downloadable project
 //Ex: BookSQLiteSQLiteMetaData.s_self.fillFields(c,b);

 bookList.add(b);
 }
 return bookList;
 }
 finally {
 if (c!= null) c.close();
 }
}

Here are a few facts about an Android cursor object:

A cursor is a collection of rows.	

You need to use 	 moveToFirst() before reading any data because the
cursor starts off positioned before the first row.

You need to know the column names.	

You need to know the column types.	

All field-access methods are based on column number, so you must 	
convert the column name to a column number first. Note that this
lookup can be optimized. It’s more efficient to populate the column
name array in order if you wish to fetch the values and then use explicit
constant indices on the cursor.

The cursor is random (you can move forward and backward, and you 	
can jump).

Because the cursor is random, you can ask it for a row count.	

577CHAPTER 25: Exploring Android Persistence and Content Providers

Applying Transactions
SQLite libraries on Android support transactions. The transaction methods are available on
the SQLiteDatabase class. These methods are shown in pseudocode snippet (for full code
see the download project) in Listing 25-13.

Listing 25-13. SQLite API for Transactions

// File reference in project: DBServicesProxyHandler.Java
public void doSomeUpdates() {
 SQLiteDatabase db; //Get a reference to this database through helper
 db.beginTransaction();
 try {
 //...call a number of database methods
 db.setTransactionSuccessful();
 }
 finally {
 db.endTransaction();
 }
}

Summarizing SQLite
If you are a Java programmer with a few years of experience, what we have covered so far
is sufficient to understand the SQLite API in Android. With the material covered so far, you
know how to check for a database, create a database through DDL, insert rows, update
rows, delete rows, or read using database cursors. We have also showed you the basic API
for transactions. However, if you are not an experienced hand at Java, database transactions
are tricky to implement correctly and efficiently. The next section will tell you an API-based
pattern using Java dynamic proxies.

Doing Transactions Through Dynamic Proxies
You can visualize your mobile application as a collection of two bricks: An API brick and a UI
brick. The API brick will have a series of stateless methods that provide logic and data to the
UI brick. In this context the method in Listing 25-13 doSomeUpdates() is considered a reusable
API by many parts of the UI or by other APIs. Because it is a reusable API the client decides
whether something should be committed or not committed in that transaction. This means
the API should not be dealing with transactions most of the time. It is very much like a stored
procedure in a relational database. A stored procedure rarely does transactions directly. The
container of the stored procedure decides to commit or not commit external to the stored
procedure. The logic is this: if the stored procedure is invoked by itself then its output is
committed at the stored procedure level. If the stored procedure is called by another stored
procedure the commit waits until the main invoking stored procedure is complete.

It is better to use the same strategy for these APIs in your application to reduce the complexity in
implementing the APIs. This is done by intercepting calls to all the APIs to make a determination
if this is a direct call or being called by another API that is already being monitored for a
transaction. There are a number of ways to intercept the API calls that need to be intercepted.

578 CHAPTER 25: Exploring Android Persistence and Content Providers

This is also sometimes called Aspect-Oriented Programming or AOP. AOP needs sophisticated
tooling to do. Java provides a less sophisticated but straightforward way to do this through
dynamic proxies. A dynamic proxy is a facility in Java, based on Java reflection, that allows you
to intercept calls to an underlying object without the object being aware of it. When a client calls
the object through this proxy, the client thinks it is talking to the object directly. However, the
proxy can choose to apply other aspects (like security, logging, transactions, etc.) before sending
the call to the real object. The included project for this chapter provides a full implementation of a
dynamic proxy that automatically applies the transactional aspects.

We will show you first what your API implementations look like once a dynamic proxy is in
place. This will give you an idea of the simplicity of this approach to transactions first. Then
you can see if you want to take this route and use dynamic proxies. As we present the code
below note that we will be including only snippets or samples and not the entire code. Use
the downloadable project for full details. We have annotated the download project with a
lot of comments to help your understanding. With that caveat consider the API to work with
Book-based objects.

Listing 25-14. API-Based Interfaces for Working with the Book Domain Object

// File reference in project: IBookPS.Java
public interface IBookPS {
 public int saveBook(Book book);
 public Book getBook(int bookid);
 public void updateBook(Book book);
 public void deleteBook(int bookid);
 public List<Book> getAllBooks();
}

This interface defines operations using Java-based objects. The letters “PS” at the end of
IBookPS service indicates that this is a persistence service API for a book. Listing 25-15
shows an SQLite implementation for the IBookPS

Listing 25-15. Implementing the Book APIs Using SQLite

// File reference in project: BookPSSQLite.Java
// The missing classes in this code are in the download and not essential for
// exploring the idea.
// ASQLitePS is a class that contains reusable common methods like getting access
// to the read and write databases using the singleton database helper.
public class BookPSSQLite extends ASQLitePS implements IBookPS {
 private static String tag = "BookPSSQLite";
 @Override public int saveBook(Book book) {
 //get the database
 //case: id does not exist in the book object
 if (book.getId() == -1) {
 //id of the book doesn't exist so create it
 return (int)createBook(book);
 }
 //case: id exists in book object
 updateBook(book);
 return book.getId();
 }

579CHAPTER 25: Exploring Android Persistence and Content Providers

 @Override public void deleteBook(int bookid){
 SQLiteDatabase db = getWriteDb();
 String tname = BookSQLiteSQLiteMetaData.TABLE_NAME;
 String whereClause =
 String.format("%s = %s;",
 BookSQLiteSQLiteMetaData.ID_COLNAME,
 bookid);
 String[] whereClauseargs = null;
 int i = db.delete(tname,whereClause, whereClauseargs);
 if (i != 1) {
 throw new RuntimeException("The number of deleted books is not 1 but:" + i);
 }
 }
 private long createBook(Book book) {
 //book doesn't exist
 //create it
 SQLiteDatabase db = getWriteDb();

 ContentValues bcv = this.getBookAsContentValuesForCreate(book);

 //I don't need to insert an empty row
 //usually any nullable column name goes here if I want to insert an empty row.
 String nullColumnNameHack = null;
 //Construct values from the Book object. SQLException is a runtime exception
 long rowId = db.insertOrThrow(BookSQLiteMetaData.TABLE_NAME, nullColumnNameHack, bcv);
 return rowId;
 }
 @Override public void updateBook(Book book) {
 if (book.getId() < 0) {
 throw new SQLException("Book id is less than 0");
 }
 SQLiteDatabase db = getWriteDb();
 ContentValues bcv = this.getBookAsContentValuesForUpdate(book);
 String whereClause = String.format("%s = %s",BookSQLiteMetaData.ID_COLNAME,book.
getId());
 whereArgs[0] = BookSQLiteMetaData.ID_COLNAME;
 whereArgs[1] = Integer.toString(book.getId());

 int count = db.update(BookSQLiteMetaData.TABLE_NAME, bcv, whereClause, null);
 if (count == 0) {
 throw new SQLException(
 String.format("Failed to update book for book id:%s",book.getId()));
 }
 }
 private ContentValues getBookAsContentValuesForUpdate(Book book) {
 ContentValues cv = new ContentValues();
 //Following code loads column values from book object to the cv
 //See the downloadable project for the mechanics of it
 BookSQLiteMetaData.s_self.fillUpdatableColumnValues(cv, book);
 return cv;
 }

580 CHAPTER 25: Exploring Android Persistence and Content Providers

 private ContentValues getBookAsContentValuesForCreate(Book book) {
 ContentValues cv = new ContentValues();
 BookSQLiteMetaData.s_self.fillAllColumnValues(cv, book);
 return cv;
 }
 @Override public List<Book> getAllBooks() {
 SQLiteDatabase db = getReadDb();
 String tname = BookSQLiteMetaData.TABLE_NAME;
 String[] colnames = BookSQLiteMetaData.s_self.getColumnNames();

 //Selection
 String selection = null; //all rows. Usually a where clause. exclude where part
 String[] selectionArgs = null; //use ?s if you need it

 String groupBy = null; //sql group by clause: exclude group by part
 String having = null; //similar
 String orderby = null;
 String limitClause = null; //max number of rows
 //db.query(tname, colnames)
 Cursor c = null;

 try {
 c = db.query(tname,colnames,selection,selectionArgs,groupBy,having,orderby,

limitClause);
 //This may not be the optimal way to read data through a list
 //Directly pass the cursor back if your intent is to read these one row at a time
 List<Book> bookList = new ArrayList<Book>();
 for(c.moveToFirst();!c.isAfterLast();c.moveToNext())
 {
 Log.d(tag,"There are books");
 Book b = new Book();
 BookSQLiteMetaData.s_self.fillFields(c,b);
 bookList.add(b);
 }
 return bookList;
 }
 finally {
 if (c!= null) c.close();
 }
 }
 @Override public Book getBook(int bookid) {
 SQLiteDatabase db = getReadDb();
 String tname = BookSQLiteMetaData.TABLE_NAME;
 String[] colnames = BookSQLiteMetaData.s_self.getColumnNames();

 //Selection
 String selection =
 String.format("%s = %s",
 BookSQLiteMetaData.ID_COLNAME,
 bookid);

581CHAPTER 25: Exploring Android Persistence and Content Providers

 //all rows. Usually a where clause. exclude where part
 String[] selectionArgs = null; //use ?s if you need it

 String groupBy = null; //sql group by clause: exclude group by part
 String having = null; //similar
 String orderby = null;
 String limitClause = null; //max number of rows
 //db.query(tname, colnames)
 Cursor c = db.query(tname,colnames,selection,
 selectionArgs,groupBy,having,orderby,limitClause);
 try {
 if (c.isAfterLast()) {
 Log.d(tag,"No rows for id" + bookid);
 return null;
 }
 Book b = new Book();
 BookSQLiteMetaData.s_self.fillFields(c, b);
 return b;
 }
 finally {
 c.close();
 }
 }
}//eof-class

Notice how the implementation of the Book persistence API does not directly deal with the
transactional aspects of these methods. Instead, the transactions are handled by Java
dynamic proxy, which we will show shortly. Listing 25-16 shows how a client can see these
APIs and invoke these persistence APIs indirectly (again, please refer to the download
projects for classes that are referenced in this code but not listed here as they are not
essential for understanding).

Listing 25-16. Client Access to API-Based Services

// File reference in project: SQLitePersistenceTester.Java
// BaseTester is just a helper class to provider common functionality
// it implements some logging and report back methods to the UI activity
public class SQLitePersistenceTester extends BaseTester {
 private static String tag = "SQLitePersistenceTester";
 //Services is a static class that provides access to persistence services
 //Services class provides visibility to the implementer of the IBookPS
 //It demonstrates how a client gets access to the namespace of services
 //You will shortly see what this class is. Understand the intent first.
 private IBookPS bookPersistenceService = Services.PersistenceServices.bookps;
 //IReportBack is a logging interface to report loggable events back to the UI
 //UI will then choose to log those events and also show on the activity screen.
 SQLitePersistenceTester(Context ctx, IReportBack target) {
 super(ctx, target,tag);
 }

582 CHAPTER 25: Exploring Android Persistence and Content Providers

 //Add a book whose id is one larger than the books
 //in the database
 public void addBook() {
 Book book = Book.createAMockBook();
 int bookid = bookPersistenceService.saveBook(book);
 reportString(String.format("Inserted a book %s whose generated id now is %s"
 ,book.getName()
 ,bookid));
 }
 //Delete the last book
 public void removeBook() {
 List<Book> bookList = bookPersistenceService.getAllBooks();
 if(bookList.size() <= 0)
 {
 reportString("There are no books that can be deleted");
 return;
 }
 reportString(String.format("There are %s books. First one will be deleted",

bookList.size()));

 Book b = bookList.get(0);
 bookPersistenceService.deleteBook(b.getId());
 reportString(String.format("Book with id:%s successfully deleted", b.getId()));
 }

 //write the list of books so far to the screen
 public void showBooks() {
 List<Book> bookList = bookPersistenceService.getAllBooks();
 reportString(String.format("Number of books:%s", bookList.size()));
 for(Book b: bookList) {
 reportString(String.format("id:%s name:%s author:%s isbn:%s"
 ,b.getId()
 ,b.getName()
 ,b.getAuthor()
 ,b.getIsbn()));
 }
 }

 //Count the number of books in the database
 private int getCount() {
 List<Book> bookList = bookPersistenceService.getAllBooks();
 return bookList.size();
 }
}

In Listing 25-16, notice how simple it is to access the APIs through the static class Services.
Of course we haven’t shown you the implementation of Services and also the dynamic
proxy held by the static class Services. Listing 25-17 shows the source code for the static
Services class in order to give you an idea of how this scheme works. The goal of many, if
not all, of the listings in this chapter is to aid your understanding. For complete compilable
source code we kindly request that you refer to the downloadable projects for this chapter.

583CHAPTER 25: Exploring Android Persistence and Content Providers

Listing 25-17. Exposing APIs to Clients Through a Services Name Space

// File reference in project: Services.Java
/**
 * Allow a namespace for clients to discover various services
 * Usage: Services.persistenceServices.bookps.addBook(); etc.
 * Dynamic proxy will take care of transactions.
 * Dynamic proxy will take care of mock data.
 * Dynamic Proxy will allow more than one interface
 * to apply the above aspects.
 */
public class Services {
 public static String tag = "Services";
 public static class PersistenceServices {
 ////se this pointer during initialization
 public static IBookPS bookps = null;
 static {
 Services.init();
 }
 }
 //Although this method is empty, calling it
 //will trigger all static initialization code for this class
 public static void init() {}
 private static Object mainProxy;
 static {
 //A utility class to compile all database-related initializations so far
 //Gets the database helper going.
 //See the download project how it uses the concepts presented so far to do this
 Database.initialize();

 //set up bookps
 ClassLoader cl = IBookPS.class.getClassLoader();
 //Add more interfaces as available
 Class[] variousServiceInterfaces = new Class[] { IBookPS.class };

 //Create a big object that can proxy all the related interfaces
 //for which similar common aspects are applied
 //In this cases it is android SQLite transactions
 mainProxy = Proxy.newProxyInstance(cl,
 variousServiceInterfaces, new DBServicesProxyHandler());

 //Preset the namespace for easy discovery
 PersistenceServices.bookps = (IBookPS)mainProxy;
 }
}

Notice how DBServicesProxyHandler is a proxy for the implementation of IBookPS. When
called by clients, the DBServicesProxyHandler then calls the actual implementation for
IBookPS. The actual implementation of IBookPS is shown in Listing 25-15. Let’s turn to
the implementation of the dynamic proxy in Listing 25-18. Some of the code and classes
referenced in Listing 25-18 are only available in the downloadable projects. However, that
should not hinder the general understanding of the architecture of the dynamic proxy.

584 CHAPTER 25: Exploring Android Persistence and Content Providers

Listing 25-18. Java Dynamic Proxy to Wrap the SQLite API Implementations

// File reference in project: DBServicesProxyHandler.Java
/**
 * DBServicesProxyHandler: A class to externalize SQLite Transactions.
 * It is a dynamic proxy. See Services.Java to see how a reference to this is used.
 *
 * This proxy is capable of hosting multiple persistence interfaces.
 * Each interface may represent persistence aspects of a particular entity or a domain
object
 * like a Book. Or the interface can be a composite interface dealing with multiple
entities.
 *
 * It also uses ThreadLocals to pass the DatabaseContext
 * DatabaseContext holds a reference to the database that is on this thread
 * It also knows how to apply transactions to that database
 * It also knows if the current thread also has a running transaction
 * @See DatabaseContext
 *
 * DatabaseContext provides the SQLiteDatabase reference to
 * the implementation classes.
 *
 * Related classes
 * ****************
 * Services.Java : Client access to interfaces
 * IBookPS: Client interface to deal with persisting a Book
 * BookPSSQLite: SQLite Implementation of IBookPS
 *
 * DBServicesProxyHandler: This class that is a dynamic proxy
 * DatabaseContext: Holds a db reference for BookPSSQLite implementation
 * DirectAccessBookDBHelper: Android DBHelper to construct the database
 *
 */
public class DBServicesProxyHandler implements InvocationHandler {
 private BookPSSQLite bookServiceImpl = new BookPSSQLite();
 private static String tag = "DBServicesProxyHandler";
 DBServicesProxyHandler(){}
 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {
 logMethodSignature(method);
 String mname = method.getName();
 if (mname.startsWith("get")){
 return this.invokeForReads(method, args);
 }
 else {
 return this.invokeForWrites(method, args);
 }
 }
 private void logMethodSignature(Method method){
 String interfaceName = method.getDeclaringClass().getName();
 String mname = method.getName();
 Log.d(tag,String.format("%s : %s", interfaceName, mname));
 }

585CHAPTER 25: Exploring Android Persistence and Content Providers

 private Object callDelegatedMethod(Method method, Object[] args)
 throws Throwable{
 return method.invoke(bookServiceImpl, args);
 }
 private Object invokeForReads(Method method, Object[] args) throws Throwable {
 //See comments above about DatabaseContext
 if (DatabaseContext.isItAlreadyInsideATransaction() == true){
 //It is already bound
 return invokeForReadsWithoutATransactionalWrap(method, args);
 }
 else {
 //A new transaction
 return invokeForReadsWithATransactionalWrap(method, args);
 }

 }
 private Object invokeForReadsWithATransactionalWrap(Method method, Object[] args)
 throws Throwable {
 try {
 DatabaseContext.setReadableDatabaseContext();
 return callDelegatedMethod(method, args);
 }
 finally {
 DatabaseContext.reset();
 }
 }
 private Object invokeForReadsWithoutATransactionalWrap(Method method, Object[] args)
 throws Throwable {
 return callDelegatedMethod(method, args);
 }
 private Object invokeForWrites(Method method, Object[] args) throws Throwable {
 if (DatabaseContext.isItAlreadyInsideATransaction() == true) {
 //It is already bound
 return invokeForWritesWithoutATransactionalWrap(method, args);
 }
 else {
 //A new transaction
 return invokeForWritesWithATransactionalWrap(method, args);
 }
 }
 private Object invokeForWritesWithATransactionalWrap(Method method, Object[] args)
 throws Throwable {
 try {
 DatabaseContext.setWritableDatabaseContext();
 DatabaseContext.beginTransaction();
 Object rtnObject = callDelegatedMethod(method, args);
 DatabaseContext.setTransactionSuccessful();
 return rtnObject;
 }

586 CHAPTER 25: Exploring Android Persistence and Content Providers

 finally {
 try {
 DatabaseContext.endTransaction();
 }
 finally {
 DatabaseContext.reset();
 }
 }
 }
 private Object invokeForWritesWithoutATransactionalWrap(Method method, Object[] args)
 throws Throwable {
 return callDelegatedMethod(method, args);
 }
}//eof-class

This code in Listing 25-18 is the dynamic proxy implementation. We have not included
all the details but sufficient detail is here to understand how this dynamic proxy performs
transactions in an automated aspect-oriented way. It examines the called method name
through reflection to see if the method name starts with “get,” and if so then it assumes the
method doesn’t need a transactional context. Otherwise it marks the current thread as a
transactional context. At the return of the method it completes the transaction as successful.
If there are other methods called in between, the dynamic proxy knows from the thread that
there is a transaction in place and hence ignores that method from a transactional aspect
perspective.

Now based on your need you may want to alter this protocol based on annotations or some
other aspect of your interfaces, but you get the idea. This approach of separating APIs from
your UI is good design and you can use any number of persistent stores without changing
your client UI code. We strongly recommend that you adapt this approach irrespective of the
persistence mechanism you use, including the O/R mapping tools.

Exploring Databases on the Emulator and Available Devices
As you use SQLite as your persistence mechanism either directly or through content
providers (next section), you may want to examine the resulting database files on the device
for debugging purposes.

The database files created by SQLite API are kept in the following directory:

/data/data/<fully-qualified-package-name>/databases

You can use Eclipse Android file explorer to locate the directory and copy the files to your
local drive and use native SQLite tools provided by SQLite directly to see and manipulate
that database.

You can also use tools provided both by Android and by SQLite to examine these
databases. Many of these tools reside in the \<android-sdk-install-directory>\tools
subdirectory; others are in \<android-sdk-install-directory>\platform-tools.

587CHAPTER 25: Exploring Android Persistence and Content Providers

Some useful commands from these directories are

android list avd: To see a list of AVDs or emulators
emulator.exe @avdname: To start an emulator with a given name
adb.exe devices: To see the devices or emulators
adb shell: To open a shell on the emulator or device

You can use the following commands from an “adb shell.” These will work on the emulator
but on a real device you will need root access.

ls /system/bin : To see available commands
ls -l /: Root level directories
ls /data/data/com.android.providers.contacts/databases: an example
ls -R /data/data/*/databases: To see all databases on the device or emulator

If there were a find command in the included Android Unix shell, you could look at all the
*.db files. But there is no good way to do this with ls alone. The nearest thing you can do
is this:

ls -R /data/data/*/databases

With this command, you will notice that the Android distribution has the databases shown in
Listing 25-19 (depending on your release, this list may vary):

Listing 25-19. A Few Sample Databases

alarms.db
contacts.db
downloads.db
internal.db
settings.db
mmssms.db
telephony.db

You can invoke sqlite3 on one of these databases inside the adb shell by typing this:

sqlite3 /data/data/com.android.providers.contacts/databases/contacts.db

You can exit sqlite3 by typing this:

sqlite>.exit

Notice that the prompt for adb is # and the prompt for sqlite3 is sqlite>. These prompts could
be different depending on the device. You can read about the various sqlite3 commands by
visiting www.sqlite.org/sqlite.html. However, we will list a few important commands here so
you don’t have to make a trip to the Web. You can see a list of tables by typing

sqlite> .tables

http://www.sqlite.org/sqlite.html

588 CHAPTER 25: Exploring Android Persistence and Content Providers

This command is a shortcut for querying on the sqlite_master table as shown in Listing 25-20
(format and structure of the resulting output may vary).

Listing 25-20. Using SQLite sqlite_master Table

SELECT name FROM sqlite_master
WHERE type IN ('table','view') AND name NOT LIKE 'sqlite_%'
UNION ALL
SELECT name FROM sqlite_temp_master
WHERE type IN ('table','view')
ORDER BY 1

The table sqlite_master is a master table that keeps track of tables and views in the SQLite
database. The following command line displays a create statement for a table called people
in contacts.db (assuming this database exists on your device):

.schema people

This is one way to get at the column names of a table in SQLite. This will also show the
column data types. While working with content providers, you should note these column
types because access methods depend on them. Also note that this may not be a practical
way to see these databases as you may not have access to them on real devices. In that
case you have to rely on the documentation provided by the content provider.

You can issue the following command from your OS command prompt to pull down the
contacts.db file to the local file system:

adb pull /data/data/com.android.providers.contacts/databases/contacts.db É
c:/somelocaldir/contacts.db

The sample SQL statements in Listing 25-21 could help you navigate through an SQLite
database quickly (alternatively you can use any third-party SQLite browser tool):

Listing 25-21. Sample SQL Code for SQLite

--Set the column headers to show in the tool
sqlite>.headers on

--select all rows from a table
select * from table1;

--count the number of rows in a table
select count(*) from table1;

--select a specific set of columns
select col1, col2 from table1;

--Select distinct values in a column
select distinct col1 from table1;

--counting the distinct values
select count(col1) from (select distinct col1 from table1);

589CHAPTER 25: Exploring Android Persistence and Content Providers

--group by
select count(*), col1 from table1 group by col1;

--regular inner join
select * from table1 t1, table2 t2
where t1.col1 = t2.col1;

--left outer join
--Give me everything in t1 even though there are no rows in t2
select * from table t1 left outer join table2 t2
on t1.col1 = t2.col1
where

Exploring Content Providers
Earlier in the chapter we touched upon content providers to share data between
applications. Content providers as stated are wrappers around a data store. The data stores
could be local or remote. The data stores are usually SQLite databases on the local device.

To retrieve data from a content provider or save data into a content provider, you will use
a set of REST-like URIs. For example, if you were to retrieve a set of books from a content
provider that is an encapsulation of a book database, you might need to use a URI like this:

content://com.android.book.BookProvider/books

To retrieve a specific book from the book database (like say book 23), you might use a URI
like this:

content://com.android.book.BookProvider/books/23

You will see in this chapter how these URIs translate to underlying database-access
mechanisms. Any application with the appropriate access permissions on the device can
make use of these URIs to access and manipulate data.

Exploring Android’s Built-in Providers
Android comes with a number of built-in content providers, which are documented in the
SDK’s android.provider Java package. You can view the list of these providers here:

http://developer.android.com/reference/android/provider/package-summary.html

The providers include, for example, Contacts and Media Store. These SQLite databases
typically have an extension of .db and are accessible only from the implementation package.
Any access outside that package must go through the content-provider interface. You can
use the previous section “Exploring Databases on the Emulator and Available Devices” to
explore the database files created by built-in providers on the emulator. On real devices this
is not feasible unless of course you have root access on the device.

http://developer.android.com/reference/android/provider/package-summary.html

590 CHAPTER 25: Exploring Android Persistence and Content Providers

Understanding the Structure of Content Provider URIs
Each content provider on a device is registered in the Android manifest file like a web site
with a string identifier called an authority (akin to a domain name). Listing 25-22 has two
examples of this registration:

Listing 25-22. Example of Registering a Provider

<!-- File reference in project: AndroidManifest.xml -->
<provider android:name="SomeProviderJavaClass"
 android:authorities="com.your-company.SomeProvider" />

<provider android:name="BookProvider"
 android:authorities="com.androidbook.provider.BookProvider"
/>

The unique authority string forms the basis of a set of URIs that this content provider offers.
An Android content URI has the following structure:

content://<authority-name>/<path-segment1>/<path-segment2>/etc...

Here’s an example URI that identifies a book numbered 23 in a database of books:

content:// com.androidbook.provider.BookProvider/books/23

After content:, the URI contains the authority, which is used to locate the provider in the
provider registry. In the preceding example, com.androidbook.provider.BookProvider is the
authority portion of the URI.

/books/23 is the path section of the URI that is specific to each provider. The books and 23
portions of the path section are called path segments. It is the responsibility of the provider
to document and interpret the path section and path segments of the URIs. Hence content
providers provide these REST-like URLs to retrieve or manipulate data. For the preceding
registration, the URI to identify a directory or a collection of books in the books database is

content:// com.androidbook.provider.BookProvider/books

The URI to identify a specific note is

content:// com.androidbook.provider.BookProvider/books/#

where # is the id of a particular note. Listing 25-23 shows additional examples of URIs that
some data providers on Android accept:

Listing 25-23. Few Sample Android Content URLs

content://media/internal/images
content://media/external/images
content://contacts/people/
content://contacts/people/23

591CHAPTER 25: Exploring Android Persistence and Content Providers

Notice how these providers’ media (content://media) and contacts (content://contacts)
don’t have a fully qualified authority name. This is because providers offered by Android may
not carry a fully qualified authority name.

Given these content URIs, a provider is expected to retrieve rows that the URIs represent.
The provider is also expected to alter content at this URI using any of the state-change
methods: insert, update, or delete.

Implementing Content Providers
Let’s fully understand content providers by implementing and using one. To write a content
provider, you have to extend android.content.ContentProvider and implement the following
key methods: query(), insert(), update(), delete(), and getType().

You’ll need to set up a number of things for implementing these methods. Implementing a
content provider needs the following steps:

1. Plan your database, URIs, column names, and so on, and create
a metadata class that defines constants for all of these metadata
elements.

2. Extend the abstract class ContentProvider.

3. Implement these methods: query, insert, update, delete, and getType.

4. Register the provider in the manifest file.

5. Use the content provider.

Planning a Database
To explore this topic, we’ll create a database similar to the one that we have used for the
book collection that was used to illustrate the storing of data in SQLite directly. Note that to
keep the databases from conflicting with each other some of the names may be different.

The book database contains only one table called books, and its columns are name, isbn,
and author. These column names fall under metadata. You’ll define this sort of relevant
metadata in a Java class. This metadata-bearing Java class BookProviderMetaData is shown
in Listing 25-24.

Listing 25-24. Defining Metadata for Your Database

// File reference in project: BookProviderMetaData.Java
public class BookProviderMetaData {
 public static final String AUTHORITY = "com.androidbook.provider.BookProvider";

 public static final String DATABASE_NAME = "book.db";
 public static final int DATABASE_VERSION = 1;
 public static final String BOOKS_TABLE_NAME = "books";

 private BookProviderMetaData() {}

592 CHAPTER 25: Exploring Android Persistence and Content Providers

 //inner class describing BookTable
 public static final class BookTableMetaData implements BaseColumns {
 private BookTableMetaData() {}
 public static final String TABLE_NAME = "books";

 //uri and MIME type definitions
 public static final Uri CONTENT_URI =
 Uri.parse("content://" + AUTHORITY + "/books");
 public static final String CONTENT_TYPE =
 "vnd.android.cursor.dir/vnd.androidbook.book";
 public static final String CONTENT_ITEM_TYPE =
 "vnd.android.cursor.item/vnd.androidbook.book";

 public static final String DEFAULT_SORT_ORDER = "modified DESC";

 //Additional Columns start here.
 //string type
 public static final String BOOK_NAME = "name";
 //string type
 public static final String BOOK_ISBN = "isbn";
 //string type
 public static final String BOOK_AUTHOR = "author";
 //Integer from System.currentTimeMillis()
 public static final String CREATED_DATE = "created";
 //Integer from System.currentTimeMillis()
 public static final String MODIFIED_DATE = "modified";
 }
}

This BookProviderMetaData class starts by defining its authority to be com.androidbook.
provider.BookProvider.

This class then proceeds to define its one table (books) as an inner BookTableMetaData class.
The BookTableMetaData class then defines a URI for identifying a collection of books. Given
the authority in the previous paragraph, the URI for a collection of books will look like this:

content://com.androidbook.provider.BookProvider/books

This URI is indicated by the constant

BookProviderMetaData.BookTableMetaData.CONTENT_URI

The BookTableMetaData class then proceeds to define the MIME types for a collection of books
and a single book. The provider implementation will use these constants to return the MIME
types for the incoming URIs. MIME types are similar to the MIME types defined by HTTP.
As a guideline the primary MIME type for a collection of items returned through an Android
cursor should always be vnd.android.cursor.dir, and the primary MIME type of a single
item retrieved through an Android cursor should be vnd.android.cursor.item. You have more
wiggle room when it comes to the subtype, as in vnd.androidbook.book in Listing 25-24.

593CHAPTER 25: Exploring Android Persistence and Content Providers

BookTableMetaData then defines the set of columns for the book table: name, isbn, author,
created (creation date), and modified (last-updated date).

The metadata class BookTableMetaData also inherits from the BaseColumns class that
provides the standard _id field, which represents the row ID. With these metadata definitions
in hand, we’re ready to tackle the provider implementation.

Extending ContentProvider
Implementing the BookProvider involves extending the ContentProvider class and overriding
onCreate() to create the database and then implement the query, insert, update, delete,
and getType methods.

A query method requires the set of columns it needs to return. This is similar to a select
clause that requires column names along with their as counterparts (sometimes called
synonyms). As a convention Android SDK uses a map object that it calls a projection map to
represent these column names and their synonyms. We will need to set up this map so we can
use it later in the query-method implementation. In the code for the provider implementation
(see Listing 25-26), you will see this done upfront as part of projection map setup.

Most of the methods we’ll be implementing for the content provider contract take a URI as
an input. Listing 25-25 shows book provider URI examples:

Listing 25-25. Examples of BookProvider Content URIs

Uri1: content://com.androidbook.provider.BookProvider/books
Uri2: content://com.androidbook.provider.BookProvider/books/12

The book provider needs to distinguish each of these URIs. BookProvider is a simple case. If
our book provider had been housing more objects in addition to just books, then there would
be more URIs to identify those additional objects.

The provider implementation needs a mechanism to distinguish one URI from the other;
Android uses a class called UriMatcher for this purpose. So we need to set up this object
with all our URI variations. You will see this code in Listing 25-26 right after we define the
projection map. We’ll further explain the UriMatcher class in the section “Using UriMatcher
to Figure Out the URIs.”

The code in Listing 25-26 then overrides the onCreate() method to facilitate the database
creation. The database creation is identical to the database creation we have covered as
part of using SQLite directly for internal persistence needs.

The source code in Listing 25-26 then implements the insert(), query(), update(), getType(),
and delete() methods. The code for all of this is presented together in Listing 25-26, but we
will explain each aspect in a separate subsection.

594 CHAPTER 25: Exploring Android Persistence and Content Providers

Listing 25-26. Implementing the BookProvider Content Provider

// File reference in project: BookProvider.Java
public class BookProvider extends ContentProvider
{
 //Logging helper tag. No significance to providers.
 private static final String TAG = "BookProvider";

 //Setup projection Map
 //Projection maps are similar to "as" (column alias) construct
 //in an sql statement where by you can rename the
 //columns.
 private static HashMap<String, String> sBooksProjectionMap;
 static
 {
 sBooksProjectionMap = new HashMap<String, String>();
 sBooksProjectionMap.put(BookTableMetaData._ID,
 BookTableMetaData._ID);

 //name, isbn, author
 sBooksProjectionMap.put(BookTableMetaData.BOOK_NAME,
 BookTableMetaData.BOOK_NAME);
 sBooksProjectionMap.put(BookTableMetaData.BOOK_ISBN,
 BookTableMetaData.BOOK_ISBN);
 sBooksProjectionMap.put(BookTableMetaData.BOOK_AUTHOR,
 BookTableMetaData.BOOK_AUTHOR);

 //created date, modified date
 sBooksProjectionMap.put(BookTableMetaData.CREATED_DATE,
 BookTableMetaData.CREATED_DATE);
 sBooksProjectionMap.put(BookTableMetaData.MODIFIED_DATE,
 BookTableMetaData.MODIFIED_DATE);
 }

 //Provide a mechanism to identify all the incoming uri patterns.
 private static final UriMatcher sUriMatcher;
 private static final int INCOMING_BOOK_COLLECTION_URI_INDICATOR = 1;
 private static final int INCOMING_SINGLE_BOOK_URI_INDICATOR = 2;
 static {
 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 sUriMatcher.addURI(BookProviderMetaData.AUTHORITY, "books",
 INCOMING_BOOK_COLLECTION_URI_INDICATOR);
 sUriMatcher.addURI(BookProviderMetaData.AUTHORITY, "books/#",
 INCOMING_SINGLE_BOOK_URI_INDICATOR);

 }
 // Setup/Create Database to use for the implementation
 private static class DatabaseHelper extends SQLiteOpenHelper {
 DatabaseHelper(Context context) {
 super(context,
 BookProviderMetaData.DATABASE_NAME,
 null,
 BookProviderMetaData.DATABASE_VERSION);
 }

595CHAPTER 25: Exploring Android Persistence and Content Providers

 @Override
 public void onCreate(SQLiteDatabase db) {
 Log.d(TAG,"inner oncreate called");
 db.execSQL("CREATE TABLE " + BookTableMetaData.TABLE_NAME + " ("
 + BookTableMetaData._ID + " INTEGER PRIMARY KEY,"
 + BookTableMetaData.BOOK_NAME + " TEXT,"
 + BookTableMetaData.BOOK_ISBN + " TEXT,"
 + BookTableMetaData.BOOK_AUTHOR + " TEXT,"
 + BookTableMetaData.CREATED_DATE + " INTEGER,"
 + BookTableMetaData.MODIFIED_DATE + " INTEGER"
 + ");");
 }
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 Log.d(TAG,"inner onupgrade called");
 Log.w(TAG, "Upgrading database from version "
 + oldVersion + " to "
 + newVersion + ", which will destroy all old data");
 db.execSQL("DROP TABLE IF EXISTS " +
 BookTableMetaData.TABLE_NAME);
 onCreate(db);
 }
 }//eof-inner DatabaseHelper class
 //This is initialized in the onCreate() method
 private DatabaseHelper mOpenHelper;

 //Component creation callback
 @Override
 public boolean onCreate() {
 Log.d(TAG,"main onCreate called");
 mOpenHelper = new DatabaseHelper(getContext());
 return true;
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

 switch (sUriMatcher.match(uri)) {
 case INCOMING_BOOK_COLLECTION_URI_INDICATOR:
 qb.setTables(BookTableMetaData.TABLE_NAME);
 qb.setProjectionMap(sBooksProjectionMap);
 break;

 case INCOMING_SINGLE_BOOK_URI_INDICATOR:
 qb.setTables(BookTableMetaData.TABLE_NAME);
 qb.setProjectionMap(sBooksProjectionMap);
 qb.appendWhere(BookTableMetaData._ID + "="
 + uri.getPathSegments().get(1));
 break;

596 CHAPTER 25: Exploring Android Persistence and Content Providers

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 // If no sort order is specified use the default
 String orderBy;
 if (TextUtils.isEmpty(sortOrder)) {
 orderBy = BookTableMetaData.DEFAULT_SORT_ORDER;
 } else {
 orderBy = sortOrder;
 }

 // Get the database and run the query
 SQLiteDatabase db = mOpenHelper.getReadableDatabase();
 Cursor c = qb.query(db, projection, selection,
 selectionArgs, null, null, orderBy);

 //example of getting a count
 int i = c.getCount();

 // Tell the cursor what uri to watch,
 // so it knows when its source data changes
 c.setNotificationUri(getContext().getContentResolver(), uri);
 return c;
 }
 @Override
 public String getType(Uri uri) {
 switch (sUriMatcher.match(uri)) {
 case INCOMING_BOOK_COLLECTION_URI_INDICATOR:
 return BookTableMetaData.CONTENT_TYPE;
 case INCOMING_SINGLE_BOOK_URI_INDICATOR:
 return BookTableMetaData.CONTENT_ITEM_TYPE;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 }
 @Override
 public Uri insert(Uri uri, ContentValues initialValues) {
 // Validate the requested uri
 if (sUriMatcher.match(uri)
 != INCOMING_BOOK_COLLECTION_URI_INDICATOR) {
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 ContentValues values;
 if (initialValues != null) {
 values = new ContentValues(initialValues);
 } else {
 values = new ContentValues();
 }

597CHAPTER 25: Exploring Android Persistence and Content Providers

 Long now = Long.valueOf(System.currentTimeMillis());
 // Make sure that the fields are all set
 if (values.containsKey(BookTableMetaData.CREATED_DATE) == false){
 values.put(BookTableMetaData.CREATED_DATE, now);
 }
 if (values.containsKey(BookTableMetaData.MODIFIED_DATE) == false) {
 values.put(BookTableMetaData.MODIFIED_DATE, now);
 }
 if (values.containsKey(BookTableMetaData.BOOK_NAME) == false) {
 throw new SQLException(
 "Failed to insert row because Book Name is needed " + uri);
 }
 if (values.containsKey(BookTableMetaData.BOOK_ISBN) == false) {
 values.put(BookTableMetaData.BOOK_ISBN, "Unknown ISBN");
 }
 if (values.containsKey(BookTableMetaData.BOOK_AUTHOR) == false) {
 values.put(BookTableMetaData.BOOK_ISBN, "Unknown Author");
 }

 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 long rowId = db.insert(BookTableMetaData.TABLE_NAME,
 BookTableMetaData.BOOK_NAME, values);
 if (rowId > 0) {
 Uri insertedBookUri =
 ContentUris.withAppendedId(
 BookTableMetaData.CONTENT_URI, rowId);
 getContext()
 .getContentResolver()
 .notifyChange(insertedBookUri, null);

 return insertedBookUri;
 }
 throw new SQLException("Failed to insert row into " + uri);
 }
 @Override
 public int delete(Uri uri, String where, String[] whereArgs) {
 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
 case INCOMING_BOOK_COLLECTION_URI_INDICATOR:
 count = db.delete(BookTableMetaData.TABLE_NAME,
 where, whereArgs);
 break;
 case INCOMING_SINGLE_BOOK_URI_INDICATOR:
 String rowId = uri.getPathSegments().get(1);
 count = db.delete(BookTableMetaData.TABLE_NAME,
 BookTableMetaData._ID + "=" + rowId
 + (!TextUtils.isEmpty(where) ? " AND (" + where + ')' : ""),
 whereArgs);
 break;

598 CHAPTER 25: Exploring Android Persistence and Content Providers

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }
 @Override
 public int update(Uri uri, ContentValues values,
 String where, String[] whereArgs) {
 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
 case INCOMING_BOOK_COLLECTION_URI_INDICATOR:
 count = db.update(BookTableMetaData.TABLE_NAME,
 values, where, whereArgs);
 break;

 case INCOMING_SINGLE_BOOK_URI_INDICATOR:
 String rowId = uri.getPathSegments().get(1);
 count = db.update(BookTableMetaData.TABLE_NAME,
 values, BookTableMetaData._ID + "=" + rowId
 + (!TextUtils.isEmpty(where) ? " AND (" + where + ')' : ""),
 whereArgs);
 break;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }
}

Now, let’s analyze this code section by section.

Using UriMatcher to Figure Out the URIs
We’ve mentioned the UriMatcher class several times now; let’s look into it. Almost all
methods in a content provider are overloaded with respect to the URI. For example, the
same query() method is called whether you want to retrieve a single book or a list of books.
It is up to the method to know which type of URI is being requested. Android’s UriMatcher
utility class helps you identify the URI types.

Here’s how it works. You tell an instance of UriMatcher what kind of URI patterns to expect
during its initialization. You will also associate a unique number with each pattern. Once
these patterns are registered, you can then ask UriMatcher if the incoming URI matches a
certain pattern.

599CHAPTER 25: Exploring Android Persistence and Content Providers

As we’ve mentioned, our BookProvider content provider has two URI patterns: one for a
collection of books and one for a single book. The code in Listing 25-26 registers both of
these patterns using UriMatcher. It allocates 1 for a collection of books and 2 for a single
book (the URI patterns themselves are defined in the metadata for the books table). You can
see this in the static initialization of the variable sUriMatcher in Listing 25-26. You can then
see how UriMatcher plays a part in the query() method implementation in distinguishing the
URIs using the constants for each type of URI.

Using Projection Maps
A content provider acts like an intermediary between an abstract set of columns and a
real set of columns in a database, yet these column sets could differ. While constructing
queries, you must map between the where clause columns that a client specifies and the real
database columns. You set up this projection map with the help of the SQLiteQueryBuilder
class. You can see how this projection map variable sBooksProjectionMap is set for
the BookProvider in Listing 25-26. You can also see in that listing how this variable
sBooksProjectionMap is then used by the SQLiteQueryBuilder object.

Fulfilling MIME-Type Contracts
Let’s start with the getType() method in Listing 25-26. This method returns a MIME type for
a given URI. This method, like many other methods of a content provider, is sensitive to the
incoming URI. As a result, the first responsibility of the getType() method is to distinguish
the type of the URI. Is it a collection of books or a single book? The code used the
UriMatcher to decipher this URI type. Depending on this URI, the BookTableMetaData class
has defined the MIME-type constants to return for each URI.

Implementing the Query Method
Like the other methods, the query method uses UriMatcher to identify the URI type. If the
URI type is a single-item type, the method retrieves the book ID from the incoming URI by
looking at the first segment returned by getPathSegments().

The query method then uses the projections that we created upfront in Listing 25-26 to
identify the return columns. In the end, query returns the cursor to the caller. Throughout this
process, the query method uses the SQLiteQueryBuilder object to formulate and execute
the query.

While reading the data one can constrain the rows returned either using the URI or through
explicit where clause arguments passed to the query method as inputs. In the BookProvider
implementation of Listing 25-26 we used the approach of using the URI segments to retrieve
the book ID to return the values for just that book.

Instead you can use the selection parameter and the selectionArgs parameter of the
query() method to explicitly pass the where clause arguments. These arguments work
just like the SQLiteDatabase.query() arguments in Listing 25-12, where “?” are used as
placeholders for the values passed in the selectionArgs array.

600 CHAPTER 25: Exploring Android Persistence and Content Providers

Implementing the Insert Method
The insert method in a content provider is responsible for inserting a record into the
underlying database and then returning a URI that point to the newly created record.

Like the other methods, insert uses UriMatcher to identify the URI type. The code first
checks whether the URI indicates the proper collection-type URI. If not, the code throws an
exception.

The code then validates the optional and mandatory column parameters. The code can
substitute default values for some columns if they are missing.

Next, the code uses an SQLiteDatabase object to insert the new record and returns the
newly inserted ID. In the end, the code constructs the new URI using the returned ID from
the database.

Implementing the Update Method
The update method in a content provider is responsible for updating a record (or records)
based on the column values passed in, as well as the where clause that is passed in. The
update method then returns the number of rows updated in the process.

Like the other methods, update uses UriMatcher to identify the URI type. If the URI type
is a collection, the where clause is passed through so it can affect as many records as
possible. If the URI type is a single-record type, then the book ID is extracted from the URI
and specified as an additional where clause. In the end, the code returns the number of
records updated. Also notice how this notifyChange method enables you to announce to the
world that the data at that URI has changed. Potentially, you can do the same in the insert
method by saying that the collection of books data at URI “.../books” has changed when a
record is inserted.

Implementing the Delete Method
The delete method in a content provider is responsible for deleting a record (or records)
based on the where clause that is passed in. The delete method then returns the number of
rows deleted in the process.

Like the other methods, delete uses UriMatcher to identify the URI type. If the URI type is
a collection type, the where clause is passed through so you can delete as many records as
possible. If the where clause is null, all records will be deleted. If the URI type is a single-
record type, the book ID is extracted from the URI and specified as an additional where
clause. In the end, the code returns the number of records deleted.

Registering the Provider
Finally, you must register the content provider in the Android.Manifest.xml file using the
tag structure in Listing 25-27. A provider is a component and hence a sibling of the other
components such as an activity and a receiver. So it is a sibling node to other activities in
the Android manifest file.

601CHAPTER 25: Exploring Android Persistence and Content Providers

Listing 25-27. Registering a Provider

<provider android:name=".BookProvider"
 android:authorities="com.androidbook.provider.BookProvider"/>

Exercising the Book Provider
Now that we have a book provider, we are going to show you sample code to exercise that
provider. The sample code includes adding a book, removing a book, getting a count of the
books, and finally displaying all the books.

Keep in mind that these are code extracts from the sample project and will not compile,
because they require additional dependency files. However, we feel this sample code is
sufficient in demonstrating the concepts we have explored.

At the end of this chapter, we have included a link to the downloadable sample project,
which you can use in your Eclipse environment to compile and test.

Adding a Book
The code in Listing 25-28 inserts a new book into the book database.

Listing 25-28. Exercising a Provider Insert

// File reference in project:ProviderTester.Java
public void addBook(Context context) {
 String tag = "Exercise BookProvider";
 Log.d(tag,"Adding a book");
 ContentValues cv = new ContentValues();
 cv.put(BookProviderMetaData.BookTableMetaData.BOOK_NAME, "book1");
 cv.put(BookProviderMetaData.BookTableMetaData.BOOK_ISBN, "isbn-1");
 cv.put(BookProviderMetaData.BookTableMetaData.BOOK_AUTHOR, "author-1");

 ContentResolver cr = context.getContentResolver();
 Uri uri = BookProviderMetaData.BookTableMetaData.CONTENT_URI;
 Log.d(tag,"book insert uri:" + uri);
 Uri insertedUri = cr.insert(uri, cv);
 Log.d(tag,"inserted uri:" + insertedUri);
}

Removing a Book
The code in Listing 25-29 deletes the last record from the book database.

Listing 25-29. Exercising a Provider Delete

// File reference in project:ProviderTester.Java
public void removeBook() {
 int firstBookId = this.getFirstBookId();
 if (firstBookId == -1) throw new SQLException("Book id is less than 0");
 ContentResolver cr = this.mContext.getContentResolver();
 Uri uri = BookProviderMetaData.BookTableMetaData.CONTENT_URI;

602 CHAPTER 25: Exploring Android Persistence and Content Providers

 Uri delUri = Uri.withAppendedPath(uri, Integer.toString(firstBookId));
 reportString("Del Uri:" + delUri);
 cr.delete(delUri, null, null);
 this.reportString("Number of Books after the delete:" + getCount());
}

private int getFirstBookId() {
 Uri uri = BookProviderMetaData.BookTableMetaData.CONTENT_URI;
 Activity a = (Activity)this.mContext;
 Cursor c = null;
 try {
 c = a.getContentResolver().query(uri,
 null, //projection
 null, //selection string
 null, //selection args array of strings
 null); //sort order
 int numberOfRecords = c.getCount();
 if (numberOfRecords == 0) {
 return -1;
 }
 c.moveToFirst();
 int id = c.getInt(1); //id column
 return id;
 }
 finally {
 if (c!= null) c.close();
 }
}

Displaying the List of Books
The code in Listing 25-30 retrieves all the records in the book database.

Listing 25-30. Displaying a List of Books

// File reference in project:ProviderTester.Java
public void showBooks() {
 Uri uri = BookProviderMetaData.BookTableMetaData.CONTENT_URI;
 Activity a = (Activity)this.mContext;
 Cursor c = null;
 try {
 c = a.getContentResolver().query(uri,
 null, //projection
 null, //selection string
 null, //selection args array of strings
 null); //sort order
 int iid = c.getColumnIndex(BookProviderMetaData.BookTableMetaData._ID);
 int iname = c.getColumnIndex(BookProviderMetaData.BookTableMetaData.BOOK_NAME);
 int iisbn = c.getColumnIndex(BookProviderMetaData.BookTableMetaData.BOOK_ISBN);
 int iauthor = c.getColumnIndex(BookProviderMetaData.BookTableMetaData.BOOK_AUTHOR);

603CHAPTER 25: Exploring Android Persistence and Content Providers

 //Report your indexes
 Log.d(tag, "name,isbn,author:" + iname + iisbn + iauthor);

 //walk through the rows based on indexes
 for(c.moveToFirst();!c.isAfterLast();c.moveToNext()) {
 //Gather values
 String id = c.getString(iid);
 String name = c.getString(iname);
 String isbn = c.getString(iisbn);
 String author = c.getString(iauthor);

 //Report or log the row
 StringBuffer cbuf = new StringBuffer(id);
 cbuf.append(",").append(name);
 cbuf.append(",").append(isbn);
 cbuf.append(",").append(author);
 Log.d(tag,cbuf.toString());
 }

 //Report how many rows have been read
 int numberOfRecords = c.getCount();
 Log.d(tag,"Num of Records:" + numberOfRecords);
 }
 finally {
 if (c!= null) c.close();
 }
}

Notice that the method of retrieving the books from a content provider is very similar to
retrieving data from an SQLite database. In Listing 25-30 we have used the query() method
from a ContentResolver object. After using the cursor object we have closed the cursor.

Instead if you were passing this cursor object to a UI component that is in the Activity
then this cursor object needs to be managed as the activity follows its life cycle. Prior
to Honeycomb, there was a method called managedQuery() on the Activity to do this
automatically, which has since been deprecated in favor of CursorLoader.

When a query is thus managed through managedQuery(), the activity can call methods on
the cursor to place it into proper state. For example, the activity will call deactivate() on
the cursor when it is stopped and later calls requery() when it is started. The cursor will be
closed when the activity is destroyed. You can choose to call stopManagingCursor() on that
cursor if you want to control the behavior of the cursor yourself. Because the activity closes
the cursor, don’t close a managed cursor. If your intention is to read all the rows one time
and close the cursor, then use the query() method of the ContentResolver as opposed to
the Activity.managedQuery() method and explicitly close the cursor.

Since Honeycomb, the cursor reads are wrapped into a more general approach called
“Loaders,” which allow you to read data in an asynchronous thread through callbacks
exposed to fragments or activities. This is the recommended and preferred method. We will
cover this approach in the next chapter, Chapter 26, on Loaders.

604 CHAPTER 25: Exploring Android Persistence and Content Providers

You have seen how we have used update APIs on a content providers. These update
operations can be inefficient if done one by one through a content provider. In Chapter 27
we will cover how these individual update operations can be sent as a batch to a content
provider for efficiency reasons.

Resources
Here are some additional Android resources that can help you with the topics covered in this
chapter:

	http://developer.android.com/guide/topics/data/data-storage.
html: Various data storage options from Android documentation.

	http://www.androidbook.com/item/4437: A summary of options for
persistence on Android.

	http://www.androidbook.com/item/4876: Exploring tools and techniques
for direct SQL storage on Android. This includes research on O/R
mapping tools as well.

	http://www.androidbook.com/item/4877: Storing data in the cloud
through Parse for Android.

	http://www.androidbook.com/item/4440: Using GSON/JSON for mobile
app storage.

	http://www.androidbook.com/item/4438: Using shared preferences for
application state management.

	http://developer.android.com/guide/topics/providers/content-
providers.html: Android documentation on content providers.

	http://developer.android.com/reference/android/content/
ContentProvider.html: API description for a ContentProvider, where
you can learn about ContentProvider contracts.

	http://developer.android.com/reference/android/content/
UriMatcher.html: Information that is useful for understanding
UriMatcher.

	http://developer.android.com/reference/android/database/Cursor.
html: Information that helps you read data from a content provider or a
database directly.

	http://developer.android.com/guide/components/loaders.html:
Developer’s guide for Loaders.

	http://developer.android.com/reference/android/app/Activity.html
#startManagingCursor(android.database.Cursor): API documentation
of what a managed cursor is.

http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/guide/topics/data/data-storage.html
http://www.androidbook.com/item/4437
http://www.androidbook.com/item/4876
http://www.androidbook.com/item/4877
http://www.androidbook.com/item/4440
http://www.androidbook.com/item/4438
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/UriMatcher.html
http://developer.android.com/reference/android/content/UriMatcher.html
http://developer.android.com/reference/android/database/Cursor.html
http://developer.android.com/reference/android/database/Cursor.html
http://developer.android.com/guide/components/loaders.html
http://developer.android.com/reference/android/app/Activity.html#startManagingCursor(android.database.Cursor)
http://developer.android.com/reference/android/app/Activity.html#startManagingCursor(android.database.Cursor)

605CHAPTER 25: Exploring Android Persistence and Content Providers

	http://www.sqlite.org/sqlite.html: Home page of SQLite, where you
can learn more about SQLite and download tools that you can use to
work with SQLite databases.

	http://androidbook.com/proandroid5/projects: Downloadable test
project for this chapter is accessible from this URL. The name of the zip
file is ProAndroid5_Ch25_TestProvider.zip.

Summary
This chapter has covered a lot of aspects about a vital need of your applications:
persistence. We have given you a plethora of options available in Android for persistence
and how to choose an appropriate option. We have covered how to use SQLite for internal
persistence needs in significant detail. We have shown you an industrial-strength API pattern
for persistence using SQLite which can be extended to any persistence implementation.
Importantly, this pattern showed you how to externalize transactions to keep your
persistence code simple. We have then covered what content providers are, the nature of
content URIs, MIME types, how to use SQLite to construct providers that respond to URIs,
how to write a new content provider, and how to access an existing content provider.

http://www.sqlite.org/sqlite.html
http://androidbook.com/proandroid5/projects

607

Chapter 26
Understanding Loaders

This chapter looks at loading data from data sources through the recommended mechanism
of Loaders. The API of Loaders is designed to deal with two issues with loading data by
activities and fragments.

The first is the non-deterministic nature of activities where an activity can be hidden partially
or fully, restarted due to device rotation, or removed from memory when in background
due to low-memory conditions. These events are called activity life cycle events. Any code
that retrieves data must work in harmony with the activity life cycle events. Prior to the
introduction of Loaders in 3.0 (API 11), this was handled through Managed Cursors. This
mechanism is now discontinued in favor of Loaders.

The second issue with loading data in activities and fragments is that data access could take
longer on the main thread resulting in application-not-responding (ANR) messages. Loaders
solve this by doing the work on a worker thread and providing callbacks to the activities and
fragments to respond to the asynchronous nature of data fetch.

Understanding the Architecture of Loaders
Loaders make it easy to asynchronously load data in an activity or a fragment. Multiple
loaders, each with its own set of data, can be associated with an activity or a fragment.
Loaders also monitor the source of their data and deliver new results when the data content
changes. Loaders automatically reconnect to the previously retrieved data structure, like a
cursor, when being re-created after a configuration change. As the previous cursor is not
destroyed, data is not requeried.

When we talk about loaders in this chapter all aspects of loaders apply to both activities and
fragments unless we indicate otherwise from now on.

Every activity uses a single LoaderManager object to manage the loaders associated with
that activity. Once a loader is registered with a loader manager, the LoaderManager will
facilitate the necessary callbacks to a) create and initialize the Loader, b) read the data when
the Loader finishes loading the data, and c) close the resource when the loader is about to

608 CHAPTER 26: Understanding Loaders

be destroyed as the activity is no longer needed. The LoaderManager is hidden from you
and you work with it through callbacks and LoaderManager public APIs. The creation of the
LoaderManager is controlled by the activity. LoaderManager is almost like an integral part of
the activity itself.

It is the responsibility of the registered Loader to work with its data source and also with
the LoaderManager to read the data and send the results back to the LoaderManager. The
LoaderManager will then invoke the callbacks on the activity that data is ready. The Loader is
also responsible for pausing the data access or monitoring data changes or working with the
LoaderManager to understand and react to the activity life cycle events.

While you can write a loader from scratch for your specific data needs by extending the loader
API, you typically use the Loaders that are already implemented in the SDK. Most loaders
extend the AsyncTaskLoader which provides the basic ability to do its work on a worker thread
freeing the main thread. When the worker thread returns data, the LoaderManager will invoke
the main callbacks to the activity that the data is ready on the main thread.

The most used of these prebuilt loaders is the CursorLoader. With the availability of
CursorLoader, using Loaders becomes really, really trivial with a few lines of code. This is
because all the details are hidden behind the LoaderManager, Loader, AsyncTaskLoader, and
the CursorLoader.

Listing Basic Loader API Classes
Listing 26-1 lists the key classes involved in the Loader API.

Listing 26-1. Android Loader API Key Participating Classes

LoaderManager
LoaderManager.LoaderCallbacks
Loader
AsyncTaskLoader
CursorLoader

The APIs that are most often used are the LoaderManager.LoaderCallbacks and the
CursorLoader. However, let us briefly introduce each of these classes.

There is one LoaderManager object per activity. This is the object that defines the protocol of
how Loaders should work. So LoaderManager is the orchestrator for the loaders associated
with an activity. LoaderManager's interaction with the activity is through the LoaderManager.
LoaderCallbacks. These loader callbacks are where you are given the data by the Loader via
the LoaderManager and expected to interact with the activity.

The Loader class defines the protocol that must be adhered to if one wants to design their
own loader. AsyncTaskLoader is one example where it implements the loader protocol in
an asynchronous manner on a worker thread. It is typically the AsyncTaskLoader that is
the base class to implement most of your loaders. CursorLoader is an implementation of
this AsyncTaskLoader that knows how to load cursors from content providers. If one is
implementing their own loader it is important to understand that all interaction with the
loader from a LoaderManager happens on the main thread. Even the LoaderManager callbacks
that are implemented by the activity take place on the main thread.

609CHAPTER 26: Understanding Loaders

Demonstrating the Loaders
We will now show you how to use Loaders by implementing a simple one-page application
(Figure 26-1) that loads contacts from the contact provider database on an Android device.
This application is typical of how one would develop Android activities. You could even use
this sample project as a starter application template.

Figure 26-1. Filtered list of contacts loaded through loaders

We want the activity in Figure 26-1 to exhibit the following characteristics: 1) It should
display all the contacts on the device; b) It should retrieve data asynchronously; c) While
data is being retrieved, the activity should show a progress bar view in place of the list
view; d) On retrieving data successfully, the code should replace the progress view with the
filled-in list view; e) The activity should provide a search mechanism to filter the necessary
contacts; f) When the device is rotated, it should show the contacts again without making
a requery to the contacts content provider; g) The code should allow us to see the order of
callbacks along with the activity life cycle callbacks.

We will first present the source code for the activity and then explain each section. By the
end of the chapter you will have a clear understanding of how Loaders work and how to use
them in your code. With that, Listing 26-2 shows the code for the activity of Figure 26-1.
Please note that the code in Listing 26-2 relies on a number of resources that are presented
here. Some of these string resources you can see in Figure 26-1, but for others and the
code that is not included here, please see the downloadable project. As always, the code
presented here is sufficient for the topic at hand.

610 CHAPTER 26: Understanding Loaders

Listing 26-2. An Activity Loading Data with Loaders

public class TestLoadersActivity
extends MonitoredListActivity //very simple class to log activity callbacks
implements LoaderManager.LoaderCallbacks<Cursor> //Loader Manager callbacks
 ,OnQueryTextListener //Search text callback to filter contacts
{
 private static final String tag = "TestLoadersActivity";

 //Adapter for displaying the list's data
 //Initialized to null cursor in onCreate and set on the list
 //Use it in later callbacks to swap cursor
 //This is reinitialized to null cursor when rotation occurs
 SimpleCursorAdapter mAdapter;

 //Search filter working with OnQueryTextListener
 String mCurFilter;

 //Contacts columns that we will retrieve
 static final String[] PROJECTION = new String[] {ContactsContract.Data._ID,
 ContactsContract.Data.DISPLAY_NAME};

 //select criteria for the contacts URI
 static final String SELECTION = "((" +
 ContactsContract.Data.DISPLAY_NAME + " NOTNULL) AND (" +
 ContactsContract.Data.DISPLAY_NAME + " != ''))";

 public TestLoadersActivity() {
 super(tag);
 }
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 this.setContentView(R.layout.test_loaders_activity_layout);

 //Initialize the adapter
 this.mAdapter = createEmptyAdapter();
 this.setListAdapter(mAdapter);

 //Hide the listview and show the progress bar
 this.showProgressbar();

 //Initialize a loader for an id of 0
 getLoaderManager().initLoader(0, null, this);
 }
 //Create a simple list adapter with a null cursor
 //The good cursor will come later in the loader callback
 private SimpleCursorAdapter createEmptyAdapter() {
 // For the cursor adapter, specify which columns go into which views
 String[] fromColumns = {ContactsContract.Data.DISPLAY_NAME};
 int[] toViews = {android.R.id.text1}; // The TextView in simple_list_item_1
 //Return the cursor

611CHAPTER 26: Understanding Loaders

 return new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1,
 null, //cursor
 fromColumns,
 toViews);
 }
 //This is a LoaderManager callback. Return a properly constructed CursorLoader
 //This gets called only if the loader does not previously exist.
 //This means this method will not be called on rotation because
 //a previous loader with this ID is already available and initialized.
 //This also gets called when the loader is "restarted" by calling
 //LoaderManager.restartLoader()
 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 Log.d(tag,"onCreateLoader for loader id:" + id);
 Uri baseUri;
 if (mCurFilter != null) {
 baseUri = Uri.withAppendedPath(ContactsContract.Contacts.CONTENT_FILTER_URI,
 Uri.encode(mCurFilter));
 } else {
 baseUri = Contacts.CONTENT_URI;
 }
 String[] selectionArgs = null;
 String sortOrder = null;
 return new CursorLoader(this, baseUri,
 PROJECTION, SELECTION, selectionArgs, sortOrder);
 }
 //This is a LoaderManager callback. Use the data here.
 //This gets called when he loader finishes. Called on the main thread.
 //Can be called multiple times as the data changes underneath.
 //Also gets called after rotation with out requerying the cursor.
 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 Log.d(tag,"onLoadFinished for loader id:" + loader.getId());
 Log.d(tag,"Number of contacts found:" + cursor.getCount());
 this.hideProgressbar();
 this.mAdapter.swapCursor(cursor);
 }
 //This is a LoaderManager callback. Remove any references to this data.
 //This gets called when the loader is destroyed like when activity is done.
 //FYI - this does NOT get called because of loader "restart"
 //This can be seen as a "destructor" for the loader.
 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 Log.d(tag,"onLoaderReset for loader id:" + loader.getId());
 this.showProgressbar();
 this.mAdapter.swapCursor(null);
 }

612 CHAPTER 26: Understanding Loaders

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Place an action bar item for searching.
 MenuItem item = menu.add("Search");
 item.setIcon(android.R.drawable.ic_menu_search);
 item.setShowAsAction(MenuItem.SHOW_AS_ACTION_IF_ROOM);
 SearchView sv = new SearchView(this);
 sv.setOnQueryTextListener(this);
 item.setActionView(sv);
 return true;
 }
 //This is a Searchview callback. Restart the loader.
 //This gets called when user enters new search text.
 //Call LoaderManager.restartLoader to trigger the onCreateLoader
 @Override
 public boolean onQueryTextChange(String newText) {
 // Called when the action bar search text has changed. Update
 // the search filter, and restart the loader to do a new query
 // with this filter.
 mCurFilter = !TextUtils.isEmpty(newText) ? newText : null;
 Log.d(tag,"Restarting the loader");
 getLoaderManager().restartLoader(0, null, this);
 return true;
 }
 @Override
 public boolean onQueryTextSubmit(String query) {
 return true;
 }
 private void showProgressbar() {
 //show progress bar
 View pbar = this.getProgressbar();
 pbar.setVisibility(View.VISIBLE);
 //hide listview
 this.getListView().setVisibility(View.GONE);
 findViewById(android.R.id.empty).setVisibility(View.GONE);
 }
 private void hideProgressbar() {
 //show progress bar
 View pbar = this.getProgressbar();
 pbar.setVisibility(View.GONE);
 //hide listview
 this.getListView().setVisibility(View.VISIBLE);
 }
 private View getProgressbar() {
 return findViewById(R.id.tla_pbar);
 }
}//eof-class

613CHAPTER 26: Understanding Loaders

We will explain each section from Listing 26-2 after we show you the supporting layout
for the activity code in Listing 26-3. This layout in Listing 26-3 should clarify the view in
Figure 26-1 (please note that a number of resources are not included here but are available
in the downloadable file at apress.com/9781430246800).

Listing 26-3. A Typical ListActivity Layout for Loaders

<?xml version="1.0" encoding="utf-8"?>
<!--

* /res/layout/test_loaders_activity_layout.xml
* corresponding activity: TestLoadersActicity.java
* prefix: tla_ (Used for prefixing unique identifiers)
*
* Use:
* Demonstrate loading a cursor using loaders
* Structure:
* Header message: text view (tla_header)
* ListView Heading, ListView (fixed)
* ProgressBar (To show when data is being fetched)
* Empty View (To show when the list is empty): ProgressBar
* Footer: text view (tla_footer)
**
-->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent" android:layout_height="match_parent"
 android:paddingLeft="2dp" android:paddingRight="2dp">
 <!-- Header and Main documentation text -->
 <TextView android:id="@+id/tla_header"
 android:layout_width="match_parent" android:layout_height="wrap_content"
 android:background="@drawable/box2"
 android:layout_marginTop="4dp" android:padding="8dp"
 android:text="@string/tla_header"/>
 <!-- Heading for the list view -->
 <TextView android:id="@+id/tla_listview_heading"
 android:layout_width="match_parent" android:layout_height="wrap_content"
 android:background="@color/gray"
 android:layout_marginTop="4dp" android:padding="8dp"
 android:textColor="@color/black" style="@android:style/TextAppearance.Medium"
 android:text="List of Contacts"/>
 <!-- ListView used by the ListActivity. Uses a standard id needed by a list view -->
 <!-- Fix the height of the listview in a production setting -->
 <ListView android:id="@android:id/list"
 android:layout_width="match_parent" android:layout_height="wrap_content"
 android:background="@drawable/box2"
 android:layout_marginTop="4dp" android:layout_marginBottom="4dp"
 android:drawSelectorOnTop="false"/>
 <!-- ProgressBar: To show and hide the progress bar as loaders load data -->
 <ProgressBar android:id="@+id/tla_pbar"
 android:layout_width="match_parent" android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:indeterminate="true"/>

http://schemas.android.com/apk/res/android

614 CHAPTER 26: Understanding Loaders

 <!-- Empty List: Uses a standard id needed by a list view -->
 <TextView android:id="@android:id/empty"
 android:layout_width="match_parent" android:layout_height="wrap_content"
 android:visibility="gone"
 android:layout_marginTop="4dp" android:layout_marginBottom="4dp"
 android:padding="8dp"
 android:text="No Contacts to Match the Criteria"/>
 <!-- Footer: Additional documentation text and the footer-->
 <TextView android:id="@+id/tla_footer"
 android:layout_width="match_parent" android:layout_height="wrap_content"
 android:background="@drawable/box2" android:padding="8dp"
 android:text="@string/tla_footer"/>
</LinearLayout>

Let’s now turn to understanding the code in Listing 26-2. We will explain this code through
a series of steps you would follow to code with loaders. Let’s start with step 1, where the
activity needs to be extended to support the LoaderManager callbacks.

Step 1: Preparing the Activity to Load Data
Code necessary to load data using loaders is remarkably small, because most of the work
is done by the CursorLoader. The first thing you need to do is to have your activity extend
the LoaderManager.LoaderCallbacks<Cursor> and implement the three needed methods:
onCreateLoader(), onLoadFinished(), and onLoaderReset(). You can see how in Listing 26-2.
By implementing this interface, you have enabled the activity to become a receiver for the
LoaderManager events through these three callbacks.

Step 2: Initializing the Loader
Next, you have to tell the activity that you want a Loader object to load the data. This is done
by registering and initializing a Loader during the onCreate() method of the activity as shown
in Listing 26-4. You can also see this in the onCreate() of Listing 26-3 as well, in context of
the overall code.

Listing 26-4. Initializing a Loader

int loaderid = 0; Bundle argBundle = null;
LoaderCallbacks<Cursor> loaderCallbacks = this; //this activity itself
getLoaderManager().initLoader(loaderid, argBundle, loaderCallbacks);

The loaderid argument is a developer-assigned unique number in the context of this activity
to uniquely identify this Loader from other Loaders registered with this activity. Note that in
the example here, we are using only one Loader.

The second argsBundle argument is used to pass additional arguments to the
onCreateLoader() callback if needed. This “bundle of arguments” approach follows the
usual pattern of differed factory object construction in many of the managed components in
Android. Activities, fragments, and loaders are all examples of this pattern.

615CHAPTER 26: Understanding Loaders

The third argument, loaderCallbacks, is a reference to an implementation of the callbacks
required by the LoaderManager. In Listings 26-2 and 26-4, the activity itself is playing this
role, so we pass this variable referring to the activity as the argument value.

Once the Loader is registered and initialized, the LoaderManager will schedule a call
to the onCreateLoader() callback if necessary. If a call was previously made to the
onCreateLoader() and a loader object is available corresponding to this loader ID, then
the method onCreateLoader() will not be triggered. As stated earlier, the exception is if the
developer overrides this behavior by calling LoaderManager.restartLoader(). You will see
this call explained later when we talked about providing search-based filtering capabilities to
locate a sub-selection of contacts.

Delving into the Structure of ListActivity
The ListActivity in Figure 26-1 is extending a list activity with a content view that is a
custom layout through setContentView(). This gives us a lot more flexibility to place other
controls in addition to the list view on the activity. For example, we have provided a header
view, a footer view, and also a progress bar to show that we are in the process of fetching
data. The only constraint placed by a ListActivity is to name a control with the reserved
@android:id/listview to identify the list view that the list activity would be using. In addition
to the listview ID, we can also provide a view that the list activity uses if the list is empty. This
view is identified by the predefined ID @android:id/empty.

Working with Asynchronous Loading of Data
Loaders load data asynchronously. Because of this we have an added responsibility in
the Activity.onCreate() to hide the listview and show the progress indicator until the list
data is ready. To do this, we have a ProgressBar component in the layout in Listing 26-3.
In the Activity.onCreate() method, we set the initial state of the layout so that the list
view is hidden and the progress bar is shown. This functionality is coded in the method
showProgressbar() in Listing 26-2. In the same Listing 26-2, when the data is ready we call
hideProgressbar() to hide the progress bar and show the populated list view or an empty
list view if there is no data.

Step 3: Implementing onCreateLoader()
The onCreateLoader() is triggered by the initialization of the loader. You can see the
signature and implementation of this method in Listing 26-2. This method constructs
a Loader object for the corresponding loader ID that is passed in from the initialization
stemming from the call to LoaderManager.initLoader(). This method also receives the
argument bundle that is provided during the loader initialization for this loader ID.

This method returns a properly typed (through Java generics) Loader object to the
LoaderManager. In our case this type is Loader<Cursor>. The LoaderManager caches the
Loader object and will reuse it. This is useful because when the device rotates and the loader
is reinitialized due to Activity.onCreate(), LoaderManager recognizes the loader ID and the
presence of an existing loader. The LoaderManager then will not trigger a duplicate call to

616 CHAPTER 26: Understanding Loaders

the onCreateLoader(). However, if the activity is to realize that the input data to the loader
has changed, the activity code can call the LoaderManager.restartLoader(), which will
trigger a call to the onLoaderCreate() again. In that case, the LoaderManager will first destroy
the old loader and use the new one returned by the onLoaderCreate(). The LoaderManager
does guarantee that the older loader will hang around until the new loader is created and
available.

The onCreateLoader() method has full access to the local variables of the activity. So it
can use them in any conceivable manner to construct the needed loaders. In case of a
CursorLoader this construction is limited to the arguments available to the constructor of the
CursorLoader, which is specifically built to allow cursors from an Android content provider.

In our example, we have used the content URIs provided by the contacts content provider.
Refer to Chapter 25, on content provider, for how to use content URIs to retrieve cursors
from content provider data sources. It is quite simple: just indicate the URI you want to get
the data from, supply the filter string as an argument or a path segment on that URI as per
the documentation available for the contacts content provider, specify the columns you
want, specify the where clause as a string, and construct the CursorLoader.

Step 4: Implementing onLoadFinished()
Once the CursorLoader is returned to the LoaderManager, the CursorLoader will be instructed
to start its work on a worker thread and the main thread will go on to the UI chores. At a later
point this method onLoadFinished() is called when the data is ready.

This method could be called multiple times. When the data from a content provider changes,
as the CursorLoader has registered itself with the data source, it will be alerted. CursorLoader
then will trigger the onLoadFinished() again.

In the onLoadFinished() method, all you need to do is to swap the data cursor that is held
by the list adapter. The list adapter was initialized originally with a null cursor. Swapping with
a populated cursor will show the new data on the list view. As we have hidden the listview in
Activity.onCreate(), we need to show the listview and hide the progress bar. Subsequently
we can go on swapping the new cursors for old cursors as data changes. The changes will
reflect automatically on the list view.

When the device rotates, a couple of things happen. The Activity.onCreate() will be
called again. This will set the list cursor to null and also hide the list view. The code in
Activity.onCreate() will also initialize the loader again. The LoaderManager is programmed
so that this repeat initialization is harmless. The onCreateLoader() will not be called.
The Cursor will not be requeried. However, the onLoadFinished() gets called again,
which is what we needed to break out of this conundrum of initializing the data to null
first and wondering how and when it will be populated if we were not to requery. As the
onLoadFinished() gets called again on rotation, we are able to remove the ProgressBar,
show the list view, and swap the valid cursor from the null cursor. All works. Yes, it is
sneaky and round-about, but it works.

617CHAPTER 26: Understanding Loaders

Step 5: Implementing onLoaderReset()
This callback is invoked when a previously registered loader is no longer necessary and hence
destroyed. This can happen when an activity is destroyed due to a back button or explicitly
instructed to be finished by code. In such cases, this callback allows an opportunity to close
resources or references that are no longer needed. However, it is important not to close the
cursors as they are managed by the corresponding loaders and will be closed for you by the
framework. This might suggest that the LoaderManager.restartLoader() might result in a call
to the onLoaderReset() as the arguments to the old loader are no longer valid. But tests show
that this is not the case. The method LoaderManager.restartLoader() will not trigger a call to
the method onLoaderReset(). The onLoaderReset() method is only called when the loader is
actively destroyed by the activity no longer being needed. You can also explicitly instruct the
LoaderManager to destroy the loader by calling LoaderManager.destroyLoader(loaderid).

Using Search with Loaders
We will use search in our sample application to demonstrate the dynamic nature of
loaders. We have attached a search view to the menu. You can see this in the method
onCreateOptionsMenu() in Listing 26-2. Here we have attached a SearchView to the menu
and provided the activity as the callback to the SearchView when new text is provided in
the SearchView. The SearchView callback is handled in the method onQueryTextchange() of
Listing 26-2.

In the onQueryTextChange() method, we take the new search text and set the local variable
mCurFilter. We then call LoaderManager.restartLoader() with the same arguments as the
LoaderManager.initializeLoader(). This will trigger the onCreateLoader() again, which
will then use the mCurFilter to alter the parameters to the CursorLoader resulting in a new
cursor. This new cursor will replace the old one in the onLoadFinished() method.

Understanding the Order of LoaderManager Callbacks
Because Android programming is largely event-based, it is important to know the order of
event callbacks. To help you understand the timing of the LoaderManager callbacks, we have
rigged the sample program with log messages. Here are some results showing the order of
callbacks.

Listing 26-5 shows the order of calls when the activity is first created.

Listing 26-5. Loader Callbacks on Activity Creation

Application.onCreate()
Activity.onCreate()
 LoaderManager.LoaderCallbacks.onCreateLoader()
 Activity.onStart()
 Activity.onResume()
 LoaderManager.LoaderCallbacks.onLoadFinished()

When the search view fires a new search criteria through its callback, the order of callbacks
is as shown in Listing 26-6.

618 CHAPTER 26: Understanding Loaders

Listing 26-6. Loader Callbacks on a New Search Criteria triggered by RestartLoader

RestartLoader //log message from onQueryTextChange
LoaderManager.LoaderCallbacks.onCreateLoader()
LoaderManager.LoaderCallbacks.onLoadFinished()
//Notice, no call to onLoaderReset()

Listing 26-7 shows the order of calls on configuration change.

Listing 26-7. Loader Callbacks on a Configuration Change

Application:config changed
Activity: onCreate
 Activity.onStart
 [No call to the onCreateLoader]
 LoaderManager.LoaderCallbacks.onLoadFinished
 [optionally if searchview has text in it]
 SearchView.onQueryChangeText
 RestartLoader //just a log message
 LoaderManager.LoaderCallbacks.onCreateLoader
 LoaderManager.LoaderCallbacks.onLoadFinished

Listing 26-8 shows the order of callbacks on navigating back or navigating Home as those
action results in the activity are being destroyed.

Listing 26-8. Loader Callbacks when the Activity is destroyed

ActivityonStop()
Activity.onDestroy()
LoaderManager.LoaderCallbacks.onLoaderReset() //Notice this method is called

Writing Custom Loaders
As you have seen with the CursorLoader, Loaders are specific to their data sources.
So you may need to write your own loaders. Very likely you will need to derive from the
AsyncTaskLoader and specialize it using the principles and contracts laid out by the Loader
protocol. See the SDK documentation for the Loader class to get more details. You can also
use the CursorLoader source code as a guide in writing your own loaders. The source code
is available online from multiple sources (you can just google it) or as part of the Android
source download.

Resources
Here are additional resources for the topics covered in this chapter:

	http://www.androidbook.com/item/4890: Research notes on loaders.
You will see here links to references, research, sample code, images,
key questions, and ongoing notes.

	http://developer.android.com/guide/components/loaders.html:
Primary guide for loaders from Android.

http://www.androidbook.com/item/4890
http://developer.android.com/guide/components/loaders.html

619CHAPTER 26: Understanding Loaders

	http://developer.android.com/guide/components/loaders.
html#callback: Key loader API callbacks to be implemented by an
activity or a fragment.

	http://developer.android.com/reference/android/content/Loader.
html: Loader Java class API to understand what methods are available
on a loader object which is often passed to the loader API callbacks.

	http://developer.android.com/reference/android/app/
LoaderManager.html: LoaderManager Java class API which is useful to
control the loader, such as initialing, restarting, or removing.

	http://developer.android.com/reference/android/content/
CursorLoader.html: CursorLoader Java class API which is useful to
load data using cursors. CursorLoaders are also passed as arguments
to the LoaderManager callbacks. You can use the public API on the
CursorLoader to get its ID, cancel the load, and get the input arguments
used to start the cursor.

	http://developer.android.com/guide/topics/ui/layout/listview.
html: You will find here how to use loaders to populate and work with a
ListView.

	http://developer.android.com/reference/android/provider/
ContactsContract.Contacts.html: Content provider APIs available to
work with the Android contacts database.

	http://developer.android.com/reference/android/app/Activity.html
#startManagingCursor(android.database.Cursor): API documentation
of what a managed cursor is. This is useful to see what is done to a
cursor in a managed environment. This applies to cursors managed by
loaders as well.

	http://www.androidbook.com/proandroid5/projects: Downloadable test
project for this chapter is accessible from this URL. The name of the zip
file is ProAndroid5_Ch26_TestLoaders.zip.

Summary
Loaders are essential to load data from data sources both from a timing perspective and also
in terms of the ability to deal with the managed life cycle of activities and fragments. You have
seen in this chapter how easy it is to use loaders to load data from content providers. The
resulting code is responsive, able to deal with configuration changes, and simple.

http://developer.android.com/guide/components/loaders.html%23callback
http://developer.android.com/guide/components/loaders.html%23callback
http://developer.android.com/reference/android/content/Loader.html
http://developer.android.com/reference/android/content/Loader.html
http://developer.android.com/reference/android/app/LoaderManager.html
http://developer.android.com/reference/android/app/LoaderManager.html
http://developer.android.com/reference/android/content/CursorLoader.html
http://developer.android.com/reference/android/content/CursorLoader.html
http://developer.android.com/guide/topics/ui/layout/listview.html
http://developer.android.com/guide/topics/ui/layout/listview.html
http://developer.android.com/reference/android/provider/ContactsContract.Contacts.html
http://developer.android.com/reference/android/provider/ContactsContract.Contacts.html
http://developer.android.com/reference/android/app/Activity.html#startManagingCursor(android.database.Cursor)
http://developer.android.com/reference/android/app/Activity.html#startManagingCursor(android.database.Cursor)
http://www.androidbook.com/proandroid5/projects

621

Chapter 27
Exploring the Contacts API

In Chapters 25 and 26, we covered content providers and their close cousins, the loaders.
We listed the benefits of exposing data through content provider abstraction. In a content
provider abstraction, data is exposed as a series of URLs. These data URLs can be used to
read, query, update, insert, and delete. These URLs and their corresponding cursors become
the API for that content provider.

The Contacts API is one such content provider API for working with contact data. Contacts
in Android are maintained in a database and exposed through a content provider whose
authority is rooted at

content://com.android.contacts

The Android SDK documents the various URLs and the data they return using a set of Java
interfaces and classes that are rooted at the Java package

android.provider.ContactsContract

You will see numerous classes whose parent context is ContactsContract; these are useful
in querying, reading, updating, and inserting contacts into and from the content database.
The primary documentation for using the Contacts API is available on the Android site at

https://developer.android.com/guide/topics/providers/contacts-provider.html

The primary API entry point ContactsContract is appropriately named because this class
defines the contract between the clients of the contacts and the provider and protector of
the contacts database.

This chapter explores this contract in a fair amount of detail but does not cover every
nuance. The Contacts API is large and its tentacles far-reaching. However, when you
approach the Contacts API, it will take a few weeks of research to realize that it is simple in
its underlying structure. This is where we would like to contribute the most and explain these
basics in the time it takes to read this chapter.

https://developer.android.com/guide/topics/providers/contacts-provider.html

622 CHAPTER 27: Exploring the Contacts API

Android 4.0 has extended the idea of contacts to include a user profile, similar to a user
profile in a social network. A user profile is a dedicated contact that represents the owner of
the device. Most of the general contact-based concepts remain the same. We will cover how
the Contacts API is extended to support a user profile.

Understanding Accounts
All contacts in Android work in the context of an account. What is an account? Well, for
example, if you have your e-mail through Google, you are said to have an account with
Google. If you set up yourself as a user of Facebook, you are said to have an account with
Facebook. You will be able to set up these accounts through the “Accounts & sync” Settings
option on the device. See the Android User’s Guide to get more details around accounts and
how to set them up.

The contacts you manage are tied to a specific account. An account owns its set of
contacts—or an account is said to be the parent of a contact. An account is identified
by two strings: the account name and the account type. In case of Google, your account
name is your e-mail user name at Gmail and your account type is com.google. The account
type must be unique across the device. Your account name is unique within that account
type. Together, an account type and an account name form an account, and only once the
account is formed can a set of contacts be inserted for that account.

Enumerating Accounts
The Contacts API primarily deals with contacts that exist in various accounts. The
mechanism of creating accounts is outside of the Contacts API, so explaining the ability to
write your own account providers and how to sync the contacts within those accounts is
outside the scope of this chapter. You can understand and benefit from this chapter without
going into the details of how accounts get set up. However, when you want to add a contact
or a list of contacts, you do need to know what accounts exist on the device. You can use
the code in Listing 27-1 to enumerate the accounts and their properties (the account name
and type). Code in Listing 27-1 lists the account name and type given a context variable
such as an activity.

Listing 27-1. Code to Display a List of Accounts

public void listAccounts(Context ctx) {
 AccountManager am = AccountManager.get(ctx);
 Account[] accounts = am.getAccounts();
 for(Account ac: accounts) {
 String account_name=ac.name;
 String account_type = ac.type;
 Log.d("accountInfo", account_name + ":" + account_type);
 }
}

To run the code in Listing 27-1, the manifest file needs to ask for permission using the line in
Listing 27-2.

623CHAPTER 27: Exploring the Contacts API

Listing 27-2. Permission to Read Accounts

<uses-permission android:name="android.permission.GET_ACCOUNTS"/>

The code from Listing 27-1 will print something like the following:

Your-email-at-gmail:com.google

This assumes that you have only one account (Google) configured. If you have more than
one account, all of those accounts will be listed in a similar manner.

Using the contacts application on the device you can add, edit, and delete contacts to any
of your existing accounts.

Understanding Contacts
Contacts owned by an account are called raw contacts. A raw contact has a variable set
of data elements (for example, e-mail address, phone number, name, and postal address).
Android presents an aggregated view of raw contacts by listing only once any raw contacts
that seems to match. These aggregated contacts form the set of contacts you see when you
open the contacts application.

We will now examine how contacts and their related data are stored in various tables.
Understanding these contact tables and their associated views is key to understanding the
Contacts API.

Examining the Contacts SQLite Database
One way to understand and examine the contacts database tables is to download the
contacts database from the device or the emulator and open it using one of the SQLite
explorer tools.

To download the contacts database, use the File Explorer shown in Figure 30-17 and
navigate to the following directory on your emulator:

/data/data/com.android.providers.contacts/databases

Depending on the release, the database file name may differ slightly, but it should be called
contacts.db, contacts2.db, or something similar. In 4.0, the contacts provider uses a
similarly structured but separate database file called profile.db to hold the contacts related
to the personal profile.

Understanding Raw Contacts
The contacts you see in the contacts application are called aggregated contacts. Underneath
each aggregated contact lies a set of contacts called raw contacts. An aggregated contact is
a view on a set of similar raw contacts.

624 CHAPTER 27: Exploring the Contacts API

The set of contacts belonging to an account are called raw contacts. Each raw contact
points to the details of one person in the context of that account. This is in contrast to an
aggregated contact, which crosses account boundaries and belongs to the device as a
whole. This relationship between an account and its set of raw contacts is maintained in
the raw contacts table. Listing 27-3 shows the structure of the raw contacts table in the
contacts database.

Listing 27-3. Raw Contact Table Definition

CREATE TABLE raw_contacts
(_id INTEGER PRIMARY KEY AUTOINCREMENT,
is_restricted INTEGER DEFAULT 0,
account_name STRING DEFAULT NULL,
account_type STRING DEFAULT NULL,
sourceid TEXT,
version INTEGER NOT NULL DEFAULT 1,
dirty INTEGER NOT NULL DEFAULT 0,
deleted INTEGER NOT NULL DEFAULT 0,
contact_id INTEGER REFERENCES contacts(_id),
aggregation_mode INTEGER NOT NULL DEFAULT 0,
aggregation_needed INTEGER NOT NULL DEFAULT 1,
custom_ringtone TEXT
send_to_voicemail INTEGER NOT NULL DEFAULT 0,
times_contacted INTEGER NOT NULL DEFAULT 0,
last_time_contacted INTEGER,
starred INTEGER NOT NULL DEFAULT 0,
display_name TEXT,
display_name_alt TEXT,
display_name_source INTEGER NOT NULL DEFAULT 0,
phonetic_name TEXT,
phonetic_name_style TEXT,
sort_key TEXT COLLATE PHONEBOOK,
sort_key_alt TEXT COLLATE PHONEBOOK,
name_verified INTEGER NOT NULL DEFAULT 0,
contact_in_visible_group INTEGER NOT NULL DEFAULT 0,
sync1 TEXT, sync2 TEXT, sync3 TEXT, sync4 TEXT)

As with most Android tables, the raw contacts table has the _ID column that uniquely
identifies a raw contact. Together, the field’s account_name and account_type identify the
account to which this contact (specifically, the raw contact) belongs. The sourceid field
indicates how this raw contact is uniquely identified in the account.

The field contact_id refers to the aggregated contact that this raw contact is one of.
An aggregated contact points to one or more similar contacts that are essentially the same
person set up among multiple accounts.

The field display_name points to the display name of the contact. This is primarily a
read-only field. It is set by triggers based on the data rows added in the data table (which is
covered in the next subsection) for this raw contact.

The sync fields are used by the account to sync contacts between the device and the
server-side account such as Google mail.

625CHAPTER 27: Exploring the Contacts API

Although we have used SQLite tools to explore these fields, there is more than one way to
discover these fields. The recommended way is to follow the class definitions as declared in
the ContactsContract API. To explore the columns belonging to a raw contact, you can look
at the class documentation for ContactsContract.RawContacts.

There are advantages and disadvantages to this approach. A significant advantage is that
you get to know the fields published and acknowledged by the Android SDK. The database
columns may get added or dropped without changing the public interface. So if you use
the database columns directly, they may or may not be there. Instead, if you use the public
definitions for these columns, you are safe between releases.

One disadvantage, however, is that the class documentation has many other constants
interspersed with column names; we kind of got lost in figuring out what was what. These
numerous class definitions give the impression that the API is complex when, in reality,
80% of the class documentation for the Contacts API is to define constants for these
columns and the URIs to access these rows.

When we exercise the Contacts API in later sections, we will use the class-documentation-
based constants instead of direct column names. However, we felt the direct exploration of
the tables was the quickest way to help you understand the Contacts API.

Let’s talk next about how the data relating to a contact (such as e-mail and phone number)
is stored.

Understanding the Contacts Data Table
As seen from the raw contact table definition, the raw contact (in an anticlimactic sense) is
just an ID indicating what account it belongs to. Data pertaining to the contact is not in the
raw contact table but saved in the data table. Each data element, such as e-mail and phone
number, is stored as separate rows in the data table tied by the raw contact ID. The data
table, whose definition is shown in Listing 27-4, contains 16 generic columns that can store
any type of data element such as an e-mail.

Listing 27-4. Contact Data Table Definition

CREATE TABLE data
(_id INTEGER PRIMARY KEY AUTOINCREMENT,
package_id INTEGER REFERENCES package(_id),
mimetype_id INTEGER REFERENCES mimetype(_id) NOT NULL,
raw_contact_id INTEGER REFERENCES raw_contacts(_id) NOT NULL,
is_primary INTEGER NOT NULL DEFAULT 0,
is_super_primary INTEGER NOT NULL DEFAULT 0,
data_version INTEGER NOT NULL DEFAULT 0,
data1 TEXT,data2 TEXT,data3 TEXT,data4 TEXT,data5 TEXT,
data6 TEXT,data7 TEXT,data8 TEXT,data9 TEXT,data10 TEXT,
data11 TEXT,data12 TEXT,data13 TEXT,data14 TEXT,data15 TEXT,
data_sync1 TEXT, data_sync2 TEXT, data_sync3 TEXT, data_sync4 TEXT)

The raw_contact_id points to the raw contact to which this data row belongs. The mimetype_id
points to the MIME type entry indicating one of the types identified in the contact data types
in Listing 27-4. The columns data1 through data15 are generic string-based tables that can

626 CHAPTER 27: Exploring the Contacts API

store anything that is necessary based on the MIME type. The sync fields support contact
syncing. The table that resolves the MIME type IDs is in Listing 27-5.

Listing 27-5. Contacts MIME Type Lookup Table Definition

CREATE TABLE mimetypes
(_id INTEGER PRIMARY KEY AUTOINCREMENT,
mimetype TEXT NOT NULL)

As with the raw contacts table, you can discover the data table columns through the helper
class documentation for ContactsContract.Data. Although you can figure out the columns
from this class definition, you will not know what is stored in each of the generic columns
from data1 through data15. To know this, you will need to see the class definitions for a
number of classes under the namespace ContactsContract.CommonDataKinds.

Some examples of these classes follow:

	ContactsContract.CommonDataKinds.Email

	ContactsContract.CommonDataKinds.Phone

In fact, you will see one class for each of the predefined MIME types. These classes are as
follows: Email, Event, GroupMembership, Identity, Im, Nickname, Note, Organization, Phone,
Photo, Relation, SipAddress, StructuredName, StructuredPostal, Website. Ultimately, all the
CommonDataKinds classes do is indicate which generic data fields (data1 through data15) are
in use and what for.

Understanding Aggregated Contacts
Ultimately, a contact and its related data are unambiguously stored in the raw contacts table
and the data table. An aggregated contact, on the other hand, is heuristic and could be
ambiguous.

When there is a contact that is the same between multiple accounts, you may want to see
one name instead of seeing the same or similar name repeated once for every account.
Android addresses this by aggregating contacts into a read-only view. Android stores these
aggregated contacts in a table called contacts. Android uses a number of triggers on the
raw contact table and the data table to populate or change this aggregated contact table.

Before going into explaining the logic behind aggregation, let us show you the contact table
definition (see Listing 27-6).

Listing 27-6. Aggregated Contact Table Definition

CREATE TABLE contacts
(_id INTEGER PRIMARY KEY AUTOINCREMENT,
name_raw_contact_id INTEGER REFERENCES raw_contacts(_id),
photo_id INTEGER REFERENCES data(_id),
custom_ringtone TEXT,
send_to_voicemail INTEGER NOT NULL DEFAULT 0,
times_contacted INTEGER NOT NULL DEFAULT 0,
last_time_contacted INTEGER,
starred INTEGER NOT NULL DEFAULT 0,

627CHAPTER 27: Exploring the Contacts API

in_visible_group INTEGER NOT NULL DEFAULT 1,
has_phone_number INTEGER NOT NULL DEFAULT 0,
lookup TEXT,
status_update_id INTEGER REFERENCES data(_id),
single_is_restricted INTEGER NOT NULL DEFAULT 0)

No client directly updates this table. When a raw contact is added with its detail, Android
searches other raw contacts to see if there are similar raw contacts. If there is one, it will use
the aggregated contact ID of that raw contact as the aggregated contact ID of the new raw
contact as well. No entry is made into the aggregated contact table. If none is found, it will
create an aggregated contact and use that aggregated contact as the contact ID for that raw
contact.

Android uses the following algorithm to determine which raw contacts are similar:

1. The two raw contacts have matching names, both first and last.

2. The words in the name are the same but vary in order: “first last” or
“first, last” or “last, first.”

3. The shorter versions of the names match, such as “Bob” for
“Robert.”

4. If one of the raw contacts has just a first or last name, this will trigger
a search for other attributes, such as phone number or e-mail, and if
the other attributes match, the contact will be aggregated.

5. If one of the raw contacts is missing the name altogether, this will
also trigger a search for other attributes as in step 4.

Because these rules are heuristic, some contacts may be aggregated unintentionally.
The client applications need to provide a mechanism to separate the contacts in such
a case. If you refer to the Android User’s Guide, you will see that the default contacts
application allows you to separate contacts that are unintentionally merged.

You can also prevent the aggregation by setting the aggregation mode when you insert the
raw contact. The aggregation modes are shown in Listing 27-7.

Listing 27-7. Aggregation Mode Constants

AGGREGATION_MODE_DEFAULT
AGGREGATION_MODE_DISABLED
AGGREGATION_MODE_SUSPENDED

The first option is obvious; it is how aggregation works.

The second option (disabled) keeps this raw contact out of aggregation. Even if it is
aggregated already, Android will pull it out of aggregation and allocate a new aggregated
contact ID dedicated to this raw contact.

The third option (suspended) indicates that even though the properties of the contact may
change, which will make it invalid for the aggregation into that batch of contacts, it should
be kept tied to that aggregated contact.

628 CHAPTER 27: Exploring the Contacts API

The last point brings out the volatile dimension of the aggregated contact. Say you have a
unique raw contact with a first name and a last name. Right now, it doesn’t match any other
raw contact, so this unique raw contact gets its own allocation of an aggregated contact. The
aggregated contact ID will be stored in the raw contact table against that raw contact row.

However, you go and change the last name of this raw contact, which makes it a match
to another set of contacts that are aggregated. In that case, Android will remove the raw
contact from this aggregated contact and move it to the other one, abandoning this single
aggregated contact by itself. In this case, the ID of the aggregated contact becomes entirely
abandoned, as it will not match anything in the future because it is just an ID without an
underlying raw contact.

So an aggregated contact is volatile. There is not a significant value to hold on to this
aggregated contact ID over time.

Android offers some respite from this predicament by providing a field called lookup in
the aggregated contacts tables. This lookup field is an aggregation (concatenation) of the
account and the unique ID of this raw contact in that account for each raw contact. This
information is further codified so that it can be passed as a URL parameter to retrieve the
latest aggregated contact ID. Android looks at the lookup key and sees which underlying
raw contact IDs are there for this lookup key. It then uses a best-fit algorithm to return a
suitable (or perhaps new) aggregated contact ID.

While we are explicitly examining the contacts database, let’s consider a couple of contact-
related database views that are useful.

Exploring view_contacts
The first of these views is the view_contacts. Although there is a table that holds the aggregated
contacts (contacts table), the API doesn’t expose the contacts table directly. Instead, it uses
view_contacts as the target for reading the aggregated contacts. When you query based on
the URI ContactsContract.Contacts.CONTENT_URI, the columns returned are based on this view
view_contacts. The definition of view_contacts view is shown in Listing 27-8.

Listing 27-8. A View to Read Aggregated Contacts

CREATE VIEW view_contacts AS

SELECT contacts._id AS _id,
contacts.custom_ringtone AS custom_ringtone,
name_raw_contact.display_name_source AS display_name_source,
name_raw_contact.display_name AS display_name,
name_raw_contact.display_name_alt AS display_name_alt,
name_raw_contact.phonetic_name AS phonetic_name,
name_raw_contact.phonetic_name_style AS phonetic_name_style,
name_raw_contact.sort_key AS sort_key,
name_raw_contact.sort_key_alt AS sort_key_alt,
name_raw_contact.contact_in_visible_group AS in_visible_group,
has_phone_number,
lookup,
photo_id,

629CHAPTER 27: Exploring the Contacts API

contacts.last_time_contacted AS last_time_contacted,
contacts.send_to_voicemail AS send_to_voicemail,
contacts.starred AS starred,
contacts.times_contacted AS times_contacted, status_update_id

FROM contacts JOIN raw_contacts AS name_raw_contact
ON(name_raw_contact_id=name_raw_contact._id)

Notice that the view_contacts view combines the contacts table with the raw contact table
based on the aggregated contact ID.

Exploring contact_entities_view
Another useful view is the contact_entities_view that combines the raw contacts table with
the data table. This view allows us to retrieve all the data elements of a given raw contact one
time, or even the data elements of multiple raw contacts belonging to the same aggregated
contact. Listing 27-9 presents the definition of this view based on contact entities.

Listing 27-9. Contact Entities View

CREATE VIEW contact_entities_view AS

SELECT raw_contacts.account_name AS account_name,
raw_contacts.account_type AS account_type,
raw_contacts.sourceid AS sourceid,
raw_contacts.version AS version,
raw_contacts.dirty AS dirty,
raw_contacts.deleted AS deleted,
raw_contacts.name_verified AS name_verified,
package AS res_package,
contact_id,
raw_contacts.sync1 AS sync1,
raw_contacts.sync2 AS sync2,
raw_contacts.sync3 AS sync3,
raw_contacts.sync4 AS sync4,
mimetype, data1, data2, data3, data4, data5, data6, data7, data8,
data9, data10, data11, data12, data13, data14, data15,
data_sync1, data_sync2, data_sync3, data_sync4,

raw_contacts._id AS _id,

is_primary, is_super_primary,
data_version,
data._id AS data_id,
raw_contacts.starred AS starred,
raw_contacts.is_restricted AS is_restricted,
groups.sourceid AS group_sourceid

FROM raw_contacts LEFT OUTER JOIN data
 ON (data.raw_contact_id=raw_contacts._id)
LEFT OUTER JOIN packages
 ON (data.package_id=packages._id)

630 CHAPTER 27: Exploring the Contacts API

LEFT OUTER JOIN mimetypes
 ON (data.mimetype_id=mimetypes._id)
LEFT OUTER JOIN groups
 ON (mimetypes.mimetype='vnd.android.cursor.item/group_membership'
 AND groups._id=data.data1)

The URIs needed to access this view are available in the class
ContactsContract.RawContactsEntity.

Working with the Contacts API
So far, we have explored the basic idea behind the Contacts API by exploring its tables and
views. We will now present a number of code snippets that can be used to explore contacts.
These snippets are taken from the sample application that is developed to support this
chapter. Although the snippets are taken from the sample application, they are sufficient
to aid the understanding of how the Contacts API work. You can download the full sample
program using the project download URL at the end of this chapter.

Exploring Accounts
We will start our exercise by writing a program that can print out the list of accounts.
We have already given the code snippets necessary to get a list of accounts. Consider the
class AccountsFunctionTester in Listing 27-10.

Listing 27-10. AccountsFunctionTester That Prints Available Accounts

//Java class: AccountsFunctionTester.java
//Menu to invoke this: Accounts
//BaseTester is a supporting base class holding the parent activity
// and some reused common variables. See the source code if you are more curious.
public class AccountsFunctionTester extends BaseTester {
 private static String tag = "tc>";

 //IReportBack is a simple logging interface that writes log messages
 //to the main activity and also to the log.
 public AccountsFunctionTester(Context ctx, IReportBack target) {
 super(ctx, target);
 }
 public void testAccounts() {
 AccountManager am = AccountManager.get(this.mContext);
 Account[] accounts = am.getAccounts();
 for(Account ac: accounts) {
 String acname=ac.name;
 String actype = ac.type;
 this.mReportTo.reportBack(tag,acname + ":" + actype);
 }
 }
}

631CHAPTER 27: Exploring the Contacts API

Note As we present and explore the Java code necessary to work with contacts, you will see
three variables repeatedly used in the presented source code:

mContext: A variable pointing to an activity

mReportTo: A variable implementing a logging interface (IReportBack—you can see
this Java file in the downloadable project) that can be used to log messages to the test
activity that is used for this chapter

Utils: A static class that encapsulates very simple utility methods

We have chosen not to list these classes here because they will distract you from understanding the
core functionality of the Contacts API. You can examine these classes in the downloadable project.

All the code in this chapter uses an unmanaged query against the content provider. This is done by
calling Activity.getContentResolver().query(). This is because we merely read the data
and print out the results right away. If your goal instead is to use UI (through activities or fragments)
as a target to display your contacts then read Chapter 27 on loaders. Loaders show the right way to
display cursors from any content provider.

When you run the sample program that you can download for this chapter, you will see a
main activity that appears with a number of menu options. The menu option “Accounts” will
print the list of accounts available on the device.

Exploring Aggregated Contacts
Let’s see how we can explore aggregated contacts through code snippets. To read contacts,
you need to request the following permission in the manifest file:

android.permission.READ_CONTACTS

As the functionality we are testing deals with content providers, URIs, and cursors, let’s look
at some useful code snippets presented in Listing 27-11. (These code snippets are available
either in utils.java or in some of the base classes derived from BaseTester in the chapter’s
downloadable project.)

Listing 27-11. Getting a Cursor Given a URI and a where Clause

//Utils.java
//Retrieve a column from a cursor
public static String getColumnValue(Cursor cc, String cname) {
 int i = cc.getColumnIndex(cname);
 return cc.getString(i);
}

632 CHAPTER 27: Exploring the Contacts API

//See what columns are there in a cursor
protected static String getCursorColumnNames(Cursor c) {
 int count = c.getColumnCount();
 StringBuffer cnamesBuffer = new StringBuffer();
 for (int i=0;i<count;i++) {
 String cname = c.getColumnName(i);
 cnamesBuffer.append(cname).append(';');
 }
 return cnamesBuffer.toString();
}

//From URIFunctionTester.java, baseclass of some of the other testers
//Given a URI and a where clause return a cursor
protected Cursor getACursor(Uri uri,String clause) {
 Activity a = (Activity)this.mContext; //mContext coming from BaseTester
 return a.getContentResolver().query(uri, null, clause, null, null);
}

In this section, we are primarily exploring the cursor returned by aggregated contact URIs.
Each row returned by the resulting contact cursor will have a number of fields. For our
example, we are not interested in all the fields but only a few. You can abstract this out into
another class called an AggregatedContact. Listing 27-12 shows this class.

Listing 27-12. An Object Definition for a Few Fields of an Aggregated Contact

//AggregatedContact.java
public class AggregatedContact {
 public String id;
 public String lookupUri;
 public String lookupKey;
 public String displayName;
 public void fillinFrom(Cursor c) {
 id = Utils.getColumnValue(c,"_ID");
 lookupKey = Utils.getColumnValue(c,ContactsContract.Contacts.LOOKUP_KEY);
 lookupUri = ContactsContract.Contacts.CONTENT_LOOKUP_URI + "/" + lookupKey;
 displayName = Utils.getColumnValue(c,ContactsContract.Contacts.DISPLAY_NAME);
 }
}

In Listing 27-12 we use the cursor to load up the fields that we are interested in.

Getting the Aggregated Contacts Cursor
Listing 27-13 shows how to retrieve a cursor that is a collection of aggregated contacts.

633CHAPTER 27: Exploring the Contacts API

Listing 27-13. Getting a Cursor for All Aggregated Contacts

//Get a cursor of all contacts. Specify the where clause as null to indicate all rows.
//Java class: AggregatedContactFunctionTester.java
//Menu item to invoke: Contacts Cursor
private Cursor getContacts() {
 Uri uri = ContactsContract.Contacts.CONTENT_URI;
 //Specify ascending or descending way to sort names
 String sortOrder = ContactsContract.Contacts.DISPLAY_NAME
 + " COLLATE LOCALIZED ASC";
 Activity a = (Activity)this.mContext; //Local variable pointing to an activity
 return a.getContentResolver().query(uri, null, null, null, sortOrder);
}

The URI used to read all the contacts is ContactsContract.Contacts.CONTENT_URI. You can
pass this URI to the query()function to retrieve a cursor. You can pass null as the column
projection to receive all columns. Although this is not recommended in practice, in our case,
it makes sense because we want to know about all the columns it returns. We have also
used the display name of the contact as the sort order. Notice how, again, we have used
ContactContract.Contacts to get the column name for the contact display name. If you were
to print the field names from this cursor you will see the returned fields as those shown in
Listing 27-14. Depending on the release the order may be different and more columns may
be added. It is a good practice to explicitly specify a projection to the query clause; that way
your code will work across releases.

Listing 27-14. Aggregated Contacts Content URI Cursor Columns

times_contacted; contact_status; custom_ringtone; has_phone_number; phonetic_name;
phonetic_name_style; contact_status_label; lookup; contact_status_icon; last_time_contacted;
display_name; sort_key_alt; in_visible_group; _id; starred; sort_key; display_name_alt;
contact_presence; display_name_source; contact_status_res_package; contact_status_ts;
photo_id; send_to_voicemail;

Reading Aggregated Contact Details
Now that we’ve explored the columns available with the contacts content URI, let’s pick a
few columns and see what contact rows are available. We are interested in the following
columns from a contact cursor: display name, lookup key, and lookup URI. We are
considering these fields because we want to see what the lookup key and lookup key URI
look like based on what is covered in the theory part of this chapter. Specifically, we are
interested in firing off the lookup URI to see what type of a cursor it returns.

The function listContacts() in Listing 27-15 gets a contacts cursor and prints these three
columns for each row of the cursor. Note that this listing is taken from a class that holds a
local variable called mContext to indicate the activity and a local variable called mReportTo to
be able to log any messages to the activity.

634 CHAPTER 27: Exploring the Contacts API

Listing 27-15. Printing the Lookup Keys for an Aggregated Contact

//Java class: AggregatedContactFunctionTester.java
//Menu item to invoke: Contacts
public void listContacts() {
 Cursor c = null;
 try {
 c = getContacts();
 int i = c.getColumnCount();
 this.mReportTo.reportBack(tag, "Number of columns:" + i);
 this.printLookupKeys(c);
 }
 finally { if (c!= null) c.close(); }
}
private void printLookupKeys(Cursor c) {
 for(c.moveToFirst();!c.isAfterLast();c.moveToNext()) {
 String name=this.getContactName(c);
 String lookupKey = this.getLookupKey(c);
 String luri = this.getLookupUri(lookupKey);
 this.mReportTo.reportBack(tag, name + ":" + lookupKey); //log
 this.mReportTo.reportBack(tag, name + ":" + luri); //log
 }
}
private String getLookupKey(Cursor cc) {
 int lookupkeyIndex = cc.getColumnIndex(ContactsContract.Contacts.LOOKUP_KEY);
 return cc.getString(lookupkeyIndex);
}
private String getContactName(Cursor cc){
 return Utils.getColumnValue(cc,ContactsContract.Contacts.DISPLAY_NAME);
}
private String getLookupUri(String lookupkey) {
 String luri = ContactsContract.Contacts.CONTENT_LOOKUP_URI + "/" + lookupkey;
 return luri;
}

Exploring the Lookup URI-Based Cursor
Now that we know how to extract lookup URIs for a given aggregated contact, let’s see what
we can do with a lookup URI.

The function listLookupUriColumns() in Listing 27-16 will take the first contact from the list
of all contacts and then formulate a lookup URI for that contact and fire off the URI to see
what kind of a cursor it returns by printing the column names from that cursor.

635CHAPTER 27: Exploring the Contacts API

Listing 27-16. Exploring the Lookup URI Cursor

//Class: AggregatedContactFunctionTester.java, Menu item to invoke: Single Contact Cursor
public void listLookupUriColumns() {
 Cursor c = null;
 try {
 c = getContacts();
 String firstContactLookupUri = getFirstLookupUri(c);
 printLookupUriColumns(firstContactLookupUri);
 }
 finally { if (c!= null) c.close(); }
}
private String getFirstLookupUri(Cursor c) {
 c.moveToFirst();
 if (c.isAfterLast()) {
 Log.d(tag,"No rows to get the first contact");
 return null;
 }
 String lookupKey = this.getLookupKey(c);
 return this.getLookupUri(lookupKey);
}
public void printLookupUriColumns(String lookupuri) {
 Cursor c = null;
 try {
 c = getASingleContact(lookupuri);
 int i = c.getColumnCount();
 this.mReportTo.reportBack(tag, "Number of columns:" + i);
 int j = c.getCount();
 this.mReportTo.reportBack(tag, "Number of rows:" + j);
 this.printCursorColumnNames(c);
 }
 finally { if (c!=null)c.close(); }
}
// Use the lookup uri, retrieve a single aggregated contact
private Cursor getASingleContact(String lookupUri) {
 Activity a = (Activity)this.mContext;
 return a.getContentResolver().query(Uri.parse(lookupUri), null, null, null, null);
}

As it turns out, it just returns a cursor (as in Listing 27-14) that is identical in columns for that
of the aggregated contact cursor as in Listing 27-13, except that it has only one row pointing
to the contact for which this is the lookup key. Also notice that we have used the following
lookup URI definition:

ContactsContract.Contacts.CONTENT_LOOKUP_URI

You know from the discussion of the contact lookup URIs that each lookup URI represents
a collection of raw contact identities that have been concatenated. That being the case, you
might have expected the lookup URI to return a series of matching raw contacts. However,
the test in Listing 27-16 is showing that it is not returning a cursor of raw contacts but
instead a cursor of contacts.

636 CHAPTER 27: Exploring the Contacts API

Note A lookup based on the contact lookup URI returns an aggregated contact and not a
raw contact.

Another tidbit is that the lookup process for the aggregated contact based on the lookup
URI is not linear or exact. This means Android will not look for an exact match of the lookup
key. Instead, Android parses the lookup key into its constituent raw contacts and then finds
the aggregated contact ID that matches the most of the raw contact records and returns that
aggregated contact record.

One consequence of this is that no public mechanism is available to go from the lookup key to
its constituent raw contacts. Instead, you have to find the contact ID for that lookup key and
then fire off a raw contact URI for that contact ID to retrieve the corresponding raw contacts.

Here is another code snippet that shows what is returned from a cursor as an object instead of
as a set of columns. The code in Listing 27-17 returns the first aggregated contact as an object.

Listing 27-17. Code Testing Aggregated Contacts

//Java class: AggregatedContactFunctionTester.java
protected AggregatedContact getFirstContact() {
 Cursor c=null;
 try {
 c = getContacts(); c.moveToFirst();
 if (c.isAfterLast()) {
 Log.d(tag,"No contacts");
 return null;
 }
 AggregatedContact firstcontact = new AggregatedContact();
 firstcontact.fillinFrom(c);
 return firstcontact;
 }
 finally { if (c!=null) c.close(); }
}

Exploring Raw Contacts
In Listing 27-18, the file RawContact.java, captures a few important fields from the raw
contacts table cursor. (This file, like all other code snippets in this chapter, is available in the
downloadable project for this chapter.)

Listing 27-18. Source code for RawContact.java

//Class: RawContact.java
public class RawContact {
 public String rawContactId;
 public String aggregatedContactId;
 public String accountName;
 public String accountType;
 public String displayName;

637CHAPTER 27: Exploring the Contacts API

 public void fillinFrom(Cursor c) {
 rawContactId = Utils.getColumnValue(c,"_ID");
 accountName = Utils.getColumnValue(c,ContactsContract.RawContacts.ACCOUNT_NAME);
 accountType = Utils.getColumnValue(c,ContactsContract.RawContacts.ACCOUNT_TYPE);
 aggregatedContactId = Utils.getColumnValue(c,
 ContactsContract.RawContacts.CONTACT_ID);
 displayName = Utils.getColumnValue(c,"display_name");
 }
 public String toString() { //..prints the public fields. See the download project for
details }
}//eof-class

Showing the Raw Contacts Cursor
As with the aggregated contact URIs, let’s first examine the nature of the raw contact URI
and what it returns. The signature for the raw contact URI is defined as follows:

ContactsContract.RawContacts.CONTENT_URI

The function showRawContactsCursor() in Listing 27-19 prints the cursor columns for a raw
contacts URI.

Listing 27-19. Exploring the Raw Contacts Cursor

//Java class: RawContactFunctionTester.java; Menu item: Raw Contacts Cursor
public void showRawContactsCursor() {
 Cursor c = null;
 try {
 c = this.getACursor(ContactsContract.RawContacts.CONTENT_URI,null);
 this.printCursorColumnNames(c);
 }
 finally { if (c!=null) c.close(); }
}

Code in Listing 27-19 will show that the raw contact cursor has the fields shown in
Listing 27-20 (this list seem to vary somewhat with each device).

Listing 27-20. Raw Contacts Cursor Fields

times_contacted; phonetic_name; phonetic_name_style; contact_id;version; last_time_contacted;
aggregation_mode; _id; name_verified; display_name_source; dirty; send_to_voicemail;
account_type; custom_ringtone; sync4;sync3;sync2;sync1; deleted; account_name; display_name;
sort_key_alt; starred; sort_key; display_name_alt; sourceid;

Seeing the Data Returned by a Raw Contacts Cursor
Listing 27-21 shows the method showAllRawContacts(), which prints all the rows in the raw
contacts cursor.

638 CHAPTER 27: Exploring the Contacts API

Listing 27-21. Displaying Raw Contacts

//Java class: RawContactFunctionTester.java; Menu item: All Raw Contacts
public void showAllRawContacts(){
 Cursor c = null;
 try {
 c = this.getACursor(getRawContactsUri(), null);
 this.printRawContacts(c);
 }
 finally { if (c!=null) c.close(); }
}
private void printRawContacts(Cursor c) {
 for(c.moveToFirst();!c.isAfterLast();c.moveToNext()) {
 RawContact rc = new RawContact();
 rc.fillinFrom(c);
 this.mReportTo.reportBack(tag, rc.toString()); //log
 }
}

Constraining Raw Contacts with a Corresponding Set of Aggregated
Contacts
Using the columns of the cursor in Listing 27-20, let’s see if we can refine our query to
retrieve the contacts for a given aggregated contact ID. The code in Listing 27-22 will
look up the first aggregated contact and then issue a raw contact URI with a where clause
specifying a value for the contact_id column.

Listing 27-22. Getting Raw Contacts for an Aggregated Contact

//Java class: RawContactFunctionTester.java; Menu item: Raw Contacts
public void showRawContactsForFirstAggregatedContact(){
 AggregatedContact ac = getFirstContact();
 Cursor c = null;
 try {
 c = this.getACursor(getRawContactsUri(), getClause(ac.id));
 this.printRawContacts(c);
 }
 finally { if (c!=null) c.close(); }
}
private String getClause(String contactId) {
 return "contact_id = " + contactId;
}

Exploring Raw Contact Data
Because a data row belonging to a raw contact contains a number of fields, we have created
a Java class called ContactData.java, shown in Listing 27-23, to capture a representative
set of the contact data, and not all fields.

639CHAPTER 27: Exploring the Contacts API

Listing 27-23. Source code for ContactData.java

//ContactData.java
public class ContactData {
 public String rawContactId;
 public String aggregatedContactId;
 public String dataId;
 public String accountName;
 public String accountType;
 public String mimetype;
 public String data1;

 public void fillinFrom(Cursor c) {
 rawContactId = Utils.getColumnValue(c,"_ID");
 accountName = Utils.getColumnValue(c,ContactsContract.RawContacts.ACCOUNT_NAME);
 accountType = Utils.getColumnValue(c,ContactsContract.RawContacts.ACCOUNT_TYPE);
 aggregatedContactId =
 Utils.getColumnValue(c,ContactsContract.RawContacts.CONTACT_ID);
 mimetype = Utils.getColumnValue(c,ContactsContract.RawContactsEntity.MIMETYPE);
 data1 = Utils.getColumnValue(c,ContactsContract.RawContactsEntity.DATA1);
 dataId = Utils.getColumnValue(c,ContactsContract.RawContactsEntity.DATA_ID);
 }
 public String toString() {//just a concatenation of fields for logging }
}

Android uses a view called a RawContactEntity view to retrieve data from a raw contact
table and the corresponding data tables as indicated in the section “contact_entities_view”
in this chapter. The URI to access this view is in Listing 27-24.

Listing 27-24. Raw Entities Content URI

ContactsContract.RawContactsEntity.CONTENT_URI

Let’s see how this URI can be used to discover field names returned by this URI:

//Java class: ContactDataFunctionTester.java; Menu item: Contact Entity Cursor
public void showRawContactsEntityCursor(){
 Cursor c = null;
 try {
 Uri uri = ContactsContract.RawContactsEntity.CONTENT_URI;
 c = this.getACursor(uri,null);
 this.printCursorColumnNames(c);
 }
 finally { if (c!=null) c.close(); }
}

The code in Listing 27-24 prints out the list of columns shown in Listing 27-25. So the
columns in Listing 27-25 are the columns that are returned by the raw contacts entity cursor.
There may be additional columns depending on vendor-specific implementations.

640 CHAPTER 27: Exploring the Contacts API

Listing 27-25. Contact Entities Cursor Columns

data_version; contact_id; version; data12;data11;data10; mimetype; res_package;
_id; data15;data14;data13; name_verified; is_restricted; is_super_primary;
data_sync1;dirty;data_sync3;data_sync2; data_sync4;account_type;data1;sync4;sync3;
data4;sync2;data5;sync1; data2;data3;data8;data9; deleted; group_sourceid; data6;data7;
account_name; data_id; starred; sourceid; is_primary;

Once you know this set of columns, you can filter the result set of this cursor by formulating
a proper where clause. However, you want to use the ContactsContract Java class to use
the definitions for these column names. For example, in Listing 27-26 we retrieve the data
elements pertaining to contact IDs 3, 4, and 5.

Listing 27-26. Displaying Data Elements from RawContactsEntity

//Java class: ContactDataFunctionTester.java; Menu item: Contact Data
public void showRawContactsData(){
 Cursor c = null;
 try {
 Uri uri = ContactsContract.RawContactsEntity.CONTENT_URI;
 c = this.getACursor(uri,"contact_id in (3,4,5)");
 this.printRawContactsData(c);
 }
 finally { if (c!=null) c.close(); }
}
protected void printRawContactsData(Cursor c) {
 for(c.moveToFirst();!c.isAfterLast();c.moveToNext()) {
 ContactData dataRecord = new ContactData();
 dataRecord.fillinFrom(c);
 this.mReportTo.reportBack(tag, dataRecord.toString());
 }
}

Code in Listing 27-26 will print such things as name, e-mail address, and MIME type as
defined in the ContactData object in Listing 27-23.

Adding a Contact with Its Details
Let’s look at a code snippet to add a contact with name, e-mail, and phone number. To write
to contacts, you need the following permission in the manifest file:

android.permission.WRITE_CONTACTS

Code in Listing 27-27 adds a raw contact followed by adding two data rows (name and
phone number) for that contact.

641CHAPTER 27: Exploring the Contacts API

Listing 27-27. Adding a Contact

//Java class: AddContactFunctionTester.java; Menu item: Add Contact
public void addContact(){
 long rawContactId = insertRawContact();
 this.mReportTo.reportBack(tag, "RawcontactId:" + rawContactId);
 insertName(rawContactId);
 insertPhoneNumber(rawContactId);
 showRawContactsDataForRawContact(rawContactId);
}
private long insertRawContact(){
 ContentValues cv = new ContentValues();
 cv.put(RawContacts.ACCOUNT_TYPE, "com.google");
 cv.put(RawContacts.ACCOUNT_NAME, "--use your gmail id -- ");
 Uri rawContactUri =
 this.mContext.getContentResolver()
 .insert(RawContacts.CONTENT_URI, cv);
 long rawContactId = ContentUris.parseId(rawContactUri);
 return rawContactId;
}
private void insertName(long rawContactId) {
 ContentValues cv = new ContentValues();
 cv.put(Data.RAW_CONTACT_ID, rawContactId);
 cv.put(Data.MIMETYPE, StructuredName.CONTENT_ITEM_TYPE);
 cv.put(StructuredName.DISPLAY_NAME,"John Doe_" + rawContactId);
 this.mContext.getContentResolver().insert(Data.CONTENT_URI, cv);
}
private void insertPhoneNumber(long rawContactId) {
 ContentValues cv = new ContentValues();
 cv.put(Data.RAW_CONTACT_ID, rawContactId);
 cv.put(Data.MIMETYPE, Phone.CONTENT_ITEM_TYPE);
 cv.put(Phone.NUMBER,"123 123 " + rawContactId);
 cv.put(Phone.TYPE,Phone.TYPE_HOME);
 this.mContext.getContentResolver().insert(Data.CONTENT_URI, cv);
}
private void showRawContactsDataForRawContact(long rawContactId) {
 Cursor c = null;
 try {
 Uri uri = ContactsContract.RawContactsEntity.CONTENT_URI;
 c = this.getACursor(uri,"_id = " + rawContactId);
 this.printRawContactsData(c);
 }
 finally { if (c!=null) c.close(); }
}

642 CHAPTER 27: Exploring the Contacts API

Code in Listing 27-27 does the following:

1. Adds a new raw contact for a predefined account using the account’s
name and type, represented by the method insertRawContact().
Notice how it uses the URI RawContact.CONTENT_URI.

2. Takes the raw contact ID from step 1 and inserts a name record
using the insertName() method in the data table. Notice how it uses
the URI Data.CONTENT_URI.

3. Takes the raw contact ID from step 1 and inserts a phone number
record using the insertPhoneNumber() method in the data table.
Being a data row, it uses Data.CONTENT_URI as the URI.

Listing 27-27 also demonstrates the column aliases used in inserting records. Notice how
constants like Phone.TYPE and Phone.NUMBER point to the generic data table column names
data1 and data2.

Controlling Aggregation of Contacts
Clients that update or insert contacts do not explicitly change the contacts table. The
contacts table is updated by triggers that look into the raw contact table and raw contact
data table.

Raw contacts that get added or changed, in turn, affect the aggregated contacts in the
contacts table. However, you may not want to allow two contacts to be aggregated.

You can control the aggregation behavior of a raw contact by setting the aggregation
mode when that contract is created. As you can see from the raw contact table columns
in Listing 27-20, the raw contact table contains a field called aggregation_mode. Values for
the aggregation mode are shown in Listing 27-7 and explained in the section “Aggregated
Contacts.”

You can also keep two contacts always apart by inserting rows into a table called
agg_exceptions. The URIs needed to insert into this table are defined in the Java class
ContactsContract.AggregationExceptions. The table structure of agg_exceptions is shown
in Listing 27-28.

Listing 27-28. Aggregate Exceptions Table Definition

CREATE TABLE agg_exceptions
(_id INTEGER PRIMARY KEY AUTOINCREMENT,
type INTEGER NOT NULL,
raw_contact_id1 INTEGER REFERENCES raw_contacts(_id),
raw_contact_id2 INTEGER REFERENCES raw_contacts(_id))

The type column in Listing 27-28 holds one of the integer constants in Listing 27-29.

643CHAPTER 27: Exploring the Contacts API

Listing 27-29. Aggregation Types in the Aggregation Exception Table

ContactsContract.AggregationExceptions.TYPE_KEEP_TOGETHER
ContactsContract.AggregationExceptions.TYPE_KEEP_SEPARATE
ContactsContract.AggregationExceptions.TYPE_AUTOMATIC

TYPE_KEEP_TOGETHER says the two raw contacts should never be broken apart. TYPE_KEEP_
SEPARATE says that these raw contacts should never be joined. TYPE_AUTOMATIC says to use
the default algorithm to aggregate contacts.

The URI you will use to insert, read, and update this table is defined as

ContactsContract.AggregationExceptions.CONTENT_URI

Constants for field definitions to work with this table are also available in the Java class
ContactsContract.AggregationExceptions.

Understanding Personal Profile
A personal profile, introduced in API 14, is like a contact, except there is only one personal
profile contact. That is the singular you, on your device.

However, as an implementation detail, all data pertaining to the singular personal profile
contact is maintained in a separate database called profile.db. Our research shows that
this database has a structure identical to contacts2.db. This means you already know what
relevant tables are available and what the columns of each table are.

Being a single contact, the aggregation is straightforward. Every raw contact that is added to
the personal profile is expected to belong to the singular aggregated contact. If one doesn’t
exist, then a new aggregated contact is created and placed in the new raw contact. If one
exists, that contact ID is used as the aggregated contact ID for the raw contact.

The Android SDK uses the same base class ContactsContract to define the necessary URIs
to read/update/delete/add raw contacts to the personal profile. These URIs parallel their
counterparts but with the string "PROFILE" somewhere in them. Listing 27-30 shows a few of
these URIs.

Listing 27-30. Profile-Based URIs Introduced in 4.0

//Relates to profile aggregated contact
ContactsContract.Profile.CONTENT_URI

//Relates to profile based raw contact
ContactsContract.Profile.CONTENT_RAW_CONTACTS_URI

//Relates to profile based raw contact + profile based data table
ContactsContract.RawContactsEntity.PROFILE_CONTENT_URI

Listing 27-30 shows we have separate URIs when dealing with aggregated contact and a
raw contact. However, there isn’t a corresponding personal profile URI for the Data table.
The same Data URI, Data.CONTENT_URI, is applicable to both regular contact data and also
the profile contact data.

644 CHAPTER 27: Exploring the Contacts API

Also note that the same content provider serves the needs of both the personal profile and
regular contacts. Internally, this content provider knows based on the raw contact ID if the
data URI belongs to the profile data or the regular contact data.

Let’s look next at code snippets to read and add contact data to the personal profile. You
will need the permissions from Listing 27-31 to read from and write to the profile data.

Listing 27-31. Permissions Reading/Writing Profile Data

<uses-permission android:name="android.permission.READ_PROFILE"/>
<uses-permission android:name="android.permission.WRITE_PROFILE"/>

Reading Profile Raw Contacts
Let’s use the following URI to read the raw contacts that belong to the personal profile:

ContactsContract.Profile.CONTENT_RAW_CONTACTS_URI

Listing 27-32 shows how to read profile raw contact entries.

Listing 27-32. Showing All Profile Raw Contacts

//Java class: ProfileRawContactFunctionTester.java; Menu item: PRaw Contacts
//In the download this method is named showAllRawContacts
//It is expanded here for clarity.
public void showAllRawProfileContacts() {
 Cursor c = null;
 try {
 String whereClause = null;
 c = this.getACursor(ContactsContract.Profile.CONTENT_RAW_CONTACTS_URI,
 whereClause);
 this.printRawContacts(c);
 }
 finally { if (c!=null) c.close(); }
}
//In the download this method is named printRawContacts
//It is expanded here for clarity.
private void printRawProfileContacts(Cursor c) {
 for(c.moveToFirst();!c.isAfterLast();c.moveToNext()) {
 RawContact rc = new RawContact();
 rc.fillinFrom(c);
 this.mReportTo.reportBack(tag, rc.toString());
 }
}

Notice that once we retrieve the cursor, the data it contains matches the RawContact that we
defined earlier for a regular raw contact.

645CHAPTER 27: Exploring the Contacts API

Reading Profile Contact Data
Let’s use the following URI to read the various data elements (such as e-mail, MIME type,
and so on) of raw contacts that belong to the personal profile:

ContactsContract.RawContactsEntity.PROFILE_CONTENT_URI

Notice how we are using a similar view as in the case of regular contacts. The RawContactEntity
is a join between raw contacts and the data rows belonging to that raw contact. We will see one
row for each data element such as name, e-mail, MIME type, and so on.

Listing 27-33 shows the code snippet to read profile raw contact entries.

Listing 27-33. Showing Data Elements for Profile Contacts

//Java class: ProfileContactDataFunctionTester.java; Menu item: all p raw contacts
public void showProfileRawContactsData() {
 Cursor c = null;
 try {
 Uri uri = ContactsContract.RawContactsEntity.PROFILE_CONTENT_URI;
 String whereClause = null;
 c = this.getACursor(uri,whereClause);
 this.printProfileRawContactsData(c);
 }
 finally { if (c!=null) c.close(); }
}
protected void printProfileRawContactsData(Cursor c) {
 for(c.moveToFirst();!c.isAfterLast();c.moveToNext()) {
 ContactData dataRecord = new ContactData();
 dataRecord.fillinFrom(c);
 this.mReportTo.reportBack(tag, dataRecord.toString());
 }
}

Notice that once we retrieve the cursor, the data it contains matches the ContactData object
(Listing 27-23) that we defined earlier for a regular raw contact data element.

Adding Data to the Personal Profile
Let’s use the following URI to add a raw contact to a personal profile:

ContactsContract.RawContactsEntity.PROFILE_CONTENT_URI

We will also add a few data elements such as a phone number and a nickname to that raw
contact so they appear in the details of your personal profile on the device. Listing 27-34
shows the code snippet.

646 CHAPTER 27: Exploring the Contacts API

Listing 27-34. Adding a Profile Raw Contact

//Java class: AddProfileContactFunctionTester.java; Menu item: all p raw contacts
//In the source code you won't see the word "profile" in the following method names
//It is added here to add clarity as the whole class is not included
public void addProfileContact() {
 long rawContactId = insertProfileRawContact();
 this.mReportTo.reportBack(tag, "RawcontactId:" + rawContactId);
 insertProfileNickName(rawContactId);
 insertProfilePhoneNumber(rawContactId);
 showProfileRawContactsDataForRawContact(rawContactId);
}
private void insertProfileNickName(long rawContactId) {
 ContentValues cv = new ContentValues();
 cv.put(Data.RAW_CONTACT_ID, rawContactId);
 //cv.put(Data.IS_USER_PROFILE, "1");
 cv.put(Data.MIMETYPE, CommonDataKinds.Nickname.CONTENT_ITEM_TYPE);
 cv.put(CommonDataKinds.Nickname.NAME,"PJohn Nickname_" + rawContactId);
 this.mContext.getContentResolver().insert(Data.CONTENT_URI, cv);
}
private void insertProfilePhoneNumber(long rawContactId) {
 ContentValues cv = new ContentValues();
 cv.put(Data.RAW_CONTACT_ID, rawContactId);
 cv.put(Data.MIMETYPE, Phone.CONTENT_ITEM_TYPE);
 cv.put(Phone.NUMBER,"P123 123 " + rawContactId);
 cv.put(Phone.TYPE,Phone.TYPE_HOME);
 this.mContext.getContentResolver().insert(Data.CONTENT_URI, cv);
}
private long insertProfileRawContact() {
 ContentValues cv = new ContentValues();
 cv.put(RawContacts.ACCOUNT_TYPE, "com.google");
 cv.put(RawContacts.ACCOUNT_NAME, "--use your gmail id --");
 Uri rawContactUri =
 this.mContext.getContentResolver()
 .insert(ContactsContract.Profile.CONTENT_RAW_CONTACTS_URI, cv);
 long rawContactId = ContentUris.parseId(rawContactUri);
 return rawContactId;
}
private void showProfileRawContactsDataForRawContact(long rawContactId) {
 Cursor c = null;
 try {
 Uri uri = ContactsContract.RawContactsEntity.PROFILE_CONTENT_URI;
 c = this.getACursor(uri,"_id = " + rawContactId);
 this.printRawContactsData(c);
 }
 finally { if (c!=null) c.close(); }
}

The code in Listing 27-34 parallels the code we used to add a regular contact and its details
(Listing 27-27). Although we have used a profile-specific URI to add a raw contact, we have
used the same Data.CONTENT_URI to add the individual data elements.

647CHAPTER 27: Exploring the Contacts API

Note the following commented-out code in Listing 27-34:

//cv.put(Data.IS_USER_PROFILE, "1");

Because Data.CONTENT_URI is not specific to the profile, how does the underlying content
provider know whether to insert this data into a regular raw contact or a personal profile
raw contact? We thought that specifying a column called IS_USER_PROFILE would help the
content provider. Apparently not. This new column is available primarily for read purposes.
Your inserts will fail if you specify this during inserts. The only conclusion then is that the
content provider is relying on the raw contact ID to see whether that raw contact came from
profile.db or contacts2.db.

Role of Sync Adapters
So far, we have mainly talked about manipulating the contacts on the device. However,
accounts and their contacts on Android work hand in hand with server-based contacts. For
example, if you have created a Google account on your Android phone, the Google account
will pull your Gmail contacts and make them available on the device. To do this syncing
Android provides a synchronization framework which does most of the groundwork as long
as you write a conforming Sync adapter. Android’s synchronization framework takes care of
network availability, optional authentication, and scheduling.

Implementing a sync adapter involves implementing a service by extending the SDK class
AbstractThreadedSyncAdapter and doing the work in the method onPerformSync(). Work
involved in this method is to load data from servers and update the contacts using the
Contacts API that is discussed in this chapter. Then, a sync-adapter resource file (XML)
needs to be created on the device that will describe how this service is tied to the account
that needs to be synched.

Outside of this basic understanding, due to space limitations we have not covered the syncing
API in this edition of the book. Android SDK documentation has some documentation and
samples.

Synchronization of contacts has impacts on deleting contacts on the device. When you
delete a contact using the aggregated contact URI, it will delete all its corresponding raw
contacts and the data elements of each of those raw contacts. However, Android will only
mark them as deleted on the device and expects the background sync to actually sync with
the server and then delete the contacts permanently from the device. This cascading of
deletes also happens at the raw contact level where the corresponding data elements of that
raw contact are deleted.

Using Batch Operations to Optimize ContentProvider
Updates
While covering content providers in Chapter 26 we indicated that we would cover the batch
operations in this chapter.

648 CHAPTER 27: Exploring the Contacts API

Reconsider how a raw contact and its associated data elements are created earlier in the
chapter. Notice the multiple commands we need to send to the contacts provider to insert
a raw contact. First we have to insert raw contact. Then use that ID to insert multiple data
elements belonging to that raw contact. Each of these inserts is a separate command sent
to the content provider independently.

There are two issues when we send these multiple commands sequentially. The first issue is
that the content provider is not aware that they belong to a single commit unit. The second
issue is that it will take longer to update the content provider database as each transaction
is committed by itself.

These two issues are addressed by the batch update API available for any content provider
including the contact provider.

Idea of Batching Content Provider Updates
In the batching approach, each content provider update operation is encapsulated in an
object called “ContentProviderOperation” along with the URI and all the necessary key/value
pairs to perform that operation. Then you gather these operations into a list object. You then
tell the content resolver to send the entire batch or list of commands to the content provider
at the same time. Because the content provider knows these commands are in a batch, it
applies the transactions appropriately either at the end or so often based on hints.

If an operation indicates that a transaction can be applied at the end of that operation, then
the operations completed thus far will be committed. This allows you to sub-batch long
updates of many rows in to smaller set of sub-rows. You can also indicate in an operation
that one of the columns to be updated needs to use the key returned by an indexed previous
operation. We will present now some sample code showing how these ideas work.

Listing 27-35 shows an example of creating a list object to hold a list of operations.

Listing 27-35. A Container for Content Provider Operations

ArrayList<ContentProviderOperation> ops = new ArrayList<ContentProviderOperation>();

Let us see now how to construct the individual operations to be added to that list in
Listing 27-36.

Listing 27-36. Batching ContentProviderOperations

ContentProviderOperation.Builder op = ContentProviderOperation.newInsert(a content URI);
op.withValue(key, value);
//...more of these
ContentProviderOperation op1 = op.build();
ops.add(op1);

The key class is ContentProviderOperation and its corresponding Builder object. In the
example here we are using the insert operation. For the rest of the methods see the class
reference. Once we have a builder along with its associated content URI, we tell the builder
to add set of key/value pairs that go along with that content URI. Once finished adding all

649CHAPTER 27: Exploring the Contacts API

the key/value pairs we produce the ContentProviderOperation from the builder and add it to
the list. We then ask the content resolver to apply the batch of operations using the code in
Listing 27-37.

Listing 27-37. Using a Content Resolved to Apply the Batch of Operations

activity.getContentResolver().applyBatch(contentProviderAuthority, ops);

In Listing 27-37 the argument contentProviderAuthority is the authority string pointing the
content provider and the argument ops is the list of operations that should be applied as a
batch to that content provider. This is an example of adding a series of update operations
as a single transaction. Let us see now how to provide commit hints to so that commit
operations can be done on smaller subsets from the given batch.

Batching Commits by Yielding
One problem with committing a large batch of commands as a single transaction is that this
work can block other operations on the database. To help with this and also to help with too
much work to be committed in a single transaction you can instruct an operation to yield.
When the content provider recognizes the yield parameter on an operation it commits the
work done and pauses to yield for other processes to run.

Notice how in the code in Listing 27-38 one of the operations is set to allow yield.

Listing 27-38. Using Yield in a ContentProviderOperation

ContentProviderOperation.Builder operationBuilder =
 ContentProviderOperation.newInsert(a content URI);
operationBuilder.withValue(key, value);
//...more of these key/value pairs when you have them
ContentProviderOperation op1 = operationBuilder.build();

//... Add More operations

//Mark the next operation as yield allowed
operationBuilder = ContentProviderOperation.newInsert(a content URI);
operationBuilder.withValue(key, value);
operationBuilder.withYieldAllowed(true); //it is ok to commit
ContentProviderOperation operationWithYield = operationBuilder.build();
ops.add(operationWithYield);

//... Add More operations and yield points as needed

//Finally apply the list of operations
activity.getContentResolver().apply(contentProviderAuthority, ops);

650 CHAPTER 27: Exploring the Contacts API

Using Back References
For one of the operations above you can use a back reference as shown in Listing 27-39.

Listing 27-39. Using a Back Reference in a ContentProviderOperation

//Take the key coming out of op1 and add it as the value
int indexOfTheOperationWhoseKeyYouNeed = 0;
op.withValueBackReference(mykey, indexOfTheOperationWhoseKeyYouNeed);

Code in Listing 27-39 is asking the content provider to run the operation indicated by list
index indexOfTheOperationWhoseKeyYouNeed and take its generated primary key and use it
as a value for the column that is set on the target operation. This is how you take the insert
from raw contact and use its primary key as the key value for the data items belonging to
that raw contact.

Optimistic Locking
In optimistic locking, you first apply the transactions without locking the underlying
repository and see if any updates have been made since you know its value before. If so,
cancel the transaction and retry it.

To make this in the batch mode, the API offers a type of operation called an assert query. In
this type of operation the content provider makes the query and compares the values of the
retrieved cursor for either the count or the values of certain keys. If they don’t match, it rolls
back the transaction and raises an exception breaking the code flow. See this demonstrated
in the code shown in Listing 27-40.

Listing 27-40. Using Optimistic Locking through newAssertQuery

try {
 //Read a raw contact for a particular raw contact id
 ContentProviderOperation.Builder assertOpBuilder =
 ContentProviderOperation.newAssertQuery(rawContactUri);
 //Make sure there is only one raw contact with that details
 assertOpBuilder.withExpectedCount(1);
 //Make sure the version column matches with you started with
 //If not throw an exception. We chose to compare the version number
 //column (field) in the raw contacts table to assert.
 assertOpBuilder.withValue(SyncColumns.VERSION, mVersion);
 //get this operation and add it to the operations list at the end
 //Apply the batch ...
 activityInstance.getContentResolver().applyBatch(...);
}
//for this or other exceptions
catch (OperationApplicationException e) {
 //The batch is already cancelled
 //Tell the user the update failed
 //Show the user the new details and repeat the process
}

651CHAPTER 27: Exploring the Contacts API

Reusing the Contact Provider UI
Contact provider capability in Android also defines a set of intents that can be used to reuse
the UI available in the contacts application.

There are three kinds of intents. There is a set of intents that the contact provider fires
based on the events taking place in the content provider UI application. For example, the
intent INVITE_CONTACT is fired when the user clicks the “invite to the network” button on
a contact in the contact application. An application can register for this event and read the
contact details.

There is another set of intents that are used when the contact provider acts as a search
provider for your custom activities. Using this facility you can search for a contact in your
custom application through search suggestions.

There is another set of intents that external applications can fire to reuse the UI that is
provided by the contact application. You can use these intents to pick from a list of contacts,
or from a list of phone numbers, or from a list of addresses, or from a list of e-mails. You
can also use these intents to update a contact or create a contact using the UI provided the
Android application.

These intents are documented in the class reference for ContactsContract.Intents.

Using Group Features
Contacts API provides the contracts shown in Listing 27-41 to work with the Group Features
of contacts

Listing 27-41. Group Contact Contracts

ContactsContract.Groups
ContactsContract.CommonDataKinds.GroupMembership

The groups table holds things like name of the group, notes about that group, and some
group level counts of the membership. The groups a raw contact belongs to are kept in the
data tables.

Using Photo Features
You can explore the photo-related information for a contact using the class contract shown
in Listing 27-42.

Listing 27-42. Contact Photo Contracts

ContactsContract.Contacts.Photo
ContactsContract.RawContacts.DisplayPhoto

The class documentation for these contracts has sample code that describes how to use
these features.

652 CHAPTER 27: Exploring the Contacts API

References
Here are additional resources for the topics covered in this chapter:

	https://developer.android.com/guide/topics/providers/contacts-
provider.html: The primary documentation for all aspects of the
Contacts API from Google. This URL also includes a section on
performing batch operations on the contacts database, optimistic
locking, and reusing the contacts application UI.

	http://developer.android.com/reference/android/provider/
ContactsContract.html: Java doc for the key Java class ContactsContract.
You will need this URL often as you code to the Contacts API.

	https://play.google.com/store/books/details/Google_Android_
Quick_Start_Guide_Android_5_0_Lolli?id=dnzVBAAAQBAJ: Android 5.0
Quick Start guide. These Android user guides that are prepared for each
release are useful in understanding how the stock contacts application
work from a UI perspective.

	https://developer.android.com/guide/topics/providers/contacts-
provider.html#SyncAdapters: Sync Adapters are documented here.

	http://developer.android.com/sdk/android-4.0.html#Contacts:
Documentation for the changes to the Contacts API in 4.0.

	http://developer.android.com/reference/android/provider/
ContactsContract.Profile.html: A reference on how to use the new
Profile URIs introduced in 4.0.

	http://www.androidbook.com/item/3917: Entry point for our research
on the Contacts API. You will find here our research, a summary of the
Contacts API, tables used in the contacts database, how to explore the
contacts databases, contacts application screenshots, how to explore
sources for contact providers, and other useful links.

	http://developer.android.com/guide/topics/search/index.html: SDK
docs on Search API. Useful to review this to know how to search for
contacts.

	http://www.androidbook.com/proandroid5/projects: You can use this
URL to download the test project dedicated for this chapter. The name
of the ZIP file is ProAndroid5_ch27_TestContacts.zip.

Summary
In this chapter, we have covered the following: the nature of the Contacts API, exploring the
contacts database, exploring the Contacts API URIs and their cursors, reading and adding
contacts, aggregating raw contacts, the relationship between the personal profile and
contacts, and reading and adding contacts to a personal profile. We have also briefly covered
batching provider operations, using the contact provider as a search provider for contacts.

https://developer.android.com/guide/topics/providers/contacts-provider.html
https://developer.android.com/guide/topics/providers/contacts-provider.html
http://developer.android.com/reference/android/provider/ContactsContract.html
http://developer.android.com/reference/android/provider/ContactsContract.html
https://play.google.com/store/books/details/Google_Android_Quick_Start_Guide_Android_5_0_Lolli?id=dnzVBAAAQBAJ
https://play.google.com/store/books/details/Google_Android_Quick_Start_Guide_Android_5_0_Lolli?id=dnzVBAAAQBAJ
https://developer.android.com/guide/topics/providers/contacts-provider.html#SyncAdapters
https://developer.android.com/guide/topics/providers/contacts-provider.html#SyncAdapters
http://developer.android.com/sdk/android-4.0.html#Contacts
http://developer.android.com/reference/android/provider/ContactsContract.Profile.html
http://developer.android.com/reference/android/provider/ContactsContract.Profile.html
http://www.androidbook.com/item/3917
http://developer.android.com/guide/topics/search/index.html
http://www.androidbook.com/proandroid5/projects

653

Chapter 28
Exploring Security and
Permissions

No exploration of modern development platforms or operating systems is complete without
discussing security. In Android, security spans all phases of the application life cycle—from
design-time policy considerations to runtime boundary checks. In this chapter you’ll learn
Android’s security architecture and understand how to design secure applications.

Let’s get started with the Android security model.

Understanding the Android Security Model
Let’s dive right in, to cover security during the deployment and execution of any Android
application. To deploy an Android application, it must be signed with a digital certificate
in order for you to install it onto a device. With respect to execution, Android runs each
application within a separate process, where each process has a unique and permanent
user ID (assigned at install time). This places a boundary around the process and prevents
one application from having direct access to another’s data. Moreover, Android defines a
declarative permission model that protects sensitive features (such as the contact list).

In the next several sections, we are going to discuss these topics. But before we get started,
let’s provide an overview of some of the security concepts that we’ll refer to later.

Overview of Security Concepts
Android requires that applications be signed with a digital certificate. One of the benefits
of this requirement is that an application cannot be updated with a version that was
not published by the original author or holder of the signing certificate. If we publish an
application, for example, then you cannot update our application with your version (unless,
of course, you somehow obtain our certificate). That said, what does it mean for an
application to be signed? And what is the process of signing an application?

654 CHAPTER 28: Exploring Security and Permissions

You sign an application with a digital certificate. A digital certificate is an artifact that contains
information about you, such as your company name, address, and so on. A few important
attributes of a digital certificate include its signature and public/private key. A public/private
key is also called a key pair. Note that although you use digital certificates here to sign .apk
files, you can also use them for other purposes (such as encrypted communication, signing
documents, and so forth). You can obtain a digital certificate from a trusted certificate
authority (CA) and you can also generate one yourself using tools such as the keytool, which
we’ll discuss shortly. Digital certificates are stored in keystores. A keystore contains a list of
digital certificates, each of which has an alias that you can use to refer to it in the keystore.

Signing an Android application requires three things: a digital certificate, the .apk file for
the application you wish to sign, and a utility that knows how to apply a digital signature to
the .apk file. We use a free utility that is part of the Java Development Kit (JDK) distribution
called the jarsigner. This utility is a command-line tool that knows how to sign a .jar
file using a digital certificate, and an .apk file is really just a zip-formatted file that collects
together .jar files and a few other resources for your project. Other signing tools are
available, so you are free to choose the tool that works best for you.

Now, let’s move on and talk about how you can sign an .apk file with a digital certificate.

Signing Applications for Deployment
To install an Android application onto a device, you first need to sign the Android package
(.apk file) using a digital certificate. The certificate, however, can be self-signed—you do not
need to purchase a certificate from a certificate authority such as VeriSign. Be aware that
self-signed certificates are generally considered less trustworthy, and in some environments
are considered insecure.

Signing your application for deployment involves three steps. The first step is to generate
a certificate using keytool (or a similar tool). The second step involves using the jarsigner
tool to sign the .apk file with the generated certificate. The third step aligns portions of
your application on memory boundaries for more efficient memory usage when running
on a device. Note that during development, both the ADT plug-in for Eclipse and Android
Developer Studio take care of everything for you: signing your .apk file and doing the
memory alignment, before deploying onto the emulator or a device.

Generating a Self-Signed Certificate Using the Keytool
The keytool utility manages a database of private keys and their corresponding X.509
certificates (a standard for digital certificates). This utility ships with the JDK and resides
under the JDK bin directory. If you followed the instructions in Chapter 2 regarding changing
your PATH, the JDK bin directory should already be in your PATH. In this section, we’ll show
you how to generate a keystore with a single entry, which you’ll later use to sign an Android
.apk file. To generate a keystore entry, do the following:

1. Create a folder to hold the keystore, such as c:\android\release\.
or /opt/android/release (depending on your operating system).

2. Open a shell or command window, and execute the keytool utility
with the parameters shown in Listing 28-1.

655CHAPTER 28: Exploring Security and Permissions

Listing 28-1. Generating a Keystore Entry Using the keytool Utility

keytool -genkey -v -keystore "c:\android\release\release.keystore"
-alias androidbook -keyalg RSA
-validity 14000

All of the arguments passed to the keytool are summarized in Table 28-1.

Table 28-1. Arguments Passed to the keytool Utility

Argument Description

genkey Tells keytool to generate a public/private key pair.

v Tells keytool to emit verbose output during key generation.

keystore Path to the keystore database (in this case, a file). The file will be created if necessary.

alias Unique name for the keystore entry. This alias is used later to refer to the keystore entry.

keyalg Algorithm.

validity Validity period.

keytool will prompt you for two passwords during the creation of the keystore and the
entry you are creating. The first password prompted is for the keystore itself and controls
access to all the key material you will store. This can also be specified using the storepass
parameter. The second password is the password for the private key and related certificate
you are creating, also available via the keypass parameter. You should get used to not
including these as parameters on the command line, and instead prefer to allow keytool to
prompt you as good general security practice.

Be aware, that if you do use the parameters for password to keytool, anyone who gets
access to your shell or command-line history can see the passwords, as can anyone who
can list the running processes on your machine while keytool runs. The command in
Listing 28-1 will generate a keystore database file in your keystore folder. The database
will be a file named release.keystore. The validity of the entry will be 14,000 days (or
approximately 38 years)—which is a long time from now. You should understand the reason
for this. The Android documentation recommends that you specify a validity period long
enough to surpass the entire lifespan of the application, which will include many updates to
the application. It recommends that the validity be at least 25 years. If you plan to publish
the application on Google Play, your certificate will need to be valid through at least
October 22, 2033. Google Play checks each application when uploaded to make sure it will
be valid at least until then.

Caution Because your certificate in any application update must match the certificate you used
the first time, make sure you safeguard your key material. Keep either your keystore file, or the key
pair if you choose to export them, safe! If you lose access to the keystore or underlying keys, and
you can’t re-create it, you won’t be able to update your application, and you’ll have to issue a whole
new application instead.

656 CHAPTER 28: Exploring Security and Permissions

Going back to the keytool, the argument alias is a unique name given to the entry in the
keystore database; you will use this name later to refer to the entry. When you run the
keytool command in Listing 28-1, keytool will ask you a few questions (see Figure 28-1)
and then generate the keystore database and entry.

Once you have a keystore file for your production certificates, you can reuse this file to add
more certificates. Just use keytool again, and specify your existing keystore file.

The Debug Keystore and the Development Certificate
We mentioned that the ADT plug-in for Eclipse, and Android Developer Studio, both take
care of setting up a development keystore for you. However, the default certificate used
for signing during development cannot be used for production deployment onto a real
device. This is partly because the automatically generated development certificate is
only valid for 365 days, which clearly does not get you past October 22, 2033. So what
happens on the three hundred sixty-sixth day of development? You’ll get a build error. Your
existing applications should still run, but to build a new version of an application, you need
to generate a new certificate. The easiest way to do this is to delete the existing debug.
keystore file, and as soon as it is needed again, the ADT (for instance) will generate a new
file and certificate valid for another 365 days.

To find your debug.keystore file, assuming you are using Eclipse with ADT, open the
Preferences screen of Eclipse and go to Android ➤ Build. The debug certificate’s location
will be displayed in the Default Debug Keystore field, as shown in Figure 28-2 (see Chapter 2
if you have trouble finding the Preferences menu).

Figure 28-1. Additional questions asked by keytool

657CHAPTER 28: Exploring Security and Permissions

Of course, now that you’ve got a new development certificate, you cannot update
your existing applications in Android Virtual Devices (AVDs) or on devices using a new
development certificate. Eclipse will provide messages in the Console telling you to uninstall
the existing application first using adb, which you can certainly do. If you have a lot of
your applications installed onto an AVD, you may feel it is easier to simply re-create the
AVD, so it does not contain any of your applications and you can start fresh. To avoid this
problem a year from now, you could generate your own debug.keystore file with whatever
validity period you desire. Obviously, it needs to have the same file name and be in the
same directory as the file that ADT would create. The certificate alias is androiddebugkey,
and the storepass and keypass are both "android". ADT sets the first and last name on
the certificate as "Android Debug", the organizational unit as "Android", and the two-letter
country code as "US". You can leave the organization, city, and state values as "Unknown".

If you acquired a map-api key from Google using the old debug certificate, you will need
to get a new map-api key to match the new debug certificate. We covered map-api keys in
Chapter 19.

Now that you have a digital certificate that you can use to sign your production .apk file, you
need to use the jarsigner tool to do the signing. Here’s how to do that.

Using the Jarsigner Tool to Sign the .apk File
The keytool utility described in the previous section created a digital certificate, which is one
of the parameters for the jarsigner tool. The other parameter for jarsigner is the actual
Android package to be signed. To generate an Android package, you need to use the Export
Unsigned Application Package utility in the ADT plug-in for Eclipse (or equivalent function
in Android Developer Studio). You access the utility by right-clicking an Android project

Figure 28-2. The debug certificate’s location

658 CHAPTER 28: Exploring Security and Permissions

in Eclipse, selecting Android Tools, and selecting Export Unsigned Application Package.
Running the Export Unsigned Application Package utility will generate an .apk file that will
not be signed with the debug certificate.

To see how this works, run the Export Unsigned Application Package utility on one of your
Android projects, and store the generated .apk file somewhere. For this example, we’ll use
the keystore folder we created earlier and generate an .apk file called c:\android\release\
myappraw.apk.

With the .apk file and the keystore entry, run the jarsigner tool to sign the .apk file (see
Listing 28-2). Use the full path names to your keystore file and .apk file as appropriate when
you run this.

Listing 28-2. Using jarsigner to Sign the .apk File

jarsigner -keystore "PATH TO YOUR release.keystore FILE" -storepass paxxword -keypass

paxxword "PATH TO YOUR RAW APK FILE" androidbook

To sign the .apk file, you pass the location of the keystore, the keystore password, the
private-key password, the path to the .apk file, and the alias for the keystore entry. The
jarsigner will then sign the .apk file with the digital certificate from the keystore entry. To run
the jarsigner tool, you will need to either open a tools window (as explained in Chapter 2)
or open a command or Terminal window and either navigate to the JDK bin directory or
ensure that your JDK bin directory is on the system path. For security reasons, it is safer
to leave off the password arguments to the command and simply let jarsigner prompt you
as necessary for passwords. Figure 28-3 shows what the jarsigner tool invocation looks
like. You may have noticed that jarsigner prompted for only one password in Figure 28-3.
Jarsigner figures out not to ask for the keypass password when the storepass and keypass
are the same. Strictly speaking, the jarsigner command in Listing 28-2 only needs –keypass
if it has a different password than –storepass.

Figure 28-3. Using jarsigner

As we pointed out earlier, Android requires that an application be signed with a digital
signature to prevent a malicious programmer from updating your application with their
version. For this to work, Android requires that updates to an application be signed with
the same signature as the original. If you sign the application with a different signature,
Android treats them as two different applications. So we remind you again, be careful with
your keystore file so it’s available to you later when you need to provide an update to your
application.

659CHAPTER 28: Exploring Security and Permissions

Aligning Your Application with zipalign
You want your application to be as memory efficient as possible when running on a device.
If your application contains uncompressed data (perhaps certain image types or data files)
at runtime, Android can map this data straight into memory using the mmap() call. For this to
work, though, the data must be aligned on a 4-byte memory boundary. The CPUs in Android
devices are 32-bit processors, and 32 bits equals 4 bytes. The mmap() call makes the data
in your .apk file look like memory, but if the data is not aligned on a 4-byte boundary, it
can’t do that and extra copying of data must occur at runtime. The zipalign tool, found in
the Android SDK build or build-tools/<version> directory, looks through your application
and moves slightly any uncompressed data not already on a 4-byte memory boundary to
a 4-byte memory boundary. You may see the file size of your application increase slightly
but not significantly. To perform an alignment on your .apk file, use this command in a tools
window (see also Figure 28-4):

zipalign –v 4 infile.apk outfile.apk

Figure 28-4. Using zipalign

Note that zipalign does not modify the input file, so this is why we chose to use “raw” as
part of our file name when exporting from Eclipse. Now, our output file has an appropriate
name for deployment. If you need to overwrite an existing outfile.apk file, you can use
the –f option. Also note that zipalign performs a verification of the alignment when you
create your aligned file. To verify that an existing file is properly aligned, use zipalign in the
following way:

zipalign –c –v 4 filename.apk

It is very important that you align after signing; otherwise, signing could cause things to go
back out of alignment. This does not mean your application would crash, but it could use
more memory than it needs to.

660 CHAPTER 28: Exploring Security and Permissions

Using the Export Wizard
In Eclipse, you may have noticed a menu choice under Android Tools called Export Signed
Application Package. This launches what is called the export wizard, and it does all of
the previous steps for you, prompting only for the path to your keystore file, key alias, the
passwords, and the name of your output .apk file. It will even create a new keystore or new
key if you need one. You may find it easier to use the wizard, or you may prefer to script the
steps yourself to operate on an exported unsigned application package. Now that you know
how each works, you can decide which is better for you.

Manually Installing Apps
Once you have signed and aligned an .apk file, you can install it onto the virtual device
manually using the adb tool. As an exercise, start the virtual device from the AVD Manager,
which will start without copying over any of your development projects from Eclipse. Now,
open a tools window and run the adb tool with the install command:

adb install "PATH TO APK FILE GOES HERE"

This may fail for a couple of reasons, but the most likely are that the debug version of
your application was already installed on the emulator, giving you a certificate error, or
the release version of your application was already installed on the emulator, giving you
an "INSTALL_FAILED_ALREADY_EXISTS" error. In the first case, you can uninstall the debug
application with this command:

adb uninstall packagename

Note that the argument to uninstall is the application’s package name and not the .apk
file name. The package name is defined in the AndroidManifest.xml file of the installed
application.

For the second case, you can use this command, where –r says to reinstall the application
while keeping its data on the device (or emulator):

adb install –r "PATH TO APK FILE GOES HERE"

Now, let’s see how signing affects the process of updating an application.

Installing Updates to an Application and Signing
Earlier, we mentioned that a certificate has an expiration date and that Google recommends
you set expiration dates far into the future, to account for a lot of application updates. That
said, what happens if the certificate does expire? Would Android still run the application?
Fortunately, yes—Android tests the certificate’s expiration only at install time. Once your
application is installed, it will continue to run even if the certificate expires.

But what about updates? Unfortunately, you will not be able to update the application once
the certificate expires. In other words, as Google suggests, you need to make sure the life of
the certificate is long enough to support the entire life of the application. If a certificate does

661CHAPTER 28: Exploring Security and Permissions

expire, Android will not install an update to the application. The only choice left will be for
you to create another application—an application with a different package name—and sign it
with a new certificate. So as you can see, it is critical for you to consider the expiration date
of the certificate when you generate it.

Now that you understand security with respect to deployment and installation, let’s move on
to runtime security in Android.

Performing Runtime Security Checks
Runtime security in Android happens at the process and operation levels. At the process
level, Android prevents one application from directly accessing another application’s data.
It does this by running each application within a different process and under a unique and
permanent user ID. At the operational level, Android defines a list of protected features
and resources. For your application to access this information, you have to add one or
more permission requests to your AndroidManifest.xml file. You can also define custom
permissions with your application.

In the sections that follow, we will talk about process-boundary security and how to declare
and use predefined permissions. We will also discuss creating custom permissions and
enforcing them within your application. Let’s start by dissecting Android security at the
process boundary.

Understanding Security at the Process Boundary
Unlike your desktop environment, where most of the applications run under the same
user ID, each Android application generally runs under its own unique ID. By running each
application under a different ID, Android creates an isolation boundary around each process.
This prevents one application from directly accessing another application’s data.

Although each process has a boundary around it, data sharing between applications
is obviously possible but has to be explicit. In other words, to get data from another
application, you have to go through the components of that application. For example,
you can query a content provider of another application, you can invoke an activity in
another application, or—as you’ll see in Chapter 15—you can communicate with a service
of another application. All of these facilities provide methods for you to share information
between applications, but they do so in an explicit manner because you don’t directly
access the underlying database, files, and so on.

Android’s security at the process boundary is clear and simple. Things get interesting when
we start talking about protecting resources (such as contact data), features (such as the
device’s camera), and our own components. To provide this protection, Android defines a
permission scheme. Let’s dissect that now.

662 CHAPTER 28: Exploring Security and Permissions

Declaring and Using Permissions
Android defines a permission scheme meant to protect resources and features on the
device. For example, applications, by default, cannot access the contacts list, make
phone calls, and so on. To protect the user from malicious applications, Android requires
applications to request permissions if they need to use a protected feature or resource. From
the introduction of Android Kit Kat, and continuing in Android Lollipop, permissions when
presented to the end user are now clustered into groups to address their constantly growing
number and complexity. This grouping brings with it some compromises as you will observe.

As we will cover shortly, permission requests go in the manifest file. At install time, the APK
installer either grants or denies the requested permissions based on the signature of the
.apk file and/or feedback from the user. If permission is not granted, any attempt to execute
or access the associated feature will result in a permission failure.

Table 28-2 shows some commonly used features and the permissions they require. Although
you are not yet familiar with all the features listed, you will learn about them later (either in
this chapter or in subsequent chapters).

Table 28-2. Features and Resources and the Permissions They Require

Feature/Resource Required Permission Description

Camera android.permission.CAMERA Enables you to access the
device’s camera.

Internet android.permission.INTERNET Enables you to make a network
connection.

User’s
contact data

android.permission.READ_CONTACTS

android.permission.WRITE_CONTACTS

Enables you to read from or write
to the user’s contact data.

User’s
calendar data

android.permission.READ_CALENDAR

android.permission.WRITE_CALENDAR

Enables you to read from or write
to the user’s calendar data.

Recording audio android.permission.RECORD_AUDIO Enables you to record audio.

Wi-Fi location
information

android.permission.ACCESS_COARSE_LOCATION Enables you to access
coarse-grained location
information from Wi-Fi and cell
towers.

GPS location
information

android.permission.ACCESS_FINE_LOCATION Enables you to access
fine-grained location information.
This includes GPS location
information. It is also sufficient
for Wi-Fi and cell towers.

Battery
information

android.permission.BATTERY_STATS Enables you to obtain
battery-state information.

Bluetooth android.permission.BLUETOOTH Enables you to connect to paired
Bluetooth devices.

663CHAPTER 28: Exploring Security and Permissions

For a complete list of permissions, see the following URL:

http://developer.android.com/reference/android/Manifest.permission.html

Application developers can request permissions by adding entries to the AndroidManifest.xml
file. For example, Listing 28-3 asks to access the camera on the device, to read the list of
contacts, and to read the calendar.

Listing 28-3. Permissions in AndroidManifest.xml

<manifest ... >
 <application>
 ...
 </application>
 <uses-permission android:name="android.permission.CAMERA" />
 <uses-permission android:name="android.permission.READ_CONTACTS"/>
 <uses-permission android:name="android.permission.READ_CALENDAR" />
</manifest>

Note that you can either hard-code permissions in the AndroidManifest.xml file or use the
manifest editor. The manifest editor is wired up to launch when you open (double-click) the
manifest file. The manifest editor contains a drop-down list that has all of the permissions
preloaded to prevent you from making a mistake. As shown in Figure 28-5, you can access
the permissions list by selecting the Permissions tab in the manifest editor.

Figure 28-5. The Android manifest editor tool in Eclipse

You now know that Android defines a set of permissions that protects a set of features and
resources. Similarly, you can define and enforce custom permissions with your application.
Let’s see how that works.

http://developer.android.com/reference/android/Manifest.permission.html

664 CHAPTER 28: Exploring Security and Permissions

Understanding and Using URI Permissions
Content providers (discussed in Chapter 4) often need to control access at a finer level
than all or nothing. Fortunately, Android provides a mechanism for this. Think about e-mail
attachments. The attachment may need to be read by another activity to display it. But the
other activity should not get access to all of the e-mail data and does not need access even
to all attachments. This is where URI permissions come in.

Passing URI Permissions in Intents
When invoking another activity and passing a URI, your application can specify that it is
granting permissions to the URI being passed. But before your application can do this, it
needs permission itself to the URI, and the URI content provider must cooperate and allow
the granting of permissions to another activity. The code to invoke an activity with granting
of permissions looks like Listing 28-4, which is actually from the Android Email program,
where it is launching an activity to view an e-mail attachment.

Listing 28-4. Code to Launch an Activity with Granting of Permission

try {
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(contentUri);
 intent.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
 startActivity(intent);
} catch (ActivityNotFoundException e) {
 mHandler.attachmentViewError();
 // TODO: Add a proper warning message (and lots of upstream cleanup to prevent
 // it from happening) in the next release.
}

The attachment is specified by contentUri. Notice how the intent is created with the action
Intent.ACTION_VIEW, and the data is set using setData(). The flag is set to grant read
permission of the attachment to whatever activity will match on the intent. This is where the
content provider comes into play. Just because an activity has read permission to content
doesn’t mean it can pass along that permission to some other activity that does not have
the permission already. The content provider must allow it as well. As Android finds a
matching intent filter on an activity, it consults with the content provider to make sure that
permissions can be granted. In essence, the content provider is being asked to allow access
to this new activity to the content specified by the URI. If the content provider refuses,
then a SecurityException is thrown, and the operation fails. In Listing 28-4, this particular
application is not checking for a SecurityException, because the developer is not expecting
any refusals to grant permission. That’s because the attachment content provider is part of
the Email application! There is a possibility though that no activity can be found to handle
the attachment, so that is the only exception being watched for.

In the case where the activity being called to process the URI already has permission to
access that URI, the content provider does not get to deny access. That is, the calling
activity can grant permission, and if the activity on the receiving end of the intent already has
the necessary permissions for contentURI, the called activity will be allowed to proceed with
no problems.

665CHAPTER 28: Exploring Security and Permissions

In addition to Intent.FLAG_GRANT_READ_URI_PERMISSION, there is a flag for write permissions:
Intent.FLAG_GRANT_WRITE_URI_PERMISSION. It is possible to specify both in an Intent. Also,
these flags can apply to services and BroadcastReceivers as well as activities because they
can receive intents too.

Specifying URI Permissions in Content Providers
So how does a content provider specify URI permissions? It does so in the
AndroidManifest.xml file in one of two ways:

In the 	 <provider> tag, the android:grantUriPermissions attribute can
be set to either true or false. If true, any content from this content
provider can be granted. If false, the second way of specifying URI
permissions can happen, or the content provider can decide not to let
anyone else grant permissions.

Specify permissions with child tags of 	 <provider>. The child tag is
<grant-uri-permission>, and you can have more than one within
<provider>. <grant-uri-permission> has three possible attributes:

Using the 	 android:path attribute, you can specify a complete path which
will then have permissions that are grantable.

Similarly, 	 android:pathPrefix specifies the beginning of a URI path.

	 android:pathPattern allows wildcards (the asterisk, *, character) to
specify a path.

As we stated before, the granting entity must also have appropriate permissions to the
content before being allowed to grant them to some other entity. Content providers have
additional ways of controlling access to their content, through the android:readPermission
attribute of the <provider> tag, the android:writePermission attribute, and the
android:permission attribute (a convenient way to specify both read and write permissions
with one permission String value). The value for any of these three attributes is a String
that represents the permission a caller must have in order to read or write with this content
provider. Before an activity could grant read permission to a content URI, that activity must
have read permission first, as specified by either the android:readPermission attribute or the
android:permission attribute. The entity wanting these permissions would declare them in
their manifest file with the <uses-permissions> tag.

References
Here are some helpful references to topics you may wish to explore further:

	http://developer.android.com/guide/topics/security/security.html:
The Android Developer’s Guide section “Security Tips.” It provides an
overview with links to lots of reference pages.

	http://developer.android.com/guide/publishing/app-signing.html:
The Android Developer’s Guide section “Signing Your Applications.”

http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/publishing/app-signing.html

666 CHAPTER 28: Exploring Security and Permissions

Summary
This security chapter covered the following topics:

Unique application user IDs that help separate apps from each other to 	
protect processing and data

Digital certificates and their use in signing Android applications	

That an application can only be updated if the update is signed with the 	
same digital certificate as the original

Managing certificates in a keystore using 	 keytool

Running 	 jarsigner to apply a certificate to an application .apk file

	zipalign and memory boundaries

The Eclipse plug-in wizard takes care of generating the apk, applying 	
the certificate and zipalign-ing for you

Manually installing apps onto devices and emulators	

Permissions that applications can declare and use	

URI permissions and how content providers use them	

667

Chapter 29
Using Google Cloud
Messaging with Android

As we approach the end of the book, you will have already developed a good understanding
of, and appreciation for, the many communication protocols and architectural options you
have available within Android when it comes to dealing with off-device services. In this
chapter, we will explore Google’s Cloud Messaging (or GCM) platform and how you can use it
as the plumbing for your application’s remote communication and service interaction needs.

What Is Google Cloud Messaging?
GCM is a service offered by Google to enable you to write multiple applications across
different platforms that exchange messages in order to further their functionality. The
primary examples of the multiple applications are an Android client application exchanging
messages with a remote server application.

The actual messages sent, and their purpose, are up to you as a developer. It could be
a message from the remote server letting your client application know (a “downstream”
message) that a new update to a news feed, music service, or similar subscription is
available. Messages from the client to the server (an “upstream” message) could be sending
a chat message, picture thumbnail, or other new piece of data your user has captured or
generated on the client. These are just examples—you are free to imagine any use, and any
payload, for the messages exchanged in GCM.

Understanding the Key Building Blocks of GCM
Having read the introduction to GCM, you are already aware of two of the key components in
any complete GCM configuration. The final part to complete the picture is the GCM server (in
fact, servers) hosted by Google that perform the message queuing, forwarding, and so forth.

668 CHAPTER 29: Using Google Cloud Messaging with Android

To recap, the three key building blocks for GCM are as follows:

Client Application—An application you write, such as an Android 	
application, that sends and/or receives messages from a remote server
to help with functionality.

GCM Connection Servers—Google’s messaging infrastructure, which 	
manages all messaging traffic, message queuing in the event of delivery
delays, ultimate delivery guarantees, etc.

Remote Application Server—An application your write as a server, 	
hosted in an Internet-accessible fashion, responsible for sending and/or
receiving messages from client applications.

We can also represent this architecture in visual form. Figure 29-1 shows the components
and message flow in a complete GCM setup.

Preparing to Use GCM in Your Application
Where previously we have jumped straight into Java code, layout XML, and so forth when
constructing example applications, for GCM-based development we need to undertake a few
preparatory steps in order to have Google’s servers accept traffic from our client and server.

Creating or Confirming Your GCM Project in Google Developer Console
To use any of Google’s online services and APIs, including GCM, you will need to create an
API Project within the Google Developer Console, at cloud.google.com/console. You might
already have a project you can reuse, but let’s assume you are creating one for the first time.
Navigate to the console URL and click the Create Project button. Follow the prompts for
account and billing details, etc., and you should end up with a new project (or confirm an
existing one) as shown in Figure 29-2.

Figure 29-1. GCM architectural overview

669CHAPTER 29: Using Google Cloud Messaging with Android

Activating the GCM APIs for Your Project
With the API Project in place, you now need to activate the specific GCM APIs. Google
supports dozens of separate APIs, all of which are disabled by default to ensure you do not
accidentally trigger behavior or incur costs you were not expecting. Click on your API Project
(in our case, api-project-589435632025) and under the APIs & Auth section on the left side,
select APIs and scroll until you see Google Cloud Messaging for Android. Turn this on using
the Enable API button. You will know you have successfully enabled the GCM API when the
button changes from Enable API to Disable API, as shown in Figure 29-3.

Figure 29-2. Your Google Developer Console with API Project in Place

670 CHAPTER 29: Using Google Cloud Messaging with Android

Generating Your API Key
As with other Google APIs, access to the GCM API for your project requires your key. This
helps ensure everything from traffic separation, so your GCM messages are not inadvertently
mixed with those of other applications, through to billing, analytics, and so forth.

To generate your key, choose the Credentials option under APIs & Auth. Choose the Create
New Key option, and when prompted for key properties, select Server for the key type. If
you know the public IP address of your intended server, you can use that in the configuration
section, otherwise you can use 0.0.0.0/0 for testing purposes. Then choose Create to have
the key generated. When you are returned to the console, you should see your API key
available under the Credentials submenu. Note down the key value as you will need it shortly.

Figure 29-3. Your Google Developer Console API Project with GCM Enabled

671CHAPTER 29: Using Google Cloud Messaging with Android

Authenticating GCM Communication
The API key is not the only piece of identifying information used to authenticate and
authorize message transfer within a GCM environment. You can find more detail on the uses
of GCM tokens and keys on the developer.google.com website. In brief, the following four
token types are used in your GCM applications:

	Sender ID The project ID code available from the Google developer
console. Your server application will use this as part of the registration
process with Google’s GCM servers to enable it to send messages to
the Android client application and your users.

	Sender Auth Token Your API key, used in every message sent to the
GCM servers to demonstrate the authenticity of the message and its
provenance from your server application.

	Application ID For your Android application, this is the fully qualified
Java package name, for instance com.androidbook.gcm. Because this is
unique across all Android applications, it allows the GCM ecosystem to
know which applications receive which types of messages.

	Registration ID Allocated to your client Android application when it
registers with the GCM servers for message delivery. The registration
ID is sensitive information and should be stored securely and not
disclosed.

All of these items in combination allow client and server applications to register with GCM
and be identified by it, and also to uniquely identify the applications and their messages.

Building an Android GCM-Enabled Application
Building a meaningful GCM-based Android application and the supporting server-side
third-party service is a large undertaking—so large that we could almost write a small book
just on that topic. Below we will cover the main configuration and coding points you need to
consider when building the application, and you can check the book website for a more
in-depth discussion on GCM with full examples.

Coding the Client Component for GCM
The client Android application needs to consider three broad areas. First, have your
development environment set up correctly. Second, configure the Android project to include
the right dependencies and privileges. Lastly, write the GCM registration methods and
message handling methods into your Java code for your activity (or activities).

Configure Project Dependencies for Your Project
Before we can write the actual Java code and any related XML layout for our desired
GCM-based application, we need to configure our project to have the necessary APIs
available and invoke your IDE’s build tool (e.g., gradle) with the necessary dependencies to
ensure a successful build.

http://developer.google.com/

672 CHAPTER 29: Using Google Cloud Messaging with Android

Your development environment (Android Studio, Eclipse, etc.) will need to have the Google
Play Services SDK installed. Double-check this with the SDK Manager from the IDE or
command prompt.

Next, your project will need to be configured to work with the GoogleCloudMessaging API
provided by the Google Play Services SDK. As an example, to add this to an Android
Studio project, open your project’s build.gradle file and ensure the API is included as a
dependency, as shown in Listing 29-1.

Listing 29-1. build.gradle file Fragment Showing Play Services Dependency

dependencies {
 // your other dependencies here
 compile "com.google.android.gms:play-services:3.1.+"
}

For Eclipse users, the equivalent task is to add google-play-services.jar as an external
library dependency to your project, from your Google Play Services library collection. Lastly,
any GCM application must run on Android 2.2 (with Play Store installed) or later. Update your
manifest’s uses-sdk element to set android:minSdkVersion to at least 8.

Setting Manifest Properties for GCM
Over and above the minimum SDK version required for GCM, your application will require
specific permissions in order to do the following:

Register with GCM servers to receive messages, using 	 com.google.
android.c2dm.permission.RECEIVE permission.

Use the device’s internet connection to send messages, using 	 android.
permission.INTERNET permission.

Exclusively reserve messages intended for the application and prevent 	
other applications registering for them. This uses the custom C2D_
MESSAGE permission block with the application name prepended.

GCM-specific permissions for the receiver you will also define, so that 	
the GCM servers are allowed to send messages to your application. This
uses the com.google.android.c2dm.permission.RECEIVE setting.

Note The earlier incarnation of GCM was known as C2DM, or Cloud to Device Messaging. Thus
the references to the earlier name of C2DM and C2D.

The receiver you define should declare its intent-filter to act on com.google.android.c2dm.
intent.RECEIVE and use the applicationPackage name as its category.

It can often be better to peruse a snippet of an example AndroidManifest.xml file to see all of
these settings in place. Listing 29-2 shows example settings from the four key permissions
your GCM application will require.

673CHAPTER 29: Using Google Cloud Messaging with Android

Listing 29-2. Sample AndroidManifest.xml Entries for a GCM Android Application

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidbook.gcm">

 ...

 <uses-sdk android:minSdkVersion="8" android:targetSdkVersion="21"/>
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.GET_ACCOUNTS" />
 <uses-permission android:name="com.google.android.c2dm.permission.RECEIVE" />

 ...

 <permission android:name="com.androidbook.gcm.permission.C2D_MESSAGE"
 android:protectionLevel="signature" />
 <uses-permission android:name="com.androidbook.gcm.permission.C2D_MESSAGE" />

 ...

 <application ...>
 <receiver
 android:name=".GcmBroadcastReceiver"
 android:permission="com.google.android.c2dm.permission.SEND" >
 <intent-filter>
 <action android:name="com.google.android.c2dm.intent.RECEIVE" />
 <category android:name="com.androidbook.gcm" />
 </intent-filter>
 </receiver>
 <service android:name=".GcmIntentService" />
 </application>
...
</manifest>

Coding Your Main Activity to Register for GCM
Before your application can receive messages from GCM servers (and your server-side
application that sends them), and before it can send messages of its own back through
GCM, your application must register with the GCM servers. This is so the GCM infrastructure
knows how to route your messages, prevent traffic mix-ups, and so on. Listing 29-3 shows
an example activity fragment that initiates registration in the onCreate() override. This
example code is modeled on the github example GCM project Google makes available at
developer.android.com.

Listing 29-3. Registering with GCM from Java

package com.google.android.gcm.demo.app;

// imports from a default activity, and the GCM specific libraries

public class GCMExampleActivity extends Activity {

http://schemas.android.com/apk/res/android
http://developer.android.com/

674 CHAPTER 29: Using Google Cloud Messaging with Android

 public static final String EXTRA_MESSAGE = "message";
 public static final String PROPERTY_REG_ID = "registration_id";
 private static final int PLAY_SERVICES_RESOLUTION_REQUEST = 9000;

 String SENDER_ID = "a123b456c789d012"; // Remember to use your ID

 TextView myMessageDisplay;
 GoogleCloudMessaging gcm;
 AtomicInteger messageID = new AtomicInteger();
 Context context;
 String registrationID;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);
 myMessageDisplay = (TextView) findViewById(R.id.display);
 context = getApplicationContext();

 // Register with GCM servers
 gcm = GoogleCloudMessaging.getInstance(this);
 final SharedPreferences myAppPrefs = getGcmPreferences(context);
 registrationID = myAppPrefs.getString(PROPERTY_REG_ID, "");
 // you could also perform version and other checks if desired

 if (registrationID.isEmpty()) {
 // Not registered, do so async so as not to block main thread
 try {
 registerAppInBackground();
 } catch (NameNotFoundException e) {
 // log details here, as something failed during registration
 }
 }
 }

 private void registerAppInBackground() {
 new AsyncTask<Void, Void, String>() {
 @Override
 protected String doInBackground(Void... params) {
 String regStatus = "Unregistered";
 try {
 if (gcm == null) {
 gcm = GoogleCloudMessaging.getInstance(context);
 }
 registrationID = gcm.register(SENDER_ID);
 regStatus = "Registered with ID: " + registrationID;
 // add your call to securely store the registrationID for later reuse
 // ...
 } catch (IOException ex) {
 // perform your error handling here, e.g. retry
 }

675CHAPTER 29: Using Google Cloud Messaging with Android

 return regStatus;
 }

 }.execute(null, null, null);
 }
...

This is a greatly simplified example so you can focus on the absolutely mandatory
components and build from there. Our onCreate() method first instantiates a gcm object and
a SharedPreferences object. It then retrieves the registration_id from the preferences.
At this point your application may not be registered, which would mean the returned value
from the preferences would be empty. We test for this empty value, and where an empty
registration_id is detected we initiate our registration process by invoking the private
method registerAppInBackground().

The implementation of registerAppInBackground() follows Google’s recommendation of
performing the first-time registration asynchronously. We do this because we don’t want to
block the main thread while we wait for the handshake and registration process to complete.
The process could potentially take several seconds or more. You could enhance the
application here by adding a range of intermediate status updates, error checking, and more.

Once we have an application that’s registered, we can carry out message exchange, and
then all the other logic you might want your application to have, based on or driven by the
messaging aspect. Listing 29-4 shows an example method to send a message based on a
Bundle object constructed to hold your message details.

Listing 29-4. Example Message Sending from Your Android Client

private void sendMessage(Bundle messagePayload) {
 new AsyncTask<Void, Void, String>() {
 @Override
 protected String doInBackground(Void... params) {
 String status = "";
 try {
 String id = Integer.toString(messageID.incrementAndGet());
 gcm.send(SENDER_ID + "@gcm.googleapis.com", id, messagePayload);
 status = "message sent";
 } catch (IOException ex) {
 // your error handling here
 // set status string
 }
 return status;
 }
 }
}

The logic of the sendMessage() method is entirely concerned with sending whatever it is
you have constructed in the messagePayload parameter. This Bundle object is left to your
imagination, but it could be the instant message, photo, voice message, or other content
that your application is actually helping the user with.

676 CHAPTER 29: Using Google Cloud Messaging with Android

We once again use AsyncTask to ensure we don’t block on message delivery. This is a
universal design pattern when working with any kind of message bus or message delivery
service. Within the asynchronous logic, we generate a unique message identifier with the
messageID.incrementAndGet() method and then invoke the gcm.send() method, passing it
the unique ID and our message payload.

Error trapping and retry logic are easy to add at this point. If you are going to assume any
higher value to the message ID (which is normally not recommended), it is best to place
the retry logic within the sendMessage() method so as to be able to reuse the message ID
generated before it falls out of scope on method return.

Coding the Server Component for GCM
Your third-party service can be written in basically any language, so long as it can make
calls to the GCM cloud endpoints and support the authorization message protocols we have
described in the earlier sections of this chapter.

Because such services are not strictly Android products or code, we will save some precious
pages from the book and point you to excellent examples that Google provides to give you
inspiration into writing the back-end services.

You can review the options and approaches for this non-Android third-party service at
developer.android.com/google/gcm/server.html.

Moving Beyond the GCM Introduction
Such a short chapter cannot cover the enormous breadth of possibilities and nuances for
GCM-based applications. For more details on what is possible, check out the Android Stack
Exhange site, android.stackechange.com, and the developer.android.com site.

http://android.stackechange.com/
http://developer.android.com/

677

Chapter 30
Deploying Your Application:
Google Play Store and Beyond

Creating a great application that people will love is one thing, but you also need an easy way
for people to find and download it. Google created the Play Store for this purpose. From
an icon right on the device, users can click straight into the Play Store to browse, search,
review, and download applications. Users can also access Play Store over the Internet to
do those same things, although the downloading is not to the computer but rather apps are
sent directly to the user’s device. Many applications are free; for those that are not, the Play
Store provides payment mechanisms for easy purchasing.

The Play Store is even accessible from intents inside of applications, making it easy for
applications to reach out to the Play Store to guide users into getting what they need for
your application to be successful. For example, when a new version of your application
becomes available, you can make it easy for the user to go straight to that Play Store page
to get or buy the new version. Google Play Store is not the only way to get applications to
devices, however; other channels are all over the Internet.

The Google Play Store application is not available from within the emulator (although hacks
exist to make it available). This makes things a little more difficult for a developer. Ideally you
will have a device of your own that you can use with Google Play Store. In this chapter, we’ll
explore how to get you set up for publishing applications to the Play Store; how to prepare
your application for sale through the Play Store; how you can protect yourself from piracy;
how users will find, download, and use your applications; and finally, alternative ways to
make your applications available.

Becoming a Publisher
Before you can upload an application to Google Play Store, you need to become a publisher.
To do so, you must create a Google Play Publisher Account. Once that’s done, you will be
able to upload your applications to the Play Store so they can be found and downloaded by

678 CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

users. If you will be charging money for your app, or accepting in-app purchases, you will
also need to set up a Google Wallet Merchant Account. Google has made the process to get
these accounts relatively painless and reasonably priced.

A good place to start is this page: http://developer.android.com/distribute/googleplay/
start.html. From here you can click the big Start button to begin the process. If you don’t
already have a Google Account you will be prompted to create one. To be a publisher, you
will also need to provide a developer name, an e-mail address, a web site address, and a
phone number where you can be contacted. You will be able to change these values later,
once your account is set up. You will also need to pay the registration fee. This is done via
Google Wallet. In order to complete the payment transaction, you will need to use your
Google account.

One of the options presented to you during the payment process is “Keep my email address
confidential.” This refers to the current transaction between you and Google Play Store to
purchase publisher access. If you choose yes, you’ll keep your e-mail address secret from
Google Play Store. This has nothing to do with keeping your e-mail address secret from
buyers of your application. Buyers’ ability to see your e-mail address has nothing to do with
this option. More on that later.

Next up is the Google Play Developer Distribution Agreement (GPDDA). This is the legal
contract between Google and you. It spells out the rules for distributing apps, collecting
payments, granting refunds, feedback, ratings, user rights, developer rights, and so on.
There’s more on these in the “Following the Rules” section of this chapter.

Upon accepting the Agreement, you will be taken to a page commonly called the Developer
Console at https://play.google.com/apps/publish/.

Following the Rules
The GPDDA spells out a lot of rules. You might want legal counsel to review the contract
before agreeing to it, depending on how seriously you plan to operate within the Google Play
Store. This section describes some highlights you might be interested in:

You have to be a developer in good standing to use the Google Play 	
Store. This means you must go through the process as described to get
registered, you must accept the Agreement, and you must abide by the
rules in the Agreement. Breaking the rules could get you barred and your
products removed from the Play Store.

You can distribute products for free or for a price. The Agreement 	
applies either way. Payments must be collected via an authorized
Google Play Store Payment Processor. This includes Google Checkout
(credit, debit, Google Play gift cards), carrier billing (e.g., Verizon, AT&T),
and PayPal.

Paid apps will incur a transaction fee, and possibly a fee from the device 	
carrier, to be deducted from the sale price. As of March 2015, the
transaction fee is 30 percent, so if the sale price is $10, Google collects
$3 and you get $7 (assuming no carrier fees).

http://developer.android.com/distribute/googleplay/start.html
http://developer.android.com/distribute/googleplay/start.html
https://play.google.com/apps/publish/

679CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

For EU countries, Google is required to remit the taxes for you. Outside 	
of the EU, it is your responsibility to remit appropriate taxes to your
taxing authorities. For some of those non-EU countries, you can choose
to let Google remit the taxes for you. When you set up your merchant
account, you specify the appropriate tax rates to apply to purchases.
Google Checkout will collect the appropriate taxes based on how you
set up Google Checkout. This money will be provided to you if Google is
not remitting for you, and you must remit it appropriately. For additional
information on sales taxes in the United States, try http://biztaxlaw.
about.com/od/businesstaxes/f/onlinesalestax.htm and www.thestc.com.

You are allowed to distribute a free demo version of your application, 	
with an option to pay to unlock the application’s full set of features;
however, you must collect the payment via an authorized Google Play
Store Payment Processor. You are not allowed to redirect users of your
free application to some other payment processor to collect upgrade
fees. You could think of it this way: if you’re making money via Google
Play Store, Google wants its share.

In-app billing allows an application to charge for digital goods or assets 	
used within the application. A digital asset could be something like a
virtual weapon or new levels for a game, or a music or graphics file. The
checkout process is the same as for purchasing applications.

If your application requires a user to have a login on a web server 	
somewhere, and that web server charges the user a subscription fee,
that web server could collect the subscription fee any way it wants
to. In this way, you have disconnected the subscription fee from the
application, and it’s OK by Google to make the application available
in Google Play Store—as long as your free application is not directing
users to the web site. Some people just decide to distribute their free
Android app from the same web server as the service, but this does
require the user to enable installation of apps from unknown sources,
which can discourage some users from installing.

It seems that you can use alternate payment processors to accept 	
donations from users of your free app, but you cannot create incentives
within your app to encourage those donations.

While the GPDDA says refunds can be requested up to 48 hours after 	
purchase, as of March 2015 refunds can be requested by the user up to
2 hours after purchasing for an automatic refund. Refunds are not given
to users who can preview the product prior to download. This includes
ringtones and wallpapers.

Google Checkout, however, does allow the developer to issue a refund 	
even if the refund window has passed. The user can go to their Google
Play activity history, and from there can request a refund even well
after the initial 2 hours. If it is less than 48 hours from the purchase, the
refund will probably be automatic. Otherwise, it is up to the developer
whether or not to return any money.

http://biztaxlaw.about.com/od/businesstaxes/f/onlinesalestax.htm
http://biztaxlaw.about.com/od/businesstaxes/f/onlinesalestax.htm
http://www.thestc.com/

680 CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

You are required to provide adequate support for your product. If 	
adequate support is not provided, users can request refunds through
Google, and these will be charged back to you, possibly including
handling fees.

Users get unlimited reinstalls of applications downloaded from the 	
Google Play Store. If a user does a factory reset of their device,
this feature allows them to get all their apps back without having to
repurchase.

Developers agree to protect the privacy and legal rights of users. This 	
includes protecting (securing) any data that might be collected in the
process of using the application. It is possible to change the rules
regarding users’ data protection, but only by displaying and having the
user accept a separate agreement between you and that user.

Your application must not compete with the Google Play Store. Google 	
does not want an application from within Google Play Store to sell
Android products from outside Google Play Store, thus bypassing its
payment processor. This does not mean that you can’t also sell your
application through other channels, but your application on Google Play
Store cannot itself be doing the selling of Android products outside of
Google Play Store.

Google will assign product ratings to your products. The ratings could 	
be based on user feedback, install rates, uninstall rates, refund rates,
and/or a Developer Composite Score. The Developer Composite Score
may be calculated by Google using past history across applications, and
this could influence the rating of new applications. For this reason, it is
important to release good-quality applications associated with you, even
the free ones. It’s not clear that the Developer Composite Score even
exists, but if it does there’s no way to see yours.

By selling your application through Google Play Store, you are 	
granting the user a “non-exclusive, worldwide, perpetual license to
perform, display and use the Product on the device.” However, it is
quite alright for you to write a separate End User License Agreement
(EULA) that supersedes this statement. Make this EULA available on
your web site, or provide another way for shoppers and users to be
able to read it.

Google requires that you abide by the branding rules for Android. These 	
include restrictions on the use of the word Android, as well as use of
the robot graphic, logo, and custom typeface. For more details, go to
http://developer.android.com/distribute/tools/promote/brand.html.

http://developer.android.com/distribute/tools/promote/brand.html

681CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

Developer Console
The Developer Console is your landing page for controlling your applications in Google Play
Store. From the Developer Console, you can set up a merchant account in Google Checkout
(so you can charge for your applications), upload applications, and get information about
your uploaded applications. You can also edit your account details including developer name,
e-mail address, web address, and phone number. Figure 30-1 shows the Developer Console.

Figure 30-1. The Google Play Store Developer Console

If you do not set up a merchant account, you will be unable to charge for your products
in Google Play Store. Setting up a merchant account is not difficult. Click the link from
the Developer Console, fill out the application, agree to the Terms of Service, and you’re
all set. You will need to provide a US Federal tax ID (EIN), a credit card number plus a US
Social Security Number (SSN), or just a credit card number. The tax information is used to
verify your credit status to ensure timely deposits. The credit card information is used to
handle chargebacks due to buyer disputes when there are insufficient funds in your Google
Checkout account. You can also supply bank account information to enable electronic funds
transfers from the proceeds of your sales.

Note that Google Checkout is a service for more than just Google Play Store. Therefore, do
not get confused by the transaction fee information for Google Checkout for non–Google
Play Store sales. The 30 percent mentioned previously is the transaction fee rate for Google
Play Store. There is also additional Google Checkout transaction fee information for non–
Google Play Store sales, and those do not apply to Google Play Store.

Uploading and monitoring your applications are probably the main functions of the
Developer Console that you will use, although the Console is also where you can sign up for
access to Google APIs and game services and link to your AdWords account(s).

For monitoring, the Play Store provides tools to see how your application is doing in terms
of total downloads and how many users still have it installed. You can see the overall rating
of your apps in terms of 0 to 5 stars, and how many people have submitted a rating. There
are various reports, charts, and graphs in the Developer Console so you can see how
your application is doing in different versions of Android, on different devices, in different
countries, and in different languages.

682 CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

Users can submit comments in addition to rating your application. It is in your best interest
to read the comments in order to address any problems quickly. Included with a comment
is the user’s rating of your app, a name of the user as typed by them, and the date the
comment was submitted. You are able to reply to specific comments and that user will
receive an e-mail to let them know. You can only leave one reply per review, but you can
always edit your reply later. In an extreme case, where a comment is particularly harmful or
inappropriate, you can contact Google support by starting here at the Help Center web site:
https://support.google.com/googleplay/android-developer/.

The Developer Console allows you to republish your application—for upgrades, for
example—or to unpublish the application. Unpublishing does not remove it from devices,
nor does it even necessarily remove the app from the Google servers, especially if it’s a paid
app. A user who has paid for your application and who has uninstalled it, but not requested
a refund, is allowed to reinstall it later even if you’ve unpublished it. The only way it is truly
unavailable to users is if Google pulls it due to a violation of the rules.

You can also look at errors that were generated by your application and see application
freezes and crashes. Figure 30-2 shows the Crashes & ANRs screen.

Figure 30-2. The Crashes & ANRs screen

Drilling into the details of a crash report, you can see the stack trace of the crash, as well as
which type of device was running the application and the time of the crash. Unfortunately,
you cannot communicate back to the user who experienced the problem to get additional
details or to help them get the issue resolved. You have to hope that the affected users will
get in touch with you through comments, e-mail, or your web site. Otherwise, you’ll just have
to figure out from the crash report what went wrong and try to fix it.

https://support.google.com/googleplay/android-developer/

683CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

If you really want to know how a user got to a crash, you’ll want to implement one of the
mobile analytics packages into your app. These will generate event records as a user steps
through your application, and will also report crashes. The breadcrumbs (event records) will
let you know the steps a user took up to the point of the crash. This capability is separate
from the Google Play Store, however.

There’s one more feature of the Developer Console you may need to use: the Help portion
of the web site. The Help button is in the upper-right corner. Clicking it shows you some
inline help, but also has a link to the Help Center web site. There are also links for submitting
e-mail or for an online chat (during business hours).

We’ve now introduced you to some of the nice features of the Developer Console, but you
probably want to get into the most useful part, which is getting your applications into the
Google Play Store so users can find them and download them. But before we do that, let’s
go over how to prepare your application for upload and sale.

Preparing Your Application for Sale
There are quite a few things to think about and do to take an application from code complete
to Google Play Store. This section will help you through those items.

Testing for Different Devices
With more and more Android devices becoming available, and each one potentially having
some new hardware configuration, it is very important that you test for a variety of devices
you want to support. You could purchase some of the devices that you want to support, but
you probably can’t purchase them all. There are some online services that make real devices
available over the Internet. Your other option is to configure Android Virtual Devices (AVDs)
for each type of device, specify the appropriate hardware configuration, and then test with
the emulator and each AVD. Some device manufacturers make Android emulator packages
available that are specific to their devices, so check out their web sites for download options.

The Android SDK provides various classes to assist with testing, as well as the
UI/Application Exerciser Monkey. These tools will help you do automated testing so you
don’t spend forever testing your application manually. See these web pages for more details:

https://developer.android.com/tools/testing/index.html
https://developer.android.com/tools/testing-support-library/index.html

Before you begin testing, you probably want to remove from your code any development
artifacts that you no longer need, and also any development artifacts from /res. You want
your application to be as small as possible and to run as quickly as possible with the least
amount of memory. Finally, be sure to disable or remove any debugging features from your
application that you don’t want distributed to production.

https://developer.android.com/tools/testing/index.html
https://developer.android.com/tools/testing-support-library/index.html

684 CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

Supporting Different Screen Sizes
Android supports many screen sizes. In order to run on the smallest size, you must
set a specific <supports-screens> element as a child element of <manifest> within the
AndroidManifest.xml file. Without this tag specifying that your application supports the
small screen size, your application will not be visible in the Play Store to devices that have a
small screen.

To support different screen sizes, you may need to create alternate resource files under
/res. For example, for files in /res/layout, you may need to create corresponding files in
/res/layout-small to support small screens. This does not mean you must also create
corresponding files in /res/layout-large and /res/layout-normal, since Android will look in
/res/layout if it can’t find what it needs in a more specific resource directory such as
/res/layout-large. Remember, too, that you can have combinations of qualifiers for these
resource files; for example, /res/layout-small-land would contain layouts for small screens
in landscape mode. Supporting small screens probably means creating alternate versions
of drawables such as icons, too. For drawables, you may need to create alternate resource
directories, taking into account screen resolution as well as screen size.

Tablets of course go in the opposite direction in terms of screen size, using the label xlarge.
The same <supports-screens> tag as before is used to specify if your application will run on
extra-large screens, and the attribute to use inside of this tag is android:xlargeScreens. In
some cases, you may have a tablet-only application, in which case you would specifically
indicate that for the other sizes, the attribute value is false.

Preparing AndroidManifest.xml for Uploading
Your AndroidManifest.xml file may need to be tweaked a little bit before you can upload it to
Google Play Store. ADT normally puts the android:icon attribute in the <application> tag,
and not in <activity> tags. If you have more than one activity that can be launched, you’ll
want to specify separate icons for each activity so the user can more easily tell them apart.
But you’ll still need an icon specified in <application>, which also serves as the default
activity icon for any activities that don’t specify their own icon. Your application will work fine
on devices and in the emulator with the android:icon only specified in the <activity> tags,
but when Google Play Store inspects your application’s .apk file when uploading, it looks for
icon information in the <application> tag.

Google Play Store prevents uploading your application if the package name you’ve used
starts with com.google, com.android, android, or com.example, but we hope you didn’t use
one of those in your application.

There are many other compatibilities to consider for your application. Some devices
have cameras, some don’t have physical keyboards, and some have trackballs instead
of directional pads. Use <uses-configuration> and <uses-feature> tags in your
AndroidManifest.xml file as needed to define what hardware/platform requirements your
application has. Google Play Store will enforce this and not let your application be shown to
a user on a device that won’t support your application. Note that these tags are different and
separate from the <uses-permission> tags of the AndroidManifest.xml file. In most cases,

685CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

you would end up with both tags in your AndroidManifest.xml file, for specifying that a
camera is required, and for specifying that permission to use the camera is required. But not
all features require permission, so it is in your best interest to specify the features you need.

There is another big difference between <uses-permission> and <uses-feature>: the
<uses-feature> tag can say that your application requires that feature or that your
application can function without it. That is, there is an attribute called android:required that
can be set to either true or false; by default it’s true. If there is a permission for a feature,
but you don’t supply the corresponding <uses-feature> tag, then by default it’s as if you
specified <uses-feature> and the feature is required. For example, your application may
take advantage of Bluetooth if it’s available, but will work just fine if it is not. Therefore, in the
manifest file, in addition to the Bluetooth permission element, you’d have something like this:

<uses-feature android:name="android.hardware.bluetooth" android:required="false" />

Within your application’s code, you should make a call to the PackageManager to find out if
Bluetooth is available or not, which you could do with the following:

boolean hasBluetooth = getPackageManager().hasSystemFeature(
 PackageManager.FEATURE_BLUETOOTH);

Then take appropriate action in your application if Bluetooth is not there. The Android
documentation can be confusing in this area. If you look at the Developer Guide page for
<uses-feature>, you will not see as many features as are described on the PackageManager
reference page, which defines a FEATURE_* constant for each available feature.

The <uses-configuration> tag is a little different. It specifies what sort of keyboard,
touchscreen, and/or navigational controls the device must have. But instead of being
independent choices such as <uses-feature>, you would put the combinations of
configuration choices together into what your application requires. For example, if your
application requires a five-way navigation control (that is, a D-pad or a trackball) and a
touchscreen (using either a stylus or a finger), you would specify two tags as follows:

<uses-configuration android:reqFiveWayNav="true" android:reqTouchScreen="stylus" />
<uses-configuration android:reqFiveWayNav="true" android:reqTouchScreen="finger" />

Localizing Your Application
If your application will be used in other countries, you might want to consider localizing
it. This is relatively easy to do technically. Finding someone to do the localizing is another
matter. From the technical point of view, you simply create another folder under /res—for
example, /res/values-fr to hold a French version of strings.xml. Take your existing
strings.xml file, translate the string values to the new language, and save the new
translated file under the new resource folder using the same file name as the original file.
At runtime, if the device’s language is set to French, Android will look for strings that were
placed under /res/values-fr. If it can’t find strings from there, it will then look for strings
from /res/values.

686 CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

The same technique works for the other types of resource files—for example, drawables and
menus. Images and colors may work better for your users if they are different for different
countries or cultures. For this reason, it is a good idea to not use true color names for your
resource names for colors. In the online documentation for colors, it is common to see
something like this:

<color name="solid_red">#f00</color>

This means that in your code or other resource files, you’re referring to the color by the
actual name of the color, in this case, solid_red. In order to localize the color to something
more appropriate for the other country or culture, it would be better to use a color name
such as accent_color1 or alert_color. In English, red might be the appropriate color value
to use, while in Spanish it might be better to use a shade of yellow. Because a color name
like alert_color does not reveal the actual color that you’re using, it is less confusing when
you want to change the actual color value to something else. At the same time, you can
design a pleasing color scheme, with base colors and accent colors, and be more confident
that you’re using the correct colors in the correct places.

Menu choices might need to be changed in different countries, using fewer or more menu
items, or be organized differently, depending on where the application is being used. Menus
are typically stored under /res/menu. If you are faced with this situation, you are probably
better off putting all your string text into strings.xml, or other files located under the
/res/values directory, and using string IDs in the appropriate resource files everywhere
else. This makes it far less likely that you will miss translating a string value in some obscure
resource file. Your language translation work is then limited to the files under /res/values.

Preparing Your Application Icon
Shoppers and your users will see your application’s icon and label prominently in both
Google Play Store and on their device once they’ve downloaded it. Please take special
care to create good icons and good labels for your application and its activities. Localize
them as necessary or desired. And remember that for different screen sizes, your icons may
need to be tweaked to look good. Check out what other developers have done with their
icons, especially those applications in the same category as your application. You want your
application to get noticed, so it’s better not to blend in with all the others. At the same time,
you want your icon and label to work well on a device when surrounded by lots of other
application icons that do other things. You don’t want a user to be confused about what your
application does, so make the icon representative of the functionality of your application.

When creating any image for your application, but especially your icon, you need to consider
the screen density of the target device. Density means the number of pixels per inch. Don’t
think that a small screen is low density and a large screen is high density—you could see
any combination of size and density. For a high-density screen, you will probably choose an
icon with 72 × 72 pixels. The medium-density icon will usually be of size 48 × 48 pixels. And
for extra-high density, it’s 96 × 96 pixels. For a low-density screen, making an icon appear to
be the right size means making the icon with fewer pixels, typically 36 × 36. Android helps
you in the low-density case because it will automatically downscale your HDPI icon by half,
so you don’t need to provide a low-density icon yourself. In general, you’ll find it easiest
to only worry about density for images such as icons. You’ll worry about screen size when
defining layouts.

687CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

Directing Users Back to the Play Store
Android has a URI scheme to help facilitate finding applications in Google Play Store:
market://. [Google Play Store was formerly called Android Market.] For example, if you
want to direct your users to the Play Store to locate a needed component, or to upsell to an
additional app that unlocks features in your application, you would do something as shown
here, where MY_PACKAGE_NAME would be replaced by your real package name:

Intent intent = new Intent(Intent.ACTION_VIEW,
 Uri.parse("market://search?q=pname:MY_PACKAGE_NAME"));
startActivity(intent);

This will launch the Play Store app on the device and take the user to that package name.
The user can then choose to download or buy the application. Note that this scheme does
not work in a normal web browser. In addition to searching using package name (pname), you
can search by developer name using market://search?q=pub:\"Fname Lname\" or against
any of the public fields (application title, developer name, and application description) in
Google Play Store using market://search?q=<querystring>.

The Android Licensing Service
The way that Android apps are constructed unfortunately makes them targets for piracy. It is
possible to make copies of Android apps that can then be distributed to other devices. So
how can you ensure that users who have not purchased your application cannot run it? The
Android team has created something called the License Verification Library (LVL) to meet this
need. Here’s how it works.

If your application was downloaded via Google Play Store, then there must be a copy
of the Google Play Store app on the device. In addition, the Google Play Store app has
elevated permissions to be able to read values from the device such as the user’s Google
account name, the IMSI, and other information. The Google Play Store app will respond
to a license verification request from an application. You make calls into the LVL from your
application, LVL communicates with the Google Play Store app, the Google Play Store app
communicates with Google servers, and your application gets an answer back indicating
whether or not this user on this device is licensed to use your application. This means the
app must have been purchased through Google Play Store; otherwise the Google servers
won’t know about it. There are settings under your control to decide what to do if the
network is unavailable. A full description of the process of implementing LVL can be found at
https://developer.android.com/google/play/licensing/index.html.

One thing to be aware of, though, is that the LVL mechanism is subject to hacking. If
someone can get to your application’s .apk file, they can disassemble the app and then
patch it if they know where to look for the return value from the LVL call. If you use the
obvious pattern of a switch statement after getting the response from LVL, to branch to the
appropriate logic based on the return code, a hacker can simply force a successful return
code value, and they own your app. For this reason, the Android team highly recommends
that you implement obfuscation of your app to hide the part of your application where you
check the return code from LVL. This gets fairly complicated, as you can imagine.

https://developer.android.com/google/play/licensing/index.html

688 CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

Using ProGuard for Optimization, Fighting Piracy
Google provides some support for obfuscation in the form of the ProGuard feature.
ProGuard is not a Google product, but has been integrated into ADT and Android Studio
so it’s easy to use. ProGuard does more than just provide obfuscation for fighting piracy; it
also makes your application smaller and faster. It does all this by stripping out debugging
information, cutting out code that will never run, and changing names (of classes, methods,
and so on) to meaningless strings. Examples of code that will never run include library
classes and methods that are never called, and logging that depends on a constant that
you set to false (for production). It can also recognize optimizations such as binary-shifting
a value left by one bit position instead of multiplying it by 2. By stripping out debugging
information and changing the names, the resulting compiled .apk file won’t reveal variable
names, class names, methods, and so on, so it becomes extremely difficult to figure out
what the code does and therefore how to steal it, modify it, and release it as something else.

When you create your application, it should automatically get a proguard-project.txt file.
The default file will look something like Listing 30-1.

Listing 30-1. Sample proguard-project.txt File

To enable ProGuard in your project, edit project.properties
to define the proguard.config property as described in that file.
#
Add project specific ProGuard rules here.
By default, the flags in this file are appended to flags specified
in ${sdk.dir}/tools/proguard/proguard-android.txt
You can edit the include path and order by changing the ProGuard
include property in project.properties.
#
For more details, see
http://developer.android.com/guide/developing/tools/proguard.html

Add any project specific keep options here:

If your project uses WebView with JS, uncomment the following
and specify the fully qualified class name to the JavaScript interface
class:
#-keepclassmembers class fqcn.of.javascript.interface.for.webview {
public *;
#}

You also need to uncomment the proguard.config property in the application’s project.
properties file to the location of the proguard-project.txt file. The line looks like this:

proguard.config=${sdk.dir}/tools/proguard/proguard-android.txt:proguard-project.txt

As you can see, there is a stock set of ProGuard configurations provided to you by a
file under the tools/proguard directory of the Android SDK. You can then augment the
ProGuard configuration in the proguard-project.txt file as part of your application project.
Note that the provided configuration does not in fact enable optimizations, as these
require more testing to be sure that your application still works correctly. If you want to try
optimizations, change the reference in the project.properties file to ${sdk.dir}/tools/
proguard/proguard-android-optimize.txt.

http://developer.android.com/guide/developing/tools/proguard.html

689CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

As mentioned, ProGuard does its work by stripping stuff out. Sometimes it strips out too
much, and that is why you see the -keep options specified in the proguard-android.txt file.
When you produce an .apk file, you need to test it to make sure ProGuard didn’t take out
too much. If you find errors due to missing classes or methods, you can edit the proguard-
project.txt file to include another -keep option for the item you’re missing. Rebuild your
.apk file, and test again. We recommend using the Export Signed Application Package
option under the Android Tools menu option in Eclipse, because it will take care of calling
ProGuard for you as it builds the .apk file. Exporting is covered in the next section.

You can also configure Ant to obfuscate using ProGuard if you use Ant to do your builds.

When ProGuard does its thing, you’ll get a file called mapping.txt along with your .apk
file. Hang on to this file because you will need it to de-obfuscate a stack trace from your
application. If you use Eclipse to export your .apk file, you will see a new proguard directory
created within your Eclipse project. The mapping.txt file will be in there. The command to
use is retrace, and it’s located in the Android SDK directory under tools/proguard/bin. The
arguments to retrace include the mapping.txt file and the stacktrace file, but be aware that
you need to specify the full pathname to each. Also, you should keep track of which version
of your application goes with which mapping.txt file.

One more caution about testing your application. Android KitKat introduced an experimental
runtime engine called the Android RunTime (ART), and in Lollipop it became the one and
only runtime engine. You should test your application with both, especially if you use
ProGuard and do optimizations.

Preparing Your .apk File for Uploading
To get your tested application ready for uploading—that is, to create the .apk file to upload—
you need to create a signed export of your application. This can be done a number of ways,
but the simplest are to use the built-in IDE features. For Eclipse you would right-click on
the project name and choose Android Tools ➤ Export Signed Application Package.... For
Android Studio, you would select the project name and choose the Build menu ➤ Generate
Signed APK… Follow the dialogs to choose a proper signing certificate key and create your
production APK.

Uploading Your Application
Uploading is easy to do but takes some preparation. Before you begin an upload, there
are some things you will need to have ready and decisions you have to make. This section
covers that preparation and those decisions. Then, when you’ve got everything you need,
go to the Developer Console and choose + Add new application. You’ll be prompted to
supply lots of information about your application, the Play Store will run some processing
on your application and the information, and then your application will be ready to publish to
the Play Store.

The previous section covered preparing your application .apk file for uploading. Making your
application attractive to shoppers requires some marketing on your part. You need good
descriptions of what it is and does, and you need good images so shoppers understand
what they might download.

690 CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

The Google Play Store understands that you could market your application in different
countries. Therefore, you have the ability to provide text and graphics localized for the
different countries with just one application.

Graphics
You’ll be asked to upload screenshots for your application. The easiest way to capture
screenshots of your application is to use DDMS. Fire up Eclipse, launch your application
in the emulator or on a real device, and then switch Eclipse perspectives to DDMS and the
Device view. From within the Device view, select the device where your application is running
and then click the Screen Capture button (it looks like a little camera in the upper-right corner)
or choose it from the View menu. If you have a choice when saving, choose 24-bit color. The
Android Device Monitor is very similar to DDMS and is available as a stand-alone tool (called
monitor) from under the SDK tools directory, or from the Tools menu of Android Studio.

Google Play Store will convert your screenshots to compressed JPEG; starting with 24-bit
will produce better results than starting with 8-bit color. Choose screenshots that will make
your application stand out from the rest but that also show the important functionality.
You must supply at least two screenshots, and you can provide up to eight. Be aware
that you have the ability to upload screenshots for your application for other languages. If
your application has been localized for another country and/or language, you’ll want the
screenshots to correspond.

Next up is a high-res application icon. This could be the exact same design as your
application icon, but Google Play Store wants a 512 × 512 pixel icon image. This is required.

The feature graphic is required and is a large 1024 × 500 pixels in size. This graphic is used
in the Featured section of Google Play Store so you want this to look really good.

You can provide a promotional graphic as well, but its size is smaller than a screenshot.
Although this graphic is optional, it is a good idea to include it. You never know when the
graphic could be displayed; without one, you don’t know what will be displayed in its place,
if anything. One place the Promo Graphic appears is at the top of your application’s Details
page in Google Play Store.

By the time you read this, there could be other graphics you could upload. For example,
Google now accepts a TV Banner graphic for apps that would be viewed on a TV.

The last bit of graphics related to your application is an optional video that you can put out
on YouTube and link to from your Google Play Store page.

Listing Details
The Google Play Store asks for textual information about your application to display to
shoppers, including the title, short description (formerly called promotional text), and full
description.

There’s a Short Description field that has only 80 characters, and it’s mandatory. When your
app is shown at the top of a list in Google Play Store, it’s the Promo Graphic and the Short
Description that get displayed.

691CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

The full description is also mandatory, and it allows up to 4,000 characters. If you have
written a separate EULA for your users, provide a link to it in your full description text so
shoppers can view it prior to downloading your application. Consider that shoppers will
likely use search to locate applications, so be sure to put appropriate words into your
text to maximize your hit rate on searches related to your application’s functionality. It’s
worthwhile to put a short comment in the text that says to e-mail you if the user runs into
problems. Without this simple prompt, people are more likely to leave a negative comment,
and a negative comment really limits your ability to troubleshoot and solve the problem, as
compared to an e-mail exchange with the affected user.

One drawback to the user comments mechanism described earlier is that it does not
distinguish to users the specific version of your application. If negative reviews are received
against version 1, and you release version 2 with everything fixed, the reviews from version 1
are still there, and shoppers may not realize that those comments don’t apply to the new
version. When releasing a new version of an application, the application rating (number of
stars) does not get reset, either. Partly for this reason, Google started providing a Recent
Changes text field where you can describe what’s new in this release. This is where you could
indicate that a certain problem has been fixed or tell what the new features are. The Play
Store also provides the ability to see just the reviews/comments for the latest version, but by
default the reviews and comments are shown for all versions.

One of your responsibilities when writing the text for your application is to disclose the
permissions that are required. These are the same permissions as set in the <uses-
permission> tags of your AndroidManifest.xml file within your application. When the user
downloads your application to their device, Android will check the AndroidManifest.xml
file and ask the user about all of the uses-permission requirements before completing the
install. So you might as well disclose this up front. Otherwise, you risk negative reviews from
users surprised that an application requires some permission that they are not prepared
to grant, not to mention the refunds, which also count against your Developer Composite
Score. Similar to permissions, if your application requires a certain type of screen, a camera,
or other device feature, this should be disclosed in your text descriptions of your application.
As a best practice, you should disclose not only what permissions and features your
application needs, but also what your application will do with them. You should answer the
user’s question in advance: why does this app require X?

When uploading your application, you will need to choose an application type and a
category. As these values change with time, we won’t list them here, but it’s easy to go to
the Add new application screen to see what they are.

Publishing Options
You must choose two content ratings. The idea is to give consumers an idea of the
appropriateness of an application for certain age groups. The scale for the first (older)
content rating includes High, Medium, and Low Maturity, and Everyone. Choosing the right
level depends on the content in your application and how much of that content there is.
Google has rules about location-awareness and posting or publishing locations. It’s best
to read the rules for yourself here: https://support.google.com/googleplay/android-
developer/answer/188189. The second content rating is derived after you complete a

https://support.google.com/googleplay/android-developer/answer/188189
https://support.google.com/googleplay/android-developer/answer/188189

692 CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

questionnaire. You will actually get several content ratings, by country, depending on how
you answer the questionnaire. The questionnaire takes some of the subjectivity out of the
content rating.

Next you set the price of your application. By default the price is Free, and you must have
previously set up a Merchant Account in Google Checkout if you want to charge for your
application. Setting the right price for an application is tricky, unless you’ve got some
sophisticated market research capabilities, and even then it’s still tricky. Prices set too
high could turn people off, and you risk the effects of refunds if people don’t feel the price
was worth it. Prices set too low could also turn people off because they might think it’s a
cheap application.

One of the last decisions to make before uploading your application is to choose the
locations and carriers for your application to be visible to. By choosing All, your application
will be available everywhere. However, you may want to restrict distribution geographically
or by carrier. Depending on what functionality is in your application, you may need to
restrict by location in order to comply with US export law. You may choose to restrict your
application by carrier if your application has compatibility issues with certain carriers’
devices or policies. To see carriers, click the Show options link next to the country, and
the available carriers for that country will be displayed, allowing you to choose the ones
you want. Choosing all also means that any new locations or carriers that Google adds will
automatically see your application with no intervention from you.

In addition to country and carrier choices, Google Play Store also allows you to restrict your
application to certain devices. By default, the devices list is filtered based on your manifest
file, in which you’ve specified the features and so on that your application requires. This
section of the Upload screen allows you to further restrict other devices. You would probably
only want to do this if there was a known issue with a particular device such that you were
unable to get your application to work on that device even though it ought to.

Android also offers the option to upload multiple APKs for the same application. It enables
you to have a single entry on Google Play Store but to have separate build for phones and
tablets. See http://android-developers.blogspot.com/2011/07/multiple-apk-support-
in-android-market.html and http://developer.android.com/google/play/publishing/
multiple-apks.html.

Contact Information
Even though your developer profile contains your contact information, you can set different
information when uploading each application. The Play Store asks for a web site, e-mail
address, and phone number as contact information related to this application. You must
supply at least one of these so buyers can get support, but you don’t need to supply all
three. It is a good idea to not use your personal e-mail address here, just as you probably
wouldn’t really want to give out your personal phone number. When you’ve made millions
of dollars from selling your application, you’ll want to let someone else receive and deal
with the e-mails from users. By setting up an application-support type of e-mail address in
advance, you can easily separate the support e-mails from your personal e-mails. Of course,
you can always change these values later if you need/want to.

http://android-developers.blogspot.com/2011/07/multiple-apk-support-in-android-market.html
http://android-developers.blogspot.com/2011/07/multiple-apk-support-in-android-market.html
http://developer.android.com/google/play/publishing/multiple-apks.html
http://developer.android.com/google/play/publishing/multiple-apks.html

693CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

Consent
With all these decisions made, you must then attest that your application abides by
Android’s Content Guidelines (basically no nasty stuff) and make a second attestation
that the software is OK for export from the United States. US export laws apply because
Google’s servers are located inside the United States, even if you are outside of the United
States, and even if both you and your customer are outside of the United States. Remember
that you can always choose to distribute your application through other channels. When all
your information is in and your graphics are uploaded, go ahead and click the Save button.
This will prepare everything for your application to be ready to go live.

You can then publish your application by clicking the Publish button. Google Play Store
will perform some checks on your application—for instance, checking your application’s
certificate for the expiration date. If all goes well, your application will soon be available for
download. Congratulations!

User Experience on Google Play Store
The Play Store app has been available on devices for some time now, and it is available
over the Internet. Developers don’t have any control over how Google Play Store works,
other than to provide good text and graphics for their application’s listing in the Play Store.
Therefore, the user experience is pretty much up to Google. From a device, a user can
search by keyword; look at top downloaded applications (both free and paid), featured
applications, or new applications; or browse by categories. Once they find an application
they want, they simply select it, which pops up an item details screen allowing them to install
it or buy it. Buying will take the user to Google Checkout to conduct the financial part of the
transaction. Once downloaded, the new application shows up with all the other applications.

From the Internet web site for Google Play Store (https://play.google.com), the user
interface looks about the same, albeit much larger than most device screens. One difference
is that the web-based Google Play Store expects the user to log in to their Google account
to use the Play Store. This allows Google to connect your web experience on Google Play
Store to your actual device. This means two things: when using the web site, Google Play
Store knows what applications are already installed on your device; and when you make a
purchase on the Google Play Store web site, the download can be sent to your device (or
devices) and not to whatever computer you happen to be browsing on.

Google Play Store has an option to view downloaded applications in My Apps. This area
contains all installed apps and any apps that you’ve purchased, even if you’ve removed
them (perhaps you removed them just to make room for other applications). This means
you could delete a paid app from your phone and then reinstall it later without having to
repurchase it. Of course, if you opted for a refund, the app will not show up in My Apps.

The list of apps in My Apps is tied to your Google Account used across all your devices.
This means you could switch to a new physical device and still have access to all the apps
you’ve paid for. But beware. Since you might have multiple identities with Google, you must
use the exact same identity as before to get your apps on a new device. When viewing apps
in My Apps, any that have upgrades available will indicate this and allow you to get the
upgrade.

https://play.google.com/

694 CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

Google Play Store filters applications available to users. It does this in a number of ways.
Users in some countries can only see free applications because of the commerce legalities
involved for Google in that country. Google is trying hard to overcome commerce hurdles
so all paid apps will be available everywhere. Until that time comes, users in some countries
will be unable to access paid apps. Users with devices running older versions of Android
will not be able to see applications that require a newer version of the Android SDK. Users
with device configurations that are not compatible with the requirements of the application
(expressed via <uses-feature> tags in the AndroidManifest.xml file) will not be able to see
those applications. For example, applications not specifically supporting small screens cannot
be seen in Google Play Store by users on devices with small screens. This filtering is mostly
intended to protect users from downloading applications that will not work on their device.

If you are purchasing apps in Google Play Store from other countries, your transaction
may be subject to currency conversion, which can also carry an additional fee, unless the
seller has specified pricing in your local currency. You’re really purchasing using the Google
Checkout from the seller’s country. Google Play Store will display an approximate amount,
but the actual charges could vary depending on when the transaction is placed and with
which payment processor. Buyers may notice a pending transaction against their account
for a small amount (for example, US $1). This is done by Google to ensure that the payment
information provided is correct, and this pending charge will not actually go through.

A few web sites are available that mirror the Google Play Store app listings. Shoppers can
search, browse categories, and find out about Google Play Store applications over the
Internet without having a device. This gets around the filtering that Google Play Store does
based on your device configuration and location. However, this does not get apps onto your
device. Examples of these mirror sites are www.androlib.com, and www.appszoom.com.

Beyond Google Play Store
Google’s Play Store is not the only game in town. You are not forced into using Google Play
Store at all. You should consider utilizing other channels of distribution, not only to make
your app available to more people in more countries, but also to take advantage of other
payment processors and opportunities to make money.

There are Android app stores completely separate from Google Play Store, the biggest of
which is probably Amazon. Other examples of Android app stores are http://mall.soc.io/
apps, http://slideme.org, www.getjar.com, and https://f-droid.org/. From these sites,
you can search, browse, find out about apps, and also download apps, either from a
device or via a web browser. These sites don’t have to abide by Google’s rules, including
the transaction fees for paid apps and methods of payment. PayPal and other payment
processors can be used to purchase apps on these separate sites. These sites also don’t
necessarily restrict by location or device configuration. Some of them provide an Android
client that can be installed, or in some cases may come preinstalled on a device. Users can
simply launch a browser on their device and find the app they want to download via the web
site; when the file is saved to the device, Android knows what to do with it. That is to say,
a downloaded .apk file is treated as an Android application. If you click it in the Download
history of the browser (not to be confused with My Apps, covered earlier), you will be
prompted to see if you want to install it or not. This freedom means you can set up your own

http://www.androlib.com/
http://www.appszoom.com/
http://mall.soc.io/apps
http://mall.soc.io/apps
http://slideme.org/
http://www.getjar.com/
https://f-droid.org/

695CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

methods of downloading Android applications to users, even from your own web site and
with your own payment methods. You must still deal though with collecting any necessary
sales tax and remitting it to the appropriate authorities.

While not restricted by Google’s rules, these alternate methods of app distribution may
not offer the same sort of buyer protections that are found in Google Play Store. It may be
possible to purchase an application through an alternate market that will not work on the
buyer’s device. Buyers may be at greater risk of malware on the alternate markets. The
buyer may also be responsible for creating backups, in case they lose the application from
their device, or for transferring applications if they switch to a new device.

These other markets allow you to make money on the sale of each app. You’ve also got
the ability within these other markets to implement alternate payment mechanisms, or to
implement ads and make money that way.

Remember that Google does not restrict developers from selling their applications in multiple
markets at the same time they sell through Google Play Store. So consider all your options
to make the most of your efforts.

References
Here are some helpful references to topics you may wish to explore further:

	http://developer.android.com/guide/topics/manifest/manifest-
intro.html: The Developer Guide page to the AndroidManifest.
xml file, with descriptions of how to use the supports-screens, uses-
configuration, and uses-feature tags.

	http://developer.android.com/guide/practices/screens_support.
html: The Developer Guide page “Supporting Multiple Screens,” which
contains lots of good information on dealing with different screen sizes
and densities.

	http://developer.android.com/design/style/iconography.html:
The Design Guide page “Iconography,” which contains lots of good
information on designing effective icons for your application.

	http://android-developers.blogspot.com/2010/09/securing-android-
lvl-applications.html and http://android-developers.blogspot.
com/2010/09/proguard-android-and-licensing-server.html: Blog posts
on how to use the License Verification Library (LVL) in ways that prevent
piracy.

	http://proguard.sourceforge.net/: The main site for ProGuard, which
includes documentation.

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/design/style/iconography.html
http://android-developers.blogspot.com/2010/09/securing-android-lvl-applications.html
http://android-developers.blogspot.com/2010/09/securing-android-lvl-applications.html
http://android-developers.blogspot.com/2010/09/proguard-android-and-licensing-server.html
http://android-developers.blogspot.com/2010/09/proguard-android-and-licensing-server.html
http://proguard.sourceforge.net/

696 CHAPTER 30: Deploying Your Application: Google Play Store and Beyond

Summary
You are now equipped to take on the world with your Android applications! Here is a
rundown of the topics we covered in this chapter:

How to get established as a Google Play Store Publisher (that is, 	
Developer) so you can publish to Google Play Store.

The rules as laid out in the Google Play Developer Distribution 	
Agreement.

Giving Google its share of your revenue if you are selling through Google 	
Play Store. We also discussed how Google does not want to see
competition from within the Play Store.

Your responsibility for paying taxes on revenues from your applications.	

The Google Play Store refund policy, both the published and the real 	
one.

How users can get copies of your application anytime in the future as 	
long as they paid for it once.

The Android branding rules. Make sure you don’t violate any copyright 	
associated with Android, images, or fonts.

The Developer Console and its features. The Developer Console collects 	
user feedback and error reports from users.

Preparing your application for production, including testing, LVL and 	
ProGuard to fight piracy, and using resource variations and tags in
AndroidManifest.xml to filter which devices your application will be
available to.

Advice regarding localizing your application by language and/or culture.	

The Google Play Store user interface, both on device and on the 	
Internet/Web.

The fact that Google Play Store is not the only game in town, and that 	
you can sell your application in other places on the Internet, all at the
same time.

697

A ■
Accelerometers

coordinate system, 549
device angle, 554
display orientation, 550
gravity, 551
landscape mode, 549
magnetic field sensor, 555

AccountsFunctionTester, 630
acos() method, 554
Action bar

definition, 151
list-based action bar, 155
search view widget

manifest file, 159
menu item, 157
searchable XML file, 158
search results activity, 158
search target, 159

standard action bar, 152
tabbed action bar, 154

ACTION_DOWN event, 500–501
ACTION_DRAG_ENDED, 525, 535
ACTION_DRAG_ENTERED, 525, 531, 536
ACTION_DRAG_EXITED, 525, 531
ACTION_DRAG_LOCATION, 525, 531
ACTION_DRAG_STARTED, 525, 535–536
ACTION_DROP, 525
ACTION_MOVE event, 501, 512
ACTION_UP event, 492, 501
Activity.getResources(), 51
Activity.managedQuery() method, 603
Activity.onCreate(), 615–616
Adapters

ArrayAdapter
createFromResource() method, 102
notifyDataSetChanged() method, 103

class hierarchy, 99
Gallery Control, 116
GridView control

definition, 113
Java Implementation, 113
ListAdapter, 114
setContentView(), 114

ListView control
Accept User Input, 106
additional button, 108
code implementation, 104
doClick() method, 111
getCheckItemIds() method, 111
getItemAtPosition() method, 111
LinearLayout, 109
ListActivity, 109–110
makeText() method, 107
notifyDataSetChanged() method, 107
onItemClick() method, 107
setListAdapter() method, 104
simple_list_row layout, 105
UI definition, 108

SimpleCursorAdapter, 100–101
Spinner Control, 115

addProfileContact(), 646
AggregatedContact(), 636
Aggregated contacts, 623, 626, 636

cursor for, 631, 633
URI-based cursor, 636

definition, 632
listContacts(), 633
Lookup URI-Based Cursor, 634

Alarm manager
broadcast receiver, 365–366
Calendar object, 366
Intent Pointing, 367
PendingIntent class, 367
persistence, 370

Index

698 Index

repeating alarm, 368
RTC time, 368
setExact() method, 370
set() method, 367
TestReceiver, 366

am.getAccounts(), 622, 630
@android\:id/empty, 615
@android\:id/listview, 615
Android activity life cycle, 45

activity callbacks, 50
Object onRetain

NonConfigurationInstance(), 49
void onCreate, 46
void onDestroy(), 50
void onPause(), 48
void onRestart (), 49
void onRestoreInstanceState, 47
void onResume(), 48
void onSaveInstanceState, 49
void onStart(), 47
void onStop(), 48

Android app stores, 694
Android architecture

calculator application, 30
ACTION_GET_CONTENT, 58
activity life cycle. Android activity

life cycle
directory structure, 43
implicit/explicit, 60
intent activities, 57
intent/activities, 59
intents, 56
Programming Logic (see

Programming Logic)
real device, 44
saving state, 61
UI. User Interface (UI)

finesse apps, 64
integration, 65
robust applications, 64
UI essentials, 63

Android custom adapter
ManateeAdapter

GridView, 122
java implementation, 120
XML layout, 119

Android Development Tools (ADT), 2
Android eclipse environment

Android SDK, 5
eclipse 4.2, 3
installing ADT, 7
JDK 6, 2
PATH, 6
pointing ADT, 9
tools window, 6

Android Interface Definition
Language (AIDL)

definition, 285
IStockQuoteService interface, 286

bindService() method, 293
Compiler-Generated Java File, 286
implementation, 289
MainActivity.java file, 291
manifest declaration, 290
ServiceConnection interface, 293
StockQuoteClient, 291
unbindService() method, 293

Messenger/Handler
client activity code, 308
client fragment code, 309
service code, 306

nonprimitive types, 294
Parcelable interface

AndroidManifest.xml file, 300
implementation, 295
IStockQuoteService.aidl, 297
MainActivity.java, 301
main.xml, 301
Person.aidl file, 297
StockQuoteService2

implementation, 298
StockQuoteService2 layout, 299

Android layout managers
definition, 130
FrameLayout, 138
GridLayout, 138
LinearLayout

gravity, 131
gravity vs. layout_gravity, 133
horizontal configuration, 130
text fields, 132
weight, 131
weight configurations, 132

Alarm manager (cont.)

699Index

RelativeLayout, 135
TableLayout, 134

AndroidManifest.xml file, 547, 684
Android resources

application class, 54
application context, 55
arbitrary XML file, 53
assets directory, 54
directory structure, 51
drawable XML resource file, 52
Java code, 52
qualifiers, 55
raw resource file, 53

Android RunTime (ART), 689
Android security model

digital certificate, 654
key pair, 654
keystore, 654
runtime security

Android manifest editor tool, 663
features and resources, 662
process boundary, 661
required permission, 662
URI permissions, 664

signing applications
adb tool, 660
debug.keystore file, 656
export wizard, 660
installing updates, 660
jarsigner tool, 657
self-signed certificate, 654
VeriSign, 654
zipalign tool, 659

Android service
AIDL (see Android Interface Definition

Language)
AsyncTask, 277
local

AndroidManifest.xml file, 283
BackgroundService.java, 279
bindService(), 277
Context.startService(), 278
definition, 276
displayNotificationMessage()

method, 281
drawable file, 281
e-mail application, 277
IntentService, 285
interrupt() method, 281

MainActivity, 282, 284
main.xmllayout file, 282
onBind() method, 280
onCreate() method, 280
onDestroy() method, 281
onStartCommand() method, 278
ServiceWorker class, 281
startId parameter, 281
startService(), 277
stop*() methods, 284
ThreadGroup class, 281

remote
bindService(), 277
definition, 276
language translation application, 277
RPC mechanism, 278

Android’s fundamental components
activity, 12
AndroidManifest.xml, 13
AVD, 13
content provider, 13
fragment, 12
intent, 12
service, 13
view, 12

Android software development kit (SDK)
JDK, 1, 6
packages, 2
saving state

content providers, 563
external files, 562
internal files, 561
network storage, 563
O/R mapping libraries, 562
shared preferences, 559
SQLite, 562

tools, 2
Android studio

definition, 9
home screen, 10
Java installation, 10

Android styles
definition, 127
EditText, 127
parent style, 128
TextView, 126, 129

Android themes, 129
Android virtual device (AVD), 21,

406, 657, 683

700 Index

animate() method, 377
Animation

API resource, 404
types, 373

AnimationBuilder, 397
AnimatiorSetBuilder, 394
AnimatorSet, 394
apk file, 689
Application Not Responding

(ANR), 267
Application programming interface

(API), 239
AppWidgetProviderInfo class, 475
argsBundle argument, 614
AsyncTask

activity pointer, 326
device rotation, 326
implementation

concrete types, 320
definition, 319
doInBackground() method, 323
execute() method, 321–322
onPostExecute() callback

method, 324
onPreExecute() method, 322–323
parameters, 319
progress dialog, 322–325
publishProgress() method, 323
source code, 320–321
thread pools, 326

managed dialogs, 327–328
pseudocode, 317–318
retained objects and fragment dialogs

activity life cycle, 328
AsyncTesterFragment

object, 333–335
attach() method, 332
fragment approach, 332
key code snippets, 337–339
layout file, 335–336
onCreateDialog() method, 329–330
onDestroy() method, 340
onRetainNonConfigurationInstance()

method, 328
onStart() method, 339
pseudocode, 331
releaseResources() method, 340

retained headless fragment, 337
root RADO, 328
sampling, 336
setProgress() method, 329–330

AsyncTaskLoader, 608
autoPause() method, 463

B ■
BackgroundService’s onDestroy()

method, 284
BaseAdapter, 119
BDayWidgetModel class, 489
bindService() method, 293
Birthday Widget, 473
Blue dot, 536
BooleanButton class, 495
Broadcast receiver

in-process receivers, 346
long-running services

abstract class, 354–355
ALongRunningReceiver, 357
code execution, 351
getLRSClass() method, 356, 358
handleBroadcastIntent() method,

362–363
IntentService, 352–354, 361–362
LightedGreenRoom abstraction, 358
nonsticky service, 360
onCreate() method, 359
onDestroy() method, 359
onStartCommand() method, 359
protocols, 351–352
redeliver mode, 360
sticky service, 360
Test60SecBCR, 357
Test60SecBCRService, 355–356

manifest file, 344–345
notification manager

monitoring, 347–348
sending notification, 348–350
startActivity() method, 350

out-of-process receivers, 346
sendBroadcast() method, 343–344
sendOrderBroadcast method, 363
TestReceiver2, 345–346

Broadcast receiversample code, 344

701Index

C ■
Calendar.getInstance(), 366
c.close(), 634–637, 644–646
c.getColumnCount(), 632, 634–635
c.getCount(), 635
Chronometer, 125
clearCheck() method, 91
Client application, 668
ClipData, 531, 535–536
c.moveToFirst(), 635–636
cnamesBuffer.toString(), 632
Compatibility library

APIs, 239
retrofitting, 245
tablets, 240
v4 support library, 240, 244
v7 support library, 240–241
v8 support library, 241, 243
v13 support library, 241, 244

Complementary filters, 548
Configuration changes

configuration factors, 198
destroy/create cycle

FragmentManager, 201
fragments, 200
onCreate() callback, 200
onRestoreInstanceState() callback,

200
onSaveInstanceState() callback, 199
putInt(), 199
putParcelable(), 199
putString(), 199
saveFragmentInstanceState(), 201
setInitialSavedState(), 201
setRetainInstance(), 201

features, 198
getLastNonConfigurationInstance(), 202
onConfigurationChanged() callback, 202
onRetainNonConfigurationInstance(),

202
UI elements, 197

Consuming services
Android (see Android service)
HTTP (see HttpClient)

ContactData(), 645
contact_entities_view database view, 630
Contacts API

accounts, 622
AccountsFunctionTester, 630
aggregated contacts, 636

cursor for, 633
URI-based cursor for, 636

contact_entities_view database
view, 630

Contact Provider UI, 651
ContentProviderOperation

back references, 650
committing via yielding, 649
container for, 648
definition, 648
optimistic locking, 650

controlling aggregation, 642
details adding, 640
group features, 651
personal profile

contact data, 645
data adding, 645
profile-based URIs, 643
raw contacts, 644
reading/writing, 644

photo features, 651
raw contacts (see Raw contacts)
sync adapters, 647

Content providers
Android resources, 604–605
book database, 601
BookProvider content provider, 594
delete method, 600
implementation, 591
insert method, 600
MIME-type contracts, 599
projection maps, 599
query method, 599
register, 600
structure of, 590
update method, 600
UriMatcher class, 598

ContentValues, 565
ContentValues(), 641, 646
CONTEXT_INCLUDE_CODE flag, 251
Context menu

onContextItemSelected(), 149
Populating, 148
TextView, 148

Context.NOTIFICATION_SERVICE, 349

702 Index

CONTEXT_RESTRICTED flag, 250
createPackageContext() API, 250
createScaledBitmap() method, 124
cursor

for aggregated contacts, 633
URI-based cursor, 636

CursorLoader, 608, 616

D ■
Dalvik Debug Monitor Service (DDMS), 431
database views

contact_entities_view, 630
dataRecord.toString(), 645
Data table, 625, 643
describeEvent() method, 511
DetailsFragment.java, 245
Developer Console, 681
DialogFragment

AlertDialogFragment, 211, 215
communication, 216
construction

newInstance() method, 207
dismiss() method

implications, 210
onCancel() callback, 210
onDismiss() callback, 210

embedded dialogs, 215
HelpDialogFragment, 211, 214
MainActivity, 211–212
MyDialogFragment, 206
onCreateDialog (), 208
onCreateView(), 207
OnDialogDoneListener, 211, 213
PromptDialogFragment, 211, 213
show() method, 208

Dialogs
Android, 205
dialog fragments (see DialogFragment)
toast, 216

Digital certificate, 654
DirectAccessBookDBHelper, 569
Display.getRotation(), 550
doInBackground() method, 318, 323
Dot.java, 527
doWhenMapIsReady() method, 413
Drag-and-drop implemention

ACTION_UP event, 524

Android 3.0
ACTION_DRAG_ENDED, 525
ACTION_DRAG_ENTERED, 525
ACTION_DRAG_EXITED, 525
ACTION_DRAG_LOCATION, 525
ACTION_DRAG_STARTED, 525
ACTION_DROP, 525
DragEvent object, 525–526

ClipData, 531, 535
custom view, 532
Dot, 520–522, 532
Dot.java, 527
DragShadowBuilder, 535
draw() method, 523
DropZone.java, 527, 529
dropzone.xml, 526, 528
FrameLayout, 520
invalidate() method, 536
layout_height, 521
layout_width, 521
layout XML, 520
LinearLayout, 520–521, 524
main.xml file, 520
ObjectAnimator class, 531
onCreateView() method, 530
onDrag(), 531, 535
onMeasure() method, 535
palette.xml, 526, 528
startDrag(), 535
TextView, 521, 524
TouchDragDemo, 520–521
user interface, 521, 527
View object, 521

DragEvent.getResult() method, 525
DragShadowBuilder, 535
draw() method, 523, 535–536
DropTarget, 536
DropZone.java, 527, 529
dropzone.xml, 526, 528
Dynamic menus, 149

E ■
End User License Agreement (EULA), 680
execute() method, 268, 271
executeOnExecutor() method, 326
Expanded menu, 146

703Index

F ■
falseBtnTop, 501
FILL_PARENT vs. MATCH_PARENT, 76
findViewById(), 39
for(c.moveToFirst(), 634, 644–645
Fragments

definition, 169
FragmentManager

enableDebugLogging() method, 188
getFragment() method, 187
MainActivity, 192
onCreateView() method, 190
persistence, 193
portrait mode, 192
putFragment() method, 187
referencing fragments, 188
saveFragmentInstanceState()

method, 188
setContentView(), 192
setRetainInstance(), 188
showDetails() method, 191
TitlesFragment class, 189–190

FragmentTransactions
findFragmentById() method, 184
FrameLayout, 184
setCustomAnimations() method, 185
setTransition() method, 185
showDetails() method, 184
ViewGroup class, 184

life cycle, 172
newInstance() method, 174
onActivityCreated() callback, 176
onAttach() callback, 174
onCreate() callback, 174
onCreateView() callback, 175
onDestroy() callback, 177
onDestroyView() callback, 177
onDetach() callback, 177
onInflate() callback, 174
onPause() callback, 176
onResume() callback, 176
onSaveInstanceState() callback, 177
onStart() callback, 176
onStop() callback, 177
onViewCreated() callback, 175
onViewStateRestored() callback, 176

setRetainInstance(), 177
Static Factory Method, 173

setTargetFragment(), 194
startActivity(), 194
structure, 172
tablet and smartphone UI, 171
tablet UI, 170
XML layout

DetailsFragment class, 181–183
FrameLayout, 179
getShownIndex() method, 182
landscape mode, 178
MainActivity, 180
newInstance() method, 182
onCreateView() method, 182
Shakespeare class, 183

Frame-by-frame animation, 373
addFrame() method, 376
AnimationDrawable class, 375
setOneShot(true) method, 376
source code, 376

G ■
gatherControls(), 39
GCM Connection Servers, 668
Geocoding

definition, 418
latitude and longitude, 422–423
map fragment, 419–422
methods, 418

Geofencing
addProximityAlert() method, 443
GeofencingApiDemo, 443

geoMagField.getDeclination(), 555
Gestures

GestureDetector and
OnGestureListeners, 513

pinch gesture, 513
getActionBar(), 152
getAction() method, 506, 511
getContacts(), 633–636
getCount() method, 123
getEdgeFlags() method, 499
getFirstContact(), 636
getFragmentManager() method, 187, 245
getFragment() method, 187

704 Index

getFromLocationName() method, 418, 422
getHttpClient() method, 273
getItemId() method, 125
getItem() method, 124
getItemViewType() method, 123
getLastNonConfigurationInstance(), 46
getMinDelay(), 545
getOrientation(), 555
getPointerCount(), 506
getProgressBar()method, 338
getQuaternionFromVector(), 556
getResult(), 537
getRotationMatrix(), 555
getSearchableInfo, 160
getSupportFragmentManager(), 245
getView() method, 124
getViewTypeCount() method, 123
getXVelocity() method, 504
getYVelocity() method, 504
Google Cloud Messaging (GCM)

authenticating GCM
communication, 671

building Android application
configure project

dependencies, 671
gcm.send() method, 676
manifest properties, 672
messageID.incrementAndGet()

method, 676
onCreate() method, 675
registerAppInBackground(), 675
registering, 673
sendMessage() method, 675
third-party service, 676

client application, 668
components and message flow, 668
definition, 667
GCM API, 669
GCM Connection Servers, 668
Google Developer Console, 668
remote application server, 668

Google Play Developer Distribution
Agreement (GPDDA), 678

Google Play Services, 406
Google Play Store

AndroidManifest.xml file, 684
apk file, 689

application icon, 686
developer console, 681
GPDDA rules, 678
licensing service, 687
localizing, 685
ProGuard, 688
publisher, 677
screen sizes, 684
testing, 683
uploading

consent, 693
contact information, 692
graphics, 690
listing details, 690
publishing options, 691

URI scheme, 687
user experience, 693

Gravity sensors, 556
Gyroscope sensor, 548

H ■
Handlers

AsyncTask class, 262
DeferWorkHandler source code,

259–260
definition, 257
doDeferredWork() method, 260
handleMessage, 257–259
message object, 258
obtainMessage() method, 261
respondToMenuItem() call, 259
setData() method, 261
sleep method, 259
worker thread, 262

HelloAndroidApp, 20
artifacts, 22
debugging tools, 26
launch options, 27
life cycle, 24
real device, 21
structure, 22

hideProgressbar(), 615
Home screen widgets

AppWidgetProvider class, 475
BDayWidgetProvider class, 475, 478
collections, 489

705Index

configuration activity
BDayWidgetModel object, 488
BirthdayWidget, 473–474
ConfigureBDayWidgetActivity, 484
layout definition, 487
tasks, 487

configure attribute, 477
definition, 471
files implementation, 481–482
initialLayout attribute, 476
onClick area, 481
onDeleted() method, 478
onDisabled() method, 478
onEnabled() method, 478
onUpdate() method, 478–480
previewImage attribute, 476
resize mode attribute, 476
uninstalling packages, 480
user experience, 472–473
view mouse click event callbacks, 480
widget instance deletion, 480
widget provider

BDayWidgetModel, 489
boundary box shape, 484
ConfigureBDayWidgetActivity

activity, 482–483
implementation, 488–489
layout file, 483

XML file, 475
howRawContactsDataForRawContact(), 642
HttpClient

AndroidHttpClient, 275
Apache version, 266
HTTP GET request

ANR, 267
HttpGetDemo.java, 266
parameters, 267

HTTP POST request
execute() method, 268
HTTP POST call, 268
Multipart POST Call, 269
NameValuePair object, 268
setEntity() method, 268
UrlEncodedFormEntity object, 268

HttpURLConnection, 275
JSON, 271
multithreading issues

BasicResponseHandler, 273

getHttpClient() method, 273
ThreadSafeClientConnManager, 272

protocol exceptions, 271
SOAP web service, 270
timeouts, 271, 274
transport exceptions, 271
XMLPullParser, 271

I ■
Icon menu, 147
inflate() method, 175
insertName() method, 642
insertPhone() method, 642
insertProfileRawContact(), 646
insertRawContact(), 642
Interpolators, 382
interrupt() method, 281
invalidate() method, 536
invokePick(), 56
isEnabled() method, 124

J, K ■
Java file, 631
JavaScript Object Notation (JSON), 271
Java SE Development Kit (JDK), 1

L ■
LAUNCHER, 229
Layout animation

AccelerateInterpolator, 382
Activity Code, 379
alpha.xml file, 381
BounceInterpolator, 383
interpolators, 382
list_layout.xml file, 380
ListView, 378
ListView XML file, 379
rotate XML file, 381
scale animation XML file, 377
translate and alpha animations file, 381
types, 377
XML file, 380

License Verification Library (LVL), 687
Light sensor, 546
Linear acceleration sensor, 556
listContacts(), 633–634

706 Index

listLookupUriColumns(), 634–635
ListPreference

entryValues array, 226
flight_sort_options_values

array, 227–228
user interface, 225
XML, 225–226

loaderCallbacks, 615
LoaderManager, 607
LoaderManager.destroyLoader

(loaderid), 617
LoaderManager.initLoader(), 615
LoaderManager.LoaderCallbacks, 608
LoaderManager.restartLoader(), 615, 617
Loaders

activity/fragment, 607
activity loading data, 610
Activity.onCreate(), 615
API classes, 608
argsBundle argument, 614
AsyncTaskLoader, 608
characteristics, 609
cursor, 607
CursorLoader, 608, 618
developer-assigned unique number, 614
ListActivity, 615
ListActivity Layout, 613
load data, 614
loaderCallbacks, 615
LoaderManager Callbacks, 617
LoaderManager object, 607
onCreateLoader() method, 615
onCreate() method, 614
onCreateOptionsMenu() method, 617
onLoaderReset() method, 617
onLoadFinished() method, 616
resources, 618
string resources, 609

Location-based services
AVD, 406
DDMS, 431
emulator console, 434
FusedLocationProviderApi, 440
geocoding

definition, 418
latitude and longitude, 422–423
map fragment, 419–422
methods, 418

geofencing
addProximityAlert() method, 443
GeofencingApiDemo, 443

getLastLocation() method, 425
Google Directions, 434
Google Play Services

GoogleClientApi client, 437
intents launching, 439–440
isGooglePlayServicesAvailable()

method, 436
isUserRecoverableError()

method, 437
onConnectionFailed() callback, 438
showErrorDialogFragment()

method, 437
tryToConnect() method, 435–437

hasAccuracy() method, 434
location providers, 427
location updates, 429
MapFragment

coding, 411–412
FragmentActivity, 410
FrameLayout, 411
location updation, 413
map display, 410–411
map tiles, 414
map types, 414
MyLocation, 414
pan maps, 414
traffic layer, 414
WhereAmI, 410
zoom, 414

Maps API key
Google, 406
manifest file, 409

markers
CameraUpdateFactory class, 418
LatLngBounds object, 417
MarkerOptions features, 417
MyMapFragment.java, 415–417

onConnected() callback, 425
requestLocationUpdates() method, 443
Settings.Secure class, 426
static method, 434
WhereAmILocationAPI, 423

LogCat, 498–499, 501
Long-running receivers and services

abstract class, 354–355

707Index

ALongRunningReceiver, 357
code execution, 351
getLRSClass() method, 356, 358
handleBroadcastIntent() method,

362–363
IntentService, 352–354, 361–362
LightedGreenRoom abstraction, 358
nonsticky service, 360
onCreate() method, 359
onDestroy() method, 359
onStartCommand() method, 359
protocols, 351–352
redeliver mode, 360
sticky service, 360
Test60SecBCR, 357
Test60SecBCRService, 355–356

Low-pass filter, 551

M ■
Magnetic field sensor

accelerometers, 555
compass, 554

MainActivity’s stopService() method, 284
Mapping.txt file, 689
Media APIs

android.media.MediaPlayer class, 451
content formats, 451
playing audio

AsyncPlayer, 464
AudioTrack, 465
create() method, 457
getExternalStoragePublicDirectory()

method, 453
JetPlayer, 464
killMediaPlayer() method, 457
layout and code, 453
onCreate() method, 456
playAudio() method, 456
prepareAsync() method, 456
release() method, 465
setDataSource() method, 452, 457
setLooping() method, 465
setVolume() method, 465
SoundPool, 459
stop() method, 457
user interface, 452

playing video, 465
SD Cards, 452

Menu.addSubMenu(), 147
Menu groups

creation, 145
removeGroup(), 145
setGroupCheckable(), 145
setGroupEnabled method(), 145
setGroupVisible(), 145

Menu Inflater, 143
Menu Item

icon, 147
intent, 146
Java Code, 144
listener, 146

Menu XML resource file
creation, 141
menu items, 143
populating activity, 142

MotionEvents
ACTION_CANCEL event, 498
ACTION_DOWN event, 492, 498
ACTION_MOVE event, 498–499
ACTION_OUTSIDE event, 498
ACTION_UP event, 492, 498–499, 502
LogCat records, 501
main activity, Java code, 496
onTouchEvent() method, 492–493
onTouch() method, 500
recycle() method, 503
Returns False button, 499
setOnTouchListener() method, 492
TouchDemo1 application

Java code, Button classes, 495
sample LogCat messages, 498
UI, 494
XML layout file, 493

VelocityTracker, 503
Multitouch

ACTION_MOVE event, 512
ACTION_SCROLL, 513
ACTION_UP value, 512
getAction() method, 511
LogCat messages, 509
XML layout, 507

Musical Instrument Digital Interface
(MIDI), 464

708 Index

N ■
newInstance() method, 174
Non-configuration instance reference, 46
Non-streaming sensor, 545

O ■
ObjectAnimator, 395, 531
Object onRetainNonConfiguration

Instance(), 49
obtain(), 503
onAccuracyChanged(), 544
onActivityCreated() callback, 176
onAttach() callback, 174
onBind() method, 280
onCheckedChanged() method, 85
onContextItemSelected(), 149
onCreate(), 46
onCreate() callback, 38, 174
onCreateContextMenu(), 149
onCreateLoader() method, 615
onCreate() method, 137, 280, 542, 614
onCreateOptionsMenu() method,

142, 144, 617
onCreateView().callback, 175
onCreateView() method, 530
onDestroy() callback, 177
onDestroy() method, 281
onDestroyView() callback, 177
onDetach() callback, 177
onDrag(), 531, 535
onHandleIntent()call, 353
onLoaderReset() method, 617
onLoadFinished() method, 616–617
onLocationChanged() method, 430
onMapReady() callback, 413
onMeasure() method, 535
onMenuItemClick(), 146
onOptionsItemSelected(), 143, 146
onPause(), 46
onPause() callback, 176
onPerformSync() method, 647
onPostExecute() callback method, 324
onPreExecute() method, 318, 322–323
onPrepareOptionsMenu(), 144, 149
onProgressUpdate()method, 318
onQueryTextchange() method, 617

onReceive() method, 344
onRestoreInstanceState(), 46
onResume() callback, 176
onResume() method, 544
onRetainNonConfigurationInstance(), 46
onSaveInstanceState() callback, 177
onScale(), 516
onSensorChanged() method, 544, 553
onStart() callback, 176
onStartCommand() method, 278
onStop() callback, 177
onTouchEvent() method, 492–493, 501–502,

515, 523
onTouch() method, 499–502
onUpdate() method, 479, 489
onViewCreated() callback, 175
onViewStateRestored() callback, 176
O/R mapping, 562

P ■
Packages

library project
compile-time concept, 251–252
design, 252–253
hard-coded constants, 254
properties dialog, 253–254
switch statement, 255

Linux user ID, 248–249
manifest file, 247
shared user ID, 249–250
share resources and data, 250–251

palette.xml, 526, 528
parseResult(), 58
PendingIntent class, 367
Pop-up menus, 150
PreferenceActivity, 229
Preferences

AndroidManifest.xml, 229
application’s saved preferences,

220–221
CheckBoxPreference, 222
dependency, 231
DialogPreference, 236
EditTextPreference, 228
flight_sort_option, 224
getSharedPreferences() method, 234
headers, 231

709Index

ListPreference (see ListPreference)
main settings, 220
main.xml, 224
MultiSelectListPreference, 229
onCreate() method, 234
OnPreferenceChangeListener

interface, 234
package name, 224
PreferenceCategory, 230
PreferenceScreens, 233
setOptionText() method, 223–224
string resource value, 224
SwitchPreference, 222
XML, 220

Pressure sensor, 547
Process model. See Packages
Programming Logic

activity class, 36
AndroidManifest.xml, 40
calculator buttons, 40
gathering controls, 39
intent object, 41
layout file, 38
onClick() method, 40
placement files, 42

ProgressBar, 125
ProGuard, 688
Property animation API

activity, 393
AnimatiorSetBuilder, 394
AnimatorListener, 392
AnimatorSet, 394
AnimatorSetBuilder class, 396
AnimatorSet class, 396
class, 391
Key frames, 402
layout transition class, 403
layout transition methods, 403
ObjectAnimator, 395
PropertyValueHolder class, 398
PropertyValuesHolder, 394
toggleAnimation(View) method, 394
Type Evaluator method, 394, 400
Value Animator, 392
ViewPropertyAnimator, 394
ViewPropertyAnimator class, 399
XML file, 397–398
XML tags, 397

PropertyValuesHolder, 394
Proximity sensor, 547
publishProgress() method, 323

Q ■
query() function, 633
queueSound() method, 463

R ■
RatingBar, 125
RawContact(), 644
Raw contacts

advantages and disadvantages, 625
aggregated contacts, 626, 638
ContactData.java, 639
contact_entities_view, 629
cursor, 637
data table, 625
definition, 623
RawContact.java, 636
SQLite Database, 623
structure of, 624
view_contacts, 628

rc.toString(), 644
ReceiveTransitionsIntentService

method, 446–447
registerListener() method, 544
Remote application server, 668
Remote procedure call (RPC), 285, 278
RemoteViews class, 476–477
removeGroup(), 145
requestLocationUpdates() method, 430
Rotation vector sensor, 556

S ■
ScaleGestureDetector, 514
ScrollView, 125
searchable.xml, 160
SearchManager.QUERY, 158
sendBroadcast() method, 343–344
Sensors

accelerometers (see Accelerometers)
definition, 539
detection methods, 540
GeomagneticField, 555
getting sensor data, 545

710 Index

gravity sensor, 556
gyroscope sensor, 548
light sensor, 546
Light Sensor Monitor App, 543
linear acceleration sensor, 556
magnetic declination, 555
magnetic field sensor, 554
pressure sensor, 547
proximity sensor, 547
rotation vector sensor, 556
Sensor List App

java code, 540
output, 542

temperature sensor, 547
types, 539

setContentView(), 38, 615
setCustomAnimations() method, 185, 245
setDataSource() method, 457
setEdgeFlags() method, 499
setEntity() method, 268
setGroupCheckable(), 145
setGroupEnabled method(), 145
setGroupVisible(), 145
setIntent(intent), 146
setMapType() method, 414
setMeasureAllChildren(), 138
setMyLocationEnabled() method, 413
setOnClickListener() method, 82
setOnTouchListener() method, 492
setRepeating() method, 369
setResult(), 58
setRetainInstance() method, 177
setTabListener(), 154
setTrafficEnabled() method, 414
setTransition() method, 185
setupButtons(), 39
showAllRawContacts(), 637
showAllRawProfileContacts(), 644
showDetails() method, 245
showProfileRawContactsData(), 645
showProgressbar() method, 615
showRawContactsCursor(), 637
Sleep method, 259
SOAP web service, 270
SpinnerAdapter interface, 155
SQLException, 565
SQLite

database creation, 565
database migration, 569
DDLs, 569
deleting rows, 575
inserting rows, 570
packages and classes, 564
reading rows, 575
sample SQL code, 588
SQLite sqlite_master Table, 588
transactions method, 577
updating rows, 574

SQLiteCursor, 564
SQLiteDatabase, 564
SQLiteOpenHelper, 565, 569
SQLiteQueryBuilder, 565
startDrag(), 535
Status bar, 347
stop*() methods, 284
Streaming sensor, 545
StringBuffer(), 632
Styles

Android-provided style, 166
attribute name, 165
collection of View attributes, 165
dynamic styling, 164
ErrorText.Danger, 166
error TextView, 165
parent and child style, 166
spannable, 164
static styling, 163

SubMenu, 147
SupportMapFragment, 410
System-level services, 427

T ■
TabListener interface, 154
Temperature sensor, 547
testAccounts(), 630
Themes, 167
this.getACursor(getRawContactsUri(), 637
this.mContext.getContentResolver(), 646
Threads

Activity.startService, 257
broadcast receiver, 257
components, 255–256

TitlesFragment.java, 245
Toast, 216

Sensors (cont.)

711Index

toString(), 637, 639
TouchDragDemo, 520
Touch screens

gestures
GestureDetector and

OnGestureListeners, 513
pinch gesture, 513

MotionEvent object
ACTION_CANCEL event, 498
ACTION_DOWN event, 492, 498, 500
ACTION_MOVE event, 498–499
ACTION_OUTSIDE event, 498
ACTION_UP event, 492,

498–500, 502
Java code, Button classes, 495
LogCat records, 501
main activity, Java code, 496
onTouchEvent() method, 492–493
recycle() method, 503
Returns False button, 499
sample LogCat messages, 498
setOnTouchListener() method, 492
UI objects, 494
VelocityTracker, 503
XML layout file, 493

multitouch
ACTION_MOVE event, 512
ACTION_SCROLL, 513
ACTION_UP value, 512
getAction() method, 511
LogCat messages, 509
XML layout, 507

Transformation matrix, 383
trueLayoutTop, 501
Tweening animation, 377
TYPE_AMBIENT_TEMPERATURE, 547
TypeEvaluator, 394, 400

U ■
udpateAppWidget function, 487
unbindService() method, 293
URI-based cursor

for aggregated contacts, 636
URL parameter, 628
User interfaces and controls

button controls
basic button, 81
CheckBox, 85

click handler, 82
ImageButton, 83
ImageViews, 92
RadioButton, 88
switch, 88
ToggleButton, 84

date and time controls
AnalogClock/DigitalClock, 95
DatePicker/TimePicker, 94

MapView, 97
text controls

AutoCompleteTextView, 79
EditText, 78
MultiAutoCompleteTextView, 80
TextView, 77

UI development
android.view.View, 70
android.view.ViewGroup, 70
code, 71
XML, 74
XML with code, 74

User Interface (UI) layout
autogenerated IDs, 35
background property, 34
calculator XML, 32
color resource, 34
custom controls, 33
EditText control, 35
file-based resources, 34
TextView control, 35
value-based resources, 34
ViewGroup, 32–33
width and height, 33
XML comment specification, 32

Utils.logThreadSignature()method, 353

V ■
ValueAnimator, 392
VelocityTracker, 503
View animation

activity, 384
AnimationListener

class, 389
Camera object, 388

pre and post translate
method, 389

rotate method, 389
translate method, 388

712 Index

class, 385
initialize method, 386
interpolatedTime, 386
ListView, 386
Matrix class, 388, 390

pre and post translate method, 390
Pre and Post translate pattern, 391

pre and post translate matrix, 387
setScale method, 386

ViewPropertyAnimator, 394
void onCreate, 46
void onDestroy(), 50
void onPause(), 48
void onRestart (), 49
void onRestoreInstanceState, 47

void onResume(), 48
void onStart(), 47
void onStop(), 48

W ■
WakefulIntentService, 354
WhereAmI, 410
WhereAmIMarkers, 415
White dot, 536

X, Y ■
XMLPullParser, 271

Z ■
ZIP file, 652

View animation (cont.)

Pro Android 5

Dave MacLean

Satya Komatineni

Grant Allen

Pro Android 5

Copyright © 2015 by Dave MacLean, Satya Komatineni, and Grant Allen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4680-0

ISBN-13 (electronic): 978-1-4302-4681-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The images of the Android Robot (01/Android Robot) are reproduced from work created and shared by Google
and used according to terms described in the Creative Commons 3.0 Attribution License. Android and all Android
and Google-based marks are trademarks or registered trademarks of Google Inc. in the United States and other
countries. Apress Media LLC is not affiliated with Google Inc., and this book was written without endorsement
from Google Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions
that may be made. The publisher makes no warranty, express or implied, with respect to the material contained
herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Shane Kirk
Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Brendan Frost
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com/9781430246800. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781430246800
www.apress.com/source-code/

To my wife Rosie, I never would have made it this far without your love and support.
Thank you, you are wonderful, and I love you.

—Dave MacLean

To my late younger brother Sankar Komatineni whose industry, hardship,
and zest for life fills me with sadness and joy.

—Satya Komatineni

To all the Android developers out there dreaming of the next great Android app!
You are an amazing community, and I can’t wait to see what you develop next.

—Grant Allen

vii

Contents

About the Authors ��xxvii

About the Technical Reviewer ��xxix

Acknowledgments ��xxxi

Foreword ��xxxiii

Introduction ���xxxv

Chapter 1 ■ : Hello Android ��� 1

Prerequisites for Android Development �� 1

Setting Up Your Eclipse Environment ��� 2

Downloading JDK 6 �� 2

Downloading Eclipse 4�2 �� 3

Downloading the Android SDK �� 4

The Tools Window ��� 6

Installing ADT �� 7

Setting Up Your Android Studio Environment ��� 9

Java requirements for Android Studio �� 10

Downloading and Installing Android Studio �� 10

Learning Android’s Fundamental Components ��� 11

View �� 11

Activity �� 12

viii Contents

Fragment �� 12

Intent �� 12

Content Provider ��� 12

Service �� 13

AndroidManifest�xml��� 13

AVDs ��� 13

Hello World! �� 13

AVDs ��� 21

Running on a Real Device �� 21

Exploring the Structure of an Android Application�� 21

Examining the Application Life Cycle ��� 24

Simple Debugging �� 26

Launching the Emulator �� 27

References ��� 28

Summary �� 28

Chapter 2 ■ : Introduction to Android Application Architecture ������������������������������ 29

Exploring a Simple Android Application �� 30

Defining UI through Layout Files �� 31

Specifying Comments in Layout Files ��� 32

Adding Views and View Groups in Layout Files �� 32

Specifying Control Properties in Layout Files ��� 33

Indicating ViewGroup Properties �� 33

Controlling Width and Height of a Control��� 33

Introducing Resources and Backgrounds ��� 33

Working with Text Controls in the Layout File ��� 35

Working with Autogenerated IDs for Controls ��� 35

Implementing Programming Logic ��� 36

Loading the Layout File into an Activity �� 38

Gathering Controls �� 39

Setting Up Buttons �� 40

Responding to Button Clicks: Tying It All Together �� 40

ixContents

Updating the AndroidManifest�XML �� 40

Placing the Files in the Android Project �� 42

Testing the Calculator App on a Real Device �� 44

Android Activity Life Cycle �� 44

void onCreate(Bundle savedInstanceState) �� 46

void onStart() �� 47

void onRestoreInstanceState(Bundle savedInstanceState) �� 47

void onResume() �� 48

void onPause() �� 48

void onStop() �� 48

void onSaveInstanceState(Bundle saveStateBundle) ��� 49

void onRestart() �� 49

Object onRetainNonConfigurationInstance() �� 49

void onDestroy() ��� 50

General Notes on Activity Callbacks ��� 50

More on Resources �� 50

Directory Structure of Resources ��� 51

Reading Resources from Java Code ��� 51

Runtime Behavior of Drawable Resources ��� 52

Using Arbitrary XML Files as Resources ��� 53

Working with Raw Resource Files �� 53

Reading Files from the Assets Directory �� 54

Reading Resources and Assets Without an Activity Reference ��� 54

Understanding Resource Directories, Language, and Locale ��� 55

More on Intents �� 56

Starting Activities for Results ��� 56

Exercising the GET_CONTENT Action �� 58

Relating Intents and Activities �� 59

Understanding Explicit and Implicit Intents �� 60

Saving State in Android �� 61

Roadmap for Learning Android and the Rest of the Book �� 62

Track 1: UI Essentials for Your Android Applications ��� 63

x Contents

Track 2: Saving State �� 63

Track 3: Preparing/Taking Your Application to the Market �� 64

Track 4: Making Your Application Robust �� 64

Track 5: Bringing Finesse to Your Apps ��� 64

Track 6: Integrating with Other Devices and the Cloud��� 65

Final Track: Getting a Helping Hand from Expert Android ��� 65

As We Leave You Now with the Rest of the Book ��� 66

References ��� 66

Summary �� 68

Chapter 3 ■ : Building Basic User Interfaces and Using Controls ��������������������������� 69

UI Development in Android ��� 69

Building a UI Completely in Code �� 71

Building a UI Completely in XML ��� 73

Building a UI in XML with Code ��� 74

Understanding Android’s Common Controls ��� 76

Text Controls ��� 77

Button Controls ��� 81

The ImageView Control ��� 92

Date and Time Controls �� 93

The MapView Control �� 96

References ��� 97

Summary �� 97

Chapter 4 ■ : Adapters and List Controls �� 99

Understanding Adapters ��� 99

Getting to Know SimpleCursorAdapter ��� 100

Getting to Know ArrayAdapter �� 101

Using Adapters with AdapterViews �� 103

The Basic List Control: ListView �� 104

The GridView Control �� 113

The Spinner Control �� 115

The Gallery Control ��� 116

Summary �� 117

xiContents

Chapter 5 ■ : Building More Advanced UI Layouts �� 119

Creating Custom Adapters �� 119

Other Controls in Android�� 125

Styles and Themes ��� 125

Using Styles �� 126

Using Themes ��� 129

Understanding Layout Managers ��� 130

The LinearLayout Layout Manager ��� 130

The TableLayout Layout Manager ��� 133

The RelativeLayout Layout Manager �� 134

The FrameLayout Layout Manager ��� 136

The GridLayout Layout Manager ��� 138

Customizing the Layout for Various Device Configurations �� 139

Summary �� 140

Chapter 6 ■ : Working with Menus and Action Bars ��� 141

Working with Menus Through XML Files �� 141

Creating XML Menu Resource Files �� 141

Populating Activity Menu from Menu XML Files ��� 142

Responding to XML-Based Menu Items�� 143

Working with Menus in Java Code ��� 144

Working with Menu Groups �� 145

Understanding Expanded Menus �� 146

Working with Icon Menus ��� 147

Working with Submenus �� 147

Working with Context Menus ��� 148

Registering a View for a Context Menu �� 148

Populating a Context Menu ��� 148

Responding to Context Menu Items �� 149

Incorporating Dynamic Menus ��� 149

Working with Pop-up Menus �� 150

xii Contents

Exploring Action Bars ��� 151

Implementing a Standard Action Bar ��� 152

Implementing a Tabbed Action Bar ��� 154

Implementing a List-Based Action Bar ��� 155

Exploring Action Bar and Search View ��� 157

Defining a Search View Widget as a Menu Item ��� 157

Creating a Search Results Activity �� 158

Specifying a Searchable XML File �� 158

Defining the Search Results Activity in the Manifest File ��� 159

Identifying the Search Target for the Search View Widget �� 159

Resources��� 160

Summary �� 161

Chapter 7 ■ : Styles and Themes ��� 163

Using Styles �� 163

Using Themes ��� 167

References ��� 167

Summary �� 167

Chapter 8 ■ : Fragments �� 169

What Is a Fragment? �� 169

When to Use Fragments ��� 170

The Structure of a Fragment �� 172

A Fragment’s Life Cycle �� 172

Sample Fragment App Showing the Life Cycle ��� 178

FragmentTransactions and the Fragment Back Stack ��� 184

Fragment Transaction Transitions and Animations ��� 185

The FragmentManager ��� 187

Caution When Referencing Fragments ��� 188

Saving Fragment State ��� 188

ListFragments and <fragment> ��� 189

Invoking a Separate Activity When Needed �� 191

Persistence of Fragments ��� 193

xiiiContents

Communications with Fragments �� 193

Using startActivity() and setTargetFragment() ��� 194

References ��� 195

Summary �� 195

Chapter 9 ■ : Responding to Configuration Changes ��� 197

The Default Configuration Change Process �� 197

The Destroy/Create Cycle of Activities �� 199

The Destroy/Create Cycle of Fragments ��� 200

Using FragmentManager to Save Fragment State �� 201

Using setRetainInstance on a Fragment ��� 201

Deprecated Configuration Change Methods ��� 202

Handling Configuration Changes Yourself �� 202

References ��� 203

Summary �� 203

Chapter 10 ■ : Working with Dialogs �� 205

Using Dialogs in Android �� 205

Understanding Dialog Fragments ��� 206

DialogFragment Basics ��� 206

DialogFragment Sample Application �� 211

Working with Toast ��� 216

References ��� 217

Summary �� 217

Chapter 11 ■ : Working with Preferences and Saving State ��������������������������������� 219

Exploring the Preferences Framework ��� 219

Understanding CheckBoxPreference and SwitchPreference �� 222

Accessing a Preference Value in Code ��� 223

Understanding ListPreference �� 225

Understanding EditTextPreference ��� 228

Understanding MultiSelectListPreference �� 229

Updating AndroidManifest�xml ��� 229

xiv Contents

Using PreferenceCategory �� 230

Creating Child Preferences with Dependency �� 231

Preferences with Headers �� 231

PreferenceScreens ��� 233

Dynamic Preference Summary Text ��� 234

Saving State with Preferences ��� 234

Using DialogPreference �� 236

Reference ��� 236

Summary �� 237

Chapter 12 ■ : Using the Compatibility Library for Older Devices ������������������������� 239

It All Started with Tablets�� 240

Adding the Library to Your Project �� 240

Including the v7 Support Library �� 241

Including the v8 Support Library �� 243

Including the v13 Support Library �� 244

Including the v17 Support Library �� 244

Including Just the v4 Support Library��� 244

Retrofitting an App with the Android Support Library �� 245

References ��� 246

Summary �� 246

Chapter 13 ■ : Exploring Packages, Processes, Threads, and Handlers ��������������� 247

Understanding Packages and Processes ��� 247

A Code Pattern for Sharing Data �� 250

Understanding Library Projects �� 251

Understanding Components and Threads �� 255

Understanding Handlers ��� 257

Using Worker Threads �� 262

References ��� 263

Summary �� 264

xvContents

Chapter 14 ■ : Building and Consuming Services ��� 265

Consuming HTTP Services ��� 265

Using the HttpClient for HTTP GET Requests �� 266

Using the HttpClient for HTTP POST Requests (a Multipart Example) ��� 268

SOAP, JSON, and XML Parsers �� 270

Dealing with Exceptions ��� 271

Addressing Multithreading Issues �� 271

Fun with Timeouts �� 274

Using the HttpURLConnection ��� 275

Using the AndroidHttpClient �� 275

Using Android Services �� 276

Understanding Services in Android �� 277

Understanding Local Services �� 278

Understanding AIDL Services ��� 285

Defining a Service Interface in AIDL ��� 286

Implementing an AIDL Interface ��� 289

Calling the Service from a Client Application ��� 291

Passing Complex Types to Services ��� 294

Messengers and Handlers �� 305

References ��� 314

Summary �� 314

Chapter 15 ■ : Advanced AsyncTask and Progress Dialogs ���������������������������������� 317

Essentials of a Simple AsyncTask �� 319

Implementing Your First AsyncTask �� 320

Calling an AsyncTask �� 321

Understanding the onPreExecute() Callback and Progress Dialog ��� 322

Understanding the doInBackground() Method �� 323

Triggering onProgressUpdate() through publishProgress() �� 323

Understanding the onPostExecute() Method �� 324

Upgrading to a Deterministic Progress Dialog �� 324

AsyncTask and Thread Pools �� 326

xvi Contents

Issues and Solutions for Correctly Showing the Progress of an AsyncTask ����������������� 326

Dealing with Activity Pointers and Device Rotation �� 326

Dealing with Managed Dialogs ��� 327

Using Retained Objects and Fragment Dialogs �� 328

Using Retained Fragments and Fragment Dialogs ��� 332

Using Retained Fragments and ProgressBars �� 335

References ��� 340

Summary �� 341

Chapter 16 ■ : Broadcast Receivers and Long-Running Services ������������������������� 343

Sending a Broadcast �� 343

Coding a Simple Receiver ��� 344

Registering a Receiver in the Manifest File �� 344

Accommodating Multiple Receivers ��� 345

Working with Out-of-Process Receivers ��� 346

Using Notifications from a Receiver ��� 346

Monitoring Notifications Through the Notification Manager ��� 347

Sending a Notification �� 348

Starting an Activity in a Broadcast Receiver��� 350

Exploring Long-Running Receivers and Services ��� 351

Understanding Long-Running Broadcast Receiver Protocol ��� 351

Understanding IntentService �� 352

Extending IntentService for a Broadcast Receiver ��� 353

Exploring Long-Running Broadcast Service Abstraction �� 354

Designing A Long-Running Receiver �� 356

Abstracting a Wake Lock with LightedGreenRoom ��� 358

Implementing a Long-Running Service �� 359

Understanding a Nonsticky Service �� 360

Understanding a Sticky Service �� 360

Understanding Redeliver Intents Option ��� 360

Coding a Long-Running Service ��� 361

xviiContents

Additional Topics in Broadcast Receivers ��� 363

References ��� 364

Summary �� 364

Chapter 17 ■ : Exploring the Alarm Manager �� 365

Setting Up a Simple Alarm ��� 365

Setting Off an Alarm Repeatedly��� 368

Cancelling an Alarm �� 369

Understanding Exactness of Alarms �� 370

Understanding Persistence of Alarms �� 370

References ��� 370

Summary �� 371

Chapter 18 ■ : Exploring 2D Animation ��� 373

Exploring Frame-by-Frame Animation ��� 373

Exploring Layout Animation �� 377

Understanding Interpolators ��� 382

Exploring View Animation ��� 383

Using Camera to Provide Depth Perception in 2D �� 388

Exploring the AnimationListener Class ��� 389

Notes on Transformation Matrices �� 390

Exploring Property Animations: The New Animation API �� 391

Understanding Property Animation ��� 392

Planning a Test Bed for Property Animation ��� 393

Animating Views with Object Animators ��� 394

Achieving Sequential Animation with AnimatorSet��� 395

Setting Animation Relationships with AnimatorSet�Builder �� 396

Using XML to Load Animators ��� 397

Using PropertyValuesHolder ��� 398

Understanding View Properties Animation ��� 399

Understanding Type Evaluators �� 400

Understanding Key Frames �� 402

Understanding Layout Transitions �� 403

xviii Contents

Resources��� 404

Summary �� 404

Chapter 19 ■ : Exploring Maps and Location-Based Services ������������������������������ 405

Understanding the Mapping Package �� 406

Obtaining a Maps API Key from Google �� 406

Adding the Maps API Key to Your Application ��� 409

Understanding MapFragment ��� 410

Adding Markers to Maps �� 415

Understanding the Location Package ��� 418

Geocoding with Android �� 418

Understanding Location Services ��� 423

Using Proximity Alerts and Geofencing ��� 443

References ��� 448

Summary �� 449

Chapter 20 ■ : Understanding the Media Frameworks�� 451

Using the Media APIs �� 451

Whither SD Cards? �� 452

Playing Media ��� 452

Playing Audio Content ��� 453

Playing Video Content ��� 465

Bonus Online Chapter on Recording and Advanced Media �� 468

References�� 469

Summary �� 469

Chapter 21 ■ : Home Screen Widgets �� 471

User Experience with Home Screen Widgets ��� 472

Understanding Widget Configuration Activity ��� 473

Understanding the Life Cycle of a Widget �� 474

Understanding Widget Definition Phase ��� 475

xixContents

Implementing A Sample Widget Application ��� 481

Defining the Widget Provider ��� 482

Implementing Widget Configuration Activity ��� 484

Implementing a Widget Provider �� 488

Collection-Based Widgets �� 489

Resources��� 490

Summary �� 490

Chapter 22 ■ : Touch Screens �� 491

Understanding MotionEvents ��� 491

The MotionEvent Object �� 491

Recycling MotionEvents�� 503

Using VelocityTracker�� 503

Multitouch �� 505

The Basics of Multitouch �� 506

Gestures ��� 513

The Pinch Gesture��� 513

GestureDetector and OnGestureListeners �� 513

References ��� 516

Summary �� 516

Chapter 23 ■ : Implementing Drag and Drop ��� 519

Exploring Drag and Drop �� 519

Basics of Drag and Drop in 3�0+ �� 525

Drag-and-Drop Example Application �� 526

List of Files ��� 526

Laying Out the Example Drag-and-Drop Application �� 527

Responding to onDrag in the Dropzone �� 529

Setting Up the Drag Source Views �� 532

Testing the Example Drag-and-Drop Application ��� 536

References ��� 537

Summary �� 537

xx Contents

Chapter 24 ■ : Using Sensors �� 539

What Is a Sensor? �� 539

Detecting Sensors �� 540

What Can We Know About a Sensor? ��� 540

Getting Sensor Events �� 543

Issues with Getting Sensor Data ��� 545

Interpreting Sensor Data �� 546

Light Sensors �� 546

Proximity Sensors ��� 547

Temperature Sensors ��� 547

Pressure Sensors �� 547

Gyroscope Sensors ��� 548

Accelerometers �� 548

Magnetic Field Sensors �� 554

Using Accelerometers and Magnetic Field Sensors Together ��� 555

Magnetic Declination and GeomagneticField ��� 555

Gravity Sensors ��� 556

Linear Acceleration Sensors ��� 556

Rotation Vector Sensors ��� 556

References ��� 556

Summary �� 557

Chapter 25 ■ : Exploring Android Persistence and Content Providers ������������������ 559
Saving State Using Shared Preferences ��� 559

Saving State Using Internal Files �� 561

Saving State Using External Files ��� 562

Saving State Using SQLite �� 562

Saving State Using O/R Mapping Libraries ��� 562

Saving State Using Content Providers �� 563

Saving State Using Network Storage �� 563

Storing Data Directly Using SQLite ��� 564

Summarizing Key SQLite Packages and Classes �� 564

Creating an SQLite Database �� 565

xxiContents

Defining a Database Through DDLs �� 569

Migrating a Database ��� 569

Inserting Rows �� 570

Updating Rows�� 574

Deleting Rows ��� 575

Reading Rows ��� 575

Applying Transactions ��� 577

Summarizing SQLite �� 577

Doing Transactions Through Dynamic Proxies �� 577

Exploring Databases on the Emulator and Available Devices ��� 586

Exploring Content Providers ��� 589

Exploring Android’s Built-in Providers �� 589

Understanding the Structure of Content Provider URIs �� 590

Implementing Content Providers �� 591

Planning a Database ��� 591

Extending ContentProvider ��� 593

Using UriMatcher to Figure Out the URIs �� 598

Using Projection Maps �� 599

Fulfilling MIME-Type Contracts ��� 599

Implementing the Query Method �� 599

Implementing the Insert Method �� 600

Implementing the Update Method �� 600

Implementing the Delete Method ��� 600

Registering the Provider ��� 600

Exercising the Book Provider ��� 601

Adding a Book �� 601

Removing a Book �� 601

Displaying the List of Books ��� 602

Resources��� 604

Summary �� 605

xxii Contents

Chapter 26 ■ : Understanding Loaders �� 607

Understanding the Architecture of Loaders �� 607

Listing Basic Loader API Classes �� 608

Demonstrating the Loaders �� 609

Step 1: Preparing the Activity to Load Data �� 614

Step 2: Initializing the Loader ��� 614

Delving into the Structure of ListActivity �� 615

Working with Asynchronous Loading of Data ��� 615

Step 3: Implementing onCreateLoader() �� 615

Step 4: Implementing onLoadFinished() �� 616

Step 5: Implementing onLoaderReset() �� 617

Using Search with Loaders �� 617

Understanding the Order of LoaderManager Callbacks ��� 617

Writing Custom Loaders ��� 618

Resources��� 618

Summary �� 619

Chapter 27 ■ : Exploring the Contacts API �� 621

Understanding Accounts �� 622

Enumerating Accounts �� 622

Understanding Contacts ��� 623

Examining the Contacts SQLite Database��� 623

Understanding Raw Contacts ��� 623

Understanding the Contacts Data Table �� 625

Understanding Aggregated Contacts �� 626

Exploring view_contacts �� 628

Exploring contact_entities_view �� 629

Working with the Contacts API ��� 630

Exploring Accounts ��� 630

Exploring Aggregated Contacts �� 631

Exploring Raw Contacts �� 636

xxiiiContents

Exploring Raw Contact Data ��� 638

Adding a Contact with Its Details �� 640

Controlling Aggregation of Contacts ��� 642

Understanding Personal Profile �� 643

Reading Profile Raw Contacts �� 644

Reading Profile Contact Data �� 645

Adding Data to the Personal Profile �� 645

Role of Sync Adapters �� 647

Using Batch Operations to Optimize ContentProvider Updates ������������������������������������ 647

Idea of Batching Content Provider Updates �� 648

Batching Commits by Yielding �� 649

Using Back References ��� 650

Optimistic Locking �� 650

Reusing the Contact Provider UI ��� 651

Using Group Features ��� 651

Using Photo Features ��� 651

References ��� 652

Summary �� 652

Chapter 28 ■ : Exploring Security and Permissions �� 653

Understanding the Android Security Model �� 653

Overview of Security Concepts ��� 653

Signing Applications for Deployment �� 654

Performing Runtime Security Checks �� 661

Understanding Security at the Process Boundary �� 661

Declaring and Using Permissions ��� 662

Understanding and Using URI Permissions �� 664

References ��� 665

Summary �� 666

xxiv Contents

Chapter 29 ■ : Using Google Cloud Messaging with Android �������������������������������� 667

What Is Google Cloud Messaging? ��� 667

Understanding the Key Building Blocks of GCM ��� 667

Preparing to Use GCM in Your Application �� 668

Authenticating GCM Communication �� 671

Building an Android GCM-Enabled Application ��� 671

Coding the Client Component for GCM ��� 671

Coding the Server Component for GCM �� 676

Moving Beyond the GCM Introduction �� 676

Chapter 30 ■ : Deploying Your Application: Google Play Store and Beyond ���������� 677

Becoming a Publisher �� 677

Following the Rules �� 678

Developer Console �� 681

Preparing Your Application for Sale �� 683

Testing for Different Devices �� 683

Supporting Different Screen Sizes�� 684

Preparing AndroidManifest�xml for Uploading �� 684

Localizing Your Application ��� 685

Preparing Your Application Icon �� 686

Directing Users Back to the Play Store ��� 687

The Android Licensing Service ��� 687

Using ProGuard for Optimization, Fighting Piracy ��� 688

Preparing Your �apk File for Uploading ��� 689

Uploading Your Application ��� 689

Graphics�� 690

Listing Details ��� 690

Publishing Options �� 691

Contact Information �� 692

Consent ��� 693

xxvContents

User Experience on Google Play Store ��� 693

Beyond Google Play Store �� 694

References ��� 695

Summary �� 696

Index ��� 697

xxvii

About the Authors

Dave MacLean is a software engineer and architect living and working in Orlando, Florida.
Since 1980, he has programmed in many languages, developing solutions ranging from
robot automation systems to data warehousing, from web self-service applications to
electronic data interchange transaction processors. Dave has worked for Sun Microsystems,
IBM, Trimble Navigation, General Motors, Blue Cross Blue Shield of Florida, and several
small companies. He has written several books on Android and a few magazine articles.
He graduated from the University of Waterloo in Canada with a Systems Design
Engineering degree. Visit his blog at http://davemac327.blogspot.com or contact him at
davemac327@gmail.com.

Satya Komatineni has been programming for more than 20 years in the IT and Web space.
He has had the opportunity to work with Assembly, C, C++, Rexx, Java, C#, Lisp, HTML,
JavaScript, CSS, SVG, relational databases, object databases, and related technologies.
He has published more than 30 articles touching many of these areas, both in print and
online. He has been a frequent speaker at O’Reilly Open Source Conference, speaking on
innovations around Java and Web. Satya has done a considerable amount of original work
in creating Aspire, a comprehensive open-source Java-based web framework, and has
explored personal web productivity and collaboration tools through his open-source work
for KnowledgeFolders.com. Satya holds a master’s degree in electrical engineering from
Indian Institute of Technology and a bachelor’s degree in electrical engineering from Andhra
University, India. You can find his website at SatyaKomatineni.com.

http://davemac327.blogspot.com
http://davemac327@gmail.com
http://KnowledgeFolders.com
http://SatyaKomatineni.com

xxviii About the Authors

Grant Allen has worked in the IT field for over 20 years, as a CTO, enterprise architect,
and database administrator. Grant’s roles have covered private enterprise, academia, and
the government sector around the world, specializing in global-scale systems design,
development, and performance. He is a frequent speaker at industry and academic
conferences, on topics ranging from data mining to compliance, and technologies such
as databases (DB2, Oracle, SQL Server, MySQL), content management, collaboration,
disruptive innovation, and mobile ecosystems like Android. His first Android application was
a task list to remind him to finish all his other unfinished Android projects. Grant works for
Google, and in his spare time is completing a PhD on building innovative high-technology
environments. Grant is the author of Beginning Android and lead author of Oracle SQL
Recipes and The Definitive Guide to SQLite.

xxix

About the Technical
Reviewer

Shane Kirk earned a B.S. in Computer Science from the University of Kentucky in 2000. He’s
currently a Senior Software Engineer for IDEXX Laboratories in Westbrook, Maine, where he
spends his days working on communication solutions for embedded systems. Shane’s foray
into mobile development began in 2010, shortly after purchasing his first smartphone—a
Droid X running Eclair (Android 2.1). He’s been hooked on Android ever since.

xxxi

Acknowledgments

Writing this book took effort not only on the part of the authors, but also from some of the
very talented staff at Apress, as well as the technical reviewer. Therefore, we would like to
thank Steve Anglin, Matthew Moodie, Douglas Pundick, Mark Powers, Brendan Frost, Ana
Panchoo, and Jill Balzano.

We would also like to extend our deepest appreciation to the technical reviewer—Shane
Kirk—for his expert appraisals and attention to detail. This book is so much better because
of his efforts.

Writing a technical book about a subject that frequently changes is a daunting task. When
the documentation didn’t say, and the source code didn’t reveal, we would search the
Internet for answers. And we’d eventually find what we were looking for, buried here and
there. To all the other Android developers out there who are working along with us to provide
answers, we thank you.

Finally, the authors are deeply grateful to their families for letting us toil away on nights, early
mornings, and weekends. It takes great dedication to write a book, and perhaps even more
to put up with authors while they write.

xxxiii

Foreword

Way back in 2008, I was given my first Android device. It was the Dream, also known as
the G1, and I immediately started tinkering with it. After all, here was a smartphone with
the promise of thousands of applications, and who knew how many hundreds of possible
handsets. That shows how much I knew at the time! I really should have been thinking in
the order of millions of applications, and tens of thousands of devices, because that is where
Android is heading today.

Whether it is traditional phones, tablets, cars, in-flight entertainment systems, robots, or any
other of the myriad Android devices out there, what makes them great are the applications
written by people like you, dear reader! Every day, Android developers push the possibilities
of what applications—and Android—can do, and it is that energy that draws me to the
community, and to helping in my own small way with books like Pro Android.

One of the best observations about technology and innovation I have heard is that
innovation happens when you create something and share it with another person, which
they then adapt and use in a totally unexpected way. So let me commend this book to you
in that spirit. Enjoy everything Pro Android has to offer you, and take it to create something
totally unexpected! We’ll be first in line to try it out, whatever it is.

—Grant Allen
New York
May 2015

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Hello Android
	Prerequisites for Android Development
	Setting Up Your Eclipse Environment
	Downloading JDK
	Downloading Eclipse
	Downloading the Android SDK
	Updating Your PATH Environment Variable

	The Tools Window
	Installing ADT

	Setting Up Your Android Studio Environment
	Java requirements for Android Studio
	Downloading and Installing Android Studio

	Learning Android’s Fundamental Components
	View
	Activity
	Fragment
	Intent
	Content Provider
	Service
	AndroidManifest.xml
	AVDs

	Hello World!
	AVDs
	Running on a Real Device
	Exploring the Structure of an Android Application
	Examining the Application Life Cycle
	Simple Debugging
	Launching the Emulator

	References
	Summary

	Chapter 2: Introduction to Android Application Architecture
	Exploring a Simple Android Application
	Defining UI through Layout Files
	Specifying Comments in Layout Files
	Adding Views and View Groups in Layout Files
	Specifying Control Properties in Layout Files
	Indicating ViewGroup Properties
	Controlling Width and Height of a Control
	Introducing Resources and Backgrounds
	Working with Text Controls in the Layout File
	Working with Autogenerated IDs for Controls

	Implementing Programming Logic
	Loading the Layout File into an Activity
	Gathering Controls
	Setting Up Buttons
	Responding to Button Clicks: Tying It All Together

	Updating the AndroidManifest.XML
	Placing the Files in the Android Project
	Testing the Calculator App on a Real Device
	Android Activity Life Cycle
	void onStart( )
	void onRestoreInstanceState (Bundle savedInstanceState)
	void onResume( )
	void onPause( )
	void onStop( )
	void onSaveInstanceState (Bundle saveStateBundle)
	void onRestart( )
	Object onRetainNonConfigurationInstance( )
	void onDestroy( )
	General Notes on Activity Callbacks

	More on Resources
	Directory Structure of Resources
	Reading Resources from Java Code
	Runtime Behavior of Drawable Resources
	Using Arbitrary XML Files as Resources
	Working with Raw Resource Files
	Reading Files from the Assets Directory
	Reading Resources and Assets Without an Activity Reference
	Understanding Resource Directories, Language, and Locale

	More on Intents
	Starting Activities for Results
	Exercising the GET_CONTENT Action
	Relating Intents and Activities
	Understanding Explicit and Implicit Intents
	Saving State in Android

	Roadmap for Learning Android and the Rest of the Book
	Track 1: UI Essentials for Your Android Applications
	Track 2: Saving State
	Track 3: Preparing/Taking Your Application to the Market
	Track 4: Making Your Application Robust
	Track 5: Bringing Finesse to Your Apps
	Track 6: Integrating with Other Devices and the Cloud
	Final Track: Getting a Helping Hand from Expert Android

	As We Leave You Now with the Rest of the Book
	References
	Summary

	Chapter 3: Building Basic User Interfaces and Using Controls
	UI Development in Android
	Building a UI Completely in Code
	Building a UI Completely in XML
	Building a UI in XML with Code
	FILL_PARENT vs. MATCH_PARENT

	Understanding Android’s Common Controls
	Text Controls
	TextView
	EditText
	AutoCompleteTextView
	MultiAutoCompleteTextView

	Button Controls
	The Button Control
	The ImageButton Control
	The ToggleButton Control
	The CheckBox Control
	The Switch Control
	The RadioButton Control

	T he ImageView Control
	Date and Time Controls
	The DatePicker and TimePicker Controls
	The TextClock and AnalogClock Controls

	The MapView Control

	References
	Summary

	Chapter 4: Adapters and List Controls
	Understanding Adapters
	Getting to Know SimpleCursorAdapter
	Getting to Know ArrayAdapter

	Using Adapters with AdapterViews
	The Basic List Control: ListView
	Displaying Values in a ListView
	Clickable Items in a ListView
	Adding Other Controls with a ListView
	Another Way to Read Selections from a ListView

	The GridView Control
	The Spinner Control
	The Gallery Control

	Summary

	Chapter 5: Building More Advanced UI Layouts
	Creating Custom Adapters
	Other Controls in Android

	Styles and Themes
	Using Styles
	Using Themes

	Understanding Layout Managers
	The LinearLayout Layout Manager
	Understanding Weight and Gravity
	android:gravity vs. android:layout_gravity

	The TableLayout Layout Manager
	The RelativeLayout Layout Manager
	The FrameLayout Layout Manager
	The GridLayout Layout Manager
	Customizing the Layout for Various Device Configurations

	Summary

	Chapter 6: Working with Menus and Action Bars
	Working with Menus Through XML Files
	Creating XML Menu Resource Files
	Populating Activity Menu from Menu XML Files
	Responding to XML-Based Menu Items

	Working with Menus in Java Code
	Working with Menu Groups
	Responding to Menu Items Through Listeners
	Using an Intent to Respond to Menu Items

	Understanding Expanded Menus
	Working with Icon Menus
	Working with Submenus
	Working with Context Menus
	Registering a View for a Context Menu
	Populating a Context Menu
	Responding to Context Menu Items

	Incorporating Dynamic Menus
	Working with Pop-up Menus

	Exploring Action Bars
	Implementing a Standard Action Bar
	Implementing a Tabbed Action Bar
	Implementing a List-Based Action Bar
	Exploring Action Bar and Search View
	Defining a Search View Widget as a Menu Item
	Creating a Search Results Activity
	Specifying a Searchable XML File
	Defining the Search Results Activity in the Manifest File
	Identifying the Search Target for the Search View Widget

	Resources
	Summary

	Chapter 7: Styles and Themes
	Using Styles
	Using Themes
	References
	Summary

	Chapter 8: Fragments
	What Is a Fragment?
	When to Use Fragments
	The Structure of a Fragment
	A Fragment’s Life Cycle
	The onInflate( ) Callback
	The onAttach( ) Callback
	The onCreate( ) Callback
	The onCreateView( ) Callback
	The onViewCreated( ) Callback
	The onActivityCreated( ) Callback
	The onViewStateRestored( ) Callback
	The onStart( ) Callback
	The onResume( ) Callback
	The onPause( ) Callback
	The onSaveInstanceState( ) Callback
	The onStop( ) Callback
	The onDestroyView( ) Callback
	The onDestroy( ) Callback
	The onDetach( ) Callback
	Using setRetainInstance( )

	Sample Fragment App Showing the Life Cycle

	FragmentTransactions and the Fragment Back Stack
	Fragment Transaction Transitions and Animations

	The FragmentManager
	Caution When Referencing Fragments
	Saving Fragment State
	ListFragments and <fragment>
	Invoking a Separate Activity When Needed
	Persistence of Fragments

	Communications with Fragments
	Using startActivity( ) and setTargetFragment( )

	References
	Summary

	Chapter 9: Responding to Configuration Changes
	The Default Configuration Change Process
	The Destroy/Create Cycle of Activities
	The Destroy/Create Cycle of Fragments
	Using FragmentManager to Save Fragment State
	Using setRetainInstance on a Fragment

	Deprecated Configuration Change Methods
	Handling Configuration Changes Yourself
	References
	Summary

	Chapter 10: Working with Dialogs
	Using Dialogs in Android
	Understanding Dialog Fragments
	DialogFragment Basics
	Constructing a Dialog Fragment
	Overriding onCreateView
	Overriding onCreateDialog

	Displaying a Dialog Fragment
	Dismissing a Dialog Fragment
	Implications of a Dialog Dismiss

	DialogFragment Sample Application
	Dialog Sample: MainActivity
	Dialog Sample: OnDialogDoneListener
	Dialog Sample: PromptDialogFragment
	Dialog Sample: HelpDialogFragment
	Dialog Sample: AlertDialogFragment
	Dialog Sample: Embedded Dialogs
	Dialog Sample: Observations

	Working with Toast
	References
	Summary

	Chapter 11: Working with Preferences and Saving State
	Exploring the Preferences Framework
	Understanding CheckBoxPreference and SwitchPreference
	Accessing a Preference Value in Code
	Understanding ListPreference
	Understanding EditTextPreference
	Understanding MultiSelectListPreference
	Updating AndroidManifest.xml
	Using PreferenceCategory
	Creating Child Preferences with Dependency
	Preferences with Headers
	PreferenceScreens

	Dynamic Preference Summary Text
	Saving State with Preferences
	Using DialogPreference

	Reference
	Summary

	Chapter 12: Using the Compatibility Library for Older Devices
	It All Started with Tablets
	Adding the Library to Your Project
	Including the v7 Support Library
	Including the v8 Support Library
	Including the v13 Support Library
	Including the v17 Support Library
	Including Just the v4 Support Library

	Retrofitting an App with the Android Support Library
	References
	Summary

	Chapter 13: Exploring Packages, Processes, Threads, and Handlers
	Understanding Packages and Processes
	A Code Pattern for Sharing Data
	Understanding Library Projects
	Understanding Components and Threads
	Understanding Handlers
	Using Worker Threads
	References
	Summary

	Chapter 14: Building and Consuming Services
	Consuming HTTP Services
	Using the HttpClient for HTTP GET Requests
	Using the HttpClient for HTTP POST Requests (a Multipart Example)
	SOAP, JSON, and XML Parsers
	Dealing with Exceptions
	Addressing Multithreading Issues
	Fun with Timeouts
	Using the HttpURLConnection
	Using the AndroidHttpClient

	Using Android Services
	Understanding Services in Android
	Understanding Local Services
	Understanding AIDL Services
	Defining a Service Interface in AIDL
	Implementing an AIDL Interface
	Calling the Service from a Client Application
	Passing Complex Types to Services
	Messengers and Handlers

	References
	Summary

	Chapter 15: Advanced AsyncTask and Progress Dialogs
	Essentials of a Simple AsyncTask
	Implementing Your First AsyncTask
	Calling an AsyncTask
	Understanding the onPreExecute() Callback and Progress Dialog
	Understanding the doInBackground() Method
	Triggering onProgressUpdate() through publishProgress()
	Understanding the onPostExecute() Method
	Upgrading to a Deterministic Progress Dialog

	AsyncTask and Thread Pools
	Issues and Solutions for Correctly Showing the Progress of an AsyncTask
	Dealing with Activity Pointers and Device Rotation
	Dealing with Managed Dialogs
	Testing Scenarios for a Well-Behaved Progress Dialog

	Using Retained Objects and Fragment Dialogs
	Exploring Corresponding Key Code Snippets

	Using Retained Fragments and Fragment Dialogs
	Outlining the Retained Fragments Approach
	Exploring Corresponding Key Code Snippets

	Using Retained Fragments and ProgressBars
	Outlining the ProgressBar Approach
	Walking Through Corresponding Key Code Snippets
	Addressing Key Differences with the ProgressBar Solution

	References
	Summary

	Chapter 16: Broadcast Receivers and Long-Running Services
	Sending a Broadcast
	Coding a Simple Receiver
	Registering a Receiver in the Manifest File
	Accommodating Multiple Receivers
	Working with Out-of-Process Receivers
	Using Notifications from a Receiver
	Monitoring Notifications Through the Notification Manager
	Sending a Notification
	Starting an Activity in a Broadcast Receiver

	Exploring Long-Running Receivers and Services
	Understanding Long-Running Broadcast Receiver Protocol
	Understanding IntentService

	Extending IntentService for a Broadcast Receiver
	Exploring Long-Running Broadcast Service Abstraction
	Designing A Long-Running Receiver
	Abstracting a Wake Lock with LightedGreenRoom

	Implementing a Long-Running Service
	Understanding a Nonsticky Service
	Understanding a Sticky Service
	Understanding Redeliver Intents Option
	Coding a Long-Running Service

	Additional Topics in Broadcast Receivers
	References
	Summary

	Chapter 17: Exploring the Alarm Manager
	Setting Up a Simple Alarm
	Setting Off an Alarm Repeatedly
	Cancelling an Alarm

	Understanding Exactness of Alarms
	Understanding Persistence of Alarms
	References
	Summary

	Chapter 18: Exploring 2D Animation
	Exploring Frame-by-Frame Animation
	Exploring Layout Animation
	Understanding Interpolators

	Exploring View Animation
	Using Camera to Provide Depth Perception in 2D
	Exploring the AnimationListener Class
	Notes on Transformation Matrices

	Exploring Property Animations: The New Animation API
	Understanding Property Animation
	Planning a Test Bed for Property Animation
	Animating Views with Object Animators
	Achieving Sequential Animation with AnimatorSet
	Setting Animation Relationships with AnimatorSet.Builder
	Using XML to Load Animators
	Using PropertyValuesHolder
	Understanding View Properties Animation
	Understanding Type Evaluators
	Understanding Key Frames
	Understanding Layout Transitions

	Resources
	Summary

	Chapter 19: Exploring Maps and Location-Based Services
	Understanding the Mapping Package
	Obtaining a Maps API Key from Google
	Adding the Maps API Key to Your Application
	Understanding MapFragment
	Map Controls: MyLocation, Zoom, Pan
	Map Types
	Adding a Traffic Layer
	Map Tiles

	Adding Markers to Maps

	Understanding the Location Package
	Geocoding with Android
	Understanding Location Services
	How to Enable Location Services
	Location Providers
	Sending Location Updates to Your Application
	Testing Location Applications with the Emulator
	Sending Location Updates from the Emulator Console
	What Can You Do with a Location?
	Setting Up for Google Play Services Location Updates
	Location Updates with FusedLocationProviderApi
	Alternate Ways of Getting Location Updates

	Using Proximity Alerts and Geofencing
	The GeofencingApi API

	References
	Summary

	Chapter 20: Understanding the Media Frameworks
	Using the Media APIs
	Whither SD Cards?

	Playing Media
	Playing Audio Content
	Understanding the setDataSource Method
	Using SoundPool for Simultaneous Track Playing
	Playing Sounds with JetPlayer
	Playing Background Sounds with AsyncPlayer
	Low-Level Audio Playback Using AudioTrack
	More About MediaPlayer

	Playing Video Content

	Bonus Online Chapter on Recording and Advanced Media
	References

	Summary

	Chapter 21: Home Screen Widgets
	User Experience with Home Screen Widgets
	Understanding Widget Configuration Activity
	Understanding the Life Cycle of a Widget
	Understanding Widget Definition Phase
	Understanding resize Mode Attribute
	Understanding previewImage Attribute
	Understanding Widget Layout: initialLayout Attribute
	Understanding configure Attribute
	Understanding Widget Instance Creation Phase
	Understanding onUpdate Phase
	Understanding Widget View Mouse Click Event Callbacks
	Deleting a Widget Instance
	Uninstalling Widget Packages

	Implementing A Sample Widget Application
	Defining the Widget Provider
	Implementing Widget Configuration Activity
	Implementing a Widget Provider

	Collection-Based Widgets
	Resources
	Summary

	Chapter 22: Touch Screens
	Understanding MotionEvents
	The MotionEvent Object
	Receiving MotionEvent Objects
	Setting Up an Example Application
	Running the Example Application
	Understanding MotionEvent Contents
	Exercising the Bottom Half of the Example Application

	Recycling MotionEvents
	Using VelocityTracker

	Multitouch
	The Basics of Multitouch
	Understanding Multitouch Contents

	Gestures
	The Pinch Gesture
	GestureDetector and OnGestureListeners

	References
	Summary

	Chapter 23: Implementing Drag and Drop
	Exploring Drag and Drop
	Basics of Drag and Drop in 3.0+
	Drag-and-Drop Example Application
	List of Files
	Laying Out the Example Drag-and-Drop Application
	Responding to onDrag in the Dropzone
	Setting Up the Drag Source Views

	Testing the Example Drag-and-Drop Application
	References
	Summary

	Chapter 24: Using Sensors
	What Is a Sensor?
	Detecting Sensors
	What Can We Know About a Sensor?

	Getting Sensor Events
	Issues with Getting Sensor Data
	No Direct Access to Sensor Values
	Sensor Values Not Sent Fast Enough
	Sensors Turn Off with the Screen

	Interpreting Sensor Data
	Light Sensors
	Proximity Sensors
	Temperature Sensors
	Pressure Sensor s
	Gyroscope Sensors
	Accelerometers
	Accelerometers and Display Orientation
	Accelerometers and Gravity
	Using Accelerometers to Measure the Device’s Angle

	Magnetic Field Sensors
	Using Accelerometers and Magnetic Field Sensors Together
	Magnetic Declination and GeomagneticField
	Gravity Sensors
	Linear Acceleration Sensors
	Rotation Vector Sensors

	References
	Summary

	Chapter 25: Exploring Android Persistence and Content Providers
	Sec1
	Saving State Using Shared Preferences
	Saving State Using Internal Files
	Saving State Using External Files
	Saving State Using SQLite
	Saving State Using O/R Mapping Libraries
	Saving State Using Content Providers
	Saving State Using Network Storage

	Storing Data Directly Using SQLite
	Summarizing Key SQLite Packages and Classes
	Creating an SQLite Database
	Defining a Database Through DDLs
	Migrating a Database
	Inserting Rows
	Updating Rows
	Deleting Rows
	Reading Rows
	Applying Transactions
	Summarizing SQLite
	Doing Transactions Through Dynamic Proxies
	Exploring Databases on the Emulator and Available Devices

	Exploring Content Providers
	Exploring Android’s Built-in Providers
	Understanding the Structure of Content Provider URIs

	Implementing Content Providers
	Planning a Database
	Extending ContentProvider
	Using UriMatcher to Figure Out the URIs
	Using Projection Maps
	Fulfilling MIME-Type Contracts
	Implementing the Query Method
	Implementing the Insert Method
	Implementing the Update Method
	Implementing the Delete Method
	Registering the Provider

	Exercising the Book Provider
	Adding a Book
	Removing a Book
	Displaying the List of Books

	Resources
	Summary

	Chapter 26: Understanding Loaders
	Understanding the Architecture of Loaders
	Listing Basic Loader API Classes
	Demonstrating the Loaders
	Step 1: Preparing the Activity to Load Data
	Step 2: Initializing the Loader
	Delving into the Structure of ListActivity
	Working with Asynchronous Loading of Data

	Step 3: Implementing onCreateLoader( )
	Step 4: Implementing onLoadFinished( )
	Step 5: Implementing onLoaderReset( )
	Using Search with Loaders
	Understanding the Order of LoaderManager Callbacks
	Writing Custom Loaders
	Resources
	Summary

	Chapter 27: Exploring the Contacts API
	Understanding Accounts
	Enumerating Accounts

	Understanding Contacts
	Examining the Contacts SQLite Database
	Understanding Raw Contacts
	Understanding the Contacts Data Table
	Understanding Aggregated Contacts
	Exploring view_contacts
	Exploring contact_entities_view

	Working with the Contacts API
	Exploring Accounts
	Exploring Aggregated Contacts
	Getting the Aggregated Contacts Cursor
	Reading Aggregated Contact Details
	Exploring the Lookup URI-Based Cursor

	Exploring Raw Contacts
	Showing the Raw Contacts Cursor
	Seeing the Data Returned by a Raw Contacts Cursor
	Constraining Raw Contacts with a Corresponding Set of Aggregated Contacts

	Exploring Raw Contact Data
	Adding a Contact with Its Details

	Controlling Aggregation of Contacts
	Understanding Personal Profile
	Reading Profile Raw Contacts
	Reading Profile Contact Data
	Adding Data to the Personal Profile

	Role of Sync Adapters
	Using Batch Operations to Optimize ContentProvider Updates
	Idea of Batching Content Provider Updates
	Batching Commits by Yielding
	Using Back References
	Optimistic Locking

	Reusing the Contact Provider UI
	Using Group Features
	Using Photo Features
	References
	Summary

	Chapter 28: Exploring Security and Permissions
	Understanding the Android Security Model
	Overview of Security Concepts
	Signing Applications for Deployment
	Generating a Self-Signed Certificate Using the Keytool
	The Debug Keystore and the Development Certificate
	Using the Jarsigner Tool to Sign the .apk File
	Aligning Your Application with zipalign
	Using the Export Wizard
	Manually Installing Apps
	Installing Updates to an Application and Signing

	Performing Runtime Security Checks
	Understanding Security at the Process Boundary
	Declaring and Using Permissions
	Understanding and Using URI Permissions
	Passing URI Permissions in Intents
	Specifying URI Permissions in Content Providers

	References
	Summary

	Chapter 29: Using Google Cloud Messaging with Android
	What Is Google Cloud Messaging?
	Understanding the Key Building Blocks of GCM
	Preparing to Use GCM in Your Application
	Creating or Confirming Your GCM Project in Google Developer Console
	Activating the GCM APIs for Your Project
	Generating Your API Key

	Authenticating GCM Communication

	Building an Android GCM-Enabled Application
	Coding the Client Component for GCM
	Configure Project Dependencies for Your Project
	Setting Manifest Properties for GCM
	Coding Your Main Activity to Register for GCM

	Coding the Server Component for GCM

	Moving Beyond the GCM Introduction

	Chapter 30: Deploying Your Application: Google Play Store and Beyond
	Becoming a Publisher
	Following the Rules
	Developer Console

	Preparing Your Application for Sale
	Testing for Different Devices
	Supporting Different Screen Sizes
	Preparing AndroidManifest.xml for Uploading
	Localizing Your Application
	Preparing Your Application Icon
	Directing Users Back to the Play Store
	The Android Licensing Service
	U sing ProGuard for Optimization, Fighting Piracy
	Preparing Your .apk File for Uploading

	Uploading Your Application
	Graphics
	Listing Details
	Publishing Options
	Contact Information
	Consent

	User Experience on Google Play Store
	Beyond Google Play Store
	References
	Summary

	Index

