
Learn how to apply classic design patterns

to iOS app development using Swift

•

•

•

•

•

•

Pro
Design Patterns

in Swift
Adam Freeman

Pro

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author .. xxv

About the Technical Reviewer .. xxvii

Part I: Getting Ready ■ ... 1

Chapter 1: Understanding Design Patterns ■ ...3

Chapter 2: Getting Used to Xcode ■ ..9

Chapter 3: Creating the SportsStore App ■ ..25

Part II: The Creation Patterns ■ ... 53

Chapter 4: The Object Template Pattern ■ ..55

Chapter 5: The Prototype Pattern ■ ..77

Chapter 6: The Singleton Pattern ■ ...113

Chapter 7: The Object Pool Pattern ■ ..137

Chapter 8: Object Pool Variations ■ ..157

Chapter 9: The Factory Method Pattern ■ ...187

Chapter 10: Abstract Factory Pattern ■ ..207

Chapter 11: The Builder Pattern ■ ..233

www.allitebooks.com

http://www.allitebooks.org

vi Contents at a Glance

Part III: The Structural Patterns ■ .. 251

Chapter 12: The Adapter Pattern ■ ...253

Chapter 13: The Bridge Pattern ■ ...271

Chapter 14: The Decorator Pattern ■ ..293

Chapter 15: The Composite Pattern ■ ...311

Chapter 16: The Façade Pattern ■ ..325

Chapter 17: The Flyweight Pattern ■ ..339

Chapter 18: The Proxy Pattern ■ ...357

Part IV: The Behavioral Patterns ■ ... 381

Chapter 19: The Chain of Responsibility Pattern ■ ...383

Chapter 20: The Command Pattern ■ ..401

Chapter 21: The Mediator Pattern ■ ...423

Chapter 22: The Observer Pattern ■ ...447

Chapter 23: The Memento Pattern ■ ...473

Chapter 24: The Strategy Pattern ■ ..491

Chapter 25: The Visitor Pattern ■ ...503

Chapter 26: The Template Method Pattern ■ ..517

Part V: The MVC Pattern ■ ... 525

Chapter 27: The Model/View/Controller Pattern ■ ..527

Index ...553

www.allitebooks.com

http://www.allitebooks.org

1

Part I
Getting Ready

www.allitebooks.com

http://www.allitebooks.org

3

Chapter 1
Understanding Design Patterns

Design patterns are insurance policies for software development. Insurance policies work by trading
a little cost now to avoid the possibility of a lot of cost later. The premium you pay to insure a car
against theft, for example, costs a few percent of the value of the car, but when the car is stolen,
your overall costs are minimized. You still have to go through the inconvenience of having your car
stolen, but at least you don’t have to bear the financial loss as well.

In software development, design patterns are insurance against the time taken to solve problems.
The premium is the time it takes to add extra flexibility to your code now, and the payout is avoiding
a painful and protracted rewrite to change the way the application works later. Like real insurance
policies, you may not benefit from paying the premium because the problem you anticipate might
never happen, but software development rarely goes smoothly and problems often arise, so that
additional flexibility is usually a good investment.

This is a book for hands-on professional programmers. I focus on the practical applications of
design patterns and focus on code examples instead of abstract descriptions. I describe the most
important design patterns and demonstrate how they can be applied to iOS using Swift. Some of the
patterns I describe are already implemented in the Cocoa framework classes, and I show you how
use them to create more robust and adaptable applications.

By the time you have finished reading this book, you will understand the most important design
patterns in contemporary software development, the problems they are intended to solve, and how
to apply them to your Swift projects.

Putting Design Patterns into Context
Every experienced programmer has a set of informal strategies that shape their coding style. These
strategies are insurance policies against the recurrence of problems from earlier projects. If you have
spent a week dealing with a last-minute database schema change, for example, then you will take a
little extra time on future projects making sure that dependencies on the schema are not hard-coded
throughout the application, even though you don’t know for certain that the schema will change
this time around. You pay a little premium now to avoid the potential for a bigger cost in the future.

www.allitebooks.com

http://www.allitebooks.org

4 CHAPTER 1: Understanding Design Patterns

You may still have to make changes, but the process will be more pleasant, just like the process of
shopping for a replacement car is made more pleasant when the insurance company pays for the
stolen one.

There are two problems with informal strategies. The first problem is inconsistency. Programmers
with similar experiences may have different views about what the nature of a problem is and will
disagree about the best solution.

The second problem is that informal strategies are driven by personal experiences, which can be
associated with strong emotions. Describing the difficulty of fixing a problem rarely conveys the
pain and misery you endured, and that makes it hard to convince others of the need to invest in
preventative measures. It also makes it difficult to be objective about the importance of the problem.
Bad experiences linger, and you may find it hard to accept that there is little support for making the
changes that would avoid problems you have encountered on previous projects.

Introducing Design Patterns
A design pattern identifies a common software development problem and provides a strategy
for dealing with it, rather like the informal approach that I described earlier but that is expressed
objectively, consistently, and free from emotional baggage.

The strategies that design patterns describe are proven to work, which means you can compare
your own approach to them. And, since they cover the most common problems, you will find that
there are design patterns for problems that you have not had to personally endure.

Most of the other design patterns in this book originate from a classic book called Design Patterns:

Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides (Addison-Wesley, 1995). The authors of this book are referred to as the Gang

of Four (GoF) , and the patterns they describe are some of the most important and fundamental in
modern software development.

The GoF book is worth reading but is somewhat academic in nature. Design patterns are expressed
abstractly without reference to a particular programming language or platform. This abstraction
makes them hard to use; it can be difficult to figure out whether a pattern describes a problem that
you are concerned about and difficult to be sure that you have correctly implemented the solution.

My goal in this book is to put design patterns in context and give you all the information you need to
easily identify and apply the patterns that you need, along with a Swift implementation that you can
apply directly to your project.

Understanding the Structure of a Design Pattern
Most design patterns apply to small groups of objects in an application and solve a problem that
arises when one object—known as the calling component—needs to perform an operation on one or
more other objects in the application.

For each of the design patterns in this book, I describe the problem the pattern solves, explain how
the pattern works, and show you how to implement the pattern using Swift. I also describe common
variations on the pattern and describe the pitfalls most closely associated with the pattern.

www.allitebooks.com

http://www.allitebooks.org

5CHAPTER 1: Understanding Design Patterns

WHERE IS THE UML?

The Unified Modeling Language (UML) is often used to describe patterns, but I don’t use it in this book. I am not a fan of

UML for several reasons. First, most developers don’t completely understand UML and take in little information from a

UML diagram. There are exceptions, of course, and these tend to be people who work in large corporations where there is

a detailed analysis and design phase before development commences. For the rest of the world, UML is a poorly defined

and misinterpreted mess of boxes and lines.

I find that UML is good for expressing some kinds of relationship but fails dismally at representing others. To a great

extent, understanding patterns means understanding where logic that represents knowledge of other components exists,

which is hard to convey using UML.

Finally, and rather less objectively, UML is symptomatic of many aspects of software development that I don’t like. All too

often, UML is used as a weapon to enforce static and inflexible designs and inhibits adapting a development process to

meet evolving customer needs because the UML becomes an unchanging reference point.

For these reasons, as subjective as they are, I don’t use UML in this book. Instead, I’ll use free-form diagrams to illustrate

the points that I want to emphasize.

Quantifying the Value of Design Patterns
It is easy to accept that design patterns are a good thing. Everyone understands the appeal of
proven solutions used on countless projects to solve difficult problems. It is much harder to convince
other programmers on the team that a specific pattern should be adopted in a project.

You can assess whether an insurance policy represents value for money by asking yourself some
questions:

Does the policy address something bad that is likely to happen to me?	
How often does the bad thing occur?	
Is the cost of the policy a small fraction of the cost of dealing with the bad 	
thing?

These simple questions make it easy to understand that there is no point in buying car insurance if
you don’t have a car or if there are no car thieves in your town. They also highlight the poor value
in paying $10,000 per year to insure an $11,000 car unless you anticipate multiple thefts (in which
case, you might also consider moving to a different area).

The point is clear even though this is a simplistic view of insurance: don’t buy a policy unless it
offers some benefit. The same is true for design patterns: don’t adopt a pattern unless it offers value
that you can quantify and articulate to others. The questions needed to assess the value for design
patterns are similar:

Does the pattern identify a problem that I am likely to encounter?	
How often does this problem occur?	
Do I care enough about avoiding the risk of having to fix the problem in the 	
future to undertake the work of implementing the design pattern today?

www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1: Understanding Design Patterns

It can be hard to answer these questions. There are no actuarial tables for software development,
and it can be hard to estimate the amount of future effort that will be required to fix a problem
(especially one that may not arise).

Instead, it can be easier to focus on the immediate benefits that a design pattern can offer. For
example, those patterns that increase the modularity of an application generally do so to minimize
the effect of a future change, but a modular application has fewer tightly coupled components,
which means that it is easy to isolate units of code. Being able to isolate units of code is essential
for effective unit testing, and so adopting a change-insurance pattern has an immediate benefit of
improving the testability of code.

Equally, design patterns that increase the amount of abstraction in an application allow new features
to be added with less effort and less code duplication. Almost everyone can agree that quicker and
easier development is a good thing, even if they don’t agree with the need to avoid the problem that
a design pattern is intended to guard against.

There are no easy answers, however, and the final decision to adopt a design pattern will be driven
by the combined experience of the development team, the confidence in the completeness of the
specification, and the competence of individual developers.

Using a Design Pattern After the Problem Occurred
You will find it hard to drive the adoption of patterns if you are the sole voice promoting them in a
team that has no experience of them and little time to consider them. The chances are that you will
fail to convince others. Don’t be frustrated.

My advice is not to push too hard. If you force the team into following new practices, you will be held
accountable for every problem and delay they cause, which will be especially difficult if the problem
you are trying to guard against never happens. Advocates for design patterns are, sadly, often seen
predictors of unlikely doom.

Don’t lose hope, but put this book away and wait. If the problem you are concerned about doesn’t
occur—if, for example, the database schema doesn’t change—then take pleasure in that the project
dodged a bullet and move on to the next assignment.

Don’t worry if the problem does occur; you can still benefit from design patterns. Your project is now
in a situation that you had hoped to avoid, but you can use the patterns as a framework for digging
yourself out of the hole. Select the most appropriate design pattern and use it as a framework to
structure the clean code around which you drive the resolution of the problem. In this way, you can
leverage a bad situation to introduce the team to a proven solution to the problem. This isn’t as good
as avoiding the problem in first place, but at least you will be able to create a long-term solution and
lend some credibility to your enthusiasm for design patterns.

Understanding the Limitations of Design Patterns
There is a lot to like about design patterns, but they have their limitations. By their nature, design
patterns are solutions to problems that other people have encountered on other projects. Design
patterns are a starting point for avoiding or solving a problem and not a precisely tailored solution.
That doesn’t mean they are not useful, but they do require some work in order to adapt them to fit
into your project.

www.allitebooks.com

http://www.allitebooks.org

7CHAPTER 1: Understanding Design Patterns

Treat design patterns as recipes. Tinker, adapt, and adjust a pattern, and you will end up with
something that works for you. You might need to refine your implementation a few times, and your
use of a pattern is likely to get better with insight gained from several projects, but you’ll end up with
something that improves on your starting position and that helps minimize the impact of a common
problem.

Some programmers treat design patterns as immutable laws. They are pattern zealots, someone
who promotes the use of patterns as an inflexible “best practice” that should always be followed
and cannot be adapted. That’s rubbish. Applying patterns that you don’t need or resisting adapting a
pattern to fit into a project misses the point entirely.

There is no point trying to argue with a pattern zealot. They get their pleasure from being able to
reference ever more obscure sources, and there is no effective way to ground their views in reality.
My advice is to ignore them and focus on building good software by making it robust, scalable, and
flexible enough to cope with changes, all of which can be aided by the design patterns described in
this book.

About This Book
In this book, I describe how to use the most important design patterns using Swift and the Cocoa
frameworks. Swift has attracted many new developers to the Apple platform, so I have written this
book to provide all of the information you will need about Swift and the Cocoa classes I use. I also
show you how to create the example projects using Xcode, which can be a confusing tool if you are
new to the world of Swift development. You can download all of the examples from Apress.com if you
don’t want to type in the code yourself.

What Do You Need to Know?
You need to be an experienced developer to follow the concepts in book. No prior experience of
Swift is required, but you should understand the basic concepts of object-oriented programming and
have used a modern language such as Objective-C, C#, Java, or JavaScript.

What Software Do You Need?
You need to have a Mac running OS X 10.10 (Yosemite) and have downloaded and installed Xcode
6.1. To get Xcode, you will need to sign up as an Apple Developer, which you can do at https://
developer.apple.com. Don’t worry if you are new to Xcode; I’ll show you everything you need to
know to follow the examples in Chapter 2.

What Is the Structure of This Book?
This book is split into five parts, each of which covers a set of related topics. Part 1 contains this
chapter and an Xcode primer for the techniques you will need to follow for the example in this
book. I also build an example application called SportsStore that I return to throughout this book to
demonstrate how to apply design pattern in context.

www.allitebooks.com

https://Apress.com
https://developer.apple.com/
https://developer.apple.com/
http://www.allitebooks.org

8 CHAPTER 1: Understanding Design Patterns

Each of the other four parts of the book focuses on a specific type of pattern. Part 2 covers the
creational design patterns, which are concerned with how objects are created in an application.
Part 3 describes the structural design patterns, which define and manage the relationship between
objects in an application. Part 4 of this book focuses on the patterns that describe how objects
communicate with one another. In the final part of this book, I describe the Model/View/Controller
(MVC) pattern, which applies to the structure of the entire application and is commonly used for Mac
OS and iOS UI applications.

Where Can You Get the Example Code?
You can download all the examples for all the chapters in this book from www.apress.com. The
download is available without charge and includes everything you need to re-create the examples
without having to type them in. You don’t have to download the code, but it is the easiest way of
experimenting with the examples and cutting and pasting into your own projects.

If you do want to re-create the examples from scratch, then you will find that every chapter contains
detailed listings of all the files that I create and modify. I never refer you to an external file or hand-
wave about leaving the rest of the example as an exercise; every detail you need to re-create every
example is contained within this book.

Summary
In this chapter, I outlined the content and structure of this book and set out the experience and
software required. In the next chapter, I provide a brief primer to Xcode and describe the features
I rely on in this book.

http://www.apress.com/

9

Chapter 2
Getting Used to Xcode

In this chapter, I use Xcode to demonstrate the ways in which I present examples throughout
this book. Playgrounds, which are one of the most useful features of Xcode 6, allow for code
experiments to be created and evaluated without needing to create an application project. I use
playgrounds to help describe the problems that patterns are intended to solve and use them to
demonstrate simple implementations.

Many of the design patterns I describe in this book rely on restricting access to classes, methods,
and properties. Swift supports access protection keywords, but they operate on a per-file basis. This
is a problem for playgrounds because all the code is in a single file, and so access protections are
not enforced. Many of the design patterns I describe require support for concurrent access, which is
something that playgrounds do not handle at all well.

For these reasons, I also use OS X Command Line Tool projects, which are the simplest Xcode
projects that support multiple files. Command Line Tool projects do not present a windowed UI
to the user and are limited to reading from and writing to the console. The benefit of using such a
simple project type is that it allows me to focus on just the design pattern I am describing and the
code required to implement it, without the complexity of dealing with a user interface.

Few real-world projects are so simple, of course, and in Chapter 3, I create an iOS app called
SportsStore, which does present a graphical user interface and which I use in every chapter to
provide additional context for applying the patterns I describe.

Working with Xcode Playgrounds
Xcode playgrounds are a good way to prototype code and test ideas without needing to create
an iOS application project. Playgrounds are a new feature in Xcode 6, and many developers are
unfamiliar with them, especially those who have been attracted to iOS and Mac OS development by
Swift and have not used earlier Xcode releases to develop in Objective-C.

10 CHAPTER 2: Getting Used to Xcode

Creating a Playground
When you start Xcode, you will be presented with a splash screen that lets you select between
creating a new playground, creating a new project, or checking out an existing project from a source
code repository, as shown in Figure 2-1.

Figure 2-1. The Xcode 6 splash screen

Tip Select New ➤ Playground from the File menu if the splash window is not shown.

Click “Get started with a playground.” Xcode will prompt you for a location to name and save the
playground file. Change the name to MyFirstPlayground and ensure that iOS is selected for Platform,
as shown in Figure 2-2.

11CHAPTER 2: Getting Used to Xcode

Click the Next button and select a location where you will be easily able to find the playground in the
future, as shown in Figure 2-3.

Figure 2-2. Naming the playground and selecting the platform

Figure 2-3. Changing the name of the playground file and selecting a save location

Xcode will create a file called MyFirstPlayground.playground in the location you selected, the
contents of which are shown in Listing 2-1. If this is the first time you have used Xcode, you will be
asked to enable developer mode.

Listing 2-1. The Contents of the MyFirstPlayground.playground File

import UIKit

var str = "Hello, playground"

12 CHAPTER 2: Getting Used to Xcode

Tip I don’t show the comments added by Xcode in the listings in this book or add any of my own

comments. In real projects I incessantly comment code, but in this book I’ll be explaining the effect of the

statements I write in the accompanying text.

Figure 2-4. A simple playground

This is an interesting start but not especially useful. In the sections that follow, I’ll show you the
different playground features that I rely on in this book.

Displaying the Value History of a Variable
Modify the code in the playground to match Listing 2-2, and you will get a sense of the power of a
playground.

A playground provides insights into the code that is entered into the editor. There is a comment
and two statements in the playground. Comments are ignored, and the import statement makes
classes in the Cocoa UIKit framework available. It is the second statement that gives a hint of what
playgrounds can do.

...
var str = "Hello, playground"
...

This statement creates a variable called str and uses a literal string value to set its value. If you
look to the right of this statement in the playground, you will see that the value of the variable is
displayed, as illustrated by Figure 2-4.

13CHAPTER 2: Getting Used to Xcode

Listing 2-2. Defining a Loop in the MyFirstPlayground.playground File

import UIKit

var str = "Hello, playground"

var counter = 0;
for (var i = 0; i < 10; i++) {
 counter += i;
 println("Counter: \(counter)");
}

Figure 2-5. The button that shows value history

This symbol is labeled Value History, and clicking it opens a panel that shows how the value of
the counter variable changed as the code was executed and shows the console output generated
through the println function. Figure 2-6 illustrates the view.

Tip Be sure to click the button next to the statement that changes the value of the counter variable and

not the one that calls the println function.

Tip You don’t have to compile—or even save—the playground file to see the effect of changes. The code

statements are automatically evaluated after every edit.

I have defined a counter variable with an initial value of 0 and a for loop that increases the counter
value with each iteration and writes the current value to the console using the println function. The
right-hand panel updates, displaying (10 times) next to the statement that changes the counter
value. To the right of the (10 times) message is a small circular plus button, as shown in Figure 2-5.

14 CHAPTER 2: Getting Used to Xcode

Figure 2-6. Displaying the value history in a playground

The chart shows how the value of the counter variable changes for each iteration of the for loop.
You can display the value history for any variable defined in the playground, but numeric values are
the most usefully presented.

A NOTE ABOUT CODING STYLE

You will notice that I use semicolons to terminate statements throughout this book, even though Swift doesn’t require the

use of semicolons after statements unless you need to separate multiple statements on the same line.

Although it’s not a requirement of Swift, I have been writing code for decades with languages that do require semicolons,

and—try as I might—I can’t break the habit. There is something about an unterminated statement that just looks wrong

to me, and I hit the semicolon key automatically. I considered going through each chapter and removing the semicolons,

but that is a path that leads to broken examples, which I work hard to avoid in my books. And so, with a note of apology, I

decided to let my preferences manifest themselves and use semicolons in the listings. You don’t have to follow my style,

however: one of the nice features of Swift is its relaxed approach to code style, and you are entirely free to express your

own preferences and habits (including, if you want, the addition of unneeded semicolons).

15CHAPTER 2: Getting Used to Xcode

Using the Value Timeline
At the bottom of the Value History panel is a slider that you can use to see how the value of variables
changed during the execution of the code. The effect of this slider is easier to see when there are
multiple variables to look at, and in Listing 2-3 I have updated the playground with some additional
statements.

Listing 2-3. Adding Additional Statements to the MyFirstPlayground.playground File

import UIKit

var str = "Hello, playground"

var counter = 0;
var secondCounter = 0;

for (var i = 0; i < 10; i++) {
 counter += i;
 println("Counter: \(counter)");
 for j in 1...10 {
 secondCounter += j;
 }
}

Display the value histories for the counter and secondCounter variables by clicking the circular button
to the right of the statements in the for loops. You will see two separate charts, and you can see the
relationship between the values of the variables by dragging the playback head (the red vertical bar
at the bottom of the panel) left and right to move to different points in the execution of the code, as
shown in Figure 2-7.

16 CHAPTER 2: Getting Used to Xcode

Displaying UI Components in a Playground
Playgrounds can also be used to display UI components, which I rely on to demonstrate how Cocoa
implements some patterns. Listing 2-4 shows how I modified the playground to show a text field.

Figure 2-7. Reviewing the variable value timelines in a playground

17CHAPTER 2: Getting Used to Xcode

Listing 2-4. Adding a UI Component to the MyFirstPlayground.playground File

import UIKit

var str = "Hello, playground"

var counter = 0;
var secondCounter = 0;

for (var i = 0; i < 10; i++) {
 counter += i;
 println("Counter: \(counter)");
 for j in 1...10 {
 secondCounter += j;
 }
}

let textField = UITextField(frame: CGRectMake(0, 0, 200, 50));
textField.text = "Hello";
textField.borderStyle = UITextBorderStyle.Bezel;

textField;

There are two important differences when using UI components in a playground from a regular
Xcode project. The first is that you must use the initializer with the frame argument and generate a
frame to contain the component using the CGRectMake function, like this:

...
let textField = UITextField(frame: CGRectMake(0, 0, 200, 50));
...

The arguments to the GCRectMake functions are the bounds of the frame that will contain the
component, where the third and fourth values define the width and height. I have specified a frame
that is 200 pixels wide and 50 high, which is sufficient for a text field.

The second difference is the last statement in the playground, which simply contains the name of the
variable to which I have assigned the UI component.

...
textField;
...

This is required so that Xcode will provide the plus icon to the right of the statement; clicking the
icon displays the component in the assistant editor, as shown in Figure 2-8. The assistant editor
panels display the result of statements, so a statement that returns the configured UI component
object is required.

www.allitebooks.com

http://www.allitebooks.org

18 CHAPTER 2: Getting Used to Xcode

Working with OS X Command Line Tool Projects
OS X Command Line Tool projects are ideally suited to demonstrating design patterns in Swift. This
kind of project supports multiple files and concurrency, which makes it possible to demonstrate the
effect of access protections and the effect of working with multiple threads.

Creating a Command-Line Project
Click “Create a new Xcode project” on the Xcode splash screen or select New ➤ Project from the
Xcode File menu if the splash screen isn’t visible. Select the Command Line Tool template, which is
found in the OS X ➤ Application category, as shown in Figure 2-9.

Figure 2-8. Displaying a UI component in a playground

19CHAPTER 2: Getting Used to Xcode

Figure 2-9. Selecting the Command Line Tool template

Click the Next button, and Xcode will prompt you for details of the project you want to create. Set
the name to MyCommandLine and ensure that the Language option is set to Swift, as shown in
Figure 2-10. I have specified Apress as the organization for the project, but I don’t rely on these
values in this book, and you can set them to your own organization.

Figure 2-10. Specifying details for the project

20 CHAPTER 2: Getting Used to Xcode

Click the Next button, and Xcode will prompt you to specify a location for the project. Select a
convenient location and click the Create button. Xcode will create the project files and open the main
project window.

Understanding the Xcode Layout
When Xcode shows the project, you will see a layout that is similar to the one shown in Figure 2-11.
You may see a slightly different layout, but I’ll explain how to open each panel.

Figure 2-11. The Xcode layout for a Command Line Tool project

I have numbered the main panes that Xcode presents, and I describe them in Table 2-1 for readers
who are new to Xcode. The content of some panes changes based on the task being performed by
Xcode, so I have included details of how the content can be selected.

21CHAPTER 2: Getting Used to Xcode

Adding a New Swift File
The reason that I use Command Line Tool projects is so I can create multiple code files and enforce
access protection with keywords such as private. To add a new file to the project, select the Project
Navigator view in the navigator pane and right-click the MyCommandLine folder item, which currently
contains a file called main.swift, as shown in Figure 2-12.

Table 2-1. The Default Xcode Panes

Number Description

1 This is the navigator pane, which presents the contents of the project in different views that are

selected using the row of buttons at the top edge. I use the Project Navigator view, which is

displayed by clicking the first button in the row. The visibility of the navigator pane is controlled

through the View ➤ Navigators menu.

2 This is the main editor window, which adapts to the file being edited. Different editors are available,

includes one for project settings (which is what is shown when the project is first created), a code

editor for .swift files, and a drag-and-drop editor called UI Builder that deals with .storyboard

files. (I use .storyboard files in Chapter 3.) Select View ➤ Standard Editor ➤ Show Standard

Editor to open the code editor.

3 This is the inspector pane, which reveals information about components in the application and is

used when creating the application layout. I describe this pane further in Chapter 3.

4 This is the utility pane. The content of this pane is set using the four buttons at the top edge, and

the view shown in the figure is the Object Library, which contains the UI controls used to create an

application layout, which I use in Chapter 3. You can display the Object Library by selecting the

View ➤ Utilities ➤ Show Object Library menu.

5 This is the Debug pane, which is used to interact with the debugger and to display console

messages written using the Swift println function. This is where the output from Command Line

Tool applications appears. This pane is controlled through the View ➤ Debug Area menu.

22 CHAPTER 2: Getting Used to Xcode

Xcode will display the set of file templates available for new files. Select the Swift File template, as
shown in Figure 2-13.

Figure 2-12. Adding a new file to the example project

23CHAPTER 2: Getting Used to Xcode

Click the Next button and set the name of the new file to MyCode.swift, as shown in Figure 2-14.

Figure 2-13. Selecting the Swift file template

Figure 2-14. Setting the name of the code file

Click the Create button, and Xcode will create the file and open it for editing. Replace the default
content with the statements shown in Listing 2-5.

Listing 2-5. The Contents of the MyCode.swift File

class MyClass {

 func writeHello() {
 println("Hello!");
 }

 private func writePassword() {
 println("secret");
 }
}

24 CHAPTER 2: Getting Used to Xcode

I have defined a class called MyClass and added two methods. The writeHello method has no
access control keyword and can be called from anywhere in the same module or project. The
writePassword method is decorated with the private keyword, which means it can be accessed only
from types that are defined in the MyCode.swift file.

The main.swift file contains the statements that will be executed when the application is executed.
In most of the examples in this book, I will add statements to the main.swift file to represent the
calling component in a design pattern. Listing 2-6 shows the statements I added to the file for this
example.

Listing 2-6. The Contents of the main.swift File

let myObject = MyClass();
myObject.writeHello();

I create an object from the MyClass class and call the writeHello method. To compile and run the
application, click the play icon at the top of the Xcode window, as shown in Figure 2-15.

Figure 2-15. The Xcode button that compiles and runs the application

Tip If you don’t see the button shown in the figure, then select Show Toolbar from the Xcode View menu.

You can also control the compilation and execution of the project using the Product menu.

Xcode will compile the code and run the application, and the following output will appear in the
debug console window:

Hello!
Program ended with exit code: 0

The first line of the output comes from the call to the println function. The second line indicates
that the example program has terminated. I won’t usually show the second line, and some of the
example applications that I build won’t terminate on their own.

Summary
In this chapter, I explained how Xcode can be used to create playgrounds and Command Line Tool
projects, which are the main ways in which I introduce design patterns in this book. In the next
chapter, I walk through the process of creating an iOS application called SportsStore, to which I
apply every pattern in this book, in order to provide as many examples as possible and to put the
patterns into a more realistic setting.

25

Chapter 3
Creating the SportsStore App

In the previous chapter, I showed you how Xcode can be used to create playgrounds and
command-line tools, which are how I introduce each of the design patterns in the chapters that follow.

I like to provide as many code examples as I can in my books, so in this chapter I create an iOS app
called SportsStore. The app I create is entirely unstructured, which means I simply bolt the code
and the UI together as directly as possible without any thought to the long-term consequences.
This is, of course, the antithesis to design patterns, but it is a surprisingly common development
style. Throughout this book, I apply the design patterns to the unstructured application to provide
additional context for their use.

Creating an Unstructured iOS App Project
In this section, I create a simple iOS app that allows a user to buy products from a retailer called
SportsStore. I am going to implement only part of the shopping process in order to create an
easy-to-understand example that doesn’t require complex visual layouts and lets me focus on the
structure of the code.

This is fortunate because I am one of the worst interface designers in the world. You will get a sense
of my lack of aesthetic when you see the iOS layout I create—let’s just call it minimalistic chic and
move on. (In my own projects, I work with a professional designer, and I encourage you to do the
same if you are similarly style-challenged).

The style of development I use in this section is known as a single-class application, which has no
structure or design. This is a common development style, especially for programmers who have little
experience of object-oriented languages.

This is the “before” in my proposition for the value of design patterns, and I introduce the “after” as
I show you each pattern. I have, therefore, built this app so that I can emphasize the impact of the
design patterns I describe, but this style of development is pretty common, and you can see code
like this in just about any project, especially from developers who have recently made the transition
to object-oriented languages. I am confident that if you think about the programmers you know,
there will be at least person you can think of who writes similar code.

26 CHAPTER 3: Creating the SportsStore App

Tip I describe the process for creating the application step by step because many readers will be new to

the world of Xcode and Swift. If you are an experienced Xcode user, then you can skip to Chapter 4 and just

download the project from Apress.com.

Figure 3-1. The mock-up for the SportsStore example application

The application that I am going to create is a simple stock management tool for an imaginary sports
equipment retailer called SportsStore. I use SportsStore in one form or another in most of my books,
and it lets me highlight the way that common problems can be addressed using different languages,
platforms, and patterns. Figure 3-1 shows a mock-up of the initial interface that I will create for the
SportsStore application.

The user will be presented with a list of products displayed in a table. For each product, the name and
a description will be displayed along with the current number of items in stock. The user will be able to
edit the stock level directly using a text field or increment and decrement the value with a stepper.

THE VALUE OF EXAMPLE APPLICATIONS

I am not for a second going to pretend that the SportsStore application is useful in its own right—but that is not the point

of an example. The goal is to give me a framework that I can use to demonstrate different patterns in a broader context

than just a fragment of code in a playground or command-line tool.

The SportsStore example is just complex enough to me to demonstrate how to apply patterns without causing me to deal

with difficult issues such as data persistence, security, data validation, and all of the other matters that have to be taken

into account in a real project.

The problem with creating a more realistic application is that too much of the book is then given over to writing code that isn’t

directly related to the subject at hand. That is not the kind of book I want to write and, I hope, not the kind you want to read.

27CHAPTER 3: Creating the SportsStore App

Creating the Project
To create a new project, select New ➤ Project from the Xcode File menu. You will be presented with
the range of project types that Xcode supports. Select Single View Application from the
iOS ➤ Application section, as shown in Figure 3-2.

Figure 3-2. Selecting the Xcode project type

Click the Next button, and you will be asked to choose options for the new project. Set Product
Name to SportsStore and enter Apress and com.apress for Organization Name and Identifier,
respectively. Ensure that Swift is selected for Language, that iPad is selected for the Devices option,
and that the Use Core Data option unchecked, as shown in Figure 3-3.

Figure 3-3. Choosing options for the new Xcode project

www.allitebooks.com

http://www.allitebooks.org

28 CHAPTER 3: Creating the SportsStore App

Click the Next button, and you will be prompted for a save location for the project files. Select a
convenient location and click the Create button to generate the initial content for the project.

Understanding the Xcode Layout
Xcode will create the project, and you will be presented with the default view of the project, which
I have shown in Figure 3-4. The layout and the panes it contains are the same ones I described in
Chapter 2.

Figure 3-4. The Xcode project layout

Defining the Data
To keep the example application simple, I am going to define the product data statically. This wouldn’t
be useful in a real app because the changes the user makes are not persistent, but it is sufficient for
this book, in which I want to focus on the design patterns rather than setting up data services.

I am going to define all of the code in the ViewController.swift file, which Xcode created when the
project was set up. Locate the file in the navigation pane and click it. Xcode will switch to its code
editor. Listing 3-1 shows the contents of the ViewController.swift file and the changes I made to
define the data.

29CHAPTER 3: Creating the SportsStore App

Listing 3-1. Adding Data to the ViewController.swift File

import UIKit

class ViewController: UIViewController {

 var products = [
 ("Kayak", "A boat for one person", "Watersports", 275.0, 10),
 ("Lifejacket", "Protective and fashionable", "Watersports", 48.95, 14),
 ("Soccer Ball", "FIFA-approved size and weight", "Soccer", 19.5, 32),
 ("Corner Flags", "Give your playing field a professional touch",
 "Soccer", 34.95, 1),
 ("Stadium", "Flat-packed 35,000-seat stadium", "Soccer", 79500.0, 4),
 ("Thinking Cap", "Improve your brain efficiency by 75%", "Chess", 16.0, 8),
 ("Unsteady Chair", "Secretly give your opponent a disadvantage",
 "Chess", 29.95, 3),
 ("Human Chess Board", "A fun game for the family", "Chess", 75.0, 2),
 ("Bling-Bling King", "Gold-plated, diamond-studded King",
 "Chess", 1200.0, 4)];

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }
}

Tip The term view controller refers to parts of one of the most important patterns for Swift/Cocoa

development, called Model/View/Controller (MVC). This pattern is woven throughout iOS development, and I

describe it in depth in Part 5. For this chapter, I am going to ignore the MVC pattern and consolidate as much

of the code I require into a single class.

I have created a variable called products and assigned to it an array of tuples that represent
products. A tuple allows several values to be easily grouped. See the “Working with Tuples” sidebar
for a quick explanation of how tuples are defined and used.

Tip Swift assigns literal floating-point values such as 19.5 using the Double type even when it could

have used the smaller Float type. I could have enforced the use of Float values by specifying the type

explicitly—in other words, Float(19.5)—but I am going to accept the use of Double values in order to

keep the example simple.

30 CHAPTER 3: Creating the SportsStore App

WORKING WITH TUPLES

To demonstrate the use of tuples, I created a new playground called Tuples.playground. I have included the

playground in the free source code download that accompanies this book. It contains the following code:

import Foundation;

var myProduct = ("Kayak", "A boat for one person", "Watersports", 275.0, 10);

func writeProductDetails(product: (String, String, String, Double, Int)) {
 println("Name: \(product.0)");
 println("Description: \(product.1)");
 println("Category: \(product.2)");
 let formattedPrice = NSString(format: "$%.2lf", product.3);
 println("Price: \(formattedPrice)");
}

writeProductDetails(myProduct);

The code in this playground defines a tuple and a function that prints details of its values to the console. Notice that to

accept a tuple as a parameter in the function, I specify the types of the individual values as a comma-separated list,

similar to the way that a tuple is created, as follows:

...
func writeProductDetails(product: (String, String, String, Double, Int)) {
...

You have to be careful when using literal numeric values in tuples because Swift will select the type for the value

automatically. This is why I have specified the price of the product in the playground as 275.0. If I had omitted the

decimal fraction, then Swift would have created a (String, String, String, Int, Int) tuple, which would

not have been accepted as an argument to the writeProductDetails function.

Within the function, I access the values within the tuple by referring to their index, like this:

...
println("Description: \(product.1)");
...

The expression product.1 refers to the value at index 1 in the tuple passed as the argument to the

writeProductDetails function. Tuple indexes are zero-based, which means that this expression evaluates to

A boat for one person.

I used the NSString class to format the price of the product in the playground. Swift makes it easy to work with the

different Cocoa frameworks, including the Foundation framework that provides core features such as string formatting.

31CHAPTER 3: Creating the SportsStore App

To see the effect of the code in the playground, select Assistant Editor ➤ Show Assistant Editor from the View menu.

The console output will be as follows:

Name: Kayak
Description: A boat for one person
Category: Watersports
Price: $275.00

Tuples are a convenient way of defining data types, but they have their limitations, as I explain in Chapter 4.

Creating the Basic Layout
The next change that I am going to make to the example project is to define a basic layout,
consisting of a table that will display a row for each product and a label that will display the total
number of products in stock.

In this section, I use the Xcode Interface Builder (IB), which is a drag-and-drop interface layout tool.
It can take a while to get used to the way that IB works, so I will explain the process I followed step
by step. If you an experienced Xcode developer, then you can skip ahead.

The first step is to open the Main.storyboard file for editing by clicking it in the navigation pane.
This opens the IB window, which shows the views that the application will present to the user, as
shown in Figure 3-5.

Figure 3-5. Using the Interface Builder to edit a storyboard

32 CHAPTER 3: Creating the SportsStore App

The main part of the display shows the view that the application will display to the user. There is only
one view in this application because I selected the Single View Application template when I created
the project. The view is shown as an empty box because there are no user interface components
currently.

One the left is the hierarchy of controls, with View Controller Scene as the top-level item. There
isn’t much there at the moment, but it will be populated as I add the components I need for the
SportsStore application. The control hierarchy is a useful part of the Interface Builder editor because
it makes it easy to select components and create relationships between them, as you will see as I
build out the view.

Adding the Basic Components
To add components to the view, you drag them from the Object Library, which is in the bottom-right
corner of the Xcode window, onto the view and release them. You can then position the component
on the layout.

The first component I require is a Label, which I will use to display the number of products in stock.
You can locate the Label component in the Object Library by scrolling down the list or by entering
the component name in the search box at the bottom of the pane. Drag the Label to the view. It
doesn’t matter where it is positioned at the moment.

Once you have added the Label, you can configure it using the inspectors pane, which is in the
top-right corner of the Xcode window. At the top of the pane, there are buttons that allow different
inspectors to be selected, as shown in Figure 3-6.

Figure 3-6. The inspector pane selector buttons

Table 3-1. The Configuration Changes Required for the Label Control

Attribute Change

Color This attribute controls the color of the label text. Select white for this property.

Alignment This attribute controls the horizontal alignment of the text in the label. Click the button that

centers the text.

Background This attribute sets the background color for the label. Select black for this property.

Font This attribute sets the font used for the text displayed by the label and should be set to

System Bold 30.

Select the Attributes Inspector using the buttons at the top of the pane and make the changes
described in Table 3-1.

33CHAPTER 3: Creating the SportsStore App

When you have set the attributes, adjust the position of and size of the label so that it is aligned to
the bottom edge of the view and touches the left and right edges, as shown in Figure 3-7. You can
size and position the label by using the Size Inspector or by using the grab handles shown by the
label in the view. I positioned my label at the (0, 550) coordinate and made the label 600 by 50 pixels.

Figure 3-7. Adding the basic layout components

The next step is to add the table. Locate the Table View component in the Object Library, drag it
to the view, and release. Resize the table so that it occupies all of the space in the view that is not
occupied by the label. As you drag the top edge upward, you will see it snap to a guide that is just
below the battery icon. This is the top layout guide, and it allows the application to fit into the device
window without obscuring the status bar, as shown in Figure 3-7.

Caution Use the Table View component and not the Table View Controller.

34 CHAPTER 3: Creating the SportsStore App

Configuring Auto Layout
The next step is to specify how the components will be positioned on the device screen. The layout
looks fine in the storyboard editor, but iOS devices support a range of resolutions, and the application
may be displayed in portrait and landscape modes. Auto layout is the feature that allows the size
and position of a component to be specified relative to its container or other components, and in this
section, I will define the layout for the table.

Auto layout works by specifying constraints, which fix the position and size of components relative
to its container or other components. You can specify constraints using code statements, but it is
simpler to use the drag-and-drop support provided by UI Builder.

The most reliable way to set up constraints is to use the control hierarchy because it makes it easy
to be sure you are defining constraints for the right components. To create the first constraint, hold
down the Control key and drag from the Table View to the View item in the hierarchy. You will be
presented with a pop-up menu when you release the mouse button, as shown in Figure 3-8, which
shows the object hierarchy displayed immediately to the left of the view in the storyboard.

Figure 3-8. Applying a constraint using the component hierarchy

Hold the Shift key and select the following items:

Leading Space to Container Margin	
Trailing Space to Container Margin	
Top Space to Top Layout Guide	

Once you have selected all three menu items, click outside of the pop-up menu to dismiss it. A new
Constraints item will appear in the component hierarchy to contain the constraints, which have the
effect of ensuring that the top, left, and right edges of the table view are always in contact with the
edges of the container, regardless of the size of the layout.

Table 3-2 shows the remaining constraints that are required, all of which are created using the same
technique.

35CHAPTER 3: Creating the SportsStore App

Testing the Basic Layout
Before going any further, I want to check that the layout and its constraints are set up correctly. To
build and test the application, click the Play button in the Xcode toolbar, which runs across the top
of the Xcode window, as shown in Figure 3-9. (The button is really labeled “Build and then run the
current scheme,” but that is an unwieldy name.)

Table 3-2. The Constraints Required for the Basic Layout

Drag From Drag To Constraints

Label View Leading Space to Container Margin

Trailing Space to Container Margin

Bottom Space to Bottom Layout Guide

Table View Label Vertical Spacing

Label Label Height

Figure 3-9. The Xcode button that builds and starts the application

Tip For the last constraint in the table, Control-drag and release so that both ends of the line are within the

boundaries of the Label item in the control hierarchy.

Tip Select Show Toolbar from the Xcode View menu if you cannot see the button.

Xcode comes with an iOS simulator, and clicking the Play button will compile the code and send
it to the simulator. You can change the device that is simulated using the selector next to the Play
button, and as Figure 3-9 shows, I have selected the iPad 2. You can use any device, but the iPad 2
is convenient for generating compact screenshots, which is useful for page layouts.

Click the Play button, and Xcode will compile the project and start the simulator, as shown in
Figure 3-10.

36 CHAPTER 3: Creating the SportsStore App

Note I have shown the simulator in its landscape mode, which is displayed using the Rotate Left and Rotate

Right items on the simulator Hardware menu. I usually display landscape screenshots in books because they

better suit the layout of a book and minimize the amount of empty space on the page.

Figure 3-10. Running the example application in the iOS simulator

Implementing the Total Label
It is time to start implementing the code that will drive the layout, and in this section I am going to
wire up the label so that it displays the total number of products in stock. In the sections that follow,
I will walk through the process of creating a relationship between the layout and the code.

Creating the Reference
The storyboard file that I edited with the Interface Builder in the previous section is an XML file.
This file defines the layout and configuration of the user interface components, but an extra step is
required to access the instances of the components—such as the label—that are created at runtime
from the application code.

Tip You can see the XML content by right-clicking or Control-clicking the file in the navigator pane and

selecting Open As ➤ Source Code from the pop-up menu.

37CHAPTER 3: Creating the SportsStore App

Xcode has a feature called the Assistant Editor, which displays content that is logically related to
the file displayed in the main editor area. Select Assistant Editor ➤ Show Assistant Editor from
the View menu, and Xcode will add a new pane to its layout, which will display the contents of the
ViewController.swift file.

Figure 3-11. Creating an outlet for a label

Tip Xcode selects the file that the Assistant Editor displays automatically, but it won’t always display the file

you want. You can explicitly select a file to display in the Assistant Editor pane by Option-clicking a file in the

navigator pane.

Control-click the Label in the View Controller Scene hierarchy of components and drag it to the
Assistant Editor. Position the mouse pointer to be below the class definition and the product
variable and let go. A pop-up will appear that lets you configure an outlet, which is the association
between the instance of the label created for the app layout and the UIViewController class, as
shown in Figure 3-11.

Set the Name field to totalStockLabel and click the Connect button. Xcode will add a new variable
to the ViewController class, as shown in Listing 3-2. (You can’t add this code statement manually
because Xcode makes other changes to the project behind the scenes).

Listing 3-2. Adding an Outlet in the ViewController.swift File

import UIKit

class ViewController: UIViewController {

 @IBOutlet weak var totalStockLabel: UILabel!

 var products = [
 ("Kayak", "A boat for one person", "Watersports", 275.0, 10),
 ("Lifejacket", "Protective and fashionable", "Watersports", 48.95, 14),
 ("Soccer Ball", "FIFA-approved size and weight", "Soccer", 19.5, 32),

www.allitebooks.com

http://www.allitebooks.org

38 CHAPTER 3: Creating the SportsStore App

 ("Corner Flags", "Give your playing field a professional touch", "Soccer", 34.95, 1),
 ("Stadium", "Flat-packed 35,000-seat stadium", "Soccer", 79500.0, 4),
 ("Thinking Cap", "Improve your brain efficiency by 75%", "Chess", 16.0, 8),
 ("Unsteady Chair", "Secretly give your opponent a disadvantage", "Chess", 29.95, 3),
 ("Human Chess Board", "A fun game for the family", "Chess", 75.0, 2),
 ("Bling-Bling King", "Gold-plated, diamond-studded King", "Chess", 1200.0, 4)];

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }
}

The type of the variable is UILabel, which is the name of the class in the UIKit framework that
implements the label functionality. The @IBOutlet attribute identifies the new variable as an outlet.

Updating the Display
Listing 3-3 shows how I used the outlet to update the text displayed by the label in order to display
the number of items in stock.

Listing 3-3. Displaying the Total Stock in the ViewController.swift File

import UIKit

class ViewController: UIViewController {
 @IBOutlet weak var totalStockLabel: UILabel!
 var products = [
 ("Kayak", "A boat for one person", "Watersports", 275.0, 10),
 ("Lifejacket", "Protective and fashionable", "Watersports", 48.95, 14),
 ("Soccer Ball", "FIFA-approved size and weight", "Soccer", 19.5, 32),
 ("Corner Flags", "Give your playing field a professional touch", "Soccer", 34.95, 1),
 ("Stadium", "Flat-packed 35,000-seat stadium", "Soccer", 79500.0, 4),
 ("Thinking Cap", "Improve your brain efficiency by 75%", "Chess", 16.0, 8),
 ("Unsteady Chair", "Secretly give your opponent a disadvantage", "Chess", 29.95, 3),
 ("Human Chess Board", "A fun game for the family", "Chess", 75.0, 2),
 ("Bling-Bling King", "Gold-plated, diamond-studded King", "Chess", 1200.0, 4)];

 override func viewDidLoad() {
 super.viewDidLoad();
 displayStockTotal();
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

39CHAPTER 3: Creating the SportsStore App

 func displayStockTotal() {
 let stockTotal = products.reduce(0,
 {(total, product) -> Int in return total + product.4});
 totalStockLabel.text = "\(stockTotal) Products in Stock";
 }
}

I have defined a new method called displayStockTotal, which uses the reduce extension from the
Swift standard library. The reduce method invokes a function for each item in the array. I expressed
the function as a closure, which totals the value at index 4 for each data tuple.

Once I have generated the total, I set the text property of the label, which changes the string
displayed by the UILabel component in the application layout.

I call the displayStockTotal method from viewDidLoad, which is invoked when the application is
initialized and the view is loaded. To test the changes, click the Play button in the Xcode toolbar.
The effect is shown in Figure 3-12.

Figure 3-12. Displaying the total number of products

Implementing the Table Cells
In this section, I am going to implement support for the table in order to provide the user with
information about the stock level of each product and to change the stock level. I will create a
custom table cell that contains other controls and wire everything up into the ViewController class,
following the premise of creating a single-class application. (However, as you will see, I cannot get
away with just one class, and I will end up with a simple second class that contains some IBOutlet
properties).

40 CHAPTER 3: Creating the SportsStore App

Defining the Custom Table Cell and Layout
Click the Main.storyboard file in the navigator pane to open the Interface Builder editor. Ensure that
the hierarchy is expanded so that you can see the components in the layout. Locate the Table View
Cell component in the Object Library, drag it to the Table View component in the hierarchy, and
release the mouse.

A new Content View item will appear in the hierarchy, which corresponds to a Prototype Cells
object in the main IB view—this is the template that will be used to generate table cells.

Locate the Text Field item in the Object Library and drag it to the Content View item in the
hierarchy. The Text Field component presents an editable text field. Position and resize the text
field so that it occupies the right side of the table cell, as shown in Figure 3-13. The dotted blue lines
in the figure are layout guides that Xcode provides to help position components.

Figure 3-13. Positioning the first label in the custom table cell

Table 3-3. The Configuration Changes Required for the Text Field

Attribute Change

Font Set this attribute to System 20.0.

Alignment Set this attribute so that the text is aligned to the right edge of the component.

Tip You can drag the labels directly to the layout in the main part of the editor pane, but it is easy to add

components to the wrong part of the layout. I find using the hierarchy to be more reliable, especially for

complex layouts.

Ensure that the text field is selected, either in the main editor pane or in the component hierarchy,
and use the Attributes Inspector to set the values shown in Table 3-3.

41CHAPTER 3: Creating the SportsStore App

Now drag Label and Stepper items in the Object Library to create the layout shown in Figure 3-14,
dragging the components to the Content View item in the hierarchy.

Figure 3-14. Adding the remaining components to the custom table cell layout

Tip Don’t worry about getting the layout pixel-perfect—a rough approximation will do. I enabled the blue

lines in the figure to show the bounds of each component by selecting Canvas ➤ Show Bounds Rectangles

from the Editor menu.

You will have to select the Table View Cell item in the hierarchy and use the grab bars to increase
the height of the table cell to make everything fit.

To make it easier to differentiate between the two Label components, click the entry in the hierarchy
for the topmost one and change its name to Name Label. Click the other Label and change its name
to Description Label. Finally, click the entry for the Text Field and change its name to Text Field
(the default name includes details of the style of the field).

The final step is to configure the components. Table 3-4 lists the new names for the components and
the attributes that should be changed using the Attributes Inspector.

Table 3-4. The Attribute Changes Required for the Custom Table Cell Components

Component Attribute Value

Name Label Font System Bold 30

Description Label Font System 25

Text Field Font System 30

42 CHAPTER 3: Creating the SportsStore App

Setting the Table Cell Layout Constraints
Use the component hierarchy to set the layout constraints shown in Table 3-5. These ensure that
the contents of the table cell will be visible regardless of the device and orientation used to
display the app.

Table 3-5. The Constraints Required for the Custom Table Cell Components

Drag From Drag To Constraints

Text Field Content View Trailing Space to Container Margin

Top Space to Container Margin

Text Field Text Field Width

Stepper Content View Top Space to Container Margin

Stepper Text Field Horizontal Spacing

Name Label Content View Leading Space to Container Margin

Top Space to Container Margin

Name Label Stepper Horizontal Spacing

Name Label Name Label Height

Description Label Content View Leading Space to Container Margin

Trailing Space to Container Margin

Bottom Space to Container Margin

Creating the Table Cell Class and Outlets
To be able to display details of each product in a table cell, I need to be able to refer to the
components added to the layout in the previous section. I do this by creating variables that are
decorated with the IBOutlet attribute, just as I did for the UILabel component that displays the
total number of items in stock. There is a wrinkle, however: I need to define a class that will be
used to instantiate each cell in the table, which I can then use as a container for the outlets. I can’t
handle this in the ViewController class because custom data cell classes must be derived from
UITableViewCell and Swift doesn’t support multiple class inheritance. Listing 3-4 shows the addition
of a new class to the ViewController.swift file.

Listing 3-4. Adding a Table Cell Class to the ViewController.swift File

import UIKit

class ProductTableCell : UITableViewCell {

}

class ViewController: UIViewController {

 //...statements omitted for brevity...
}

43CHAPTER 3: Creating the SportsStore App

I have defined a new class called ProductTableCell, which will be instantiated for the cells in the table.
To apply this class, select the Table View Cell item in the component hierarchy and use the Identity
Inspector to change the value of the Class attribute to ProductTableCell and the value of the Module
attribute to SportsStore.

Next, switch to the Attributes Inspector and set the Identifier attribute to ProductCell.

Table 3-6. The Mapping of Components Names to Outlet Property Names in the ProductTableCell Class

Name Description

Name Label nameLabel

Description Label descriptionLabel

Stepper stockStepper

Text Field stockField

Tip Changing the Class attribute tells iOS to use the ProductTableCell class when it needs table cells.

Setting the Identifier will allow me to request ProductTableCell objects to be created automatically,

which I do in the next section.

Control-drag each of the four components added in the previous section—two labels, a text field, and a
stepper—in turn to the new ProductTableCell class in the code editor to create new outlet properties;
you can drag the items in the component hierarchy or the ones in the storyboard. Table 3-6 shows the
mapping between the names of the components and the names I used for the outlets.

Tip Restart Xcode if you see an error telling you that there is no information available for the

ProductTableCell class when you create an outlet.

When you have created all four outlets, the ProductTableCell class should match Listing 3-5.

Listing 3-5. Adding Outlet Properties to the ProductTableCell Class in the ViewController.swift File

...
class ProductTableCell : UITableViewCell {
 @IBOutlet weak var nameLabel: UILabel!
 @IBOutlet weak var descriptionLabel: UILabel!
 @IBOutlet weak var stockStepper: UIStepper!
 @IBOutlet weak var stockField: UITextField!
}
...

The order of the properties doesn’t matter as long as you have defined all four and they correspond
to the components shown in the table.

44 CHAPTER 3: Creating the SportsStore App

Implementing the Data Source Protocol
To provide a table with data, I must implement two methods from the UITableViewDataSource
protocol that give me the opportunity to tell the table how many rows there are and to generate each
cell. Before I do that, I need to create an outlet property so that I can refer to the table view from the
ViewController class.

Control-drag the Table View item in the component hierarchy to the ViewController class and
release the mouse so that Xcode creates the property under the totalStockOutlet property. Set
the name of the property to tableView. The result should be the addition of the property shown in
Listing 3-6.

Listing 3-6. Adding an Outlet Property for the Table View to the ViewController.swift File

import UIKit

class ProductTableCell : UITableViewCell {
 // ...statements omitted for brevity...
}

class ViewController: UIViewController {

 @IBOutlet weak var totalStockLabel: UILabel!
 @IBOutlet weak var tableView: UITableView!
 // ...statements omitted for brevity...
}

Now I can add the protocol to the UIViewController class and implement the two methods from the
UITableViewDataSource protocol, which you can see in Listing 3-7.

Listing 3-7. Implementing the Data Source Protocol Methods in the ViewController.swift File

import UIKit

class ProductTableCell: UITableViewCell {
 @IBOutlet weak var nameLabel: UILabel!
 @IBOutlet weak var descriptionLabel: UILabel!
 @IBOutlet weak var stockStepper: UIStepper!
 @IBOutlet weak var stockField: UITextField!
}

class ViewController: UIViewController, UITableViewDataSource {

 @IBOutlet weak var totalStockLabel: UILabel!
 @IBOutlet weak var tableView: UITableView!

 var products = [
 ("Kayak", "A boat for one person", "Watersports", 275.0, 10),
 ("Lifejacket", "Protective and fashionable", "Watersports", 48.95, 14),
 ("Soccer Ball", "FIFA-approved size and weight", "Soccer", 19.5, 32),
 ("Corner Flags", "Give your playing field a professional touch", "Soccer", 34.95, 1),
 ("Stadium", "Flat-packed 35,000-seat stadium", "Soccer", 79500.0, 4),

45CHAPTER 3: Creating the SportsStore App

 ("Thinking Cap", "Improve your brain efficiency by 75%", "Chess", 16.0, 8),
 ("Unsteady Chair", "Secretly give your opponent a disadvantage", "Chess", 29.95, 3),
 ("Human Chess Board", "A fun game for the family", "Chess", 75.0, 2),
 ("Bling-Bling King", "Gold-plated, diamond-studded King", "Chess", 1200.0, 4)];

 override func viewDidLoad() {
 super.viewDidLoad();
 displayStockTotal();
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning();
 }

 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return products.count;
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let product = products[indexPath.row];
 let cell = tableView.dequeueReusableCellWithIdentifier("ProductCell")
 as ProductTableCell;
 cell.nameLabel.text = product.0;
 cell.descriptionLabel.text = product.1;
 cell.stockStepper.value = Double(product.4);
 cell.stockField.text = String(product.4);
 return cell;
 }

 func displayStockTotal() {
 let stockTotal = products.reduce(0,
 {(total, product) -> Int in return total + product.4});
 totalStockLabel.text = "\(stockTotal) Products in Stock";
 }
}

The methods from the UITableDataViewDataSource protocol are all called tableView and are
differentiated by the parameters they define. The version of the tableView method that defines a
numberOfRowsInSection parameter is called to find out how many rows there will be in the table,
which I have implemented by returning the number of tuples in the product array.

The other version of the tableView method creates instances of the UITableViewCell class, which
represents a row in the table. Information about the row is accessed through the row property of the
indexPath parameter. The reason that I added an outlet property for the table view is so that I can
call the dequeueReusableCellWithIdentifier method, which reuses cells that have been created to
display content that is no longer visible. The argument to the dequeueReusableCellWithIdentifier
method is the value I used to set the Identifier attribute for the custom table cell, which is how the
table knows to create an instance of the ProductTableCell class.

46 CHAPTER 3: Creating the SportsStore App

Registering the Data Source
The final step toward displaying the data is to register the View Controller class as the data source
for the table. Control-drag the Table View item to the View Controller item in the component
hierarchy. When you release the mouse, a pop-up menu will appear—select the dataSource item to
link the ViewController and the table, as shown in Figure 3-15.

Figure 3-16. Testing the SportsStore application

Figure 3-15. Setting the data source for the table view

Testing the Data Source
To test the data provided by the ViewController class, click the Play button on the Xcode toolbar,
which will build the project and send the application to the iOS simulator, as shown in Figure 3-16.

47CHAPTER 3: Creating the SportsStore App

Handling the Editing Actions
In this section, I am going to complete the SportsStore application by wiring up the Stepper and
Text Field components so that the user can change the stock level for a product. To provide visual
confirmation of changes, I will update the text displayed by the Label component at the bottom of
the screen.

Switch to the Connections Inspector and then click the Text Field item in the component hierarchy.
The Inspector will show a list of the events that are supported. Drag from the circle to the right of the
Editing Changed event, known as the connection well, to the ViewController class in the Assistant
Editor and position the line so that it terminates above the definition of the displayStockTotal
method. Release the mouse and a pop-up menu will appear, as shown in Figure 3-17.

Figure 3-17. Creating the Action method

Set Name to stockLevelDidChange and click the Connect button. Xcode will add the method shown in
Listing 3-8 to the ViewController class.

Listing 3-8. Adding an Action Method to the ViewController.swift File

...
@IBAction func stockLevelDidChange(sender: AnyObject) {
}
...

The IBAction attribute indicates that this is a method that will be invoked in response to a change in
a layout component—in this case, whenever the text field is edited.

I want the same method to be invoked when the value of the stepper changes, so click the Stepper
item in the component hierarchy, move to the Connections Inspector, and drag from the Value
Changed connection well.

Position the pointer over the method stockLevelDidChange so that the method is highlighted and the
text balloon changes from Insert Action to Connection Action and release the mouse button.

www.allitebooks.com

http://www.allitebooks.org

48 CHAPTER 3: Creating the SportsStore App

Tip Xcode can be unreliable when it comes to connecting to existing events. If you don’t see the method

highlighting, then simply create a new action and set the name to stockLevelDidChange, just like for the

text field. This will create two methods with the same name in the code file. Delete one of the methods—it

doesn’t matter which one. The relationship between components and methods is handled through the method

name, so this alternative technique can be used to work around one of Xcode’s limitations.

Handling the Events
The stockLevelDidChange method will be invoked when the user interacts with the Stepper or
Text Field components and that allows me to update the stock levels accordingly. Listing 3-9
shows the changes I made to the ViewController class to handle the events.

Listing 3-9. Handling Events in the ViewController.swift File

import UIKit

class ProductTableCell : UITableViewCell {

 @IBOutlet weak var nameLabel: UILabel!
 @IBOutlet weak var descriptionLabel: UILabel!
 @IBOutlet weak var stockStepper: UIStepper!
 @IBOutlet weak var stockField: UITextField!

 var productId:Int?;
}

class ViewController: UIViewController, UITableViewDataSource {

 @IBOutlet weak var totalStockLabel: UILabel!
 @IBOutlet weak var tableView: UITableView!

 var products = [
 ("Kayak", "A boat for one person", "Watersports", 275.0, 10),
 ("Lifejacket", "Protective and fashionable", "Watersports", 48.95, 14),
 ("Soccer Ball", "FIFA-approved size and weight", "Soccer", 19.5, 32),
 ("Corner Flags", "Give your playing field a professional touch", "Soccer", 34.95, 1),
 ("Stadium", "Flat-packed 35,000-seat stadium", "Soccer", 79500.0, 4),
 ("Thinking Cap", "Improve your brain efficiency by 75%", "Chess", 16.0, 8),
 ("Unsteady Chair", "Secretly give your opponent a disadvantage", "Chess", 29.95, 3),
 ("Human Chess Board", "A fun game for the family", "Chess", 75.0, 2),
 ("Bling-Bling King", "Gold-plated, diamond-studded King", "Chess", 1200.0, 4)];

 override func viewDidLoad() {
 super.viewDidLoad()
 displayStockTotal();
 }

49CHAPTER 3: Creating the SportsStore App

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return products.count;
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let product = products[indexPath.row];
 let cell = tableView.dequeueReusableCellWithIdentifier("ProductCell")
 as ProductTableCell;
 cell.productId = indexPath.row;
 cell.nameLabel.text = product.0;
 cell.descriptionLabel.text = product.1;
 cell.stockStepper.value = Double(product.4);
 cell.stockField.text = String(product.4);
 return cell;
 }

 @IBAction func stockLevelDidChange(sender: AnyObject) {
 if var currentCell = sender as? UIView {
 while (true) {
 currentCell = currentCell.superview!;
 if let cell = currentCell as? ProductTableCell {
 if let id = cell.productId? {

 var newStockLevel:Int?;

 if let stepper = sender as? UIStepper {
 newStockLevel = Int(stepper.value);
 } else if let textfield = sender as? UITextField {
 if let newValue = textfield.text.toInt()? {
 newStockLevel = newValue;
 }
 }

 if let level = newStockLevel {
 products[id].4 = level;
 cell.stockStepper.value = Double(level);
 cell.stockField.text = String(level);
 }
 }
 break;
 }
 }
 displayStockTotal();
 }
 }

50 CHAPTER 3: Creating the SportsStore App

 func displayStockTotal() {
 let stockTotal = products.reduce(0,
 {(total, product) -> Int in return total + product.4});
 totalStockLabel.text = "\(stockTotal) Products in Stock";
 }
}

The first change I made was to add a productId property to the ProductTableCell class, which I set
in the tableView method that creates the table cells. I use this property in the stockLevelDidChange
to map between the component that has invoked the method and the product whose stock level
has to be changed. The argument to the setLevelDidChange method is the component that triggered
the event, which I use to figure out how to get the new stock level and update the display to the
user. At the end of the stockLevelDidChange method, I call displayStockTotal to provide visual
reinforcement of the change to the user.

Testing the SportsStore App
The unstructured version of the SportsStore application is now complete. To see the finished result,
click the Play button on the Xcode toolbar. Figure 3-18 shows the app in its landscape orientation.

Figure 3-18. The finished unstructured SportsStore application

51CHAPTER 3: Creating the SportsStore App

The user is presented with a list of products and can use the Stepper and Text Field components to
change the stock level for each of them. The total number of stock items is displayed at the bottom
of the screen.

This application is undeniably basic, but it has allowed me to demonstrate the Xcode techniques
required for this book and provides an example to which I can apply different patterns in addition to
showing you fragments of code.

Summary
Xcode is an idiosyncratic development tool that can be confusing at first but that has some nice
tools for creating apps. In this chapter, I created an iOS app with as little structure as possible. I rely
on this app to demonstrate the design patterns in greater context in order to provide more realistic
scenarios for their use.

53

Part II
The Creation Patterns

.

55

Chapter 4
The Object Template Pattern

In this chapter I describe a technique that is so fundamental to object-oriented programming that it
isn’t usually classified as a design pattern at all: creating new objects directly from classes or structs.
In later chapters, I describe different techniques for managing the creation of objects, but I want
to start by explaining the benefit of using classes and structs as templates from which objects are
created. Not only is it an important topic in its own right, but it allows me to illustrate the problems
that arise when templates are not used to create objects; it also sets the foundation for explaining
the benefits of more advanced patterns later. Table 4-1 puts the object template pattern into context.

Table 4-1. Putting the Object Template Pattern into Context

Question Answer

What is it? The object template pattern uses a class or struct as the specification for

the data types and logic for a given data type. Objects are created using the

template, and values for the data are set during initialization, either through

the use of default values in the template or using values provided by the

component to the class or struct initializer, also known as the constructor.

What are the benefits? The object template pattern provides the foundation for grouping data values

and the logic that manipulates them together, known as encapsulation.

Encapsulation allows an object to present an API to its consumers while hiding

the private implementation of that API. This helps prevent the tight coupling of

components.

When should you use this

pattern?

You should use this pattern in all but the simplest of projects. Swift tuples are

an interesting feature, but they can present a long-term maintenance problem,

and only a little extra work is required to create a simple class or struct instead.

When should you avoid this

pattern?

These are no drawbacks in using this pattern, but later patterns in this part of

the book will show you more advanced techniques for its use.

(continued)

56 CHAPTER 4: The Object Template Pattern

Preparing the Example Project
For this chapter, I created an Xcode OS X Command Line Tool project called ObjectTemplate
following the same process I described in Chapter 3. No other preparation is required at
the moment.

Understanding the Problem Addressed by the Pattern
In Chapter 3, I used Swift tuples to define the data that the SportsStore application works with.
Here is an example of a tuple from that code:

...
("Kayak", "A boat for one person", "Watersports", 275.0, 10)
...

Tuples are a set of values grouped together and are convenient and easy to use, but they present
problems that mean their use should be limited. Listing 4-1 shows the statements I added to the
main.swift file, which Xcode adds to Command Line Tool projects.

Listing 4-1. The Contents of the main.swift File

var products = [
 ("Kayak", "A boat for one person", 275.0, 10),
 ("Lifejacket", "Protective and fashionable", 48.95, 14),
 ("Soccer Ball", "FIFA-approved size and weight", 19.5, 32)];

func calculateTax(product:(String, String, Double, Int)) -> Double {
 return product.2 * 0.2;
}

Table 4-1. (continued)

Question Answer

How do you know when

you have implemented the

pattern correctly?

The pattern is implemented correctly when you can make changes to the

private implementation of a class or struct without making corresponding

changes to the components that use it.

Are there any common

pitfalls?

The only pitfall with this pattern is using a struct as a template when you

intended to use a class. Structs and classes have a lot in common, but they

behave differently when objects created from them are assigned to new

variables, as I explain in Chapter 5. (There are other differences, but they are

not pertinent for this chapter.)

Are there any related

patterns?

The prototype pattern, which I describe in Chapter 5, provides an alternative

technique for creating objects.

57CHAPTER 4: The Object Template Pattern

func calculateStockValue(tuples:[(String, String, Double, Int)]) -> Double {
 return tuples.reduce(0, {
 (total, product) -> Double in
 return total + (product.2 * Double(product.3))
 });
}

println("Sales tax for Kayak: $\(calculateTax(products[0]))");
println("Total value of stock: $\(calculateStockValue(products))");

In this code, I defined an array of tuples representing products and two functions that operate on
them. The calculateTax function defines a tuple parameter that it uses to calculate the sales tax
on a price (I live in London and have set the rate to 20 percent, which is the sales tax for the United
Kingdom). The calculateStockValue function operates on the array of tuples to calculate the total
value of the products by multiplying the number of items in stock by the price of the product. I call
both functions and write out the results using the println function. Running the project produces the
following output in the Xcode debug console:

Sales tax for Kayak: $55.0
Total value of stock: $4059.3

One of the recurring themes in this book is that tightly coupled components are the antithesis of
design patterns. Two components are tightly coupled when one depends on the inner workings of
another, or, put another way, when you can make a change to one component without also updating
the other.

The term component is loosely defined, and in this case I am using it to refer to the array of tuples
and the functions that operate on it. Figure 4-1 shows the tight couplings from the playground that
exist between two functions and the tuples.

Figure 4-1. The tight couplings in the playground

58 CHAPTER 4: The Object Template Pattern

Both functions are tightly coupled to the tuples, both in the way they define their parameters
and in the function bodies. When defining parameters for functions that operate on tuples, the
number, order, and types of the tuple values have to match exactly. When operating on tuples in a
function body, the index values used to get or set values have to be defined explicitly. Here is the
calculateSalesTax function, in which I have highlighted the dependencies on the tuples:

...
func calculateTax(product:(String, String, String, Double, Int)) -> Double {
 return product.3 * 0.2;
}
...

And here are the dependencies that the calculateStockValue function has:

...
func calculateStockValue(tuples:[(String, String, Double, Int)]) -> Double {
 return tuples.reduce(0, {(total, product) -> Double in
 return total + (product.2 * Double(product.3))
 });
}
...

The dependency on the structure of the tuples means that the functions and the tuples are
tightly coupled. The most obvious impact of tight coupling is that a change to the tuples forces
corresponding changes wherever there is a dependency. In Listing 4-2, you can see what happens
when I remove a value from the tuples.

Listing 4-2. Removing a Value from the Tuples in the main.swift File

var products = [("Kayak", 275.0, 10),
 ("Lifejacket", 48.95, 14),
 ("Soccer Ball", 19.5, 32)];

func calculateTax(product:(String, Double, Int)) -> Double {
 return product.1 * 0.2;
}

func calculateStockValue(tuples:[(String, Double, Int)]) -> Double {
 return tuples.reduce(0, {(total, product) -> Double in
 return total + (product.1 * Double(product.2))
 });
}

println("Sales tax for Kayak: $\(calculateTax(products[0]))");
println("Total value of stock: $\(calculateStockValue(products))");

59CHAPTER 4: The Object Template Pattern

UNDERSTANDING WHY TIGHT COUPLINGS CAN BE A PROBLEM

Tightly coupled components make code harder to maintain, which means that it takes more effort to make changes

and test their impact. As Listing 4-2 shows, a change in one component requires a change in those that depend on its

implementation. In an application that contains lots of tight coupling, these changes can cascade through the code, and

the act of making a simple fix or adding a new feature becomes a substantial rewrite.

Loosely coupled components are a key goal in design patterns, but, as I explained in Chapter 1, it doesn’t always make sense

to apply a pattern to an application. There are some kinds of development where tight couplings are perfectly reasonable,

either because they offer performance gains (such as real-time software) or because the application is unlikely to require any

maintenance (because it is extremely simple or has a short life). Be careful when deciding you don’t expect to maintain the

code; there are few applications where this turns out to be true, even if that was the original intent.

I removed the value that describes the product, and the highlighted statements show the corresponding
changes required in the functions. In a real project, these changes can mount up, and if they affect other
tight couplings, then number of changes can lead to a substantial portion of the code in the application
being modified. This level of change is hard to manage and requires thorough testing to ensure that the
changes have been applied consistently and that the changes have not introduced any new bugs.

Understanding the Object Template Pattern
The object template pattern uses a class or struct to define a template from which objects are created.
When an application component requires an object, it calls on the Swift runtime to create it by specifying
the name of the template and any runtime initialization data values that are required to configure the
object. There are three operations that make up the object template pattern, as illustrated by Figure 4-2.

Figure 4-2. The object template pattern

The first operation is the calling component asking the Swift runtime to create an object, providing
the name of the template to use and any runtime data values that are required to customize the
object that will be created.

www.allitebooks.com

http://www.allitebooks.org

60 CHAPTER 4: The Object Template Pattern

In the second operation, the Swift runtime allocates the memory required to store the object and
uses the template to create it. Templates contain initializer methods that are used to prepare the
object for use by settings its initial state, through either the runtime values supplied by the calling
component or the values defined in the template (or both), and the Swift runtime calls the initializer
to prepare the object for use. In the final operation, the Swift runtime gives the object it has created
to the calling component. This three-step process can be repeated over and over again so that a
single template can be used to create multiple objects.

UNDERSTANDING CLASSES STRUCTS, OBJECTS, AND INSTANCES

There are some object-oriented programing terms that are used loosely in day-to-day development but that can be confusing

when it comes to understanding design patterns. The critical terms for this pattern are class, struct, object, and instance.

Classes and structs are both templates, which are the recipes that Swift follows for the object template pattern. Swift

follows the instructions in the template to create new objects. The same template can be reused to create multiple

objects. Each object is different, but it is created using the same instructions, just like a recipe can be used to create

multiple cakes (add one Int, a method to change its value, and so on).

The word instance has the same meaning as object, but it is used to refer to the name of the pattern used to create that

object so that a Product object can also be called an instance of the Product class.

The important point is that classes and structs are the instructions you write during development and objects are created

when the application. When you change the value stored by an object, for example, it doesn’t change the pattern used to

create it.

Implementing the Object Template Pattern
Listing 4-3 shows the contents of a new file called Product.swift that I added to the example
project and used to define a class called Product.

Listing 4-3. The Contents of the Product.swift File

class Product {
 var name:String;
 var description:String;
 var price:Double;
 var stock:Int;

 init(name:String, description:String, price:Double, stock:Int) {
 self.name = name;
 self.description = description;
 self.price = price;
 self.stock = stock;
 }
}

I have created a simple class in the listing to replicate the tuple-based approach as closely as
possible, but I will add features to the class shortly. Listing 4-4 shows how I have updated the
main.swift file to use the Product class.

61CHAPTER 4: The Object Template Pattern

Listing 4-4. Using the Product Class in the main.swift File

var products = [
 Product(name: "Kayak", description: "A boat for one person",
 price: 275, stock: 10),
 Product(name: "Lifejacket", description: "Protective and fashionable",
 price: 48.95, stock: 14),
 Product(name: "Soccer Ball", description: "FIFA-approved size and weight",
 price: 19.5, stock: 32)];

func calculateTax(product:Product) -> Double {
 return product.price * 0.2;
}

func calculateStockValue(productsArray:[Product]) -> Double {
 return productsArray.reduce(0, {(total, product) -> Double in
 return total + (product.price * Double(product.stock))
 });
}

println("Sales tax for Kayak: $\(calculateTax(products[0]))");
println("Total value of stock: $\(calculateStockValue(products))");

Like most patterns, using a class to define a template for objects requires some additional work,
but it has substantial benefits; in fact, the benefits are so fundamental to effective OO programming
that the uses of classes and structs are often taken as givens even when quicker and more direct
approaches, such as tuples, are available.

When using a tuple, the definitions of the structure of the data and a set of values are performed in
a simple step, but there are two steps when using a template: defining the template and creating
objects using the template.

Understanding the Benefits of the Pattern
The benefits of using a template are significant and are generally worth the effort required to define
the template, whether it is a class or a struct. Tuples are a nice feature, but for the serious software
developer, classes and structs are usually preferable because they provide a level of control and
loose coupling that tuples can’t match, as I explain in the sections that follow.

The Benefit of Decoupling
I made the example in Listing 4-4 as simple as possible. It doesn’t take advantage of the features
that classes and structs provide, but it does allow me to demonstrate that even the simplest
template reduces the impact of changes. Listing 4-5 shows how I removed the description property
from the Product class.

62 CHAPTER 4: The Object Template Pattern

Listing 4-5. Removing a Property from the Product Class

class Product {
 var name:String;
 var price:Double;
 var stock:Int;

 init(name:String, price:Double, stock:Int) {
 self.name = name;
 self.price = price;
 self.stock = stock;
 }
}

Listing 4-6 shows the corresponding changes I made to the main.swift file.

Listing 4-6. Updating the main.swift File to Reflect the Product Class Change

var products = [
 Product(name: "Kayak", price: 275, stock: 10),
 Product(name: "Lifejacket", price: 48.95, stock: 14),
 Product(name: "Soccer Ball", price: 19.5, stock: 32)];

func calculateTax(product:Product) -> Double {
 return product.price * 0.2;
}

func calculateStockValue(productsArray:[Product]) -> Double {
 return productsArray.reduce(0, {
 (total, product) -> Double in
 return total + (product.price * Double(product.stock))
 });
}

println("Sales tax for Kayak: $\(calculateTax(products[0]))");
println("Total value of stock: $\(calculateStockValue(products))");

I have updated the statements that create instances of the Product class so they no longer provide
a value for the description property. The important point to note is that the change I made to
the Product class has no impact on the calculateTax and calculateStockValue functions at all,
and that’s because each property in the class is defined and accessed independently of the other
properties and because neither of the functions relies on the description property.

The use of classes and structs limits the scope of changes to just the code that is directly impacted
by the change and prevents the widespread change cascades that can arise when using less
structured data types, such as tuples.

The Benefit of Encapsulation
The most important benefit from using classes or structs as templates for data objects is the support
for encapsulation. Encapsulation is one of the core ideas behind object-oriented programming, and
there are two aspects of this idea that have a bearing on this chapter.

63CHAPTER 4: The Object Template Pattern

The first aspect is that encapsulation allows data values and the logic that operates on those values
to be combined in a single component. Combining the data and logic makes it easier to read the
code because everything related to the data type is defined in the same place. Listing 4-7 shows
how I have updated the Product class so that it includes some logic.

Listing 4-7. Adding Logic in the Product.swift File

class Product {
 var name:String;
 var price:Double;
 var stock:Int;

 init(name:String, price:Double, stock:Int) {
 self.name = name;
 self.price = price;
 self.stock = stock;
 }

 func calculateTax(rate: Double) -> Double {
 return self.price * rate;
 }

 var stockValue: Double {
 get {
 return self.price * Double(self.stock);
 }
 }
}

I have added a calculateTax method, which accepts a tax rate as an argument and uses it to
calculate the sales tax, and a stockValue computed property, which implements a getter clause
that calculates the total value of the stock. To reflect these changes, I updated the code statements
in the main.swift file that operate on Product objections to use the new method and property, as
shown in Listing 4-8.

Listing 4-8. Updating the Code in the main.swift File

var products = [
 Product(name: "Kayak", price: 275, stock: 10),
 Product(name: "Lifejacket", price: 48.95, stock: 14),
 Product(name: "Soccer Ball", price: 19.5, stock: 32)];

func calculateStockValue(productsArray:[Product]) -> Double {
 return productsArray.reduce(0, {(total, product) -> Double in
 return total + product.stockValue;
 });
}

println("Sales tax for Kayak: $\(products[0].calculateTax(0.2))");
println("Total value of stock: $\(calculateStockValue(products))");

64 CHAPTER 4: The Object Template Pattern

These may seem like simple changes, but something important has happened: the Product class
now has a public presentation and a private implementation, as illustrated by Figure 4-3.

Figure 4-3. The public and private aspects of the Product class

The public presentation is the API that other components can use. Any component can get or set
the values of the name, price, and stock properties and use them in any way they need. The public
presentation also includes the stockValue property and the calculateTax method, but—and this is
the important part—not their implementations.

Tip Don’t confuse the idea of a private implementation with the use of the private keyword. The

private keyword limits who can use a class, method, or property, but even when the private keyword

isn’t used, the implementation of methods and computed properties isn’t visible to calling components.

The ability to present a property or method without exposing its implementation makes it easy
to break tight couplings because it is impossible for another component to depend on the
implementation. As an example, Listing 4-9 shows how I have changed the implementation of the
calculateTax method to define a maximum tax amount. Because the calculation is performed in the
implementation of the Product object, the change is invisible to other components, which trust that
the Product class knows how to perform its calculations.

Listing 4-9. Changing a Method Implementation in the Product.swift File

...
func calculateTax(rate: Double) -> Double {
 return min(10, self.price * rate);
}
...

65CHAPTER 4: The Object Template Pattern

I have used the min function from the Swift standard library to cap the amount of sales tax at $10.
I have shown only the calculateTax method in Listing 4-9 because no other code statement in the
playground has to change to accommodate the new tax calculation; the change is in the private
implementation part of the Product class, with which other components are unable to create
dependencies. Running the application produces the following results:

Sales tax for Kayak: $10.0
Total value of stock: $4059.3

The Benefit of an Evolving Public Presentation
A nice feature of Swift is the way that you can evolve the public presentation of a class over time as
the application changes. As matters stand, the stock property is a standard stored property that can
be set to any Int value, but it doesn’t make sense to have a negative number of items in stock, and
doing so will affect the result returned by the stockValue calculated property.

Swift allows me to seamlessly replace the stock-stored property with a calculated property whose
implementation can enforce a validation policy to ensure that the stock level is never less than zero.
Listing 4-10 shows the change that I made to alter the way the property is handled.

Listing 4-10. Adding a Calculated Property in the Product.swift File

class Product {

 var name:String;
 var price:Double;
 private var stockBackingValue:Int = 0;

 var stock:Int {
 get {
 return stockBackingValue;
 }
 set {
 stockBackingValue = max(0, newValue);
 }
 }

 init(name:String, price:Double, stock:Int) {
 self.name = name;
 self.price = price;
 self.stock = stock;
 }

 func calculateTax(rate: Double) -> Double {
 return min(10, self.price * rate);
 }

66 CHAPTER 4: The Object Template Pattern

 var stockValue: Double {
 get {
 return self.price * Double(self.stock);
 }
 }
}

I have defined a backing variable that will hold the value of the stock property and have replaced
the stored stock property with a calculated property that has a getter and setter. The getter simply
returns the value of the backing property, which I have named stockBackingValue, but the setter
uses the max function from the standard library to set the backing value to zero when a negative
value is used to set the property. The effect of this change is that the public and private parts of the
Product class have changed, but in a way that does not impact the code that uses the class, as
shown in Figure 4-4.

Figure 4-4. The effect of changing a stored property to a calculated property

Listing 4-11 shows the changes I made to the main.swift file to check the new validation property.

Listing 4-11. Checking Validation in the main.swift File

var products = [
 Product(name: "Kayak", price: 275, stock: 10),
 Product(name: "Lifejacket", price: 48.95, stock: 14),
 Product(name: "Soccer Ball", price: 19.5, stock: 32)];

func calculateStockValue(productsArray:[Product]) -> Double {
 return productsArray.reduce(0, {(total, product) -> Double in
 return total + product.stockValue;
 });
}

67CHAPTER 4: The Object Template Pattern

println("Sales tax for Kayak: $\(products[0].calculateTax(0.2))");
println("Total value of stock: $\(calculateStockValue(products))");
products[0].stock = -50;
println("Stock Level for Kayak: \(products[0].stock)");

I added two statements to the end of the playground to test the stock property’s ability to deal with
negative values, but no other changes are required. In particular, the code statements that rely on
the stock property are unaware of the change from a stored property to a calculated one. Here is the
console output that is produced when the example application is run:

Sales tax for Kayak: $10.0
Total value of stock: $4059.3
Stock Level for Kayak: 0

The last message shows the effect of the calculated property: I set the stock property to -50, but
when I get the property value, I receive 0.

Understanding the Pitfalls of the Pattern
The pitfall to avoid with this pattern is choosing the wrong kind of template, and that usually means
using a struct when a class would be more appropriate. Swift classes and structs have a lot in
common, but there is one important difference in the context of this pattern: structs are value
objects, and classes are reference objects. I explain this difference in more detail in Chapter 5, in
which I describe the prototype pattern.

Examples of the Object Template Pattern in Cocoa
Because this is such a fundamental pattern, classes and structs can be found throughout the Cocoa
frameworks and the built-in Swift types. Basic types such as strings, arrays, and dictionaries are
implemented as structs, and classes are used to represent everything from network connections to
user interface components. I am not going to list all of the classes and structs that are used in iOS
and the Cocoa frameworks, but if you want to get a sense of how deeply rooted this pattern is in
iOS development, take a look at the classes I used to create the SportsStore application. In addition
to the Product class I created in this chapter, I have relied on NSNumberFormatter to format currency
strings, UIViewController to manage the view presented by the app, and classes such as UILabel,
UITextField, and UIStepper to preset layout components to the user.

Applying the Pattern to the SportsStore App
In this section, I will create and apply a Product class and use it to remove the tuples from the
SportsStore app. Don’t worry if you didn’t follow the step-by-step instructions in Chapter 3; you can
download the project from Apress.com along with all of the source code for this book.

https://Apress.com

68 CHAPTER 4: The Object Template Pattern

Preparing the Example Application
The preparation for this chapter is to create a Swift file that I will use to define utility functions
that are not directly related to design patterns. To add a new file to the project, Control-click the
SportsStore folder in the project navigator and select New File from the menu. Xcode will present a
choice of different files types, as illustrated in Figure 4-5.

Figure 4-5. Selecting the type of a new file

Select Swift File from the iOS ➤ Source category and click the Next button. Set the file name to
Utils.swift and ensure that SportsStore is checked in the Targets list, as shown in Figure 4-6.

69CHAPTER 4: The Object Template Pattern

Xcode will create the new file and open it for editing. Listing 4-12 shows how I used the file to define
the Utils class.

Listing 4-12. The Contents of the Utils.swift File

import Foundation;

class Utils {

 class func currencyStringFromNumber(number:Double) -> String {
 let formatter = NSNumberFormatter();
 formatter.numberStyle = NSNumberFormatterStyle.CurrencyStyle;
 return formatter.stringFromNumber(number) ?? "";
 }
}

I have defined a type method (also known as a static method) called currencyStringFromNumber
that accepts a Double value and returns a number formatted as a currency value. For example, the
value 1000.1 would be formatted into the string $1,000.10. (The currency sign is applied based on
the locale settings of the device. Outside of the United States, the dollar sign may be replaced with
another symbol, such as those for the euro or the British pound.)

Figure 4-6. Creating the Product.swift file

www.allitebooks.com

http://www.allitebooks.org

70 CHAPTER 4: The Object Template Pattern

String formatting isn’t part of the patterns I describe in this table, so I have defined this code in the
Utils.swift file to keep it out of the way. I’ll use the new type method when I add to the information
displayed by the label at the bottom of the SportsStore layout.

Creating the Product Class
As I explain in the “Understanding Swift Access Control” sidebar, the private keyword doesn’t
restrict access to code defined in the same class file. Since I want to emphasize the public/private
separation provided by this pattern, I am going to create a new file and use it to define the Product
class. Following the process I described in the previous section, add a file called Product.swift to
the SportsStore project and use it to define the class shown in Listing 4-13.

Listing 4-13. The Contents of the Product.swift File

class Product {

 private(set) var name:String;
 private(set) var description:String;
 private(set) var category:String;
 private var stockLevelBackingValue:Int = 0;
 private var priceBackingValue:Double = 0;

 init(name:String, description:String, category:String, price:Double,
 stockLevel:Int) {
 self.name = name;
 self.description = description;
 self.category = category;
 self.price = price;
 self.stockLevel = stockLevel;
 }

 var stockLevel:Int {
 get { return stockLevelBackingValue;}
 set { stockLevelBackingValue = max(0, newValue);}
 }

 private(set) var price:Double {
 get { return priceBackingValue;}
 set { priceBackingValue = max(1, newValue);}
 }

 var stockValue:Double {
 get {
 return price * Double(stockLevel);
 }
 }
}

71CHAPTER 4: The Object Template Pattern

The Product class shown in Listing 4-13 puts emphasis on the separation of the public presentation
from the private implementation, which I have achieved in a couple of ways. The first way is by
annotating the properties with private or private(set). The private keyword hides whatever
it is applied to from code outside of the current file, and this has the effect of making the
priceBackingValue and stockLevelBackingValue properties entirely invisible to the rest of the
SportsStore application because the Product class is the only thing in the Product.swift file.

Annotating a property with private(set) means that a property can be read from code in other files
in the same module but set by code only in the Product.swift file. I have used private(set) for
most of the properties in Listing 4-13, which has the effect of allowing the values to be set using the
arguments passed to the class initializer but not otherwise.

Tip I could have achieved a similar effect using constants, but I want to emphasize the object template

pattern in this chapter, and private(set) is a more useful example.

The other technique I used is a calculated property that defines only a get clause. The
implementation of the calculated property is private even though the property itself is available
throughout the current module.

UNDERSTANDING SWIFT ACCESS CONTROL

Swift takes an unusual approach to access control, which can catch out the unwary. There are three levels of access

control, which are applied using the public, private, and internal keywords. The private keyword is the most

restrictive; it restricts access to the classes, structs methods, and properties to code defined in the same file. Restricting

access on a per-file basis is a different approach from most languages and means that private has no effect in Xcode

playgrounds.

The internal keyword denotes that access is allowed within the current module. This is the default level of access

control that is used if no keyword is applied. For most iOS developers, internal protection will have the effect of

allowing a class, struct, method, function, or property to be used throughout a project.

The public keyword applies the least restrictive level of control and allows access from anywhere, including outside the

current module. This is of most use to developers who are creating frameworks and who will need to use the public

keyword to define the API that the framework presents to other developers.

If you have moved to Swift from a language such as C# or Java, then you can most closely re-create the access

controls you are used to by defining each class or struct in its own .swift file and using the private and internal

access levels.

72 CHAPTER 4: The Object Template Pattern

Applying the Product Class
Applying the Product class is a simple process. To use the Product class, I need to replace the tuples
in the ViewController.swift file with Product instances and replace the references to individual
tuple values with the corresponding Product properties. Listing 4-14 shows the changes I made.

Listing 4-14. Applying the Product Class in the ViewController.swift File

import UIKit

class ProductTableCell : UITableViewCell {

 @IBOutlet weak var nameLabel: UILabel!
 @IBOutlet weak var descriptionLabel: UILabel!
 @IBOutlet weak var stockStepper: UIStepper!
 @IBOutlet weak var stockField: UITextField!

 var product:Product?;
}

class ViewController: UIViewController, UITableViewDataSource {

 @IBOutlet weak var totalStockLabel: UILabel!
 @IBOutlet weak var tableView: UITableView!

 var products = [
 Product(name:"Kayak", description:"A boat for one person",
 category:"Watersports", price:275.0, stockLevel:10),
 Product(name:"Lifejacket", description:"Protective and fashionable",
 category:"Watersports", price:48.95, stockLevel:14),
 Product(name:"Soccer Ball", description:"FIFA-approved size and weight",
 category:"Soccer", price:19.5, stockLevel:32),
 Product(name:"Corner Flags",
 description:"Give your playing field a professional touch",
 category:"Soccer", price:34.95, stockLevel:1),
 Product(name:"Stadium", description:"Flat-packed 35,000-seat stadium",
 category:"Soccer", price:79500.0, stockLevel:4),
 Product(name:"Thinking Cap",
 description:"Improve your brain efficiency by 75%",
 category:"Chess", price:16.0, stockLevel:8),
 Product(name:"Unsteady Chair",
 description:"Secretly give your opponent a disadvantage",
 category: "Chess", price: 29.95, stockLevel:3),
 Product(name:"Human Chess Board",
 description:"A fun game for the family", category:"Chess",
 price:75.0, stockLevel:2),
 Product(name:"Bling-Bling King",
 description:"Gold-plated, diamond-studded King",
 category:"Chess", price:1200.0, stockLevel:4)];

73CHAPTER 4: The Object Template Pattern

 override func viewDidLoad() {
 super.viewDidLoad()
 displayStockTotal();
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return products.count;
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let product = products[indexPath.row];
 let cell = tableView.dequeueReusableCellWithIdentifier("ProductCell")
 as ProductTableCell;
 cell.product = products[indexPath.row];
 cell.nameLabel.text = product.name;
 cell.descriptionLabel.text = product.description;
 cell.stockStepper.value = Double(product.stockLevel);
 cell.stockField.text = String(product.stockLevel);
 return cell;
 }

 @IBAction func stockLevelDidChange(sender: AnyObject) {
 if var currentCell = sender as? UIView {
 while (true) {
 currentCell = currentCell.superview!;
 if let cell = currentCell as? ProductTableCell {
 if let product = cell.product? {
 if let stepper = sender as? UIStepper {
 product.stockLevel = Int(stepper.value);
 } else if let textfield = sender as? UITextField {
 if let newValue = textfield.text.toInt()? {
 product.stockLevel = newValue;
 }
 }
 cell.stockStepper.value = Double(product.stockLevel);
 cell.stockField.text = String(product.stockLevel);
 }
 break;
 }
 }
 displayStockTotal();
 }
 }

74 CHAPTER 4: The Object Template Pattern

 func displayStockTotal() {
 let stockTotal = products.reduce(0,
 {(total, product) -> Int in return total + product.stockLevel});
 totalStockLabel.text = "\(stockTotal) Products in Stock";
 }
}

The transition to using the Product class is simple. In preparing the code for Listing 4-14, I started by
using the class in the products data array and then fixed all of the compiler errors until all references
to the tuples had been replaced. This is a dull and error-prone process, which is why it is a good
idea to start a project with classes and structs if you can (something that, sadly, isn’t always possible
when taking over existing code).

Ensuring View and Model Separation

There are a couple of points to note about the code in Listing 4-14. The first is that the
ViewController.swift file defines a class called ProductTableCell that I used to contain the
references to the UI components that represent a product in the app layout and to locate a product
when the user changes a stock level. In Listing 4-14, I replaced a variable that referred to the index
position of a tuple in the products array with references to a Product object instead, like this:

...
class ProductTableCell : UITableViewCell {

 @IBOutlet weak var nameLabel: UILabel!
 @IBOutlet weak var descriptionLabel: UILabel!
 @IBOutlet weak var stockStepper: UIStepper!
 @IBOutlet weak var stockField: UITextField!

 var product:Product?;
}
...

You may be wondering why I didn’t combine the ProductTableCell with the Product class and have
a single entity that represents a product and the UI components that are used to display it. I explain
the reasons in detail in Part 5 when I describe the Model/View/Controller (MVC) pattern, but the short
answer is that it is good practice to separate the data in the application from the way it is presented
to the user (in MVC parlance, separating the model from the view). Enforcing this separation allows
the same data to be displayed in different ways more easily. I might need to add a second view to the
app that presents the products in a grid, and without separation between the model and the view, the
combined class would need to have references to every UI component that is involved in both views,
which quickly becomes unwieldy and makes applying changes a tricky and error-prone process.

75CHAPTER 4: The Object Template Pattern

Expanding the Summary Display
I have been critical of tuples throughout this chapter, but they can be a useful language feature when
they are used in a self-contained way, rather than to represent application-wide data.

In Listing 4-15, you can see an example of how I like to use tuples. I have changed the
implementation of the displayStockTotal method of the ViewController class so that a single call
to the global reduce function is used to calculate the number of items in stock and the total value of
that stock (which I format using the currencyStringFromNumber method I defined in Listing 4-12).

Listing 4-15. Using Tuples in the ViewController.swift File

...
func displayStockTotal() {
 let finalTotals:(Int, Double) = products.reduce((0, 0.0),
 {(totals, product) -> (Int, Double) in
 return (
 totals.0 + product.stockLevel,
 totals.1 + product.stockValue
);
 });

 totalStockLabel.text = "\(finalTotals.0) Products in Stock. "
 + "Total Value: \(Utils.currencyStringFromNumber(finalTotals.1))";
}
...

Tuples allow me to generate two total values (one for the number of items in stock and one for the
value of that stock) for each iteration of the reduce function. I could have achieved this in different
ways—such as by defining a struct that has two properties or by using a for loop to enumerate
the array and update two local variables—but using tuples works nicely with Swift closures and
produces code that is simple and easy to read. This kind of use, where creating a class or struct
would be overkill since the data isn’t exported outside the method, plays to the strengths of the
tuples and doesn’t cause the tight coupling and maintenance problems that arise when passing
tuples more widely within the application.

You can see the effect of the additional total I calculate by starting the application. The label at
the bottom of the layout will display the number and value of the items in stock, as illustrated by
Figure 4-7.

76 CHAPTER 4: The Object Template Pattern

Figure 4-7. Adding to the information summary displayed by the SportsStore app

Summary
In this chapter, I described a pattern that is at the heart of Swift development: defining a template
that is used to create objects. The benefit of this pattern is that it provides the basic tools that can
be used to break tightly coupled components apart, allowing a public API to be presented to the
consumers of an object and a hidden private implementation. In the next chapter, I turn to a different
way of creating objects: using a prototype.

77

Chapter 5
The Prototype Pattern

In this chapter I describe the prototype pattern, in which you create new objects by copying an existing
object, known as the prototype. The prototype itself is created using a template, as described in
Chapter 4, but subsequent instances are clones. Table 5-1 puts the prototype pattern in context.

Table 5-1. Putting the Prototype Pattern into Context

Question Answer

What is it? The prototype pattern creates new objects by copying an existing object,

known as the prototype.

What are the benefits? The main benefit is to hide the code that creates objects from the

components that use them; this means that components don’t need to know

which class or struct is required to create a new object, don’t need to know

the details of initializers, and don’t need to change when subclasses are

created and instantiated. This pattern can also be used to avoid repeating

expensive initialization each time a new object of a specific type is created.

When should you use this

pattern?

This pattern is useful when you are writing a component that needs to

create new instances of objects without creating a dependency on the class

initializer.

When should you avoid this

pattern?

There are no drawbacks to using this pattern, but you should understand

the other patterns in this part of the book to ensure that you pick the most

suitable for your application.

How do you know when you

have implemented the pattern

correctly?

To test for an effective implementation of this pattern, change the initializer

for the class or struct used for the prototype object and check to see

whether a corresponding change is required in the component that creates

clones. As a second test, create a subclass of the prototype’s class and

ensure that the component can clone it without requiring any changes.

See the “Implementing the Prototype Pattern” section.

(continued)

78 CHAPTER 5: The Prototype Pattern

Understanding the Problem Addressed by the Pattern
In Chapter 4, I explained how to use templates to create objects, but this is an approach that has its
own drawbacks, as I describe in the sections that follow.

Incurring Expensive Initializations
Some class or struct templates are expensive to use, meaning that initializing a new instance of an
object can consume a substantial amount of memory or computation in order to prepare the object
for use. To demonstrate this kind of problem, I created the Initialization.playground file, the
contents of which are shown in Listing 5-1.

Listing 5-1. The Contents of the Initialization.playground File

class Sum {
 let resultsCache: [[Int]];
 var firstValue:Int;
 var secondValue:Int;

 init(first:Int, second:Int) {
 resultsCache = [[Int]](count: 10, repeatedValue:
 [Int](count:10, repeatedValue: 0));
 for i in 0..<10 {
 for j in 0..<10 {
 resultsCache[i][j] = i + j;
 }
 }
 self.firstValue = first;
 self.secondValue = second;
 }

Table 5-1. (continued)

Question Answer

Are there any common pitfalls? The main pitfall is selecting the wrong style of copying when cloning the

prototype object. There are two kinds of copying available—shallow and

deep—and it is important to select the correct kind for your application.

See the “Understanding Shallow and Deep Copying” section for details.

Are there any related patterns? The most closely related pattern is the object template pattern, which I

describe in Chapter 4. Also see the singleton pattern, which provides a

means by which a single object can be shared to avoid needing to create

additional instances.

79CHAPTER 5: The Prototype Pattern

 var Result:Int {
 get {
 return firstValue < resultsCache.count
 && secondValue < resultsCache[firstValue].count
 ? resultsCache[firstValue][secondValue]
 : firstValue + secondValue;
 }
 }
}

var calc1 = Sum(first:0, second: 9).Result;
var calc2 = Sum(first:3, second: 8).Result;

println("Calc1: \(calc1) Calc2: \(calc2)");

I have defined a class called Sum that produces the sum of two integer values passed to its initializer.
As an optimization, the initializer for the Sum class creates a two-dimensional Int array and populates
it with precalculated values with the intention of trading time spent during initialization against faster
calculations later.

Having defined the Sum class, I then create two instances and use them to perform calculations. Each
time that I create a new Sum object, I incur the cost of creating and populating the two-dimensional
array—a cost that can be measured both in terms of memory required to store the calculated values
and in computation. I finish by writing the results of the two calculations to the console, producing the
following output:

Calc1: 9 Calc2: 11

This may seem like an unrealistic example, but this style of coding is surprisingly common and
is usually a result of premature optimization, where a programmer tries to speculatively improve
the performance of code as it is being written, rather than as a result of subsequent performance
testing—something that usually results in worse performance and less readable code. There are,
however, two aspects of this example that are unrealistic. The first is that the work performed by
the Sum class is so simple that even the most enthusiastic optimizer is unlikely to see the cost of
adding two integers as being worth caching. The second aspect is that the playground shows the
Sum class and the two statements that create instances from it in the same file. In a real project, the
initialization code is lost in a deep hierarchy of classes, and the statements that use the class will be
in entirely different parts of the app.

Creating Template Dependencies
To create a new object from a template, a component must possess three pieces of information.

The template that is associated with the object	
The initializer that must be called	
The names and types of the initializer arguments	

80 CHAPTER 5: The Prototype Pattern

This information becomes disseminated throughout an app wherever a new instance of an object is
required. The problem this presents is that it creates a dependency on the template, such that when
the template changes, all of the components that use the template to create new objects must be
updated to reflect that change. You can see this in Listing 5-2, where I have reworked the Sum class
so that it defines an additional initializer parameter.

Listing 5-2. Adding an Initializer in the Initialization.playground File

class Sum {
 let resultsCache: [[Int]];
 var firstValue:Int;
 var secondValue:Int;

 init(first:Int, second:Int, cacheSize:Int) {
 resultsCache = [[Int]](count: cacheSize, repeatedValue:
 [Int](count:cacheSize, repeatedValue: 0));
 for i in 0 ..< cacheSize {
 for j in 0 ..< cacheSize {
 resultsCache[i][j] = i + j;
 }
 }
 self.firstValue = first;
 self.secondValue = second;
 }

 var Result:Int {
 get {
 return firstValue < resultsCache.count
 && secondValue < resultsCache[firstValue].count
 ? resultsCache[firstValue][secondValue]
 : firstValue + secondValue;
 }
 }
}

var calc1 = Sum(first:0, second: 9, cacheSize:100).Result;
var calc2 = Sum(first:3, second: 8, cacheSize:20).Result;

println("Calc1: \(calc1) Calc2: \(calc2)");

The initializer parameter is used to control the number of cached results that are generated. As the
listing demonstrates, I have had to update the statements that create Sum objects to use the revised
initializer. The changes are trivial when the only two statements that create Sum objects are next to
each other, but these construction statements can be distributed throughout a real project, and each
one is required to have enough knowledge about the implementation of the Sum class to provide a
sensible value for the cacheSize initializer parameter.

81CHAPTER 5: The Prototype Pattern

Tip My goal in this chapter is to showcase the prototype pattern, but there are other ways to solve this kind

of problem. I could, for example, have defined a convenience initializer that calls the designated initializer and

provided a default value for the cacheSize parameter. As I explained in Chapter 1, patterns are not always

the only solution to a problem.

Figure 5-1. The prototype pattern

Understanding the Prototype Pattern
The prototype pattern uses an existing object—rather than a class or struct—to create new objects.
This is often referred to as cloning, since the new object is an identical copy of the existing one,
including any changes made to the object’s stored properties that have been made since it was
created. Figure 5-1 shows how the prototype pattern works.

There are three operations in the prototype pattern. First, the component that needs an object calls
on the original object (known as the prototype) to copy itself. The second operation is the copying
process in which a new object (known as the clone) is created. In the final operation, the prototype
gives the calling component the clone, completing the copying process.

Implementing the Prototype Pattern
Swift automatically applies the prototype pattern when you assign a value type to a new variable.
Values types are defined using structs, and all of the built-in Swift types are implemented as structs
behind the scenes, meaning that you can clone strings, Booleans, collections, enumerations,
tuples, and numeric types just by assigning them to a new variable. Swift will copy the value of the
prototype and use it to create a clone. Listing 5-3 shows the contents of the ValueTypes.playground
file, which I created to demonstrate how value types are cloned.

82 CHAPTER 5: The Prototype Pattern

Listing 5-3. The Contents of the ValueTypes.playground File

struct Appointment {
 var name:String;
 var day:String;
 var place:String;

 func printDetails(label:String) {
 println("\(label) with \(name) on \(day) at \(place)");
 }
}

var beerMeeting = Appointment(name: "Bob", day: "Mon", place: "Joe's Bar");

var workMeeting = beerMeeting;
workMeeting.name = "Alice";
workMeeting.day = "Fri";
workMeeting.place = "Conference Rm 2";

beerMeeting.printDetails("Social");
workMeeting.printDetails("Work");

I have defined a struct called Appointment that has stored name, day, and place properties and
a printDetails method that writes these values to the console. I start by using the struct as a
template for creating a new object like this:

...
var beerMeeting = Appointment(name: "Bob", day: "Mon", place: "Joe's Bar");
...

The prototype pattern relies on there being—obviously enough—a prototype object, which is commonly
created from a template. This may seem counterintuitive, but you have to be able to get the prototype
somehow. Once I have the prototype, I create a copy by assigning it to a new variable, like this:

...
var workMeeting = beerMeeting;
...

At this point, I have two separate Appointment objects that are assigned to the beerMeeting and
workMeeting variables. The name, day, and place properties for both objects have the same values,
as shown in Figure 5-2.

83CHAPTER 5: The Prototype Pattern

Once I have created the clone, I assign new values to the name, day, and place properties,
configuring the clone to represent a different appointment from the one represented by the
prototype, as shown in Figure 5-3.

Figure 5-2. The effect of cloning a struct prototype

Figure 5-3. Configuring the clone

I finish by calling the printDetails method on both of the Appointment objects, which produces the
following results:

Social with Bob on Mon at Joe's Bar
Work with Alice on Fri at Conference Rm 2

84 CHAPTER 5: The Prototype Pattern

Once I have created the prototype, I can create and configure as many clones as I need without
incurring the overhead associated with using the struct template.

Cloning Reference Types
Objects created using classes are reference types, and Swift doesn’t copy these objects when
you assign them to a new variable. Instead, a new reference to the object is created so that both
variables refer to the same object. Listing 5-4 shows the content of the ReferenceTypes.playground
file, in which I have reworked the Appointment example from the previous chapter to use a class as
the template instead of a struct.

Listing 5-4. The Contents of the ReferenceTypes.playground File

class Appointment {
 var name:String;
 var day:String;
 var place:String;

 init(name:String, day:String, place:String) {
 self.name = name; self.day = day; self.place = place;
 }

 func printDetails(label:String) {
 println("\(label) with \(name) on \(day) at \(place)");
 }
}

var beerMeeting = Appointment(name: "Bob", day: "Mon", place: "Joe's Bar");

var workMeeting = beerMeeting;
workMeeting.name = "Alice";
workMeeting.day = "Fri";
workMeeting.place = "Conference Rm 2";

beerMeeting.printDetails("Social");
workMeeting.printDetails("Work");

In addition to using the class keyword, I have added an initializer to the Appointment class. Swift
creates a default initializer for structs but not for classes. Aside from using a class to define the
Appointment type, this example contains the same code as Listing 5-3. The results shown in the
consoler, however, are different.

Social with Alice on Fri at Conference Rm 2
Work with Alice on Fri at Conference Rm 2

The problem here is that there is one Appointment object, and it is referred to by both the
workMeeting and beerMeeting variables, as shown in Figure 5-4.

85CHAPTER 5: The Prototype Pattern

Since there is only one Appointment object, the changes that I make to the stored properties via the
workMeeting variable are read back when I access the properties via the beerMeeting variable, which
is why I get the unexpected—and unhelpful—output in the console.

Implementing the NSCopying Protocol

Assigning new references to existing objects is an important part of object-oriented programming,
but it doesn’t help with the prototype pattern. To support cloning, the Foundation framework defines
the NSCopying protocol, which lets you specify how an object should be cloned. Listing 5-5 shows
how I updated the Appointment class to implement the NSCopying protocol.

Listing 5-5. Implementing the NSCopying Protocol in the ReferenceTypes.playground File

import Foundation

class Appointment : NSObject, NSCopying {
 var name:String;
 var day:String;
 var place:String;

 init(name:String, day:String, place:String) {
 self.name = name; self.day = day; self.place = place;
 }

 func printDetails(label:String) {
 println("\(label) with \(name) on \(day) at \(place)");
 }

 func copyWithZone(zone: NSZone) -> AnyObject {
 return Appointment(name:self.name, day:self.day, place:self.place);
 }
}

Figure 5-4. Assigning a reference object to a new variable

86 CHAPTER 5: The Prototype Pattern

var beerMeeting = Appointment(name: "Bob", day: "Mon", place: "Joe's Bar");
var workMeeting = beerMeeting.copy() as Appointment;

workMeeting.name = "Alice";
workMeeting.day = "Fri";
workMeeting.place = "Conference Rm 2";

beerMeeting.printDetails("Social");
workMeeting.printDetails("Work");

Tip You can implement the NSCopying protocol only on classes and not structs. Structs are always subject

to shallow copying.

The NSCopying protocol defines the copyWithZone method, which is called when the object is copied.
The mechanism that is used to copy the object is left to the class to implement, and in this case,
I create a new instance of the Appointment class using the stored property values from the current
object.

Tip You can ignore the NSZone argument when implementing the copyWithZone method.

To take advantage of the NSCopying protocol, I have to change the Appointment class so that it is
derived from NSObject, which defines the copy method. To copy an Appointment, I call the copy
method—and not copyWithZone—on the prototype, like this:

...
var workMeeting = beerMeeting.copy() as Appointment;
...

The copyWithZone method returns AnyObject, which means that I have to downcast the object
created by the copy method with the as keyword so that the workMeeting variable is correctly typed.

Caution Implementing the NSCopying protocol doesn’t change a reference type into a value type.

You must call the copy method to clone the prototype. If you simply assign the prototype to a new variable,

you will end up with a new reference to the prototype and not a new object.

87CHAPTER 5: The Prototype Pattern

Understanding Shallow and Deep Copying
An important aspect of the prototype pattern is whether objects are cloned using deep copying
or shallow copying, which relates to how stored properties that refer to other reference types are
handled. In Listing 5-6, I have defined a new class in the ReferenceTypes playground and added a
new property to the Appoinment class that refers to an instance of it.

Listing 5-6. Adding a Reference Type Property in the ReferenceTypes.playground File

import Foundation

class Location {
 var name:String;
 var address:String;

 init(name:String, address:String) {
 self.name = name; self.address = address;
 }
}

class Appointment : NSObject, NSCopying {
 var name:String;
 var day:String;
 var place:Location;

 init(name:String, day:String, place:Location) {
 self.name = name; self.day = day; self.place = place;
 }

 func printDetails(label:String) {
 println("\(label) with \(name) on \(day) at \(place.name), "
 + "\(place.address)");
 }

 func copyWithZone(zone: NSZone) -> AnyObject {
 return Appointment(name:self.name, day:self.day,
 place:self.place);
 }

}

var beerMeeting = Appointment(name: "Bob", day: "Mon",
 place: Location(name:"Joe's Bar", address: "123 Main St"));

var workMeeting = beerMeeting.copy() as Appointment;
workMeeting.name = "Alice";
workMeeting.day = "Fri";
workMeeting.place.name = "Conference Rm 2";
workMeeting.place.address = "Company HQ";

beerMeeting.printDetails("Social");
workMeeting.printDetails("Work");

88 CHAPTER 5: The Prototype Pattern

I have created a simple Location class and used it for the place property of the Appointment object.
Here is the output shown in the console:

Social with Bob on Mon at Conference Rm 2, Company HQ
Work with Alice on Fri at Conference Rm 2, Company HQ

Once again, the changes that I have applied through the workMeeting variable have affected the
stored values available through the workMeeting variable. This is because I changed the type for the
place property from a value type (String) to a reference type (Location) and my implementation of
the NSCopying protocol creates a new reference to the prototype’s Location object, as illustrated in
Figure 5-5.

Figure 5-5. The effect of copying references when cloning a prototype

This is known as a shallow copy, in which references to objects are copied, not the objects
themselves. As Figure 5-5 shows, there are two Appointment objects, but their place properties
refer to the same Location object. This is why the changes that I applied via the workMeeting.place
property affect the values I got through the beerMeeting.place property.

Tip Related to the NSCopying protocol is the @NSCopying property attribute, which can be applied to

stored properties. The @NSCopying attribute automatically invokes the copyWithZone method of objects

that are assigned to the annotated property, and I demonstrate its use in the “Examples of the Prototype

Pattern in Cocoa” section later in this chapter.

89CHAPTER 5: The Prototype Pattern

Implementing Deep Copying

Deep copying creates copies of all the objects referred to by the prototype, which in this case will
ensure that each Appointment object refers to a different Location object via its place property.
Listing 5-7 shows how I implemented deep copying in the ReferenceTypes playground.

Listing 5-7. Implementing Deep Copying in the ReferenceTypes.playground File

import Foundation

class Location : NSObject, NSCopying {
 var name:String;
 var address:String;

 init(name:String, address:String) {
 self.name = name; self.address = address;
 }

 func copyWithZone(zone: NSZone) -> AnyObject {
 return Location(name: self.name, address:self.address);
 }
}

class Appointment : NSObject, NSCopying {
 var name:String;
 var day:String;
 var place:Location;

 init(name:String, day:String, place:Location) {
 self.name = name; self.day = day; self.place = place;
 }

 func printDetails(label:String) {
 println("\(label) with \(name) on \(day) at \(place.name), "
 + "\(place.address)");
 }

 func copyWithZone(zone: NSZone) -> AnyObject {
 return Appointment(name:self.name, day:self.day,
 place:self.place.copy() as Location);
 }
}

var beerMeeting = Appointment(name: "Bob", day: "Mon",
 place: Location(name:"Joe's Bar", address: "123 Main St"));

var workMeeting = beerMeeting.copy() as Appointment;

90 CHAPTER 5: The Prototype Pattern

workMeeting.name = "Alice";
workMeeting.day = "Fri";
workMeeting.place.name = "Conference Rm 2";
workMeeting.place.address = "Company HQ";

beerMeeting.printDetails("Social");
workMeeting.printDetails("Work");

To create a deep copy, I have to implement the NSCopying protocol on the Location class, change
the base class to NSObject, and define the copyWithZone method. All the reference types that
you want to deep-copy must implement the NSCopying protocol, so you must repeat this process
throughout the classes referred to by your prototype, including those that are referred to via other
references.

CHOOSING SHALLOW OR DEEP COPYING

There are no hard-and-fast rules for choosing between shallow and deep copying, and the decision has to be made on

a class-by-class basis. You should consider three factors: the amount of work required to copy an object, the amount of

memory required to store the copy, and the way that the copied object will be used.

It is the last factor—how the copied object will be used—that is the most important. In the case of the Location class

in Listing 5-7, sharing objects between Appointment objects doesn’t make any sense because a change made to

the location of one appointment is unlikely to apply to the other appointments that refer to the same Location object,

especially when social and work appointments are mixed together.

It is possible that there is a group of related appointments that would benefit from a shared location. Imagine, as an

example, a daylong series of meetings that are all held in the same conference room—your application might benefit

from optimizing the creation of Location objects for related meetings. In such cases, you should balance the amount of

computation and memory required to create and store a new object against the complexity of managing references to a

shared object. In the Appointment/Location example, the Location objects are so easily created and require such

little storage (just two String values) that the overhead and complexity of having to work out when Location objects

can be shared and when they can’t just isn’t justified.

The best advice I can give is to think through the purpose of objects and figure out which ones are intended to be

common across all of the copies you create from the prototype. If you are unsure, then start with shallow copying

because it is the simplest to perform—it won’t always be the right technique, but it allows you to test the effect of

changes without having to implement the NSCopying protocol throughout your application.

As I noted earlier, implementing the NSCopying protocol doesn’t change a reference type into a value
type, so I must call the copy method to create a clone of the Appointment prototype’s Location
object, which I do in the copyWithZone method defined by the Appointment class.

...
func copyWithZone(zone: NSZone) -> AnyObject {
 return Appointment(name:self.name, day:self.day,
 place:self.place.copy() as Location);
}
...

91CHAPTER 5: The Prototype Pattern

These changes mean that the Appointment prototype and its Location object are cloned, as
illustrated by Figure 5-6.

Figure 5-6. The effect of deep copying

You can see the effect of the deep copy by looking at the console output from the example code,
shown here:

Social with Bob on Mon at Joe's Bar, 123 Main St
Work with Alice on Fri at Conference Rm 2, Company HQ

Since the Appointment objects have their own Location objects, the changes that I apply via the
workMeeting variable have no effect on the object accessed via the beerMeeting variable.

Copying Arrays
Swift arrays are implemented as structs, which makes them value types. When you assign an array
to a new variable, the array itself is copied along with any value types it contains. Reference types
contained in the array are shallow copied, such that the prototype array and the clone array will both
contain references to the same objects. Listing 5-8 shows the contents of the ArrayCopy.playground
file, which I created to provide a demonstration.

Listing 5-8. The Contents of the ArrayCopy.playground File

import Foundation

class Person : NSObject, NSCopying {
 var name:String;
 var country:String;

 init(name:String, country:String) {
 self.name = name; self.country = country;
 }

92 CHAPTER 5: The Prototype Pattern

 func copyWithZone(zone: NSZone) -> AnyObject {
 return Person(name: self.name, country: self.country);
 }
}

var people = [Person(name:"Joe", country:"France"),
 Person(name:"Bob", country:"USA")];
var otherpeople = people;

people[0].country = "UK";
println("Country: \(otherpeople[0].country)");

Tip As a performance optimization, Swift arrays are not copied until you modify them, known as

lazy copying. This isn’t something you need to worry about on a day-to-day basis because it happens

seamlessly behind the scenes, but it means that cloned arrays behave like reference types if you are just

reading the contents of the array and behave like value types once you make a modification.

I create an array called people containing two Person objects. I assign the array to a variable called
otherpeople and then modify the first object in the people array. Here is the console output, which
shows that the contents of the array are shallow copied, even though the array itself is a struct:

Country: UK

To deeply copy an array, you must inspect each item in the array and look for objects whose classes
are derived from NSObject and that implement the NSCopying protocol, as shown in Listing 5-9.

Listing 5-9. Deep Copying an Array in the ArrayCopy.playground File

import Foundation

class Person : NSObject, NSCopying {
 var name:String;
 var country:String;

 init(name:String, country:String) {
 self.name = name; self.country = country;
 }

 func copyWithZone(zone: NSZone) -> AnyObject {
 return Person(name: self.name, country: self.country);
 }
}

93CHAPTER 5: The Prototype Pattern

func deepCopy(data:[AnyObject]) -> [AnyObject] {
 return data.map({item -> AnyObject in
 if (item is NSCopying && item is NSObject) {
 return (item as NSObject).copy();
 } else {
 return item;
 }
 })
}

var people = [Person(name:"Joe", country:"France"),
 Person(name:"Bob", country:"USA")];
var otherpeople = deepCopy(people) as [Person];

people[0].country = "UK";
println("Country: \(otherpeople[0].country)");

Tip In the “Examples of the Prototype Pattern in Cocoa” section, I explain how to copy Cocoa arrays, which

are implemented by the NSArray and NSMutableArray classes. These classes behave differently to the

built-in Swift arrays I describe in this section, and understanding how they work can be useful when working

with Objective-C code.

I have defined a function called deepCopy that accepts an array and uses the map method to copy
the array. The closure that I pass to the map method checks to see whether the object can be deep-
copied and, if it can, calls the copy method. Other objects are added to the result array without
modification. As this console output shows, the deeply copied arrays no longer contain references to
the same objects:

Country: France

Understanding the Benefits of the Prototype Pattern
In the following sections, I describe the benefits that the prototype pattern provides. Some of them
address the problems I identified at the start of the chapter, but there are additional benefits that
arise from the way that objects are copied through the NSCopying protocol.

Avoiding Expensive Initializations
Using the NSCopying protocol allows objects to take responsibility for copying themselves, which
means that cloning can avoid expensive initialization operations. At the start of the chapter, I used
the Initialization.playground file to define a Sum class that generated an array of cached results in
its initializer, which I have repeated in Listing 5-10.

94 CHAPTER 5: The Prototype Pattern

Listing 5-10. The Contents of the Initialization.playground File

class Sum {
 let resultsCache: [[Int]];
 var firstValue:Int;
 var secondValue:Int;

 init(first:Int, second:Int) {
 resultsCache = [[Int]](count: 10, repeatedValue:
 [Int](count:10, repeatedValue: 0));
 for i in 0..<10 {
 for j in 0..<10 {
 resultsCache[i][j] = i + j;
 }
 }
 self.firstValue = first;
 self.secondValue = second;
 }

 var Result:Int {
 get {
 return firstValue < resultsCache.count
 && secondValue < resultsCache[firstValue].count
 ? resultsCache[firstValue][secondValue]
 : firstValue + secondValue;
 }
 }
}

var calc1 = Sum(first:0, second: 9).Result;
var calc2 = Sum(first:3, second: 8).Result;

println("Calc1: \(calc1) Calc2: \(calc2)");

Each time I create a Sum object, I incur the cost of allocating and populating the two-dimensional
resultsCache array. By implementing the NSCopying protocol, I can apply the prototype pattern and
selectively clone the object in the copyWithZone method, as shown in Listing 5-11.

Listing 5-11. Applying the Prototype Pattern in the Initialization.playground File

import Foundation

class Sum : NSObject, NSCopying {
 let resultsCache: [[Int]];
 var firstValue:Int;
 var secondValue:Int;

 init(first:Int, second:Int) {
 resultsCache = [[Int]](count: 10, repeatedValue:
 [Int](count:10, repeatedValue: 0));

95CHAPTER 5: The Prototype Pattern

 for i in 0..<10 {
 for j in 0..<10 {
 resultsCache[i][j] = i + j;
 }
 }
 self.firstValue = first;
 self.secondValue = second;
 }

 private init(first:Int, second:Int, cache:[[Int]]) {
 self.firstValue = first;
 self.secondValue = second;
 resultsCache = cache;
 }

 var Result:Int {
 get {
 return firstValue < resultsCache.count
 && secondValue < resultsCache[firstValue].count
 ? resultsCache[firstValue][secondValue]
 : firstValue + secondValue;
 }
 }

 func copyWithZone(zone: NSZone) -> AnyObject {
 return Sum(first:self.firstValue,
 second: self.secondValue,
 cache: self.resultsCache);
 }
}

var prototype = Sum(first:0, second:9);
var calc1 = prototype.Result;
var clone = prototype.copy() as Sum;
clone.firstValue = 3; clone.secondValue = 8;
var calc2 = clone.Result;

println("Calc1: \(calc1) Calc2: \(calc2)");

I changed the class declaration so that the base class is NSObject (which provides the copy method)
and implemented the NSCopying protocol. To support cloning, I have added a new initializer that
accepts cached data as an argument rather than generating the data itself. I have annotated the
initializer with the private keyword so that I can use it in the copyWithZone function to clone an
object using the cached data generated by the prototype but prevent other components from
providing their own results data.

96 CHAPTER 5: The Prototype Pattern

Separating Object Creation from Object Use
As I explained earlier in the chapter, three pieces of knowledge are required to create an object from
its template.

The template that is associated with the object	
The initializer that must be called	
The names and types of the initializer arguments	

The prototype pattern allows components to create new objects from the prototype without needing
any information about its template, which means you can change the class or struct without having
to change the components that need to create instances of it. Put another way, you can minimize
the number of dependencies on the templates you define by separating the way that objects are
created from the way objects are used. Components that follow the prototype pattern do not need
to know the type of the prototype objects they clone, which makes it possible to limit the amount of
knowledge about subclasses in components that need to create new objects. This is a benefit that
causes some confusion, so I will build up the example in stages. Listing 5-12 shows the contents of
the Hiding.playground file, which I created for this example.

Listing 5-12. The Contents of the Hiding.playground File

import Foundation

class Message {
 var to:String;
 var subject:String;

 init(to:String, subject:String) {
 self.to = to; self.subject = subject;
 }
}

class MessageLogger {
 var messages:[Message] = [];

 func logMessage(msg:Message) {
 messages.append(msg);
 }

 func processMessages(callback:Message -> Void) {
 for msg in messages {
 callback(msg);
 }
 }
}

var logger = MessageLogger();

var message = Message(to: "Joe", subject: "Hello");
logger.logMessage(message);

97CHAPTER 5: The Prototype Pattern

message.to = "Bob";
message.subject = "Free for dinner?";
logger.logMessage(message);

logger.processMessages({msg -> Void in
 println("Message - To: \(msg.to) Subject: \(msg.subject)");
});

I have defined a Message class that has to and subject stored properties and a MessageLogger class
that stores Message objects passed to its logMessage method and processes the stored objects using
a closure passed to its processMessages method.

The problems in this example start with the fact that I am reusing Message objects, which is a
common optimization—albeit for more complex types. (Ignore, if you will, the benefit of reusing
objects; it is an optimization that is often applied almost without thought, even when the cost of
creating objects is trivial.)

...
message.to = "Bob";
message.subject = "Free for dinner?";
logger.logMessage(message);
...

The effect of reusing the Message objects is that the array defined by the MessageLogger class is filled
with references to the same object. You can see the effect of this problem in the console output,
which is generated by the closure I pass to the processMessages method.

Message - To: Bob Subject: Free for dinner?
Message - To: Bob Subject: Free for dinner?

(Not Really) Solving the Problem

If you were unfamiliar with the prototype pattern or if you don’t like the way that the NSCopying
protocol works, you might be tempted to modify the MessageLogger class so that it creates its own
Message objects using the class initializer, as shown in Listing 5-13.

Listing 5-13. Modifying the MessageLogger Class in the Hiding.playground File

...
class MessageLogger {
 var messages:[Message] = [];

 func logMessage(msg:Message) {
 messages.append(Message(to: msg.to, subject: msg.subject));
 }

98 CHAPTER 5: The Prototype Pattern

 func processMessages(callback:Message -> Void) {
 for msg in messages {
 callback(msg);
 }
 }
}
...

Tip I can’t solve this problem by just storing the data values because the closure passed to the process

expects to be dealing with Message objects. And, as you will learn shortly, there is a more serious underlying

problem to be solved that extracting the data values would not solve.

This approach solves the problem, as the following console output shows:

Message - To: Joe Subject: Hello
Message - To: Bob Subject: Free for dinner?

Revealing the Underlying Problem

The immediate problem has been solved, but I have just stored up trouble for the future because
the MessageLogger class is now dependent on being able to create Message objects by invoking
the Message class initializer. My solution falls apart when I subclass Message to produce a more
specialized class, as shown in Listing 5-14.

Listing 5-14. Adding a Subclass in the Hiding.playground File

import Foundation

class Message {
 var to:String;
 var subject:String;

 init(to:String, subject:String) {
 self.to = to; self.subject = subject;
 }
}

class DetailedMessage : Message {
 var from:String;

 init(to: String, subject: String, from:String) {
 self.from = from;
 super.init(to: to, subject: subject);
 }
}

99CHAPTER 5: The Prototype Pattern

class MessageLogger {
 var messages:[Message] = [];

 func logMessage(msg:Message) {
 messages.append(Message(to: msg.to, subject: msg.subject));
 }

 func processMessages(callback:Message -> Void) {
 for msg in messages {
 callback(msg);
 }
 }
}

var logger = MessageLogger();

var message = Message(to: "Joe", subject: "Hello");
logger.logMessage(message);

message.to = "Bob";
message.subject = "Free for dinner?";
logger.logMessage(message);

logger.logMessage(DetailedMessage(to: "Alice", subject: "Hi!", from: "Joe"));

logger.processMessages({msg -> Void in
 if let detailed = msg as? DetailedMessage {
 println("Detailed Message - To: \(detailed.to) From: \(detailed.from)"
 + " Subject: \(detailed.subject)");
 } else {
 println("Message - To: \(msg.to) Subject: \(msg.subject)");
 }
});

I have subclassed Message to define the DetailedMessage class, and I created an instance of the
subclass so that I can pass it to the logMessage method defined by MessageLogger. I have also
revised the closure that I pass to the processMessages method so that it writes the additional
property stored by DetailedMessage objects.

The problem is that the MessageLogger class receives Message and DetailedMessage objects, but
it only adds Message objects to its storage array. When the processMessage method is called, only
to and subject properties are displayed, and the additional detail contained in the from property is
forever lost. Here is the console output from Listing 5-14:

Message - To: Joe Subject: Hello
Message - To: Bob Subject: Free for dinner?
Message - To: Alice Subject: Hi!

100 CHAPTER 5: The Prototype Pattern

(Not Really) Solving the Underlying Problem

Without using the prototype pattern, the obvious way to solve the second problem is to make the
MessageLogger class aware that there are Message and DetailedMessage classes and how to create
each of them, as shown in Listing 5-15.

Listing 5-15. Modifying the MessageLogger Class in the Hiding.playground File

...
class MessageLogger {
 var messages:[Message] = [];

 func logMessage(msg:Message) {
 if let detailed = msg as? DetailedMessage {
 messages.append(DetailedMessage(to: detailed.to,
 subject: detailed.subject, from: detailed.from));
 } else {
 messages.append(Message(to: msg.to, subject: msg.subject));
 }
 }

 func processMessages(callback:Message -> Void) {
 for msg in messages {
 callback(msg);
 }
 }
}
...

This solves the immediate problem by increasing the amount of knowledge that the MessageLogger
class has about the Message class and its subclasses. I will need to update the logMessage class
every time that I create a new subclass or when I change any of the initializers, which is an
unwelcome increase in the work required to maintain the code.

Applying the Prototype Pattern

I can create a better approach by implementing the NSCopying protocol and using the prototype
pattern to clone the objects handled by the MessageLogger class, as shown in Listing 5-16.

Listing 5-16. Applying the Prototype Pattern in the Hiding.playground File

import Foundation

class Message : NSObject, NSCopying {
 var to:String;
 var subject:String;

 init(to:String, subject:String) {
 self.to = to; self.subject = subject;
 }

101CHAPTER 5: The Prototype Pattern

 func copyWithZone(zone: NSZone) -> AnyObject {
 return Message(to: self.to, subject: self.subject);
 }
}

class DetailedMessage : Message {
 var from:String;

 init(to: String, subject: String, from:String) {
 self.from = from;
 super.init(to: to, subject: subject);
 }

 override func copyWithZone(zone: NSZone) -> AnyObject {
 return DetailedMessage(to: self.to,
 subject: self.subject, from: self.from);
 }
}

class MessageLogger {
 var messages:[Message] = [];

 func logMessage(msg:Message) {
 messages.append(msg.copy() as Message);
 }

 func processMessages(callback:Message -> Void) {
 for msg in messages {
 callback(msg);
 }
 }
}

var logger = MessageLogger();

var message = Message(to: "Joe", subject: "Hello");
logger.logMessage(message);

message.to = "Bob";
message.subject = "Free for dinner?";
logger.logMessage(message);

logger.logMessage(DetailedMessage(to: "Alice", subject: "Hi!", from: "Joe"));

logger.processMessages({msg -> Void in
 if let detailed = msg as? DetailedMessage {
 println("Detailed Message - To: \(detailed.to) From: \(detailed.from)"
 + " Subject: \(detailed.subject)");
 } else {
 println("Message - To: \(msg.to) Subject: \(msg.subject)");
 }
});

102 CHAPTER 5: The Prototype Pattern

I have changed the base type for the Message class to NSObject and implemented the copyWithZone
method in the Message and DetailedMessage classes. This allows me to clone the objects passed to
the logMessage method without needing to worry about subclasses or initializers.

Tip Notice that I don’t have to implement the NSCopying protocol in the DetailedMessage class

because it is inherited from the Message class. All I need to do is override the copyWithZone method.

The output shown in the console shows that applying the prototype pattern ensures that the
additional property defined by the DetailedMessage class isn’t lost.

Message - To: Joe Subject: Hello
Message - To: Bob Subject: Free for dinner?
Detailed Message - To: Alice From: Joe Subject: Hi!

The advantage of applying the prototype pattern is that objects can be cloned as long as they
were originally created from the Message class or one of its subclasses; creating new subclasses or
modifying the class initializers doesn’t require any changes to the MessageLogger class, which makes
the code more flexible and easier to maintain.

Tip With a little extra effort, I can break the dependency on the Message class entirely and create a generic

class that can clone objects. See the “Applying the Pattern to the SportsStore Application” section for details.

Understanding the Pitfalls of the Prototype Pattern
There are a few pitfalls to avoid when using the prototype pattern, which I describe in the sections
that follow.

Understanding the Deep vs. Shallow Pitfall
The first pitfall to avoid is performing a shallow copy when a deep copy is required. When cloning
an object, think carefully about whether you need to create a completely separate copy or whether
a simple reference is sufficient. Creating references is quicker and simpler than performing deep
copies, but it does mean that two or more references will point to the same object.

Also, don’t forget that you need to consider the entire hierarchy of objects that you are cloning and
not just the one on which you call the copy method. For each variable that points to a reference type,
you must make a shallow versus deep decision. See the “Implementing Deep Copying” section
earlier in this chapter for details and examples.

103CHAPTER 5: The Prototype Pattern

Understanding the Exposure Distortion Pitfall
A common pitfall is to enforce the existence of a single prototype objects from which all clones
are created. This can lead to a distorted code structure, where the prototype is exposed to every
component in the app, just in case copies are required. Don’t be afraid to have multiple prototypes in
each logical section of your app, and don’t forget that you can make copies from clones.

Tip Some proponents of the prototype pattern believe that you shouldn’t use the prototype object exception

to create clones. I don’t agree with this restriction and believe that there is no harm in cloning any object

that supports the prototype pattern, including objects that are being used to perform work and objects that

are clones.

Understanding the Nonstandard Protocol Pitfall
The standard iOS way to implement the prototype pattern is by implementing the NSCopying protocol
and to ensure that the prototype’s base class is NSObject. This NSCopying protocol isn’t especially
Swift-friendly, so you may be tempted to create a more elegant solution by defining your own
protocol or by defining copy constructors (which are initializers that accept an instance of the class
and clone it).

Either approach will work, but one of the benefits of NSCopying is that it is well understood and used
in the iOS frameworks. Departing from the standard protocol will limit the scope of the prototype
pattern to your custom classes and makes it difficult to work with third-party code that expects the
NSCopying protocol to be adopted. My advice is to stick with NSObject and NSCopying. They may be
slightly awkward, but they work, and they are widely used.

Examples of the Prototype Pattern in Cocoa
The prototype pattern is used throughout Cocoa, especially in the Foundation framework, where you
will find many classes that implement NSCopying. I describe one useful instance in the next section
and explain how you can make using the NSCopying protocol more Swift-like by using a property
attribute.

Using Cocoa Arrays
Of particular interest are the NSArray class and its subclass NSMutableArray. You will often receive
data from Objective-C modules using these classes, and they follow a different path than the
built-in Swift arrays. Listing 5-17 shows the contents of the NSArray.playground file, which I created
to provide a demonstration.

104 CHAPTER 5: The Prototype Pattern

Listing 5-17. The Contents of the NSArray.playground File

import Foundation

class Person : NSObject, NSCopying {
 var name:String
 var country: String

 init(name:String, country:String) {
 self.name = name; self.country = country;
 }

 func copyWithZone(zone: NSZone) -> AnyObject {
 return Person(name: self.name, country: self.country);
 }
}

var data = NSMutableArray(objects: 10, "iOS", Person(name:"Joe", country:"USA"));
var copiedData = data;

data[0] = 20;
data[1] = "MacOS";
(data[2] as Person).name = "Alice"

println("Identity: \(data === copiedData)");
println("0: \(copiedData[0]) 1: \(copiedData[1]) 2: \(copiedData[2].name)");

Tip The NSArray class creates an immutable array, which cannot be modified. The NSMutableArray,

which is a subclass of NSArray, does allow modifications. I have used the NSMutableArray class because

I want to demonstrate how arrays and their contents are copied.

I have created an NSMutableArray object that contains an Int, a String, and a Person object, which
I create from the Person class I defined in the playground and which implements the NSCopying
protocol. (NSArray and NSMutableArray are not strongly typed, unlike the Swift built-in arrays.)

I assign the array to a new variable called copiedData and then modify each of the data array values.
To complete the example, I use the Swift identity operator to see whether the data and copiedData
variables reference the same object and print out the items in the copiedData array. Here is the
console output produced by the playground:

Identity: true
0: 20 1: MacOS 2: Alice

105CHAPTER 5: The Prototype Pattern

Swift arrays are implemented as structs, which means that assigning a Swift array to a new variable
creates a new array and duplicates its value objects. But that is not what has happened here.
Instead, both the data and copiedData variables reference the same NSMutableArray object, and
changing values in one of the variables affects the data obtained through both of them. NSArray and
NSMutableArray are both reference types, which produces a different behavior than when using the
built-in Swift arrays.

Shallow Copying a Cocoa Array

I can apply the prototype pattern and duplicate the array, which performs a shallow copy. In addition
to the copy method that I have been using throughout this chapter, there is another prototype-related
method to consider when working with Foundation classes: mutableCopy. Table 5-2 describes these
methods.

Table 5-2. The Prototype Methods Defined by the NSArray and NSMutableArray Classes

Name Description

copy() Returns an instance of NSArray, which cannot be modified

mutableCopy() Returns an instance of NSMutableArray, which allows modifications

These methods represent a clash between the way that Swift handles mutable and immutable
arrays—which is dealt with by using the let and var keywords—and the approach taken by Cocoa
and Objective-C. Listing 5-18 shows how I create a clone of the NSMutableArray object by calling the
mutableCopy method, producing another NSAMutableArray as the clone.

Listing 5-18. Cloning a Cocoa Array in the NSArray.playground File

...
var data = NSMutableArray(objects: 10, "iOS", Person(name:"Joe", country:"USA"));
var copiedData = data.mutableCopy() as NSArray;
...

The effect of the cloning operation is that I have two separate NSMutableArray objects. The contents
of the array are shallow-copied, which means that the value types are duplicated but that both
arrays reference the same Person object, which can be seen in the console output.

Identity: false
0: 10 1: iOS 2: Alice

Creating a Deep Copy of a Cocoa Array

The NSArray and NSMutable array classes define copy constructors that duplicate the array and,
optionally, perform a deep copy on the contents of the prototype array. I advised against copy
constructors when I described the potential pitfalls of the prototype pattern, but they are a common
Objective-C technique, and you will find them in key Cocoa classes. Listing 5-19 shows how I
performed a deep copy on the data array in the NSArray.playground file.

106 CHAPTER 5: The Prototype Pattern

Listing 5-19. Performing a Deep Copy in the NSArray.playground File

...
var data = NSMutableArray(objects: 10, "iOS", Person(name:"Joe", country:"USA"));
var copiedData = NSMutableArray(array: data, copyItems: true);
...

The arguments to the copy constructor are the prototype array and a Bool value that specifies
whether objects that implement the NSCopyable protocol are cloned. I have specified true for the
copyItems argument, which ensures that I end up with a separate Person object in each array, as
confirmed by the console output.

Identity: false
0: 10 1: iOS 2: Joe

ONE-LEVEL DEEP COPIES AND THE NSCODING PROTOCOL

The copy and mutableCopy methods that I described in Table 5-2 perform a top-level deep copy, which means

that the array class takes responsibility for cloning only the objects that it contains and not the nested objects. Some

programmers don’t consider this to be a true deep copy because it doesn’t create clones of any objects that the array

may refer to. As an alternative, you will sometimes see the NSCoding protocol recommended, which does force a

complete deep copy.

There are two pitfalls here. The first is that the NSCoding protocol is responsible for serializing and deserializing objects,

and using it to apply the prototype pattern is an expensive operation—the prototype has to be rendered into a serialized

form and then restored and assigned to a new variable. This is a big job for large, complex objects with lots of nested

references.

The more serious problem is that using NSCoding assumes that the programmer performing the deep copy knows more

about the structure, purpose, and implementation of the objects than the programmer who wrote the original classes.

Forcing a deep copy is often a bad idea because the private implementations of the objects that are being serialized

may make assumptions about references being shared, and that can cause odd and unexpected defects when separate

instances are created.

My advice is to trust the implementation of the copyWithZone method of the objects you are cloning to be the

authoritative source of knowledge about how an object should be cloned and avoid imposing your own views without a

compelling reason and a substantial amount of testing.

Using the NSCopying Property Attribute
Swift supports changing the behavior of properties by decorating them with attributes. One such
attribute is @NSCopying, which can be applied to any stored property in order to synthesize a setter that
calls the copy method for objects derived from NSObject and that implement the NSCopying protocol.
The value used to call the property setter is treated as the prototype and is cloned in order to obtain a
value to be stored. Listing 5-20 shows the contents of the NSCopyingAttribute.playground file, which I
created to provide a demonstration.

107CHAPTER 5: The Prototype Pattern

Listing 5-20. The Contents of the NSCopyingAttribute.playground File

import Foundation

class LogItem {
 var from:String?;
 @NSCopying var data:NSArray?
}

var dataArray = NSMutableArray(array: [1, 2, 3, 4]);

var logitem = LogItem()
logitem.from = "Alice";
logitem.data = dataArray;

dataArray[1] = 10;
println("Value: \(logitem.data![1])");

In this example, I have defined a class called LogItem that has optional from and data variables.
I have applied the @NSCopying attribute to the data variable so that the array value is shallow-copied
when the property is set.

To demonstrate that the array is copied when the property is set, I create an NSMutableArray object
that I use to set the data property of the LogItem object. I then modify one of the items in the array
and print out the corresponding value from the array assigned to the data property of the LogItem
object. The playground produces the following console output, confirming that the prototype pattern
has been applied and the array was copied:

Value: 2

There are some limitations to the @NSCopying attribute. The first is that values set during initialization
are not cloned, which is why I defined the data property of the LogItem class as optional so that I
don’t have to set values for them in an initializer.

The other limitation is that the @NSCopying attribute will call the copy method, even when the object
supports the mutableCopy method. This means that my NSMutableArray object was converted into an
immutable NSArray object when I assigned it to the data property of the LogItem method, preventing
me from performing further modifications.

Applying the Pattern to the SportsStore App
In this section, I will apply the prototype pattern to the SportsStore application in order to put the
pattern into a broader context. I am going to create a variation of one of the classes I introduced
earlier to log changes to the Product objects, which I will do by writing a message to the debug
console.

108 CHAPTER 5: The Prototype Pattern

Preparing the Example Application
No preparation is required for this chapter, and I will pick up the SportsStore application as I left it in
Chapter 4.

Tip You can download the SportsStore project from Apress.com, along with all of the source code for

this book.

Implementing NSCopying in the Product Class
The first step is to update the Product class that I created in Chapter 4 so that it can be cloned. To
do this, I must set the base class to NSObject and implement the NSCopying protocol, but there are
some wrinkles to be worked around, as Listing 5-21 illustrates.

Listing 5-21. Implementing the NSCopying Protocol in the Product.swift File

import Foundation

class Product : NSObject, NSCopying {

 private(set) var name:String;
 private(set) var productDescription:String;
 private(set) var category:String;
 private var stockLevelBackingValue:Int = 0;
 private var priceBackingValue:Double = 0;

 init(name:String, description:String, category:String, price:Double,
 stockLevel:Int) {
 self.name = name;
 self.productDescription = description;
 self.category = category;

 super.init();

 self.price = price;
 self.stockLevel = stockLevel;
 }

 var stockLevel:Int {
 get { return stockLevelBackingValue;}
 set { stockLevelBackingValue = max(0, newValue);}
 }

 private(set) var price:Double {
 get { return priceBackingValue;}
 set { priceBackingValue = max(1, newValue);}
 }

https://Apress.com

109CHAPTER 5: The Prototype Pattern

 var stockValue:Double {
 get {
 return price * Double(stockLevel);
 }
 }

 func copyWithZone(zone: NSZone) -> AnyObject {
 return Product(name: self.name, description: self.description,
 category: self.category, price: self.price,
 stockLevel: self.stockLevel);
 }
}

The changes in Listing 5-21 highlight two common issues that arise when support for cloning is
applied retrospectively to an existing class. The first is that I have had to change the name of the
stored property that describes the product because the NSObject class defines a method called
description. I change the name of the property as follows:

...
private(set) var productDescription:String;
...

I have not used this property in the application yet, so no additional changes are required. In a real
application, some judicious refactoring would be required. This isn’t the end of the world, but it is
preferable to apply the prototype pattern as early as possible in the development process to avoid
this kind of issue.

The second issue is also caused by the change to the NSObject base class. Initializers of subclasses
invoke the initializer of their superclass, but this must be done after the stored properties have been
set and before the computed properties are used. It is for this reason that I have called super.init in
the middle of the Product class initializer.

Creating the Logger Class
I need a way of tracking the changes that are made to the Product objects in the application. I added
a file called Logger.swift to the project, the contents of which are shown in Listing 5-22.

Listing 5-22. The Contents of the Logger.swift File

import Foundation

class Logger<T where T:NSObject, T:NSCopying> {
 var dataItems:[T] = [];
 var callback:(T) -> Void;

 init(callback:T -> Void) {
 self.callback = callback;
 }

110 CHAPTER 5: The Prototype Pattern

 func logItem(item:T) {
 dataItems.append(item.copy() as T);
 callback(item);
 }

 func processItems(callback:T -> Void) {
 for item in dataItems {
 callback(item);
 }
 }
}

This is a generic version of the class I used in the “Implementing the Prototype Pattern” section. I
have applied a constraint to the generic type parameter that ensures that the Logger class can be
used to store only objects that are derived from NSObject and implement the NSCopying protocol.
The Logger class defines an initializer that takes a callback function that is passed new items as
they are logged. This allows me to dispatch details of new items in a rough and ready way, but I’ll
demonstrate a better approach in Chapter 22, when I describe the observer pattern.

Logging Changes in the View Controller
I can now log changes by creating an instance of the Logger class and using it to store Product
objects when the user specifies a different stock level. Since I am still working with an unstructured
app, these changes go into the ViewController.swift file, as shown in Listing 5-23. (I have omitted
a lot of the content of this file from the listing because the changes are small but spread throughout
the file.) The callback function I have provided as the Logger initializer argument writes out the name
and stock level of the changed product.

Listing 5-23. Logging Product Changes in the ViewController.swift File

import UIKit

// ...ProductTableCell class omitted for brevity...

var handler = { (p:Product) in
 println("Change: \(p.name) \(p.stockLevel) items in stock");
};

class ViewController: UIViewController, UITableViewDataSource {

 @IBOutlet weak var totalStockLabel: UILabel!
 @IBOutlet weak var tableView: UITableView!

 let logger = Logger<Product>(callback: handler);
 var products = [
 Product(name:"Kayak", description:"A boat for one person",
 category:"Watersports", price:275.0, stockLevel:10),

 // ...other products omitted for brevity...

111CHAPTER 5: The Prototype Pattern

 Product(name:"Bling-Bling King",
 description:"Gold-plated, diamond-studded King",
 category:"Chess", price:1200.0, stockLevel:4)];

 // ...methods omitted for brevity...

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let product = products[indexPath.row];
 let cell = tableView.dequeueReusableCellWithIdentifier("ProductCell")
 as ProductTableCell;

 cell.product = products[indexPath.row];
 cell.nameLabel.text = product.name;
 cell.descriptionLabel.text = product.productDescription;
 cell.stockStepper.value = Double(product.stockLevel);
 cell.stockField.text = String(product.stockLevel);
 return cell;
 }

 @IBAction func stockLevelDidChange(sender: AnyObject) {
 if var currentCell = sender as? UIView {
 while (true) {
 currentCell = currentCell.superview!;
 if let cell = currentCell as? ProductTableCell {
 if let product = cell.product? {
 if let stepper = sender as? UIStepper {
 product.stockLevel = Int(stepper.value);
 } else if let textfield = sender as? UITextField {
 if let newValue = textfield.text.toInt()? {
 product.stockLevel = newValue;
 }
 }
 cell.stockStepper.value = Double(product.stockLevel);
 cell.stockField.text = String(product.stockLevel);
 logger.logItem(product);
 }
 break;
 }
 }
 displayStockTotal();
 }

 }
 // ...methods omitted for brevity...
}

Note In Listing 5-23, I have defined the callback closure outside the ViewController class. As I write

this, there is a bug in the Swift compiler that will not allow this kind of closure to be defined inline.

112 CHAPTER 5: The Prototype Pattern

Testing the Changes
All that remains is to test the changes. Start the application and make changes to the stock levels
of the products displayed. For each change, you will see a message written to the Xcode debug
console, similar to the following:

Change: Kayak 11 items in stock
Change: Lifejacket 15 items in stock
Change: Soccer Ball 31 items in stock
Change: Corner Flags 2 items in stock

It is worth taking a moment to consider the effect of the changes that I made. The challenge in
creating a generic Logger class is that it is passed objects that may change in the future, but by
implementing the prototype pattern, the Logger class is able to create clones without knowing
anything about the nature of the objects other than their base class and—implicitly—their
implementation of the NSCopying protocol.

Tip Select the Debug Area ➤ Activate Console from the Xcode View menu if the console isn’t visible.

Decoupling the copying of objects from the class that defines them means I can change the Product
initializer or create and use subclasses without needing to make corresponding changes in the
Logger class. The overall effect is to simplify the code in the app and make it easier to extend and
maintain over time.

Summary
In this chapter, I described the prototype pattern and demonstrated how it can be used to create
new objects without having knowledge of the class that is used to define them. I explained how
objects can be subjected to deep and shallow copying, and I explained the most common pitfalls
that are associated with that process. In the next chapter, I describe the singleton pattern, which
ensures that only one object of a given type exists in the application.

113

Chapter 6
The Singleton Pattern

I describe the singleton pattern in this chapter, which ensures that only one object of a given type
exists in the application. This is one of the most commonly used design patterns because it solves
problems that arise often, either because you need an object to represent a real-world resource
or because you want to ensure that all activity of a certain kind—such as logging—is handled in a
consistent way. Table 6-1 puts the singleton pattern in context.

Table 6-1. Putting the Singleton Pattern into Context

Question Answer

What is it? The singleton pattern ensures that only one object of a given type exists in the

application.

What are the benefits? The singleton pattern can be used to manage objects that represent real-world

resources or to encapsulate a shared resource.

When should you use this

pattern?

The singleton pattern should be used when creating further objects doesn’t

increase the number of real-world resources available or when you want to

consolidate an activity such as logging.

When should you avoid

this pattern?

The singleton pattern isn’t useful if there are not multiple components that require

access to a shared resource or if there are no objects that represent real-world

resources in the application.

How do you know when

you have implemented the

pattern correctly?

The pattern has been correctly implemented when there is only one instance

of a given type and when that instance cannot be copied and cloned and when

further instances cannot be created.

Are there any common

pitfalls?

The main pitfalls are using reference types (which can be copied) or classes that

implement the NSCopying protocol (which can be cloned). The singleton pattern

usually requires some protections against concurrent use, which is a common

source of problems.

Are there any related

patterns?

The object pool pattern, which I describe in Chapter 7, manages a fixed number

of objects rather than the single object handled by the singleton pattern.

114 CHAPTER 6: The Singleton Pattern

Preparing the Example Project
I created an OS X Command Line Tool project called Singleton for this chapter, following the same
process I described in Chapter 2. No further preparation is required.

Understanding the Problem That the Pattern Solves
The singleton pattern ensures that only one object of a given type exists and that all components
that depend on that object use the same instance. This is different from the prototype pattern I
described in Chapter 5, which makes it easy to make copies of objects. By contrast, the singleton
pattern permits the existence of just one object and prevents it from being copied.

The problem addressed by the singleton pattern arises when you have an object that you don’t want
duplicated throughout an application, either because it represents a real-world resource (such as a
printer or server) or because you want to consolidate a set of related activities in one place. When it
comes to real-world resources, the ability to create new objects that represent printers or servers is
nonsensical because creating an object doesn’t magically put new hardware into place.

Even for more abstract representations, being able to create multiple objects can be a problem.
Listing 6-1 shows the contents of the BackupServer.swift file, which I added to the Singleton
project.

Listing 6-1. The Contents of the BackupServer.swift File

import Foundation

class DataItem {

 enum ItemType : String {
 case Email = "Email Address";
 case Phone = "Telephone Number";
 case Card = "Credit Card Number";
 }

 var type:ItemType;
 var data:String;

 init(type:ItemType, data:String) {
 self.type = type; self.data = data;
 }
}

class BackupServer {
 let name:String;
 private var data = [DataItem]();

 init(name:String) {
 self.name = name;
 }

115CHAPTER 6: The Singleton Pattern

 func backup(item:DataItem) {
 data.append(item);
 }

 func getData() -> [DataItem]{
 return data;
 }
}

I have defined a BackupServer class to represent a server that archives data items, which are
represented by instances of the DataItem class. I don’t need to get into the details of creating
archives to demonstrate the singleton pattern, so the backup method defined by the BackupServer
class just appends its DataItem object to a stored instance property called data, which can later be
accessed through the getData method. In Listing 6-2, you can see how I modified the main.swift file
to use the BackupServer class.

Listing 6-2. Using the BackupServer Class in the main.swift File

var server = BackupServer(name:"Server#1");
server.backup(DataItem(type: DataItem.ItemType.Email, data: "joe@example.com"));
server.backup(DataItem(type: DataItem.ItemType.Phone, data: "555-123-1133"));

var otherServer = BackupServer(name:"Server#2");
otherServer.backup(DataItem(type: DataItem.ItemType.Email, data: "bob@example.com"));

The code in the project compiles and can be executed, but it doesn’t make any practical sense.
If the purpose of a BackupServer object is to represent a real-world backup server, then what does
it mean when anyone can create a new object and start calling the backup method? Real servers
are not provisioned just because a programmer creates a new object (although I admit that I like
the sound of that), so the outcome is that some of the data that was backed up in Listing 6-2 won’t
arrive at a real server and won’t be backed up. Even in the world of cloud servers, creating a new
server instance generally requires more than instantiating a new Swift object.

Put another way, the code in Listing 6-2 doesn’t make sense because an object that represents
a real-world server can work only when it is associated with a server that exists and has been
configured beforehand—and that means carefully controlling the creation of the object that does
correspond to the real-world servers and preventing any other instances from being created.

Tip There is no output produced from the example project at the moment.

Understanding the Shared Resource Encapsulation Problem
Not all of the objects that can benefit from the singleton pattern represent real-world objects. There
will be occasions where you want to create an object that can be used by all of the components in
an application in a simple and consistent way. To demonstrate, Listing 6-3 shows the contents of the
Logger.swift file, which I added to the example project.

116 CHAPTER 6: The Singleton Pattern

Listing 6-3. The Contents of the Logger.swift File

class Logger {
 private var data = [String]()

 func log(msg:String) {
 data.append(msg);
 }

 func printLog() {
 for msg in data {
 println("Log: \(msg)");
 }
 }
}

This is a simple logging class of the kind I use to debug problems in my own projects. I like
the modern debuggers like the one that comes with Xcode, but I often fall back on old-school
techniques like this because you can learn a lot just by looking at the order in which messages
appear in the console.

The Logger class defines a log method that accepts String message arguments and appends them
to an array. The printLog method is called to display the messages, which it does by calling the
global println function. Listing 6-4 shows how I updated the main.swift file to log details about the
data items I back up.

Listing 6-4. Using the Logger Class in the main.swift File

let logger = Logger();

var server = BackupServer(name:"Server#1");
server.backup(DataItem(type: DataItem.ItemType.Email, data: "joe@example.com"));
server.backup(DataItem(type: DataItem.ItemType.Phone, data: "555-123-1133"));

logger.log("Backed up 2 items to \(server.name)");

var otherServer = BackupServer(name:"Server#2");
otherServer.backup(DataItem(type: DataItem.ItemType.Email, data: "bob@example.com"));
logger.log("Backed up 1 item to \(otherServer.name)");

logger.printLog();

If you run the application, you will see this output shown in the console:

Log: Backed up 2 items to Server#1
Log: Backed up 1 item to Server#2

That all works as expected: I log some debugging messages using a local instance of the Logger
class and call the printLog method to write out the messages once I have backed up all my data.

117CHAPTER 6: The Singleton Pattern

The problem arises when I want to log some debug messages in the BackupServer class, as shown
in Listing 6-5.

Listing 6-5. Adding Logging in the BackupServer.swift File

...
class BackupServer {
 let name:String;
 private var data = [DataItem]();
 let logger = Logger();

 init(name:String) {
 self.name = name;
 logger.log("Created new server \(name)");
 }

 func backup(item:DataItem) {
 data.append(item);
 logger.log("\(name) backed up item of type \(item.type.rawValue)");
 }

 func getData() -> [DataItem]{
 return data;
 }
}
...

There are now two Logger objects, each of which maintains a set of messages. My call to the
printLog method on the Logger object in the main.swift file doesn’t print out the messages logged
to the BackupServer class. What I require is a single Logger object that I can use to capture all of the
debug messages in the application and a means for application components to locate that Logger
object without creating tight coupling—known as encapsulating a shared resource.

Understanding the Singleton Pattern
The singleton pattern solves both the real-world object and shared resource encapsulation problems
by ensuring that there is only ever one instance of a class in an application. This object—known
as the singleton—is shared between all of the components that require its functionality, as shown
in Figure 6-1.

118 CHAPTER 6: The Singleton Pattern

The figure looks simple, but the singleton pattern is unusual in that its implementation is closely tied
to the language being used. Swift doesn’t have some features that would be used to implement the
pattern in languages such as C# and Java, and some ingenuity is required.

Implementing the Singleton Pattern
When implementing the singleton pattern, there are some important rules to follow:

The singleton must be the only instance of its type that exists.	
The singleton cannot be replaced by another object, even of the same type.	
The singleton must be locatable by the components that need to use it.	

There can never be more than one instance of the singleton, either because the object represents
real-world resources or because you want to funnel all activity, such as logging, through the same
object. In the sections that follow, I describe how to implement the singleton pattern in Swift.

Figure 6-1. The singleton pattern

Note The singleton pattern works only with reference types, which means that only classes are supported.

Structs and other values types don’t work because they are copied when they are assigned to a new

variable. The only way to copy a reference type is to create a new instance via its initializer or to rely on it

implementing the NSCopying protocol. See Chapter 5 for details.

The Quick Singleton Implementation
The quickest way to implement the singleton is to use a Swift global constant. Global constants have
some useful behaviors that set the foundation for following the rules I listed in the previous section.
Listing 6-6 shows how I have implemented the singleton pattern based on a global constant in the
Logger.swift file.

119CHAPTER 6: The Singleton Pattern

Listing 6-6. Implementing the Singleton Pattern in the Logger.swift File

let globalLogger = Logger();

final class Logger {
 private var data = [String]()

 private init() {
 // do nothing - required to stop instances being
 // created by code in other files
 }

 func log(msg:String) {
 data.append(msg);
 }

 func printLog() {
 for msg in data {
 println("Log: \(msg)");
 }
 }
}

The first change I have made is to define the global constant, which I have called globalLogger.
It may not look like much, but the Swift language makes two guarantees about global constants and
variables. They will be initialized lazily, and that lazy initialization is thread-safe. These guarantees
mean that the singleton object won’t be created until the value of the globalLogger constant is
read for the first time and that when it is read, only a single instance of the Logger class will be
instantiated even if another thread tries to read the value while the singleton is being initialized.

The other changes I made in Listing 6-6 are to the Logger class. I marked the class as final to
prevent subclasses from being defined and marked the initializer as private so that instances
cannot be created from outside the Logger.swift file. Having defined the singleton and protected its
class so that other instances cannot be created, I can update the BackupServer class, as shown in
Listing 6-7.

Listing 6-7. Using the Singleton in the BackupServer.swift File

...
class BackupServer {
 let name:String;
 private var data = [DataItem]();

 init(name:String) {
 self.name = name;
 globalLogger.log("Created new server \(name)");
 }

 func backup(item:DataItem) {
 data.append(item);
 globalLogger.log("\(name) backed up item of type \(item.type.rawValue)");
 }

120 CHAPTER 6: The Singleton Pattern

 func getData() -> [DataItem]{
 return data;
 }
}
...

I have removed the local Logger object and added calls to the log method of the singleton. The last
rule I listed in the previous section was that components should be able to locate the singleton,
and—as you can see—using a global constant makes that a simple process.

Tip This implementation also adheres to the other rules. The private initializer and the lazy initialization

ensure that there is only one instance of the Logger class, and using the constant means that the object

referred to by the globalLogger cannot be changed.

I also have to make changes to the main.swift file, as shown in Listing 6-8.

Listing 6-8. Using the Singleton in the main.swift File

var server = BackupServer(name:"Server#1");
server.backup(DataItem(type: DataItem.ItemType.Email, data: "joe@example.com"));
server.backup(DataItem(type: DataItem.ItemType.Phone, data: "555-123-1133"));

globalLogger.log("Backed up 2 items to \(server.name)");

var otherServer = BackupServer(name:"Server#2");
otherServer.backup(DataItem(type: DataItem.ItemType.Email, data: "bob@example.com"));
globalLogger.log("Backed up 1 item to \(otherServer.name)");

globalLogger.printLog();

If you run the application, you will see that the singleton pattern has allowed me to gather all of the
logging messages and write them to the console.

Log: Created new server Server#1
Log: Server#1 backed up item of type Email Address
Log: Server#1 backed up item of type Telephone Number
Log: Backed up 2 items to Server#1
Log: Created new server Server#2
Log: Server#2 backed up item of type Email Address
Log: Backed up 1 item to Server#2

121CHAPTER 6: The Singleton Pattern

Creating a Conventional Singleton Implementation
Using a global variable works perfectly well, but you will be used to the convention of accessing
a singleton via its class if you have come to Swift from C# or Java. The problem is that Swift
doesn’t support type stored properties, and some ingenuity is required to apply the singleton
pattern in the conventional way. Listing 6-9 shows how I have used a struct with a static property
to solve the problem.

Listing 6-9. Implementing the Singleton Pattern in the BackupServer.swift File

...
final class BackupServer {
 let name:String;
 private var data = [DataItem]();

 private init(name:String) {
 self.name = name;
 globalLogger.log("Created new server \(name)");
 }

 func backup(item:DataItem) {
 data.append(item);
 globalLogger.log("\(name) backed up item of type \(item.type.rawValue)");
 }

 func getData() -> [DataItem]{
 return data;
 }

 class var server:BackupServer {
 struct SingletonWrapper {
 static let singleton = BackupServer(name:"MainServer");
 }
 return SingletonWrapper.singleton;
 }
}
...

Note The choice between a global constant and a nested struct is a personal one. I like the simplicity of

the global variable, but years of Java and C# development mean that I am more comfortable with the nested

struct. If you do use global constants, then make sure you use a naming convention that is unambiguous and

consistent throughout your application.

Within the computed type property server, I have defined a struct called SingletonWrapper that has
a static stored property called singleton. I create the singleton BackupServer object and assign it to
the singleton property. Finally, I return the value of the singleton property as the value of the server
property.

122 CHAPTER 6: The Singleton Pattern

Do not worry if the last sentence doesn’t make immediate sense. This technique relies on the way
that Swift processes struct definitions and static stored properties to ensure that only one instance
of the BackupServer class is created, even though the code is a little mind-bending.

To access the singleton, I read the value of the BackupServer.server property, as shown in
Listing 6-10.

Listing 6-10. Using the Singleton in the main.swift File

var server = BackupServer.server;

server.backup(DataItem(type: DataItem.ItemType.Email, data: "joe@example.com"));
server.backup(DataItem(type: DataItem.ItemType.Phone, data: "555-123-1133"));

globalLogger.log("Backed up 2 items to \(server.name)");

var otherServer = BackupServer.server;
otherServer.backup(DataItem(type: DataItem.ItemType.Email, data: "bob@example.com"));
globalLogger.log("Backed up 1 item to \(otherServer.name)");

globalLogger.printLog();

The server and otherServer variables in the listing refer to the singleton, which means that all the
DataItem objects are sent to the same server.

Dealing with Concurrency
If you are using a singleton in a multithreaded application, then you need to think through the
consequences of different components performing simultaneous operations on the singleton and
make sure you guard against any potential problems.

Caution Effective concurrent programming requires careful thought and experience. It is easy to set out

with the best of intentions but end up with an app that is substantially slower or freezes up. Take the time

to learn the concepts that underpin concurrency before you embark on a multithreaded project, and give

yourself enough development time to get the code right and to test thoroughly.

Potential concurrency problems are common, and even my simple Logger and BackupServer
classes have them because Swift arrays are not thread-safe. This means two more threads can call
the append method on an array at the same time and corrupt the data structure. To demonstrate the
problem, I made some changes to the main.swift file, as shown in Listing 6-11.

123CHAPTER 6: The Singleton Pattern

Listing 6-11. Performing Concurrent Requests in the main.swift File

import Foundation

var server = BackupServer.server;

let queue = dispatch_queue_create("workQueue", DISPATCH_QUEUE_CONCURRENT);
let group = dispatch_group_create();

for count in 0 ..< 100 {
 dispatch_group_async(group, queue, {() in
 BackupServer.server.backup(DataItem(type: DataItem.ItemType.Email,
 data: "bob@example.com"))
 });
}

dispatch_group_wait(group, DISPATCH_TIME_FOREVER);

println("\(server.getData().count) items were backed up");

This listing uses Grand Central Dispatch (GCD) to asynchronously call the backup method on the
BackupServer singleton 100 times. If you are not familiar with GCD, see the “Understanding Grand
Central Dispatch” sidebars for a brief explanation of the code in this and subsequent listings. There
are several GCD sidebars in this chapter, and I use GCD to implement many of the patterns in this
book. I explain how each feature I use works, but I don’t get into a great deal of detail because
concurrent programming—and GCD—is a topic beyond the scope of this book. For full details of
GCD, see https://developer.apple.com/library/ios/documentation/Performance/Reference/
GCD_libdispatch_Ref/index.html.

UNDERSTANDING GRAND CENTRAL DISPATCH: PART 1

Several techniques are available for Cocoa concurrent programming, but the one that I have used in this book is Grand

Central Dispatch, which I find the easiest to work with. Concurrent programming is an advanced topic, and I am not going

to describe GCD in detail, but I will briefly explain how I use GCD in the examples in this chapter. For more information

about GCD, see https://developer.apple.com/library/ios/documentation/Performance/Reference/
GCD_libdispatch_Ref/index.html.

GCD is a standard part of the Foundation framework and is based around the idea of queues of blocks, where

each block performs some item of work. You select or create a queue and use create the blocks—expressed as Swift

closures—that represent the concurrent tasks that will be performed. GCD is a C API, and the syntax isn’t especially

Swift-like, but it is simple enough to use once you get the hang of it. In Listing 6-11, I created a new queue like this:

...
let queue = dispatch_queue_create("workQueue", DISPATCH_QUEUE_CONCURRENT);
...

https://developer.apple.com/library/ios/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
https://developer.apple.com/library/ios/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
https://developer.apple.com/library/ios/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html
https://developer.apple.com/library/ios/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html

124 CHAPTER 6: The Singleton Pattern

The dispatch_queue_create function takes two arguments that set the name and type of the queue. I have called

the queue workQueue and used the DISPATCH_QUEUE_CONCURRENT constant to specify that the blocks in the queue

should be processed by concurrently by multiple threads. I assign the object that represents the queue to a constant

called queue. (The queue type is dispatch_queue_t, which you will see me use in some of the later examples in this

chapter and in Chapter 7.)

I can group blocks together in order to receive a notification when all of them have been executed. Groups are created

using the dispatch_group_create function like this:

...
let group = dispatch_group_create();
...

To submit work to be performed asynchronously, I use the dispatch_group_async function to add the block to a

queue, like this:

...
dispatch_group_async(group, queue, {() in
 BackupServer.server.backup(DataItem(type: DataItem.ItemType.Email,
 data: "bob@example.com"))
});
...

The first argument is the group that the block is associated with, the second argument is the queue to which the block

will be added, and the final argument is the block itself, expressed as a closure. The closure takes no arguments and

returns no results. GCD will take each block of work from the queue and execute it asynchronously—although, as you will

learn, queues can also be used to serialize work.

The final step is to wait until all 100 blocks have been completed, which I do like this:

...
dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
...

The dispatch_group_wait function blocks the current thread until all of the blocks in the specified group have been

completed. The first argument is the group to monitor, and the second argument is the duration to wait. By using the

DISPATCH_TIME_FOREVER value, I specify that I want to wait indefinitely for the blocks in the group to complete.

To see the problem, simply start the application. Concurrency problems are all about timing and
require two or more threads to be performing conflicting operations simultaneously. You might be
lucky when you run the application and no such conflict will occur—but the likelihood is that two
calls overlapping calls to the backup method will result in two threads trying to add data to an array
through the append method at the same time, causing an error. When this happens, the debugger will
break on the backup method, as shown in Figure 6-2.

125CHAPTER 6: The Singleton Pattern

Tip If you are fortunate enough not to encounter an error, then run the application again. Many factors

affect concurrency problems, but the code in the example is likely to fail most of the time.

Figure 6-2. A concurrency problem

The exact error reported by the debugger will differ, but the problem remains the same: manipulating
the contents of a Swift array isn’t a thread-safe operation, and singletons that use arrays need
concurrency protections.

Serializing Access

To solve this problem, I need to ensure that only one block at a time is allowed to call the append
method on the array. Listing 6-12 shows how I have used GCD to solve the problem. (I explain the
GCD features I have used in the second “Understanding Grand Central Dispatch: Part 2” sidebar.)

Listing 6-12. Serializing Access to the Array in the BackupServer.swift File

import Foundation

class DataItem {

 enum ItemType : String {
 case Email = "Email Address";
 case Phone = "Telephone Number";
 case Card = "Credit Card Number";
 }

 var type:ItemType;
 var data:String;

 init(type:ItemType, data:String) {
 self.type = type; self.data = data;
 }
}

final class BackupServer {
 let name:String;
 private var data = [DataItem]();
 private let arrayQ = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_SERIAL);

126 CHAPTER 6: The Singleton Pattern

 private init(name:String) {
 self.name = name;
 globalLogger.log("Created new server \(name)");
 }

 func backup(item:DataItem) {
 dispatch_sync(arrayQ, {() in
 self.data.append(item);
 globalLogger.log(
 "\(self.name) backed up item of type \(item.type.rawValue)");
 })
 }

 func getData() -> [DataItem]{
 return data;
 }

 class var server:BackupServer {
 struct SingletonWrapper {
 static let singleton = BackupServer(name:"MainServer");
 }
 return SingletonWrapper.singleton;
 }
}

In this listing, I perform the opposite action of the one in Listing 6-11: I take a set of asynchronous
blocks and force them to be performed serially in order to ensure that only one block calls the append
method on the array at any one time.

This may appear self-defeating, but in a real application multiple components will create the blocks,
rather than a single for loop. These components won’t be able to coordinate their activities and
usually won’t know anything about each other, so it falls to the singleton to protect the resources it
relies on.

UNDERSTANDING GRAND CENTRAL DISPATCH—PART 2

In Listing 6-12, I create a queue using the dispatch_queue_create function, like this:

...
private let arrayQ = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_SERIAL);
...

The first argument is the name of the queue, and the second argument—the DISPATCH_QUEUE_SERIAL value—

specifies that the blocks will be taken from the queue and executed one after the other, such that a block won’t be

started until the previous one has been completed.

127CHAPTER 6: The Singleton Pattern

Within the backup method I use the dispatch_sync function to add blocks to the queue.

...
dispatch_sync(arrayQ, {() in
 self.data.append(item);
 globalLogger.log(
 "\(self.name) backed up item of type \(item.type.toRaw())");
})
...

The dispatch_sync function adds work to the queue just like the dispatch_group_async function I used in

Listing 6-11, but it waits until the block has been completed before it returns, whereas the dispatch_group_async

function returns immediately, leaving the block to be executed at some future point when it reached the front of the

queue. (It also doesn’t specify a group. The asynchronous equivalent of dispatch_sync is dispatch_async.)

The function used to add a block to the method doesn’t affect the way that the block is processed—just whether the

function returns immediately after adding the block to the queue or blocks until it has been processed.

The effect I have created is that calling the backup method is a synchronous operation that will not return until the data

has been added to the array, and since I have specified a serial queue, this means that the method won’t return until all of

the other backups ahead in the queue are processed too.

The changes I made in Listing 6-12 ensure that the array used in the BackupServer singleton is
protected, but the backup method uses the Logger class, and that presents a similar problem.
Although calls to the log method are serialized within the BackupServer class, another component
could use the singleton and call the log method at the same time, which would lead to the same
kind of data corruption I described earlier. For completeness, I have used GCD to protect the data
array in the Logger class, as shown in Listing 6-13.

Listing 6-13. Adding Concurrency Protection in the Logger.swift File

import Foundation;

let globalLogger = Logger();

final class Logger {
 private var data = [String]()
 private let arrayQ = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_SERIAL);

 private init() {
 // do nothing - required to stop instances being
 // created by code in other files
 }

 func log(msg:String) {
 dispatch_sync(arrayQ, {() in
 self.data.append(msg);
 });
 }

128 CHAPTER 6: The Singleton Pattern

 func printLog() {
 for msg in data {
 println("Log: \(msg)");
 }
 }
}

The Logger class exposes its singleton using the global constant technique, but the technique for
protecting the data array from corruption is just the same—I create a serial GCD queue and use the
dispatch_sync method to ensure that array modifications are performed only once at a time. If you
run the application, there will be no data corruption, and the following output will be shown in the
console window:

100 items were backed up

Understanding the Pitfalls of the Singleton Pattern
There are several pitfalls to avoid when implementing the singleton pattern, and it is important to
think through your implementation carefully in order to ensure you adhere to the rules I described
earlier in the chapter. In the sections that follow, I highlight the most common problems.

Understanding the Leakage Pitfall
The most common problem when implementing a singleton is producing an object that can be
copied, either because it was created from a struct (or one of the built-in reference types) or because
it was created from a class that implements the NSCopying protocol (which I described in Chapter 5).

Structs do not work as singletons because they are copied whenever they are assigned to a new
variable or constant or passed as an argument, but you may be tempted to use a class that implements
the NSCopying protocol because you trust that the components that will consume the singleton will
not make copies. I advise caution: other developers may not realize the importance of not copying the
singleton, and you should take steps to create a strict implementation of the pattern. Allowing other
components to copy or clone the prototype breaks the first of the three singleton rules.

Tip You can apply the decorator pattern if you don’t have control over the class definition of the object

that you need as a singleton in order to prevent an object from being treated like a prototype. See Chapter 14

for details.

129CHAPTER 6: The Singleton Pattern

Understanding the Shared Code File Pitfall
The Swift access protection keywords operate at the file level, which means that applying the
private keyword to an initializer affects only code outside of the file that contains the singleton.
You should always define the singleton and the global constant—if you are using one—in their own
file so that no other component is able to create its own instances of the singleton class, which
breaks the first singleton rule.

Understanding the Concurrency Pitfalls
The most intractable problems with the singleton pattern are related to concurrency, which can be
a difficult topic even for experience programmers. In the sections that follow, I describe the most
common problems.

Not Applying Concurrency Protections

The first problem is not applying concurrency protections when they are needed. Not every singleton
faces concurrency problems, but it is something that you should give serious consideration to. If you
are relying on shared data structures, such as arrays, or on global functions, such as println, then
you need to ensure that your singleton’s code cannot be accessed by multiple threads concurrently.
If in doubt, assume that there will be a problem because the overhead of serializing access to shared
resources is less of an issue than an app that crashed once it has been deployed to customers.

Applying Concurrency Protections Consistently

Concurrency protections must be applied throughout a singleton so that all of the code that operates
on a common resource, such as an array, is serialized in the same way. If you leave just one method
or block of code that accesses the array without serialization, then you run the risk of two threads
conflicting and corrupting the data. If you are finding it hard to track down all of the code that
modifies a shared resource, then you should reconsider the design of your code and extract the
resource—and the code that manipulates it—into its own class so that you can apply concurrency
protections in a more focused way.

Bad Optimization

There is a common belief that concurrency mechanisms like GCD offer poor performance and that
concurrent protections should be low-level and applied minimally. I think this is nonsense. There are
some applications where every CPU cycle counts, but these are few and far between, and the actual
overhead of applying any concurrency—even higher-level abstractions like GCD—is minimal on
modern operating systems.

The perception of performance problems usually arises because concurrency protections expose
poor code design. If you have 200 threads queuing up to access the same array, then you should
consider whether the number of threads and the ratio of threads to arrays makes sense, rather than
decide to start messing around with low-level operating system locks. (One pattern that can help
redress this kind of ratio is the object pool pattern, which I describe in Chapters 7 and 8.)

130 CHAPTER 6: The Singleton Pattern

My advice is to use GCD because it is relatively simple to understand and easy to work with and
makes good use of Swift closures. If you do have performance problems, then you should consider
why this is the case and whether applying the patterns described in this book would allow you to
minimize the points of contention in the application.

Examples of the Singleton Pattern in Cocoa
There are several singletons used in the Cocoa frameworks, and they are usually used to represent
the top-level component in an application. The most commonly encountered example is the
UIApplication class, which provides features that control the overall behavior of an app and provide
integration into iOS features. The UIApplication singleton is accessed through the type method
sharedApplication.

Applying the Pattern to the SportsStore Application
In this section, I will apply the singleton pattern to the SportsStore application in order to put the
pattern into a broader context. There is only one area of the application that would benefit from
the singleton pattern, and that is the Logger class that I created in Chapter 5 to demonstrate the
prototype pattern and which is similar to the class of the same name that I used in this chapter
to demonstrate using the singleton pattern to solve the shared resource encapsulation problem.
Listing 6-14 shows the existing definition of the Logger class in the SportsStore project.

Listing 6-14. The Contents of the Logger.swift File in the SportsStore Project

import Foundation

class Logger<T where T:NSObject, T:NSCopying> {
 var dataItems:[T] = [];
 var callback:(T) -> Void;

 init(callback:T -> Void) {
 self.callback = callback;
 }

 func logItem(item:T) {
 dataItems.append(item.copy() as T);
 callback(item);
 }

 func processItems(callback:T -> Void) {
 for item in dataItems {
 callback(item);
 }
 }
}

131CHAPTER 6: The Singleton Pattern

Tip You can download the SportsStore project and the source for all the listings in this chapter

from Apress.com.

I am going apply the singleton pattern by starting with the concurrency issues and then creating the
singleton. There are two potential concurrency issues presented by the SportsStore Logger class.
The first issue is that the dataItems array is used in the logItem and processItems methods, and it is
possible that multiple threads may try to add new items to the array in the logItem method, maybe
even while other threads try to read the contents of the array in the processItems method.

Protecting the Data Array
I am going to use GCD to protect the array, but I am going to vary the technique that I used in earlier
examples in order to differentiate between threads that are reading the contents of the array and
those that are writing them. Allowing multiple threads to simultaneously read the contents of the
array doesn’t present any concurrency hazards, as long as no threads are modifying the array at the
same time. You can see how I have solved this problem in Listing 6-15.

Listing 6-15. Applying Concurrency Protections in the Logger.swift File

import Foundation

class Logger<T where T:NSObject, T:NSCopying> {
 var dataItems:[T] = [];
 var callback:(T) -> Void;
 var arrayQ = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_CONCURRENT);

 init(callback:T -> Void) {
 self.callback = callback;
 }

 func logItem(item:T) {
 dispatch_barrier_async(arrayQ, {() in
 self.dataItems.append(item.copy() as T);
 self.callback(item);
 });
 }

 func processItems(callback:T -> Void) {
 dispatch_sync(arrayQ, {() in
 for item in self.dataItems {
 callback(item);
 }
 });
 }
}

https://Apress.com

132 CHAPTER 6: The Singleton Pattern

I use the dispatch_sync function in the processItems method to add a block of work that
enumerates the array, waiting until the block has completed before allowing the method to return.
The difference is that I have used the dispatch_barrier_async function in the logItem method to
create a block of work that adds an item to the array. The dispatch_barrier_async function adds a
special block to the queue that changes its behavior. The queue will not start executing the barrier
block until all of the blocks ahead of it have completed and will not process any subsequent blocks
until the barrier itself has completed.

UNDERSTANDING GRAND CENTRAL DISPATCH: PART 3

In the context of the Logger class, read operations are contained in ordinary blocks, and write operations are in barrier

blocks. When a barrier block reaches the head of the queue, GCD waits until all of the read operations that are still

in process have completed. Once they are all done, GCD executes the barrier block—which modifies the array—and

does not process any subsequent blocks until the barrier block has completed. Once the barrier block is complete, the

following items in the queue are processed as normal and in parallel until the next barrier block comes along.

Put another way, using a barrier changes a concurrent queue into a serial queue for as long as it takes to process the

barrier block, after which it returns to being a concurrent queue again. Whichever way you prefer to think of it, using a

GCD barrier makes it easy to create a reader/writer lock.

Protecting the Callback
The second problem requires more thought. My use of a barrier to allow multiple readers means that
the callback function that is set through the initializer may be called concurrently. This presents a
common concurrency dilemma.

I have several choices. The first choice is to do nothing—which is the current state of the code—and
assume that the code that has provided the callback is aware of the concurrency risk and has
taken the required precautions. From the perspective of the Logger class, this is the simplest option
because it shifts the burden elsewhere. This isn’t an entirely bad idea because the Logger class has
no insights into how the callback is implemented, and I may end up with concurrency protections
in the Logger class and in the component that defines the callback. The risk with redundant
concurrency protection is that the application can deadlock if written inexpertly. The other problem is
that I may end up with no protection at all and risk data corruption. This is the simplest choice but is
also the most uncertain.

The second choice is to assume responsibility in the Logger class. This is the safe option, but once
again I may end up with redundant protections; however, it does mean that data corruption is
avoided.

The third choice—and the one that I am going to follow in this example—is to allow the component
to chose when it provides the callback. You can see how I have modified the Logger class to support
this feature in Listing 6-16.

133CHAPTER 6: The Singleton Pattern

Listing 6-16. Adding Optional Concurrency Protection in the Logger.swift File

import Foundation

class Logger<T where T:NSObject, T:NSCopying> {
 var dataItems:[T] = [];
 var callback:(T) -> Void;
 var arrayQ = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_CONCURRENT);
 var callbackQ = dispatch_queue_create("callbackQ", DISPATCH_QUEUE_SERIAL);

 init(callback:T -> Void, protect:Bool = true) {
 self.callback = callback;
 if (protect) {
 self.callback = {(item:T) in
 dispatch_sync(self.callbackQ, {() in
 callback(item);
 });
 };
 }
 }

 func logItem(item:T) {
 dispatch_barrier_async(arrayQ, {() in
 self.dataItems.append(item.copy() as T);
 self.callback(item);
 });
 }

 func processItems(callback:T -> Void) {
 dispatch_sync(arrayQ, {() in
 for item in self.dataItems {
 callback(item);
 }
 });
 }
}

I have defined a separate queue and added an initializer parameter that has a default value, allowing
me to apply the protections without changing code elsewhere in the application. If protection is
required—or the caller omits the new argument—then I wrap the callback in the closure that adds a
block to the new queue.

Defining the Singleton
Now that I have addressed the concurrency issues, I am going to define the singleton object and
protect the Logger class so that it can’t be instantiated elsewhere in the application. Listing 6-17
shows the changes that I made.

134 CHAPTER 6: The Singleton Pattern

Listing 6-17. Creating the Singleton in the Logger.swift File

import Foundation

let productLogger = Logger<Product>(callback: {p in
 println("Change: \(p.name) \(p.stockLevel) items in stock");
});

final class Logger<T where T:NSObject, T:NSCopying> {
 var dataItems:[T] = [];
 var callback:(T) -> Void;
 var arrayQ = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_CONCURRENT);
 var callbackQ = dispatch_queue_create("callbackQ", DISPATCH_QUEUE_SERIAL);

 private init(callback:T -> Void, protect:Bool = true) {
 self.callback = callback;
 if (protect) {
 self.callback = {(item:T) in
 dispatch_sync(self.callbackQ, {() in
 callback(item);
 });
 };
 }
 }

 func logItem(item:T) {
 dispatch_barrier_async(arrayQ, {() in
 self.dataItems.append(item.copy() as T);
 self.callback(item);
 });
 }

 func processItems(callback:T -> Void) {
 dispatch_sync(arrayQ, {() in
 for item in self.dataItems {
 callback(item);
 }
 });
 }
}

It isn’t possible to create the singleton using the struct for generic types, so I have had to define a
global constant that instantiates the Logger class with the Product type. I prefer the struct approach,
but I like being able to use generic classes with a range of types and will happily use the global
constant approach in this situation. The remaining change is to update the only component that uses
the Logger class in the application, as shown in Listing 6-18.

135CHAPTER 6: The Singleton Pattern

Listing 6-18. Using the Singleton in the ViewController.swift File

import UIKit

class ProductTableCell: UITableViewCell {
 @IBOutlet weak var nameLabel: UILabel!
 @IBOutlet weak var descriptionLabel: UILabel!
 @IBOutlet weak var stockStepper: UIStepper!
 @IBOutlet weak var stockField: UITextField!

 var product: Product?;
}

class ViewController: UIViewController, UITableViewDataSource {

 @IBOutlet weak var totalStockLabel: UILabel!
 @IBOutlet weak var tableView: UITableView!

 //let logger = Logger<Product>(callback: handler);

 var products = [
 Product(name:"Kayak", description:"A boat for one person",
 category:"Watersports", price:275.0, stockLevel:10),

 // ...code omitted for brevity...

 @IBAction func stockLevelDidChange(sender: AnyObject) {
 if var currentCell = sender as? UIView {
 while (true) {
 currentCell = currentCell.superview!;
 if let cell = currentCell as? ProductTableCell {
 if let product = cell.product? {
 if let stepper = sender as? UIStepper {
 product.stockLevel = Int(stepper.value);
 } else if let textfield = sender as? UITextField {
 if let newValue = textfield.text.toInt()? {
 product.stockLevel = newValue;
 }
 }
 cell.stockStepper.value = Double(product.stockLevel);
 cell.stockField.text = String(product.stockLevel);
 productLogger.logItem(product);
 }
 break;
 }
 }
 displayStockTotal();
 }
 }
 // ...code omitted for brevity...
}

136 CHAPTER 6: The Singleton Pattern

Summary
In this chapter, I described the singleton pattern and explained how it can be used to ensure
that there is only one object of a specific type in the application. The singleton pattern is easy
to understand but requires careful attention to implement correctly, especially when it comes to
ensuring that the code is safe for concurrent use. In the next chapter, I describe the object pool
pattern, which shares some common ideas with the singleton pattern but operates on several
objects of the same type.

137

Chapter 7
The Object Pool Pattern

The object pool pattern is a variation on the singleton pattern that provides access to multiple
identical objects rather than a single instance. This is useful when you have objects that represent
a set of fungible resources, each of which can be used by only one component at a time. In this
chapter, I describe the basic object pool pattern, and in Chapter 8 I show you some useful
variations that allow object pools to adapt to different situations. Table 7-1 puts the object pool
pattern in context.

Table 7-1. Putting the Object Pool Pattern into Context

Question Answer

What is it? The object pool pattern manages a collection of reusable objects that are provided to

calling components. A component obtains an object from the pool, uses it to perform

work, and returns it to the pool so that it can be allocated to satisfy future requests.

An object that has been allocated to a caller is not available for use by other

components until it has been returned to the pool.

What are the

benefits?

The object pool pattern hides the construction of objects from the components that

use them and allows expensive initializations to be amortized through reusing objects

repeatedly.

When should you use

this pattern?

Use the object pool pattern when you have a number of identical objects whose

creation you need to manage, either because the objects represent real-world

resources or because creating new instances is expensive.

When should you

avoid this pattern?

Do not use this pattern if there can be only one object in existence at any moment

(use the singleton pattern instead) or if there are no limits on the number of objects

that can exist (allow calling components to create their own instances or use one of

the other patterns described in this book, such as the factory method pattern).

(continued)

138 CHAPTER 7: The Object Pool Pattern

Preparing the Example Project
For this chapter, I created an OS X Command Line Tool project called ObjectPool. No further
preparation is required.

Understanding the Problem That the Pattern Solves
In many projects, there will be objects for which the number of instances must be restricted but not
to the extent where there is just one. To help put this problem into a real-world context, I am going to
create an example that represents the system used by a library to track books. Listing 7-1 shows the
contents of a file called Book.swift that I added to the example project.

Listing 7-1. The Contents of the Book.swift File

class Book {
 let author:String;
 let title:String;
 let stockNumber:Int;
 var reader:String?
 var checkoutCount = 0;

 init(author:String, title:String, stock:Int) {
 self.author = author;
 self.title = title;
 self.stockNumber = stock;
 }
}

Question Answer

How do you know

when you have

implemented the

pattern correctly?

The pattern is implemented correctly when objects are allocated to calling

components without the need to create new instances and when an object returned to

the pool is used to satisfy a subsequent request.

Are there any

common pitfalls?

The main pitfall is the implementation of concurrency protections that ensure that

objects are allocated correctly and without corrupting the data structures used to

implement the pattern.

Are there any related

patterns?

The singleton pattern shares some common ideas with the object pool pattern but

manages a single object.

Table 7-1. (Continued)

139CHAPTER 7: The Object Pool Pattern

In a system that tracks library books, the creation or cloning of Book objects won’t magically create
real-world books in the library, but equally, it doesn’t make sense to manage a Book using the
singleton pattern because a library will have more than one copy of most books, any of which can be
used to satisfy someone’s desire to read it.

Each book in a library can be checked out by only one reader at a time and is not available for
further use until it is returned. Readers can check books out immediately when they are in stock, but
once the stock is exhausted, anyone who wants a copy will have to wait until one is returned or the
library adds more books to its collection.

The problem I face is I need a pattern that manages a number of identical, interchangeable objects
and provides the model by which they can be fairly and equitably used.

Tip Library books are a real-world example of groups of objects that are reusable and interchangeable,

but there are also abstract examples that you will encounter in software development. The most common

examples include threads and network connections, but this is a problem that manifests itself with some

frequency and in a variety of ways.

Understanding the Object Pool Pattern
The object pool pattern manages a collection of fungible objects, known as the object pool—or just
the pool. Components that need an object borrow one from the pool, use it to perform some work,
and then return it to the pool when the work has been completed. Returned objects are then used to
satisfy subsequent requests, either from the same component or from another component.

The object pool pattern can be used to manage objects that represent real-world resources and also
to amortize expensive initialization procedures by reusing objects to satisfy requests from multiple
components.

An object pool has four important operations, as illustrated by Figure 7-1. The first operation is
initialization, in which the collection of objects to be managed is prepared.

140 CHAPTER 7: The Object Pool Pattern

The second operation is checkout, in which a component that requires an object borrows one from
the pool.

The third operation is the component using the object to perform work of some sort. This doesn’t
require any activity from the pool, but it does mean that there is a period where an object managed
by the pool is in use and cannot be loaned to other components.

The fourth and final operation is check-in, where the component returns the object to the pool so
that it can be used to satisfy future loan requests.

In a multithreaded application, the second, third, and fourth operations may happen concurrently.
Sharing objects between multiple components presents potential concurrency problems. Two or
more components may ask to borrow or return objects simultaneously, and object pools must
ensure that each request for a loan is satisfied with a different object when checked out and that
objects are not lost when they are checked in again.

There will also be times when a request cannot be immediately satisfied because all of the objects
in the pool have been checked out and are being used. A pool must be able to cope with these
requests, either by indicating to the component that no object is available or by allowing the
component to wait until an object is returned.

Figure 7-1. The basic operation of an object pool

141CHAPTER 7: The Object Pool Pattern

Implementing the Object Pool Pattern
In this chapter, I create a basic implementation of the pattern to demonstrate how the different
operations are implemented. A basic object pool manages a fixed collection of objects and relies on
the components that check objects out of the pool to return them when they are done. It is a good
place to start because it allows me to address the basic concurrency techniques that are at the heart
of a robust implementation of the pattern. In Chapter 8, I show you variations on the pattern that you
can use to adapt the basic pool to your own projects.

Defining the Pool Class
The first step is to create a generic Pool class that will manage a collection of objects of a given
type. This need not be a generic class, but the need to manage a pool is a common one, and a
generic class makes it easy to reuse the code in different projects. I added a file called Pool.swift to
the example project, the contents of which are shown in Listing 7-2.

Listing 7-2. The Contents of the Pool.swift File

import Foundation

class Pool<T> {
 private var data = [T]();

 init(items:[T]) {
 data.reserveCapacity(data.count);
 for item in items {
 data.append(item);
 }
 }

 func getFromPool() -> T? {
 var result:T?;
 if (data.count > 0) {
 result = self.data.removeAtIndex(0);
 }
 return result;
 }

 func returnToPool(item:T) {
 self.data.append(item);
 }
}

The Pool class—more correctly referred to as Pool<T>—is initialized with the collection of objects
that it is to manage. The initializer copies the items into a local data array, which I use like a simple
queue collection containing the objects that are available for use. When the getFromPool method
is called, I return the object at the head of the array by calling the removeAtIndex method. The
returnToPool method is called when a previously obtained object is finished, and I add it to the data
array using the append method so that it is available for use for subsequent calls to the getFromPool
method.

142 CHAPTER 7: The Object Pool Pattern

Protecting the Data Array

Handling concurrent requests is important in the object pool pattern, and there are two problems
that I need to solve. The first problem is the same one I encountered when dealing with singleton
pattern: the getFromPool and returnToPool methods contain statements that modify the data array,
and I need to ensure that no two threads use these methods simultaneously. Listing 7-3 shows how
I have added a Grand Central Dispatch (GCD) queue and applied the dispatch_sync function to
protect the array from concurrent modifications.

Listing 7-3. Protecting the Array from Concurrent Modifications in the Pool.swift File

import Foundation

class Pool<T> {
 private var data = [T]();
 private let arrayQ = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_SERIAL);

 init(items:[T]) {
 data.reserveCapacity(data.count);
 for item in items {
 data.append(item);
 }
 }

 func getFromPool() -> T? {
 var result:T?;
 if (data.count > 0) {
 dispatch_sync(arrayQ, {() in
 result = self.data.removeAtIndex(0);
 })
 }
 return result;
 }

 func returnToPool(item:T) {
 dispatch_async(arrayQ, {() in
 self.data.append(item);
 });
 }
}

Tip You can implement the object pool pattern without adding concurrency protections, but only if you are

sure that your application will only ever use one thread to access the objects in the pool. Be careful, though:

applications have a habit of needing concurrency as they get more complicated, and an unprotected object

pool will cause problems when that happens. My advice is to always add concurrency protections even if you

don’t expect to need them.

143CHAPTER 7: The Object Pool Pattern

I have used the dispatch_sync and dispatch_async functions to create blocks using closures that
contain the operations that manipulate the array. I add them to a queue I created with the dispatch_
queue_create function, which I configured with the DISPATCH_QUEUE_SERIAL value so that only one
block is executed at a time. This protects the array from corruption by ensuring that only one thread
at a time can modify the array.

Ensuring Objects Are Available to Be Checked Out

There is a second concurrency problem in the Pool class, which means that the code may still
encounter problems. In the getFromPool method, I check to see whether there are any free objects in
the data array before adding a block to the queue to obtain an object, like this:

...
func getFromPool() -> T? {
 var result:T?;
 if (data.count > 0) {
 dispatch_sync(arrayQ, {() in
 result = self.data.removeAtIndex(0);
 })
 }
 return result;
}
...

This is a classic concurrency problem. Imagine that there is one free object in the data array and
that two threads call the getFromPool method a few milliseconds apart. The first thread checks the
data.count value, finds that there is a free object, and uses the dispatch_sync method to queue up a
block that will remove it from the array so it can be used.

Shortly afterward, the second thread does the same thing. It, too, believes that there is a free object
in the array because the block that the first thread created has yet to be executed. The second
thread queues its own block in the expectation that it too will be able to obtain the object. The first
thread’s block executes and successfully removes the free object. The second thread’s block is then
executed and gets an error because the array is now empty.

To solve this problem, I need to ensure that a thread that calls the getFromPool method doesn’t
schedule a block to get a free object unless it is guaranteed to get one. Listing 7-4 shows how I
solved this problem using the GCD semaphore feature.

Listing 7-4. Applying a Semaphore in the Pool.swift File

import Foundation

class Pool<T> {
 private var data = [T]();
 private let arrayQ = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_SERIAL);
 private let semaphore:dispatch_semaphore_t;

 init(items:[T]) {
 data.reserveCapacity(data.count);

144 CHAPTER 7: The Object Pool Pattern

 for item in items {
 data.append(item);
 }
 semaphore = dispatch_semaphore_create(items.count);
 }

 func getFromPool() -> T? {
 var result:T?;
 if (dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER) == 0) {
 dispatch_sync(arrayQ, {() in
 result = self.data.removeAtIndex(0);
 })
 }
 return result;
 }

 func returnToPool(item:T) {
 dispatch_async(arrayQ, {() in
 self.data.append(item);
 dispatch_semaphore_signal(self.semaphore);
 });
 }
}

At the heart of a semaphore is a counter, as you can see in the following statement that I used to
create one:

...
semaphore = dispatch_semaphore_create(items.count);
...

The dispatch_semaphore_create function accepts an Int value that sets the initial value of the
counter. The counter is decremented each time the dispatch_semaphore_wait function is called,
like this:

...
if (dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER) == 0) {
 dispatch_sync(arrayQ, {() in
 result = self.data.removeAtIndex(0);
 });
}
...

When the counter reaches zero, calls to the dispatch_semaphore_wait function will block. By calling
the dispatch_semaphore_wait function in the getFromPool method, I decrement the counter each
time an object is removed from the data array and cause calls to the method to block when there are
no more items in the array to give out.

145CHAPTER 7: The Object Pool Pattern

The counter is incremented by calling the dispatch_semaphore_signal function, which I do in the
returnToPool method, after I have added the object to the data array.

...
dispatch_async(arrayQ, {() in
 self.data.append(item);
 dispatch_semaphore_signal(self.semaphore);
});
...

This increases the counter, allowing one of the threads blocking on the dispatch_semaphore_wait
function to continue execution. The calls to the semaphore functions balance the number of
requests to get and return pool objects and prevent calls to the getFromPool method from adding a
block to the queue unless there is definitely an object waiting for it when it is executed.

Consuming the Pool Class
Now that I have created a generic pool class, I can complete my application of the object pool
pattern by applying it to manage a collection of Book objects. Listing 7-5 shows the definition of a
class called Library that I defined in a new file called Library.swift.

Listing 7-5. Consuming the Pool Class in the Library.swift File

import Foundation

final class Library {
 private let books:[Book];
 private let pool:Pool<Book>;

 private init(stockLevel:Int) {
 books = [Book]();
 for count in 1 ... stockLevel {
 books.append(Book(author: "Dickens, Charles", title: "Hard Times",
 stock: count))
 }
 pool = Pool<Book>(items:books);
 }

 private class var singleton:Library {
 struct SingletonWrapper {
 static let singleton = Library(stockLevel:2);
 }
 return SingletonWrapper.singleton;
 }

 class func checkoutBook(reader:String) -> Book? {
 var book = singleton.pool.getFromPool();
 book?.reader = reader;
 book?.checkoutCount++;
 return book;
 }

146 CHAPTER 7: The Object Pool Pattern

 class func returnBook(book:Book) {
 book.reader = nil;
 singleton.pool.returnToPool(book);
 }

 class func printReport() {
 for book in singleton.books {
 println("...Book#\(book.stockNumber)...");
 println("Checked out \(book.checkoutCount) times");
 if (book.reader != nil) {
 println("Checked out to \(book.reader!)");
 } else {
 println("In stock");
 }
 }
 }
}

The Library class implements the object pool pattern by combining the Pool class I defined in
Listing 7-4 with the singleton pattern I described in Chapter 6. I need to use the singleton because
there should be only one Library in this example, although the Library itself could have multiple
pools, each of which manages copies of a single title. The code in Listing 7-5 represents a rather
depressing library whose entire stock consists of two copies of a Charles Dickens novel.

When you visit a real library, you can borrow a copy of the book you want if one is available, and if it
is not, you can join the queue and wait for one to be returned by another reader. The library provides
these services but does so without making you understand how the process works behind the
scenes. You are not, for example, required to find the other people waiting for a copy of the book
and figure out the order in which returned copies should be distributed.

A RELAXED OBJECT CREATION POLICY

Notice that I have defined the Library and Book classes in different files and that I have not protected the Book class

from being instantiated outside of the Library. When implementing the singleton pattern, I used a private constructor

and defined the access class because I wanted to demonstrate how to control the creation of the singleton completely.

In this chapter, I am taking a more relaxed approach because I am modeling an environment where there could be

many sources of Book objects, representing the many real-world sources of books (publishers, book wholesalers, and

online stores could all supply a library with books, for example). I am not going to build all of the possible sources into

the example, but I wanted to demonstrate that you can use this pattern to manage objects without having to restrict the

supply of them. My model remains true to the real world as long as the Books objects associated with the Library

object cannot be altered without its consent.

The details of how a real-world library manages its books are hidden, and this is the approach that
I have taken when implementing the Library class, too. Rather than expose the Pool<Book> object
via the singleton, I have defined type methods called checkoutBook and returnBook that interact with

147CHAPTER 7: The Object Pool Pattern

the pool on behalf of callers. These methods also allow me to prepare a Book when it is checked
out: I set the value of the reader property and increment the checkoutCount property. When a Book is
returned, I clear the reader property.

The checkoutCount and reader properties are both used by the printReport method, which details
each of the Book objects that the Library created, noting how many times the book has been
checked out and whether it is currently in the pool. This is a diagnostic method that will allow me to
see the state of the books being managed by the pool during testing. Listing 7-6 shows the code I
used to test the Library class and its use of the Pool class in the main.swift file.

Listing 7-6. Testing the Library and Pool in the main.swift File

import Foundation

var queue = dispatch_queue_create("workQ", DISPATCH_QUEUE_CONCURRENT);
var group = dispatch_group_create();

println("Starting...");

for i in 1 ... 20 {
 dispatch_group_async(group, queue, {() in
 var book = Library.checkoutBook("reader#\(i)");
 if (book != nil) {
 NSThread.sleepForTimeInterval(Double(rand() % 2));
 Library.returnBook(book!);
 }
 });
}

dispatch_group_wait(group, DISPATCH_TIME_FOREVER);

println("All blocks complete");

Library.printReport();

This code uses a for loop to create asynchronous GCD blocks that check out and return Book
objects from the Library. To make the example a little more realistic, I have added a delay after the
Book is obtained from the Library and before it is returned again, like this:

...
NSThread.sleepForTimeInterval(Double(rand() % 2));
...

The NSThread.sleepForTimeInterval puts the thread executing the statement to sleep. I control the
duration of the sleep so that it is randomly generated and forced to be either zero or one second,
meaning that some blocks will return a book immediately and others will wait for a second before
returning a book. I have done this because I want the use of the objects in the pool to overlap.
Without this, the objects would be checked out and returned in strict rotation, which isn’t how pool
objects are used in real projects (or, of course, in the real world).

148 CHAPTER 7: The Object Pool Pattern

Start the application to see the results. It will take a few seconds to run, so be patient. When all
of the blocks generated in the main.swift file have executed, you will see output similar to the
following:

Starting...
All blocks complete
...Book#1...
Checked out 13 times
In stock
...Book#2...
Checked out 7 times
In stock

Your results may be different because the random nature of the delay I added will vary the sequence
in which objects are taken from and returned to the pool.

Although your results may differ, the total number of times that the books were checked out should
be 20, which is the same number of GCD blocks created in the main.swift file. In my case, one Book
object was checked out 13 times and the other was checked out 7 times. The difference is caused
by the delay I added, which has led to the first Book object cycling through the pool several times
while slower readers were holding onto the other object.

Understanding the Pitfalls of the Object Pool Pattern
Care is required when implementing the object pool pattern because it is easy to create a pool that
doesn’t work or doesn’t suit the application to which it has been applied. It is easy to get carried
away trying to create the perfect pool, especially when considering the variations that I describe
in Chapter 8. The result can be code that is difficult to maintain and an unstable object pool that
behaves unpredictably once it has been deployed.

Care is also required when protecting an object pool against concurrent access in order to avoid
creating a pool that locks up unexpectedly, even if it works during your development tests. Be
conservative and give preference to safety over performance—and, most importantly, test your code
with as many different usage scenarios as you can. I recommend keeping object pools as simple as
you can and focus on producing something that works and can be easily tested.

Examples of the Object Pool Pattern in Cocoa
The Cocoa frameworks do not expose objects pools in their public APIs, with one commonly
encountered exception: table cell objects. You can see an example in the SportsStore application,
where UITableViewCell objects are used to display rows in the table view. Listing 7-7 shows the
implementation of the tableView method in the ViewController.swift file from the SportsStore
project.

149CHAPTER 7: The Object Pool Pattern

Listing 7-7. Getting a (Potentially) Pooled UITableViewCell in the ViewController.swift File

...
func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let product = products[indexPath.row];
 let cell = tableView.dequeueReusableCellWithIdentifier("ProductCell")
 as ProductTableCell;

 cell.product = products[indexPath.row];
 cell.nameLabel.text = product.name;
 cell.descriptionLabel.text = product.productDescription;
 cell.stockStepper.value = Double(product.stockLevel);
 cell.stockField.text = String(product.stockLevel);

 return cell;
}
...

This is the method that is called to obtain a UITableViewCell object for display, and the
highlighted statement shows that I obtain the UITableView object by making a call to the
dequeueReusableCellWithIdentifier method defined by the UITableView class. The UIKit
framework manages the creation and allocation of UITableViewCell objects so they can be reused.
Apple doesn’t publish the source code to the UIKit framework, so it is not possible to see how the
pool is implemented, but this is an example of a pool being used to offset an expensive initialization
by reusing the object.

Tip The dequeueReusableCellWithIdentifier method combines the object pool and factory

method patterns. I describe the factory method pattern in Chapter 9, but the short description is that tables

can be populated with different types of table cells, and the method argument—ProductCell in this

case—is used to differentiate between them.

Applying the Pattern to the SportsStore Application
I am going to apply the object pool pattern to the SportsStore application in order to manage a
pool of network request objects. Currently, the SportsStore application has a static array of Product
objects that are displayed to the user, and I am going to replace this with a series of network calls
that get details of the products and update the server when the stock level changes.

150 CHAPTER 7: The Object Pool Pattern

Preparing the Example Application
I am going to pick up the SportsStore project as I left it as the end of Chapter 6, and no preparation
is required for this chapter.

Tip Remember that you can download the source code for every stage of the SportsStore project—along

with every other example in this book—from Apress.com.

Creating the (Fake) Server
I don’t want to get into the details of creating and setting up a server, so I am going to simulate the
request and responses, but the demonstration of creating and applying the pool will be unaffected.
I added a file called NetworkConnection.swift to the SportsStore project and used it to define the
class shown in Listing 7-8.

Listing 7-8. The Contents of the NetworkConnection.swift File

import Foundation

class NetworkConnection {

 private let stockData: [String: Int] = [
 "Kayak" : 10, "Lifejacket": 14, "Soccer Ball": 32,"Corner Flags": 1,
 "Stadium": 4, "Thinking Cap": 8, "Unsteady Chair": 3,
 "Human Chess Board": 2, "Bling-Bling King":4
];

 func getStockLevel(name:String) -> Int? {
 NSThread.sleepForTimeInterval(Double(rand() % 2));
 return stockData[name];
 }
}

The NetworkConnection class is the template for the objects that I manage in the object pool. There
is a private stockData property that is set to the dictionary containing the initial stock levels for
the SportsStore products, indexed by name. The getStockLevel method looks up a product in the
dictionary and returns the stock level value. I have used the NSThread.sleepForTimeInterval method
to add a random delay of one second to some requests.

Creating the Object Pool
The pools I demonstrated in earlier examples were all generic classes, which make it easy to reuse
classes in different projects. For variety I have implemented the object pool for the SportsStore
to operate on a specific type: the NetworkConnection class. Listing 7-9 shows the contents of the
NetworkPool.swift file, which I added to the SportsStore project.

https://Apress.com

151CHAPTER 7: The Object Pool Pattern

Listing 7-9. The Contents of the NetworkPool.swift File

import Foundation

final class NetworkPool {
 private let connectionCount = 3;
 private var connections = [NetworkConnection]();
 private var semaphore:dispatch_semaphore_t;
 private var queue:dispatch_queue_t;

 private init() {
 for _ in 0 ..< connectionCount {
 connections.append(NetworkConnection());
 }
 semaphore = dispatch_semaphore_create(connectionCount);
 queue = dispatch_queue_create("networkpoolQ", DISPATCH_QUEUE_SERIAL);
 }

 private func doGetConnection() -> NetworkConnection {
 dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
 var result:NetworkConnection? = nil;
 dispatch_sync(queue, {() in
 result = self.connections.removeAtIndex(0);
 });
 return result!;
 }

 private func doReturnConnection(conn:NetworkConnection) {
 dispatch_async(queue, {() in
 self.connections.append(conn);
 dispatch_semaphore_signal(self.semaphore);
 });
 }

 class func getConnection() -> NetworkConnection {
 return sharedInstance.doGetConnection();
 }

 class func returnConnecton(conn:NetworkConnection) {
 sharedInstance.doReturnConnection(conn);
 }

 private class var sharedInstance:NetworkPool {
 get {
 struct SingletonWrapper {
 static let singleton = NetworkPool();
 }
 return SingletonWrapper.singleton;
 }
 }
}

152 CHAPTER 7: The Object Pool Pattern

This is a pool that manages a collection of NetworkConnection objects, following the basic pattern I
created earlier in the chapter. The NetworkPool class implements the object pool pattern, but it also
uses the singleton pattern from Chapter 6 so that other components in the application can locate the
pool easily.

Applying the Object Pool
To apply the pool, I have created a class called ProductDataStore, into which I have moved the
statically defined product data—albeit without stock level information. Listing 7-10 shows the
contents of the ProductDataStore.swift file, which I added to the SportsStore project.

Listing 7-10. The Contents of the ProductDataStore.swift File

import Foundation

final class ProductDataStore {
 var callback:((Product) -> Void)?;
 private var networkQ:dispatch_queue_t
 private var uiQ:dispatch_queue_t;
 lazy var products:[Product] = self.loadData();

 init() {
 networkQ = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0);
 uiQ = dispatch_get_main_queue();
 }

 private func loadData() -> [Product] {
 for p in productData {
 dispatch_async(self.networkQ, {() in
 let stockConn = NetworkPool.getConnection();
 let level = stockConn.getStockLevel(p.name);
 if (level != nil) {
 p.stockLevel = level!;
 dispatch_async(self.uiQ, {() in
 if (self.callback != nil) {
 self.callback!(p);
 }
 })
 }
 NetworkPool.returnConnecton(stockConn);
 });
 }
 return productData;
 }

153CHAPTER 7: The Object Pool Pattern

 private var productData:[Product] = [
 Product(name:"Kayak", description:"A boat for one person",
 category:"Watersports", price:275.0, stockLevel:0),
 Product(name:"Lifejacket", description:"Protective and fashionable",
 category:"Watersports", price:48.95, stockLevel:0),
 Product(name:"Soccer Ball", description:"FIFA-approved size and weight",
 category:"Soccer", price:19.5, stockLevel:0),
 Product(name:"Corner Flags",
 description:"Give your playing field a professional touch",
 category:"Soccer", price:34.95, stockLevel:0),
 Product(name:"Stadium", description:"Flat-packed 35,000-seat stadium",
 category:"Soccer", price:79500.0, stockLevel:0),
 Product(name:"Thinking Cap", description:"Improve your brain efficiency",
 category:"Chess", price:16.0, stockLevel:0),
 Product(name:"Unsteady Chair",
 description:"Secretly give your opponent a disadvantage",
 category: "Chess", price: 29.95, stockLevel:0),
 Product(name:"Human Chess Board", description:"A fun game for the family",
 category:"Chess", price:75.0, stockLevel:0),
 Product(name:"Bling-Bling King",
 description:"Gold-plated, diamond-studded King",
 category:"Chess", price:1200.0, stockLevel:0)];
}

The ProductDataStore has become the authoritative source for Product objects in the SportsStore
app. Product objects are obtained through the products property, which returns the contents of
a private array. The Product objects are defined with zero stockLevel values, but the products
property is lazily computed and uses the NetworkPool class to request the current stock levels for
each product. When the request completes, the Product object is updated, and an optional callback
is invoked to provide notification of the new information.

Tip In a real project, it would make sense to get all of the stock levels in a single request, but for the

purposes of this chapter I want to exercise the pool with more requests than there are pooled objects.

Notice that I have used two GCD queues in this class. I obtain a global queue—one that is created
automatically by GCD—with background priority in order to execute the simulated network requests.
Using background priority means that delays in getting the stock information don’t prevent more
important tasks from being performed, such as responding to user interaction. When I handle the
callback, I use the main application queue to ensure that updates are performed immediately and
not deferred until the background tasks are complete.

Listing 7-11 shows the changes I have made to the ViewController.swift file to use the
ProductDataStore class, rather than define the data locally.

154 CHAPTER 7: The Object Pool Pattern

Listing 7-11. Using the ProductDataSource Class in the ViewController.swift File

import UIKit

class ProductTableCell: UITableViewCell {
 // ...statements omitted for brevity...
}

class ViewController: UIViewController, UITableViewDataSource {

 @IBOutlet weak var totalStockLabel: UILabel!
 @IBOutlet weak var tableView: UITableView!
 var productStore = ProductDataStore();

 override func viewDidLoad() {
 super.viewDidLoad();
 displayStockTotal();

 productStore.callback = {(p:Product) in
 for cell in self.tableView.visibleCells() {
 if let pcell = cell as? ProductTableCell {
 if pcell.product?.name == p.name {
 pcell.stockStepper.value = Double(p.stockLevel);
 pcell.stockField.text = String(p.stockLevel);
 }
 }
 }
 self.displayStockTotal();
 }
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning();
 }

 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return productStore.products.count;
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let product = productStore.products[indexPath.row];
 let cell = tableView.dequeueReusableCellWithIdentifier("ProductCell")
 as ProductTableCell;
 cell.product = product;
 cell.nameLabel.text = product.name;
 cell.descriptionLabel.text = product.productDescription;
 cell.stockStepper.value = Double(product.stockLevel);
 cell.stockField.text = String(product.stockLevel);
 return cell;
 }

155CHAPTER 7: The Object Pool Pattern

 @IBAction func stockLevelDidChange(sender: AnyObject) {
 // ...statements omitted for brevity...
 }

 func displayStockTotal() {
 let finalTotals:(Int, Double) = productStore.products.reduce((0, 0.0),
 {(totals, product) -> (Int, Double) in
 return (
 totals.0 + product.stockLevel,
 totals.1 + product.stockValue
);
 });

 totalStockLabel.text = "\(finalTotals.0) Products in Stock. "
 + "Total Value: \(Utils.currencyStringFromNumber(finalTotals.1))";
 }
}

I have defined a productStore property that is assigned a ProductDataStore object and from which
the Product objects are obtained for display. I have also defined the callback closure that locates the
table cell being used to display the Product—if it is visible—and updates the stock level it displays.

The effect you will see when running the app is that the stock values will be initially displayed as zero
and then updated as objects are checked out from the pool and used to make (simulated) network
requests. The random delay that I added in the NetworkConnection class means that the updates will
arrive gradually as the pool limits the number of concurrent requests.

Summary
In this chapter I explained how to apply the basic object pool pattern to manage a collection of
objects. In the next chapter, I show you how to vary the way that the object pool works to manage
objects with different usage patterns.

157

Chapter 8
Object Pool Variations

In this chapter, I explain how you can vary the basic implementation of the object pool pattern
I described in Chapter 7 to manage objects with different characteristics. Each technique applies
a strategy to handling an aspect of the pool’s implementation to deal with calling components that
require pool objects. Table 8-1 puts the variations into context.

Table 8-1. Putting the Object Pool Pattern Variations into Context

Question Answer

What are they? The variations on the object pool pattern allow you to change the

way that the object pool works to operate in different situations.

What are the benefits? These variations change the behavior of the pool so that it can

service calling components with different expectations and needs

and manage objects with a range of characteristics and life cycles.

When should you use these variations? You should use these variations when the basic implementation

of the pattern I described in Chapter 7 does not meet your needs.

When should you avoid these variations? These variations require advanced concurrency techniques and

should be avoided unless you can test them thoroughly and have

a solid understanding of Cocoa concurrency.

How do you know when you have

implemented the variations correctly?

The only way to be sure you have implemented these variations

correctly is through thorough testing.

Are there any common pitfalls? These are advanced techniques, and it is easy to misuse

concurrency protections to create a pool that doesn’t work or that

performs poorly.

Are there any related patterns? Not applicable.

158 CHAPTER 8: Object Pool Variations

Preparing the Example Project
I continue using the ObjectPool project I created in Chapter 7. No changes are required to prepare
for this chapter.

Understanding the Object Pool Pattern Variations
The implementation of an object pool consists of four strategies that collectively form the behavior
for allocating objects:

The object creation strategy	
The object reuse strategy	
The empty pool strategy	
The allocation strategy	

By changing these strategies, you can tailor the implementation of the object pool pattern to suit the
kind of objects you need to manage. I explain each of the strategies in the sections that follow and
demonstrate how to implement them.

Understanding the Object Creation Strategy
The object creation strategy governs how the objects that the pool manages are created. In the
previous chapter, I implemented an eager strategy, which means that the objects are created before
they are used. In fact, I create the Book objects in the Library class and pass them as an array to the
Pool initializer, like this:

...
private init(stockLevel:Int) {
 books = [Book]();
 for count in 1 ... stockLevel {
 books.append(Book(author: "Dickens, Charles", title: "Hard Times",
 stock: count))
 }
 pool = Pool<Book>(items:books);
}
...

This is the strategy I adopt when I am working with objects that represent real-world resources
because the number of objects that will be managed is typically known in advance (my library
purchased two copies of Hard Times) and requires some level of configuration (allocating a unique
stock reference).

The drawback of this approach is that all of the cost involved in creating and configuring the objects
is incurred before there is any demand for them. I have created two Book objects to represent
my Charles Dickens collection, but there may be little or no reader demand, and the overhead of
creating and preparing the Book objects will never be justified by requests.

159CHAPTER 8: Object Pool Variations

That is usually acceptable for objects that represent real-world objects because the state of the pool
reflects a real-world situation: the library has purchased two copies of Hard Times in anticipation of
reader demands. However, it isn’t helpful if you are using an object pool to avoid incurring expensive
initializations of objects that are not tied to the real-world, such as the Sum objects that I used to
demonstrate the prototype pattern in Chapter 5.

The alternative is to use a lazy creation strategy, which means that objects are not created until they
are required. For the purposes of my Library example, I am going to create a BookSeller class from
which Book objects can be obtained. The library in my example will be able to obtain the books it
needs from the seller the first time it is required. Listing 8-1 shows the contents of the BookSources.
swift file, which I added to the project.

Listing 8-1. The Contents of the BookSources.swift File

import Foundation

class BookSeller {
 class func buyBook(author:String, title:String, stockNumber:Int) -> Book {
 return Book(author: author, title: title, stock: stockNumber);
 }
}

The BookSeller class defines a type method that creates a Book object. The implementation of the
BookSeller class isn’t important for the example—it’s only important that there is a source of Book
objects that will be called upon to supply the items in the pool. Listing 8-2 shows the changes that
I made to the Pool class to support delaying the creation of items until they are required.

Listing 8-2. Implementing Lazy Object Creation in the Pool.swift File

import Foundation

class Pool<T> {
 private var data = [T]();
 private let arrayQ = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_SERIAL);
 private let semaphore:dispatch_semaphore_t;
 private var itemCount = 0;
 private let maxItemCount:Int;
 private let itemFactory: () -> T;

 init(maxItemCount:Int, factory:() -> T) {
 self.itemFactory = factory;
 self.maxItemCount = maxItemCount;
 semaphore = dispatch_semaphore_create(maxItemCount);
 }

 func getFromPool() -> T? {
 var result:T?;
 if (dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER) == 0) {
 dispatch_sync(arrayQ, {() in
 if (self.data.count == 0 && self.itemCount < self.maxItemCount) {
 result = self.itemFactory();
 self.itemCount++;

160 CHAPTER 8: Object Pool Variations

 } else {
 result = self.data.removeAtIndex(0);
 }
 })
 }
 return result;
 }

 func returnToPool(item:T) {
 dispatch_async(arrayQ, {() in
 self.data.append(item);
 dispatch_semaphore_signal(self.semaphore);
 });
 }

 func processPoolItems(callback:[T] -> Void) {
 dispatch_barrier_sync(arrayQ, {() in
 callback(self.data);
 });
 }
}

I have changed the Pool initializer so that it receives a closure that can be used to create new items
for the pool and an Int parameter that specifies the maximum number of times that the closure may
be used. I set the initial counter value for the Grand Central Dispatch semaphore to the maximum
number of items and perform a more complex check for the state of the pool in the getFromPool
method, like this:

...
if (self.data.count == 0 && self.itemCount < self.maxItemCount) {
 result = self.itemFactory();
 self.itemCount++;
} else {
 result = self.data.removeAtIndex(0);
}
...

To reach this point in the method, a thread has passed through the semaphore, and that means either
there is an object waiting for use in the data array or that I need to call the factory closure to create
one. This allows me to defer the creation of the items in the pool until there is a demand for them.

The other change to the Pool class was to implement a type method called processPoolItems. In
the original implementation of the pool, responsibility for creating the objects in the pool fell to the
Library class, which kept references to all the Book objects it was responsible for and was able to
generate a report about them using those local references. In this implementation, it is the Pool class
that creates the objects, and the Library class has no reference to them at all— so I have added
the processPoolItems method that accepts a callback closure that is passed the data array within a
synchronous GCD barrier block.

161CHAPTER 8: Object Pool Variations

Tip You can see how I have implemented the Book factory closure in Listing 8-3. I could have retained

a reference to the Book objects as they are created, but the way that Swift deals with closures defined in

initializers makes it a difficult process. Instead, I have made the Pool class the authoritative source for

details of the Book objects in the example application.

Listing 8-3 shows the corresponding changes to the Library class to complete the implementation
of the lazy creation strategy.

Listing 8-3. Implementing Lazy Object Creation in the Library.swift File

import Foundation

final class Library {
 private let pool:Pool<Book>;

 private init(stockLevel:Int) {

 var stockId = 1;

 pool = Pool<Book>(maxItemCount: stockLevel, factory: {() in
 return BookSeller.buyBook("Dickens, Charles",
 title: "Hard Times", stockNumber: stockId++)
 });
 }

 private class var singleton:Library {
 struct SingletonWrapper {
 static let singleton = Library(stockLevel:200);
 }
 return SingletonWrapper.singleton;
 }

 class func checkoutBook(reader:String) -> Book? {
 var book = singleton.pool.getFromPool();
 book?.reader = reader;
 book?.checkoutCount++;
 return book;
 }

 class func returnBook(book:Book) {
 book.reader = nil;
 singleton.pool.returnToPool(book);
 }

162 CHAPTER 8: Object Pool Variations

 class func printReport() {
 singleton.pool.processPoolItems({(books) in
 for book in books {
 println("...Book#\(book.stockNumber)...");
 println("Checked out \(book.checkoutCount) times");
 if (book.reader != nil) {
 println("Checked out to \(book.reader!)");
 } else {
 println("In stock");
 }
 }
 println("There are \(books.count) books in the pool");
 });
 }
}

The changes are minor. I have defined the closure that will be used to create the Book objects through
the BookSeller class, and I have updated the printReport method to get its data items from the pool.
I have also increased the maximum number of books in the pool to 200, which is far more than is
needed to satisfy the demand generated by the code in the main.swift file.

Note This simulates a situation where a real-world library has agreed to a line of credit with a bookseller

that can be called upon as needed. The library holds no stock initially, but every time that there is a request

for a book and there are no books in stock, the bookseller is asked to send a copy up until a predetermined

limit—200 copies in this case. New copies are asked for only if there are none in stock, however—the library

will reissue one of its existing copies if available.

You can see the effect of the lazy strategy by running the application. The report generated after all
of the requests have been processed, which can take 15 to 20 seconds, finished with a statement
that notes how many Book objects are in the pool.

...
There are 14 books in the pool

The exact number of books will differ each time you run the application because I add a delay to some
of the request randomly, and this will affect how many often Book objects are reused by the pool.

The worst case is that 20 books will be created, which means that the 200 books that the library was
willing to buy was a gross overestimate. If I had used an eager strategy, all 200 copies would have
been purchased; with the lazy strategy, I am able to more closely match the actual demand.

163CHAPTER 8: Object Pool Variations

Understanding the Object Reuse Strategy
The nature of the object pool pattern means that the objects managed by a pool will be allocated to
consumers repeatedly, and this presents the risk that an object is returned in a poor state. In terms
of a real-world library, this could mean torn or missing book pages. In software, it means an object
that has inconsistent state or that has encountered an unrecoverable error.

The simplest approach is the trusting strategy, which is where you trust that objects will be returned
to the pool in a reusable state. This isn’t always a bad idea because not all objects have to deal with
this kind of problem. The Book objects that the pool has managed so far are good examples because
they present little mutable public state.

The alternative is an untrusting strategy, in which objects are inspected before they are returned to the
pool to make sure they can be used again. Objects that cannot be reused are ejected from the pool.

Caution An untrusting strategy should be used only on pools that have the ability to replace ejected objects.

Without the ability to replace the objects, the pool may run out of items, and the application can grind to a

halt. See the “Understanding the Empty Pool Strategy” section for details.

I am going to change the way that my Book objects are used so that they can be checked out of
the pool only a certain number of times, reflecting that fact that books sustain wear and tear and
eventually reach the point of being unreadable. I don’t want to build any knowledge of the Book
class into my generic Pool class, so I have defined a protocol called PoolItem in a new file called
PoolItem.swift, the contents of which are shown in Listing 8-4.

Listing 8-4. The Contents of the PoolItem.swift File

@objc protocol PoolItem {

 var canReuse:Bool {get}
}

This PoolItem protocol defines a get-only property called canReuse. I will read this property when
items are returned to the pool and discard any objects that return false. Listing 8-5 shows the
corresponding changes in the Pool class.

Tip Notice that I have applied the @objc attribute to the protocol. This will allow me to downcast objects to

the protocol so I can read the canReuse property in the pool class.

164 CHAPTER 8: Object Pool Variations

Listing 8-5. Adding Support for the PoolItem Protocol in the Pool.swift File

import Foundation

class Pool<T:AnyObject> {
 private var data = [T]();
 private let arrayQ = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_SERIAL);
 private let semaphore:dispatch_semaphore_t;

 private var itemCount = 0;
 private let maxItemCount:Int;
 private let itemFactory: () -> T;

 init(maxItemCount:Int, factory:() -> T) {
 self.itemFactory = factory;
 self.maxItemCount = maxItemCount;
 semaphore = dispatch_semaphore_create(maxItemCount);
 }

 func getFromPool() -> T? {
 var result:T?;
 if (dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER) == 0) {
 dispatch_sync(arrayQ, {() in
 if (self.data.count == 0 && self.itemCount < self.maxItemCount) {
 result = self.itemFactory();
 self.itemCount++;
 } else {
 result = self.data.removeAtIndex(0);
 }
 })
 }
 return result;
 }

 func returnToPool(item:T) {
 dispatch_async(arrayQ, {() in
 let pitem = item as AnyObject as? PoolItem;
 if (pitem == nil || pitem!.canReuse) {
 self.data.append(item);
 dispatch_semaphore_signal(self.semaphore);
 }
 });
 }

 func processPoolItems(callback:[T] -> Void) {
 dispatch_barrier_sync(arrayQ, {() in
 callback(self.data);
 });
 }
}

165CHAPTER 8: Object Pool Variations

I don’t want to limit the range of objects that the pool can work with, so I check for reusability only
if the PoolItem protocol is implemented. Checking protocol conformance can be done only when
the protocol is decorated with the @objc attribute, and applying the attribute means that it can be
implemented only by classes and not structs. To give Swift the type information it needs to check
conformance, I have restricted the Pool generic type parameter.

...
class Pool<T:AnyObject> {
...

The AnyObject protocol means that the Pool can work only with class-based objects, which is not a
significant limitation because pooling value types doesn’t make any sense given that they are copied
when assigned to a variable. To check for conformance to the PoolItem protocol, I have to give Swift
a helping hand.

...
let pitem = item as AnyObject as? PoolItem;
if (pitem == nil || pitem!.canReuse) {
 self.data.append(item);
 dispatch_semaphore_signal(self.semaphore);
}
...

If I used the as? operator directly on the item object (which is of type T—the generic type in the Pool
class), then the compiler generates an error. I need to first cast to AnyObject (which is guaranteed to
work because the type T is restricted to classes that implement the AnyObject protocol) and then use
the as? operator to see whether the PoolItem protocol has been implemented.

The effect is that an item is returned to the pool if the PoolItem protocol isn’t implemented or—if it
is—the value of the canReuse property is true.

Applying the Protocol

The next step is to apply the PoolItem protocol so that Book objects can be loaned out a fixed
number of times before they are ejected from the pool. Listing 8-6 shows how I have modified the
Book class to implement the protocol.

Tip Notice that I have added the @objc attribute to the Book class. This is required to support conformance

to the PoolItem protocol in the Pool class.

166 CHAPTER 8: Object Pool Variations

Listing 8-6. Implementing the Protocol in the Book.swift File

import Foundation;

@objc class Book : PoolItem {
 let author:String;
 let title:String;
 let stockNumber:Int;
 var reader:String?
 var checkoutCount = 0;

 init(author:String, title:String, stock:Int) {
 self.author = author;
 self.title = title;
 self.stockNumber = stock;
 }

 var canReuse:Bool {
 get {
 let reusable = checkoutCount < 5
 if (!reusable) {
 println("Eject: Book#\(self.stockNumber)");
 }
 return reusable;
 }
 }
}

I return false from the canReuse property if a Book object has been checked out of the pool more than
five times, and, so that I can see when items are being ejected, I write a message to the console.

Testing the Strategy

To test the strategy of ejecting items from the pool, I need to balance the maximum number of items
that the pool will contain against the number of requests that will be made by the code in the
main.swift file. I need to have enough books to allow some of them to be ejected while leaving
enough slack in the system to service all of the requests. In the “Understanding the Empty Pool
Strategy” section, I’ll show you how to approach this properly by formalizing a strategy, but for the
moment I will set the maximum number of items in the pool to 5 (which I settled on through trial and
error). Listing 8-7 shows how I changed the limit in the Library class.

Listing 8-7. Changing the Maximum Number of Items in the Pool in the Library.swift File

...
private class var singleton:Library {
 struct SingletonWrapper {
 static let singleton = Library(stockLevel:5);
 }
 return SingletonWrapper.singleton;
}
...

167CHAPTER 8: Object Pool Variations

Running the application will produce output similar to the following:

Starting...
Eject: Book#1
Eject: Book#2
All blocks complete

...Book#3...
Checked out 3 times
In stock

...Book#4...
Checked out 4 times
In stock

...Book#5...
Checked out 3 times
In stock
There are 3 books in the pool
Program ended with exit code: 0

You may get different results because of the random delays before items are returned to the pool,
but the basic outcome should be the same: some of the Book objects are checked out more than
others, and they are ejected from the pool when they have been checked out five times and replaced
with new objects created by the pool.

Understanding the Empty Pool Strategy
As its name suggests, the empty pool strategy specifies how a pool responds when there are no
items in the pool available to service new requests for objects. The simplest strategy is the one used
by my example pool, which is the blocking strategy that forces the calling thread to wait until an
object is returned to the pool.

A blocking strategy is simple, but it can cause an application to slow down if there is a mismatch
between the number of objects in the pool and the level of demand for those objects. The
application can also lock up if a blocking strategy is combined with the untrusting statement
management strategy I described in the previous section.

In the previous example, I settled on the maximum number of Books objects that the pool could
create by trial and error. It took only a moment because I was able to run the application several
times to get a sense for how the requests for objects from the main.swift file affected the rate at
which objects were ejected from the pool. In real applications, you can only guess at the demand,
and some allowances have to be made for unusual periods of high demand, which puts additional
pressure on the pool objects. To see the kind of problem that arises, I have increased the number of
times that objects are requested from the pool, as shown in Listing 8-8.

168 CHAPTER 8: Object Pool Variations

Listing 8-8. Increasing the Number of Requests in the main.swift File

...
for i in 1 ... 35 {
 dispatch_group_async(group, queue, {() in
 var book = Library.checkoutBook("reader#\(i)");
 if (book != nil) {
 NSThread.sleepForTimeInterval(Double(rand() % 2));
 Library.returnBook(book!);
 }
 });
}
...

I have increased the number of requests to 35 because it is exceeds the number of times that the
objects in the pool can be used. The pool is allowed to create a maximum of five items, and each
can be used a maximum of five times. That means the pool won’t have any objects to use for the
26th and all subsequent requests. You can see the effect by running the application, which will
produce output like this:

Starting...
Eject: Book#4
Eject: Book#5
Eject: Book#1
Eject: Book#3
Eject: Book#2

Notice that there is no summary of the state of each book. That is because all five books have been
ejected from the pool and the GCD blocks trying to get objects cannot get past the semaphore in
the getFromPool method. The application is deadlocked: the GCD blocks won’t be executed until the
pool signals the semaphore to indicate that there are free objects, but the pool has reached the limit
of the number of objects it can create.

Implementing the Failing Request Strategy

The failing request strategy deals with an empty pool by shifting responsibility to the components
that request objects. The component has to specify how long it is willing to wait for an object to
become available before its request should fail. A failed request means that the component has to
be prepared for situations in which it will not receive the object it wanted and have some plan for
continuing its operation or reporting an error. Listing 8-9 shows how I revised the implementation of
the getFromPool method in the Pool class to implement this strategy.

Listing 8-9. Implementing the Strategy in the Pool.swift File

...
func getFromPool(maxWaitSeconds:Int = 5) -> T? {
 var result:T?;

 let waitTime = (maxWaitSeconds == -1)
 ? DISPATCH_TIME_FOREVER

169CHAPTER 8: Object Pool Variations

 : dispatch_time(DISPATCH_TIME_NOW,
 (Int64(maxWaitSeconds) * Int64(NSEC_PER_SEC)));

 if (dispatch_semaphore_wait(semaphore, waitTime) == 0) {
 dispatch_sync(arrayQ, {() in
 if (self.data.count == 0 && self.itemCount < self.maxItemCount) {
 result = self.itemFactory();
 self.itemCount++;
 } else {
 result = self.data.removeAtIndex(0);
 }
 })
 }
 return result;
}
...

Caution You can use the DISPATCH_TIME_NOW constant only as an argument to the dispatch_time

function. If you use it outside of the function, it returns a value of zero.

Caution This strategy should be used with caution because the components that consume objects from the

pool have to be written to deal with requests that fail. I sometimes see components that wrap their requests

for objects in a loop so they keep requesting objects until they get one. This is equivalent to making a request

that waits forever, and the application still locks up—just in a different and more CPU-intensive way.

I have added a parameter called maxWaitSeconds with a default value to the getFromPool method that
allows the caller to specify how many seconds they are prepared to wait for an object to become
available. I interpret a value of -1 to mean wait forever and interpret any other value to be the number
of seconds from the current time.

GCD defines the DISPATCH_TIME_FOREVER constant to represent an indefinite wait, and I create the
value for any other duration using the dispatch_time function, whose arguments are an initial time
and an additional number of nanoseconds that should be added to it:

...
let waitTime = (maxWaitSeconds == -1)
 ? DISPATCH_TIME_FOREVER
 : dispatch_time(DISPATCH_TIME_NOW,
 (Int64(maxWaitSeconds) * Int64(NSEC_PER_SEC)));
...

I use the DISPATCH_TIME_NOW constant for the first argument to specify that I want the time to be
relative to the present moment, and I multiply the number of seconds specified by the caller by the
NSEC_PER_SEC constant (which defines how many nanoseconds there are in a second) to get the
number of nanoseconds.

170 CHAPTER 8: Object Pool Variations

I pass the waitTime value as the second argument to the dispatch_semaphore_wait function.

...
if (dispatch_semaphore_wait(semaphore, waitTime) == 0) {
...

The dispatch_semaphore_wait function will block until the semaphore is signaled in the returnToPool
method or until the specified time is reached. If the DISPATCH_TIME_FOREVER value is used, then
the semaphore will block forever, which is the behavior I relied on in previous sections. For other
waitTime values, the dispatch_semaphore_wait function will let the thread continue after the time
period has elapsed.

I need to know why the semaphore has allowed the thread to continue. If it is because there is an
object available in the pool, then I want to get the object and return it to the caller If it is because the
time period has elapsed, then I want to allow the method to return without assigning a value to the
optional result variable. I can figure out what has happened by looking at the result returned by the
dispatch_semaphore_wait function. A value of 0 means that the semaphore has been signaled, and a
nonzero value means that the time has expired.

The signature of the getFromPool method already returns an optional Book object, which means that
the Library class is already set up to deal with a call to the checkoutBook method that doesn’t yield
a Book object from the pool.

...
class func checkoutBook(reader:String) -> Book? {
 var book = singleton.pool.getFromPool();
 book?.reader = reader;
 book?.checkoutCount++;
 return book;
}
...

The result from the checkoutBook method is also an optional Book object, which makes it easy for me
to detect timed-out requests in the main.swift file, as shown in Listing 8-10.

Listing 8-10. Dealing with Expired Requests in the main.swift File

import Foundation

var queue = dispatch_queue_create("workQ", DISPATCH_QUEUE_CONCURRENT);
var group = dispatch_group_create();

println("Starting...");

for i in 1 ... 35 {
 dispatch_group_async(group, queue, {() in
 var book = Library.checkoutBook("reader#\(i)");
 if (book != nil) {
 NSThread.sleepForTimeInterval(Double(rand() % 2));
 Library.returnBook(book!);

171CHAPTER 8: Object Pool Variations

 } else {
 dispatch_barrier_async(queue, {() in
 println("Request \(i) failed");
 });
 }
 });
}

dispatch_group_wait(group, DISPATCH_TIME_FOREVER);

dispatch_barrier_sync(queue, {() in
 println("All blocks complete");
 Library.printReport();
});

If I do not receive a Book object from the Library class, then I write a message to the console
indicating that the request has failed. The println function, which writes the message to the
console, is not safe for concurrent use, so I have enclosed the function call in a GCD block. I have
used a barrier because the queue is concurrent, and I don’t want two failed requests to result in
simultaneous calls to the println function, which would produce garbled output.

Tip Notice that I have enclosed the call to the Library.printReport method in a GCD block as well.

This method uses the println function to write a report to the debug console, so I have used the same GCD

queue to ensure that producing the report doesn’t call the println function at the same time as a failed

request message is being written.

If you run the application, you will see output like this:

Starting...
Eject: Book#4
Eject: Book#1
Eject: Book#5
Eject: Book#2
Eject: Book#3
All blocks complete
Request 26 failed
Request 30 failed
Request 28 failed
Request 31 failed
Request 29 failed
Request 27 failed
Request 32 failed
Request 33 failed
Request 34 failed
Request 35 failed
There are 0 books in the pool

172 CHAPTER 8: Object Pool Variations

The application runs to completion this time, and requests that are unable to obtain an object fail.
The application no longer locks up, but it does mean that the consumers of the Library class have
to be written to deal with the possibility that a Book object may not be available and know how to
cope when this happens.

Dealing with Exhausted Pools

The problem with the strategy I implemented in the previous section is that it requires callers to wait
even when the pool is exhausted, by which I mean that all of the objects have been ejected and the
pool cannot create more because it has reached the limit set during initialization. This is far from
ideal because calls that want to wait until an object is available will be allowed to do so, even though
the pool is permanently exhausted. Listing 8-11 shows how I have enhanced the Pool class to fail
requests when the pool is exhausted.

Listing 8-11. Handling Pool Expiry in the Pool.swift File

import Foundation

class Pool<T:AnyObject> {
 private var data = [T]();
 private let arrayQ = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_SERIAL);
 private let semaphore:dispatch_semaphore_t;
 private var itemCount = 0;
 private let maxItemCount:Int;
 private let itemFactory: () -> T;
 private var ejectedItems = 0;
 private var poolExhausted = false;

 init(maxItemCount:Int, factory:() -> T) {
 self.itemFactory = factory;
 self.maxItemCount = maxItemCount;
 semaphore = dispatch_semaphore_create(maxItemCount);
 }

 func getFromPool(maxWaitSeconds:Int = -1) -> T? {
 var result:T?;

 let waitTime = (maxWaitSeconds == -1)
 ? DISPATCH_TIME_FOREVER
 : dispatch_time(DISPATCH_TIME_NOW,
 (Int64(maxWaitSeconds) * Int64(NSEC_PER_SEC)));

 if (!poolExhausted) {
 if (dispatch_semaphore_wait(semaphore, waitTime) == 0) {
 if (!poolExhausted) {
 dispatch_sync(arrayQ, {() in
 if (self.data.count == 0
 && self.itemCount < self.maxItemCount) {
 result = self.itemFactory();
 self.itemCount++;

173CHAPTER 8: Object Pool Variations

 } else {
 result = self.data.removeAtIndex(0);
 }
 })
 }
 }
 }
 return result;
 }

 func returnToPool(item:T) {
 dispatch_async(arrayQ, {() in
 if let pitem = item as AnyObject as? PoolItem {
 if (pitem.canReuse) {
 self.data.append(item);
 dispatch_semaphore_signal(self.semaphore);
 } else {
 self.ejectedItems++;
 if (self.ejectedItems == self.maxItemCount) {
 self.poolExhausted = true;
 self.flushQueue();
 }
 }
 } else {
 self.data.append(item);
 }
 });
 }

 private func flushQueue() {
 var dQueue = dispatch_queue_create("drainer", DISPATCH_QUEUE_CONCURRENT);
 var backlogCleared = false;

 dispatch_async(dQueue, {() in
 dispatch_semaphore_wait(self.semaphore, DISPATCH_TIME_FOREVER);
 backlogCleared = true;
 });

 dispatch_async(dQueue, {() in
 while (!backlogCleared) {
 dispatch_semaphore_signal(self.semaphore);
 }
 });
 }

 func processPoolItems(callback:[T] -> Void) {
 dispatch_barrier_sync(arrayQ, {() in
 callback(self.data);
 });
 }
}

174 CHAPTER 8: Object Pool Variations

The changes in the listing address two problems: recognizing when the pool is exhausted and
rejecting any pending requests. To recognize when the pool is exhausted, I keep track of the number
of objects that are rejected from the pool in the returnToPool method, and when all of the objects
that the pool is able to create have been ejected, I set an instance variable called poolExhausted to
true and invoke a new method called flushQueue.

Tip I have had to rewrite the returnToPool method to deal with three possible conditions. The first is that

the object implements the PoolItem protocol and can be reused. The second is that the object implements

the PoolItem protocol and cannot be reused—and may be the last object to be ejected. The final condition

is that the item doesn’t implement the PoolItem protocol, in which case ejection and exhaustion are not of

concern and the item can be added back into the pool.

I have modified the getFromPool method so that requests check the value of the poolExhausted
property before waiting for the semaphore, which means that any new requests that arrive after the
pool has been exhausted return immediately.

The second problem is dealing with the outstanding requests for objects that arrived before the pool
became exhausted. The threads making the requests will be waiting for the GCD semaphore and
will continue to do so until they are signaled. Unfortunately, the GCD semaphore doesn’t provide
a means for me to wake up all of the waiting threads, so I have had to take an indirect route when
implementing the flushQueue method.

I create a separate GCD queue and add two blocks to it. The first block waits for the semaphore and
sets the value of a local variable called backLogCleared to true when the semaphore lets it pass.

...
dispatch_async(dQueue, {() in
 dispatch_semaphore_wait(self.semaphore, DISPATCH_TIME_FOREVER);
 backlogCleared = true;
});
...

GCD semaphores allow threads to pass in first-in first-out (FIFO) order, which means that this block
won’t be allowed to pass the semaphore until all of the waiting requests that arrived before the
queue was exhausted have also been allowed to pass.

The second block repeatedly signals the semaphore until the value of the backLogCleared
property changes.

...
dispatch_async(dQueue, {() in
 while (!backlogCleared) {
 dispatch_semaphore_signal(self.semaphore);
 }
});
...

175CHAPTER 8: Object Pool Variations

The queue to which I add these blocks is concurrent, and the semaphore will be signaled until the
backlog is cleared. I want to prevent calls that were waiting for the semaphore from adding blocks
to the array modification queue, which is why I check the value of the poolExhausted property before
and after waiting for the semaphore in the getFromPool method.

...
if (!poolExhausted) {
 if (dispatch_semaphore_wait(semaphore, waitTime) == 0) {
 if (!poolExhausted) {
...

I changed the default value of the maxWaitSeconds parameter in the getFromPool method to -1 to test the
new functionality easier; a request for an object will be rejected only when the pool is exhausted. Run
the application, and you will see output similar to the previous example—but this implementation of the
code prevents callers who are willing to wait for an object being locked up when the pool is exhausted.

Creating an Elastic Pool

You don’t have to reject requests for objects if the pool is able to create the number it needs to meet
demand. This is known as an elastic pool, and it can be used where there is a preferred number of
objects and a separate maximum number.

In terms of software development, elastic pools can be used in any situation where it is feasible to create
additional objects to cope with increased demand. A common example is network connections, where
there is a preferred number of connections for normal operation and some headroom for peak periods.

In terms of a real-world library, peak demand for a popular title may be satisfied by borrowing
books from nearby branches. This isn’t ideal because it reduces availability elsewhere in the library
network, but it means that requests for books can be satisfied without long waits under exceptional
circumstances. To map this into my example, I have added a class called LibraryNetwork to the
BookSources.swift file, as shown in Listing 8-12.

Listing 8-12. The Contents of the BookSources.swift File

import Foundation

class BookSeller {
 class func buyBook(author:String, title:String, stockNumber:Int) -> Book {
 return Book(author: author, title: title, stock: stockNumber);
 }
}

class LibraryNetwork {

 class func borrowBook(author:String, title:String, stockNumber:Int) -> Book {
 return Book(author: author, title: title, stock: stockNumber);
 }

 class func returnBook(book:Book) {
 // do nothing
 }
}

176 CHAPTER 8: Object Pool Variations

The LibraryNetwork class is a placeholder that allows me to demonstrate temporarily obtaining
additional books. I am not going to implement any logic in this class because my focus is on the
pool. Listing 8-13 shows how I have implemented elasticity in the Pool class.

Listing 8-13. Adding Item Elasticity in the Pool.swift File

import Foundation

class Pool<T:AnyObject> {
 private var data = [T]();
 private let arrayQ = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_SERIAL);
 private let semaphore:dispatch_semaphore_t;

 private let itemFactory: () -> T;
 private let peakFactory: () -> T;
 private let peakReaper:(T) -> Void;

 private var createdCount:Int = 0;
 private let normalCount:Int;
 private let peakCount:Int;
 private let returnCount:Int;
 private let waitTime:Int;

 init(itemCount:Int, peakCount:Int, returnCount: Int, waitTime:Int = 2,
 itemFactory:() -> T, peakFactory:() -> T, reaper:(T) -> Void) {

 self.normalCount = itemCount; self.peakCount = peakCount;
 self.waitTime = waitTime; self.returnCount = returnCount;
 self.itemFactory = itemFactory; self.peakFactory = peakFactory;
 self.peakReaper = reaper;
 self.semaphore = dispatch_semaphore_create(itemCount);
 }

 func getFromPool() -> T? {
 var result:T?;

 let expiryTime = dispatch_time(DISPATCH_TIME_NOW,
 (Int64(waitTime) * Int64(NSEC_PER_SEC)));

 if (dispatch_semaphore_wait(semaphore, expiryTime) == 0) {
 dispatch_sync(arrayQ, {() in
 if (self.data.count == 0) {
 result = self.itemFactory();
 self.createdCount++;
 } else {
 result = self.data.removeAtIndex(0);
 }
 })
 } else {
 dispatch_sync(arrayQ, {() in

177CHAPTER 8: Object Pool Variations

 result = self.peakFactory();
 self.createdCount++;
 });
 }
 return result;
 }

 func returnToPool(item:T) {
 dispatch_async(arrayQ, {() in
 if (self.data.count > self.returnCount
 && self.createdCount > self.normalCount) {
 self.peakReaper(item);
 self.createdCount--;
 } else {
 self.data.append(item);
 dispatch_semaphore_signal(self.semaphore);
 }
 });
 }

 func processPoolItems(callback:[T] -> Void) {
 dispatch_barrier_sync(arrayQ, {() in
 callback(self.data);
 });
 }
}

Note I have removed the code that deals with exhausted pools and ejecting items to make the example

simpler and because they are not usually used with elasticity (because the code gets complicated and

hard to maintain).

This pool uses a GCD semaphore to wait for an object to become available for a specified period,
which defaults to three seconds. If the semaphore wait operation expires before an item becomes
available, then a factory closure is used to create a temporary item to cope with demand. (There are
two factory closures—one for normal lazy object creation and one for creating temporary peak items).

The defining characteristic of an elastic pool is what you do with the temporary objects. You can keep
them in the pool forever, you can let the reference go so that the object will be deleted, or—as I have
done here—you can define a reaper, which is used to dispose of items when they are longer required. In
this case, I accept the reaper as an initializer argument and invoke it when the demand for objects falls.

Tip You can create sophisticated policies for deciding when temporary objects are no longer required, but

I recommend keeping it as simple as possible. Complex schemes work well during development but tend to

fall apart in the face of real usage patterns, which are hard to predict in advance.

178 CHAPTER 8: Object Pool Variations

To use the elastic pool, I need to change the initializer in the Library class to provide the additional
closures and item counts, as shown in Listing 8-14.

Listing 8-14. Updating the Library Initializer in the Library.swift File

...
private init(stockLevel:Int) {

 var stockId = 1;

 pool = Pool<Book>(
 itemCount:stockLevel,
 peakCount: stockLevel * 2,
 returnCount: stockLevel / 2,
 itemFactory: {() in
 return BookSeller.buyBook("Dickens, Charles",
 title: "Hard Times", stockNumber: stockId++)},
 peakFactory: {() in
 return LibraryNetwork.borrowBook("Dickens, Charles",
 title: "Hard Times", stockNumber: stockId++)},
 reaper: LibraryNetwork.returnBook
);
}
...

The normal pool items will be Book objects obtained from the BookSeller class. When demand is
twice the normal level, additional Book objects will be obtained from the LibraryNetwork.borrowBook
method, and when the number of objects falls to 50 percent of the normal level, the additional
objects are reaped by the LibraryNetwork.return book method.

You can see the effect of item elasticity by running the application, which will produce output like this:

...Starting...
All blocks complete
...Book#2...
Checked out 4 times
In stock
...Book#15...
Checked out 1 times
In stock
...Book#19...
Checked out 1 times
In stock
...Book#17...
Checked out 1 times
In stock
...Book#18...
Checked out 1 times
In stock
There are 5 books in the pool
...

179CHAPTER 8: Object Pool Variations

This example borrows Book objects to satisfy demand, which is reflected in the number of times that
the books shown in the output have been checked out of the pool. The code in the main.swift file
requests 35 Book objects, but the report shows only 8 checkouts. The remaining requests have been
satisfied using objects obtained from—and subsequently returned to—the LibraryNetwork class.

Understanding the Allocation Strategy
The allocation strategy determines how an available object is selected to service a request. The
strategy I have been using so far in this chapter is first-in first-out, based on treating an array like a
queue. The advantage of this approach is that it is simple to implement, but it does mean that objects
can be allocated unevenly so that some are checked out of the pool many more times than others.

For most applications, the FIFO allocation strategy will be appropriate, but some applications will
require a different approach to allocating objects. For my example application, I am going to allocate
the least-used available book, but—as you will see—the impact of such a strategy is limited when
demand for objects is high. Listing 8-15 shows how I have added support for a custom allocation
strategy in the Pool class.

Listing 8-15. Adding Support for an Allocation Strategy in the Pool.swift File

import Foundation

class Pool<T:AnyObject> {
 private var data = [T]();
 private let arrayQ = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_SERIAL);
 private let semaphore:dispatch_semaphore_t;

 private let itemFactory: () -> T;
 private let itemAllocator:[T] -> Int;
 private let maxItemCount:Int;
 private var createdCount:Int = 0;

 init(itemCount:Int, itemFactory:() -> T, itemAllocator:([T] -> Int)) {
 self.maxItemCount = itemCount;
 self.itemFactory = itemFactory;
 self.itemAllocator = itemAllocator;
 self.semaphore = dispatch_semaphore_create(itemCount);
 }

 func getFromPool() -> T? {
 var result:T?;

 if (dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER) == 0) {
 dispatch_sync(arrayQ, {() in
 if (self.data.count == 0) {
 result = self.itemFactory();
 self.createdCount++;

180 CHAPTER 8: Object Pool Variations

 } else {
 result = self.data.removeAtIndex(self.itemAllocator(self.data));
 }
 })
 }
 return result;
 }

 func returnToPool(item:T) {
 dispatch_async(arrayQ, {() in
 self.data.append(item);
 dispatch_semaphore_signal(self.semaphore);
 });
 }

 func processPoolItems(callback:[T] -> Void) {
 dispatch_barrier_sync(arrayQ, {() in
 callback(self.data);
 });
 }
}

This is a fixed-size pool that creates its objects lazily. I have defined an initializer parameter called
itemAllocator that is a closure to which the array of available items is passed. The closure returns
the position in the array of the item that should be allocated to service the request. Listing 8-16
shows how I have updated the initializer of the Library class to implement an allocation strategy.

Listing 8-16. Adding an Allocation Strategy in the Library.swift File

...
private init(stockLevel:Int) {

 var stockId = 1;

 pool = Pool<Book>(
 itemCount:stockLevel,
 itemFactory: {() in
 return BookSeller.buyBook("Dickens, Charles",
 title: "Hard Times", stockNumber: stockId++)},
 itemAllocator: {(var books) in return 0; }
);
}
...

I have started with the FIFO strategy, and the closure selects the first item in the array. I recommend
that you start with this strategy in order to measure the impact of any alternatives. Depending on

181CHAPTER 8: Object Pool Variations

the pattern of requests that are made to the pool, you may well find that the FIFO allocation strategy
gives you something close to your goal. Here is a formatted version of the output from running the
application using FIFO:

...

...Book#4...Checked out 10 times

...Book#3...Checked out 6 times

...Book#2...Checked out 5 times

...Book#1...Checked out 5 times

...Book#5...Checked out 9 times

...

There is some variation between how often the objects have been used but not an enormous
amount. In a real project, I would consider sticking with the FIFO strategy with these results
(although I would also look at the variation in production to ensure that my tests are realistic).

Listing 8-17 shows a least-used strategy. This strategy selects the least-used available object. There
could be objects that are checked out that have been used less. Taking into account all of the objects
is called a perfect allocation strategy, but it is rarely useful because it means you block a request until
the absolute least-used object becomes available, which may not happen for some time.

Listing 8-17. Implementing a Different Allocation Strategy in the Library.swift File

...
private init(stockLevel:Int) {

 var stockId = 1;

 pool = Pool<Book>(
 itemCount:stockLevel,
 itemFactory: {() in
 return BookSeller.buyBook("Dickens, Charles",
 title: "Hard Times", stockNumber: stockId++)},
 itemAllocator: {(var books) in
 var selected = 0;
 for index in 1 ..< books.count {
 if (books[index].checkoutCount < books[selected].checkoutCount) {
 selected = index;
 }
 }
 return selected;
 }
);
}
...

182 CHAPTER 8: Object Pool Variations

In the new closure, I check each of the available objects and select the one with the lowest
checkoutCount property value. Here is the edited output from using this strategy:

...

...Book#2...Checked out 8 times

...Book#3...Checked out 5 times

...Book#5...Checked out 8 times

...Book#4...Checked out 8 times

...Book#1...Checked out 6 times

...

The exact results will vary because of the randomness in the main.swift code, but the overall effect
is to allocate the objects more evenly. This is a more balanced allocation strategy, but it requires
more work each time an object is allocated, and (at least for my test code) the impact is relatively
small. That doesn’t mean you should always use the FIFO allocation strategy, but you should make
sure that the additional work is justified by the results.

Understanding the Pitfalls of the Pattern Variations
The main danger presented by these variations is complexity, which can manifest itself in concurrency
problems and in code that is harder to read and harder to maintain. Beyond these problems, there are
specific pitfalls that these strategies can lead to, as described in the following sections.

Understanding the Expectation Gap Pitfall
As this chapter has demonstrated, it is possible to create object pools that look superficially similar
but that implement different strategies behind the scenes. You must ensure that the external impact
of these strategies is obvious to calling components because otherwise you will find that the efficacy
of the object pool is undermined.

For example, you may choose to deal with an empty pool by rejecting requests for objects. If you
do this, ensure that the return type of the pool object checkout method is an optional type, such as
Book? and not simply Book. Using optional results makes it clear that it is possible that a call to the
method will not yield an object.

Not every behavior can be expressed using language features, and I recommend you provide API
documentation that describes how the pool operates in some detail. For example, you will need
to document the fact that you deal with an exhausted pool by rejecting requests in order to avoid
calling components using a for loop until they receive an object—a behavior that can lead to the
application locking up.

183CHAPTER 8: Object Pool Variations

Understanding the Over- and Under-utilization Pitfalls
Once you start implementing the object pool pattern, it is easy to become emotionally invested
in selecting and creating the strategies you need and making them fit together. A well-written
implementation of the object pool pattern is a thing of beauty, but you must keep one eye on how
the pool performs during testing and deployment because it is easy to create a pool that is perfect
in implementation but that impairs the performance of the application or consumes too many
resources.

An over-utilized pool is a performance hazard because it spends most of its time empty and has a
long queue of calling components waiting for objects. An under-utilized pool is a resource hazard
because it manages a collection of objects that are rarely used. Balancing the size and behavior
of an object pool against its workload requires some trial and error—and realistic usage data for
testing. Also, you must be prepared to change the size and behavior of your pool to match the
application needs, even if that means discarding a strategy of which you are particularly proud.

Examples of the Pattern Variations in Cocoa
There are no obvious uses of these pattern variations in the Cocoa frameworks, although it is hard to
be sure because Apple does not publish the source code.

Applying a Pattern Variation to SportsStore
To finish this chapter, I am going to change the object creation strategy to the pool that I added to the
SportsStore application in Chapter 7. Currently, the NetworkPool class eagerly creates its objects.

...
private init() {
 for _ in 0 ..< connectionCount {
 connections.append(NetworkConnection());
 }
 semaphore = dispatch_semaphore_create(connectionCount);
 queue = dispatch_queue_create("networkpoolQ", DISPATCH_QUEUE_SERIAL);
}
...

I am going to switch to a lazy strategy. I used a closure to do this for the generic pool class earlier
in the chapter because I didn’t want the pool to have directly knowledge of how the objects it
manages are created. By contrast, the SportsStore NetworkPool class is already aware of the
NetworkConnection class and how it is created, which simplifies the implementation of the strategy.
Listing 8-18 shows the changes I made to implement the new strategy.

184 CHAPTER 8: Object Pool Variations

Listing 8-18. Changing the Object Creation Strategy in the NetworkPool.swift File

import Foundation

final class NetworkPool {
 private let connectionCount = 3;
 private var connections = [NetworkConnection]();
 private var semaphore:dispatch_semaphore_t;
 private var queue:dispatch_queue_t;
 private var itemsCreated = 0;

 private init() {
 semaphore = dispatch_semaphore_create(connectionCount);
 queue = dispatch_queue_create("networkpoolQ", DISPATCH_QUEUE_SERIAL);
 }

 private func doGetConnection() -> NetworkConnection {
 dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
 var result:NetworkConnection? = nil;
 dispatch_sync(queue, {() in
 if (self.connections.count > 0) {
 result = self.connections.removeAtIndex(0);
 } else if (self.itemsCreated < self.connectionCount) {
 result = NetworkConnection();
 self.itemsCreated++;
 }
 });
 return result!;
 }

 private func doReturnConnection(conn:NetworkConnection) {
 dispatch_async(queue, {() in
 self.connections.append(conn);
 dispatch_semaphore_signal(self.semaphore);
 });
 }

 class func getConnection() -> NetworkConnection {
 return sharedInstance.doGetConnection();
 }

 class func returnConnecton(conn:NetworkConnection) {
 sharedInstance.doReturnConnection(conn);
 }

185CHAPTER 8: Object Pool Variations

 private class var sharedInstance:NetworkPool {
 get {
 struct SingletonWrapper {
 static let singleton = NetworkPool();
 }
 return SingletonWrapper.singleton;
 }
 }
}

The changes are simple. I have removed the code that eagerly creates the NetworkConnection
objects from the initializer and added code that lazily creates them in the doGetConnection method.
It is always easier to work on a pool class that manages a specific type, but I still prefer to use
generic pool classes because it means I always get a consistent pool implementation because I
copy the code from one project to another, and to me, that is worth the additional complexity.

Summary
In this chapter, I showed you how you can change the four strategies that define the way an object
pool works so that you can use different implementations of the pattern to handle a variety of
objects. Few patterns require as much detail as the object pool pattern, and I return to simpler
territory in the next chapter, in which I describe the factory method pattern.

187

Chapter 9
The Factory Method Pattern

The factory method pattern is used when there is a choice to be made between classes that implement
a common protocol or share a common base class. This pattern allows implementation subclasses
to provide specializations without requiring the components that rely on them to know any details of
those classes and how they relate to each other. Table 9-1 puts the factory method into context.

Table 9-1. Putting the Factory Method Pattern into Context

Question Answer

What is it? The factory method pattern selects an implementation class to satisfy

a calling component’s request without requiring the component to

know anything about the implementation classes or the way they

relate to one another.

What are the benefits? This pattern consolidates the logic that decides which implementation

class is selected and prevents it from being diffused throughout the

application. This also means that calling components rely only on the

top-level protocol or base class and do not need any knowledge about

the implementation classes or the process by which they are selected.

When should you use this pattern? Use this pattern when you have several classes that implement a

common protocol or that are derived from the same base class.

When should you avoid this pattern? Do not use this pattern when there is no common protocol or

shared base class because this pattern works by having the calling

component rely on only a single type.

How do you know when you have

implemented the pattern correctly?

This pattern is implemented correctly when the appropriate class is

instantiated without the calling component knowing which class was

used or how it was selected.

Are there any common pitfalls? No. The factory method pattern is simple to implement.

Are there any related patterns? The factory method pattern is often combined with the singleton and

object pool patterns.

188 CHAPTER 9: The Factory Method Pattern

Preparing the Example Project
For this chapter, I created an OS X Command Line Tool project called FactoryMethod. I added a file
called RentalCar.swift to the project, the contents of which are shown in Listing 9-1.

Listing 9-1. The Contents of the RentalCar.swift File

protocol RentalCar {
 var name:String { get };
 var passengers:Int { get };
 var pricePerDay:Float { get };
}

class Compact : RentalCar {
 var name = "VW Golf";
 var passengers = 3;
 var pricePerDay:Float = 20;
}

class Sports : RentalCar {
 var name = "Porsche Boxter";
 var passengers = 1;
 var pricePerDay:Float = 100;
}

class SUV : RentalCar {
 var name = "Cadillac Escalade";
 var passengers = 8;
 var pricePerDay:Float = 75;
}

This file contains a protocol called RentalCar and three conforming classes: Compact, Sports, and
SUV. Listing 9-2 shows the contents of the CarSelector.swift file, which I added to the project and
which defines a class that relies on the RentalCar protocol and its implementations.

Listing 9-2. The Contents of the CarSelector.swift File

class CarSelector {
 class func selectCar(passengers:Int) -> String? {
 var car:RentalCar?;
 switch (passengers) {
 case 0...1:
 car = Sports();
 case 2...3:
 car = Compact();

Note The factory method pattern is closely related to the abstract factory pattern. See Chapter 10 for details

of the abstract factory pattern and guidance for choosing between them.

189CHAPTER 9: The Factory Method Pattern

 case 4...8:
 car = SUV();
 default:
 car = nil;
 }
 return car?.name;
 }
}

The CarSelector class defines a type method called selectCar that instantiates an implementation
of the RentalCar protocol that can accommodate the number of passengers (excluding the driver)
specified by the passengers parameter. The result of the selectCar method is the value of the name
property of the RentalCar implementation class that is selected and instantiated. I also added the
statements shown in Listing 9-3 to the main.swift file.

Listing 9-3. The Contents of the main.swift File

import Foundation

let passengers = [1, 3, 5];

for p in passengers {
 println("\(p) passengers: \(CarSelector.selectCar(p)!)");
}

The code in the main.swift file calls the CarSelector.selectCar method for different numbers of
passengers and writes the results to the debug console. You will see the following output when you
run the application:

1 passengers: Porsche Boxter
3 passengers: VW Golf
5 passengers: Cadillac Escalade

Understanding the Problem That the Pattern Solves
The factory method pattern solves a problem that arises when there are multiple classes that
conform to a protocol and you need to select the one that should be instantiated. You can see this at
work in Listing 9-2, in which the CarSelector.selectCar method selects and instantiates one of the
classes that conforms to the RentalCar protocol based on the value of the passengers parameter.

This approach has two related issues. The first issue is that by needing to instantiate the
implementation classes, the CarSelector class doesn’t benefit from the abstraction offered by the
RentalCar protocol. In fact, the RentalCar protocol doesn’t deliver any real benefit at all, which you
can see when I add a new implementation class, as shown in Listing 9-4.

190 CHAPTER 9: The Factory Method Pattern

Listing 9-4. Adding a New Implementation Class in the RentalCar.swift File

protocol RentalCar {
 var name:String { get };
 var passengers:Int { get };
 var pricePerDay:Float { get };
}

// ...other implementation classes omitted for brevity...

class Minivan : RentalCar {
 var name = "Chevrolet Express";
 var passengers = 14;
 var pricePerDay:Float = 40;
}

The listing shows the addition of the Minivan class, and you can see the impact it has on the
CarSelector class in Listing 9-5.

Listing 9-5. Adding Support for a New Implementation Class in the CarSelector.swift File

class CarSelector {
 class func selectCar(passengers:Int) -> String? {
 var car:RentalCar?;
 switch (passengers) {
 case 0...1:
 car = Sports();
 case 2...3:
 car = Compact();
 case 4...8:
 car = SUV();
 case 9...14:
 car = Minivan();
 default:
 car = nil;
 }
 return car?.name;
 }
}

The CarSelector class has to know about every implementation of the RentalCar protocol that it
wants to use, and it has to know when each should be created. This is different from tight coupling
because the CarSelector class doesn’t depend on the implementation of the classes it uses, but it
is still a problem because it depends on knowledge about the classes that implement the protocol.
New implementation classes require updates to the CarSelector class, as do changes in the
circumstances for which a specific implementation class is appropriate. For example, if I change the
car model used for the Sports class so that it has four seats, then I must update the CarSelector
class so that it knows it can be used for one to three passengers.

191CHAPTER 9: The Factory Method Pattern

The second issue is that the knowledge about how to select an implementation class will become
diffused throughout the application as I add components that need to select implementations of the
RentalCar protocol. In Listing 9-6, you can see the contents of the PriceCalculator.swift file that I
added to the project.

Listing 9-6. The Contents of the PriceCalculator.swift File

class PriceCalculator {
 class func calculatePrice(passengers:Int, days:Int) -> Float? {
 var car:RentalCar?;
 switch (passengers) {
 case 0...1:
 car = Sports();
 case 2...3:
 car = Compact();
 case 4...8:
 car = SUV();
 case 9...14:
 car = Minivan();
 default:
 car = nil;
 }
 return car == nil ? nil : car!.pricePerDay * Float(days);
 }
}

The PriceCalculator class defines a type method called calculatePrice that works out what it
costs to rent a car for a given number of passengers and days. The code for selecting the RentalCar
implementation class is just the same as in the CarSelector class and suffers from the same
dependency on understanding the relationship between those classes.

Note Duplicating the code like this seems obviously wrong in such a simple example, but in a complex

project with multiple developers it is easy to end up with this situation because there is no other way of

getting an instance of an implementation class.

Both of these problems are barriers to creating robust and easily maintained software. A diffused
dependency on the relationship between classes causes cascades of changes throughout an
application whenever you need to alter the relationships, and it is all too easy to omit a required
change and create a bug that is hard to test for.

Understanding the Factory Method Pattern
The factory method pattern encapsulates the logic required to select an implementation class within
a single method that is accessible to calling components. The factory method exposes only the
protocol or base class to its callers and does not reveal the details of the implementation classes
or the relationship between them. There are three operations in the factory method pattern, as
illustrated by Figure 9-1.

192 CHAPTER 9: The Factory Method Pattern

The first operation occurs when the calling component invokes the factory method, supplying it with
the arguments needed to decide which implement class should be instantiated.

For the second operation, the factory method applies its decision logic to the arguments supplied by
the calling component to decide which of the implementation classes will be instantiated. The final
operation creates an instance of the implementation class and returns it to the calling component,
completing the process and providing the caller with the object it needs to do its work.

The calling component does not need to understand the relationship between the implementation
classes. In fact, it doesn’t even need to know that they exist because the return type from the factory
method is the protocol or base type and not the implementation that has been created (you will see
how this works in the following section).

Implementing the Factory Method Pattern
The heart of the factory method pattern is—as the name suggests—a method. The method
encapsulates the decision logic that selects the implementation class, it defines the parameters
needed to execute the logic, and it returns an implementation of the protocol it operates on.

The standard mechanism used to implement the factory method in languages such as Java and C#
is the abstract class, which is a type that defines some concrete functionality but which must be
subclassed in order to be instantiated. There are two basic approaches to implementing the factory
method in Swift, although they are somewhat less elegant, as I demonstrate in the sections that
follow.

Figure 9-1. The factory pattern method

193CHAPTER 9: The Factory Method Pattern

Defining a Global Factory Method
The simplest way to implement the pattern is to define a global function. Global functions are
available throughout an application, which makes it easy for calling components to find and call
them, as shown in Listing 9-7.

Listing 9-7. Implementing the Factory Method Pattern in the RentalCar.swift File

func createRentalCar(passengers:Int) -> RentalCar? {
 var car:RentalCar?;
 switch (passengers) {
 case 0...1:
 car = Sports();
 case 2...3:
 car = Compact();
 case 4...8:
 car = SUV();
 case 9...14:
 car = Minivan();
 default:
 car = nil;
 }
 return car;
}

protocol RentalCar {
 var name:String { get };
 var passengers:Int { get };
 var pricePerDay:Float { get };
}

class Compact : RentalCar {
 var name = "VW Golf";
 var passengers = 3;
 var pricePerDay:Float = 20;
}

// ...implementation classes omitted for brevity...

This may seem like a small change because the global function—called createRentalCar—contains
the same decision logic that the CarSelector and PriceCalculator classes use. Even so, the effect it
has on the calling components is profound. Listing 9-8 shows the changes to the CarSelector class
to use the global function.

Listing 9-8. Calling the Global Function in the CarSelector.swift File

class CarSelector {
 class func selectCar(passengers:Int) -> String? {
 return createRentalCar(passengers)?.name;
 }
}

194 CHAPTER 9: The Factory Method Pattern

Not only is there a lot less code, but the CarSelector class has dependencies only on the global
factory function and the RentalCar protocol. It no longer knows anything about the implementation
classes and the relationship between them—it just knows that calling the createRentalCar global
function will produce an object that conforms to the protocol. Listing 9-9 shows the corresponding
changes to the PriceCalculator class.

Listing 9-9. Calling the Global Function in the PriceCalculator.swift File

class PriceCalculator {
 class func calculatePrice(passengers:Int, days:Int) -> Float? {
 var car = createRentalCar(passengers);
 return car == nil ? nil : car!.pricePerDay * Float(days);
 }
}

The added value that each class provides is intact, but exists without diffusing the decision logic and
implementation classes throughout the application.

Using a Base Class
The global function approach works, but it can feel a little disconnected from the protocol and
classes it operates on. An alternative approach is to replace the protocol with a base class that
defines the factory function. Listing 9-10 shows the changes required to implement this approach.
(I have also reduced the number of implementation classes to simplify the example and to prepare
for future changes.)

Listing 9-10. Implementing the Pattern Using a Base Class in the RentalCar.swift File

class RentalCar {
 private var nameBV:String;
 private var passengersBV:Int;
 private var priceBV:Float;

 private init(name:String, passengers:Int, price:Float) {
 self.nameBV = name;
 self.passengersBV = passengers;
 self.priceBV = price;
 }

 final var name:String {
 get { return nameBV; }
 }

 final var passengers:Int {
 get { return passengersBV; }
 };

 final var pricePerDay:Float {
 get { return priceBV; }
 };

195CHAPTER 9: The Factory Method Pattern

 class func createRentalCar(passengers:Int) -> RentalCar? {
 var car:RentalCar?;
 switch (passengers) {
 case 0...3:
 car = Compact();
 case 4...8:
 car = SUV();
 default:
 car = nil;
 }
 return car;
 }
}

class Compact : RentalCar {
 private init() {
 super.init(name: "VW Golf", passengers: 3, price: 20);
 }
 // functionality specific to compact cars goes here
}

class SUV : RentalCar {
 private init() {
 super.init(name: "Cadillac Escalade", passengers: 8, price: 75);
 }
 // functionality specific to SUVs cars goes here
}

Tip This is just a difference in implementation style. I prefer it because I am used to relying on abstract

classes in other languages, and this is as close to that approach as I can get with Swift. You should pick the

approach that best suits your coding style.

I have replaced the RentalCar protocol with a RentalCar class. I want to use the class to capture
the implementation contract that the protocol imposed on its implementations, so I have defined
final computed properties that expose the name, the number of passengers, and the price, and I
have defined backing properties that are set by a private constructor. Subclasses have to invoke
the RentalCar initializer, which requires values for backing values that are used by the computed
properties, creating an effect that is similar to using a protocol.

The RentalCar class defines a type method called createRentalCar that contains the decision logic
and is responsible for creating the objects that are returned to calling components. Listing 9-11
shows how I have updated the CarSelector class to use the new implementation.

196 CHAPTER 9: The Factory Method Pattern

Listing 9-11. Consuming a Base Class in the CarSelector.swift File

class CarSelector {
 class func selectCar(passengers:Int) -> String? {
 return RentalCar.createRentalCar(passengers)?.name;
 }
}

Listing 9-12 shows the corresponding change to the PriceCalculator class.

Listing 9-12. Consuming a Base Class in the PriceCalculator.swift File

class PriceCalculator {
 class func calculatePrice(passengers:Int, days:Int) -> Float? {
 var car = RentalCar.createRentalCar(passengers);
 return car == nil ? nil : car!.pricePerDay * Float(days);
 }
}

Delegating Decisions for Deeper Class Hierarchies

If you are dealing with a deep hierarchy of implementation classes, then it can be useful to delegate
some of the decision logic into the classes themselves, as shown in Listing 9-13.

Listing 9-13. Delegating Decision Logic in the RentalCar.swift File

class RentalCar {
 private var nameBV:String;
 private var passengersBV:Int;
 private var priceBV:Float;

 private init(name:String, passengers:Int, price:Float) {
 self.nameBV = name;
 self.passengersBV = passengers;
 self.priceBV = price;
 }

 final var name:String { get { return nameBV; }}
 final var passengers:Int { get { return passengersBV; }};
 final var pricePerDay:Float { get { return priceBV; }};

 class func createRentalCar(passengers:Int) -> RentalCar? {
 var carImpl:RentalCar.Type?;
 switch (passengers) {
 case 0...3:
 carImpl = Compact.self;
 case 4...8:
 carImpl = SUV.self
 default:
 carImpl = nil;
 }

197CHAPTER 9: The Factory Method Pattern

 return carImpl?.createRentalCar(passengers);
 }
}

class Compact : RentalCar {
 private convenience init() {
 self.init(name: "VW Golf", passengers: 3, price: 20);
 }

 private override init(name: String, passengers: Int, price: Float) {
 super.init(name: name, passengers: passengers, price: price);
 }

 override class func createRentalCar(passengers:Int) -> RentalCar? {
 if (passengers < 2) {
 return Compact();
 } else {
 return SmallCompact();
 }
 }
}

class SmallCompact : Compact {

 private init() {
 super.init(name: "Ford Fiesta", passengers: 3, price: 15);
 }
}

class SUV : RentalCar {

 private init() {
 super.init(name: "Cadillac Escalade", passengers: 8, price: 75);
 }

 override class func createRentalCar(passengers:Int) -> RentalCar? {
 return SUV();
 }
}

Note There are some who believe that delegating object creation to the implementation classes is an

essential part of the factory method pattern. I take a more relaxed view and generally use delegation only

when dealing with complex hierarchies of classes. For simpler situations, I prefer to consolidate the decision

logic in one place, as I did in the previous section, because I find it easier to test and maintain.

198 CHAPTER 9: The Factory Method Pattern

I have expanded the range of rental cars available by subclassing Compact to create the
SmallCompact class. I could have included the decision logic for choosing between Compact or
SmallCompact in the RentalCar class, but this can become awkward to maintain for deep hierarchies
of classes (much deeper than the two classes I have used here).

The alternative approach is to push the decision into the implementation classes, on the basis that
the Compact class, for example, is best placed to understand when it should be used and when the
SmallCompact class is more appropriate, as illustrated by Figure 9-2.

Figure 9-2. Delegating the decision into subclasses

When delegating the decision, the factory method has to break its work into two separate operations
that were previously conflated. The first operation is to identify the type that will be instantiated to
satisfy the request, like this:

...
var carImpl:RentalCar.Type?;
switch (passengers) {
 case 0...3:
 carImpl = Compact.self;
 case 4...8:
 carImpl = SUV.self
 default:
 carImpl = nil;
}
...

199CHAPTER 9: The Factory Method Pattern

The carImpl variable is defined as an optional RentalCar.Type. The Type suffix specifies that this
variable will be a metatype and not an object (meaning the implementation class and not an instance
of it). The logic in the RentalCar factory method selects one of the top-level implementation classes
and then invokes its createRentalCar method to create the result that will be returned to the caller.

...
return carImpl?.createRentalCar(passengers);
...

In part, the choice of where to place the decision logic is a matter of personal preference. I generally
start by consolidating the decision logic in the factory method and start to delegate only once
the conditional statements are hard to manage or when my unit tests for validating the decisions
become unwieldy—at which point I start pushing the decisions down into the classes themselves.
Bear in mind, however, that putting all of the logic in the factory method creates dependencies on all
of the implementation classes and their subclasses, which can undermine the benefit of applying the
pattern when there is a complex class hierarchy to deal with.

Variations on the Factory Method Pattern
The factory method pattern can be combined with other patterns to add structure to more complex
applications by consolidating the decision logic. The most common combination is to use the
factory method pattern to select different singleton objects that all implement a common protocol or
that are all derived from a common base class. In Listing 9-14, you can see how I have modified the
implementation classes in the example project to be singletons.

Listing 9-14. Combining the Singleton and Factory Method Patterns in the RentalCar.swift File

class RentalCar {
 private var nameBV:String;
 private var passengersBV:Int;
 private var priceBV:Float;

 private init(name:String, passengers:Int, price:Float) {
 self.nameBV = name;
 self.passengersBV = passengers;
 self.priceBV = price;
 }

 final var name:String { get { return nameBV; }}
 final var passengers:Int { get { return passengersBV; }};
 final var pricePerDay:Float { get { return priceBV; }};

 class func createRentalCar(passengers:Int) -> RentalCar? {
 var carImpl:RentalCar.Type?;
 switch (passengers) {
 case 0...3:
 carImpl = Compact.self;
 case 4...8:
 carImpl = SUV.self

200 CHAPTER 9: The Factory Method Pattern

 default:
 carImpl = nil;
 }
 return carImpl?.createRentalCar(passengers);
 }
}

class Compact : RentalCar {

 private convenience init() {
 self.init(name: "VW Golf", passengers: 3, price: 20);
 }

 private override init(name: String, passengers: Int, price: Float) {
 super.init(name: name, passengers: passengers, price: price);
 }

 override class func createRentalCar(passengers:Int) -> RentalCar? {
 if (passengers < 2) {
 return sharedInstance;
 } else {
 return SmallCompact.sharedInstance;
 }
 }

 class var sharedInstance:RentalCar {
 get {
 struct SingletonWrapper {
 static let singleton = Compact();
 }
 return SingletonWrapper.singleton;
 }
 }
}

class SmallCompact : Compact {

 private init() {
 super.init(name: "Ford Fiesta", passengers: 3, price: 15);
 }

 override class var sharedInstance:RentalCar {
 get {
 struct SingletonWrapper {
 static let singleton = SmallCompact();
 }
 return SingletonWrapper.singleton;
 }
 }
}

201CHAPTER 9: The Factory Method Pattern

class SUV : RentalCar {

 private init() {
 super.init(name: "Cadillac Escalade", passengers: 8, price: 75);
 }

 override class func createRentalCar(passengers:Int) -> RentalCar? {
 return SUV();
 }
}

I have modified the Compact and Subcompact classes so that they define singletons using the struct
technique I described in Chapter 6. These singletons are used by the modifications I applied to the
implementation of the Compact.createRentalCar method, which returns the shared instances rather
than creating new ones.

The outcome of combining the singleton and factory methods patterns is that knowledge about the
singleton is tightly contained to the implementation classes. The calling component of the factory
method doesn’t know—or care—if it receives a new instance or a singleton and nor does the factory
method itself. You can also mix singletons with new instances. This is illustrated by the SUV class,
which does not employ a singleton and whose implementation of the createRentalCar method
creates a new instance every time it is called.

Tip You can also use the factory method to manage access to a group of related object pools. If you do so,

remember to create a pool for each class of implementation object. If you use a single pool for all objects,

callers will receive the wrong kind of implementation.

Understanding the Pitfalls of the Pattern
There are no serious pitfalls with this pattern, other than to ensure that the factory method doesn’t
reveal any details of which implementation class has been selected to satisfy a request.

Examples of the Factory Method Pattern in Cocoa
The Objective-C Cocoa classes make extensive use of the factory method pattern, referring to
classes that implement the pattern as class clusters. Class clusters are managed through factory
methods, but these methods are mapped to convenience initializers for use in Swift, which hides the
details away.

For example, the NSNumber class in the Foundation framework defines an Objective-C factory method
called numberWithBool that accepts a BOOL value and returns an NSNumber object that represents it
(with the numeric value 0 or 1).

202 CHAPTER 9: The Factory Method Pattern

This numberWithBool method is presented as a Swift convenience initializer that accepts a Bool
value, like this:

...
var number = NSNumber(bool: true);
...

The result of calling this initializer is that an NSBoolNumber object is created, but this is hidden from
the caller and presented as an NSNumber object.

Note It isn’t possible to use Swift initializers to implement the factory method pattern for your own classes.

Only Objective-C factory methods are handled this way.

Applying the Pattern to the SportsStore Application
To complete this chapter, I am going to apply the factory method pattern to the SportsStore
application in order to create variations on the Product class.

Tip Remember that you can download the source code for all the projects in this book—including the

SportsStore application in its different stages—from Apress.com.

Preparing the Example Application
To prepare for the pattern, I need to create implementation classes that will represent different kinds
of product. Listing 9-15 shows the additional classes I created.

Listing 9-15. Defining Subclasses in the Product.swift File

import Foundation

class Product : NSObject, NSCopying {

 private(set) var name:String;
 private(set) var productDescription:String;
 private(set) var category:String;
 private var stockLevelBackingValue:Int = 0;
 private var priceBackingValue:Double = 0;
 private var salesTaxRate:Double = 0.2;

 required init(name:String, description:String, category:String, price:Double,
 stockLevel:Int) {
 self.name = name;
 self.productDescription = description;
 self.category = category;

https://Apress.com

203CHAPTER 9: The Factory Method Pattern

 super.init();
 self.price = price;
 self.stockLevel = stockLevel;
 }

 var stockLevel:Int {
 get { return stockLevelBackingValue;}
 set { stockLevelBackingValue = max(0, newValue);}
 }

 private(set) var price:Double {
 get { return priceBackingValue;}
 set { priceBackingValue = max(1, newValue);}
 }

 var stockValue:Double {
 get {
 return (price * (1 + salesTaxRate)) * Double(stockLevel);
 }
 }

 func copyWithZone(zone: NSZone) -> AnyObject {
 return Product(name: self.name, description: self.description,
 category: self.category, price: self.price,
 stockLevel: self.stockLevel);
 }

 var upsells:[UpsellOpportunities] {
 get {
 return Array();
 }
 }
}

enum UpsellOpportunities {
 case SwimmingLessons;
 case MapOfLakes;
 case SoccerVideos;
}

class WatersportsProduct : Product {

 required init(name: String, description: String, category: String,
 price: Double, stockLevel: Int) {

 super.init(name: name, description: description, category: category,
 price: price, stockLevel: stockLevel);
 salesTaxRate = 0.10;
 }

204 CHAPTER 9: The Factory Method Pattern

 override var upsells:[UpsellOpportunities] {
 return [UpsellOpportunities.SwimmingLessons, UpsellOpportunities.MapOfLakes];
 }
}

class SoccerProduct: Product {

 required init(name: String, description: String, category: String,
 price: Double, stockLevel: Int) {

 super.init(name: name, description: description, category: category,
 price: price, stockLevel: stockLevel);
 salesTaxRate = 0.25;
 }

 override var upsells:[UpsellOpportunities] {
 return [UpsellOpportunities.SoccerVideos];
 }
}

I have enhanced the Product class by adding a tax rate that is used to calculate the stock value.
I also defined an enumeration called UpsellOpportunities that lists additional products that may
interest customers.

I have created two subclasses derived from Product: WatersportsProduct and SoccerProduct. The
decision logic I define when I implement the factory method pattern will select a subclass based
on the product category. Vanilla Product objects will represent products that have no specialized
subclass.

Implementing the Factory Method Pattern
To implement the pattern, I defined a type method on the Pattern class that contains all of
the decision logic. The object hierarchy for the SportsStore application is too simple to require
delegating the decisions. Listing 9-16 shows the factory method.

Listing 9-16. Implementing the Factory Method Pattern in the Product.swift File

...
class Product : NSObject, NSCopying {

 private(set) var name:String;
 private(set) var productDescription:String;
 private(set) var category:String;
 private var stockLevelBackingValue:Int = 0;
 private var priceBackingValue:Double = 0;
 private var salesTaxRate:Double = 0.2;

 required init(name:String, description:String, category:String, price:Double,
 stockLevel:Int) {
 self.name = name;
 self.productDescription = description;

205CHAPTER 9: The Factory Method Pattern

 self.category = category;

 super.init();

 self.price = price;
 self.stockLevel = stockLevel;
 }

 // ...properties and method omitted for brevity...

 class func createProduct(name:String, description:String, category:String,
 price:Double, stockLevel:Int) -> Product {

 var productType:Product.Type;

 switch (category) {
 case "Watersports":
 productType = WatersportsProduct.self;
 case "Soccer":
 productType = SoccerProduct.self;
 default:
 productType = Product.self;
 }

 return productType(name:name, description: description, category: category,
 price: price, stockLevel: stockLevel);
 }
}
...

The factory method is called createProduct, and it selects a class using a switch statement on the
category parameter. The class is instantiated to produce the object that is returned to the caller.
The createProduct method returns an instance of the Product class and hides the details of which
subclass has been selected and the process that led to the selection.

Consuming the Factory Method Pattern
To consume the factory method pattern, I have replaced the direct instantiation of the Product class
with calls to the factory method, as shown in Listing 9-17.

Listing 9-17. Consuming the Factory Method in the ProductDataStore.swift File

import Foundation

final class ProductDataStore {
 var callback:((Product) -> Void)?;
 private var networkQ:dispatch_queue_t
 private var uiQ:dispatch_queue_t;
 lazy var products:[Product] = self.loadData();

206 CHAPTER 9: The Factory Method Pattern

 // ...initializer and method omitted for brevity...

 private var productData:[Product] = [
 Product.createProduct("Kayak", description:"A boat for one person",
 category:"Watersports", price:275.0, stockLevel:0),
 Product.createProduct("Lifejacket",
 description:"Protective and fashionable",
 category:"Watersports", price:48.95, stockLevel:0),
 Product.createProduct("Soccer Ball",
 description:"FIFA-approved size and weight",
 category:"Soccer", price:19.5, stockLevel:0),
 Product.createProduct("Corner Flags",
 description:"Give your playing field a professional touch",
 category:"Soccer", price:34.95, stockLevel:0),
 Product.createProduct("Stadium",
 description:"Flat-packed 35,000-seat stadium",
 category:"Soccer", price:79500.0, stockLevel:0),
 Product.createProduct("Thinking Cap",
 description:"Improve your brain efficiency",
 category:"Chess", price:16.0, stockLevel:0),
 Product.createProduct("Unsteady Chair",
 description:"Secretly give your opponent a disadvantage",
 category: "Chess", price: 29.95, stockLevel:0),
 Product.createProduct("Human Chess Board",
 description:"A fun game for the family",
 category:"Chess", price:75.0, stockLevel:0),
 Product.createProduct("Bling-Bling King",
 description:"Gold-plated, diamond-studded King",
 category:"Chess", price:1200.0, stockLevel:0)];
}

When you run the application, the appropriate class will be selected to represent each product,
and you will see that the total value of the stock changes to reflect the different sales tax for each
product category.

Summary
In this chapter, I showed you how to apply the factory method pattern to consolidate the logic that
selects which subclasses are instantiated to satisfy a calling component’s need. In the next chapter,
I show you how to use the abstract factory pattern to create families of related objects.

207

Chapter 10
Abstract Factory Pattern

In this chapter, I describe the abstract factory pattern. This pattern is similar to the factory method
pattern that I described in Chapter 9 but allows a calling component to obtain a family or group of
related objects without needing to know which classes were used to create them. Table 10-1 puts
the abstract factory pattern in context.

Table 10-1. Putting the Abstract Factory Pattern into Context

Question Answer

What is it? The abstract factory pattern allows a calling component to create

a group of related objects. The pattern hides the details of which

classes are used to create the objects and the reason why they were

selected from the calling component. This pattern is similar to the

factory method pattern I described in Chapter 9 but presents the

calling component with a set of objects.

What are the benefits? The calling component doesn’t know which classes are used to create

the objects or why they were selected, which makes it possible to

change the classes that are used without needing to change the

components that consume them.

When should you use this pattern? Use this pattern when you need to ensure that multiple compatible

objects are used by a calling component without the component

needing to know which objects are able to work together.

When should you avoid this pattern? Do not use this pattern to create a single object; the factory method

pattern is a simpler alternative that should be used instead.

(continued)

208 CHAPTER 10: Abstract Factory Pattern

Preparing the Example Project
For this chapter, I created a new OS X Command Line Tool project called AbstractFactory. The
example in this chapter is based on creating the parts required for different models of car. To get
started, I added a file called Floorplans.swift, the contents of which are shown in Listing 10-1.

Listing 10-1. The Contents of the Floorplans.swift File

protocol Floorplan {
 var seats:Int { get }
 var enginePosition:EngineOption { get };
}

enum EngineOption : String {
 case FRONT = "Front"; case MID = "Mid";
}

class ShortFloorplan: Floorplan {
 var seats = 2;
 var enginePosition = EngineOption.MID
}

class StandardFloorplan: Floorplan {
 var seats = 4;
 var enginePosition = EngineOption.FRONT;
}

class LongFloorplan: Floorplan {
 var seats = 8;
 var enginePosition = EngineOption.FRONT;
}

Question Answer

How do you know when you have

implemented the pattern correctly?

This pattern is implemented correctly when a calling component

receives a set of objects without knowing which classes were used to

instantiate them. The calling component should be able to access the

object’s functionality only through the protocols they implement or the

base classes from which they are derived.

Are there any common pitfalls? The main pitfall is to leak details of the classes that are used to the

calling component, either creating a dependency on the decision-

making process that selects classes or creating a dependency on

specific classes.

Are there any related patterns? The factory method pattern (Chapter 9) is a simpler pattern when

only a single object is required. The abstract factory method is

often combined with the singleton and prototype patterns (see the

“Variations on the Abstract Factory Pattern” section).

Table 10-1. (continued)

209CHAPTER 10: Abstract Factory Pattern

I have defined a protocol called Floorplan that represents the foundation for a car. It has a number
of seats, expressed by the Int property seats and an engine mounted in a position expressed by the
enginePosition property, which is a value from the EngineOption enumeration. I have defined three
classes that conform to the protocol, each of which represents a different floor plan configuration:
ShortFloorplan, StandardFloorplan, and LongFloorplan.

I repeated this process with another file called Suspension.swift, the contents of which are shown in
Listing 10-2.

Listing 10-2. The Contents of the Suspension.swift File

protocol Suspension {
 var suspensionType:SuspensionOption { get };
}

enum SuspensionOption : String {
 case STANDARD = "Standard"; case SPORTS = "Firm"; case SOFT = "Soft";
}

class RoadSuspension : Suspension {
 var suspensionType = SuspensionOption.STANDARD;
}

class OffRoadSuspension : Suspension {
 var suspensionType = SuspensionOption.SOFT;
}

class RaceSuspension : Suspension {
 var suspensionType = SuspensionOption.SPORTS;
}

The protocol in this case is called Suspension, and it defines a property called suspensionType, which
is set to a value from SuspensionOption. Like before, I have created three classes that conform to the
protocol to represent three different suspension products.

I created a file called Drivetrains.swift for the last set of products, as shown in Listing 10-3.

Listing 10-3. The Contents of the Drivetrains.swift File

protocol Drivetrain {
 var driveType:DriveOption { get };
}

enum DriveOption : String {
 case FRONT = "Front"; case REAR = "Rear"; case ALL = "4WD";
}

class FrontWheelDrive : Drivetrain {
 var driveType = DriveOption.FRONT;
}

210 CHAPTER 10: Abstract Factory Pattern

class RearWheelDrive : Drivetrain {
 var driveType = DriveOption.REAR;
}

class AllWheelDrive : Drivetrain {
 var driveType = DriveOption.ALL;
}

The protocol represents a drive train and defines a property that takes a value from the DriveOption
enumeration. The implementation classes represent three different types of drive train that can be
used in the production of cars.

To finish the preparation, I added a file called CarsParts.swift, the contents of which are shown in
Listing 10-4.

Listing 10-4. The Contents of the CarsParts.swift File

enum Cars: String {
 case COMPACT = "VW Golf";
 case SPORTS = "Porsche Boxter";
 case SUV = "Cadillac Escalade";
}

struct Car {
 var carType:Cars;
 var floor:Floorplan;
 var suspension:Suspension;
 var drive:Drivetrain;

 func printDetails() {
 println("Car type: \(carType.rawValue)");
 println("Seats: \(floor.seats)");
 println("Engine: \(floor.enginePosition.rawValue)");
 println("Suspension: \(suspension.suspensionType.rawValue)");
 println("Drive: \(drive.driveType.rawValue)");
 }
}

I have defined an enumeration called Cars that has values for each model of car that I am going
to create and a struct called Car that represents a completed car with properties for each type of
product in the example. The printDetails function writes out details of the car settings to the debug
console.

Tip Notice that I have used String as the base type for all of the enumerations in this project. This isn’t

something you would do in a real project, but it is helpful in an example because it allows me to easily

indicate which values have been selected by writing the raw values to the debug console.

211CHAPTER 10: Abstract Factory Pattern

Understanding the Problem That the Pattern Solves
In Chapter 9, I showed you how the factory method pattern can be used to allow calling components
to obtain an instance of an implementation class without needing to know which class was selected
or why it was selected.

The problem for this chapter is similar but applies to groups of related objects that do not share a
common protocol or base class. In the previous section, I defined protocols for three car parts and
created three implementation classes from them. For each of the values in the Cars enumeration,
I want to select the appropriate product from each category, as shown in Table 10-2.

Table 10-2. The Car to Product Mappings

Car Floorplan Suspension Drivetrain

COMPACT StandardFloorplan RoadSuspension FrontWheelDrive

SPORTS ShortFloorplan RaceSuspension RearWheelDrive

SUV LongFloorplan OffRoadSuspension AllWheelDrive

Currently, the only way for a component to create a car is to have knowledge of at least part
of the table in order to instantiate the classes it requires. Listing 10-5 shows how I create the
implementation objects and use them to set the properties of a Car struct in the main.swift file.

Listing 10-5. The Contents of the main.swift File

var car = Car(carType: Cars.SPORTS,
 floor: ShortFloorplan(),
 suspension: RaceSuspension(),
 drive: RearWheelDrive());

car.printDetails();

You will see the following output in the debug console when you run the application:

Car type: Porsche Boxter
Seats: 2
Engine: Mid
Suspension: Firm
Drive: Rear

The problem presented by this approach is just the same as the one I faced in Chapter 9: the
decision logic for selecting which implementation classes will be diffused and duplicated throughout
the application, and dependencies are created on the existence of individual implementation
classes. If there is a change in the product mappings in Table 10-2, then corresponding changes will
be required in all of the components that need to work with those products. These types of changes
are tedious, error-prone, and hard to test.

212 CHAPTER 10: Abstract Factory Pattern

Understanding the Abstract Factory Pattern
The abstract factory pattern shares a common purpose with the factory method pattern, but it is
used to create groups of objects whose relationship is not expressed through a common protocol
or base class. In the case of the example application, three objects are required to populate a Car
struct, and each of those objects will implement a different protocol: the Floorplan, Suspension, and
Drivetrain protocols.

THE FACTORY METHOD VS. THE ABSTRACT FACTORY PATTERNS

There is endless debate about the differences between the factory method and abstract factory patterns and when

each should be used. This debate is made more complicated by the way that features of different languages change the

implementation and emphasize or hide subtle differences.

My advice is to focus on the intent and not the implementation. If you have a product matrix like the one in Table 10-2

and you need to make sure you don’t end up with, for example, the suspension of a sports car being used with the floor

plan of an SUV, then use the abstract factory pattern. The abstract factory pattern hides the details of which objects are

in a group inside of concrete factory classes, which are in turn hidden from the calling component. This extra complexity

makes it easy to add new rows to the product matrix (by creating a new concrete factory) or change the products in an

existing row (by modifying a concrete factory).

The factory method pattern is much simpler because it deals with a single object and only has to hide which

implementation class is selected. As you will see, I implement the abstract factory pattern by combining multiple factory

methods into a single class.

So, in short, ignore the semantic debate and focus on the goal. Use the factory method pattern to create a single object

and use the abstract factory pattern if you are trying to manage a set of objects.

The abstract factory pattern addresses the diffusion of the decision logic by consolidating it in one
place. The pattern addresses the dependency on specific implementation classes by providing the
calling component with access only to the protocols and not the classes that conform to them.
There are four operations in the abstract factory pattern, as illustrated by Figure 10-1.

213CHAPTER 10: Abstract Factory Pattern

The pattern requires the use of an abstract factory class, which defines a method that will return an
implementation of a protocol or base class. The first operation in the pattern occurs when the calling
component invokes the abstract factory method to obtain an object.

For the second operation, the abstract factory method examines the request from the calling
component and selects a concrete factory class, which is a class that implements the factory
method pattern (as described in Chapter 9). An instance of the concrete factory class is created and
returned to the caller.

In the third operation, the calling component invokes the factory methods defined by the concrete
factory class. This leads to the fourth and final operation, in which the implementation classes are
instantiated to provide the calling component with the objects it requires.

When trying to understand this pattern, it helps to focus on how knowledge of other classes is
distributed throughout the pattern. The concrete factory knows which implementation classes
belong together, and its methods create objects within the same group, even though the classes
implement different protocols or are derived from different base classes.

The abstract factory doesn’t know about which implementation classes will be used, but it does
have knowledge of how to select the appropriate concrete factory for any given request.

The calling component knows only about the factories and the protocols or base classes used
by the implementation classes but not directly about the implementation classes. It relies on the
abstract factory to provide it with an appropriate concrete factory and relies on the concrete factory
to select appropriate implementation classes.

Implementing the Abstract Factory Pattern
In the sections that follow, I show you how to implement the abstract factory pattern in order to
create objects to represent the car products that I defined at the start of the chapter.

Figure 10-1. The abstract factory pattern

214 CHAPTER 10: Abstract Factory Pattern

Creating the Abstract Factory
I am going to start by creating the abstract factory class. This class is at the heart of the pattern
because it is used as the base class from which concrete factories are derived. Listing 10-6 shows
the contents of a file called Abstract.swift that I added to the example project.

Listing 10-6. The Contents of the Abstract.swift File

class CarFactory {

 func createFloorplan() -> Floorplan {
 fatalError("Not implemented");
 }

 func createSuspension() -> Suspension {
 fatalError("Not implemented");
 }

 func createDrivetrain() -> Drivetrain {
 fatalError("Not implemented");
 }
}

The abstract factory is called CarFactory, and it defines createFloorplan, createSuspension,
and createDrivetrain methods that return objects that implement the three product protocols:
Floorplan, Suspension, and Drivetrain. There is just enough functionality in this class for it to
be used as a base for the concrete factory classes, which I define in the next section. Once the
concrete factory classes are defined, I will return to this class and complete it so that it is capable of
selecting and using a concrete factory.

Creating the Concrete Factories
The next step is to create the concrete factory classes, which are responsible for creating a group
of product objects that can be used together. I added a file called Concrete.swift to the project and
used it to define the classes shown in Listing 10-7.

Listing 10-7. The Contents of the Concrete.swift File

class CompactCarFactory : CarFactory {
 override func createFloorplan() -> Floorplan {
 return StandardFloorplan();
 }
 override func createSuspension() -> Suspension {
 return RoadSuspension();
 }
 override func createDrivetrain() -> Drivetrain {
 return FrontWheelDrive();
 }
}

215CHAPTER 10: Abstract Factory Pattern

class SportsCarFactory : CarFactory {
 override func createFloorplan() -> Floorplan {
 return ShortFloorplan();
 }
 override func createSuspension() -> Suspension {
 return RaceSuspension();
 }
 override func createDrivetrain() -> Drivetrain {
 return RearWheelDrive();
 }
}

class SUVCarFactory : CarFactory {
 override func createFloorplan() -> Floorplan {
 return LongFloorplan();
 }
 override func createSuspension() -> Suspension {
 return OffRoadSuspension();
 }
 override func createDrivetrain() -> Drivetrain {
 return AllWheelDrive();
 }
}

Each concrete factory class is derived from the CarFactory class and overrides its methods to create
one of the groups of products shown in Table 10-2.

Completing the Abstract Factory
I can now return to the abstract factory class and complete the implementation of the pattern.
Listing 10-8 shows the changes that select concrete factories in order to provide calling components
with the means to obtain a concrete factory.

Listing 10-8. Completing the Pattern Implementation in the Abstract.swift File

class CarFactory {

 func createFloorplan() -> Floorplan {
 fatalError("Not implemented");
 }

 func createSuspension() -> Suspension {
 fatalError("Not implemented");
 }

 func createDrivetrain() -> Drivetrain {
 fatalError("Not implemented");
 }

216 CHAPTER 10: Abstract Factory Pattern

 final class func getFactory(car:Cars) -> CarFactory? {
 var factory:CarFactory?
 switch (car) {
 case .COMPACT:
 factory = CompactCarFactory();
 case .SPORTS:
 factory = SportsCarFactory();
 case .SUV:
 factory = SUVCarFactory();
 }
 return factory;
 }
}

I have added a type method called getFactory that accepts a value from the Cars enumeration and
that selects a concrete factory and returns an instance of it to the calling component. The selected
factory is presented to the calling component as a CarFactory object, and details of which concrete
factory has been selected—and why—remain private.

Consuming the Abstract Factory Pattern
The last step is to update the code that creates the Car object so that it obtains its products through
the abstract factory. Listing 10-9 shows the changes I made to the main.swift file.

Listing 10-9. Consuming the Abstract Factory Pattern in the main.swift File

let factory = CarFactory.getFactory(Cars.SPORTS);

if (factory != nil) {
 let car = Car(carType: Cars.SPORTS,
 floor: factory!.createFloorplan(),
 suspension: factory!.createSuspension(),
 drive: factory!.createDrivetrain());

 car.printDetails();
}

Rather than instantiate the implementation objects directly, I use the abstract factory class to
obtain a concrete factory for the type of car I require and then call the create methods to obtain the
implementation objects. If you run the application, you will see the following output:

Car type: Porsche Boxter
Seats: 2
Engine: Mid
Suspension: Firm
Drive: Rear

217CHAPTER 10: Abstract Factory Pattern

As the Listing 10-9 shows, there are no dependencies between the code in the main.swift file and
the individual product classes. This means that if the matrix shown in Table 10-2 changes, I can
update the corresponding concrete factory classes without having to make corresponding changes
in the components that consume them. In Listing 10-10, you can see how I changed the drive train
option for the sports car.

Listing 10-10. Changing an Implementation Class in the Concrete.swift File

...
class SportsCarFactory : CarFactory {
 override func createFloorplan() -> Floorplan {
 return ShortFloorplan();
 }
 override func createSuspension() -> Suspension {
 return RaceSuspension();
 }
 override func createDrivetrain() -> Drivetrain {
 return AllWheelDrive();
 }
}
...

The output produced by running the application shows the effect of the change.

Car type: Porsche Boxter
Seats: 2
Engine: Mid
Suspension: Firm
Drive: 4WD

By consolidating the decisions about which group of products belong together, the concrete
factories reduce the impact of change in the application, which makes the decision logic easier to
test and maintain. The abstract factory consolidates the decision logic for selecting the concrete
factory, further isolating calling components from the details of how groups of implementation
classes are associated with one another.

Variations on the Abstract Factory Pattern
There are common variations that you can use to adapt the way that the abstract factory is
implemented. As I explain in the following sections, the basic mechanism remains the same, but the
implementation is altered to control how objects are created.

Hiding the Abstract Factory Class
The first variation, and the most common, is to hide the implementation of the abstract factory
pattern inside the class or struct that calling components use to store the implementation objects. In
the case of the example application, this means the Car struct, and Listing 10-11 shows how I have
modified it to deal directly with the abstract and concrete factory classes.

218 CHAPTER 10: Abstract Factory Pattern

Listing 10-11. Hiding the Pattern in the CarParts.swift File

enum Cars: String {
 case COMPACT = "VW Golf";
 case SPORTS = "Porsche Boxter";
 case SUV = "Cadillac Escalade";
}

struct Car {
 var carType:Cars;
 var floor:Floorplan;
 var suspension:Suspension;
 var drive:Drivetrain;

 init(carType:Cars) {
 let concreteFactory = CarFactory.getFactory(carType);
 self.floor = concreteFactory!.createFloorplan();
 self.suspension = concreteFactory!.createSuspension();
 self.drive = concreteFactory!.createDrivetrain();
 self.carType = carType;
 }

 func printDetails() {
 println("Car type: \(carType.rawValue)");
 println("Seats: \(floor.seats)");
 println("Engine: \(floor.enginePosition.rawValue)");
 println("Suspension: \(suspension.suspensionType.rawValue)");
 println("Drive: \(drive.driveType.rawValue)");
 }
}

I have added an initializer that accepts the type of car that is required as a Cars value, which is used
to ask the abstract factory for a concrete factory. The concrete factory is then used to obtain the
Floorplan, Suspension, and Drivetrain objects that are required to initialize the object. The effect of
this change is to drastically simplify the code in the main.swift file, as shown in Listing 10-12.

Listing 10-12. The Effect of Hiding the Factories in the main.swift File

let car = Car(carType: Cars.SPORTS);
car.printDetails();

Caution This approach makes two assumptions about what the calling component is trying to achieve.

It assumes that it wants to create a Car object and that it requires all three objects. If you do adopt this

variation, then ensure that the calling component can still access the abstract factory so that it can create the

objects it needs for whatever purpose it requires them.

219CHAPTER 10: Abstract Factory Pattern

Applying the Singleton Pattern to the Concrete Factories
Another common variation is to apply the singleton pattern to the concrete factories. The concrete
factories make good singletons because they contain only the logic that is required to create objects
from the implementation classes. The first step in applying the singleton pattern is to update the
abstract factory class, which is the base class for the concrete factories. Listing 10-13 shows the
changes that I made.

Listing 10-13. Preparing for the Singleton Pattern in the Abstract.swift File

class CarFactory {

 required init() {
 // do nothing
 }

 func createFloorplan() -> Floorplan {
 fatalError("Not implemented");
 }

 func createSuspension() -> Suspension {
 fatalError("Not implemented");
 }

 func createDrivetrain() -> Drivetrain {
 fatalError("Not implemented");
 }

 final class func getFactory(car:Cars) -> CarFactory? {
 var factoryType:CarFactory.Type;
 switch (car) {
 case .COMPACT:
 factoryType = CompactCarFactory.self;
 case .SPORTS:
 factoryType = SportsCarFactory.self;
 case .SUV:
 factoryType = SUVCarFactory.self;
 }
 var factory = factoryType.sharedInstance;
 if (factory == nil) {
 factory = factoryType();
 }
 return factory;
 }

 class var sharedInstance:CarFactory? {
 get {
 return nil;
 }
 }
}

220 CHAPTER 10: Abstract Factory Pattern

I have added a sharedInstance computed type property that the concrete factories can override
if they want to be dealt with as singletons. I have changed the implementation of the getfactory
method so that it reads the value of the sharedInstance property and returns the result, if there is
one, to the caller. Concrete classes that don’t override the sharedInstance property will inherit the
default implementation, which I deal with by creating a new factory instance to deal with requests.
Listing 10-14 shows how I have updated one of the concrete factories so that it will be treated as
a singleton.

Listing 10-14. Applying the Singleton Pattern in the Concrete.swift File

...
class SportsCarFactory : CarFactory {
 override func createFloorplan() -> Floorplan {
 return ShortFloorplan();
 }
 override func createSuspension() -> Suspension {
 return RaceSuspension();
 }
 override func createDrivetrain() -> Drivetrain {
 return AllWheelDrive();
 }

 override class var sharedInstance:CarFactory? {
 get {
 struct SingletonWrapper {
 static let singleton = SportsCarFactory();
 }
 return SingletonWrapper.singleton;
 }
 }
}
...

I have overridden the sharedInstance property of the SportsCarFactory class to implement the
singleton pattern, as described in Chapter 6. I have left the other two concrete factory classes
unchanged, which means that new instances of those classes will be created each time they
are selected to deal with a request from a calling component. By contrast, there will be only one
instance of the SportsCarFactory class, which will be used to deal with all requests for which the
abstract factory selects it.

Applying the Prototype Pattern to the Implementation Classes
You could also apply the singleton pattern to the implementation classes, but that means all
components will operate on the same set of objects, which is suitable only when there is little or no
mutable state or when concurrency protections are in place.

A more common variation is to use the prototype pattern to create implementation objects by
cloning. In the sections that follow, I prepare the application for use with the prototype pattern and
then show you how to implement it.

221CHAPTER 10: Abstract Factory Pattern

Preparing the Example Application

The first step is to update the implementation classes so that they can be cloned. This requires
more work than you might expect because the NSCopying protocol that is used to implement the
prototype pattern won’t operate on Swift enumerations. This means I have to create an Objective-C
enumeration and import it into Swift to get the behavior I require.

Start by right-clicking the AbstractFactory item in the Project Navigator and select New File from the
pop-up menu. Select the Objective-C File template from the list, as shown in Figure 10-2.

Figure 10-2. Adding an Objective-C file to the project

Figure 10-3. Setting the name for the Objective-C file

Click the Next button and set the name of the file to SuspensionOption, as shown in Figure 10-3.

222 CHAPTER 10: Abstract Factory Pattern

Click the Next button and save the file alongside the Swift files that are already in the project. When
you save the file, Xcode will prompt you to create a bridging header file, as shown in Figure 10-4.

Figure 10-4. The Xcode prompt to create the bridging header file

Click the Yes button to create the file, which is required to import the Objective-C enumeration that
I am going to write into Swift. Xcode will create two files. The first is SuspensionOption.m, which is
the Objective-C file. I don’t need to make any changes to this file; I just created it to get Xcode to
set up the bridging header file, which is the other file that Xcode created. The bridging header file is
called AbstractFactory-Bridging-Header.h, and Listing 10-15 shows the addition I have made in
preparation for the enumeration I am going to define.

Listing 10-15. The Contents of the AbstractFactory-Bridging-Header.h File

#import "SuspensionOption.h"

Add another file to the project, but this time, add a header file called SuspensionOption.h. Edit the
file so that it contains the code shown in Listing 10-16.

Listing 10-16. The Contents of the SuspensionOption.h File

#import <Foundation/Foundation.h>

typedef NS_ENUM(NSInteger, SuspensionOption) {
 SuspensionOptionSTANDARD,
 SuspensionOptionSPORTS,
 SuspensionOptionSOFT
};

This enumeration will be imported into Swift so that it is a compatible replacement for the one that I
defined in the Suspension.swift file. Listing 10-17 shows how I removed the Swift enumeration and
prepared for the prototype pattern.

223CHAPTER 10: Abstract Factory Pattern

Listing 10-17. Preparing for the Prototype Pattern in the Suspension.swift File

import Foundation

@objc protocol Suspension {
 var suspensionType:SuspensionOption { get };
}

//enum SuspensionOption : String {
// case STANDARD = "Standard"; case SPORTS = "Firm"; case SOFT = "Soft";
//}

class RoadSuspension : Suspension {
 var suspensionType = SuspensionOption.STANDARD;
}

class OffRoadSuspension : Suspension {
 var suspensionType = SuspensionOption.SOFT;
}

class RaceSuspension : NSObject, NSCopying, Suspension {
 var suspensionType = SuspensionOption.SPORTS;

 func copyWithZone(zone: NSZone) -> AnyObject {
 return RaceSuspension();
 }
}

I have added the @objc attribute to the Suspension enumeration so that I can perform type casting
when I implement the prototype pattern in the concrete factory class shortly. I have commented out
the Swift SuspensionOption enumeration so that it doesn’t conflict with its Objective-C counterpart.
Finally, I modified the RaceSuspension class so that it implements the NSCopying protocol, which
allows it to be treated as a prototype.

Tip The effect of applying the prototype pattern to the implementation classes is minimal because they are

so simple. See Chapter 5 for details of when this pattern has more impact.

If you run the application, you will see the following output:

Car type: Porsche Boxter
Seats: 2
Engine: Mid
Suspension: 1
Drive: 4WD

224 CHAPTER 10: Abstract Factory Pattern

Notice that the Suspension value is a number. Objective-C doesn’t allow strings to be used as
the underlying type for enumerations, so I used an integer when I defined the SuspensionOption
enumeration in Listing 10-16. As a consequence, the output no longer shows a descriptive string for
the suspension.

Applying the Prototype Pattern

It is important to apply the prototype pattern to the implementation classes and not the concrete
factories. There are two reasons for this: the first is that you can end up with multiple prototypes
unless all of the concrete factories are singletons, which undermines the effect of applying the
pattern. The second reason is that knowledge about which implementation classes are treated as
prototypes and which should be instantiated will be duplicated throughout the factories, which
means that changing the behavior of one implementation class will require a corresponding change
in all of the concrete factory classes that use it. Forgetting to make all of these changes will result in
an implementation class that is treated inconsistently.

Listing 10-18 shows how I sidestep these problems by defining a method in Suspension protocol that
factories will use to obtain a conforming object and allow each implementation class to decide how
that object is created.

Listing 10-18. Applying the Prototype Pattern in the Suspension.swift File

import Foundation

@objc protocol Suspension {
 var suspensionType:SuspensionOption { get };

 class func getInstance() -> Suspension;
}

class RoadSuspension : Suspension {
 var suspensionType = SuspensionOption.STANDARD;

 private init() {};

 class func getInstance() -> Suspension {
 return RoadSuspension();
 }
}

class OffRoadSuspension : Suspension {
 var suspensionType = SuspensionOption.SOFT;

 private init() {};

 class func getInstance() -> Suspension {
 return OffRoadSuspension();
 }
}

225CHAPTER 10: Abstract Factory Pattern

class RaceSuspension : NSObject, NSCopying, Suspension {
 var suspensionType = SuspensionOption.SPORTS;

 private override init() {};

 func copyWithZone(zone: NSZone) -> AnyObject {
 return RaceSuspension();
 }

 private class var prototype:RaceSuspension {
 get {
 struct SingletonWrapper {
 static let singleton = RaceSuspension();
 }
 return SingletonWrapper.singleton;
 }
 }

 class func getInstance() -> Suspension {
 return prototype.copy() as Suspension;
 }
}

Tip I have defined empty private initializers on the implementation classes so they cannot be instantiated

directly. Notice that I used the override keyword for the RaceSuspension class because it inherits an

empty initializer from the NSObject class, which is the required base class for the NSCopying protocol. See

Chapter 5 for details.

In Listing 10-19, you can see how I have updated the concrete factory classes to reflect the changes
in the suspension classes.

Tip You would apply the pattern to all of the implementation classes in a real project, but I am changing the

suspension classes only to avoid repeating similar changes.

I have added a method called getInstance to the Suspension protocol. Each of the implementation
classes is required to define this method, and the RoadSuspension and OffRoadSuspension simply
create new objects. The RaceSuspension class defines a prototype as a singleton and copies it each
time the getInstance method is called.

226 CHAPTER 10: Abstract Factory Pattern

Listing 10-19. Revising the Consumption of Suspension Classes in the Concrete.swift File

class CompactCarFactory : CarFactory {
 override func createFloorplan() -> Floorplan {
 return StandardFloorplan();
 }
 override func createSuspension() -> Suspension {
 return RoadSuspension.getInstance();
 }
 override func createDrivetrain() -> Drivetrain {
 return FrontWheelDrive();
 }
}

class SportsCarFactory : CarFactory {

 override func createFloorplan() -> Floorplan {
 return ShortFloorplan();
 }
 override func createSuspension() -> Suspension {
 return RaceSuspension.getInstance();
 }
 override func createDrivetrain() -> Drivetrain {
 return AllWheelDrive();
 }

 override class var sharedInstance:CarFactory? {
 get {
 struct SingletonWrapper {
 static let singleton = SportsCarFactory();
 }
 return SingletonWrapper.singleton;
 }
 }
}

class SUVCarFactory : CarFactory {
 override func createFloorplan() -> Floorplan {
 return LongFloorplan();
 }
 override func createSuspension() -> Suspension {
 return OffRoadSuspension.getInstance();
 }
 override func createDrivetrain() -> Drivetrain {
 return AllWheelDrive();
 }
}

With these changes in place, instances of the RaceSuspension class are created through the
prototype pattern. This fact is hidden from the concrete factory classes, which makes it easy to
change the behavior of individual implementation classes without further changes to the concrete
factories.

227CHAPTER 10: Abstract Factory Pattern

Understanding the Pitfalls of the Pattern
The main pitfall for this pattern is blurring the lines between the different components. Specifically,
the abstract factory class should contain the decision logic only for selecting a concrete factory and
not for implementation classes. Equally, the concrete factories should contain the logic for selecting
implementation classes and not provide any of the functionality defined by the product protocols.

The only other pitfall to avoid arises when combining this pattern with the object pool pattern that
I described in Chapter 7. This is a disastrous combination if you try to manage separate pools
for each implementation class and make calling components wait for a combination of objects to
become available. Object pooling works best when all of the components require the same type of
object, and trying to queue access to overlapping sets of objects will often lead to deadlocks when
two components have acquired a free object required by the other. If you do try to combine these
patterns, ensure that your calling components always acquire objects from the pools in the same
order and that you pay particular attention to avoiding deadlocks.

Examples of the Pattern in Cocoa
It is not possible to tell whether the factory method or abstract factory pattern has been used when
you create a Cocoa object. As the recipient of the object, you simply don’t know whether you
have received a concrete factory or just a regular object whose class was selected based on your
request. It doesn’t help that Apple conflates the factory method and abstract factory patterns in its
documentation, which is why you will often hear class clusters described as an implementation of
both patterns.

This is exactly how it should be because both patterns are all about hiding decisions and
implementations from the calling components, and the only way you can tell which pattern has been
used is to look at the source code. The implementation of either pattern would be flawed if you
could tell by any other means.

Applying the Pattern to the SportsStore Application
To demonstrate how to apply the abstract factory pattern, I am going to change the way that the
total value of the SportsStore stock is produced so that different currencies and currency rates can
be selected. In the sections that follow, I’ll walk through the process of defining the protocols and
implementation classes that will convert the stock value and prepare it for display and of delivering
those classes via abstract and concrete factories.

Preparing the Example Application
No preparation is required for this chapter; I am going to pick up the project just as I left it in Chapter 9.

Tip Do not forget that you can download the source code for every chapter from Apress.com in case you

don’t want to re-create the SportsStore project manually.

https://Apress.com

228 CHAPTER 10: Abstract Factory Pattern

Defining the Implementation Protocols and Classes
The first step is to create a file that will contain the definitions for the implementation classes and the
protocols through which their functionality will be expressed. Listing 10-20 shows the contents of
the StockValueImplementations.swift file, which I added to the SportsStore project.

Listing 10-20. The Contents of the StockValueImplementations.swift File

import Foundation

protocol StockValueFormatter {
 func formatTotal(total:Double) -> String;
}

class DollarStockValueFormatter : StockValueFormatter {
 func formatTotal(total:Double) -> String {
 let formatted = Utils.currencyStringFromNumber(total);
 return "\(formatted)";
 }
}

class PoundStockValueFormatter : StockValueFormatter {
 func formatTotal(total:Double) -> String {
 let formatted = Utils.currencyStringFromNumber(total);
 return "£\(dropFirst(formatted))";
 }
}

protocol StockValueConverter {
 func convertTotal(total:Double) -> Double;
}

class DollarStockValueConverter : StockValueConverter {
 func convertTotal(total:Double) -> Double {
 return total;
 }
}

class PoundStockValueConverter : StockValueConverter {
 func convertTotal(total:Double) -> Double {
 return 0.60338 * total;
 }
}

I have defined two protocols and two families of implementation classes. The protocols are
called StockValueFormatter and StockValueConverter. The StockValueConverter protocol is
responsible for converting the currency amount from dollars, and the StockValueFormatter protocol
is responsible for preparing the currency amount. I have created two families of implementation
classes, one of which simply passes the dollar amount on without any modification and the other
converts the amount to British pounds.

229CHAPTER 10: Abstract Factory Pattern

Defining the Abstract and Concrete Factory Classes
I defined the abstract factory and concrete factory classes in a new file called StockValueFactories.
swift, the contents of which are shown in Listing 10-21.

Listing 10-21. The Contents of the StockValueFactories.swift File

import Foundation

class StockTotalFactory {

 enum Currency {
 case USD
 case GBP
 }

 private(set) var formatter:StockValueFormatter?;
 private(set) var converter:StockValueConverter?;

 class func getFactory(curr:Currency) -> StockTotalFactory {
 if (curr == Currency.USD) {
 return DollarStockTotalFactory.sharedInstance;
 } else {
 return PoundStockTotalFactory.sharedInstance;
 }
 }
}

private class DollarStockTotalFactory : StockTotalFactory {

 private override init() {
 super.init();
 formatter = DollarStockValueFormatter();
 converter = DollarStockValueConverter();
 }

 class var sharedInstance:StockTotalFactory {
 get {
 struct SingletonWrapper {
 static let singleton = DollarStockTotalFactory();
 }
 return SingletonWrapper.singleton;
 }
 }
}

private class PoundStockTotalFactory : StockTotalFactory {

 private override init() {
 super.init();
 formatter = PoundStockValueFormatter();
 converter = PoundStockValueConverter();
 }

230 CHAPTER 10: Abstract Factory Pattern

 class var sharedInstance:StockTotalFactory {
 get {
 struct SingletonWrapper {
 static let singleton = PoundStockTotalFactory();
 }
 return SingletonWrapper.singleton;
 }
 }
}

The StockTotalFactory class is the abstract factory, and it selects between the concrete classes,
DollarStockTotalFactory and PoundStockTotalFactory, based on a value from the Currency
enumeration passed to the getFactory method. The effect is the matrix shown in Table 10-3.

Table 10-3. The Currency to Formatter/Converter Mappings

Currency StockValueFormatter StockValueConverter

USD DollarStockValueFormatter DollarStockValueConverter

GBP PoundStockValueFormatter PoundStockValueConverter

Consuming the Factories and Implementation Classes
The last step is to use the abstract factory to convert and format the value of the stock. Listing 10-22
shows the changes I made to the ViewController.swift file.

Listing 10-22. Consuming the Abstract Factory Pattern in the ViewController.swift File

...
func displayStockTotal() {
 let finalTotals:(Int, Double) = productStore.products.reduce((0, 0.0),
 {(totals, product) -> (Int, Double) in
 return (
 totals.0 + product.stockLevel,
 totals.1 + product.stockValue
);
 });

 var factory = StockTotalFactory.getFactory(StockTotalFactory.Currency.GBP);
 var totalAmount = factory.converter?.convertTotal(finalTotals.1);
 var formatted = factory.formatter?.formatTotal(totalAmount!);

 totalStockLabel.text = "\(finalTotals.0) Products in Stock. "
 + "Total Value: \(formatted!)";
}
...

231CHAPTER 10: Abstract Factory Pattern

Figure 10-5. Converting and formatting the value of the stock

I have specified the GBP currency, which selects the implementation class family responsible for
handling British pounds. When you run the application, the total value of the stock will be converted
from dollars to pounds and displayed in the application, as shown in Figure 10-5.

The ViewController class is able to format the stock value without needing any details about the
concrete class that has been selected and the implementation classes that it provides.

Summary
In this chapter, I explained how the abstract factory pattern can be used to create objects that are
part of a group or family but that do not conform to a common protocol or share a common base
class. In the next chapter, I describe the builder pattern.

233

Chapter 11
The Builder Pattern

The builder pattern is used to separate the configuration of an object from its creation. The calling
component has the configuration data and passes it to an intermediary—the builder—that is
responsible for creating an object on behalf of the component. This separation can reduce the
amount of knowledge that the calling component has about the objects it uses and concentrates
default configuration values in the builder class, rather than being required in every component that
creates objects. Table 11-1 puts the builder pattern in context.

Table 11-1. Putting the Builder Pattern into Context

Question Answer

What is it? The builder pattern puts the logic and default configuration values required

to create an object into a builder class. This allows calling components to

create objects with minimal configuration data and without needing to know

the default values that will be used to create the object.

What are the benefits? This pattern makes it easier to change the default configuration values used

to create an object and to change the class from which instances are created.

When should you use

this pattern?

Use this pattern when a complex configuration process is required to

create an object and you don’t want the default configuration values to be

disseminated throughout the application.

When should you avoid

this pattern?

Don’t use this pattern when every data value required to create an object

will be different for each instance.

How do you know when you

have implemented the pattern

correctly?

The calling component can create objects by providing just the data values

for which there are no default values (although values may also be provided

to override some or all of the defaults).

Are there any common pitfalls? No.

Are there any related patterns? This pattern can be combined with the factory method or abstract factory

patterns to change the implementation class used to create the object

based on the configuration data provided by the calling component.

234 CHAPTER 11: The Builder Pattern

Preparing the Example Project
For this chapter, I created a new OS X Command Line Tool project called Builder. I added a file called
Food.swift to the project and used it to define the class shown in Listing 11-1.

Listing 11-1. The Contents of the Food.swift File

class Burger {
 let customerName:String;
 let veggieProduct:Bool;
 let patties:Int;
 let pickles:Bool;
 let mayo:Bool;
 let ketchup:Bool;
 let lettuce:Bool;
 let cook:Cooked;

 enum Cooked : String {
 case RARE = "Rare";
 case NORMAL = "Normal";
 case WELLDONE = "Well Done";
 }

 init(name:String, veggie:Bool, patties:Int, pickles:Bool, mayo:Bool,
 ketchup:Bool, lettuce:Bool, cook:Cooked) {

 self.customerName = name;
 self.veggieProduct = veggie;
 self.patties = patties;
 self.pickles = pickles;
 self.mayo = mayo;
 self.ketchup = ketchup;
 self.lettuce = lettuce;
 self.cook = cook;
 }

 func printDescription() {
 println("Name \(self.customerName)");
 println("Veggie: \(self.veggieProduct)");
 println("Patties: \(self.patties)");
 println("Pickles: \(self.pickles)");
 println("Mayo: \(self.mayo)");
 println("Ketchup: \(self.ketchup)");
 println("Lettuce: \(self.lettuce)");
 println("Cook: \(self.cook.rawValue)");
 }
}

The Burger class represents an order in a restaurant and defines constant values for the different
aspects of the order that are set through the constructor. The printDescription method writes out
the values of the constants to the debug console. Listing 11-2 shows how I edited the main.swift
file to create a Burger object and call the printDescription method.

235CHAPTER 11: The Builder Pattern

Listing 11-2. The Contents of the main.swift File

let order = Burger(name: "Joe", veggie: false, patties: 2, pickles: true,
 mayo: true, ketchup: true, lettuce: true, cook: Burger.Cooked.NORMAL);

order.printDescription();

Running the application produces the following output:

Name Joe
Veggie: false
Patties: 2
Pickles: true
Mayo: true
Ketchup: true
Lettuce: true
Cook: Normal

Understanding the Problems That the Pattern Solves
The problem addressed by the builder pattern arises when an object requires a large number of
configuration data values, not all of which the calling component has values for. In the case of the
Burger class, the initializer requires values for every aspect of the burger it represents. Here is the
ordering process that is followed in my imaginary restaurant:

1. The server asks the customer for their name.

2. The server asks the customer whether they require a vegetarian meal.

3. The server asks whether the customer wants to customize their burger.

4. The server asks whether the customer wants to upgrade and buy an

additional patty.

There are only four steps in this process, but it throws up some issues. Listing 11-3 shows how I can
model the process in the main.swift file to change the way I create Burger objects.

Listing 11-3. Implementing the Order Process in the main.swift File

// Step 1 - Ask for name
let name = "Joe";

// Step 2 - Is veggie meal required?
let veggie = false;

// Step 3 - Customize burger?
let pickles = true;
let mayo = false;
let ketchup = true;
let lettuce = true;
let cooked = Burger.Cooked.NORMAL;

236 CHAPTER 11: The Builder Pattern

// Step 4 - Buy additional patty?
let patties = 2;

let order = Burger(name: name, veggie: veggie, patties: patties, pickles: pickles,
 mayo: mayo, ketchup: ketchup, lettuce: lettuce, cook: cooked);

order.printDescription();

The Burger initializer requires calling components to understand the default configuration values
when the customer doesn’t want to change them—for example, knowing that a standard burger
comes with two patties and has ketchup. Each component that requires a Burger object has to have
this knowledge, and the effect is that a change in the default values must be implemented in every
calling component.

UNDERSTANDING THE TELESCOPING INITIALIZER ANTI-PATTERN

In other languages, the builder pattern is used as an alternative to the telescoping initializer or telescoping constructor

anti-pattern. Anti-patterns are commonly used techniques that don’t solve the problem they are intended to address or

solve a problem in a difficult or dangerous way. In some languages, the telescoping constructor pattern is a commonly

used technique intended to simplify working with classes that define a lot of initializer parameters. Consider this class:

...

class Milkshake {

 enum Size { case SMALL; case MEDIUM; case LARGE };

 enum Flavor { case CHOCOLATE; case STRAWBERRY; case VANILLA };

 let count:Int;

 let size:Size;

 let flavor:Flavor;

 init(flavor:Flavor, size:Size, count:Int) {

 self.count = count;

 self.size = size;

 self.flavor = flavor;

 }

}

...

The Milkshake class defines an initializer with three parameters. This requires calling components to know what the

default values are for the parameters and to provide values even when the defaults are required, like this:

...

var shake = Milkshake(

 flavor: Milkshake.Flavor.CHOCOLATE,

 size: Milkshake.Size.MEDIUM,

 count: 1

);

...

237CHAPTER 11: The Builder Pattern

Most customers will want a single medium shake and specify only a flavor. The telescoping initializer anti-pattern tries to

improve the situation by defining convenience initializers that provide default values, like this:

...

class Milkshake {

 enum Size { case SMALL; case MEDIUM; case LARGE };

 enum Flavor { case CHOCOLATE; case STRAWBERRY; case VANILLA };

 let count:Int;

 let size:Size;

 let flavor:Flavor;

 init(flavor:Flavor, size:Size, count:Int) {

 self.count = count;

 self.size = size;

 self.flavor = flavor;

 }

 convenience init(flavor:Flavor, size:Size) {

 self.init(flavor:flavor, size:size, count:1);

 }

 convenience init(flavor:Flavor) {

 self.init(flavor:flavor, size:Size.MEDIUM);

 }

}

...

Each convenience initializer omits an additional parameter and calls the preceding initializer with a default value. It allows

objects to be created without the calling component knowing the default values for the parameters that it doesn’t provide,

like this:

...

var shake = Milkshake(flavor: Milkshake.Flavor.CHOCOLATE);

...

Telescoping initializers are considered to be an anti-pattern because they result in a large number of initializers that are

hard to read and maintain. You can avoid telescoping initializers in Swift by using default parameter values, like this:

...

class Milkshake {

 enum Size { case SMALL; case MEDIUM; case LARGE };

 enum Flavor { case CHOCOLATE; case STRAWBERRY; case VANILLA };

 let count:Int;

 let size:Size;

 let flavor:Flavor;

238 CHAPTER 11: The Builder Pattern

 init(flavor:Flavor, size:Size = Size.MEDIUM, count:Int = 1) {

 self.count = count;

 self.size = size;

 self.flavor = flavor;

 }

}

...

The default values for the size and count parameters are used whenever the component that wants to create a

Milkshake object omits them. This has the benefit of defining the default values within the Milkshake class without

needing to define permutations of initializers.

Understanding the Builder Pattern
The builder pattern solves the problem by introducing an intermediary—called the builder—between
a component and the object it needs to work with. As Figure 11-1 shows, there are three operations
in the builder pattern.

Figure 11-1. The builder pattern

In the first operation, the calling component provides the builder with an item of data that replaces
one of the default values used to create an object. The operation is repeated each time the calling
component obtains a new value from the process it is following. In the case of my burger-ordering
process, the calling component is able to provide the builder with new data after each stage in the
sequence.

In the second operation, the calling component asks the builder to create an object. This signals to
the builder that there will be no new data and that an object should be created using the data values
it has received so far, along with default values for the data items that were not specified by the
calling component.

239CHAPTER 11: The Builder Pattern

In the third operation, the builder creates an object and returns it to the calling component with an
object.

The calling component knows what is required—a burger with no ketchup, for example—but it
doesn’t know how to create it. The builder class knows how to create a burger and knows the
default configuration, but it doesn’t know what the customer wants for any specific order. The builder
pattern brings the “what” and the “how” together without letting the calling component become
tightly coupled to the objects it requires.

Implementing the Builder Pattern
In the sections that follow, I demonstrate how to apply the builder pattern to the example project in
order to decouple the creation process for the Burger class from the components that use Burger
objects.

Defining the Builder Class
The first step is to define the builder class, which contains the default values for the Burger initializer
parameters and contains the means to allow calling components to change those values.
Listing 11-4 shows the contents of the Builder.swift file, which I added to the example project.

Listing 11-4. The Contents of the Builder.swift File

class BurgerBuilder {
 private var veggie = false;
 private var pickles = true;
 private var mayo = true;
 private var ketchup = true;
 private var lettuce = true;
 private var cooked = Burger.Cooked.NORMAL;
 private var patties = 2;

 func setVeggie(choice: Bool) { self.veggie = choice; }
 func setPickles(choice: Bool) { self.pickles = choice; }
 func setMayo(choice: Bool) { self.mayo = choice; }
 func setKetchup(choice: Bool) { self.ketchup = choice; }
 func setLettuce(choice: Bool) { self.lettuce = choice; }
 func setCooked(choice: Burger.Cooked) { self.cooked = choice; }
 func addPatty(choice: Bool) { self.patties = choice ? 3 : 2; }

 func buildObject(name: String) -> Burger {
 return Burger(name: name, veggie: veggie, patties: patties,
 pickles: pickles, mayo: mayo, ketchup: ketchup,
 lettuce: lettuce, cook: cooked);
 }
}

240 CHAPTER 11: The Builder Pattern

The BurgerBuilder class defines methods that will change the data values used to create a Burger
object. Only the name parameter on the Burger initializer doesn’t have a default value, so the
buildObject method accepts a name argument. The class responds to the buildObject method being
called by creating a Burger object using the name value, the values provided via the other methods,
and the default values.

Tip I could have used properties in the class, but I prefer to use methods because I can clearly indicate the

values for which there are no defaults by defining parameters on the buildObject method. I demonstrate

how to use properties to create a builder when I apply the pattern to the SportsStore application later in this

chapter.

There is a direct mapping to the underlying properties for almost all of the methods defined by the
class. The exception is the addPatty method, which allows the calling component to specify a number
of patties—just by specifying whether an extra one should be added. This approach allows me to
handle extra patties without making the calling component aware of what the default number is.

Consuming the Builder
The next step is to use the builder to create an object. Listing 11-5 shows the changes I made to the
main.swift file.

Listing 11-5. Consuming the Builder Pattern in the main.swift File

var builder = BurgerBuilder();

// Step 1 - Ask for name
let name = "Joe";

// Step 2 - Is veggie meal required?
builder.setVeggie(false);

// Step 3 - Customize burger?
builder.setMayo(false);
builder.setCooked(Burger.Cooked.WELLDONE);

// Step 4 - Buy additional patty?
builder.addPatty(false);

let order = builder.buildObject(name);

order.printDescription();

This may appear similar to the way I created Burger objects without the builder pattern, but using the
builder as an intermediary leads to improvements in flexibility by isolating the impact of change.

241CHAPTER 11: The Builder Pattern

Understanding the Impact of the Pattern
The first improvement is that it is possible to change a default value in the builder without having
to make changes to the calling component or to the Burger class. If most customers choose not to
have pickles—presumably because they are weird and horrible and ruin a good burger—then the
restaurant can update its menu to make burgers without them. Listing 11-6 shows the change to the
builder class.

Listing 11-6. Disabling Pickles in the Builder.swift File

class BurgerBuilder {
 private var veggie = false;
 private var pickles = false;
 private var mayo = true;
 private var ketchup = true;
 private var lettuce = true;
 private var cooked = Burger.Cooked.NORMAL;
 private var patties = 2;

 func setVeggie(choice: Bool) { self.veggie = choice; }
 func setPickles(choice: Bool) { self.pickles = choice; }
 func setMayo(choice: Bool) { self.mayo = choice; }
 func setKetchup(choice: Bool) { self.ketchup = choice; }
 func setLettuce(choice: Bool) { self.lettuce = choice; }
 func setCooked(choice: Burger.Cooked) { self.cooked = choice; }
 func addPatty(choice: Bool) { self.patties = choice ? 3 : 2; }

 func buildObject(name: String) -> Burger {
 return Burger(name: name, veggie: veggie, patties: patties,
 pickles: pickles, mayo: mayo, ketchup: ketchup,
 lettuce: lettuce, cook: cooked);
 }
}

The calling component isn’t aware that the default has changed, and neither is the Burger class, but
Burger objects will now be created without pickles unless the customer specifically asks for them.
You can see the effect in the output produced by running the application.

Name Joe
Veggie: false
Patties: 2
Pickles: false
Mayo: false
Ketchup: true
Lettuce: true
Cook: Well Done

242 CHAPTER 11: The Builder Pattern

Changing the Process

The second improvement is that I can change or streamline the ordering process without needing to
make changes in the builder or the Burger class. The upgrade of an additional patty may have been
a limited-time offer, and the restaurant may have been asking all customers if they want a vegetarian
burger in order to draw attention to a new product. I can still use the builder to create Burger objects,
even if I omit these steps from the process, as shown in Listing 11-7.

Listing 11-7. Revising the Process in the main.swift File

var builder = BurgerBuilder();

// Step 1 - Ask for name
let name = "Joe";

// Step 2 - Customize burger?
builder.setMayo(false);
builder.setCooked(Burger.Cooked.WELLDONE);

let order = builder.buildObject(name);

order.printDescription();

The customer still gets the same order even though the process has changed. This isn’t a universal
benefit, however; adding new steps to the process can require other changes.

Changing the Object

The third improvement is that I can change the Burger class and absorb the impact of the change in
the builder class so that it doesn’t propagate to the calling components. Listing 11-8 shows what
happens to the Burger class when the restaurant adds bacon to the menu.

Listing 11-8. Adding Bacon to the Food.swift File

class Burger {
 let customerName:String;
 let veggieProduct:Bool;
 let patties:Int;
 let pickles:Bool;
 let mayo:Bool;
 let ketchup:Bool;
 let lettuce:Bool;
 let cook:Cooked;
 let bacon:Bool;

 enum Cooked : String {
 case RARE = "Rare";
 case NORMAL = "Normal";
 case WELLDONE = "Well Done";
 }

243CHAPTER 11: The Builder Pattern

 init(name:String, veggie:Bool, patties:Int, pickles:Bool, mayo:Bool,
 ketchup:Bool, lettuce:Bool, cook:Cooked, bacon:Bool) {

 self.customerName = name;
 self.veggieProduct = veggie;
 self.patties = patties;
 self.pickles = pickles;
 self.mayo = mayo;
 self.ketchup = ketchup;
 self.lettuce = lettuce;
 self.cook = cook;
 self.bacon = bacon;
 }

 func printDescription() {
 println("Name \(self.customerName)");
 println("Veggie: \(self.veggieProduct)");
 println("Patties: \(self.patties)");
 println("Pickles: \(self.pickles)");
 println("Mayo: \(self.mayo)");
 println("Ketchup: \(self.ketchup)");
 println("Lettuce: \(self.lettuce)");
 println("Cook: \(self.cook.rawValue)");
 println("Bacon: \(self.bacon)");
 }
}

Adding bacon to the menu has changed the Burger initializer, which requires a corresponding
change in the builder protocol and class, as shown in Listing 11-9.

Listing 11-9. Updating the Builder Protocol and Class in the Builder.swift File

class BurgerBuilder {
 private var veggie = false;
 private var pickles = false;
 private var mayo = true;
 private var ketchup = true;
 private var lettuce = true;
 private var cooked = Burger.Cooked.NORMAL;
 private var patties = 2;
 private var bacon = true;

 func setVeggie(choice: Bool) { self.veggie = choice; }
 func setPickles(choice: Bool) { self.pickles = choice; }
 func setMayo(choice: Bool) { self.mayo = choice; }
 func setKetchup(choice: Bool) { self.ketchup = choice; }
 func setLettuce(choice: Bool) { self.lettuce = choice; }
 func setCooked(choice: Burger.Cooked) { self.cooked = choice; }
 func addPatty(choice: Bool) { self.patties = choice ? 3 : 2; }
 func setBacon(choice: Bool) { self.bacon = choice; }

244 CHAPTER 11: The Builder Pattern

 func buildObject(name: String) -> Burger {
 return Burger(name: name, veggie: veggie, patties: patties,
 pickles: pickles, mayo: mayo, ketchup: ketchup,
 lettuce: lettuce, cook: cooked, bacon: bacon);
 }
}

Tip Notice that the default setting for bacon is contained in the builder and not the Burger class.

The components that require Burger objects can use the builder without modification, as long as
they are happy to receive burgers that have bacon by default.

Name Joe
Veggie: false
Patties: 2
Pickles: false
Mayo: false
Ketchup: true
Lettuce: true
Cook: Well Done
Bacon: true

Avoiding Inconsistent Configurations

The final improvement is that the builder class can be used to avoid inconsistent configurations
that prevent an object from being created. As an example, adding bacon by default to all burgers is
unlikely to be popular with customers who order vegetarian burgers. Listing 11-10 shows how I can
handle this situation in the builder class.

Listing 11-10. Dealing with Inconsistent Configurations in the Builder.swift File

...
func setVeggie(choice: Bool) {
 self.veggie = choice;
 if (choice) {
 self.bacon = false;
 }
}
...

I have updated the setVeggie method to remove bacon if a vegetarian burger is requested. This
doesn’t preclude customers from requesting bacon as a customization, however, and still leaves the
calling component in charge of the ordering process.

245CHAPTER 11: The Builder Pattern

Variations on the Builder Pattern
You can create variations on the builder pattern by combining it with other patterns, usually the
factory method or abstract factory patterns (which I described in Chapter 9 and Chapter 10).

The combination that I use most often is to define multiple builder classes that define different sets
of default values and apply them through the factory method pattern. Listing 11-11 shows how
I have added a new builder for a different type of burger and added a factory method that allows a
builder to be selected.

Listing 11-11. Combining the Builder and Factory Method Patterns in the Builder.swift File

enum Burgers {
 case STANDARD; case BIGBURGER; case SUPERVEGGIE;
}

class BurgerBuilder {
 private var veggie = false;
 private var pickles = false;
 private var mayo = true;
 private var ketchup = true;
 private var lettuce = true;
 private var cooked = Burger.Cooked.NORMAL;
 private var patties = 2;
 private var bacon = true;

 private init() {
 // do nothing
 }

 func setVeggie(choice: Bool) {
 self.veggie = choice;
 if (choice) {
 self.bacon = false;
 }
 }

 func setPickles(choice: Bool) { self.pickles = choice; }
 func setMayo(choice: Bool) { self.mayo = choice; }
 func setKetchup(choice: Bool) { self.ketchup = choice; }
 func setLettuce(choice: Bool) { self.lettuce = choice; }
 func setCooked(choice: Burger.Cooked) { self.cooked = choice; }
 func addPatty(choice: Bool) { self.patties = choice ? 3 : 2; }
 func setBacon(choice: Bool) { self.bacon = choice; }

 func buildObject(name: String) -> Burger {
 return Burger(name: name, veggie: veggie, patties: patties,
 pickles: pickles, mayo: mayo, ketchup: ketchup,
 lettuce: lettuce, cook: cooked, bacon: bacon);
 }

246 CHAPTER 11: The Builder Pattern

 class func getBuilder(burgerType:Burgers) -> BurgerBuilder {
 var builder:BurgerBuilder;
 switch (burgerType) {
 case .BIGBURGER: builder = BigBurgerBuilder();
 case .SUPERVEGGIE: builder = SuperVeggieBurgerBuilder();
 case .STANDARD: builder = BurgerBuilder();
 }
 return builder;
 }
}

class BigBurgerBuilder : BurgerBuilder {

 private override init() {
 super.init();
 self.patties = 4;
 self.bacon = false;
 }

 override func addPatty(choice: Bool) {
 fatalError("Cannot add patty to Big Burger");
 }
}

class SuperVeggieBurgerBuilder : BurgerBuilder {

 private override init() {
 super.init();
 self.veggie = true;
 self.bacon = false;
 }

 override func setVeggie(choice: Bool) {
 // do nothing - always veggie
 }

 override func setBacon(choice: Bool) {
 fatalError("Cannot add bacon to this burger");
 }
}

I have created an enumeration called Burgers that details the range of burgers that are on offer,
and I have defined a factory method in the BurgerBuilder class that accepts a Burgers value and
selects a builder that will be returned to the caller. The BurgerBuilder class will continue to be
used for the STANDARD burger, but I have created subclasses that will handle the new BigBurger and
SuperVeggieBurger products.

The new builders revise the default values for the different burger components to create
different starting points for the ordering process and to restrict the set of possible changes,
such as preventing an extra patty from being added to the BigBurger or adding bacon to a
SuperVeggieBurger.

247CHAPTER 11: The Builder Pattern

To take advantage of these changes, I have to revise my ordering process so that the server asks
what kind of burger the customer requires, as shown in Listing 11-12.

Listing 11-12. Revising the Ordering Process in the main.swift File

// Step 1 - Ask for name
let name = "Joe";

// Step 2 - Select a Product
let builder = BurgerBuilder.getBuilder(Burgers.BIGBURGER);

// Step 3 - Customize burger?
builder.setMayo(false);
builder.setCooked(Burger.Cooked.WELLDONE);

let order = builder.buildObject(name);

order.printDescription();

Understanding the Pitfalls of the Builder Pattern
There are no pitfalls to this pattern as long as you remember that the default values used to create
the object should be defined in the builder class and not the calling component.

Examples of the Builder Pattern in Cocoa
The most commonly used example of the builder pattern can be found in the NSDateComponents
class in the Foundation framework. The NSDateComponents class is a builder that allows a calling
component to specify settings that can be used to produce an NSDate object that represents
a calendar date. Listing 11-13 shows the contents of an Xcode playground I created called
DateBuilder.playground.

Listing 11-13. The Contents of the DateBuilder.playground File

import Foundation;

var builder = NSDateComponents();

builder.hour = 10;
builder.day = 6;
builder.month = 9;
builder.year = 1940;
builder.calendar = NSCalendar(calendarIdentifier: NSGregorianCalendar);

var date = builder.date;

println(date!);

I create the builder by instantiating the NSDateComponents class, and I configure the object that will
be produced by setting the properties it defines. I have set values for the hour, day, month, year, and
calendar properties to replace the default values defined by the builder.

248 CHAPTER 11: The Builder Pattern

To create the object, I read the value of the date property and receive an NSDate object that has been
configured with the values I provided. I write the value to the console, which displays the following
output in the playground console:

1940-09-06 09:00:00 +0000

I did not provide the builder with values for all the components that make up a date, so the builder
has used its defaults for the minutes, seconds, and time zone components, which is why those parts
of the date are set to zero.

By implementing the builder pattern, the NSDateComponents class allows me to configure a date by
specifying a limited number of values in the order that suits me. The builder doesn’t create the NSDate
object until the date property is read, which allows me to provide data as it becomes available.

Applying the Pattern to the SportsStore Application
In this section, I will demonstrate a common use of the builder pattern and produce a serialized
representation of an object. I’ll also show you how to use properties rather than methods to create
the builder.

Preparing the Example Application
I pick up the SportsStore application as I left it in Chapter 10. I am going to implement the builder
pattern to create a serialized representation of a change to the product data. I added a new file called
ChangeRecord.swift to the SportsStore project and used it to define the class shown in Listing 11-14.

Listing 11-14. The Contents of the ChangeRecord.swift File

class ChangeRecord : Printable {
 private let outerTag:String;
 private let productName:String;
 private let catName:String;
 private let innerTag:String;
 private let value:String;

 private init(outer:String, name:String, category:String,
 inner:String, value:String) {

 self.outerTag = outer;
 self.productName = name;
 self.catName = category;
 self.innerTag = inner;
 self.value = value;
 }

 var description : String {
 return "<\(outerTag)><\(innerTag) name=\"\(productName)\"" +
 " category=\"\(catName)\">\(value)</\(innerTag)></\(outerTag)>"
 }
}

249CHAPTER 11: The Builder Pattern

The ChangeRecord class is used to create an XML-style string that represents change. The class
defines a set of properties that are used to configure the string. The ChangeRecord class implements
the Printable protocol, which means that its description property will be used when an instance of
the class is passed to the println function.

Defining the Builder Class
To implement the builder pattern, I created a new class called ChangeRecordBuilder, as
shown in Listing 11-15.

Listing 11-15. Defining a Builder Class in the ChangeRecord.swift File

class ChangeRecord : Printable {
 // ...statements omitted for brevity...
}

class ChangeRecordBuilder {
 var outerTag:String;
 var innerTag:String;
 var productName:String?;
 var category:String?;
 var value:String?;

 init() {
 outerTag = "change";
 innerTag = "product";
 }

 var changeRecord:ChangeRecord? {
 get {
 if (productName != nil && category != nil && value != nil) {
 return ChangeRecord(outer: outerTag, name: productName!,
 category: category!, inner: innerTag, value: value!);
 } else {
 return nil;
 }
 }
 }
}

I have used properties to implement the pattern in the ChangeRecordBuilder class, which requires a
different approach than when using methods. The ChangeRecordBuilder provides default values for
the outerTag and innerTag properties but requires the calling component to provide values for the
productName, category, and value properties.

The changeRecord property has to check to see that the required values are provided before
it creates a ChangeRecord object, but there is no way for the ChangeRecordBuilder class to
indicate when a required value is missing. The best I can do is to return an optional type from the
changeRecord property when a value is missing. (It is for this reason that I prefer to use methods to
implement the builder pattern.)

250 CHAPTER 11: The Builder Pattern

Using the Builder Class
To use the builder, I have updated the Logger class so that the default callback uses ChangeRecord
objects to write messages to the console, as shown in Listing 11-16.

Listing 11-16. Using the Builder Class in the Logger.swift File

import Foundation;

let productLogger = Logger<Product>(callback: {p in

 var builder = ChangeRecordBuilder();
 builder.productName = p.name;
 builder.category = p.category;
 builder.value = String(p.stockLevel);
 builder.outerTag = "stockChange";

 var changeRecord = builder.changeRecord;
 if (changeRecord != nil) {
 println(builder.changeRecord!);
 }
});

final class Logger<T where T:NSObject, T:NSCopying> {
 // ...statements omitted for brevity...
}

You can see the effect of the changes by starting the application and changing the stock level for
one of the products. The debug console will show a message like this one (I formatted it to make it
easier to read):

<stockChange>
 <product name="Lifejacket" category="Watersports">15</product>
</stockChange>

Summary
I described the builder pattern in this chapter and showed you how it can be used to control the
creation of objects when direct instantiation would cause calling components to know the default
configuration values for an object and when configuration data is obtained gradually.

The builder pattern is the last of the construction patterns, and in Part 3 I describe a different type
of pattern: the structural patterns.

251

Part III
The Structural Patterns

.

253

Chapter 12
The Adapter Pattern

In this chapter, I describe the first of the structural patterns: the adapter pattern. This pattern allows
two objects that provide related functionality to work together even when they have incompatible
APIs. Table 12-1 puts the adapter pattern in context.

Table 12-1. Putting the Adapter Pattern into Context

Question Answer

What is it? The adapter pattern allows two components with incompatible APIs to work

together by introducing an adapter that maps from one component to the other.

What are the benefits? This pattern allows you to integrate components for which you cannot modify

the source code into your application. This is a common problem when you

use a third-party framework or when you are consuming the output from

another project.

When should you use

this pattern?

Use this pattern when you need to integrate a component that provides

similar functionality to other components in the application but that uses an

incompatible API to do so.

When should you avoid

this pattern?

Do not use this pattern when you are able to modify the source code of the

component that you want to integrate or when it is possible to migrate the

data provided by the component directly into your application.

How do you know when you

have implemented the pattern

correctly?

The pattern is implemented correctly when the adapter allows the component

to be integrated into the application without requiring modification of the

application or the component.

Are there any

common pitfalls?

The only pitfall is trying to extend the pattern to force integration of a

component that does not provide the functionality intended by the API for

which it is being adapted.

Are there any related

patterns?

Many of the structural patterns have similar implementations but different

intents. Ensure that you select the correct pattern from the ones I describe in

this part of the book.

254 CHAPTER 12: The Adapter Pattern

Preparing the Example Project
For this chapter, I created a new OS X Command Line Tool project called Adapter. I added a new file
called Employees.swift to the project and used it to define the types shown in Listing 12-1.

Listing 12-1. The Contents of the Employees.swift File

struct Employee {
 var name:String;
 var title:String;
}

protocol EmployeeDataSource {
 var employees:[Employee] { get };
 func searchByName(name:String) -> [Employee];
 func searchByTitle(title:String) -> [Employee];
}

The example for this chapter will be a simple employee directory, and the Employee struct will be
used to represent individual members of staff. Classes that provide employee data implement the
EmployeeDataSource protocol.

Creating the Data Sources
I added a file called DataSources.swift to the project and used them to define the classes
shown in Listing 12-2.

Listing 12-2. The Contents of the DataSources.swift File

import Foundation

class DataSourceBase : EmployeeDataSource {
 var employees = [Employee]();

 func searchByName(name: String) -> [Employee] {
 return search({e -> Bool in
 return e.name.rangeOfString(name) != nil;
 });
 }

 func searchByTitle(title: String) -> [Employee] {
 return search({e -> Bool in
 return e.title.rangeOfString(title) != nil;
 })
 }

255CHAPTER 12: The Adapter Pattern

 private func search(selector:(Employee -> Bool)) -> [Employee] {
 var results = [Employee]();
 for e in employees {
 if (selector(e)) {
 results.append(e);
 }
 }
 return results;
 }
}

class SalesDataSource : DataSourceBase {

 override init() {
 super.init();
 employees.append(Employee(name: "Alice", title: "VP of Sales"));
 employees.append(Employee(name: "Bob", title: "Account Exec"));
 }
}

class DevelopmentDataSource : DataSourceBase {

 override init() {
 super.init();
 employees.append(Employee(name: "Joe", title: "VP of Development"));
 employees.append(Employee(name: "Pepe", title: "Developer"));
 }
}

The DataSourceBase class conforms to the EmployeeDataSource protocol and provides an
implementation of the data source functionality that I can easily derive in order to add new
data to the application. I have created two data source classes—SalesDataSource and
DevelopmentDataSource—that provide employee information for two departments.

Defining the Application
To consume the data sources, I added a file to the project called EmployeeSearch.swift and
used it to define the class shown in Listing 12-3.

Listing 12-3. The Contents of the EmployeeSearch.swift File

class SearchTool {

 enum SearchType {
 case NAME; case TITLE;
 }

 private let sources:[EmployeeDataSource];

 init(dataSources: EmployeeDataSource...) {
 self.sources = dataSources;
 }

256 CHAPTER 12: The Adapter Pattern

 var employees:[Employee] {
 var results = [Employee]();
 for source in sources {
 results += source.employees;
 }
 return results;
 }

 func search(text:String, type:SearchType) -> [Employee] {
 var results = [Employee]();

 for source in sources {
 results += type == SearchType.NAME ? source.searchByName(text)
 : source.searchByTitle(text);
 }
 return results;
 }
}

The SearchTool class operates on a collection of data sources and consolidates their contents and
search capabilities to provide uniform access to the employee data. Listing 12-4 shows the code
I added to the main.swift file to test the functionality.

Listing 12-4. Testing the Example App in the main.swift File

let search = SearchTool(dataSources: SalesDataSource(), DevelopmentDataSource());

println("--List--");
for e in search.employees {
 println("Name: \(e.name)");
}

println("--Search--");
for e in search.search("VP", type: SearchTool.SearchType.TITLE) {
 println("Name: \(e.name), Title: \(e.title)");
}

Running the application produces the following output in the debug console:

--List--
Name: Alice
Name: Bob
Name: Joe
Name: Pepe
--Search--
Name: Alice, Title: VP of Sales
Name: Joe, Title: VP of Development

257CHAPTER 12: The Adapter Pattern

Understanding the Problem That the Pattern Solves
The problem that the adapter pattern solves arises when an existing system needs to integrate a
new component that has a similar function but that doesn’t present a common interface and that
cannot be modified.

The example application represents the existing system—an employee directory that relies on
classes that conform to the EmployeeDataSource protocol to provide it with search functionality. The
problems start when a new source of data needs to be integrated into the directory that doesn’t
conform to the protocol.

There are lots of reasons why incompatible code will be introduced into an application. In the case
of an employee directory, an acquisition or merger may require integration of another company’s
systems. On a smaller scale, incompatible code can be introduced into a project when a third-party
component is used or when you depend on the code produced by another development team
working on a related project.

To illustrate the problem, imagine that my example company acquires a rival and wants to extend the
directory to include the staff of the new company. The good news is that the new company already
has a solid employee directory, but the bad news is that it doesn’t use the types needed by the
parent company. To represent this problem, I added a file to the project called NewCo.swift and used
it to define the simple directory types shown in Listing 12-5.

Listing 12-5. The Contents of the NewCo.swift File

class NewCoStaffMember {
 private var name:String;
 private var role:String;

 init(name:String, role:String) {
 self.name = name; self.role = role;
 }

 func getName() -> String {
 return name;
 }

 func getJob() -> String {
 return role;
 }
}

class NewCoDirectory {
 private var staff:[String: NewCoStaffMember];

 init() {
 staff = ["Hans": NewCoStaffMember(name: "Hans", role: "Corp Counsel"),
 "Greta": NewCoStaffMember(name: "Greta", role: "VP, Legal")];
 }

258 CHAPTER 12: The Adapter Pattern

 func getStaff() -> [String: NewCoStaffMember] {
 return staff;
 }
}

The NewCoDirectory class provides a dictionary of NewCoStaffMember objects that are keyed on the
employee’s name. There is no search capability and no common types with the directory I created at
the start of the chapter. The problem I face is integrating the NewCoDirectory class into the existing
staff directory.

WHY NOT JUST CHANGE THE CODE?

I could solve this problem just by revising the NewCoDirectory class, but that isn’t always possible in the real world,

which is why the adapter pattern is so useful. The main reason that code cannot be modified is when a component is

purchased from a third party, in which case you won’t even see the source code, just the API it produces. The component

developers are unlikely to adopt your private API when you are one customer out of the thousands they sell to.

You will also encounter code that cannot be changed when working in a large company. Common causes include dealing

with legacy products (“We don’t know how it works, and we are afraid to touch it”), dealing with projects that are under-

resourced (“We’ll have time to implement your API in about 2 years”), and dealing with politics (“You should implement

my API instead”).

Whatever the reason, the result is the same: an API that provides the functionality you require but not in a way you want.

For the purposes of this chapter, imagine that I don’t have the source code to the NewCoDirectory class—perhaps

because it is an off-the-shelf product—and that I need to find a way to integrate the employee data it provides without

being able to make any changes.

I could solve this problem by modifying the SearchTool application so that it knows how to query the
new data source. This means I have to repeat that modification process for each component that I
integrate and perform the modification for every part of the application that needs to query the data
sources. The result is a complex set of changes required each time a new data source is added or
an existing one is changed—and this, of course, is what design patterns are intended to avoid.

Understanding the Adapter Pattern
The adapter pattern allows two incompatible classes to work together by adapting the API that
one of them presents via mapping the API expected by the application to the API provided by the
component, as shown in Figure 12-1. In the case of the example application, I need to adapt the API
defined by the NewCoDirectory class so that the SearchTool class can use it.

259CHAPTER 12: The Adapter Pattern

There are five operations in the adapter pattern. The first operation is a request from the
application to the adapter using the API it expects to work with. In the second operation, the
adapter uses its knowledge of both APIs to select a component method or property that can be
used to handle the request.

In the third operation, the component receives the request from the adapter, does its work, and
returns its result to the adapter.

For the fourth operation, the adapter uses its knowledge of both APIs to translate the result provided
by the client into a result that the application is expecting and, in the final operation, returns the result.

The application and the component are unaware of each other. The adapter presents the application
with an API it knows about and hides the details of how that API is mapped to the one provided by
the component.

Implementing the Adapter Pattern
The most elegant way to implement the adapter pattern is with a Swift extension. Extensions allow
you to add functionality to classes that you are unable to modify. This functionality includes adding
conformance to a protocol, which is perfectly suited to implementing the adapter pattern.
Listing 12-6 shows the contents of the Adapter.swift file that I added to the example file and
that I used to implement the pattern with an extension.

Listing 12-6. The Contents of the Adapter.swift File

import Foundation

extension NewCoDirectory : EmployeeDataSource {

 var employees:[Employee] {
 return map(getStaff().values, { sv -> Employee in
 return Employee(name: sv.getName(), title: sv.getJob());
 });
 }

Figure 12-1. The adapter pattern

260 CHAPTER 12: The Adapter Pattern

 func searchByName(name:String) -> [Employee] {
 return createEmployees(filter: {(sv:NewCoStaffMember) -> Bool in
 return sv.getName().rangeOfString(name) != nil;
 });
 }

 func searchByTitle(title:String) -> [Employee] {
 return createEmployees(filter: {(sv:NewCoStaffMember) -> Bool in
 return sv.getJob().rangeOfString(title) != nil;
 });
 }

 private func createEmployees(filter filterClosure:(NewCoStaffMember -> Bool))
 -> [Employee] {
 return map(filter(getStaff().values, filterClosure), {entry -> Employee in
 return Employee(name: entry.getName(), title: entry.getJob());
 });
 }
}

I have defined an extension that makes the NewCoDirectory class conform to the
EmployeeDataSource protocol. The process of adapting an API is often more complex than just
mapping between methods and properties and usually requires some logic in the adapter to handle
type conversion and to plug small gaps in functionality. In Listing 12-6, you can see that I have
to add the ability to search for names and titles as well as convert the NewCoStaffMember objects
produced by the NewCoDirectory class into the Employee objects that the EmployeeDataSource
protocol expects.

Tip Extensions can operate only on the accessible properties and methods defined by the class being

extended. This is why I get details of the staff members through the getStaff method defined by the

NewCoDirectory class and not the private property called staff.

Using an extension means that an instance of the NewCoDirectory class can be passed to the
SearchTool initializer and be treated like any other data source, as shown in Listing 12-7. The
methods and properties defined by the extension—as well as any protocols it conforms to—are
applied to the class automatically, even though the class itself has not been modified.

Listing 12-7. Using the Adapter in the main.swift File

let search = SearchTool(dataSources: SalesDataSource(),
 DevelopmentDataSource(), NewCoDirectory());

println("--List--");
for e in search.employees {
 println("Name: \(e.name)");
}

261CHAPTER 12: The Adapter Pattern

println("--Search--");
for e in search.search("VP", type: SearchTool.SearchType.TITLE) {
 println("Name: \(e.name), Title: \(e.title)");
}

No changes to the SearchTool class are required, and you can see how the directory includes the
NewCo employees by running the application.

--List--
Name: Alice
Name: Bob
Name: Joe
Name: Pepe
Name: Greta
Name: Hans
--Search--
Name: Alice, Title: VP of Sales
Name: Joe, Title: VP of Development
Name: Greta, Title: VP, Legal

WHY NOT JUST MIGRATE THE DATA?

In my example, an alternative approach would be to migrate the data from the acquired company’s systems to those of

the parent company. This isn’t always a solution, of course, and it won’t help when you are trying to integrate third-party

code into your application.

Data migration has a lot of attractions over the long term, but it is hard to achieve quickly, especially for applications such

as employee directories that are deeply tied into complex business processes and legacy applications. Migrating all the

data to a single platform will eventually drive out cost by eliminating one of the systems—something that is important in

mergers and acquisitions—but it requires a lot of effort and puts demands on key staff who are likely to be focused on

other issues. Patterns such as adapter can help reduce the number of complex projects that get kicked off in the days

following the deal and buy some time to see how other business processes are going to be changed.

Implementing a long-term strategic solution is always desirable, but getting some short-term benefit by using an adapter

is often more pragmatic and more likely to succeed.

Variations on the Adapter Pattern
There are two useful variations in how the adapter pattern is implemented, which I describe in the
sections that follow.

262 CHAPTER 12: The Adapter Pattern

Defining an Adapter as a Wrapper Class
If you don’t like using extensions, then you can implement an adapter as a class that wraps around
the component. Listing 12-8 shows how I replaced the extension adapter with a class.

Listing 12-8. Implementing the Adapter as a Wrapper Class in the Adapter.swift File

class NewCoDirectoryAdapter : EmployeeDataSource {
 private let directory:NewCoDirectory;

 init() {
 directory = NewCoDirectory();
 }

 var employees:[Employee] {
 return map(directory.getStaff().values, { sv -> Employee in
 return Employee(name: sv.getName(), title: sv.getJob());
 });
 }

 func searchByName(name:String) -> [Employee] {
 return createEmployees(filter: {(sv:NewCoStaffMember) -> Bool in
 return sv.getName().rangeOfString(name) != nil;
 });
 }

 func searchByTitle(title:String) -> [Employee] {
 return createEmployees(filter: {(sv:NewCoStaffMember) -> Bool in
 return sv.getJob().rangeOfString(title) != nil;
 });
 }

 private func createEmployees(filter filterClosure:(NewCoStaffMember -> Bool))
 -> [Employee] {
 return map(filter(directory.getStaff().values, filterClosure),
 {entry -> Employee in
 return Employee(name: entry.getName(), title: entry.getJob());
 });
 }
}

Tip There is no advantage in using a wrapper class, but there are some advanced adaptions that can’t be

implemented using extensions, as I describe in the next section.

The logic contained in the adapter is the same as for an extension-based implementation, and
only the way that the adapter is written is changed. I still have to implement support for performing
searches, and I still have to map between the result types.

263CHAPTER 12: The Adapter Pattern

This approach requires that the adapter class be instantiated and used, rather than the (extended)
component, as shown in Listing 12-9.

Listing 12-9. Using the Adapter Wrapper Class in the main.swift File

let search = SearchTool(dataSources: SalesDataSource(),
 DevelopmentDataSource(), NewCoDirectoryAdapter());

println("--List--");
for e in search.employees {
 println("Name: \(e.name)");
}

println("--Search--");
for e in search.search("VP", type: SearchTool.SearchType.TITLE) {
 println("Name: \(e.name), Title: \(e.title)");
}

Creating a Two-Way Adapter
The standard implementation of the adapter pattern assumes that the flow of method and property
calls will flow in one direction: from the application to the component. This is usually the case,
especially when dealing with third-party components like UI widgets, but there are occasions when
the component expects to initiate its own actions, typically to query the application or to notify it
about a change in its state or the services it provides. To demonstrate this problem, I created a
playground called TwoWayAdapter.playground and used it to define the classes and protocols shown
in Listing 12-10. (I have used a playground because demonstrating this problem in the example
application would require me to list a lot of code for some minor changes).

Listing 12-10. The Contents of the TwoWayAdapter.playground File

// application

protocol ShapeDrawer {
 func drawShape();
}

class DrawingApp {
 let drawer:ShapeDrawer;
 var cornerRadius:Int = 0;

 init(drawer:ShapeDrawer) {
 self.drawer = drawer;
 }

 func makePicture() {
 drawer.drawShape();
 }
}

264 CHAPTER 12: The Adapter Pattern

// component library

protocol AppSettings {
 var sketchRoundedShapes:Bool { get };
}

class SketchComponent {
 private let settings:AppSettings;

 init(settings:AppSettings) {
 self.settings = settings;
 }

 func sketchShape() {
 if (settings.sketchRoundedShapes) {
 println("Sketch Circle");
 } else {
 println("Sketch Square");
 }
 }
}

I have broken the code into two sections—one for the application and one for the component that
needs to be integrated. On the application side, the DrawingApp class relies on the ShapeDrawer
protocol to perform its work in the makePicture method. On the component side, the SketchComponent
class relies on the AppSettings protocol to work out what type of shape it should draw.

The goal is to create an adapter that will let a DrawingApp object use a SketchComponent object to
create a shape and, in return, let the SketchComponent query the application through the AppSettings
protocol.

Using an adapter in a single direction is easy, but it is harder to adapt objects that communicate
in both directions—not least because I have created the classes to have dueling initializers. I can’t
create an instance of the DrawingApp unless I have an object that conforms to the ShapeDrawer
protocol to use as an initializer argument. Equally, I can’t create a SketchComponent object unless
I can pass its initializer an object that conforms to the AppSettings protocol. Listing 12-11 shows the
adapter I created to solve the problem and integrate the classes with one another.

Listing 12-11. Creating an Adapter in the TwoWayAdapter.playground File

// application

protocol ShapeDrawer {
 func drawShape();
}

class DrawingApp {
 // ...statements omitted for brevity...
}

265CHAPTER 12: The Adapter Pattern

// component library

protocol AppSettings {
 var sketchRoundedShapes:Bool { get };
}

class SketchComponent {
 // ...statements omitted for brevity...
}

class TwoWayAdapter : ShapeDrawer, AppSettings {
 var app:DrawingApp?;
 var component:SketchComponent?

 func drawShape() {
 component?.sketchShape();
 }

 var sketchRoundedShapes: Bool {
 return app?.cornerRadius > 0;
 }
}

The adapter class—called TwoWayAdapter—conforms to the ShapeDrawer and AppSettings
protocols and implements the protocol methods using optional instances of the DrawingApp
and SketchComponent classes. This is the key to working around the competing demands of the
initializers, as Listing 12-12 shows.

Listing 12-12. Using the Adapter in the TwoWayAdapter.playground File

protocol ShapeDrawer {
 func drawShape();
}

class DrawingApp {
 // ...statements omitted for brevity...
}

// component library

protocol AppSettings {
 var sketchRoundedShapes:Bool { get };
}

class SketchComponent {
 // ...statements omitted for brevity...
}

class TwoWayAdapter : ShapeDrawer, AppSettings {
 // ...statements omitted for brevity...
}

266 CHAPTER 12: The Adapter Pattern

let adapter = TwoWayAdapter();
let component = SketchComponent(settings: adapter);
let app = DrawingApp(drawer: adapter);

adapter.app = app;
adapter.component = component;

app.makePicture();

Note This is an adapter that cannot be created using Swift extensions because it needs to operate on

two different classes.

I create an instance of the adapter, which conforms to the protocols that I need to create
SketchComponent and DrawingApp objects. Then I set the adapter app and component properties so
that the adapter has the objects it needs for its methods. The result is that both objects can call on
the other through the adapter, and you can see the output in the playground debug console.

Sketch Square

Understanding the Pitfalls of the Adapter Pattern
The adapter pattern is useful only when integrating components that have similar functionality,
meaning that the features provided by the classes are compatible even though the APIs are not.

In the example application, there is a component that consumes employee data (the SearchTool
class) and a component that provides employee data (the NewCoDirectory class). The functionality of
these classes is compatible, but I can’t use the NewCoDirectory class as a source of data because it
doesn’t implement the protocol that the SearchTool class requires.

The adapter pattern is not helpful when the components provide different functionality. For example,
the adapter pattern cannot be used to integrate a data source that provides details of employee
parking spaces because there is no support for that data in the application, and no amount of
adaptation of the API will change that. To use the adapter pattern effectively, focus purely on the API
and keep the adaptations as simple as possible.

Examples of the Adapter Pattern in Cocoa
The adapter pattern is not exposed by Cocoa because its components set the standard for default
behavior. If you want to integrate a component into Cocoa, then you implement a protocol. A good
example is the NSCopying protocol that I used in Chapter 5 to implement the prototype pattern: if you
want to integrate a class into Cocoa’s support for object copying, then you make it conform to the
NSCopying protocol even if it already has a custom approach to creating clones. Such is the position
of the core API on any platform; if an adapter is needed, then it is your responsibility to define it in
your code.

267CHAPTER 12: The Adapter Pattern

Applying the Pattern to the SportsStore Application
Not all adapters map a single type to integrate a component into an application, and to demonstrate
this, I am going to create an adapter that implements the abstract factory pattern and that conforms
to implementation protocols in order to do its job.

Preparing the Example Application
I added a file called Euro.swift to the example project and used it to define the class shown in
Listing 12-13.

Listing 12-13. The Contents of the Euro.swift File

class EuroHandler {

 func getDisplayString(amount:Double) -> String {
 let formatted = Utils.currencyStringFromNumber(amount);
 return "€\(dropFirst(formatted))";
 }

 func getCurrencyAmount(amount:Double) -> Double {
 return 0.76164 * amount;
 }
}

The EuroHandler class converts dollar amounts to euros and creates formatted currency strings.
This is the same type of functionality that I added to the SportsStore application to demonstrate the
abstract factory pattern in Chapter 10, but the EuroHandler class does not fit directly into the model
that the application expects and so requires an adapter.

Defining the Adapter Class
To adapt the EuroHandler class into the SportsStore application, I need to define a concrete factory
class that produces StockValueConverter and StockValueFormatter objects. Listing 12-14 shows
the changes I made to the StockValueFactories.swift file.

Listing 12-14. Defining the Adapter in the StockValueFactories.swift File

import Foundation

class StockTotalFactory {

 enum Currency {
 case USD
 case GBP
 case EUR
 }

268 CHAPTER 12: The Adapter Pattern

 private(set) var formatter:StockValueFormatter?;
 private(set) var converter:StockValueConverter?;

 class func getFactory(curr:Currency) -> StockTotalFactory {
 if (curr == Currency.USD) {
 return DollarStockTotalFactory.sharedInstance;
 } else if (curr == Currency.GBP){
 return PoundStockTotalFactory.sharedInstance;
 } else {
 return EuroHandlerAdapter.sharedInstance;
 }
 }
}

// ...other factories omitted for brevity...

class EuroHandlerAdapter : StockTotalFactory,
 StockValueConverter, StockValueFormatter {

 private let handler:EuroHandler;

 override init() {
 self.handler = EuroHandler();
 super.init();
 super.formatter = self;
 super.converter = self;
 }

 func formatTotal(total:Double) -> String {
 return handler.getDisplayString(total);
 }

 func convertTotal(total:Double) -> Double {
 return handler.getCurrencyAmount(total);
 }

 class var sharedInstance:EuroHandlerAdapter {
 get {
 struct SingletonWrapper {
 static let singleton = EuroHandlerAdapter();
 }
 return SingletonWrapper.singleton;
 }
 }
}

269CHAPTER 12: The Adapter Pattern

I have updated the StockTotalFactory class to add support for handling the euro and defined
an adapter called EuroHandlerAdapter. The adapter is derived from the StockTotalFactory class
and conforms to both the StockValueConverter and StockValueFormatter protocols. It adapts
the EuroHandler class by creating an instance of it and mapping the functionality it provides to
the methods specified by the protocols. I could have taken care of the protocols by defining an
extension, but I prefer to keep adapters as a single type when possible.

Using the Adapted Functionality
In Listing 12-15, you can see how I have updated the displayStockTotal method of the
ViewController class so that the euro is the chosen currency.

Listing 12-15. Using the Adapter in the ViewController.swift File

...
func displayStockTotal() {
 let finalTotals:(Int, Double) = productStore.products.reduce((0, 0.0),
 {(totals, product) -> (Int, Double) in
 return (
 totals.0 + product.stockLevel,
 totals.1 + product.stockValue
);
 });

 var factory = StockTotalFactory.getFactory(StockTotalFactory.Currency.EUR);
 var totalAmount = factory.converter?.convertTotal(finalTotals.1);
 var formatted = factory.formatter?.formatTotal(totalAmount!);

 totalStockLabel.text = "\(finalTotals.0) Products in Stock. "
 + "Total Value: \(formatted!)";
}
...

Tip I have to define the factory class in the StockValueFactories.swift file because I need to set

values for private properties in the StockTotalFactory class, and that means putting the adapter in

the same file.

270 CHAPTER 12: The Adapter Pattern

Figure 12-2. The effect of the euro adapter

The result is that the total value of the stock will be converted to euros and displayed at the bottom
of the application layout, as shown in Figure 12-2.

Summary
In this chapter, I explained how the adapter pattern is used to make two classes with incompatible
APIs work together. I demonstrated how to define an adapter by using an extension and creating a
class that wraps around the object being adapted. In the next chapter, I describe the bridge pattern.

271

Chapter 13
The Bridge Pattern

The bridge pattern can be confusing. It looks similar to the adapter pattern I described in Chapter 12,
but its use can seem counterintuitive. In this chapter, I focus on the problem that the bridge pattern
is most commonly used to resolve and explain why the biggest difference between the bridge
and adapter patterns is intent rather than implementation. Table 13-1 puts the bridge pattern
into context.

Table 13-1. Putting the Bridge Pattern into Context

Question Answer

What is it? The bridge pattern separates an abstraction from its implementation

so that either can be changed without a corresponding change in

the other. More commonly, the bridge pattern is used to resolve a

problem known as an exploding class hierarchy, which usually arises

through repeated but poorly thought-out refactoring and requires

an ever-increasing number of classes to add new features to the

application.

What are the benefits? When the bridge pattern is applied to the exploding class hierarchy

problem, the benefit is that adding a new feature to the application

requires only a single class. More broadly, the pattern isolates the

impact of a change when an abstraction or its implementation

changes.

When should you use this pattern? Use this pattern to resolve the exploding class hierarchy problem or

to bridge between one API and another.

When should you avoid this pattern? Do not use this pattern when attempting to integrate third-party

components; use the adapter pattern I described in Chapter 12

instead.

(continued)

272 CHAPTER 13: The Bridge Pattern

Preparing the Example Project
For this chapter I created a new OS X Command Line Tool project called Bridge. To prepare for this
chapter, I added a file called Comms.swift and used it to define the types shown in Listing 13-1.

Listing 13-1. The Contents of the Comms.swift File

protocol ClearMessageChannel {
 func send(message:String);
}

protocol SecureMessageChannel {
 func sendEncryptedMessage(encryptedText:String);
}

class Communicator {
 private let clearChannel:ClearMessageChannel;
 private let secureChannel:SecureMessageChannel;

 init (clearChannel:ClearMessageChannel, secureChannel:SecureMessageChannel) {
 self.clearChannel = clearChannel;
 self.secureChannel = secureChannel;
 }

 func sendCleartextMessage(message:String) {
 self.clearChannel.send(message);
 }

 func sendSecureMessage(message:String) {
 self.secureChannel.sendEncryptedMessage(message);
 }
}

Table 13-1. (continued)

Question Answer

How do you know when you have

implemented the pattern correctly?

In the case of the exploding class hierarchy problem, the pattern is

correctly implemented when adding a new feature or when support

for a new platform can be done with a single class. More broadly, the

pattern is implemented correctly when you can change an abstraction

(such as a protocol or a closure signature) without having to make a

corresponding change in its implementation.

Are there any common pitfalls? The exploding class hierarchy will not be resolved if the common

code is not separated from the platform-specific code.

Are there any related patterns? Many of the structural patterns have similar implementations but

different intents. Ensure that you select the correct pattern from the

ones that I describe in this part of the book.

273CHAPTER 13: The Bridge Pattern

The Communicator class provides methods that allow standard and secure messages to be sent. The
mechanisms by which these messages are processed are defined by the ClearMessageChannel and
SecureMessageChannel protocols, each of which defines the methods required to handle one type of
communication.

I am going to support two different networking mechanisms that can be used to transmit messages:
landline and wireless. I created a file called Channels.swift and used it to create the classes shown
in Listing 13-2.

Listing 13-2. The Contents of the Channels.swift File

class Landline : ClearMessageChannel {
 func send(message: String) {
 println("Landline: \(message)");
 }
}

class SecureLandLine : SecureMessageChannel {
 func sendEncryptedMessage(message: String) {
 println("Secure Landline: \(message)");
 }
}

class Wireless : ClearMessageChannel {
 func send(message: String) {
 println("Wireless: \(message)");
 }
}

class SecureWireless : SecureMessageChannel {
 func sendEncryptedMessage(message: String) {
 println("Secure Wireless: \(message)");
 }
}

To complete the preparations, I added code to the main.swift file that creates the channels it
requires to send messages and uses them to create a Communicator object, as shown in Listing 13-3.

Listing 13-3. The Contents of the main.swift File

var clearChannel = Landline();
var secureChannel = SecureLandLine();

var comms = Communicator(clearChannel: clearChannel, secureChannel: secureChannel);

comms.sendCleartextMessage("Hello!");
comms.sendSecureMessage("This is a secret");

274 CHAPTER 13: The Bridge Pattern

Running the project produces the following output in the Xcode debug console:

Landline: Hello!
Secure Landline: This is a secret

Understanding the Problem That the Pattern Solves
If the code I added to the example application seems poorly thought out, it is because I added all of
the classes in one go. The problem that the bridge pattern solves is one that usually manifests itself
gradually as features are added to an application and code is refactored.

What I have ended up with is two features (clear and secure messages) and two platforms on which
those features are implemented (landlines and wireless networks). No one sets out to create this kind
of hierarchy, and it usually gets created through the best of intentions. An application usually started
with one feature and one platform, as shown in Figure 13-1.

Figure 13-1. The simple starting point for an application

Figure 13-2. Dealing with multiple platforms

At some point, another platform is required, and the selection of that platform will need to change
based on how the application is configured. Some judicious refactoring adds a protocol that
identifies what the platform needs to do, and implementation classes that handle the details of the
platform are created, as shown in Figure 13-2.

Later, there is a need to add a new feature—secure messaging—and so another protocol is added
and implementation objects are created, as shown in Figure 13-3. This is the state of the application
that I created in the previous section.

275CHAPTER 13: The Bridge Pattern

The problem is that the number of implementation classes increases sharply each time I add a
new feature or a new platform. In fact, the total number of implementation classes is the product
of the number and platforms, meaning that if I add a third feature to the application, the number of
implementation classes will be six (the product of 3 and 2). Another platform will give require nine
implementation classes (the product of 3 and 3).

This is known as the exploding class hierarchy problem, and it produces an unmanageable mess of
protocols and implementation classes that are hard to keep track of and even harder to maintain.
Exploding class hierarchies are usually not intentional, but they are easy to create when there is time
pressure to add new features and keep the project moving along.

Understanding the Bridge Pattern
The bridge pattern separates an abstraction from its implementation so that the two can be changed
independently from one another. It may sound counterintuitive, but the bridge pattern solves the
exploding class hierarchy problem by creating two different hierarchies, separating the functionality
that is specific to each platform from the functionality that is shared between them. A bridge class is
created, which brings together both hierarchies.

Figure 13-3. Dealing with multiple features

Tip Separating common and platform-specific functionality is the most frequent—and useful—way that

the bridge pattern is applied, but it can be used to separate any abstraction from its implementation. See the

“Applying the Pattern to the SportsStore Application” section for a more general example.

276 CHAPTER 13: The Bridge Pattern

In the example application, the functionality that is specific to each platform is the transmission of
a message over a particular type of network. The functionality that is common is the preparation
of the message. The first step is to define protocols that describe each area—messaging and
transmission—and then create implementation classes for them. Figure 13-4 shows the new
hierarchies and the bridge class that brings them together.

Figure 13-4. The bridge pattern

Tip Don’t worry if an abstract description doesn’t make immediate sense. The bridge pattern can be hard

to parse. If you are struggling to make sense of what’s going on, then read the next sections to see how the

pattern is implemented and then come back and read this description again.

The bridge class is responsible for combining the Channel and Message protocols to provide the
functionality that the Communicator requires, using the protocols that the Communicator class relies on.

Note Notice that I have not changed the Communicator class. The bridge class supports the API expected

by the Communicator class and maps—or rather, bridges—to the new message and channel hierarchies.

The Communicator class remains unmodified because the default assumption when implementing the

bridge pattern is that there will be several other classes in the application that expect the same protocols.

See the “Collapsing the Bridge” section for an alternative approach.

277CHAPTER 13: The Bridge Pattern

ISN’T THE BRIDGE JUST AN ADAPTER?

The bridge pattern can look a lot like the adapter pattern I described in Chapter 12. After all, doesn’t the bridge class

adapt the Channel and Message protocols for the Communicator class, which relies on the ClearChannel and

SecureChannel protocols?

The bridge and adapter patterns are similar, but they are used in different situations. The adapter pattern is used when

you need to integrate a component whose code you cannot change, such as a third-party widget. You add the adapter to

make the third-party component usable through an API that your application expects, but you can’t change the way that

the component works because you have only runtime components (or because your changes will be overwritten by the

next release from the team that produces the component).

The bridge pattern is used when you can change the source code and can change the way that the components work and

is applied when you have a class hierarchy that mixes common and platform-specific functionality. Applying the bridge

pattern doesn’t just involve creating the bridge class; it also requires refactoring the components to separate the common

and platform-specific code.

Implementing the Bridge Pattern
Describing the bridge pattern can be useful, but a code example helps demonstrate how the pattern
works. In the sections that follow, I’ll refactor the example application to apply the bridge pattern and
prevent the exploding class hierarchy.

Dealing with the Messages
The first step is to deal with the functionality that is common regardless of the network that is being
used, which is the creation and preparation of a message. Listing 13-4 shows the contents of the
Messages.swift file, which I added to the example project.

Listing 13-4. The Contents of the Messages.swift File

protocol Message {
 init (message:String);
 func prepareMessage();
 var contentToSend:String { get };
}

class ClearMessage : Message {
 private var message:String;

 required init(message:String) {
 self.message = message;
 }

 func prepareMessage() {
 // no action required
 }

278 CHAPTER 13: The Bridge Pattern

 var contentToSend:String {
 return message;
 }
}

class EncryptedMessage : Message {
 private var clearText:String;
 private var cipherText:String?;

 required init(message:String) {
 self.clearText = message;
 }

 func prepareMessage() {
 cipherText = String(reverse(clearText));
 }

 var contentToSend:String {
 return cipherText!;
 }
}

I have defined a protocol called Message. The protocol defines a required initializer that accepts
the text of the message and defines a prepareMessage method that will be called so that classes
that conform to the protocol have an opportunity to process the message text. The get-only
contentToSend property will be used to get whatever text needs to be transmitted over a network.

I defined two classes that conform to the protocol. The first class is ClearMessage, which I will use to
represent messages that do not require encryption. I will use the EncryptedMessage class for those
messages for which encryption is needed. (Encryption, in this case, consists of simply reversing
the characters in the string—something that would not be adequate for a real project but will be
sufficient for an example application.)

Dealing with the Channels
The next step is to define the functionality that is unique to each network, which is the transmission
of messages. Listing 13-5 shows the changes I made to the Channels.swift file.

Listing 13-5. Revising the Contents of the Channels.swift File

protocol Channel {
 func sendMessage(msg:Message);
}

class LandlineChannel : Channel {

 func sendMessage(msg: Message) {
 println("Landline: \(msg.contentToSend)");
 }

}

279CHAPTER 13: The Bridge Pattern

class WirelessChannel : Channel {
 func sendMessage(msg: Message) {
 println("Wireless: \(msg.contentToSend)");
 }
}

I defined a protocol called Channel that has a method called sendMessage. Unlike the original version
of the application, the channel is no longer responsible for dealing with different kinds of messages.
Instead, the sendMessage method will be called with a Message object whose contentToSend property
returns the content that should be transmitted. Channels are unaware of what type of message they
are sending and can focus only on dealing with transmission.

I defined two classes that conform to the Channel protocol, reflecting landline and wireless networks.
The implementation of the sendMessage method for both classes writes a message to the debug
console indicating the channel and the content.

Creating the Bridge
Finally, I need to create a class that will act as a bridge between the Communicator class and the new
Message and Channel protocols. Listing 13-6 shows the contents of the Bridge.swift file, which I
added to the example project.

Listing 13-6. The Contents of the Bridge.swift File

class CommunicatorBridge : ClearMessageChannel, SecureMessageChannel {
 private var channel:Channel;

 init(channel:Channel) {
 self.channel = channel;
 }

 func send(message: String) {
 let msg = ClearMessage(message: message);
 sendMessage(msg);
 }

 func sendEncryptedMessage(encryptedText: String) {
 let msg = EncryptedMessage(message: encryptedText);
 sendMessage(msg);
 }

 private func sendMessage(msg:Message) {
 msg.prepareMessage();
 channel.sendMessage(msg);
 }
}

280 CHAPTER 13: The Bridge Pattern

The CommunicatorBridge class implements the ClearMessageChannel and SecureMessageChannel
protocols that the Communicator class relies on. It implements these protocols using the new
Message and Channel protocols. The CommunicatorBridge class selects the appropriate Message
implementation class based on which of its methods has been called and passes the Message object
it creates to the Channel object given to its initializer.

Listing 13-7 shows how I have updated the main.swift file to use the CommunicatorBridge class to
configure a Communicator object.

Listing 13-7. Using the CommunicatorBridge Class in the main.swift File

var bridge = CommunicatorBridge(channel: LandlineChannel());

var comms = Communicator(clearChannel: bridge, secureChannel: bridge);

comms.sendCleartextMessage("Hello!");
comms.sendSecureMessage("This is a secret");

Running the application results in the following output:

Landline: Hello!
Landline: terces a si sihT

Adding a New Message Type and Channel
To demonstrate the effect of the builder pattern, I am going to add a new type of message and a
new channel to the application. The new messages will be for high-priority communications, and the
new channel will be for satellite networks. To get started, I have added support for priority messages
to the Communicator class, as shown in Listing 13-8. These are changes that would have to be
applied regardless of whether the bridge pattern has been applied.

Listing 13-8. Adding Support for a New Message Type in the Comms.swift File

protocol ClearMessageChannel {
 func send(message:String);
}

protocol SecureMessageChannel {
 func sendEncryptedMessage(message:String);
}

protocol PriorityMessageChannel {
 func sendPriority(message:String);
}

class Communicator {
 private let clearChannel:ClearMessageChannel;
 private let secureChannel:SecureMessageChannel;
 private let priorityChannel:PriorityMessageChannel;

281CHAPTER 13: The Bridge Pattern

 init (clearChannel:ClearMessageChannel, secureChannel:SecureMessageChannel,
 priorityChannel:PriorityMessageChannel) {
 self.clearChannel = clearChannel;
 self.secureChannel = secureChannel;
 self.priorityChannel = priorityChannel;
 }

 func sendCleartextMessage(message:String) {
 self.clearChannel.send(message);
 }

 func sendSecureMessage(message:String) {
 self.secureChannel.sendEncryptedMessage(message);
 }

 func sendPriorityMessage(message:String) {
 self.priorityChannel.sendPriority(message);
 }
}

Under the original class hierarchy—without the bridge pattern—the addition of a new message and
channel would have required five new classes, as shown in Figure 13-5.

Figure 13-5. Adding new features to the application without the bridge pattern

282 CHAPTER 13: The Bridge Pattern

This is the heart of the matter. Without the bridge pattern, I have to create even more classes when
I add new features to the application. Adding the same message type and channel after the bridge
pattern has been applied required only two new classes—one for the message type and one for the
channel, as shown in Figure 13-6.

Figure 13-6. Adding new features to the application with the bridge pattern

The diagram looks more complicated, but that is because the bridge pattern puts more structure into
the application (the bridge pattern is a structural pattern after all). In terms of the work required for the
new features, much less effort is needed. Listing 13-9 shows the contents of the NewFeatures.swift
file, which I added to the example project in order to implement the new message type and channel.

Listing 13-9. The Contents of the NewFeatures.swift File

class SatelliteChannel : Channel {

 func sendMessage(msg: Message) {
 println("Satellite: \(msg.contentToSend)");
 }
}

class PriorityMessage : ClearMessage {

 override var contentToSend:String {
 return "Important: \(super.contentToSend)";
 }
}

Having defined the new classes, I have to update the bridge so that it accepts the new message
type from the Communicator class, as shown in Listing 13-10.

283CHAPTER 13: The Bridge Pattern

Listing 13-10. Adding Support for a New Message Type in the Bridge.swift File

class CommunicatorBridge : ClearMessageChannel,
 SecureMessageChannel, PriorityMessageChannel {

 private var channel:Channel;

 init(channel:Channel) {
 self.channel = channel;
 }

 func send(message: String) {
 let msg = ClearMessage(message: message);
 sendMessage(msg);
 }

 func sendEncryptedMessage(encryptedText: String) {
 let msg = EncryptedMessage(message: encryptedText);
 sendMessage(msg);
 }

 func sendPriority(message: String) {
 sendMessage(PriorityMessage(message: message));
 }

 private func sendMessage(msg:Message) {
 msg.prepareMessage();
 channel.sendMessage(msg);
 }
}

And now I can change the code in the main.swift file to test the new functionality, as shown
in Listing 13-11.

Listing 13-11. Testing the New Message Type in the main.swift File

var bridge = CommunicatorBridge(channel: SatelliteChannel());
var comms = Communicator(clearChannel: bridge,secureChannel: bridge,
 priorityChannel: bridge);

comms.sendCleartextMessage("Hello!");
comms.sendSecureMessage("This is a secret");
comms.sendPriorityMessage("This is important");

Running the application produces the following output, which demonstrates the new message type
and channel:

Satellite: Hello!
Satellite: terces a si sihT
Satellite: Important: This is important

284 CHAPTER 13: The Bridge Pattern

Variations on the Bridge Pattern
The platform is selected at runtime and is usually set using a configuration file or some external
setting. In the case of the example application, the platform is the channel over which messages are
sent, and the choice of platform would be driven by the available networking hardware. In practice,
I select the platform explicitly, like this:

...
var bridge = CommunicatorBridge(channel: SatelliteChannel());
...

This is unrealistic because the platform-specific implementation is selected at compile time, and
I have to change the code and recompile to change the platform. I have done this because I don’t
want to create a configuration system or detect different kinds of networks to demonstrate the use
of the pattern.

The simplest way to vary the pattern is to apply the factory method pattern so that the selection
of the platform-specific implementation is hidden from the bridge class and from the rest of the
application. Listing 13-12 shows how I have implemented the factory method—which I described in
Chapter 9—in the example application.

Listing 13-12. Applying the Factory Method Pattern in the Channels.swift File

class Channel {

 enum Channels {
 case Landline;
 case Wireless;
 case Satellite;
 }

 class func getChannel(channelType:Channels) -> Channel {
 switch channelType {
 case .Landline:
 return LandlineChannel();
 case .Wireless:
 return WirelessChannel();
 case .Satellite:
 return SatelliteChannel();
 }
 }

 func sendMessage(msg:Message) {
 fatalError("Not implemented");
 }
}

285CHAPTER 13: The Bridge Pattern

class LandlineChannel : Channel {
 override func sendMessage(msg: Message) {
 println("Landline: \(msg.contentToSend)");
 }

}

class WirelessChannel : Channel {
 override func sendMessage(msg: Message) {
 println("Wireless: \(msg.contentToSend)");
 }
}

I have changed the definition of the Channel type so that it is a class rather than a protocol and
have defined a nested enum called Channels that enumerates the set of platforms available: landline,
wireless, and satellite. I have defined a class method called getChannel that accepts a Channels
value and instantiates the class that represents the platform.

I had to apply the override keyword to the sendMessage method defined by the LandlineChannel and
WirelessChannel classes because Channel has changed from a protocol to a class, and Listing 13-13
shows the corresponding change for the satellite implementation class.

Listing 13-13. Modifying a Method Declaration in the NewFeatures.swift File

class SatelliteChannel : Channel {
 override func sendMessage(msg: Message) {
 println("Satellite: \(msg.contentToSend)");
 }
}

class PriorityMessage : ClearMessage {
 override var contentToSend:String {
 return "Important: \(super.contentToSend)";
 }
}

Listing 13-14 shows the changes to the CommunicatorBridge class so that the initializer accepts a
value from the enumeration rather than an instance of an implementation class.

Listing 13-14. Changing the Initializer in the Bridge.swift File

class CommunicatorBridge : ClearMessageChannel, SecureMessageChannel,
 PriorityMessageChannel {
 private var channel:Channel;

 init(channel:Channel.Channels) {
 self.channel = Channel.getChannel(channel);
 }

 func send(message: String) {
 let msg = ClearMessage(message: message);
 sendMessage(msg);
 }

286 CHAPTER 13: The Bridge Pattern

 func sendEncryptedMessage(encryptedText: String) {
 let msg = EncryptedMessage(message: encryptedText);
 sendMessage(msg);
 }

 func sendPriority(message: String) {
 sendMessage(PriorityMessage(message: message));
 }

 private func sendMessage(msg:Message) {
 msg.prepareMessage();
 channel.sendMessage(msg);
 }
}

Finally, I need to update the code that selects the platform in the main.swift file, as
shown in Listing 13-15.

Listing 13-15. Updating the main.swift File

var bridge = CommunicatorBridge(channel: Channel.Channels.Satellite);
var comms = Communicator(clearChannel: bridge,
 secureChannel: bridge, priorityChannel: bridge);

comms.sendCleartextMessage("Hello!");
comms.sendSecureMessage("This is a secret");
comms.sendPriorityMessage("This is important");

Collapsing the Bridge
When applying the bridge pattern, the standard assumption is that the protocols that are being
bridged will be used elsewhere in the application. In the case of the example, this means there
would be other classes similar to Communicator that will rely on the ClearMessageChannel,
SecureMessageChannel, and PriorityMessageChannel protocols, which is why I left these—and the
Communicator class—intact and applied the bridge to them.

In some applications, there will be only one class that relies on the protocols, and this allows it and
the bridge to be merged and the redundant protocols removed.

The first step is to remove the Bridge.swift file from the project. The CommunicatorBridge class that
it contains will not longer be required and will prevent Xcode from being able to build the project
because it depends on protocols that I am going to remove. The next step is to add the bridge
functionality to the Communicator class, as shown in Listing 13-16.

287CHAPTER 13: The Bridge Pattern

Listing 13-16. Adding the Bridge Functionality in the Comms.swift File

//protocol ClearMessageChannel {
// func send(message:String);
//}
//
//protocol SecureMessageChannel {
// func sendEncryptedMessage(message:String);
//}
//
//protocol PriorityMessageChannel {
// func sendPriority(message:String);
//}

class Communicator {
 private let channnel:Channel;

 init (channel:Channel.Channels) {
 self.channnel = Channel.getChannel(channel);
 }

 private func sendMessage(msg:Message) {
 msg.prepareMessage();
 channnel.sendMessage(msg);
 }

 func sendCleartextMessage(message:String) {
 self.sendMessage(ClearMessage(message: message));
 }

 func sendSecureMessage(message:String) {
 self.sendMessage(EncryptedMessage(message: message));
 }

 func sendPriorityMessage(message:String) {
 self.sendMessage(PriorityMessage(message: message));
 }
}

I have commented out the old protocols and changed the Communicator class so that it operates
directly on the Message and Channel protocols and no longer depends on a separate bridge class.

Caution This variation is useful only when a single class uses the bridge. If you find that you have to make

changes similar to the ones in Listing 13-16 to multiple classes, you have misapplied the pattern. The result

may still be an improvement on the previous application structure, but you won’t have applied the bridge

pattern, and you won’t benefit from isolating the implementation of the common and platform-specific

functionality from the rest of the application.

288 CHAPTER 13: The Bridge Pattern

I also have to update the code in the main.swift file that selects the platform and sends the
messages, as shown in Listing 13-17.

Listing 13-17. Using the Collapsed Bridge in the main.swift File

var comms = Communicator(channel: Channel.Channels.Satellite);

comms.sendCleartextMessage("Hello!");
comms.sendSecureMessage("This is a secret");
comms.sendPriorityMessage("This is important");

Note You won’t be able to build the project if you have not removed the Bridge.swift file or at least

commented out its contents.

Understanding the Pitfalls of the Bridge Pattern
The only pitfall is not recognizing which features are common across all platforms and which are
platform-specific. A successful implementation of the bridge pattern separates common and specific
functionality into different hierarchies, and it can be difficult to identify this split correctly.

As a rule of thumb, if you see groups of statements that are repeated in each platform class, they
are candidates for being considered common functionality. Equally, control flow statements that deal
with different platforms are platform-specific. That may seem like obvious advice, but it can be hard
to figure out what is going on in a complex type hierarchy that has been poorly refactored several
times and turned into a mess of cut-and-paste statements, hacks, and workarounds.

Examples of the Bridge Pattern in Cocoa
The bridge pattern hides the implementation details behind a public API, so it is not possible to
know whether the pattern is used in the Cocoa frameworks.

Applying the Pattern to the SportsStore Application
Although the bridge pattern is generally applied to tidy up an exploding class hierarchy, it can
be used to separate any abstraction from its implementation. In this section, I use this broader
application of the pattern to create a bridge that makes the purpose of an API more obvious.

Preparing the Example Application
No preparation is required for this chapter, and I pick up the project from Chapter 12. Remember
that you can download the SportsStore application and all of the other examples in this book from
Apress.com.

https://Apress.com

289CHAPTER 13: The Bridge Pattern

Understanding the Problem
In Chapter 8, I added a feature that simulated getting the initial level of stock for a product from
a remote server. The data that this process returns for each product becomes available after the
product details have been displayed in the app layout, which led me to define a callback in the
ProductDataStore class that is used to signal an update. Here is the signature of the callback:

...
var callback:((Product) -> Void)?;
...

The definition is simple: the Product object for which a stock level value is available is passed to the
callback, which is not required to define a result.

This is a common way to define a notification callback, and it reflects the way that many developers
focus their attention; at the time a new feature is being written, it is the most important feature in the
application. Sadly, the style of callback doesn’t consider that the recipient of the notification may
have signed up with other event sources, each of which has also defined an egocentric callback.
It becomes hard to figure out exactly what the change notification is for without having to define
separate closures to deal with each one, which means that the source of the notification is implicit in
directing the implementation of the recipient.

The bridge pattern can help address this problem by bridging the callback required by the event
source and a more useful API that provides additional context to the recipient of the notification.

Defining the Bridge Class
The bridge class that I require is simple, and it has only to receive events using the callback whose
signature I showed you in the previous section and map it to a more useful callback that provides
more context information to the eventual recipient of the notification. Listing 13-18 shows the
contents of the EventBridge.swift file that I added to the SportsStore project.

Listing 13-18. The Contents of the EventBridge.swift File

class EventBridge {
 private let outputCallback:(String, Int) -> Void;

 init(callback:(String,Int) -> Void) {
 self.outputCallback = callback;
 }

 var inputCallback:(Product) -> Void {
 return { p in self.outputCallback(p.name, p.stockLevel); }
 }
}

The EventBridge class is simple, but it separates the source of the events from the destination
and provides the means by which either can be changed without needing to modify other. The key
is that the Product object in the incoming notification isn’t passed along as part of the outgoing
notification—instead, just the name of the product and the new stock level are passed. This simpler

290 CHAPTER 13: The Bridge Pattern

notification suits the ViewController class, which doesn’t really care about Product objects and is
better focused on updating the value displayed to the client. Listing 13-19 shows how I have used
the EventBridge class to simplify the ViewController code.

Listing 13-19. Applying the Bridge in the ViewController.swift File

import UIKit

// ...ProductTableCell class omitted for brevity...

class ViewController: UIViewController, UITableViewDataSource {

 @IBOutlet weak var totalStockLabel: UILabel!
 @IBOutlet weak var tableView: UITableView!

 var productStore = ProductDataStore();

 override func viewDidLoad() {
 super.viewDidLoad();
 displayStockTotal();
 let bridge = EventBridge(callback: updateStockLevel);
 productStore.callback = bridge.inputCallback;
 }

 func updateStockLevel(name:String, level:Int) {
 for cell in self.tableView.visibleCells() {
 if let pcell = cell as? ProductTableCell {
 if pcell.product?.name == name {
 pcell.stockStepper.value = Double(level);
 pcell.stockField.text = String(level);
 }
 }
 }
 self.displayStockTotal();
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning();
 }

 // ...other methods omitted for brevity...
}

This may not seem like a substantial change, but it means I am able to define a single method—
updateStockLevel—to capture all stock level updates regardless of where in the application
they originate. I may have to use a bridge in order to transform the original events so that the
updateStockLevel can be called, but I no longer have to define closures for each individual event
source that just sends me a Product object.

291CHAPTER 13: The Bridge Pattern

Summary
I described the bridge pattern in this chapter and explained how it can be used to deal with an
exploding hierarchy of classes by separating common and platform-specific code. I also explained
that the bridge pattern has a more general role of separating an abstraction from its implementation
and demonstrated how this can be used to change the API used to receive events. In the next
chapter, I describe the decorator pattern.

293

Chapter 14
The Decorator Pattern

In this chapter, I describe the decorator pattern, which allows the behavior of an object to be
selectively modified at runtime. This pattern has a number of uses but has the most impact when
working with classes that cannot be modified. The idea of selective modification means that you can
choose which objects are changed and which retain their original functionality. Table 14-1 puts the
decorator pattern into context.

Table 14-1. Putting the Decorator Pattern into Context

Question Answer

What is it? The decorator pattern allows the behavior of individual objects to be changed

without requiring changes to the classes that are used to create them or the

components that consume them.

What are the benefits? The changes in behavior defined with the decorator pattern can be combined to

create complex effects without needing to create large numbers of subclasses.

When should you use

this pattern?

Use this pattern when you need to change the behavior of objects without

changing the class they are created from or the components that use them.

When should you avoid

this pattern?

Do not use this pattern when you are able to change the class that creates the objects

you want to modify. It is usually simpler and easier to modify the class directly.

How do you know when

you have implemented the

pattern correctly?

The pattern has been implemented correctly when you can select some of the

objects created from a class to be modified without affecting all of them and

without requiring changes to the class.

Are there any common

pitfalls?

The main pitfall is implementing the pattern so that it affects all of the objects

created from a given class rather than allowing changes to be applied selectively.

A less common pitfall is implementing the pattern so that it has hidden side

effects that are not related to the original purpose of the objects being modified.

Are there any related

patterns?

Many of the structural patterns have similar implementations but different intents.

Ensure that you select the correct pattern from the ones I describe in this

part of the book.

294 CHAPTER 14: The Decorator Pattern

Preparing the Example Project
Following the same approach I used in earlier chapters, I created a new OS X Command Line Tool
project called Decorator. I added a file to the project called Purchase.swift, the contents of which
are shown in Listing 14-1.

Listing 14-1. The Contents of the Purchase.swift File

class Purchase : Printable {
 private let product:String;
 private let price:Float;

 init(product:String, price:Float) {
 self.product = product;
 self.price = price;
 }

 var description:String {
 return product;
 }

 var totalPrice:Float {
 return price;
 }
}

The Purchase class represents a product selection made by a customer in a store. The class defines
properties that store the name of the product and presents these publically through the calculated
description and totalPrice properties. Next, I added a file called CustomerAccount.swift to the
example project and used it to define the class shown in Listing 14-2.

Listing 14-2. The Contents of the CustomerAccount.swift File

import Foundation

class CustomerAccount {
 let customerName:String;
 var purchases = [Purchase]();

 init(name:String) {
 self.customerName = name;
 }

 func addPurchase(purchase:Purchase) {
 self.purchases.append(purchase);
 }

295CHAPTER 14: The Decorator Pattern

 func printAccount() {
 var total:Float = 0;
 for p in purchases {
 total += p.totalPrice;
 println("Purchase \(p), Price \(formatCurrencyString(p.totalPrice))");
 }
 println("Total due: \(formatCurrencyString(total))");
 }

 func formatCurrencyString(number:Float) -> String {
 let formatter = NSNumberFormatter();
 formatter.numberStyle = NSNumberFormatterStyle.CurrencyStyle;
 return formatter.stringFromNumber(number) ?? "";
 }
}

The CustomerAccount class maintains a collection of Purchase objects to represent the purchases
made by a customer. New purchases are added to the account through the addPurchase method,
and the printAccount method writes a summary of the account to the Xcode debug console.
Listing 14-3 shows the statements that I added to the main.swift file to use the Purchase and
CustomerAccount classes.

Listing 14-3. The Contents of the main.swift File

let account = CustomerAccount(name:"Joe");

account.addPurchase(Purchase(product: "Red Hat", price: 10));
account.addPurchase(Purchase(product: "Scarf", price: 20));

account.printAccount();

The Purchase class conforms to the Printable protocol, which means that the value of the
description property is used when the object is passed to the println method. Running the
example application produces the following output:

Purchase Red Hat, Price $10.00
Purchase Scarf, Price $20.00
Total due: $30.00

Understanding the Problem That the Pattern Solves
Imagine that I want to add some gift options to my customers, but I need to do so without modifying
the Purchase or CustomerAccount class I defined in the previous section. There are lots of reasons
why classes cannot be modified, but the most frequent is when they are part of a framework
provided by a third party. In the case of my example application, the Purchase and CustomerAccount
classes might be part of an off-the-shelf sales management system.

The customer can mix and match the gift options, each of which has a different price and can be
applied independently. Table 14-2 shows the options and their costs.

296 CHAPTER 14: The Decorator Pattern

The obvious way of adding support for the gift options is to create subclasses of the Purchase class,
which will allow me to define new behaviors without needing to change the Purchase class or the
CustomerAccount class, which expects to operate on Purchase objects.

Listing 14-4 shows the contents of the Options.swift file, which I added to the example project and
used to define subclasses for the gift options.

Listing 14-4. The Contents of the Options.swift File

class PurchaseWithGiftWrap : Purchase {
 override var description:String { return "\(super.description) + giftwrap"; }
 override var totalPrice:Float { return super.totalPrice + 2;}
}

class PurchaseWithRibbon : Purchase {
 override var description:String { return "\(super.description) + ribbon"; }
 override var totalPrice:Float { return super.totalPrice + 1; }
}

class PurchaseWithDelivery : Purchase {
 override var description:String { return "\(super.description) + delivery"; }
 override var totalPrice:Float { return super.totalPrice + 5; }
}

Each of the three classes I have defined represents one of the options from Table 14-2 and overrides
the description and totalPrice properties. Listing 14-5 shows how I can specify an option by using
one of the subclasses rather than the Purchase base class.

Listing 14-5. Using a Purchase Subclass in the main.swift File

let account = CustomerAccount(name:"Joe");

account.addPurchase(Purchase(product: "Red Hat", price: 10));
account.addPurchase(Purchase(product: "Scarf", price: 20));
account.addPurchase(PurchaseWithGiftWrap(product: "Sunglasses", price: 25));

account.printAccount();

Table 14-2. The Gift Options for Purchases

Gift Options Cost

Gift wrap $2

Ribbon $1

Gift delivery $5

297CHAPTER 14: The Decorator Pattern

Running the application produces the following output in the debug console:

Purchase Red Hat, Price $10.00
Purchase Scarf, Price $20.00
Purchase Sunglasses + giftwrap, Price $27.00
Total due: $57.00

These subclasses work, but they don’t meet my business requirements: customers cannot mix and
match the options. Each subclass represents only a single option, and I have no way to represent a
purchase that the customer wants gift wrapped and delivered. Clearly, I need another subclass to
represent this combination, as shown in Listing 14-6.

Listing 14-6. Adding a Subclass for a Gift Option Combination in the Options.swift File

class PurchaseWithGiftWrap : Purchase {
 override var description:String { return "\(super.description) + giftwrap"; }
 override var totalPrice:Float { return super.totalPrice + 2;}
}

class PurchaseWithRibbon : Purchase {
 override var description:String { return "\(super.description) + ribbon"; }
 override var totalPrice:Float { return super.totalPrice + 1; }
}

class PurchaseWithDelivery : Purchase {
 override var description:String { return "\(super.description) + delivery"; }
 override var totalPrice:Float { return super.totalPrice + 5; }
}

class PurchaseWithGiftWrapAndDelivery : Purchase {
 override var description:String {
 return "\(super.description) + giftwrap + delivery"; }
 override var totalPrice:Float { return super.totalPrice + 5 + 2; }
}

This is only one of the possible combinations. To allow the customer a full range of choices, I need
to create subclasses for all of the following combinations:

Gift wrap	
Ribbon	
Delivery	
Gift wrap + Ribbon	
Gift wrap + Delivery	
Ribbon + Delivery	
Gift wrap + Ribbon + Delivery	

298 CHAPTER 14: The Decorator Pattern

The number of classes will keep increasing as I add options because I need to address all of the
permutations that can exist. The volume of classes presents an error risk and makes maintenance
difficult. As an example, changing the price of an option can require a massive number of changes,
and it is easy to miss one or more classes that should be updated.

Understanding the Decorator Pattern
The decorator solves the permutation problem by creating decorator classes, which are wrappers
around the original class that change its behavior. A decorator presents the same API as the wrapped
class, and decorators can wrap other decorators in order to create permutations. Figure 14-1
illustrates the decorator pattern.

Figure 14-1. The decorator pattern

The decorators present the same methods and properties as the original class, which allows them
to be used as substitutes without needing to modify the calling components. Decorators usually call
the methods and properties of the objects they are wrapping, as shown in the figure. Since all of the
objects involved present the same methods and properties, a decorator is unaware if the object it
wraps is an instance of the original class or another decorator.

Implementing the Decorator Pattern
The decorator pattern is implemented by deriving from the class that cannot be changed in order to
create a class that defines the same properties and methods and that can be used as a transparent
substitute. The decorator class defines a private property that is the wrapped object and uses it
to provide the base functionality that is decorated. Listing 14-7 shows how I replaced the individual
classes from the previous section with decorators in the Options.swift file.

299CHAPTER 14: The Decorator Pattern

Listing 14-7. Defining Decorator Classes in the Options.swift File

class BasePurchaseDecorator : Purchase {
 private let wrappedPurchase:Purchase;

 init(purchase:Purchase) {
 wrappedPurchase = purchase;
 super.init(product: purchase.description, price: purchase.totalPrice);
 }
}

class PurchaseWithGiftWrap : BasePurchaseDecorator {
 override var description:String { return "\(super.description) + giftwrap"; }
 override var totalPrice:Float { return super.totalPrice + 2;}
}

class PurchaseWithRibbon : BasePurchaseDecorator {
 override var description:String { return "\(super.description) + ribbon"; }
 override var totalPrice:Float { return super.totalPrice + 1; }
}

class PurchaseWithDelivery : BasePurchaseDecorator {
 override var description:String { return "\(super.description) + delivery"; }
 override var totalPrice:Float { return super.totalPrice + 5; }
}

To reduce duplication, I have defined a BasePurchaseDecorator class that is derived from Purchase
and defines an initializer that accepts a Purchase object and assigns it to a private stored variable.

The individual decorators inherit the Purchase variable and the initializer and override the
description and totalPrice properties. Each decorator property calls the corresponding property
of the wrapped Purchase object, manipulates the result, and then returns it to the caller. In the case
of the totalPrice property, for example, each decorator gets the price from the wrapped object and
adds the cost of the option it represents.

Tip Some objects that require decoration will be defined by a protocol, and the implementation classes

will not be exposed to you. This doesn’t change the way that decorators are implemented. The decorator

conforms to the protocol and wraps around an object that also conforms to the protocol.

The decorators are derived from the Purchase class and define an initializer that is wrapped that
accepts a Purchase object, which means they can be combined to create permutations of objects,
as shown in Listing 14-8.

Listing 14-8. Using the Decorator Classes in the main.swift File

let account = CustomerAccount(name:"Joe");

account.addPurchase(Purchase(product: "Red Hat", price: 10));
account.addPurchase(Purchase(product: "Scarf", price: 20));
account.addPurchase(PurchaseWithDelivery(purchase:

300 CHAPTER 14: The Decorator Pattern

 PurchaseWithGiftWrap(purchase:
 Purchase(product: "Sunglasses", price:25))));

account.printAccount();

I create a Purchase object to represent the purchase of sunglasses and pass it to the initializer
of the PurchaseWithGiftWrap decorator. I pass the decorator object to the initializer to the
PurchaseWithDelivery to add a second decorator and add the twice-decorated purchase to the
customer’s account. I made no changes to the Purchase or CustomerAccount class, but the output
produced by running the application shows that the decorator classes have allowed me to define
the gift options:

Purchase Red Hat, Price $10.00
Purchase Scarf, Price $20.00
Purchase Sunglasses + giftwrap + delivery, Price $32.00
Total due: $62.00

The description of the purchase includes the options that have been selected, and the cost of those
options is reflected in the price.

Variations on the Decorator Pattern
There are two variations on the decorator pattern, which I describe in the sections that follow.

Creating Decorators with New Functionality
The decorators that I defined in earlier sections presented the same API as the objects they decorated.
This means decorators are essentially invisible to the classes that consume decorated objects,
letting the application benefit from additional functionality—gift options in this case—without the
need to make modifications.

The first pattern variation is to create decorators that define additional methods or properties beyond
those defined by the original objects. This allows more flexibility in the kinds of enhancements that
decorators can implement but does so by reducing the flexibility with which those enhancements
can be applied. To demonstrate, I added a new file called Discounts.swift to the example project
and used it to define the decorators shown in Listing 14-9.

Listing 14-9. The Contents of the Discounts.swift File

class DiscountDecorator: Purchase {
 private let wrappedPurchase:Purchase;

 init(purchase:Purchase) {
 self.wrappedPurchase = purchase;
 super.init(product: purchase.description, price: purchase.totalPrice);
 }

 override var description:String {
 return super.description;
 }

301CHAPTER 14: The Decorator Pattern

 var discountAmount:Float {
 return 0;
 }

 func countDiscounts() -> Int {
 var total = 1;
 if let discounter = wrappedPurchase as? DiscountDecorator {
 total += discounter.countDiscounts();
 }
 return total;
 }
}

class BlackFridayDecorator : DiscountDecorator {

 override var totalPrice:Float {
 return super.totalPrice - discountAmount;
 }

 override var discountAmount:Float {
 return super.totalPrice * 0.20;
 }
}

class EndOfLineDecorator : DiscountDecorator {

 override var totalPrice:Float {
 return super.totalPrice - discountAmount;
 }

 override var discountAmount:Float {
 return super.totalPrice * 0.70;
 }
}

I have defined the DiscountDecorator that wraps a Purchase object and exposes its description
and totalPrice properties. The decorator also defines the discountAmount property, which returns
the amount by which a price is discounted in a sale. The implementation of the totalPrice property
uses the discountAmount value to reduce the price of a purchase. The countDiscounts method
works out how many discounts have been applied to the purchase by looking to see whether the
wrapped object is a discount decorator and working its way through the chain of wrapped objects
to work out the total.

I have derived two decorator classes from DiscountDecorator that represent different sale
conditions. Listing 14-10 shows how I applied the decorators to a purchase.

302 CHAPTER 14: The Decorator Pattern

Listing 14-10. Applying the Discount Decorators in the swift.main File

let account = CustomerAccount(name:"Joe");

account.addPurchase(Purchase(product: "Red Hat", price: 10));
account.addPurchase(Purchase(product: "Scarf", price: 20));
account.addPurchase(EndOfLineDecorator(purchase:
 BlackFridayDecorator(purchase: PurchaseWithDelivery(purchase:
 PurchaseWithGiftWrap(purchase:Purchase(product: "Sunglasses", price:25))))));

account.printAccount();

I used both the EndOfLineDecorator and the BlackFridayDecorator to combine discounts on the
sunglasses purchase. Running the application produces the following results:

Purchase Red Hat, Price $10.00
Purchase Scarf, Price $20.00
Purchase Sunglasses + giftwrap + delivery, Price $7.68
Total due: $37.68

The new decorators don’t modify the description of the product, but they reduce the price from
$32 to $25.60.

Using the New Functionality

The countDiscounts method that the new decorators present allows me to get information about the
number of discounts that have been applied to a purchase, as shown in Listing 14-11.

Listing 14-11. Displaying the Number of Discounts in the main.swift File

let account = CustomerAccount(name:"Joe");

account.addPurchase(Purchase(product: "Red Hat", price: 10));
account.addPurchase(Purchase(product: "Scarf", price: 20));
account.addPurchase(EndOfLineDecorator(purchase:
 BlackFridayDecorator(purchase: PurchaseWithDelivery(purchase:
 PurchaseWithGiftWrap(purchase:Purchase(product: "Sunglasses", price:25))))));

account.printAccount();

for p in account.purchases {
 if let d = p as? DiscountDecorator {
 println("\(p) has \(d.countDiscounts()) discounts");
 } else {
 println("\(p) has no discounts");
 }
}

303CHAPTER 14: The Decorator Pattern

I check to see whether each of the Purchase objects stored by the CustomerAccount object is an
instance of the DiscountDecorator class and call the countDiscounts method if it is. Running the
application produces the following output:

Purchase Red Hat, Price $10.00
Purchase Scarf, Price $20.00
Purchase Sunglasses + giftwrap + delivery, Price $7.68
Total due: $37.68
Red Hat has no discounts
Scarf has no discounts
Sunglasses + giftwrap + delivery has 2 discounts

Understanding the Limitations of Decorators with New Functionality

Decorators that implement new functionality place limits on the way that decoration can be applied.
To expose the new functionality, each instance of the decorator class requires at least one other
component to be able to find it—either the calling component or the decorator that acts as a
wrapper in the case of nested decorators.

The discount decorators I defined are sensitive to the order in which they are applied. In Listing 14-11,
both discounts are applied to the total cost of the purchase, including the gift options that have been
selected, like this:

...
account.addPurchase(EndOfLineDecorator(purchase:
 BlackFridayDecorator(purchase: PurchaseWithDelivery(purchase:
 PurchaseWithGiftWrap(purchase:Purchase(product: "Sunglasses", price:25))))));
...

Listing 14-12 shows how this statement changes if I want one of the discounts to apply only to the
product price and exclude the options.

Listing 14-12. Changing the Application of a Discount in the main.swift File

let account = CustomerAccount(name:"Joe");

account.addPurchase(Purchase(product: "Red Hat", price: 10));
account.addPurchase(Purchase(product: "Scarf", price: 20));
account.addPurchase(EndOfLineDecorator(purchase:
 PurchaseWithDelivery(purchase:PurchaseWithGiftWrap(purchase:
 BlackFridayDecorator(purchase:
 Purchase(product: "Sunglasses", price:25))))));

account.printAccount();

for p in account.purchases {
 if let d = p as? DiscountDecorator {
 println("\(p) has \(d.countDiscounts()) discounts");
 } else {
 println("\(p) has no discounts");
 }
}

304 CHAPTER 14: The Decorator Pattern

The BlackFridayDecorator reduces the price of the sunglasses only and does not affect the price of
the gift options. Here is the output from running the application:

Purchase Scarf, Price $20.00
Purchase Sunglasses + giftwrap + delivery, Price $8.10
Total due: $38.10
Red Hat has no discounts
Scarf has no discounts
Sunglasses + giftwrap + delivery has 1 discounts

The price has been calculated correctly, but notice that only one discount is displayed by the
summary. This happens because the gift option decorators have no knowledge of the discount
decorators and the additional functionality they provide.

This kind of inflexibility doesn’t mean you should avoid defining new features with decorators,
but you should do so carefully and consider the impact it will have on the rest of the application,
especially if there are other decorators already in use.

Creating Consolidated Decorators
So far, I have defined simple decorator classes because I wanted to emphasize how the pattern
works and show how decorators can be selected and applied without modifying the classes they
decorate or those that rely on them.

Decorators need not be so simple, and the pattern allows for any implementation of the methods
and properties that the original class defines. A common variation is to create consolidated
decorators that apply multiple changes to an object. Listing 14-13 shows how I have consolidated
the gift option decorators into a single class.

Caution Decorators are free to create their own implementations of methods and properties, but you

should use them to perform only the same tasks as the original class’s implementations. A good decorated

implementation might apply sales tax to the totalPrice property in the example application, but a bad

implementation would return the number of items in stock. Decorators should enhance or extend the

functionality of the original class and not sneak new features into an existing API.

Listing 14-13. Creating a Single Decorator for Multiple Purchase Options in the Options.swift File

class GiftOptionDecorator : Purchase {
 private let wrappedPurchase:Purchase;
 private let options:[OPTION];

 enum OPTION {
 case GIFTWRAP;
 case RIBBON;
 case DELIVERY;
 }

305CHAPTER 14: The Decorator Pattern

 init(purchase:Purchase, options:OPTION...) {
 self.wrappedPurchase = purchase;
 self.options = options;
 super.init(product: purchase.description, price: purchase.totalPrice);
 }

 override var description:String {
 var result = wrappedPurchase.description;
 for option in options {
 switch (option) {
 case .GIFTWRAP:
 result = "\(result) + giftwrap";
 case .RIBBON:
 result = "\(result) + ribbon";
 case .DELIVERY:
 result = "\(result) + delivery";
 }
 }
 return result;
 }

 override var totalPrice:Float {
 var result = wrappedPurchase.totalPrice;
 for option in options {
 switch (option) {
 case .GIFTWRAP:
 result += 2;
 case .RIBBON:
 result += 1;
 case .DELIVERY:
 result += 5;
 }
 }
 return result;
 }
}

This is still a decorator; it allows me to selectively modify the behavior of Purchase objects, and it
allows me to create combinations of gift options. The difference is that it consolidates the options so
they can be applied in a single object. Listing 14-14 shows how I updated the code that creates the
purchases to use the new decorator.

Tip I prefer to use separate decorator classes for small projects. I find them more elegant and pleasant

to work with. They are harder to maintain, however, and for more complex projects I switch to consolidated

decorators that group related enhancements together. I find consolidated decorators less elegant but

easier to manage.

306 CHAPTER 14: The Decorator Pattern

Listing 14-14. Using the Consolidated Decorator in the main.swift File

let account = CustomerAccount(name:"Joe");

account.addPurchase(Purchase(product: "Red Hat", price: 10));
account.addPurchase(Purchase(product: "Scarf", price: 20));
account.addPurchase(EndOfLineDecorator(purchase: BlackFridayDecorator(purchase:
 GiftOptionDecorator(purchase: Purchase(product: "Sunglasses", price:25),
 options: GiftOptionDecorator.OPTION.GIFTWRAP,
 GiftOptionDecorator.OPTION.DELIVERY))));

account.printAccount();

for p in account.purchases {
 if let d = p as? DiscountDecorator {
 println("\(p) has \(d.countDiscounts()) discounts");
 } else {
 println("\(p) has no discounts");
 }
}

The code looks a little ugly because of the way that it has to be formatted to fit on the page,
but the result is just the same as when I applied two of the individual decorator classes in the
previous section.

Understanding the Pitfalls of the Decorator Pattern
There are two pitfalls to avoid when implementing the decorator pattern. The first is to try to
decorate objects using Swift extensions. One of the main characteristics of the decorator pattern
is that decoration is applied selectively to individual objects, but extensions change all objects of a
specified type.

The Side-Effect Pitfall
The second pitfall arises when you are writing a decorator and you realize that you can use it to do
more than just decorate the methods and properties of an object. It can be an appealing idea.
For example, I could modify the decorator used to indicate the delivery option to automatically
schedule the delivery.

This is a side effect because it isn’t part of the original purpose of the object that was decorated.
Side effects usually end up causing more problems than they solve and are the second pitfall
associated with the decorator pattern.

Side effect decorators are hard to maintain, especially in a team development environment. Another
programmer who sees the name of your DeliveryDecorator class is unlikely to realize it does
anything more than to decorate an object. Problems with deliveries will start when the class is
carelessly modified or reused elsewhere in the application.

Keep a narrow focus for your decorator classes and deal with related activities—such as
deliveries—using separate classes.

307CHAPTER 14: The Decorator Pattern

Examples of the Decorator Pattern in Cocoa
The best-known use of the decorator pattern in Cocoa to handle scrolling windows. Rather than
define scroll bars and the scrolling mechanism for every UI component that can be shown to the
user, Cocoa decorates objects with NSClipView, which is in turn decorated by NSScrollView.
NSScrollView displays the scroll bars and deals with user interaction and manages the NSClipView to
determine which part of the UI component is visible to the user.

Applying the Pattern to the SportsStore Application
To put the decorator pattern into a broader context, I am going to apply it to the Product class in the
SportsStore application to reduce the price of all products in the Soccer category and increase the
price of any item for which there are four or fewer items in stock.

Preparing the Example Application
No preparation is required for this chapter, and I am going to pick up the SportsStore project as I left
it in Chapter 13.

Tip Remember that all of the examples in this book are available as a free download from Apress.com.

Creating the Decorators
Once you know how the decorator pattern works, creating decorator classes is a simple process.
Listing 14-15 shows the contents of the ProductDecorators.swift file, which I added to the
SportsStore project.

Listing 14-15. The Contents of the ProductDecorators.swift File

class PriceDecorator : Product {
 private let wrappedProduct:Product;

 required init(name:String, description:String, category:String,
 price:Double, stockLevel:Int) {
 fatalError("Not supported");
 }

 init(product:Product) {
 self.wrappedProduct = product;
 super.init(name: product.name, description: product.productDescription,
 category: product.category, price: product.price,
 stockLevel: product.stockLevel);
 }
}

https://Apress.com

308 CHAPTER 14: The Decorator Pattern

class LowStockIncreaseDecorator : PriceDecorator {

 override var price:Double {
 var price = wrappedProduct.price;
 if (stockLevel <= 4) {
 price = price * 1.5;
 }
 return price;
 }
}

class SoccerDecreaseDecorator : PriceDecorator {
 override var price:Double {
 return super.wrappedProduct.price * 0.5;
 }
}

The PriceDecorator class is the base for my decorators and is a subclass of the Product class.
The Product class defines a required initializer that I have to add to PriceDecorator but don’t want
to use. I have used the fatalError function so that I don’t have to implement the required initializer
and defined a new initializer that accepts a Product object that will be decorated.

The LowStockIncreaseDecorator and SoccerDecreaseDecorator classes are the decorator classes,
and they override the price property to change the prices of the products.

Applying the Decorators
I want to apply the decorators to Product objects as they are created. Listing 14-16 shows how I
changed the loadData method in the ProductDataStore class.

Listing 14-16. Applying the Decorators in the ProductDataStore.swift File

...
private func loadData() -> [Product] {

 var products = [Product]();

 for product in productData {
 var p:Product = LowStockIncreaseDecorator(product: product);
 if (p.category == "Soccer") {
 p = SoccerDecreaseDecorator(product: p);
 }

 dispatch_async(self.networkQ, {() in
 let stockConn = NetworkPool.getConnection();
 let level = stockConn.getStockLevel(p.name);
 if (level != nil) {
 p.stockLevel = level!;
 dispatch_async(self.uiQ, {() in

309CHAPTER 14: The Decorator Pattern

 if (self.callback != nil) {
 self.callback!(p);
 }
 })
 }
 NetworkPool.returnConnecton(stockConn);
 });
 products.append(p);
 }
 return products;
}
...

I decorate all Product objects with the LowStockIncreaseDecorator class but apply the
SoccerDecreaseDecorator only to Product objects in the Soccer category. The effect is that the
prices of all soccer products are permanently reduced, and those products whose stock level drops
below five items will be increased.

Summary
In this chapter, I described the decorator pattern and explained how it can be used to change the
behavior of objects at runtime. The decorator pattern is especially useful when dealing with classes
that cannot be modified and makes it easy to enhance applications even when working with
third-party or legacy frameworks. In the next chapter, I describe the composite pattern, which
allows single instances and collections of objects to be treated consistently.

311

Chapter 15
The Composite Pattern

The composite pattern is not as broadly applicable as some of the other design patterns I describe
in this book, but it remains an important pattern because of the way it applies consistency to a data
structure that contains different types of object. Table 15-1 puts the composite pattern in context.

Table 15-1. Putting the Composite Pattern into Context

Question Answer

What is it? The composite pattern allows a tree of individual objects and

collections of objects to be treated consistently.

What are the benefits? The consistency that the composite pattern brings means that

components that operate on the tree structure are simpler and do not

need to have knowledge of the different objects types that are in use.

When should you use this pattern? Use this pattern when you have a tree structure that contains leaf

nodes and collections of objects.

When should you avoid this pattern? This pattern is applicable only to tree data structures.

How do you know when you have

implemented the pattern correctly?

The pattern is implemented correctly when components that use the

tree structure can treat all of the objects it contains using the same

type or protocol.

Are there any common pitfalls? This pattern is best suited to tree structures that are not modified

once they have been created. Adding support for modifying the tree

undermines the benefit of the pattern.

Are there any related patterns? Many of the structural patterns have similar implementations but

different intents. Ensure that you select the correct pattern from the

ones I describe in this part of the book.

312 CHAPTER 15: The Composite Pattern

Preparing the Example Project
Following the same approach I used in earlier chapters, I created a new OS X Command Line Tool
project called Composite. I added a file to the project called CarParts.swift, the contents of which
are shown in Listing 15-1.

Listing 15-1. The Contents of the CarParts.swift File

class Part {
 let name:String;
 let price:Float;

 init(name:String, price:Float) {
 self.name = name; self.price = price;
 }
}

class CompositePart {
 let name:String;
 let parts:[Part];

 init(name:String, parts:Part...) {
 self.name = name; self.parts = parts;
 }
}

I have defined two classes to represent parts used to repair cars. The Part class represents a single
self-contained part, such as a spark plug or a tire. The CompositePart class represents parts that
are made up of other parts and that are typically purchased as a single unit, such as a wheel, which
would comprise a tire, a wheel alloy, and some fixing nuts. The CompositePart class represents its
constituent elements using a Part array. I also added a file called Orders.swift, the contents of
which are shown in Listing 15-2.

Listing 15-2. The Contents of the Orders.swift File

import Foundation

class CustomerOrder {
 let customer:String;
 let parts:[Part];
 let compositeParts:[CompositePart];

 init(customer:String, parts:[Part], composites:[CompositePart]) {
 self.customer = customer;
 self.parts = parts;
 self.compositeParts = composites;
 }

 var totalPrice:Float {
 let partReducer = {(subtotal:Float, part:Part) -> Float in
 return subtotal + part.price};

313CHAPTER 15: The Composite Pattern

 var total = reduce(parts, 0, partReducer);

 return reduce(compositeParts, total, {(subtotal, cpart) -> Float in
 return reduce(cpart.parts, subtotal, partReducer);
 });
 }

 func printDetails() {
 println("Order for \(customer): Cost: \(formatCurrencyString(totalPrice))");
 }

 func formatCurrencyString(number:Float) -> String {
 let formatter = NSNumberFormatter();
 formatter.numberStyle = NSNumberFormatterStyle.CurrencyStyle;
 return formatter.stringFromNumber(number) ?? "";
 }
}

The CustomerOrder class represents an order made up of Part and CompositePart objects. The
printDetails method writes out the name of the customer and the total price of the order, which
is obtained from the totalPrice property. Listing 15-3 shows the code I added to the main.swift
file to create and populate a CustomerOrder object with Part and CompositePart objects.

Listing 15-3. The Contents of the main.swift File

let doorWindow = CompositePart(name: "DoorWindow", parts:
 Part(name: "Window", price: 100.50),
 Part(name: "Window Switch", price: 12));

let door = CompositePart(name: "Door", parts:
 Part(name: "Window", price: 100.50),
 Part(name: "Door Loom", price: 80),
 Part(name: "Window Switch", price: 12),
 Part(name: "Door Handles", price: 43.40));

let hood = Part(name: "Hood", price: 320);

let order = CustomerOrder(customer: "Bob", parts: [hood],
 composites: [door, doorWindow]);
order.printDetails();

The customer is Bob, and his order consists of a complete door, a door window, and a hood. Running
the application produces the following output:

Order for Bob: Cost: $668.40

314 CHAPTER 15: The Composite Pattern

Understanding the Problem That the Pattern Solves
The classes in the example application exhibit two different problems, both of which stem from the
fact that there are different types used to represent car parts in an order.

The first problem is that I am limited to simple hierarchies of parts. When I created the CompositePart
object to represent a car door in Listing 15-3, I had to create a Part object for the Window and
another for the Window Switches. I had to create the same Part objects for the door window, even
though the door contains a window. This limitation means that I need to keep two lists of parts
up-to-date, even though one is a superset of the other.

The second problem is that classes that operate on parts need to know the details of the
CompositePart and Part objects and how they relate to one another. You can see an example of this
problem in the CustomerAccount class, in which a substantial portion of the code in the class deals
with working out the total cost of all the Part objects that have been ordered.

...
var totalPrice:Float {
 let partReducer = {(subtotal:Float, part:Part) -> Float in
 return subtotal + part.price};

 var total = reduce(parts, 0, partReducer);

 return reduce(compositeParts, total, {(subtotal, cpart) -> Float in
 return reduce(cpart.parts, subtotal, partReducer);
 });
}
...

The need for the components that operate on parts to understand the relationship between the
Part and CompositePart classes means that I have to duplicate this kind of code in each of those
components.

Understanding the Composite Pattern
The composite pattern solves the problems I described by arranging objects into a tree hierarchy
and defining a protocol that allows individual and composite objects to be treated consistently.
The protocol is presented to the components that operate on the objects, which are unaware of
which objects are single objects and which are collections.

The protocol is also used within the composite objects, which are then able to seamlessly collect
together objects that represent individual objects and other collections. Figure 15-1 shows the
way that the composite pattern is used to arrange objects, but this is a pattern that is most readily
understood through a working implementation; see the next section for details.

315CHAPTER 15: The Composite Pattern

Implementing the Composite Pattern
The objects used to represent individual objects are known as leaf nodes in the tree data structure.
The objects used to represent a collection are known as composites. Both the leaf node and
composite objects implement the same protocol, which hides the details of how collections are
composed from the components that consume them.

The first step in implementation is to define the protocol, which is the heart of the pattern.
Listing 15-4 shows the definition of the protocol for the example application, and the changes
required make the Part and CompositePart classes conform to it.

Figure 15-1. The composite pattern

316 CHAPTER 15: The Composite Pattern

Listing 15-4. Defining and Applying a Protocol in the CarParts.swift File

protocol CarPart {
 var name:String { get };
 var price:Float { get };
}

class Part : CarPart {
 let name:String;
 let price:Float;

 init(name:String, price:Float) {
 self.name = name; self.price = price;
 }
}

class CompositePart : CarPart {
 let name:String;
 let parts:[CarPart];

 init(name:String, parts:CarPart...) {
 self.name = name; self.parts = parts;
 }

 var price:Float {
 return reduce(parts, 0, {subtotal, part in
 return subtotal + part.price;
 });
 }
}

The CarPart protocol defines name and price properties, which correspond to the properties already
defined by the Part class. This means that the only change for Part is to declare conformance to the
protocol.

The changes for the CompositePart class are more profound. It is important that composite objects
operate on the protocol and not the classes that conform to it, which means I have removed
references to the Part class and replaced them with references to the CarPart protocol. In
addition, I have defined the price property specified by the protocol, and its implementation uses
the global reduce function to sum the value of the price properties of the CarPart objects it has
been used to collect.

Applying the Pattern
The next step is to update the classes that operate on the left node and composite objects so that
they rely on the protocol rather than its implementation classes. Listing 15-5 shows the changes that
I made to the CustomerOrder class.

317CHAPTER 15: The Composite Pattern

Listing 15-5. Applying the Protocol in the Orders.swift File

import Foundation

class CustomerOrder {
 let customer:String;
 let parts:[CarPart];

 init(customer:String, parts:[CarPart]) {
 self.customer = customer;
 self.parts = parts;
 }

 var totalPrice:Float {
 return reduce(parts, 0, {subtotal, part in
 return subtotal + part.price});
 }

 func printDetails() {
 println("Order for \(customer): Cost: \(formatCurrencyString(totalPrice))");
 }

 func formatCurrencyString(number:Float) -> String {
 let formatter = NSNumberFormatter();
 formatter.numberStyle = NSNumberFormatterStyle.CurrencyStyle;
 return formatter.stringFromNumber(number) ?? "";
 }
}

The CustomerOrder class no longer needs to have knowledge of the leaf node and composite classes
and deals only with the CartPart protocol. The main impact is on the totalPrice property, which can
simply sum the price property of the CarPart objects to get the total value of the order.

The final step is to change the code in the main.swift file so that I am able to create and reuse
composite objects, as shown in Listing 15-6.

Listing 15-6. Reusing Composite Objects in the main.swift File

let doorWindow = CompositePart(name: "DoorWindow", parts:
 Part(name: "Window", price: 100.50),
 Part(name: "Window Switch", price: 12));

let door = CompositePart(name: "Door", parts:
 doorWindow,
 Part(name: "Door Loom", price: 80),
 Part(name: "Door Handles", price: 43.40));

let hood = Part(name: "Hood", price: 320);

let order = CustomerOrder(customer: "Bob", parts: [hood, door, doorWindow]);
order.printDetails();

318 CHAPTER 15: The Composite Pattern

Note The code that creates the data structure, which is in the main.swift file for the example, still needs

to understand the differences between the leaf node and composite object in order to create the tree. The

composite pattern affects the components that consume the tree structure, which no longer depend on being

able to differentiate between the different types of object.

Rather than having to duplicate the parts required for a door window, I can simply create one
composite object and pass it as an argument to the initializer of another. This means I can change
the set of parts that define a door window in one place. Running the application produces the same
output as before I implemented the composite pattern.

Order for Bob: Cost: $668.40

Understanding the Pitfalls of the Composite Pattern
The composite pattern works best when the tree structure that is created is fixed. The main pitfall
for the composite pattern occurs when you need to be able to change the structure after it has been
created. Listing 15-7 shows the changes I made to the CompositePart class to support changes.

Listing 15-7. Adding Support for Composite Collection Changes in the CarParts.swift File

...
class CompositePart : CarPart {
 let name:String;
 private var parts:[CarPart];

 init(name:String, parts:CarPart...) {
 self.name = name; self.parts = parts;
 }

 var price:Float {
 return reduce(parts, 0, {subtotal, part in
 return subtotal + part.price;
 });
 }

 func addPart(part:CarPart) {
 parts.append(part);
 }

 func removePart(part:CarPart) {
 for index in 0 ..< parts.count {
 if (parts[index].name == part.name) {
 parts.removeAtIndex(index);
 break;
 }

319CHAPTER 15: The Composite Pattern

 }
 }
}
...

The changes are simple enough. I redefined the constant CarPart array as a variable and added
addPart and removePart methods. However, these changes mean that components that change the
data structure need to know that the CompositePart class defines addPart and removePart methods
and need to understand the difference between the CompositePart and Part classes in order to add
and remove parts.

The changes in Listing 15-7 undermine the benefit of the composite pattern. A common attempt
to address this problem is to include the methods in the protocol in order to harmonize the API
implemented by the leaf node and composite objects, as shown in Listing 15-8.

Listing 15-8. Attempting to Harmonize the API in the CarParts.swift File

protocol CarPart {

 var name:String { get };
 var price:Float { get };

 func addPart(part:CarPart) -> Void;
 func removePart(part:CarPart) -> Void;
}

class Part : CarPart {
 let name:String;
 let price:Float;

 init(name:String, price:Float) {
 self.name = name; self.price = price;
 }

 func addPart(part: CarPart) {
 // do nothing
 }

 func removePart(part: CarPart) {
 // do nothing
 }
}

class CompositePart : CarPart {
 // ...statements omitted for brevity...
}

This is not a solution to the problem because the Part class has no way to implement the addPart
and removePart methods. A component that calls these methods will expect the data structure to be
modified, but, of course, nothing will happen, and the result is either data loss or an error.

320 CHAPTER 15: The Composite Pattern

Examples of the Composite Pattern in Cocoa
The most important use of the composite pattern in the Cocoa framework is the UIView class, which
defines the common behavior for all the elements in an app layout. Individual view objects in the
view hierarchy can be left nodes (like labels) or composites that contain collections of other views
(like table view controllers).

Applying the Pattern to the SportsStore Application
To apply the composite pattern to the SportsStore application, I am going to create product sets that
are comprised of individual products and that will be sold as a single unit.

Preparing the Example Application
To prepare for the composite pattern, I am going to simplify the Product class and remove some of
the features that I added in earlier chapters. Listing 15-9 shows the changes I made.

Listing 15-9. Simplifying the Product Class in the Product.swift File

import Foundation

class Product : NSObject, NSCopying {
 private(set) var name:String;
 private(set) var productDescription:String;
 private(set) var category:String;
 private var stockLevelBackingValue:Int = 0;
 private var priceBackingValue:Double = 0;

 required init(name:String, description:String, category:String, price:Double,
 stockLevel:Int) {
 self.name = name;
 self.productDescription = description;
 self.category = category;
 super.init();
 self.price = price;
 self.stockLevel = stockLevel;
 }

 var stockLevel:Int {
 get { return stockLevelBackingValue;}
 set { stockLevelBackingValue = max(0, newValue);}
 }

 private(set) var price:Double {
 get { return priceBackingValue;}
 set { priceBackingValue = max(1, newValue);}
 }

321CHAPTER 15: The Composite Pattern

 var stockValue:Double {
 get {
 return price * Double(stockLevel);
 }
 }

 func copyWithZone(zone: NSZone) -> AnyObject {
 return Product(name: self.name, description: self.description,
 category: self.category, price: self.price,
 stockLevel: self.stockLevel);
 }

 class func createProduct(name:String, description:String, category:String,
 price:Double, stockLevel:Int) -> Product {

 return Product(name:name, description: description, category: category,
 price: price, stockLevel: stockLevel);
 }
}

I have removed the category-specific subclasses from the Product.swift file and simplified the
Product class itself so that it no longer deals with sales tax or upsell opportunities (which were the
specializations provided by the subclasses).

Defining the Composite Class
When applying the composite pattern to an existing application, it isn’t always possible to create a
protocol to which both the leaf node and composite objects can conform. In these situations, I treat
the existing class as both the definition of the common functionality and the template for the leaf
nodes. This allows me to define the composite class as a subclass, as shown in Listing 15-10.

Listing 15-10. Defining the Composite Class in the Product.swift File

import Foundation

class Product : NSObject, NSCopying {
 // ...statements omitted for brevity...
}

class ProductComposite : Product {
 private let products:[Product];

 required init(name:String, description:String, category:String,
 price:Double, stockLevel:Int) {
 fatalError("Not implemented");
 }

 init(name:String, description:String, category:String, stockLevel:Int,
 products:Product...) {
 self.products = products;
 super.init(name: name, description: description, category: category,
 price: 0, stockLevel: stockLevel);
 }

322 CHAPTER 15: The Composite Pattern

 override var price:Double {
 get { return reduce(products, 0, {total, p in return total + p.price}); }
 set { /* do nothing */ }
 }
}

This approach is not as elegant as using a separate protocol, but it minimizes the number of
changes that are required to implement the pattern. The ProductComposite class consists of
subclasses from Product and maintains an immutable array of Product objects. The price property is
overridden so that the value returned is calculated from the collected Product objects.

Applying the Pattern
The last step is to add a product set to the SportsStore catalog. Listing 15-11 shows the changes
I made to the ProductDataStore class.

Listing 15-11. Defining Product Sets in the ProductDataStore.swift File

import Foundation

final class ProductDataStore {
 var callback:((Product) -> Void)?;
 private var networkQ:dispatch_queue_t
 private var uiQ:dispatch_queue_t;
 lazy var products:[Product] = self.loadData();

 init() {
 networkQ = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0);
 uiQ = dispatch_get_main_queue();
 }

 private func loadData() -> [Product] {
 // ...statements omitted for brevity...
 }

 private var productData:[Product] = [
 ProductComposite(name: "Running Pack",
 description: "Complete Running Outfit", category: "Running",
 stockLevel: 10, products:
 Product.createProduct("Shirt", description: "Running Shirt",
 category: "Running", price: 42, stockLevel: 10),
 Product.createProduct("Shorts", description: "Running Shorts",
 category: "Running", price: 30, stockLevel: 10),
 Product.createProduct("Shoes", description: "Running Shoes",
 category: "Running", price: 120, stockLevel: 10),
 ProductComposite(name: "Headgear", description: "Hat, etc",
 category: "Running", stockLevel: 10, products:
 Product.createProduct("Hat", description: "Running Hat",
 category: "Running", price: 10, stockLevel: 10),
 Product.createProduct("Sunglasses", description: "Glasses",
 category: "Running", price: 10, stockLevel: 10))
),

323CHAPTER 15: The Composite Pattern

 Product.createProduct("Kayak", description:"A boat for one person",
 category:"Watersports", price:275.0, stockLevel:0),
 Product.createProduct("Lifejacket",
 description:"Protective and fashionable",
 category:"Watersports", price:48.95, stockLevel:0),

 // ...statements omitted for brevity...
}

I have defined a new product called Running Pack that is made up of individual products. One of the
products, Headgear, is itself a product set. Running the application shows the addition of the product
to the catalog, as shown in Figure 15-2.

Figure 15-2. A product set in the SportsStore catalog

Summary
In this chapter I showed you how the composite pattern can be used so that different kinds of
objects in a tree data structure can be treated consistently. In the next chapter, I describe the façade
pattern, which allows complex APIs to be simplified for common tasks.

325

Chapter 16
The Façade Pattern

The façade pattern is used to simplify the API presented by one or more classes so that common
tasks can be performed more easily and the complexity required to use the API is consolidated in
one part of the application. Table 16-1 puts the façade pattern into context.

Table 16-1. Putting the Façade Pattern into Context

Question Answer

What is it? The façade pattern simplifies the use of complex APIs to perform

common tasks.

What are the benefits? The complexity required to use an API is consolidated into a single

class, which minimizes the impact of changes in the API and

simplifies the components that consume the API functionality.

When should you use this pattern? Use the façade pattern when you are working with classes that

need to be used together but that don’t have compatible APIs.

When should you avoid this pattern? Do not use the façade pattern when integrating single components

into the application; use the adapter pattern instead.

How do you know when you have

implemented the pattern correctly?

The façade pattern is implemented when common tasks can be

performed without calling components having any dependency on

the underlying objects or their supporting data types.

Are there any common pitfalls? The pitfall when implementing the façade pattern is to leak details

of the underlying objects. This means that the calling components

are still dependent on the underlying classes or supporting types

and will require modification when they change.

Are there any related patterns? Many of the structural patterns have similar implementations but

different intents. Ensure that you select the correct pattern from

the ones that I describe in this part of the book.

326 CHAPTER 16: The Façade Pattern

Preparing the Example Project
For this chapter, I created an Xcode OS X Command Line Tool project called Facade. I am going to
create three classes on the theme of pirates. For the first, I created the TreasureMap.swift file, the
contents of which are shown in Listing 16-1.

Listing 16-1. The Contents of the TreasureMap.swift File

class TreasureMap {

 enum Treasures {
 case GALLEON; case BURIED_GOLD; case SUNKEN_JEWELS;
 }

 struct MapLocation {
 let gridLetter: Character;
 let gridNumber: UInt;
 }

 func findTreasure(type:Treasures) -> MapLocation {
 switch type {
 case .GALLEON:
 return MapLocation(gridLetter: "D", gridNumber: 6);
 case .BURIED_GOLD:
 return MapLocation(gridLetter: "C", gridNumber: 2);
 case .SUNKEN_JEWELS:
 return MapLocation(gridLetter: "F", gridNumber: 12);
 }
 }
}

The TreasureMap class defines the findTreasure method, which accepts a value from the nested
Treasures enumeration and returns a MapLocation that represents the location at which the specified
type of treasure can be found. The second file I created is called PirateShip.swift, and its contents
are shown in Listing 16-2.

Listing 16-2. The Contents of the PirateShip.swift File

import Foundation;

class PirateShip {

 struct ShipLocation {
 let NorthSouth:Int;
 let EastWest:Int;
 }

 var currentPosition:ShipLocation;
 var movementQueue = dispatch_queue_create("shipQ", DISPATCH_QUEUE_SERIAL);

327CHAPTER 16: The Façade Pattern

 init() {
 currentPosition = ShipLocation(NorthSouth: 5, EastWest: 5);
 }

 func moveToLocation(location:ShipLocation, callback:(ShipLocation) -> Void) {
 dispatch_async(movementQueue, {() in
 self.currentPosition = location;
 callback(self.currentPosition);
 });
 }
}

As its name suggests, the PirateShip class represents a ship, which can be moved to new locations.
Locations are specified using the nested ShipLocation struct and passed to the moveToLocation
method. Ships take time to move to new locations, so the implementation of the moveToLocation
method is asynchronous and uses a callback to send a notification when the ship is in the specified
location. The asynchronous implementation is performed using a Grand Central Dispatch queue
and block, which I described in Chapter 7. I have not added any delays to moving the ship, so
the callback will be invoked immediately; that’s enough for this chapter, where my emphasis is on
dealing with complex APIs. The final file I added to the project is called PirateCrew.swift, and its
contents are shown in Listing 16-3.

Listing 16-3. The Contents of the PirateCrew.swift File

import Foundation;

class PirateCrew {
 let workQueue = dispatch_queue_create("crewWorkQ", DISPATCH_QUEUE_SERIAL);

 enum Actions {
 case ATTACK_SHIP; case DIG_FOR_GOLD; case DIVE_FOR_JEWELS;
 }

 func performAction(action:Actions, callback:(Int) -> Void) {
 dispatch_async(workQueue, {() in
 var prizeValue = 0;
 switch (action) {
 case .ATTACK_SHIP:
 prizeValue = 10000;
 case .DIG_FOR_GOLD:
 prizeValue = 5000;
 case .DIVE_FOR_JEWELS:
 prizeValue = 1000;
 }
 callback(prizeValue);
 });
 }
}

328 CHAPTER 16: The Façade Pattern

The PirateCrew class represents the crew of the ship, which can be assigned work through the
performAction method. The work to be performed is expressed as a value from the Actions
enumeration. The work itself is performed asynchronously, and a callback is used to signal when it
has been completed. An Int value is passed to the callback that represents the worth of the treasure
obtained as a result of the work.

Understanding the Problem That the Pattern Solves
The three classes in the example application have to be used together in order to generate any profit
for the pirates. The TreasureMap class provides information on where there is treasure to be found,
the PirateShip class provides the means for transporting the labor force required to retrieve the
treasure, and the PirateCrew class provides the means to direct the labor force once it is in position.

These classes have to be used in a specific order. There is no point moving the ship until the location
of treasure has been obtained from the map, and there is no point giving the crew work until the ship
is in position.

To make the situation worse, the classes use different data types to represent their inputs and
outputs. The TreasureMap class uses a different coordinate data type from the PirateShip class and
a different enumeration from the PirateCrew class. And, finally, the methods defined by these classes
have different characteristics; some produce results immediately, and others are asynchronous.

The problem this creates is that a degree of complexity is incurred to coordinate the use of these
three classes in order to make any money. Listing 16-4 shows the code I defined in the main.swift
file as a demonstration.

Listing 16-4. The Contents of the main.swift File

import Foundation;

let map = TreasureMap();
let ship = PirateShip();
let crew = PirateCrew();

let treasureLocation = map.findTreasure(TreasureMap.Treasures.GALLEON);

// convert from map to ship coordinates
let sequence:[Character] = ["A", "B", "C", "D", "E", "F", "G"];
let eastWestPos = find(sequence, treasureLocation.gridLetter);
let shipTarget = PirateShip.ShipLocation(NorthSouth:
 Int(treasureLocation.gridNumber), EastWest: eastWestPos!);

// relocate ship
ship.moveToLocation(shipTarget, callback: {location in
 // get the crew to work
 crew.performAction(PirateCrew.Actions.ATTACK_SHIP, {prize in
 println("Prize: \(prize) pieces of eight");
 });
});

NSFileHandle.fileHandleWithStandardInput().availableData;

329CHAPTER 16: The Façade Pattern

The code in the main.swift file creates the map, ship, and crew objects and uses them in sequence
to find and attack a treasure galleon. The code converts between the coordinates used by the map
into the coordinates used by the ship and ensures that the instruction given to the crew (ATTACK_
SHIP) corresponds with the map object at the ship’s location (GALLEON). This code uses closures for
the asynchronous callback methods to ensure that the crew is not given orders until the ship is in
position and to get information about the prize money that is obtained.

Figure 16-1. The façade pattern

Tip I have used the NSFileHandle class in Listing 16-4 to stop the application from exiting before

the asynchronous method calls made to the PirateShip and PirateCrew objects have completed.

Applications don’t wait for asynchronous GCD operations to complete, and NSFileHandle keeps the

application alive by waiting to read data from the console.

This complexity will be duplicated throughout the application whenever the TreasureMap, PirateShip,
and PirateCrew objects are used. The duplicated code will have to be carefully changed if any of
the individual objects, the relationship between them, or the data types they use change. This kind
of dependency leads to errors and produces code that is difficult to test effectively. Running the
application produces the following output:

Prize: 10000 pieces of eight

Understanding the Façade Pattern
The façade pattern addresses the problem by creating a class that consolidates the complexity
into a single location in the application and presents a simplified API to other components, as
shown in Figure 16-1.

330 CHAPTER 16: The Façade Pattern

The façade class takes care of the hard work and allows the calling component to take advantage of
the functionality provided by the underlying classes without needing to know about them, the way
they relate to one another, or the types they use to support their features. Changes in the underlying
classes need be reflected only in the façade class, and the code in the calling classes is simpler and
more focused on the task it needs to achieve.

Implementing the Façade Pattern
The façade pattern is simple to implement and requires the definition of a class that provides a
simple API for using the complex classes. The façade class should not expose any of the details of
the underlying classes or require the calling component to have any knowledge of them. Listing 16-5
shows the contents of the Facade.swift file, which I added to the example project in order to define
a façade class.

Listing 16-5. The Contents of the Facade.swift File

import Foundation

enum TreasureTypes {
 case SHIP; case BURIED; case SUNKEN;
}

class PirateFacade {
 private let map = TreasureMap();
 private let ship = PirateShip();
 private let crew = PirateCrew();

 func getTreasure(type:TreasureTypes) -> Int? {

 var prizeAmount:Int?;

 // select the treasure type
 var treasureMapType:TreasureMap.Treasures;
 var crewWorkType:PirateCrew.Actions;

 switch (type) {
 case .SHIP:
 treasureMapType = TreasureMap.Treasures.GALLEON;
 crewWorkType = PirateCrew.Actions.ATTACK_SHIP;
 case .BURIED:
 treasureMapType = TreasureMap.Treasures.BURIED_GOLD;
 crewWorkType = PirateCrew.Actions.DIG_FOR_GOLD;
 case .SUNKEN:
 treasureMapType = TreasureMap.Treasures.SUNKEN_JEWELS;
 crewWorkType = PirateCrew.Actions.DIVE_FOR_JEWELS;
 }

 let treasureLocation = map.findTreasure(treasureMapType);

331CHAPTER 16: The Façade Pattern

 // convert from map to ship coordinates
 let sequence:[Character] = ["A", "B", "C", "D", "E", "F", "G"];
 let eastWestPos = find(sequence, treasureLocation.gridLetter);
 let shipTarget = PirateShip.ShipLocation(NorthSouth:
 Int(treasureLocation.gridNumber), EastWest: eastWestPos!);

 let semaphore = dispatch_semaphore_create(0);

 // relocate ship
 ship.moveToLocation(shipTarget, callback: {location in
 self.crew.performAction(crewWorkType, {prize in
 prizeAmount = prize;
 dispatch_semaphore_signal(semaphore);
 });
 });

 dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
 return prizeAmount;
 }
}

The PirateFacade class defines a method called getTreasure that is the façade for the TreasureMap,
PirateShip, and PirateCrew classes. The implementation of the getTreasure method contains
largely the same code but with two important differences.

The first difference is that the PirateFacade class relies on the TreasureTypes enumeration to work
out what kind of treasure and what kind of crew work will be required. I could have relied on one of
the enumerations defined by the classes behind the façade, but that would create a dependency
on one of those classes, which is something that I want to avoid. Including an enumeration in the
façade allows me to completely hide the implementation of the classes behind the façade.

The other difference is that the getTreasure method is synchronous and blocks while the calls to
the asynchronous methods in the classes behind the façade are completed. This isn’t required to
implement the façade pattern, which can happily incorporate asynchronous methods, but I wanted
to completely hide the underlying implementation details, which I have done using a Grand Central
Dispatch semaphore. (I introduced the GCD semaphore in Chapter 7.)

Applying the Façade
All that remains is to revise the code in the main.swift file to take advantage of the façade class,
as shown in Listing 16-6.

Listing 16-6. Using the Façade Class in the main.swift File

let facade = PirateFacade();
let prize = facade.getTreasure(TreasureTypes.SHIP);
if (prize != nil) {
 println("Prize: \(prize!) pieces of eight");
}

332 CHAPTER 16: The Façade Pattern

All of the complexity involved in using the TreasureMap, PirateShip, and PirateCrew classes is
hidden away, and any component that needs to use these classes need deal only with the façade.
Running the application produces the following output in the Xcode debug console:

Prize: 10000 pieces of eight

Variations on the Façade Pattern
The class I created in the previous section is an opaque façade, which means that no details of
the underlying objects are exposed to the calling components. A variation on the pattern is to
create a transparent façade, in which some or all of the underlying objects are exposed for calling
components that require advanced features or finer-grained control over the work that is being done.
In Swift, transparent façade classes simply provide access to the properties that store the underlying
objects, as shown in Listing 16-7.

Listing 16-7. Creating a Transparent Façade in the Facade.swift File

import Foundation

enum TreasureTypes {
 case SHIP; case BURIED; case SUNKEN;
}

class PirateFacade {
 let map = TreasureMap();
 let ship = PirateShip();
 let crew = PirateCrew();

 func getTreasure(type:TreasureTypes) -> Int? {
 // ...statements omitted for brevity...
 }
}

I have removed the private keywords that were protecting the map, ship, and crew properties, and
the effect is that calling components can choose to access those objects directly, rather than relying
solely on the getTreasure method, as shown in Listing 16-8.

Listing 16-8. Using a Transparent Façade in the main.swift File

import Foundation;

let facade = PirateFacade();
let prize = facade.getTreasure(TreasureTypes.SHIP);
if (prize != nil) {
 facade.crew.performAction(PirateCrew.Actions.DIVE_FOR_JEWELS,
 callback: {secondPrize in
 println("Prize: \(prize! + secondPrize) pieces of eight");
 });
}

NSFileHandle.fileHandleWithStandardInput().availableData;

333CHAPTER 16: The Façade Pattern

By accessing the crew property of the façade class, I am able to issue a second instruction without
calling the getTreasure method, which would consult the map and move the ship. This is an advanced
operation. Most of the time, the pirates attack a ship and move on, but in this instance, they also dive
for sunken treasure at the same location. Creating a transparent façade allows me to deal with this
advanced, and unusual, situation without adding additional complexity to the façade class.

The drawback of this approach is that it undermines the isolation offered by the façade class. The
code in the main.swift file, which represents the calling component in this example, now needs
to know about how the PirateCrew class is implemented, about its dependency on the Actions
enumeration, and about the fact that the performAction method is implemented asynchronously. For
this reason, the transparent variation on the façade pattern should be used sparingly and carefully.
Running the application produces the following output:

Prize: 11000 pieces of eight

Understanding the Pitfalls of the Façade Pattern
There is only one pitfall when implementing the façade pattern: inadvertently exposing details of
the underlying objects to the calling component. In an opaque façade class, exposing any detail
is a problem. The façade should hide every detail, including associated data types, custom error
messages, and anything else that would create a dependency between the component and the
objects that the façade is hiding.

The situation is more complicated for transparent façades, which deliberately reveal at least some
implementation details. Careful consideration should be given to which aspects of the underlying
objects are exposed, and every effort should be taken to minimize the extent of the dependencies
that will be created.

Caution I see the transparent variation of the pattern used most often as a retrospective reclassification

of an opaque façade that has been hacked in order to implement last-minute changes. Façades should be

classified as transparent during the design phase and not used as a label to mask problems in the application

structure caused by time pressures. If you have to compromise a façade in order to get a product out the

door, then do so, but don’t pretend that it was supposed to be a transparent façade all along. You are only

storing up trouble. Make the change, ship the product, and make sure you rework the code in a more

considered manner when there is more time available.

Examples of the Façade Pattern in Cocoa
There are several examples of the façade pattern in the Cocoa frameworks, and the one that it used
most commonly is the UITextView class, which provides a transparent façade for a set of complex
classes used to manage the display of text. As a demonstration, I created a playground called
TextFacade.playground, the contents of which are shown in Listing 16-9.

334 CHAPTER 16: The Façade Pattern

Listing 16-9. The Contents of the TextFacade.playground File

import UIKit

let textView = UITextView(frame: CGRectMake(0, 0, 200, 100));
textView.text = "The Quick Brown Fox";

textView;

The UITextView class provides a simplified API for displaying text. I have specified the frame
associated with the view so that it will work in a playground, but otherwise, all I have to do is
set the value of the text property to the text I want to display. Figure 16-2 shows how the text is
displayed by default.

Figure 16-2. The basic text view provided by the UITextView class

The UITextView class is a transparent façade, and I can take more control over how text is displayed
by using the properties that provide access to the underlying objects that are doing the work behind
the scenes. One of these objects is an instance of the NSLayoutManager class, which is accessed
through the layoutManager property. The NSLayoutManager class provides different configuration
options, including setting whether hidden characters are displayed. In Listing 16-10, you can see
how I have used the façade transparency to change the visibility of hidden characters by directly
accessing the NSLayoutManager object.

Listing 16-10. Accessing Advanced Features in the TextFacade.playground File

import UIKit

let textView = UITextView(frame: CGRectMake(0, 0, 200, 100));
textView.text = "The Quick Brown Fox";
textView.layoutManager.showsInvisibleCharacters = true;

textView;

I have changed the value of the showInvisibleCharacters property to true, and Figure 16-3 shows
the effect on the way that the text is displayed.

335CHAPTER 16: The Façade Pattern

Most of the time, applications won’t need to display hidden characters, and the features provided by
the UITextView façade class are sufficient. For those situations where hidden characters should be
shown, calling components can use the transparency provided by UITextView to change the layout
configuration, albeit at the cost of creating a dependency on the NSLayoutManager class.

Applying the Pattern to the SportsStore Application
I am going to apply the façade pattern to the SportsStore application to simplify the process of
converting and formatting the total value of the stock. At the moment, several different steps are
required. Here is the displayStockTotal method from the ViewController class:

...
func displayStockTotal() {
 let finalTotals:(Int, Double) = productStore.products.reduce((0, 0.0),
 {(totals, product) -> (Int, Double) in
 return (
 totals.0 + product.stockLevel,
 totals.1 + product.stockValue
);
 });

 var factory = StockTotalFactory.getFactory(StockTotalFactory.Currency.EUR);
 var totalAmount = factory.converter?.convertTotal(finalTotals.1);
 var formatted = factory.formatter?.formatTotal(totalAmount!);

 totalStockLabel.text = "\(finalTotals.0) Products in Stock. "
 + "Total Value: \(formatted!)";
}
...

To display the total value, a component has to obtain a factory and then use a converter and a
formatter to produce a string that can be shown to the user. I will create a simple façade that hides
the details of the factory and the implementation object it provides.

Figure 16-3. The effect of setting an advanced configuration object

336 CHAPTER 16: The Façade Pattern

Preparing the Example Application
No preparation is required for this chapter, and I pick up the SportsStore project just as I left
it in Chapter 15.

Tip Remember that you don’t have to build up the project step by step. The source code for every example

is available as a free download from Apress.com.

Creating the Façade Class
I added a file called StockTotalFacade.swift to the SportsStore project and used it to define the
class shown in Listing 16-11.

Listing 16-11. The Contents of the StockTotalFacade.swift File

class StockTotalFacade {

 enum Currency {
 case USD; case GBP; case EUR;
 }

 class func formatCurrencyAmount(amount:Double, currency: Currency) -> String? {
 var stfCurrency:StockTotalFactory.Currency;
 switch (currency) {
 case .EUR:
 stfCurrency = StockTotalFactory.Currency.EUR;
 case .GBP:
 stfCurrency = StockTotalFactory.Currency.GBP;
 case .USD:
 stfCurrency = StockTotalFactory.Currency.USD;
 }
 let factory = StockTotalFactory.getFactory(stfCurrency);
 let totalAmount = factory.converter?.convertTotal(amount);
 if (totalAmount != nil) {
 let formattedValue = factory.formatter?.formatTotal(totalAmount!);
 if (formattedValue != nil) {
 return formattedValue!;
 }
 }
 return nil;
 }
}

I have defined an opaque façade class called StockTotalFacade that provides a nested Currency
enumeration so that currencies can be selected and a class method called formatCurrencyAmount
that performs the conversion and formatting.

https://Apress.com

337CHAPTER 16: The Façade Pattern

Applying the Façade Class
Applying the façade class is just a matter of revising the code in the displayStockTotal method
defined by the ViewController class, as shown in Listing 16-12.

Listing 16-12. Applying the Façade Class in the ViewController.swift File

...
func displayStockTotal() {
 let finalTotals:(Int, Double) = productStore.products.reduce((0, 0.0),
 {(totals, product) -> (Int, Double) in
 return (
 totals.0 + product.stockLevel,
 totals.1 + product.stockValue
);
 });

 let formatted = StockTotalFacade.formatCurrencyAmount(finalTotals.1,
 currency: StockTotalFacade.Currency.EUR);

 totalStockLabel.text = "\(finalTotals.0) Products in Stock. "
 + "Total Value: \(formatted!)";
}
...

I have removed the statements that deal with the factory, converter, and formatter classes and
replaced them with a single call to the façade class. The application still converts and displays the
total value of the products in stock, as shown in Figure 16-4, but the ViewController depends only
on the façade class and not the underlying objects.

338 CHAPTER 16: The Façade Pattern

Summary
In this chapter I showed you how the façade pattern can be used to hide complex APIs and the
coordination between objects required to perform a task. The façade presents a simplified API,
which is consumed by calling components, and the effect is to consolidate the complexity into a
single class. The façade pattern can be used to create opaque and transparent facades, which
take different approaches to the way that the underlying complexity is made available. Opaque
façades hide all of the complexity, while transparent façades allow calling components to access
some or all of the underlying objects to perform advanced tasks. In the next chapter, I describe the
flyweight pattern, which allows data to be shared between objects to reduce the memory footprint
of an application.

Figure 16-4. Using a façade class to calculate the total value of the stock

339

Chapter 17
The Flyweight Pattern

The flyweight pattern is applied when a number of similar objects all rely on the same set of data
values. Rather than create a new set of data valued for each of the objects, the flyweight pattern
shares one set between all of them, minimizing the amount of memory required to store the data and
the amount of work required to create them. Table 17-1 puts the flyweight pattern into context.

Table 17-1. Putting the Flyweight Pattern into Context

Question Answer

What is it? The flyweight pattern shares common data objects between multiple calling

components.

What are the benefits? The flyweight pattern reduces the amount of memory needed to create the data

objects required by the calling components and the amount of work required to

create them. The impact of implementing the pattern increases with the number of

calling components that share the data.

When should you use

this pattern?

Use this pattern when you are able to identify and isolate sets of identical data

objects that are used by calling components.

When should you avoid

this pattern?

Do not use this pattern if there is no shared data or if the number of shared data

objects is small and easy to create.

How do you know when

you have implemented

the pattern correctly?

The pattern has been implemented correctly when all of the calling components

rely on the same set of immutable shared data objects (known as the extrinsic data)

and have their own individual state data (known as the intrinsic data). The calling

components should be able to concurrently modify the intrinsic data safely and not

be able to modify the extrinsic data at all.

Are there any common

pitfalls?

The common pitfalls include inadvertently creating more than one set of extrinsic data

objects, not protecting against concurrent operations on the intrinsic data, allowing

the extrinsic data to be modified, and over-optimizing the creation of extrinsic objects.

Are there any related

patterns?

Many of the structural patterns have similar implementations but different intents.

Ensure that you select the correct pattern from the ones I describe in this part of the book.

340 CHAPTER 17: The Flyweight Pattern

Preparing the Example Project
For this chapter, I created an Xcode OS X Command Line Tool project called Flyweight. I added a file
called Spreadsheet.swift, the contents of which are shown in Listing 17-1.

Listing 17-1. The Contents of the Spreadsheet.swift File

func == (lhs: Coordinate, rhs: Coordinate) -> Bool {
 return lhs.col == rhs.col && lhs.row == rhs.row;
}

class Coordinate : Hashable, Printable {
 let col:Character;
 let row:Int;

 init(col:Character, row:Int) {
 self.col = col; self.row = row;
 }

 var hashValue: Int {
 return description.hashValue;
 }

 var description: String {
 return "\(col)(\row)";
 }
}

class Cell {
 var coordinate:Coordinate;
 var value:Int;

 init(col:Character, row:Int, val:Int) {
 self.coordinate = Coordinate(col: col, row: row);
 self.value = val;
 }
}

class Spreadsheet {
 var grid = Dictionary<Coordinate, Cell>();

 init() {

 let letters:String = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 var stringIndex = letters.startIndex;
 let rows = 50;

 do {
 let colLetter = letters[stringIndex];
 stringIndex = stringIndex.successor();
 for rowIndex in 1 ... rows {

341CHAPTER 17: The Flyweight Pattern

 let cell = Cell(col: colLetter, row: rowIndex, val: rowIndex);
 grid[cell.coordinate] = cell;
 }
 } while (stringIndex != letters.endIndex);
 }

 func setValue(coord: Coordinate, value:Int) {
 grid[coord]?.value = value;
 }

 var total:Int {
 return reduce(grid.values, 0,
 {total, cell in return total + cell.value});
 }
}

The Spreadsheet class has a Dictionary property that stores a collection of Cell objects, each of
which is indexed by a Coordinate object. The Coordinate stores a column and row value, such as
A45, where A is the column and 45 is the row, in order to create a grid. The Cell object is used to
store an Int value at a given position in the grid and also has details of the coordinate that its value
relates to. The initializer for the Spreadsheet class creates a grid with 26 columns and 50 rows and
sets the value property of each Cell to the row index. The setValue method changes the value
property of a Cell at a specified Coordinate, and the total property computes the sum of the value
properties of all the Cell objects in the grid.

Tip The global function called == compares two Coordinate objects for equality, which allows them to be

used as keys in a Dictionary collection.

Understanding the Problems That the Pattern Solves
The problem addressed by the flyweight pattern is the impact of creating large numbers of identical
objects, both in terms of the memory that they consume and the amount of time taken to create
them. The Spreadsheet class that I defined in the previous section creates Cell and Coordinate
objects for every position in the grid it maintains, which means that each Spreadsheet object
generates a relatively large number of objects. Listing 17-2 shows the code I added to the
main.swift file to demonstrate the problem.

Listing 17-2. The Contents of the main.swift File

let ss1 = Spreadsheet();
ss1.setValue(Coordinate(col: "A", row: 1), value: 100);
ss1.setValue(Coordinate(col: "J", row: 20), value: 200);
println("SS1 Total: \(ss1.total)");

342 CHAPTER 17: The Flyweight Pattern

let ss2 = Spreadsheet();
ss2.setValue(Coordinate(col: "F", row: 10), value: 200);
ss2.setValue(Coordinate(col: "G", row: 23), value: 250);
println("SS2 Total: \(ss2.total)");

println("Cells created: \(ss1.grid.count + ss2.grid.count)");

I create two Spreadsheet objects, set values for different cells, and write out the totals. I then
write out the total number of Cell objects that are in the Dictionary collections maintained by the
Spreadsheet objects. Running the application produces the following output:

SS1 Total: 33429
SS2 Total: 33567
Cells created: 2600

I have ended up with a large number of Cell objects for such a simple operation, and most of them
still have the default value that was assigned during instantiation.

Understanding the Flyweight Pattern
Each of the 2,600 Cell objects that I created in the previous section took time to create and memory
to store. The flyweight pattern minimizes the CPU and memory impact by identifying and separating
the data that is common across similar objects and sharing it, meaning that only one shared object
has to be created. Figure 17-1 illustrates the flyweight pattern.

Figure 17-1. The flyweight pattern

343CHAPTER 17: The Flyweight Pattern

In the flyweight pattern, the calling components are the objects that generate and rely on the large
number of data objects. In the example project, the calling components are the Spreadsheet objects,
and they rely on the Cell data objects.

The pattern uses a flyweight object to manage the data objects that the calling component needs.
The flyweight object splits the data objects into extrinsic and intrinsic categories. The extrinsic data
is common to all calling components; the intrinsic data is unique to each calling component.

The flyweight pattern minimizes the impact of creating objects by sharing the extrinsic state between
flyweight objects, meaning that all of the calling components share the same set of data objects.
Because it is shared, the extrinsic data is immutable and cannot be modified by the flyweights or the
calling components.

The intrinsic data cannot be shared, so the amount of impact that the flyweight pattern has is driven
by the ratio of extrinsic to intrinsic data objects.

The flyweight factory provides the calling components with a mechanism for obtaining flyweight
objects and is responsible for providing the flyweights with access to the extrinsic data.

Implementing the Flyweight Pattern
I have chosen a spreadsheet as the example for this chapter because it provides some
implementation challenges. When a new Spreadsheet object is created, every Cell object is identical
and can easily be treated as extrinsic data. Each value that is set on a Spreadsheet is unique to
that instance and becomes intrinsic data. My goal in implementing the pattern will be to make the
transition from extrinsic to intrinsic data as seamless and simple as possible.

Creating the Flyweight Protocol
You don’t have to define a protocol for your flyweights, but I like to do so because it makes it easier
to introduce different implementations later in the application life cycle. I also find that using a
protocol makes me pay more attention to the data I expose to the calling component because I have
to explicitly define each method and property. Listing 17-3 shows the contents of the Flyweight.
swift file that I added to the example project.

Listing 17-3. The Contents of the Flyweight.swift File

import Foundation;

protocol Flyweight {
 subscript(index:Coordinate) -> Int? { get set };
 var total:Int { get };
 var count:Int { get };
}

The data objects in the Spreadsheet class are stored in a Dictionary collection, and this is reflected
in the Flyweight protocol. The subscript I have defined allows values to be gotten and set using
Coordinate keys, and the count property will return the number of intrinsic data objects. (The number
of objects is required to implement the pattern, but I will use it in the main.swift file to illustrate the
impact of applying the pattern).

344 CHAPTER 17: The Flyweight Pattern

I don’t want classes that consume the Flyweight protocol to have knowledge of the separation of
intrinsic and extrinsic data, so I have added a total property, which will be used to compute the sum
of the value property values of the intrinsic Cell objects.

Creating the Flyweight Implementation Class
The next step is to implement the flyweight implementation class that will conform to the Flyweight
protocol. This is the class that will be responsible for managing the intrinsic data and that will be
provided with access to the extrinsic data by the flyweight factory. Listing 17-4 shows the definition
of the implementation class.

Listing 17-4. Defining the Flyweight Implementation Class in the Flyweight.swift File

import Foundation;

protocol Flyweight {
 subscript(index:Coordinate) -> Int? { get set };
 var total:Int { get };
 var count:Int { get };
}

class FlyweightImplementation : Flyweight {
 private let extrinsicData:[Coordinate: Cell];
 private var intrinsicData:[Coordinate: Cell];

 private init(extrinsic:[Coordinate: Cell]) {
 self.extrinsicData = extrinsic;
 self.intrinsicData = Dictionary<Coordinate, Cell>();
 }

 subscript(key:Coordinate) -> Int? {
 get {
 if let cell = intrinsicData[key] {
 return cell.value;
 } else {
 return extrinsicData[key]?.value;
 }
 }
 set (value) {
 if (value != nil) {
 intrinsicData[key] = Cell(col: key.col,
 row: key.row, val: value!);
 }
 }
 }

345CHAPTER 17: The Flyweight Pattern

 var total:Int {
 return reduce(extrinsicData.values, 0, {total, cell in
 if let intrinsicCell = self.intrinsicData[cell.coordinate] {
 return total + intrinsicCell.value;
 } else {
 return total + cell.value
 }
 });
 }

 var count:Int {
 return intrinsicData.count;
 }
}

Tip Note that the flyweight does not modify the extrinsic data or allow the calling component to modify it.

This is a critical characteristic of the flyweight pattern, and allowing the extrinsic data to be modified is a

common pitfall.

The FlyweightImplementation class conforms to the Flyweight protocol and receives the extrinsic
data as its initializer argument. The intrinsic data is used as an overlay on the extrinsic data, and
requests for values fall through to the extrinsic data if there is no intrinsic Cell for the specified
Coordinate. When a new value is set, a Cell object is created as part of the intrinsic data.

Note Not all intrinsic data has to correspond to an extrinsic equivalent. It is perfectly acceptable for a

flyweight to manage intrinsic data that is not related to any extrinsic value. That said, I tend to define such

data values in the calling component and leave the flyweight to focus on those intrinsic values that are related

to the extrinsic data in some way.

Adding Concurrency Protections
The flyweight pattern doesn’t put any limitations on how flyweight objects are used once they
are obtained from the factory. This presents the kind of concurrency risk that I have described for
other patterns; a flyweight can be shared between multiple threads, each of which tries to modify
the intrinsic data at the same time. I need to modify the flyweight implementation class to protect
against corrupting the intrinsic data or getting inconsistent results. Listing 17-5 shows how I have
used Grand Central Dispatch (GCD) to protect the data.

346 CHAPTER 17: The Flyweight Pattern

Listing 17-5. Protecting Against Concurrency in the Flyweight.swift File

...
class FlyweightImplementation : Flyweight {
 private let extrinsicData:[Coordinate: Cell];
 private var intrinsicData:[Coordinate: Cell];
 private let queue:dispatch_queue_t;

 private init(extrinsic:[Coordinate: Cell]) {
 self.extrinsicData = extrinsic;
 self.intrinsicData = Dictionary<Coordinate, Cell>();
 self.queue = dispatch_queue_create("dataQ", DISPATCH_QUEUE_CONCURRENT);
 }

 subscript(key:Coordinate) -> Int? {
 get {
 var result:Int?;
 dispatch_sync(self.queue, {() in
 if let cell = self.intrinsicData[key] {
 result = cell.value;
 } else {
 result = self.extrinsicData[key]?.value;
 }
 });
 return result;
 }
 set (value) {
 if (value != nil) {
 dispatch_barrier_sync(self.queue, {() in
 self.intrinsicData[key] = Cell(col: key.col,
 row: key.row, val: value!);
 });
 }
 }
 }

 var total:Int {
 var result = 0;
 dispatch_sync(self.queue, {() in
 result = reduce(self.extrinsicData.values, 0, {total, cell in
 if let intrinsicCell = self.intrinsicData[cell.coordinate] {
 return total + intrinsicCell.value;
 } else {
 return total + cell.value
 }
 });
 });
 return result;
 }

347CHAPTER 17: The Flyweight Pattern

 var count:Int {
 var result = 0;
 dispatch_sync(self.queue, {() in
 result = self.intrinsicData.count;
 });
 return result;
 }
}
...

I want to allow multiple concurrent read operations but only one write operation at a time. I have
defined a concurrent GCD queue, and I use the dispatch_sync function for the read operations,
meaning those that don’t modify the intrinsic data: getting a value with the subscript and getting the
total and count values. When setting a value with the subscript, I use the dispatch_barrier_sync
function, which ensures that no other request is processed while I am modifying the intrinsic data
collection.

Creating the Flyweight Factory Class
The final class that I must define is the flyweight factory, which is used by calling components to obtain
flyweights that have access to the extrinsic data. Listing 17-6 shows the definition of the class.

Listing 17-6. Creating the Flyweight Factory Class in the Flyweight.swift File

import Foundation;

protocol Flyweight {
 subscript(index:Coordinate) -> Int? { get set };
 var total:Int { get };
 var count:Int { get };
}

extension Dictionary {
 init(setupFunc:(() -> [(Key, Value)])) {
 self.init();
 for item in setupFunc() {
 self[item.0] = item.1;
 }
 }
}

class FlyweightFactory {

 class func createFlyweight() -> Flyweight {
 return FlyweightImplementation(extrinsic: extrinsicData);
 }

348 CHAPTER 17: The Flyweight Pattern

 private class var extrinsicData:[Coordinate: Cell] {
 get {
 struct singletonWrapper {
 static let singletonData = Dictionary<Coordinate, Cell> (
 setupFunc: {() in
 var results = [(Coordinate, Cell)]();
 let letters:String = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 var stringIndex = letters.startIndex;
 let rows = 50;
 do {
 let colLetter = letters[stringIndex];
 stringIndex = stringIndex.successor();
 for rowIndex in 1 ... rows {
 let cell = Cell(col: colLetter, row: rowIndex,
 val: rowIndex);
 results.append((cell.coordinate, cell));
 }
 } while (stringIndex != letters.endIndex);
 return results;
 }
);
 }
 return singletonWrapper.singletonData;
 }
 }
}

class FlyweightImplementation : Flyweight {
 // ...statements omitted for brevity...
}

The FlyweightFactory class defines a class method called createFlyweight that returns an object
that conforms to the Flyweight protocol. The implementation of the createFlyweight creates a
FlyweightImplementation object and passes the extrinsic data to it as an initializer argument.
I create the extrinsic data using the singleton pattern that I described in Chapter 6. This ensures
the extrinsic data is created in a lazy and thread-safe way.

To populate the dictionary collection, I have defined an extension that provides an initializer that
accepts a function. The function is called to produce an array of key-value tuples that I add to the
dictionary. This approach works around the limited support that Swift has for class variables and
ensures that I can populate the dictionary with the extrinsic data as part of the singleton initialization.

Applying the Flyweight
The final step is to modify the Spreadsheet class so that it relies on a flyweight object to manage its
data, as shown in Listing 17-7.

349CHAPTER 17: The Flyweight Pattern

Listing 17-7. Using a Flyweight in the Spreadsheet.swift File

func == (lhs: Coordinate, rhs: Coordinate) -> Bool {
 return lhs.col == rhs.col && lhs.row == rhs.row;
}

class Coordinate : Hashable, Printable {
 // ...statements omitted for brevity...
}

class Cell {
 // ...statements omitted for brevity...
}

class Spreadsheet {
 var grid:Flyweight;

 init() {
 grid = FlyweightFactory.createFlyweight();
 }

 func setValue(coord: Coordinate, value:Int) {
 grid[coord] = value;
 }

 var total:Int {
 return grid.total;
 }
}

The Spreadsheet class obtains a flyweight from the factory and uses it to implement its API.
Listing 17-8 shows a minor change I made to the main.swift file to accurately report on the number
of Cell objects created by taking the extrinsic objects into account.

Listing 17-8. Counting the Extrinsic Cell Objects in the main.swift File

let ss1 = Spreadsheet();
ss1.setValue(Coordinate(col: "A", row: 1), value: 100);
ss1.setValue(Coordinate(col: "J", row: 20), value: 200);
println("SS1 Total: \(ss1.total)");

let ss2 = Spreadsheet();
ss2.setValue(Coordinate(col: "F", row: 10), value: 200);
ss2.setValue(Coordinate(col: "G", row: 23), value: 250);
println("SS2 Total: \(ss2.total)");

println("Cells created: \(1300 + ss1.grid.count + ss2.grid.count)");

350 CHAPTER 17: The Flyweight Pattern

Running the application produces the following output:

SS1 Total: 33429
SS2 Total: 33567
Cells created: 1304

Using the flyweight pattern leverages the same extrinsic data for each Spreadsheet object, and its
impact increases as the number of Spreadsheet objects increases.

Variations on the Flyweight Pattern
The copy-on-write technique is a variation on the flyweight pattern that relies on an extrinsic object
until the calling component wants to modify it. At this point, the extrinsic object is copied and then
modified, and the flyweight no longer uses the extrinsic data. One part of the extrinsic data can be
copied or the entire thing, as dictated by the needs of the application. The copy-on-write technique
combines the flyweight pattern with the prototype pattern that I described in Chapter 5. Listing 17-9
shows the contents of the CopyOnWrite.playground file, which I created as a demonstration.

Listing 17-9. The Contents of the CopyOnWrite.playground File

import Foundation;

class Owner : NSObject, NSCopying {
 var name:String;
 var city:String;

 init(name:String, city:String) {
 self.name = name; self.city = city;
 }

 func copyWithZone(zone: NSZone) -> AnyObject {
 println("Copy");
 return Owner(name: self.name, city: self.city);
 }
}

class FlyweightFactory {

 class func createFlyweight() -> Flyweight {
 return Flyweight(owner: ownerSingleton);
 }

 private class var ownerSingleton:Owner {
 get {
 struct singletonWrapper {
 static let singleon = Owner(name: "Anonymous", city: "Anywhere");
 }

351CHAPTER 17: The Flyweight Pattern

 return singletonWrapper.singleon;
 }
 }
}

class Flyweight {
 private let extrinsicOwner:Owner;
 private var intrinsicOwner:Owner?;

 init(owner:Owner) {
 self.extrinsicOwner = owner;
 }

 var name:String {
 get {
 return intrinsicOwner?.name ?? extrinsicOwner.name;
 }
 set (value) {
 decoupleFromExtrinsic();
 intrinsicOwner?.name = value;
 }
 }

 var city:String {
 get {
 return intrinsicOwner?.city ?? extrinsicOwner.city;
 }
 set (value) {
 decoupleFromExtrinsic();
 intrinsicOwner?.city = value;
 }
 }

 private func decoupleFromExtrinsic() {
 if (intrinsicOwner == nil) {
 intrinsicOwner = extrinsicOwner.copyWithZone(nil) as? Owner;
 }
 }
}

The FlyweightFactory class uses the singleton pattern to define the extrinsic Owner, which is passed
to new Flyweight objects. The Flyweight class uses the extrinsic Owner object to provide values for
its name and city properties until either of the property setters is used. At this point, the prototype
pattern is applied to copy the extrinsic object in order to create an intrinsic clone, to which the setter
value is applied. Once a property setter has been used, the Flyweight object no longer uses the
extrinsic object.

352 CHAPTER 17: The Flyweight Pattern

Understanding the Pitfalls of the Flyweight Pattern
There are several pitfalls to avoid when implementing the flyweight pattern. The flyweight pattern is
not especially complex, especially compared to a pattern such as the object pool, which I described
in Chapter 7, but it is easy to create an implementation that causes more problems than it solves.

Understanding the Extrinsic Duplication Pitfall
The easiest pitfall to fall victim to is creating more extrinsic data than you intended, undermining
the efficacy of the flyweight pattern. In Swift, this will happen most often because of the difficulty
in creating class variables and the limitations of doing so using a struct. You must ensure that the
extrinsic data is created as part of the singleton initialization and that the data is created in a thread-
safe way. It is for this reason that I defined an extension for the Dictionary class that allows me to
specify a closure that will populate the extrinsic data collection in the example application.

Understanding the Mutable Extrinsic Data Pitfall
If you allow a calling component to modify the extrinsic data, you will create two different problems:
the risk of concurrent accesses corrupting the data and flyweights getting inconsistent data. The
extrinsic data used by a flyweight must be immutable, and letting it be modified is a common pitfall
that causes odd behavior and runtime errors.

Understanding the Concurrent Access Pitfall
As I explained earlier in the chapter, the flyweight pattern doesn’t apply any limits on how flyweight
objects can be used, so it is important to protect the intrinsic data from concurrent access in the
event that a calling component allows a flyweight to be used by multiple threads. You don’t have to
use the barrier-based approach I applied to the example flyweight class, and you don’t even have to
use GCD, but you must add some form of protection because many single-threaded applications are
transformed into multithreaded applications at some point.

Tip You don’t need to add protections for the extrinsic data, which should be immutable. Concurrency

problems with the extrinsic data are an indication that your flyweight implementation is flawed.

Understanding the Over-optimization Pitfall
It is easy to get carried away with optimizing the creation of objects, to the extent that you end
up with an implementation that makes it hard to modify the extrinsic data. The most common
form of this pitfall arises when the values that the extrinsic objects represent are generated from a
predictable algorithm. In the example application, I set the value of each Cell object to be the index
of the row, which means that I could go further in my implementation of the flyweight factory class
and create Cell objects only on request, using the row number to generate the object on the fly.

353CHAPTER 17: The Flyweight Pattern

There are a couple of problems with this approach. The first is inflexibility. Algorithms used to
generate values are rarely as simple as the one in my example, and the process for generating the
values can be so complicated that the resulting code is hard to change when a different algorithm is
implemented.

The second problem is that the flyweight class and the calling component must be able to carry
out their business without knowing that objects are being created on demand. In the case of my
example application, this would mean allowing flyweight classes to be able to get the total number
of Cell objects and the sum of the value properties without needing to create all of the objects these
tasks would usually require. The flyweight factory can provide this information only if it has deep
insights into the extrinsic data, which further adds to the complexity and inflexibility of the code.

My advice is to accept that one set of shared extrinsic objects is a big enough optimization and that
going any further yields little benefit but adds a lot of complexity and maintenance risk.

Understanding the Misapplication Pitfall
The final pitfall is to apply the flyweight pattern when it isn’t required. To make the additional
development time and testing worthwhile, the flyweight should be applied only in situations where a
number of similar objects rely on a large common set of data values. If the extrinsic data isn’t large
or doesn’t require substantial effort to create, then the work required to implement the flyweight
pattern is unlikely to be justified.

Examples of the Flyweight Pattern in Cocoa
There are several flyweight implementations in the Cocoa frameworks. The one that I find most
interesting is the NSNumber class, which is used to represent numeric values. Two NSNumber objects
created with the same value will be managed so that the value is an extrinsic data item—something
that can trip the unwary. Listing 17-10 shows the contents of the Numbers.playground file, which I
created as a demonstration.

Listing 17-10. The Contents of the Numbers.playground File

import Foundation;

let num1 = NSNumber(int: 10);
let num2 = NSNumber(int: 10);

println("Comparison: \(num1 == num2)");
println("Identity: \(num1 === num2)");

I create two NSNumber objects, both of which store the integer value 10. I print out the results of using
the comparison and identity operators. The debug console shows the following output:

Comparison: true
Identity: true

354 CHAPTER 17: The Flyweight Pattern

The result from the comparison operator makes sense, but the result from the identity operator may
surprise you. Cocoa minimizes the amount of memory required for NSNumber objects by sharing
them. This is a technique that many languages apply to string values, using a process known as
string interning that reduces the amount of memory used to store strings and that speeds up string
comparison. Cocoa does implement string interning for the NSString class, but it is difficult to use in
Swift, and the NSNumber class provides simpler example.

Applying the Pattern to the SportsStore Application
The SportsStore application contains the NetworkConnection class, which I use to simulate network
queries for stock level data. Each NetworkConnection instance contains a dictionary of stock values
that it uses to satisfy the request for data. Here is the definition of the NetworkConnection class:

...
class NetworkConnection {

 private let stockData: [String: Int] = [
 "Kayak" : 10, "Lifejacket": 14, "Soccer Ball": 32,"Corner Flags": 1,
 "Stadium": 4, "Thinking Cap": 8, "Unsteady Chair": 3,
 "Human Chess Board": 2, "Bling-Bling King":4
];

 func getStockLevel(name:String) -> Int? {
 NSThread.sleepForTimeInterval(Double(rand() % 2));
 return stockData[name];
 }
}
...

In this section I am going to apply the flyweight pattern so that all of the NetworkConnection
objects share the same dictionary object. The dictionary that I will be sharing isn’t complicated to
create and doesn’t occupy much memory, but it still provides a foundation to which the flyweight
pattern can be applied.

Preparing the Example Application
No preparation is required for this chapter, and I will pick up the SportsStore project as I left it at the
end of Chapter 16.

Creating the Flyweight Protocol and Implementation Class
I always follow the same process when implementing the flyweight pattern: I define the
protocol that will be used by the calling component, followed by the flyweight implementation class.
This allows me to focus on the API that will be consumed publically in the protocol and separate
the intrinsic and extrinsic data in the implementation class. Listing 17-11 shows the contents of the
NetworkConnectionFlyweight.swift file that I added to the SportsStore project to implement
the flyweight pattern.

355CHAPTER 17: The Flyweight Pattern

Listing 17-11. The Contents of the NetworkConnectionFlyweight.swift File

protocol NetConnFlyweight {

 func getStockLevel(name:String) -> Int?;
}

class NetConnFlyweightImpl : NetConnFlyweight {
 private let extrinsicData:[String: Int];

 private init(data:[String: Int]) {
 self.extrinsicData = data;
 }

 func getStockLevel(name: String) -> Int? {
 return extrinsicData[name];
 }
}

This implementation of the pattern is simple, but I have chosen to expose the data values through
a method rather than by providing a property that allows access to the dictionary. I have done this
because it means I can change the way that the data is stored without having to update the protocol
(and the components that consume it) and because it helps to ensure that I don’t inadvertently allow
the extrinsic data to be modified (which is easy to do when you allow direct access to the extrinsic
data structures).

Creating the Flyweight Factory
One I have defined the protocol and implementation class, I complete the flyweight pattern by
defining the factory and the extrinsic data that it manages. Listing 17-12 shows the definition of the
factory class.

Listing 17-12. Defining the Flyweight Factory Class in the NetworkConnectionFlyweight.swift File

protocol NetConnFlyweight {

 func getStockLevel(name:String) -> Int?;
}

class NetConnFlyweightImpl : NetConnFlyweight {
 // ...statements omitted for brevity...
}

class NetConnFlyweightFactory {

 class func createFlyweight() -> NetConnFlyweight {
 return NetConnFlyweightImpl(data: stockData);
 }

356 CHAPTER 17: The Flyweight Pattern

 private class var stockData:[String: Int] {
 get {
 struct singletonWrapper {
 static let singleton = ["Kayak" : 10, "Lifejacket": 14,
 "Soccer Ball": 32,"Corner Flags": 1, "Stadium": 4,
 "Thinking Cap": 8, "Unsteady Chair": 3,
 "Human Chess Board": 2, "Bling-Bling King":4
];
 }
 return singletonWrapper.singleton;
 }
 }
}

The NetConnFlyweightFactory class uses the singleton pattern to ensure that the extrinsic data is
created once and defines a createFlyweight method that uses the extrinsic data to create instances
of the implementation class.

Applying the Flyweight
The final step is to update the NetworkConnection class so that it uses the flyweight and shares a
single immutable array of intrinsic stock data, as shown in Listing 17-13.

Listing 17-13. Using the Flyweight in the NetworkConnection.swift File

import Foundation

class NetworkConnection {
 private let flyweight:NetConnFlyweight;

 init() {
 self.flyweight = NetConnFlyweightFactory.createFlyweight();
 }

 func getStockLevel(name:String) -> Int? {
 NSThread.sleepForTimeInterval(Double(rand() % 2));
 return self.flyweight.getStockLevel(name);
 }
}

I have removed the local data array and changed the implementation of the getStockLevel method
so that a flyweight is used to obtain the data value.

Summary
In this chapter, I explained how the flyweight pattern is used to share extrinsic data between objects
in order to reduce the memory footprint of an application and the amount of work required to
generate identical sets of data objects. In the next chapter, I describe the proxy pattern, which is
used when an object is required to act as a representative of a resource or another object.

357

Chapter 18
The Proxy Pattern

I describe the proxy pattern in this chapter, which is used when an object is required to act as an
interface to another object or resource. There are three main ways in which the proxy pattern is
applied, and I describe each of them and show you how to implement them. Table 18-1 puts the
proxy pattern into context.

Table 18-1. Putting the Proxy Pattern into Context

Question Answer

What is it? The proxy pattern defines an object—the proxy—that represents some

other resource, such as another object or a remote service. Calling

components operate on the proxy, which in turn operates on the

underlying resource.

What are the benefits? Proxies allow close control over the way that the underlying resource

is accessed, which is useful when you need to intercept and adapt

operations.

When should you use this pattern? Proxies are used in three main situations: to define an interface to a

remote resource such as a web page or RESTful service, to manage the

execution of expensive operations, and to restrict access to the methods

and properties of other objects.

When should you avoid this pattern? Do not use this pattern when the problem falls outside of the three

situations that I describe in this chapter. Instead, use one of the other

structural patterns.

How do you know when you have

implemented the pattern correctly?

The pattern is implemented correctly when the proxy object can be used

to perform operations on the resource it represents.

Are there any common pitfalls? The only pitfall is allowing instances of the underlying class to be

instantiated when a proxy is used to restrict access to an object.

Are there any related patterns? Many of the structural patterns have similar implementations but different

intents. Ensure that you select the correct pattern from the ones

I describe in this part of the book.

358 CHAPTER 18: The Proxy Pattern

Preparing the Example Project
For this chapter, I created an Xcode OS X Command Line Tool project called Proxy. Listing 18-1
shows the statements I added to the main.swift file to prepare for this chapter.

Listing 18-1. The Contents of the main.swift File

import Foundation;

func getHeader(header:String) {
 let url = NSURL(string: "http://www.apress.com");
 let request = NSURLRequest(URL: url!);
 NSURLSession.sharedSession().dataTaskWithRequest(request,
 completionHandler: {data, response, error in
 if let httpResponse = response as? NSHTTPURLResponse {
 if let headerValue
 = httpResponse.allHeaderFields[header] as? NSString {
 println("\(header): \(headerValue)");
 }
 }
 }).resume();
}

let headers = ["Content-Length", "Content-Encoding"];
for header in headers {
 getHeader(header);
}

NSFileHandle.fileHandleWithStandardInput().availableData;

The code in the main.swift file makes HTTP requests to the Apress home page and prints the value
of the Content-Length and Content-Encoding headers to the debug console. Running the application
produces the following output:

Content-Encoding: gzip
Content-Length: 13960

You may see the Content-Length header displayed first. This is because the Foundation framework
classes that perform the HTTP requests are asynchronous and the requests are performed
concurrently, meaning that either request may complete first and write its result to the console. You
will almost certainly see a different header values when you run the example application because
Apress often changes the content on the home page of its website.

http://www.apress.com/

359CHAPTER 18: The Proxy Pattern

Understanding the Problems That the Pattern Solves
The proxy pattern is used to solve three different problems, each of which I explain in the sections
that follow.

Understanding the Remote Object Problem
The remote object problem arises whenever you are dealing with resources that are accessed over a
network, such as a web page or a RESTful web service. The code in the main.swift file accesses a
web page, but it doesn’t separate the feature it provides (getting an HTTP response header) from the
mechanism used to make the request (the NSURL, NSURLRequest, and NSURLSession classes). There
is no abstraction or encapsulation in this code, and changing the implementation will affect the way
that the feature is consumed—something that is made worse if this kind of code is copied into any
component that needs to read HTTP headers.

Understanding the Expensive Operation Problem
Tasks such as making HTTP requests are classified as expensive operations. The word expensive
is used to refer to any aspect of an operation that should be minimized, such as the amount
of computation required, the memory needed, the load on the device battery, the bandwidth
consumed, and the elapsed time that the user has to wait.

For an HTTP request, the major expenses are elapsed time, bandwidth, and the work the server has
to perform to generate the response. The code in the main.swift file doesn’t attempt to optimize
the way that the HTTP requests are performed to minimize the cost of the operation, and no thought
has been given to the impact that this has on the user, the network, or the server that receives the
requests.

Understanding the Restricted Access Problem
The need to restrict access to an object usually arises when a single-user framework is incorporated
into a multiuser application. You can’t change the definition of the objects that you need to protect
because you don’t have access to the source code or because there is already a dependency on
the type elsewhere in the application, but equally, you cannot afford to let any user perform the
operations that the object encapsulates.

Understanding the Proxy Pattern
The proxy pattern can be used whenever an object is required to represent some other resource. As
you will see, the resource can be something abstract, such as a web page, or something local to the
application, such as another object. Figure 18-1 shows the general form of the proxy pattern.

360 CHAPTER 18: The Proxy Pattern

The general form of the proxy pattern lacks specificity, but that is because the pattern can be used
in a wide range of situations. To put the pattern in context, in the following sections I explain how the
pattern is used to solve the three common problems I described earlier in the chapter.

Solving the Remote Object Problem
The use of the proxy pattern to represent remote objects and resources has its roots in distributed
systems such as CORBA, which provided a local object that exposes the same methods as a
corresponding remote object on a server. The local object was the proxy, and calling one of its
methods caused the corresponding method to be invoked on the remote object. CORBA took care
of mapping the proxy object to the remote object and dealing with arguments and results.

CORBA isn’t widely used anymore, but the proxy pattern has taken on a new importance as HTTP
has become the transport of choice and RESTful services have become more popular. The proxy
pattern can be applied to make it easy to work with remote resource and hide the implementation
details from the functionality that the remote resource offers. This is the kind of thing that design
patterns are especially good at solving: abstracting functionality so that the implementation
mechanism can be altered without needing to change the way the feature is consumed and
packaging up features so the implementation isn’t repeated throughout an application. Figure 18-2
shows how a proxy can be used to represent a remote resource.

Figure 18-1. The proxy pattern

Figure 18-2. Using the proxy pattern to represent a remote resource

The proxy object hides the details of how the remote resource is accessed and just presents its data,
which in the case of the example application is the value of HTTP headers. The use of the proxy
consolidates the mechanism by which remote requests are made to a single class in the application
and allows the implementation to be changed—to use alternative Cocoa classes, for example—
without needing corresponding changes in the components that use the proxy.

361CHAPTER 18: The Proxy Pattern

Solving the Expensive Operation Problem
A proxy can be used to minimize the cost of expensive operations by decoupling the operation from
its use. In the case of the example application, I can combine requests for multiple header values
into a single request, as Figure 18-3 illustrates.

Figure 18-3. Using a proxy to combine operations

Figure 18-4. Restricting access with a proxy

Obviously, I have the advantage of picking the example to suit the pattern, but expensive operations
can often be combined or at least deferred until the cost of performing them is lower.

Solving the Restricted Access Problem
A proxy can be used as a wrapper around an object, adding additional logic to enforce some kind of
restriction on its use, as shown in Figure 18-4.

362 CHAPTER 18: The Proxy Pattern

The proxy usually conforms to a common protocol shared with the wrapped object, which means
that proxy objects can be used as seamless replacements without having to modify the calling
components. The proxy intercepts requests to access the properties and methods of the underlying
object and will pass them on only if an access control policy has been satisfied.

Implementing the Proxy Pattern
The implementation of the proxy pattern varies based on the kind of problem that it is being used
to solve. In the following sections, I show you how to implement the pattern for each of the three
problems I described earlier in the chapter.

Implementing the Remote Object Proxy
The key to implementing the proxy pattern to access a remote object or pattern is to separate out
the mechanism by which the remote operation is performed from the service or features that it
provides to calling components.

For some applications, this will mean hiding the details of the network transport and protocol from
the calling components. In the case of a proxy object that represents a RESTful service, the proxy
object might hide details of the HTTP transport and the set of URLs that perform operations on the
remote data objects.

I chose reading HTTP header values for the example in this chapter because doing so presents a
different situation; the use of the HTTP transport can’t be hidden since its use is a given. Instead, the
proxy object hides away how the classes in the Foundation framework are used to perform HTTP
requests and obtain header values.

Defining the Proxy Protocol

You don’t have to define a protocol when implementing the proxy pattern for a remote object, but I
find that it forces me to think more clearly about how I expose functionality to calling components
(and, of course, it allows me to create alternative implementations should the need arise). Listing 18-2
shows the protocol that I defined to represent a web request, defined in a file called Proxy.swift
that I added to the example project.

Listing 18-2. The Contents of the Proxy.swift File

protocol HttpHeaderRequest {

 func getHeader(url:String, header:String) -> String?;
}

The HttpHeaderRequest protocol defines a getHeader method that accepts the URL that will be
targeted and the name of the header whose value is required. Notice that the HttpHeaderRequest
method returns a synchronous result, rather than relying on a callback. Remote proxy objects
have wide discretion in how they present their functionality, and I am going to define a proxy
object that hides the fact that the Foundation framework classes I am using perform the request
asynchronously.

363CHAPTER 18: The Proxy Pattern

Defining the Proxy Implementation Class

The next step is to define the class that conforms to the protocol and implements the mechanism
by which the remote object is accessed. Listing 18-3 shows the proxy class I defined to make HTTP
requests in order to get response header values.

Listing 18-3. Defining the Implementation Class in the Proxy.swift File

import Foundation;

protocol HttpHeaderRequest {

 func getHeader(url:String, header:String) -> String?;
}

class HttpHeaderRequestProxy : HttpHeaderRequest {
 private let semaphore = dispatch_semaphore_create(0);

 func getHeader(url: String, header: String) -> String? {

 var headerValue:String?;

 let nsUrl = NSURL(string: url);
 let request = NSURLRequest(URL: nsUrl!);
 NSURLSession.sharedSession().dataTaskWithRequest(request,
 completionHandler: {data, response, error in
 if let httpResponse = response as? NSHTTPURLResponse {
 headerValue = httpResponse.allHeaderFields[header] as? NSString;
 }
 dispatch_semaphore_signal(self.semaphore);
 }).resume();
 dispatch_semaphore_wait(self.semaphore, DISPATCH_TIME_FOREVER);
 return headerValue;
 }
}

The HttpHeaderRequestProxy class conforms to the HttpHeaderRequest protocol and is the proxy for
making requests. The implementation of the getHeader method uses the same Foundation classes
I relied on at the start of this chapter, but with the addition of a (now familiar) GCD semaphore that
allows me to hide the asynchronous nature of the Cocoa classes from calling components.

Tip I don’t advocate hiding asynchronous operations in synchronous methods in real projects, not least

because Swift closures make it easy to write code that handles asynchronous responses. The reason I have

done so in this listing is to demonstrate that proxies can reveal as much or as little of their implementation

detail as they choose.

364 CHAPTER 18: The Proxy Pattern

Using the Remote Object Proxy

All that remains is to update the code in the main.swift file to use a proxy object rather than making
HTTP requests directly, as shown in Listing 18-4.

Listing 18-4. Using a Proxy Object in the main.swift File

import Foundation;

let url = "http://www.apress.com";
let headers = ["Content-Length", "Content-Encoding"];

let proxy = HttpHeaderRequestProxy();

for header in headers {
 if let val = proxy.getHeader(url, header:header) {
 println("\(header): \(val)");
 }
}

NSFileHandle.fileHandleWithStandardInput().availableData;

The example application still makes the same number of HTTP requests, and it still uses the same
Foundation classes to make those requests, but encapsulating the logic into a proxy means that
I can make similar requests throughout the application without having to duplicate the
implementation logic and—as you would expect by now—allows me to make changes to the
manner in which HTTP requests are made without needing to make corresponding changes in the
components that rely on the proxy.

Implementing the Expensive Operation Proxy
There are lots of strategies for optimizing the use of expensive resources and minimizing the number
of expensive operations that are performed. Common examples include caching, lazy loading, and
using other patterns such as the flyweight pattern I described in Chapter 17.

The expensive operation in the example application is the HTTP request. Reducing the number of
HTTP requests that my application makes will have a substantial impact; the application will be more
responsive to the user, consume less bandwidth (which can be important if the device is using a cell
network), and reduce the request throughput at the server.

The obvious way to optimize the example application is to make a single request to service demand
for multiple headers. This is a deliberately simple situation, but implementing it requires the same set
of changes as any optimization. Listing 18-5 shows the changes I made to the proxy protocol and
implementation class.

http://www.apress.com/

365CHAPTER 18: The Proxy Pattern

Listing 18-5. Optimizing HTTP Requests in the Proxy.swift File

import Foundation;

protocol HttpHeaderRequest {

 func getHeader(url:String, header:String) -> String?;
}

class HttpHeaderRequestProxy : HttpHeaderRequest {
 private let queue = dispatch_queue_create("httpQ", DISPATCH_QUEUE_SERIAL);
 private let semaphore = dispatch_semaphore_create(0);
 private var cachedHeaders = [String:String]();

 func getHeader(url: String, header: String) -> String? {

 var headerValue:String?;

 dispatch_sync(self.queue, {() in
 if let cachedValue = self.cachedHeaders[header] {
 headerValue = "\(cachedValue) (cached)";
 } else {
 let nsUrl = NSURL(string: url);
 let request = NSURLRequest(URL: nsUrl!);
 NSURLSession.sharedSession().dataTaskWithRequest(request,
 completionHandler: {data, response, error in
 if let httpResponse = response as? NSHTTPURLResponse {
 let headers
 = httpResponse.allHeaderFields as [String: String];
 for (name, value) in headers {
 self.cachedHeaders[name] = value;
 }
 headerValue
 = httpResponse.allHeaderFields[header] as? NSString;
 }
 dispatch_semaphore_signal(self.semaphore);
 }).resume();
 dispatch_semaphore_wait(self.semaphore, DISPATCH_TIME_FOREVER);
 }
 });
 return headerValue;
 }
}

366 CHAPTER 18: The Proxy Pattern

The getHeader method creates a cache of response header values that are used to satisfy
subsequent requests, providing a mechanism by which the number of HTTP requests can be
reduced. Running the application shows that one of the headers is obtained from the values
obtained from the cache:

Content-Length: 13960
Content-Encoding: gzip (cached)

The changes to the HttpHeaderRequestProxy class rely on a GCD queue to ensure that one request
callback is updating the dictionary of cached data when another callback is trying to read it.

Deferring the Operation

A common alternative implementation is to defer the execution of the expensive operation for as
long as possible, often in the expectation that the user may cancel the task and the operation will
not be required.

The benefit of this approach is that the expense of the operation may be avoided, but the drawback
is that it requires an API change so that the calling component can signal that the operation should
begin. Listing 18-6 shows the changes that I made to the proxy and its protocol to defer the HTTP
request.

Listing 18-6. Deferring the HTTP Request in the Proxy.swift File

import Foundation;

protocol HttpHeaderRequest {
 init(url:String);
 func getHeader(header:String, callback:(String, String?) -> Void);
 func execute();
}

class HttpHeaderRequestProxy : HttpHeaderRequest {
 let url:String;
 var headersRequired:[String: (String, String?) -> Void];

 required init(url: String) {
 self.url = url;
 self.headersRequired = Dictionary<String, (String, String?) -> Void>();
 }

 func getHeader(header: String, callback: (String, String?) -> Void) {
 self.headersRequired[header] = callback;
 }

367CHAPTER 18: The Proxy Pattern

 func execute() {
 let nsUrl = NSURL(string: url);
 let request = NSURLRequest(URL: nsUrl!);
 NSURLSession.sharedSession().dataTaskWithRequest(request,
 completionHandler: {data, response, error in
 if let httpResponse = response as? NSHTTPURLResponse {
 let headers = httpResponse.allHeaderFields as [String: String];
 for (header, callback) in self.headersRequired {
 callback(header, headers[header]);
 }
 }
 }).resume();
 }
}

I have changed the way that the proxy is used so that calling components call the getHeader
method for each header that is required, supplying a callback for each of them. I have exposed the
asynchronous nature of the underlying classes that make the HTTP requests because it is a nice fit
with deferring the execution of the request itself.

When all of the headers and their callbacks have been registered, the execute method is called to
perform the request and trigger the callbacks. If the user abandons the process before the execute
method is called, then the HTTP request will not be performed, and the expense of the operation
will not be incurred. The change in the HttpHeaderRequest protocol forces changes in the calling
components, as shown in Listing 18-7.

Listing 18-7. Using the Revised Protocol in the main.swift File

import Foundation;

let url = "http://www.apress.com";
let headers = ["Content-Length", "Content-Encoding"];

let proxy = HttpHeaderRequestProxy(url: url);

for header in headers {
 proxy.getHeader(header, callback: {header, val in
 if (val != nil) {
 println("\(header): \(val!)");
 }
 });
}

proxy.execute();

NSFileHandle.fileHandleWithStandardInput().availableData;

Running the application produces the following output:

Content-Encoding: gzip
Content-Length: 13960

http://www.apress.com/

368 CHAPTER 18: The Proxy Pattern

Implementing the Access Restriction Proxy
Proxies that restrict access to an object are defined as a wrapper around that object, which presents
a different implementation path from the other proxy types.

Creating the Authorization Source

The first step is to define a source of authorization that will be used to check access. Separating the
authorization check from the proxy allows the proxy to adopt the API of the object it is wrapping,
which means that access can be restricted without having to propagate details of the authorization
policy throughout the application. Listing 18-8 shows the contents of the Auth.swift file that I added
to the example project.

Listing 18-8. The Contents of the Auth.swift File

class UserAuthentication {
 var user:String?;
 var authenticated:Bool = false;

 private init() {
 // do nothing - stops instances being created
 }

 func authenticate(user:String, pass:String) {
 if (pass == "secret") {
 self.user = user;
 self.authenticated = true;
 } else {
 self.user = nil;
 self.authenticated = false;
 }
 }

 class var sharedInstance:UserAuthentication {
 get {
 struct singletonWrapper {
 static let singleton = UserAuthentication();
 }
 return singletonWrapper.singleton;
 }
 }
}

The UserAuthentication class uses the singleton pattern to provide a simple mechanism for
authenticating users—so simple, in fact, that any user who provides the password simple will be
authenticated. In a real project, authentication is typically handled by a remote service, which may
itself have its own proxy. For this example, any authenticated user is authorized to make HTTP
requests.

369CHAPTER 18: The Proxy Pattern

Creating the Proxy Object

The next step is to define the proxy object so that it can be used as a seamless replacement for the
object it wraps but with the enforcement of the authorization policy, as shown in Listing 18-9.

Listing 18-9. Defining the Access Restriction Proxy Class in the Proxy.swift File

import Foundation;

protocol HttpHeaderRequest {

 init(url:String);
 func getHeader(header:String, callback:(String, String?) -> Void);
 func execute();
}

class AccessControlProxy : HttpHeaderRequest {
 private let wrappedObject: HttpHeaderRequest;

 required init(url:String) {
 wrappedObject = HttpHeaderRequestProxy(url: url);
 }

 func getHeader(header: String, callback: (String, String?) -> Void) {
 wrappedObject.getHeader(header, callback: callback);
 }

 func execute() {
 if (UserAuthentication.sharedInstance.authenticated) {
 wrappedObject.execute();
 } else {
 fatalError("Unauthorized");
 }
 }
}

private class HttpHeaderRequestProxy : HttpHeaderRequest {
 let url:String;
 var headersRequired:[String: (String, String?) -> Void];

 // ...methods omitted for brevity...
}

The AccessControlProxy class conforms to the HttpHeaderRequest protocol and is a wrapper around
an instance of the HttpHeaderRequestProxy class (there is no prohibition against proxies being used
as stand-ins for objects that are themselves proxies). The AccessControlProxy implementation of
the execute method calls the UserAuthentication class to determine whether value credentials have
been provided. If the user has been authenticated, then the execute method of the wrapped object is
called, and the fatalException method is called otherwise.

370 CHAPTER 18: The Proxy Pattern

Applying the Proxy

The final step is to update the calling components so they use the new proxy class. In a real project,
I would typically provide a factory method to hide the details of the proxy class from the calling
components (as described in Chapter 9), but for this example I am going to instantiate the proxy
directly, as shown in Listing 18-10.

Listing 18-10. Using the Access Restriction Proxy in the main.swift File

import Foundation;

let url = "http://www.apress.com";
let headers = ["Content-Length", "Content-Encoding"];

let proxy = AccessControlProxy(url: url);

for header in headers {
 proxy.getHeader(header, callback: {header, val in
 if (val != nil) {
 println("\(header): \(val!)");
 }
 });
}

UserAuthentication.sharedInstance.authenticate("bob", pass: "secret");
proxy.execute();

NSFileHandle.fileHandleWithStandardInput().availableData;

Notice that I provide the user credentials before calling the execute method. In a real project,
the credentials are typically obtained from the user when the application first starts, and the
authentication/authorization status is unknown to the components that need to perform restricted
operations.

Variations on the Proxy Pattern
Proxy classes can be used to perform reference counting, which can be useful when resources
require active management and where you need to perform an action of some sort when a specific
number of references is reached, typically zero. To demonstrate this kind of proxy, I created another
Xcode OS X Command Line project called ReferenceCounting. I added a file called NetworkRequest.
swift to the project and used it to define the types shown in Listing 18-11.

Tip Notice that I have applied the private keyword to the HttpHeaderRequestProxy class. There is

no point implementing access restrictions if the proxy can be bypassed by creating an instance of the

underlying class.

http://www.apress.com/

371CHAPTER 18: The Proxy Pattern

Listing 18-11. The Contents of the NetworkRequest.swift File

import Foundation;

protocol NetworkConnection {
 func connect();
 func disconnect();
 func sendCommand(command:String);
}

class NetworkConnectionFactory {
 class func createNetworkConnection() -> NetworkConnection {
 return NetworkConnectionImplementation();
 }
}

private class NetworkConnectionImplementation : NetworkConnection {
 typealias me = NetworkConnectionImplementation;

 func connect() { me.writeMessage("Connect"); }
 func disconnect() { me.writeMessage("Disconnect"); }

 func sendCommand(command:String) {
 me.writeMessage("Command: \(command)");
 NSThread.sleepForTimeInterval(1);
 me.writeMessage("Command completed: \(command)");
 }

 private class func writeMessage(msg:String) {
 dispatch_async(self.queue, {() in
 println(msg);
 });
 }

 private class var queue:dispatch_queue_t {
 get {
 struct singletonWrapper {
 static let singleton = dispatch_queue_create("writeQ",
 DISPATCH_QUEUE_SERIAL);
 }
 return singletonWrapper.singleton;
 }
 }
}

The NetworkConnection protocol defines the methods that are used to operate on a network
connection to a hypothetical server. The connect method is called to establish a connection, the
sendCommand connection is used to send work to the server, and the disconnect method is used to
close the connection when the work is done.

372 CHAPTER 18: The Proxy Pattern

The NetworkConnectionImplementation class conforms to the protocol and implements the methods
by writing messages to the debug console. I have used the singleton pattern to define a GCD queue
that is shared between all instances of the class so that messages written to the console are not
corrupted when two objects write at the same time. The implementation of the sendCommand method
incurs a one-second delay to simulate the server executing the command it has been sent.

I have used the factory method pattern to provide access to instances of the
NetworkConnectionImplementation class, which is annotated with the private keyword and is
inaccessible outside of the file in which it is defined. Listing 18-12 shows the statements I added to
the main.swift file to create several simultaneous network requests.

Listing 18-12. The Contents of the main.swift File

import Foundation;

let queue = dispatch_queue_create("requestQ", DISPATCH_QUEUE_CONCURRENT);

for count in 0 ..< 3 {

 let connection = NetworkConnectionFactory.createNetworkConnection();

 dispatch_async(queue, {() in
 connection.connect();
 connection.sendCommand("Command: \(count)");
 connection.disconnect();
 });
}

NSFileHandle.fileHandleWithStandardInput().availableData;

I create three network requests, and on each of them I call the connect method to establish the
connection, call the sendCommand method to send a job to the server, and then call the disconnection
method. Running the application will produce results similar to the following:

Connect
Connect
Connect
Command: Command: 0
Command: Command: 1
Command: Command: 2
Command completed: Command: 0
Command completed: Command: 1
Command completed: Command: 2
Disconnect
Disconnect
Disconnect

You may see slightly different results because the connections may be processed in a different
order. The important point to note from the output is that the network connections overlap and that a
separate connection is used for each command that is sent to the server.

373CHAPTER 18: The Proxy Pattern

Implementing a Reference Counting Proxy
In this situation, a reference counting proxy can be used to manage the life cycle of a network
connection so that it can be used to service multiple requests. Listing 18-13 shows the definition of
the proxy class.

Listing 18-13. Defining a Reference Counting Proxy in the NetworkRequest.swift File

import Foundation;

protocol NetworkConnection {
 func connect();
 func disconnect();
 func sendCommand(command:String);
}

class NetworkConnectionFactory {
 class func createNetworkConnection() -> NetworkConnection {
 return connectionProxy;
 }

 private class var connectionProxy:NetworkConnection {
 get {
 struct singletonWrapper {
 static let singleton = NetworkRequestProxy();
 }
 return singletonWrapper.singleton;
 }
 }
}

private class NetworkConnectionImplementation : NetworkConnection {
 typealias me = NetworkConnectionImplementation;

 // ...methods omitted for brevity...
}

class NetworkRequestProxy : NetworkConnection {
 private let wrappedRequest:NetworkConnection;
 private let queue = dispatch_queue_create("commandQ", DISPATCH_QUEUE_SERIAL);
 private var referenceCount:Int = 0;
 private var connected = false;

 init() {
 wrappedRequest = NetworkConnectionImplementation();
 }

 func connect() { /* do nothing */ }
 func disconnect() { /* do nothing */ }

374 CHAPTER 18: The Proxy Pattern

 func sendCommand(command: String) {
 self.referenceCount++;
 dispatch_sync(self.queue, {() in
 if (!self.connected && self.referenceCount > 0) {
 self.wrappedRequest.connect();
 self.connected = true;
 }
 self.wrappedRequest.sendCommand(command);
 self.referenceCount--;
 if (self.connected && self.referenceCount == 0) {
 self.wrappedRequest.disconnect();
 self.connected = false;
 }
 });
 }
}

I have revised the factory method class so that it uses the singleton pattern to return a shared
instance of the NetworkRequestProxy class. The NetworkRequestProxy class conforms to the
NetworkRequest protocol and is a wrapper around a NetworkConnectionImplementation object.

The goal with this kind of reference counting proxy is to take the control of the connect and
disconnect methods away from the calling components and keep a connection open for as long
as there are pending commands to be sent. I have used a serial GCD queue to ensure that only
one command is processed at a time and to ensure that the reference counting is not affected by
multiple concurrent accesses. Running the application will produce output similar to the following:

Connect
Command: Command: 0
Command completed: Command: 0
Command: Command: 1
Command completed: Command: 1
Command: Command: 2
Command completed: Command: 2
Disconnect

The commands are now processed serially over a single connection, reflected in the fact that there
is one Connect and one Disconnect message. This kind of proxy trades one kind of expensive
operation for another. Without the proxy, the expense is the number of concurrent requests and
the demand this puts on the client, the network, and the server. The proxy reduces the request
concurrency, but it serializes the commands sent to the server, which means that the combined
workload takes longer to perform. The overall effect is to trade bandwidth and server capacity for the
user’s time.

375CHAPTER 18: The Proxy Pattern

Understanding the Pitfalls of the Proxy Pattern
The pitfalls associated with the proxy pattern depend on how it is being implemented, but the
common theme is not to allow details of the implementation to leak out of the proxy class into the
calling component. For remote object proxies, this means ensuring that no unnecessary details
of the mechanism used to access the remote object are revealed. For proxies used to manage
expensive operations, you should avoid exposing details of how the cost of the operation is being
mitigated as far as it possible. For access restriction proxies, you should take care not to allow
calling components to bypass the proxy and access the underlying object directly.

There are two specific pitfalls if you use the proxy pattern to implement the reference counting
variation. First, do not use proxies to manage the life cycle of objects. Leave this to the built-in Swift
support for automatic reference counting (ARC), which ensures that objects are destroyed when they
are no longer required.

Second, do not use proxies to implement concurrency protections such as locks and semaphores.
This is a reasonable thing to do if you are working with a language that doesn’t have concurrency
features, but Swift provides access to Grand Central Dispatch for high-level concurrency control,
and if you don’t like GCD, you can access a range of lower-level concurrency mechanisms. Writing
your own concurrency code is stupid, dangerous, and almost impossible to get right. If you think you
need to create your own concurrency protections, then you have either misunderstood the built-in
features or misunderstood the problem you face in your project.

Examples of the Proxy Pattern in Cocoa
The framework provides excellent support for the proxy pattern through the NSProxy class, but it is
available only to Objective-C programmers and cannot be used in Swift.

You don’t call methods in Objective-C code. Instead, you send messages to objects. In most
situations, this distinction doesn’t have any real significance, and many Objective-C programmers
are unaware of the difference. The NSProxy class is used to create classes that receive messages
and forward them on to the resources or object for which they are proxies, which provides a nice
mechanism by which messages can be changed or redirected on the fly.

None of this is available to Swift programmers, sadly, and attempting to derive a Swift class from
NSProxy will generate a compiler error because it is impossible to call super.init from the derived
class (because NSProxy doesn’t define an initializer).

Applying the Pattern to the SportsStore Application
To demonstrate the use of the proxy pattern in the SportsStore application, I am going to create a
proxy object that represents the product data on a remote server and then use the proxy to send stock
level updates and to consolidate the code that gets the initial stock data when the application starts.

376 CHAPTER 18: The Proxy Pattern

Preparing the Example Application
No preparation is required for this chapter, and I pick up the SportsStore application just as I left it
in Chapter 17. Don’t forget that you can download all of the code examples for this book, including
projects for each chapter’s version of the SportsStore application, from Apress.com.

Defining the Protocol, Factory Method, and Proxy Class
As I explained earlier, you don’t need to define a protocol when creating a proxy, but I usually do.
This is partly habit but mainly because it allows me to draw a clean line separating the functionality
exposed to calling components from the implementation of the proxy class. Listing 18-14 shows the
contents of the Proxy.swift file, which I added to the SportsStore project.

Listing 18-14. The Contents of the Proxy.swift File

protocol StockServer {

 func getStockLevel(product:String, callback: (String, Int) -> Void);
 func setStockLevel(product:String, stockLevel:Int);
}

class StockServerFactory {

 class func getStockServer() -> StockServer {
 return server;
 }

 private class var server:StockServer {
 struct singletonWrapper {
 static let singleton:StockServer = StockServerProxy();
 }
 return singletonWrapper.singleton;
 }
}

class StockServerProxy : StockServer {

 func getStockLevel(product: String, callback: (String, Int) -> Void) {
 // TODO - implement this method
 }

 func setStockLevel(product: String, stockLevel: Int) {
 // TODO - implement this method
 }
}

https://Apress.com

377CHAPTER 18: The Proxy Pattern

I have defined the StockServer protocol so that it contains getStockLevel and setStockLevel
methods and created the StockServerProxy class, which acts as the proxy for the remote server.
The glue between the protocol and the proxy class is the StockServerFactory class, which uses
the singleton pattern to provide callers with a reference to a single proxy object. I have not yet
implemented the proxy methods. I’ll complete the proxy class once some of the other changes
are in place.

Updating the Product Data Store
The ProductDataStore class supplies product data for the rest of the application and is the
natural point at which to integrate the proxy, replacing the direct access to the NetworkConnection
and NetworkPool classes that are currently in place. Listing 18-15 shows how I updated the
ProductDataStore class to obtain its initial stock value data from the proxy.

Listing 18-15. Integrating the Proxy in the ProductDataStore.swift File

import Foundation

final class ProductDataStore {
 var callback:((Product) -> Void)?;
 private var networkQ:dispatch_queue_t
 private var uiQ:dispatch_queue_t;
 lazy var products:[Product] = self.loadData();

 init() {
 networkQ = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0);
 uiQ = dispatch_get_main_queue();
 }

 private func loadData() -> [Product] {

 var products = [Product]();

 for product in productData {
 var p:Product = LowStockIncreaseDecorator(product: product);
 if (p.category == "Soccer") {
 p = SoccerDecreaseDecorator(product: p);
 }

 dispatch_async(self.networkQ, {() in
 StockServerFactory.getStockServer().getStockLevel(p.name,
 callback: { name, stockLevel in
 p.stockLevel = stockLevel;
 dispatch_async(self.uiQ, {() in
 if (self.callback != nil) {
 self.callback!(p);
 }
 })
 });
 });

378 CHAPTER 18: The Proxy Pattern

 products.append(p);
 }
 return products;
 }

 private var productData:[Product] = [
 ProductComposite(name: "Running Pack",
 description: "Complete Running Outfit", category: "Running",
 stockLevel: 10, products:
 // ... statements omitted for brevity...
}

The change in the loadData method uses the proxy object to get its data value, and in Listing 18-16
you can see how I have updated the proxy getStockLevel method so that it obtains the stock data
via the NetworkPool and NetworkConnection classes.

Listing 18-16. Implementing the getStockLevel Method in the Proxy.swift File

...
class StockServerProxy : StockServer {

 func getStockLevel(product: String, callback: (String, Int) -> Void) {
 let stockConn = NetworkPool.getConnection();
 let level = stockConn.getStockLevel(product);
 if (level != nil) {
 callback(product, level!);
 }
 NetworkPool.returnConnecton(stockConn);
 }

 func setStockLevel(product: String, stockLevel: Int) {
 // TODO - implement this method
 }
}
...

Sending Stock Level Updates
To use the proxy to send stock level changes, I need to update the NetworkConnection class, as
shown in Listing 18-17.

Listing 18-17. Adding a New Command in the NetworkConnection.swift File

import Foundation

class NetworkConnection {
 private let flyweight:NetConnFlyweight;

 init() {
 self.flyweight = NetConnFlyweightFactory.createFlyweight();
 }

379CHAPTER 18: The Proxy Pattern

 func getStockLevel(name:String) -> Int? {
 NSThread.sleepForTimeInterval(Double(rand() % 2));
 return self.flyweight.getStockLevel(name);
 }

 func setStockLevel(name:String, level:Int) {
 println("Stock update: \(name) = \(level)");
 }
}

I don’t have a real server to update, so the implementation of the setStockLevel method prints out a
message to the debug console. With the update to the NetworkConnection class, I can complete the
implementation of the proxy class, as shown in Listing 18-18.

Listing 18-18. Completing the Proxy Class in the Proxy.swift File

...
class StockServerProxy : StockServer {

 func getStockLevel(product: String, callback: (String, Int) -> Void) {
 let stockConn = NetworkPool.getConnection();
 let level = stockConn.getStockLevel(product);
 if (level != nil) {
 callback(product, level!);
 }
 NetworkPool.returnConnecton(stockConn);
 }

 func setStockLevel(product: String, stockLevel: Int) {
 let stockConn = NetworkPool.getConnection();
 stockConn.setStockLevel(product, level: stockLevel);
 NetworkPool.returnConnecton(stockConn);
 }
}
...

The final step is to call the proxy setStockLevel method from the ViewController class when the
user makes a change, as shown in Listing 18-19.

Listing 18-19. Using the Proxy in the ViewController.swift File

...
@IBAction func stockLevelDidChange(sender: AnyObject) {
 if var currentCell = sender as? UIView {
 while (true) {
 currentCell = currentCell.superview!;
 if let cell = currentCell as? ProductTableCell {
 if let product = cell.product? {
 if let stepper = sender as? UIStepper {
 product.stockLevel = Int(stepper.value);

380 CHAPTER 18: The Proxy Pattern

 } else if let textfield = sender as? UITextField {
 if let newValue = textfield.text.toInt()? {
 product.stockLevel = newValue;
 }
 }
 cell.stockStepper.value = Double(product.stockLevel);
 cell.stockField.text = String(product.stockLevel);
 productLogger.logItem(product);

 StockServerFactory.getStockServer()
 .setStockLevel(product.name, stockLevel: product.stockLevel);
 }
 break;
 }
 }
 displayStockTotal();
 }
}
...

I have added a statement to the stockLevelDidChange method that uses the proxy to update the
stock level. The effect of defining the proxy is that the implementation of the (simulated) network
connection is known only to the proxy class and can be changed without needing to change the
ProductDataStore or ViewController class. To test the changes, start the application and change
one of the stock levels. You will see output similar to the following in the Xcode debug console:

Stock update: Thinking Cap = 9

Summary
In this chapter, I described how the proxy pattern is used to create stand-ins for objects and
resources. I explained the three different ways in which proxies can be applied and showed you an
example implementation of each of them. In the next part of the book, I show you the behavioral
patterns, which increase the flexibility in the ways that objects work with one another.

381

Part IV
The Behavioral Patterns

383

Chapter 19
The Chain of Responsibility

Pattern

The chain of responsibility pattern is useful when there are multiple objects that could take
responsibility for a request but you don’t want to expose details of those objects to the calling
component. Table 19-1 puts the chain of responsibility pattern into context.

Table 19-1. Putting the Chain of Responsibility Pattern into Context

Question Answer

What is it? The chain of responsibility pattern organizes sequentially a set of

objects that may be able to take responsibility for a request from a

calling component. The sequence of objects is referred to as a chain,

and each object in the chain is asked to take responsibility for the

request. The request moves along the chain until one of the objects

takes responsibility or the end of the chain is reached.

What are the benefits? The chain of responsibility allows objects that can process requests

to be ordered into a preferential sequence that can be reordered,

extended, or reduced without any impact on the calling component,

which has no insight into the objects that comprise the chain.

When should you use this pattern? Use this pattern when there are several objects that can handle a

request, only one of which should be used.

When should you avoid this pattern? Do not use this pattern when there is only one object that can handle a

request or when the calling component needs to select the object.

(continued)

384 CHAPTER 19: The Chain of Responsibility Pattern

Preparing the Example Project
For this chapter, I created an Xcode Command Line Tool project called ChainOfResp. I added a file
called Message.swift to the project and used it to define the code shown in Listing 19-1.

Listing 19-1. The Contents of the Message.swift File

struct Message {
 let from:String;
 let to:String;
 let subject:String;
}

I defined a struct called Message that has constants representing different properties of a general
message: the sender of the message, who the message is to, and the subject of the message. I have
not defined a constant for the body of the message, which I don’t need to demonstrate the chain
of responsibility pattern. Listing 19-2 shows the contents of the Transmitters.swift file, in which I
have defined a pair of classes that can process Message objects in order to transmit them elsewhere.

Listing 19-2. The Contents of the Transmitters.swift File

class LocalTransmitter {

 func sendMessage(message: Message) {
 println("Message to \(message.to) sent locally");
 }
}

class RemoteTransmitter {

 func sendMessage(message: Message) {
 println("Message to \(message.to) sent remotely");
 }
}

Question Answer

How do you know when you have

implemented the pattern correctly?

The pattern is implemented correctly when the set of objects that can

take responsibility for a request are arranged sequentially and each is

offered the chance to take responsibility in turn. The individual objects

in the chain have no knowledge of one another (other than the next link

in the chain).

Are there any common pitfalls? The pitfall is leaking details of the objects in the chain, either to one

another or to the calling component.

Are there any related patterns? The chain of responsibility pattern shares some common concepts with

the command pattern, described in Chapter 20.

Table 19-1. (continued)

385CHAPTER 19: The Chain of Responsibility Pattern

These classes represent the mechanisms by which messages are sent, either locally within a
company or remotely to the wider world. Each transmitter class defines a sendMessage method that
processes a Message object. I don’t need to implement message routing to demonstrate the chain
of responsibility pattern, and so the sendMessage methods write a message to the Xcode debug
console. Listing 19-3 shows the code I added to the main.swift file to use the example classes.

Listing 19-3. The Contents of the main.swift File

let messages = [
 Message(from: "bob@example.com", to: "joe@example.com",
 subject: "Free for lunch?"),
 Message(from: "joe@example.com", to: "alice@acme.com",
 subject: "New Contracts"),
 Message(from: "pete@example.com", to: "all@example.com",
 subject: "Priority: All-Hands Meeting"),
];

let localT = LocalTransmitter();
let remoteT = RemoteTransmitter();

for msg in messages {
 if let index = find(msg.from, "@") {
 if (msg.to.hasSuffix(msg.from[Range<String.Index>(start:
 index, end: msg.from.endIndex)])) {
 localT.sendMessage(msg);
 } else {
 remoteT.sendMessage(msg);
 }
 } else {
 println("Error: cannot send message to \(msg.from)");
 }
}

I define an array of Message objects and use a for loop to examine each of them to choose between
a LocalTransmitter object and a RemoteTransmitter object based on whether the to and from
addresses share a common suffix. Running the example application produces the following results:

Message to joe@example.com sent locally
Message to alice@acme.com sent remotely
Message to all@example.com sent locally

386 CHAPTER 19: The Chain of Responsibility Pattern

Understanding the Problem That the Pattern Solves
The problem in the example application is that the components that use the transmitter classes to
process Message objects have to know about those classes and understand when each should be
used. This makes it hard to add new message handlers, to change the relationship between existing
handlers, and to test and maintain the code overall. To demonstrate the problem, I have defined a
new transmitter class, as shown in Listing 19-4.

Listing 19-4. Defining a New Transmitter Class in the Transmitters.swift File

class LocalTransmitter {

 func sendMessage(message: Message) {
 println("Message to \(message.to) sent locally");
 }
}

class RemoteTransmitter {

 func sendMessage(message: Message) {
 println("Message to \(message.to) sent remotely");
 }
}

class PriorityTransmitter {
 func sendMessage(message: Message) {
 println("Message to \(message.to) sent as priority");
 }
}

To properly handle Message objects, components need to be updated to reflect the new
PriorityTransmitter class and know when it should be used. Listing 19-5 shows the changes
required in the main.swift file, but in a real project these changes would be duplicated throughout
the application.

Listing 19-5. Reflecting the Definition of a New Transmitter Class in the main.swift File

let messages = [
 Message(from: "bob@example.com", to: "joe@example.com",
 subject: "Free for lunch?"),
 Message(from: "joe@example.com", to: "alice@acme.com",
 subject: "New Contracts"),
 Message(from: "pete@example.com", to: "all@example.com",
 subject: "Priority: All-Hands Meeting"),
];

let localT = LocalTransmitter();
let remoteT = RemoteTransmitter();
let priorityT = PriorityTransmitter();

387CHAPTER 19: The Chain of Responsibility Pattern

for msg in messages {
 if (msg.subject.hasPrefix("Priority")) {
 priorityT.sendMessage(msg);
 } else if let index = find(msg.from, "@") {
 if (msg.to.hasSuffix(msg.from[Range<String.Index>(start:
 index, end: msg.from.endIndex)])) {
 localT.sendMessage(msg);
 } else {
 remoteT.sendMessage(msg);
 }
 } else {
 println("Error: cannot send message to \(msg.from)");
 }
}

The changes themselves are simple, but the fact that calling components require so much insight
into how the transmitter classes relate to one another and when to use them is a problem.

Understanding the Chain of Responsibility Pattern
The chain of responsibility pattern solves these problems by arranging the transmitters in a chain
(which is where it gets the name). Each transmitter is a link in the chain and is able to inspect the
Message object to determine whether it can take responsibility for the request. If a link in the chain is
able to handle the Message request, then it does so. If not, then the request is passed to the next link
in the chain, and the process is repeated until the request is handled or the last link in the chain is
reached. Figure 19-1 illustrates the chain of responsibility pattern.

Figure 19-1. The chain of responsibility pattern

The calling component deals only with the first link in the chain and has no knowledge of subsequent
links or the basis on which each link decides whether it can take responsibility for the request. In
the figure, I have shown a chain with three links, where the second link takes responsibility for the
request. In this situation, the third link in the chain doesn’t participate in the process and is unaware
of the request from the calling component.

388 CHAPTER 19: The Chain of Responsibility Pattern

Implementing the Chain of Responsibility Pattern
The implementation of the chain of responsibility pattern relies on hiding the details of the individual
links that make up the chain from the calling components—something that is most readily achieved
by defining a protocol or a base class. I usually rely on a base class because I like to deal with the
next link in the chain using an optional property, which cannot be assigned new values when defined
by a protocol. Listing 19-6 shows the base class I defined and applied to the transmitter classes.

Listing 19-6. Defining and Implementing a Base Class in the Transmitters.swift File

class Transmitter {
 var nextLink:Transmitter?;

 required init() {}

 func sendMessage(message:Message) {
 if (nextLink != nil) {
 nextLink!.sendMessage(message);
 } else {
 println("End of chain reached. Message not sent");
 }
 }

 private class func matchEmailSuffix(message:Message) -> Bool {
 if let index = find(message.from, "@") {
 return message.to.hasSuffix(message.from[Range<String.Index>(start:
 index, end: message.from.endIndex)]);
 }
 return false;
 }
}

class LocalTransmitter : Transmitter {

 override func sendMessage(message: Message) {
 if (Transmitter.matchEmailSuffix(message)) {
 println("Message to \(message.to) sent locally");
 } else {
 super.sendMessage(message);
 }
 }
}

class RemoteTransmitter : Transmitter {

 override func sendMessage(message: Message) {
 if (!Transmitter.matchEmailSuffix(message)) {
 println("Message to \(message.to) sent remotely");
 } else {
 super.sendMessage(message);
 }
 }
}

389CHAPTER 19: The Chain of Responsibility Pattern

class PriorityTransmitter : Transmitter {

 override func sendMessage(message: Message) {
 if (message.subject.hasPrefix("Priority")) {
 println("Message to \(message.to) sent as priority");
 } else {
 super.sendMessage(message);
 }
 }
}

The Transmitter class defines the basic behavior of a transmitter, including referring a request to the
next link in the chain. I have defined the code that checks e-mail suffixes in this class. (The required
initializer is there so I can create instances of my transmitters from their types, which I do in the next
section.)

Each of the individual transmitter classes is derived from Transmitter and overrides the sendMessage
method. Each implementation checks to see whether the transmitter can take responsibility for the
Message request. If the transmitter cannot take responsibility, it calls the base class implementation,
which advances to the next link in the chain or reports an error if there are no further links.

Creating and Providing the Chain of Responsibility
The next step is to create the chain, instantiating the objects that I need and arranging them in the
order in which they will be asked to take responsibility for a Message. You can use several of the
design patterns that I described in Part 2 of this book to create the chain, but I am going to keep
the example simple and implement a class method that creates a new chain each time it is called.
Listing 19-7 shows the changes that I made to the Transmitter class to create the chain.

Listing 19-7. Creating the Chain in the Transmitters.swift File

...
class Transmitter {
 var nextLink:Transmitter?;

 required init() {}

 func sendMessage(message:Message) {
 if (nextLink != nil) {
 nextLink!.sendMessage(message);
 } else {
 println("End of chain reached. Message not sent");
 }
 }

 class func createChain() -> Transmitter? {

 let transmitterClasses:[Transmitter.Type] = [
 PriorityTransmitter.self,
 LocalTransmitter.self,
 RemoteTransmitter.self
];

390 CHAPTER 19: The Chain of Responsibility Pattern

 var link:Transmitter?;

 for tClass in transmitterClasses.reverse() {
 let existingLink = link;
 link = tClass();
 link?.nextLink = existingLink;
 }

 return link;
 }

 private class func matchEmailSuffix(message:Message) -> Bool {
 if let index = find(message.from, "@") {
 return message.to.hasSuffix(message.from[Range<String.Index>(start:
 index, end: message.from.endIndex)]);
 }
 return false;
 }
}
...

I have defined an array of Transmitter types to make it easy to add new transmitters or to change
the order in which they appear in the chain. When I create the chain, I start with the last link and
work my way back through the array of classes, creating each in turn and setting up the relationships
between them.

Tip You don’t need to use metatypes to create objects in a chain. I find this the clearest way to express the

set of types in the chain, but I could have simply created the objects directly and explicitly set the nextLink

property values.

Applying the Chain of Responsibility Pattern
The final step is to use the chain of responsibility to handle Message objects. Listing 19-8 shows the
changes I made to the main.swift file.

Listing 19-8. Using the Chain of Responsibility in the main.swift File

let messages = [
 Message(from: "bob@example.com", to: "joe@example.com",
 subject: "Free for lunch?"),
 Message(from: "joe@example.com", to: "alice@acme.com",
 subject: "New Contracts"),
 Message(from: "pete@example.com", to: "all@example.com",
 subject: "Priority: All-Hands Meeting"),
];

391CHAPTER 19: The Chain of Responsibility Pattern

if let chain = Transmitter.createChain() {
 for msg in messages {
 chain.sendMessage(msg);
 }
}

Applying the pattern simplifies the code in the calling components and hides the details of
which objects will be asked to take responsibility for the Message object. When I need to add
new transmitters to the application, I can do so by modifying just the createChain method of the
Transmitter class; no changes are required in the calling components. Running the example
application produces the following output:

Message to joe@example.com sent locally
Message to alice@acme.com sent remotely
Message to all@example.com sent as priority

Variations on the Chain of Responsibility Pattern
There are several common variations on the chain of responsibility pattern, each of which I describe
in the following sections.

Applying the Factory Method Pattern
At the moment, all calls to the Transmitters.createChain method receive a chain of responsibility
containing the same set of link objects. However, I can combine the chain of responsibility pattern
with the factory method or abstract factory pattern (described in Chapters 9 and 10) to vary the links
in the chains for different requests. Listing 19-9 shows the changes I made to the Transmitter class
to support different configurations of chains.

Listing 19-9. Varying the Chain in the Transmitters.swift File

...
class func createChain(localOnly:Bool) -> Transmitter? {

 let transmitterClasses:[Transmitter.Type]
 = localOnly ? [PriorityTransmitter.self, LocalTransmitter.self]
 : [PriorityTransmitter.self, LocalTransmitter.self, RemoteTransmitter.self];

 var link:Transmitter?;

 for tClass in transmitterClasses.reverse() {
 let existingLink = link;
 link = tClass();
 link?.nextLink = existingLink;
 }

 return link;
}
...

392 CHAPTER 19: The Chain of Responsibility Pattern

There are lots of ways to approach varying the links in the chain, but I have settled on an
argument to the createChain method that allows callers to specify whether the chain will be
configured to handle local messages only. The effect of the argument is to include or exclude the
RemoteTransmitter in the chain, although this difference is hidden from the calling component.
Listing 19-10 shows how I use the localOnly argument in the main.swift file.

Listing 19-10. Specifying the Configuration of the Chain of Responsibility in the main.swift File

let messages = [
 Message(from: "bob@example.com", to: "joe@example.com",
 subject: "Free for lunch?"),
 Message(from: "joe@example.com", to: "alice@acme.com",
 subject: "New Contracts"),
 Message(from: "pete@example.com", to: "all@example.com",
 subject: "Priority: All-Hands Meeting"),
];

if let chain = Transmitter.createChain(true) {
 for msg in messages {
 chain.sendMessage(msg);
 }
}

I call the createChain method with a localOnly value of true, which means that one of the Message
objects that I create will not be handled. You can see the effect by running the application, which
produces the following output:

Message to joe@example.com sent locally
End of chain reached. Message not sent
Message to all@example.com sent as priority

Indicating Whether Responsibility Was Taken for the Request
At the moment, the calling component has no insight into whether the chain takes responsibility for
a request. A common variation is to provide feedback to the calling component so that the chain
of responsibility isn’t a black hole. Listing 19-11 shows the changes I made to provide the calling
component with the result.

Listing 19-11. Indicating Whether Responsibility Was Taken for a Request in the Transmitters.swift File

class Transmitter {
 var nextLink:Transmitter?;

 required init() {}

 func sendMessage(message:Message) -> Bool {
 if (nextLink != nil) {
 return nextLink!.sendMessage(message);

393CHAPTER 19: The Chain of Responsibility Pattern

 } else {
 println("End of chain reached. Message not sent");
 return false;
 }
 }

 // ...methods omitted for brevity...
}

class LocalTransmitter : Transmitter {

 override func sendMessage(message: Message) -> Bool {
 if (Transmitter.matchEmailSuffix(message)) {
 println("Message to \(message.to) sent locally");
 return true;
 } else {
 return super.sendMessage(message);
 }
 }
}

class RemoteTransmitter : Transmitter {

 override func sendMessage(message: Message) -> Bool {
 if (!Transmitter.matchEmailSuffix(message)) {
 println("Message to \(message.to) sent remotely");
 return true;
 } else {
 return super.sendMessage(message);
 }
 }
}

class PriorityTransmitter : Transmitter {

 override func sendMessage(message: Message) -> Bool {
 if (message.subject.hasPrefix("Priority")) {
 println("Message to \(message.to) sent as priority");
 return true;
 } else {
 return super.sendMessage(message);
 }
 }
}

Each link in the chain knows only whether it can handle the message and has no insight into the
capabilities of other links. The effect of this isolation is that a definitive false result, indicating that
no link has taken responsibility for the request, requires all of the links in the chain to be consulted.
A definitive true result is generated as soon as a link takes responsibility and handles the Message
object. Listing 19-12 shows how I have used the result returned by the sendMessage methods in the
main.swift file.

394 CHAPTER 19: The Chain of Responsibility Pattern

Listing 19-12. Receiving a Response from the Chain in the main.swift File

let messages = [
 Message(from: "bob@example.com", to: "joe@example.com",
 subject: "Free for lunch?"),
 Message(from: "joe@example.com", to: "alice@acme.com",
 subject: "New Contracts"),
 Message(from: "pete@example.com", to: "all@example.com",
 subject: "Priority: All-Hands Meeting"),
];

if let chain = Transmitter.createChain(true) {
 for msg in messages {
 let handled = chain.sendMessage(msg);
 println("Message sent: \(handled)");
 }
}

Running the application produces the following output, showing the effect of providing the calling
component with a response:

Message to joe@example.com sent locally
Message sent: true
End of chain reached. Message not sent
Message sent: false
Message to all@example.com sent as priority
Message sent: true

Notifying All Links in the Chain
In the standard implementation of the chain of responsibility pattern, links in the chain are consulted
only until one of them takes responsibility for the request. Links in the chain after the one that takes
responsibility are unaware of the request.

A variation on the standard implementation is to notify all of the links in a chain about a request,
even the ones that appear after the link that has accepted responsibility for the request. This is a
variation that I rarely use but that can be helpful when links in the chain need to know when they
have been preempted. Listing 19-13 shows the changes I made to implement the variation in
Transmitter and its subclasses.

Listing 19-13. Notifying All Links in the Transmitters.swift File

class Transmitter {
 var nextLink:Transmitter?;

 required init() {}

 func sendMessage(message:Message, handled: Bool = false) -> Bool {
 if (nextLink != nil) {
 return nextLink!.sendMessage(message, handled: handled);

395CHAPTER 19: The Chain of Responsibility Pattern

 } else if (!handled) {
 println("End of chain reached. Message not sent");
 }
 return handled;
 }

 // ...methods omitted for brevity...
}

class LocalTransmitter : Transmitter {

 override func sendMessage(message: Message, var handled:Bool) -> Bool {
 if (!handled && Transmitter.matchEmailSuffix(message)) {
 println("Message to \(message.to) sent locally");
 handled = true;
 }
 return super.sendMessage(message, handled: handled);
 }
}

class RemoteTransmitter : Transmitter {

 override func sendMessage(message: Message, var handled: Bool) -> Bool {
 if (!handled && !Transmitter.matchEmailSuffix(message)) {
 println("Message to \(message.to) sent remotely");
 handled = true;
 }
 return super.sendMessage(message, handled: handled);
 }
}

class PriorityTransmitter : Transmitter {
 var totalMessages = 0;
 var handledMessages = 0;

 override func sendMessage(message: Message, var handled:Bool) -> Bool {
 totalMessages++;
 if (!handled && message.subject.hasPrefix("Priority")) {
 handledMessages++;
 println("Message to \(message.to) sent as priority");
 println("Stats: Handled \(handledMessages) of \(totalMessages)");
 handled = true;
 }
 return super.sendMessage(message, handled: handled);
 }
}

396 CHAPTER 19: The Chain of Responsibility Pattern

I have changed the signature of the sendMessage method to define a handled parameter that I use to
signal whether a link in the chain is being asked to take responsibility for a request or being notified
about a request for which another link has already taken responsibility. I have also modified the
PriorityTransmitter class so that it keeps track of the requests it handles and the total number of
requests it processes. Running the application produces the following output:

Message to joe@example.com sent locally
Message sent: true
End of chain reached. Message not sent
Message sent: false
Message to all@example.com sent as priority
Stats: Handled 1 of 3
Message sent: true

Understanding the Pitfalls of the Pattern
The only pitfall when implementing the pattern is leaking details about the objects in the chain, either
to the calling component or from one link in the chain to another. This pattern works by containing
knowledge about the way that the chain has been created to a single method or class, and allowing
the implementation detail to leak creates dependencies on a specific chain configuration that makes
it difficult to change the chain later. Ensure that you present the calling components with a base
class or protocol, and use the same base class or protocol when setting the nextLink properties of
links in the chain.

If you are implementing the variation that returns a result to the calling component, then you
must ensure that you do not inadvertently leak knowledge of the chain in the result. The chain of
responsibility pattern works best with simple result types (like the Bool I used in the example), but if
you use more complex types, then you must not include a reference to the link in the chain that has
accepted responsibility for the request.

Examples of the Pattern in Cocoa
Cocoa relies on the chain of responsibility to handle user interface events. All UI components are
derived from the UIResponder class (or the equivalent NSResponder for OS X apps). The links in the
chain are individual UI components, arranged to reflect the hierarchy of interface components with
the top-level view as the last link in the chain.

When the user interacts with a component—by clicking the mouse, for example—Cocoa sends the
interaction event to the link in the chain that represents the component that has been clicked. The
component is provided with the opportunity to take responsibility for handling the event, and the
event moves along the chain until a component is found that will handle the event or the end of the
chain is reached (which indicates that the application does not want or need to handle the event and
it can be ignored).

397CHAPTER 19: The Chain of Responsibility Pattern

Applying the Pattern to the SportsStore Application
To demonstrate the use of the chain of responsibility pattern, I will define a set of classes that format
the background color of the table cells that display products in the SportsStore application.

Preparing the Example Application
I pick up the SportsStore project as I left it in Chapter 18, and no preparation for this chapter is
required.

Defining the Chain and its Links
My chain is going to consist of a set of objects that will accept responsibility for formatting a table
cell based on the category of the product that it displays. Listing 19-14 shows the contents of
the FormatterChain.swift file that I added to the SportsStore project and used to implement the
pattern.

Listing 19-14. The Contents of the FormatterChain.swift File

import UIKit;

class CellFormatter {
 var nextLink:CellFormatter?;

 func formatCell(cell: ProductTableCell) {
 nextLink?.formatCell(cell);
 }

 class func createChain() -> CellFormatter {
 let formatter = ChessFormatter();
 formatter.nextLink = WatersportsFormatter();
 formatter.nextLink?.nextLink = DefaultFormatter();
 return formatter;
 }
}

class ChessFormatter : CellFormatter {
 override func formatCell(cell: ProductTableCell) {
 if (cell.product?.category == "Chess") {
 cell.backgroundColor = UIColor.lightGrayColor();
 } else {
 super.formatCell(cell);
 }
 }
}

398 CHAPTER 19: The Chain of Responsibility Pattern

class WatersportsFormatter : CellFormatter {
 override func formatCell(cell: ProductTableCell) {
 if (cell.product?.category == "Watersports") {
 cell.backgroundColor = UIColor.greenColor();
 } else {
 super.formatCell(cell);
 }
 }
}

class DefaultFormatter : CellFormatter {
 override func formatCell(cell: ProductTableCell) {
 cell.backgroundColor = UIColor.yellowColor();
 }
}

All implementations of this pattern look alike, and the listing shows the common foundation that is
shared with the earlier example. I have defined a base class (CellFormatter) that provides a class
method for creating the chain and that provides the default behavior for navigating through the
chain. The links in the chain are derived from the CellFormatter class, and they accept responsibility
based on the product category. The formatting they perform is to change the background color of
the cell. The DefaultFormatter class always sets the cell background to yellow and must be used
to create the last link in the chain. Listing 19-15 shows how I use the chain of responsibility in the
ViewController class.

Listing 19-15. Using the Chain of Responsibility in the ViewController.swift File

...
func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let product = productStore.products[indexPath.row];
 let cell = tableView.dequeueReusableCellWithIdentifier("ProductCell")
 as ProductTableCell;

 cell.product = productStore.products[indexPath.row];
 cell.nameLabel.text = product.name;
 cell.descriptionLabel.text = product.productDescription;
 cell.stockStepper.value = Double(product.stockLevel);
 cell.stockField.text = String(product.stockLevel);

 CellFormatter.createChain().formatCell(cell);

 return cell;
}
...

You can see the effect of applying the formatting chain by running the application. The effect is
garish but clearly indicates which link in the chain has accepted responsibility for each table cell, as
shown in Figure 19-2.

399CHAPTER 19: The Chain of Responsibility Pattern

Summary
I described the chain of responsibility pattern in this chapter and explained how it can be used
to find an object that will take responsibility for a request, while hiding details of which object
is selected and the means by which the selection happens. In the next chapter, I describe the
command pattern, which is used to encapsulate the details required to execute a method.

Figure 19-2. Formatting table cells

401

Chapter 20
The Command Pattern

The command pattern provides a mechanism by which details of how to invoke a method can be
encapsulated so that the method can be invoked later or by a different component. Table 20-1 puts
the command pattern into context.

Table 20-1. Putting the Command Pattern into Context

Question Answer

What is it? The command pattern is used to encapsulate details of how to invoke

a method on an object in a way that allows the method to be invoked

at a different time or by a different component.

What are the benefits? There are lots of situations in which using a command is useful, but

the most common ones are supporting undo operations and creating

macros.

When should you use this pattern? Use this pattern when you want to allow methods to be invoked by

components that otherwise have no information about the object that

will be used, the method that will be invoked, or the arguments that

will be provided.

When should you avoid this pattern? Do not use this pattern for regular method invocation.

How do you know when you have

implemented the pattern correctly?

The pattern is implemented correctly when a component can use a

command to invoke a method on an object without needing details of

that object or the method itself.

Are there any common pitfalls? The main pitfall is to require the component that executes the command

to have knowledge of the method or object that will be used.

Are there any related patterns? The memento pattern provides a model by which snapshots of an

object’s entire state can be used instead of individual operations.

402 CHAPTER 20: The Command Pattern

Preparing the Example Project
To demonstrate the command pattern, I created an Xcode OS X Command Line Tool project called
Command. I added a file called Calculator.swift, the contents of which are shown in Listing 20-1.

Listing 20-1. The Contents of the Calculator.swift File

class Calculator {
 private(set) var total = 0;

 func add(amount:Int) {
 total += amount;
 }

 func subtract(amount:Int) {
 total -= amount;
 }

 func multiply(amount:Int) {
 total = total * amount;
 }

 func divide(amount:Int) {
 total = total / amount;
 }
}

The Calculator class defines a stored Int property called total, whose value is changed by
calling the add, subtract, multiple, and divide methods. Listing 20-2 shows the code I added
to the main.swift file that uses the Calculator class to determine the value produced by several
operations.

Listing 20-2. The Contents of the main.swift File

let calc = Calculator();
calc.add(10);
calc.multiply(4);
calc.subtract(2);

println("Total: \(calc.total)");

Running the application produces the following output:

Total: 38

403CHAPTER 20: The Command Pattern

Understanding the Problem That the Pattern Solves
The problem that the command pattern solves arises when you need to package a method
invocation as an object so that it can be performed at a later date or be performed by another
component without that component needing details of the method that will be invoked or the object
that it will be invoked on.

Imagine that you are building an application where two components perform operations on the same
object, such as an instance of the Calculator class I defined in the example application. Figure 20-1
shows the basic structure of the application, where each component invokes methods that update
the Calculator total.

Figure 20-1. Two components performing operations on a common object

Now imagine that you need to implement support for undoing previous operations. One way to
implement this is to have each component keep track of the operations it has performed so they can
be undone in the future. The problem is that each component is unaware of the operations the other
component has performed, and applying an undo operation without this information can corrupt the
state of the shared object because the operations will be reversed in the wrong order.

I could get the components to coordinate with each other, but that just creates couplings between
components and complicates the design of the application. What I require is a way to express undo
operations independently of the components that performed them so that I can invoke them in a
controlled way to gradually roll back the state of the shared object, and that, of course, is where the
command pattern can help.

404 CHAPTER 20: The Command Pattern

Understanding the Command Pattern
The command pattern represents a method invocation as an object so that it can be used to solve
the undo problem and a range of related problems I describe in the “Variations on the Command
Pattern” section. Figure 20-2 illustrates the command pattern.

Figure 20-2. The command pattern

The heart of the command pattern is the command object, more often referred to simply as the
command. Within its private implementation, the command has references to a receiver object and
instructions about how to invoke a method on the receiver. In the context of the example application,
the receiver object would be an instance of the Calculator class, and the method invocation
instructions would include details of which Calculator method should be invoked (add, subtract,
multiply, or divide) and the value for the method parameter.

The receiver and the invocation instructions are private and cannot be accessed by components that
use the command. The only publically accessible facet of a command object is an execution method
that is invoked by a calling component when the method invocation instructions should be executed
on the receiver object (that is, call the specified method with the specified parameter values). In the
language of the command pattern, the calling component is known as the invoker because it invokes
the execution method.

Don’t worry if this seems overly abstract. The command pattern is used in such a wide range of
situations that it really begins to make sense only when you see it in context. The important point
to note is that the method invocation instructions are not performed on the receiver object until the
invoker calls the execution method. If you keep that in mind, everything else will fall into place when
you see how the pattern is implemented.

405CHAPTER 20: The Command Pattern

Implementing the Command Pattern
For most people, the easiest way to understand the command pattern is to use it to solve a specific
problem. In the sections that follow, I apply the pattern to create an undo facility for my example
application. You may need to read through the implementation steps a couple of times to make
sense of how the pattern fits together, but stick with it because the command pattern is worth taking
the time to understand.

Defining the Command Protocol
The starting point for the command pattern is to define the protocol that provides invokers with an
execution method. Listing 20-3 shows the contents of the Commands.swift file, which I added to the
example project.

Listing 20-3. The Contents of the Commands.swift File

protocol Command {
 func execute();
}

A command allows the invoker to execute the command but not to see details of the receiver object
or the instructions for invoking a method. To that end, the Command protocol I have defined in the
listing defines an execute method but does not reveal any other details.

Tip The convention is to use the name execute for the execution method, but you can use any name that

you prefer.

Defining the Command Implementation Class
The implementation class for the command pattern is simple to implement in Swift because the
instructions for executing the receiver method can be expressed as a closure. Listing 20-4 shows
the implementation class that I defined for the example project.

Listing 20-4. Defining the Command Implementation Class in the Commands.swift File

protocol Command {
 func execute();
}

class GenericCommand<T> : Command {
 private var receiver: T;
 private var instructions: T -> Void;

 init(receiver:T, instructions: T -> Void) {
 self.receiver = receiver; self.instructions = instructions;
 }

406 CHAPTER 20: The Command Pattern

 func execute() {
 instructions(receiver);
 }

 class func createCommand(receiver:T, instuctions: T -> Void) -> Command {
 return GenericCommand(receiver: receiver, instructions: instuctions);
 }
}

I have defined a generic implementation class called GenericCommand that defines private properties
that store the receiver object and the invocation instructions. The class conforms to the Command
protocol, and the execute method invokes the execution instruction on the receiver object. I have
also defined, simply as a convenience, a class method called createCommand that creates instances
of GenericCommand.

Applying the Command Pattern
To apply the command pattern, I have extended the Calculator class so that it generates an
array of Command objects that form the sequence of past undo operations. Listing 20-5 shows the
changes I made.

Listing 20-5. Adding Undo Support in the Calculator.swift File

class Calculator {
 private(set) var total = 0;
 private var history = [Command]();

 func add(amount:Int) {
 addUndoCommand(Calculator.subtract, amount: amount);
 total += amount;
 }

 func subtract(amount:Int) {
 addUndoCommand(Calculator.add, amount: amount);
 total -= amount;
 }

 func multiply(amount:Int) {
 addUndoCommand(Calculator.divide, amount: amount);
 total = total * amount;
 }

 func divide(amount:Int) {
 addUndoCommand(Calculator.multiply, amount: amount);
 total = total / amount;
 }

407CHAPTER 20: The Command Pattern

 private func addUndoCommand(method:Calculator -> Int -> Void, amount:Int) {
 self.history.append(GenericCommand<Calculator>.createCommand(self,
 instuctions: {calc in
 method(calc)(amount);
 }));
 }

 func undo() {
 if self.history.count > 0 {
 self.history.removeLast().execute();
 // temporary measure - executing the command adds to the history
 self.history.removeLast();
 }
 }
}

Tip In this example, the receiver executes commands on itself. This is not a requirement of the command

pattern, as I demonstrate in the “Variations on the Command Pattern” section.

Each of the four operation methods (add, subtract, and so on) calls the addUndoCommand method,
passing in the method that will undo the operation and the amount that should be passed as the
argument to that method. The addUndoCommand method creates the Command object and adds it to
an array called history. I have also defined an undo method that removes the most recent Command
from the history array and executes it, returning the Calculator object to an earlier state. Executing
an undo Command causes a new Command to be added to the history, which is not the effect I want
to create. For that reason, I remove and discard the last item in the history array after executing a
Command in the undo method. This is a temporary measure that I remove in the next section.

WORKING WITH METHOD REFERENCES

In Listing 20-5, I pass references to methods as arguments to the addUndoCommand method, like this:

...
addUndoCommand(Calculator.add, amount: amount);
...

The first argument is a reference to the add method defined by the Calculator class. To receive this reference, I

defined the addUndoCommand signature like this:

...
private func addUndoCommand(method:Calculator -> Int -> Void, amount:Int) {
...

408 CHAPTER 20: The Command Pattern

The parameter called method is defined as a function that takes a Calculator object and that returns another function.

The second function takes an Int and doesn’t return a result. This can be confusing, but it relates to the way that Swift

instance methods are implemented behind the scenes. Consider the following code:

class Printer {
 func printMessage(message:String) {
 println(message);
 }
}

let printerObject = Printer();
printerObject.printMessage("Hello");

I have defined a class called Printer that has a printMessage method. To use the Printer class, I create a new

instance and then use that instance to call the method. The structure of the final statement is this:

<object reference>.<instance method name>(<argument value>)

This is the normal way of invoking a method, but there is an alternative:

...
Printer.printMessage(printerObject)("Hello");
...

This has the same effect as calling the method via the object reference. Here is the structure of this technique:

<class>.<instance method name>(<object reference>)(<argument value>)

Currying is the process of creating one function that fixes one or more arguments passed to another function. In this case,

the first function returns a curried function that invokes the instance method on the specified object. The advantage of

this approach is that the object reference is passed as an argument to the first function, which means that I can select

the receiver for my commands dynamically and pass around references to methods as objects—something that becomes

important when you want to change the receiver that a command targets (see the “Variations on the Command Pattern”

section for an example).

Applying Concurrent Protections
The problem that I described at the start of this chapter included multiple components operating
on a single Calculator object, and now that I have an array in the Calculator class, I need to add
concurrency protection to avoid data protection. Listing 20-6 shows how I have used Grand Central
Dispatch to serialize access to the history array.

409CHAPTER 20: The Command Pattern

Listing 20-6. Applying Concurrency Protections in the Calculator.swift File

import Foundation;

class Calculator {
 private(set) var total = 0;
 private var history = [Command]();
 private var queue = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_SERIAL);
 private var performingUndo = false;

 func add(amount:Int) {
 addUndoCommand(Calculator.subtract, amount: amount);
 total += amount;
 }

 func subtract(amount:Int) {
 addUndoCommand(Calculator.add, amount: amount);
 total -= amount;
 }

 func multiply(amount:Int) {
 addUndoCommand(Calculator.divide, amount: amount);
 total = total * amount;
 }

 func divide(amount:Int) {
 addUndoCommand(Calculator.multiply, amount: amount);
 total = total / amount;
 }

 private func addUndoCommand(method:Calculator -> Int -> Void, amount:Int) {
 if (!performingUndo) {
 dispatch_sync(self.queue, {() in
 self.history.append(GenericCommand<Calculator>.createCommand(self,
 instuctions: {calc in
 method(calc)(amount);
 }));
 });
 }
 }

 func undo() {
 dispatch_sync(self.queue, {() in
 if self.history.count > 0 {
 self.performingUndo = true;
 self.history.removeLast().execute();
 self.performingUndo = false;
 }
 });
 }
}

410 CHAPTER 20: The Command Pattern

Note You don’t have to add concurrency protection when implementing the command pattern, but I

recommend that you at least consider it. As an application matures, the number of components that executes

commands on a receiver may grow, increasing the chances of concurrent access and data corruption.

I have created a serial queue, and I use the dispatch_sync method in the addUndoCommand and undo
methods to ensure that the history array is not modified concurrently. I have defined a variable called
performingUndo that I set when executing an undo Command to prevent the addUndoCommand method from
adding another command to the history array when called from one of the operation methods.

Tip Using a variable to signal whether I am executing an undo command prevents the application from

locking up. Grand Central Dispatch doesn’t support recursive locking, which means that the application

freezes if I call a method that invokes the dispatch_sync function from inside a block that was also

placed in the queue with the dispatch_sync function. The second call to dispatch_async blocks until

the first call completes, which doesn’t happen because the first call is waiting for the second one, a classic

concurrency mistake.

Using the Undo Feature
The final step is to demonstrate the undo feature that I added to the Calculator class, as shown in
Listing 20-7.

Listing 20-7. Using the Undo Feature in the main.swift File

let calc = Calculator();
calc.add(10);
calc.multiply(4);
calc.subtract(2);
println("Total: \(calc.total)");

for _ in 0 ..< 3 {
 calc.undo();
 println("Undo called. Total: \(calc.total)");
}

I use a for loop to call the undo method on the Calculator object three times, writing the new value
of the total property to the debug console. Running the application produces the following output:

Total: 38
Undo called. Total: 40
Undo called. Total: 10
Undo called. Total: 0

411CHAPTER 20: The Command Pattern

Variations on the Command Pattern
The command pattern can be applied in a wide range of situations, but there are three main
variations on the pattern that you will encounter, each of which I describe in the following sections.

Creating Composite Commands
The commands that I created in the Calculator object undo a single operation, but it is a simple matter
to use the opacity of the Command protocol to create commands that perform multiple operations by
acting as a wrapper around two or more other commands. Listing 20-8 shows how I defined a class
that conforms to the Command protocol and that is a wrapper around other commands.

Listing 20-8. Defining a Command Wrapper in the Commands.swift File

protocol Command {
 func execute();
}

class CommandWrapper : Command {
 private let commands:[Command];

 init(commands:[Command]) {
 self.commands = commands;
 }

 func execute() {
 for command in commands {
 command.execute();
 }
 }
}

class GenericCommand<T> : Command {
 private var receiver: T;
 private var instructions: T -> Void;

 init(receiver:T, instructions: T -> Void) {
 self.receiver = receiver; self.instructions = instructions;
 }

 func execute() {
 instructions(receiver);
 }

 class func createCommand(receiver:T, instuctions: T -> Void) -> Command {
 return GenericCommand(receiver: receiver, instructions: instuctions);
 }
}

412 CHAPTER 20: The Command Pattern

The CommandWrapper class defines a constant array of Command objects that are executed in
sequence. Listing 20-9 shows how I have used CommandWrapper in the Calculator class to provide a
snapshot of the undo commands.

Listing 20-9. Creating a Composite Command in the Calculator.swift File

import Foundation;

class Calculator {

 // ...properties and methods omitted for brevity...

 func getHistorySnaphot() -> Command? {
 var command:Command?;
 dispatch_sync(queue, {() in
 command = CommandWrapper(commands: self.history.reverse());
 });
 return command;
 }
}

The getHistorySnapshot method returns a Command that will undo all of the operations that have been
performed by date. The implementation of the method creates an instance of the CommandWrapper
class that copies the local array of undo commands. (See Chapter 5 for details of how Swift and
Cocoa arrays are copied.)

Tip Notice that I reverse the array of commands that I pass to the CommandWrapper initializer. This is

because the Calculator class processes its array in tail-first order, but the CommandWrapper class uses

headfirst ordering. Reversing the order of the array means that the undo commands are applied in the same

sequence as if they had been executed individually through the undo method.

Listing 20-10 shows the changes I made to the main.swift file to obtain and execute the composite
command.

Listing 20-10. Using a Composite Command in the main.swift File

let calc = Calculator();
calc.add(10);
calc.multiply(4);
calc.subtract(2);

let snapshot = calc.getHistorySnaphot();
println("Pre-Snapshot Total: \(calc.total)");
snapshot?.execute();
println("Post-Snapshot Total: \(calc.total)");

413CHAPTER 20: The Command Pattern

Running the example application produces the following output, which demonstrates that each of
the individual undo commands has been executed through the composite command:

Pre-Snapshot Total: 38
Post-Snapshot Total: 0

Using Commands as Macros
Commands are often used to create macros, which allows the same set of operations to be performed
on different receive objects. To use commands as objects, the receiver must be passed to the execute
method, rather than to the command object initializer. Listing 20-11 shows the changes I made to allow
the receiver to be specified as an argument.

Listing 20-11. Modifying the Command Protocol and Implementation Classes in the Commands.swift File

protocol Command {
 func execute(receiver:Any);
}

class CommandWrapper : Command {
 private let commands:[Command];

 init(commands:[Command]) {
 self.commands = commands;
 }

 func execute(receiver:Any) {
 for command in commands {
 command.execute(receiver);
 }
 }
}

class GenericCommand<T> : Command {
 private var instructions: T -> Void;

 init(instructions: T -> Void) {
 self.instructions = instructions;
 }

 func execute(receiver:Any) {
 if let safeReceiver = receiver as? T {
 instructions(safeReceiver);
 } else {
 fatalError("Receiver is not expected type");
 }
 }

 class func createCommand(instuctions: T -> Void) -> Command {
 return GenericCommand(instructions: instuctions);
 }
}

414 CHAPTER 20: The Command Pattern

I have added an Any parameter to the execute method defined by the Command protocol. I enforce
type conformance in the execute method of the GenericCommand class by calling the global
fatalError function if the object passed to the execute method doesn’t match the generic type
parameter. This isn’t ideal because errors will be reported at runtime rather than by the compiler, but
Swift makes it difficult to create and apply generic protocols.

In Listing 20-12, you can see how I have modified the Calculator class to remove the undo feature
and replaced it with support for generating a macro command that will apply the operations that
have been performed.

Listing 20-12. Adding Support for Macros in the Calculator.swift File

import Foundation;

class Calculator {
 private(set) var total = 0;
 private var history = [Command]();
 private var queue = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_SERIAL);

 func add(amount:Int) {
 addMacro(Calculator.add, amount: amount);
 total += amount;
 }

 func subtract(amount:Int) {
 addMacro(Calculator.subtract, amount: amount);
 total -= amount;
 }

 func multiply(amount:Int) {
 addMacro(Calculator.multiply, amount: amount);
 total = total * amount;
 }

 func divide(amount:Int) {
 addMacro(Calculator.divide, amount: amount);
 total = total / amount;
 }

 private func addMacro(method:Calculator -> Int -> Void, amount:Int) {
 dispatch_sync(self.queue, {() in
 self.history.append(GenericCommand<Calculator>.createCommand(
 { calc in method(calc)(amount); }
));
 });
 }

415CHAPTER 20: The Command Pattern

 func getMacroCommand() -> Command? {
 var command:Command?;
 dispatch_sync(queue, {() in
 command = CommandWrapper(commands: self.history);
 });
 return command;
 }
}

Each operation method now calls the addMacro method, which builds up this history of the
operations that have been performed on the Calculator instance (rather than the counter operations
that were required for the undo feature). The important difference is that the Calculator object
itself is not included in the Command objects that are created and subsequently packaged up by the
getMacroCommand method. Instead, each command contains details of the operation method that
will be invoked and the argument that will be passed to it, and it is the responsibility of the calling
component to specify the Calculator object that will be the receiver for the commands. Listing 20-13
shows how I have used the macro feature in the main.swift file.

Listing 20-13. Creating and Applying a Macro in the main.swift File

let calc = Calculator();
calc.add(10);
calc.multiply(4);
calc.subtract(2);

println("Calc 1 Total: \(calc.total)");

let macro = calc.getMacroCommand();

let calc2 = Calculator();
macro?.execute(calc2);
println("Calc 2 Total: \(calc2.total)");

I apply a series of operations on one Calculator object and then use those commands as a macro
to apply the same operations to a different Calculator object. Running the example application
produces the following results:

Calc 1 Total: 38
Calc 2 Total: 38

Using Closures as Commands
The command pattern specifies the use of a command object, which is what I have used in all of
the implementations so far in this chapter. However, a command is just a container for details of a
method that should be invoked, the values for its argument, and—optionally—the receiver that will
be targeted. All of these details can be encapsulated in Swift closures, without the need to define
and use a Command protocol and its implementation.

416 CHAPTER 20: The Command Pattern

I prefer to use Command objects. I find it makes the purpose of the pattern more obvious and produces
code that it easier to read and maintain. You may feel differently, however, and in Listing 20-14, you
can see how I have modified the Calculator class so that it uses closures to express commands and
no longer relies on the Command protocol and the GenericCommand class.

Listing 20-14. Using Closures as Commands in the Calculator.swift File

import Foundation;

class Calculator {
 private(set) var total = 0;
 typealias CommandClosure = (Calculator -> Void);
 private var history = [CommandClosure]();
 private var queue = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_SERIAL);

 func add(amount:Int) {
 addMacro(Calculator.add, amount: amount);
 total += amount;
 }

 func subtract(amount:Int) {
 addMacro(Calculator.subtract, amount: amount);
 total -= amount;
 }

 func multiply(amount:Int) {
 addMacro(Calculator.multiply, amount: amount);
 total = total * amount;
 }

 func divide(amount:Int) {
 addMacro(Calculator.divide, amount: amount);
 total = total / amount;
 }

 private func addMacro(method:Calculator -> Int -> Void, amount:Int) {
 dispatch_sync(self.queue, {() in
 self.history.append({ calc in method(calc)(amount)});
 });
 }

 func getMacroCommand() -> (Calculator -> Void) {
 var commands = [CommandClosure]();
 dispatch_sync(queue, {() in
 commands = self.history
 });

417CHAPTER 20: The Command Pattern

 return { calc in
 if (commands.count > 0) {
 for index in 0 ..< commands.count {
 commands[index](calc);
 }
 }
 };
 }
}

The changes in this listing may look minor, but writing this kind of code is mind-bending as you sort
through the variables on which you want to close and those that you don’t and figure out whether
you need to curry from Calculator -> Int -> Void to Calculator -> Void or to Int -> Void.

If you are committed to this style of command, then notice that I used the typealias keyword to
define an alias for use in arrays, like this:

...
typealias CommandClosure = (Calculator -> Void);
private var history = [CommandClosure]();
...

The Swift compiler doesn’t like dealing with closure signatures as the data type for arrays but
can be placated with an alias. Listing 20-15 shows the changes in the main.swift file to use the
closure-based Calculator class.

Listing 20-15. Using the Closure-Based Calculator Class in the main.swift File

let calc = Calculator();
calc.add(10);
calc.multiply(4);
calc.subtract(2);
println("Calc 1 Total: \(calc.total)");

let macro = calc.getMacroCommand();

let calc2 = Calculator();
macro(calc2);
println("Calc 2 Total: \(calc2.total)");

The only change is to invoke the closure returned by the getMacroCommand method directly, rather
than invoking an execute method defined by a Command object. Running the application produces the
following output, showing that the closures work in just the same way as separate command objects:

Calc 1 Total: 38
Calc 2 Total: 38

418 CHAPTER 20: The Command Pattern

Understanding the Pitfalls of the Command Pattern
The command pattern is relatively simple to implement as long as you don’t expose details of the
receiver object or the method invocation instructions to the calling component. When it comes to the
implementation detail, ensure that you add concurrency protection if the commands may be used by
multiple components and ensure that your closures operate on the object that you expect and are
not closing on the wrong receiver objects.

Examples of the Command Pattern in Cocoa
The Foundation framework includes the NSInvocation class, which is used to implement the command
pattern in Objective-C. However, because of the different ways that Swift and Objective-C invoke their
methods, the NSInvocation class cannot be used in Swift code. A more specific implementation of the
command pattern is available through the NSUndoManager class, which I use in the next section.

Applying the Pattern to the SportsStore Application
I am going to apply the command pattern to the SportsStore application to implement an undo
feature for stock level changes. iOS includes a built-in undo management framework that is easy to
use and that uses the command pattern.

Preparing the Example Application
The standard mechanism for triggering an iOS undo operation is to shake the device. To prepare for
the command pattern, I am going to add support for receiving a notification when the shake motion
is recognized. Listing 20-16 shows the change I made to the ViewController class.

Listing 20-16. Adding Shake Motion Support in the ViewController.swift File

class ViewController: UIViewController, UITableViewDataSource {

 @IBOutlet weak var totalStockLabel: UILabel!
 @IBOutlet weak var tableView: UITableView!

 let productStore = ProductDataStore();

 override func viewDidLoad() {
 super.viewDidLoad()
 displayStockTotal();
 let bridge = EventBridge(callback: updateStockLevel);
 productStore.callback = bridge.inputCallback;
 }

 override func motionEnded(motion: UIEventSubtype, withEvent event: UIEvent) {
 if (event.subtype == UIEventSubtype.MotionShake) {
 println("Shake motion detected");
 }
 }

 // ...methods omitted for brevity...
}

419CHAPTER 20: The Command Pattern

I have overridden the motionEnded method so that I check the type of the motion that has been
detected and print out a message to the Xcode debug console if the motion is a shake. To test the
change, start the SportsStore application and select Shake Gesture from the Hardware menu of the
iOS simulator. You will see the following message displayed in the Xcode console:

Shake motion detected

Implementing the Undo Feature
The most direct way to implement the command pattern is to work with the NSUndoManager class.
The NSUndoManager class is managed automatically through the undoManager property of the UI
component classes’ conformance to the NSResponder protocol, which means that creating an
instance of the NSUndoManager is handled for you. There are two stages to working with the undo
manager, and the first is to register the commands that will be invoked when the user requests an
undo operation. Listing 20-17 shows the changes I made to the ViewController class.

Listing 20-17. Registering Undo Commands in the ViewController.swift File

...
@IBAction func stockLevelDidChange(sender: AnyObject) {
 if var currentCell = sender as? UIView {
 while (true) {
 currentCell = currentCell.superview!;
 if let cell = currentCell as? ProductTableCell {
 if let product = cell.product? {

 let dict = NSDictionary(objects: [product.stockLevel],
 forKeys: [product.name]);

 undoManager?.registerUndoWithTarget(self,
 selector: "undoStockLevel:",
 object: dict);

 if let stepper = sender as? UIStepper {
 product.stockLevel = Int(stepper.value);
 } else if let textfield = sender as? UITextField {
 if let newValue = textfield.text.toInt()? {
 product.stockLevel = newValue;
 }
 }
 cell.stockStepper.value = Double(product.stockLevel);
 cell.stockField.text = String(product.stockLevel);
 productLogger.logItem(product);

 StockServerFactory.getStockServer()
 .setStockLevel(product.name,
 stockLevel: product.stockLevel);
 }

420 CHAPTER 20: The Command Pattern

 break;
 }
 }
 displayStockTotal();
 }
}

func undoStockLevel(data:[String:Int]) {
 let productName = data.keys.first;
 if (productName != nil) {
 let stockLevel = data[productName!];
 if (stockLevel != nil) {

 for nproduct in productStore.products {
 if nproduct.name == productName! {
 nproduct.stockLevel = stockLevel!;
 }
 }

 updateStockLevel(productName!, level: stockLevel!);
 }
 }
}
...

The undoManager property is optional, and commands are registered with the registerUndoWithTarget
method. The parameters for this method are the receiver of the command, the method that will be
invoked, and an object that will be passed to that argument.

...
undoManager?.registerUndoWithTarget(self, selector: "undoStockLevel:", object: dict);
...

I have specified the view controller as the receiver, and I have specified a new method, called
undoStockLevel. For the method argument, I have created an NSDictionary that contains the name
of the product that has been modified and the old stock level.

NSUndoManager exposes some of its Objective-C roots. First, when I specify the name of the method
to invoke, I follow the name with a colon, like this:

...
undoManager?.registerUndoWithTarget(self, selector: "undoStockLevel:", object: dict);
...

This relates to how methods are selected in Objective-C code, and omitting the colon will cause an
exception when the command is executed. The other issue to be aware of is that I had to use an
NSDictionary as the argument to be passed to the method because Swift built-in dictionaries are
not supported. I had to define the undoStockLevel method because undo commands can provide
only a single object. I unpack the data in the dictionary and use it to update the product object in
the repository and to call the updateStockLevel method, which takes two arguments and therefore
cannot be called directly by the undo manager.

421CHAPTER 20: The Command Pattern

Triggering an Undo Command

The result of calling the registerUndoWithTarget method is that a command is created behind the
scenes, waiting to be executed when the user shakes the device. Listing 20-18 shows the change I
made to the motionEnded method on the ViewController class.

Listing 20-18. Triggering Undo Commands in the ViewController.swift File

...
override func motionEnded(motion: UIEventSubtype, withEvent event: UIEvent) {
 if (event.subtype == UIEventSubtype.MotionShake) {
 println("Shake motion detected");
 undoManager?.undo();
 }
}
...

The undo method defined by the NSUndoManager class triggers the most recent undo command
created by the registerUndoWithTarget method. To test the changes, start the application, change
the value of one of the products, and then select Shake Gesture from the iOS simulator Hardware
menu. The change that you made will be reversed, as illustrated by Figure 20-3.

Figure 20-3. Undoing a stock level change

Summary
In this chapter I described the command pattern, which is used to encapsulate a method invocation
so that it can be performed later or by another component. I demonstrated how the command
pattern can be used to implement undo operations and to create sequences of invocations that
act as macros. In the next chapter, I describe the mediator pattern, which is used to manage
communication between groups of peer objects.

423

Chapter 21
The Mediator Pattern

The mediator pattern is used to simplify and rationalize the communication between groups of
objects. This is one of the least well-known design patterns, but it solves a common problem and can
simplify the design of an application significantly. Table 21-1 puts the mediator pattern into context.

Table 21-1. Putting the Mediator Pattern into Context

Question Answer

What is it? The mediator pattern simplifies peer-to-peer communication

between objects by introducing a mediator object that acts as a

communications broker between the objects.

What are the benefits? Instead of having to keep track of and communicate with of all of its

peers individually, an object just deals with the mediator.

When should you use this pattern? Use this pattern when you are dealing with a group of objects that

need to communicate freely between one another.

When should you avoid this pattern? Don’t use this pattern if you have one object that needs to send

notifications to a range of disparate objects; use the observer pattern

described in Chapter 22 instead.

How do you know when you have

implemented the pattern correctly?

The mediator pattern is implemented correctly when each object

deals only with the mediator and has no direct knowledge of its peers.

Are there any common pitfalls? It is important that the mediator not provide peers with access to one

another so that they might become interdependent.

Are there any related patterns? This pattern is closely related to—and often combined with—the

observer pattern that I describe in Chapter 22.

424 CHAPTER 21: The Mediator Pattern

Preparing the Example Project
For this chapter I created an Xcode Command Line Tool project called Mediator and added to it a file
called Airplane.swift, the contents of which are shown in Listing 21-1.

Listing 21-1. The Contents of the Airplane.swift File

struct Position {
 var distanceFromRunway:Int;
 var height:Int;
}

func == (lhs:Airplane, rhs:Airplane) -> Bool {
 return lhs.name == rhs.name;
}

class Airplane : Equatable {
 var name:String;
 var currentPosition:Position;
 private var otherPlanes:[Airplane];

 init(name:String, initialPos:Position) {
 self.name = name;
 self.currentPosition = initialPos;
 self.otherPlanes = [Airplane]();
 }

 func addPlanesInArea(planes:Airplane...) {
 for plane in planes {
 otherPlanes.append(plane);
 }
 }

 func otherPlaneDidLand(plane:Airplane) {
 if let index = find(otherPlanes, plane) {
 otherPlanes.removeAtIndex(index);
 }
 }

 func otherPlaneDidChangePosition(plane:Airplane) -> Bool {
 return plane.currentPosition.distanceFromRunway
 == self.currentPosition.distanceFromRunway
 && abs(plane.currentPosition.height
 - self.currentPosition.height) < 1000;
 }

425CHAPTER 21: The Mediator Pattern

 func changePosition(newPosition:Position) {
 self.currentPosition = newPosition;
 for plane in otherPlanes {
 if (plane.otherPlaneDidChangePosition(self)) {
 println("\(name): Too close! Abort!");
 return;
 }
 }
 println("\(name): Position changed");
 }

 func land() {
 self.currentPosition = Position(distanceFromRunway: 0, height: 0);
 for plane in otherPlanes {
 plane.otherPlaneDidLand(self);
 }
 println("\(name): Landed");
 }
}

The Airplane class represents the state of an aircraft as it approaches an airport and tracks its
current position using the Position struct. There may be other planes approaching the airport, so
each Airplane objects keeps track of those around it and ensures that its movements will not bring
it too close to another plane. Listing 21-2 shows the statements that I added to the main.swift file to
create and manipulate an instance of the Airplane class.

Listing 21-2. The Contents of the main.swift File

// initial setup
let british = Airplane(name: "BA706", initialPos: Position(distanceFromRunway: 11, height: 21000));

// plane approaches airport
british.changePosition(Position(distanceFromRunway: 8, height: 10000));
british.changePosition(Position(distanceFromRunway: 2, height: 5000));
british.changePosition(Position(distanceFromRunway: 1, height: 1000));
// plane lands
british.land();

I create an Airplane object to represent a British Airways flight and then call the changePosition
method several times to reflect its progress toward the airport and then call the land method.
Running the example application produces the following output:

BA706: Position changed
BA706: Position changed
BA706: Position changed
BA706: Landed

426 CHAPTER 21: The Mediator Pattern

Understanding the Problem That the Pattern Solves
The problem with the example application becomes apparent when there are several Airplane
objects used to represent approaches to the airport. Listing 21-3 shows the changes that I made to
the main.swift file to add two additional Airplane objects.

Listing 21-3. Using Additional Airplane Objects in the main.swift File

// initial setup
let british = Airplane(name: "BA706", initialPos:
 Position(distanceFromRunway: 11, height: 21000));

// new plane arrives
let american = Airplane(name: "AA101", initialPos: Position(distanceFromRunway: 12, height: 22000));
british.addPlanesInArea(american);
american.addPlanesInArea(british);

// plane approaches airport
british.changePosition(Position(distanceFromRunway: 8, height: 10000));
british.changePosition(Position(distanceFromRunway: 2, height: 5000));
british.changePosition(Position(distanceFromRunway: 1, height: 1000));

// new plane arrives
let cathay = Airplane(name: "CX200", initialPos: Position(distanceFromRunway: 13, height: 22000));
british.addPlanesInArea(cathay);
american.addPlanesInArea(cathay);
cathay.addPlanesInArea(british, american);

// plane lands
british.land();

// plane moves too close
cathay.changePosition(Position(distanceFromRunway: 12, height: 22000));

Running the application produces the following output:

BA706: Position changed
BA706: Position changed
BA706: Position changed
BA706: Landed
CX200: Too close! Abort!

There are only three Airplane objects, but the complexity of the code in the main.swift file has
increased sharply because each Airplane has to keep track of every other Airplane. Taking into
account the amount of code required to keep track of the other aircraft inside the Airplane object,
a substantial percentage of the application is given over just to managing the communication
between Airplane objects. The result is a set of Airplane objects that know about each other and
communicate by invoking methods directly on one another, as shown in Figure 21-1.

427CHAPTER 21: The Mediator Pattern

This is a problem that gets worse as the number of objects increases because every Airplane object
has to be made aware of every other instance, creating an ever more complex set of dependencies
in which it is easy to forget to establish a new connection, as shown in Figure 21-2.

Figure 21-1. The peer communications problem

Figure 21-2. The effect of forgetting to establish a new connection

428 CHAPTER 21: The Mediator Pattern

This kind of omission is nasty because it manifests itself as a problem when a feature relies on the
missing connection. In this case, the collision-avoidance code in the changePosition method will
always work unless the Qantas flight tries to move into the space occupied by the American Airlines
flight. If this happens, the position of the American Airlines flight won’t be checked, and collision-
avoidance will have failed.

Understanding the Mediator Pattern
The mediator pattern solves the problem by introducing a mediator object that eases communication
between two or more peer objects, often referred to as colleagues. The mediator keeps track of the
peer objects and facilities the communication between them in order to break the dependencies
between objects, avoid problems caused by omitted relationships, and simplify the overall application.
Figure 21-3 illustrates the way that the mediator pattern transforms the Airplane problem.

Figure 21-3. The mediator pattern

Each Airplane has a relationship with the mediator, rather than with its peers. It sends its messages to
the mediator, and the mediator keeps track of the other Airplane objects and forwards the messages
to them. The mediator reduces the number of dependencies in the application and ensures that all of
the messages are dispatched to all of the peers, avoiding the missed connection problem.

429CHAPTER 21: The Mediator Pattern

Implementing the Mediator Pattern
The core of the mediator pattern is a pair of protocols: one that defines the functionality provided by
the peers and one that defines the functionality for the mediator. You can see how I have defined the
protocols in Listing 21-4, which shows the contents of the Mediator.swift file that I added to the
example project.

Listing 21-4. The Contents of the Mediator.swift File

protocol Peer {
 var name:String {get};
 func otherPlaneDidChangePosition(position:Position) -> Bool;
}

protocol Mediator {
 func registerPeer(peer:Peer);
 func unregisterPeer(peer:Peer);
 func changePosition(peer:Peer, pos:Position) -> Bool;
}

The Peer protocol defines a name property for identification purposes and an
otherPlaneDidChangePosition method that is called to check to see whether it is safe for another
aircraft to move. The Mediator protocol defines registerPeer and unregisterPeer methods to add
and remove objects from the set it mediates and defines a changePosition method that will call the
otherPlanChangePosition method of the peers it mediates.

Defining the Meditator Class
The next step is to define a class that conforms to the Mediator protocol and that can be used to
mediate the communication between a set of Peer objects. Listing 21-5 shows the class I defined.

Listing 21-5. Defining the Mediator Implementation in the Mediator.swift File

protocol Peer {
 var name:String {get};
 func otherPlaneDidChangePosition(position:Position) -> Bool;
}

protocol Mediator {
 func registerPeer(peer:Peer);
 func unregisterPeer(peer:Peer);
 func changePosition(peer:Peer, pos:Position) -> Bool;
}

class AirplaneMediator : Mediator {
 private var peers:[String:Peer];

 init() {
 peers = [String:Peer]();
 }

430 CHAPTER 21: The Mediator Pattern

 func registerPeer(peer: Peer) {
 self.peers[peer.name] = peer;
 }

 func unregisterPeer(peer: Peer) {
 self.peers.removeValueForKey(peer.name);
 }

 func changePosition(peer:Peer, pos:Position) -> Bool {
 for storedPeer in peers.values {
 if (peer.name != storedPeer.name
 && storedPeer.otherPlaneDidChangePosition(pos)) {
 return true;
 }
 }
 return false;
 }
}

The implementation of the AirplaneMediator class is simple. I store the collection of Peer objects
using a dictionary, which eases the implementation of the changePosition methods that must ensure
that the caller of the method doesn’t have its otherPlaneDidchangePosition method called for its
own position change.

Conforming to the Peer Protocol
The next step is to update the Airplane class so that it conforms to the Peer protocol and no longer
manages a list of its peers. Listing 21-6 shows the changes that I made.

Listing 21-6. Conforming to the Peer Protocol in the Airplane.swift File

struct Position {
 var distanceFromRunway:Int;
 var height:Int;
}

class Airplane : Peer {
 var name:String;
 var currentPosition:Position;
 var mediator:Mediator;

 init(name:String, initialPos:Position, mediator: Mediator) {
 self.name = name;
 self.currentPosition = initialPos;
 self.mediator = mediator;
 mediator.registerPeer(self);
 }

431CHAPTER 21: The Mediator Pattern

 func otherPlaneDidChangePosition(position:Position) -> Bool {
 return position.distanceFromRunway
 == self.currentPosition.distanceFromRunway
 && abs(position.height - self.currentPosition.height) < 1000;
 }

 func changePosition(newPosition:Position) {
 self.currentPosition = newPosition;
 if (mediator.changePosition(self, pos: self.currentPosition) == true) {
 println("\(name): Too close! Abort!");
 return;
 }
 println("\(name): Position changed");
 }

 func land() {
 self.currentPosition = Position(distanceFromRunway: 0, height: 0);
 mediator.unregisterPeer(self);
 println("\(name): Landed");
 }
}

The overall effect is to focus the class on its own state and rely on the meditator to manage the
relationship with other peers on its behalf. Listing 21-7 shows how I updated the code in
the main.swift file to use the mediator.

Listing 21-7. Using the Mediator in the main.swift File

let mediator:Mediator = AirplaneMediator();

// initial setup
let british = Airplane(name: "BA706", initialPos:
 Position(distanceFromRunway: 11, height: 21000), mediator:mediator);

// new plane arrives
let american = Airplane(name: "AA101", initialPos: Position(distanceFromRunway: 12, height: 22000),
mediator:mediator);

// plane approaches airport
british.changePosition(Position(distanceFromRunway: 8, height: 10000));
british.changePosition(Position(distanceFromRunway: 2, height: 5000));
british.changePosition(Position(distanceFromRunway: 1, height: 1000));

// new plane arrives
let cathay = Airplane(name: "CX200", initialPos: Position(distanceFromRunway: 13, height: 22000),
mediator:mediator);

// plane lands
british.land();

// plane moves too close
cathay.changePosition(Position(distanceFromRunway: 12, height: 22000));

432 CHAPTER 21: The Mediator Pattern

I no longer need to notify each Airplane when I create another instance because the mediator
will automatically keep track for me and ensure that I don’t forget to create all of the connections
required before the mediator was applied. Running the application produces the following output:

BA706: Position changed
BA706: Position changed
BA706: Position changed
BA706: Landed
CX200: Too close! Abort!

Implementing Concurrency Protections
Like with many of the patterns I describe in this book, implementing the mediator pattern means
considering whether the peer objects will need to communicate with each other concurrently
or whether peers will be registered or unregistered simultaneously. This won’t be the case in all
applications, but if there is likely to be concurrent use, then concurrency protections are required, as
described in the following sections.

Implementing Concurrency Protections in the Mediator

Concurrency protection in the mediator ensures that the collection of peers isn’t corrupted and that
results returned by the mediator’s methods are consistent. Listing 21-8 shows how I have used
Grand Central Dispatch (GCD) to protect the mediator class.

Listing 21-8. Implementing Concurrency Protections in the Mediator.swift File

import Foundation;

protocol Peer {
 var name:String {get};
 func otherPlaneDidChangePosition(position:Position) -> Bool;
}

protocol Mediator {
 func registerPeer(peer:Peer);
 func unregisterPeer(peer:Peer);
 func changePosition(peer:Peer, pos:Position) -> Bool;
}

class AirplaneMediator : Mediator {
 private var peers:[String:Peer];
 private let queue = dispatch_queue_create("dictQ", DISPATCH_QUEUE_CONCURRENT);

 init() {
 peers = [String:Peer]();
 }

433CHAPTER 21: The Mediator Pattern

 func registerPeer(peer: Peer) {
 dispatch_barrier_sync(self.queue, { () in
 self.peers[peer.name] = peer;
 });
 }

 func unregisterPeer(peer: Peer) {
 dispatch_barrier_sync(self.queue, { () in
 let removed = self.peers.removeValueForKey(peer.name);
 });
 }

 func changePosition(peer:Peer, pos:Position) -> Bool {
 var result = false;
 dispatch_sync(self.queue, { () in
 for storedPeer in self.peers.values {
 if (peer.name != storedPeer.name
 && storedPeer.otherPlaneDidChangePosition(pos)) {
 result = true;
 }
 }
 });

 return result;

 }
}

I want to allow multiple operations to read the data in the peers dictionary unless I am about
to modify it. I have used a concurrent GCD queue with a call to the dispatch_sync function for
read operations and with calls to the dispatch_barrier_sync function in the registerPeer and
unregisterPeer method to gain exclusive access to the dictionary for making changes.

Tip Notice that I have assigned the result of the call to the removeValueForKey method to a constant in

the implementation of the unregisterPeer method. Swift tries to be helpful and takes the result returned

from the call to the dictionary method as the result to return from the closure—which is a problem because

closures used as GCD blocks may not return results. Assigning the result to a constant captures the value and

prevents it from being treated as a result.

Implementing Concurrency Protections in the Peer

The concurrency protections I added to the mediator do not make any assumptions
about the implementation of the peer objects and allow multiple simultaneous calls to the
otherPlanDidChangePosition method. This means I need to modify the Airplane class so as to
protect the integrity of its internal state data, as shown in Listing 21-9.

434 CHAPTER 21: The Mediator Pattern

Listing 21-9. Adding Concurrency Protections in the Airplane.swift File

import Foundation

struct Position {
 var distanceFromRunway:Int;
 var height:Int;
}

class Airplane : Peer {
 var name:String;
 var currentPosition:Position;
 var mediator:Mediator;
 let queue = dispatch_queue_create("posQ", DISPATCH_QUEUE_CONCURRENT);

 init(name:String, initialPos:Position, mediator: Mediator) {
 self.name = name;
 self.currentPosition = initialPos;
 self.mediator = mediator;
 mediator.registerPeer(self);
 }

 func otherPlaneDidChangePosition(position:Position) -> Bool {
 var result = false;
 dispatch_sync(self.queue, {() in
 result = position.distanceFromRunway
 == self.currentPosition.distanceFromRunway
 && abs(position.height - self.currentPosition.height) < 1000;
 });
 return result;
 }

 func changePosition(newPosition:Position) {
 dispatch_barrier_sync(self.queue, {() in
 self.currentPosition = newPosition;
 if (self.mediator.changePosition(self, pos:
 self.currentPosition) == true) {
 println("\(self.name): Too close! Abort!");
 return;
 }
 println("\(self.name): Position changed");
 });
 }

 func land() {
 dispatch_barrier_sync(self.queue, { () in
 self.currentPosition = Position(distanceFromRunway: 0, height: 0);
 self.mediator.unregisterPeer(self);
 println("\(self.name): Landed");
 });
 }
}

435CHAPTER 21: The Mediator Pattern

The concurrency protection that I added to the class allows multiple concurrent calls to the
otherPlaneDidChangePosition method, but calls to the changePosition and land methods use a
barrier to ensure that they have exclusive access to make modifications.

Variations on the Mediator Pattern
The standard implementation of the mediator pattern is focused on managing the relationships
with peers, but common variations extend the role of the mediator, as I describe in the following
sections.

Putting More Logic Into the Mediator
The first variation is to add logic into the mediator implementation class to more actively manage
the flow of messages between peers or to provide additional features. To demonstrate this variation,
I am going to reduce the number of peer objects that are called by the mediator changePosition
method by adding some basic logic to filter out those that are farther away from the airport than
the airplane that wants to be (on the basis that all of the planes are trying to land and are moving
in the same direction). The first step is to expand the information revealed by the Peer protocol
so that the mediator can access its location data, as shown in Listing 21-10.

Listing 21-10. Revealing Additional Information in the Mediator.swift File

...
protocol Peer {
 var name:String {get};
 var currentPosition:Position {get};
 func otherPlaneDidChangePosition(position:Position) -> Bool;
}
...

Exposing the currentPosition property allows the mediator to be more selective about the peers
whose methods it invokes, as shown in Listing 21-11.

Listing 21-11. Selectively Targeting Peers in the Mediator.swift File

...
func changePosition(peer:Peer, pos:Position) -> Bool {
 var result = false;
 dispatch_sync(self.queue, { () in

 let closerPeers = self.peers.values.filter({p in
 return p.currentPosition.distanceFromRunway
 <= pos.distanceFromRunway;
 });

436 CHAPTER 21: The Mediator Pattern

 for storedPeer in closerPeers {
 if (peer.name != storedPeer.name
 && storedPeer.otherPlaneDidChangePosition(pos)) {
 result = true;
 }
 }
 });
 return result;
}
...

I use the filter method to eliminate those planes that are farther away and then invoke the
otherPlaneDidChangePosition method on the remaining objects. Running the application produces
the following output, which is the same as previous examples:

BA706: Position changed
BA706: Position changed
BA706: Position changed
BA706: Landed
CX200: Too close! Abort!

The benefit of this variation is that I make fewer calls to peer objects, and in doing so, I hope to
speed up the process of changing the position of an airplane. The drawback of this approach is that
I have now codified a behavior into the mediator that will need to be changed if the application is
extended to include planes that are departing from the airport and not just those that are arriving.

Generalizing the Mediator-Peer Relationship
The standard implementation of the mediator pattern means that the mediator has some knowledge
into the methods defined by the peers in order that it can call those methods as needed. This makes
it difficult to reuse a mediator class for a different set of peers.

If you expect to need multiple mediators in an application, a common variation is to generalize the
implementation of the pattern and create a mediator class that doesn’t require any knowledge of
the peers it is used with. There are two broad approaches to addressing this problem, although, as I
explain in the following sections, both have their limitations.

Generalizing the Mediator with the Command Pattern

One approach is to combine the mediator pattern with the command pattern and have the mediator
play the role of the invoker I described in Chapter 20. Listing 21-12 shows how I have defined a
generalized command-based mediator class in a file called CommandMediator.swift that I added to
the example project.

437CHAPTER 21: The Mediator Pattern

Listing 21-12. Defining a Generalized Mediator Class in the CommandMediator.swift File

protocol CommandPeer {
 var name:String { get };
}

class Command {
 let function:CommandPeer -> Any;

 init(function:CommandPeer -> Any) {
 self.function = function;
 }

 func execute(peer:CommandPeer) -> Any {
 return function(peer);
 }
}

class CommandMediator {
 private var peers = [String:CommandPeer]();

 func registerPeer(peer:CommandPeer) {
 peers[peer.name] = peer;
 }

 func unregisterPeer(peer:CommandPeer) {
 peers.removeValueForKey(peer.name);
 }

 func dispatchCommand(caller:CommandPeer, command:Command) -> [Any] {
 var results = [Any]();
 for peer in peers.values {
 if (peer.name != caller.name) {
 results.append(command.execute(peer));
 }
 }
 return results;
 }
}

Peers must conform to the CommandPeer protocol, in part to aid the implementation of the Command
class and in part so that I can use the name property to prevent the mediator from executing a
command on the object that created it.

Caution For simplicity I have implemented the CommandMediator class without concurrency protections.

Using the command pattern doesn’t protect the collection of peers, and you should apply protections to all

mediators if concurrent use is possible. See the “Implementing Concurrency Protections” section for details.

438 CHAPTER 21: The Mediator Pattern

The Command class represents the command that each peer will be asked to execute. As you saw in
Chapter 20, there are different ways to arrange the definition and execution of a command, and the
one that I have chosen to use means that the mediator will invoke the command, passing each peer
into the execute method of the Command object. I have done this because I want to capture a result
value from executing the command and present an array of those results to the calling peer.

The CommandMediator class is a variation of the mediator I used in the standard implementation of
the pattern that presents a dispatchCommand method that accepts a Command object and passes each
CommandPeer to its function. The results from executing the command on each peer are collected into
an array and returned as the result to the calling peer.

Listing 21-13 shows how I updated the Airplane class to use the command-based mediator.

Listing 21-13. Using the CommandMediator in the Airplane.swift File

import Foundation

struct Position {
 var distanceFromRunway:Int;
 var height:Int;
}

class Airplane : CommandPeer {
 var name:String;
 var currentPosition:Position;
 var mediator:CommandMediator;
 let queue = dispatch_queue_create("posQ", DISPATCH_QUEUE_CONCURRENT);

 init(name:String, initialPos:Position, mediator: CommandMediator) {
 self.name = name;
 self.currentPosition = initialPos;
 self.mediator = mediator;
 mediator.registerPeer(self);
 }

 func otherPlaneDidChangePosition(position:Position) -> Bool {
 var result = false;
 dispatch_sync(self.queue, {() in
 result = position.distanceFromRunway
 == self.currentPosition.distanceFromRunway
 && abs(position.height - self.currentPosition.height) < 1000;
 });
 return result;
 }

 func changePosition(newPosition:Position) {
 dispatch_barrier_sync(self.queue, {() in
 self.currentPosition = newPosition;

439CHAPTER 21: The Mediator Pattern

 let c = Command(function: {peer in
 if let plane = peer as? Airplane {
 return plane.otherPlaneDidChangePosition (self.currentPosition);
 } else {
 fatalError("Type mismatch");
 }
 });

 let allResults = self.mediator.dispatchCommand(self, command: c);
 for result in allResults {
 if result as? Bool == true {
 println("\(self.name): Too close! Abort!");
 return;
 }
 }
 println("\(self.name): Position changed");
 });
 }

 func land() {
 dispatch_barrier_sync(self.queue, { () in
 self.currentPosition = Position(distanceFromRunway: 0, height: 0);
 self.mediator.unregisterPeer(self);
 println("\(self.name): Landed");
 });
 }
}

This approach creates a mediator that can handle any group of objects instantiated from a class that
conforms to the CommandPeer protocol, but some caution is required because the Command objects
that a peer creates have to make an assumption about the type of the peers against which the
command will be executed. Since any peer can send a command, this means that all peers have to
be derived from the same base class and that you cannot use the CommandMediator class to mediate
between objects of differing types, even if they are all instantiated from classes that conform to the
CommandPeer protocol.

The implementation of the changePosition method in the Airplane class creates a command that
casts peer objects to the Airplane type and calls the otherPlaneDidChangePosition method. I call
the global fatalError function if the peer cannot be cast as an Airplane because the behavior of a
mediator in this situation is undefined.

The final change is to the main.swift file, in which I must create an instance of the CommandMediator
class, as shown in Listing 21-14.

440 CHAPTER 21: The Mediator Pattern

Listing 21-14. Using the CommandMediator Class in the main.swift File

let mediator = CommandMediator();

// initial setup
let british = Airplane(name: "BA706", initialPos:
 Position(distanceFromRunway: 11, height: 21000), mediator:mediator);

// new plane arrives
let american = Airplane(name: "AA101", initialPos:
 Position(distanceFromRunway: 12, height: 22000), mediator:mediator);

// plane approaches airport
british.changePosition(Position(distanceFromRunway: 8, height: 10000));
british.changePosition(Position(distanceFromRunway: 2, height: 5000));
british.changePosition(Position(distanceFromRunway: 1, height: 1000));

// new plane arrives
let cathay = Airplane(name: "CX200", initialPos:
 Position(distanceFromRunway: 13, height: 22000), mediator:mediator);

// plane lands
british.land();

// plane moves too close
cathay.changePosition(Position(distanceFromRunway: 12, height: 22000));

You can run the application to test that the changes don’t affect the output, which is as follows:

BA706: Position changed
BA706: Position changed
BA706: Position changed
BA706: Landed
CX200: Too close! Abort!

Generalizing the Mediator with Messages

An alternative approach is to target a single method on peer objects and provide sufficient information
to let the peer work out what response is needed. This avoids the assumptions about the type of the
peer objects and allows peers of different types to be used with a single mediator, but it means that
all peers need to have the same understanding about the range of messages that will be sent, which
presents its own problems. Listing 21-15 shows how I have defined the protocol and implementation
class required for the message-based mediator in a new file called MessageMediator.swift that I
added to the example project.

441CHAPTER 21: The Mediator Pattern

Listing 21-15. The Contents of the MessageMediator.swift File

protocol MessagePeer {
 var name:String { get };
 func handleMessage(messageType:String, data:Any?) -> Any?;
}

class MessageMediator {
 private var peers = [String:MessagePeer]();

 func registerPeer(peer:MessagePeer) {
 peers[peer.name] = peer;
 }

 func unregisterPeer(peer:MessagePeer) {
 peers.removeValueForKey(peer.name);
 }

 func sendMessage(caller:MessagePeer, messageType:String, data:Any) -> [Any?] {
 var results = [Any?]();
 for peer in peers.values {
 if (peer.name != caller.name) {
 results.append(peer.handleMessage(messageType, data: data));
 }
 }
 return results;
 }
}

The MessagePeer protocol defines a name property so that the mediator can identify the sender of a
message and defines a handleMessage method that is passed a string describing the message type
and an optional Any data value, which will be used to provide data about the message to peers. The
MessageMediator class keeps track of peers and also defines a sendMessage method that peers call
to dispatch a message to their counterparts. The mediator gathers the set of results from the peers
and returns them in an array to the caller. Listing 21-16 shows how I changed the implementation of
the Airplane class to use the message-based mediator.

Listing 21-16. Using the Message-Based Mediator in the Airplane.swift File

import Foundation

struct Position {
 var distanceFromRunway:Int;
 var height:Int;
}

class Airplane : MessagePeer {
 var name:String;
 var currentPosition:Position;
 var mediator:MessageMediator;
 let queue = dispatch_queue_create("posQ", DISPATCH_QUEUE_CONCURRENT);

442 CHAPTER 21: The Mediator Pattern

 init(name:String, initialPos:Position, mediator: MessageMediator) {
 self.name = name;
 self.currentPosition = initialPos;
 self.mediator = mediator;
 mediator.registerPeer(self);
 }

 func handleMessage(messageType: String, data: Any?) -> Any? {
 var result:Any?;
 switch (messageType) {
 case "changePos":
 if let pos = data as? Position {
 result = otherPlaneDidChangePosition(pos);
 }
 default:

 fatalError("Unknown message type");

 }

 return result;

 }

 func otherPlaneDidChangePosition(position:Position) -> Bool {
 var result = false;
 dispatch_sync(self.queue, {() in
 result = position.distanceFromRunway
 == self.currentPosition.distanceFromRunway
 && abs(position.height - self.currentPosition.height) < 1000;
 });
 return result;
 }

 func changePosition(newPosition:Position) {
 dispatch_barrier_sync(self.queue, {() in
 self.currentPosition = newPosition;

 let allResults = self.mediator.sendMessage(self,
 messageType: "changePos", data: newPosition);
 for result in allResults {
 if result as? Bool == true {
 println("\(self.name): Too close! Abort!");
 return;
 }
 }
 println("\(self.name): Position changed");
 });
 }

443CHAPTER 21: The Mediator Pattern

 func land() {
 dispatch_barrier_sync(self.queue, { () in
 self.currentPosition = Position(distanceFromRunway: 0, height: 0);
 self.mediator.unregisterPeer(self);
 println("\(self.name): Landed");
 });
 }
}

The advantage of this approach is that the Airplane class doesn’t need to make any assumptions
about the other peers—but this comes at the cost of needing to ensure that all peers know about the
same set of message types and respond to them in a consistent and useful manner. This is harder
than it sounds in a complex application, and it is easy to have multiple peer types whose message
handling drifts apart as the application becomes more complex. To complete this implementation,
I need to use the MessageMediator class in the main.swift file, as shown in Listing 21-17.

Listing 21-17. Using the MessageMediator Class in the main.swift File

let mediator = MessageMediator();

// initial setup
let british = Airplane(name: "BA706", initialPos:
 Position(distanceFromRunway: 11, height: 21000), mediator:mediator);

// new plane arrives
let american = Airplane(name: "AA101", initialPos:
 Position(distanceFromRunway: 12, height: 22000), mediator:mediator);

// plane approaches airport
british.changePosition(Position(distanceFromRunway: 8, height: 10000));
british.changePosition(Position(distanceFromRunway: 2, height: 5000));
british.changePosition(Position(distanceFromRunway: 1, height: 1000));

// new plane arrives
let cathay = Airplane(name: "CX200", initialPos:
 Position(distanceFromRunway: 13, height: 22000), mediator:mediator);

// plane lands
british.land();

// plane moves too close
cathay.changePosition(Position(distanceFromRunway: 12, height: 22000));

Understanding the Pitfalls of the Mediator Pattern
The most important pitfall to avoid is revealing details of one peer to another. The mediator should keep
its peer collection private and not allow peers to locate or depend on one another, other than indirectly
through the mediator. If you are implementing methods that return result, for example, then you must
ensure that the peers do not return self as the result or, if they do, that the mediator doesn’t pass the
reference back to the calling peer. Programmers like shortcuts, and allowing direct peer-to-peer contact
allows the lazy programmer to bypass the mediator and undermine the pattern implementation.

444 CHAPTER 21: The Mediator Pattern

The Single Protocol Pitfall
A common pitfall is to make the peers and the mediator conform to a common protocol, such that
the peers do not know that a mediator is being used, believing instead that they are dealing with
a single peer object. This may seem like a clever idea, but it ends in messy and confusing code
because there is rarely a one-to-one mapping of the methods that the mediator provides to the
methods that must be exposed by the peers. My advice is to use separate protocols for the peers
and the mediator, which ensures that implementation classes don’t have to implement phantom
methods or create tortured mappings between methods.

Examples of the Mediator Pattern in Cocoa
The Foundation framework includes a ready-made mediator called NSNotificationCenter that can
be used to send notifications between objects. The NSNotificationCenter class is a message-based
mediator; the class allows peers to specify the kinds of messages they want to receive and to restrict
the peers from which messages can originate—but there is no support for receiving responses from
peers. Messages flow in one direction only. I created an Xcode playground called Notfications.
playground to demonstrate the use of the NSNotificationCenter class, as shown in Listing 21-18.

Listing 21-18. The Contents of the Notifications.playground File

import Foundation;

let notifier = NSNotificationCenter.defaultCenter();

@objc class NotificationPeer {
 let name:String;

 init(name:String) {
 self.name = name;
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "receiveMessage:", name: "message", object: nil);
 }

 func sendMessage(message:String) {
 NSNotificationCenter.defaultCenter().postNotificationName("message",
 object: message);
 }

 func receiveMessage(notification:NSNotification) {
 println("Peer \(name) received message: \(notification.object)");
 }
}

let p1 = NotificationPeer(name: "peer1");
let p2 = NotificationPeer(name: "peer2");
let p3 = NotificationPeer(name: "peer3");
let p4 = NotificationPeer(name: "peer4");

p3.sendMessage("Hello!");

445CHAPTER 21: The Mediator Pattern

Note The NSNotificationCenter class also implements the observer pattern, which I describe in

Chapter 22.

An instance of the NSNotificationCenter class is obtained through the class defaultCenter property
and is used both to register peers to receive and send messages. Registration is performed using
the addObserver method, like this:

...
NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "receiveMessage:", name: "message", object: nil);
...

The first argument is the object that messages will be sent to, for which I have specified the current
object. The selector argument specifies the method that the messages will be sent to, expressed as
an Objective-C style selector, which means that the method name should be followed with a colon
character. The name argument is used to select only messages that are sent using a specific label,
and the object argument can be used to limit messages to those sent from a specific source.
I have set the name to message and object arguments to nil, indicating that I want to receive all of the
messages with the label message, regardless of the label and source.

Tip The method that is specified by the selector argument must be annotated with the @objc attribute

or contained within a class that is annotated with @objc.

Messages are sent using the postNotificationName method, specifying a label and an object that
will be sent to the peers, like this:

...
NSNotificationCenter.defaultCenter()

 .postNotificationName("message", object: message);

...

In the playground, I define a class called NotificationPeer that calls the addObserver method to
register for messages to be sent to the receiveMessage method, and I use the sendMessage method
to send messages via the NSNotificationCenter, using the label message.

When you register to receive messages, the method specified by the selector argument must take a
single argument of the NSNotification type, which is used to represent messages and which defines
the properties shown in Table 21-2.

446 CHAPTER 21: The Mediator Pattern

I create four NotificationPeer objects in the playground and then call the sendMessage method on
one of them, which produces the following output in the console:

Peer peer1 received message: Optional(Hello!)
Peer peer2 received message: Optional(Hello!)
Peer peer3 received message: Optional(Hello!)
Peer peer4 received message: Optional(Hello!)

The NSNotificationCenter can be a useful class, but I find not being able to obtain responses from
peers to be a limitation in many projects, so I generally implement my own alternative, as described
in the “Variations on the Mediator Pattern” section of this chapter.

Applying the Pattern to the SportsStore Application
There isn’t a ready example for applying the mediator pattern on its own to the SportsStore for this
chapter. Instead, in Chapter 22, I demonstrate how to use the mediator pattern and the command
pattern together, which is a common combination.

Summary
In this chapter I described the mediator pattern and explained how it is used to handle
communication between peer objects in order to reduce the complexity of an application and to
ensure that no peer objects are left out. In the next chapter, I describe the observer pattern, which is
used when an object needs to notify other objects when something interesting happens.

Table 21-2. The Properties Defined by the NSNotification Class

Name Description

name The label used to send the message, set to message in the example

object The optional data object associated with the message, set to the message parameter passed to

the sendMessage method in the example

userInfo An optional data value expressed as a dictionary that can be sent with an overloaded version of

the postNotificationName method, not used in the example

447

Chapter 22
The Observer Pattern

The observer pattern is used to manage the process by which one object expresses interest in—and
receives notification of—changes in another. The observer pattern allows large and complex groups
of objects to cooperate with one another with few dependencies between them and is so widely
used that you are likely to have come across it if you have developed an application using a modern
UI component framework. Table 22-1 puts the observer pattern in context.

Table 22-1. Putting the Observer Pattern into Context

Question Answer

What is it? The observer pattern allows one object to register to receive notifications

about changes in another object without needing to depend on the

implementation of that object.

What are the benefits? This pattern simplifies application design by allowing objects that provide

notifications to do so in a uniform way without needing to know how those

notifications are processed and acted on by the recipients.

When should you use this

pattern?

Use this pattern whenever one object needs to receive notifications about

changes in another object but where the sender of the notifications does

not depend on the recipient to complete its work.

When should you avoid this

pattern?

Do not use this pattern unless the sender of the notifications is functionally

dependent from the recipients, such that the recipients could be removed

from the application without preventing the sender from performing its work.

How do you know when you

have implemented the pattern

correctly?

The observer pattern is implemented correctly when an object can receive

notifications without being tightly coupled to the object that sends them.

Are there any common pitfalls? The biggest pitfall with this pattern is allowing the objects that send and

receive notifications to become interdependent.

Are there any related patterns? No.

448 CHAPTER 22: The Observer Pattern

Preparing the Example Project
For this chapter I created an Xcode OS X Command Line Tool project called Observer. I added a file
to the project called SystemComponents.swift and used it to define the classes shown in Listing 22-1.

Listing 22-1. The Contents of the SystemComponents.swift File

class ActivityLog {
 func logActivity(activity:String) {
 println("Log: \(activity)");
 }
}

class FileCache {
 func loadFiles(user:String) {
 println("Load files for \(user)");
 }
}

class AttackMonitor {
 var monitorSuspiciousActivity: Bool = false {
 didSet {
 println("Monitoring for attack: \(monitorSuspiciousActivity)");
 }
 }
}

The three classes I have defined represent generic application components. I don’t need to
implement the components in any detail to demonstrate the pattern, and so they all write messages
to the debug console to indicate they are being used. The ActivityLog represents a logging system
that accepts details of system events, the FileCache class represents a cache that loads the files
belonging to a given user, and the AttackMonitor class represents a security service that monitors
system behavior when something suspicious has occurred. Listing 22-2 shows the contents of the
Authentication.swift file, in which I defined a class that uses the system components.

Listing 22-2. The Contents of the Authentication.swift File

class AuthenticationManager {
 private let log = ActivityLog();
 private let cache = FileCache();
 private let monitor = AttackMonitor();

 func authenticate(user:String, pass:String) -> Bool {
 var result = false;
 if (user == "bob" && pass == "secret") {
 result = true;
 println("User \(user) is authenticated");
 // call system components
 log.logActivity("Authenticated \(user)");
 cache.loadFiles(user);
 monitor.monitorSuspiciousActivity = false;
 } else {

449CHAPTER 22: The Observer Pattern

 println("Failed authentication attempt");
 // call system components
 log.logActivity("Failed authentication: \(user)");
 monitor.monitorSuspiciousActivity = true;
 }
 return result;
 }
}

The AuthenticationManager class represents a service that authenticates users with a password.
The user’s credentials are passed by a calling component to the authenticate method, which
authenticates the user and writes a message to the debug console. To keep the example simple,
the AuthenticationManager class allows a single username/password combination: the password
bob with the password secret. Listing 22-3 shows the code I added to the main.swift file to use the
AuthenticationManager class.

Listing 22-3. The Contents of the main.swift File

let authM = AuthenticationManager();

authM.authenticate("bob", pass: "secret");
println("-----");
authM.authenticate("joe", pass: "shhh");

The authenticate method of the AuthenticationManager class checks the credentials and
authenticates the user. Once the authentication process has been completed, the component
classes are called to set up the system for the user: logging a message, loading the user’s file, and
disabling the security monitor. The code in the main.swift file calls the authenticate method twice,
once with credentials that will be authenticated and once with credentials that will fail. Running the
application produces the following results:

User bob is authenticated
Log: Authenticated bob
Load files for bob
Monitoring for attack: false

Failed authentication attempt
Log: Failed authentication: joe
Monitoring for attack: true

Understanding the Problem That the Pattern Solves
The structure of the code in the example application is commonly seen in real-world projects.
Something happens that leads to a series of follow-on actions being performed. In the example, the
starting event is a user authentication request, and the follow-on actions are logging, loading files,
and configuring a monitoring service, as shown in Figure 22-1.

450 CHAPTER 22: The Observer Pattern

The problem is that the class that handles the initial activity—the AuthenticationManager class
in the example—has to have detailed knowledge of the follow-on actions that are required, the
classes responsible for those actions, and how those actions are performed. A change in one of the
system components requires a change in the authentication manager class, and this presents the
maintenance and testing problems that I have been referring to throughout this book. More broadly,
the code in the authentication manager class spills over from the world of authentication and gets
involved in completely different activities, something that makes the class more complex than it
should be and more difficult to change.

Understanding the Observer Pattern
The observer pattern changes the relationship between objects by dividing them into subjects and
observers. The subject objects maintain collections of dependent objects, the observers, and notify
them about important changes or actions. In the example application, the subject would be the
authentication manager class, and the observers would be the system component classes.

Without the observer pattern, a class like AuthenticationManager has to know which system
components need to be called when an authentication request succeeds or fails, what changes
should be applied to each of them, and how those changes should be performed.

The observer pattern reshapes this model so that the subject notifies its observers that the initial
event has occurred—a authentication request was made—and leaves it to the observers to respond
in whatever way is required. The subject doesn’t need to know what the observer objects do or how
they do it—just that they want to be told about important events.

Figure 22-1. An initial event and its follow-on action

451CHAPTER 22: The Observer Pattern

The observer pattern standardizes the way that the observers receive notifications so that no
knowledge of individual observers is required. Each subject knows only that there are observers that
want to receive notifications and is responsible only for sending them to a well-defined method that
all of the observers implement (conventionally named notify). Figure 22-2 illustrates the observer
pattern, although the impact of this pattern is best seen through an implementation.

Figure 22-2. The observer pattern

Implementing the Observer Pattern
To key to implementing the observer pattern is to define the interactions between the subjects
and observers using protocols. Listing 22-4 shows the protocols I defined in a new file called
Observer.swift.

Listing 22-4. The Contents of the Observer.swift File

protocol Observer : class {
 func notify(user:String, success:Bool);
}

protocol Subject {
 func addObservers(observers:Observer...);
 func removeObserver(observer:Observer);
}

452 CHAPTER 22: The Observer Pattern

The names of the protocols reflect the roles that classes that conform to them play in the observer
pattern. Classes that conform to the Observer protocol implement the notify method to receive
notifications from classes that conform to the Subject protocol. In the observer pattern, subjects
are responsible for keeping track of their observers, so I have defined the addObservers and
removeObserver methods to allow observers to register and unregister their interest in receiving
notifications from the subject. Notice that the addObservers method can accept multiple Observer
objects. This makes it easier to set up the Subject object, as you will see in the “Consuming the
Pattern” section.

Tip Notice that I have used the class keyword when defining the Observer protocol. This will make it

possible for me to compare objects that implement the protocol when managing the observers in a class that

conforms to the Subject protocol, as shown in Listing 22-5.

Creating the Base Subject Class
In the observer pattern, the subject is responsible for keeping track of its observers. To avoid
duplicating the code that creates and manages the collection of observers, I create a base class
that manages the observers and provides a method that subject implementation classes can use
to send a notification. Since Swift collections are not thread-safe and there is the potential for the
collection of observers to be accessed concurrently, I use Grand Central Dispatch (GCD) to protect
the observer collection, as shown in Listing 22-5.

Listing 22-5. Defining a Base Subject Class in the Observer.swift File

import Foundation;

protocol Observer : class {
 func notify(user:String, success:Bool);
}

protocol Subject {
 func addObservers(observers:Observer...);
 func removeObserver(observer:Observer);
}

class SubjectBase : Subject {
 private var observers = [Observer]();
 private var collectionQueue = dispatch_queue_create("colQ",
 DISPATCH_QUEUE_CONCURRENT);

 func addObservers(observers: Observer...) {
 dispatch_barrier_sync(self.collectionQueue, { () in
 for newOb in observers {
 self.observers.append(newOb);
 }
 });
 }

453CHAPTER 22: The Observer Pattern

 func removeObserver(observer: Observer) {
 dispatch_barrier_sync(self.collectionQueue, { () in
 self.observers = filter(self.observers, {$0 !== observer});
 });
 }

 func sendNotification(user:String, success:Bool) {
 dispatch_sync(self.collectionQueue, { () in
 for ob in self.observers {
 ob.notify(user, success: success);
 }
 });
 }
}

Conforming to the Subject Protocol
The next step is to update the AuthenticationManager class so that it conforms to the Subject
protocol and to remove direct references to the system component classes that perform the follow-
on actions. Listing 22-6 shows the changes that I made, relying on the SubjectBase class that I
defined in the previous section.

Listing 22-6. Applying the Pattern in the Authentication.swift File

class AuthenticationManager : SubjectBase {

 func authenticate(user:String, pass:String) -> Bool {
 var result = false;
 if (user == "bob" && pass == "secret") {
 result = true;
 println("User \(user) is authenticated");
 } else {
 println("Failed authentication attempt");
 }
 sendNotification(user, success: result);
 return result;
 }
}

The effect is to simplify the class and return its focus to authenticating users. The references to
individual component classes have been replaced with a single call to the sendNotification method,
which in turn calls the notify method defined by each of the Observer objects that have been
registered through the addObservers method provided by the SubjectBase class.

454 CHAPTER 22: The Observer Pattern

Conforming to the Observer Protocol
The next step is to update the component classes so they conform to the Observer protocol and can
receive notifications from a Subject. Listing 22-7 shows the changes I made.

Listing 22-7. Conforming to the Observer Protocol in the SystemComponents.swift File

class ActivityLog : Observer {

 func notify(user: String, success: Bool) {
 println("Auth request for \(user). Success: \(success)");
 }

 func logActivity(activity:String) {
 println("Log: \(activity)");
 }
}

class FileCache : Observer {

 func notify(user: String, success: Bool) {
 if (success) {
 loadFiles(user);
 }
 }

 func loadFiles(user:String) {
 println("Load files for \(user)");
 }
}

class AttackMonitor : Observer {

 func notify(user: String, success: Bool) {
 monitorSuspiciousActivity = !success;
 }

 var monitorSuspiciousActivity: Bool = false {
 didSet {
 println("Monitoring for attack: \(monitorSuspiciousActivity)");
 }
 }
}

The additions make each class responsible for its own response to successful and failed
authentication requests, which breaks the tight coupling with the authentication manager class.

455CHAPTER 22: The Observer Pattern

Consuming the Pattern
All that remains is to update the code in the main.swift file to create the observers and register them
with the subject, as shown in Listing 22-8.

Listing 22-8. Consuming the Observer Pattern in the main.swift File

let log = ActivityLog();
let cache = FileCache();
let monitor = AttackMonitor();

let authM = AuthenticationManager();
authM.addObservers(log, cache, monitor);

authM.authenticate("bob", pass: "secret");
println("-----");
authM.authenticate("joe", pass: "shhh");

I create instances of the individual observers and pass them to the addObservers method of the
AuthenticationManager class. The AuthenticationManager class deals only with the observers
through the Observer protocol and the notify method it defines and has no knowledge of the
individual classes and what they do when the notify method is called. Running the application
produces the following results:

User bob is authenticated
Auth request for bob. Success: true
Load files for bob
Monitoring for attack: false

Failed authentication attempt
Auth request for joe. Success: false
Monitoring for attack: true

Using the Observer protocols makes it easy to extend the application without having to modify the
subject; new Observer objects are simply passed to the subject’s addObservers method.

Variations on the Observer Pattern
The observer pattern has a number of useful variations, each of which I describe in the following
sections.

456 CHAPTER 22: The Observer Pattern

Generalizing Notifications
The standard pattern implementation I created in the previous section is dedicated to dealing with
authentication requests. You can see this in the signature of the notify method defined by the
Observer protocol.

...
func notify(user:String, success:Bool);
...

The notify method can be used only to process authentication request notifications, and this can be
a problem when there are multiple subjects in the same application, each of which ends up defining
its own version of the Observer protocol and the notify method.

A common variation is to generalize the Observer protocol so that it can be used to receive a
wider range of notifications, each of which may originate from a different subject. The most
robust approach is to define a class that represents a notification and encapsulates details of the
notification type and any associated data, as shown in Figure 22-3.

Figure 22-3. An observer receiving notification objects from multiple subjects

Listing 22-9 shows how I have added support for a notification object to the example application.

Listing 22-9. Adding a Notification Object in the Observer.swift File

import Foundation;

enum NotificationTypes : String {
 case AUTH_SUCCESS = "AUTH_SUCCESS";
 case AUTH_FAIL = "AUTH_FAIL";
}

struct Notification {
 let type:NotificationTypes;
 let data:Any?;
}

457CHAPTER 22: The Observer Pattern

protocol Observer : class {
 func notify(notification:Notification);
}

protocol Subject {
 func addObservers(observers:Observer...);
 func removeObserver(observer:Observer);
}

class SubjectBase : Subject {
 private var observers = [Observer]();
 private var collectionQueue = dispatch_queue_create("colQ",
 DISPATCH_QUEUE_CONCURRENT);

 func addObservers(observers: Observer...) {
 dispatch_barrier_sync(self.collectionQueue, { () in
 for newOb in observers {
 self.observers.append(newOb);
 }
 });
 }

 func removeObserver(observer: Observer) {
 dispatch_barrier_sync(self.collectionQueue, { () in
 self.observers = filter(self.observers, {$0 !== observer});
 });
 }

 func sendNotification(notification:Notification) {
 dispatch_sync(self.collectionQueue, { () in
 for ob in self.observers {
 ob.notify(notification);
 }
 });
 }
}

I have defined a struct called Notification that indicates its type through a value from the
NotificationTypes enumeration and that provides the data observers will need to process the
notification as an optional constant called data. I have updated the Observer protocol so that the
notify method receives a Notification object and updated the sendNotification method in the
SubjectBase class to receive a Notification object. Listing 22-10 shows how I updated the observer
classes so they conform to the modified protocol.

458 CHAPTER 22: The Observer Pattern

Listing 22-10. Conforming to the Revised Observer Protocol in the SystemComponents.swift File

class ActivityLog : Observer {

 func notify(notification:Notification) {
 println("Auth request for \(notification.type.rawValue) "
 + "Success: \(notification.data!)");
 }

 func logActivity(activity:String) {
 println("Log: \(activity)");
 }
}

class FileCache : Observer {

 func notify(notification:Notification) {
 if (notification.type == NotificationTypes.AUTH_SUCCESS) {
 loadFiles(notification.data! as String);
 }
 }

 func loadFiles(user:String) {
 println("Load files for \(user)");
 }
}

class AttackMonitor : Observer {

 func notify(notification: Notification) {
 monitorSuspiciousActivity

= (notification.type == NotificationTypes.AUTH_FAIL);
 }

 var monitorSuspiciousActivity: Bool = false {
 didSet {
 println("Monitoring for attack: \(monitorSuspiciousActivity)");
 }
 }
}

Tip You don’t have to use an enumeration to detail the notification types in an application. The alternative

is to use a String to provide the name of the notification. I generally start with an enumeration because it

reduces the chance of mistyping a notification name in an observer, causing it to respond unexpectedly.

For larger projects, I usually switch to using string values because having a single enumeration to define all of

the notifications can become unwieldy, especially when multiple developers are defining different notifications

on the same project.

459CHAPTER 22: The Observer Pattern

Finally, I revised the subject class so that it uses the Notification struct, as shown in Listing 22-11.

Listing 22-11. Using Notification Objects in the AuthenticationManager.swift File

class AuthenticationManager : SubjectBase {

 func authenticate(user:String, pass:String) -> Bool {
 var nType = NotificationTypes.AUTH_FAIL;
 if (user == "bob" && pass == "secret") {
 nType = NotificationTypes.AUTH_SUCCESS;
 println("User \(user) is authenticated");
 } else {
 println("Failed authentication attempt");
 }
 sendNotification(Notification(type: nType, data: user));
 return nType == NotificationTypes.AUTH_SUCCESS;
 }
}

Running the example application produces the following output:

User bob is authenticated
Auth request for AUTH_SUCCESS Success: bob
Load files for bob
Monitoring for attack: false

Failed authentication attempt
Auth request for AUTH_FAIL Success: joe
Monitoring for attack: true

Understanding the Notification Object Pitfall

The changes seem modest, but there is a potential pitfall when applying this variation. The observers
have to know what data type to expect to be associated with a notification, and the subjects have to
honor that expectation.

In the case of the example application, the subject—the AuthenticationManager class—sends
the name of the user who has requested authentication expressed as a String value, and the
observers have to know what type the subject uses and, as importantly, what that value means. The
pitfall arises when two subjects use the same notification types with different data types or—more
dangerously—use the same data type but intend the value to express different meanings.

The surest way of avoiding this problem is to define subclasses for each notification that refine the
meaning of the associated data value. This is not a guarantee against deliberate misuse, but it does
guard against accidental problems. Listing 22-12 shows how I have defined a notification subclass in
the example application.

460 CHAPTER 22: The Observer Pattern

Listing 22-12. Defining a Notification Subclass in the Observers.swift File

import Foundation;

enum NotificationTypes : String {
 case AUTH_SUCCESS = "AUTH_SUCCESS";
 case AUTH_FAIL = "AUTH_FAIL";
 case SUBJECT_CREATED = "SUBJECT_CREATE";
 case SUBJECT_DESTROYED = "SUBJECT_DESTROYED";
}

class Notification {
 let type:NotificationTypes;
 let data:Any?;

 init(type:NotificationTypes, data:Any?) {
 self.type = type; self.data = data;
 }
}

class AuthenticationNotification: Notification {

 init(user:String, success:Bool) {
 super.init(type: success ? NotificationTypes.AUTH_SUCCESS
 : NotificationTypes.AUTH_FAIL, data: user);
 }

 var userName : String? {
 return self.data? as String?;
 }

 var requestSuccessed : Bool {
 return self.type == NotificationTypes.AUTH_SUCCESS;
 }
}

protocol Observer : class {
 func notify(notification:Notification);
}

protocol Subject {
 func addObservers(observers:Observer...);
 func removeObserver(observer:Observer);
}

class SubjectBase : Subject {
 // ...statements omitted for brevity...
}

I have changed Notification from a struct to a class so that I can derive the
AuthenticationNotification class from it and define computed properties that present the
property values in a more useful manner.

461CHAPTER 22: The Observer Pattern

You can create more specialized versions of the Observer protocol that deliver only notification-
specific objects, but I find that implementation classes that receive multiple notification types from
multiple subjects quickly become complex to implement and test. Instead, I prefer to use a general-
purpose Observer protocol and have the implementation classes test to see which types they
receive, as shown in Listing 22-13.

Listing 22-13. Receiving a Notification-Specific Object in the SystemComponents.swift File

...
class FileCache : Observer {
 func notify(notification:Notification) {
 if let authNotification = notification as? AuthenticationNotification {
 if (authNotification.requestSuccessed && authNotification.userName != nil) {
 loadFiles(authNotification.userName!);
 }
 }
 }

 func loadFiles(user:String) {
 println("Load files for \(user)");
 }
}
...

This approach means that any observer can still receive any notification through a single method but
can opt to check for more specialized types and take advantage of them as required. The other two
classes in the SystemComponents.swift file do not check for the AuthenticationNotification type,
but they are still perfectly able to receive and process the notifications sent by the authentication
manager class.

Using Weak References
Swift uses strong references for objects by default, which can lead to an odd situation where
a reference from a subject is the only one keeping an observer from being destroyed. This is a
dangerous situation to be in because the observer may still be responding to notifications long after
it should have been released, creating unexpected behavior and potentially keeping other objects
alive longer than intended.

Swift provides support for weak references that are not used in the automatic reference counting
process and that can be used in applications that have short-lived observers that may not have the
chance to deregister from their subjects. Swift arrays don’t work with weakly referenced objects
directly, so a wrapper is required, as shown in Listing 22-14.

462 CHAPTER 22: The Observer Pattern

Listing 22-14. Using Weak References to Observers in the Observer.swift File

import Foundation;

// ...statements omitted for brevity...

private class WeakObserverReference {
 weak var observer:Observer?;

 init(observer:Observer) {
 self.observer = observer;
 }
}

class SubjectBase : Subject {
 private var observers = [WeakObserverReference]();
 private var collectionQueue = dispatch_queue_create("colQ",
 DISPATCH_QUEUE_CONCURRENT);

 func addObservers(observers: Observer...) {
 dispatch_barrier_sync(self.collectionQueue, { () in
 for newOb in observers {
 self.observers.append(WeakObserverReference(observer: newOb));
 }
 });
 }

 func removeObserver(observer: Observer) {
 dispatch_barrier_sync(self.collectionQueue, { () in
 self.observers = filter(self.observers, { weakref in
 return weakref.observer != nil && weakref.observer !== observer;
 });
 });
 }

 func sendNotification(notification:Notification) {
 dispatch_sync(self.collectionQueue, { () in
 for ob in self.observers {
 ob.observer?.notify(notification);
 }
 });
 }
}

I have defined a class called WeakObserverReference that acts as a wrapper around a weakly
referenced Observer object through the use of the weak keyword. The WeakObserverRerence objects
are strongly referenced by the collection maintained by the SubjectBase class and won’t be
destroyed, even when the observer they weakly refer to has been.

463CHAPTER 22: The Observer Pattern

Dealing with Short-Lived Subjects
The standard implementation of the observer pattern assumes that an application reaches a sort of
steady state, in which the observer and subject objects have been created and associated with one
another, allowing a steady of flow of notifications for the life of the application.

This isn’t always the case, of course, and a common variation is to adapt the pattern so that
observers automatically receive notifications from subjects that have a relatively short life. In this
situation, it is helpful to arrange for observers to be notified when a new subject has been created.
The way I manage this situation is to combine the observer pattern with the mediator pattern I
described in Chapter 21. The mediator provides a handy mechanism through which subjects can
notify observers that they have been created—a kind of meta-observer pattern. The first step is
to define two new types of notification, which I will use to indicate when a subject is created and
destroyed, as shown in Listing 22-15.

Listing 22-15. Defining New Notification Types in the Observer.swift File

...
enum NotificationTypes : String {
 case AUTH_SUCCESS = "AUTH_SUCCESS";
 case AUTH_FAIL = "AUTH_FAIL";
 case SUBJECT_CREATED = "SUBJECT_CREATE";
 case SUBJECT_DESTROYED = "SUBJECT_DESTROYED";
}
...

Listing 22-16 shows the contents of the MetaObserver.swift file that I added to the example
project and that I used to define the protocol and classes required to handle short-lived subjects
automatically.

Listing 22-16. The Contents of the MetaObserver.swift File

protocol MetaObserver : Observer {
 func notifySubjectCreated(subject:Subject);
 func notifySubjectDestroyed(subject:Subject);
}

class MetaSubject : SubjectBase, MetaObserver {

 func notifySubjectCreated(subject: Subject) {
 sendNotification(Notification(type: NotificationTypes.SUBJECT_CREATED,
 data: subject));
 }

 func notifySubjectDestroyed(subject: Subject) {
 sendNotification(Notification(type: NotificationTypes.SUBJECT_DESTROYED,
 data: subject));
 }

464 CHAPTER 22: The Observer Pattern

 class var sharedInstance:MetaSubject {
 struct singletonWrapper {
 static let singleton = MetaSubject();
 }
 return singletonWrapper.singleton;
 }

 func notify(notification:Notification) {
 // do nothing - required for Observer conformance
 }
}

class ShortLivedSubject : SubjectBase {

 override init() {
 super.init();
 MetaSubject.sharedInstance.notifySubjectCreated(self);
 }

 deinit {
 MetaSubject.sharedInstance.notifySubjectDestroyed(self);
 }
}

At the heart of this variation is the MetaObserver protocol, which extends Observer and adds method
that will be called when new short-lived subjects are created and destroyed. I need a mechanism to
track meta-observers and dispatch notifications to them, so I created the mediator in the form of the
MetaSubject class, which is derived from SubjectBase (so I inherit thread-safe observer tracking) and
conforms to the MetaObserver protocol (so that individual subjects can announce their creation and
destruction). The final addition is the ShortLivedSubject class, which is derived from SubjectBase
and implements an initializer and de-initializer that calls the methods of the MetaSubject class.
Listing 22-17 shows how I have updated the AuthenticationManager class so that it participates in
the new functionality.

Listing 22-17. Creating a Short-Lived Subject in the Authentication.swift File

class AuthenticationManager : ShortLivedSubject {

 func authenticate(user:String, pass:String) -> Bool {
 var nType = NotificationTypes.AUTH_FAIL;
 if (user == "bob" && pass == "secret") {
 nType = NotificationTypes.AUTH_SUCCESS;
 println("User \(user) is authenticated");
 } else {
 println("Failed authentication attempt");
 }
 sendNotification(Notification(type: nType, data: user));
 return nType == NotificationTypes.AUTH_SUCCESS;
 }
}

465CHAPTER 22: The Observer Pattern

I only need to change the base class because all of the behavior I require is inherited. Listing 22-18
shows the changes I made to transform one of the observer classes into a meta-observer.

Listing 22-18. Creating a Meta-observer in the SystemComponents.swift File

...
class AttackMonitor : MetaObserver {

 func notifySubjectCreated(subject: Subject) {
 if (subject is AuthenticationManager) {
 subject.addObservers(self);
 }
 }

 func notifySubjectDestroyed(subject: Subject) {
 subject.removeObserver(self);
 }

 func notify(notification: Notification) {
 monitorSuspiciousActivity
 = (notification.type == NotificationTypes.AUTH_FAIL);
 }

 var monitorSuspiciousActivity: Bool = false {
 didSet {
 println("Monitoring for attack: \(monitorSuspiciousActivity)");
 }
 }
}
...

The implementation of the notifySubjectCreated method checks the type of the newly created
subject and registers for notifications only for instances of the AuthenticationManager class. The
final step is to change the way that the observer is created and applied in the main.swift file, as
shown in Listing 22-19.

Listing 22-19. Using a Meta-observer in the main.swift File

// create meta observer
let monitor = AttackMonitor();
MetaSubject.sharedInstance.addObservers(monitor);

// create regular observers
let log = ActivityLog();
let cache = FileCache();

let authM = AuthenticationManager();
// register only the regular observers
authM.addObservers(cache, monitor);

authM.authenticate("bob", pass: "secret");
println("-----");
authM.authenticate("joe", pass: "shhh");

466 CHAPTER 22: The Observer Pattern

The AttackMonitor object is registered as a meta-observer with the MetaSubject class. This
ensures that the AttackMonitor object is notified when the subject object is created and has the
option of registering for notifications. Running the application produces the following output, which
demonstrates that the meta-observer receives notifications from the subject:

Monitoring for attack: false
User bob is authenticated
Monitoring for attack: false

Failed authentication attempt
Monitoring for attack: true

Understanding the Pitfalls of the Observer Pattern
There are no serious pitfalls for the standard implementation of the observer pattern as long as you
ensure that your observers receive notifications only through the notify method and that the subject
doesn’t try to cast the observers to their implementation types.

When creating variations on the observer pattern, you should make sure you don’t lose sight
of the division of responsibilities between the subject and the observer; it is easy to create an
implementation that blurs the lines between subject and observer and that undermines the simplicity
and directness of the pattern.

Examples of the Observer Pattern in Cocoa
There are several examples of the observer pattern in the Cocoa frameworks. In Chapter 21, I
described the NSNotificationCenter class as an example of the mediator protocol, but this class
also implements the observer pattern. This is the same combination that I used to handle short-lived
subjects earlier in the chapter, and, in fact, you can use the NSNotificationCenter as a way to notify
meta-observers that subjects have been created or destroyed. I use the NSNotificationCenter to
apply the mediator and command patterns to the SportsStore application later in this chapter.

User Interface Events
The Cocoa implementation of the observer pattern that most programmers encounter is in the
UI frameworks, where user interactions and changes in UI component state are expressed using
events, which are notifications by another name. Within the Cocoa frameworks, there are protocols
for different categories of event, each of which has its equivalent of the notify method that I defined

467CHAPTER 22: The Observer Pattern

in the Observer protocol in the “Implementing the Observer Pattern” section of this chapter. As
an example, here is the method I added to the SportsStore application to respond when the user
shakes the iOS device to perform an undo operation:

...
override func motionEnded(motion: UIEventSubtype, withEvent event: UIEvent) {
 if (event.subtype == UIEventSubtype.MotionShake) {
 println("Shake motion detected");
 undoManager?.undo();
 }
}
...

The motionEnded method is defined by the UIResponder protocol, to which the ViewController
class conforms through its base class. Rather than signal all UI notifications through a single notify
method, the UIResponder protocol defines methods for each major type of user interaction, and the
UIEventSubtype enumeration is used to indicate the specific motion has been performed. You will
encounter events in all applications that use UI components, but you will typically implement only
the observer and rely on the components as subjects.

Observing Property Changes
Objective-C has a feature called key-value observing (KVO) that allows one object to receive
notifications when the value of another object’s property changes. You can use KVO to communicate
between Swift objects as long as both of them are derived from NSObject, and you use the dynamic
keyword when defining the property that will be observed.

To demonstrate how to use KVO in Swift, I created a new Xcode Command Line Tool project called
KVO and used the main.swift file to define the code shown in Listing 22-20.

Listing 22-20. Using KVO in the main.swift File

import Foundation;

class Subject : NSObject {
 dynamic var counter = 0;
}

class Observer : NSObject {

 init(subject:Subject) {
 super.init();
 subject.addObserver(self, forKeyPath: "counter",
 options: NSKeyValueObservingOptions.New, context: nil);
 }

 override func observeValueForKeyPath(keyPath: String, ofObject object: AnyObject,
 change: [NSObject : AnyObject], context: UnsafeMutablePointer<Void>) {

 println("Notification: \(keyPath) = \(change[NSKeyValueChangeNewKey]!)");
 }
}

468 CHAPTER 22: The Observer Pattern

let subject = Subject();
let observer = Observer(subject: subject);
subject.counter++;
subject.counter = 22;

Tip I had to use an Xcode project for this simple example because the limitations of playgrounds prevent

KVO from working properly.

The Subject class uses the dynamic keyword to define a variable called counter. This is the property
that I will observe using KVO, and the dynamic keyword prevents the implementation of the property
from being optimized by the compiler, allowing the KVO feature to replace it at runtime with the
equivalent of a computed property that notifies its observers of changes.

The Observer class registers its interest in the property using the addObserver method, like this:

...
subject.addObserver(self, forKeyPath: "counter",
 options: NSKeyValueObservingOptions.New, context: nil);
...

The arguments to the addObserver method specify the observer, the property to be observed, and
a value from the NSKeyValueObservingOptions enumeration that specifies which value should be
included in the notification when there is a change. I specified the New value, indicating that the value
assigned to the subject property should be used.

Notifications are sent to the observer’s observeValueForKeyPath method, containing details of the
subject, the property that changed, and the new value. In this example, I write out the name of the
property and its value. Running the example produces the following output in the Xcode console:

Notification: counter = 1
Notification: counter = 22

Applying the Pattern to the SportsStore Application
In this chapter, I am going to use the NSNotificationCenter class to apply both the mediator and
command patterns to the SportsStore application.

Preparing the Example Application
No preparation to the SportsStore application is required, and I pick up the project as I left it in
Chapter 20. Don’t forget that you can get the SportsStore project from Apress.com as part of the
free source code download that accompanies this book if you don’t want to type the changes
yourself.

https://Apress.com

469CHAPTER 22: The Observer Pattern

Applying the Pattern
I am going to apply the observer pattern to the product class so that it acts as a subject that sends
out notifications when the stock level changes. Rather than define custom protocols and classes, I
am going to use the NSNotificationCenter class to handle the notifications and to act as a mediator
so that the subjects and observers can find one another. Listing 22-21 shows the change I made to
the Product class so that it sends notifications.

Listing 22-21. Sending Notifications in the Product.swift File

...
var stockLevel:Int {
 get { return stockLevelBackingValue;}
 set {
 stockLevelBackingValue = max(0, newValue);
 NSNotificationCenter.defaultCenter().postNotificationName("stockUpdate",
 object: self);
 }
}
...

The advantage of using the NSNotificationCenter class is that notifications can be added to an
application with the minimum of effort, although care is still required to make sure that notifications
sent by different parts of the application don’t clash with one another. Now that the Product class
is sending out notifications, I can observe them anywhere the stock level information is of interest.
Listing 22-22 shows how I have changed the ProductTableCell class so that it updates its UI
components in response to a stock level notification.

Listing 22-22. Responding to Notifications in the ViewController.swift File

...
class ProductTableCell : UITableViewCell {

 @IBOutlet weak var nameLabel: UILabel!
 @IBOutlet weak var descriptionLabel: UILabel!
 @IBOutlet weak var stockStepper: UIStepper!
 @IBOutlet weak var stockField: UITextField!

 var product:Product?;

 required init(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder);
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "handleStockLevelUpdate:", name: "stockUpdate", object: nil);
 }

470 CHAPTER 22: The Observer Pattern

 func handleStockLevelUpdate(notification:NSNotification) {
 if let updatedProduct = notification.object as? Product {
 if updatedProduct.name == self.product?.name {
 stockStepper.value = Double(updatedProduct.stockLevel);
 stockField.text = String(updatedProduct.stockLevel);
 }
 }
 }
}
...

The ProductTableCell class sets the values of the UIStepper and UITextField components
when a notification for the Product that is being displayed changes. This means I can remove the
statements that explicitly altered the UI components from the stockLevelDidChange method in the
ViewController class, as shown in Listing 22-23.

Listing 22-23. Removing Statements from the ViewController.swift File

...
@IBAction func stockLevelDidChange(sender: AnyObject) {
 if var currentCell = sender as? UIView {
 while (true) {
 currentCell = currentCell.superview!;
 if let cell = currentCell as? ProductTableCell {
 if let product = cell.product? {

 let dict = NSDictionary(objects: [product.stockLevel],
 forKeys: [product.name]);

 undoManager?.registerUndoWithTarget(self,
 selector: "undoStockLevel:", object: dict);

 if let stepper = sender as? UIStepper {
 product.stockLevel = Int(stepper.value);
 } else if let textfield = sender as? UITextField {
 if let newValue = textfield.text.toInt()? {
 product.stockLevel = newValue;
 }
 }

// cell.stockStepper.value = Double(product.stockLevel);
// cell.stockField.text = String(product.stockLevel);
 productLogger.logItem(product);

471CHAPTER 22: The Observer Pattern

 StockServerFactory.getStockServer()
 .setStockLevel(product.name,
 stockLevel: product.stockLevel);
 }
 break;
 }
 }
 displayStockTotal();
 }
}
...

Summary
In this chapter I described the observer pattern, which is used to standardize the process by
which objects express interest in and receive notifications of changes in other objects. The
observer pattern is a powerful tool because it allows components to cooperate with one another
while remaining loosely coupled, which in turn makes it easier to test and make changes to those
components. In the next chapter, I describe the memento pattern, which is used to manage the state
of an object.

473

Chapter 23
The Memento Pattern

The memento pattern is a close relative of the command pattern I described in Chapter 20, with
the important difference that it is used to capture the complete state of an object so that it can be
subsequently reset. Table 23-1 puts the memento pattern in context.

Table 23-1. Putting the Memento Pattern into Context

Question Answer

What is it? The memento pattern captures the complete state of an object into

a memento that can be used to reset the object at a later date.

What are the benefits? The memento pattern allows a complete reset of an object without

the need to track and apply individual undo commands.

When should you use this pattern? Use this pattern when there is a “known-good” point in an object’s

life that you may want to return to at some point in the future.

When should you avoid this pattern? This pattern should be used only when you need to return an object

to an earlier state. Use the command pattern, as described in

Chapter 20, if you need to add support for undoing the effect of only

the most recent operation.

How do you know when you have

implemented the pattern correctly?

The pattern is implemented correctly if the object can be returned to

an earlier state from any starting position.

Are there any common pitfalls? The most common pitfall is to not completely capture or set the state.

Are there any related patterns? The memento and command patterns share a common philosophy.

474 CHAPTER 23: The Memento Pattern

Preparing the Example Project
I created an Xcode Command Line Tool project called Memento for this chapter and added to it a file
called Ledger.swift, the contents of which are shown in Listing 23-1.

Listing 23-1. The Contents of the Ledger.swift File

class LedgerEntry {
 let id:Int;
 let counterParty:String;
 let amount:Float;

 init(id:Int, counterParty:String, amount:Float) {
 self.id = id; self.counterParty = counterParty; self.amount = amount;
 }
}

class LedgerCommand {
 private let instructions:Ledger -> Void;
 private let receiver:Ledger;

 init(instructions:Ledger -> Void, receiver:Ledger) {
 self.instructions = instructions; self.receiver = receiver;
 }

 func execute() {
 self.instructions(self.receiver);
 }
}

class Ledger {
 private var entries = [Int:LedgerEntry]();
 private var nextId = 1;
 var total:Float = 0;

 func addEntry(counterParty:String, amount:Float) -> LedgerCommand {
 let entry = LedgerEntry(id: nextId++, counterParty: counterParty, amount: amount);
 entries[entry.id] = entry;
 total += amount;
 return createUndoCommand(entry);
 }

 private func createUndoCommand(entry:LedgerEntry) -> LedgerCommand {
 return LedgerCommand(instructions: {target in
 let removed = target.entries.removeValueForKey(entry.id);
 if (removed != nil) {
 target.total -= removed!.amount;
 }
 }, receiver: self);
 }

475CHAPTER 23: The Memento Pattern

 func printEntries() {
 for id in entries.keys.array.sorted(<) {
 if let entry = entries[id] {
 println("#\(id): \(entry.counterParty) $\(entry.amount)");
 }
 }
 println("Total: $\(total)");
 println("----");
 }
}

The Ledger class represents an account record of the kind of ledger that banks use to record
transactions, albeit massively simplified. The Ledger class defines an addEntry method that accepts
details of the counterparty and an amount and uses them to create a LedgerEntry object. With each
call to the addEntry method, a dictionary of LedgerEntry objects is built up, indexed by a unique ID.

The Ledger class provides support for undoing operations using the command pattern that I
described in Chapter 20. A call to the addEntry method returns a LedgerCommand object, whose
execute method will locate and remove a LedgerEntry object. Finally, the Ledger class defines a
total property that is updated when entries are added or undone. Listing 23-2 shows the code
I added to the main.swift file to use the Ledger class.

Listing 23-2. The Contents of the main.swift File

let ledger = Ledger();

ledger.addEntry("Bob", amount: 100.43);
ledger.addEntry("Joe", amount: 200.20);
let undoCommand = ledger.addEntry("Alice", amount: 500);
ledger.addEntry("Tony", amount: 20);

ledger.printEntries();
undoCommand.execute();
ledger.printEntries();

The statements in the main.swift file create a Ledger object and call the addEntry method to create
four entries. I then print out the contents of the ledger, execute an undo command for one of the
four entries, and print out the contents again to see the effect. Running the application produces the
following output:

#1: Bob $100.43
#2: Joe $200.2
#3: Alice $500.0
#4: Tony $20.0
Total: $820.63

#1: Bob $100.43
#2: Joe $200.2
#4: Tony $20.0
Total: $320.63

476 CHAPTER 23: The Memento Pattern

Understanding the Problem That the Pattern Solves
I used the command pattern to implement the undo feature for the Ledger class in the example
application, using the same techniques I described in Chapter 20. I like the command pattern
because it is endlessly powerful and flexible, but the way that I have applied the pattern to create the
undo feature has a potential flaw that limits its applicability in some applications.

As things stand, I can undo individual operations. When I execute the undo command for the
LedgerEntry whose counterparty is Alice, the effect is to reverse the effect of a single call to the
addEntry method. What I can’t easily do, however, is return the Ledger to an earlier state so that the
entry that I have undone and all subsequent entries are removed. I have removed the Alice entry,
but doing so didn’t remove the Tony entry.

In some applications, undoing a single operation isn’t enough; you need to be able to return the
state of an object to a specific point, a process referred to as unwinding or rewinding the object’s
state. This is often the case with transactional data, such as ledgers, where returning to a checkpoint
or snapshot is needed in order to be sure of the integrity of an application and its data.

One approach is for the calling component to keep track of all the undo commands it receives and
execute them in reverse order to undo the effects of each operation, as shown in Listing 23-3.

Listing 23-3. Manually Unwinding the State of a Ledger in the main.swift File

let ledger = Ledger();

ledger.addEntry("Bob", amount: 100.43);
ledger.addEntry("Joe", amount: 200.20);
let aliceUndoCommand = ledger.addEntry("Alice", amount: 500);
let tonyUndoCommand = ledger.addEntry("Tony", amount: 20);

ledger.printEntries();
tonyUndoCommand.execute();
aliceUndoCommand.execute();
ledger.printEntries();

This is a messy approach because it relies on one component having access to all of the undo
commands and knowing the order in which they should be applied, which is hard to arrange if there
are multiple components operating on a single Ledger object. Each component will have only some
of the undo commands, and the order in which they should be applied is unknown.

In short, trying to unwind or reset the state of an object using individual undo commands is a
problem; what I need is a more flexible approach that doesn’t place the burden of responsibility on
the calling component to keep track of the changes that need to be applied to return to a trusted
snapshot or checkpoint.

Understanding the Memento Pattern
There are two participants in the memento patterns: the originator and the caretaker. The originator
is the object whose state may be unwound, such as the Ledger in the example application. The
caretaker is the calling component that will tell the originator when its state should be unwound,
which is the code in the main.swift file in the example.

477CHAPTER 23: The Memento Pattern

The originator provides the caretaker with a memento, which is an object that contains instructions
or data required to return the originator to an earlier state. The details of the memento are hidden
from the caretaker, which cannot modify or manipulate the state it contains. At some point in the
future, the caretaker returns the memento to the originator, which uses the instructions or data to
unwind its state. Figure 23-1 illustrates the memento pattern.

Figure 23-1. The memento pattern

The easiest way to understand the memento pattern is to focus on the four phases that underpin it,
as numbered in the figure.

In the first phase, the caretaker performs normal operations on the originator, each of which modifies
its state. In the second phase, the caretaker requests a memento from the originator. The creation of
the memento object doesn’t change the state of the originator; it just captures the present state so
that the originator can return to it later.

In the third phase, the caretaker performs further operations on the originator, which further modify
its state. In the fourth and final phase, the caretaker returns the memento object to the originator,
which uses it to restore its state to the point at which the memento was created.

By encapsulating a snapshot of the originator’s state into an object, the memento pattern avoids the
problems I encountered when using undo commands to unwind state. The caretaker doesn’t need to
keep track of the operations that have been performed or worry about operations performed by other
components; it simply returns the memento to the originator when it wants the state to be unwound.

478 CHAPTER 23: The Memento Pattern

Using a memento allows for a lot of flexibility. The memento object can be used by a different
component than the original caretaker, it can be used to repeatedly unwind the state to the same
point, and it can be used to transfer the state of one object to another.

Implementing the Memento Pattern
The implementation of the memento pattern is based on two protocols: one for the originator
and one for the memento. The caretaker doesn’t require its own protocol since it is just a calling
component that takes advantage of the functionality provided by the originator. Listing 23-4 shows
the contents of the Memento.swift file, which I added to the example project.

Listing 23-4. The Contents of the Memento.swift File

import Foundation

protocol Memento {
 // no methods or properties defined
}

protocol Originator {
 func createMemento() -> Memento;
 func applyMemento(memento:Memento);
}

The Memento protocol doesn’t define any methods or properties, and that’s because all of its
implementation details are private, meaning that the only purpose of the protocol is to denote that an
object is a memento.

The Originator protocol defines a createMemento that will produce a memento of the current state
and an applyMemento method that accepts a memento and uses it to restore the originator to the
state it defines.

Implementing the Memento Class
The implementation detail of a memento is entirely at the discretion of the originator as long as
two basic conditions are met. The first condition is that the caretaker should not be able to modify
the state that the memento contains in any way. The second condition is that the memento should
always work, regardless of the current state of the originator.

In practice, this means an originator either contains a static snapshot of the state data or consists of
a set of operations that reset the state and are then applied in sequence, rather like the command
macros I described in Chapter 20. Listing 23-5 shows how I have the pattern in the example project.
(I have also removed the undo commands to keep the example simple, but there is no reason why
the command and memento patterns cannot coexist in an application).

479CHAPTER 23: The Memento Pattern

Listing 23-5. Creating the Memento and Originator in the Ledger.swift File

import Foundation

class LedgerEntry {
 let id:Int;
 let counterParty:String;
 let amount:Float;

 init(id:Int, counterParty:String, amount:Float) {
 self.id = id; self.counterParty = counterParty; self.amount = amount;
 }
}

class LedgerMemento : Memento {
 private let entries = [LedgerEntry]();
 private let total:Float;
 private let nextId:Int;

 init(ledger:Ledger) {
 self.entries = ledger.entries.values.array;
 self.total = ledger.total;
 self.nextId = ledger.nextId;
 }

 func apply(ledger:Ledger) {
 ledger.total = self.total;
 ledger.nextId = self.nextId;
 ledger.entries.removeAll(keepCapacity: true);
 for entry in self.entries {
 ledger.entries[entry.id] = entry;
 }
 }
}

class Ledger : Originator {
 private var entries = [Int:LedgerEntry]();
 private var nextId = 1;
 var total:Float = 0;

 func addEntry(counterParty:String, amount:Float) {
 let entry = LedgerEntry(id: nextId++, counterParty: counterParty, amount: amount);
 entries[entry.id] = entry;
 total += amount;
 }

 func createMemento() -> Memento {
 return LedgerMemento(ledger: self);
 }

480 CHAPTER 23: The Memento Pattern

func applyMemento(memento: Memento) {

 if let m = memento as? LedgerMemento {
 m.apply(self);
 }
 }

 func printEntries() {
 for id in entries.keys.array.sorted(<) {
 if let entry = entries[id] {
 println("#\(id): \(entry.counterParty) $\(entry.amount)");
 }
 }
 println("Total: $\(total)");
 println("----");
 }
}

It is important that the memento sets or re-creates every aspect of the state of the originator. In the
case of the example application, this means I need to set the nextId and total properties directly
and populate the dictionary of ledger entries.

Using the Memento
The final step is to obtain and use a memento in the main.swift file, which plays the role of the
caretaker in the example. Listing 23-6 shows the changes I made.

Listing 23-6. Using a Memento in the main.swift File

let ledger = Ledger();

ledger.addEntry("Bob", amount: 100.43);
ledger.addEntry("Joe", amount: 200.20);

let memento = ledger.createMemento();

ledger.addEntry("Alice", amount: 500);
ledger.addEntry("Tony", amount: 20);

ledger.printEntries();

ledger.applyMemento(memento);

ledger.printEntries();

481CHAPTER 23: The Memento Pattern

The memento restores the ledger to its earlier state. Running the application produces the following
output:

#1: Bob $100.43
#2: Joe $200.2
#3: Alice $500.0
#4: Tony $20.0
Total: $820.63

#1: Bob $100.43
#2: Joe $200.2
Total: $300.63

The effect is the same as when I used the command pattern to create individual undo commands,
but the implementation is more robust and flexible.

Variations on the Memento Pattern
The only common variation on the memento pattern is to represent the state of the originator so that
it can be stored persistently. This allows the memento data to be sent to a remote server or stored in
a database until it is required again.

You can use any data format that suits your project, but I tend to use JSON because it has become
the de facto standard for representing objects, especially in web services. Apple provides JSON
support through the NSJSONSerialization class, but the process of converting a Swift object to and
from JSON is awkward. Listing 23-7 shows the changes I made to the LedgerMemento class so that it
expresses the state data as JSON.

Listing 23-7. Expressing State as JSON in the Ledger.swift File

...
class LedgerMemento : Memento {
 let jsonData:String?;

 init(ledger:Ledger) {
 self.jsonData = stringify(ledger);
 }

 init(json:String?) {
 self.jsonData = json;
 }

private func stringify(ledger:Ledger) -> String? {

 var dict = NSMutableDictionary();

 dict["total"] = ledger.total;
 dict["nextId"] = ledger.nextId;

 dict["entries"] = ledger.entries.values.array;
 var entryArray = [NSDictionary]();

482 CHAPTER 23: The Memento Pattern

 for entry in ledger.entries.values {

 var entryDict = NSMutableDictionary();
 entryArray.append(entryDict);
 entryDict["id"] = entry.id;
 entryDict["counterParty"] = entry.counterParty;
 entryDict["amount"] = entry.amount;
 }
 dict["entries"] = entryArray;

 if let jsonData = NSJSONSerialization.dataWithJSONObject(dict,
 options: nil, error: nil) {
 return NSString(data: jsonData, encoding: NSUTF8StringEncoding);
 }
 return nil;
 }

 func apply (ledger:Ledger) {

 if let data = jsonData?.dataUsingEncoding(NSUTF8StringEncoding,

 allowLossyConversion: false) {
 if let dict = NSJSONSerialization.JSONObjectWithData(data, options: nil,

 error: nil) as? NSDictionary {
 ledger.total = dict["total"] as Float;
 ledger.nextId = dict["nextId"] as Int;
 ledger.entries.removeAll(keepCapacity: true);
 if let entryDicts = dict["entries"] as? [NSDictionary] {

 for dict in entryDicts {
 let id = dict["id"] as Int;
 let counterParty = dict["counterParty"] as String;
 let amount = dict["amount"] as Float;
 ledger.entries[id] = LedgerEntry(id: id,
 counterParty: counterParty, amount: amount);
 }
 }
 }
 }
 }
}
...

Unfortunately, the NSJSONSerialization class operates only on foundation types, which means that
I have to convert the state of a Ledger object into an NSMutableDictionary containing key-value pairs
for each data item. I define keys for total and nextId and assign their values directly. To represent

483CHAPTER 23: The Memento Pattern

the ledger entries, I create an array of NSMutableDictionary objects, each of which contains key-
value pairs for the id, counterParty, and amount properties. The result is a JSON string like this,
which I have formatted to make it easier to read:

{ "total": 300.63,
 "nextId": 3,
 "entries": [
 { "id": 2, "counterParty": "Joe", "amount": 200.2 },
 { "id": 1,"counterParty": "Bob", "amount": 100.43}]
}

The process of parsing a JSON string to re-create the state of a Ledger object is equally awkward.
The string is converted into a dictionary that is then processed to extract the data values. Overall, the
process is difficult and error-prone, but I expect the JSON support for Swift to improve in future
versions of Swift because it has become so prevalent as a data format. Listing 23-8 shows the
changes that I made to the main.swift file to get hold of the JSON data and use it to set the state of
an originator object.

Listing 23-8. Using a Persistent Memento in the main.swift File

let ledger = Ledger();

ledger.addEntry("Bob", amount: 100.43);
ledger.addEntry("Joe", amount: 200.20);

let memento = ledger.createMemento() as LedgerMemento;

let newMemento = LedgerMemento(json: memento.jsonData);
ledger.applyMemento(newMemento);

ledger.printEntries();

I have used two LedgerMemento objects to demonstrate how the JSON string can be used as a
persistent representation of an object’s state. Running the example application produces the
following output:

#1: Bob $100.43
#2: Joe $200.2
Total: $300.63

Understanding the Pitfalls of the Memento Pattern
Most problems with the memento pattern arise when the implementation doesn’t conform to the
two rules I listed earlier in the chapter, such that the caretaker is able to change the state stored by
the memento or the memento doesn’t correctly set every aspect of the originator’s state. As long
as you bear these two rules in mind, you should not encounter any problems implementing the
memento pattern.

484 CHAPTER 23: The Memento Pattern

Test carefully if you are using a data format such as JSON to persistently store mementos. As
Listing 23-7 showed, generating and parsing the persistent representation for even a simple object
can be complex and can produce hard-to-read code.

Examples of the Memento Pattern in Cocoa
Cocoa provides an implementation of the memento pattern through the NSCoding protocol.
An originator object conforms to the protocol and works with an NSCoder object to produce a
snapshot of its state. NSCoder can be subclassed to support different data formats, or the built-in
implementations can be used. Listing 23-9 shows how I have changed the Ledger class so that it
conforms to the protocol.

Listing 23-9. Conforming to the NSCoding Protocol in the Ledger.swift File

import Foundation;

class LedgerEntry {
 let id:Int;
 let counterParty:String;
 let amount:Float;

 init(id:Int, counterParty:String, amount:Float) {
 self.id = id; self.counterParty = counterParty; self.amount = amount;
 }
}

class LedgerMemento : Memento {

 let data:NSData;

 init(data:NSData) { self.data = data;}
}

class Ledger : NSObject, Originator, NSCoding {
 private var entries = [Int:LedgerEntry]();
 private var nextId = 1;
 var total:Float = 0;

 override init() {
 // do nothing - required to allow instances
 // to be created without a coder
 }

 required init(coder aDecoder: NSCoder) {
 self.total = aDecoder.decodeFloatForKey("total");
 self.nextId = aDecoder.decodeIntegerForKey("nextId");
 self.entries.removeAll(keepCapacity: true);
 if let entryArray = aDecoder.decodeDataObject()
 as AnyObject? as? [NSDictionary] {

485CHAPTER 23: The Memento Pattern

 for entryDict in entryArray {
 let id = entryDict["id"] as Int;
 let counterParty = entryDict["counterParty"] as String;
 let amount = entryDict["amount"] as Float;
 self.entries[id] = LedgerEntry(id: id, counterParty: counterParty,
 amount: amount);
 }
 }
 }

func encodeWithCoder(aCoder: NSCoder) {
 aCoder.encodeFloat(total, forKey: "total");
 aCoder.encodeInteger(nextId, forKey: "nextId");
 var entriesArray = [NSMutableDictionary]();

 for entry in self.entries.values {
 var dict = NSMutableDictionary();
 dict["id"] = entry.id;
 dict["counterParty"] = entry.counterParty;
 dict["amount"] = entry.amount;
 entriesArray.append(dict);
 }
 aCoder.encodeObject(entriesArray);
 }

 func createMemento() -> Memento {
 return LedgerMemento(data:
 NSKeyedArchiver.archivedDataWithRootObject(self));
 }

 func applyMemento(memento: Memento) {
 if let lmemento = memento as? LedgerMemento {
 if let obj = NSKeyedUnarchiver.unarchiveObjectWithData(lmemento.data)
 as? Ledger {
 self.total = obj.total;

 self.nextId = obj.nextId;
 self.entries = obj.entries;
 }
 }
 }

 func addEntry(counterParty:String, amount:Float) {
 let entry = LedgerEntry(id: nextId++, counterParty: counterParty,
 amount: amount);
 entries[entry.id] = entry;
 total += amount;
 }

486 CHAPTER 23: The Memento Pattern

 func printEntries() {
 for id in entries.keys.array.sorted(<) {
 if let entry = entries[id] {
 println("#\(id): \(entry.counterParty) $\(entry.amount)");
 }
 }
 println("Total: $\(total)");
 println("----");
 }
}

Note The NSCoding protocol isn’t the only way that Apple supports object persistence. You can also

use the Core Data framework, which is a framework that allows objects to be stored persistently and

manipulated. Wikipedia provides a nice overview of Core Data at http://en.wikipedia.org/wiki/

Core_Data.

Using the NSCoding protocol means encoding the originator’s state as an NSData object, so the first
change is to make the LedgerMemento class a wrapper around an NSData object. I don’t want to
expose the technique the originator uses to represent its state to the caretaker, and the easiest way
to do this is to keep using the Memento protocol.

A class that conforms to the NSCoding protocol must be derived from NSObject, which provides some
of the features that are required to create mementos. The protocol defines the encodeWithEncoder
method, which is used to create mementos. Rather like the JSON serialization I used earlier in the
chapter, I have to represent the internal state of the originator as a set of key-value pairs, and you
can see the obvious similarities in the method implementation, although individual objects are added
to the memento through the methods of the encoder.

In the createMemento method specified by my Originator protocol, I select the coder that will be
used to represent the data, like this:

...
func createMemento() -> Memento {
 return LedgerMemento(data: NSKeyedArchiver.archivedDataWithRootObject(self));
}
...

The NSKeyedArchiver is one of the built-in coder implementations provided by Apple, and calling its
archivedDataWithRootObject method encodes the state of the originator within an NSData object that
I wrap in a LedgerMemento and return as the method result.

The NSCoding protocol specifies a required initializer for decoding a memento. The initializer creates
a new instance of the originator class from the memento rather than setting the state of an existing
object, so I have to explicitly copy the data values in the applyMemento method, like this:

...

http://en.wikipedia.org/wiki/Core_Data
http://en.wikipedia.org/wiki/Core_Data

487CHAPTER 23: The Memento Pattern

func applyMemento(memento: Memento) {
 if let lmemento = memento as? LedgerMemento {
 if let obj = NSKeyedUnarchiver.unarchiveObjectWithData(lmemento.data)
 as? Ledger {
 self.total = obj.total;
 self.nextId = obj.nextId;
 self.entries = obj.entries;
 }
 }
}
...

The required initializer is invoked by my call to the unarchiveObjectWithData method of the
NSKeyedUnarchiver class, which accepts the NSData memento and decodes it so that I can read the
key-value pairs and extract the state data it contains. Listing 23-10 shows the changes I made to the
main.swift file to use the modified memento.

Listing 23-10. Using Coding in the main.swift File

let ledger = Ledger();

ledger.addEntry("Bob", amount: 100.43);
ledger.addEntry("Joe", amount: 200.20);

let memento = ledger.createMemento();

ledger.applyMemento(memento);

ledger.printEntries();

Running the example application produces the following results:

#1: Bob $100.43
#2: Joe $200.2
Total: $300.63

Applying the Pattern to the SportsStore Application
In this section, I am going to combine the command and memento patterns to replace the undo
feature I added in Chapter 20 with the ability to reset the application entirely.

Most implementations of the memento pattern are based on taking and returning to multiple
snapshots, but that is only one interpretation of how a memento should work. As I explained, the
way that a memento works is entirely down to the implementation, and it need not contain the data
values that an object contained. It can also be a trigger for some other kind of action, including
discarding any changes made by the user and reloading the original data. In this case, the memento
will be a command that calls a method that resets the data in the application.

488 CHAPTER 23: The Memento Pattern

Preparing the Example Application
In preparation for the pattern, I need to add a method to the ProductDataStore class that will reset
the data and discard any changes made by the user. Listing 23-11 shows the addition I made.

Listing 23-11. Adding a Reset Method in the ProductDataStore.swift File

import Foundation

final class ProductDataStore {
 var callback:((Product) -> Void)?;
 private var networkQ:dispatch_queue_t
 private var uiQ:dispatch_queue_t;
 lazy var products:[Product] = self.loadData();

 init() {
 networkQ = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0);
 uiQ = dispatch_get_main_queue();
 }

func resetState() {

 self.products = loadData();
 }

 // ...method and statements omitted for brevity...
}

Implementing the Pattern
To add support for resetting the application, all I need to do is define a method that the
NSUndoManager will invoke when the device is shaken and that will, in turn, call the resetState
method that I defined in Listing 23-11. Listing 23-12 shows the change that I made to the
ViewController class.

Listing 23-12. Adding Support for Resetting the Application in the ViewController.swift File

...
class ViewController: UIViewController, UITableViewDataSource {

 @IBOutlet weak var totalStockLabel: UILabel!
 @IBOutlet weak var tableView: UITableView!

 let productStore = ProductDataStore();

 // ...methods omitted for brevity...

 @IBAction func stockLevelDidChange(sender: AnyObject) {
 if var currentCell = sender as? UIView {
 while (true) {
 currentCell = currentCell.superview!;

489CHAPTER 23: The Memento Pattern

 if let cell = currentCell as? ProductTableCell {
 if let product = cell.product? {

// let dict = NSDictionary(objects: [product.stockLevel],
// forKeys: [product.name]);

 undoManager?.registerUndoWithTarget(self,
 selector: "resetState",
 object: nil);

 if let stepper = sender as? UIStepper {
 product.stockLevel = Int(stepper.value);
 } else if let textfield = sender as? UITextField {
 if let newValue = textfield.text.toInt()? {
 product.stockLevel = newValue;
 }
 }
// cell.stockStepper.value = Double(product.stockLevel);
// cell.stockField.text = String(product.stockLevel);
 productLogger.logItem(product);

 StockServerFactory.getStockServer()
 .setStockLevel(product.name,
 stockLevel: product.stockLevel);
 }
 break;
 }
 }
 displayStockTotal();
 }
 }

func resetState() {

self.productStore.resetState();

 }

// func undoStockLevel(data:[String:Int]) {
// let productName = data.keys.first;

// if (productName != nil) {

// let stockLevel = data[productName!];
// if (stockLevel != nil) {
//
// for nproduct in productStore.products {
// if nproduct.name == productName! {
// nproduct.stockLevel = stockLevel!;
// }
// }
//

490 CHAPTER 23: The Memento Pattern

// updateStockLevel(productName!, level: stockLevel!);
// }
// }
// }

 func displayStockTotal() {
 let finalTotals:(Int, Double) = productStore.products.reduce((0, 0.0),
 {(totals, product) -> (Int, Double) in
 return (
 totals.0 + product.stockLevel,
 totals.1 + product.stockValue
);
 });

 let formatted = StockTotalFacade.formatCurrencyAmount(finalTotals.1,
 currency: StockTotalFacade.Currency.EUR);

 totalStockLabel.text = "\(finalTotals.0) Products in Stock. "
 + "Total Value: \(formatted!)";
 }
}
...

I changed the selector for the undo manager callback so that it calls the resetState method and so
that shaking the device triggers a reload of the product data, which has the effect of discarding any
changes made by the user. To test the changes, start the application and make some changes to
the stock levels. Select Shake Gesture from the iOS Simulator Hardware menu, and the values will
be reset.

Summary
In this chapter I showed you how to describe and apply the state of an object using the memento
pattern. This is one of the least used patterns and tends to be overshadowed by the more general
command pattern, but the idea of describing the entire state of an object can be a powerful one. In
the next chapter, I describe the strategy pattern, which defines classes that can be extended without
being modified or subclassed.

491

Chapter 24
The Strategy Pattern

The strategy pattern is used to create classes whose functionality can be extended without being
modified or subclassed, which can be useful when you are delivering frameworks to third-party
developers or when any changes, however small, to key classes will trigger extensive and expensive
testing and validation procedures. Table 24-1 puts the strategy pattern into context.

Table 24-1. Putting the Strategy Pattern into Context

Question Answer

What is it? The strategy pattern is used to create classes that can be extended

without modification, through the application of algorithm objects that

conform to a well-defined protocol.

What are the benefits? The strategy pattern allows third-party developers to change the

behavior of classes without modifying them and can allow low-cost

changes to be made in projects that have expensive and lengthy

validation procedures for specific classes.

When should you use this pattern? Use this pattern when you need classes that can be extended without

being modified.

When should you avoid this pattern? There is no reason to avoid this pattern.

How do you know when you have

implemented the pattern correctly?

The strategy pattern is implemented correctly when you can extend

the behavior of a class by defining and applying a new strategy

without needing to make any changes to the class itself.

Are there any common pitfalls? No. The strategy pattern is simple to implement.

Are there any related patterns? The strategy and visitor patterns are often used together.

492 CHAPTER 24: The Strategy Pattern

Preparing the Example Project
For this chapter, I created an Xcode OS X Command Line Tool project called Strategy. I added a file
called Sequence.swift and used it to define the class shown in Listing 24-1.

Listing 24-1. The Contents of the Sequence.swift File

class Sequence {
 private var numbers:[Int];

 init(_ numbers:Int...) {
 self.numbers = numbers;
 }

 func addNumber(value:Int) {
 self.numbers.append(value);
 }

 func compute() -> Int {
 return numbers.reduce(0, combine: {$0 + $1});
 }
}

The Sequence class maintains an array of Int values that are defined through the initializer and added
to through the addNumber method. The compute method uses the reduce function to sum the values
and return a result. Listing 24-2 shows the code I added to the main.swift file to consume the
Sequence class.

Listing 24-2. The Contents of the main.swift File

let sequence = Sequence(1, 2, 3, 4);
sequence.addNumber(10);
sequence.addNumber(20);

let sum = sequence.compute();
println("Sum: \(sum)");

I create a Sequence object, call the addNumber method twice, and then call the compute method
to produce the total, which I write to the Xcode console. Running the application produces the
following output:

Sum: 40

Understanding the Problem That the Pattern Solves
The Sequence class that I defined in the example application contains a simple algorithm. When the
compute method is called, the reduce method is used to add together all of the Int values in the
collection.

493CHAPTER 24: The Strategy Pattern

If I want to add another algorithm, then I have a choice. I can modify the code of the Sequence class
to add the new algorithm alongside the existing one, or I can create a new subclass that overrides
the existing algorithm and effectively replaces it.

Modifying or subclassing to add features runs counter to the open/closed design principle, which
states that classes should be open to being extended and should be closed to being modified, or,
put another way, that is preferable to be able to add to the functionality provided by a class without
needing to modify it or to create a new subclass.

There is nothing intrinsically wrong with modifying source code or creating new subclasses, but
for some projects, doing so can trigger requirements for extensive unit, system, and integration
testing before a change can be deployed into a production system. This process is often driven by
regulatory requirements or sometimes by a corporate policy that places the emphasis on quality
rather than time to market. To set the scene for the chapter, Listing 24-3 shows a simple change
applied to the Sequence class to define a second algorithm.

Listing 24-3. Defining a New Algorithm in the Sequence.swift File

enum ALGORITHM {
 case ADD; case MULTIPLY;
}

class Sequence {
 private var numbers:[Int];

 init(_ numbers:Int...) {
 self.numbers = numbers;
 }

 func addNumber(value:Int) {
 self.numbers.append(value);
 }

 func compute(algorithm:ALGORITHM) -> Int {
 switch (algorithm) {
 case .ADD:
 return numbers.reduce(0, combine: {$0 + $1});
 case .MULTIPLY:
 return numbers.reduce(1, combine: {$0 * $1});
 }
 }
}

There are lots of ways I could have added the new algorithm, but I have chosen to define a
enumeration that specifies the algorithm, which I then use in a switch statement in the compute
method. In projects that have a heavy-weight testing and validation process, the simple addition of
a multiplication algorithm would trigger weeks of expensive testing. For completeness, Listing 24-4
shows the corresponding changes to the main.swift file to use the new Sequence feature.

494 CHAPTER 24: The Strategy Pattern

Listing 24-4. Using the New Sequence Algorithm in the main.swift File

let sequence = Sequence(1, 2, 3, 4);
sequence.addNumber(10);
sequence.addNumber(20);

let sum = sequence.compute(ALGORITHM.ADD);
println("Sum: \(sum)");

let multiply = sequence.compute(ALGORITHM.MULTIPLY);
println("Multiply: \(multiply)");

Running the example application produces the following results:

Sum: 40
Multiply: 4800

Understanding the Strategy Pattern
The strategy pattern supports the open/closed principle by defining a protocol to which different
algorithm classes can conform. This allows for the algorithm to be selected and changed at runtime
and for new algorithms to be added to the application without needing to change the class that uses
them. Figure 24-1 illustrates the strategy pattern.

Figure 24-1. The strategy pattern

In the strategy pattern, the class that is being extended is known as the context class. Rather than
implementing a feature directly, the context class delegates its implementation to a class that
conforms to the strategy protocol. The strategy pattern doesn’t specify how a specific strategy
implementation class is selected, but the most common approach is to let the calling component
make the choice.

495CHAPTER 24: The Strategy Pattern

Implementing the Strategy Pattern
The heart of the strategy pattern is the protocol that is used to specify an algorithm. Listing 24-5
shows the contents of the Strategies.swift file, which I added to the example project.

Listing 24-5. The Contents of the Strategies.swift File

protocol Strategy {
 func execute(values:[Int]) -> Int;
}

The strategy protocol doesn’t specify any aspect of an algorithm other than the inputs and outputs.
In this case, the strategy operates on an Int array and produces a single Int value.

Defining the Strategies and the Context Class
The next step is to define strategy classes for each of the algorithms required by the application.
Listing 24-6 shows the classes I defined for the example applications.

Listing 24-6. Defining the Strategy Classes in the Strategies.swift File

protocol Strategy {
 func execute(values:[Int]) -> Int;
}

class SumStrategy: Strategy {

 func execute(values: [Int]) -> Int {
 return values.reduce(0, combine: {$0 + $1});
 }
}

class MultiplyStrategy: Strategy {

 func execute(values: [Int]) -> Int {
 return values.reduce(1, combine: {$0 * $1});
 }
}

I have defined strategies that sum and multiply the Int values, each of which conforms to the
Strategy protocol. You can see how the strategy protocol is used in the context class in Listing 24-7,
which shows how I replaced the directly implementing algorithms with delegation to a strategy that
is specified as an argument to the compute method.

496 CHAPTER 24: The Strategy Pattern

Listing 24-7. Delegating to a Strategy in the Sequence.swift File

final class Sequence {
 private var numbers:[Int];

 init(_ numbers:Int...) {
 self.numbers = numbers;
 }

 func addNumber(value:Int) {
 self.numbers.append(value);
 }

 func compute(strategy:Strategy) -> Int {
 return strategy.execute(self.numbers);
 }
}

The objective when implementing the strategy pattern is to define a context class that doesn’t need
to be modified or subclassed. In addition to revising the compute method, I have marked the class
as final.

Consuming the Pattern
The final step is to revise the calling component so that it selects strategies. I have followed the most
common approach in my implementation, which is to have the calling component create instances
of the strategy implementation objects and pass them to the context class, as shown in Listing 24-8.

Listing 24-8. Selecting and Using Strategies in the main.swift File

let sequence = Sequence(1, 2, 3, 4);
sequence.addNumber(10);
sequence.addNumber(20);

let sumStrategy = SumStrategy();
let multiplyStrategy = MultiplyStrategy();

let sum = sequence.compute(sumStrategy);
println("Sum: \(sum)");

let multiply = sequence.compute(multiplyStrategy);
println("Multiply: \(multiply)");

Running the example application produces the following output:

Sum: 40
Multiply: 4800

497CHAPTER 24: The Strategy Pattern

Variations on the Strategy Pattern
Swift makes it easy to define strategies as closures rather than as objects that conform to a
protocol. The advantage of using closures is that a calling component can close on its own methods
and properties to define more complex strategies. The drawback of closures is that they can be
harder to read, and passing them around as objects requires close attention to detail.

A compromise approach is to create a class that conforms to a strategy protocol but that relies on a
closure as its implementation. Listing 24-9 shows the addition I made to the Strategies.swift file to
define such a class.

Listing 24-9. Defining a Closure Strategy Class in the Strategies.swift File

protocol Strategy {

 func execute(values:[Int]) -> Int;
}

class ClosureStrategy : Strategy {
 private let closure:[Int] -> Int;

 init(_ closure:[Int] -> Int) {
 self.closure = closure;
 }

 func execute(values: [Int]) -> Int {
 return self.closure(values);
 }
}

class SumStrategy: Strategy {

 func execute(values: [Int]) -> Int {
 return values.reduce(0, combine: {$0 + $1});
 }
}

class MultiplyStrategy: Strategy {

 func execute(values: [Int]) -> Int {
 return values.reduce(1, combine: {$0 * $1});
 }
}

The ClosureStrategy class conforms to the Strategy protocol and accepts a closure as its initializer
argument, which is then used in the implementation of the execute method. Listing 24-10 shows
how I can use the ClosureStrategy class to close on a property in the main.swift file.

498 CHAPTER 24: The Strategy Pattern

Listing 24-10. Using a Closure in the main.swift File

let sequence = Sequence(1, 2, 3, 4);
sequence.addNumber(10);
sequence.addNumber(20);

let sumStrategy = SumStrategy();
let multiplyStrategy = MultiplyStrategy();

let sum = sequence.compute(sumStrategy);
println("Sum: \(sum)");

let multiply = sequence.compute(multiplyStrategy);
println("Multiply: \(multiply)");

let filterThreshold = 10;
let cstrategy = ClosureStrategy({values in
 return values.filter({ $0 < filterThreshold }).reduce(0, {$0 + $1});
});
let filteredSum = sequence.compute(cstrategy);
println("Filtered Sum: \(filteredSum)");

I use the ClosureStrategy class to close on the filterThreshold constant and use it to select a
subset of values to sum. Running the application produces the following results:

Sum: 40
Multiply: 4800
Filtered Sum: 10

Understanding the Pitfalls of the Strategy Pattern
There are no pitfalls associated with the strategy pattern, which is simple to implement and use.

Examples of the Strategy Pattern in Cocoa
The strategy pattern is used extensively in Cocoa to allow the behavior of framework classes to be
changed without modification or subclassing. The Cocoa implementations of strategies tend to fall
into two categories: those defined by protocols and those defined by selectors. I give an example of
each in the sections that follow.

Cocoa Protocol-Based Strategies
Cocoa uses protocols to define strategies for its UI components, and one of the classic examples
is using a protocol to define the strategy for generating rows in a table view. The class that
implements the table view is called UITableView, and it relies on a class that conforms to the
UITableViewDataSource protocol to implement the strategy for providing data, allowing

499CHAPTER 24: The Strategy Pattern

third-party developers to extend the behavior of the UITableView class without needing to modify
it or to create a subclass. As a simple demonstration, I created an Xcode iOS playground called
ProtocolStrategy.playground and used it to define the code shown in Listing 24-11.

Listing 24-11. The Contents of the ProtocolStrategy.playground File

import UIKit

class DataSourceStrategy : NSObject, UITableViewDataSource {
 let data:[Printable];

 init(_ data:Printable...) {
 self.data = data;
 }

 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return data.count;
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 let cell = UITableViewCell();
 cell.textLabel.text = data[indexPath.row].description;
 return cell;

 }
}

let dataSource = DataSourceStrategy("London", "New York", "Paris", "Rome");
let table = UITableView(frame: CGRectMake(0, 0, 400, 200));
table.dataSource = dataSource;
table.reloadData();

// required for display in assistant editor
table;

I have defined a class called DataSourceStrategy that conforms to the UITableViewDataSource
protocol and implements the two methods required to provide data values from an array of
Printable objects. I create an instance of the strategy class and use it as the data source for a
UITableView object, producing the result shown in Figure 24-2.

500 CHAPTER 24: The Strategy Pattern

Cocoa Selector-Based Strategies
Not all Cocoa classes rely on protocols to define strategies. Some use selectors to specify methods
that are called on to extend the functionality of a class. As a demonstration, I created an Xcode OS X
playground called SelectorStrategy.playground, which is shown in Listing 24-12.

Listing 24-12. The Contents of the SelectorStrategy.playground File

import Foundation;

@objc class City {
 let name:String;

 init(_ name:String) {
 self.name = name;
 }

 func compareTo(other:City) -> NSComparisonResult {
 if (self.name == other.name) {
 return NSComparisonResult.OrderedSame;
 } else if (self.name < other.name) {
 return NSComparisonResult.OrderedDescending;
 } else {
 return NSComparisonResult.OrderedAscending;
 }
 }
}

Figure 24-2. Using a protocol-based UIKit strategy

501CHAPTER 24: The Strategy Pattern

let nsArray = NSArray(array: [City("London"), City("New York"), City("Paris"), City("Rome")]);
let sorted = nsArray.sortedArrayUsingSelector("compareTo:");

for city in sorted {
 println(city.name);
}

The NSArray class can be used to sort its contents using a selector to refer to the method that
defines the strategy for comparing two objects. In the example, I define an object called City that
has a method called compareTo. The compareTo method accepts another City object and compares it
to the current instance, returning a value from the NSComparisonResult enumeration.

I define an NSArray of City objects and sort the array by calling the sortedArrayUsingSelector
method, specifying that the compareTo method contains the strategy for comparing City objects. The
result is a sorted array of objects written to the console, as follows:

Rome
Paris
New York
London

Applying the Pattern to the SportsStore Application
The SportsStore application already relies on the strategy pattern because the ViewController class
implements the UITableViewDataSource protocol in order to provide data items to a UITableView
component.

...
class ViewController: UIViewController, UITableViewDataSource {
...

Summary
I described the strategy design pattern in this chapter, which is used to extend the functionality of
a class without modifying it or creating a new subclass. In the next chapter, I describe the visitor
pattern, which allows the behavior of collection classes to be extended without modification or
subclassing.

503

Chapter 25
The Visitor Pattern

The visitor pattern is similar to the strategy pattern in that it allows the behavior of a class to be
extended without modifying its source code or creating a new subclass, except that the visitor pattern
is applied to collections of heterogeneous objects. Table 25-1 puts the visitor pattern into context.

Table 25-1. Putting the Visitor Pattern into Context

Question Answer

What is it? The visitor pattern allows new algorithms to operate on collections

of heterogeneous objects without needing to modify or subclass the

collection class.

What are the benefits? The visitor pattern is useful when you want to provide collection

classes as part of frameworks without requiring third-party developers

to modify the source code. This pattern is also useful in projects where

modifying core classes triggers expensive testing procedures.

When should you use this pattern? Use this pattern when you have classes that manage collections of

mismatched objects and you want to perform operations on them.

When should you avoid this pattern? There is no need to use this pattern when all of the objects are of the

same type or when the collection class can be readily modified.

How do you know when you have

implemented the pattern correctly?

The pattern is implemented correctly when a visitor class can extend

the behavior of the collection class by defining methods that handle

each type of object in the collection.

Are there any common pitfalls? The only pitfall is trying to avoid using the double dispatch technique,

which I describe in the “Understanding Double Dispatch” sidebar.

Are there any related patterns? The visitor pattern is another way to conform to the open/closed

principle supported by the strategy pattern I described in Chapter 24.

504 CHAPTER 25: The Visitor Pattern

Preparing the Example Project
For this chapter I created an OS X Command Line Tool project called Visitor. I added a file called
Shapes.swift and used it to define the classes shown in Listing 25-1.

Listing 25-1. The Contents of the Shapes.swift File

import Foundation;

class Circle {
 let radius:Float;

 init(radius:Float) {
 self.radius = radius;
 }
}

class Square {
 let length:Float;

 init(length:Float) {
 self.length = length;
 }
}

class Rectangle {
 let xLen:Float;
 let yLen:Float;

 init(x:Float, y:Float) {
 self.xLen = x;
 self.yLen = y;
 }
}

class ShapeCollection {
 let shapes:[Any];

 init() {
 shapes = [
 Circle(radius: 2.5), Square(length: 4), Rectangle(x: 10, y: 2)
];
 }

 func calculateAreas() -> Float {
 return shapes.reduce(0, combine: {total, shape in
 if let circle = shape as? Circle {
 println("Found Circle");
 return total + (3.14 * powf(circle.radius, 2));
 } else if let square = shape as? Square {
 println("Found Square");
 return total + powf(square.length, 2);

505CHAPTER 25: The Visitor Pattern

 } else if let rect = shape as? Rectangle {
 println("Found Rectangle");
 return total + (rect.xLen * rect.yLen);
 } else {
 // unknown type - do nothing
 return total;
 }
 });
 }
}

I have defined three classes that represent shapes—Circle, Square, and Rectangle—and a class
called ShapeCollection that manages a collection of shape objects. The ShapeCollection class
contains a method called calculateAreas that enumerates the collection and calculates the total
area of the shapes it contains. Listing 25-2 shows the code I defined in the main.swift file to
demonstrate the example classes.

Listing 25-2. The Contents of the main.swift File

let shapes = ShapeCollection();
let area = shapes.calculateAreas();
println("Area: \(area)");

Running the application produces the following results:

Found Circle
Found Square
Found Rectangle
Area: 55.625

Understanding the Problem That the Pattern Solves
In the example application, the ShapeCollection class manages a heterogeneous collection of
objects that do not share a common base class or conform to a common protocol. To perform
operations on the objects in the collection, I have to try to cast each object to different types, which
leads to a set of conditional statements like the one in the calculateAreas method.

...
func calculateAreas() -> Float {
 return shapes.reduce(0, combine: {total, shape in
 if let circle = shape as? Circle {
 println("Found Circle");
 return total + (3.14 * powf(circle.radius, 2));
 } else if let square = shape as? Square {
 println("Found Square");
 return total + powf(square.length, 2);

506 CHAPTER 25: The Visitor Pattern

 } else if let rect = shape as? Rectangle {
 println("Found Rectangle");
 return total + (rect.xLen * rect.yLen);
 } else {
 // unknown type - do nothing
 return total;
 }
 });
}
...

Each time I add a new feature, I have to modify or subclass the ShapeCollection class and create
another set of conditional statements that cast each object in the collection. Not only will this
trigger comprehensive and expensive testing in some projects, but it will also produce code that
is duplicative, inflexible, and error-prone. Listing 25-3 shows how I added another method to the
ShapeCollection class.

Listing 25-3. Adding a New Method to the ShapeCollection Class in the Shapes.swift File

...
class ShapeCollection {
 let shapes:[Any];

 init() {
 shapes = [
 Circle(radius: 2.5), Square(length: 4), Rectangle(x: 10, y: 2)
];
 }

 func calculateAreas() -> Float {
 return shapes.reduce(0, combine: {total, shape in
 if let circle = shape as? Circle {
 println("Found Circle");
 return total + (3.14 * powf(circle.radius, 2));
 } else if let square = shape as? Square {
 println("Found Square");
 return total + powf(square.length, 2);
 } else if let rect = shape as? Rectangle {
 println("Found Rectangle");
 return total + (rect.xLen * rect.yLen);
 } else {
 // unknown type - do nothing
 return total;
 }
 });
 }

func countEdges() -> Int {

 return shapes.reduce(0, combine: {total, shape in
 if let circle = shape as? Circle {
 println("Found Circle");
 return total + 1;

507CHAPTER 25: The Visitor Pattern

 } else if let square = shape as? Square {
 println("Found Square");
 return total + 4;
 } else if let rect = shape as? Rectangle {
 println("Found Rectangle");
 return total + 4;
 } else {
 // unknown type - do nothing
 return total;
 }
 });
 }
}
...

The new method is called countEdges, and it totals the number of shape edges in the collection.
Listing 25-4 shows the statements I added to the main.swift file to test the new method.

Listing 25-4. Using the New Method in the main.swift File

let shapes = ShapeCollection();
let area = shapes.calculateAreas();
println("Area: \(area)");
println("---");
let edges = shapes.countEdges();
println("Edges: \(edges)");

Running the application produces the following results:

Found Circle
Found Square
Found Rectangle
Area: 55.625

Found Circle
Found Square
Found Rectangle
Edges: 9

Each new feature faces the same problem when enumerating the objects in the collection, producing
similarly ugly code.

Understanding the Visitor Pattern
The visitor pattern solves the problem by separating the algorithm that operates on the collection
into a separate object and ensures that it defines methods that can handle each collected type.
This allows the algorithm to be selected at runtime, which means that new behavior can be defined
without having to modify or subclass the type that maintains the collection, conforming to the open/
closed principle I described in Chapter 23.

508 CHAPTER 25: The Visitor Pattern

Ensuring that the algorithm object has a method to handle each collected type avoids the conditional
casting code and relies on the built-in type management features of Swift to select the right method
to process a collection object. Figure 25-1 illustrates the visitor pattern.

Figure 25-1. The visitor pattern

The visitor is a class that defines methods called visit that receive each of the types in the
collection managed by the context class. The calling component provides the visitor to the context
class, which in turn passes it on to the accept method defined by each object in the collection. Upon
receipt of the visitor, each object calls the visit method, relying on Swift to select the right version
of the method; this is a technique known as double dispatch. Don’t worry if this double method
invocation doesn’t make sense; it will become more obvious when you see the implementation
code in the next section, and I explain the reason that double dispatch works in the “Understanding
Double Dispatch” sidebar.

Implementing the Visitor Pattern
The starting point to implementing the visitor pattern is to create protocols that define the visitor
and ensure that the objects in the collection implement an accept method. Listing 25-5 shows the
contents of the Visitor.swift file, which I added to the example project.

509CHAPTER 25: The Visitor Pattern

Listing 25-5. The Contents of the Visitor.swift File

import Foundation;

protocol Shape {
 func accept(visitor:Visitor);
}

protocol Visitor {
 func visit(shape:Circle);
 func visit(shape:Square);
 func visit(shape:Rectangle);
}

The Shape protocol defines the accept method, and the Visitor protocol defines visit methods that
accept each of the shape types in the application, which is essential for double dispatch to work.

UNDERSTANDING DOUBLE DISPATCH

Double dispatch underpins the visitor pattern, and it relies on Swift to select a method based on the parameter type.

Consider the following protocol and classes:

...

protocol MyProtocol {

 func dispatch(handler:Handler);

}

class FirstClass : MyProtocol {

 func dispatch(handler: Handler) {

 handler.handle(self);

 }

}

class SecondClass : MyProtocol {

 func dispatch(handler: Handler) {

 handler.handle(self)

 }

}

...

510 CHAPTER 25: The Visitor Pattern

The FirstClass and SecondClass both conform to MyProtocol. The dispatch method defined by the protocol

and implemented by the classes is the key to the double dispatch technique, although the best way to understand

double dispatch is to see what happens without it. Here is the definition of the Handler class that is accepted by the

dispatch method:

...

class Handler {

 func handle(arg:MyProtocol) {

 println("Protocol");

 }

 func handle(arg:FirstClass) {

 println("First Class");

 }

 func handle(arg:SecondClass) {

 println("Second Class");

 }

}

...

Consider what happens when I create an array of FirstClass and SecondClass objects and pass them to a Handler

object, like this:

...

let objects:[MyProtocol] = [FirstClass(), SecondClass()];

let handler = Handler();

for object in objects {

 handler.handle(object);

}

...

This is regular single dispatch, in which I simply call the method of the Handler object for each of the objects in the

array. To be able to store a FirstClass object and a SecondClass object in the same array, I have to specify its type

as MyProtocol, and this affects the version of the handle method selected by Swift in the for loop, producing the

following results:

Protocol

Protocol

511CHAPTER 25: The Visitor Pattern

Both objects are dealt with using the type of the array. To enable double dispatch, I have to change the method call in the

for loop, like this:

...

for object in objects {

 object.dispatch(handler);

}

...

The dispatch method implementations result in the Handler.handle method being called from within the classes,

but with the self argument. The effect is to call the version of the handle method with the most specific type,

producing the following results:

First Class

Second Class

Calling the handle method from within an objects method has the effect of calling the method version with the most

specific argument type without needing to perform any casts, which is the central technique in the visitor pattern.

Conforming to the Shape Protocol
The next step is to update the shape classes so they confirm to the Shape pattern. As Listing 25-6
shows, each shape class has the same implementation of the accept method.

Listing 25-6. Conforming to the Shape Protocol in the Shapes.swift File

import Foundation;

class Circle : Shape {
 let radius:Float;

 init(radius:Float) {
 self.radius = radius;
 }

 func accept(visitor: Visitor) {
 visitor.visit(self);
 }
}

class Square : Shape {
 let length:Float;

 init(length:Float) {
 self.length = length;
 }

512 CHAPTER 25: The Visitor Pattern

 func accept(visitor: Visitor) {
 visitor.visit(self);
 }
}

class Rectangle : Shape {
 let xLen:Float;
 let yLen:Float;

 init(x:Float, y:Float) {
 self.xLen = x;
 self.yLen = y;
 }

 func accept(visitor: Visitor) {

visitor.visit(self);

 }
}

class ShapeCollection {

let shapes:[Shape];

 init() {
 shapes = [
 Circle(radius: 2.5), Square(length: 4), Rectangle(x: 10, y: 2)
];
 }

 func accept(visitor: Visitor) {
 for shape in shapes {
 shape.accept(visitor);
 }
 }
}

Tip I have modified the collection classes directly to conform to the protocol, but don’t forget you can use

Swift extensions to add protocol conformance to classes without modifying them.

I have also added an accept method to the ShapeCollection class, which receives a Visitor object
and calls the accept method of each object in the collection, which I have changed to a Shape array.

513CHAPTER 25: The Visitor Pattern

Creating the Visitors
With the basic infrastructure in place, I can create the visitor classes that operate on the collection of
shape objects, as shown in Listing 25-7.

Listing 25-7. Defining the Visitors in the Visitor.swift File

import Foundation;

protocol Shape {
 func accept(visitor:Visitor);
}

protocol Visitor {
 func visit(shape:Circle);
 func visit(shape:Square);
 func visit(shape:Rectangle);
}

class AreaVisitor : Visitor {
 var totalArea:Float = 0;

 func visit(shape: Circle) {
 totalArea += (3.14 * powf(shape.radius, 2));
 }

 func visit(shape: Square) {
 totalArea += powf(shape.length, 2);
 }

 func visit(shape: Rectangle) {
 totalArea += (shape.xLen * shape.yLen);
 }
}

class EdgesVisitor : Visitor {
 var totalEdges = 0;

 func visit(shape: Circle) {
 totalEdges += 1;
 }

 func visit(shape: Square) {
 totalEdges += 4;
 }

 func visit(shape: Rectangle) {
 totalEdges += 4;
 }
}

514 CHAPTER 25: The Visitor Pattern

The use of double dispatch means that the appropriate version of the visit method will be called
for each object in the collection. This means I can access the type-specific properties defined by the
shape classes, without having to cast from one type to another.

Applying the Visitors
The final step is to update the calling component to create and use Visitor objects to operate on
the collection. Listing 25-8 shows the changes I made to the main.swift file.

Listing 25-8. Using the Visitors in the main.swift File

let shapes = ShapeCollection();
let areaVisitor = AreaVisitor();
shapes.accept(areaVisitor);
println("Area: \(areaVisitor.totalArea)");
println("---");
let edgeVisitor = EdgesVisitor();
shapes.accept(edgeVisitor);
println("Edges: \(edgeVisitor.totalEdges)");

Running the application produces the following results:

Area: 55.625

Edges: 9

New algorithms can be defined by creating new visitors and passing them to the accept method.
In this way, new behaviors and features can be created without needing to modify or subclass the
collection class.

Variations on the Visitor Pattern
There are no common variations on the visitor pattern.

Understanding the Pitfalls of the Visitor Pattern
The only pitfall when implementing the visitor pattern is to try to sidestep the use of double dispatch.
Although this technique looks awkward, it is not possible to implement the visitor pattern without it.

515CHAPTER 25: The Visitor Pattern

Examples of the Visitor Pattern in Cocoa
The Cocoa frameworks do not contain examples of the visitor pattern.

Applying the Pattern to the SportsStore Application
There is no suitable heterogeneous collection in the SportsStore application to which the visitor
pattern can be applied.

Summary
I described the visitor pattern in this chapter and explained how it can be used to extend the
behavior of heterogeneous collections without having to modify or subclass the collection class.
In Chapter 26, I describe the template method pattern, which allows steps in an algorithm to be
selectively replaced.

517

Chapter 26
The Template Method Pattern

The template method pattern allows for individual steps in an algorithm to be changed, which is
useful when you are writing classes with default behavior that you want to allow to be changed by
other developers. This is a simple pattern to understand and to implement, but it is widely used and
can be found throughout most public frameworks, including those provided by Apple. Table 26-1
puts the template method pattern into context.

Table 26-1. Putting the Template Method Pattern into Context

Question Answer

What is it? The template method pattern allows specific steps in an algorithm to

be replaced by implementations provided by a third-party, either by

specifying functions as closures or by creating a subclass.

What are the benefits? This pattern is useful when you are writing frameworks that you want

to allow other developers to extend and customize.

When should you use this pattern? Use this pattern to selectively permit steps in any algorithm to be

changed without modifying the original class.

When should you avoid this pattern? Do not use this pattern if the entire algorithm can be changed.

See the other patterns in this part of the book for alternatives.

How do you know when you have

implemented the pattern correctly?

This pattern is implemented correctly when selected steps in an

algorithm can be changed without modifying the class that defines

the algorithm.

Are there any common pitfalls? No.

Are there any related patterns? This pattern has similar goals to the strategy and visitor patterns

I described in Chapters 24 and 25.

518 CHAPTER 26: The Template Method Pattern

Preparing the Example Project
For this chapter I created an Xcode OS X Command Line Tool project called TemplateMethod.
I created a file called Donors.swift, the contents of which are shown in Listing 26-1.

Listing 26-1. The Contents of the Donors.swift File

struct Donor {
 let title:String;
 let firstName:String;
 let familyName:String;
 let lastDonation:Float;

 init (_ title:String, _ first:String, _ family:String, _ last:Float) {
 self.title = title;
 self.firstName = first;
 self.familyName = family;
 self.lastDonation = last;
 }
}

class DonorDatabase {
 private var donors:[Donor];

 init() {
 donors = [
 Donor("Ms", "Anne", "Jones", 0),
 Donor("Mr", "Bob", "Smith", 100),
 Donor("Dr", "Alice", "Doe", 200),
 Donor("Prof", "Joe", "Davis", 320)];
 }

 func generateGalaInvitations(maxNumber:Int) -> [String] {

 // step 1 - filter out non-donors
 var targetDonors:[Donor] = donors.filter({$0.lastDonation > 0});

 // step 2 - order donors by last donation
 targetDonors.sort({ $0.lastDonation > $1.lastDonation});

 // step 3 - limit the number of invitees
 if (targetDonors.count > maxNumber) {
 targetDonors = Array(targetDonors[0..<maxNumber]);
 }

 // step 4 - generate the invitations
 return targetDonors.map({ donor in
 return "Dear \(donor.title). \(donor.familyName)";
 })
 }
}

519CHAPTER 26: The Template Method Pattern

The example for this chapter is based on an imaginary charity that solicits contributions from
donors. Each donor is represented by a Donor object, and the set of objects is collected by the
DonorDatabase class.

The DonorDatabase class defines a generateGalaInvitations method that processes the Donor
objects to generate salutations for invitations to a gala concert. Listing 26-2 shows the code I added
to the main.swift file to generate the set of salutations.

Listing 26-2. The Contents of the main.swift File

let donorDb = DonorDatabase();

let galaInvitations = donorDb.generateGalaInvitations(2);
for invite in galaInvitations {
 println(invite);
}

Running the example produces the following output in the Xcode console:

Dear Prof. Davis
Dear Dr. Doe

Understanding the Problem That the Pattern Solves
The algorithm for generating greetings for the gala has four distinct stages.

1. Filtering out those donors who have not made a donation

2. Sorting the donors by their recent donations

3. Selecting the number of donors for which there are invitations

4. Generating the salutations for the invitations

These are the same four basic steps that the charity will need to perform in order to generate
greetings for any communication with the donors: filter, sort, select, and generate. The problem
addressed by the template method pattern is a variation of the problem addressed by the strategy
and visitor patterns I described in Chapters 24 and 25: how to extend the behavior of a class without
modifying it.

In this case, the problem is applied to algorithms that have well-defined steps that can be varied
to create different results, such as the algorithm used to generate salutations in the DonorDatabase
class. Unlike the other patterns, however, the template method pattern is useful when you need to
ensure that some parts of an algorithm can be varied while other parts remain fixed, ensuring that,
say, sorting and selecting are always handled in the same way but that the filtering and generating
steps can be changed to create new results for different kinds of donor communication.

520 CHAPTER 26: The Template Method Pattern

Understanding the Template Method Pattern
The template method relies on an implementation of an algorithm that defines only the parts that
are to remain fixed. The remaining parts of the algorithm are provided by the calling component to
complete the algorithm and generate the required results, as illustrated by Figure 26-1.

Figure 26-1. The template method pattern

Implementing the Template Method Pattern
In other languages, the template pattern is implemented by defining a class that requires subclasses
to complete the algorithm and provide the missing steps. Swift doesn’t support abstract classes, but
it does allow functions to be treated as objects, which allows an implementation of the pattern to be
created anyway.

The first step is to generalize the class that contains the algorithm so that only the fixed parts of the
algorithm are defined and the parts that can be changed are specified as functions that can be set
using properties. Listing 26-3 shows the changes I made to the Donors.swift file.

521CHAPTER 26: The Template Method Pattern

Listing 26-3. Redefining the Algorithm in the Donors.swift File

struct Donor {
 let title:String;
 let firstName:String;
 let familyName:String;
 let lastDonation:Float;

 init (_ title:String, _ first:String, _ family:String, _ last:Float) {
 self.title = title;
 self.firstName = first;
 self.familyName = family;
 self.lastDonation = last;
 }
}

class DonorDatabase {
 private var donors:[Donor];
 var filter: ([Donor] -> [Donor])?;
 var generate: ([Donor] -> [String])?;

 init() {
 donors = [
 Donor("Ms", "Anne", "Jones", 0),
 Donor("Mr", "Bob", "Smith", 100),
 Donor("Dr", "Alice", "Doe", 200),
 Donor("Prof", "Joe", "Davis", 320)];
 }

 func generate(maxNumber:Int) -> [String] {

 // step 1 - filter out non-donors
 var targetDonors:[Donor] = filter?(donors)
 ?? donors.filter({$0.lastDonation > 0});

 // step 2 - order donors by last donation
 targetDonors.sort({ $0.lastDonation > $1.lastDonation});

 // step 3 - limit the number of invitees
 if (targetDonors.count > maxNumber) {
 targetDonors = Array(targetDonors[0..<maxNumber]);
 }

 // step 4 - generate the invitations
 return generate?(targetDonors) ?? targetDonors.map({ donor in
 return "Dear \(donor.title). \(donor.familyName)";
 })
 }
}

522 CHAPTER 26: The Template Method Pattern

I have defined filter and generate properties that can be used to override the default steps for
the filter and generate steps in the algorithm. I have changed the name of the algorithm method to
generate, and I fall back to the default steps if the new properties are not set.

Listing 26-4 shows the changes I made to the main.swift file to use the modified DonorDatabase
class and to define a new algorithm.

Listing 26-4. Consuming the Template Method Pattern in the main.swift File

let donorDb = DonorDatabase();

let galaInvitations = donorDb.generate(2);
for invite in galaInvitations {
 println(invite);
}

donorDb.filter = { $0.filter({$0.lastDonation == 0})};
donorDb.generate = { $0.map({ "Hi \($0.firstName)"})};

let newDonors = donorDb.generate(Int.max);
for invite in newDonors {
 println(invite);
}

I run the standard version of the algorithm and then define new functions for the filter and
generate properties using closures, selecting those donors who have yet to make a contribution and
generating a more causal greeting. Running the application produces the following output:

Dear Prof. Davis
Dear Dr. Doe
Hi Anne

Variations on the Template Method Pattern
You can create a more traditional implementation of the template method pattern by implementing
each step of the algorithm as a method and allowing subclasses to override them, as shown in
Listing 26-5.

Listing 26-5. Using Methods to Define Algorithm Steps in the Donors.swift File

...
class DonorDatabase {
 private var donors:[Donor];

 init() {
 donors = [
 Donor("Ms", "Anne", "Jones", 0),
 Donor("Mr", "Bob", "Smith", 100),
 Donor("Dr", "Alice", "Doe", 200),
 Donor("Prof", "Joe", "Davis", 320)];
 }

523CHAPTER 26: The Template Method Pattern

 func filter(donors:[Donor]) -> [Donor] {
 return donors.filter({$0.lastDonation > 0});
 }

 func generate(donors:[Donor]) -> [String] {
 return donors.map({ donor in
 return "Dear \(donor.title). \(donor.familyName)";
 })
 }

 func generate(maxNumber:Int) -> [String] {

 // step 1 - filter out non-donors
 var targetDonors = filter(self.donors);

 // step 2 - order donors by last donation
 targetDonors.sort({ $0.lastDonation > $1.lastDonation});

 // step 3 - limit the number of invitees
 if (targetDonors.count > maxNumber) {
 targetDonors = Array(targetDonors[0..<maxNumber]);
 }

 // step 4 - generate the invitations
 return generate(targetDonors);
 }
}
...

I have defined the filter and generate steps as separate methods that can be overridden by
subclasses, as shown in Listing 26-6.

Listing 26-6. Creating a Subclass in the main.swift File

let donorDb = DonorDatabase();

let galaInvitations = donorDb.generate(2);
for invite in galaInvitations {
 println(invite);
}

class NewDonors : DonorDatabase {

 override func filter(donors: [Donor]) -> [Donor] {
 return donors.filter({ $0.lastDonation == 0});
 }

 override func generate(donors: [Donor]) -> [String] {

 return donors.map({ "Hi \($0.firstName)"});
 }
}

524 CHAPTER 26: The Template Method Pattern

let newDonor = NewDonors();
for invite in newDonor.generate(Int.max) {
 println(invite);
}

I prefer the closure-based technique, but it is a matter of personal preference, and you should
choose whichever approach suits your coding style better.

Understanding the Pitfalls of the Pattern
There are no pitfalls associated with the template method pattern, which is simple to implement and
test. If you choose to implement the variation I showed in the previous section, take care to define as
methods only the steps that you want to permit to be changed.

Examples of the Template Method Pattern in Cocoa
The template method pattern is used throughout Cocoa and is particularly visible in the UI
components. You can see an example in the SportsStore application where the ViewController
class is derived from the UIViewController class and overrides the viewDidLoad method, which is
called when the user interface is created, as follows:

...
override func viewDidLoad() {
 super.viewDidLoad();
 displayStockTotal();
 let bridge = EventBridge(callback: updateStockLevel);
 productStore.callback = bridge.inputCallback;
}
...

You may not think of user interface initialization as an algorithm, but it is one that you will have used
in all iOS projects in some form, and it allows Apple to define a set of fixed classes with default
behaviors that can be overridden by third-party developers.

Applying the Pattern to the SportsStore Application
As noted in the previous section, the SportsStore application already relies on the template method
pattern.

Summary
I described the template method pattern in this chapter and explained how it can be used to allow
some steps in an algorithm to be modified, either by defining new functions using closures or by
creating a subclass. I turn my attention to the one of the most important and misunderstood patterns
in the next part of this book: the Model/View/Controller (MVC) pattern.

525

Part V
The MVC Pattern

527

Chapter 27
The Model/View/Controller

Pattern

The Model/View/Controller (MVC) pattern has become increasingly prevalent in recent years and
underpins a lot of modern software development, including iOS app projects. In this chapter, I put
the MVC pattern into context, explain why it is important, and describe how it relates to the other
design patterns I have described in this book. Table 27-1 puts the MVC pattern into context.

Table 27-1. Putting the MVC Pattern into Context

Question Answer

What is it? The MVC pattern adds structure to an entire application rather than to

an individual component.

What are the benefits? The sections of an application can be developed, tested, and

maintained more easily.

When should you use this pattern? Use this pattern for any complex project.

When should you avoid this pattern? The amount of planning and infrastructure required to implement this

pattern isn’t justified for short-lived or simple projects.

(continued)

528 CHAPTER 27: The Model/View/Controller Pattern

Preparing the Example Project
For this chapter I created an Xcode OS X Command Line Tool project called MVC. No other
preparation is required other than to create the project.

Understanding the Problem That the Pattern Solves
The MVC pattern adds structure to a project in order to simplify development, testing, and
maintenance. However, rather than focusing on the relationship or interaction between specific
objects and types, the MVC pattern is applied to the entire application.

Understanding the MVC Pattern
If you have some spare time and find yourself in the mood to experiment, find two or three
developers and ask them to describe the MVC pattern. Push for details and you will realize
two important facts about the MVC pattern. The first fact is that every developer has a different
understanding of the MVC pattern. The second fact is that most developers’ understanding of MVC
comprises of a vague collection of ideas, usually built around the phrase “separation of concerns.”

The MVC pattern is expressed with incredible variety in different platforms and frameworks.
A developer who has built a web application using Microsoft’s MVC framework will have a different
understanding from a developer who has used Apple’s UIKit framework to build an iOS app.
Both frameworks follow the MVC pattern but have different perspectives on how components
are arranged to make a well-designed application. And the components needed to build a web
application are different from the components required for an iOS app, which leads to further
differences. There are so many different expressions of the MVC pattern and so many different
variations that it can hardly be surprising that a dozen developers will produce (at least) a dozen
different interpretations.

Question Answer

How do you know when you have

implemented the pattern correctly?

Implementing the MVC pattern involves a lot of judgment and the

expression of personal preferences, which means that it is hard to

give a definitive explanation of when the pattern is implemented

correctly. In general terms, the individual sections of the application—

the model, the views, and the controllers—should be loosely coupled

to the extent that they can be readily isolated for testing, and changes

can be made to the implementation of one section without requiring

corresponding changes in the other sections.

Are there any common pitfalls? The only pitfall is to create a suboptimal implementation by putting

functionality into the wrong section. Identifying the correct section is a

matter of experience and preference, and there are few absolute right

and wrong decisions.

Are there any related patterns? The implementation of the MVC pattern often relies on the patterns

described elsewhere in this book.

Table 27-1. (continued)

529CHAPTER 27: The Model/View/Controller Pattern

Caution Arguing about the application of the MVC pattern is the go-to activity of any developer who isn’t

in the mood to write code. This can, if left unchecked, lead to a job as a software architect and, in extreme

cases, an enterprise architect. As one who has led enterprise architecture in some of the world’s largest

companies, let me just say that writing code is a lot more interesting than spending all day talking about it.

Figure 27-1. The Model/View/Controller pattern

At the heart of the MVC pattern is the idea of separation of concerns, which is why this phrase often
comes up. Separation of concerns just means keeping the different sections of an application apart
from one another and is done to make those parts easier to develop, maintain, and test.

Separation of concerns will seem like a familiar idea by this point because it is a theme that emerges
from many of the design patterns that I have described in this book. The MVC pattern follows a
convention of using four different sections in an application:

The 	 model, which is the M in MVC. The model contains the application’s data.

The 	 view, which is the V in MVC. The view generates the output from the model
that is shown to the user.

The 	 controller, which is the C in MVC. The controller responds to user interaction
and is responsible for updating the model and the view to reflect change in the
application state.

The 	 cross-cutting concerns. As you will learn, not everything can fit neatly into
the model, view, and controller sections of the application, and the cross-cutting
concerns are sections of the application that span two or more other sections.

As you will learn, the crisp definitions I have given for each section of the MVC pattern become a
lot more blurred when it comes to applying the pattern to a real project, but keeping these simple
definitions in mind can be helpful, as is understanding the interactions between each section, which
I have shown in Figure 27-1.

User interaction is received by the controller, which contains the logic required to update the data
in the model to reflect the interaction. The updated application state is passed by the controller to
the view, which generates the representation shown to the user, reflecting the effect of the original
interaction.

530 CHAPTER 27: The Model/View/Controller Pattern

As a simple example, imagine an application that displays a list of names. There has to be a
beginning, so the first instruction from the user is to list all of the names. This produces the following
sequence:

1. The controller receives the instruction from the user.

2. The controller asks the model for all of the names.

3. The model obtains the requested data from its storage mechanism and

returns it to the controller.

4. The controller gives the list of names to the view and asks it to present them

to the user.

5. The view generates a representation of the list along with details of the

commands that can be performed on it.

The same basic sequence of actions is played out for every interaction. Imagine that the user
performs the action to delete a name from the list. Here is the sequence of actions that plays out:

1. The controller receives the instruction from the user, which includes details of

the name to be deleted.

2. The controller asks the model to delete the specified name.

3. The model deletes the name from its storage mechanism and returns the

modified list to the controller.

4. The controller gives the revised list of names to the view and asks it to

present them to the user.

5. The view generates a representation of the list along with details of the

commands that can be performed on it.

The separation of concerns means that each section of the application has a particular role and
well-defined relationship with the other sections. Each section relies on the others to perform its role
but doesn’t have any knowledge or dependency on how it is implemented, which means that the
implementation of one section can be changed without requiring corresponding changes in the other
sections. The best example of this is the mechanism that the model uses to persistently store the
application’s data. This is typically a relational database, but details of which one and how the data
is represented are part of the model’s implementation and are entirely unknown to the controller and
view sections. The relational database could be replaced with a completely different type of storage
without requiring any changes to the controller, which just deals with data objects and doesn’t care
how they are stored, or to the view, which doesn’t directly interact with the model at all.

Understanding the MVC Application Sections
Applying the MVC pattern can be an intimidating process at first, but it need not be if you keep
focused on what the MVC pattern tries to achieve. The goal of the MVC pattern—like all of the
design patterns I have described in this book—is to create code that is simpler to write, modify, and
maintain, and achieving this goal is your only objective when implementing the MVC pattern.

531CHAPTER 27: The Model/View/Controller Pattern

It is not to conform to someone else’s rigid definition of what MVC means. There are no fixed
rules about how to decide which bits of an application belong in the model, view, and controller
sections—just guidelines that you have to interpret to make the best judgments you can.

Like all of the patterns I have described in this book, applying MVC effectively requires flexibility and
adaptations to the current project. Some pieces of an application will be easier to deal with than
others, but every project has some features or functions that could reasonably be placed in at least
two sections.

Tip Don’t worry if these following sections don’t make immediate sense. It can take a while to process the

structure of the MVC pattern. You may find the simple example application that I create in the “Implementing

the MVC Pattern” section helpful for putting some of the ideas into context.

Understanding the Model

Models contain the data that users work with. There are two broad types of model. The first
model type is the domain model, which contains the application data along with the operations,
transformations, and rules for creating, storing, and manipulating that data, collectively referred to as
the model logic. This is the kind of model shown in Figure 27-1 and is what usually is being referred
to when the word model is used.

Many developers new to the MVC pattern get confused with the idea of including logic in the
data model, believing that the goal of the MVC pattern is to separate data from logic. This is a
misapprehension; the goal of the MVC framework is to divide an application into three functional
areas, each of which may contain both logic and data. The goal isn’t to eliminate logic from the
model. Rather, it is to ensure that the model contains only the logic for creating and managing the
model data. The domain model in an application built using the MVC pattern should do the following:

Contain the domain data	
Contain the logic for creating, managing, and modifying the domain data (even if 	
that means executing remote logic via web services)

Provide a clean API that exposes the model data and operations on it	
The domain model should not do the following:

Expose details of how the model data is obtained or managed (that is, details of 	
the data storage mechanism or the remote web service should not be exposed
to controllers and views)

Contain logic that transforms the model based on user interaction (this is the 	
controller’s job)

Contain logic for displaying data to the user (this is the view’s job)	
The benefit of ensuring that the domain model is isolated from the controller and views is that you
can test your logic more easily and that enhancing and maintaining the overall application is simpler
and easier.

532 CHAPTER 27: The Model/View/Controller Pattern

GETTING IT WRONG

Many developers are hesitant to apply the MVC pattern because they worry about “getting it wrong,” which generally

means putting features into the wrong section. In other words, code that belongs in a controller ends up in a view.

My advice is not to worry. Dive right in and start making mistakes as quickly as you can. The only way you can develop

a solid understanding of the MVC pattern is to weigh the decisions about the structure of specific applications, and you

learn just as much when you make decisions that you later come to realize you would make differently.

Code is fluid and malleable, and in most projects you will have the opportunity to refactor the application. This can be a

tedious process, but it isn’t the end of the world and can give you useful insights as well. Don’t worry even if you don’t

have time to refactor because the impact of a decision you would like to revise is minimal, and most “wrong” decisions

are really decisions that run counter to your evolving preferences and experiences.

The second kind of model is the view model, which represents data passed from the controller to
the view in order that it can be represented to the user. Usually, view models are just a subset of the
data in the domain model, such as the results of a query, but a view model can also contain extra
information that the view needs that is not part of the domain model, such as hints about the state of
the current user session.

Understanding Controllers

Controllers are the connective tissue in an MVC application, responding to user interaction and
acting as a conduit between the model and views. A controller built using the MVC should do the
following:

Contain the logic required to initialize the model	
Contain the logic/behaviors required by the view to present data from the model	
Contain the logic/behaviors required to update the model based on user 	
interaction

The controller should not do the following:

Contain logic that displays data to the user (that is the job of the view)	
Contain logic that manages the persistence of data (that is the job of the model)	
Manipulate data outside of the scope	

Controllers implement the logic of the application, often referred to as the domain logic or the
business logic. This logic is broken up into actions or commands that the user can invoke, which
perform operations on the model and then use a view to represent the effect of the action to the user.

Understanding Views

Views are responsible for displaying a view model to the user. The means by which this is done
varies, and it can be anything from generating an HTML page to creating or updating a set of UIKit
components, depending on the application.

533CHAPTER 27: The Model/View/Controller Pattern

Views are usually created using a framework, such as UIKit, because creating the infrastructure
required to display data is a complex process and does not need to re-created from scratch for
every application. Views should do the following:

Contain the logic and markup required to present data to the user	
Views should not do the following:

Contain complex logic (this is better placed in a controller)	
Contain logic that creates, stores, or manipulates the model	

Views can contain logic, but it should be simple and used sparingly. Putting anything but the most
simple method calls or expressions in a view makes the overall application harder to test and
maintain.

Understanding Cross-Cutting Concerns

Cross-cutting concerns are those parts of the application that do not fit into the other sections.
The classic examples are logging and authorization, which are generally required throughout an
application. It doesn’t make sense to create duplicate logging or security features for different
sections, and so a single implementation is used by multiple sections so that, for example, once a
user has been authenticated, the user’s identity is propagated through the different sections without
the need to further verification.

The danger with cross-cutting concerns is that features and functions that more properly belong in
the model, view, or controller end up being defined as cross-cutting concerns, distorting the shape
of the application and undermining the clean separation between the sections of the application.

There are few genuine cross-cutting concerns in any application, which means that once you have
implemented logging and security, you should treat any other features implemented as cross-cutting
concerns with suspicion and consider whether the feature may actually belong in the model, view, or
controller.

Implementing the MVC Pattern
The best way to learn about the MVC pattern is to implement it. The more experience you have
in separating the concerns in an application into models, views, and controllers, the more natural
the process will become. In the sections that follow, I am going to use the MVC pattern to create
a simple command-line application. I walk through the process and explain the decisions I made
along the way. As I explained earlier, the MVC pattern leaves a lot of room for personal style and
interpretation, and inevitably the implementation will reflect the way that I think about software and
development and be shaped by the kinds of projects I usually work on. This doesn’t mean you
should slavishly follow my techniques. Instead, you should feel free to follow your own path and
make the decisions that have the most beneficial impact in your development environment and on
the kinds of projects you develop.

The example application will manage a list of people and the cities they live in. This isn’t especially
useful as an application in its own right, but there is just enough complexity to allow me to
implement the MVC pattern without the application features getting in the way.

534 CHAPTER 27: The Model/View/Controller Pattern

Defining the Common Code
In any project, there are functions that you need to use throughout an application. Common code
isn’t the same thing as a cross-cutting concern. As a rule of thumb, functions and static methods
that you define to avoid duplication are common code; features that have common state across
sections are cross-cutting concerns.

I started defining the application by defining extensions that I will rely on to manipulate strings into
arrays, to remove duplicate objects in arrays, and to find the first object in an array that matches a
specified test. I added a file called Extensions.swift to the example project, the contents of which
are shown in Listing 27-1.

Listing 27-1. The Contents of the Extensions.swift File

import Foundation

extension String {

 func split() -> [String] {
 return self.componentsSeparatedByCharactersInSet(
 NSCharacterSet.whitespaceAndNewlineCharacterSet())
 .filter({$0 != ""});
 }
}

extension Array {

 func unique<T: Equatable>() -> [T] {
 var uniqueValues = [T]();

 for value in self {
 if !contains(uniqueValues, value as T) {
 uniqueValues.append(value as T);
 }
 }
 return uniqueValues;
 }

 func first<T>(test:T -> Bool) -> T? {
 for value in self {
 if test(value as T) {
 return value as? T;
 }
 }
 return nil;
 }
}

These extensions are not related to the structure of the MVC pattern, and I have defined them to
avoid code duplication in the project.

535CHAPTER 27: The Model/View/Controller Pattern

Defining the Framework
The model, views, and controllers do not exist in isolation. They need a framework of some sort
to connect the sections to one another, to receive and process interactions from the user, and to
display content on the screen. Without an underlying framework, every application would have
to re-create the same set of low-level functions, which would be extremely tedious. As a Swift
developer, the frameworks that you are likely to use most often are UIKit and AppKit, which include
all of the low-level features, such as translating mouse clicks into events and drawing complex UI
components on the screen.

There is no handy MVC framework for Command Line Tool projects, so I am going to have to create
one. This would be a serious (and unwise) undertaking in a real project, but one of the advantages of
book examples is simplicity, and creating a basic framework is a useful means of demonstrating how
the sections of the MVC pattern fit together.

The example application will read commands from the Xcode console, which will also be used to
display data to the user. Listing 27-2 shows the contents of the Commands.swift file, which I have
used to define the commands that the application will support.

Listing 27-2. The Contents of the Commands.swift File

import Foundation

enum Command : String {
 case LIST_PEOPLE = "L: List People";
 case ADD_PERSON = "A: Add Person";
 case DELETE_PERSON = "D: Delete Person";
 case UPDATE_PERSON = "U: Update Person";
 case SEARCH = "S: Search";

 static let ALL = [Command.LIST_PEOPLE, Command.ADD_PERSON,
 Command.DELETE_PERSON, Command.UPDATE_PERSON, Command.SEARCH];

 static func getFromInput(input:String) -> Command? {
 switch (input.lowercaseString) {
 case "l":
 return Command.LIST_PEOPLE;
 case "a":
 return Command.ADD_PERSON;
 case "d":
 return Command.DELETE_PERSON;
 case "u":
 return Command.UPDATE_PERSON;
 case "s":
 return Command.SEARCH;
 default:
 return nil;
 }
 }
}

536 CHAPTER 27: The Model/View/Controller Pattern

The Command enumeration defines values for each of the commands that the application will support,
allowing the user to list all of the people in the application, add or delete people, modify a person’s
detail, and perform a simple search.

Swift enumerations don’t make it easy to get a list of all defined values, so I have defined a static
constant called ALL, which is set to an array of the enumeration values. I have also defined a
static method called getFromInput, which maps a String to an enumeration value. I’ll use the
getFromInput method to select a command based on values read from the command line.

Creating the Model
I have put enough of the infrastructure in place to allow me to start implementing the MVC sections.
The model is the best place to start when implementing MVC because the model types are used
throughout the application. Listing 27-3 shows the contents of the Model.swift file, which I added to
the example project.

Listing 27-3. The Contents of the Model.swift File

import Foundation

func == (lhs:Person, rhs:Person) -> Bool {
 return lhs.name == rhs.name && lhs.city == rhs.city;
}

class Person : Equatable, Printable {
 var name:String;
 var city:String;

 init(_ name:String, _ city:String) {
 self.name = name;
 self.city = city;
 }

 var description: String {
 return "Name: \(self.name), City: \(self.city)";
 }
}

In a real project, there can be a wide range of model types to represent the different data objects
that an application handles, but the Person class is the only model type in the example application.
The Person class defines two stored properties, which I will use for the name of a person and the city
in which they live.

Implementing the Repository Pattern

I like to implement the repository pattern when writing MVC applications, in which the data types are
defined separately from the mechanism that is used to store and retrieve them, which is known as
the model repository. This is why the Person class is so simple; it only needs to store its data values
and doesn’t need to pay attention about how those values are obtained or persisted.

537CHAPTER 27: The Model/View/Controller Pattern

The advantage of the repository pattern is that it allows the storage mechanism to be changed
without needing to make corresponding changes in the application’s model types. This can be
helpful for testing the application because you can replace the real repository with one that uses
predefined test values that are stored in memory. When starting a new MVC application, I usually
create an in-memory repository and only replace it with an implementation that persists data to a
database when the core functionality of the application is in place.

The key to a good repository is to start with a protocol through which the other components in the
application will perform data operations, and Listing 27-4 shows the repository protocol I defined in
the example application.

Listing 27-4. Defining the Repository Protocol in the Model.swift File

import Foundation

func == (lhs:Person, rhs:Person) -> Bool {
 return lhs.name == rhs.name && lhs.city == rhs.city;
}

class Person : Equatable, Printable {
 var name:String;
 var city:String;

 init(_ name:String, _ city:String) {
 self.name = name;
 self.city = city;
 }

 var description: String {
 return "Name: \(self.name), City: \(self.city)";
 }
}

protocol Repository {

 var People:[Person] { get };

 func addPerson(person:Person);
 func removePerson(name:String);
 func updatePerson(name:String, newCity:String);
}

Tip The Person class that I define in Listing 27-4 implements the Equatable and Printable protocols.

The Equatable protocol works with the == function I create in the listing to allow Person objects to be

compared to one another. The Printable protocol is used when an object is passed to the println

function, which writes out the value of the description property.

538 CHAPTER 27: The Model/View/Controller Pattern

I have defined a read-only property called People that will return all of the Person objects stored in
the repository, as well as methods that add, remote, and modify objects.

Tip Exposing all of the model objects as a collection such as an array makes it easy to consume the data in

other sections of the application, but doing so assumes that the data can be retrieved efficiently. This should

be done only if there are small amounts of data in the application or if the storage mechanism is capable of

delivering content only when the elements in the collection are accessed.

In this chapter, I am only going to implement a nonpersistent in-memory repository, which has the
benefit of being simple and being reset to a known state each time the application is restarted.
Listing 27-5 shows how I defined the repository implementation class.

Listing 27-5. Defining the Repository Implementation in the Model.swift File

...
protocol Repository {

 var People:[Person] { get };

 func addPerson(person:Person);
 func removePerson(name:String);
 func updatePerson(name:String, newCity:String);
}

class MemoryRepository : Repository {
 private var peopleArray:[Person];

 init() {
 peopleArray = [
 Person("Bob", "New York"),
 Person("Alice", "London"),
 Person("Joe", "Paris")];
 }

 var People:[Person] {
 return self.peopleArray;
 }

 func addPerson(person: Person) {
 self.peopleArray.append(person);
 }

 func removePerson(name: String) {
 let nameLower = name.lowercaseString;
 self.peopleArray = peopleArray .filter({$0.name.lowercaseString != nameLower});
 }

539CHAPTER 27: The Model/View/Controller Pattern

 func updatePerson(name: String, newCity: String) {
 let nameLower = name.lowercaseString;
 let test:Person -> Bool = {p in return p.name.lowercaseString == nameLower};
 if let person = peopleArray.first(test) {
 person.city = newCity;
 }
 }
}
...

The repository uses a standard Swift array to store its model objects, and the array is populated
with some sample objects in the class initializer. As I explained in Chapter 5, Swift arrays are value
types, which means that a copy of the array is created when a calling component assigns the
array returned by the People property to a local variable or constant. It is for this reason that I have
implemented separate methods for adding, removing, or modifying data objects because the array
that a calling component operates on will be different.

Note I have explained the importance of concurrency protections in many of the chapters in this book. This

project is a rare example of an application that doesn’t need them. It will be accessed by only one thread at a

time because I will be reading instructions from the command line and then executing them. In a real project,

however, you must ensure that your repository is thread-safe, either because you use a mechanism like

Grand Central Dispatch in your implementation class or because the storage mechanism you are relying on is

inherently thread-safe.

Defining the View
Views are used to display data to the user and, typically, provide the user with the controls or
commands used for interaction, such as buttons and text fields. It usually makes sense for the view
to display the controls because the set of interactions that are allowed depends on the data that is
being displayed. A view that gathers the values required to create a new model object may display
Create and Cancel buttons, whereas a view that displays a list of model objects may just have a
Reload button.

I have taken a different approach for the example application because the user will be able to use
the same set of interactions throughout the life of the application, something that is possible only
because the project is so simple. This means that the views in the application are responsible only
for displaying data to the user. I started by defining a protocol that all views in the application will
conform to. Listing 27-6 shows the protocol, which I defined in a new file called Views.swift.

Listing 27-6. The Contents of the Views.swift File

protocol View {

 func execute();
}

540 CHAPTER 27: The Model/View/Controller Pattern

The View protocol defines a single method called execute that will be invoked to display content
to the user. A project usually contains views that display the application data in different ways, and
views are selected by a controller in response to user interaction, a process that will make sense
once I define a controller in the “Defining the Controller” section.

I need only one view to get started, which I will use to display a list of Person objects. Listing 27-7
shows the view class I created.

Listing 27-7. Defining a View Class in the Views.swift File

protocol View {

 func execute();
}

class PersonListView : View {
 private let people:[Person];

 init(data:[Person]) {
 self.people = data;
 }

 func execute() {
 for person in people {
 println(person);
 }
 }
}

The PersonListView class is simple; it accepts an array of Person objects as its initializer argument,
and the execute method prints out each of them in turn using the global println function. (The
Person class conforms to the Printable protocol, which means that the String returned by the
description property is written to the console by the println function.)

Notice that the view doesn’t deal directly with the repository; its only knowledge of the Person
objects it operates on comes from the initializer argument. This reflects the separation of concerns
principle and means that the same class can be used to display different data sets, which you will
see when I implement the controller in the next section.

Defining the Controller
The final MVC section to implement is the controller, but the reality is that I tend to develop the initial
views and controllers in an application in parallel, moving between them to get the basic behavior
I am looking for. A book chapter doesn’t lend itself to describing this kind of development process
and makes example projects look linear, but I find that implementing the MVC pattern is easiest
when I implement the model and then work on the other sections simultaneously. But, in linear book
chapter style, I have defined a controller that acts as the connective tissue between the model and
the view. Listing 27-8 shows the contents of the Controllers.swift file, in which I have defined a
common base class for controllers in the example application.

541CHAPTER 27: The Model/View/Controller Pattern

Listing 27-8. The Contents of the Controllers.swift File

class ControllerBase {
 private let repository:Repository;
 private let nextController:ControllerBase?;

 init(repo:Repository, nextController:ControllerBase?) {
 self.repository = repo;
 self.nextController = nextController;
 }

 func handleCommand(command:Command, data:[String]) -> View? {
 return nextController?.handleCommand(command, data:data);
 }
}

I have used a base class rather than a protocol because I am going to use the chain of responsibility
pattern (as described in Chapter 19) to find a controller that can handle a command selected by the
user. The initializer accepts a Repository object so that the controller has access to the model data
and the next controller in the chain.

The handleCommand method will be called when the user selects a command. Controllers can elect
to handle the command or pass it on to the next controller in the chain. If none of the controllers
in the chain handles the command, then nil will be returned by the base class implementation
of the handleCommand method. The handleCommand returns a View, which is how controllers act as
the link between the model (via the repository initializer argument) and the views. The View object
selected by the controller will be executed by the framework, which I’ll set up in the “Completing the
Framework” section.

Tip The mechanism that the application framework uses to find a controller to respond to a command

varies based on the type of application that is being built. There is usually a predefined map of URLs to

controllers in web applications, and native GUI applications usually send commands to the controller most

closely associated with the currently displayed view.

Having defined the base functionality for a controller, I can now create a concrete implementation
that will respond to the commands I defined in the Command enumeration. I am going to start with
a single controller that will handle all of the commands defined in the Command enumeration, but I’ll
lay the foundation for additional controllers in the “Completing the Framework” section and add a
second controller that follows the same pattern in the “Extending the Application” section.
Listing 27-9 shows the controller I created.

542 CHAPTER 27: The Model/View/Controller Pattern

Listing 27-9. Defining a Concrete Controller in the Controllers.swift File

class ControllerBase {
 private let repository:Repository;
 private let nextController:ControllerBase?;

 init(repo:Repository, nextController:ControllerBase?) {
 self.repository = repo;
 self.nextController = nextController;
 }

 func handleCommand(command:Command, data:[String]) -> View? {
 return nextController?.handleCommand(command, data:data);
 }
}

class PersonController : ControllerBase {

 override func handleCommand(command: Command, data:[String]) -> View? {
 switch command {
 case .LIST_PEOPLE:
 return listAll();
 case .ADD_PERSON:
 return addPerson(data[0], city: data[1]);
 case .DELETE_PERSON:
 return deletePerson(data[0]);
 case .UPDATE_PERSON:
 return updatePerson(data[0], newCity:data[1]);
 case .SEARCH:
 return search(data[0]);
 default:
 return super.handleCommand(command, data: data);
 }
 }

 private func listAll() -> View {
 return PersonListView(data:repository.People);
 }

 private func addPerson(name:String, city:String) -> View {
 repository.addPerson(Person(name, city));
 return listAll();
 }

 private func deletePerson(name:String) -> View {
 repository.removePerson(name);
 return listAll();
 }

 private func updatePerson(name:String, newCity:String) -> View {
 repository.updatePerson(name, newCity: newCity);
 return listAll();
 }

543CHAPTER 27: The Model/View/Controller Pattern

 private func search(term:String) -> View {
 let termLower = term.lowercaseString;
 let matches = repository.People.filter({ person in
 return person.name.lowercaseString.rangeOfString(termLower) != nil
 || person.city.lowercaseString.rangeOfString(termLower) != nil});
 return PersonListView(data: matches);
 }
}

The PersonController class is derived from ControllerBase, and the implementation of the
handleCommand method contains a switch statement that routes requests for all of the commands
defined in the Command enumeration to one of the private methods it defines.

The basic pattern for the private methods is the same. Perform an operation on the model and then
select the data that will be displayed by the PersonListView view. The addPerson, deletePerson,
and updatePerson methods display all of the model data, so I return the result of calling the listAll
method, which uses the repository People property to initialize a PersonListView object. The search
method is a little more complex and filters the objects in the repository to locate those Person
objects whose name or city property contains a specified term.

Completing the Framework
I have implemented the model, a controller, and a view, and it is now time to complete the framework
in order to gather commands from the user, select controllers to handle those commands, and
execute the views that the controllers select. Listing 27-10 shows the additions I made to the
main.swift file to complete the application.

Listing 27-10. Completing the Framework in the main.swift File

import Foundation

let repository = MemoryRepository();
let controllerChain = PersonController(repo: repository, nextController: nil);

var stdIn = NSFileHandle.fileHandleWithStandardInput();
var command = Command.LIST_PEOPLE;
var data = [String]();

while (true) {

 if let view = controllerChain.handleCommand(command, data:data) {
 view.execute();
 println("--Commands--");
 for command in Command.ALL {
 println(command.rawValue);
 }
 } else {
 fatalError("No view");
 }

544 CHAPTER 27: The Model/View/Controller Pattern

 let input:String = NSString(data: stdIn.availableData,
 encoding: NSUTF8StringEncoding) ?? "";

 let inputArray:[String] = input.split();

 if (inputArray.count > 0) {
 command = Command.getFromInput(inputArray.first!) ?? Command.LIST_PEOPLE;
 if (inputArray.count > 1) {
 data = Array(inputArray[1...inputArray.count - 1]);
 } else {
 data = [];
 }
 }
 println("Command \(command.rawValue) Data \(data)");
}

The code that I added read a string from the standard input and breaks it into a command (which is
translated into a value from the Command enumeration) and data values. Both the command and the
data values are passed to the first controller in the chain of responsibility, although there is only one
controller at the moment.

This cycle of interaction, controller selection, and view selection is at the heart of the MVC model
although it is rarely seen because few projects require the creation of a framework in which to host
the MVC sections.

Running the Application
Run the project to test the application. The framework will display the initial set of data objects in the
model in the Xcode console, along with the set of commands that can be selected, like this:

Name: Bob, City: New York
Name: Alice, City: London
Name: Joe, City: Paris
--Commands--
L: List People
A: Add Person
D: Delete Person
U: Update Person
S: Search

You can enter commands by clicking in the Xcode console and typing one of the command letters
shown in the previous output, followed by the data used by the command. Table 27-2 shows
examples of how to use each command that the application supports.

545CHAPTER 27: The Model/View/Controller Pattern

There is no way to clear the text shown in the Xcode console, so each command adds to the output
shown by the application. Here is the output shown when using the search command:

s n
Command S: Search Data [n]
Name: Bob, City: New York
Name: Alice, City: London
--Commands--
L: List People
A: Add Person
D: Delete Person
U: Update Person
S: Search

I entered s n and hit Enter, which specifies a search for the letter N. The search matches the Bob and
Alice model objects, both of which have city properties that contain the search term.

Extending the Application
The entire point of the MVC pattern is to create applications that are each to test and maintain.
I am not going to get into the details of effective testing in this book, but I am going to demonstrate
how to extend the example application so that it contains multiple controllers and views. The new
features that I will add to the project will focus on the city property defined by the Person class.

Table 27-2. Using the Commands Supported by the Example Application

Command Example Description

L L Prints all of the Person objects in the model

A <name> <city> A Anne Berlin Adds a new Person to the model using the specified values

for the name and city properties

D <name> D Joe Deletes the Person whose name property matches the

specified value

U <name> <city> U Joe Paris Changes the city property of the Person object whose name

property has the specified value

S <term> S ari Searches for Person objects whose name or city property

contains the specified term

546 CHAPTER 27: The Model/View/Controller Pattern

Defining the New Commands

The first step is to extend the set of commands that the application supports, as shown in
Listing 27-11.

Listing 27-11. Defining New Commands in the Commands.swift File

import Foundation

enum Command : String {
 case LIST_PEOPLE = "L: List People";
 case ADD_PERSON = "A: Add Person";
 case DELETE_PERSON = "D: Delete Person";
 case UPDATE_PERSON = "U: Update Person";
 case SEARCH = "S: Search";
 case LIST_CITIES = "LC: List Cities";
 case SEARCH_CITIES = "SC: Search Cities";
 case DELETE_CITY = "DC: Delete City";

 static let ALL = [Command.LIST_PEOPLE, Command.ADD_PERSON,
 Command.DELETE_PERSON, Command.UPDATE_PERSON, Command.SEARCH,
 Command.LIST_CITIES, Command.SEARCH_CITIES, Command.DELETE_CITY];

 static func getFromInput(input:String) -> Command? {
 switch (input.lowercaseString) {
 case "l":
 return Command.LIST_PEOPLE;
 case "a":
 return Command.ADD_PERSON;
 case "d":
 return Command.DELETE_PERSON;
 case "u":
 return Command.UPDATE_PERSON;
 case "s":
 return Command.SEARCH;
 case "lc":
 return Command.LIST_CITIES;
 case "sc":
 return Command.SEARCH_CITIES;
 case "dc":
 return Command.DELETE_CITY;
 default:
 return nil;
 }
 }
}

547CHAPTER 27: The Model/View/Controller Pattern

I have added new commands to search for a city, to delete all of the Person objects with a specific
city value, and to list all of the unique city values in the model.

Defining the New View

The new view will accept a collection of Person objects and write out a list of the city property
values when executed, as shown in Listing 27-12.

Listing 27-12. Adding a View in the Views.swift File

protocol View {

 func execute();
}

class PersonListView : View {
 private let people:[Person];

 init(data:[Person]) {
 self.people = data;
 }

 func execute() {
 for person in people {
 println(person);
 }
 }
}

class CityListView : View {
 private let cities:[String];

 init(data:[String]) {
 self.cities = data;
 }

 func execute() {
 for city in self.cities {
 println("City: \(city)");
 }
 }
}

548 CHAPTER 27: The Model/View/Controller Pattern

Defining the New Controller

The view I created in the previous section displays the city information, but I need a controller to
handle the new commands I defined, as shown in Listing 27-13.

Listing 27-13. Defining a New Controller in the Controllers.swift File

class ControllerBase {
 private let repository:Repository;
 private let nextController:ControllerBase?;

 init(repo:Repository, nextController:ControllerBase?) {
 self.repository = repo;
 self.nextController = nextController;
 }

 func handleCommand(command:Command, data:[String]) -> View? {
 return nextController?.handleCommand(command, data:data);
 }
}

class PersonController : ControllerBase {

 // ...statements omitted for brevity...
}

class CityController : ControllerBase {

 override func handleCommand(command: Command, data: [String]) -> View? {
 switch command {
 case .LIST_CITIES:
 return listAll();
 case .SEARCH_CITIES:
 return search(data[0]);
 case .DELETE_CITY:
 return delete(data[0]);
 default:
 return super.handleCommand(command, data: data);
 }
 }

 private func listAll() -> View {
 return CityListView(data: repository.People.map({$0.city}).unique());
 }

549CHAPTER 27: The Model/View/Controller Pattern

 private func search(city:String) -> View {
 let cityLower = city.lowercaseString;
 let matches:[Person] = repository.People
 .filter({ $0.city.lowercaseString == cityLower });
 return PersonListView(data: matches);
 }

 private func delete(city:String) -> View {
 let cityLower = city.lowercaseString;
 let toDelete = repository.People .filter({ $0.city.lowercaseString == cityLower });
 for person in toDelete {
 repository.removePerson(person.name);
 }
 return PersonListView(data: repository.People);
 }
}

The CityController class follows the same pattern as the existing controller and uses the
handleCommand method to select one of the private command-specific methods, which operate on
the model through the repository and select a view.

Notice that only the listAll method uses the newly defined view, while the search and delete
methods rely on the original PersonListView class. There is no tie between views and controllers,
and in most MVC applications controllers can select any view that can display the data generated by
the command being processed.

Updating the Framework

The final step is to add the new controller to the chain of responsibility maintained by the framework
in the main.swift file so that a CityController object is offered the chance to handle commands, as
shown in Listing 27-14.

Listing 27-14. Extending the Chain of Responsibility in the main.swift File

...
let repository = MemoryRepository();

let controllerChain = PersonController(repo: repository, nextController:
 CityController(repo: repository, nextController: nil));

var stdIn = NSFileHandle.fileHandleWithStandardInput();
var command = Command.LIST_PEOPLE;
var data = [String]();
...

550 CHAPTER 27: The Model/View/Controller Pattern

Testing the Changes

You can test the changes by running the application and entering commands into the Xcode debug
console. As an example, here is the output shown when I search for a city value:

sc london
Command SC: Search Cities Data [london]
Name: Alice, City: London
--Commands--
L: List People
A: Add Person
D: Delete Person
U: Update Person
S: Search
LC: List Cities
SC: Search Cities
DC: Delete City

Notice how I have been able to extend the functionality of the example application without needing
to change any of the existing model, view, or controller code. I defined a new set of commands and
then added new code to respond to them and display the data that was generated. Each of the
components in the application is focused on a narrow range of tasks and is loosely coupled to the
other components, making it easy to isolate a component for testing or to add or change features.

Variations on the MVC Pattern
There are many variations in the way that the MVC pattern is implemented and variations on
the pattern itself. The only variation that matters to Swift developers is using a predefined MVC
framework. The most commonly used frameworks are UIKit and AppKit. Creating your own MVC
framework is an interesting experiment, and it reveals a lot about how the different sections of the
pattern fit together, but for real applications, stick to the MVC frameworks provided by Apple, which
provide a lot of ready-made functionality and which have been thoroughly tested.

Understanding the Pitfalls of the MVC Pattern
The most common pitfall is to define code in one section that belongs in another. As I explained at
the start of the chapter, this isn’t always a clear-cut decision, and the best way to avoid this pitfall
is through experience. Implementing the MVC pattern successfully depends on understanding the
way that your development processes work, and the more often you apply the MVC pattern, the
better your understanding of what works for your projects and what doesn’t. Take your time to think
through what you are doing, be prepared to refactor when you change your mind about a feature,
and leave yourself opportunities to experiment.

551CHAPTER 27: The Model/View/Controller Pattern

Examples of the MVC Pattern in Cocoa
The most obvious examples of the MVC pattern are the AppKit and UIKit frameworks, which use
MVC to enforce structure in UI applications.

Summary
In this chapter I described the MVC pattern and explained how it is used to add structure to a
complete application. I explained the different sections that make up the MVC pattern and created
an example application and framework as an example implementation.

And that is all I have to teach you about design patterns. I have described each of the most
important design patterns that you can apply to a Swift project and explained that you should use
the implementations I provided as a starting point for your own applications, adapting the patterns
as needed to suit your needs, preferences, and coding style. I wish you every success in your Swift
project, and I can only hope you have enjoyed reading this book as much as I have enjoyed writing it.

A ■
Abstract factory pattern, 207

concrete factory, 213
examples in Cocoa, 227
groups of objects, 212
implementing, 213

abstract factories, 214
concrete factories, 214–215

operations, 212–213
pitfalls, 227
variations, 217

hiding the abstract factory, 217
using a singleton, 220
using the prototype

pattern, 220–224
Adapter pattern, 253

examples in Cocoa, 266
implementing, 259–261

migrating data, 261
integrating new components, 257
operations, 259
pitfalls, 266
variations, 261

defining a wrapper class, 262–263
two-way adapter, 263–266

Assistant editor. See Xcode, assistant editor
Auto layout. See Xcode, auto layout

B ■
Bridge pattern, 271

examples in Cocoa, 288
exploding class hierarchy, 275
implementing, 277

collapsing the bridge, 286–288
creating channels, 278–279

creating new features, 280–283
creating the bridge, 279–280
dealing with messages, 277–278

multiplicity of features, 274
pitfalls, 288
separate abstraction from

implementation, 275
variations, 284–286

Builder pattern, 233
avoiding inconsistent configurations, 244
builder as an intermediary, 238
convenience initializers, 237
examples in Cocoa, 247–248
implementing, 239

changing the object, 241–244
consuming the builder, 240
defining the builder class, 239

operations, 238
pitfalls, 247
telescoping initializers, 236
variations, 245–247

C ■
Calling components, 4
Chain of responsibility pattern

examples in Cocoa, 396
first link, 387
implementing, 388–389

applying the pattern, 390–391
creating the chain, 389–390

links in the chain, 387
pitfalls, 396
variations, 391

implementing the outcome, 392–394
links notification, in chain, 394–396
using the factory method pattern, 391–392

Index

553

Classes, 60
Cloning, prototype pattern. See Prototype pattern
Cocoa, 3
Command Line Tool projects. See Xcode,

Command Line Tool projects
Command pattern, 401

command object, 404
deferred execution, 403
examples in Cocoa, 418
execution method, 404
implementing, 405

command implementation, 405–406
command protocol, 405
concurrency protections, 408–410
creating an undo feature, 410

invoker, 404
packaging method invocations

as objects, 403
pitfalls, 418
receiver object, 404
undo operations, 403
variations, 411

composite commands, 411–413
macros, 413–415
using closures, 415–417

Composite pattern, 311
composites, 315–316
examples in Cocoa, 320
fixed structure, 318
implementing, 315–316
leaf nodes, 315
pitfalls, 318–319
tree hierarchies, 314

Concurrency
asynchronous method, 329
barriers, 132, 160, 171, 433
blocks, 123, 168, 327
dispatch_async function, 143
dispatch_barrier_async function, 132
dispatch_barrier_sync function, 347, 433
dispatch_group_async function, 124
dispatch_group_create funciton, 124
dispatch_group_wait function, 124
DISPATCH_QUEUE_CONCURRENT

value, 124
dispatch_queue_create

function, 124, 143, 433
DISPATCH_QUEUE_SERIAL value, 126, 143

dispatch_queue_t type, 124
dispatch_semaphore_create function, 144
dispatch_semaphore_signal function, 145
dispatch_semaphore_wait

function, 144, 170
dispatch_sync function, 127, 142–143, 347,

410, 433
DISPATCH_TIME_FOREVER

value, 124, 169
dispatch_time function, 169
FIFO ordering, 174
global queues, 153
NSEC_PER_SEC, 169
overlapping calls, 124
println function, 171
queues, 124, 327, 372

concurrent, 124
serial, 126, 374

reader/writer locking, 132
semaphores, 144, 160, 174, 363
semaphore_wait function, 177
serial execution, 126
serializing access to data, 125–128
singleton pattern, 122–125
thread sleep, 147

Control hierarchy, 34
CORBA distributed systems, 360
Core Data, 486

D ■
Decorator pattern, 293

avoiding subclasses, 298
examples in Cocoa, 307
implementing, 298–300

wrapped object, 298
side-effect pitfall, 306
variations, 300

consolidated decorators, 304–306
creating decorators with new

functionality, 300–304
wrapper classes, 298

Deep copying, 87
Design patterns, 3–4

Abstract factory pattern. (see Abstract
factory pattern)

adapting patterns, 7 (see also Adapter pattern)
as a form of insurance, 3

554 Index

assessing applicability, 5
avoiding tightly coupled components, 6
bridge pattern (see Bridge pattern)
builder pattern (see Builder pattern)
calling components, 4
command pattern (see Command pattern)
composite pattern (see Composite pattern)
decorator pattern (see Decorator pattern)
façade pattern (see Façade pattern)
factory method pattern

(see Factory method pattern)
flyweight pattern (see Flyweight pattern)
increasing modularity, 6
informal strategies, 3

inconsistencies, 4
increasing abstraction, 6
personal experiences, 4

limitations, 6–7
mediator pattern (see Mediator pattern)
memento pattern (see Memento pattern)
minimizing impact of changes, 6
MVC pattern (see Model View Controller

(MVC) pattern)
object pool pattern (see Object pool pattern)
object template pattern (see Object

template pattern)
observer pattern (see Observer pattern)
patterns as receipes, 7
prototype pattern (see Prototype pattern)
proxy pattern (see Proxy pattern)
quantifying value of, 5–6
reducing code duplication, 6
singleton pattern (see Singleton pattern)
strategy pattern (see Strategy pattern)
template pattern (see Template pattern)
visitor pattern (see Visitor pattern)

Detecting shake gestures, 421
Double dispatch, 508

E ■
Encapsulation, 55

F ■
Façade pattern, 325

consolidating complexity, 329
enforcing a specific order, 328
examples in Cocoa, 333–335
implementing, 330

applying the façade, 331–332
pitfalls, 333
variations, 332

Factory method pattern, 187
abstract class, 192
examples in Cocoa, 201–202
implementing, 192

base class, 194–196
delgating decisions, 196–199
global factory method, 193–194

logic encapsulation, 191
operations, 192
pitfalls, 201
selecting protocol

implementations, 189–191
variations, 199–201

Flyweight pattern, 339
common data, 342
examples in Cocoa, 353–354
extrinsic data, 343
flyweight factory, 343
implementing, 343

concurrency protections, 345–347
factory class, 347–348
flyweight implementing

class, 344–345
flyweight protocol, 343–344

intrinsic data, 343
pitfalls, 352

concurrent access, 352
extrinsic data duplication, 352
misapplication, 353
mutable extrinsic data, 352
over-optimization, 352–353

variations, 350–351
First-in first-out (FIFO), 174

G, H ■
Gang of Four (GoF), 4
Grand central dispatch. See Concurrency

555Index

I, J ■
@IBAction attribute. See Xcode, actions method
@IBOutlet attribute, 38. See also Xcode, outlets
Informal strategies. See Design Patterns,

informal strategies
Inspectors, 32–33, 47
Instances, 60
Interface Builder. See Xcode, interface builder

K ■
Key-value observing (KVO), 467–468

L ■
Label component, 32

text property, 39

M ■
Mediator pattern, 423

breaking dependencies, 428
colleagues, 428
examples in Cocoa, 444

observer pattern, 445
implementing, 429

concurrency protections, 432–435
conforming to the peer protocol, 430–432
creating the mediator, 429–430
defining the peer protocol, 429

mediator object, 428
NSNotificationCenter class, 444–445
peer objects, 428
pitfalls, 443–444
variations, 435

additional mediator logic, 435–436
generalized messages, 440–443
generalized relationships, 436–440

Memento pattern, 473
capturing the complete state of an object, 473
caretaker object, 476
example in Cocoa, 484
implementing, 478

immutable state, 478
memento implementing class, 478–480
memento protocol, 478
originator protocol, 478

limitations of single undo
operations, 476

memento, 477
operations, 477
originator object, 476
pitfalls, 483–484
unwinding object state, 477
variations, 481–483

Multi-threaded. See Concurrency
Model View Controller (MVC) pattern, 527

adding structure to an application, 528
controllers, 529, 532
cross-cutting concerns, 529, 533
domain data, 531
examples in Cocoa, 551
implementing, 533

common code, 534
controller, 540–543
framework, 535, 543–544
Model.swift File, 536
repository pattern, 536–539
views, 539–540

model, 529, 531
pitfalls, 550
sections, 529
separation of concerns, 528
variations, 550
view, 529
view model, 532

Multi-threaded. See Concurrency

N ■
Navigator pane, 21
NSCopying protocol, 85–86
NSData class, 486
NSFileHandle class, 329
NSJSONSerialization class, 481
NSKeyedArchiver class, 486
NSKeyedUnarchiver class, 487
NSLayoutManager class, 334
NSMutableDictionary class, 482
NSNotificationCenter class, 444
NSNumber class, 353
NSObject, 86
NSProxy class, 375
NSUndoManager class, 419

556 Index

O ■
Objective-C

bridging header, 222
enumerations, 221
file template, 221
KVO, 467
selectors, 445

Object library. See Xcode, object library
Object pool pattern, 137

amortizing expensive initializers, 139
common examples, 139
concurrent access, 140
examples in Cocoa, 148–149
fair and equitable use, 139
implementing, 141

concurrecy protections, 142
ensuring object availability, 143–145
generic pool class, 141
object creation policy, 146

managing identical, interchangeable objects, 139
object pool, 139–140
object reuse, 139
operations, 139
pitfalls, 148
variations, 157

allocation strategy, 158, 179–182
blocking strategy, 167
calling threads, 167
creation strategy, 158
demand mismatch, 167
eager creation strategy, 158
elastic pools, 175–179
empty pool strategy, 158, 167–168
examples in Cocoa, 183
exhausted pools, 172–175
expectation gap, 182
failing request strategy, 168–172
FIFO allocation strategy, 179
lazy creation strategy, 159
least used strategy, 181
object creation strategy, 158
over and under utilization, 183
peak demand, 175
pitfalls, 182
reapers, 177
replacing objects, 163
responding to demand, 175

reuse strategy, 158, 163–165
setting pool capacity, 168
temporary objects, 177
trusting and untrusting reuse strategy, 163

Object template pattern, 55, 59
benefits, 61

decoupling, 61–62
encapsulation, 62–65
evolving public presentation, 65–67

examples in Cocoa, 67
implementing, 60–61
operations, 59
pitfalls, 67

Observer pattern, 447
events, 450
examples in Cocoa, 466

observing property changes, 467–468
user interface events, 466–467

implementing, 451
applying the subject protocol, 453
creating the subject class, 452–453

notifications, 451
observers, 450
pitfalls, 466

notification object pitfall, 459–461
subjects, 450
variations, 455

generalizing notifications, 456–461
short-lived subjects, 463–466
weak references, 461–462

Open/closed design principle, 493
OS X Command Line Tool projects. See Xcode,

Command Line Tool projects
Outlets. See Xcode, outlets

P, Q ■
Patterns. See Design patterns
Playgrounds. See Xcode, playgrounds
Prototype pattern, 77–112

benefits, 93–95
cloning reference types, 84–85

NSCopying protocol, 85–86
NSObject base class, 86

cloning value types, 81
copying arrays, 91–93
deep copying, 87–91
examples in Cocoa, 103–107

557Index

implementing, 81–84
operations, 81
pitfalls

exposure distortion, 103
nonstandard protocols, 103
shallow vs. deep copying, 102

prototype object, 82
separating object creating from use, 96–97
shallow copying, 87–88

Prototyping Code. See Xcode, playgrounds
Proxy pattern, 357–380

authorization policy, 369
decoupling an operation from its use, 361
examples in Cocoa, 375
expensive operation problem, 359
general form of, 360
implementing, 362

access restriction proxy, 368
consolidating HTTP requests, 364
deferred operations, 366–367
expensive operation proxy, 364–366
remote object proxy, 362

intercepting requests, 362
pitfalls, 375
proxy object, 360
remote object problem, 359
RESTful web services, 360
restricted access problem, 359
variations, 370–372

reference counting, 370, 373

R ■
Reading from the console, 329
Repository pattern, 536–539
RESTful web services, 360

S ■
Shallow copying, 87
Single dispatch, 510
Singleton pattern, 113

examples in Cocoa, 130
global constant, 118
implementing, 118

concurrency, 122
conventional implementation, 121
quick implementation, 118

leakage, 128
pitfalls, 128

bad optimization, 129
concurrency, 129
inconsistent concurrency, 129
shared code, 129

reference types, 118
shared resource encapsulation

problem, 115
using structs, 128

SportsStore application, 25
abstract factory pattern, 227
adapter pattern, 267
bridge pattern, 288
builder pattern, 248
chain of responsibility, 397
command pattern, 418
composite pattern, 320
creating the project, 27
data model, 28
decorator pattern, 307
façade pattern, 335
factory method pattern, 202–206
flyweight pattern, 354–355
interface mockup, 26
mediator pattern, 446
memento pattern, 487
object pool pattern, 149
object pool pattern

variations, 183
object template pattern, 67
observer pattern, 469–471
prototype pattern, 107
proxy pattern, 375
singleton pattern, 130
storyboard, 31
strategy pattern, 501
template method pattern, 524
view controller, 29
visitor pattern, 515

Strategy pattern, 491
context class, 494
defining new algorithms, 494
defining strategy and context class, 495
delegation, 494
examples in Cocoa, 498

selectors, 500–501
UITableView data source, 498–499

558 Index

Prototype pattern (cont.)

implementing, 495
pitfalls, 498
selecting algorithms at runtime, 494
variations, 497–498

Structs, 60
Swift, 3, 7

access protection, 9, 71
internal keyword, 71
private keyword, 21, 71, 298, 372
public keyword, 71

adding file, 22
class keyword, applied to protocols, 452
copying arrays, 91–93
double dispatch, 509–511
extension, 260
final keyword, 119
global constants, 118

lazy initialization, 119
thread safety, 119

global == functions, 341
@IBAction attribute, 47
import statement, 12
KVO, 467–468
method references, 407–408
NSCoding protocol, 486
NSCopying protocol, 85–86, 223
NSFileHandle class, 364
NSNotificationCenter class, 444–445
NSNumber class, 353–354
NSObject, 86
@objc attribute, 163, 165, 223, 445
println function, 116

concurrency, 171
reduce function, 75
selectors, 445
single dispatch, 510
structs, static properties, 121
Table View Cell component, 40
tuples, 30
value types, 81

T ■
Table data source, 44–45
Template pattern, 517–524

changing steps in an algorithm, 517
examples in Cocoa, 524

implementing, 520–522
partially-defined algorithm, 520
pitfalls, 524
variations, 522–524

Tightly coupled components, 57
Tuples. See Swift

U ■
UITableViewDataSource protocol, 44
UITextView class, 334
Unified Modeling Language (UML), 5

V, W ■
Value types, 81
View controller, 29
Visitor pattern, 503–515

algorithm selection, 507
algorithm separation, 507
examples in Cocoa, 515
implementing, 508–511

applying visitors, 514
conforming to the protocol, 511
visitor creation, 513–514

managing heterogeneous
objects, 505

pitfalls, 514
variations, 514

X, Y, Z ■
Xcode, 7

actions method, 47
assistant editor, 17, 37
Attributes Inspector, 32
auto layout, 34
building and running projects, 24
Command Line Tool projects, 9, 18
Connections Inspector, 47
developer mode, enabling, 11
interface builder, 31
interface layout, 20

console, 21
control hierarchy, 34
debug pane, 21
editor, 21

559Index

560

inspector pane, 21, 32
navigator pane, 21

iOS simulator, 35
Label component, 32
object library, 32
outlets, 37
playgrounds, 9

assitant editor, 17
creating, 10

displaying UI components, 16
displaying value histories, 12
displaying value

timelines, 15
Size Inspector, 33
Swift file, adding, 21–24
TableView component, 33

data source, 44
UITableViewDataSource

protocol, 44

Xcode (cont.)

Index

Pro Design Patterns
in Swift

Adam Freeman

Pro Design Patterns in Swift

Copyright © 2015 by Adam Freeman

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
 reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0395-8

ISBN-13 (electronic): 978-1-4842-0394-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: James DeWolf
Development Editor: Douglas Pundick
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, James DeWolf, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jef Olson,
Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Kevin Walter
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

Dedicated to my lovely wife, Jacqui Griffyth.

vii

Contents

About the Author .. xxv

About the Technical Reviewer .. xxvii

Part I: Getting Ready ■ ... 1

Chapter 1: Understanding Design Patterns ■ ...3

Putting Design Patterns into Context ..3

Introducing Design Patterns .. 4

Understanding the Structure of a Design Pattern .. 4

Quantifying the Value of Design Patterns .. 5

Using a Design Pattern After the Problem Occurred .. 6

Understanding the Limitations of Design Patterns .. 6

About This Book ..7

What Do You Need to Know? ... 7

What Software Do You Need? .. 7

What Is the Structure of This Book? .. 7

Where Can You Get the Example Code? ... 8

Summary ...8

viii Contents

Chapter 2: Getting Used to Xcode ■ ..9

Working with Xcode Playgrounds ..9

Creating a Playground ... 10

Displaying the Value History of a Variable ... 12

Using the Value Timeline.. 15

Displaying UI Components in a Playground ... 16

Working with OS X Command Line Tool Projects ..18

Creating a Command-Line Project ... 18

Understanding the Xcode Layout ... 20

Adding a New Swift File .. 21

Summary ...24

Chapter 3: Creating the SportsStore App ■ ..25

Creating an Unstructured iOS App Project ...25

Creating the Project ... 27

Understanding the Xcode Layout ... 28

Defining the Data ... 28

Creating the Basic Layout ...31

Adding the Basic Components ... 32

Configuring Auto Layout .. 34

Testing the Basic Layout .. 35

Implementing the Total Label ..36

Creating the Reference .. 36

Updating the Display.. 38

Implementing the Table Cells ..39

Defining the Custom Table Cell and Layout ... 40

Setting the Table Cell Layout Constraints .. 42

Creating the Table Cell Class and Outlets .. 42

Implementing the Data Source Protocol .. 44

Registering the Data Source .. 46

Testing the Data Source... 46

ixContents

Handling the Editing Actions ...47

Handling the Events ... 48

Testing the SportsStore App ..50

Summary ...51

Part II: The Creation Patterns ■ ... 53

Chapter 4: The Object Template Pattern ■ ..55

Preparing the Example Project ..56

Understanding the Problem Addressed by the Pattern ...56

Understanding the Object Template Pattern ..59

Implementing the Object Template Pattern ...60

Understanding the Benefits of the Pattern ..61

The Benefit of Decoupling ... 61

The Benefit of Encapsulation ... 62

The Benefit of an Evolving Public Presentation ... 65

Understanding the Pitfalls of the Pattern ..67

Examples of the Object Template Pattern in Cocoa ...67

Applying the Pattern to the SportsStore App ...67

Preparing the Example Application .. 68

Creating the Product Class .. 70

Applying the Product Class .. 72

Expanding the Summary Display ... 75

Summary ...76

Chapter 5: The Prototype Pattern ■ ..77

Understanding the Problem Addressed by the Pattern ...78

Incurring Expensive Initializations ... 78

Creating Template Dependencies .. 79

Understanding the Prototype Pattern ..81

x Contents

Implementing the Prototype Pattern ...81

Cloning Reference Types ... 84

Understanding Shallow and Deep Copying .. 87

Copying Arrays ... 91

Understanding the Benefits of the Prototype Pattern ..93

Avoiding Expensive Initializations .. 93

Separating Object Creation from Object Use ... 96

Understanding the Pitfalls of the Prototype Pattern ..102

Understanding the Deep vs. Shallow Pitfall ... 102

Understanding the Exposure Distortion Pitfall ... 103

Understanding the Nonstandard Protocol Pitfall.. 103

Examples of the Prototype Pattern in Cocoa ...103

Using Cocoa Arrays .. 103

Using the NSCopying Property Attribute .. 106

Applying the Pattern to the SportsStore App ...107

Preparing the Example Application .. 108

Implementing NSCopying in the Product Class ... 108

Creating the Logger Class ... 109

Logging Changes in the View Controller .. 110

Testing the Changes .. 112

Summary ...112

Chapter 6: The Singleton Pattern ■ ...113

Preparing the Example Project ..114

Understanding the Problem That the Pattern Solves...114

Understanding the Shared Resource Encapsulation Problem ... 115

Understanding the Singleton Pattern ..117

Implementing the Singleton Pattern..118

The Quick Singleton Implementation ... 118

Creating a Conventional Singleton Implementation... 121

Dealing with Concurrency.. 122

xiContents

Understanding the Pitfalls of the Singleton Pattern ..128

Understanding the Leakage Pitfall ... 128

Understanding the Shared Code File Pitfall ... 129

Understanding the Concurrency Pitfalls .. 129

Examples of the Singleton Pattern in Cocoa ...130

Applying the Pattern to the SportsStore Application ...130

Protecting the Data Array .. 131

Protecting the Callback ... 132

Defining the Singleton ... 133

Summary ...136

Chapter 7: The Object Pool Pattern ■ ..137

Preparing the Example Project ..138

Understanding the Problem That the Pattern Solves...138

Understanding the Object Pool Pattern ...139

Implementing the Object Pool Pattern...141

Defining the Pool Class .. 141

Consuming the Pool Class ... 145

Understanding the Pitfalls of the Object Pool Pattern ...148

Examples of the Object Pool Pattern in Cocoa ..148

Applying the Pattern to the SportsStore Application ...149

Preparing the Example Application .. 150

Creating the (Fake) Server ... 150

Creating the Object Pool .. 150

Applying the Object Pool .. 152

Summary ...155

Chapter 8: Object Pool Variations ■ ..157

Preparing the Example Project ..158

Understanding the Object Pool Pattern Variations...158

Understanding the Object Creation Strategy ... 158

Understanding the Object Reuse Strategy ... 163

xii Contents

Understanding the Empty Pool Strategy .. 167

Understanding the Allocation Strategy .. 179

Understanding the Pitfalls of the Pattern Variations..182

Understanding the Expectation Gap Pitfall .. 182

Understanding the Over- and Under-utilization Pitfalls ... 183

Examples of the Pattern Variations in Cocoa ...183

Applying a Pattern Variation to SportsStore ..183

Summary ...185

Chapter 9: The Factory Method Pattern ■ ...187

Preparing the Example Project ..188

Understanding the Problem That the Pattern Solves...189

Understanding the Factory Method Pattern ..191

Implementing the Factory Method Pattern ..192

Defining a Global Factory Method ... 193

Using a Base Class .. 194

Variations on the Factory Method Pattern ...199

Understanding the Pitfalls of the Pattern ..201

Examples of the Factory Method Pattern in Cocoa ...201

Applying the Pattern to the SportsStore Application ...202

Preparing the Example Application .. 202

Implementing the Factory Method Pattern .. 204

Consuming the Factory Method Pattern .. 205

Summary ...206

Chapter 10: Abstract Factory Pattern ■ ..207

Preparing the Example Project ..208

Understanding the Problem That the Pattern Solves...211

Understanding the Abstract Factory Pattern ...212

Implementing the Abstract Factory Pattern ..213

Creating the Abstract Factory .. 214

Creating the Concrete Factories .. 214

xiiiContents

Completing the Abstract Factory ... 215

Consuming the Abstract Factory Pattern ... 216

Variations on the Abstract Factory Pattern ..217

Hiding the Abstract Factory Class .. 217

Applying the Singleton Pattern to the Concrete Factories ... 219

Applying the Prototype Pattern to the Implementation Classes .. 220

Understanding the Pitfalls of the Pattern ..227

Examples of the Pattern in Cocoa ...227

Applying the Pattern to the SportsStore Application ...227

Preparing the Example Application .. 227

Defining the Implementation Protocols and Classes ... 228

Defining the Abstract and Concrete Factory Classes ... 229

Consuming the Factories and Implementation Classes ... 230

Summary ...231

Chapter 11: The Builder Pattern ■ ..233

Preparing the Example Project ..234

Understanding the Problems That the Pattern Solves ... 235

Understanding the Builder Pattern ..238

Implementing the Builder Pattern ...239

Defining the Builder Class ... 239

Consuming the Builder .. 240

Understanding the Impact of the Pattern .. 241

Variations on the Builder Pattern ..245

Understanding the Pitfalls of the Builder Pattern ..247

Examples of the Builder Pattern in Cocoa ...247

Applying the Pattern to the SportsStore Application ...248

Preparing the Example Application .. 248

Defining the Builder Class ... 249

Using the Builder Class .. 250

Summary ...250

xiv Contents

Part III: The Structural Patterns ■ .. 251

Chapter 12: The Adapter Pattern ■ ...253

Preparing the Example Project ..254

Creating the Data Sources ... 254

Defining the Application... 255

Understanding the Problem That the Pattern Solves...257

Understanding the Adapter Pattern ...258

Implementing the Adapter Pattern ..259

Variations on the Adapter Pattern ...261

Defining an Adapter as a Wrapper Class ... 262

Creating a Two-Way Adapter ... 263

Understanding the Pitfalls of the Adapter Pattern ...266

Examples of the Adapter Pattern in Cocoa ..266

Applying the Pattern to the SportsStore Application ...267

Preparing the Example Application .. 267

Defining the Adapter Class .. 267

Using the Adapted Functionality .. 269

Summary ...270

Chapter 13: The Bridge Pattern ■ ...271

Preparing the Example Project ..272

Understanding the Problem That the Pattern Solves...274

Understanding the Bridge Pattern ...275

Implementing the Bridge Pattern ..277

Dealing with the Messages ... 277

Dealing with the Channels ... 278

Creating the Bridge .. 279

Adding a New Message Type and Channel .. 280

Variations on the Bridge Pattern ...284

Collapsing the Bridge .. 286

xvContents

Understanding the Pitfalls of the Bridge Pattern ...288

Examples of the Bridge Pattern in Cocoa ..288

Applying the Pattern to the SportsStore Application ...288

Preparing the Example Application .. 288

Understanding the Problem ... 289

Defining the Bridge Class .. 289

Summary ...291

Chapter 14: The Decorator Pattern ■ ..293

Preparing the Example Project ..294

Understanding the Problem That the Pattern Solves...295

Understanding the Decorator Pattern ..298

Implementing the Decorator Pattern ...298

Variations on the Decorator Pattern ..300

Creating Decorators with New Functionality ... 300

Creating Consolidated Decorators ... 304

Understanding the Pitfalls of the Decorator Pattern..306

The Side-Effect Pitfall .. 306

Examples of the Decorator Pattern in Cocoa ...307

Applying the Pattern to the SportsStore Application ...307

Preparing the Example Application .. 307

Creating the Decorators ... 307

Applying the Decorators .. 308

Summary ...309

Chapter 15: The Composite Pattern ■ ...311

Preparing the Example Project ..312

Understanding the Problem That the Pattern Solves...314

Understanding the Composite Pattern ..314

Implementing the Composite Pattern ..315

Applying the Pattern .. 316

xvi Contents

Understanding the Pitfalls of the Composite Pattern ..318

Examples of the Composite Pattern in Cocoa ...320

Applying the Pattern to the SportsStore Application ...320

Preparing the Example Application .. 320

Defining the Composite Class .. 321

Applying the Pattern .. 322

Summary ...323

Chapter 16: The Façade Pattern ■ ..325

Preparing the Example Project ..326

Understanding the Problem That the Pattern Solves...328

Understanding the Façade Pattern ..329

Implementing the Façade Pattern ...330

Applying the Façade .. 331

Variations on the Façade Pattern ..332

Understanding the Pitfalls of the Façade Pattern ..333

Examples of the Façade Pattern in Cocoa ...333

Applying the Pattern to the SportsStore Application ...335

Preparing the Example Application .. 336

Creating the Façade Class ... 336

Applying the Façade Class... 337

Summary ...338

Chapter 17: The Flyweight Pattern ■ ..339

Preparing the Example Project ..340

Understanding the Problems That the Pattern Solves ...341

Understanding the Flyweight Pattern ..342

Implementing the Flyweight Pattern ...343

Creating the Flyweight Protocol .. 343

Creating the Flyweight Implementation Class ... 344

Adding Concurrency Protections ... 345

xviiContents

Creating the Flyweight Factory Class .. 347

Applying the Flyweight .. 348

Variations on the Flyweight Pattern ..350

Understanding the Pitfalls of the Flyweight Pattern ..352

Understanding the Extrinsic Duplication Pitfall ... 352

Understanding the Mutable Extrinsic Data Pitfall .. 352

Understanding the Concurrent Access Pitfall .. 352

Understanding the Over-optimization Pitfall .. 352

Understanding the Misapplication Pitfall ... 353

Examples of the Flyweight Pattern in Cocoa ...353

Applying the Pattern to the SportsStore Application ...354

Preparing the Example Application .. 354

Creating the Flyweight Protocol and Implementation Class .. 354

Creating the Flyweight Factory .. 355

Applying the Flyweight .. 356

Summary ...356

Chapter 18: The Proxy Pattern ■ ...357

Preparing the Example Project ..358

Understanding the Problems That the Pattern Solves ...359

Understanding the Remote Object Problem .. 359

Understanding the Expensive Operation Problem ... 359

Understanding the Restricted Access Problem ... 359

Understanding the Proxy Pattern ..359

Solving the Remote Object Problem .. 360

Solving the Expensive Operation Problem ... 361

Solving the Restricted Access Problem ... 361

Implementing the Proxy Pattern ..362

Implementing the Remote Object Proxy .. 362

Implementing the Expensive Operation Proxy ... 364

Implementing the Access Restriction Proxy .. 368

xviii Contents

Variations on the Proxy Pattern ...370

Implementing a Reference Counting Proxy ... 373

Understanding the Pitfalls of the Proxy Pattern ..375

Examples of the Proxy Pattern in Cocoa ...375

Applying the Pattern to the SportsStore Application ...375

Preparing the Example Application .. 376

Defining the Protocol, Factory Method, and Proxy Class ... 376

Updating the Product Data Store ... 377

Sending Stock Level Updates .. 378

Summary ...380

Part IV: The Behavioral Patterns ■ ... 381

Chapter 19: The Chain of Responsibility Pattern ■ ...383

Preparing the Example Project ..384

Understanding the Problem That the Pattern Solves...386

Understanding the Chain of Responsibility Pattern ...387

Implementing the Chain of Responsibility Pattern ..388

Creating and Providing the Chain of Responsibility .. 389

Applying the Chain of Responsibility Pattern ... 390

Variations on the Chain of Responsibility Pattern ...391

Applying the Factory Method Pattern .. 391

Indicating Whether Responsibility Was Taken for the Request .. 392

Notifying All Links in the Chain .. 394

Understanding the Pitfalls of the Pattern ..396

Examples of the Pattern in Cocoa ...396

Applying the Pattern to the SportsStore Application ...397

Preparing the Example Application ... 397

Defining the Chain and its Links .. 397

Summary ...399

xixContents

Chapter 20: The Command Pattern ■ ..401

Preparing the Example Project ..402

Understanding the Problem That the Pattern Solves...403

Understanding the Command Pattern ...404

Implementing the Command Pattern ..405

Defining the Command Protocol ... 405

Defining the Command Implementation Class .. 405

Applying the Command Pattern ... 406

Applying Concurrent Protections ... 408

Using the Undo Feature ... 410

Variations on the Command Pattern ..411

Creating Composite Commands .. 411

Using Commands as Macros ... 413

Using Closures as Commands ... 415

Understanding the Pitfalls of the Command Pattern ...418

Examples of the Command Pattern in Cocoa ..418

Applying the Pattern to the SportsStore Application ...418

Preparing the Example Application ... 418

Implementing the Undo Feature .. 419

Summary ...421

Chapter 21: The Mediator Pattern ■ ...423

Preparing the Example Project ..424

Understanding the Problem That the Pattern Solves...426

Understanding the Mediator Pattern ...428

Implementing the Mediator Pattern ..429

Defining the Meditator Class ... 429

Conforming to the Peer Protocol ... 430

Implementing Concurrency Protections .. 432

xx Contents

Variations on the Mediator Pattern ..435

Putting More Logic Into the Mediator .. 435

Generalizing the Mediator-Peer Relationship .. 436

Understanding the Pitfalls of the Mediator Pattern ...443

The Single Protocol Pitfall ... 444

Examples of the Mediator Pattern in Cocoa ..444

Applying the Pattern to the SportsStore Application ...446

Summary ...446

Chapter 22: The Observer Pattern ■ ...447

Preparing the Example Project ..448

Understanding the Problem That the Pattern Solves...449

Understanding the Observer Pattern ...450

Implementing the Observer Pattern ..451

Creating the Base Subject Class .. 452

Conforming to the Subject Protocol ... 453

Conforming to the Observer Protocol .. 454

Consuming the Pattern ... 455

Variations on the Observer Pattern ...455

Generalizing Notifications .. 456

Using Weak References ... 461

Dealing with Short-Lived Subjects .. 463

Understanding the Pitfalls of the Observer Pattern ...466

Examples of the Observer Pattern in Cocoa ..466

User Interface Events .. 466

Observing Property Changes ... 467

Applying the Pattern to the SportsStore Application ...468

Preparing the Example Application ... 468

Applying the Pattern .. 469

Summary ...471

xxiContents

Chapter 23: The Memento Pattern ■ ...473

Preparing the Example Project ..474

Understanding the Problem That the Pattern Solves...476

Understanding the Memento Pattern ..476

Implementing the Memento Pattern..478

Implementing the Memento Class ... 478

Using the Memento .. 480

Variations on the Memento Pattern ...481

Understanding the Pitfalls of the Memento Pattern ..483

Examples of the Memento Pattern in Cocoa ...484

Applying the Pattern to the SportsStore Application ...487

Preparing the Example Application ... 488

Implementing the Pattern ... 488

Summary ...490

Chapter 24: The Strategy Pattern ■ ..491

Preparing the Example Project ..492

Understanding the Problem That the Pattern Solves...492

Understanding the Strategy Pattern ..494

Implementing the Strategy Pattern ...495

Defining the Strategies and the Context Class .. 495

Consuming the Pattern .. 496

Variations on the Strategy Pattern ..497

Understanding the Pitfalls of the Strategy Pattern ..498

Examples of the Strategy Pattern in Cocoa ...498

Cocoa Protocol-Based Strategies .. 498

Cocoa Selector-Based Strategies .. 500

Applying the Pattern to the SportsStore Application ...501

Summary ...501

xxii Contents

Chapter 25: The Visitor Pattern ■ ...503

Preparing the Example Project ..504

Understanding the Problem That the Pattern Solves...505

Understanding the Visitor Pattern ...507

Implementing the Visitor Pattern ...508

Conforming to the Shape Protocol ... 511

Creating the Visitors ... 513

Applying the Visitors .. 514

Variations on the Visitor Pattern ..514

Understanding the Pitfalls of the Visitor Pattern ...514

Examples of the Visitor Pattern in Cocoa ..515

Applying the Pattern to the SportsStore Application ...515

Summary ...515

Chapter 26: The Template Method Pattern ■ ..517

Preparing the Example Project ..518

Understanding the Problem That the Pattern Solves...519

Understanding the Template Method Pattern ..520

Implementing the Template Method Pattern ...520

Variations on the Template Method Pattern ..522

Understanding the Pitfalls of the Pattern ..524

Examples of the Template Method Pattern in Cocoa ...524

Applying the Pattern to the SportsStore Application ...524

Summary ...524

Part V: The MVC Pattern ■ ... 525

Chapter 27: The Model/View/Controller Pattern ■ ..527

Preparing the Example Project ..528

Understanding the Problem That the Pattern Solves...528

Understanding the MVC Pattern ..528

Understanding the MVC Application Sections .. 530

xxiiiContents

Implementing the MVC Pattern ...533

Defining the Common Code ... 534

Defining the Framework .. 535

Creating the Model .. 536

Defining the View ... 539

Defining the Controller ... 540

Completing the Framework ... 543

Running the Application ... 544

Extending the Application ... 545

Variations on the MVC Pattern ...550

Understanding the Pitfalls of the MVC Pattern ..550

Examples of the MVC Pattern in Cocoa ...551

Summary ...551

Index ...553

xxv

About the Author

Adam Freeman is an experienced IT professional who has held senior
positions in a range of companies, most recently serving as chief
technology officer and chief operating officer of a global bank. Now
retired, he spends his time writing and running.

xxvii

About the Technical

Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works at BluArancio SpA (www.bluarancio.com) as Senior Analyst/Developer and
Microsoft Dynamics CRM Specialist. He is a Microsoft Certified Solution Developer for .NET, a
Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional, and a prolific
author and technical reviewer. Over the past ten years, he’s written articles for Italian and international
magazines and coauthored more than ten books on a variety of computer topics.

www.bluarancio.com

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer

