
dan

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a Glance

About the Author .. xv

About the Technical Reviewers .. xvii

Foreword ... xix

Acknowledgments ... xxi

Introduction ... xxiii

Part I: Getting Started ■ ... 1

Chapter 1: Starting with Express.js ■ ...3

Chapter 2: Hello World Example ■ ..15

Part II: Deep API Reference ■ .. 31

Chapter 3: Configuration, Settings, and Environments ■ ..33

Chapter 4: Working with Middleware ■ ..51

Chapter 5: Template Engines and Consolidate.js ■ ...75

Chapter 6: Parameters and Routing ■ ..87

Chapter 7: Express.js Request Object ■ ..103

Chapter 8: Express.js Response Object ■ ...119

Chapter 9: Error Handling and Running an App ■ ...141

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS AT A GLANCE

iv

Part III: Solving Common and Abstract Problems ■ 153

Chapter 10: Abstraction ■ ...155

Chapter 11: Database, Keys and Stream Tips ■ ..161

Chapter 12: Redis and Authentication Patterns ■ ..171

Chapter 13: Multithreading with Clusters ■ ...177

Chapter 14: Applying Stylus, Less, and Sass ■ ...181

Chapter 15: Security Tips ■ ..185

Chapter 16: Socket.IO and Express.js ■ ..193

Chapter 17: Domain and Express.js ■ ...199

Chapter 18: Sails.js, DerbyJS, LoopBack, and Other Frameworks ■ 205

Part IV: Tutorials and Examples ■ .. 215

Chapter 19: Instagram Gallery ■ ..217

Chapter 20: Todo App ■ ..223

Chapter 21: REST API ■ ...249

Chapter 22: HackHall ■ ...263

Appendix A: Related Reading and Resources ■ ..317

 Appendix B: Migrating Express.js 3.x to 4.x: Middleware, Route, and ■
Other Changes ...321

Appendix C: Express.js 4 Cheat Sheet ■ ...329

Appendix D: ExpressWorks ■ ..335

Index ...339

www.allitebooks.com

http://www.allitebooks.org

xxiii

Introduction

If you are considering whether or not to buy this book, this Introduction will help you to make sure it perfectly suits
your level of expertise and needs. If you bought this book already, then congratulations! You are now well prepared to
dig deeper into the most popular web framework for the fastest-growing platform.

he demand for skills in Node.js and Express.js is on the verge of rapid growth as both startups and big
corporations are gradually becoming aware of the beneits of adopting Node.js. here’s always a gap between early
adopters of new technology and mainstream adoption, and mainstream adoption of Node.js is rapidly approaching.
For you, as a developer, that means right now is the best time to become proicient with Node.js. Your skills will be in
high demand!

Why This Book Was Written
I started writing about Express.js a few years ago when I wrote Express.js Guide. Self-published in 2013, it was one of
the irst books solely dedicated to Express.js, which is the most popular Node.js web framework yet (as of this writing,
December 2014). At the time I wrote Express.js Guide, the Express.js oicial web site (http://expressjs.com) ofered
only bits of insights, and those were intended for advanced Node.js programmers. I had encountered many people—
including through the Hack Reactor program and in my Node.js classes at General Assembly and pariSOMA—who
were interested in a deinitive manual, one that would cover how all the diferent components of Express.js work
together in real life. he goal of Express.js Guide was to be that resource.

After Express.js Guide became the Amazon.com #1 Best Seller in its category, Apress approached me to write this
book to expand upon the material and subject it to formal review by professional technical editors. Pro Express.js is
much more than a revision or an update of Express.js Guide. It’s a complete remake, with the addition of comments,
descriptions, examples, and extras. Pro Express.js has better-reviewed code and text, and up-to-date versions of the
libraries (e.g., Express.js v4.8.1).

Many things have changed between writing the two books. Node.js was forked at io.js. TJ Holowaychuk, the
creator of Express.js, stopped being actively involved with Node.js, and now StrongLoop (http:/strongloop.com)
maintains the framework’s repository. he development on Express.js is as rapid as ever. It’s more stable and more
secure. And I see nothing but a brighter future for Express.js and Node.js!

Who Should Own This Book
his book is intended for software engineers and web developers who are already luent in programming and front-
end JavaScript. To get the most beneit from Pro Express.js, you should be familiar with basic Node.js concepts, such as
process and global, and should also know core modules, including stream, cluster, and bufer.

If you’re thinking about starting a Node.js project or rewriting an existing one, and your weapon of choice is
Express.js, this guide is for you! It will answer most of your “how” and “why” questions.

www.allitebooks.com

http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://www.allitebooks.org

■ INTRODUCTION

xxiv

What This Book Is
Pro Express.js is an exhaustive book on one particular library. Unlike Practical Node.js (Apress, 2014) which covered many
libraries, Pro Express.js is focused on the single module Express.js. Of course, where it’s necessary to cover other related
libraries, such as middleware, the book touches on those as well, but not as extensively as on the framework itself.

Pro Express.js covers middleware, the command-line interface and scafolding, rendering templates, extracting
params from dynamic URLs, parsing payloads and cookies, managing authentication with sessions, error handling,
and prepping apps for production.

Pro Express.js is organized into four distinct parts, the individual chapters of which are set forth in the Table of
Contents:

1. Getting Started: A hands-on, quick-start walkthrough to give you a taste of the framework

2. Deep API Reference: Serves as an Express.js v4.8.1 API reference that you can read in full or
skim through as you need information about certain methods

3. Solving Common and Abstract Problems: The best practices for code organization and
patterns—topics that are good to know when working with Express.js

4. Tutorials and Examples: Tutorials (meticulously depicted coding exercises) and examples
(less detailed explanations of more complex apps) for the real world

What This Book Is Not
his book is not an introduction to Node.js, nor is it a book that covers all aspects of building a modern-day web
application in great detail, such as WebSockets, databases, and (of course) front-end development. You won’t ind
aids for learning programming or JavaScript fundamentals here, because this is not a beginners’ book.

For an introduction to Node.js, MongoDB, and front-end development with Backbone.js, you might want to take
a look at my book Rapid Prototyping with JS: Agile JavaScript Development (http://rapidprototypingwithjs.com) or
consider participating in the Node Program (http://nodeprogram.com) either in person or online.

In the real world—and especially in Node.js development, due to its modularized philosophy—we seldom use
just a single framework. In this book, however, I have tried to stick to Express.js and leave everything else out as much
as possible, without compromising the usefulness of the examples. herefore, I intentionally left out some important
chunks of web development—for example, databases, authentication, and testing. Although these elements are
present in tutorials and examples, they’re not explained in detail. If you want to learn more about these topics,
Appendix A lists some relevant books that you may want to consult.

Examples
Pro Express.js is full of code snippets and run-ready examples. Some of the examples are step-by-step, meticulously
explained tutorials, which you are encouraged to reproduce on your own as you read the book. Others are abridged
code examples that serve the purpose of illustrating a particular point.

he bulk of the source code is available in the GitHub repository at https://github.com/azat-co/proexpressjs
under folders ch1 through ch18 (corresponding to Chapters 1–18). he examples in Part 4 are more extensive and live
in their own repositories. hey can be found at these URLs:

Instagram Gallery: • https://github.com/azat-co/sfy-gallery

Todo App: • https://github.com/azat-co/todo-express

REST API: • https://github.com/azat-co/rest-api-express

HackHall: • https://github.com/azat-co/hackhall

www.allitebooks.com

http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://www.allitebooks.org

■ INTRODUCTION

xxv

he provided examples were written and tested only with the given, speciic versions of dependencies. Because
Node.js and its ecosystem of modules are being developed rapidly, please pay attention to whether new versions have
breaking changes. Here is the list of versions that I’ve used:

Express.js v4.8.1•

Node.js v0.10.12•

NPM v1.2.32 •

MongoDB v2.6.3•

Redis v2.6.7•

Stylus v0.47.3•

Jade v1.5.0•

Foreman v0.75.0•

Google Chrome Version 39.0.2171.7 •

Errata and Contacts
If you get stuck on an exercise, make sure to check the GitHub repository. It might have more recent code and answers
in the GitHub Issues section (https://github.com/azat-co/proexpressjs/issues). Also, by submitting your own
issues, you can help make the experience better for your fellow programmers.

As for pesky typos, a few of which I’m sure will still remain no matter how many times I review the manuscript,
submit them to Apress (via the Errata tab at www.apress.com/9781484200384) or to GitHub Issues.

Finally, let’s be friends on the Internet! It’s lonely to code in isolation. Here are some of the ways to reach me as
well as ways to communicate with other developers:

Write an Amazon.com review: • http://amzn.to/1D6qiqk

Join HackHall.com, a community for programmers, hackers, and developers •

Tweet your Node.js questions on Twitter: • @azat_co

Follow me on Facebook: • http://facebook.com/1640484994

Visit the • Pro Express.js web site: http://proexpressjs.com

Visit my web site: • http://azat.co

Star the Pro Express.js GitHub repository: • https://github.com/azat-co/proexpressjs

E-mail me directly: • hi@azat.co

Sign up for the blog’s newsletter: • http://webapplog.com

Now that you’ve reached the end of the Introduction, let everyone on Twitter know that you’re about to start
learning Express.js via Pro Express.js: http://ctt.ec/91iHS. And after you’ve had a chance to read the book, please
let others know what you think about it by writing an Amazon.com review: http://amzn.to/1D6qiqk.

www.allitebooks.com

http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://www.allitebooks.org

PART I

Getting Started

www.allitebooks.com

http://www.allitebooks.org

3

CHAPTER 1

Starting with Express.js

Express.js is a web framework based on the core Node.js http module1 and Connect2 components. Those components
are called middleware. They are the cornerstone of the framework’s philosophy, which is configuration over
convention. Some developers familiar with Ruby compare Express.js to Sinatra, which has a very different approach
from the Ruby on Rails framework that favors convention over configuration. In other words, developers are free
to pick whatever libraries they need for a particular project. This approach provides them with flexibility and the
capability to highly customize their projects.

If you have written any serious apps using only the core Node.js modules, you most likely found yourself
reinventing the wheel by constantly writing the same code for similar tasks, such as:

Parsing HTTP request bodies•

Parsing cookies•

Managing sessions•

Organizing routes with a chain of • if conditions based on URL paths and HTTP methods of the
requests

Determining proper response headers based on data types•

Handling errors•

Extracting URL parameter (e.g., • /messages/3233)

Later, you might have created your own libraries to reuse the code, but your libraries would not be as thoroughly
tested as the best community supported libraries. Also, the maintenance would be fully on you and your team. So, my
recommendation is to use the community module if it suites your needs. This advice applies to using small libraries
and web frameworks as well.

Express.js solves these and many other problems. It provides ways to reuse code elegantly and provides a
model-view-controller (MVC)-like structure for your web apps. The model (M) part needs to be supplied by an
additional database-driver library (e.g., Mongoose3). Those apps could vary from barebones, back-end-only
REST APIs to full-blown, full-stack, real-time web apps with additional libraries such as jade-browser
(https://npmjs.org/package/jade-browser) and socket.io (http://socket.io).

1http://nodejs.org/api/http.html
2http://www.senchalabs.org/connect
3http://mongoosejs.com

www.allitebooks.com

https://npmjs.org/package/jade-browser
http://socket.io/
http://nodejs.org/api/http.html
http://www.senchalabs.org/connect
http://mongoosejs.com/
http://www.allitebooks.org

CHAPTER 1 ■ STARTING WITH EXPRESS.JS

4

To get you started with Express.js quickly and without diving too deep into its API, we’ll cover these topics in this
chapter:

How Express.js works•

Express.js installation•

Express.js Generator installation•

How Express.js Works
Express.js is a node package manager (NPM or npm) module that is a dependency to your application. This means
that every project that is built with/on Express.js needs to have the framework’s source files in the local node_modules
folder (not globally!). For this, you install Express.js just like any other NPM module, with $ npm install, e.g., $ npm
install express@4.2.0.

Now, we can overview a typical structure of an Express.js application. Let’s say your application is in a server.js file
and you plan to start your application with $ node server.js. In that case, you need to require and configure Express.js
in the server.js file. This file usually contains statements to accomplish the following:

 1. Include third-party dependencies as well as your own modules such as controllers,
utilities, helpers, and models

 2. Instantiations of the Express.js object and others

 3. Connect to databases such as MongoDB4, Redis5, or MySQL6

 4. Configure Express.js app settings such as the template engine and its files’ extensions

 5. Define middleware such as error handlers, static files folder, cookies, and other parsers

 6. Define routes and their request handlers

 7. Start the app which will start the server on a particular host and port

Of course, if your application is big, you’ll have multiple files to configure your Express.js app, not just a single
server.js or app.js file. The reason for that is better code organization. For example, in one file you will configure
sessions, in another authentication, in another routes, and so forth.

Tip ■ In the advanced stages of your application development (usually leading to deployment into production

environment), you might want to use the forever (https://npmjs.org/package/forever) module and Upstart

to accomplish better app uptime. You can also utilize the cluster module as outlined in Chapter 13 to spawn

multiple workers.

4http://www.mongodb.org
5http://redis.io
6http://www.mysql.com

www.allitebooks.com

https://npmjs.org/package/forever
http://www.mongodb.org/
http://redis.io/
http://www.mysql.com/
http://www.allitebooks.org

CHAPTER 1 ■ STARTING WITH EXPRESS.JS

5

Third-Party Dependencies
Defining third-party dependencies is straightforward:

var name = require('name');

The dependencies typically include the Express.js library itself, along with necessary middleware such as
body-parser. Another way to define multiple dependencies is to follow each definition with a comma:

var express = require('express'),
 compression = require('compression'),
 bodyParser = require('body-parser'),
 mongo = require('mongoskin');

Instantiations
To use Express.js, you need to instantiate it. At the same time, it’s a good practice to instantiate any other objects:

var app = express();
var db = mongo.db('mongodb://localhost:27017/integration_tests', {native_parser: true});

Tip ■ You don’t have to name the Express.js module express or name the Express.js application app. The variable

names can be arbitrary. However, most examples throughout this book use express and app to avoid confusion.

Connecting to Databases
Statements to connect to databases don’t have to be in the beginning, as long as they are before step #7 “Starting the
app” (from the list earlier in this section)—except in cases in which we use a database as a session store. For example:

var session = require('express-session');
var RedisStore = require('connect-redis')(session);
app.use(session({
 store: new RedisStore(options),
 secret: 'Pro Express.js rocks!'
}));

Most of the database drivers, such as Mongoskin7 and Mongoose8, support buffering of the queries; this way,
if the server is running before the connection has been established, the database queries will be buffered for later
execution (when the database connection is established).

7https://github.com/kissjs/node-mongoskin
8http://mongoosejs.com

https://github.com/kissjs/node-mongoskin
http://mongoosejs.com/

CHAPTER 1 ■ STARTING WITH EXPRESS.JS

6

Configuring Express.js App Settings
Simply put, configuring Express.js app settings consists of setting some values to string keys with app.set(). Some of
these keys are used by Express.js and augment its behavior, while others are arbitrary. For example, if you are using
the Jade template engine and *.jade files, use 'view engine' to let Express.js know that it needs to looks for
*.jade files:

app.set('view engine', 'jade');

You’ll find a lot more information about configuring settings in the following chapters.
Sometimes we want to store a custom value on the server object for future reference. For example, we can assign

port to a value from the environment variable PORT or, if it’s undefined, to 3000 so that we can use the value across all
source code:

app.set('port', process.env.PORT || 3000);

Defining Middleware
Middleware is a special function that allows for better code organization and reuse. Some of the middleware is
packaged as third-party (NPM) modules and can be used right out of the box. Other times, we can write our own
custom middleware. In both cases the syntax is app.use():

app.use(bodyParser.json());

Defining Routes
Routes can be either good old web pages or REST API endpoints. In both cases the syntax is similar: we use
app.VERB(), where VERB() is an HTTP method such as GET, POST, DELETE, PUT, OPTIONS, or PATCH. For example,
we can define home page (root) routes as

app.get('/', renderHomePage);

Starting the App
Finally, after everything is configured, we can boot up the server with server.listen(portNumber), where server is a
core http server object created with the app object:

var server = http.createServer(app);
var boot = function () {
 server.listen(app.get('port'), function(){
 console.info('Express server listening on port ' + app.get('port'));
 });
};
var shutdown = function() {
 server.close();
};

CHAPTER 1 ■ STARTING WITH EXPRESS.JS

7

If this file is included by another file (e.g., a test), we might want to export the server object instead of boot it up.
The way we perform a check is by using require.main === module; if it’s true, then this file wasn’t included by
anything else. The test will boot up the server by itself using the method boot() that we export. We also export
shutdown() and port:

if (require.main === module) {
 boot();
} else {
 console.info('Running app as a module');
 exports.boot = boot;
 exports.shutdown = shutdown;
 exports.port = app.get('port');
}

When an Express.js app is running, it listens to requests. Each incoming request is processed according to a
defined chain of middleware and routes, starting from the top and proceeding to the bottom. This aspect is important
because it allows you to control the execution flow.

For example, we can have multiple functions handling each request, and some of those functions will be in the
middle (hence the name middleware):

 1. Parse cookie information and go to the next step when done.

 2. Parse parameters from the URL and go to the next step when done.

 3. Get the information from the database based on the value of the parameter if the user is
authorized (cookie/session), and go to the next step if there is a match.

 4. Display the data and end the response.

Express.js Installation
Express.js is a dependency module and should be installed in the local (project) node_modules folder: $ npm install
express@4.8.1.

Tip ■ NPM looks for either the node_modules folder or the package.json file. If this is a brand new folder that doesn’t

include either the folder or the file, you can create node_modules with $ mkdir node_modules, or create package.json

with $ npm init.

For local Express.js module installation as a dependency, let’s create a new folder, $ mkdir proexpressjs. This
will be our project folder for the book. Now, we can open it with $ cd proexpressjs.

Tip ■ For your convenience, most of the examples are located in the GitHub repository azat-co/proexpressjs

(http://github.com/azat-co/proexpressjs). However, I strongly encourage you to type the code from the book, and

modify it along the way with your text, names, and custom logic. Do not copy/paste code or even worse—just blanty run

our GitHub examples. Use the full source code provided in the book and GitHub only as a reference when you’re stuck or

when you need to use some reciepe for your project after you’ve read the book. This suggestion is based on numerous

studies which show that people who write or type remember and learn more effectively than those who only consume

content. Also take notes!

http://github.com/azat-co/proexpressjs

CHAPTER 1 ■ STARTING WITH EXPRESS.JS

8

Once we are inside the project folder, we can create package.json manually in a text editor or with the
$ npm init terminal command. When you use this command, you’ll be asked to provide details such as project
name, description, and so forth, as you can see in Figure 1-1.

Figure 1-1. The result of running $ npm init

CHAPTER 1 ■ STARTING WITH EXPRESS.JS

9

This is an example of the package.json file with vanilla $ npm init options from Figure 1-1:

{
 "name": "ch1",
 "version": "0.0.1",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"
}

Finally, to install the module utilizing NPM:

$ npm install express

The preceding command will pull the latest version of Express.js. However, it’s recommended for this book that
you use the version specified, so run this command instead:

$ npm install express@4.8.1 --save

The --save flag is optional. It creates an entry for this module in package.json.
If you want to install Express.js for an existing project and save the dependency into the package.json file (smart

thing to do!)—which is already present in that project’s folder—run:

 $ npm install express --save.

Note ■ If you attempt to run the aforementioned $ npm install express command without the package.json file or

node_modules folder, the smart NPM will traverse up the directory tree to the folder that has either of those two things.

This behavior somewhat mimics Git’s logic. For more information on the NPM installation algorithm, refer to the official

documentation at https://npmjs.org/doc/folders.html.

The approach of using $ npm init and then $ npm install express@4.8.1 --save is good if your project is
blank. As a result, the command will download express and its dependencies, and list them (shown in Figure 1-2):

...
express@4.8.1 node_modules/express
├── merge-descriptors@0.0.2
├── utils-merge@1.0.0
├── cookie@0.1.2
├── escape-html@1.0.1
...

https://npmjs.org/doc/folders.html

CHAPTER 1 ■ STARTING WITH EXPRESS.JS

10

The information express@4.8.1 node_modules/express is important because it tells us where the express was
placed (in node_modules).

Alternatively, if the project is not blank and package.json already exists full of useful information, we can add
to the package.json file our new dependency with its version number or some combination of serendipity (no
recommended for production apps), e.g., "express": "4.8.x" or "express": "4.8.1", or "*", and run $ npm
install.

Figure 1-2. The result of running npm install express@4.8.1 --save

CHAPTER 1 ■ STARTING WITH EXPRESS.JS

11

The package.json file with an added Express.js v4.8.1 dependency looks as follows:

{
 "name": "proexpress",
 "version": "0.0.1",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "dependencies": {
 "express": "4.8.1"
 },
 "author": "",
 "license": "BSD"
}

$ npm install

To double-check the installation of Express.js and its dependencies, we can run a $ npm ls command
(see Figure 1-3), which lists all the modules in this local project:

ch1@0.0.0 /Users/azat/Documents/Code/proexpress/ch1
└─┬ express@4.8.1
 ├─┬ accepts@1.0.7
 │ ├── mime-types@1.0.2
 │ └── negotiator@0.4.7
 ├── buffer-crc32@0.2.3
 ├── cookie@0.1.2
 ├── cookie-signature@1.0.4
...

CHAPTER 1 ■ STARTING WITH EXPRESS.JS

12

Figure 1-3. The result of running $ npm ls and $ ls node_modules

The command $ npm ls lists the local dependencies for this project (current folder). At this point, we should at
least see express@4.8.1 (as shown in Figure 1-3). Another way to check is to use $ ls node_modules (also shown in
Figure 1-3), which lists folders in node_modules.

Express.js Generator Installation
Express.js Generator (express-generator) is a separate module (since Express.js version 4.x, before which they
were bundled). It allows for rapid app creation because its scaffolding mechanism takes command-line options and
generates Express.js apps based on them.

CHAPTER 1 ■ STARTING WITH EXPRESS.JS

13

To install Express.js Generator, a command-line tool for scaffolding, run $ npm install -g express-generator
from anywhere on your Mac/Linux machine. (For Windows users, the path will be different. Check the NODE_PATH
environment variable and update it if you want a different global location.) The installation command will download
and link the $ express terminal command to the proper path so that we can later access its command-line interface
(CLI) when creating new apps.

Of course, we can be more specific and tell NPM to install version 4.2.0 using $ npm install -g express@4.2.0.
Versions of the express and express-generator modules don’t have to (and usually don’t) match, because they are
separate modules. So you need to know what’s compatible with what based on the change log and the GitHub readme
documentation.

Tip ■ When using the –g flag with npm install, a good rule of thumb is to use it for command-line tools

(e.g., node-dev, mocha, supervisor, grunt), but not for dependencies of your project. Dependencies in Node.js must be

installed locally into the project's node_modules folder.

In Figure 1-4, we try the express command without success, then install express-generator, and get access to
the express command-line tool.

Figure 1-4. The result of running NPM with -g and $ express -V

CHAPTER 1 ■ STARTING WITH EXPRESS.JS

14

Note ■ Most likely, your system will require a root/administrator right to write to the folder. In this case, you’ll need

$ sudo npm install -g express-generator.

Notice the path /usr/local/lib/node_modules/express-generator in Figure 1-4. This is drastically different
from the express path of the local installation. This is one of the ways to spot an error if you’re trying to install
something and it’s not available—check the location!

Yes, it’s might be trivial for some readers who are well versed in Node.js, but I’ve seen too many times how some
people who come from Python, Ruby and Java backgrounds try to install express (the dependency) globally so they
can use it for all their projects. Please don’t do it.

Summary
This chapter laid the foundation for understanding how Express.js works. By covering a typical Express.js app
structure, you’ve been introduced to concepts such as configuration, middleware, and routes that we’ll cover in more
depth throughout the book. Most importantly, you learned how to install Express.js locally in a blank folder and into
existing projects, as well as how to install Express.js Generator.

In the next chapter, we’ll build our first Express.js app, the quintessential Hello World, and explore the
generator/scaffolding options.

www.allitebooks.com

http://www.allitebooks.org

15

CHAPTER 2

Hello World Example

In this chapter, to help you get your feet wet using Express.js, we’ll build the quintessential programming
example—the Hello World app. If you’ve already built some variation of this Express.js app (perhaps by following an
online tutorial), feel free to skip to the next chapter and go either to Chapter 3 for the API methods and objects, or to
Chapter 19-22 for examples. The topics covered in this chapter are as follow:

Getting started: creating the minimal Express.js app from scratch•

Generator commands: command-line options of Express.js Generator•

MVC structure and modules: a common way to organize code for Express.js apps•

Watching for file changes: a development tip•

Getting Started
I’ve always liked the bottom-up approach to teaching, starting from the most basic concepts and progressing toward
more complex ones. Also, I’ve noticed that developers gain more confidence when they learn how to create something
from scratch instead of just modifying an existing project or using boilerplate.

Note ■ I encourage readers to type in all the code, because this increases learning efficiency. However, for

reference and for those who still prefer to copy and paste, the code for this chapter (and others) is in the GitHub

repository at https://github.com/azat-co/proexpressjs.

To begin, you’ll write a web server that runs locally on port 3000. So, when you open the http://localhost:3000
location in the browser, you should see Hello World. The number 3000 is the de-facto standard port number for
Express.js applications.

Tip ■ The browser makes a GET request when you navigate it to some page, so at the very least your server should

process GET requests. GET and other types of requests can be performed with CURL (Mac1 or Windows2) or similar tools.

1https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/curl.1.html
2http://www.confusedbycode.com/curl/#downloads and http://curl.haxx.se/download.html

https://github.com/azat-co/proexpressjs
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/curl.1.html
http://www.confusedbycode.com/curl/#downloads
http://curl.haxx.se/download.html

CHAPTER 2 ■ HELLO WORLD EXAMPLE

16

In the folder proexpressjs/ch2, create a hello.js file. Use your favorite text editor, such as Vim (www.vim.org),
Emacs (www.gnu.org/software/emacs/), Sublime Text 2 (www.sublimetext.com), or TextMate (http://macromates.
com). The file hello.js server will utilize Express.js; therefore, let’s include this library:

var express = require('express');

Now we can create an application (i.e., instantiate an Express.js object):

var app = express();

The web server will run locally on port 3000, so let’s define it here:

var port = 3000;

Next, let’s define a wildcard route (*) with the app.get() function:

app.get('*', function(request, response){
 resquest.end('Hello World');
});

The app.get() function accepts regular expressions3 of the URL patterns in a string format. In our example, we’re
processing all URLs by specifying the wildcard * character.

Note ■ Regular expressions are widely used in, and work similarly across, many programming languages, so if you

already use them with Perl, PHP, Java, and so on, then you already know how to use most of them with JavaScript/Node.

js.The regular expression, or RegExp for short, uses special symbols to define string patterns for validation,

transformation, or parameter extraction. For example, this is one of the e-mail RegExps: /^(([^<>()

[\]\\.,;:\s@\"]+(\.[^<>()[\]\\.,;:\s@\"]+)*)|(\".+\"))@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]

{1,3}\])|(([a-zA-Z\-0-9]+\.)+[a-zA-Z]{2,}))$/

In the case of Express.js, you can use RegExps in routes to define complex URL patterns dynamically. To find out
more about regular expressions, check out the documentation at https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Guide/Regular_Expressions.

3https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/curl.1.html

http://www.vim.org/
http://www.gnu.org/software/emacs/
http://www.sublimetext.com/
http://macromates.com/
http://macromates.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/curl.1.html

CHAPTER 2 ■ HELLO WORLD EXAMPLE

17

Using Request Handlers
The second parameter to the app.get() method is a request handler. A typical Express.js request handler is similar
to the one we pass as a callback to the native/core Node.js http.createServer() method. For those unfamiliar with
the core http module, a request handler is a function that will be executed every time the server receives a particular
request, usually defined by an HTTP method (e.g., GET) and the URL path (i.e., the URL without the protocol, host,
and port). The Express.js request handler needs at least two parameters—request, or simply req, and response,
or res (more on this later in Chapter 9). Similarly to their core counterparts, we can utilize readable and writable
streams interfaces (http://nodejs.org/api/stream.html) via response.pipe() and/or response.on('data',
function(chunk) {...}).

Outputting Terminal Messages
Finally, we start the Express.js web server and output a user-friendly terminal message in a callback:

app.listen(port, function(){
 console.log('The server is running, ' +
 ' please, open your browser at http://localhost:%s',
 port);
});

To run the script, we execute $ node hello.js from the project folder. You should see “The server is running,
please open your browser at http://localhost:3000” as shown in Figure 2-1.

Figure 2-1. The result of running $ node hello.js

Now, if you open your browser at http://localhost:3000 (same as http://127.0.0.1:3000,
http://0.0.0.0:3000, or http://localhost:3000/), you should see the Hello World message no matter what the
URL path is (see Figure 2-2). The URL path is the string after the domain and port, so for http://localhost:3000/, it
is / and for http://localhost:3000/messages/ is it “/messages/”. When you use “*” in the route definition, this path
doesn’t matter.

http://nodejs.org/api/stream.html
http://127.0.0.1:3000/
http://0.0.0.0:3000/

CHAPTER 2 ■ HELLO WORLD EXAMPLE

18

The full code of the hello.js file is provided here for your reference:

var express = require('express');
var port = 3000;
var app = express();

app.get('*', function(request, response){
 resquest.end('Hello World');
});

app.listen(port, function(){
 console.log('The server is running, ' +
 ' please open your browser at http://localhost:%s',
 port);
});

Figure 2-2. Browser opened at http://localhost:3000/ads

CHAPTER 2 ■ HELLO WORLD EXAMPLE

19

Enhancing the App
We can make our example a bit more interactive by echoing the name that we provide to the server along with the
“Hello” phrase. To do so, we can copy the hello.js file with $ cp hello.js hello-name.js and add the following
route right before the all-encompassing route (all.get('*', ...)) from the previous example:

app.get('/name/:user_name', function(req,res) {
 res.status(200);
 res.set('Content-type', 'text/html');
 res.send('<html><body>' +
 '<h1>Hello ' + req.params.user_name + '</h1>' +
 '</body></html>'
);
});

Inside of the /name/:name_route route, we set the proper HTTP status code (200 means OK) and HTTP response
headers and wrap our dynamic text in HTML body and h1 tags.

Note ■ response.send() is a special Express.js method that conveniently goes beyond what our old friend from the

core http module response.end() does. For example, the former automatically adds a Content-Length HTTP header for

us. It also augments Content-Type based on the data provided to it—more details on this are provided in Chapter 8.

The full source code of the hello-name.js file is provided next (and is also available in the downloadable source
code for this book):

var express = require('express');
var port = 3000;
var app = express();

app.get('/name/:user_name', function(request,response) {
 response.status(200);
 response.set('Content-Type', 'text/html');
 response.end('<html><body>' +
 '<h1>Hello ' + req.params.user_name + '</h1>' +
 '</body></html>'
);
});

app.get('*', function(request, response){
 response.end('Hello World');
});

app.listen(port, function(){
 console.log('The server is running, ' +
 ' please open your browser at http://localhost:%s',
 port);
});

CHAPTER 2 ■ HELLO WORLD EXAMPLE

20

After shutting down the previous server and launching the hello-name.js script, you’ll be able to see the
dynamic response; for example, entering http://localhost:3000/name/azat in your browser yields the screen
shown in Figure 2-3.

Figure 2-3. Dynamic Hello User example

So far we’ve created two Express.js apps from scratch. Each of them was just a few lines of code. This should give
you the confidence, and illustrate how easy it is, to create web servers with Express.js and Node.js! But there’s an even
faster way—Express.js generator. Let’s cover its commands and options.

Generator Commands
Comparable to Ruby on Rails and many other web frameworks, Express.js comes with a command-line interface
(CLI) for jump-starting your development process. The CLI generates a basic foundation for the most common cases.
Unlike Rails or Sails, Express generator doesn’t support the addition of routes/models (as of this writing).

CHAPTER 2 ■ HELLO WORLD EXAMPLE

21

To generate a skeleton Express.js app, we need to run a terminal command: express [options] [dir|appname]
(e.g., express cli-app), where the options are as follows:

• -e or --ejs adds EJS engine support (www.embeddedjs.com). By default, Jade
(http://jade-lang.com/tutorial/) is used.

• -H or --hogan adds hogan.js engine support.

• -c <engine> or --css <engine> adds style sheet <engine> support for Less
(http://lesscss.org), Stylus (http://learnboost.github.io/stylus), or Compass
(http://compass-style.org); by default, plain CSS is used.

• -f or --force forces app generation on a non-empty directory.

These options are optional, of course, so you can just run express cli-app and you’ll get an app with
default settings.

If the dir/appname option is omitted, Express.js will create files using the current folder as the base for the project.
Otherwise, the application will be under the specified directory.

Generating a Skeleton Express.js app
For the sake of experimenting, let’s run this command: $ express -e -c less -f cli-app. The generator tool will
output created files and suggest commands to run to boot up the server. Figure 2-5 shows the output.

Figure 2-4. Checking the Express.js Generator version

If you followed the global installation instructions in Chapter 1, you should be able to see the version number if
you run the $ express -V form anywhere on your machine. If you type $ express -h or $ express --help, you get
the list of available options and their usage. In this book, we’re using the latest (as of this writing) version, 4.2.0, which
is compatible with Express.js 4.x (see Figure 2-4).

http://www.embeddedjs.com/
http://jade-lang.com/tutorial/
http://lesscss.org/
http://learnboost.github.io/stylus
http://compass-style.org/

CHAPTER 2 ■ HELLO WORLD EXAMPLE

22

As you can see, Express.js provides a robust command-line tool for spawning boilerplates rapidly. The downside
is that Express.js Generator approach is not very configurable. For example, it’s possible to use a Handlebars template
engine (and many others not just Hogan, Jade, JSHTML, or EJS provided by CLI) when you create apps manually, but
Express.js Generator doesn’t have this option (as of this writing). You’ll find more info on using different template
engines with Express.js in Chapter 5.

Next we’ll examine what the generator created—in other words, what app structure the scaffolding uses.

Reviewing the Application’s Structure
Let’s briefly examine the application structure. The project’s root folder includes two very important files, app.js and
package.js, as indicated on these lines shown in Figure 2-5: create: cli-app/package.json and create: cli-app/
app.js. The app.js file is the main file (as discussed in the previous chapter) and it connects all the other pieces. The
package.json file has all the needed dependencies (express at the bare minimum). Then, we have three folders:

• public: Static assets such as images, browser JavaScript, and CSS files

• views: Template file such as *.jade, or *.ejs as in our example

• routes: Request handlers abstracted (a fancy word for copied and pasted) into separate files/
internal modules

Figure 2-5. The result of running $ express -e -c less -f cli-app

CHAPTER 2 ■ HELLO WORLD EXAMPLE

23

The public folder has three folders of its own when project is generated by express-generator:

• images: For storing images

• javascripts: For front-end JavaScript files

• stylesheets: For CSS or, in our example, Less files (the -c less options)

The routes folder has two files: index.js, which handles the home page (root or /), and users.js, which
handles the /users route.

The folders in the public folder are not mandatory, and you can create arbitrary folders that will be exposed
on the / route of your server by the express.static() middleware. For example, the content of public/img will be
available at http://localhost:3000/img. I personally prefer img, js and css instead of images, javascripts and
stylesheets. When you rename the folders inside /public, you don’t need to make any additional change in the
Express.js configuration.

You can also rename the views and public folders themselves, but you’ll need to make some additional changes
in configuration statements, i.e., change settings. We’ll cover these settings later in Chapter 3.

App.js

Open the main web server file app.js in your favorite text editor. We’ll briefly go through the auto-generated code and
what it does before diving deeper into each one of those configurations later on (Chapter 3).

We include the following module dependencies:

var express = require('express');
var path = require('path');
var favicon = require('static-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');

var routes = require('./routes/index');
var users = require('./routes/users');

Next, we create the Express.js app object:

var app = express();

Then, we define configuration settings. For now, you can probably guess their meaning based on their names.
That is, where to get template files (views) along with what template engine to use (view engine). More details on
these parameters are provided in Chapter 3 so for now let’s move along with the app.js file:

app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'ejs');

We next define middleware (discussed in detail in Chapter 4) to serve favicon, log events, parse the request body,
support old browsers’ HTTP methods, parse cookies, and utilize routes:

app.use(favicon());
app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded());
app.use(cookieParser());

CHAPTER 2 ■ HELLO WORLD EXAMPLE

24

The following middleware is responsible for compiling Less styles into CSS styled that will be served to the
browser:

app.use(require('less-middleware')(path.join(__dirname, 'public')));

We pass the folder (public) as a parameter to make it scan this folder recursively for any *.less files. The CSS file
name and Less file name need to match, so if we use /css/style.css(e.g., in HTML or Jade), we need to have
/public/css/style.less. Express.js will compile Less for each request.

This statement takes care of serving static assets from the public folder:

app.use(express.static(path.join(__dirname, 'public')));

The routes are defined as a module in a separate file, so we just pass the functions’ expressions instead of
defining them right here as anonymous request handlers:

app.get('/', routes.index);
app.get('/users', user.list);

Express.js gets its environment variable from process.env.NODE_ENV, which is passed as NODE_ENV=production,
for example, either when the server is started or in the machine’s configurations. With this condition, we enable a
more explicit error handler for the development environment. The generator provides us with a 404 (Not Found)
middleware, and two 500 (Internal Server Error) error handlers, one for development (more verbose) and one for
production:

app.use(function(req, res, next) {
 var err = new Error('Not Found');
 err.status = 404;
 next(err);
});
if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}
app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ HELLO WORLD EXAMPLE

25

Unlike the Hello World example, this server is not booted right away, but exported:

module.exports = app;

In /bin/www, the server is imported from the app.js file:

#!/usr/bin/env node
var debug = require('debug')('cli-app');
var app = require('../app');

This statement sets a custom setting with the name port to use it later for server boot-up:

app.set('port', process.env.PORT || 3000);

Finally, the server is started with familiar listen():

var server = app.listen(app.get('port'), function() {
 debug('Express server listening on port ' + server.address().port);
});

For your reference, the following is the full code for app.js:

var express = require('express');
var path = require('path');
var favicon = require('static-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');

var routes = require('./routes/index');
var users = require('./routes/users');

var app = express();

// view engine setup
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'ejs');

app.use(favicon());
app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded());
app.use(cookieParser());
app.use(require('less-middleware')(path.join(__dirname, 'public')));
app.use(express.static(path.join(__dirname, 'public')));

app.use('/', routes);
app.use('/users', users);

CHAPTER 2 ■ HELLO WORLD EXAMPLE

26

/// catch 404 and forward to error handler
app.use(function(req, res, next) {
 var err = new Error('Not Found');
 err.status = 404;
 next(err);
});

/// error handlers

// development error handler
// will print stacktrace
if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

// production error handler
// no stacktraces leaked to user
app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

module.exports = app;

If you navigate ($ cd cli-app) into the project folder and run $ npm install, you should observe the
installation of NPM modules based on the package.json entry. After the installations are finished, run npm start or
$./bin/www. When you navigate to http://localhost:3000 in your browser, you should see the response shown
in Figure 2-6.

CHAPTER 2 ■ HELLO WORLD EXAMPLE

27

Express.js generator is not a very powerful tool, because it doesn’t do much after the boilerplate creation.
However, it provides developers with boilerplates/skeletons that can be used for rapid prototyping. In addition,
beginners can learn about recommended structure and code organization, as well as learn how to include some
middleware such as Less and express.static().

The next section summarizes some common patterns and conventions regarding the folder structure of
Express.js apps.

Figure 2-6. Boilerplate Express.js app created by generator

CHAPTER 2 ■ HELLO WORLD EXAMPLE

28

MVC Structure and Modules
Express.js is a highly configurable framework, which means that we can apply any structure we find suitable. As we
observed in the previous section, the generator tool produces a few folders for us right off the bat: public, views,
and routes. What is lacking in order to adhere to the general MVC paradigm is the model. If you use something like
Mongoose,4 you might want to create a folder named models and put the models and/or schema objects (Mongoose
Schema) there. More advanced applications might have a nested folder structure similar to this:

.
├── app.js
├── package.json
├── views
 └── *.jade
├── routes
 └── *.js
├── models
 └── *.js
├── config
 └── *.js
├── public
 ├── javascripts
 └── *.js
 ├── images
 └── *.png, *.jpg
 └── stylesheets
 └── *.less, *.styl
├── test
 └── *.js
├── logs
 └── *.log

The best practice is to have static assets under a special folder. Those assets could also be written in a compilable
language such as CoffeeScript or Less.

In case you prefer to rename the folders, just make sure you update the corresponding code in your app.js file
(or the other main script file, if you’re creating an app from scratch with a different file name). For example, if I want to
serve my user-related routes from the folder controllers, I would update my app.js file like this:

var user = require('./controllers/user');

The patterns for the modules don’t have to be complicated. From the main file, we include the object with the
require() function, and inside of that module file, we apply an exports global keyword to attach a method that we
want to expose (and use later in the main file):

exports.list = function(req, res){
 res.send("respond with a resource");
};

4http://mongoosejs.com

http://mongoosejs.com/

CHAPTER 2 ■ HELLO WORLD EXAMPLE

29

One caveat here—or a feature, depending on how you look at it—is that if we omit the file name and require a
folder, such as var routes = require('./routes'); from our previous example, Node.js will grab the index.js file
from that folder, if one exists. This might come in handy when declaring some helpers or utility functions that you
might want to share across the files of that particular folder.

In Chapter 13 we’ll discuss how to make our application a module in itself, so we can spawn multiple processes
(i.e., workers) in a production environment.

A similar approach is applicable to a template folder. If we decide that we want to have templates instead of
views, we need to change a settings line to

app.set('views', path.join(__dirname, 'views'));

In this line, the first parameter to the app.set() function is the name of the setting, views, and the second is the
value that is dynamically prefixed with a global __dirname variable.5 The __dirname variable returns the system path
to the module being executed.

Watching for File Changes
This topic is bit outside the scope of Express.js, but I believe that it’s sufficiently important that it’s worth mentioning.
Node.js applications are stored in memory, and if we make changes to the source code, we need to restart the
process—the running Node.js program. On Mac OS X, this is achieved by the following combination of keys pressed in
the terminal: Ctrl+C, Up Arrow, Enter.

The following brilliant file-watching tools can leverage the watch() method6 from the core Node.js fs module
and restart our servers when we save changes from an editor. For the purpose of this book and its examples, these
tools are pretty much the same, so none is given any preference; just pick one of them.

• forever: For use on the production server (https://npmjs.org/package/forever)

• node-dev: Description (https://npmjs.org/package/node-dev; GitHub:
https://github.com/fgnass/node-dev)

• nodemon: Supports CoffeeScript (https://npmjs.org/package/nodemon; GitHub:
https://github.com/remy/nodemon)

• supervisor: Written by the one of the creators of NPM https://npmjs.org/package/
supervisor; GitHub: https://github.com/isaacs/node-supervisor)

• up: Written by the team that wrote Express.js (https://npmjs.org/package/up; GitHub:
https://github.com/LearnBoost/up)

Tip ■ Because Express.js reloads a template file for every new request by default, no server restart is necessary.

However, we can cache templates by enabling the view cache setting. This and other settings will be covered at length

later in the book in Chapter 3.

5http://nodejs.org/docs/latest/api/globals.html#globals_dirname
6http://nodejs.org/docs/latest/api/fs.html#fs_fs_watch_filename_options_listener

https://npmjs.org/package/forever
https://npmjs.org/package/node-dev
https://github.com/fgnass/node-dev
https://npmjs.org/package/nodemon
https://github.com/remy/nodemon
https://npmjs.org/package/supervisor
https://npmjs.org/package/supervisor
https://github.com/isaacs/node-supervisor
https://npmjs.org/package/up
https://github.com/LearnBoost/up
http://nodejs.org/docs/latest/api/globals.html#globals_dirname
http://nodejs.org/docs/latest/api/fs.html#fs_fs_watch_filename_options_listener

CHAPTER 2 ■ HELLO WORLD EXAMPLE

30

Summary
So far we’ve created a few apps from scratch, used Express.js Generator and explored its options. Then we looked at
one of the ways to structure Express.js apps and organize the code. The Express.js Generator is not a very versatile tool
but by using it you can quickly produce some boilerplate code with different CSS libraries, and template engines.

The framework’s configurability is one of the primary selling points of Express.js and a contributing factor to its
growing popularity. This means that the Express.js way is to provide default settings, so at the bare minimum your
server will work just fine without extra configurations (ch2/hello.js is just 13 lines). But at the same time, Express.js
allows skilled developers to configure settings effortlessly and in a sane manner. Who would object to knowing these
settings, right? For this reason, in Chapter 3 we explore the most important configuration settings available in
Express.js.

PART II

Deep API Reference

33

CHAPTER 3

Configuration, Settings, and
Environments

This chapter is all about different ways of configuring Express.js settings. As mentioned in Chapter 1, Express.js
positions itself as a configuration over convention framework. So, when it comes to configurations in Express.js, you
can configure pretty much anything! To do so, you use configuration statements and know the settings.

What are the settings? Think of settings as key-value pairs that typically act in a global or application-wide
manner. Settings can augment behavior of the server, add information to responses, or be used for references later.

There are two types of settings: Express.js system settings that the framework uses behind the scene, and
arbitrary settings that developers use for their own code. The former come with default values so that if you don’t
configure them—the app will still run okay! Therefore, it’s not a big deal if you don’t know or don’t use some of the
Express.js settings. For this reason, don’t feel like you must learn all the settings by heart to be able to build Express
apps. Just use this chapter as a reference any time you have a question about a specific method or a system setting.

To progress from simple to more complex things, this chapter is organized as follows:

• Configuration: Methods to set settings values and to get them

• Settings: Names of the settings, their default values, what they affect, and examples of how to
augment values

• Environments: Determining an environment and putting an application in that mode is an
important aspect of any serious application.

The examples for this chapter are available in the ch3/app.js project, which is in the GitHub repository at
http://github.com/azat-co/proexpressjs.

Configuration
Before you can work with settings, you need to learn how to apply them on an Express.js app. The most common and
versatile way is to use app.set to define a value and use app.get to retrieve the value based on the key/name of the
setting.

The other configuration methods are less versatile, because they apply only to certain settings based on their type
(boolean): app.enable() and app.disable().

http://github.com/azat-co/proexpressjs

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

34

app.set() and app.get()
The method app.set(name, value) accepts two parameters: name and value. As you might guess, it sets the value for
the name. For example, we often want to store the value of the port on which we plan to start our server:

app.set('port', 3000);

Or, for a more advanced and realistic use case, we can grab the port from system environment variable PORT
(process.env.PORT). If the PORT environment variable is undefined, we fall back to the hard-coded value 3000:

app.set('port', process.env.PORT || 3000);

The preceding code is a shorter equivalent to using an if else statement:

if (process.env.PORT) {
 app.set(process.env.PORT);
} else {
 app.set(3000);
}

The name value could be an Express.js setting or an arbitrary string. To get the value, we can use app.set(name)
with a single parameter, or we can use the more explicit method app.get(name), as shown in the following example:

console.log('Express server listening on port ' + app.get('port'));

The app.set() method also exposes variables to templates application-wide; for example,

app.set('appName', 'HackHall');

will be available in all templates, meaning this example would be valid in a Jade template layout:

doctype 5
html
 head
 title= appName
 body
 block content

app.enable() and app.disable()
There are some system Express.js settings that have the type of boolean true and false, instead of the string type,
and they can only be set to boolean false or true. For such flags, there are shorthand versions; for example, as an
alternative to the app.set(name, true) and app.set(name, false) functions, you can use the concise
app.enable(name) and app.disable(name) calls accordingly. I recommend using app.set() because it keeps the
code consistent no matter what is the type of the setting.

For example, the etag Express.js setting is a boolean. It turns ETag headers on and off for browser caching
(more on etag later). To turn this caching off with app.disable() write a statement:

app.disable('etag');

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

35

app.enabled() and app.disabled()
To check whether the aforementioned values equal true or false, we can call methods app.enabled(name) and
app.disabled(name). For example,

app.disable('etag');
console.log(app.disabled('etag'));

will output true in the context of the Express.js app.

Settings
There are two categories of settings:

• Express.js system settings: These settings are used by the framework to determine certain
configurations. Most of them have default values, so the bare-bones app that omits
configuring these settings will work just fine.

• Custom settings: You can store any arbitrary name as a setting for reference later. These
settings are custom to your application, and you first need to define them to use.

Coverage of system settings is one of the most obscure parts of Express.js documentation, because some of the
settings are not documented at all (as of this writing). Express.js is flexible enough so that you don’t have to know
all the settings in order to write apps. But after you’ve learned about all the setting and have begun to use the ones
that you need, you will be more confident in configuring your server. You’ll understand the inner workings of the
framework better.

In this section, you’ll learn about the following settings:

• env

• view cache

• view engine

• views

• trust proxy

• jsonp callback name

• json replacer and json spaces

• case sensitive routing

• strict routing

• x-powered-by

• etag

• query parser

• subdomain offset

To illustrate settings in action, we wrote a ch3/app.js example. To avoid confusion, we’ll refrain from showing
the whole file now, and instead provide the source code at the end of this section for reference.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

36

env
This variable is used to store the current environment mode for this particular Node.js process. The value is
automatically set by Express.js from process.env.NODE_ENV (which is fed to Node.js through an environment variable
on the executing machine) or, if that is not set, to the development value.

The other most common values for env setting are as follows:

• development

• test

• stage

• preview

• production

The “production” and “development” values are used by Express.js for certain settings’ defaults (view cache is
one of them). The other values are just convention, meaning you’re free to use whatever you want as long as you are
consistent. For example, instead of stage you can use qa.

We can augment the env setting by adding app.set('env', 'preview'); or process.env.NODE_ENV=preview
in our code. However, the better way is to start an app with $ NODE_ENV=preview node app or to set the NODE_ENV
variable on the machine.

Knowing in what mode the application runs is very important because logic related to error handling,
compilation of style sheets, and rendering of the templates can differ dramatically. Obviously, databases and
hostnames are different from environment to environment.

The app.get('env') setting is illustrated in the ch3/app.js example as

console.log(app.get('env'));

This line outputs

"development"

The preceding line is printed if NODE_ENV is set to development when we launch the process with $ NODE_
ENV=development node app.js or when NODE_ENV is not set. In the latter case, the reason for the “development” value
is that Express.js defaults the setting to “development” when it’s undefined.

view cache
This flag, if set to false, allows for painless development because templates are read each time the server requests
them. On the other hand, if view cache is set to true, it facilitates template compilation caching, which is a desired
behavior in production. If the env setting is production, then view cache is enabled by default. Otherwise it is set
to false.

view engine
The view engine setting holds the template file extension (e.g., 'ext' or 'jade') to utilize if the file extension is not
passed to the res.render() function inside of the request handler.

For example, as shown in Figure 3-1, if we comment out this line from the previous chapter’s ch2/cli-app/app.js
example:

// app.set('view engine', 'ejs');

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

37

The server won’t be able to locate the file because our instructions in cli-app/routes/index.js are too
ambiguous:

exports.index = function(req, res){
 res.render('index', { title: 'Express' });
};

We can fix this by adding an extension to the cli-app/routes/index.js file:

exports.index = function(req, res){
 res.render('index.ejs', { title: 'Express' });
};

For more information on how to apply different template engines, please refer to the chapter 5.

Figure 3-1. The result of not having a proper template extension set

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

38

views
The views setting has an absolute path (starts with / on Mac and Unix) to a directory with templates. This setting
defaults to the absolute path of the views folder in the project’s root (where the main application file, e.g., app.js, is).

As mentioned in the “MVC Structure and Modules” section of Chapter 2, changing the template folder name is
trivial. Typically, when we set the custom value for views in app.js, we use path.join() and the __dirname global
variable—which gives us the absolute path to the folder where app.js is. For example, if you want to use folder
templates use this configuration statement:

app.set('views', path.join(__dirname, 'templates'));

trust proxy
Set trust proxy to true if your Node.js app is working behind reverse proxy such as Varnish or Nginx. This will permit
trusting in the X-Forwarded-* headers, such as X-Forwarded-Proto (req.protocol) or X-Forwarder-For (req.ips).
The trust proxy setting is disabled by default.

If you want to turn it on (when you have a proxy server) you can use one of these statements:

app.set('trust proxy', true);
app.enable('trust proxy');

jsonp callback name
If you’re building an application (a REST API server) that serves requests coming from front-end clients hosted on
different domains, you might encounter cross-domain limitations when making XHR/AJAX calls. In other words,
browser requests are limited to the same domain (and port). The workaround is to use cross-origin resource sharing
(CORS) headers on the server.

If you don’t want to apply CORS headers to your server, then the JavaScript object literal notation with prefix
(JSONP) is the way to go. Express.js has a res.jsonp() method that makes using JSONP a breeze.

Tip ■ To find out more about CORS, go to http://en.wikipedia.org/wiki/Cross-origin_resource_sharing.

The default callback name, which is a prefix for our JSONP response, is usually provided in the query string of
the request with the name callback; for example, ?callback=updateView. However, if you want to use something
different, just set the setting jsonp callback name to that value; for example, for the requests with a query string
param ?cb=updateView, we can use this setting:

app.set('jsonp callback name', 'cb');

That way, our responses would be wrapped in updateView JavaScript code (with the proper Content-Type
header, of course) as shown in Figure 3-2.

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

39

In most cases, we don’t want to alter this value because the default callback value is somewhat standardized by
jQuery $.ajax JSONP functions.

If we set jsonp callback name to cb in the Express.js setting configuration, but make a request with a different
property, such as callback, then the route won’t output JSONP. It will default to JSON format, as shown in Figure 3-3,
without the prefix of the function call, which we saw in Figure 3-2.

Figure 3-2. Using cb as the query string name for the callback

Figure 3-3. Without the proper callback parameter, JSONP defaults to JSON

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

40

json replacer and json spaces
Likewise, when we use the Express.js method res.json(), we can apply special parameters: replacer and spaces.
These parameters are passed to all JSON.stringify() functions1 in the scope of the application. JSON.stringify() is
a widely used function for transforming native JavaScript/Node.js objects into strings.

The replacer parameter acts like a filter. It’s a function that takes two arguments: key and value. If undefined is
returned, then the value is omitted. For the key-value pair to make it to the final string, we need to return the value.
You can read more about replacer at Mozilla Developer Network (MDN).2

Express.js uses null as the default value for json replacer. I often use JSON.stringify(obj, null, 2) when I
need to print pretty JSON.

The spaces parameter is in essence an indentation size. Its value defaults to 2 in development and to 0 in
production. In most cases, we leave these settings alone.

In our example app ch3/app.js, we have a /json route that sends us back an object with a book’s information.
We define a replacer parameter as a function that omits the discount code from the object (we don’t want to expose
this info). And the spaces parameter is set to 4 so that we can see JSON that is nicely formatted for humans instead of
some jumbled code. The resulting response for the /json route is shown in Figure 3-4.

Figure 3-4. JSON output with replacer and spaces set

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
2https://developer.mozilla.org/en-US/docs/Using_native_JSON#The_replacer_parameter

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://developer.mozilla.org/en-US/docs/Using_native_JSON#The_replacer_parameter

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

41

These are the statements used in the example app:

app.set('json replacer', function(key, value){
 if (key === 'discount')
 return undefined;
 else
 return value;
});
app.set('json spaces', 4);

If we remove json spaces, the app will produce the results shown in Figure 3-5.

Figure 3-5. JSON output without spaces set

case sensitive routing
The case sensitive routing flag should be self-explanatory. We disregard the case of the URL paths when it’s false,
which is the default value, and do otherwise when the value is set to true. For example, if we have app.enable('case
sensitive routing');, then /users and /Users won’t be the same. It’s best to have this option disabled for the sake
of avoiding confusion.

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

42

strict routing
The next setting (or a flag because it has the boolean meaning) strict routing deals with cases of trailing slashes
in URLs. With strict routing enabled, such as app.set('strict routing', true');, the paths will be treated
differently; for example, /users and /users/ will be completely separate routes. In the example ch3/app.js, we have
two identical routes but one has a trailing slash. They send back different strings:

app.get('/users', function(request, response){
 response.send('users');
})
app.get('/users/', function(request, response){
 response.send('users/');
})

As a result, the browser will have different messages for /users and /users/, as shown in Figure 3-6.

Figure 3-6. With strict routing enabled, /users and users/ are different routes

By default, this parameter is set to false, which means that the trailing slash is ignored and those routes with a
trailing slash will be treated the same as their counterparts without a trailing slash. My recommendation is to leave
the default value; that is, treat the routes with slashes the same as the routes without slashes. This recommendation
doesn’t apply if your API architecture requires them to be treated differently.

x-powered-by
The x-powered-by option sets the HTTP response header X-Powered-By to the Express value. This option is enabled
by default, as you can see in Figure 3-7.

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

43

If you want to disable x-powered-by (remove it from the response)—which is recommended for security reasons,
because it’s harder to find vulnerabilities if your platform is unknown—then apply app.set('x-powered-by', false)
or app.disable('x-powered-by'), which removes the X-Powered-By response header (as in the example ch3/app.js
and as shown in Figure 3-8).

Figure 3-7. X-Powered-By Express is enabled (by default)

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

44

etag
ETag3 (or entity tag) is a caching tool. The way it works is akin to the unique identifier for the content on a given URL.
In other words, if content doesn’t change on a specific URL, the ETag will remain the same and the browser will use
the cache. Figure 3-7 and Figure 3-8 include an example of the ETag response header. The code for this example is
available in ch3/app.js.

If someone doesn’t know what ETag is or how to use it, then it’s better to leave the Express.js default etag setting
as it is, which is on (boolean true). Otherwise, to disable ETag, use app.disable('etag');, which will eliminate the
ETag HTTP response header.

By default, Express.js uses “weak” ETag. Other possible values are false (no ETag), true (weak ETag), and strong
(strong ETag). The last option (for advanced developers) that Express.js provides is using your own ETag algorithm:

app.set('etag', function (body, encoding) {
 return customEtag(body, encoding); // you define the customEtag function
})

Figure 3-8. X-Powered-By Express is disabled and there's no response header

3http://en.wikipedia.org/wiki/HTTP_ETag

http://en.wikipedia.org/wiki/HTTP_ETag

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

45

If you’re not familiar with what weak or strong means, here’s the short explanation of the differences between
these types of ETags: an identical strong ETag guarantees the response is byte-for-byte the same, while an identical
weak ETag indicates that the response is semantically the same. So you’ll get different levels of caching with weak
and strong ETags. Of course, this is a very brief and vague explanation. Please do you own research if this topic is
important for your project.

query parser
A query string is data sent in the URL after the question mark (for example, ?name=value&name2=value2). This format
needs to be parsed into JavaScript/Node.js object format before we can use it. Express.js automatically includes this
query parsing for our convenience. It does so by enabling the query parser setting.

The default value for query parser is extended, which uses the qs module’s functionality.4 Other possible values are

• false: Disable parsing

• true: Uses qs

• simple: Uses the core querystring module’s functionality
(http://nodejs.org/api/querystring.html)

It’s possible to pass your own function as an argument, in which case your custom function will be used for parsing
instead of parsing libraries. If you pass your own function, your custom parsing function must take a string argument
and return a JavaScript/Node.js object similar to the parse function’s signature from the core querystring module.5

The following are examples in which we set query parser to use querystring, no parsing and a custom parsing
function:

app.set('query parser', 'simple');
app.set('query parser', false);
app.set('query parser', customQueryParsingFunction);

subdomain offset
The subdomain offset setting controls the value returned by the req.subdomains property. This setting is useful
when the app is deployed on multiple subdomains, such as http://ncbi.nlm.nih.gov.

By default, the last two “subdomains” (the two extreme right parts) in the hostname/URL are dropped and
the rest are returned in reverse order in the req.subdomains; so for our example of http://ncbi.nlm.nih.gov, the
resulting req.subdomains is ['nlm', 'ncbi'].

However, if the app has subdomain offset set to 3 by app.set('subdomain offset', 3);, the result of
req.subdomains will be just ['ncbi'], because Express.js will drop the three (3) parts starting from the right
(nlm, nih, and gov).

Environments
As many of you know, most applications don’t run in a single environment. Those environments usually include at
least development, testing and production. Each of the environments puts a different requirement on the app. For
example, in development the app error messaging needs to be as verbose as possible, while in production it needs to
be user friendly and not compromise any system or user’s personally identifiable information (PII6) data to hackers.

4https://github.com/hapijs/qs
5http://nodejs.org/api/querystring.html#querystring_querystring_parse_str_sep_eq_options
6http://en.wikipedia.org/wiki/Personally_identifiable_information

www.allitebooks.com

http://nodejs.org/api/querystring.html
http://ncbi.nlm.nih.gov/
http://ncbi.nlm.nih.gov/
https://github.com/hapijs/qs
http://nodejs.org/api/querystring.html#querystring_querystring_parse_str_sep_eq_options
http://en.wikipedia.org/wiki/Personally_identifiable_information
http://www.allitebooks.org

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

46

The code needs to accommodate different environments without us, the developers, having to modify it every
time we deploy to a different environment.

Of course, we can write up some if else statements based on the process.env.NODE_ENV value; for example:

if ('development' === process.env.NODE_ENV) {

If the line above seems strange to you, keep in mind that it’s the exact equivalent of process.env.NODE_ENV ===
'development'. Alternatively, you can use process.env.NODE_ENV == 'development' which will convert the
NODE_ENV to string for you, before the comparison (if for some reason it’s not a string already).

 // Connect to development database
} else if ('production' === process.env.NODE_ENV) {
 // Connect to production database
 }; // Continue for staging and preview environments

Or using the Express.js env param (refer to the “env” section earlier in the chapter):

// Assuming that app is a reference to Express.js instance
if ('development' === app.get('env')) {
 // Connect to development database
} else if ('production' === app.get('env')) {
 // Connect to production database
 }; // Continue for staging and preview environments

Another example of app.get('env') is one from the skeleton Express.js Generator app. It applies a more verbose
error handler (sends the whole stacktrace from the err object) for the development environment than one for
production or any other environment:

if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

If the environment is anything but development, instead of the error handler above, Express.js will use this one in
which no stacktraces are leaked to a user:

app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

47

APP.CONFIGURE

The app.configure() method, which allows for more elegant environmental configuration, is deprecated in

Express.js 4.x. However, you should still know how it works, because you might encounter it in older projects.

When the app.configure() method is invoked with one parameter it applies the callback to all environments.

For example, if you want to set an author email and app name for any environment, then you can write:

app.configure(function(){
 app.set('appName', 'Pro Express.js Demo App');
 app.set('authorEmail', 'hi@azat.co');
});

However, if we pass two parameters (or more) with the first being an environment and the last one is still

a function, the code will be called only when the app is in those environment modes (e.g., development,

production).

For example, you can set different dbUri values (database connection strings) for development and stage with

these callbacks:

app.configure('development', function() {
 app.set('dbUri', 'mongodb://localhost:27017/db');
});
app.configure('stage', 'production', function() {
 app.set('dbUri', process.env.MONGOHQ_URL);

});

Tip ■ Express.js often uses the difference in the number of input parameters and their types to direct functions’

behavior. Therefore, pay close attention to how you invoke your methods.

Now that you’re familiar with the settings, here’s the demo kitchen-sink application. In it we gathered all the
aforementioned settings to illustrate the examples. As you inspect the code, notice the order of the configuration
statements in the file! They must be after the var app instantiation, but before middleware and routes. Here’s the full
source code of the example server ch3/app.js:

var book = {name: 'Practical Node.js',
 publisher: 'Apress',
 keywords: 'node.js express.js mongodb websocket oauth',
 discount: 'PNJS15'
}
var express = require('express'),
 path = require('path');

var app = express();

console.log(app.get('env'));

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

48

app.set('view cache', true);
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');
app.set('port', process.env.PORT || 3000);

app.set('trust proxy', true);
app.set('jsonp callback name', 'cb');
app.set('json replacer', function(key, value){
 if (key === 'discount')
 return undefined;
 else
 return value;
});
app.set('json spaces', 4);

app.set('case sensitive routing', true);
app.set('strict routing', true);
app.set('x-powered-by', false);
app.set('subdomain offset', 3);
// app.disable('etag')

app.get('/jsonp', function(request, response){
 response.jsonp(book);
})
app.get('/json', function(request, response){
 response.send(book);
})
app.get('/users', function(request, response){
 response.send('users');
})
app.get('/users/', function(request, response){
 response.send('users/');
})
app.get('*', function(request, response){
 response.send('Pro Express.js Configurations');
})

if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}
var server = app.listen(app.get('port'), function() {
 console.log('Express server listening on port ' + server.address().port);
});

CHAPTER 3 ■ CONFIGURATION, SETTINGS, AND ENVIRONMENTS

49

Summary
In this chapter, we covered how to configure Express.js system settings using methods such as app.set(), app.disable(),
and app.enable(). You learned how to get the settings values with app.get() and app.enabled() and app.disabled().
Then, we covered all the important Express.js settings, their meaning and values. You also saw that settings can be
arbitrary and used for storing app-specific custom info (e.g., port number or app name).

If you remember the app structure from Chapter 1, the middleware goes after the configuration section in the
main Express.js app file. Both third-party middleware and custom middleware are available to use with Express.js.
When you write your own middleware, it’s a way to reuse and organize the code.

There is abundance of third-party Express.js middleware modules on NPM. They can do many tasks from
parsing to authentication. By using third-party middleware, you are enhancing and customizing the behavior of your
application. So middleware can be considered as configuration of its own kind (configuration on steroids!). Read on
to master the most commonly used middleware!

51

CHAPTER 4

Working with Middleware

Middleware is an amazingly useful pattern that allows developers to reuse code within their applications and even
share it with others in the form of NPM modules. The essential definition of middleware is a function with three
arguments: request (or req), response (res), and next. If you’re writing your own middleware, you can use arbitrary
names for arguments, but it’s better to stick to the common naming convention. Here’s an example of how to define
your own middleware:

var myMiddleware = function (req, res, next) {
 // Do something with req and/or res
 next();
};

When writing your own middleware, don’t forget to call the next() callback function. Otherwise, the request will
hang and time out. The request (req) and response (res) objects are the same for the subsequent middleware, so you
can add properties to them (e.g., req.user = 'Azat') to access them later.

In this chapter we’ll cover the following topics:

• Applying middleware: How to use middleware in Express.js apps

• Essential middleware: The most commonly used middleware, Connect.js middleware, and the
middleware that was part of Express.js before version 4.x

• Other middleware: The most useful and popular third-party middleware

Unlike a traditional technical book chapter that describes how to build a single large project, this chapter
extensively describes the most popular and used middleware modules. Similar to Chapter 3, this chapter is something
akin to a reference. To demo you the middleware’s features, there’s a kitchen sink—meaning it has lots of different
things—example in the ch4 folder. As usual, the code will be listed in the book and available in the GitHub repo at
https://github.com/azat-co/proexpressjs.

https://github.com/azat-co/proexpressjs

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

52

Applying Middleware
To set up middleware, we use the app.use() method from the Express.js API. This is applicable to both third-party
middleware and in-house middleware.

The method app.use() has one optional string parameter path and one mandatory function parameter callback.
For example, to implement a logger with a date, time, request method, and URL, we use the console.log() method:

// Instantiate the Express.js app
app.use(function(req, res, next) {
 console.log('%s %s — %s', (new Date).toString(), req.method, req.url);
 return next();
});
// Implement server routes

On the other hand, if we want to prefix the middleware, a.k.a. mounting, we can use the path parameter, which
restricts the use of this particular middleware to only the routes that have such a prefix. For example, to limit the
logging to only the admin dashboard route /admin, we can write

// Instantiate the Express.js app
app.use('/admin', function(req, res, next) {
 console.log('%s %s — %s', (new Date).toString(), req.method, req.url);
 return next();
});
// Actually implement the /admin route

Writing everything from scratch, even as trivial as logging and serving of the static files, is obviously not much
fun. Therefore, instead of implementing our own modules, we can utilize express.static() and morgan middleware
functions. Here’s an example of using express.static() and morgan middleware:

var express = require('express');
var logger = require('morgan');
// Instantiate and configure the app
app.use(logger('combined'));
app.use(express.static(__dirname + '/public'));
// Implement server routes

Note ■ In Express.js version 3.x and earlier (i.e., before version 4.x), logger was part of Express.js and could be called

with express.logger().

Static is the only middleware that remains bundled with Express.js version 4.x. Its NPM module is serve-static.
Static middleware enables pass-through requests for static assets. Those assets are typically stored in the public
folder (please refer to the Chapter 2 for more information on recommended folder structure).

Here’s a more advanced static middleware example that restricts assets to their respective folders. This is called
mounting and achieved by providing two arguments to app.use(): route path and middleware function:

app.use('/css', express.static(__dirname + '/public/css'));
app.use('/img', express.static(__dirname + '/public/images'));
app.use('/js', express.static(__dirname + '/public/javascripts'));

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

53

A global path avoids ambiguity, which is why we use __dirname.
The pattern that static middleware is using behind the scenes is another good trick to have in your sleeves when

you write your own middleware. This is now how it works: if you look closely, express.static() accepts a folder
name as a parameter . This enables the middleware to change its behavior or modes dynamically. This pattern
is called a monad, although people familiar with functional programming might argue that monad is something
different. Anyway, the main idea here is that we have a function that stores data and returns another function.

The way this pattern is implemented in JavaScript/Node.js and modules like serve-static is with the return
keyword. Here’s an example where a custom myMiddleware function takes a parameter, and returns either different
middleware A or the default middleware depending on whether or not the argument deep equals (===) to A :

var myMiddleware = function (param) {
 if (param === 'A') {
 return function(req, res, next) { // <---Middleware A
 // Do A stuff
 return next();
 }
 } else {
 return function(req, res, next) { // The default middleware
 // Do default stuff
 return next();
 }
}

The ch4/app.js example, shown next, demonstrates how to apply (app.use()) the middleware static, morgan
and other. The parameters and routes for each middleware used in the example are covered in their respective
sections.

The full source code of the ch4/app.js to demo how to apply middleware (and to give you something working for
the other middleware modules):

// Import and instantiate dependencies
var express = require('express'),
 path = require('path'),
 fs = require('fs'),
 compression = require('compression'),
 logger = require('morgan'),
 timeout = require('connect-timeout'),
 methodOverride = require('method-override'),
 responseTime = require('response-time'),
 favicon = require('serve-favicon'),
 serveIndex = require('serve-index'),
 vhost = require('vhost'),
 busboy = require('connect-busboy'),
 errorhandler = require('errorhandler');

var app = express();
// Configure settings
app.set('view cache', true);
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');
app.set('port', process.env.PORT || 3000);
app.use(compression({threshold: 1}));
app.use(logger('combined'));

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

54

app.use(methodOverride('_method'));
app.use(responseTime(4));
app.use(favicon(path.join('public', 'favicon.ico')));
// Apply middleware
app.use('/shared', serveIndex(
 path.join('public','shared'),
 {'icons': true}
));
app.use(express.static('public'));
// Define routes
app.use('/upload', busboy({immediate: true}));
app.use('/upload', function(request, response) {
 request.busboy.on('file', function(fieldname, file, filename, encoding, mimetype) {
 file.on('data', function(data){
 fs.writeFile('upload' + fieldname + filename, data);
 });
 file.on('end', function(){
 console.log('File' + filename + 'is ended');
 });

 });
 request.busboy.on('finish', function(){
 console.log('Busboy is finished');
 response.status(201).end();
 })
});

app.get(
 '/slow-request',
 timeout('1s'),
 function(request, response, next) {
 setTimeout(function(){
 if (request.timedout) return false;
 return next();
 }, 999 + Math.round(Math.random()));
 }, function(request, response, next) {
 response.send('ok');
 }
);

app.delete('/purchase-orders', function(request, response){
 console.log('The DELETE route has been triggered');
 response.status(204).end();
});

app.get('/response-time', function(request, response){
 setTimeout(function(){
 response.status(200).end();
 }, 513);
});

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

55

app.get('/', function(request, response){
 response.send('Pro Express.js Middleware');
});
app.get('/compression', function(request, response){
 response.render('index');
})
// Apply error handlers
app.use(errorhandler());
// Boot the server
var server = app.listen(app.get('port'), function() {
 console.log('Express server listening on port' + server.address().port);
});

Now that you know how to apply both third-party and in-house middleware, the next step is to identify which
third-party middleware is essential. And what is available to developers and allows them to save themselves and
teammates from the “fun” of implementing, maintaining, and testing the functionality that the NPM modules provide.

Essential Middleware
As you’ve seen in the previous section, middleware is nothing more than a function that takes req and res objects.
Express.js version 4.x provides only one middleware function out of the box: express.static(). Most of the
middleware needs to be installed and imported. The essential middleware usually stems from Sencha’s Connect
library: http://www.senchalabs.org/connect/ (NPM: https://npmjs.org/package/connect; GitHub:
https://github.com/senchalabs/connect).

The main thing to remember when using middleware is that the order in which middleware functions are
applied with the app.use() function matters, because this is the order in which they’ll be executed. In other words,
developers need to be cautious about the sequence of the middleware statements (in app.js), because this sequence
will dictate the order in which each request will go through the corresponding middleware functions.

Are you confused already? Look at this example: a session (express-session) must follow a cookie
(cookie-parser), because any web session depends on the cookies for storing the session ID (and it is provided by
cookie-parser). If we move them around the sessions won’t work! Another example is Cross-Site Request Forgery
middleware csurf that requires express-session.

To make the point completely clear, middleware statements go before routes for the exact same reason. If you put
static (express.static() or serve-static) middleware after a route definition, then the framework will finish the
request flow by responding and the static assets (e.g., from /public) won’t be served to the client.

Let’s dig deeper into the following middleware:

• compression

• morgan

• body-parser

• cookie-parser

• express-session

• csurf

• express.static or serve-static

• connect-timeout

• errorhandler

http://www.senchalabs.org/connect/
https://npmjs.org/package/connect
https://github.com/senchalabs/connect

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

56

• method-override

• response-time

• serve-favicon

• serve-index

• vhost

• connect-busboy

compression
The compression middleware (NPM: http://npmjs.org/compression) gzips transferred data. Gzip or GNU zip is a
compression utility. To install compression v1.0.11, run this command in your terminal in the project’s root folder:

$ npm install compression@1.0.11 --save

Do you remember that the order of the middleware statements matters? That’s why the compression middleware
is usually placed at the very beginning of an Express.js app configuration, so that it precedes the other middleware
and routes. The compression is utilized with the compression() method:

var compression = require('compression');
// ... Typical Express.js set up...
app.use(compression());

Tip ■ You need to install the compression NPM module in the project (i.e., local) node_modules folder. You can do so

with $ npm install compression@1.0.10 --save or by putting the line "compression": "1.0.10" into the

package.json file and running $ npm install.

The compression() method is good to go without any extra parameters, but if you are an advanced Node.js
programmer, you may want to use the gzip options for compression:

• threshold: The size in kilobits at which to start compression (i.e., the minimum size in kilobits
that can go uncompressed)

• filter: Function to filter out what to compress; the default filter is compressible, available
at https://github.com/expressjs/compressible.

Gzip uses the core Node.js module zlib (http://nodejs.org/api/zlib.html#zlib_options) and just passes
these options to it:

• chunkSize: Size of the chunks to use (default: 16*1024)

• windowBits: Window size

• level: Compression level

• memLevel: How much memory to allocate

• strategy: What gzip compression algorithm to apply

• filter: Function that by default tests for the Content-Type header to be json, text,
or javascript

www.allitebooks.com

http://npmjs.org/compression
https://github.com/expressjs/compressible
http://nodejs.org/api/zlib.html#zlib_options
http://www.allitebooks.org

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

57

For more information on these options, please see the zlib docs at http://zlib.net/manual.html#Advanced.
In the ch4 project, we create an index.jade file with some dummy text, then add the following to the

app.js file:

var compression = require('compression');
// ... Configurations
app.use(compression({threshold: 1}));

The views/index.jade file will render h1 and p HTML elements with some Lorem Ipsum text, as follows:

h1 hi
p Lorem Ipsum is simply dummy text of ...

Tip ■ For a thorough Jade template engine tutorial, consult Practical Node.js (Apress, 2014).

As a result of applying compression, in the Chrome browser Developer Tools console, you can see the
Content-Encoding: gzip response header, as shown in Figure 4-1.

Figure 4-1. Content-Encoding is gzip with the compression middleware in use

http://zlib.net/manual.html#Advanced

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

58

morgan
The morgan middleware (https://www.npmjs.org/package/morgan) keeps track of all the requests and other
important information depending on the output format specified. To install morgan v1.2.2, use

$ npm install morgan@1.2.2 --save

Morgan takes either an options object or a format string (common, dev, etc.); for example,

var logger = require('morgan');
// ... Configurations
app.use(logger('common'));

or

var logger = require('morgan');
// ... Configurations
app.use(logger('dev'));

or

var logger = require('morgan');
// ... Configurations
app.use(logger(':method :url :status :res[content-length] - :response-time ms'));

Supported options to pass to the morgan function (logger() in the previous example) are as follows:

• format: A string with an output format; see the upcoming list of token string and
predefined formats.

• stream: The output stream to use defaults to stdout, but could be anything else, such as a file
or another stream.

• buffer: The number of milliseconds for the buffer interval; defaults to 1000ms if not set or not
a number.

• immediate: Boolean value that, when set to true, makes the logger (morgan) write log lines on
request instead of response.

The following are the available format string parameters or tokens:

• :req[header] (e.g., :req[Accept])

• :res[header] (e.g., :res[Content-Length])

• :http-version

• :response-time

• :remote-addr

• :date

• :method

• :url

https://www.npmjs.org/package/morgan

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

59

• :referrer

• :user-agent

• :status

The following are the predefined formats/tokens that come with Morgan:

• combined: Same as :remote-addr - :remote-user [:date] ":method :url
HTTP/:http-version" :status :res[content-length] ":referrer" ":user-agent"

• common: Same as :remote-addr - :remote-user [:date] ":method :url
HTTP/:http-version" :status :res[content-length]

• short: Same as :remote-addr :remote-user :method :url
HTTP/:http-version :status :res[content-length] - :response-time ms

• tiny: Same as :method :url :status :res[content-length] - :response-time ms

• dev: Short and colored development output with response statuses, same as :method
:url :status :response-time ms - :res[content-length]

You could also define your own formats. For more information, please refer to the morgan documentation at
https://www.npmjs.org/package/morgan.

body-parser
The body-parser module (https://www.npmjs.org/package/body-parser) is probably the most essential of all the
third-party middleware modules. It allows developers to process incoming data, such as body payload, into usable
JavaScript/Node.js objects. To install body-parser v1.6.1, run this command:

$ npm install body-parser@1.6.1

The body-parser module has the following distinct middleware:

• json(): Processes JSON data; e.g., {"name": "value", "name2": "value"}

• urlencoded(): Processes URL-encoded data; e.g., name=value&name2=value2

• raw(): Returns body as a buffer type

• text(): Returns body as string type

If the request has a MIME type of application/json, the json() middleware will try to parse the request payload
as JSON. The result will be put in the req.body object and passed to the next middleware and routes.

We can pass the following options as properties:

• strict: Boolean true or false; if it’s true (default), then a 400 status error (Bad Request) will
be passed to the next() callback when the first character is not [or {.

• reviver: A second parameter to the JSON.parse() function that transforms the output; more
info is available at MDN.1

• limit: Maximum byte size; disabled by default.

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse

https://www.npmjs.org/package/morgan
https://www.npmjs.org/package/body-parser
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

60

• inflate: Inflates the deflated body; default is true.

• type: Content-Type to parse; default is json.

• verify: A function to verify the body.

For example, if you need to skip the private methods/properties (by convention they begin with the underscore
symbol, _), apply nonstrict parsing, and have a limit of 5,000 bytes, you could enter the following:

var bodyParser = require('body-parser');
// ... Express.js app set up
app.use(bodyParer.json({
 strict: false,
 reviver: function(key, value) {
 if (key.substr(0,1) === '_') {
 return undefined;
 } else {
 return value;
 }
 },
 limit: 5000
}));
// ...Boot-up

urlencoded()
This body-parser module’s urlencoded() middleware parses only requests with the x-ww-form-urlencoded header.
It utilizes the qs module’s (https://npmjs.org/package/qs) querystring.parse() function and puts the resulting
JS object into req.body.

In addition to limit, type, verify, and inflate, urlencoded() takes an extended boolean option.
The extended option is a mandatory field. When it is set to true (the default value), body-parser uses the qs module
(https://www.npmjs.org/package/qs) to parse query strings.

If you set extended to false, body-parser uses the core Node.js module querystring for parsing of URL-encoded
data. I recommend setting extended to true (that is, to use qs) because it allows objects and arrays to be parsed from
URL-encoded strings.

If you forget what a URL-encoded string looks like, it’s a name=value&name2=value2 string after the
question mark (?) in the URL.

We can also pass the limit parameter to urlencoded(). The limit option works similarly to the limit in the
bodyParser.json() middleware, which you saw in the previous code snippet. For example, to set the limit to 10,000:

var bodyParser = require('body-parser');
// ... Express.js set up
app.use(bodyParser.urlencoded({limit: 10000});

https://npmjs.org/package/qs
https://www.npmjs.org/package/qs

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

61

Caution ■ In older versions, bodyParser.multipart() middleware is known to be prone to malfunctioning when handling

large file uploads. The exact problem is described by Andrew Kelley in the article “Do Not Use bodyParser with Express.js.”2

The current versions of Express.js v 4.x unbundled support for bodyParser.multipart(). Instead, the Express.js team

recommends using busboy,3 formidable,4 or multiparty.5

cookie-parser
The cookie-parser middleware (https://www.npmjs.org/package/cookie-parser) allows us to access user cookie
values from the req.cookie object in request handlers. The method takes a string, which is used for signing cookies.
Usually, it’s some clever pseudo-random sequence (e.g., very secret string). To install cookie-parser v1.3.2,
run this command:

$ npm install cookie-parser@1.3.2

Use it like this:

var cookieParser = require('cookie-parser');
// ... Some Express.js set up
app.use(cookieParser());

or with the secret string (arbitrary random string, usually stored in an environment variable):

app.use(cookieParser('cats and dogs can learn JavaScript'));

Caution ■ Avoid storing any sensitive information in cookies, especially user-related information (personally

identifiable information), such as credentials, or their preferences. In most cases, use cookies only to store a unique

and hard-to-guess key (session ID) that matches a value on the server. That enables you to retrieve a user session on

subsequent requests.

In addition to secret, the cookieParser() also takes these options as a second parameter:

• path: A cookie path

• expires: Absolute expiration date for the cookie

• maxAge: Relative maximum age of the cookie

• domain: The web site domain for the cookie

• secure: Boolean indicating whether the cookie is secure or not

• httpOnly: Boolean indicating whether HTTP only or not

2http://andrewkelley.me/post/do-not-use-bodyparser-with-express-js.html
3https://www.npmjs.org/package/busboy
4https://www.npmjs.org/package/formidable
5https://www.npmjs.org/package/multiparty

https://www.npmjs.org/package/cookie-parser
http://andrewkelley.me/post/do-not-use-bodyparser-with-express-js.html
https://www.npmjs.org/package/busboy
https://www.npmjs.org/package/formidable
https://www.npmjs.org/package/multiparty

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

62

cookie-parser has some additional methods:

• JSONCookie(string): Parse string into a JSON data format

• JSONCookies(cookies): Same as JSONCookie(string) but for objects

• signedCookie(string, secret): Parse a cookie value as a signed cookie

• signedCookies(cookies, secret): Same as signedCookie(string, secret) but for objects

express-session
The express-session middleware (https://www.npmjs.org/package/express-session) allows the server to use
web sessions. This middleware must have cookie-parser enabled before its definition (higher in the app.js file).
To install express-session v1.7.6, run this command:

$ npm install express-session@1.7.6 --save

The express-session v1.7.6 middleware takes these options:

• key: Cookie name, defaulting to connect.sid

• store: Session store instance, usually a Redis object (covered in detail in Chapter 12)

• secret: Used to sign the session cookie, to prevent tampering; usually just a random string

• cookie: Session cookie settings, defaulting to { path: '/', httpOnly: true, maxAge: null }

• proxy: Boolean that indicates whether to trust the reverse proxy when setting secure cookies
(via "X-Forwarded-Proto")

• saveUninitialized: Boolean that forces the saving of a new session (default is true)

• unset: Controls if you want to keep the session in the store after unsetting the session with
possible values keep and destroy (default is keep)

• resave: Boolean that forces the saving of the unmodified session (default is true)

• rolling: Boolean that sets a new cookie on each request which resets the expiration
(default is false)

• genid: A function that generates session ID (default is uid2: https://www.npmjs.org/
package/uid2, https://github.com/coreh/uid2)

By default, sessions are stored in the memory. However, we can use Redis for persistence and for sharing sessions
between multiple machines. For more information on Express.js sessions, please refer to Part 3, particularly Chapter 12.

csurf
Cross-site request forgery (CSRF) occurs when a client still has session information from a protected web site, such
as a bank’s web site, and a malicious script submits data on the client’s behalf, which could even be a money transfer.
The attack succeeds because the bank’s server can’t distinguish between the client’s valid request from the bank’s web
site and the malicious request from some compromised or untrustworthy web site. The browser has the right session,
but the user wasn’t on the bank’s website’s page!!!

To prevent CSRF, we can enable CSRF protection by using a token with each request and validating that
token against our records. This way we know that we served the page or resource from which the subsequent request
with submitted data is coming. For more information, please refer to the Wikipedia CSRF entry at
http://en.wikipedia.org/wiki/Cross-site_request_forgery.

https://www.npmjs.org/package/express-session
https://www.npmjs.org/package/uid2
https://www.npmjs.org/package/uid2
https://github.com/coreh/uid2

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

63

The CSRF protection with the csurf module (https://www.npmjs.org/package/csurf) is handled by Express.
js by putting a _csrf token in the session (req.session._csrf) and validating that value against values in req.body,
req.query, and the X-CSRF-Token header. If the values don’t match, the 403 Forbidden HTTP status code is returned,
which means that the resource is forbidden (see, e.g., http://en.wikipedia.org/wiki/HTTP_403). The csurf
middleware doesn’t check GET, HEAD, or OPTIONS methods by default. To install csurf v1.6.0, run this command:

$ npm install csurf@1.6.0 --save

The most minimal examples of using csurf v1.6.0 is as follows:

var csrf = require('csurf');
// ... Instantiate Express.js application
app.use(csrf());

The csurf v1.6.0 takes the following additional parameters:

• value: A function that takes request (req) as an argument, checks for the presense of the
token, and returns the value true (found) or false (not found). Look at the example below.

• cookie: Specifies to use the cookie-based store instead of the default session-based one (not
recommended)

• ignoreMethods: An array of HTTP methods to ignore when checking for the CSRF token in
requests (default value is ['GET', 'HEAD', 'OPTIONS'])

You can override the default function that checks the token value presence by passing a callback function in a
value property; for example, to use a different name and check against only the request body, you can use

var csrf = require('csurf');
// ... Instantiate Express.js application
app.use(express.csrf({
 value: function (req) {
 return (req.body && req.body.cross_site_request_forgery_value);
 }
}));

The csrf middleware must be after express-session, cookie-parser, and optionally (meaning if you plan to
support tokens in the body of requests) after body-parser middlewares:

var bodyParser = require('body-parser');
var cookieParser = require('cookie-parser');
var session = require('express-session');
var csrf = require('csurf');
// ... Instantiate Express.js application
app.use(bodyParser.json());
app.use(cookieParser());
app.use(session());
app.use(csrf());

https://www.npmjs.org/package/csurf
http://en.wikipedia.org/wiki/HTTP_403

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

64

express.static()
The express.static() or serve-static as a stand-alone module (https://www.npmjs.org/package/serve-static)
is the only middleware that comes with Express.js version 4.x, so you don’t have to install it. In other words, under the
hood, express.static() is a serve-static module: https://github.com/expressjs/serve-static. We already
covered the express.static(path, options) method that serves files from a specified root path to the folder, such
as:

app.use(express.static(path.join(__dirname, 'public')));

or (not recommended because this might not work on Windows):

app.use(express.static(__dirname + '/public'));

A relative path is also an option:

app.use(express.static('public'));

The express.static(path, options) v1.5.0 (for Express.js v4.8.1) method takes these options:

• maxAge: Number of milliseconds to set for browser cache maxAge, which defaults to 0

• redirect: Boolean true or false (default is true) indicating whether to allow a redirect to a
trailing slash (/) when the URL pathname is a directory

• dotfiles: Indicates how to treat hidden system folders/files (e.g., .gitignore); possible values
are ignore (default), allow, and deny

• etag: Boolean indicating whether or not to use ETag caching (default is true)

• extensions: Boolean indicating whether or not to use the default file extensions
(default is false)

• index: Identifies the index file; default is index.html; an array, a string and false (disable) are
possible values

• setHeaders: A function to set custom response headers

Here’s an example of the express.static() advanced usage with some arbitrary values:

app.use(express.static(__dirname + '/public', {
 maxAge: 86400000,
 redirect: false,
 hidden: true,
 'index': ['index.html', 'index.htm']
}));

connect-timeout
The connect-timeout module (https://www.npmjs.org/package/connect-timeout) sets a timeout. Use of this
middleware is recommended only on specific routes (e.g., '/slow-route') that you suspect might be slower than
average ones. To use connect-timeout v1.2.2, install it with:

$ npm install connect-timeout@1.2.2 --save

https://www.npmjs.org/package/serve-static
https://github.com/expressjs/serve-static
https://www.npmjs.org/package/connect-timeout

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

65

In your server file, write these statements as shown in example ch4/app.js:

var timeout = require('connect-timeout');
// ... Instantiation and configuration
app.get(
 '/slow-request',
 timeout('1s'),
 function(request, response, next) {
 setTimeout(function(){
 if (request.timedout) return false;
 return next();
 }, 999 + Math.round(Math.random()));
 }, function(request, response, next) {
 response.send('ok');
 }
);
// ... Routes and boot-up

Run the server with $ node app. Then, from the separate terminal, send a few GET requests with CURL:

$ curl http://localhost:3000/slow-request -i

The response should time out about half of the time with a 503 Service Unavailable status code. The good response
returns status code 200. Both are shown in Figure 4-2. It’s possible to customize the message in the error handlers.

Figure 4-2. The responses when the timeout middleware is in action and when it’s not

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

66

errorhandler
The errorhandler middleware (https://www.npmjs.org/package/errorhandler) can be used for basic error
handling. This is especially useful in development and for prototyping. This module doesn’t do anything that
you can’t do yourself with custom error-handling middleware. However, it will save you time. For production
environments, please consider customizing error handling to your needs.

The errorhandler v1.1.1 module installation is done with the following NPM command:

$ npm install errorhandler@1.1.1 --save

We apply it in the server file like this:

var errorHandler = require('errorhandler');
// ... Configurations
app.use(errorHandler());

Or, only for development mode:

if (app.get('env') === 'development') {
 app.use(errorhandler());
}

It’s trivial to write your own error handlers. In fact, you’ve already seen it done in Chapter 2, when we examined
code created by the generator, and in Chapter 3. For example, this is a primitive handler that renders an error template
with an error message:

app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

As you can see, the method signature is similar to request handlers or middleware, but has four arguments
instead of three, like middleware, or two, like a core Node.js request handler. This is how Express.js determines that
this is an error handler and not middleware—four parameters in the function definition: error (err), request (req),
response (res), and next.

This error handler is triggered from inside of the other middleware by calling next() with an error object; for
example, next(new Error('something went wrong')). If we call next() without arguments, Express.js assumes that
there were no errors and proceeds to the next middleware in the chain.

method-override
The method-override middleware (https://www.npmjs.org/package/method-override) enables your server to
support HTTP methods that might be unsupported by clients—for example, systems where requests are limited to
GET and POST (such as an HTML form in the browser). To install method-override v2.1.3, run:

$ npm install method-override@2.1.3 --save

www.allitebooks.com

https://www.npmjs.org/package/errorhandler
https://www.npmjs.org/package/method-override
http://www.allitebooks.org

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

67

The method-override module can use the X-HTTP-Method-Override=VERB header from the incoming requests:

var methodOverride = require('method-override');
// ... Configuratoins
app.use(methodOverride('X-HTTP-Method-Override'));

In addition to the header, we can use a query string. For example, to support requests with ?_method=VERB:

var methodOverride = require('method-override');
// ... Configuratoins
app.use(methodOverride('_method'));

In ch4/app.js, after we install, import, and apply the method-override middleware with the query string
approach and _method name, we can define a DELETE route like this:

app.delete('/purchase-orders', function(request, response){
 console.log('The DELETE route has been triggered');
 response.status(204).end();
});

After we start the app with $ node app, we submit the POST request with CURL in a separate terminal window.
In the URL, we specify the _method as DELETE:

$ curl http://localhost:3000/purchase-orders/?_method=DELETE -X POST

This CURL request is treated by Express.js as the DELETE HTTP method request, and we will see the following
message on the server:

The DELETE route has been triggered

For Windows users, CURL can be installed from http://curl.haxx.se/download.html. Or, you can use jQuery’s
$.ajax() function from the Chrome Developer Tools.

response-time
The response-time middleware (https://www.npmjs.org/package/response-time) adds the X-Response-Time
header with the time in milliseconds from the moment the request entered this middleware.

To install response-time v2.0.1, run

$ npm install response-time@2.0.1 --save

The response-time() method takes a number of digits after the point that need to be included in the result
(3 is the default). Let's ask for 4 digits:

var responseTime = require('response-time');
// ... Middleware
app.use(responseTime(4));

http://curl.haxx.se/download.html
https://www.npmjs.org/package/response-time

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

68

To illustrate this middleware in action, run ch4/app.js with $ node app. The server has these statements
pertaining to the response-time middleware:

app.use(responseTime(4));
// ... Middleware
app.get('/response-time', function(request, response){
 setTimeout(function(){
 response.status(200).end();
 }, 513);
});

The idea behind the preceding /response-time route is to delay the response by 513 ms. Then, in a separate
terminal window, run the curl command with -i to make a GET request and output response information:

$ curl http://localhost:3000/response-time -i

As shown in Figure 4-3, this header appears in the response:

X-Response-Time: 514.3193ms

Figure 4-3. HTTP response with the X-Response-Time header that shows response time

serve-favicon
The serve-favicon middleware (https://www.npmjs.org/package/serve-favicon) enables you to change the default
favorite icon in the browser into a custom one.

To install the static-favicon v2.0.1 module, run:

$ npm install serve-favicon@2.0.1 --save

To include and apply the middleware, run

var favicon = require('serve-favicon');
// ... Instantiations
app.use(favicon(path.join(__dirname, 'public', 'favicon.ico')));

https://www.npmjs.org/package/serve-favicon

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

69

The serve-favicon v2.0.1 module has two parameters:

• path: The path to the favorite icon file, or Buffer with the icon data (Buffer is a Node.js
binary type)

• options: maxAge in milliseconds—how long to cache the favorite icon; the default is 1 day

When you run ch4/app.js, you should see the webapplog.com logo on the tab, as shown in Figure 4-4.

Figure 4-4. Favorite icon with the serve-favicon middleware in use

serve-index
The serve-index middleware (https://www.npmjs.org/package/serve-index) enables you to create a directory
listing based on a particular folder’s content. Think about it as a terminal $ ls command (or dir on Windows). You
can even customize the look with your own template and style sheet (the options are discussed later in this section).

To install serve-index v1.1.6, run:

$ npm install serve-index@1.1.6 --save

To apply the middleware, write these lines in your server file:

var serveIndex = require('serve-index');
// ... Middleware
app.use('/shared', serveIndex(
 path.join('public','shared'),
 {'icons': true}
));
app.use(express.static('public'));

In the serveIndex statement, specify the '/shared' folder and pass the path.join('public', 'shared'); path
to the public/shared folder in the project directory. A value of true for icons (icons: true) means to display icons.
The static middleware is needed to display the actual file.

These lines of code are taken from ch4/app.js, and, if you run it and navigate to http://localhost:3000/
shared, you’ll see a web interface with the folder name (shared) and file name (abc.txt) as shown in Figure 4-5.

https://www.npmjs.org/package/serve-index

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

70

If you resize the browser to be narrow enough, the interface should change—responsiveness! Also, there’s the
search bar, thanks to the default serve-index interface.

Clicking the file name abc.txt should open the file displaying the message “secret text,” as shown in Figure 4-6.
This is a a result of using the expsess.static() middleware, and not serve-index.

Figure 4-6. Text file served by the static middleware

Figure 4-5. The default serve-index web interface with folder and a file

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

71

The serve-index middleware takes an options object as a second parameter (the first is the path). The options
can have the following properties:

• hidden: Boolean indicating whether or not to display hidden (dot) files; defaults to false

• view: Display mode (tiles or details); defaults to tiles

• icons: Boolean indicating whether or not to show icons next to file names/folder names;
defaults to false

• filter: A filter function; defaults to false

• stylesheet: Path to a CSS style sheet (optional); defaults to the built-in style sheet

• template: Path to an HTML template (optional); defaults to the built-in template

In the template, you can use: {directory} for the name of the directory, {files} for the HTML of an unordered
list () of file links, {linked-path} for the HTML of a link to the directory, and {style} for the specified stylesheet
and embedded images.

Caution ■ Don’t use serve-index liberally on system folders and secret files. It’s good to keep it constrained to a

certain subfolder, such as public.

vhost
The vhost middleware (https://www.npmjs.org/package/vhost) enables you to use a different routing logic based
on the domain. For example, we can have two Express.js apps, api and web, to organize code for different routes based
on the domain, api.hackhall.com or www.hackhall.com, respectively:

var app =express()
var api = express()
var web = express()
// ... Configurations, middleware and routes
app.use(vhost('www.hackhall.com', web))
app.use(vhost('api.hackhall.com', api))
app.listen(3000)

To install vhost v2.0.0, run:

$ npm install vhost@2.0.0 --save

The vhost v2.0.0 middleware takes two parameters (as shown in the previous example):

• domain: String or RegExp; for example, *.webapplog.com

• server: Server object (express or connect); for example, api or web

https://www.npmjs.org/package/vhost
api.hackhall.com
http://www.hackhall.com/
http://www.hackhall.com/
api.hackhall.com
webapplog.com

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

72

connect-busboy
The connect-busboy module (https://www.npmjs.org/package/connect-busboy) is connect.js/Express.js
middleware that is built to be used with busboy the form parser (https://www.npmjs.org/package/busboy). The
busboy form parser basically takes the incoming HTTP(S) request multipart body and allows us to use its fields,
uploaded files, and so forth. To install the connect-busboy v0.0.1 middleware, which already includes busboy, run

$ npm install connect-busboy@0.0.1 --save

Then, in your server file (app.js), write something similar to the following to implement a file upload
functionality on the /upload route:

var busboy = require('connect-busboy');
// ... Configurations
app.use('/upload', busboy({immediate: true }));
app.use('/upload', function(request, response) {
 request.busboy.on('file', function(fieldname, file, filename, encoding, mimetype) {
 file.on('data', function(data){
 fs.writeFile('upload' + fieldname + filename, data);
 });
 file.on('end', function(){
 console.log('File' + filename + 'is ended');
 });

 });
 request.busboy.on('finish', function(){
 console.log('Busboy is finished');
 response.status(201).end();
 })
});

The preceding example writes the file to the disk and outputs 201 to the client upon finishing. In the terminal, we
should see the file name with the word “ended”.

To simulate a file upload without the web page form, we can use our good old friend CURL (one-line command):

$ curl -X POST -i -F name=icon -F filedata=@./public/favicon.ico http://localhost:3000/upload

The file that we’re uploading is in ch4/public/favicon.ico. This is the favorite icon from the earlier serve-favicon
example. As a result, there should be a file named uploadfiledatafavicon.ico in the project folder. And in your
terminal on the server window, you should see messages:

File favicon.ico is ended
Busboy is finished

In your terminal on the client (i.e., curl window), you’ll see 201 Created.

Note ■ In addition to the ch4 example, please see the chapters in Part 4 for more advanced examples on middleware.

https://www.npmjs.org/package/connect-busboy
https://www.npmjs.org/package/busboy

CHAPTER 4 ■ WORKING WITH MIDDLEWARE

73

Other Middleware
There are many other noteworthy modules that are compatible with Connect.js and Express.js. The following is
only a brief list of some of the currently popular modules; many more are coming out every month, and some are
being discontinued or abandoned, so check NPM for updates regularly. You can find each of these modules at
https://www.npmjs.org/package/ package name, where package name is the name of the module in the following
list.

• cookies and kegrip: Alternatives to cookie-parser (https://www.npmjs.org/package/cookies,
https://www.npmjs.org/package/keygrip, https://www.npmjs.org/package/cookie-parser)

• cookie-session: Cookie-based session store (https://www.npmjs.org/package/cookie-session)

• raw-body: For requests as buffers (https://www.npmjs.org/package/raw-body)

• connect-multiparty: Uses mutliparty and acts as an alternative to connect-busboy
(https://www.npmjs.org/package/connect-multiparty, https://www.npmjs.org/package/
multiparty, https://www.npmjs.org/package/connect-busboy)

• qs: Alternative to query and querystring (https://www.npmjs.org/package/qs,
https://www.nodejs.org/api/querystring.html)

• st, connect-static, and static-cache: Caching of static assets (https://www.npmjs.org/
package/st, https://www.npmjs.org/package/connect-static, and
https://www.npmjs.org/package/static-cache)

• express-validator: Incoming data validation/sanitation (https://www.npmjs.org/package/
express-validator)

• everyauth and passport: Authentication and authorization middleware
(https://www.npmjs.org/package/everyauth and https://www.npmjs.org/package/passport)

• oauth2-server: OAuth2 server middleware (https://www.npmjs.org/package/oauth2-server)

• helmet: Collection of security middleware (https://www.npmjs.org/package/helmet)

• connect-cors: Cross-origin resource sharing (CORS) support for Express.js servers
(https://www.npmjs.org/package/connect-cors)

• connect-redis: Redis session store for Express.js sessions
(https://www.npmjs.org/package/connect-redis)

Summary
This chapter covered how to create and apply your own custom middleware and how to install and apply third-party
middleware from NPM. You learned how the most essential middleware works, which parameters their functions
take, and how they behave. You might have noticed that we used a small template for the error page and for the
compression page in the ch4 example project.

The next chapter is a continuation of the configuration and middleware theme. Those are distinct parts of
virtually any Express.js app, as we discussed the high-level app.js structure in Chapter 1 (or server.js or index.js,
meaning the main Express.js file). The next topic is all about configuring views that are facilitated by templates.
Chapter 4 is a deep dive into how we can use different template engines. We explore how to utilize the most popular
options with Express.js, such as Jade and Handlebars, and other libraries.

https://www.npmjs.org/package/package
https://www.npmjs.org/package/cookies
https://www.npmjs.org/package/keygrip
https://www.npmjs.org/package/keygrip
https://www.npmjs.org/package/cookie-parser
https://www.npmjs.org/package/cookie-session
https://www.npmjs.org/package/raw-body
https://www.npmjs.org/package/connect-multiparty
https://www.npmjs.org/package/multiparty
https://www.npmjs.org/package/multiparty
https://www.npmjs.org/package/connect-busboy
https://www.npmjs.org/package/qs
https://www.nodejs.org/api/querystring.html
https://www.npmjs.org/package/st
https://www.npmjs.org/package/st
https://www.npmjs.org/package/connect-static
https://www.npmjs.org/package/static-cache
https://www.npmjs.org/package/express-validator
https://www.npmjs.org/package/express-validator
https://www.npmjs.org/package/everyauth
https://www.npmjs.org/package/passport
https://www.npmjs.org/package/oauth2-server
https://www.npmjs.org/package/helmet
https://www.npmjs.org/package/connect-cors
https://www.npmjs.org/package/connect-redis

75

CHAPTER 5

Template Engines and Consolidate.js

Template engines are libraries that allow us to use different template languages (EJS, Handlebars, Jade, etc.). But what
is a template language? Template language is a special set of instructions (syntax and control structures) that instructs
the engine how to process data. The language is specific to a particular template engine. The instructions in the
template are usually used to present data in a better format suitable for end-users. In the case of web apps such final
representation format is HTML. So basically, we have some data (JSON or JavaScript/Node.js objects), and templates
(EJS, Handlebars, Jade, etc.). When they are combined, we get the output, which is good old HTML.

The process of combining data with templates is called rendering. Some template engines have functionality
to compile templates as an extra step before rendering. Compilation is similar to caching and is geared towards
optimizing for frequent reuse.

“Why the heck use templates?” you might ask if you haven't used them before. There are multiple advantages of
using templates over not using them, the most important of which is that you can reuse code—for example, menus,
headers, footers, buttons and other form elements, and so forth. This way, if you need to make a change later, you’ll
have to update code in only one place instead of changing it in every file. Another advantage is that, depending on
what library you’re using, you can make templates more dynamic. This means that you can add some logic to the
template and make it smarter (e.g., a for loop to iterate over each row of the table).

Jade allows pretty much any JavaScript/Node.js in its code; that is, the developers can harness the full power of
rich JavaScript API in the templates!

This comes as a startling contrast to the approach used by Handlebars, which won't allow you to use JavaScript/
Node.js functions in its templates. Although Handlebars’ philosophy is to limit standard functions, it allows registering
custom functions in the JavaScript/Node.js code (i.e., outside of the template itself).

Embedded JavaScript (EJS) is another popular choice for Node.js apps and it might be a better alternative when
performance is important because in benchmark tests EJS performs better than Jade. Most of these template engines
are suited for both browser JavaScript and Node.js.

In this chapter we’ll cover the following topics:

How to use template engines: Plugging different template engines into Express.js projects•

Uncommon libraries: Using rare template engines with Express.js•

Template engine choices: Different stand-alone template engine libraries•

Consolidate.js: a one-stop library for seamless integration of virtually all template engines •
with Express.js

CHAPTER 5 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

76

How to Use Template Engines
Some of the examples from the previous chapters used these two configuration statements:

app.set('views', path);
app.set('view engine', name);

Or, with values:

var path = require('path')
// ... Configurations
app.set('views', path.join(__dirname, 'templates'));
app.set('view engine', 'ejs');

where path is a path to the folder with the templates, and name is a template filename extension and an NPM library
name (e.g., jade is both an extension and an NMP name).

These two lines were enough to make Express.js render EJS or Jade templates. We didn’t even have to import
Jade in the app.js files. (But we still need to install the modules locally!) This is because, under the hood, the Express.
js library imports the libraries based on the extension (the exact way it works is described in the next section of this
chapter):

require('jade');

or

require('ejs');

There are two approaches to specifying a template engine extension:

With the • render() function

With the • view engine setting

Usually the file extension is the NPM module name for that template engine. Here’s an example of the first
approach where the extension can simply be put after the file name in the render function’s argument:

response.render('index.jade');

The response.render is called inside of the route request handler. More details on render and other response
object methods are provided later in the chapter.

If we use this approach (i.e., full file names with the extension), we can omit this line:

app.set('view engine', 'jade');

You can mix and match different template engines in one Express.js application.
Of course, the libraries that Express.js calls need to be installed in the local node_modules folder. For example, to

install jade v1.5.0, we have to define it in the package.json and then run:

$ npm install

Here’s the line from ch4/package.json:

"jade": "1.5.0",

CHAPTER 5 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

77

To use any other template engine, make sure that you install that module with NPM, preferably by adding it to
package.json as well, either manually or with npm install name --save.

Interestingly enough, Express.js uses views as the default value. Therefore, if you have templates in the views
folder, you can omit this line:

app.set('views', path.join(__dirname, 'views'));

You know how to use app.set() for EJS and Jade templates, so now let’s cover how to use alternative template
engines with the configuration method: app.engine().

app.engine()
The app.engine() method is a lower-level method for setting up template engines. Express.js uses this method under
the hood.

By default, Express.js will try to require a template engine based on the extension provided (the template engine
NPM module name—that’s why we use this name as the extension!). For example, when we call res.render('index.
jade'); (more on this method later) in the request handler of the route or in middleware with the index.jade file
name as an argument, the framework is calling require('jade') internally.

The full statement in the Express.js code (you don’t need to implement it yourself just yet) is something like
this: app.engine('jade', require('jade').__express);, where __express is a convention that template libraries
should implement.

Let's say you prefer *.html or *.template instead of *.jade for your Jade files. In this case you can use
app.set() and app.engine() to overwrite the default extension. For example, to use *.html, write these statements:

app.set('view engine', 'html');
app.engine('html', require('jade').__express);

and then, in each route, write something like this to render index.html:

response.render('index');

Or, for the '*.template' example, you can use an alternative approach without the view engine and with the full
file name in the request handler (basically copying the internal Express.js code):

app.engine('template', require('jade').__express);

The following is the request handler call:

response.render('index.template');

This overwriting is especially cool for Handlebars and other template engines that take plain HTML, because you
can reuse your legacy HTML files without much of a hassle.

CHAPTER 5 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

78

Uncommon Libraries
Now let’s cover the use of uncommon template engines. You can safely skip the rest of this section, if you plan to use
only common libraries such as Jade or EJS.

Less common Node.js choices of libraries need to expose the _express method, which is the common
convention to indicate that a template library supports this Express.js format. So check if the template engine has
__express() on the source file that you import with require(). If the __express() method is present, then the
contributors made this library compatible with Express.js. Again, most of the libraries are already outfitted to work
with Express.js and they have __express().

What if the library of your choice doesn't have __express? If the template module has a method with a signature
similar to the __express method signature, you can easily define your template engine’s method with app.engine; for
example, in swig (https://github.com/paularmstrong/swig), it’s the renderFile() method. So, considering that
renderFile in a template engine library of your choice supports a function signature with these arguments:

• path: Path to a template file

• locals: Data to use for rendering HTML

• callback: The callback function

you can write code like this to apply this library as Express.js middleware:

// ... Declare dependencies
// ... Instantiate the app
// ... Configure the app
app.engine('swig', require('swig').renderFile);
// ... Define the routes

The example in the ch5 folder shows how you can use multiple template engines and various extensions. This is
the scoop of the app.js statements:

// ... Declare dependencies
// ... Instantiate the app
// ... Configure the app
var jade = require('jade');
var consolidate = require('consolidate');

app.engine('html', jade.__express);
app.engine('template', jade.__express);
app.engine('swig', consolidate.swig);
// ... Define the routes
app.get('/', function(request, response){
 response.render('index.html');
});

app.get('/template', function(request, response){
 response.render('index.template');
});

app.get('/swig', function(request, response){
 response.render('index.swig');
})

The consolidate library will be explained later in this chapter.

https://github.com/paularmstrong/swig

CHAPTER 5 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

79

The package.json file has the following dependencies (install them with npm install):

{
 "name": "template-app",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node app"
 },
 "dependencies": {
 "consolidate": "^0.10.0",
 "errorhandler": "1.1.1",
 "express": "4.8.1",
 "jade": "1.5.0",
 "morgan": "1.2.2",
 "swig": "^1.4.2",
 "serve-favicon": "2.0.1"
 }
}

Starting the application with $ node app should start the server that will render “Hi, I’m Jade from index.html”
when you go to the home page (see Figure 5-1).

Figure 5-1. Jade template rendered from the index.html file

CHAPTER 5 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

80

And lastly, it should render “hi, I'm Jade in index.template file” when you go to the /template (see Figure 5-3).

Also, the server should render “Hi, I'm Swig from index.swig” when you go to the /swig (see Figure 5-2).

Figure 5-2. Swig template rendered from the index.swig file

CHAPTER 5 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

81

Figure 5-3. Jade template rendered from the index.jade file

This is probably an over-the-top example, because you will rarely use more than one template engine in a single
Express.js app. However, it's good to know that the framework is flexible enough to allow you to implement it with just
a few configuration statements.

It’s worth noting, in our proexpressjs/ch5 example, both Jade files index.html and index.template use the
so-called top-down inclusion via include filename (without quotes). This allows us to reuse the Lorem Ipsum text of
the paragraph in the lorem-ipsum.html file.

The file in our example is just a plain text file, but it can have Jade template content in it. The index.html looks
like this:

h1 Hi, I'm Jade from index.html file
p
 include lorem-ipsum.html

And the index.temlate is similar:

h1 hi, I'm Jade in index.template file
p
 include lorem-ipsum.html

CHAPTER 5 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

82

INCLUSIONS, LAYOUTS AND PARTIALS

Top-down inclusion is a standard inheritance pattern in which the parent object commands where and what to do

with the child (the object that is included). So, for example, you have a file A that includes file B (a partial), and file

A will do with file B what it wants. This is what you’ll use in most template languages.

The alternative to top-down inclusion is the bottom-up pattern. Not all languages support it. In this case, file A is

a larger and higher-up-the-chain entity (a layout), and file B is a smaller piece of the puzzle, but file B will dictate

what it wants.

You can also think about the top-down approach as overwriting some methods in a child class when you extend

those methods from the parent class, while leaving the others intact.

In Jade, bottom-up is implemented with a set of extend, layout, and block statements. For deep coverage on

Jade, refer to Practical Node.js (Apress, 2014).

Template Engine Choices
This section briefly introduces the libraries that support Express.js without any modifications. This list of choices is
derived from the list at the Express.js wiki page: https://github.com/strongloop/express/wiki#template-engines.

Jade
Jade (https://github.com/jadejs/jade) is a Haml-inspired template engine. It’s very powerful because it has two
types of inheritances, supports all JavaScript/Node.js, and requires a minimum number of symbols/characters due to
treating whitespace and indentation as part of the language.

Haml.js
Haml.js (https://github.com/tj/haml.js) is a Haml implementation. Haml is a standard choice for Rails
developers. This language treats whitespace and indentation as part of the language, which makes code more
compact and less prone to typos, thus making it more pleasurable to write.

EJS
EJS (https://github.com/tj/ejs) is an embedded JavaScript template engine. According to some benchmark
performance tests, EJS is faster than Jade or Haml (see, for example, http://paularmstrong.github.io/node-
templates/benchmarks.html).

Handlebars.js
Hbs (https://github.com/donpark/hbs) is an adapter for Handlebars.js, which is an extension of the Mustache.js
template engine. By design, Handlebars prohibits putting complex logic in the templates. Instead, developers need to
write functions outside of templates and register them. This is the easiest template engine to learn. It’s often used in
reactive templates. If you’re familiar with (or plan to use) Angular.js, Meteor, or DerbyJS, this choice might be better
for you because it is similar to what they use.

https://github.com/strongloop/express/wiki#template-engines
https://github.com/jadejs/jade
https://github.com/tj/haml.js
https://github.com/tj/ejs
http://paularmstrong.github.io/node-templates/benchmarks.html
http://paularmstrong.github.io/node-templates/benchmarks.html
http://github.com/donpark/hbs

CHAPTER 5 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

83

Alternative adapter is express-hbs (https://github.com/barc/express-hbs) which is the Handlebars with
layouts, partials and blocks for Express 3 from Barc (http://barc.com).

Another adapter is express-handlebars (https://github.com/ericf/express-handlebars).

Hogan.js Adapters
h4e (https://github.com/tldrio/h4e) is an adapter for Hogan.js, with support for partials and layouts. Hulk-hogan
(https://github.com/quangv/hulk-hogan) is an adapter for Twitter’s Hogan.js (Mustache syntax), with support
for partials.

Combyne.js
The Combyne.js (https://github.com/tbranyen/combyne.js) is a template engine that, hopefully, works the way
you’d expect. And combynexpress (https://github.com/tbranyen/combynexpress) is an Express library
for Combyne.js.

Swig
Swig (https://github.com/paularmstrong/swig) is a fast, Django-like template engine.

Whiskers
Whiskers (https://github.com/gsf/whiskers.js) is small, fast, and mustachioed (looks like Handlebars or
Mustache). It is faster than Jade (per http://paularmstrong.github.io/node-templates/benchmarks.html).

Blade
Blade (https://github.com/bminer/node-blade) is an HTML template compiler, inspired by Jade and Haml that
treats whitespace as part of the language.

Haml-Coffee
Haml-Coffee (https://github.com/netzpirat/haml-coffee) provides Haml templates in which you can write
inline CoffeeScript. It is perfect if you’re using CoffeeScript for your Node.js code (the benefits of CoffeeScript are
highlighted in this presentation: http://www.infoq.com/presentations/coffeescript-lessons).

Webfiller
Webfiller (https://github.com/haraldrudell/webfiller) is a plain HTML5 dual-side rendering engine with
self-configuring routes, organized source tree. Webfiller is 100% JS.

Consolidate.js
In case the template engine of your choice does not provide an __express() method, or you're not sure and don’t
want to bother finding out, consider the consolidate library (https://npmjs.org/package/consolidate; GitHub:
https://github.com/tj/consolidate.js).

https://github.com/barc/express-hbs
http://barc.com/
https://github.com/ericf/express-handlebars
https://github.com/tldrio/h4e
https://github.com/quangv/hulk-hogan
https://github.com/tbranyen/combyne.js
https://github.com/tbranyen/combynexpress
https://github.com/paularmstrong/swig
https://github.com/gsf/whiskers.js
http://paularmstrong.github.io/node-templates/benchmarks.html
https://github.com/bminer/node-blade
https://github.com/netzpirat/haml-coffee
http://www.infoq.com/presentations/coffeescript-lessons
https://github.com/haraldrudell/webfiller
https://npmjs.org/package/consolidate
https://github.com/tj/consolidate.js

CHAPTER 5 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

84

The consolidate library streamlines and generalizes a few dozen template engine modules so that they “play
nicely” with Express.js. This means there’s no need to look up the source code to search for the presence of the
__express() method. All you need to do is require consolidate and then map the engine of your choice to the extension.

Here is a Consolidate.js example:

var express = require('express');
var consolidate = require('consolidate');

var app = express();

// ... Configure template engine
app.engine('html', consolidate.handlebars);
app.set('view engine', 'html');
app.set('views', __dirname + '/views');

That’s it; res.render() is ready to use Handlebars!
The template engines that Consolidate.js supports, as of this writing, are shown in Table 5-1 (compiled from the

Consolidate.js GitHub page: https://github.com/tj/consolidate.js/blob/master/Readme.md).

Table 5-1. Template Engines Supported by Consolidate.js

Template Engine GitHub Web Site (if applicable)

atpl https://github.com/soywiz/atpl.js

dust https://github.com/akdubya/dustjs http://akdubya.github.io/dustjs/

eco https://github.com/sstephenson/eco

ect https://github.com/baryshev/ect http://ectjs.com

ejs https://github.com/tj/ejs http://www.embeddedjs.com

haml https://github.com/tj/haml.js http://haml.info

haml-coffee https://github.com/9elements/haml-coffee http://haml.info

handlebars.js https://github.com/wycats/handlebars.js/ http://handlebarsjs.com

Hogan.js https://github.com/twitter/hogan.js http://twitter.github.io/hogan.js

Jade https://github.com/jadejs/jade http://jade-lang.com

jazz https://github.com/shinetech/jazz

jqtpl https://github.com/kof/jqtpl

JUST https://github.com/baryshev/just

liquor https://github.com/chjj/liquor

lodash https://github.com/lodash/lodash https://lodash.com

mustache https://github.com/janl/mustache.js http://mustache.github.io

nunjunks http://mozilla.github.io/nunjucks/

QEJS https://github.com/jepso/QEJS

ractive https://github.com/ractivejs/ractive

(continued)

https://github.com/tj/consolidate.js/blob/master/Readme.md
https://github.com/soywiz/atpl.js
https://github.com/akdubya/dustjs
http://akdubya.github.io/dustjs/
https://github.com/sstephenson/eco
https://github.com/baryshev/ect
http://ectjs.com/
https://github.com/tj/ejs
http://www.embeddedjs.com/
https://github.com/tj/haml.js
http://haml.info/
https://github.com/9elements/haml-coffee
http://haml-lang.com/
https://github.com/wycats/handlebars.js/
http://handlebarsjs.com/
https://github.com/twitter/hogan.js
http://twitter.github.io/hogan.js
https://github.com/jadejs/jade
http://jade-lang.com/
https://github.com/shinetech/jazz
https://github.com/kof/jqtpl
https://github.com/baryshev/just
https://github.com/chjj/liquor
https://github.com/lodash/lodash
https://lodash.com/
https://github.com/janl/mustache.js
http://mustache.github.io/
http://mozilla.github.io/nunjucks/
https://github.com/jepso/QEJS
https://github.com/ractivejs/ractive

CHAPTER 5 ■ TEMPLATE ENGINES AND CONSOLIDATE.JS

85

Jade template language is quite extensive in itself and is beyond the scope of this book. To learn about every
feature and the differences between extend and include (top-down and bottom-up), refer to Practical Node.js
(Apress, 2014), which has a whole chapter dedicated to Jade and Handlebars.

Summary
Templates are a staple of modern web development. Without them, developers would have to write way more code
and the maintenance would be painful. When it comes to Node.js, Jade—a close relative to Ruby on Rails’ Haml—is a
powerful choice. This is due to its rich set of features and elegance of style (whitespaces and indentations are part of
the language). But don’t attempt to write Jade without learning it first. It might be painful.

Express.js supports different approaches to configuring the location of templates and file extensions. Also,
Express.js shines when it comes to configuring different pieces of the puzzle; changing a template engine is a matter of
a few lines of code.

The NPM userland provides tons of template engine choices—there are dozens of other template libraries that
are easily compatible with Express.js, as you saw in the “Consolidate.js” section. They have different styles, design, and
performances. For example, Swig, EJS, and some other libraries often outperform Jade in benchmark tests. And if you
get used to the {{...}}} style of Handlebar and Mustache (e.g., from Angular.js)—or you don’t have the time to learn
Jade properly—then you can use those libraries right away!

This chapter concludes the configuration section of the app.js file. We move on to the routes. We’ll start with the
definition of routes and the extraction of parameters from URLs.

Template Engine GitHub Web Site (if applicable)

swig https://github.com/paularmstrong/swig http://paularmstrong.github.com/swig/

templayed http://archan937.github.io/templayed.js/

toffee https://github.com/malgorithms/toffee

underscore https://github.com/jashkenas/underscore http://documentcloud.github.io/
underscore/

walrus https://github.com/jeremyruppel/walrus http://documentup.com/jeremyruppel/
walrus/

whiskers https://github.com/gsf/whiskers.js/

Table 5-1. (continued)

https://github.com/paularmstrong/swig
http://paularmstrong.github.com/swig/
http://archan937.github.io/templayed.js/
https://github.com/malgorithms/toffee
https://github.com/jashkenas/underscore
http://documentcloud.github.io/underscore/
http://documentcloud.github.io/underscore/
https://github.com/jeremyruppel/walrus
http://documentup.com/jeremyruppel/walrus/
http://documentup.com/jeremyruppel/walrus/
https://github.com/gsf/whiskers.js/

87

CHAPTER 6

Parameters and Routing

To review, the typical structure of an Express.js app (which is usually a server.js or app.js file) roughly consists of
these parts, in the order shown:

 1. Dependencies: A set of statements to import dependencies

 2. Instantiations: A set of statements to create objects

 3. Configurations: A set of statements to configure system and custom settings

 4. Middleware: A set of statements that is executed for every incoming request

 5. Routes: A set of statements that defines server routes, endpoints, and pages

 6. Bootup: A set of statements that starts the server and makes it listen on a specific port for
incoming requests

This chapter covers the fifth category, routes and the URL parameters that we define in routes. These parameters,
along with the app.param() middleware, are essential because they allow the application to access information
passed from the client in the URLs (e.g., books/proexpressjs). This is the most common convention for REST
APIs. For example, the http://hackhall.com/api/posts/521eb002d00c970200000003 route will use the value of
521eb002d00c970200000003 as the post ID.

Parameters are values passed in a query string of a URL of the request. If we didn’t have Express.js or a similar
library, and had to use just the core Node.js modules, we’d have to extract parameters from an HTTP.request
(http://nodejs.org/api/http.html#http_http_request_options_callback) object via some
require('querystring').parse(url) or require('url').parse(url, true) function “trickery.”

Let’s look closer at how to define a certain rule or logic for a particular URL parameter.

Parameters
The first approach to extracting parameters from the URLs is to write some code in the request handler (route). In case
you need to repeat this snippet in other routes, you can abstract the code and manually apply the same logic to many
routes. (To abstract code means to refactor the code so that it can be reused in other places and/or be organized
better. This improves maintainability and readability of the code.)

http://hackhall.com/api/posts/521eb002d00c970200000003
http://nodejs.org/api/http.html#http_http_request_options_callback

CHAPTER 6 ■ PARAMETERS AND ROUTING

88

For example, imagine that we need user information on a user profile page (/v1/users/azat defined as /v1/
users/:username) and on an admin page (/v1/admin/azat defined as /v1/admin/:username). One way to do this is
to define a function that looks up the user information (findUserByUsername) and call this function twice inside of
each of the routes. This is how we can implement it (example ch6/app.js):

var users = {
 'azat': {
 email: 'hi@azat.co',
 website: 'http://azat.co',
 blog: 'http://webapplog.com'
 }
};

var findUserByUsername = function (username, callback) {
 // Perform database query that calls callback when it's done
 // This is our fake database
 if (!users[username])
 return callback(new Error(
 'No user matching '
 + username
)
);
 return callback(null, users[username]);
};

app.get('/v1/users/:username', function(request, response, next) {
 var username = request.params.username;
 findUserByUsername(username, function(error, user) {
 if (error) return next(error);
 return response.render('user', user);
 });
});

app.get('/v1/admin/:username', function(request, response, next) {
 var username = request.params.username;
 findUserByUsername(username, function(error, user) {
 if (error) return next(error);
 return response.render('admin', user);
 });
});

You can run the app from the ch6 folder with $ node app command. Then, open a new terminal tab/window,
and CURL a GET request with:

$ curl http://localhost:3000/v1/users/azat

To see this:

user profile</h2><p>http://azat.co</p><p>http://webapplog.com</p>

And with

$ curl http://localhost:3000/v1/admin/azat

http://azat.co/
http://webapplog.com/
http://azat.co</p><p>http://webapplog.com</p

CHAPTER 6 ■ PARAMETERS AND ROUTING

89

To see this:

admin: user profile</h2><p>hi@azat.co</p><p>http://azat.co</p><p>http://webapplog.com</
p><div><Practical>Node.js is your step-by-step guide to learning how to build scalable real-world
web applications, taking you from installing Express.js to writing full-stack web applications with
powerful libraries such as Mongoskin, Everyauth, Mongoose, Socket.IO, Handlebars, and everything in
between.</Practical></div>

Note ■ Windows users can download CURL from http://curl.haxx.se/download.html.

Alternatively, you can use the Postman Chrome extension at http://bit.ly/JGSQwr.

Or, for GET requests only, you can use your browser—just go to the URL. The browser won’t make PUT or DELETE

requests, and it will make POST requests only if you submit a form.

The last approach is to use jQuery to make AJAX/XHR requests, but be mindful about the cross-origin limitations,
which means using the same domain, or CORS headers on the server. Or you could simply go to
http://localhost:3000/v1/users/azat (see Figure 6-1) and http://localhost:3000/v1/admin/azat
(see Figure 6-2) in your browser.

Figure 6-1. Username URL parameter is parsed and used to find information displayed on the user page
(example ch6)

http://azat.co</p><p>http://webapplog.com</p><div><Practical>Node.js
http://azat.co</p><p>http://webapplog.com</p><div><Practical>Node.js
http://curl.haxx.se/download.html
http://bit.ly/JGSQwr

CHAPTER 6 ■ PARAMETERS AND ROUTING

90

The admin.jade template (Figure 6-2) has slightly different content from user.jade (Figure 6-1) to help you
differentiate between the two pages/routes so you can be assured that both of them parse and use the parameters
correctly.

Even after abstracting the bulk of the code into the findUserByUsername() function, we still ended up with
ineloquent code. If we use the middleware approach, the code becomes a little bit better. The idea is to write a custom
middleware findUserByUsernameMiddleware and use it with each route that needs the user information. Here’s
how you can refactor the same two routes and use the /v2 prefix (prefixes are usually used to differentiate REST API
versions):

var findUserByUsername = function (username, callback) {
 // Perform database query that calls callback when it's done
 // This is our fake database!
 if (!users[username])
 return callback(new Error(
 'No user matching '
 + username
)
);
 return callback(null, users[username]);
};

Figure 6-2. Username URL parameter is parsed and used to find information displayed on the admin page
(example ch6)

CHAPTER 6 ■ PARAMETERS AND ROUTING

91

var findUserByUsernameMiddleware = function(request, response, next){
 if (request.params.username) {
 console.log('Username param was detected: ', request.params.username)
 findUserByUsername(request.params.username, function(error, user){
 if (error) return next(error);
 request.user = user;
 return next();
 })
 } else {
 return next();
 }
}
// The v2 routes that use the custom middleware
app.get('/v2/users/:username',
 findUserByUsernameMiddleware,
 function(request, response, next){
 return response.render('user', request.user);
});
app.get('/v2/admin/:username',
 findUserByUsernameMiddleware,
 function(request, response, next){
 return response.render('admin', request.user);
});

The middleware findUserByUsernameMiddleware checks for the presence of the parameter (request.params.
username) and then, if it’s present, proceeds to fetch the information. This is a better pattern because it keeps routes
lean and abstracts logic. However, Express.js has an even better solution. It’s similar to the middleware method, but
it makes our lives a bit easier by automatically performing the parameter presence checks (i.e., a check to see if the
parameter is in the request). Meet the app.param() method!

app.param()
Anytime the given string (e.g., username) is present in the URL pattern of the route, and server receives a request that
matches that route, the callback to the app.param() will be triggered. For example, with app.param('username',
function(req, res, next, username){...}) and app.get('/users/:username', findUser) every time we have a
request /username/azat or /username/tjholowaychuk, the closure in app.param() will be executed
(before findUser).

The app.param() method is very similar to app.use() but it provides the value (username in our example) as the
fourth, last parameter, to the function. In this snippet, the username will have the value from the URL (e.g., 'azat' for /
users/azat):

app.param('username', function (request, response, next, username) {
 // ... Perform database query and
 // ... Store the user object from the database in the req object
 req.user = user;
 return next();
});

CHAPTER 6 ■ PARAMETERS AND ROUTING

92

No need of extra lines of code since we have req.user object populated by the app.param():

app.get('/users/:username', function(request, response, next) {
 //... Do something with req.user
 return res.render(req.user);
});

No need for extra code in this route either. We get req.user for free because of the app.param() defined earlier:

app.get('/admin/:username', function(request, response, next) {
 //... Same thing, req.user is available!
 return res.render(user);
});

Here is another example of how we can plug param middleware into our app:

app.param('id', function(request, response, next, id){
 // Do something with id
 // Store id or other info in req object
 // Call next when done
 next();
});

app.get('/api/v1/stories/:id', function(request, response){
 // Param middleware will be executed before and
 // We expect req objects to already have needed info
 // Output something
 res.send(data);
});

Tip ■ If you have a large application with many versions of API and routes (v1, v2, etc.), then it’s better to use the

Router class/object to organize the code of these routes. You create a Router object and mount it on a path, such as

/api or /api/v1. Router is just a stripped-down version of the var app = express() object. More details about the

Router class are provided later in the chapter.

The following is an example of plugging param middleware into an app that has a Mongoskin/Monk-like
database connection in req.db:

app.param('id', function(request, response, next, id){
 req.db.get('stories').findOne({_id: id}, function (error, story){
 if (error) return next(error);
 if (!story) return next(new Error('Nothing is found'));
 req.story = story;
 next();
 });
});

CHAPTER 6 ■ PARAMETERS AND ROUTING

93

app.get('/api/v1/stories/:id', function(request, response){
 res.send(req.story);
});

Or we can use multiple request handlers, but the concept remains the same: we can expect to have a
req.story object or an error thrown prior to the execution of this code, so we abstract the common code/logic of
getting parameters and their respective objects. Here is an example:

app.get('/api/v1/stories/:id', function(request, response, next) {
 //do authorization
 },
 //we have an object in req.story so no work is needed here
 function(request, response) {
 //output the result of the database search
 res.send(story);
});

Note ■ Authorization and input sanitation are good candidates for residing in the middleware. For extensive examples

of OAuth and Express.js, refer to Practical Node.js1 (Apress, 2014).

The param() function is especially cool, because we can combine different variables in the routes; for example:

app.param('storyId', function(request, response, next, storyId) {
 // Fetch the story by its ID (storyId) from a database
 // Save the found story object into request object
 request.story = story;

});
app.param('elementId', function(request, response, next, elementId) {
 // Fetch the element by its ID (elementId) from a database
 // Narrow down the search when request.story is provided
 // Save the found element object into request object
 request.element = element;
});
app.get('/api/v1/stories/:storyId/elements/:elementId', function(request, response){
 // Now we automatically get the story and element in the request object
 res.send({ story: request.story, element: request.element});
});
app.post('/api/v1/stories/:storyId/elements', function(request, response){
 // Now we automatically get the story in the request object
 // We use story ID to create a new element for that story
 res.send({ story: request.story, element: newElement});
});

1http://practicalnodebook.com

http://practicalnodebook.com/

CHAPTER 6 ■ PARAMETERS AND ROUTING

94

To summarize, by defining app.param once, its logic will be triggered for every route that has the matching
URL parameter name. You might be wondering, “How is it different from writing your own function and calling it, or
from writing your own custom middleware?” They will both execute the code properly, but param is a more elegant
approach. We can refactor our earlier example to show the difference.

Let’s go back to the ch6 project. If we refactor our previous example from ch6/app.js and use v3 as a new route
prefix, we might end up with elegant code like this:

app.param('v3Username', function(request, response, next, username){
 console.log(
 'Username param was is detected: ',
 username
)
 findUserByUsername(
 username,
 function(error, user){
 if (error) return next(error);
 request.user = user;
 return next();
 }
);
});

app.get('/v3/users/:v3Username',
 function(request, response, next){
 return response.render('user', request.user);
 }
);
app.get('/v3/admin/:v3Username',
 function(request, response, next){
 return response.render('admin', request.user);
 }
);

So, extracting parameters is important, but defining routes is more important. Defining routes is also an
alternative to using app.param() to extract values from URL parameters—this method is recommended when a
parameter is used only once. If it’s used more than once, param is a better pattern.

A lot of routes have already been defined in the five previous chapters. In the next section, we’ll explore in more
detail how to define various HTTP methods, chain middleware, abstract middleware code, and define all-method
routes.

Routing
Express.js is a Node.js framework that, among other things, provides a way to organize routes into smaller subsections
(Routers—instances of Router class/object). In Express.js 3.x and earlier, the only way to define routes is to use the
app.VERB() pattern, which we’ll cover next. However, starting with Express.js v4.x, using the new Router class is the
recommended way to define routes, via router.route(path). We’ll cover the traditional approach first.

CHAPTER 6 ■ PARAMETERS AND ROUTING

95

app.VERB()
Each route is defined via a method call on an application object with a URL pattern as the first parameter (regular
expressions2 are also supported); that is, app.METHOD(path, [callback...], callback).

For example, to define a GET /api/v1/stories endpoint:

app.get('/api/v1/stories/', function(request, response){
 // ...
})

Or, to define an endpoint for the POST HTTP method and the same route:

app.post('/api/v1/stories', function(request, response){
 // ...
})

DELETE, PUT, and other methods are supported as well. For more information, see
http://expressjs.com/api.html#app.VERB.

The callbacks that we pass to get() or post() methods are called request handlers (covered in detail in
Chapter 7), because they take requests (req), process them, and write to the response (res) objects. For example:

app.get('/about', function(request, response){
 res.send('About Us: ...');
});

We can have multiple request handlers in one route. All of them except the first and the last will be in the middle
of the flow (order in which they are executed), hence the name middleware. They accept a third parameter/function,
next, which when called (next()), switches the execution flow to the next handler. For example, we have three
functions that perform authorization, database search and output:

app.get('/api/v1/stories/:id', function(request, response, next) {
 // Do authorization
 // If not authorized or there is an error
 // Return next(error);
 // If authorized and no errors
 return next();
}), function(request, response, next) {
 // Extract id and fetch the object from the database
 // Assuming no errors, save story in the request object
 request.story = story;
 return next();
}), function(request, response) {
 // Output the result of the database search
 res.send(response.story);
});

2http://en.wikipedia.org/wiki/Regular_expression

http://expressjs.com/api.html#app.VERB
http://en.wikipedia.org/wiki/Regular_expression

CHAPTER 6 ■ PARAMETERS AND ROUTING

96

The name next() is an arbitrary convention, which means you can use anything else you like instead of next().
The Express.js uses the order of the arguments in the function to determine their meaning. The ID of a story is the
URL parameter, which we need for finding matching items in the database.

Now, what if we have another route /admin. We can define multiple request handlers, which perform
authentication, validation, and loading of resources:

app.get('/admin',
 function(request, response, next) {
 // Check active session, i.e.,
 // Make sure the request has cookies associated with a valid user session
 // Check if the user has administrator privileges
 return next();
 }, function(request, response, next){
 // Load the information required for admin dashboard
 // Such as user list, preferences, sensitive info
 return next();
 }, function(request, response) {
 // Render the information with proper templates
 // Finish response with a proper status
 res.end();
 })

But what if some of the code for /admin, such as authorization/authentication, is duplicated from the
/stories? The following accomplishes the same thing, but is much cleaner with the use of named functions:

var auth = function (request, response, next) {
 // ... Authorization and authentication
 return next();
}
var getStory = function (request, response, next) {
 // ... Database request for story
 return next();
}
var getUsers = function (request, response, next) {
 // ... Database request for users
 return next();
}
var renderPage = function (request, response) {
 if (req.story) res.render('story', story);
 else if (req.users) res.render('users', users);
 else res.end();
}

app.get('/api/v1/stories/:id', auth, getStory, renderPage);
app.get('/admin', auth, getUsers, renderPage);

CHAPTER 6 ■ PARAMETERS AND ROUTING

97

Another useful technique is to pass callbacks as items of an array, made possible thanks to the inner workings of
the arguments JavaScript mechanism:3

var authAdmin = function (request, response, next) {
 // ...
 return next();
}
var getUsers = function (request, response, next) {
 // ...
 return next();
}
var renderUsers = function (request, response) {
 // ...
 res.end();
}
var admin = [authAdmin, getUsers, renderUsers];
app.get('/admin', admin);

One distinct difference between request handlers in routes and middleware is that we can bypass the rest of the
callbacks in the chain by calling next('route');. This might come in handy if, in the previous example with the
/admin route, a request fails authentication in the first callback, in which case there’s no need to proceed. You can also
use next() to jump to the next route if you have multiple routes matching the same URL.

Please note that, if the first parameter we pass to app.VERB() contains query strings (e.g., /?debug=true), that
information is disregarded by Express.js. For example, app.get('/?debug=true', routes.index); will be treated
exactly as app.get('/', routes.index);.

The following are the most commonly used Representational State Transfer (REST) server architecture HTTP
methods and their counterpart methods in Express.js along with the brief meaning:

GET: • app.get()—Retrieves an entity or a list of entities

HEAD: • app.head()—Same as GET, only without the body

POST: • app.post()—Submits a new entity

PUT: • app.put()—Updates an entity by complete replacement

PATCH: • app.patch()—Updates an entity partially

DELETE: • app.delete() and app.del()—Deletes an existing entity

OPTIONS: • app.options()—Retrieves the capabilities of the server

3Seehttps://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/
arguments

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/arguments

CHAPTER 6 ■ PARAMETERS AND ROUTING

98

Tip ■ An HTTP method is a special property of every HTTP(S) request, similar to its headers or body. Opening a URL in

your browser is a GET request, and submitting a form is a POST request. Other types of requests, such as PUT, DELETE,

PATCH, and OPTIONS, are only available via special clients such as CURL, Postman, or custom-built applications (both

front-end and back-end).

For more information on HTTP methods, please refer to RFC 2616 (http://tools.ietf.org/html/rfc2616) and
its “Method Definitions” section (section 9).

app.all()
The app.all() method allows the execution of specified request handlers on a particular path regardless of what the
HTTP method of the request is. This procedure might be a lifesaver when defining global or namespace logic, as in
this example:

app.all('*', userAuth);
...
app.all('/api/*', apiAuth);

Trailing Slashes
Paths with trailing slashes at the end are treated the same as their normal counterparts by default. To turn off this
feature, use app.enable('strict routing'); or app.set('strict routing', true);. You can learn more about
setting options in Chapter 3.

Router Class
The Router class is a mini Express.js application that has only middleware and routes. This is useful for abstracting
certain modules based on the business logic that they perform. For example, all /users/* routes can be defined in
one router, and all /posts/* routes can be defined in another. The benefit is that, after we define a portion of the URL
in the router with router.path() (see the next section), we don’t need to repeat it over and over again, such as is the
case with using the app.VERB() approach.

The following is an example of creating a router instance:

var express = require('express');
var router = express.Router(options);
// ... Define routes
app.use('/blog', router);

where options is an object that can have following properties:

• caseSensitive: Boolean indicating whether to treat routes with the same name but different
letter case as different, false by default; e.g., if it’s set to false, then /Users is the same as
/users.

• strict: Boolean indicating whether to treat routes with the same name but with or without a
trailing slash as different, false by default; e.g., if it’s set to false, then /users is the same as
/users/.

http://tools.ietf.org/html/rfc2616

CHAPTER 6 ■ PARAMETERS AND ROUTING

99

router.route(path)
The router.route(path) method is used to chain HTTP verb methods. For example, in a create, read, update, and
delete (CRUD) server that has POST, GET, PUT, and DELETE endpoints for the /posts/:id URL (e.g., /posts/53fb401
dc96c1caa7b78bbdb), we can use the Router class as follows:

var express = require('express');
var router = express.Router();
// ... Importations and configurations
router.param('postId', function(request, response, next) {
 // Find post by ID
 // Save post to request
 request.post = {
 name: 'PHP vs. Node.js',
 url: 'http://webapplog.com/php-vs-node-js'
 };
 return next();
});

router
 .route('/posts/:postId')
 .all(function(request, response, next){
 // This will be called for request with any HTTP method
 })
 .post(function(request, response, next){
 })
 .get(function(request, response, next){
 response.json(request.post);
 })
 .put(function(request, response, next){
 // ... Update the post
 response.json(request.post);
 })
 .delete(function(request, response, next){
 // ... Delete the post
 response.json({'message': 'ok'});
 })

The Router.route(path) method provides the convenience of chaining methods, which is a more appealing way
to structure, your code than re-typing router for each route.

Alternatively, we can use router.VERB(path, [callback...], callback) to define the routes just as we
would use app.VERB(). Similarly, the router.use() and router.param() methods work the same as app.use() and
app.param().

http://webapplog.com/php-vs-node-js

CHAPTER 6 ■ PARAMETERS AND ROUTING

100

Going back to our example project (in the ch6 folder), we can implement v4/users/:username and
v4/admin/:username with Router:

router.param('username', function(request, response, next, username){
 console.log(
 'Username param was detected: ',
 username
)
 findUserByUsername(
 username,
 function(error, user){
 if (error) return next(error);
 request.user = user;
 return next();
 }
);
})
router.get('/users/:username',
 function(request, response, next){
 return response.render('user', request.user);
 }
);
router.get('/admin/:username',
 function(request, response, next){
 return response.render('admin', request.user);
 }
);
app.use('/v4', router);

As you can see, router.get() methods include no mention of v4. Typically, the router.get() and
router.param() methods are abstracted into a separate file. This way, the main file (app.js in our example) stays
lean and easy to read and maintain—a nice principle to follow!

Request Handlers
Request handlers in Express.js are strikingly similar to callbacks in the core Node.js http.createServer() method,
because they’re just functions (anonymous, named, or methods) with req and res parameters:

var ping = function(req, res) {
 console.log('ping');
 res.end(200);
};

app.get('/', ping);

CHAPTER 6 ■ PARAMETERS AND ROUTING

101

In addition, we can utilize the third parameter, next(), for control flow. It’s closely related to the topic of error
handling, which is covered in Chapter 9. Here is a simple example of two request handlers, ping and pong where the
former just skips to the latter after printing a word ping:

var ping = function(req, res, next) {
 console.log('ping');
 return next();
};
var pong = function(req, res) {
 console.log('pong');
 res.end(200);
};
app.get('/', ping, pong);

When a request comes on the / route, Express.js calls ping(), which acts as middleware in this case (because it’s
in the middle!). Ping, in turn, when it’s done, calls pong with that finished response with res.end().

The return keyword is also very important. For example, we don’t want to continue processing the request if the
authentication has failed in the first middleware:

// Instantiate app and configure error handling

// Authentication middleware
var checkUserIsAdmin = function (req, res, next) {
 if (req.session && req.session._admin !== true) {
 return next (401);
 }
 return next();
};

// Admin route that fetches users and calls render function
var admin = {
 main: function (req, res, next) {
 req.db.get('users').find({}, function(e, users) {
 if (e) return next(e);
 if (!users) return next(new Error('No users to display.'));
 res.render('admin/index.html', users);
 });
 }
};

// Display list of users for admin dashboard
app.get('/admin', checkUserIsAdmin, admin.main);

CHAPTER 6 ■ PARAMETERS AND ROUTING

102

The return keyword is essential, because if we don’t use it for the next(e) call, the application will try to render
(res.render()) even when there is an error and/or we don’t have any users. For example, the following is probably a
bad idea because after we call next(), which will trigger the appropriate error in the error handler, the flow goes on
and tries to render the page:

var admin = {
 main: function (req, res, next) {
 req.db.get('users').find({}, function(e, users) {
 if (e) next(e);
 if (!users) next(new Error('No users to display.'));
 res.render('admin/index.html', users);
 });
 }
};

We should be using something like this:

if (!users) return next(new Error('No users to display.'));
res.render('admin/index.html', users);

or something like this:

if (!users)
 return next(new Error('No users to display.'));
else
 res.render('admin/index.html', users);

Summary
In this chapter we covered two major aspects of the typical structure of an Express.js app: defining routes and
extracting URL parameters. We explored three different ways of how to get them out of the URL and use them in
request handlers (req.params, custom middleware and app.param()). You learned how to define routes for various
HTTP methods. Finally, we delved deep into the Router class, which acts as a mini Express.js application, and
implemented yet another set of routes for the example project using the Router class.

Every time we defined a router (or a middleware), we used either an anonymous function definition or a named
function in callbacks to define the request handler. The request handler usually has three parameters: request (or
req), response (or res), and next. In the next chapter, you’ll learn more about these objects, and how, in Express.js,
they are different from the core Node.js http module’s request and response. Knowing these differences will give you
more features and functionality!

103

CHAPTER 7

Express.js Request Object

The Express.js request object (req for short) is a wrapper for a core Node.js http.request object, which is the Node.js
representation of the incoming HTTP(S) request. In web, the request has these parts:

Method: GET, POST or others•

URI: the location for example • http://hackhall.com/api/posts/

Headers: host: • www.hackhall.com

Body: content in the urlencoded, JSON or other formats•

The Express.js request object has some additional neat functionality, but essentially it supports everything that
the native http.request object can do.

For example, Express.js automatically adds support for query parsing, which is essential when the
system needs to access data in the URL in the following format (after the question mark):
http://webapplog.com/?name1=value&name2=value.

Here the list of methods and objects of the Express.js request object that we’ll cover in this chapter:

• request.query: query string parameters

• request.params: URL parameters

• request.body: request body data

• request.route: the route path

• request.cookies: cookie data

• request.signedCookies: signed cookie data

• request.header() and request.get(): request headers

Tip ■ When you see request.doSomething in the code, don’t confuse the Express.js request object with Mikeal

Roger’s request module (https://github.com/mikeal/request) or with the core Node.js http module’s request

(http://nodejs.org/api/http.html#http_event_request).

http://hackhall.com/api/posts/
http://www.hackhall.com/
http://webapplog.com/?name1=value&name2=value
https://github.com/mikeal/request
http://nodejs.org/api/http.html#http_event_request

CHAPTER 7 ■ EXPRESS.JS REQUEST OBJECT

104

To better understand the request object, let’s create a brand new Express.js app with Express.js version 4.8.1.
This is the package.json file of the project (ch7/package.json):

{
 "name": "request",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node app.js"
 },
 "dependencies": {
 "express": "4.8.1",
 "errorhandler": "1.1.1",
 "jade": "1.5.0",
 "morgan": "1.2.2",
 "serve-favicon": "2.0.1",
 "cookie-parser": "1.3.2",
 "body-parser": "1.6.5",
 "debug": "~0.7.4",
 "serve-favicon": "2.0.1"
 }
}

Next we install the modules with NPM into our local project node_modules folder:

$ npm install

Now start the app with $ node app. It should display a standard Express.js Generator page with the text
“Welcome to Express” (on http://localhost:3000). The full source code of app.js is provided for reference at the
end of this chapter. You can download it from GitHub at https://github.com/azat-co/proexpressjs.

request.query
The query string is everything to the right of the question mark in a given URL; for example, in the URL
https://twitter.com/search?q=js&src=typd, the query string is q=js&src=typd. After the query string is parsed by
Express.js, the resulting JS object would be {q:'js', src:'typd'}. This object is assigned to req.query or
request.query in your request handler, depending on what variable name you used in the function signature.

By default, the parsing is done by the qs module (http://npmjs.org/qs), which is used by Express.js behind the
scenes via the express/lib/middleware/query.js internal module. This setting can be changed by the query parser
setting, about which you learned in Chapter 3 (hopefully).

The way request.query works resembles body-parser’s json() and cookie-parser middleware in that it puts
a property (query in this case) on a request object req that is passed to the next middleware and routes. So, without
query parsing of some sort we can’t access the request.query object. Again, Express.js uses qs parser by default—no
extra code is needed on our part.

https://github.com/azat-co/proexpressjs
https://twitter.com/search?q=js&src=typd
http://npmjs.org/qs

CHAPTER 7 ■ EXPRESS.JS REQUEST OBJECT

105

To illustrate request.query in an example, we can add a search route that will print the incoming search term in
a query data format. The data in this example is q=js, q=nodejs, and q=nodejs&lang=fr. The server sends back JSON
with the same query string data that we sent to it. We can add this route to any Express.js server, such as the one we’ve
created with the CLI (i.e., ch7/request):

app.get('/search', function(req, res) {
 console.log(req.query)
 res.end(JSON.stringify(req.query)+'\r\n');
})

Tip ■ The \n and \r are line feed and carriage return symbols, respectively, in ASCII and Unicode. They allow the text

to start on a new line. For more information, please refer to http://en.wikipedia.org/wiki/Newline and

http://en.wikipedia.org/wiki/Carriage_return.

Keep the server running ($ node app to start it) and, in another terminal window, make the following GET
requests with CURL:

$ curl -i "http://localhost:3000/search?q=js"
$ curl -i "http://localhost:3000/search?q=nodejs"
$ curl -i "http://localhost:3000/search?q=nodejs&lang=fr"

The result of CURL GET requests is shown in Figure 7-1, and the result of the server output is shown in Figure 7-2.

Figure 7-1. Client-side results of running CURL commands with the query string parameters

http://en.wikipedia.org/wiki/Newline
http://en.wikipedia.org/wiki/Carriage_return

CHAPTER 7 ■ EXPRESS.JS REQUEST OBJECT

106

request.params
Chapter 6 covered how to set up middleware to process data taken from the URLs of the requests. However,
sometimes it’s more convenient just to get such values from within a specific request handler directly. For this, there’s
a request.params object, which is an array with key/value pairs.

To experiment with the request.params object, we can add a new route to our ch7/request application.
This route will define URL parameters and print them in the console. Add the following route to request/app.js:

app.get('/params/:role/:name/:status', function(req, res) {
 console.log(req.params);
 res.end();
});

Next, run the following CURL terminal commands, as shown in Figure 7-3:

$ curl http://localhost:3000/params/admin/azat/active
$ curl http://localhost:3000/params/user/bob/active

Figure 7-2. Server-side results of running CURL commands with the query string parameters

CHAPTER 7 ■ EXPRESS.JS REQUEST OBJECT

107

Figure 7-3. Sending GET requests with CURL (client window)

As shown in Figure 7-4, we see these server logs of the request.params object:

[role: 'admin', name: 'azat', status: 'active']
[role: 'user', name: 'bob', status: 'active']

CHAPTER 7 ■ EXPRESS.JS REQUEST OBJECT

108

request.body
The request.body object is another magicical object that’s provided to us by Express.js. It’s populated by applying
the body-parser (express.bodyParser() in Express.js 3.x) middleware functions. The body-parser module has two
functions/middleware:

• json(): For parsing HTTP(S) payload into JavaScript/Node.js objects

• urlencoded(): For parsing URL-encoded HTTP(S) requests’ data into JavaScript/Node.js
objects

In both cases the resulting objects and data are put into the request.body object—extremely convenient!
To use request.body, we need to install body-parser separately (if you’re using ch7, you can skip this step,

because the generator put it in package.json for us):

$ npm install body-parser@1.0.0

Then we need to import and apply it:

var bodyParser = require('body-parser');
// ...
app.use(bodyParser.json());
app.use(bodyParser.urlencoded());

You don’t have to use both the json() and urlencoded() methods. Use only the one that is needed, if that is
sufficient.

Figure 7-4. Server result of processing request.params

CHAPTER 7 ■ EXPRESS.JS REQUEST OBJECT

109

To illustrate request.body in action, let’s reuse our previous project and add the following route to see how the
request.body object works, remembering that both bodyParser() middleware functions have been applied to the
Express.js app already and are in the code:

app.post('/body', function(req, res){
 console.log(req.body);
 res.end(JSON.stringify(req.body)+'\r\n');
});

Again, submit a couple of HTTP POST requests with CURL or a similar tool:

$ curl http://localhost:3000/body -d 'name=azat'
$ curl -i http://localhost:3000/body -d 'name=azat&role=admin'
$ curl -i -H "Content-Type: application/json" -d '{"username":"azat","password":"p@ss1"}'
http://localhost:3000/body

Tip ■ A brief CURL tip: The -H option sets headers, -d passes data, and -i enables verbose logging.

The preceding commands yield request.body objects, as you can see in the client terminal in Figure 7-5 and in
the server terminal in Figure 7-6:

{ name: 'azat' }
{ name: 'azat', role: 'admin' }
{ username: 'azat', password: 'p@ss1' }

Figure 7-5. Sending POST requests with CURL (client logs)

CHAPTER 7 ■ EXPRESS.JS REQUEST OBJECT

110

request.route
The request.route object simply has the current route’s information, such as:

• path: Original URL pattern of the request

• method: HTTP method of the request

• keys: List of parameters in the URL pattern (i.e., values prefixed with :)

• regexp: Express.js-generated pattern for the path

• params: request.params object

We can add the console.log(request.route); statement to our request.params route from the example in the
previous section like this:

app.get('/params/:role/:name/:status', function(req, res) {
 console.log(req.params);
 console.log(req.route);
 res.end();
});

Figure 7-6. Result of processing request.body (server logs)

CHAPTER 7 ■ EXPRESS.JS REQUEST OBJECT

111

Then, if we send the HTTP GET request

$ curl http://localhost:3000/params/admin/azat/active

we should get the server logs of the request.route object, which has path, stack, and methods properties:

{ path: '/params/:role/:name/:status',
 stack: [{ method: 'get', handle: [Function] }],
 methods: { get: true } }

The request.route object might be useful when used from within middleware (i.e., that is used on
multiple routes) to find out which route is currently used.

request.cookies
The cookie-parser (formerly express.cookieParser() in Express.js 3.x and earlier) middleware
(https://www.npmjs.org/package/cookie-parser, https://github.com/expressjs/cookie-parser) allows
us to access requests’ cookies in a JavaScript/Node.js format. The cookie-parser is required for express-session
middleware, because web sessions work by storing their session ID in the browser cookies.

With cookie-parser installed (with NPM), imported (with require()), and applied (with app.use()), we
get access to the HTTP(S) request cookies (user-agent cookies) via the request.cookies object. Cookies are
automatically presented as a JavaScript object; for example, you can extract the session ID with:

request.cookies['connect.sid']

Caution ■ Storing sensitive information in browser cookies is discouraged because of security concerns. Also, some

browsers impose a limitation on the size of a cookie, which might lead to bugs (Internet Explorer!). I usually use

request.cookie only for the request.session support.

Note ■ Refer to Chapter 4 for more information on how to install and apply middleware.

The cookie info can be stored using response.cookie() or res.cookie(). The Express.js response object is
covered in Chapter 8. To illustrate request.cookies, we can implement a /cookies route that will increment a
counter, change the value of a cookie, and display the result on a page. This is the code that you can add to
ch7/request:

app.get('/cookies', function(req, res){
 if (!req.cookies.counter)
 res.cookie('counter', 0);
 else
 res.cookie('counter', parseInt(req.cookies.counter,10) + 1);
 res.status(200).send('cookies are: ', req.cookies);
})

https://www.npmjs.org/package/cookie-parser
https://github.com/expressjs/cookie-parser

CHAPTER 7 ■ EXPRESS.JS REQUEST OBJECT

112

Tip ■ The parseInt() method is needed to prevent JavaScript/Node.js from treating the number value as a string,

which would result in 0, 01, 011, 0111, etc. instead of 0, 1, 2, 3, etc. Using parseInt() with the radix/base

(second argument) is recommended to prevent numbers from being converted incorrectly.

As a result of going to http://localhost:3000/cookies and refreshing it a few times, you should see the counter
increment from 0 up, as shown in Figure 7-7.

Figure 7-7. Cookie value is saved in the browser and incremented by the server on each request

Inspection of the Network or Resource tab in Chrome Developer Tools will reveal the presence of a cookie with
the name connect.sid (see Figure 7-7). The cookies are shared between browser windows, so even if we open a new
window, the counter will increment by 1 from the value in the original window.

CHAPTER 7 ■ EXPRESS.JS REQUEST OBJECT

113

request.signedCookies
request.signedCookies is akin to request.cookies, but it’s used when the secret string is passed to the
express.cookieParser('some secret string'); method. To populate request.signedCookies, you can use
response.cookie with the flag signed: true. Here’s how we can modify our previous route to switch to signed cookies:

app.use(cookieParser('abc'));
// ... Other middleware
app.get('/signed-cookies', function(req, res){
 if (!req.signedCookies.counter)
 res.cookie('counter', 0, {signed: true});
 else
 res.cookie('counter', parseInt(req.signedCookies.counter,10) + 1, {signed: true});
 res.status(200).send('cookies are: ', req.signedCookies);
});
// ... Server boot-up

So, all we did was change request.cookies to request.signedCookies and add signed: true when assigning
cookie values on response. The parsing of the signed cookies is done automatically, and they are placed in plain
JavaScript/Node.js objects. Note that 'abc' is an arbitrary string. You can use $ uuidgen on Mac OS X to generate a
random key to sign your cookies or web-based services like Random.org (http://bit.ly/1F1fbL8).

Caution ■ Signing a cookie does not hide or encrypt the cookie. It’s a simple way to prevent tampering by applying a

private value. Signing (or hashing) is not the same as encryption. The former is for identification and tampering

prevention. The latter is for hiding the content from unauthorized recipients (see, e.g., http://danielmiessler.com/

study/encoding_encryption_hashing). You can encrypt your cookie data on the server (and decrypt it when reading),

but, hypothetically, this is still vulnerable to brute-force attacks. The level of vulnerability depends on the encryption

algorithm that you use.

request.header() and request.get()
The request.header() and request.get() methods are identical and allow for retrieval of the HTTP(S) requests’
headers by their names. Fortunately, the header naming is case insensitive:

request.get('Content-Type');
request.get('content-type');
request.header('content-type');

Other Attributes and Methods
We’ve covered the most commonly used and most important methods and objects of the Express.js request object.
They should suffice in the majority of cases. But the list doesn’t stop there. For convenience, there are plenty of sugar-
coating objects in the Express.js request (see Table 7-1). Sugar-coating means that most of the functions of these objects
can be implemented with the foundational methods, but they are more eloquent than the foundational methods. For
example, the request.accepts can be replaced with if/else and request.get(), which gives us request headers.
Of course, if you understand these methods, you can use them to make your code more elegant and easier to read.

http://bit.ly/1F1fbL8
http://danielmiessler.com/study/encoding_encryption_hashing
http://danielmiessler.com/study/encoding_encryption_hashing

CHAPTER 7 ■ EXPRESS.JS REQUEST OBJECT

114

Table 7-1. Other Attributes and Methods in the Express.js Request

Attribute/Method Conditions/Definition API

request.accepts() true if a passed string (single or comma-
separated values) or an array of MIME types
(or extensions) matches the request Accept
header; false if there’s no match

http://expressjs.com/api.html
#req.accepts

request.accepted An array of accepted MIME types http://expressjs.com/api.html
#req.accepted

request.is() true if a passed MIME type string matches
the Content-Type header types; false if
there’s no match

http://expressjs.com/api.html#req.is

request.ip The IP address of the request; see trust
proxy configuration in Chapter 3

http://expressjs.com/api.html#req.ip

request.ips An array of IPs when trust proxy
configuration is enabled

http://expressjs.com/api.html#req.ips

request.path String with a URL path of the request http://expressjs.com/api.html#req.path

request.host Value from the Host header of the request http://expressjs.com/api.html#req.host

request.fresh true if request is fresh based on
Last-Modified and ETag headers; false
otherwise

http://expressjs.com/api.html
#req.fresh

request.stale Opposite of req.fresh http://expressjs.com/api.html#req.stale

request.xhr true if the request is an AJAX call via
X-Requested-With header and its
XMLHttpRequest value

http://expressjs.com/api.html#req.xhr

request.protocol Request protocol value (e.g., http or https) http://expressjs.com/api.html
#req.protocol

request.secure true if the request protocol is https http://expressjs.com/api.html
#req.secure

request.subdomains Array of subdomains from the Host header http://expressjs.com/api.html
#req.subdomains

request.originalUrl Unchangeable value of the request URL http://expressjs.com/api.html
#req.originalUrl

request.
acceptedLanguages

Array of language code (e.g., en-us, en)
from the request’s Accept-Language header

http://expressjs.com/api.html
#req.acceptedLanguages

request.
acceptsLanguage()

true if a passed language code is in the
request header

http://expressjs.com/api.html
#req.acceptsLanguage

request.
acceptedCharsets

Array of charsets (e.g., iso-8859-5) from the
request’s Accept-Charset header

http://expressjs.com/api.html
#req.acceptedCharsets

request.
acceptsCharset()

true if a passed charset is in the request
header

http://expressjs.com/api.html
#req.acceptsCharset

http://expressjs.com/api.html%23req.accepts
http://expressjs.com/api.html%23req.accepts
http://expressjs.com/api.html%0a%23req.accepted
http://expressjs.com/api.html%0a%23req.accepted
http://expressjs.com/api.html#req.is
http://expressjs.com/api.html#req.ip
http://expressjs.com/api.html#req.ips
http://expressjs.com/api.html#req.path
http://expressjs.com/api.html#req.host
http://expressjs.com/api.html#req.fresh
http://expressjs.com/api.html#req.fresh
http://expressjs.com/api.html#req.stale
http://expressjs.com/api.html#req.xhr
http://expressjs.com/api.html#req.protocol
http://expressjs.com/api.html#req.protocol
http://expressjs.com/api.html#req.secure
http://expressjs.com/api.html#req.secure
http://expressjs.com/api.html#req.subdomains
http://expressjs.com/api.html#req.subdomains
http://expressjs.com/api.html#req.originalUrl
http://expressjs.com/api.html#req.originalUrl
http://expressjs.com/api.html#req.acceptedLanguages
http://expressjs.com/api.html#req.acceptedLanguages
http://expressjs.com/api.html#req.acceptsLanguage
http://expressjs.com/api.html#req.acceptsLanguage
http://expressjs.com/api.html#req.acceptedCharsets
http://expressjs.com/api.html#req.acceptedCharsets
http://expressjs.com/api.html#req.acceptsCharset
http://expressjs.com/api.html#req.acceptsCharset

CHAPTER 7 ■ EXPRESS.JS REQUEST OBJECT

115

We’ve been making small adjustments to the ch7 project throughout this chapter, so now it’s time to see the
whole picture. Therefore, here’s the full source code of the final request server from the ch7/app.js file (available at
https://github.com/azat-co/proexpressjs):

var express = require('express');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');

var routes = require('./routes/index');

var app = express();

// View engine setup
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');
app.use(logger('combined'));
app.use(favicon(path.join(__dirname, 'public', 'favicon.ico')));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({extended: true}));
app.use(cookieParser('abc'));
app.use(express.static(path.join(__dirname, 'public')));

app.use('/', routes);

app.get('/search', function(req, res) {
 console.log(req.query);
 res.end(JSON.stringify(req.query)+'\r\n');
});

app.get('/params/:role/:name/:status', function(req, res) {
 console.log(req.params);
 console.log(req.route);
 res.end();
});

app.post('/body', function(req, res){
 console.log(req.body);
 res.end(JSON.stringify(req.body)+'\r\n');
});

app.get('/cookies', function(req, res){
 if (!req.cookies.counter)
 res.cookie('counter', 0);
 else
 res.cookie('counter', parseInt(req.cookies.counter,10) + 1);
 res.status(200).send('cookies are: ', req.cookies);
});

https://github.com/azat-co/proexpressjs

CHAPTER 7 ■ EXPRESS.JS REQUEST OBJECT

116

app.get('/signed-cookies', function(req, res){
 if (!req.signedCookies.counter)
 res.cookie('counter', 0, {signed: true});
 else
 res.cookie('counter', parseInt(req.signedCookies.counter,10) + 1, {signed: true});
 res.status(200).send('cookies are: ', req.signedCookies);
});

/// Catch 404 and forward to error handler
app.use(function(req, res, next) {
 var err = new Error('Not Found');
 err.status = 404;
 next(err);
});

/// Error handlers

// Development error handler
// Will print stacktrace
if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

// Production error handler
// No stacktraces leaked to user
app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

module.exports = app;

var debug = require('debug')('request');

app.set('port', process.env.PORT || 3000);

var server = app.listen(app.get('port'), function() {
 debug('Express server listening on port ' + server.address().port);
});

CHAPTER 7 ■ EXPRESS.JS REQUEST OBJECT

117

Summary
Understanding and working with HTTP requests is at the foundation of web development. The way in which Express.
js approaches requests is by adding objects and properties. Developers use them inside of the request handlers.
Express.js provides many objects and methods in the request and, in areas where it does not, there are plenty of third-
party options.

In the next chapter we’ll cover the Express.js response. The response object is the counterpart of the request
object. Response is the stuff that we actually send back to the client. Similar to request, the Express.js response object
has special methods and objects as its properties. We’ll cover the most important and then list the rest of the built-in
properties.

119

CHAPTER 8

Express.js Response Object

The Express.js response object (res for short)—which is an argument in the request handler callbacks—is the same
good old Node.js http.response object1 on steroids. This is because the Express.js response object has new methods.
In other words, the Express.js response object is the extension of the http.response class.

Why would some use these additional methods? Indeed, you can use the response.end() method2 and other
core methods, but then you’ll have to write more code. For example, you would have to add Content-Type header
manually. But with the Express.js response object, which contains convenient wrappers, such as response.json()
and response.send(), appropriate Content-Type is added automatically.

In this chapter, we’ll cover the following methods and attributes of the Express.js response object in great detail:

• response.render()

• response.locals

• response.set()

• response.status()

• response.send()

• response.json()

• response.jsonp()

• response.redirect()

To demonstrate these methods in action, they are used in the kitchen-sink app ch8/app.js. Other methods and
properties, along with their meanings, will be listed in the Table 8-1. At the end of the chapter, we’ll cover how to work
with streams and Express.js response.

To start with the example app, create a brand new Express.js app with express-generator and the $ express
response terminal command. Obviously, now you need to run $ cd response && npm install to download the
dependencies. The initial ch8/app.js app will be identical to the initial app from Chapter 7.

response.render()
The response.render() method is the staple of Express.js. From our previous examples and from the function’s
name, you could guess that it has something to do with generating HTML out of templates (such as Jade, Handlebars,
or EJS) and data.

1http://nodejs.org/api/http.html#http_class_http_serverresponse
2http://nodejs.org/api/http.html#http_response_end_data_encoding

http://nodejs.org/api/http.html#http_class_http_serverresponse
http://nodejs.org/api/http.html#http_response_end_data_encoding

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

120

The response.render(name, [data,] [callback]) method takes three parameters, but only one is mandatory,
and it’s the first parameter: name, which is the template name in a string format. The other parameters are data and
callback. If you omit data, but have callback, then callback becomes the number two argument.

The template name can be identified with or without an extension. For more information on template engine
extensions, please refer to Chapter 5.

To illustrate the most straightforward use case for response.render(), we’ll create a page that shows a heading
and a paragraph from a Jade template.

First, add a route. Here is an example of a simple setup for the home page route in the response/app.js file:

app.get('/render', function(req, res) {
 res.render('render');
});

Then, add a new views/render.jade file that looks static for now (i.e., it has no variables or logic):

extends layout

block content
 h1= 'Pro Express.js'
 p Welcome to the Pro Express.js Response example!

Finally, start the response application with $ node app and go to http://localhost:3000 in a browser.
You should see the welcome message shown in Figure 8-1.

Figure 8-1. The result of plain response.render() call without parameters

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

121

Note ■ Jade uses Python/Haml-like syntax, which takes into account whitespace and tabs. Be careful with the

markup. We can use = as a print command (h1 tag) or nothing (p tag). For more information, please visit the official

documentation (http://jade-lang.com/) or check out Practical Node.js (Apress, 2014).3

In addition to the mandatory name parameter, response.render(), has two optional parameters: data and
callback. The data parameter makes templates more dynamic than static HTML files and allows us to update the
output. For example, we can pass “title” to overwrite the value in the default value:

app.get('/render-title', function(req, res) {
 res.render('index', {title: 'Pro Express.js'});
});

The index.jade file remains the same. It prints the title value, and looks like this:

extends layout

block content
 h1= title
 p Welcome to #{title}

The result of the /render-title route is shown in Figure 8-2. The h1 title text has changed to Pro Express.js.

Figure 8-2. The response.render() example with the data parameter that has a title property

3http://practicalnodebook.com

http://jade-lang.com/
http://practicalnodebook.com/

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

122

The response.render() callback parameter accepts two parameters itself: error and html (an HTML string that
is the output). This example is not in the res/app.js project, but shows how to pass callbacks to response.render():

app.get('/render-title', function(req, res) {
 res.render('index', {title: 'Pro Express.js'}, function (error, html) {
 // Do something
 });
});

Caution ■ The properties of the data parameter are your locals in the template. In other words, if you want to access

a value of a title inside of your template, the data object must contain a key/value pair. Nested objects are supported by

most of the template engines.

The callback can take the place of the data because Express.js is able to determine the type of the parameter.
This example is not within response/app.js, but shows how to pass callbacks with our data:

app.get('/render-title', function(req, res) {
 res.render('index', function (error, html) {
 // Do something
 });
});

Behind the scenes, response.render() calls response.send() (which is covered later in this chapter) for
successful compilation of HTML strings or calls req.next(error) for failure, if the callback is not provided. In other
words, the default callback to response.render() is code from the version 3.3.5 location on GitHub at
https://github.com/visionmedia/express/blob/3.3.5/lib/response.js#L753:

// Default callback to respond
fn = fn || function(err, str){
 if (err) return req.next(err);
 self.send(str);
};

Looking at this code, you can see that it’s easy to write your own callback to do just about anything, as long as
there’s an ending to the response (response.json, response.send, or response.end).

response.locals
The response.locals object is another way to pass data to the templates so that both the data and the
template can be compiled into HTML. You already know that the first way is to pass data as a parameter to the
response.render() method, as previously outlined:

app.get('/render-title', function(req, res) {
 res.render('index', {title: Pro Express.js'});
});

https://github.com/visionmedia/express/blob/3.3.5/lib/response.js#L753

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

123

However, with response.locals, we can achieve the same thing. Our object will be available inside of the
template:

app.get('/locals', function(req, res){
 res.locals = { title: 'Pro Express.js' };
 res.render('index');
});

Again, the index.jade Jade template remains the same:

extends layout

block content
 h1= title
 p Welcome to #{title}

You can see the web page that has the Pro Express.js title in Figure 8-3. But, if nothing has changed, then what is
the benefit of response.locals? The advantage is that we can expose (i.e., pass to templates) info in one middleware,
but render the actual template later in another request handler. For example, you can perform authentication without
rendering (this code is not in the ch8/app.js):

app.get('/locals',
 function(req, res){
 res.locals = { user: {admin: true}};
 next();
 }, function(req, res){
 res.render('index');
});

Figure 8-3. The response.locals example renders the same page as the response.render() example

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

124

Tip ■ Sometimes, for debugging, it’s useful to see a list of all the variables available in a particular Jade template. To

do so, simply insert this log statement: - console.log(locals);. For more information on Jade, please refer to Practical

Node.js (Apress, 2014).4

response.set()
The response.set(field, [value]) method is an alias of response.header() (or the other way around) and serves
as a wrapper for the Node.js http core module’s response.setHeader() function.5 The main difference is that Express.
js’ response.set() is smart enough to call itself recursively when we pass multiple header-value pairs to it in the form
of an object. See the CSV example later in this section if the previous sentence didn’t make much sense to you.

Here is an example from ch8/app.js of setting a single Content-Type response header to text/html and then
sending some simple HTML to the client:

app.get('/set-html', function(req, res) {
 // Some code
 res.set('Content-Type', 'text/html');
 res.end('<html><body>' +
 '<h1>Express.js Guide</h1>' +
 '</body></html>');
});

You can see the results in the Network tab of Chrome Developer Tools, under the Headers subtab, which says
Content-Type: text/html (see Figure 8-4). If we didn’t have response.set() with text/html, then the response
would still have the HTML, but without the header. Feel free to comment the response.set() and see it for yourself.

4http://practicalnodebook.com
5http://nodejs.org/api/http.html#http_response_setheader_name_value

http://practicalnodebook.com/
http://nodejs.org/api/http.html#http_response_setheader_name_value

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

125

The Content-Type disappears when we don’t set it explicitly with response.set(), because Express.js’
response.send() automatically adds Content-Type and other headers, but core response.end() does not. More on
response.send() later in this chapter.

Often though, our servers need to provide more than one header so that all the different browsers and other
HTTP clients process it properly. Let’s explore an example of passing multiple values to the response.set() method.

Imagine that the service we are building sends out comma-separated value (CVS) files with books’ titles and their
tags. This is how we can implement this route in the ch8/app.js file:

app.get('/set-csv', function(req, res) {
 var body = 'title, tags\n' +
 'Practical Node.js, node.js express.js\n' +
 'Rapid Prototyping with JS, backbone.js node.js mongodb\n' +
 'JavaScript: The Good Parts, javascript\n';
 res.set({'Content-Type': 'text/csv',
 'Content-Length': body.length,
 'Set-Cookie': ['type=reader', 'language=javascript']});
 res.end(body);
});

Figure 8-4. The response.set() example rendering HTML with the Content-Type: text/html header

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

126

Now, if you steer Chrome to http://localhost:3000/set-csv, the browser will recognize the CSV MIME type
and download the file instead of opening it (at least with the default Chrome settings and without extra extensions).
You can see the headers in Figure 8-5.

Figure 8-5. The response.set() example rendering Content-Length, Content-Type, and Set-Cookie headers with
CSV data

response.status()
The response.status() method accepts an HTTP status code6 number and sends it in response. The most common
HTTP status codes are:

200: OK

201: Created

301: Moved Permanently

401: Unauthorized

404: Not Found

500: Internal Server Error

6http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

127

You can find a lengthier list of HTTP statuses in Chapter 9. The only difference between its core counterpart7 is
that response.status() is chainable. Status codes are important for building REST APIs because they enable you to
standardize the outcome of the request.

Let’s demo how response.status() works on the pulse route, which returns 200 (OK) if the server is still up and
running. This route won’t send back any text or HTML on purpose. We use response.end() because
response.send() will automatically add the proper status code 200:

app.get('/status', function(req, res) {
 res.status(200).end();
});

If you go to http://localhost:3000/status, you’ll see a green circle and the number 200, as shown in Figure 8-6.

Figure 8-6. The response.status() example response

response.send()
The response.send() method lies somewhere between high-level response.render() and low-level response.
end(). The response.send() method conveniently outputs any data application thrown at it (such as strings,
JavaScript objects, and even Buffers) with automatically generated proper HTTP headers (e.g., Content-Length, ETag,
or Cache-Control).

7http://nodejs.org/api/http.html#http_response_statuscode

http://nodejs.org/api/http.html#http_response_statuscode

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

128

Due to its omnivorous (consumes any input) behavior (caused by arguments.length), response.send() can be
used in countless ways with these input parameters:

• String: response.send('success'); with text/html

• Object: response.send({message: 'success'}); or response.send({message: 'error'});
with JSON representation

• Array: response.send([{title: 'Practical Node.js'}, {title: 'Rapid Prototyping
with JS'}]); with JSON representation

• Buffer: response.send(new Buffer('Express.js Guide')); with application/octet-
stream

Tip ■ Sending numbers with response.send(number) as a status code is deprecated in Express.js 4.x.

Use response.status(number).send() instead.

The status code and data parameters can be combined in a chained statement. For example:

app.get('/send-ok', function(req, res) {
 res.status(200).send({message: 'Data was submitted successfully.'});
});

After adding the new send-ok route and restarting the server, you should be able to see the JSON message when
you go to /send-ok. Notice the Status Code and the Content-Type header. Although 200 will be added automatically,
it’s recommended to set statuses for all other cases, such as 201 for Created or 404 for Not Found.

Figure 8-7. The response.send() 200 status code example response

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

129

Figure 8-8. The response.status(500).send() 500 status code example response

The following is an example of sending the 500 Internal Server Error status code along with the error message
(used for server errors):

app.get('/send-err', function(req, res) {
 res.status(500).send({message: 'Oops, the server is down.'});
});

Again, when you check this route in the browser, there’s a JSON content type, but now you see a red circle and the
number 500.

The headers generated by response.send() might be overwritten if specified explicitly before. For example, the
Buffer type will have Content-Type as application/octet-stream, but we can change it to text/plain with

app.get('/send-buf', function(req, res) {
 res.set('Content-Type', 'text/plain');
 res.send(new Buffer('text data that will be converted into Buffer'));
});

The resulting content type and text are shown in Figure 8-9.

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

130

Figure 8-9. The response.send() Buffer example response

Note ■ Virtually all core Node.js methods (and Connect.js methods as well) are available in Express.js objects.

Therefore, we have access to response.end() and other methods in the Express.js response API.

response.json()
The response.json() method is a convenient way of sending JSON data. It’s equivalent to response.send() when
data passed is Array or Object type. In other cases, response.json() forces data conversion with JSON.stringify().
By default, the header Content-Type is set to application/json, but can be overwritten prior to response.json()
with response.set().

If you remember our old friends from Chapter 3, json replacer and json spaces, that’s where these settings are
taken into account.

The most common use of response.json() is with appropriate status codes:

app.get('/json', function(req, res) {
 res.status(200).json([{title: 'Practical Node.js', tags: 'node.js express.js'},
 {title: 'Rapid Prototyping with JS', tags: 'backbone.js node.js mongodb'},
 {title: 'JavaScript: The Good Parts', tags: 'javascript'}
]);
});

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

131

Please note the JSON Content-Type and Content-Length headers produced by response.json() in Figure 8-10.

Figure 8-10. The result of using response.json(): automatically generated headers

Note ■ The screenshot of the response.json() example in Figure 8-10 was taken after adding the route to the

ch8/app.js file of the ch8/app.js project. You are encouraged to try doing this on your own.

Other uses of response.json() are possible as well— for example, with no status code:

app.get('/api/v1/stories/:id', function(req,res){
 res.json(req.story);
});

Assuming req.story is an array or an object, the following code would produce similar results as the preceding
snippet (no need to set the header to application/json in either case):

app.get('/api/v1/stories/:id', function(req,res){
 res.send(req.story);
});

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

132

response.jsonp()
The response.jsonp() method is similar to response.json() but provides a JSONP response. That is, the JSON data
is wrapped in a JavaScript function call. For example, processResponse({...}); is usually used for cross-domain
calls support. By default, Express.js uses a callback name to extract the name of the callback function. It’s possible
to override this value with jsonp callback name settings (more about it in Chapter 3). If there is no proper callback
specified in the query string of the request (e.g., ?callback=cb), then the response is simply JSON.

Assume that serving CSV data to a front-end request via JSONP (status(200) is optional, because Express will
automatically add the proper status of 200 by default):

app.get('/', function (req, res) {
 res.status(200).jsonp([{title: 'Express.js Guide', tags: 'node.js express.js'},
 {title: 'Rapid Prototyping with JS', tags: 'backbone.js, node.js, mongodb'},
 {title: 'JavaScript: The Good Parts', tags: 'javascript'}
]);
});

Figure 8-11. The result of response.jsonp() and ?callback=cb is a text/javascript header and JavaScript function prefix

Note ■ The screenshot of the response.json() example in Figure 8-11 was taken after adding the route to the

index.js file of the ch2/cli-app/app.js project. You are encouraged to try doing this on your own.

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

133

response.redirect()
Sometimes we simply need to redirect users/requests to another route. We can use absolute, relative, or full paths:

res.redirect('/admin');
res.redirect('../users');
res.redirect('http://rapidprototypingwithjs.com');

By default, response.redirect() sends the 302 (Found/Temporarily Moved) status code.8 Of course, we can
configure it to our liking in the same manner as response.send(); that is, pass the first status code number as the first
parameter (301 is Moved Permanently):

res.redirect(301, 'http://rpjs.co');

Other Response Methods and Properties
Most of the methods and properties outlined in Table 8-1 are convenient alternatives to the methods covered already
in the book. In other words, we can accomplish most of the logic with the main methods, but knowing the following
shortcuts can save developers a few keystrokes and improve readability. For example, response.type() is a niche
case of response.header() for a Content-Type only header.

Table 8-1. Method and property alternatives

Method/Property Description/Conditions API

response.get() String value of response header for a
passed header type

http://expressjs.com/api.html
#res.get

response.cookie() Takes cookie key/value pair and sets it on
response

http://expressjs.com/api.html
#res.cookie

response.clearCookie() Takes cookie key/name and optional
path parameter to clear the cookies

http://expressjs.com/api.html
#res.clearCookie

response.location() Takes a relative, absolute, or full path as
a string and sets that value to Location
response header

http://expressjs.com/api.html
#res.location

response.charset The charset value of the response http://expressjs.com/api.html
#res.charset

response.type() Takes a string and sets it as a value of
Content-Type header

http://expressjs.com/api.html
#res.type

response.format() Takes an object as a mapping of types
and responses and executes them
according to Accepted request header

http://expressjs.com/api.html
#res.format

(continued)

8http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

http://rapidprototypingwithjs.com/
http://rpjs.co/
http://expressjs.com/api.html#res.get
http://expressjs.com/api.html#res.get
http://expressjs.com/api.html#res.cookie
http://expressjs.com/api.html#res.cookie
http://expressjs.com/api.html#res.clearCookie
http://expressjs.com/api.html#res.clearCookie
http://expressjs.com/api.html#res.location
http://expressjs.com/api.html#res.location
http://expressjs.com/api.html#res.charset
http://expressjs.com/api.html#res.charset
http://expressjs.com/api.html#res.type
http://expressjs.com/api.html#res.type
http://expressjs.com/api.html#res.format
http://expressjs.com/api.html#res.format
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

134

You can find the full source code for this chapter’s example in the ch8 folder and on GitHub
(https://github.com/azat-co/proexpressjs). Listing 8-1 shows what the ch8/app.js file looks like
(including other examples).

Listing 8-1. ch8/app.js File

var express = require('express');
var fs = require('fs');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');

var routes = require('./routes/index');

var largeImagePath = path.join(__dirname, 'files', 'large-image.jpg');

var app = express();

// View engine setup
app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');
app.use(logger('combined'));
app.use(favicon(path.join(__dirname, 'public', 'favicon.ico')));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({extended: true}));
app.use(cookieParser('abc'));
app.use(express.static(path.join(__dirname, 'public')));

app.use('/', routes);

Method/Property Description/Conditions API

response.attachment() Takes optional file name as a string and
sets Content-Disposition (and if file
name provided, Content-Type) header(s)
to attachment and file type accordingly

http://expressjs.com/api.html
#res.attachment

response.sendfile() Takes path to a file on the server and
various options and callback parameters,
and sends the file to the requester

http://expressjs.com/api.html
#res.sendfile

response.download() Takes same parameters as response.
sendfile(), and sets Content-
Disposition and calls response.
sendfile()

http://expressjs.com/api.html
#res.download

response.links() Takes an object of URLs to populate
Links response header

http://expressjs.com/api.html
#res.links

Table 8-1. (continued)

https://github.com/azat-co/proexpressjs
http://expressjs.com/api.html#res.attachment
http://expressjs.com/api.html#res.attachment
http://expressjs.com/api.html#res.sendfile
http://expressjs.com/api.html#res.sendfile
http://expressjs.com/api.html#res.download
http://expressjs.com/api.html#res.download
http://expressjs.com/api.html#res.links
http://expressjs.com/api.html#res.links

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

135

app.get('/render', function(req, res) {
 res.render('render');
});

app.get('/render-title', function(req, res) {
 res.render('index', {title: 'Pro Express.js'});
});

app.get('/locals', function(req, res){
 res.locals = { title: 'Pro Express.js' };
 res.render('index');
});

app.get('/set-html', function(req, res) {
 // Some code
 res.set('Content-Type', 'text/html');
 res.end('<html><body>' +
 '<h1>Express.js Guide</h1>' +
 '</body></html>');
});

app.get('/set-csv', function(req, res) {
 var body = 'title, tags\n' +
 'Practical Node.js, node.js express.js\n' +
 'Rapid Prototyping with JS, backbone.js node.js mongodb\n' +
 'JavaScript: The Good Parts, javascript\n';
 res.set({'Content-Type': 'text/csv',
 'Content-Length': body.length,
 'Set-Cookie': ['type=reader', 'language=javascript']});
 res.end(body);
});

app.get('/status', function(req, res) {
 res.status(200).end();
});

app.get('/send-ok', function(req, res) {
 res.status(200).send({message: 'Data was submitted successfully.'});
});

app.get('/send-err', function(req, res) {
 res.status(500).send({message: 'Oops, the server is down.'});
});

app.get('/send-buf', function(req, res) {
 res.set('Content-Type', 'text/plain');
 res.status(200).send(new Buffer('text data that will be converted into Buffer'));
});

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

136

app.get('/json', function(req, res) {
 res.status(200).json([{title: 'Practical Node.js', tags: 'node.js express.js'},
 {title: 'Rapid Prototyping with JS', tags: 'backbone.js node.js mongodb'},
 {title: 'JavaScript: The Good Parts', tags: 'javascript'}
]);
});

app.get('/non-stream', function(req, res) {
 var file = fs.readFileSync(largeImagePath);
 res.end(file);
});

app.get('/non-stream2', function(req, res) {
 var file = fs.readFile(largeImagePath, function(error, data){
 res.end(data);
 });
});

app.get('/stream1', function(req, res) {
 var stream = fs.createReadStream(largeImagePath);
 stream.pipe(res);
});

app.get('/stream2', function(req, res) {
 var stream = fs.createReadStream(largeImagePath);
 stream.on('data', function(data) {
 res.write(data);
 });
 stream.on('end', function() {
 res.end();
 });
});

/// Catch 404 and forward to error handler
app.use(function(req, res, next) {
 var err = new Error('Not Found');
 err.status = 404;
 next(err);
});

/// Error handlers

// Development error handler
// Will print stacktrace
if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

137

 message: err.message,
 error: err
 });
 });
}

// Production error handler
// No stacktraces leaked to user
app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

module.exports = app;

var debug = require('debug')('request');

app.set('port', process.env.PORT || 3000);

var server = app.listen(app.get('port'), function() {
 debug('Express server listening on port ' + server.address().port);
});

Streams
As far as sending nonstreaming responses between response.send() and response.end(), you should be well
covered from the previous discussion. However, for streaming data back, response.send() is not going to work;
instead, you should use the response object (which is a writable stream and inherited from http.ServerResponse):

app.get('/stream1', function(req, res) {
 var stream = fs.createReadStream(largeImagePath);
 stream.pipe(res);
});

Alternatively, use event handlers with data and end events:

app.get('/stream2', function(req, res) {
 var stream = fs.createReadStream(largeImagePath);
 stream.on('data', function(data) {
 res.write(data);
 });
 stream.on('end', function() {
 res.end();
 });
});

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

138

The nonstreaming equivalent might look like this:

app.get('/non-stream', function(req, res) {
 var file = fs.readFileSync(largeImagePath);
 res.end(file);
});

For this demo we’re using a relatively large image of 5.1MB, which is located at ch8/files/large-image.jpg.
Notice the drastic difference in waiting time between streaming, shown in Figure 8-12, and nonstreaming, shown in
Figure 8-13. The nonstreaming route waited for the whole file to load and then sent the whole file back (~49ms), while
the streaming route waited much less (only ~7ms). The fact that we use a synchronous function in the nonstreaming
example shouldn’t matter because we load pages serially (one by one).

Figure 8-12. Streaming an image shows a faster waiting time than nonstreaming

CHAPTER 8 ■ EXPRESS.JS RESPONSE OBJECT

139

Tip ■ In addition to using streams for response, they can be used for requests as well. Streaming is useful when

dealing with large amounts of data (video, binary data, audio, etc.) because the streams allow processing to start without

finishing transfers. For more information about streams, check out https://github.com/substack/stream-handbook

and https://github.com/substack/stream-adventure.

Summary
If you’ve made it thus far through each of the properties of the response, you probably know more than the average
Express.js developer. Congratulations! Understanding request and response is the bread and butter (or meat and
veggies for paleo lifestyle people) of the Express.js development.

We’re almost done with the Express.js interface (a.k.a. API). The remaining pieces are error handling and actually
starting the app.

Figure 8-13. Nonstreaming an image shows a slower waiting time than streaming

https://github.com/substack/stream-handbook
https://github.com/substack/stream-adventure

141

CHAPTER 9

Error Handling and Running an App

Good web applications must have informative error messages to notify clients exactly why their request has failed.
Errors might be caused either by the client (e.g., wrong input data) or by the server (e.g., a bug in the code).

The client might be a browser, in which case the application should display an HTML page. For example, a 404
page should display when the requested resource is not found. Or the client might be another application consuming
our resources via the REST API. In this case, the application should send the appropriate HTTP status code and the
message in the JSON format (or XML or another format that is supported). For these reasons, it’s always the best
practice to customize error-handling code when developing a serious application.

In a typical Express.js application, error handlers follow the routes. Error handling deserves its own section of
the book because it’s different from other middleware. After the error handlers, we’ll cover the Express.js application
methods and ways to start the Express.js app. Therefore, the major topics of this chapter are as follows:

Error handling•

Running an app•

Error Handling
Because of the asynchronous nature of Node.js and callback patterns, it’s not a trivial task to catch and log for future
analysis the state in which errors happen. In the Chapter 17, we cover the use of domains with Express.js apps.
The use of domains for error handling in Express.js is a more advanced technique and, for most implementations
right out of the box, framework’s built-in error handling might prove sufficient (along with custom error handling
middleware).

We can start with the basic development error handler from our ch2/cli-app example. The error handler spits
out the error status (500, Internal Server Error), stack trace, and error message. It is enabled by this code only when the
app is in development mode:

if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

CHAPTER 9 ■ ERROR HANDLING AND RUNNING AN APP

142

Tip ■ app.get('env') is a convenient method for process.env.NODE_ENV; in other words, the preceding line can be

rewritten with process.env.NODE_ENV === 'development'.

This makes sense because error handling is typically used across the whole application. Therefore, it’s best to
implement it as middleware.

For custom error-handler implementations, the middleware is the same as any other except that it has one more
parameter, error (or err for short):

// Main middleware
app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 console.error(err);
 res.status(500).send();
});
// Routes

We can use res.status(500).end() to achieve a similar result, because we’re not sending any data (e.g., an error
message). It’s recommended to send at least a brief error message, because it will help the debugging process when
problems occur. In fact, the response can be anything: JSON, text, a redirect to a static page, or something else.

For most front-end and other JSON clients, the preferred format is, of course, JSON:

app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 console.error(err);
 res.status(500).send({status:500, message: 'internal error', type:'internal'});
})

Note ■ Developers can use the req.xhr property or check if the Accept request header has the application/json value.

The most straightforward way is to just send a text:

app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 console.error(err);
 res.status(500).send('internal server error');
})

Or, if we know that it’s secure to output the error message, we could use the following:

app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 console.error(err);
 res.status(500).send('internal server error: ' + err);
})

CHAPTER 9 ■ ERROR HANDLING AND RUNNING AN APP

143

To simply render a static error page with the name 500 (template is the file 500.jade, the engine is Jade) and the
default extension, we could use

app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 console.error(err);
 // Assuming that template engine is plugged in
 res.render('500');
})

Or we could use the following, if we want to overwrite the file extension, for a full filename of 500.html:

app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 console.error(err);
 // Assuming that template engine is plugged in
 res.render('500.html');
})

We can also use res.redirect():

app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 res.redirect('/public/500.html');
})

Always using proper HTTP response statuses such as 401, 400, 500, and so on, is recommended. Refer to Table 9-1
for a quick reference.

Table 9-1. Main HTTP Status Codes

Code Name Meaning

200 OK Standard response for successful HTTP requests

201 Created Request has been fulfilled. New resource created

204 No Content Request processed. No content returned

301 Moved Permanently This and all future requests directed to the given URI

304 Not Modified Resource has not been modified since last requested

400 Bad Request Request cannot be fulfilled due to bad syntax

401 Unauthorized Authentication is possible, but has failed

403 Forbidden Server refuses to respond to request

404 Not Found Requested resource could not be found

500 Internal Server Error Generic error message when server fails

501 Not Implemented Server does not recognize method or lacks ability to fulfill

503 Service Unavailable Server is currently unavailable

CHAPTER 9 ■ ERROR HANDLING AND RUNNING AN APP

144

Tip ■ For the complete list of available HTTP methods, please refer to RFC 2616 at www.w3.org/Protocols/rfc2616/

rfc2616-sec10.html.

This is how we can send the status 500 (Internal Server Error) without sending back any data:

app.use(function(err, req, res, next) {
 // Do logging and user-friendly error message display
 res.end(500);
})

To trigger an error from within our request handlers and middleware, we can just call

app.get('/', function(req, res, next){
 next(error);
});

Or, if we want to pass a specific error message, then we create an Error object and pass it to next():

app.get('/', function(req,res,next){
 next(new Error('Something went wrong :-('));
});

It would be a good idea to use the return keyword for processing multiple error-prone cases and combine both of
the previous approaches. For example, we pass the database error to next(), but an empty query result will not cause
a database error (i.e., error will be null), so we check for this condition with !users:

// A GET route for the user entity
app.get('/users', function(req, res, next) {
 // A database query that will get us any users from the collection
 db.get('users').find({}, function(error, users) {
 if (error) return next(error);
 if (!users) return next(new Error('No users found.'));
 // Do something, if fail the return next(error);
 res.send(users);
});

For complex apps, it’s best to use multiple error handlers. For example, use one for XHR/AJAX requests, one
for normal requests, and one for generic catch-everything-else. It’s also a good idea to use named functions (and
organize them in modules) instead of anonymous ones.

For an example of this type of advanced error handling, refer to Chapter 22.

Tip ■ There’s an easy way out in regards to managing error handling that is especially good for development

purposes. It’s called errorhandler (https://www.npmjs.org/package/errorhandler) and it has the default error

handlers for Express.js/Connect.js. For more information on errorhandler, refer to the Chapter 4.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.npmjs.org/package/errorhandler

CHAPTER 9 ■ ERROR HANDLING AND RUNNING AN APP

145

Running an App
The Express.js class provides a few app-wide objects and methods on its object, which is app in our examples. These
objects and methods are recommended because they can improve code reuse and maintenance. For example, instead
of hard-coding the number 3000 everywhere, we can just assign it once with app.set('PORT', 3000);. Then, if we
need to update it later, we have only one place where it needs to be changed. Therefore, we’ll cover the following
properties and methods in this section:

app.locals

app.render()

app.mountpath

app.on('mount', callback)

app.path()

app.listen()

app.locals
The app.locals object is similar to the res.locals object (discussed in Chapter 8) in the sense that it exposes data to
templates. However, there’s a main difference: app.locals makes its properties available in all templates rendered by
app, while res.locals restricts them only to that request. Therefore, developers need to be careful not to reveal any
sensitive information via app.locals. The best use case for this is app-wide settings such as locations, URLs, contact
info, and so forth. For example:

app.locals.lang = 'en';
app.locals.appName = 'HackHall';

The app.locals object can also be invoked like a function:

app.locals([
 author: 'Azat Mardan',
 email: 'hi@azat.co',
 website: 'http://proexpressjs.com'
]);

app.render()
The app.render() method is invoked either with a view name and a callback or with a view name, data, and a
callback. For example, the system might have an e-mail template for a “Thank you for signing up” message and
another for “Reset your password”:

var sendgrid = require('sendgrid')(api_user, api_key);

var sendThankYouEmail = function(userEmail) {
 app.render('emails/thank-you', function(err, html){
 if (err) return console.error(err);
 sendgrid.send({
 to: userEmail,
 from: app.get('appEmail'),

http://proexpressjs.com/

CHAPTER 9 ■ ERROR HANDLING AND RUNNING AN APP

146

 subject: 'Thank you for signing up',
 html: html // The html value is returned by the app.render
 }, function(err, json) {
 if (err) { return console.error(err); }
 console.log(json);
 });
 });
};

var resetPasswordEmail = function(userEmail) {
 app.render('emails/reset-password', {token: generateResetToken()}, function(err, html){
 if (err) return console.error(err);
 sendgrid.send({
 to: userEmail,
 from: app.get('appEmail'),
 subject: 'Reset your password',
 html: html
 }, function(err, json) {
 if (err) { return console.error(err); }
 console.log(json);
 });
 });
};

Note ■ The sendgrid module used in the example is available at NPM1 and GitHub.2

app.mountpath
The app.mountpath property is used in the mounted/sub apps. Mounted apps are sub-apps that can be used for better
code reuse and organization. The app.mountpath property returns the path on which app is mounted.

For example, in ch9/app-mountpath.js there are two sub applications: post and comment. The post is mounted
on the /post path of app, while comment is mounted on /comment of post. As a result of logs, mountpath returns
values /post and /comment:

var express= require('express'),
 app = express(),
 post = express(),
 comment = express();

app.use('/post', post);
post.use('/comment', comment);

console.log(app.mountpath); // ''
console.log(post.mountpath); // '/post'
console.log(comment.mountpath); // '/comment'

1https://www.npmjs.org/package/sendgrid
2https://github.com/sendgrid/sendgrid-nodejs

https://www.npmjs.org/package/sendgrid
https://github.com/sendgrid/sendgrid-nodejs

CHAPTER 9 ■ ERROR HANDLING AND RUNNING AN APP

147

app.on(‘mount’, function(parent){...})
The mount is triggered when the sub app is mounted on a specific path of a parent/main app. For example, in
ch9/app-on-mount.js, we have two sub apps with on mount event listeners that print parents’ mountpaths. The
values of the paths are / for post’s parent (app) and /post for comment’s parent (post):

var express= require('express'),
 app = express(),
 post = express(),
 comment = express();

post.on('mount', function(parent){
 console.log(parent.mountpath); // '/'
})
comment.on('mount', function(parent){
 console.log(parent.mountpath); // '/post'
})

app.use('/post', post);
post.use('/comment', comment);

app.path()
The app.path() method will return the canonical path for the Express.js application. This is useful if you are using
multiple Express.js apps mounted to different routes (for better code organization).

For example, you have comments resource (routes related to comments) for posts by the way of mounting the
comment app on the /comment path of the post app. But you can still get the “full” path with comment.path() (from
ch9/app-path.js):

var express= require('express'),
 app = express(),
 post = express(),
 comment = express();

app.use('/post', post);
post.use('/comment', comment);

console.log(app.path()); // ''
console.log(post.path()); // '/post'
console.log(comment.path()); // '/post/comment'

app.listen()
The Express.js app.listen(port, [hostname,] [backlog,] [callback]) method is akin to server.listen()3 from
the core Node.js http module. This method is one of the ways to start an Express.js app. The port is a port number on
which the server should accept incoming requests. The hostname is the name of the domain. You might need to set it
when you deploy your apps to the cloud. The backlog is the maximum number of queued pending connections. The
default is 511. And the callback is an asynchronous function that is called when the server is booted.

3http://nodejs.org/api/http.html#http_server_listen_port_hostname_backlog_callback

http://nodejs.org/api/http.html#http_server_listen_port_hostname_backlog_callback

CHAPTER 9 ■ ERROR HANDLING AND RUNNING AN APP

148

To spin up the Express.js app directly on a particular port (3000):

var express = require('express');
var app = express();
// ... Configuration
// ... Routes
app.listen(3000);

This approach was created by Express.js Generator in the ch2/hello.js and ch2/hell-name.js examples in the
Chapter 2 Hello World example. In it, the app.js file doesn’t start a server, but it exports the object with

module.exports = app;

We don’t run the app.js file with $ node app.js either. Instead, we launch a shell script www with $./bin/www.
The shell script has this special string on its first line:

#!/usr/bin/env node

The line above turns the shell script into a Node.js program. This program imports the app object from the app.js
file, sets the port, and starts the app serverwith listen() and a callback:

var debug = require('debug')('cli-app');
var app = require('../app');

app.set('port', process.env.PORT || 3000);

var server = app.listen(app.get('port'), function() {
 debug('Express server listening on port ' + server.address().port);
});

Having your server object exported as a module is necessary when another process requires the object, e.g., a
testing framework. In the previous example, the main server file (ch2/cli-app/app.js) exported the object and there
is was no way of starting the server with $ node app. If you don’t want to have a separate shell file for launching the
server, but still want to export the server when you need to, you can use the following trick. The gist of this approach is
to check whether the module is a dependency with require.main === module condition. If it’s true, then we start the
application. If it’s not, then we expose the methods and the app object.

var server = http.createServer(app);
var boot = function () {
 server.listen(app.get('port'), function(){
 console.info('Express server listening on port ' + app.get('port'));
 });
}
var shutdown = function() {
 server.close();
}

CHAPTER 9 ■ ERROR HANDLING AND RUNNING AN APP

149

if (require.main === module) {
 boot();
} else {
 console.info('Running app as a module');
 exports.boot = boot;
 exports.shutdown = shutdown;
 exports.port = app.get('port');
}

Another way to start a server besides app.listen() is to apply the Express.js app to the core Node.js server
function. This is useful for spawning an HTTP server and an HTTPS server with the same code base:

var express = require('express');
var https = require('https');
var http = require('http');
var app = express();
var ops = require('conf/ops');
//... Configuration
//... Routes
http.createServer(app).listen(80);
https.createServer(ops, app).listen(443);

You can create a self-signed SSL certificate (for example, the server.crt file) to test your HTTPS server locally for
development purposes with OpenSSL by running these commands:

$ sudo ssh-keygen -f host.key
$ sudo openssl req -new -key host.key -out request.csr
$ sudo openssl x509 -req -days 365 -in request.csr -signkey host.key -out server.crt

The OpenSSL is an open-source implementation of Secure Socket Layer (SSL) protocol and a toolkit. You can
find more about it at https://www.openssl.org. When you use OpenSSL, Chrome and many other browsers will
complain with a warning about self-signed certificates—you can ignore it by clicking Proceed anyway (see Figure 9-1).

https://www.openssl.org/

CHAPTER 9 ■ ERROR HANDLING AND RUNNING AN APP

150

Tip ■ To install OpenSSL on Mac OS X, run $ brew install OpenSSL. On Windows, download the installer from

http://gnuwin32.sourceforge.net/packages/openssl.htm. On Ubuntu, run apt-get install OpenSSL.

After server.crt is ready, feed it to the https.createServer() methods like this (the ch9/app.js file):

var express = require('express');
var https = require('https');
var http = require('http');
var app = express();
var fs = require('fs');

var ops = {
 key: fs.readFileSync('host.key'),
 cert: fs.readFileSync('server.crt') ,
 passphrase: 'your_secret_passphrase'
};

Figure 9-1. You can ignore this warning cause by a self-signed SSL certificate

http://gnuwin32.sourceforge.net/packages/openssl.htm

CHAPTER 9 ■ ERROR HANDLING AND RUNNING AN APP

151

app.get('/', function(request, response){
 response.send('ok');
});
http.createServer(app).listen(80);
https.createServer(ops, app).listen(443);

The passphrase is the one you used during the certificate creation with OpenSSL. Leave it out if you didn’t put in
any passphrase. To start the process, you might have to use sudo, such as $ sudo node app.

If everything worked well, you should see an okay message as shown in Figure 9-2.

Figure 9-2. Using self-signed SSL certificate for local development

Finally, if your application performs a lot of blocking work, you might want to start multiple processes with
cluster module. This topic is covered in Chapter 13.

Summary
This chapter covered multiple ways to implement error handlers, the app object interface, and ways to start the
Express.js server. This concludes Part 2, “Deep API Reference.” Hopefully, you’ve learned many new properties and
methods of the Express.js framework’s objects, such as response, request, and the app itself. If you had any doubts
about middleware, then Chapter 4 cleared any concerns. Last but not least, we covered routing, error handling and
template utilization topics. All these topics built your foundation so you can apply this knowledge to creating amazing
and exciting new apps with Express.js.

As the reference part of the book is over, we are moving into more practical and complex topics, which include
“how to use X” or “how to do Y” examples. Onward to Part 3, “Solving Common and Abstract Problems.”

PART III

Solving Common and Abstract
Problems

155

CHAPTER 10

Abstraction

This chapter deals with code organization. Abstraction usually means breaking monolithic logic into a few pieces.
Most of the techniques presented in this chapter can be applied to any Node.js code, not just Express.js code.

An Express.js app usually has a main file (app.js or server.js). You should try to keep this file as small as
possible, because as it grows larger, it becomes harder to maintain. The most suitable types of code to use instead of a
large main file are middleware and routes. Configuration statements can also be abstracted, but they are typically less
numerous than routes, which might exceed 200 to 300.

Middleware
As described in Chapter 4, the middleware concept provides flexibility. Software engineers can use anonymous
functions or named functions as middleware. The approach of using anonymous functions looks something like this:

app.use(function(request, response) {
// ...
});
app.get(function(request, response) {
//...
}, function(request, response) {
// ...
});

The named functions approach looks as follows:

var middleware = function(request, response){
};
var middleware2 = function(request, response){
//...
};
var middleware3= function(request, response){
//...
};
app.use(middleware);
app.get(middleware2, middleware3);

5

CHAPTER 10 ■ ABSTRACTION

156

For purposes of code reuse, the named functions approach is more appealing. That is, if you name a function,
you can use it in multiple routes by passing the name. On the contrary, the approach of using anonymous functions
allows you to use that middleware only once, in the place where you defined the function.

When using named functions, as the application grows larger, the best practice is to abstract the named functions
into external modules based on their functionality, e.g., authentication or database tasks.

Routes
Let’s say we have a REST API with the following resources: stories, elements, and users. We can separate request
handlers into files accordingly, so that routes/stories.js has

module.exports.findStories = function(req, res, next) {
// ... Query to find stories from the database
};
module.exports.createStory = function(req, res, next) {
// ... Query to create a story in the database
};
//

The routes/users.js file holds the logic for user entities:

module.exports.findUser = function(req, res, next){
// ...
};
module.exports.updateUser = function(req, res, next){
// ...
};
module.exports.removeUser = function(req, res, next){
// ...
};

The main server file (app.js or server.js) can use the preceding modules in this manner:

// ...
var stories = require('./routes/stories');
var users = require('./routes/users');
// ...
app.get('/stories', stories.findStories);
app.post('/stories', stories.createStory);
app.get('/users/:user_id', users.findUser);
app.put('/users/:user_id', users.updateUser);
app.del('/users/:user_id', users.removeUser);
// ...

In the example with var stories = require('./routes/stories');, stories is file stories.js with an
omitted (optional) .js extension.

CHAPTER 10 ■ ABSTRACTION

157

Tip ■ The period (.) in './routes/stories' means the path starts with the current folder. On Windows, the path

uses \ rather than /, so a better way would be to write require(path.join('routes', 'stories'));, because it’s

more cross-platform friendly.

Please notice that the code repeats itself over and over with each line/module; that is, developers have to
duplicate code by importing the same modules (e.g., users). Imagine that we need to include these three modules in
each file! To avoid this repetition, there’s a clever way to include multiple files: put the index.js file inside the stories
folder and let that file include all the routes. This is a good practice because, if you want to add more files to the routes
folder later or change names of the existing files, you don’t need to require a new file from app.js. You simply need to
modify the routes/index.js code.

For example, in app.js we import index.js by passing only the folder name (require looks for index.js if we
pass the folder name):

app.get('/stories', require('./routes').stories.findStories);

Or, we can use routes multiple times:

var routes = ('./routes');
app.get('/stories', routes.stories.findStories);
app.post('/stories', routes.stories. createStory);

This code will access index.js, which should expose the stories object (and others), which in turn is imported
from the stories.js file in the routes folder:

module.exports.stories = require('./stories');
module.exports.users = require('./users);

The preceding code can be rewritten as follows:

exports.stories = require('./stories');
exports.users = require('./users);

Or as follows, which is my personal favorite, due to its eloquence:

module.exports = {
 stories: require('./stories'),
 users: require('./users)
};

Finally, the stories.js file that is read by the ./routes/index.js code has

exports.findStories = function(req, res, next) {
// ...
};
exports.createStory = function(req, res, next) {
// ...
};
// ...

CHAPTER 10 ■ ABSTRACTION

158

Tip ■ To organize routes even better, you can use the Router class, covered in Chapter 6.

Each bit of functionality can be split into a separate file. For example, the findStories method goes into ch10/
routes-exports/find-stories.js with the following content:

exports.findStories = function(ops){
 ops=ops || '';
 console.log ('findStories module logic ' + ops);
};

In the index.js we simply import the find-stories.js:

exports.stories = require('./find-stories.js');

For a working example, you can run node -e "require('./routes-exports').stories.findStories();" from
the expressjsguide folder to see a string output by console.log from the module, as shown in Figure 10-1.

Combining Middleware and Routes
To illustrate another approach of code reuse, assume that there’s an app with the routes /admin and /api/stories:

app.get('/admin', function(req, res, next) {
 if (!req.query._token) return next(new Error('No token was provided.'));
 }, function(req, res, next) {
 res.render('admin');
});
// Middleware that applied to all /api/* calls
app.use('/api/*', function(req, res, next) {
 if (!req.query.api_key) return next(new Error('No API key was provided.'));
});
app.get('/api/stories', findStory, function(req, res){
 res.json(req.story):
});

In both of them, we check for a query string parameter, with the following lines:

 if (!req.query._token) return next(new Error('no token provided'));

and

 if (!req.query.api_key) return next(new Error('No API key was provided.'));

Figure 10-1. Importing modules via a folder and index.js file

CHAPTER 10 ■ ABSTRACTION

159

However, the parameters are different, so we cannot abstract both statements into one function. Wouldn’t it be
slick to not have to repeat ourselves?

To avoid repetition, we can implement a function that returns a function instead, as follows:

var requiredParam = function (param) {
 // Do something with the param, e.g.,
 // Create a private attribute paramName based on the value of param variable
 var paramName = '';
 if (param === '_token')
 paramName = 'token';
 else if (param === 'api_key')
 paramName = 'API key'
 return function (req,res, next) {
 // Use paramName, e.g.,
 // If query has no such parameter, proceed next() with error using paramName
 if (!req.query[param]) return next(new Error('No ' + paramName +' was provided.'));
 next();
 });
}

app.get('/admin', requiredParam('_token'), function(req, res, next) {
 res.render('admin');
});
 // Middleware that applied to all /api/* calls
app.use('/api/*', requiredParam('api_key'));

In a sense, this “function that returns a function” pattern is a switch that changes modes based on the
argument passed.

Tip ■ The aforementioned “function that returns a function” pattern resembles a state monad (http://en.wikipedia.org/

wiki/Monad_(functional_programming)#State_monads). This can serve as a great topic for discussion during an

interview.

The preceding example is very basic and, in most cases, developers don’t worry about mapping for proper
error text messages. Nevertheless, you can use this pattern for many purposes, such as restricting output, managing
permissions, and switching between different blocks.

Note ■ The __dirname global variable provides an absolute path to the file that uses it, while ./ returns the current

working directory, which might be different depending on where we execute the Node.js script (e.g., $ node ~/code/

app/index.js vs. $ node index.js). One exception to the ./ rule is when it’s used in the require() function,

such as conf = require('./config.json');, in which case it acts as __dirname.

As you can see, middleware/request handler use is a powerful concept for keeping code organized. The best
practice is to keep the router lean and thin by moving all of the logic into corresponding external modules/files.
This way, important server configuration parameters will all be neatly in one place when you need them.

http://en.wikipedia.org/wiki/Monad_(functional_programming)#State_monads
http://en.wikipedia.org/wiki/Monad_(functional_programming)#State_monads

CHAPTER 10 ■ ABSTRACTION

160

The globals module.exports and exports are not quite the same when it comes to assigning new values to
each of them. In the previous example, module.exports = function(){...} works fine and makes total sense,
but exports = function() {...} or even exports = someObject; will fail miserably. The reason is JavaScript
fundamentals: the properties of the object can be replaced without losing the reference to that object, but when we
replace the whole object (i.e., exports = ...,), we lose the link to the outside world that exposes our functions.

This behavior is also referred to as objects being mutable and primitive (strings, numbers, and booleans are
immutable in JavaScript). Therefore, exports only works by creating and assigning properties to it, such as
exports.method = function() {...};. For example, we can run the following code in the ch10 folder:

$ node -e "require('./routes-module-exports').FindStories('databases');"

As a result, you can see in Figure 10-2 that our nested structure is reduced by one level.

Figure 10-2. The result of using module.exports

For more examples, refer to the article “Node.js, Require and Exports” by Karl Sequin
(http://openmymind.net/2012/2/3/Node-Require-and-Exports). For a working example in this book,
check out the HackHall example in Chapter 22.

Summary
It is extremely important to develop good habits and practices of code organization. Without them, projects will be
hard to maintain. This applies even more so in large projects.

In the next chapter, we’ll continue with this topic, but apply it to databases. We’ll also explore how to handle keys
(and other sensitive information that you don’t want to have hacked), and work with streams as they apply to Express.js
applications.

http://openmymind.net/2012/2/3/Node-Require-and-Exports

161

CHAPTER 11

Database, Keys and Stream Tips

This chapter continues the previous chapter’s theme of better code organization in Express.js apps. The chapter
provides tips on how to connect to a database from another module, access keys and passwords that ought to remain
secret, and stream data.

Using Databases in Modules
This section deals with code organizing patterns. It is not a detailed tutorial on databases and Express.js. For such
coverage, refer to Chapters 20 to 22.

Before I show you how to approach accessing a database connection from another module, which might be
needed if you abstracted routes into separate app.js/server.js files, let’s brush up on some basics first.

With the native Node.js MongoDB driver, the Express.js server needs to wait for the connection to be created
before it can use the database:

// ... Modules importing
var routes = require('routes');
var mongodb = require('mongodb');
var Db = mongodb.Db;
var db = new Db('test', new Server(dbHost, dbPort, {}));
// ... Instantiation
db.open(function(error, dbConnection){
 var app = express();
 app.get('/', routes.home);
 // ... Other routes
 app.listen(3000);
});

We can make it a bit better by moving routes and configuration outside of the database callback:

// ... Modules importing
var routes = require('routes');
var mongodb = require('mongodb');
var Db = mongodb.Db;
var db = new Db('test', new Server(dbHost, dbPort, {}));

CHAPTER 11 ■ DATABASE, KEYS AND STREAM TIPS

162

// ... Instantiation
var app = express();
app.get('/', routes.home);
// ... Other routes

db.open(function(error, dbConnection){
app.listen(3000);
});

However, the app.listen() call still needs to be called after the database connection has been established.
Thanks to more advanced libraries such as Mongoskin, Monk, and Mongoose that have buffering of the db requests,

we don’t need to put the app.listen() call inside of the db callback. The developers’ tasks can be as easy as this:

var express = require('express'),
 mongoskin = require('mongoskin'),
 bodyParser = require('body-parser');

var app = express();
app.use(bodyParser.json());
// ... Configurations and middleware

var db = mongoskin.db('localhost:27017/test', {safe:true});
app.get('/', function(req, res) {
 res.send('please select a collection, e.g., /collections/messages')
});
// ... Routes
app.listen(3000);

In a case in which routes need to access to database objects, such as connections, models, and so forth, but
those routes aren’t in the main server file, all we need to do is attach the required object to the request (i.e., req) using
custom middleware:

app.use(function(req, res, next) {
 req.db = db;
 next();
});

This way, all the middleware and routes declared after the custom middleware just shown will have the
req.db object; the req object is the same instance of the Request object.

Alternatively, we could pass or accept the needed variables into the constructor when we import or export the
module. In JavaScript/Node.js, objects are passed by their references, so we’ll be dealing with the original object in the
module. The example of the routes.js module is as follows:

module.exports = function(app){
 console.log(app.get('db')); // app has everything we need!
 // ... Initialize other objects as needed
 return {
 findUsers: function(req, res) {
 // ...
 },

CHAPTER 11 ■ DATABASE, KEYS AND STREAM TIPS

163

 createUser: function(req, res) {
 // ...
 }
 } // for "return"
}

And here’s the main file:

var app = express();
// ... Configuration
app.set('db', db);
routes = require('./routes.js')(app);
// ... Middleware
app.get('/users', routes.findUser);
// ... Routes

Or, we can refactor in a variable:

var app = express();
// ... Configuration
app.set('db', db);
Routes = require('./routes.js');
routes = Routes(app);
// ... Middleware
app.get('/users', routes.findUser);
// ... Routes

You can try to pass data to modules themselves with the example in the proexpressjs/ch11 folder. For that,
simply run the following command:

$ node -e "require('./routes-module-exports').FindStories('databases');"

Run it from the proexpressjs/ch11 folder. The command simply imports the module and calls a method from it.
As a result, you’ll see the word “databases” (or any other string that you pass to FindStories) printed in the terminal.

For a real-life example of passing a Mongoose database object to routes via a req object, take a look at Chapter 22.

Keys and Passwords
A typical web service likely requires connections to other services via usernames and passwords in the case of
databases, and API keys and secrets/tokens in the case of third-party APIs. As you might guess, it’s not a good idea to
store this sensitive data in the source code! The two most widespread approaches to solving this issue are

JSON file•

Environment variables•

Note ■ We are talking about Node.js, not browser JavaScript, in this section. Typically, you don’t want to expose your

passwords and API keys on the front end.

CHAPTER 11 ■ DATABASE, KEYS AND STREAM TIPS

164

JSON File
The JSON file approach is as easy as it sounds. All we need is a JSON file. For example, suppose we have a local
database and two external services, such as HackHall and Twitter, in conf/keys.json:

{
 "db": {
 "host": "http://localhost",
 "port": 27017,
 "username": "azat",
 "password": "CE0E08FE-E486-4AE0-8441-2193DF8D5ED0"
 },
 "hackhall": {
 "api_key": "C7C211A6-D8A7-4E41-99E6-DA0EB95CD864"
 },
 "twitter": {
 "consumer_key": "668C68E1-B947-492E-90C7-F69F5D32B42E",
 "consumer_secret": "4B5EE783-E6BB-4F4E-8B05-2A746056BEE1"
 }
}

The latest versions of Node.js allow developers to import JSON files with the require() function. Hurray for not
messing around with the fs module! Therefore, the main application file might use these statements:

var configurations = require('/conf/keys.json');
var twitterConsumerKey = configurations.twitter.consumer_key;

Alternatively, we can just read the file manually with the fs module and parse the stream into a JavaScript object.
Try this on your own.

As far as access to configurations goes, it’s even better if we can share this configuration object globally, using
app.set(name, value):

app.set('configurations', configurations);

Or, using middleware, propagate to every request that comes after:

app.use(function(req, res, next) {
 req.configurations = configurations;
});

Adding conf/keys.json to .gitignore prevents tracking and exposing the file. To add it, simply create a new
system file .gitignore and add this line:

conf/keys.json

If you committed your keys to Git once, they will stay in the history even if you delete the file. The solution to
remove the sensitive data from the Git history is tricky. It’s best to regenerate the keys to avoid an exposure.

CHAPTER 11 ■ DATABASE, KEYS AND STREAM TIPS

165

The problem is still present with the delivery of the JSON configuration file to the server. This can be done via
SSH and the scp (secure copy) command:

$ scp [options] username1@source_host:directory1/filename1 username2@destination_host:directory2/
filename2

For example, $ scp ./keys.json azat@webapplog:/var/www/conf/keys.json.
Alternatively, you can use rsync, because it transfers only the delta. For example:

$ rsync -avz ./keys.json azat@webapplog:var/www/conf

Environment Variables
The second approach involves the use of environment variables (env vars). The easiest way to illustrate env vars is to start
a script with a key=value prefix, for example $ NODE_ENV=test node app. This will populate process.env.NODE_ENV.
Try this script that prints NODE_ENV right back to you:

$ NODE_ENV=test node -e 'console.log(process.env.NODE_ENV)'

To deliver/deploy these vars into a remote server, we can use Ubuntu’s /etc/init/nodeprogram.conf. More
details are available in this neat tutorial by Kevin van Zonneveld: “Run Node.js as a Service on Ubuntu.”1

Furthermore, there is a Nodejitsu tool (http://www.nodejitsu.com) to daemonize node processes forever
(http://npmjs.org/forever; GitHub: https://github.com/nodejitsu/forever).

For Heroku, the process of synching env vars with the cloud is even simpler: locally, we put vars into an .env file in
the project folder for Foreman2 (comes with the Heroku toolbelt) and then push them to the cloud with heroku-config
(https://github.com/ddollar/heroku-config). More information is at the Heroku Dev Center.3

For a working example (obviously sans sensitive info), take a look at Chapter 22.

Streams
The Express.js request and response objects are readable and writable Node.js streams, respectively. Streams are
powerful tools for processing chunks of data before a particular process (reading, receiving, writing, sending) actually
ends. This makes streams useful when dealing with huge data such as audio or video. Another case for streams is
when performing big database migrations.

Tip ■ For more information on how to use streams, substack’s James Halliday (http://substack.net/) offers some

amazing resources: stream-handbook (https://github.com/substack/stream-handbook) and stream-adventure

(https://npmjs.org/package/stream-adventure).

1http://kvz.io/blog/2009/12/15/run-nodejs-as-a-service-on-ubuntu-karmic/
2https://devcenter.heroku.com/articles/procfile#developing-locally-with-foreman
3https://devcenter.heroku.com/articles/config-vars

http://www.nodejitsu.com/
http://npmjs.org/forever
https://github.com/nodejitsu/forever
https://github.com/ddollar/heroku-config
http://substack.net/
https://github.com/substack/stream-handbook
https://npmjs.org/package/stream-adventure
http://kvz.io/blog/2009/12/15/run-nodejs-as-a-service-on-ubuntu-karmic/
https://devcenter.heroku.com/articles/procfile#developing-locally-with-foreman
https://devcenter.heroku.com/articles/config-vars

CHAPTER 11 ■ DATABASE, KEYS AND STREAM TIPS

166

Here is an example of piping a stream to a normal response from proexpressjs/ch11/streams-http-res.js:

var http = require('http');
var fs = require('fs');
var server = http.createServer(function (req, res) {
 fs.createReadStream('users.csv').pipe(res);
});
server.listen(3000);

The GET request with CURL from the terminal looks like this:

$ curl http://localhost:3000

The preceding line will cause the server to output the content of the file users.csv; for example:

...
Stanton Botsford,Raina@clinton.name,619
Dolly Feeney,Aiden_Schaefer@carmel.tv,670
Oma Beahan,Mariano@paula.tv,250
Darrion Johnson,Miracle@liliana.com,255
Garth Huels V,Patience@leda.co.uk,835
Chet Hills II,Donna.Lesch@daniela.co.uk,951
Margarette Littel,Brenda.Prosacco@heber.biz,781
Alexandrine Schiller,Brown.Kling@jason.name,779
Concepcion Emmerich,Leda.Hudson@cara.biz,518
Mrs. Johnpaul Brown,Conrad.Cremin@tavares.tv,315
Aniyah Barrows,Alexane@daniela.tv,193
Okey Kohler PhD,Cordell@toy.biz,831
Bill Murray,Tamia_Reichert@zella.com,962
Allen O'Reilly,Jesus@joey.name,448
Ms. Bud Hoeger,Ila@freda.us,997
Kathryn Hettinger,Colleen@vincenza.name,566
...

The result is also shown in Figure 11-1.

CHAPTER 11 ■ DATABASE, KEYS AND STREAM TIPS

167

If you want to create your own test file such as users.csv, you can install Faker.js (https://npmjs.org/package/Faker;
GitHub: https://github.com/marak/Faker.js/) and rerun the seed-users.js file:

$ npm install Faker@0.7.2
$ node seed-users.js

The Express.js implementation is strikingly similar in proexpressjs/ch11/stream-express-res.js:

var fs = require('fs');
var express = require('express');

var app = express();

Figure 11-1. The result of running the stream response from the users.csv file

https://npmjs.org/package/Faker
https://github.com/marak/Faker.js/

CHAPTER 11 ■ DATABASE, KEYS AND STREAM TIPS

168

app.get('*', function (req, res) {
 fs.createReadStream('users.csv').pipe(res);
});

app.listen(3000);

Keeping in mind that the request is a readable stream, and the response is a writable one, we can implement a
server that saves POST requests into a file. Here is the content of proexpressjs/ch11/stream-http-req.js:

var http = require('http');
var fs = require('fs');
var server = http.createServer(function (req, res) {
 if (req.method === 'POST') {
 req.pipe(fs.createWriteStream('ips.txt'));
 }
 res.end('\n');
});
server.listen(3000);

We call Faker.js to generate test data consisting of names, domains, IP addresses, latitudes, and longitudes. This
time, we won’t save the data to a file, but instead will pipe it to CURL.

Here is the bit of Faker.js script that outputs a JSON object of 1000 records to the stdout from proexpressjs/
ch11/seed-ips.js:

var Faker = require('Faker');
var body = [];

for (var i = 0; i < 1000; i++) {
 body.push({
 'name': Faker.Name.findName(),
 'domain': Faker.Internet.domainName(),
 'ip': Faker.Internet.ip(),
 'latitude': Faker.Address.latitude(),
 'longitude': Faker.Address.longitude()
 });
}
process.stdout.write(JSON.stringify(body));

To test our stream-http-req.js, let’s run

$ node seed-ips.js | curl -d@- http://localhost:3000.

The result is an array of IPs, as shown in Figure 11-2.

CHAPTER 11 ■ DATABASE, KEYS AND STREAM TIPS

169

Once more, let’s convert this example into an Express.js app in proexpressjs/ch11/stream-express-req.js:

var http = require('http');
var express = require('express');
var app = express();

app.post('*', function (req, res) {
 req.pipe(fs.createWriteStream('ips.txt'));
 res.end('\n');
});
app.listen(3000);

Figure 11-2. Beginning of the file written by the Node.js server

CHAPTER 11 ■ DATABASE, KEYS AND STREAM TIPS

170

Tip ■ In some cases, it’s good to have pass-through logic that doesn’t consume too many resources. For that, check

out the module through (https://npmjs.org/package/through; GitHub: https://github.com/dominictarr/through).

Another useful module is concat-stream (https://npmjs.org/package/concat-stream; GitHub:

https://github.com/maxogden/node-concat-stream). It allows concatenation of streams.

Summary
So far, we’ve covered ways to implement a database connection from other, non-app.js/server.js files. We also
worked with hiding sensitive information from our source base, and streaming the data. These concepts and
approaches will come in handy when working on the examples in Chapters 19 through 22.

The next chapter will give you some Express.js tips on working with Redis and implementing an
Authentication pattern.

https://npmjs.org/package/through
https://github.com/dominictarr/through
https://npmjs.org/package/concat-stream
https://github.com/maxogden/node-concat-stream

171

CHAPTER 12

Redis and Authentication Patterns

This chapter deals with two Express.js topics: Redis and authentication patterns. Redis is a fast database that is often
used for storing Express.js sessions.

Redis
Redis (http://redis.io) is often used in Express.js applications for session persistence, because storing sessions
in a physical storage keeps apps from losing users’ data when a system is restarted or redeployed. It also enables the
use of multiple RESTful servers because they can connect to the same Redis server. In addition, Redis can be used for
queues and scheduling tasks (e.g., e-mail jobs).

Redis itself is a stand-alone service. Therefore, to use Redis with Express.js, we need two things:

• Redis server: A database server that can listen on a particular port and be accessed via the
Redis console or applications

• Connect-redis: An NPM module (https://www.npmjs.org/package/connect-redis;
GitHub: https://github.com/tj/connect-redis) that enables Express.js to use the Redis
store and includes the redis module (https://www.npmjs.org/package/redis;
 GitHub: https://github.com/mranney/node_redis)

To download Redis 2.6.7, enter these simple commands:

$ wget http://download.redis.io/releases/redis-2.6.7.tar.gz
$ tar xzf redis-2.6.7.tar.gz
$ cd redis-2.6.7
$ make

For more Redis instructions, you can visit http://redis.io/download.
To start Redis, enter

$ src/redis-server

To stop Redis, just press Ctrl+C.
To access the Redis command-line interface, enter

$ src/redis-cli

http://redis.io
https://www.npmjs.org/package/connect-redis
https://github.com/tj/connect-redis
https://www.npmjs.org/package/redis
https://github.com/mranney/node_redis
http://download.redis.io/releases/redis-2.6.7.tar.gz
http://redis.io/download

CHAPTER 12 ■ REDIS AND AUTHENTICATION PATTERNS

172

Following is an uncomplicated example of how to use Redis to manage Express.js sessions.
First, to access Redis, utilize the connect-redis driver. You can do so with the familiar dependency key/value

pair in ch12/package.json:

{
 "name": "redis-example",
 "dependencies": {
 "express": "4.8.1",
 "connect-redis": "2.1.0",
 "cookie-parser": "1.3.2",
 "express-session": "1.7.6"
 }
}

To use Redis as a session store in an Express.js server (ch12/app.js), enter the following:

var express = require('express');
var app = express();
var cookieParser = require('cookie-parser');
var session = require('express-session');
var RedisStore = require('connect-redis')(session);

app.use(cookieParser());
app.use(session({
 resave: true,
 saveUninitialized: true,
 store: new RedisStore({
 host: 'localhost',
 port: 6379
 }),
 secret: '0FFD9D8D-78F1-4A30-9A4E-0940ADE81645',
 cookie: { path: '/', maxAge: 3600000 }
}));

Next, define the “/” route that will increment the counter for each unique session. In other words, if we close
the browser, stop the Express.js server, wait awhile, restart the server, and reopen the browser, the value will be saved
and incremented, as long as the cookie with the session ID is not expired or deleted. Also, output the counter and the
session ID:

app.get('/', function(request, response){
 console.log('Session ID: ', request.sessionID);
 if (request.session.counter) {
 request.session.counter = request.session.counter +1;
 } else {
 request.session.counter = 1;
 }
 response.send('Counter: ' + request.session.counter);
});

app.listen(3000);

CHAPTER 12 ■ REDIS AND AUTHENTICATION PATTERNS

173

Now, when you start the server, it should show you Counter: 1 and the connect.sid cookie should have a value
similar to the following (see Figure 12-1):

s%3AA3l_jSr25tbWWjRHot9sEUM5OApCn21R.qxxe7TLSaZBwuCGKmSfvI9jpVcnLyUrKMEkXxXMvAzM

Figure 12-1. Output of the Redis store Express.js session example

Your session ID will be different, but the format and the length will be the same. Let’s decode this value with the
decodeURIComponent() method, either in the browser or the Node.js console (see Figure 12-2):

decodeURIComponent('s%3AA3l_jSr25tbWWjRHot9sEUM5OApCn21R.qxxe7TLSaZBwuCGKmSfvI9jpVcnLyUrKMEkXxXMvAzM')

CHAPTER 12 ■ REDIS AND AUTHENTICATION PATTERNS

174

The value between s: and . is the session ID. Compare it with the value that was printed in the server logs.
They should match.

To double-check that the counter value is actually stored in Redis and not somewhere else, copy the session ID
and open the Redis console in a new terminal window with

$ redis-cli

Then, type this command to get the session values: get sess:SESSION_ID, where SESSION_ID is your session ID;
for example:

> get sess:A3l_jSr25tbWWjRHot9sEUM5OApCn21R

You should see the string of the JSON object with your session value counter, along with some options.
For example, my output is

"{\"cookie\":{\"originalMaxAge\":3600000,\"expires\":\"2014-09-03T19:03:55.007Z\",
\"httpOnly\":true,\"path\":\"/\"},\"counter\":1}"

You can also use the > keys command to get the list of stored session keys (the prefix is sess):

> keys sess*

Figure 12-2. Decoding Express.js session ID

CHAPTER 12 ■ REDIS AND AUTHENTICATION PATTERNS

175

As mentioned at the beginning of the chapter, the connect-redis module is backed by the redis module. With this
module, Redis can be used as a flat, stand-alone database. Interestingly, Redis supports four types of data: strings,
lists, sets, and hashes.

Tip ■ For a deeper study of Redis, you can find an interactive tutorial available at http://try.redis.io.

Authentication Patterns
The most common type of authentication is to require a username and password combination. We can check for the
match against our database and then store an authenticated=true flag in the session. The session data is automatically
stored by Express.js for every other request by that agent:

app.use(function(req, res, next) {
 if (req.session && req.session.authenticated)
 return next();
 else {
 return res.redirect('/login');
 }
}

In case we need additional user information, it also can be stored in the session:

app.post('/login', function(req, res) {
 // Check the database for the username and password combination
 // In a real-world scenario you would salt the password
db.findOne({username: req.body.username,
 password: req.body.password},
 function(error, user) {
 if (error) return next();
 if (!user) return next(new Error('Bad username/password');
 req.session.user = user;
 res.redirect ('/protected_area');
 }
);
});

For a tool to salt passwords, take a look at bcryptjs (https://www.npmjs.org/package/bcryptjs), which is
compatible with bcrypt, but doesn’t need compilation, because it fully runs on JavaScript/Node.js. Another cool
thing about bcryptjs (and bcrypt), compared to other libraries or your own implementation of hashing/salting,
is that the salt is a part of the password, so you don’t need to store an additional field for salt for each user in the
database. For example:

var bcrypt = require('bcryptjs');
bcrypt.hash('pr0expressr0cks!, 8, function(err, hash) {
// ... Store the hash, which is a password and salt together
});

http://try.redis.io/
https://www.npmjs.org/package/bcryptjs

CHAPTER 12 ■ REDIS AND AUTHENTICATION PATTERNS

176

Use asynchronous bcryptjs methods, because they will be really slow (the slower the better for protection!).
Authentication with third parties is often done via OAuth. For a working example of the oauth module

(https://www.npmjs.org/package/oauth; GitHub: https://github.com/ciaranj/node-oauth)—to which this
author contributed some docs—check out the HackHall example in Chapter 22.

OAuth 1.0/2.0 requires callback routes for the user redirect back to our sites. This is effortless with Express.js.
In addition, there are fully automated solutions that take care of everything (database, signing, routing, etc.):
Everyauth (https://npmjs.org/package/everyauth) and Passport (https://npmjs.org/package/passport).

Tip ■ For a quick introduction to OAuth that is applicable to Node.js, consider reading my book, Introduction to OAuth with

Node.js: Twitter API OAuth 1.0, OAuth 2.0, OAuth Echo, Everyauth and OAuth2.0 Server Examples (webapplog.com, 2014).

Summary
In this chapter we installed and used Redis so that session information can be persistent, meaning it won’t be lost if
the server is down. Redis (or any other persistent store) allows us to share sessions between multiple servers.
Then we covered the implementation of authentication with middleware.

In the next chapter, we’ll cover multithreading with clusters, continuing with the theme of getting your Express.js
app production-ready.

https://www.npmjs.org/package/oauth
https://github.com/ciaranj/node-oauth
https://npmjs.org/package/everyauth
https://npmjs.org/package/passport

177

CHAPTER 13

Multithreading with Clusters

There are a lot of detractors out there arguing against the use of Node.js, many of whose arguments are rooted in
the myth that Node.js-based systems have to be single-threaded. Nothing could be further from the truth—and with
the cluster module, we can effortlessly fork a Node.js process to create multiple processes. Yes, each process will
still be single-threaded and be blocked by inapt synchronous code or some laborious processes (such as hashing of
passwords). However, the whole system, now consisting of a few processes, won’t be blocked.

In the case of web apps, the processes can listen on the same port, thus ensuring that, if the first process is busy,
the request will be handled by the second (or third or fourth) process. Typically, we spawn as many processes as we
have CPUs on that machine so that we can utilize all the machine’s CPUs.

A Multithreading Example
Here is a working example of an Express.js app that runs on four processes. One of them is the so-called master
process and the other three are worker processes. The master is responsible for managing and monitoring workers,
while a worker is a separate Express.js app itself. The code for master and worker is contained in the same file.

At the beginning of the file, we import dependencies:

var cluster = require('cluster');
var http = require('http');
var numCPUs = require('os').cpus().length;
var express = require('express');

The cluster module has a property that tells us if the process is master or child. We use that property to spawn
four workers (the default workers will use the same file, but this can be overwritten with the setupMaster() method).1
In addition to that, we can attach event listeners and receive messages from workers (e.g., 'kill').

if (cluster.isMaster) {
 console.log('Fork %s worker(s) from master', numCPUs)
 for (var i = 0; i < numCPUs; i++) {
 cluster.fork();
 };
 cluster.on('online', function(worker) {
 console.log('Worker is running on %s pid', worker.process.pid)
 });
 cluster.on('exit', function(worker, code, signal) {
 console.log('Worker with %s is closed', worker.process.pid);
 });

1http://nodejs.org/docs/v0.9.0/api/cluster.html#cluster_cluster_setupmaster_settings

http://nodejs.org/docs/v0.9.0/api/cluster.html#cluster_cluster_setupmaster_settings

CHAPTER 13 ■ MULTITHREADING WITH CLUSTERS

178

The worker code is just an Express.js app with a twist. We’re getting the process ID, or PID (the following code
continues from the previous snippet):

} else if (cluster.isWorker) {

Now we write the good old Express.js server code with a port of 3000:

 var port = 3000;
 console.log('Worker (%s) is now listening to http://localhost:%s',
 cluster.worker.process.pid, port);
 var app = express();

The server has a catchall route that will print the PID:

 app.get('*', function(req, res) {
 res.send(200, 'cluster '
 + cluster.worker.process.pid
 + ' responded \n');
 })
 app.listen(port);
}

Feel free to use the full source code of ch13/cluster.js in your projects:

var cluster = require('cluster');
var numCPUs = require('os').cpus().length;
var express = require('express');

if (cluster.isMaster) {
 console.log('Fork %s worker(s) from master', numCPUs);
 for (var i = 0; i < numCPUs; i++) {
 cluster.fork();
 }
 cluster.on('online', function(worker) {
 console.log('Worker is running on %s pid', worker.process.pid);
 });
 cluster.on('exit', function(worker, code, signal) {
 console.log('Worker with %s is closed', worker.process.pid);
 });
} else if (cluster.isWorker) {
 var port = 3000;
 console.log('Worker (%s) is now listening to http://localhost:%s',
 cluster.worker.process.pid, port);
 var app = express();
 app.get('*', function(req, res) {
 res.send(200, 'cluster ' + cluster.worker.process.pid + ' responded \n');
 });
 app.listen(port);
}

CHAPTER 13 ■ MULTITHREADING WITH CLUSTERS

179

As usual, to start an app, run $ node cluster. There should be four (or two, depending on your machine’s
architecture) processes, and the logs might look like this (see Figure 13-1):

worker is running on 15279 pid
worker is running on 15277 pid
...

Figure 13-1. Starting of four processes with cluster

Figure 13-2. Server response is rendered by different processes

There are different processes that listen to the same port and respond to us. For example, the responses could be
as follows (see Figure 13-2):

cluster 15278 responded
cluster 15280 responded

c

CHAPTER 13 ■ MULTITHREADING WITH CLUSTERS

180

Tip ■ If you prefer ready-made solutions to low-level libraries (such as cluster), check out the real-world

production library created and used by eBay: cluster2 (https://www.npmjs.org/package/cluster2;

GitHub: https://github.com/ql-io/cluster2).

Looking again at ch13/cluster.js, notice that we can abstract the actual Express.js app into a separate file. This
a good thing to do because it maintains separation between two distinct logical units, the cluster and Express.js app.
For example, the cluster file previously listed can be refactored into this:

var cluster = require('cluster');
var numCPUs = require('os').cpus().length;
var app = require('./app'); // <- THIS FILE!

if (cluster.isMaster) {
 console.log('Fork %s worker(s) from master', numCPUs);
 for (var i = 0; i < numCPUs; i++) {
 cluster.fork();
 }
 cluster.on('online', function(worker) {
 console.log('Worker is running on %s pid', worker.process.pid);
 });
 cluster.on('exit', function(worker, code, signal) {
 console.log('Worker with %s is closed', worker.process.pid);
 });
} else if (cluster.isWorker) {
 var port = 3000;
 console.log('Worker (%s) is now listening to http://localhost:%s',
 cluster.worker.process.pid, port);
 app.listen(port);
}

Summary
In this chapter, we explored one of the ways to implement a system with a master and multiple workers that are
Express.js apps listening on the same port. This is a valuable trick that you can use to reduce your server load,
enabling you to serve more traffic with fewer machines, which in turn will save you money.

In the next chapter, we’ll cover how to apply Stylus, Less, and Sass CSS libraries to Express.js servers.

https://www.npmjs.org/package/cluster2
https://github.com/ql-io/cluster2

181

CHAPTER 14

Applying Stylus, Less, and Sass

Using Cascading Style Sheets (CCS) is a must for any web project, but CSS style sheets are tedious to write and
manage in complex projects. This is mainly due to the fact that CSS is not a real programming language. CSS has no
inheritance, variables, or functions. Code reuse and maintainability is a pain in the neck for plain CSS resources.
This is especially true for large projects or CSS libraries that are intended to be shared among various projects.

The solution to the pain of using plain CSS is to use another, better language that is compiled into CSS at the time
of the build (for production) or on-the-fly (for development). For the latter, Express.js uses middleware, so each time
a web page requests a CSS asset, the framework converts the better-CSS code into plain CSS. Some of the better-CSS
libraries include Stylus (my favorite), Less (favorite of the Twitter Bootstrap team), and Sass.

So, Stylus, Less, and Sass bring the much needed sanity of reusability (mixins, extensions, variables, etc.) to style
sheets so that we as developers can be more productive and reuse CSS code more easily. Let’s see how we can tap into
this pool of awesomeness when we work with Express.js.

Coverage of the libraries and their features in detail is beyond the scope of this chapter, because the features are
numerous and prone to future changes (so it’s better to refer to the official documentation, links to which are provided at
the end of the chapter). This chapter teaches you how to plug in the libraries to Express.js apps. The libraries themselves are
backward compatible (for the most part) with plain CSS; therefore, they have a forgiving, flat learning curve.

Tip ■ Express Generator v4.2.0 supports the Less and Stylus libraries, but not Sass.

Stylus
Stylus is a sibling of Express.js and is the most-often used CSS framework.1 It’s my favorite for the same reason that I
favor Jade: it achieves eloquence by minimizing the number of characters needed for it to work. The fewer characters
that I have to type, the less chance that I will make mistakes and the more time that I have to solve real problems.

To install Stylus, type and run

$ npm install stylus@0.42.3 --save.

Apply Stylus with app.use and the folder name. Then, to apply static middleware, include this in your server file:

//... Import dependencies and instantiate app
app.use(require('stylus').middleware(__dirname + '/public'));
app.use(express.static(path.join(__dirname, 'public')));
//... Routes and app.listen()

1https://www.npmjs.org/package/stylus

https://www.npmjs.org/package/stylus

CHAPTER 14 ■ APPLYING STYLUS, LESS, AND SASS

182

Put *.styl files inside the folder that we exposed (e.g., public or public/css) and include them in Jade (or any
other) templates using the *.css extension. Yes, that’s right! The file is *.styl but in the Jade or HTML code we ask for
the *.css file. Express.js will do the magic! For example, we have style.styl, in public/stylesheets/, so we use
/stylesheets/style.css in the template/HTML:

//...
 head
 link(rel='stylesheet', href='/stylesheets/style.css')
//...

Or, in any other templates of your choice, or in plain HTML file(s), enter the following:

<link rel="stylesheet" href="/stylesheets/style.css"/>

For a project created from scratch, you can use the generator command:

$ express -c stylus express-app-name command

You’ll find the Stylus-enabled project in the ch14/stylus folder as well as on GitHub
(https://github.com/azat-co/proexpressjs).

Less
To use Less with Express.js, we need less-middleware, which is an external NPM module
(https://www.npmjs.org/package/less-middleware):

$ npm install less-middleware@1.0.0 --save

Then, we need to add less-middleware before the static and router ones (ch14/less/app.js):

//... Import dependencies and instantiate app
app.use(require('less-middleware')(path.join(__dirname, 'public')));
app.use(express.static(path.join(__dirname, 'public')));
//... Routes and app.listen()

Assuming the Less file(s) are in public/css, we can link the *.css file(s), and the rest will be handled
automatically; for example, a Jade template might use this:

//...
 head
 link(rel='stylesheet', href='/stylesheets/style.css')
//...

Or, in any other template of your choice, or in plain HTML file(s), use the following:

<link rel="stylesheet" href="/stylesheets/style.css"/>

For a project created from scratch, you can use the $ express -c less express-app-name command.
You’ll find the Less-enabled project in the ch14/less folder as well as on GitHub

(https://github.com/azat-co/proexpressjs).

https://github.com/azat-co/proexpressjs
https://www.npmjs.org/package/less-middleware
https://github.com/azat-co/proexpressjs

CHAPTER 14 ■ APPLYING STYLUS, LESS, AND SASS

183

Sass
To use Sass with Express.js, we need node-sass, which is an external NPM module
(https://npmjs.org/package/node-sass; GitHub: https://github.com/sass/node-sass):

$ npm install node-sass@0.6.7 --save

This is our Express.js plug-in for Sass (ch14/sass/app.js):

// ... Import dependencies and instantiate app
app.use(require('node-sass').middleware({
 src: __dirname + '/public',
 dest: __dirname + '/public',
 debug: true,
 outputStyle: 'compressed'
}));
app.use(express.static(path.join(__dirname, 'public')));
// ... Routes and app.listen()

The Jade template also imports the *.css file:

link(rel='stylesheet', href='/stylesheets/style.css')

The Sass-enabled project is in the ch14/sass folder, as well as on GitHub
(https://github.com/azat-co/proexpressjs).

Summary
Most code of the CSS frameworks we touched upon in this chapter is compatible with plain CSS. In other words,
plain CSS code will work just fine inside of Stylus, Sass, or Less. Therefore, there is no harm in including such a CSS
framework into your project.

The benefits of using such a framework are numerous, including the availability of mixins, variables, inheritance,
and so forth. These features are quite extensive, which is why they are not included in this book. For complete
information, please refer to the official online documentation for Stylus (http://learnboost.github.io/stylus),
Sass (http://sass-lang.com), and Less (http://lesscss.org).

The next chapter provides some important tips regarding Express.js and security.

https://npmjs.org/package/node-sass
https://github.com/sass/node-sass
https://github.com/azat-co/proexpressjs
http://learnboost.github.io/stylus
http://sass-lang.com/
http://lesscss.org/

185

CHAPTER 15

Security Tips

The set of tips in this chapter deals with security in Express.js applications. Security is often a neglected topic that is
deferred until the last minute before the release. Obviously, this approach of treating security as an afterthought is prone
to leaving holes for attackers. A better approach is to consider and implement security matters from the ground up.

Browser JavaScript has earned a bad reputation for security vulnerabilities, so we need to keep our Node.js apps
as secure as possible! With the simple modifications and middleware covered in this chapter, you can effortlessly
address some basic security concerns.

This chapter covers the following topics:

Cross-site request forgery (CSRF)•

Process permissions•

HTTP security headers•

Input validation•

Cross-Site Request Forgery
CSRF and the csurf middleware were briefly covered in Chapter 4. Please refer to that chapter for the CSRF definition
and explanation.

The csurf middleware does most of the job of matching incoming values from requests. However, we still need
to expose the values in responses and pass them back to the server in templates (or JavaScript XHRs). First, we
install the csurf module like any other dependency with

$ npm install csurf@1.6.0

Then, we apply csurf with var csrf = require('csurf'); app.use(), as covered in Chapter 4:

app.use(csrf());

The csrf must be preceded by cookie-parser and express-session because it depends on these middleware
(i.e., to install, import, and apply the necessary modules).

One of the ways to implement the validation is to use custom middleware to pass the CSRF token to all
the templates using response.local. This custom middleware must precede the routes (as is the case for most
middleware statements):

app.use(function (request, response, next) {
 response.locals.csrftoken = request.csrfToken();
 next();
});

CHAPTER 15 ■ SECURITY TIPS

186

In other words, we manually facilitate the presence of the token in the body (shown in this example), query, or
header. (Depending on your preference or a contract between the client, you can use the query or header.)

So, to render the value in the template as a hidden form value, we can use

input(type="hidden", name="_csrf", value="#{csrftoken}")

This hidden input field will add the token value to the submitted form data, facilitating the sending of the CSRF
token to the /login route along with other fields such as email and password.

Here’s the full Jade language content in file ch15/index.jade:

doctype html
html
 head
 title= title
 link(rel='stylesheet', href='/css/style.css')
 body
 if errors
 each error in errors
 p.error= error.msg
 form(method="post", action="/login")
 input(type="hidden", name="_csrf", value="#{csrftoken}")
 input(type="text", name="email", placeholder="hi@webapplog.com")
 input(type="password", name="password", placeholder="Password")
 button(type="submit") Login
 p
 include lorem-ipsum

To see the demo of CSRF in ch15/app.js, start the server as you typically do with $ node app. Then navigate to
the home page located at http://localhost:3000. You should see the token in the hidden field of the form, as shown
in Figure 15-1. Keep in mind that your token value will be different, but its format will be the same.

CHAPTER 15 ■ SECURITY TIPS

187

For each request to the home page (/) or refresh of the page, you’ll get a new token. But, if you augment the token
to simulate the attack (you can do it right there in the Chrome Developer Tools), you’ll get this error:

403 Error: invalid csrf token
 at verifytoken...

Figure 15-1. CSRF token from the csurf module inserted into the form to be sent later to the /login route

CHAPTER 15 ■ SECURITY TIPS

188

Process Permissions
Obviously, it’s usually a bad idea to run web services as root. Operations developers can utilize Ubuntu’s authbind1
to bind to privileged ports (e.g., 80 for HTTP and 443 for HTTPS) without giving root access.

Alternatively, it’s possible to drop privileges after binding to a port. The idea here is that we pass the values of GID
(group ID) and UID (user ID) to the Node.js app and use the parsed values to set the group identity and user identity
of the process. This will not work on Windows, so you might want to use if/else and process.platform or NODE_ENV
to make your code cross-platform.

Here is an example of dropping privileges by setting GID and UID2 with properties from the process.env.GID
and process.evn.UID environmental vars:

// ... Importing modules
var app = express();
// ... Configurations, middleware and routes
http.createServer(app).listen(app.get('port'), function(){
 console.log("Express server listening on port "
 + app.get('port'));
 process.setgid(parseInt(process.env.GID, 10));
 process.setuid(parseInt(process.env.UID, 10));
});

HTTP Security Headers
The Express.js middleware called helmet (https://www.npmjs.org/package/helmet; GitHub: https://github.com/
helmetjs/helmet) is a collection of security-related middleware that provides most of the security headers described
in the Recx article “Seven Web Server HTTP Headers that Improve Web Application Security for Free.”3 As of this
writing, helmet is at version 0.4.1 and includes the following middleware:

• crossdomain: Serves /crossdomain.xml to prevent Flash from loading certain unwanted
content (see http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html)

• csp: Adds Content Security Policy that allows for whitelisting of content to load
(see http://content-security-policy.com and http://www.html5rocks.com/en/
tutorials/security/content-security-policy)

• hidePoweredBy: Removes X-Powered-By to prevent revealing that you are using Node.js and
Express.js

• hsts: Adds HTTP Strict Transport Security to prevent your web site from being viewed on
HTTP (instead of HTTPS)

• ienoopen: Sets the X-Download-Options header for Internet Explorer 8+ to prevent the loading
of untrusted HTML in IE browsers (see http://blogs.msdn.com/b/ie/archive/2008/07/02/
ie8-security-part-v-comprehensive-protection.aspx)

• nocache: Cache-Control and Pragma headers to stop caching (helpful to flush old bugs from
users’ browsers)

• nosniff: Sets the proper X-Content-Type-Options header to mitigate MIME type sniffing
(see http://msdn.microsoft.com/en-us/library/gg622941%28v=vs.85%29.aspx)

1http://manpages.ubuntu.com/manpages/hardy/man1/authbind.1.html
2http://www.gnu.org/software/coreutils/manual/html_node/Directory-Setuid-and-Setgid.html
3http://recxltd.blogspot.com/2012/03/seven-web-server-http-headers-that.html

https://www.npmjs.org/package/helmet
https://github.com/helmetjs/helmet
https://github.com/helmetjs/helmet
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://content-security-policy.com/
http://www.html5rocks.com/en/tutorials/security/content-security-policy
http://www.html5rocks.com/en/tutorials/security/content-security-policy
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-v-comprehensive-protection.aspx
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-v-comprehensive-protection.aspx
http://msdn.microsoft.com/en-us/library/gg622941%28v=vs.85%29.aspx
http://manpages.ubuntu.com/manpages/hardy/man1/authbind.1.html
http://www.gnu.org/software/coreutils/manual/html_node/Directory-Setuid-and-Setgid.html
http://recxltd.blogspot.com/2012/03/seven-web-server-http-headers-that.html

CHAPTER 15 ■ SECURITY TIPS

189

• xframe: Sets the X-Frame-Options heading to DENY to prevent your resource from being put
into a frame for clickjacking attacks (see https://en.wikipedia.org/wiki/Clickjacking)

• xssFilter: Sets the X-XSS-Protection header for IE8+ and Chrome to protect from XSS
attacks (see http://blogs.msdn.com/b/ieinternals/archive/2011/01/31/controlling-
the-internet-explorer-xss-filter-with-the-x-xss-protection-http-header.aspx)

To install helmet, simply run

$ npm install helmet@0.4.1

Import the module as you always do:

var helmet = require('helmet');

Then apply the middleware before the routes. The default usage is as follows (ch15/app.js):

app.use(helmet());

Figure 15-2 shows how the helmet v0.4.1 HTTP response will look when used with the default options:

Figure 15-2. helmet v0.4.1 HTTP response when used with default options

https://en.wikipedia.org/wiki/Clickjacking
http://blogs.msdn.com/b/ieinternals/archive/2011/01/31/controlling-the-internet-explorer-xss-filter-with-the-x-xss-protection-http-header.aspx
http://blogs.msdn.com/b/ieinternals/archive/2011/01/31/controlling-the-internet-explorer-xss-filter-with-the-x-xss-protection-http-header.aspx

CHAPTER 15 ■ SECURITY TIPS

190

Input Validation
Express.js doesn’t perform any user/client input sanitation or validation when you use body-parser or query as input
data. And, as we all know, we should never trust the input. Malicious code can be inserted (XSS or SQL injections) into
your system. For example, browser JavaScript code that you treat as a benign string can turn into an attack when you
print that string on your page (especially if your template engine doesn’t escape special characters automatically!).

The first line of defense is to check data manually with regular expressions on the routes that accept external
data. The additional “defense” can be added on the object-relational mapping layer, such as the Mongoose Schema
(see Chapter 22). Remember that front-end/browser validation is performed only for usability purposes (i.e., it is more
user-friendly)—it does not protect your web site from anything.

For example, in ch15/app.js we can implement the validation that uses a RegExp pattern on the email field,
if-else statements, and the test() method to append an error message to the errors array like this:

app.post('/login-custom', function(request, response){
 var errors = [];
 var emailRegExp = /^(([^<>()[\]\\.,;:\s@\"]+(\.[^<>()[\]\\.,;:\s@\"]+)*)|(\".+\"))@((\[[0-9]
{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\])|(([a-zA-Z\-0-9]+\.)+[a-zA-Z]{2,}))$/;
 if (!request.body.password) errors.push({msg: 'Password is required'});
 if (!request.body.email || !emailRegExp.test(request.body.email)) errors.push({msg: 'A valid
email is required'});
 if (errors)
 response.render('index', {errors: errors});
 else
 response.render('login', {email: request.email});
});

As you add more routes and input fields to validate, you will end up with more RegExp patterns and if/else
statements. Although that will work better than having no validation, the recommended approach is to write your
own module or use express-validator.

To install express-validator, run:

$ npm install express-validator@2.4.0

Import express-validator in ch15/app.js:

var validator = require('express-validator');

Then apply express-validator after body-parser:

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({extended: true}));
app.use(validator());

Now, within the request handlers, we get to access request.assert and request.validationErrors():

app.post('/login', function(request, response){
 request.assert('password', 'Password is required').notEmpty();
 request.assert('email', 'A valid email is required').notEmpty().isEmail();
 var errors = request.validationErrors();
 if (errors)
 response.render('index', {errors: errors});

CHAPTER 15 ■ SECURITY TIPS

191

 else
 response.render('login', {email: request.email});
});

The index.jade file simply prints errors from the array, if there are any:

if errors
 each error in errors
 p.error= error.msg

And the login.jade template prints the e-mail. This template is rendered only if the validation went successfully.

p= email

To demonstrate, go to the home page and try to enter some data. If there are errors, you’ll be shown the home
page with errors as shown in Figure 15-3. The double “A valid email is required” message comes from the fact that we
have two assertions for the email field (notEmpty and isEmail) and both of them fail when the email field is empty.

Figure 15-3. Error messages from using express-validator to assert form values

CHAPTER 15 ■ SECURITY TIPS

192

Summary
Security is paramount, but often neglected. This is especially true during early stages of development. The typical
thought process goes like this: let’s focus on delivering more features, then we’ll take care of security later when we are
about to release. This decision is usually well-intended, but rarely plays out as planned. As the result, the security of
the systems suffers.

With middleware libraries, such as csurf, helmet, and express-validator, we can get a good amount of basic
security without adding too many development cycles.

In the next chapter, we’ll shift gears and cover some approaches to using Express.js with the Socket.IO library
for reactive (i.e., updated in real time) views.

193

CHAPTER 16

Socket.IO and Express.js

Socket.IO (http://socket.io) is a library that provides the capability to establish two-way communication between a
client and the server in real time. This two-way communication is driven by the WebSocket technology.

The WebSocket technology is available in most modern browsers, and the easiest way to conceptualize it is
to imagine a constant connection between a browser and the server, as opposed to the traditional sporadic HTTP
requests. Another difference between WebSocket and traditional HTTP requests is that the former is a two-way
channel, meaning that the server can initiate the data transfer. This is great for updating the page in real time.

WebSocket is not the only option for real-time-like systems. You can implement close-to-real-time systems with
polling, which is when browser code makes a lot of HTTP requests within a short interval (e.g., 100 milliseconds).
And Socket.IO is not the only library that you can use to implement WebSocket. In Practical Node.js (Apress, 2014),
I present an example that uses ws as the server library and a native (no library at all) browser API. However, the
advantage of using Socket.IO is that it has broad, cross-platform and cross-browser support; falls back to polling when
WebSocket is unavailable; and uses events as its main implementation pattern.

Full coverage of the Socket.IO library deserves its own book. However, it’s so cool and easy to start using with
Express.js that I included this chapter to show you a basic example.

Using Socket.IO
The example will echo (browser to server and back) our input in reverse in real time. This means we’ll build an
Express.js server with a web page that includes a form input field. The web page will also have some front-end
JavaScript code that transfers the input field characters to the server in real time as we type. The server will reverse the
string and send it back to the browser, where our front-end JavaScript code will print the final string to the browser
console. We’ll be using the Socket.IO methods and event listeners for all that functionality.

In the final product, if you type “!stekcoS,” the app will convert it to “Sockets!” as shown in Figure 16-1. And the
browser console output will display

!
sending ! to server
received !
!
sending !
received !
!s
sending !s to server
received s!
...

http://socket.io/

CHAPTER 16 ■ SOCKET.IO AND EXPRESS.JS

194

You can start with a fresh Express.js app created by $ express socket, or download the source code from the
ch16/socket folder. Then, install dependencies with $ cd socket && npm install.

Tip ■ If you need an Express.js 3.x example, you can refer to the version of this app written for Express.js 3.3.5.

The source code is in the GitHub repo: https://github.com/azat-co/proexpressjs/tree/master/ch16/socket-express3.

To include Socket.io, we can use:

$ npm install socket.io@1.1.0 --save

Figure 16-1. The input of !stekcoS yields Sockets!

https://github.com/azat-co/proexpressjs/tree/master/ch16/socket-express3

CHAPTER 16 ■ SOCKET.IO AND EXPRESS.JS

195

Alternatively, we can use package.json:

{
 "name": "socket-app",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node app.js"
 },
 "dependencies": {
 "errorhandler": "1.1.1",
 "express": "4.8.1",
 "jade": "1.5.0",
 "morgan": "1.2.2",
 "serve-favicon": "2.0.1",
 "socket.io": "1.1.0"
 }
}

Socket.IO, in some sense, might be considered another server. We can refactor auto-generated Express.js code by
passing the Express.js app object to the createServer() method and then calling the Socket.IO listen() method on
the server object:

var server = http.createServer(app);
var io = require('socket.io').listen(server);

//...
server.listen(app.get('port'), function(){
 console.log('Express server listening on port '
 + app.get('port'));
});

After the io object is instantiated, the following code can be used to establish a connection:

io.sockets.on('connection', function (socket) {

Once the connection is established—and we know that it is because we’re inside the callback—we attach the
messageChange event listener, which will be triggered by the user actions on the browser:

socket.on('messageChange', function (data) {
 console.log(data);

Once the message has been changed (i.e., the user has typed something), we can reverse the string and send it
back in the form of the receive event with socket.emit():

 socket.emit('receive',
 data.message.split('').reverse().join(''));
 })
});

CHAPTER 16 ■ SOCKET.IO AND EXPRESS.JS

196

Here’s the full content of ch16/socket/app.js:

var http = require('http'),
 express = require('express'),
 path = require('path'),
 logger = require('morgan'),
 favicon = require('serve-favicon'),
 errorhandler = require('errorhandler'),
 bodyParser = require('body-parser');

var app = express();

app.set('view engine', 'jade');
app.set('port', process.env.PORT || 3000);
app.use(logger('combined'));
app.use(favicon(path.join(__dirname, 'public', 'favicon.ico')));
app.use(express.static('public'));

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({extended: true}));

app.get('/', function(request, response){
 response.render('index');
});

app.use(errorhandler());

var server = http.createServer(app);
var io = require('socket.io').listen(server);

io.sockets.on('connection', function (socket) {
 socket.on('messageChange', function (data) {
 console.log(data);
 socket.emit('receive', data.message.split('').reverse().join(''));
 });
});

server.listen(app.get('port'), function(){
 console.log('Express server listening on port ' + app.get('port'));
});

Lastly, our app needs some front-end love in index.jade in the form of an input box and JavaScript code to send
and receive user input. The input box might be implemented like this:

 input(type='text', class='message', placeholder='what is on your mind?', onkeyup='send(this)')

On every key up event, it calls the send() function, but before we write this function, let’s include the Socket.IO
library:

 script(src="/socket.io/socket.io.js")

CHAPTER 16 ■ SOCKET.IO AND EXPRESS.JS

197

The socket.io.js file is not a real file that you need to download, like, for example, a jQuery file. The Node.js
Socket.IO server will provide this file “automagically.”

Now we can connect to the socket server and attach the receive event listener:

var socket = io.connect('http://localhost');
socket.on('receive', function (message) {
 console.log('received %s', message);
 document.querySelector('.received-message').innerText = message;
});

document.querySelector is just a modern browsers’ analog to the jQuery selector. It simply gives us an HTML
element so that we don’t need to depend on jQuery. We use the innerText property to show the new text on the page.

The send function emits the event messageChange that passes the message to the server. This happens on each
keystroke, and for this reason changes appear in real time.

var send = function(input) {
 console.log(input.value)
 var value = input.value;
 console.log('sending %s to server', value);
 socket.emit('messageChange', {message: value});
 }

Following is the full source code of ch16/socket/index.jade:

extends layout

block content
 h1= title
 p Welcome to
 span.received-message #{title}
 input(type='text', class='message', placeholder='what is on your mind?', onkeyup='send(this)')
 script(src="/socket.io/socket.io.js")
 script.
 var socket = io.connect('http://localhost');
 socket.on('receive', function (message) {
 console.log('received %s', message);
 document.querySelector('.received-message').innerText = message;
 });
 var send = function(input) {
 console.log(input.value)
 var value = input.value;
 console.log('sending %s to server', value);
 socket.emit('messageChange', {message: value});
 }

Running the App
Now everything should be ready for you to start the app ($ node app). Go to the home page
(http://localhost:3000) and type “!stekcoS” and the app will convert it to “Sockets!” as previously shown in
Figure 16-1.

CHAPTER 16 ■ SOCKET.IO AND EXPRESS.JS

198

As you view the browser output, you might think the code is just transformed on the client side without the
server’s involvement. That’s not the case, and the proof is in the server logs, where you’ll see that the conversion
actually happened on the server (see Figure 16-2).

Figure 16-2. Express.js server catching and processing input in real time

For more Socket.IO examples, go to http://socket.io/#how-to-use.

Summary
Again, you have seen Express.js seamlessly integrate with another library. In this short example of dual-channel
communication, we used event listeners from the Socket.IO library. The library is compatible with both Node.js and
browser JavaScript, which makes it even easier to use. Socket.IO provides good cross-browser support for real-time
applications. It seamlessly integrates with the Express.js stack, and has many advantages over using native browser
API for WebSocket.

In the next chapter, we’ll cover the usage of domains for better asynchronous error handling.

http://socket.io/#how-to-use

199

CHAPTER 17

Domain and Express.js

The domain module is a core Node.js module (http://nodejs.org/api/domain.html) that aids developers in
tracking and isolating errors, often a daunting task, through the use of domains. Think of domains as a smarter version
of try/catch statements1.

Defining the Problem
To illustrate the hurdle that asynchronous code might introduce to error handling and debugging, look at this
synchronous code that prints “Custom Error: Fail!” as we would expect:

try {
 throw new Error('Fail!');
} catch (e) {
 console.log('Custom Error: ' + e.message);
}

Now, let’s add asynchronous code in the form of the setTimeout() function, which will delay the execution for a
random number of milliseconds from 10 to 100 (from the file ch17/async-errors.js):

try {
setTimeout(function () {
 throw new Error('Fail!');
 }, Math.round(Math.random()*100));
} catch (e) {
 console.log('Custom Error: ' + e.message);
}

Instead of a “Custom Error: Fail!” message, we see a standard, unhandled error (“Error: Fail!”) that might
look like this:

/Users/azat/Documents/Code/proexpressjs/ch17/async-errors.js:4
 throw new Error("Fail!");
 ^
Error: Fail!
 at null._onTimeout (/Users/azat/Documents/Code/proexpressjs/ch17/async-errors.js:4:13)
 at Timer.listOnTimeout [as ontimeout] (timers.js:110:15)

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch

http://nodejs.org/api/domain.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try%E2%80%A6catch

CHAPTER 17 ■ DOMAIN AND EXPRESS.JS

200

Therefore, try/catch fails at asynchronous errors. A good rule of thumb is to use try/catch only for synchronous
JavaScript/Node.js code.

Tip ■ try/catch might also be slower, especially when you define functions inside, because the JavaScript engine

cannot optimize that code ahead of time. For more about try/catch implications, refer to https://github.com/joyent/

node/wiki/Best-practices-and-gotchas-with-v8 and http://jsperf.com/try-catch-performance-overhead.

Exploring a Basic Domain Example
Before we dive deep into domain and Express.js, let’s explore the basic domain example (ch17/basic.js). In it, we
instantiate the domain object:

var domain = require('domain').create();

Then, we attach an event listener, that tells what to do with the error:

domain.on('error', function(error){
 console.log(error);
});

The main bulk of the code and the error-prone code go in the callback to domain.run():

domain.run(function(){
 throw new Error('Failed!');
});

Now, let’s modify the setTimeout() example by replacing try/catch with domain (ch17/basic-timeout.js):

var domain = require('domain');
var d = domain.create();
d.on('error', function(e) {
 console.log('Custom Error: ' + e);
});
d.run(function() {
 setTimeout(function () {
 throw new Error('Failed!');
 }, Math.round(Math.random()*100));
});

When we run it with $ node basic-timeout.js, the output is

Custom Error: Error: Failed!

Writing a Domain App
Having covered the basics of domain, let’s explore the app in ch17/domain. It has two routes, /error-domain and
/error-no-domain. From the names of the routes, you can guess that they both will crash. The domain route (/error-
domain) will send back some JSON, while the non-domain route (/error-no-domain) will use the standard error
handling middleware from the errorhandler module.

https://github.com/joyent/node/wiki/Best-practices-and-gotchas-with-v8
https://github.com/joyent/node/wiki/Best-practices-and-gotchas-with-v8
http://jsperf.com/try-catch-performance-overhead

CHAPTER 17 ■ DOMAIN AND EXPRESS.JS

201

This is the domain-powered error-prone route:

app.get('/error-domain', function (req, res, next) {
 var d = domain.create();
 d.on('error', function (error) {
 console.error(error.stack);
 d.exit()
 res.status(500).send({'Custom Error': error.message});
 });
 d.run(function () {
 // Error prone code goes here
 throw new Error('Database is down.');
 });
});

We don’t have to use domain in every route; for example, /error-no-domain is using the standard Express.js
approach with the errorhandler module’s middleware:

app.get('/error-no-domain', function (req, res, next) {
 // Error prone code goes here
 next(new Error('Database is down.'));
});

We add some custom logic to differentiate domain and non-domain cases (routes) by using
domain.active (http://nodejs.org/api/domain.html#domain_domain_enter):

app.use(function (error, req, res, next) {
 console.log(domain)
 if (domain.active) {
 console.info('Caught with domain', domain.active);
 domain.active.emit('error', error);
 } else {
 console.info('No domain');
 defaultHandler(error, req, res, next);
 }
});

When you run the application with $ node app.js and go to http://localhost:3000/error-domain and
http://localhost:3000/error-no-domain, you’ll see the JSON page and HTML page, respectively. On the server
logs, you’ll see “Caught with domain” for /error-domain and “No domain” for /error-no-domain.

Notice that in both cases the Express.js app handled errors graciously and didn’t crash. By now you might be
wondering why you should go through all this trouble with domain if the standard Express.js stuff works. The routes
in the previous example had the errors thrown at the “surface” level—that is, synchronous errors. However, most stuff
happens in the asynchronous code. Remember the setTimeout example from earlier in the chapter? It can simulate a
database call, so let’s make our example more realistic by adding async errors to both routes:

app.get('/error-domain', function (req, res, next) {
 var d = domain.create();
 d.on('error', function (error) {
 console.error(error.stack);
 d.exit()
 res.status(500).send({'Custom Error': error.message});

http://nodejs.org/api/domain.html#domain_domain_enter

CHAPTER 17 ■ DOMAIN AND EXPRESS.JS

202

 });
 d.run(function () {
 // Error-prone code goes here
 // throw new Error('Database is down.');
 setTimeout(function () {
 throw new Error('Database is down.');
 }, Math.round(Math.random()*100));
 });
});

app.get('/error-no-domain', function (req, res, next) {
 // Error-prone code goes here
 // throw new Error('Database is down.');
 setTimeout(function () {
 throw new Error('Database is down.');
 }, Math.round(Math.random()*100));
});

Now, check the routes in your browser. The non-domain route will fail miserably and stop the server! The
message might look like this:

/Users/azat/Documents/Code/proexpressjs/ch17/domain/app.js:41
 throw new Error('Database is down.');
 ^
Error: Database is down.
 at null._onTimeout (/Users/azat/Documents/Code/proexpressjs/ch17/domain/app.js:41:11)
 at Timer.listOnTimeout [as ontimeout] (timers.js:110:15)

Unlike the non-domain route, the domain-enabled route didn’t crash the server. Instead, it sent back our custom
error JSON. Hence, the benefit of using domain!

The working (or perhaps “crashing” is more precise) example is in the ch17/domain folder and on GitHub.2

The following is the full content of ch17/domain/app.js:

var http = require('http'),
 express = require('express'),
 path = require('path'),
 logger = require('morgan'),
 favicon = require('serve-favicon'),
 errorHandler = require('errorhandler');

var app = express();

app.set('port', process.env.PORT || 3000);
app.set('views', __dirname + '/views');
app.set('view engine', 'jade');
app.use(logger('combined'));
app.use(favicon(path.join(__dirname, 'public', 'favicon.ico')));
app.use(express.static(path.join(__dirname, 'public')));

2https://github.com/azat-co/expressjsguide/tree/master/domains

https://github.com/azat-co/expressjsguide/tree/master/domains

CHAPTER 17 ■ DOMAIN AND EXPRESS.JS

203

var domain = require('domain');
var defaultHandler = errorHandler();

app.get('/error-domain', function (req, res, next) {
 var d = domain.create();
 d.on('error', function (error) {
 console.error(error.stack);
 d.exit()
 res.status(500).send({'Custom Error': error.message});
 });
 d.run(function () {
 // Error prone code goes here
 // throw new Error('Database is down.');
 setTimeout(function () {
 throw new Error('Database is down.');
 }, Math.round(Math.random()*100));
 });
});

app.get('/error-no-domain', function (req, res, next) {
 // Error prone code goes here
 // throw new Error('Database is down.');
 setTimeout(function () {
 throw new Error('Database is down.');
 }, Math.round(Math.random()*100));
});

app.use(function (error, req, res, next) {
 console.log(domain)
 if (domain.active) {
 console.info('Caught with domain', domain.active);
 domain.active.emit('error', error);
 } else {
 console.info('No domain');
 defaultHandler(error, req, res, next);
 }
});

var server = app.listen(app.get('port'), function() {
 console.log('Express server listening on port ' + server.address().port);
});

You can apply the domain approach to every route with minimal code repetition by implementing domain in the
middleware. Make sure to put this middleware before the routes.

And as usual with Express.js, there’s a third-party module that wraps each route in domain: express-domain-
middleware (https://www.npmjs.org/package/express-domain-middleware).

You can install express-domain-middleware v0.1.0 with:

$ npm install express-domain-middleware@0.1.0

https://www.npmjs.org/package/express-domain-middleware

CHAPTER 17 ■ DOMAIN AND EXPRESS.JS

204

Then, import the module into your project with require():

var expressDomain = require('express-domain-middleware');

Apply this middleware to your Express.js application with app.use() before other middleware and routes:

app.use(expressDomain);

Enjoy!
Another good module to use with domain and Express.js for error handling is okay (https://www.npmjs.org/

package/ok). The idea here that okay is a more eloquent replacement of manual error checks such as:

if (error) return next(error);

Instead of the preceding line, which is repeated in each nested callback (if you wrote it correctly, you should handle the
error in each callback), all you need to do is call okay with two arguments: a callback for errors (e.g., next) and a callback for
no errors (e.g., regular closure). In a way, okay is an extra layer between the function and your regular callback.

With okay the code becomes cleaner, as you can see in this Express.js route:

var okay = require('okay');
app.get('/', function(req, res, next) {
 fs.readFile('file.txt', 'utf8', okay(next, function(contents) {
 res.send(contents);
 });
});

Caution ■ The domain module is in an Unstable stage as of this writing (2014). This means that its methods and

behavior likely will change. Therefore, stay updated and use exact versions in the package.json file.

Summary
Using domains might be a hard concept to grasp for most programmers. If you are one of them, don’t despair! This
happens because we have to deal with asynchronous code problems. We need to shift our whole mindset. For this
reason, this chapter started with some very basic examples of asynchronous code to illustrate the challenges. Then,
we progressed into domain and Express.js usage. When it comes to Express.js, one of the brilliant things about its
popularity and Node.js’ NPM is that they are middleware for almost anything. So, if understanding domain isn’t a
priority Node.js topic to you, you can just apply the middleware and forget about it.

Using the domain module was the last of the Express.js tips and tricks for working with the framework. In the next
chapter, we’ll return into “Hello World” mode to find out why it’s important to start learning the Node.js stack with
Express.js, even if you plan to use a different framework (Spoiler Alert: it’s because a lot of Node.js frameworks borrow
some concepts from or depend on Express.js).

https://www.npmjs.org/package/ok
https://www.npmjs.org/package/ok

205

CHAPTER 18

Sails.js, DerbyJS, LoopBack, and
Other Frameworks

If you want to accomplish more comprehensive tasks than a standard Express.js app can accomplish out of the box,
then you might want to consider exploring other true MVC frameworks. The good news is that some of the most
popular alternative Node.js frameworks use Express.js. Therefore, by understanding Express.js, you can understand
the inner workings of the other frameworks faster and better.

This chapter introduces the following, more advanced frameworks that depend on Express.js:

Sails.js•

DerbyJS•

LoopBack•

The purpose of introducing these other frameworks is to demonstrate that, even if you’re using frameworks other
than Express.js, your knowledge of Express.js will be handy.

Sails.js
Sails.js is a convention over configuration type of framework. This means that it’s similar in philosophy to Ruby on
Rails. Sails.js is a true MVC framework, unlike Express.js, which relies on developers for adding ORMs like Mongoose.
Sails.js uses the Waterline ORM (https://github.com/balderdashy/waterline).

To get started with Sails.js:

$ npm -g install sails@0.10.5

This will give you the sails command, which you can use as follows to see the list of available options:

$ sails -h

Let’s use the new command to generate an app with the name sails (ch18/sails):

$ sails new sails

After the app has been generated, start it with sails lift:

$ cd sails
$ sails lift

https://github.com/balderdashy/waterline

CHAPTER 18 ■ SAILS.JS, DERBYJS, LOOPBACK, AND OTHER FRAMEWORKS

206

Now, if you go to http://localhost:1337, you will see a Sails.js page with some instructions and links, as shown
in Figure 18-1.

Figure 18-1. The default Sails.js page with some instructions and links

Sails.js has a rich scaffolding. To generate resources, you can use the following commands (substitute values with
your own names) as specified.

Build a new model and controller, api/models/NAME.js and api/controllers/NAMEController.js:

$ sails generate api NAME

Build a new model, api/models/NAME.js, with attributes (optional):

$ sails generate model NAME [attribute1:type1, attribute2:type2 ...]

Build a new controller, api/controllers/NAMEController.js, with actions (optional):

$ sails generate controller NAME [action1, action2, ...]:

Build a new adapter, api/adapters/NAME:

$ sails generate adapter NAME:

CHAPTER 18 ■ SAILS.JS, DERBYJS, LOOPBACK, AND OTHER FRAMEWORKS

207

Build a new generator with the name NAME:

$ sails generate generator NAME

Each controller is structured as a module with methods. These methods are actions, such as /controller/action.
Each action has a request and a response. Their arguments are inherited from their Express.js counterparts. To
illustrate this point, let’s create a controller and add some custom code to it using Express.js methods response.json()
and response.redirect().

First, run this command:

$ sails generate api user

Open the newly created file, ch18/sails/api/controllers/UserController.js, and add two actions to it, json,
which will output the current time, and buy-oauth, which will use the redirect:

module.exports = {
 json: function (request, response) {
 response.json({time: new Date()})
 },
 'buy-oauth': function (request, response) {
 return res.redirect('https://gum.co/oauthnode');
 }
};

If you go to http://localhost:1337/user/json, you’ll see

{ "time": "2014-09-09T14:59:28.377Z" }

And if you go to http://localhost:1337/user/buy-oauth, you’ll be redirected to the web page for Introduction
to OAuth with Node.js (webapplog.com, 2014).

This brief introduction has demonstrated that writing controllers in Sails.js will be easy for you because you
are already familiar with Express.js. Controllers are intermediaries between views and models, and typically contain
the bulk of the code and logic. For more information on Sails.js concepts and its documentation, go to
http://sailsjs.org/#/documentation/concepts and http://irlnathan.github.io/sailscasts.

DerbyJS
DerbyJS is a full-stack framework, which means that it handles both client and server code. It also provides a database
connection and abstraction layer (model): http://derbyjs.com. DerbyJS is similar to Meteor (https://www.meteor.com)
in its reactive full-stack approach, but DerbyJS is less opinionated and not pushy in the usage of its packages
(vs. NPM modules).

First, create a package.json file with these versions (ch18/derby/package.json):

{
 "name": "derby-app",
 "description": "",
 "version": "0.0.1",
 "main": "./server.js",
 "dependencies": {
 "derby": "0.6.0-alpha24",
 "derby-less": "0.1.0",

https://gum.co/oauthnode
http://sailsjs.org/#/documentation/concepts
http://irlnathan.github.io/sailscasts
http://derbyjs.com/
https://www.meteor.com/

CHAPTER 18 ■ SAILS.JS, DERBYJS, LOOPBACK, AND OTHER FRAMEWORKS

208

 "derby-starter": "0.2.3"
 }
}

To install the dependencies, run

$ npm install

Obviously, derby is the framework’s module. Less obvious is derby-starter, which is a set of files that takes the
derby application (derby-app.js) and runs it through setup. The setup involves connecting to Redis and MongoDB
and mounting the DerbyJS app to an Express.js server.

To launch a DerbyJS application with derby-starter, use server.js. You can copy and customize derby-
starter to suit your needs, or write your own mini-module. The derby-starter/lib/server.js file uses familiar
Express.js statements:

//...
 expressApp
 // Creates an express middleware from the app's routes
 .use(app.router())
 .use(expressApp.router)
 .use(errorMiddleware)
//...

To utilize derby-starter, let’s create a server.js file that will launch the server:

require('derby-starter').run(__dirname+'/derby-app.js');

The main DerbyJS logic will be in the derby-app.js file, and its content starts with instantiations:

var path = require('path'),
 derby = require('derby'),
 app = derby.createApp('derby-app', __filename);

The next assignment is needed to access the DerbyJS app from derby-starter:

module.exports = app;

Just for the sake of variety, we’re using the Less CSS library here, but Derby supports Stylus and others:

app.serverUse(module, 'derby-less');

Here’s how we can load the styles:

app.loadStyles(path.join(__dirname, 'styles', 'derby-app'));

Similarly, we load the template (ch18/derby/views/derby-app.html), which is similar in syntax to Handlebars:

app.loadViews (path.join(__dirname, 'views', 'derby-app'));

CHAPTER 18 ■ SAILS.JS, DERBYJS, LOOPBACK, AND OTHER FRAMEWORKS

209

The routes we’ll define are akin to Express.js routes. The main difference is in the request handlers: page, model,
and params. The page handler is the page that is rendered with page.render(), the model handler is a database
abstraction layer that is passed to and from the browser, and the params handler is the object that has the URL
parameters (e.g., /:id):

app.get('/', function(page, model, params) {
 model.subscribe('d.message', function() {
 page.render();
 });
});

The next method, app.proto.create, is used when the page is loaded on both the server and the client.
Notice that this is Node.js code and not browser code. Hence the full-stack nature of the framework:

app.proto.create = function(model) {
 model.on('set', 'd.message', function(path, object) {
 console.log('message has been changed: ' + object);
 });
};

The content of ch18/derby/views/derby-app.html uses a special DerbyJS tag, <Body:>:

<Body:>
 <input value="{{d.message}}"><h1>{{d.message}}</h1>

The Less file derby-app.less has this style:

h1 {
 color: blue;
}

derby-starter also connects to Redis and MongoDB. Therefore, let’s start Redis and MongoDB in two separate
terminal windows/tabs:

$ redis-server
$ mongod

Then start the server with either one of these two commands:

$ node server
$ node .

Then, go to http://localhost:3000 and type something. The text will be automatically updated on the page
in the <h1> tags (see Figure 18-2), and also saved to the MongoDB database. All in real time! This means that, if you
restart the server and refresh the page, you’ll see the same message again.

CHAPTER 18 ■ SAILS.JS, DERBYJS, LOOPBACK, AND OTHER FRAMEWORKS

210

LoopBack
LoopBack is a comprehensive framework with command-line scaffolding and a web API explorer:
http://strongloop.com/node-js/loopback.

To install the command-line tool, run:

$ npm install -g strongloop@2.9.1

To create the boilerplate app, run this command and answer the subsequent questions:

$ slc loopback

Figure 18-2. Real-time communication in a DerbyJS app

http://strongloop.com/node-js/loopback

CHAPTER 18 ■ SAILS.JS, DERBYJS, LOOPBACK, AND OTHER FRAMEWORKS

211

At the end, the command-line tool will show you some of the available options:

Change directory to your app:

$ cd loopback

Create a model in your app:

$ slc loopback:model

Optional: Enable StrongOps monitoring:

$ slc strongops

Run the app:

$ slc run .

Let’s create a model Book with property name of type string, plural Books, a memory store, and REST API (slc will
ask for inputs):

$ cd loopback
$ slc loopback:model

After you’re finished with the model, run:

$ slc run

Then go to http://localhost:3000/explorer in your browser (see Figure 18-3) and click Books to explore the API.

CHAPTER 18 ■ SAILS.JS, DERBYJS, LOOPBACK, AND OTHER FRAMEWORKS

212

To demonstrate that LoopBack is built on top of Express.js, edit ch18/loopback/common/models/book.js as follows:

module.exports = function(Book) {
 Book.buy = function(code, cb) {
 cb(null, 'Processing... ' + code);
 }

Figure 18-3. LoopBack’s explorer is a web interface for APIs

CHAPTER 18 ■ SAILS.JS, DERBYJS, LOOPBACK, AND OTHER FRAMEWORKS

213

 Book.remoteMethod('buy', {accepts: [{http: function(ctx) {
 // HTTP request object as provided by Express.js
 var request = ctx.req;
 console.log(request.param('code'), request.ip, request.hostname)
 return request.param('code');
 }}],
 returns: {arg: 'response', type: 'string'}
 }
);
};

The request (ctx.req) object is the Express.js request. We can call the request.param() method (among other
Express.js methods, such as request.ip() and request.hostname()), to extract the code parameter.

The client request is as follows:

$ curl http://localhost:3000/api/Books/Buy -X POST -d "code=1"

The client response is:

{"response":"Processing... 1"}%

The server logs are:

1 127.0.0.1 localhost

Tip ■ Don’t forget to restart the server with $ slc run every time you make changes to the source file.

Another place where you can use your Express.js skills is ch18/loopback/server/server.js; for example:

app.use(middleware());

Other Frameworks
The following list introduces some other notable frameworks you might want to use after mastering Express.js (though
they do not necessarily depend on Express.js):

• Hapi (http://hapijs.com): A comprehensive, enterprise-level framework (Practical Node.js
[Apress, 2014] has a REST API example built with this framework)

• Total.js (http://www.totaljs.com): A modular web application framework

• Geddy (http://geddyjs.org): A simple, structured, web framework for Node

• Compound (http://compoundjs.com): A framework built with the Express + structure +
extensions formula in mind (the creator of this framework wrote the foreword to this book)

For more Node.js frameworks, check out http://nodeframeworks.com—the hand-picked registry of Node.js frameworks.

http://hapijs.com/
http://www.totaljs.com/
http://geddyjs.org/
http://compoundjs.com/
http://nodeframeworks.com/

CHAPTER 18 ■ SAILS.JS, DERBYJS, LOOPBACK, AND OTHER FRAMEWORKS

214

Summary
As you’ve seen from this series of introductions to Sails.js, DerbyJS, and LoopBack, it helps to know Express.js!

This concludes Part 3 of the book, in which you have learned how to solve common problems in Express.js, such
as abstracting code, implementing async error handling with domains, securing your app, effortlessly implementing
real-time communication between server and client, applying Express.js knowledge in other frameworks, and
spanning multiple processes with cluster. Now you’re ready for more comprehensive examples than those we’ve used
to demonstrate certain features.

In Part 4, we’ll cover four example applications, starting with the Instagram Gallery, which demonstrates a simple
server that integrates with a third-party service provider.

PART IV

Tutorials and Examples

217

CHAPTER 19

Instagram Gallery

If you’re reading this book in chronological order, you’ve made it through the important, but somewhat dry, details of
the API reference and have been exposed only to abstract solutions. Now that you’ve reached Part 4, the excitement
begins, because the five chapters in this part are all about coding and examples!

The tutorial in this chapter demonstrates how to use Express.js with an external, third-party service (Storify API).
The purpose of this application is to fetch Instagram photos from Storify and display them in a gallery. In addition to
Express.js, we’ll use the following three modules:

• superagent (https://www.npmjs.org/package/superagent)

• consolidate (https://www.npmjs.org/package/consolidate)

• handlebars (https://www.npmjs.org/package/handlebars)

I chose these modules because they are somewhat popular in Node.js development circles, so you are highly
likely to encounter or use them in the future.

Note ■ The full source code for this example is available at https://github.com/azat-co/sfy-gallery.

Storify (http://storify.com) runs on Node.js (http://nodejs.org) and Express.js (http://expressjs.com).
Therefore, why not use these technologies to write an application that demonstrates how to build apps that rely on
third-party APIs and HTTP requests?

Starting the Instagram Gallery
The Instagram Gallery app will fetch a story object and display its title, description, and a gallery of the elements/
images, like the example shown in Figure 19-1.

https://www.npmjs.org/package/superagent
https://www.npmjs.org/package/consolidate
https://www.npmjs.org/package/handlebars
https://github.com/azat-co/sfy-gallery
http://storify.com/
http://nodejs.org/
http://expressjs.com/

CHAPTER 19 ■ INSTAGRAM GALLERY

218

Note ■ In case you’re wondering what Kazan is, it’s the 1000-year-old capital of Tatar Republic (Tatarstan).

The app’s file structure looks like this:

- index.js
- package.json
- views/index.html
- css/bootstrap-responsive.min.css
- css/flatly-bootstrap.min.css

Figure 19-1. Instagram Gallery

CHAPTER 19 ■ INSTAGRAM GALLERY

219

The CSS files are from the Bootstrap library (http://getbootstrap.com) and the Flatly theme
(http://bootswatch.com/flatly). The index.js file is our main Node.js file with the most of the logic, and index.
html is the Handlebars template. The app uses plain CSS from two files in the css folder.

Our dependencies include

• express v4.8.1 for the Express.js framework

• superagent v0.18.2 for making HTTP(S) requests

• consolidate v0.10.0 for using Handlebars with Express.js

• handlebars v2.0.0-beta.1 for using the Handlebars template engine

The content of the package.json file is as follows:

{
 "name": "sfy-gallery",
 "version": "0.2.0",
 "description": "Instagram Gallery: Storify API example written in Node.js",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "dependencies": {
 "consolidate": "0.10.0",
 "express": "4.8.1",
 "handlebars": "2.0.0-beta.1",
 "superagent": "0.18.2"
 },
 "repository": "https://github.com/storify/sfy-gallery",
 "author": "Azat Mardan",
 "license": "BSD"
}

Let’s go ahead and install the modules with

$ npm install

After NPM is done, create index.js. At the beginning of the file, we require the following dependencies:

var express = require('express');
var superagent = require('superagent');
var consolidate = require('consolidate');

var app = express();

Then, we configure the template engine:

app.engine('html', consolidate.handlebars);
app.set('view engine', 'html');
app.set('views', __dirname + '/views');

http://getbootstrap.com/
http://bootswatch.com/flatly
https://github.com/storify/sfy-gallery

CHAPTER 19 ■ INSTAGRAM GALLERY

220

Next, we set up a static folder with middleware:

app.use(express.static(__dirname + '/public'));

If you want to serve any other story, feel free to do so. All you need is the username of the author and the story
slug for my gallery of the capital of Tatarstan, Kazan. Leave the following:

var user = 'azat_co';
var story_slug = 'kazan';

Paste your values as shown next: Storify API key, username, and _token if you have one. As of this writing, the
Storify API is public, meaning there is no need for authentication (i.e., no need for keys). In case this changes in the
future, request an API key at http://dev.storify.com/request or follow the official documentation at
http://dev.storify.com:

var api_key = "";
var username = "";
var _token = "";

Let’s define the home route (/):

app.get('/',function(req, res){

Now we’ll fetch elements from the Storify API for the route’s callback, using the superagent get() method:

superagent.get("http://api.storify.com/v1/stories/"
 + user + "/" + story_slug)

The Storify API endpoint is "http://api.storify.com/v1/stories/" + user + "/" + story_slug, which in
this example is http://api.storify.com/v1/stories/azat/kazan. One of the advantages of superagent is that we
can write chained methods. For example, query() sends data in a query string:

.query({api_key: api_key,
 username: username,
 _token: _token})

The set() method specifies the request headers:

.set({Accept: 'application/json'})

And end() takes the callback to execute when the response is received:

.end(function(e, storifyResponse){
 if (e) return next(e);

To render the template with the story object that is in the HTTP response body’s content property, we
use the following:

 return res.render('index', storifyResponse.body.content);
 })

})

app.listen(3001);

http://dev.storify.com/request
http://dev.storify.com/
http://api.storify.com/v1/stories/
http://api.storify.com/v1/stories/
http://api.storify.com/v1/stories/azat/kazan

CHAPTER 19 ■ INSTAGRAM GALLERY

221

The Storify API returns data as JSON. You can look up the format by going to https://api.storify.com/v1/
stories/azat_co/kazan (assuming the API is still public, which it is as of this writing). You can see the contracted
(i.e., doesn’t show every nested object) JSON in Figure 19-2.

Figure 19-2. Example of a contracted Storify API output for the story entity

Viewing the Gallery
Now that we have the app that gets the data from Storify and calls the index template to render it, let’s take a look at
the Handlebars template, which is in the views/index.html file:

<!DOCTYPE html lang="en">
<html>
 <head>
 <link type="text/css"
 href="css/flatly-bootstrap.min.css"
 rel="stylesheet" />
 <link type="text/css"

https://api.storify.com/v1/stories/azat_co/kazan
https://api.storify.com/v1/stories/azat_co/kazan

CHAPTER 19 ■ INSTAGRAM GALLERY

222

 href="css/bootstrap-responsive.min.css"
 rel="stylesheet"/>
 </head>

 <body class="container">
 <div class="row">

Now we use {{title}} to display the title of the Storify story and {{author.name}} to display its author name:

 <h1>{{title}}<small> by {{author.name}}</small></h1>
 <p>{{description}}</p>
</div>
<div class="row">
 <ul class="thumbnails">

The next line is a built-in handlebars construction that iterates over array items. And, with every iteration, we
print a new tag:

 {{#each elements}}
 <li class="span3">
 <a class="thumbnail" href="{{permalink}}"
 target="_blank">
 <img src="{{data.image.src}}"
 title="{{data.image.caption}}" />

 {{/each}}

 </div>
 </body>

</html>

When you start the app with $ node ., you’ll see the pictures at http://localhost:3000. What happens is that,
when you go to the page, the local server quickly makes a request to Storify and gets the images’ links from Instagram.

Summary
Express.js and superagent allow developers to retrieve and manipulate data provided by third-party services,
such as Storify, Twitter, and Facebook, in just a few lines of code. The example presented in this chapter is rather
straightforward because it doesn’t use a database. But, in the next chapter, the Todo App will show you how to utilize
MongoDB.

Note ■ In most cases, service providers (such as Google, Facebook, and Twitter) require authentication (which is not

the case with the Storify API as of this writing). To make OAuth 1.0, OAuth 2.0, and OAuth Echo requests, consider oauth

(https://www.npmjs.org/package/oauth; GitHub: https://github.com/ciaranj/node-oauth), everyauth

(https://www.npmjs.org/package/everyauth; GitHub: https://github.com/bnoguchi/everyauth) and/or Passport

(website: http://passportjs.org/; GitHub: https://github.com/jaredhanson/passport).

https://www.npmjs.org/package/oauth
https://github.com/ciaranj/node-oauth
https://www.npmjs.org/package/everyauth
https://github.com/bnoguchi/everyauth
http://passportjs.org/
https://github.com/jaredhanson/passport

223

CHAPTER 20

Todo App

Todo apps are considered good teaching examples because they have many components that you will see in a typical,
real-life project. Also, this sort of app is popular when it comes to showcasing browser JavaScript frameworks.
Just look at the famous TodoMVC project (http://todomvc.com), which has a few dozen Todo apps for the various
front-end JavaScript frameworks.

In our Todo app, we’ll use MongoDB, Mongoskin, Jade, web forms, Less style sheets, and cross-site request
forgery (CSRF) protection. We’ll intentionally not use Backbone.js or AngularJS, because the goal is to demonstrate
how to build traditional web sites with the use of forms, redirects, and server-side template rendering. We’ll also
look at how to plug in CSRF and Less. As a bonus, there will be a few AJAX/XHR calls to RESTful API-ish endpoints,
because it’s hard to build a modern user interface/experience without such calls. You should know how to use them in
this hybrid web site architecture (traditional server-side HTML rendering with some AJAX/XHR calls).

Note ■ All the source code for this Todo app is at https://github.com/azat-co/todo-express for your

convenience. Readers constantly contribute to the project, so, by the time this book is in your hands, the code in the

GitHub will be different from the code in the book, likely with more features and up-to-date libraries.

This project is rather complex, so before you start coding it, here’s an overview of how this chapter presents the
steps to achieve the end product:

Overview•

Setup•

App.js•

Routes•

Jade•

Less•

http://todomvc.com/
https://github.com/azat-co/todo-express

CHAPTER 20 ■ TODO APP

224

Overview
To preview what we are going to achieve in this chapter, let’s start with some screenshots of the Todo app showing
how the user interface functions. Figure 20-1 shows the Home page, which has a heading, a menu, and some
introductory text. The menu consists of three items:

• Home: The currently displayed page

• Todo List: A list of tasks to do

• Completed: A list of completed tasks

Figure 20-1. Todo app Home page

On the Todo List page, there’s an empty list, as shown in Figure 20-2. There’s also an entry form for the new task
and an “add” button.

CHAPTER 20 ■ TODO APP

225

Figure 20-3 shows the result of adding four items to the Todo List. Each task has a “done” button to its left and a
“delete” button to its right, the functions of which are exactly as you might guess. They mark the task as completed
(i.e., move it to the Completed page) and remove the task, respectively.

Figure 20-2. Empty Todo List page

CHAPTER 20 ■ TODO APP

226

Figure 20-4 shows the result of clicking the “done” button for the “Buy milk” task. The item has disappeared from
the Todo List and the list has been renumbered.

Figure 20-3. Todo List page with added items

CHAPTER 20 ■ TODO APP

227

However, the completed “Buy milk” task has not disappeared from the app altogether. It is now in the Completed
list on the Completed page, as shown in Figure 20-5.

Figure 20-4. Todo List page with one item marked done

CHAPTER 20 ■ TODO APP

228

Deletion of an item from the Todo List page after the “delete” button is clicked is the action performed via an
AJAX/XHR request. Figure 20-6 shows the purple-highlighted notification message that appears when a task is deleted
(in this case, the “Email LeanPub” task). The rest of the logic is implemented via GETs and POSTs (by forms).

Figure 20-5. Todo app Completed page

CHAPTER 20 ■ TODO APP

229

Setup
We begin the setup of the Todo app by creating a new folder:

$ mkdir todo-express
$ cd todo-express

As usual, we start by taking care of the dependencies. This command gives us the basic package.json file:

$ npm init

We need to add the following extra dependencies to package.json:

• express v4.8.1: For Express.js framework

• body-parser v1.6.6: For processing payloads

• cookie-parser v1.3.2: For processing cookies and for sessions

Figure 20-6. Todo List page with removed task

CHAPTER 20 ■ TODO APP

230

• express-session v1.7.6: For session support

• csurf v1.5.0: For CSRF security

• errorhandler v1.1.1: For basic error handling

• jade v1.5.0: For Jade template

• less-middleware v1.0.4: For Less support

• method-override v2.1.3: For clients that don’t support all HTTP methods

• mongoskin v1.4.4: For MongoDB connections

• morgan v1.2.3: For logging of requests

• serve-favicon v2.1.1: For favicon support

One of the ways to add the preceding list of dependencies is to utilize the --save (-s) option of npm install:

$ npm install less-middleware@1.0.4 --save
$ npm install mongoskin@1.4.4 --save
...

Another way is to add entries to package.json and run $ npm install:

{
 "name": "todo-express",
 "version": "0.2.0",
 "private": true,
 "scripts": {
 "start": "node app.js"
 },
 "dependencies": {
 "body-parser": "1.6.6",
 "cookie-parser": "1.3.2",
 "csurf": "1.5.0",
 "errorhandler": "1.1.1",
 "express": "4.8.1",
 "express-session": "1.7.6",
 "jade": "1.5.0",
 "less-middleware": "1.0.4",
 "method-override": "2.1.3",
 "mongoskin": "1.4.4",
 "morgan": "1.2.3",
 "serve-favicon": "2.1.1"
 }
}

Now, install the MongoDB database if you don’t have it installed already. The database is not the same as NPM
modules mongodb and mongoskin, which are drivers. These libraries allow us to interact with the MongoDB database,
but we still need both the driver and the database.

CHAPTER 20 ■ TODO APP

231

On OS X, you can use brew to install MongoDB (or upgrade to v2.6.3):

$ brew update
$ brew install mongodb
$ mongo --version

For more flavors of MongoDB installations, check out the official docs1 and/or Practical Node.js (Apress, 2014).
The end version of the app (0.20.0) has the following folder and file structure (http://github.com/azat-co/

todo-express):

/todo-express
 /public
 /bootstrap
 *.less
 /images
 /javascripts
 main.js
 jquery.js
 /stylesheets
 style.css
 main.less
 favicon.ico
 /routes
 tasks.js
 index.js
 /views
 tasks_completed.jade
 layout.jade
 index.jade
 tasks.jade
 app.js
 readme.md
 package.json

The *.less in the bootstrap folder means there are a bunch of Bootstrap (the CSS framework,
http://getbootstrap.com/) source files. They’re available at GitHub.2

App.js
This section presents a breakdown of the Express.js-generated app.js file with the addition of routes, database,
session, Less, and app.param() middleware.

First, we import dependencies with the Node.js global require() function:

var express = require('express');

1http://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/
2https://github.com/twbs/bootstrap/tree/master/less

http://github.com/azat-co/todo-express
http://github.com/azat-co/todo-express
http://getbootstrap.com/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/
https://github.com/twbs/bootstrap/tree/master/less

CHAPTER 20 ■ TODO APP

232

Similarly, we get access to our own modules, which are the app’s routes:

var routes = require('./routes');
var tasks = require('./routes/tasks');

We need the core http and path modules as well:

var http = require('http');
var path = require('path');

Mongoskin is a better alternative to the native MongoDB driver because it provides additional features and
methods:

var mongoskin = require('mongoskin');

One line is all we need to get the database connection object. The first parameter follows the standard URI
convention of protocol://username:password@host:port/database:

var db = mongoskin.db('mongodb://localhost:27017/todo?auto_reconnect', {safe:true});

We set up the app itself:

var app = express();

Now, we import the middleware dependencies from NPM modules:

var favicon = require('serve-favicon'),
 logger = require('morgan'),
 bodyParser = require('body-parser'),
 methodOverride = require('method-override'),
 cookieParser = require('cookie-parser'),
 session = require('express-session'),
 csrf = require('csurf'),
 errorHandler = require('errorhandler');

In this middleware, we export the database object to all middleware functions. By doing so, we’ll be able to
perform database operations in the routes modules:

app.use(function(req, res, next) {
 req.db = {};

We simply store the tasks collection in every request:

 req.db.tasks = db.collection('tasks');
 next();
})

This line allows us to access appname from within every Jade template:

app.locals.appname = 'Express.js Todo App'

CHAPTER 20 ■ TODO APP

233

We set the server port, either to the environment variable or, if that’s undefined, to 3000:

app.set('port', process.env.PORT || 3000);

These statements tell Express.js where templates live and what file extension to prepend in case the extension is
omitted during the render calls:

app.set('views', __dirname + '/views');
app.set('view engine', 'jade');

The following displays the Express.js favicon (the graphic in the URL address bar of browsers):

app.use(favicon(path.join('public','favicon.ico')));

The out-of-the-box logger will print requests in the terminal window:

app.use(logger('dev'));

The bodyParser() middleware is needed to painlessly access incoming data:

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({extended: true}));

The methodOverride() middleware is a workaround for HTTP methods that involve headers. It’s not essential for
this example, but we’ll leave it here:

app.use(methodOverride());

To use CSRF, we need cookieParser() and session(). The following, weird-looking strings are secrets. You want
them to be random and to come from environment variables (process.env), not hard-coded.

app.use(cookieParser('CEAF3FA4-F385-49AA-8FE4-54766A9874F1'));
app.use(session({
 secret: '59B93087-78BC-4EB9-993A-A61FC844F6C9',
 resave: true,
 saveUninitialized: true
}));

The express-session options are covered in Chapter 3, but, as shown in the preceding code, v1.7.6 (which
we use here) has a resave option, which saves unmodified sessions if set to true, and a saveUninitialized
option, which saves a new, but unmodified session, if set to true. The default value for both options is true. The
recommended values are false for resave and true for saveUninitialized.

If you don’t specify values for these options, then you’ll get warnings, because these options’ defaults will likely
change in the future. So, it’s good to explicitly set the options. Alternatively, to suppress these warnings, you can use
the environment variable:

$ NO_DEPRECATION=express-session node app

CHAPTER 20 ■ TODO APP

234

Next, we apply the csrf() middleware itself. The order is important: csrf() must be preceded by
cookieParser() and session().

app.use(csrf());

To process Less style sheets into CSS ones, we utilize less-middleware in this manner:

app.use(require('less-middleware')(path.join(__dirname, 'public')));

The other static files are also in the public folder:

app.use(express.static(path.join(__dirname, 'public')));

Remember CSRF? The main trick here is to use req.csrfToken(), which is created by the middleware that we
previously applied in app.js. This is how we expose the CSRF token to templates:

app.use(function(req, res, next) {
 res.locals._csrf = req.csrfToken();
 return next();
})

When there’s a request that matches route/RegExp with :task_id in it, this block is executed:

app.param('task_id', function(req, res, next, taskId) {

The value of task ID is in taskId, and we query the database to find that object:

req.db.tasks.findById(taskId, function(error, task){

It’s tremendously important to check for errors and empty results:

if (error) return next(error);
if (!task) return next(new Error('Task is not found.'));

If there’s data, we store it in the request and proceed to the next middleware:

 req.task = task;
 return next();
 });
});

Now it’s time to define our routes. We start with the Home page:

app.get('/', routes.index);

Next is the Todo List page:

app.get('/tasks', tasks.list);

CHAPTER 20 ■ TODO APP

235

The following route will mark all tasks in the Todo List as completed if the user clicks the “all done” button. In a
REST API, the HTTP method would be PUT, but, because we are building classical web apps with forms, we have to
use POST:

app.post('/tasks', tasks.markAllCompleted)

The same URL for adding new tasks is used to mark all tasks completed, but, in the previous method
(markAllCompleted()), you’ll see how we handle flow control:

app.post('/tasks', tasks.add);

To mark a single task completed, we use the aforementioned :task_id string in our URL pattern (in a REST API,
this would be a PUT request):

app.post('/tasks/:task_id', tasks.markCompleted);

Unlike with the previous POST route, we utilize Express.js param middleware with a :task_id token:

app.del('/tasks/:task_id', tasks.del);

For our Completed page, we define this route:

app.get('/tasks/completed', tasks.completed);

In case of malicious attacks or mistyped URLs, catching all requests with * is a user-friendly activity. Keep in
mind that, if we had a match previously, Node.js won’t come to execute this block.

app.all('*', function(req, res){
 res.status(404).send();
})

It’s possible to configure different behavior based on environments:

if ('development' == app.get('env')) {
 app.use(errorHandler());
}

Finally, we spin up our application with the good old http method:

http.createServer(app).listen(app.get('port'),
 function(){
 console.log('Express server listening on port '
 + app.get('port'));
 }
);

CHAPTER 20 ■ TODO APP

236

The full content of the app.js file follows (the code in the GitHub repo https://github.com/azat-co/todo-
express is evolving from community contributions, so it will be an enhanced version of this code):

var express = require('express');
var routes = require('./routes');
var tasks = require('./routes/tasks');
var http = require('http');
var path = require('path');
var mongoskin = require('mongoskin');
var db = mongoskin.db('mongodb://localhost:27017/todo?auto_reconnect', {safe:true});
var app = express();

var favicon = require('serve-favicon'),
 logger = require('morgan'),
 bodyParser = require('body-parser'),
 methodOverride = require('method-override'),
 cookieParser = require('cookie-parser'),
 session = require('express-session'),
 csrf = require('csurf'),
 errorHandler = require('errorhandler');

app.use(function(req, res, next) {
 req.db = {};
 req.db.tasks = db.collection('tasks');
 next();
})
app.locals.appname = 'Express.js Todo App'

app.set('port', process.env.PORT || 3000);
app.set('views', __dirname + '/views');
app.set('view engine', 'jade');
app.use(favicon(path.join('public','favicon.ico')));
app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({extended: true}));
app.use(methodOverride());
app.use(cookieParser('CEAF3FA4-F385-49AA-8FE4-54766A9874F1'));
app.use(session({
 secret: '59B93087-78BC-4EB9-993A-A61FC844F6C9',
 resave: true,
 saveUninitialized: true
}));
app.use(csrf());

app.use(require('less-middleware')(path.join(__dirname, 'public')));
app.use(express.static(path.join(__dirname, 'public')));
app.use(function(req, res, next) {
 res.locals._csrf = req.csrfToken();
 return next();
})

https://github.com/azat-co/todo-express
https://github.com/azat-co/todo-express

CHAPTER 20 ■ TODO APP

237

app.param('task_id', function(req, res, next, taskId) {
 req.db.tasks.findById(taskId, function(error, task){
 if (error) return next(error);
 if (!task) return next(new Error('Task is not found.'));
 req.task = task;
 return next();
 });
});

app.get('/', routes.index);
app.get('/tasks', tasks.list);
app.post('/tasks', tasks.markAllCompleted)
app.post('/tasks', tasks.add);
app.post('/tasks/:task_id', tasks.markCompleted);
app.delete('/tasks/:task_id', tasks.del);
app.get('/tasks/completed', tasks.completed);

app.all('*', function(req, res){
 res.status(404).send();
})
// development only
if ('development' == app.get('env')) {
 app.use(errorHandler());
}
http.createServer(app).listen(app.get('port'), function(){
 console.log('Express server listening on port ' + app.get('port'));
});

Routes
There are only two files in the routes folder. One of them, routes/index.js, serves the home page (e.g., http://
localhost:3000/) and is straightforward:

exports.index = function(req, res){
 res.render('index', { title: 'Home' });
};

The remaining logic that deals with tasks has been placed in todo-express/routes/tasks.js. Let’s break down
that file a bit further.

We start by exporting a list() request handler that gives us a list of incomplete tasks:

exports.list = function(req, res, next){

To do so, we perform a database search with a completed=false query:

 req.db.tasks.find({
 completed: false
 }).toArray(function(error, tasks){

CHAPTER 20 ■ TODO APP

238

In the callback, we need to check for any errors:

if (error) return next(error);

Because we use toArray(), we can send the data directly to the template:

 res.render('tasks', {
 title: 'Todo List',
 tasks: tasks || []
 });
 });
};

Adding a new task requires us to check for the name parameter:

exports.add = function(req, res, next){
 if (!req.body || !req.body.name)
 return next(new Error('No data provided.'));

Thanks to our middleware, we already have a database collection in the req object and the default value for the
task is incomplete (completed: false):

req.db.tasks.save({
 name: req.body.name,
 completed: false
}, function(error, task){

Again, it’s important to check for errors and propagate them with the Express.js next() function:

if (error) return next(error);
if (!task) return next(new Error('Failed to save.'));

Logging is optional. However, it’s useful for learning and debugging:

console.info('Added %s with id=%s', task.name, task._id);

Lastly, we redirect back to the Todo List page when the saving operation has finished successfully:

 res.redirect('/tasks');
 })
};

This method marks all incomplete tasks as complete:

exports.markAllCompleted = function(req, res, next) {

Because we had to reuse the POST route, and because it’s a good illustration of flow control, we check for the
all_done parameter to determine whether this request comes from the “all done” button or the “add” button:

if (!req.body.all_done
 || req.body.all_done !== 'true')
 return next();

CHAPTER 20 ■ TODO APP

239

If the execution has come this far, we perform a database query with the multi: true option (update many
documents). This query will assign the completed property to true on all unfinished tasks (completed: false)
with the $set directive.

req.db.tasks.update({
 completed: false
}, {$set: {
 completed: true
}}, {multi: true}, function(error, count){

Next, we perform significant error handling, logging, and redirection back to Todo List page:

 if (error) return next(error);
 console.info('Marked %s task(s) completed.', count);
 res.redirect('/tasks');
 })
};

The Completed route is similar to the Todo List route, except for the completed flag value, which is true in
this case:

exports.completed = function(req, res, next) {
 req.db.tasks.find({
 completed: true
 }).toArray(function(error, tasks) {
 res.render('tasks_completed', {
 title: 'Completed',
 tasks: tasks || []
 });
 });
};

This is the route that takes care of marking a single task as done. We use updateById, but we could accomplish
the same thing with a plain update() method from the Mongoskin/MongoDB API.

On the $set line, instead of the req.body.completed value, we use the expression completed: req.body.
completed === 'true'. It is needed because the incoming value of req.body.completed is a string and not a boolean.

exports.markCompleted = function(req, res, next) {
 if (!req.body.completed)
 return next(new Error('Param is missing.'));
 req.db.tasks.updateById(req.task._id, {
 $set: {completed: req.body.completed === 'true'}},
 function(error, count) {

Once more, we perform error and results checks: (update() and updateById() don’t return an object,
but, instead, return the count of the affected documents):

 if (error) return next(error);
 if (count !==1)
 return next(new Error('Something went wrong.'));
 console.info('Marked task %s with id=%s completed.',

CHAPTER 20 ■ TODO APP

240

 req.task.name,
 req.task._id);
 res.redirect('/tasks');
 }
)
}

Delete is the single route called by an AJAX request. However, there’s nothing special about its implementation.
The only difference is that we don’t redirect, but send status 200 back.

Alternatively the remove() method can be used instead of removeById().

exports.del = function(req, res, next) {
 req.db.tasks.removeById(req.task._id, function(error, count) {
 if (error) return next(error);
 if (count !==1) return next(new Error('Something went wrong.'));
 console.info('Deleted task %s with id=%s completed.',
 req.task.name,
 req.task._id);
 res.status(204).send();
 });
}

For your convenience, here’s the full content of the todo-express/routes/tasks.js file:

exports.list = function(req, res, next){
 req.db.tasks.find({completed: false}).toArray(function(error, tasks){
 if (error) return next(error);
 res.render('tasks', {
 title: 'Todo List',
 tasks: tasks || []
 });
 });
};

exports.add = function(req, res, next){
 if (!req.body || !req.body.name) return next(new Error('No data provided.'));
 req.db.tasks.save({
 name: req.body.name,
 completed: false
 }, function(error, task){
 if (error) return next(error);
 if (!task) return next(new Error('Failed to save.'));
 console.info('Added %s with id=%s', task.name, task._id);
 res.redirect('/tasks');
 })
};

exports.markAllCompleted = function(req, res, next) {
 if (!req.body.all_done || req.body.all_done !== 'true') return next();
 req.db.tasks.update({
 completed: false

CHAPTER 20 ■ TODO APP

241

 }, {$set: {
 completed: true
 }}, {multi: true}, function(error, count){
 if (error) return next(error);
 console.info('Marked %s task(s) completed.', count);
 res.redirect('/tasks');
 })
};

exports.completed = function(req, res, next) {
 req.db.tasks.find({completed: true}).toArray(function(error, tasks) {
 res.render('tasks_completed', {
 title: 'Completed',
 tasks: tasks || []
 });
 });
};

exports.markCompleted = function(req, res, next) {
 if (!req.body.completed) return next(new Error('Param is missing.'));
 req.db.tasks.updateById(req.task._id, {$set: {completed: req.body.completed === 'true'}},
function(error, count) {
 if (error) return next(error);
 if (count !==1) return next(new Error('Something went wrong.'));
 console.info('Marked task %s with id=%s completed.', req.task.name, req.task._id);
 res.redirect('/tasks');
 })
};

exports.del = function(req, res, next) {
 req.db.tasks.removeById(req.task._id, function(error, count) {
 if (error) return next(error);
 if (count !==1) return next(new Error('Something went wrong.'));
 console.info('Deleted task %s with id=%s completed.', req.task.name, req.task._id);
 res.status(204).send();
 });
};

So far we’ve implemented the main server file app.js and its routes that perform different database operations.
Now we can proceed to the templates.

Jade
In the Todo app, we use four templates:

• layout.jade: The skeleton of HTML pages that is used on all pages

• index.jade: Home page

• tasks.jade: Todo List page

• tasks_completed.jade: Completed page

CHAPTER 20 ■ TODO APP

242

Let’s go through each file, starting with layout.jade. It starts with doctype, html, and head types:

doctype html
html
 head

We should set the appname variable:

title= title + ' | ' + appname

Next, we include *.css files and Express.js will serve their contents from Less files:

link(rel="stylesheet", href="/stylesheets/style.css")
link(rel="stylesheet", href="/bootstrap/bootstrap.css")
link(rel="stylesheet", href="/stylesheets/main.css")

The body with Bootstrap structure consists of the .container and .navbar classes. To read more about these and
other classes, go to http://getbootstrap.com/css/.

body
 .container
 .navbar.navbar-default
 .container
 .navbar-header
 a.navbar-brand(href='/')= appname
 .alert.alert-dismissable
 h1= title
 p Welcome to Express.js Todo app by
 a(href='http://twitter.com/azat_co') @azat_co
 |. Please enjoy.

This is the place where other jade templates (like tasks.jade) will be imported:

block content

The last lines include front-end JavaScript files:

script(src='/javascripts/jquery.js', type="text/javascript")
script(src='/javascripts/main.js', type="text/javascript")

The following is the full layout.jade file:

doctype html
html
 head
 title= title + ' | ' + appname
 link(rel="stylesheet", href="/stylesheets/style.css")
 link(rel="stylesheet", href="/bootstrap/bootstrap.css")
 link(rel="stylesheet", href="/stylesheets/main.css")

http://getbootstrap.com/css/
http://twitter.com/azat_co

CHAPTER 20 ■ TODO APP

243

 body
 .container
 .navbar.navbar-default
 .container
 .navbar-header
 a.navbar-brand(href='/')= appname
 .alert.alert-dismissable
 h1= title
 p Welcome to Express.js Todo app by
 a(href='http://twitter.com/azat_co') @azat_co
 |. Please enjoy.
 block content
 script(src='/javascripts/jquery.js', type="text/javascript")
 script(src='/javascripts/main.js', type="text/javascript")

The index.jade file is our Home page and is quite vanilla. Its most interesting component is the nav-pills
menu, which is a Bootstrap class for tabbed navigation. The rest of the file is just static hypertext:

extends layout

block content
 .menu
 h2 Menu
 ul.nav.nav-pills
 li.active
 a(href="/tasks") Home
 li
 a(href="/tasks") Todo List
 li
 a(href="/tasks") Completed
 .home
 p This is an example of create, read, update, delete web application built with Express.js
v4.8.1, and Mongoskin&MongoDB for
 a(href="http://proexpressjs.com") Pro Express.js
 |.
 p The full source code is available at
 a(href='http://github.com/azat-co/todo-express') github.com/azat-co/todo-express
 |.
 p For Express 3.x go to
 a(href="https://github.com/azat-co/todo-express/releases/tag/v0.1.0") release 0.1.0
 |.

Next is tasks.jade, which uses extends layout:

extends layout

block content

http://twitter.com/azat_co
http://proexpressjs.com/
http://github.com/azat-co/todo-express
https://github.com/azat-co/todo-express/releases/tag/v0.1.0

CHAPTER 20 ■ TODO APP

244

Next is our main page of specific content:

.menu
 h2 Menu
 ul.nav.nav-pills
 li
 a(href='/') Home
 li.active
 a(href='/tasks') Todo List
 li
 a(href="/tasks/completed") Completed
h1= title

The div with the list class will hold the Todo List:

 .list
 .item.add-task

The form to mark all items as done has a CSRF token (locals._csrf) in a hidden field and uses the POST
method pointed to /tasks:

div.action
 form(action='/tasks', method='post')
 input(type='hidden', value='true', name='all_done')
 input(type='hidden', value=locals._csrf, name='_csrf')
 input(type='submit', class='btn btn-success btn-xs', value='all done')

A similar CSRF-enabled form is used for new task creation:

form(action='/tasks', method='post')
 input(type='hidden', value=locals._csrf, name='_csrf')
 div.name
 input(type='text', name='name', placeholder='Add a new task')
 div.delete
 input.btn.btn-primary.btn-sm(type='submit', value='add')

When we start the app for the first time (or clean the database), there are no tasks:

if (tasks.length === 0)
 | No tasks.

Jade supports iterations with the each command:

each task, index in tasks
 .item
 div.action

x

CHAPTER 20 ■ TODO APP

245

This form submits data to its individual task route:

form(action='/tasks/#{task._id}', method='post')
 input(type='hidden', value=task._id.toString(), name='id')
 input(type='hidden', value='true', name='completed')
 input(type='hidden', value=locals._csrf, name='_csrf')
 input(type='submit', class='btn btn-success btn-xs task-done', value='done')

The index variable is used to display order in the list of tasks:

div.num
 span=index+1
 |.
div.name
 span.name=task.name
 //- no support for DELETE method in forms
 //- http://amundsen.com/examples/put-delete-forms/
 //- so do XHR request instead from public/javascripts/main.js

The “delete” button doesn’t have anything fancy attached to it, because events are attached to these buttons from
the main.js front-end JavaScript file:

 div.delete
 a(class='btn btn-danger btn-xs task-delete', data-task-id=task._id.toString(),
data-csrf=locals._csrf) delete

The full source code of tasks.jade is provided here:

extends layout

block content

 .menu
 h2 Menu
 ul.nav.nav-pills
 li
 a(href='/') Home
 li.active
 a(href='/tasks') Todo List
 li
 a(href="/tasks/completed") Completed
 h1= title

 .list
 .item.add-task
 div.action
 form(action='/tasks', method='post')
 input(type='hidden', value='true', name='all_done')
 input(type='hidden', value=locals._csrf, name='_csrf')
 input(type='submit', class='btn btn-success btn-xs', value='all done')
 form(action='/tasks', method='post')
 input(type='hidden', value=locals._csrf, name='_csrf')

http://amundsen.com/examples/put-delete-forms/

CHAPTER 20 ■ TODO APP

246

 div.name
 input(type='text', name='name', placeholder='Add a new task')
 div.delete
 input.btn.btn-primary.btn-sm(type='submit', value='add')
 if (tasks.length === 0)
 | No tasks.
 each task, index in tasks
 .item
 div.action
 form(action='/tasks/#{task._id}', method='post')
 input(type='hidden', value=task._id.toString(), name='id')
 input(type='hidden', value='true', name='completed')
 input(type='hidden', value=locals._csrf, name='_csrf')
 input(type='submit', class='btn btn-success btn-xs task-done', value='done')
 div.num
 span=index+1
 |.
 div.name
 span.name=task.name
 //- no support for DELETE method in forms
 //- http://amundsen.com/examples/put-delete-forms/
 //- so do XHR request instead from public/javascripts/main.js
 div.delete
 a(class='btn btn-danger btn-xs task-delete', data-task-id=task._id.toString(),
data-csrf=locals._csrf) delete

Last but not least, comes tasks_completed.jade, which is just a stripped-down version of the tasks.jade file:

extends layout

block content

 .menu
 h2 Menu
 ul.nav.nav-pills
 li
 a(href='/') Home
 li
 a(href='/tasks') Todo List
 li.active
 a(href="/tasks/completed") Completed

 h1= title

 .list
 if (tasks.length === 0)
 | No tasks.
 each task, index in tasks
 .item
 div.num
 span=index+1

c

http://amundsen.com/examples/put-delete-forms/

CHAPTER 20 ■ TODO APP

247

 |.
 div.name.completed-task
 span.name=task.name

Finally, we can customize the look of the app with Less.

Less
As previously mentioned, after applying proper middleware in app.js files, we can put *.less files anywhere under
the public folder. Express.js works by accepting a request for some .css file and then attempting to match the
corresponding file by name. Therefore, we include *.css files in our jade templates.

Here is the content of the todo-express/public/stylesheets/main.less file:

* {
 font-size:20px;
}
.item {
 height: 44px;
 width: 100%;
 clear: both;
 .name {
 width: 300px;
 }
 .action {
 width: 100px;
 }
 .delete {
 width: 100px
 }
 div {
 float:left;
 }
}
.home {
 margin-top: 40px;
}
.name.completed-task {
 text-decoration: line-through;
}

To run the application, start MongoDB with $ mongo, and, in a new terminal window, execute $ node app and
go to http://localhost:3000/—you should see something similar to the page shown earlier in Figure 20-1. In your
terminal window, you should see something like this:

Express server listening on port 3000
GET / 200 30.448 ms - 1408
GET /stylesheets/style.css 304 7.196 ms - -
GET /javascripts/jquery.js 304 17.677 ms - -
GET /javascripts/main.js 304 27.151 ms - -
GET /stylesheets/main.css 200 453.584 ms - 226
GET /bootstrap/bootstrap.css 200 458.293 ms - 98336

CHAPTER 20 ■ TODO APP

248

Summary
You’ve learned how to use MongoDB, Jade, and Less. This Todo app is considered traditional, because it doesn’t rely
on any front-end framework and it renders HTML on the server. This was done intentionally to show how easy it is
to use Express.js for such tasks. In modern-day development, people often leverage some sort of REST API server
architecture with a front-end client built with Backbone.js, AngularJS, Ember.js, or something comparable
(see http://todomvc.com).

In the Chapter 22 example, we dive deep into the details of how to write such servers. The Chapter 22 application
HackHall uses the MEBN (MongoDB, Express.js, Backbone.js, and Node.js) stack. But, before we cover HackHall, we’ll
spend more time on REST APIs and testing in Chapter 21, which has the REST API example.

http://todomvc.com/

249

CHAPTER 21

REST API

In this tutorial, we’ll build a RESTful API. In addition to Express.js, we’ll use MongoDB via the Mongoskin library.
We’ll also use Mocha and SuperAgent to write functional tests.

This tutorial walks you through writing tests using the Mocha and SuperAgent libraries, and then shows you
how to use the tests in a test-driven development manner to build a Node.js free-JSON REST API server, utilizing the
Express.js framework and Mongoskin library for MongoDB.

Note ■ The full source code for both the test and app files is at https://github.com/azat-co/rest-api-express

for your convenience. If you want to skip the tutorial and just run the code, you can do so with:

$ git clone https://github.com/azat-co/rest-api-express.git

$ cd rest-api-express

$ npm install

$ node express.js

In a new terminal window, enter:

$./node_modules/mocha/bin/mocha express.test.js

The source code might be an enhanced version of the code in this chapter because of the ongoing contributions from

readers. I encourage you to submit your own pull request!

In this REST API server, we’ll perform create, update, remove, and delete (CRUD) operations and harness
the Express.js middleware1 concept with app.param() and app.use() methods. The chapter is organized into
these topics:

• RESTful API basics: A primer on RESTful APIs

• Test coverage: We’ll use the test-driven development (TDD) approach and write tests first

• Server dependencies: We’ll install the required modules

• Server implementation: We’ll write the code for the Express.js app

1http://expressjs.com/api.html#middleware

https://github.com/azat-co/rest-api-express
https://github.com/azat-co/rest-api-express.git
http://expressjs.com/api.html#middleware

CHAPTER 21 ■ REST API

250

Note ■ In this chapter, our REST API and test examples use a semicolon-less style. Semicolons in JavaScript are absolutely

optional, except in two cases: 1) in the for loop, and 2) before expressions/statements that start with a parenthesis

(e.g., immediately invoked function expression, or IIFE). Using this style gives you an alternative perspective. Typing fewer

semicolons improves speed, and it looks better and is more consistent, because developers tend to miss semicolons from

time to time (perfectly running code allows for such sloppiness). Also, some programmers find semicolon-less code

more readable.

RESTful API Basics
RESTful APIs became popular because of the demand to have each transaction in a distributed system include
sufficient information about the state of the client. In a sense, this standard is stateless, because no information about
the clients’ states is stored on the server, making it possible for each request to be served by a different system.

Distinct characteristics of a RESTful API (i.e., if an API is RESTful, it usually follows these principles) are as follows:

It has better scalability support because different components can be deployed independently •
to different servers.

It replaces the Simple Object Access Protocol (SOAP) because of the simpler verb and noun •
structure in REST.

It uses HTTP methods, such as GET, POST, DELETE, PUT, OPTIONS, and so forth.•

It supports formats other than JSON (although JSON is the most popular). Unlike SOAP, •
which is a protocol, the REST methodology is flexible in the choice of formats. For example,
alternative formats might be Extensible Markup Language (XML) or comma-separated values
(CSV) formats.

Table 21-1 outlines an example of a simple CRUD REST API for message collection.

Table 21-1. Example of the CRUD REST API Structure

Method URL Meaning

GET /messages.json Return list of messages in JSON format.

PUT /messages.json Update/replace all messages and return status/error in JSON.

POST /messages.json Create new message and return its ID in JSON format.

GET /messages/{id}.json Return message with ID {id} in JSON format.

PUT /messages/{id}.json Update/replace message with ID that equals the value of {id}; if {id}
message doesn’t exist, create it.

DELETE /messages/{id}.json Delete message with ID {id}, and return status/error in JSON format.

CHAPTER 21 ■ REST API

251

REST is not a protocol; it’s an architecture, in the sense that it’s more flexible than a protocol, such as SOAP.
Therefore, REST API URLs could look like /messages/list.html or /messages/list.xml, if we wanted to support
these formats.

PUT and DELETE are idempotent methods, which means that, if the server receives two or more similar
requests, the end result is the same. POST is not idempotent and might affect the state and cause side effects
(e.g., creation of multiple duplicate records).GET is nullipotent, which means it’s safe to call it multiple times,
because the results won’t change.

Note ■ You can find more information on REST at Wikipedia (http://en.wikipedia.org/wiki/Representational_

state_transfer) and in Stefan Tilkov’s InfoQ article “A Brief Introduction to REST”

(www.infoq.com/articles/rest-introduction).

As mentioned in the chapter introduction, in our REST API server, we’ll perform CRUD operations and harness
the Express.js middleware concept with the app.param() and app.use() methods. So, our app should be able to
process the following commands using the JSON format (collectionName is the name of the collection, typically a
plural noun, e.g., messages, comments, users, etc.):

• POST /collections/{collectionName}: Request to create an object; the app responds with
the newly created object ID.

• GET /collections/{collectionName}/{id}: Request with the ID value in the URL; the app
retrieves an object with that ID.

• GET /collections/{collectionName}/: Request to retrieve any items from the collection
(items); in our example, we’ll have the following query options: up to 10 items and sorted by ID.

• PUT /collections/{collectionName}/{id}: Request with ID to update an object.

• DELETE /collections/{collectionName}/{id}: Request with ID to remove an object.

Therefore, this server can handle any number of collections, not just a single collection, with just six endpoints
(e.g., messages, as illustrated in Table 21-1).

Test Coverage
Before we do anything else, let’s write functional tests that make HTTP requests to our soon-to-be-created REST API
server. If you know how to use Mocha, or just want to jump straight to the Express.js app implementation, feel free to
do so. You can use CURL terminal commands for testing too.

Assuming that we already have Node.js, NPM, and MongoDB installed, let’s create a new folder (or if you wrote
the tests, use that folder):

$ mkdir rest-api-express
$ cd rest-api-express

We’ll use the Mocha, Expect.js (https://github.com/Automattic/expect.js), and SuperAgent
(http://visionmedia.github.io/superagent/) libraries. To install them, run these commands from the project folder:

$ npm install -g mocha@1.18.2 --save-dev
$ npm install expect.js@0.3.1 --save-dev
$ npm install superagent@0.17.0 --save-dev

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.infoq.com/articles/rest-introduction
https://github.com/Automattic/expect.js
http://visionmedia.github.io/superagent/

CHAPTER 21 ■ REST API

252

Tip ■ You can install Mocha globally because it’s a command-line tool, but installing Mocha locally will enable you to

use different versions of Mocha at the same time—one for each project. To run tests with local Mocha, simply point to

./node_modules/mocha/bin/mocha. You can copy this into a Makefile, as outlined in Chapter 22, or into "scripts":

{"test": "..."} of package.json. Local Mocha is also required for the configurations of continuous integration (CI).

Now let’s create an express.test.js file, which will have six test suites in the same folder:

Creating a new object•

Retrieving an object by its ID•

Retrieving the whole collection•

Updating an object by its ID•

Checking an updated object by its ID•

Removing an object by its ID•

HTTP requests are a breeze with SuperAgent’s chained functions, which we’ll put inside of each test suite.
So, we start with dependencies:

var superagent = require('superagent')
var expect = require('expect.js')

Next, we write our first test case wrapped in the test case (describe and its callback). The idea is simple. We make
an HTTP request to a local instance of the server. When we send the request, we pass some data and, of course, the
URL path, which changes from test case to test case. The main action happens in the request (made by SuperAgent)
callback. There, we put multiple assertions, which are the bread and butter of TDD. To be strictly correct, this test suite
uses behavior-driven development (BDD) language, but this difference is not essential for our project.

describe('express rest api server', function(){
 var id

 it('posts an object', function(done){
 superagent.post('http://localhost:3000/collections/test')
 .send({ name: 'John'
 , email: 'john@rpjs.co'
 })
 .end(function(e,res){
 // console.log(res.body)
 expect(e).to.eql(null)
 expect(res.body.length).to.eql(1)
 expect(res.body[0]._id.length).to.eql(24)
 id = res.body[0]._id
 done()
 })
 })

CHAPTER 21 ■ REST API

253

As you may have noticed, we’re checking for the following:

The error object should be null (• eql(null)).

The response body array should have one item (• to.eql(1)).

The first response body item should have the • _id property, which is 24 characters long (i.e., a
hex string representation of the standard MongoDB ObjectId type).

To finish, we save the newly created object’s ID in the id global variable so that we can use it later for retrievals,
updates, and deletions. Speaking of object retrievals, we test them in the next test case. Notice that the superagent
method has changed to get() and the URL path contains the object ID. You can “uncomment” console.log to
inspect the full HTTP response body:

it('retrieves an object', function(done){
 superagent.get('http://localhost:3000/collections/test/'+id)
 .end(function(e, res){
 // console.log(res.body)
 expect(e).to.eql(null)
 expect(typeof res.body).to.eql('object')
 expect(res.body._id.length).to.eql(24)
 expect(res.body._id).to.eql(id)
 done()
 })
})

The done() callback allows us to test asynchronous code. Without it, the Mocha test case ends abruptly, long
before the slow server has time to respond.

The next test case’s assertion is a bit more interesting, because we use the map() function on the response results
to return an array of IDs. In this array, we find our ID (saved in id variable) with the contain() method, which is a
more elegant alternative to native indexOf(). It works because the results, which are limited to ten records, come
sorted by IDs, and because our object was created just moments ago.

it('retrieves a collection', function(done){
 superagent.get('http://localhost:3000/collections/test')
 .end(function(e, res){
 // console.log(res.body)
 expect(e).to.eql(null)
 expect(res.body.length).to.be.above(0)
 expect(res.body.map(function (item){return item._id})).to.contain(id)
 done()
 })
})

When it comes time to update our object, we actually need to send some data. We do this by passing an object to
SuperAgent’s function. Then, we assert that the operation was completed with (msg=success):

it('updates an object', function(done){
 superagent.put('http://localhost:3000/collections/test/'+id)
 .send({name: 'Peter'
 , email: 'peter@yahoo.com'})
 .end(function(e, res){
 // console.log(res.body)
 expect(e).to.eql(null)

CHAPTER 21 ■ REST API

254

 expect(typeof res.body).to.eql('object')
 expect(res.body.msg).to.eql('success')
 done()
 })
 })

The last two test cases, which assert retrieval of the updated object and its deletion, use methods similar to those
we’ve used before. Here is the full source code for the rest-api-express/express.test.js file:

var superagent = require('superagent')
var expect = require('expect.js')

describe('express rest api server', function(){
 var id

 it('posts an object', function(done){
 superagent.post('http://localhost:3000/collections/test')
 .send({ name: 'John'
 , email: 'john@rpjs.co'
 })
 .end(function(e,res){
 // console.log(res.body)
 expect(e).to.eql(null)
 expect(res.body.length).to.eql(1)
 expect(res.body[0]._id.length).to.eql(24)
 id = res.body[0]._id
 done()
 })
 })

 it('retrieves an object', function(done){
 superagent.get('http://localhost:3000/collections/test/'+id)
 .end(function(e, res){
 // console.log(res.body)
 expect(e).to.eql(null)
 expect(typeof res.body).to.eql('object')
 expect(res.body._id.length).to.eql(24)
 expect(res.body._id).to.eql(id)
 done()
 })
 })

 it('retrieves a collection', function(done){
 superagent.get('http://localhost:3000/collections/test')
 .end(function(e, res){
 // console.log(res.body)
 expect(e).to.eql(null)
 expect(res.body.length).to.be.above(0)
 expect(res.body.map(function (item){return item._id})).to.contain(id)
 done()
 })
 })

CHAPTER 21 ■ REST API

255

 it('updates an object', function(done){
 superagent.put('http://localhost:3000/collections/test/'+id)
 .send({name: 'Peter'
 , email: 'peter@yahoo.com'})
 .end(function(e, res){
 // console.log(res.body)
 expect(e).to.eql(null)
 expect(typeof res.body).to.eql('object')
 expect(res.body.msg).to.eql('success')
 done()
 })
 })

 it('checks an updated object', function(done){
 superagent.get('http://localhost:3000/collections/test/'+id)
 .end(function(e, res){
 // console.log(res.body)
 expect(e).to.eql(null)
 expect(typeof res.body).to.eql('object')
 expect(res.body._id.length).to.eql(24)
 expect(res.body._id).to.eql(id)
 expect(res.body.name).to.eql('Peter')
 done()
 })
 })

 it('removes an object', function(done){
 superagent.del('http://localhost:3000/collections/test/'+id)
 .end(function(e, res){
 // console.log(res.body)
 expect(e).to.eql(null)
 expect(typeof res.body).to.eql('object')
 expect(res.body.msg).to.eql('success')
 done()
 })
 })
})

To run the tests, we can use the $ mocha express.test.js command. For now, the tests should fail, because we
have yet to implement the server!

For those of you who require multiple versions of Mocha, another alternative, which is better, is to run your tests
using local Mocha binaries:

$./node_modules/mocha/bin/mocha express.test.js

This, of course, assumes that you have installed Mocha locally into node_modules.

Note ■ By default, Mocha doesn’t use any reporters, and the result output is lackluster. To receive more explanatory

logs, supply the -R <name> option (e.g., $ mocha test -R spec or $ mocha test -R list).

CHAPTER 21 ■ REST API

256

Dependencies
As in the previous tutorial (Chapter 20), we’ll utilize Mongoskin, a MongoDB library, which is a better alternative to
the good old, plain, native MongoDB driver for Node.js.2 In addition, Mongoskin is more lightweight than Mongoose
and is schema-less. For more insight, please check out https://github.com/kissjs/node-mongoskin#comparation.

Express.js is a wrapper for core Node.js HTTP module objects (http://nodejs.org/api/http.html). The
Express.js framework is built on top of Connect middleware (https://github.com/senchalabs/connect) and
provides tons of convenience. Some people compare the framework to Ruby’s Sinatra because it’s non-opinionated
and configurable.

If you created a rest-api-express folder in the previous section, simply run these commands to install modules
for the application:

$ npm install express@4.8.1 --save
$ npm install mongoskin@1.4.1 --save

The final package.json file might look like this:

{
 "name": "rest-api-express",
 "version": "0.0.4",
 "description": "",
 "main": "express.js",
 "scripts": {
 "start": "node express.js",
 "test": "mocha express.test.js"
 },
 "repository": {
 "type": "git",
 "url": "https://github.com/azat-co/rest-api-express.git"
 },
 "author": "Azat Mardan",
 "license": "BSD-2-Clause",
 "bugs": {
 "url": "https://github.com/azat-co/rest-api-express/issues"
 },
 "dependencies": {
 "body-parser": "1.9.2",
 "express": "4.10.1",
 "mongoskin": "1.4.4",
 "morgan": "1.5.0" },
 "devDependencies": {
 "expect.js": "0.3.1",
 "mocha": "2.0.1",
 "superagent": "0.20.0" }
}

2https://github.com/mongodb/node-mongodb-native

https://github.com/kissjs/node-mongoskin#comparation
http://nodejs.org/api/http.html
https://github.com/senchalabs/connect
https://github.com/azat-co/rest-api-express.git
https://github.com/azat-co/rest-api-express/issues
https://github.com/mongodb/node-mongodb-native

CHAPTER 21 ■ REST API

257

Server Implementation
To implement the server, we first need to define our dependencies:

var express = require('express'),
 mongoskin = require('mongoskin'),
 bodyParser = require('body-parser')
 logger = require('morgan')

After version 3.x, Express.js streamlines the instantiation of its app instance so that this line gives us a server object:

var app = express()

To extract parameters from the body of the requests, we’ll use body-parser middleware. (How to use middleware
was covered in Chapter 4.) These are the statements for JSON and URL-encoded functions:

app.use(bodyParser.json())
app.use(bodyParser.urlencoded({extended: true}))

The morgan (logger) middleware allows us to see incoming requests:

app.use(logger('dev'))

Middleware (in this3 and other forms4) is a powerful and convenient pattern in Express.js and Connect to
organize and reuse code.

As with the bodyParser() method, which saves us from writing extra code (for parsing a body object of an HTTP
request), Mongoskin makes it possible to connect to the MongoDB database in one effortless line of code, compared
to the native MongoDB driver’s code:

var db = mongoskin.db('@localhost:27017/test', {safe:true});

Note ■ If you wish to connect to a remote database, such as MongoHQ (https://www.mongohq.com/home), substitute

the string with your username, password, host, and port values. Here is the format of the URI string:

mongodb://[username:password@] host1[:port1][,host2[:port2],... [,hostN[:portN]]] [/[database]

[?options]]

The app.param() method is another Express.js middleware. It basically says “do something every time there
is this value in the URL pattern of the request handler.” In our case, we select a particular collection when a request
pattern contains a string collectionName prefixed with a colon (you’ll see it later in the routes):

app.param('collectionName', function(req, res, next, collectionName){
 req.collection = db.collection(collectionName)
 return next()
})

3http://expressjs.com/api.html#app.use
4http://expressjs.com/api.html#middleware

https://www.mongohq.com/home
http://expressjs.com/api.html#app.use
http://expressjs.com/api.html#middleware

CHAPTER 21 ■ REST API

258

Merely to be user-friendly, let’s include a root route with a message:

app.get('/', function(req, res, next) {
 res.send('please select a collection, e.g., /collections/messages')
})

Now the real work begins. Here is how we retrieve a list of items that is sorted by _id (sort: {'_id':-1}) and
that has a limit of ten (limit: 10):

app.get('/collections/:collectionName', function(req, res, next) {
 req.collection.find({},{
 limit: 10, sort: {'_id': -1}
 }).toArray(function(e, results){
 if (e) return next(e)
 res.send(results)
 })
})

Have you noticed a :collectionName string in the URL pattern parameter? This, and the previous app.param()
middleware, are what give us the req.collection object that points to a specified collection in our database.

The object-creating endpoint is slightly easier to grasp, because we just pass the whole payload to the MongoDB
method (a.k.a. free-JSON REST API):

app.post('/collections/:collectionName', function(req, res, next) {
 req.collection.insert(req.body, {}, function(e, results){
 if (e) return next(e)
 res.send(results)
 })
})

Single-object-retrieval functions (e.g., findById()) are faster than find(), but they use a different interface.
They return an object directly instead of a cursor—please be aware! The ID is coming from the:id part of the URL
path with req.params.id Express.js magic:

app.get('/collections/:collectionName/:id', function(req, res, next) {
 req.collection.findById(req.params.id, function(e, result){
 if (e) return next(e)
 res.send(result)
 })
})

The PUT request handler gets more interesting, because updateById() (as update()) doesn’t return the
augmented object; instead, it returns a count of affected objects.

Also, {$set: req.body} is a special MongoDB operator (operators tend to start with a dollar sign) that sets
values. In this case, we update any body data sent to us. This is called the free-JSON API approach. It’s great for
prototyping, but in most systems, you need to perform validation (you can use the express-validator middleware,
covered in Chapter 15).

CHAPTER 21 ■ REST API

259

The second {safe: true, multi: false} parameter is an object with options that tell MongoDB to wait for the
execution before running the callback function and to process only one (the first) item:

app.put('/collections/:collectionName/:id', function(req, res, next) {
 req.collection.updateById(req.params.id,
 {$set: req.body},
 {safe: true, multi: false},
 function(e, result){
 if (e) return next(e)
 res.send((result === 1) ? {msg: 'success'} : {msg: 'error'})
 }
)
})

Finally, the following is the DELETE method, which utilizes Mongoskin’s removeById() method and outputs
a custom JSON message ({msg: success}) in the event of success:

app.delete('/collections/:collectionName/:id', function(req, res, next) {
 req.collection.removeById(req.params.id, function(e, result){
 if (e) return next(e)
 res.send((result === 1)?{msg: 'success'} : {msg: 'error'})
 })
})

Note ■ The app.delete() method is an alias for the now-deprecated (but still used in older projects) app.del().

The last line, that actually starts the server on port 3000 in this case, is:

app.listen(3000, function(){
 console.log('Express server listening on port 3000')
})

Just in case something is not working well, here is the full code of the rest-api-express/express.js file:

var express = require('express'),
 mongoskin = require('mongoskin'),
 bodyParser = require('body-parser'),
 logger = require('morgan')

var app = express()
app.use(bodyParser())
app.use(logger('dev'))

var db = mongoskin.db('mongodb://@localhost:27017/test', {safe:true})

app.param('collectionName', function(req, res, next, collectionName){
 req.collection = db.collection(collectionName)
 return next()
})

CHAPTER 21 ■ REST API

260

app.get('/', function(req, res, next) {
 res.send('please select a collection, e.g., /collections/messages')
})

app.get('/collections/:collectionName', function(req, res, next) {
 req.collection.find({} ,{limit: 10, sort: {'_id': -1}}).toArray(function(e, results){
 if (e) return next(e)
 res.send(results)
 })
})

app.post('/collections/:collectionName', function(req, res, next) {
 req.collection.insert(req.body, {}, function(e, results){
 if (e) return next(e)
 res.send(results)
 })
})

app.get('/collections/:collectionName/:id', function(req, res, next) {
 req.collection.findById(req.params.id, function(e, result){
 if (e) return next(e)
 res.send(result)
 })
})

app.put('/collections/:collectionName/:id', function(req, res, next) {
 req.collection.updateById(req.params.id, {$set: req.body}, {safe: true, multi: false},
function(e, result){

 if (e) return next(e)
 res.send((result === 1) ? {msg:'success'} : {msg: 'error'})
 })
})

app.delete('/collections/:collectionName/:id', function(req, res, next) {
 req.collection.removeById(req.params.id, function(e, result){
 if (e) return next(e)
 res.send((result === 1)?{msg: 'success'} : {msg: 'error'})
 })
})

app.listen(3000, function(){
 console.log('Express server listening on port 3000')
})

Exit your editor and run this command in your terminal:

$ node express.js

And in a different window (without closing the first one—let the server run), enter either:

$ mocha express.test.js

CHAPTER 21 ■ REST API

261

Or

$./node_modules/mocha/bin/mocha express.test.js

Or

$ npm test

The terminal output from Mocha should look like this:

......
 6 passing (57ms)

In the server terminal window, you should see something like this:

Express server listening on port 3000
POST /collections/test 200 35.242 ms - 73
GET /collections/test/54724135101acb1334635994 200 4.254 ms - 71
GET /collections/test 200 5.181 ms - 108
PUT /collections/test/54724135101acb1334635994 200 4.037 ms - 17
GET /collections/test/54724135101acb1334635994 200 1.638 ms - 75
DELETE /collections/test/54724135101acb1334635994 200 1.382 ms - 17

If you really don’t like Mocha and/or BDD, you can always use CURL. For example, here's how to make a
POST request:

$ curl -d "name=peter&email=peter337@rpjs.co" http://localhost:3000/collections/proexpressjs-readers
$ curl http://localhost:3000/collections/proexpressjs-readers

In this case, the output was:

[{"name":"peter","email":"peter337@rpjs.co","_id":"541714c23f5b557785700d4c"}]%
...
[{"_id":"541714c23f5b557785700d4c","name":"peter","email":"peter337@rpjs.co"}]%

GET requests also work in the browser. For example, you can go to http://localhost:3000/collections/
proexpressjs-readers to get the list of items in the collection.

In this tutorial, our tests are longer than the app code itself, so abandoning test-driven development might be
tempting, but believe me, the good habits of TDD will save you hours of work during any serious development project
when the complexity of the application you are working on is high.

Summary
The Express.js and Mongoskin libraries are great resources when you need to build a simple REST API server in a few
lines of code. Later, if you need to expand the libraries, they also provide a way to configure and organize your code.
NoSQL databases like MongoDB are good at handling free-REST APIs, which means that you don’t have to define
schemas and that you can throw any data at it and it’ll be saved.

In the next chapter, we’ll combine the REST API approach with a front-end framework, Backbone.js, that will
fetch the data from the server, compile it, and render HTML in the browser (unlike the Todo app from Chapter 20,
which handles templates on the server).

263

CHAPTER 22

HackHall

The HackHall app is a true MVC application. It has the REST API server with a front-end client that is written in
Backbone.js and Underscore. For the purpose of this chapter, we’ll illustrate how to use Express.js with MongoDB via
Mongoose ORM/ODM (object-relational mapping/object-document mapping) for the back-end REST API server. In
addition, the project utilizes OAuth directly and via Passport, sessions, and Mocha for TDD. It’s hosted on Heroku and
is in active development (see the nearby Note).

Note ■ The HackHall source code used in this chapter is available in the public GitHub repository (https://github.

com/azat-co/hackhall) under the v3.1.0 release (https://github.com/azat-co/hackhall/releases/tag/v3.1.0,

https://github.com/azat-co/hackhall/tree/v3.1.0, and https://github.com/azat-co/hackhall/archive/

v3.1.0.zip). Future versions might differ from this chapter’s example and could have more features.

This chapter is structured as follows:

What is HackHall?•

Running HackHall•

Structure•

Package.json•

Express.js app•

Routes•

Mongoose models•

Mocha tests•

What Is HackHall?
HackHall is an open source project for online communities. Its implementation at http://hackhall.com is a curated
social network/membership community and collaboration tool for hackers, hipsters, designers, entrepreneurs, and
pirates (just kidding). The HackHall community is akin to a combination of Reddit, Hacker News, and Facebook
Groups with curation. You can apply to become a member at http://hackhall.com.

The HackHall project is in its early stages, roughly beta. We plan to extend the code base in the future and bring
in more people to share skills, wisdom, and passion for programming. You can watch a quick demo video of
HackHall.com at http://youtu.be/N1UILNqeW4k.

https://github.com/azat-co/hackhall
https://github.com/azat-co/hackhall
https://github.com/azat-co/hackhall/releases/tag/v3.1.0
https://github.com/azat-co/hackhall/tree/v3.1.0
https://github.com/azat-co/hackhall/archive/v3.1.0.zip
https://github.com/azat-co/hackhall/archive/v3.1.0.zip
http://hackhall.com/
http://hackhall.com/
http://youtu.be/N1UILNqeW4k

CHAPTER 22 ■ HACKHALL

264

In this chapter, we’ll cover the v3.1.0 release, which has the following features:

OAuth 1.0 with the • oauth module (https://www.npmjs.org/package/oauth) and
AngelList API (https://angel.co/api)

E-mail and password authentication•

Password hashing•

Mongoose models and schemas•

Express.js structure with routes in modules•

JSON REST API•

Express.js error handling•

Front-end client Backbone.js app (for more info on Backbone.js, download, or read online, my •
Rapid Prototyping with JS tutorials, at http://rapidprototypingwithjs.com/)

Environment variables with Foreman’s • .env

TDD tests with Mocha•

Basic Makefile setup•

SendGrid e-mail notifications•

GitHub login•

Running HackHall
To get the source code for HackHall, you can navigate to the hackhall folder or clone it from GitHub:

$ git clone https://github.com/azat-co/hackhall.git
$ git checkout v3.1.0
$ npm install

If you plan to test an AngelList, or GitHub integrations (optional), then you should sign up for their API keys
as a developer. After you do so, you need to pass the values via environment variables to the app. HackHall is using
a Heroku and Foreman (http://ddollar.github.io/foreman) setup approach (the .env file) for these sensitive
API keys. The Foreman gem is a command-line tool that manages Procfile-based applications. The Heroku toolbelt
includes it. To store keys in environment variables, simply add an .env file like this (replace the values following = with
your own values):

ANGELLIST_CLIENT_ID=254C0335-5F9A-4607-87C0
ANGELLIST_CLIENT_SECRET=99F5C1AC-C5F7-44E6-81A1-8DF4FC42B8D9
GITHUB_CLIENT_ID=9F5C1AC-C5F7-44E6
GITHUB_CLIENT_SECRET=9F5C1AC-C5F7-44E69F5C1AC-C5F7-44E6
GITHUB_CLIENT_ID_LOCAL=9F5C1AC-C5F7-44E1
GITHUB_CLIENT_SECRET_LOCAL=9F5C1AC-C5F7-44E69F5C1AC-C5F7-44E6
...

https://www.npmjs.org/package/oauth
https://angel.co/api
http://rapidprototypingwithjs.com/
https://github.com/azat-co/hackhall.git
http://ddollar.github.io/foreman

CHAPTER 22 ■ HACKHALL

265

Note that there are no spaces before or after the equal sign (=).
After you have the .env file and values, use foreman with nodemon:

$ foreman run nodemon server

If you are confused about foreman or prefer not to install it, then you can create a shell file with your environment
variables and use it to launch the server.

After you create an AngelList app and register it, you can obtain the AngelList API keys at https://angel.co/api.
Similarly, for GitHub, you’ll need to register as a developer to be able to create an app and get API keys. SendGrid
works via the Heroku add-on, so you obtain the username and password from the Heroku web interface.

The following is how my .env looks for v3.1.0 (with the keys replaced with placeholders), in which I have two sets
of GitHub keys, one for the local app and one for the production (hackhall.com) app, because the callback URL for
each of them is different. The callback URL is set on GitHub when you register the apps.

ANGELLIST_CLIENT_ID=AAAAAAAAAAAAAA
ANGELLIST_CLIENT_SECRET=AAAAAAAAAAAAAA
GITHUB_CLIENT_ID=AAAAAAAAAAAAAA
GITHUB_CLIENT_SECRET=AAAAAAAAAAAAAA
GITHUB_CLIENT_ID_LOCAL=AAAAAAAAAAAAAA
GITHUB_CLIENT_SECRET_LOCAL=AAAAAAAAAAAAAA
SENDGRID_USERNAME=AAAAAAAAAAAAAA@heroku.com
SENDGRID_PASSWORD=AAAAAAAAAAAAAA
COOKIE_SECRET=AAAAAAAAAAAAAA
SESSION_SECRET=AAAAAAAAAAAAAA
ANGELLIST_CLIENT_ID_LOCAL=AAAAAAAAAAAAAA
ANGELLIST_CLIENT_SECRET_LOCAL= AAAAAAAAAAAAAA
EMAIL=AAAAAAAAAAAAAA

Cookie and session secrets are used to encrypt the cookie (browser) and session (store) data.
Putting sensitive information into the environment variables allowed me to make the entire HackHall source

code available to the public. I also have one more variable that I set in the Heroku web interface for this app
(you can sync .env to/from the cloud with the Heroku config [https://devcenter.heroku.com/articles/config-vars]
or use the web interface). This variable is NODE_ENV=production. I use it when I need to determine the GitHub app to
use (local vs. the main live one).

Download and install MongoDB, if you don’t have it already. The databases and third-party libraries are
outside the scope of this book. However, you can find enough materials online (see, e.g., http://webapplog.com)
and in the previously referenced Rapid Prototyping with JS. Before you launch the application, I recommend
running the seed-script.js file or seed.js file to populate your database with information, as described next.

To seed the database hackhall with a default admin user by running the seed-script.js MongoDB script, enter

$ mongo localhost:27017/hackhall seed-script.js

Feel free to modify seed-script.js to your liking (be aware that doing so erases all previous data!). For example,
use your bcryptjs hashed password (skip to the seed.js instructions for automated hashing of seed data). You’ll see
an example of hashing later.

First, we clean the database:

db.dropDatabase();

https://angel.co/api
https://devcenter.heroku.com/articles/config-vars
http://webapplog.com/

CHAPTER 22 ■ HACKHALL

266

Then, we define an object with user information:

var seedUser ={
 firstName: 'Azat',
 lastName: 'Mardan',
 displayName: 'Azat Mardan',
 password: 'hashed password',
 email: '1@1.com',
 role: 'admin',
 approved: true,
 admin: true
};

Finally, save the object to the database using the MongoDB shell method:

db.users.save(seedUser);

Whereas seed-script.js is a MongoDB shell script, seed.js is a mini Node.js application to seed the database.
You can run the Node.js database-seeding program with:

$ node seed.js

The seed.js program is more comprehensive (it has password hashing!) than the MongoDB shell script
seed-script.js. We begin by importing the modules:

var bcrypt = require('bcryptjs');
var async = require('async');
var mongo = require ('mongodb');
var objectId = mongo.ObjectID;

Similar to in seed-script.js, we define the user objects, only this time the passwords are plain/unhashed:

seedUsers = [{...},{...}];

The seedUsers array object might look like this (add your own user objects!):

{
 firstName: "test",
 lastName: "Account",
 displayName: "test Account",
 password: "hashend password",
 email: "1@1.com",
 role: "user",
 admin: false,
 _id: objectId("503cf4730e9f580200000003"),
 photoUrl: "https://s3.amazonaws.com/photos.angel.co/users/68026-medium_jpg?1344297998",
 headline: "Test user 1",
 approved: true
}

https://s3.amazonaws.com/photos.angel.co/users/68026-medium_jpg?1344297998

CHAPTER 22 ■ HACKHALL

267

This is the asynchronous function that will hash our plain passwords:

var hashPassword = function (user, callback) {

The bcryptjs module stores salts inside of the hashed passwords, so there’s no need to store salts separately;
10 is the hashing complexity (the higher the better):

 bcrypt.hash(user.password, 10, function(error, hash) {
 if (error) throw error;
 user.password = hash;
 callback(null, user);
 });
};

Here, we define variables that we’ll use later:

var db;
var invites;
var users;
var posts;

We connect to MongoDB with the native driver:

var dbUrl = process.env.MONGOHQ_URL || 'mongodb://@127.0.0.1:27017/hackhall';
mongo.Db.connect(dbUrl, function(error, client){
 if (error) throw error;
 else {
 db=client;

Next, we assign collections to objects and clean all the users, just in case:

 invites = new mongo.Collection(db, "invites");
 users = new mongo.Collection(db, "users");
 posts = new mongo.Collection(db, "posts");
 invites.remove(function(){});
 users.remove(function(){});

You can uncomment this line if you want this script to remove the posts as well:

 // posts.remove();
 invites.insert({code:'smrules'}, function(){});

Insert a dummy post (feel free to be creative here):

 posts.insert({
 title:'test',
 text:'testbody',
 author: {
 name:seedUsers[0].displayName,
 id:seedUsers[0]._id
 }
 }, function(){});

CHAPTER 22 ■ HACKHALL

268

We use an asynchronous function, because hashing might be slow (that’s a good thing, because slower hashes
are harder to hack with brute force):

 async.map(seedUsers, hashPassword, function(error, result){
 console.log(result);
 seedUsers = result;
 users.insert(seedUsers, function(){});
 db.close();
 });
 }
});

To start the MongoDB server, open a new terminal window and run:

$ mongod

After MongoDB is running on localhost with default port 27017, go back to the project folder and run foreman
(this command reads from Procfile):

$ foreman start

Or, you can use nodemon (http://nodemon.io; GitHub: https://github.com/remy/nodemon) with a more explicit
foreman command:

$ foreman run nodemon server

If you open your browser to http://localhost:3000, you should see a login screen similar to that shown in
Figure 22-1 (for v3.1.0).

http://nodemon.io/
https://github.com/remy/nodemon

CHAPTER 22 ■ HACKHALL

269

Enter your username and password (the ones from your seed.js or seed-script.js file) to gain access.
Use the unhashed (i.e., plain) version of the password.

After successful authentication, users are redirected to the Posts page, as shown Figure 22-2 (your data, such as
post names, will be different; the “test” post is a byproduct of running Mocha tests).

Figure 22-1. HackHall v3.1.0 login page running locally

CHAPTER 22 ■ HACKHALL

270

If you click a “Like” button for a post, the “You like the post now!” message should be displayed and the Like
counter should increase on that post, as shown in Figure 22-3. The same thing happens for the Watch buttons.
Authors can edit and remove their own posts. Admins can edit and remove any posts. There are People and Profile
pages, which you will see later in the chapter.

Figure 22-2. HackHall Posts page

CHAPTER 22 ■ HACKHALL

271

So, now you’ve seen how HackHall v3.1.0 might look right out of the box on your local machine. The following
sections will walk you through some of the concepts and patterns that were used when implementing this application.
This chapter is less detailed than previous chapters, because I’m assuming that you’re already familiar with the topics
covered in those chapters; repeating all the details would take too much space and would likely bore you.

Structure
Here is the structure of HackHall and a brief description of what each of the folders and files contains:

• /api: App-shared routes

• /models: Mongoose models

• /public: Backbone app, static files, such as front-end JavaScript, CSS, and HTML

• /routes: REST API routes

• /tests: Mocha tests

• /lib: Internal (in-house) libraries

• .gitignore: List of files that git should ignore

• Makefile: Makefile to run tests

• Procfile: Cedar stack file needed for Heroku deployment

• package.json: NPM dependencies and HackHall metadata

• readme.md: Description of project

• server.js: Main HackHall server file

• .env: Secret values that you don’t want to share or leak to others

Figure 22-3. HackHall Posts page with a liked post

CHAPTER 22 ■ HACKHALL

272

My project folder content is shown in Figure 22-4. The front-end application, which is written in Backbone.js with
the Underscore template engine (HTML is rendered on the client side), is extensive and its coverage is beyond the
scope of this book, because there are many alternatives to Backbone.js (with Angular.js being one of the most popular
choices). You can always look up the source code of the browser app from the public folder:
https://github.com/azat-co/hackhall/tree/v3.1.0/public.

Figure 22-4. Content of the HackHall base folder

Package.json
As always, let’s start with the package.json file and dependencies. The “new” libraries that we haven’t used previously
in this book are passport (OAuth integration), sendgrid (e-mail notifications), mongoose (MondoDB ORM/ODM),
and bcryptjs (password hashing). Everything else should be familiar to you. We'll be using Express.js middleware
modules and utilities (async, mocha).

This is what package.json looks like (use newer versions at your own discretion):

{
 "name": "hackhall",
 "version": "3.1.0",
 "private": true,
 "main": "server",
 "scripts": {
 "start": "node server",
 "test": "make test"
 },
 "dependencies": {
 "async": "0.9.0",
 "bcryptjs": "2.0.2",
 "body-parser": "1.6.6",

https://github.com/azat-co/hackhall/tree/v3.1.0/public

CHAPTER 22 ■ HACKHALL

273

 "cookie-parser": "1.3.2",
 "csurf": "1.5.0",
 "errorhandler": "1.1.1",
 "express": "4.8.1",
 "express-session": "1.7.6",
 "method-override": "2.1.3",
 "mongodb": "1.4.9",
 "mongoose": "3.8.15",
 "mongoose-findorcreate": "0.1.2",
 "mongoskin": "1.4.4",
 "morgan": "1.2.3",
 "oauth": "0.9.12",
 "passport": "0.2.0",
 "passport-github": "0.1.5",
 "sendgrid": "1.2.0",
 "serve-favicon": "2.1.1"
 },

The devDependencies category is for modules that you don’t need in production:

 "devDependencies": {
 "mocha": "1.21.4",
 "superagent": "0.18.2"
 },
 "engines": {
 "node": "0.10.x"
 }
}

Express.js App
Let’s jump straight to the server.js file and take a look at how it’s implemented. First, we declare dependencies:

var express = require('express'),
 routes = require('./routes'),
 http = require('http'),
 util = require('util'),
 path = require('path'),
 oauth = require('oauth'),
 querystring = require('querystring');

Next, we do the same for the Express.js middleware modules (no need for a separate var, except to show the
difference in purpose of the modules):

var favicon = require('serve-favicon'),
 logger = require('morgan'),
 bodyParser = require('body-parser'),
 methodOverride = require('method-override'),
 cookieParser = require('cookie-parser'),
 session = require('express-session'),
 csrf = require('csurf');

CHAPTER 22 ■ HACKHALL

274

Next, we have an internal e-mail library that uses SendGrid via a Heroku add-on:

var hs = require(path.join(__dirname, 'lib', 'hackhall-sendgrid'));

The log messages with different font colors are nice to have, but are, of course, optional. We accomplish this
coloring with escape sequences in lib/colors.js:

var c = require(path.join(__dirname, 'lib', 'colors'));
require(path.join(__dirname, 'lib', 'env-vars'));

Passport (http://passportjs.org, https://www.npmjs.org/package/passport, https://github.com/
jaredhanson/passport) is for GitHub OAuth. Using passport is a higher-level approach of implementing OAuth than
using oauth:

var GitHubStrategy = require('passport-github').Strategy,
 passport = require('passport');

Then, we initialize the app and configure middleware. The process.env.PORT environment variable is populated
by Heroku, and in the case of a local setup, falls back on 3000. The rest of the configuration should be familiar to you
from Chapter 4.

app.set('port', process.env.PORT || 3000);
app.use(favicon(path.join(__dirname,'public','favicon.ico')));
app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({extended: true}));
app.use(methodOverride());

The values passed to cookieParser and session middleware are needed for authentication. Obviously, these
secrets are supposed to be private:

app.use(cookieParser(process.env.COOKIE_SECRET));
app.use(session({
 secret: process.env.SESSION_SECRET,
 key: 'sid',
 cookie: {
 secret: true,
 expires: false
 },
 resave: true,
 saveUninitialized: true
}));

This is how we serve our front-end client Backbone.js app and other static files, such as CSS:

app.use(express.static(__dirname + '/public'));

Error handling is broken down into three functions, with clientErrorHandler() dedicated to AJAX/XHR
requests from the Backbone.js app (responds with JSON). Right now, we only declare the functions. We’ll apply them
with app.use() later.

http://passportjs.org/
https://www.npmjs.org/package/passport
https://github.com/jaredhanson/passport
https://github.com/jaredhanson/passport

CHAPTER 22 ■ HACKHALL

275

The first method, logErrors(), checks if err is a string and, if it is, creates an Error object. Then, the execution
goes to the next error handler.

function logErrors(err, req, res, next) {
 if (typeof err === 'string')
 err = new Error (err);
 console.error('logErrors', err.toString());
 next(err);
}

As previously mentioned, clientErrorHandler is dedicated to AJAX/XHR requests from the Backbone.js app
(responds with JSON) by checking req.xhr, and it will send a JSON message back or go to the next handler:

function clientErrorHandler(err, req, res, next) {
 if (req.xhr) {
 console.error('clientErrors response');
 res.status(500).json({ error: err.toString()});
 } else {
 next(err);
 }
}

The last error handler, errorHandler(), will assume that the request is not AJAX/XHR (otherwise
clientErrorHandler() would have caught it, but this order will be defined later with app.use()), and will send a
string back:

function errorHandler(err, req, res, next) {
 console.error('lastErrors response');
 res.status(500).send(err.toString());
}

Recall that we determine process.env.PORT and fall back on local setup value 3000 using ||. We do a similar
thing with a MongoDB connection string. We pull the Heroku add-on URI string from the environment variable or fall
back to local settings:

var dbUrl = process.env.MONGOHQ_URL
 || 'mongodb://@127.0.0.1:27017/hackhall';
var mongoose = require('mongoose');

Now, we create a connection:

var connection = mongoose.createConnection(dbUrl);
connection.on('error', console.error.bind(console,
 'connection error:'));

Sometimes it’s a good idea to log the connection open event:

connection.once('open', function () {
 console.info('Connected to database')
});

CHAPTER 22 ■ HACKHALL

276

The Mongoose models live in the models folder:

var models = require('./models');

This middleware will provide access to two collections within our route methods:

function db (req, res, next) {
 req.db = {
 User: connection.model('User', models.User, 'users'),
 Post: connection.model('Post', models.Post, 'posts')
 };
 return next();
}

The lines below are just new names for the imported routes/main.js file authorization functions:

var checkUser = routes.main.checkUser;
var checkAdmin = routes.main.checkAdmin;
var checkApplicant = routes.main.checkApplicant;

We then move onto the AngelList OAuth routes for AngelList login. This is a standard, three-legged OAuth 1.0
strategy where we initiate the auth (/auth/angellist), redirect users to the service provider (AngelList), and then
wait for the user to come back from the service provider (/auth/angellist):

app.get('/auth/angellist', routes.auth.angelList);
app.get('/auth/angellist/callback',
 routes.auth.angelListCallback,
 routes.auth.angelListLogin,
 db,
 routes.users.findOrAddUser);

Tip ■ For more information on OAuth and Node.js OAuth examples, take a look at my book Introduction to OAuth with

Node.js (2014), available at https://gumroad.com/l/oauthnode.

The next few lines of code deal with Passport and GitHub login logic. Implementing OAuth using Passport
requires less manual effort than using the OAuth module.

Let’s skip to the main application routes, starting with app.get('/api/profile'). The api/profile is used by
the Backbone.js app, and it returns a user session, if the user is logged in. The request travels via checkUser and db,
with the former authorizing and the latter populating the database info.

// MAIN
app.get('/api/profile', checkUser, db, routes.main.profile);
app.delete('/api/profile', checkUser, db, routes.main.delProfile);
app.post('/api/login', db, routes.main.login);
app.post('/api/logout', routes.main.logout);

https://gum.co/oauthnode/78CBB68E

CHAPTER 22 ■ HACKHALL

277

The Posts and Users collections routes are for manipulating with posts and users:

// POSTS
app.get('/api/posts', checkUser, db, routes.posts.getPosts);
app.post('/api/posts', checkUser, db, routes.posts.add);
app.get('/api/posts/:id', checkUser, db, routes.posts.getPost);
app.put('/api/posts/:id', checkUser, db, routes.posts.updatePost);
app.delete('/api/posts/:id', checkUser, db, routes.posts.del);

// USERS
app.get('/api/users', checkUser, db, routes.users.getUsers);
app.get('/api/users/:id', checkUser, db,routes.users.getUser);
app.post('/api/users', checkAdmin, db, routes.users.add);
app.put('/api/users/:id', checkAdmin, db, routes.users.update);
app.delete('/api/users/:id', checkAdmin, db, routes.users.del);

These routes are for new members that haven’t been approved yet (i.e., they’ve submitted an application):

//APPLICATION
app.post('/api/application', checkAdmin, db, routes.application.add);
app.put('/api/application', checkApplicant, db, routes.application.update);
app.get('/api/application', checkApplicant, db, routes.application.get);

The following is the catch-all-else route:

app.get('*', function(req, res){
 res.status(404).send();
});

We apply the error handlers in the order in which we want them to be called:

app.use(logErrors);
app.use(clientErrorHandler);
app.use(errorHandler);

The require.main === module is a clever trick to determine if this file is being executed as a stand-alone or as
an imported module:

http.createServer(app);
if (require.main === module) {
 app.listen(app.get('port'), function(){

We show the blue log message:

 console.info(c.blue + 'Express server listening on port '
 + app.get('port') + c.reset);
 });
}
else {
 console.info(c.blue + 'Running app as a module' + c.reset)
 exports.app = app;
}

To save space, I won’t list the full source code for hackhall/server.js, but you can view it at
https://github.com/azat-co/hackhall/blob/v3.1.0/server.js.

https://github.com/azat-co/hackhall/blob/v3.1.0/server.js

CHAPTER 22 ■ HACKHALL

278

Routes
The HackHall routes reside in the hackhall/routes folder and are grouped into several modules:

• hackhall/routes/index.js: Bridge between server.js and other routes in the folder

• hackhall/routes/auth.js: Routes that handle the OAuth “dance” with the AngelList API

• hackhall/routes/main.js: Login, logout, and other routes

• hackhall/routes/users.js: Routes related to users’ REST API

• hackhall/routes/application.js: Routes that handle submission of an application to
become a user

• hackhall/routes/posts.js: Routes related to posts’ REST API

index.js
Let’s peek into hackhall/routes/index.js, where we’ve included other modules:

exports.posts = require('./posts');
exports.main = require('./main');
exports.users = require('./users');
exports.application = require('./application');
exports.auth = require('./auth');

auth.js
In this module, we handle the OAuth dance with the AngelList API. To do so, we rely on the https library:

var https = require('https');

The AngelList API client ID and client secret are obtained at https://angel.co/api and stored in environment
variables. I added two applications: one for local development and the other for production, as shown in Figure 22-5.
The app picks one of them, based on the environment:

if (process.env.NODE_ENV === 'production') {
 var angelListClientId = process.env.ANGELLIST_CLIENT_ID;
 var angelListClientSecret = process.env.ANGELLIST_CLIENT_SECRET;
} else {
 var angelListClientId = process.env.ANGELLIST_CLIENT_ID_LOCAL;
 var angelListClientSecret = process.env.ANGELLIST_CLIENT_SECRET_LOCAL;
}

https://angel.co/api

CHAPTER 22 ■ HACKHALL

279

The exports.angelList() method will redirect users to the https://angel.co/api web site for authentication.
This method is invoked when we navigate to /auth/angellist. The request’s structure is described in the
documentation at https://angel.co/api/oauth/faq.

exports.angelList = function(req, res) {
 res.redirect('https://angel.co/api/oauth/authorize?client_id=' + angelListClientId +
'&scope=email&response_type=code');
}

After users allow our app to access their information, AngelList sends them back to this route to allow us to make
a new (HTTPS) request to retrieve the token:

exports.angelListCallback = function(req, res, next) {
 var token;
 var buf = '';
 var data;
 var angelReq = https.request({

Figure 22-5. My AngelList apps

https://angel.co/api
https://angel.co/api/oauth/faq
https://angel.co/api/oauth/authorize?client_id

CHAPTER 22 ■ HACKHALL

280

The values of host and path are specific to your service provider, so you need to consult the provider’s
documentation when you implement OAuth. These are the values for AngelList API:

 host: 'angel.co',
 path: '/api/oauth/token?client_id=' + angelListClientId +
 '&client_secret=' + angelListClientSecret + '&code=' + req.query.code +
 '&grant_type=authorization_code',
 port: 443,
 method: 'POST',
 headers: {
 'content-length': 0
 }

At this point, the callback should have the response with the token (or an error), so we parse the response and
check for the access_token. If it’s there, we save the token in the session and proceed to the next middleware in the
/auth/angellist/callback, which is angelListLogin. First, let’s attach an event listener that saves the response in buf:

 }, function(angelRes) {
 angelRes.on('data', function(buffer) {
 buf += buffer;
 });

Then, we attach another event listener for the end event:

 angelRes.on('end', function() {

The buf object at this moment should have the full response body in a Buffer type, so we need to convert it to a
string type and parse. The data should have only two properties, access_token and token_type ('bearer'):

 try {
 data = JSON.parse(buf.toString('utf-8'));
 } catch (e) {
 if (e) return next(e);
 }

Let’s check for the access_token to be 100% sure:

 if (!data || !data.access_token) return next(new Error('No data from AngelList'));
 token = data.access_token;

Now, we can save token in a session and call the next middleware:

 req.session.angelListAccessToken = token;
 if (token) {
 next();
 }
 else {
 next(new Error('No token from AngelList'));
 }
 });
 });

CHAPTER 22 ■ HACKHALL

281

The rest of the request code finishes the request and deals with an error event:

 angelReq.end();
 angelReq.on('error', function(e) {
 console.error(e);
 next(e);
 });
}

So, the user has been granted access to our AngelList app and we have the token (angelListCallback). Now, we
can get the user profile information by directly calling the AngelList API with the token from the previous middleware
(angelListLogin). The order of the middleware functions is dictated by the route /auth/angellist/callback, so we
begin angelListLogin with the HTTPS request:

exports.angelListLogin = function(req, res, next) {
 var token = req.session.angelListAccessToken;
 httpsRequest = https.request({
 host: 'api.angel.co',

Again, the exact URL is different for each service:

 path: '/1/me?access_token=' + token,
 port: 443,
 method: 'GET'
 },
 function(httpsResponse) {
 var userBuffer = '';
 httpsResponse.on('data', function(buffer) {
 userBuffer += buffer;
 });

The next event listener will parse the buffer-type object into the normal JavaScript/Node.js object:

 httpsResponse.on('end', function(){
 try {
 data = JSON.parse(userBuffer.toString('utf-8'));
 } catch (e) {
 if (e) return next(e);
 }

At this point in the execution, the system should have data fields filled with the user information
(/1/me?access_token=... endpoint). You can see an example of such response data in Figure 22-6.

CHAPTER 22 ■ HACKHALL

282

We still have to check whether the object is empty or not and, if it’s not empty, we save the user data on the
request object:

 if (data) {
 req.angelProfile = data;
 next();
 } else
 next(new Error('No data from AngelList'));
 });
 }
);
 httpsRequest.end();
 httpsRequest.on('error', function(e) {
 console.error(e);
 });
};

The full source code for the hackhall/routes/auth.js file at the time of this writing is at https://github.com/
azat-co/hackhall/blob/v3.1.0/routes/auth.js (which is subject to change as the HackHall version evolves).

Figure 22-6. Example of the AngelList user info response

https://github.com/azat-co/hackhall/blob/v3.1.0/routes/auth.js
https://github.com/azat-co/hackhall/blob/v3.1.0/routes/auth.js

CHAPTER 22 ■ HACKHALL

283

main.js
The hackhall/routes/main.js file is also interesting, because it has these methods:

• checkAdmin()

• checkUser()

• checkApplicant()

• login()

• logout()

• profile()

• delProfile()

The checkAdmin() function performs authentication for admin privileges. If the session object doesn’t carry the
proper flag, we call the Express.js next() function with an error object:

exports.checkAdmin = function(request, response, next) {
 if (request.session
 && request.session.auth
 && request.session.userId
 && request.session.admin) {
 console.info('Access ADMIN: ' + request.session.userId);
 return next();
 } else {
 next('User is not an administrator.');
 }
};

Similarly, we can check for only the approved user without checking for admin rights:

exports.checkUser = function(req, res, next) {
 if (req.session && req.session.auth && req.session.userId
 && (req.session.user.approved || req.session.admin)) {
 console.info('Access USER: ' + req.session.userId);
 return next();
 } else {
 next('User is not logged in.');
 }
};

If an application is just an unapproved user object, we can also check for that:

exports.checkApplicant = function(req, res, next) {
 if (req.session && req.session.auth && req.session.userId
 && (!req.session.user.approved || req.session.admin)) {
 console.info('Access USER: ' + req.session.userId);
 return next();
 } else {
 next('User is not logged in.');
 }
};

CHAPTER 22 ■ HACKHALL

284

In the login function, we search for e-mail. Because we don’t store the plain password in the database—we store
only its encrypted hash—we need to compare the password hashes using bcryptjs. Upon a successful match, we
store the user object in the session, set the auth flag to true (req.session.auth = true), and proceed. Otherwise, the
request fails:

var bcrypt = require('bcryptjs');
exports.login = function(req, res, next) {
 console.log('Logging in USER with email:', req.body.email)
 req.db.User.findOne({
 email: req.body.email
 },null, {
 safe: true
 }, function(err, user) {
 if (err) return next(err);
 if (user) {

We use the asynchronous bcryptjs method compare(), which returns true, if the plain password matches the
saved hashed password:

 bcrypt.compare(req.body.password, user.password, function(err, match) {
 if (match) {

So, all is good: the system assigns session flags and saves user info in the session. These values will be used on all
auth-required (protected) routes to identify the user:

 req.session.auth = true;
 req.session.userId = user._id.toHexString();
 req.session.user = user;

There’s a separate boolean for admins:

 if (user.admin) {
 req.session.admin = true;
 }
 console.info('Login USER: ' + req.session.userId);

The JSON {msg: 'Authorized'} object is an arbitrary convention that you can customize, but you must keep it
the same on the server and the client (to check the server response):

 res.status(200).json({
 msg: 'Authorized'
 });
 } else {
 next(new Error('Wrong password'));
 }
 });
 } else {
 next(new Error('User is not found.'));
 }
 });
};

CHAPTER 22 ■ HACKHALL

285

The logging-out process removes any session information:

exports.logout = function(req, res) {
 console.info('Logout USER: ' + req.session.userId);
 req.session.destroy(function(error) {
 if (!error) {
 res.send({
 msg: 'Logged out'
 });
 }
 });
};

This route is used for the Profile page, as well as by Backbone.js for user authentication:

exports.profile = function(req, res, next) {

We don’t want to expose all the user fields, so we whitelist only the fields that we want to get:

 var fields = 'firstName lastName displayName' +
 ' headline photoUrl admin approved banned' +
 ' role angelUrl twitterUrl facebookUrl linkedinUrl githubUrl';

This is a custom method created via Mongoose functionality for the reason that it has quite extensive logic and is
called more than once:

 req.db.User.findProfileById(req.session.userId, fields, function(err, obj) {
 if (err) next(err);
 res.status(200).json(obj);
 });
};

It’s important to allow users to delete their profiles. We utilize the findByIdAndRemove() method and remove the
session with destroy():

exports.delProfile = function(req, res, next) {
 console.log('del profile');
 console.log(req.session.userId);
 req.db.User.findByIdAndRemove(req.session.user._id, {},
 function(err, obj) {
 if (err) next(err);
 req.session.destroy(function(error) {
 if (err) {
 next(err)
 }
 });
 res.status(200).json(obj);
 }
);
};

The full source code of the hackhall/routes/main.js file is available at https://github.com/azat-co/
hackhall/blob/v3.1.0/routes/main.js.

https://github.com/azat-co/hackhall/blob/v3.1.0/routes/main.js
https://github.com/azat-co/hackhall/blob/v3.1.0/routes/main.js

CHAPTER 22 ■ HACKHALL

286

users.js
The routes/users.js file is responsible for the RESTful activities related to User collections. We have these methods:

• getUsers()

• getUser()

• add()

• update()

• del()

• findOrAddUser()

First, we define some variables:

var path = require('path'),
 hs = require(path.join(__dirname, '..', 'lib', 'hackhall-sendgrid'));

var objectId = require('mongodb').ObjectID;

var safeFields = 'firstName lastName displayName headline photoUrl admin approved banned role
angelUrl twitterUrl facebookUrl linkedinUrl githubUrl';

Then, we define the method getUsers(), which retrieves a list of users where each item has only the properties
from the safeFields string:

exports.getUsers = function(req, res, next) {
 if (req.session.auth && req.session.userId) {
 req.db.User.find({}, safeFields, function(err, list) {
 if (err) return next(err);
 res.status(200).json(list);
 });
 } else {
 return next('User is not recognized.')
 }
}

The getUser() method is used on the user profile page. For administrators (the current user, not the user we
fetch), we add an extra field, email, and invoke the custom static method findProfileById():

exports.getUser = function(req, res, next) {
 var fields = safeFields;
 if (req.session.admin) {
 fields = fields + ' email';
 }
 req.db.User.findProfileById(req.params.id, fields, function(err, data){
 if (err) return next(err);
 res.status(200).json(data);
 })
}

CHAPTER 22 ■ HACKHALL

287

To see the getUser() method in action, you can navigate to a user profile page, as shown in Figure 22-7.
Admins can manage users’ accounts on the Profile page. So, if you’re an admin, you’ll see an extra Role drop-down
that sets the role for this user.

Figure 22-7. HackHall Profile page when logged in as admin

The add() method is straightforward:

exports.add = function(req, res, next) {
 var user = new req.db.User(req.body);
 user.save(function(err) {
 if (err) next(err);
 res.json(user);
 });
};

CHAPTER 22 ■ HACKHALL

288

The update() method is also used for the approval of new users (approvedNow == true). In case of success, we
send an e-mail using the internal method notifyApproved() from the lib/hackhall-sendgrid.js file:

exports.update = function(req, res, next) {
var obj = req.body;
 obj.updated = new Date();
 delete obj._id;
 var approvedNow = obj.approved && obj.approvedNow;

The approvedNow field is not a field in the Mongoose schema, and we don’t want to store it. The only purpose of
the field is to let the system know whether it’s a regular update call or an approval:

 delete obj.approvedNow;
 req.db.User.findByIdAndUpdate(req.params.id, {
 $set: obj
 }, {

This option will give us the new object instead of the original (the default is true):

 new: true
 }, function(err, user) {
 if (err) return next(err);
 if (approvedNow && user.approved) {
 console.log('Approved... sending notification!');

So, the approval went successfully and we can send an e-mail:

 hs.notifyApproved(user, function(error, user){
 if (error) return next(error);
 console.log('Notification was sent.');
 res.status(200).json(user);
 })
 } else {

If it was a regular update, and not an approval, then we just send back the user object:

 res.status(200).json(user);
 }
 });
};

Figure 22-8 shows how approval looks in the user interface, when you’re logged in with admin rights. There is a
drop-down menu that admins can use to approve, delete, or ban applicants.

CHAPTER 22 ■ HACKHALL

289

To delete a user, we call findByIdAndRemove():

exports.del = function(req, res, next) {
 req.db.User.findByIdAndRemove(req.params.id, function(err, obj) {
 if (err) next(err);
 res.status(200).json(obj);
 });
};

Lastly, the findOrAddUser() method is employed when a user logs in with AngelList. You can use findOrCreate
supplied by the plug-in (and that’s what is used in the GitHub OAuth flow), but for the sake of learning, it’s good to
know how to implement the same functionality on your own. It will also reinforce your asynchronous way of thinking
and your understanding of how to refactor code when you compare findOrCreate with this function:

exports.findOrAddUser = function(req, res, next) {
 var data = req.angelProfile;
 req.db.User.findOne({
 angelListId: data.id
 }, function(err, obj) {
 console.log('angelList Login findOrAddUser');
 if (err) return next(err);

Figure 22-8. HackHall People page with admin rights (logged in as admin)

CHAPTER 22 ■ HACKHALL

290

Okay, so we queried the database for the user, but let’s check if the user is there and, if not, create the user:

 if (!obj) {
 console.warn('Creating a user', obj, data);
 req.db.User.create({

We map/normalize all the fields that we need from the AngelList response to the user object.

 angelListId: data.id,

This token is what we can use to make subsequent API requests on behalf of the user without asking for
authorization and permissions each time:

 angelToken: req.session.angelListAccessToken,

And, just in case, we store the whole AngelList object as well in angelListProfile:

 angelListProfile: data,
 email: data.email,

The data.name is the full name, so we split it by space into an array and get the first and second elements
separately:

 firstName: data.name.split(' ')[0],
 lastName: data.name.split(' ')[1],
 displayName: data.name,
 headline: data.bio,

The image is just a URL to the file, not a binary field:

 photoUrl: data.image,
 angelUrl: data.angellist_url,
 twitterUrl: data.twitter_url,
 facebookUrl: data.facebook_url,
 linkedinUrl: data.linkedin_url,
 githubUrl: data.github_url
 }, function(err, obj) {
 if (err) return next(err);
 console.log('User was created', obj);

Okay, so the user document has been successfully created. But the system must log in the user right away, so we
set the session flag to true:

 req.session.auth = true;

We need to save the newly created user ID in the session so that we can use it on other requests from this client:

 req.session.userId = obj._id;
 req.session.user = obj;

CHAPTER 22 ■ HACKHALL

291

The admin needs to be promoted by another admin. The default database value for new users is taken care of by
the Mongoose schema (with the default of false). However, the session value needs to be set here, so we authenticate
as a regular user by default:

 req.session.admin = false;
 res.redirect('/#application');
 }
);
 } else {

When the user document is in the database, we just log in the user and redirect either to posts or their
membership application:

 req.session.auth = true;
 req.session.userId = obj._id;
 req.session.user = obj;
 req.session.admin = obj.admin;
 if (obj.approved) {
 res.redirect('/#posts');
 } else {
 res.redirect('/#application');
 }
 }
 })
 }

The full source code for the hackhall/routes/users.js file is available at https://github.com/azat-co/
hackhall/blob/v3.1.0/routes/users.js.

users.js provides functionality to the REST API routes of the People page that allows a user to visit other users’
profiles, as shown in Figure 22-9. In that screenshot, the first Azat’s profile is from seeding the database. The second
Azat’s profile is from my logging in with GitHub.

https://github.com/azat-co/hackhall/blob/v3.1.0/routes/users.js
https://github.com/azat-co/hackhall/blob/v3.1.0/routes/users.js

CHAPTER 22 ■ HACKHALL

292

application.js
The hackhall/routes/application.js file (“application” in the sense of applying, not as in app!) deals with new
users applying to join the HackHall community. They need to be approved to ensure that only real and serious
members join HackHall.com. In your local version, you might want to suppress the e-mail notifications regarding
submitting and approving of an application.

Merely to add a user object (with approved=false by default) to the database (e-mail membership application),
we use this method:

exports.add = function(req, res, next) {
 req.db.User.create({
 firstName: req.body.firstName,
 lastName: req.body.lastName,
 displayName: req.body.displayName,
 headline: req.body.headline,
 photoUrl: req.body.photoUrl,
 password: req.body.password,
 email: req.body.email,
 angelList: {
 blah: 'blah'
 },

Figure 22-9. HackHall People page

CHAPTER 22 ■ HACKHALL

293

 angelUrl: req.body.angelUrl,
 twitterUrl: req.body.twitterUrl,
 facebookUrl: req.body.facebookUrl,
 linkedinUrl: req.body.linkedinUrl,
 githubUrl: req.body.githubUrl
 }, function(err, obj) {
 if (err) return next(err);
 if (!obj) return next('Cannot create.')
 res.status(200).json(obj);
 })
};

We let the users update information in their applications with this method:

exports.update = function(req, res, next) {
 var data = req.body;

The _id needs to be removed first, because we don’t want to change it:

 delete data._id;

In the findByIdAndUpdate() method, we employ the user ID from the session, not the one from the body,
because it cannot be trusted:

 req.db.User.findByIdAndUpdate(req.session.user._id, {
 $set: data
 }, function(err, obj) {
 if (err) return next(err);
 if (!obj) return next('Cannot save.')

It’s probably okay to send the whole thing back (obj), because it’s this user’s info anyway:

 res.status(200).json(obj);
 });
};

Select a particular object with the get() function:

exports.get = function(req, res, next) {
 req.db.User.findById(req.session.user._id,

Limit the field that we get back:

 'firstName lastName photoUrl headline displayName'
 + 'angelUrl facebookUrl twitterUrl linkedinUrl'
 + 'githubUrl', {}, function(err, obj) {
 if (err) return next(err);
 if (!obj) return next('cannot find');
 res.status(200).json(obj);
 })
};

CHAPTER 22 ■ HACKHALL

294

The following is the full source code of the hackhall/routes/applications.js file:

exports.add = function(req, res, next) {
 req.db.User.create({
 firstName: req.body.firstName,
 lastName: req.body.lastName,
 displayName: req.body.displayName,
 headline: req.body.headline,
 photoUrl: req.body.photoUrl,
 password: req.body.password,
 email: req.body.email,
 angelList: {
 blah: 'blah'
 },
 angelUrl: req.body.angelUrl,
 twitterUrl: req.body.twitterUrl,
 facebookUrl: req.body.facebookUrl,
 linkedinUrl: req.body.linkedinUrl,
 githubUrl: req.body.githubUrl
 }, function(err, obj) {
 if (err) return next(err);
 if (!obj) return next('Cannot create.')
 res.status(200).json(obj);
 })
};

exports.update = function(req, res, next) {
 var data = req.body;
 delete data._id;
 req.db.User.findByIdAndUpdate(req.session.user._id, {
 $set: data
 }, function(err, obj) {
 if (err) return next(err);
 if (!obj) return next('Cannot save.')
 res.status(200).json(obj);
 });
};

exports.get = function(req, res, next) {
 req.db.User.findById(req.session.user._id,
 ' firstName lastName photoUrl headline displayName angelUrl facebookUrl twitterUrl linkedinUrl

githubUrl', {}, function(err, obj) {
 if (err) return next(err);
 if (!obj) return next('cannot find');
 res.status(200).json(obj);
 })
};

Figure 22-10 shows how the membership application page looks at this point.

CHAPTER 22 ■ HACKHALL

295

posts.js
The last routes module that we need to dissect is hackhall/routes/posts.js. It takes care of adding, editing, and
removing posts, as well as commenting, watching, and liking.

We use the object ID for conversion from HEX strings to proper objects:

objectId = require('mongodb').ObjectID;

The default values for the pagination of posts are as follows:

var LIMIT = 10;
var SKIP = 0;

Figure 22-10. HackHall membership application page

CHAPTER 22 ■ HACKHALL

296

The add() function handles the creation of new posts:

exports.add = function(req, res, next) {
 if (req.body) {

The req.db.Post is available here because of the custom db middleware that is used on most of the routes:

 req.db.Post.create({
 title: req.body.title,
 text: req.body.text || null,
 url: req.body.url || null,

We set the author of the post from the user’s session info:

 author: {
 id: req.session.user._id,
 name: req.session.user.displayName
 }
 }, function(err, docs) {
 if (err) {
 console.error(err);
 next(err);
 } else {
 res.status(200).json(docs);
 }

 });
 } else {
 next(new Error('No data'));
 }
};

To retrieve the list of posts using either the values of limit and skip from the request query or the default values,
we use the following:

exports.getPosts = function(req, res, next) {
 var limit = req.query.limit || LIMIT;
 var skip = req.query.skip || SKIP;
 req.db.Post.find({}, null, {
 limit: limit,
 skip: skip,

We sort the results by their ID, which typically lists the results in chronological order (for more precise results, we
could have used the created field here):

 sort: {
 '_id': -1
 }
 }, function(err, obj) {

CHAPTER 22 ■ HACKHALL

297

At this point, we check to see if there are any posts in the obj, and then, we perform a loop to add some helper
flags such as admin, own, like, and watch:

 if (!obj) return next('There are not posts.');
 var posts = [];
 docs.forEach(function(doc, i, list) {

The doc object is a Mongoose document object that has a lot of magic, so it’s best to convert the data to a normal
object:

 var item = doc.toObject();

Now, we can check whether or not the user has admin rights, and if the user has them, then we set item.
admin to true, but on the property of the new object item. This is redundant, as the client app has the admin flag
elsewhere, but it’s convenient to have this info on each post for representation purposes, because admins can edit
and remove any post:

 if (req.session.user.admin) {
 item.admin = true;
 } else {
 item.admin = false;
 }

The next line checks whether or not the user is the author of this particular post:

 if (doc.author.id == req.session.userId) {
 item.own = true;
 } else {
 item.own = false;
 }

This line checks whether or not this user liked this post:

 if (doc.likes && doc.likes.indexOf(req.session.user._id) > -1) {
 item.like = true;
 } else {
 item.like = false;
 }

This line checks whether or not this user watches this post:

 if (doc.watches && doc.watches.indexOf(req.session.user._id) > -1) {
 item.watch = true;
 } else {
 item.watch = false;
 }
 posts.push(item);
 });

CHAPTER 22 ■ HACKHALL

298

Here's where we form the response body:

 var body = {};
 body.limit = limit;
 body.skip = skip;
 body.posts = posts;

To include the total number of documents (posts) for pagination, we need this quick query:

 req.db.Post.count({}, function(err, total) {
 if (err) return next(err);
 body.total = total;
 res.status(200).json(body);
 });
 });
};

For the individual post page, we need the getPost() method. We can pass the properties that we want, not as a
string, as in users.js, but as an object as well:

exports.getPost = function(req, res, next) {
 if (req.params.id) {
 req.db.Post.findById(req.params.id, {

This is another way to limit fields that we want to be returned from the database:

 title: true,
 text: true,
 url: true,
 author: true,
 comments: true,
 watches: true,
 likes: true
 }, function(err, obj) {
 if (err) return next(err);
 if (!obj) {
 next('Nothing is found.');
 } else {
 res.status(200).json(obj);
 }
 });
 } else {
 next('No post id');
 }
};

CHAPTER 22 ■ HACKHALL

299

The del() function removes specific posts from the database. The findById() and remove() methods from
Mongoose are used in this snippet. However, the same thing can be accomplished with just remove().

exports.del = function(req, res, next) {
 req.db.Post.findById(req.params.id, function(err, obj) {
 if (err) return next(err);

The following is just a sanity check to confirm that the client is either an admin or the author of the post that we
are about to delete:

 if (req.session.admin || req.session.userId === obj.author.id) {
 obj.remove();
 res.status(200).json(obj);
 } else {
 next('User is not authorized to delete post.');
 }
 })
};

To like the post, we update the post item by prepending the post.likes array with the ID of the user:

function likePost(req, res, next) {
 req.db.Post.findByIdAndUpdate(req.body._id, {

This is a neat MongoDB operand to add values to arrays:

 $push: {
 likes: req.session.userId
 }
 }, {}, function(err, obj) {
 if (err) {
 next(err);
 } else {
 res.status(200).json(obj);
 }
 });
};

Likewise, when a user performs the watch action, the system adds a new ID to the post.watches array:

function watchPost(req, res, next) {
 req.db.Post.findByIdAndUpdate(req.body._id, {
 $push: {
 watches: req.session.userId
 }
 }, {}, function(err, obj) {
 if (err) next(err);
 else {
 res.status(200).json(obj);
 }
 });
};

CHAPTER 22 ■ HACKHALL

300

The updatePost() method is what calls like or watch functions, based on the action flag sent with the request
(req.body.action):

exports.updatePost = function(req, res, next) {
 var anyAction = false;
 if (req.body._id && req.params.id) {

This logic is for adding a like:

 if (req.body && req.body.action == 'like') {
 anyAction = true;
 likePost(req, res);

The next condition is for adding a watch:

 } else if (req.body && req.body.action == 'watch') {
 anyAction = true;
 watchPost(req, res);

This one is for adding a comment to the post:

 } else if (req.body && req.body.action == 'comment'
 && req.body.comment && req.params.id) {
 anyAction = true;
 req.db.Post.findByIdAndUpdate(req.params.id, {
 $push: {
 comments: {
 author: {
 id: req.session.userId,
 name: req.session.user.displayName
 },
 text: req.body.comment
 }
 }
 }, {
 safe: true,
 new: true
 }, function(err, obj) {
 if (err) throw err;
 res.status(200).json(obj);
 });

CHAPTER 22 ■ HACKHALL

301

Lastly, when none of the previous conditions of action are met, updatePost() processes the changes to the
post itself (title, text, etc.) made by the author or admin (req.body.author.id == req.session.user._id || req.
session.user.admin):

 } else if (req.session.auth && req.session.userId && req.body
 && req.body.action != 'comment' &&
 req.body.action != 'watch' && req.body != 'like' &&
 req.params.id && (req.body.author.id == req.session.user._id
 || req.session.user.admin)) {
 req.db.Post.findById(req.params.id, function(err, doc) {

In this context, the doc object is a Mongoose document object, so we assign the new values to its properties
and invoke save(), which triggers the pre-save hook defined in the model (covered in the next section, “Mongoose
Models”):

 if (err) next(err);
 doc.title = req.body.title;
 doc.text = req.body.text || null;
 doc.url = req.body.url || null;
 doc.save(function(e, d) {
 if (e) return next(e);

It’s a rule to send back the updated object:

 res.status(200).json(d);
 });
 })
 } else {
 if (!anyAction) next('Something went wrong.');
 }

 } else {
 next('No post ID.');
 }
};

The full source code for the hackhall/routes/posts.js file is available at
https://github.com/azat-co/hackhall/blob/v3.1.0/routes/posts.js.

This concludes coding the routes for the New Post page (see Figure 22-11), where users can create a post
(e.g., a question).

https://github.com/azat-co/hackhall/blob/v3.1.0/routes/posts.js

CHAPTER 22 ■ HACKHALL

302

We’re done with the routes files! Do you remember that HackHall is a true MVC application? Next, we’ll cover the
models.

Mongoose Models
Ideally, in a big application, we would break down each model into a separate file. Right now, in the HackHall app, we
have them all in hackhall/models/index.js.

As always, our dependencies look better at the top:

var mongoose = require('mongoose');

This reference will be used for Mongoose data types:

var Schema = mongoose.Schema;

Figure 22-11. HackHall New Post page

CHAPTER 22 ■ HACKHALL

303

This array will be used as an enumerated type:

var roles = 'user staff mentor investor founder'.split(' ');

The Post model represents a post with its likes, comments, and watches. Each property in the schema sets
a certain behavior for the property. For example, required means that this property is required, and type is the
Mongoose/BSON data type.

Tip ■ For more information on Mongoose, please consult its official documentation (https://gumroad.com/l/mongoose),

Practical Node.js (Apress, 2014), and a new online course.

We define Schema with the new operand:

var Post = new Schema ({

Then, we have a title field that is required (type of String) and that is automatically trimmed of whitespace at
the beginning and end:

 title: {
 required: true,
 type: String,
 trim: true,

The RegExp says “a word, a space, or any of the characters ,.!?” and be between 1 and 100 characters in length”:

 match: /^([\w ,.!?]{1,100})$/
 },

Then, we define url with the maximum of 1000 characters (that should be enough for long URLs, right?) and turn
trimming on:

 url: {
 type: String,
 trim: true,
 max: 1000
 },

We define similar field properties for text:

 text: {
 type: String,
 trim: true,
 max: 2000
 },

https://gumroad.com/l/mongoose

CHAPTER 22 ■ HACKHALL

304

comments is an array of comments for this post. Each comment object has a text and author. The author id is a
reference to the User model:

 comments: [{
 text: {
 type: String,
 trim: true,
 max:2000
 },
 author: {
 id: {
 type: Schema.Types.ObjectId,
 ref: 'User'
 },
 name: String
 }
 }],

The post can be watched or liked by a user. These features are implemented by having arrays watches and likes
with user IDs:

 watches: [{
 type: Schema.Types.ObjectId,
 ref: 'User'
 }],
 likes: [{
 type: Schema.Types.ObjectId,
 ref: 'User'
 }],

Next, we enter the author information and make each field in the nested object a required field:

 author: {
 id: {
 type: Schema.Types.ObjectId,
 ref: 'User',
 required: true
 },
 name: {
 type: String,
 required: true
 }
 },

CHAPTER 22 ■ HACKHALL

305

Lastly, we add the time and date fields. It’s good to have timestamps of events, such as when this post was created and
when it was updated the last time. For this, we use Date.now as the default field. The updated property will be set by the
pre save hook, or it can be set manually on each save(). (The pre save hook code is provided after this schema code.):

 created: {
 type: Date,
 default: Date.now,
 required: true
 },
 updated: {
 type: Date,
 default: Date.now,
 required: true
 }
});

Going back to the updated field, to ensure that we don’t have to set the timestamp manually each time we
update (save()) the post, we utilize a pre save hook that checks if the field has been modified (has a new value).
If it has not been modified, then we set it with a new date and time. This hook works only when you call save();
not when you use update() or a similar method. The callback has an asynch next() function, as you might see in
Express.js middleware:

Post.pre('save', function (next) {
 if (!this.isModified('updated')) this.updated = new Date;
 next();
})

The User model can also serve as an application object (when approved=false). Let’s define the schema as this:

var User = new Schema({
 angelListId: String,

The Mixed type allows us to store anything:

 angelListProfile: Schema.Types.Mixed,
 angelToken: String,
 firstName: {
 type: String,
 required: true,
 trim: true
 },
 lastName: {
 type: String,
 required: true,
 trim: true
 },
 displayName: {
 type: String,
 required: true,
 trim: true
 },

CHAPTER 22 ■ HACKHALL

306

 password: String,
 email: {
 type: String,
 required: true,
 trim: true
 },

Roles are enum, because the value can be only one of the values from the roles array ([user, staff, mentor,
investor, founder]):

 role: {
 type: String,
 enum: roles,
 required: true,
 default: roles[0]
 },

Here are some of the required boolean flags:

 approved: {
 type: Boolean,
 default: false
 },
 banned: {
 type: Boolean,
 default: false
 },
 admin: {
 type: Boolean,
 default: false
 },

Now a short bio statement:

 headline: String,

We won’t store the photo binary, only the URL to it:

 photoUrl: String,

The angelList is a loose type that will have the AngelList profile:

 angelList: Schema.Types.Mixed,

It’s good to keep logs to track when this document was created and when it was updated the last time (we set the
time manually in the update() method of users.js):

 created: {
 type: Date,
 default: Date.now
 },

CHAPTER 22 ■ HACKHALL

307

 updated: {
 type: Date,
 default: Date.now
 },

We need some social media URLs:

 angelUrl: String,
 twitterUrl: String,
 facebookUrl: String,
 linkedinUrl: String,
 githubUrl: String,

We reference the IDs of posts that this user authored, liked, watched, and commented on as arrays of objects
(they will be ObjectIDs):

 posts: {
 own: [Schema.Types.Mixed],
 likes: [Schema.Types.Mixed],
 watches: [Schema.Types.Mixed],
 comments: [Schema.Types.Mixed]
 }
});

For convenience, we apply the findOrCreate plug-in (https://www.npmjs.org/package/mongoose-findorcreate):

User.plugin(findOrCreate);

Mongoose plug-ins act like mini modules. This allows you to add extra functionality to your models. Another way
to add extra functionality is to write your own custom method. Such a method can be static (attached to the entire
category of entities) or an instance (attached to the specific model).

In routes, you’ve seen findProfileById() twice: once in main.js and once in users.js. To avoid duplication,
the code was abstracted as a Mongoose static method of the User schema. It retrieves information, such as comments,
likes, etc., which is why we have multiple nested Mongoose calls.

The findProfileById() method might look a bit complicated initially, but there is nothing difficult here—just a
few nested database calls so that we can have full user information. This info includes, not only the username, e-mail
address, and so forth, but all the posts, likes, watches, and comments made by the user. This information is used for
gamification purposes on the Profile page to convert the number of comments, likes, and watches into points. But let’s
start with the first basic query and limit the fields that we request (to avoid leaking passwords and e-mail addresses):

User.statics.findProfileById = function(id, fields, callback) {
 var User = this;
 var Post = User.model('Post');

 return User.findById(id, fields, function(err, obj) {
 if (err) return callback(err);
 if (!obj) return callback(new Error('User is not found'));

https://www.npmjs.org/package/mongoose-findorcreate

CHAPTER 22 ■ HACKHALL

308

After a user is found, we find the user’s posts by using the _id and displayName. The fields option is set to null so
we can pass other arguments, and the results are sorted by the creation date. In the callback we check for errors and
exit (callback(err)) if there is an error.

 Post.find({
 author: {
 id: obj._id,
 name: obj.displayName
 }
 }, null, {
 sort: {
 'created': -1
 }
 }, function(err, list) {

It’s vital to handle errors on each nested callback:

 if (err) return callback(err);
 obj.posts.own = list || [];

Now that we have saved the list of this user’s posts into obj.posts.own, the next query finds all the posts this
user liked:

 Post.find({
 likes: obj._id
 }, null, {

The chronological order is ensured by created:

 sort: {
 'created': -1
 }
 }, function(err, list) {
 if (err) return callback(err);

In case, this user didn’t like any of the posts, yet we account for that with an empty array:

 obj.posts.likes = list || [];

This query gets the posts that this user watches:

 Post.find({
 watches: obj._id
 }, null, {
 sort: {
 'created': -1
 }
 }, function(err, list) {

CHAPTER 22 ■ HACKHALL

309

The err and list objects from the previous context are masked by this closure’s err and list, but we don’t really
care. This style allows for variable name reuse:

 if (err) return callback(err);
 obj.posts.watches = list || [];

The last query finds posts where this user left comments:

 Post.find({
 'comments.author.id': obj._id
 }, null, {
 sort: {
 'created': -1
 }
 }, function(err, list) {
 if (err) return callback(err);
 obj.posts.comments = [];

After we get the list of posts in which this user left comments, there might be some posts where this particular
user left more than one comment. For this reason, we need to go through that list of posts, and through each
comment, and compare the author’s ID with the user ID. If they match, then we include that comment into the list:

 list.forEach(function(post, key, arr) {
 post.comments.forEach(function(comment, key, arr) {
 if (comment.author.id.toString() == obj._id.toString())
 obj.posts.comments.push(comment);
 });
 });

Finally, we invoke the callback with proper data and null errors:

 callback(null, obj);
 });
 });
 });
 });
 });
}

Lastly, we export the schema objects so they can be compiled into models in another file:

exports.Post = Post;
exports.User = User;

The full source code for hackhall/models/index.js is available at
https://github.com/azat-co/hackhall/blob/v3.1.0/models/index.js.

https://github.com/azat-co/hackhall/blob/v3.1.0/models/index.js

CHAPTER 22 ■ HACKHALL

310

Mocha Tests
One of the benefits of using REST API server architecture is that each route, and the application as a whole, become
very testable. The assurance of the passed tests is a wonderful supplement during development—the so-called
test-driven development approach introduced in Chapter 21.

The HackHall tests live in the tests folder and consist of:

• hackhall/tests/application.js: Functional tests for unapproved users’ information

• hackhall/tests/posts.js: Functional tests for posts

• hackhall/tests/users.js: Functional tests for users

To run tests, we utilize a Makefile. I like to have various targets in a Makefile, because it gives me more flexibility.
Here are the tasks in this example:

• test: Run all tests from the tests folder

• test-w: Rerun tests each time there is a file change

• users: Run the tests/users.js tests for user-related routes

• posts: Run the tests/posts.js tests for posts-related routes

• application: Run the tests/application.js tests for application-related routes

This is how the Makefile might look, starting with options for Mocha:

REPORTER = list
MOCHA_OPTS = --ui tdd

Then we define a task test:

test:
 clear
 echo Seeding **********************
 node seed.js
 echo Starting test **********************
 foreman run ./node_modules/mocha/bin/mocha \
 --reporter $(REPORTER) \
 $(MOCHA_OPTS) \
 tests/*.js
 echo Ending test

Similarly, we define other targets:

test-w:
 ./node_modules/mocha/bin/mocha \
 --reporter $(REPORTER) \
 --growl \
 --watch \
 $(MOCHA_OPTS) \
 tests/*.js

CHAPTER 22 ■ HACKHALL

311

users:
 clear
 echo Starting test **********************
 foreman run ./node_modules/mocha/bin/mocha \
 --reporter $(REPORTER) \
 $(MOCHA_OPTS) \
 tests/users.js
 echo Ending test

posts:
 clear
 echo Starting test **********************
 foreman run ./node_modules/mocha/bin/mocha \
 --reporter $(REPORTER) \
 $(MOCHA_OPTS) \
 tests/posts.js
 echo Ending test

application:
 clear
 echo Starting test **********************
 foreman run ./node_modules/mocha/bin/mocha \
 --reporter $(REPORTER) \
 $(MOCHA_OPTS) \
 tests/application.js
 echo Ending test

.PHONY: test test-w users posts application

Therefore, we can start tests with the $ make or $ make test command (to run the Makefile in the example, you
have to have the foreman tool and .env variables).

All 36 tests should pass (as of this writing in HackHall v3.1.0), as shown in Figure 22-12.

CHAPTER 22 ■ HACKHALL

312

Tests use a library called superagent (https://npmjs.org/package/superagent; GitHub: https://github.com/
visionmedia/superagent). The tests are similar in concept to those for the REST API in Chapter 21. We log in, then
make a few requests, while checking for their correct response.

For example, this is the beginning of hackhall/tests/application.js in which we have a dummy user object
with a hashed password (bcrypt.hashSync()):

var bcrypt = require('bcryptjs');

var user3 = {
 firstName: 'Dummy',
 lastName: 'Application',
 displayName: 'Dummy Application',
 password: bcrypt.hashSync('3', 10),
 email: '3@3.com',
 headline: 'Dummy Application',
 photoUrl: '/img/user.png',
 angelList: {blah:'blah'},
 angelUrl: 'http://angel.co.com/someuser',
 twitterUrl: 'http://twitter.com/someuser',
 facebookUrl: 'http://facebook.com/someuser',
 linkedinUrl: 'http://linkedin.com/someuser',
 githubUrl: 'http://github.com/someuser'
}

Figure 22-12. Results of running all Mocha tests

https://npmjs.org/package/superagent
https://github.com/visionmedia/superagent
https://github.com/visionmedia/superagent
http://angel.co.com/someuser
http://twitter.com/someuser
http://facebook.com/someuser
http://linkedin.com/someuser
http://github.com/someuser

CHAPTER 22 ■ HACKHALL

313

var app = require ('../server').app,
 assert = require('assert'),
 request = require('superagent');

We start the server:

app.listen(app.get('port'), function(){
 console.log('Express server listening on port ' + app.get('port'));
});

The next line will store the client object so that we can log in and make authorized requests as that user:

var user1 = request.agent();
var port = 'http://localhost:'+app.get('port');
var userId;

We use the admin user that was created by seed.js:

var adminUser = {
 email: 'admin-test@test.com',
 password: 'admin-test'
};

Next, we create a test suite:

suite('APPLICATION API', function (){

This is a test suite preparation (empty at the moment):

 suiteSetup(function(done){
 done();
 });

The following is the first test case definition with the POST call to /api/login:

 test('log in as admin', function(done){
 user1.post(port+'/api/login').send(adminUser).end(function(res){
 assert.equal(res.status,200);
 done();
 });
 });

Let’s check that we can get protected resource /api/profile:

 test('get profile for admin',function(done){
 user1.get(port+'/api/profile').end(function(res){
 assert.equal(res.status,200);
 done();
 });
 });
 test('submit application for user 3@3.com', function(done){

CHAPTER 22 ■ HACKHALL

314

Here, we create a new application for membership using user3 data and a hashed password:

 user1.post(port+'/api/application').send(user3).end(function(res){
 assert.equal(res.status,200);
 userId = res.body._id;
 done();
 });
 });

Then, we log out user1 and check that we’ve logged out:

 test('logout admin',function(done){
 user1.post(port+'/api/logout').end(function(res){
 assert.equal(res.status,200);
 done();
 });
 });
 test('get profile again after logging out',function(done){
 user1.get(port+'/api/profile').end(function(res){
 assert.equal(res.status,500);
 done();
 });
 });

Now, we try to log in as user3 by using a plain password, as though it was entered on the web page (system will
hash it to compare with the hashed password):

 test('log in as user3 - unapproved', function(done){
 user1.post(port+'/api/login').send({email:'3@3.com', password:'3'}).end(function(res){
 assert.equal(res.status, 200);
 done();
 });
 });

...

Assuming you got the general idea from this test case, there’s no need to list all the mundane test cases. Of course,
you can get the full content for hackhall/tests/application.js, hackhall/tests/posts.js, and
hackhall/tests/users.js at https://github.com/azat-co/hackhall/tree/v3.1.0/tests.

Caution ■ Do not store plain passwords/keys in the database. Any serious production app should, at least, salt the

passwords1 before storing them. Use bcryptjs instead!

1https://crackstation.net/hashing-security.htm

https://github.com/azat-co/hackhall/tree/v3.1.0/tests
https://crackstation.net/hashing-security.htm

CHAPTER 22 ■ HACKHALL

315

By now, you should be able to run the application and tests locally (either by copying from the book or
downloading the code). If you get the API keys, you should be able to log in with AngelList and GitHub, as well as
send/receive e-mails with SendGrid. At the bare minimum, you should be able to log in locally using the e-mail and
password that you specified in your database seeding script.

Summary
Now you know all the tips and tricks used in building HackHall, which includes important, real production
application components, such as REST API architecture, OAuth, Mongoose and its models, MVC structure of Express.
js apps, access to environment variables, and so on.

As mentioned in this chapter, HackHall is still in active development, so the code will continue to evolve. Make
sure you follow the repository on GitHub. You can visit the live HackHall.com app and join the community by
applying for membership! And, of course, you can make a contribution by submitting a pull request.

This chapter concludes our journey into Express.js and related web development topics. The task of covering
an evolving framework is a difficult one, akin to shooting at a moving target, so my goal in this chapter was to get you
the most up-to-date information and, most importantly, to show you some of the more fundamental aspects, such
as code organization. I also put a lot of energy into explaining and repeating examples of the middleware pattern. If
you are under the pressure of a deadline, or simply prefer just-in-time learning (learn when you need it vs. learn for
the future), then you will find plenty of code to copy and paste into your own project. I know that building your own
project is more fun than borrowing another abstract application from a tutorial.

I hope you have enjoyed the examples and the book! I want to hear from you via Twitter (@azat_co) and e-mail
(hi@azat.co). The appendices that follow will serve as a reference. And don’t forget to claim your two-page print-
ready Express.js 4 cheat sheet (the link to download it is in Appendix C).

317

APPENDIX A

Related Reading and Resources

This short appendix provides several of the most useful Node.js resources for further learning:

Other Node.js frameworks

Node.js books

JavaScript classics

Other Node.js Frameworks
The Express.js framework is, no doubt, the most mature, popular, robust, tested, and used project for Node.js web
services. As of this writing, Express.js is also the NPM repository with the highest number of stars from the NPM
community, as shown in Figure A-1. There are plenty of real production apps that rely on Express.js 2.x and 3.x,
including Storify1 (acquired by LiveFyre2), DocuSign,3 the new MySpace,4 LearnBoost,5 Geeklist,6 Klout,7 Prismatic,8
Segment.io,9 and more.10

1http://storify.com
2http://web.livefyre.com
3https://www.docusign.com
4https://myspace.com
5https://www.learnboost.com
6https://geekli.st/home
7https://klout.com/home
8http://getprismatic.com/home
9https://segment.com
10http://expressjs.com/applications.html

http://storify.com/
http://web.livefyre.com/
https://www.docusign.com/
https://myspace.com/
https://www.learnboost.com/
https://geekli.st/home
https://klout.com/home
http://getprismatic.com/home
https://segment.com/
http://expressjs.com/applications.html

APPENDIX A ■ RELATED READING AND RESOURCES

318

Nevertheless, there are plenty of alternative Node.js frameworks to Express.js. To help developers navigate the
numerous options, I’ve created an analog to the TodoMVC collection (http://todomvc.com): Node Frameworks
(http://nodeframework.com), the MVC frameworks page of which is shown in Figure A-2. By the way, some of the
more comprehensive frameworks depend on Express.js (e.g., SailsJS11), so it’s great that you are getting to know
Express.js!

Figure A-1. Express.js is the most starred NPM repository

11https://github.com/balderdashy/sails/blob/v0.9.0/package.json#L32

http://todomvc.com/
http://nodeframework.com/
https://github.com/balderdashy/sails/blob/v0.9.0/package.json#L32

APPENDIX A ■ RELATED READING AND RESOURCES

319

Node.js Books
For more core Node.js overview and/or information about other components of the Node.js stack, such as databases
and WebSockets, please consider these resources:

• Practical Node.js: Building Real-World Scalable Web Apps, by Azat Mardan (Apress, 2014): A
Step-by-step guide to learning how to build scalable, real-world, web applications, taking you
from installing Express.js to writing full-stack web applications.

• Rapid Prototyping with JS: Agile JavaScript Development12 (Azat Mardan, 2013): A Beginner-to-
intermediate book on Node.js, MongoDB, and Backbone.js.

• JavaScript and Node FUNdamentals: A Collection of Essential Basics13 (Azat Mardan, 2014):
A Short read on simple, but important concepts of browser JS and Node.

• Introduction to OAuth with Node.js: Twitter API OAuth 1.0, OAuth 2.0, OAuth Echo, Everyauth
and OAuth2.0 Server Examples14 (Azat Mardan, 2014): A mini book about different OAuth
scenarios.

Figure A-2. Node Frameworks provides a list of Node.js frameworks and their stats

12http://rpjs.co
13https://leanpub.com/jsfun
14https://gumroad.com/l/oauthnode

http://rpjs.co/
https://leanpub.com/jsfun
https://gumroad.com/l/oauthnode

APPENDIX A ■ RELATED READING AND RESOURCES

320

• Pro Node.js for Developers, by Colin J. Ihrig (Apress, 2013): A Comprehensive, low-level book
on Node.js sans any non-core modules.

• Node.js in Action, by Mike Cantelon et al. (Manning Publications, 2013): A Book by a variety of
authors about Express.js and other topics.

• Learning Node, by Shelley Powers (O'Reilly Media, 2012): Covers Express, MongoDB,
Mongoose, and Socket.IO.

• Node Cookbook, by David Mark Clements (Packt Publishing, 2012): Covers databases and
WebSockets.

• Node: Up and Running, by Tom Hughes-Croucher and Mike Watson (O'Reilly Media, 2012):
A brief overview of Node.js.

• Smashing Node.js: JavaScript Everywhere, by Guillermo Rauch (Wiley, 2012): Covers Express.js,
Jade, and Stylus, from the creator of Mongoose ORM for MongoDB.

JavaScript Classics
For a deeper understanding of JavaScript, the most misunderstood and most popular programming language, be sure
to read these proven classics:

• Eloquent JavaScript, Second Edition, by Marijn Haverbeke (No Starch Press, 2014):
Programming fundamentals in JavaScript coding.

• JavaScript: The Good Parts, by Douglas Crockford (O’Reilly Media, 2008): Deals with the tricky
parts of the JavaScript language.

Courses
If you liked this book, then check out Azat’s Node.js courses: Node Program (http://nodeprogram.com) and
Mongoose Course (http://mongoosecourse.com).

http://nodeprogram.com
http://mongoosecourse.com

321

APPENDIX B

Migrating Express.js 3.x to 4.x:
Middleware, Route, and Other
Changes

Express.js 4 (http://expressjs.com) is the latest (as of May 2014), major version of the most popular, mature, and
robust Node.js framework for web apps, services, and APIs. There are some breaking changes in the transition
from 3.x to 4.x, so this appendix serves as a brief migration guide, with coverage of the following:

Introducing unbundled middleware in Express.js 4•

Removing deprecated methods from Express.js 4 apps•

Other Express.js 4 changes•

Exploring the new Express.js 4 route instance and how to chain it•

Further Express.js 4 migration reading links•

Even if you have no intention of working with version 3, this guide might be useful to you, because it sheds light
on the rationale for making the changes from Express 3 to 4, and the philosophy behind those changes.

Introducing Unbundled Middleware in Express.js 4
Let’s start with the biggest change that will break most of your Express.js 3.x projects. This is also the most discussed
(and long awaited?) Express.js news on the Internet. Yes, it’s unbundled middleware.

Personally, I’m not sure whether it’s good news or bad news, because I kind of liked not having to declare extra
dependencies. However, I can see the arguments in favor of unbundling as well, including benefits, such as keeping
the Express.js module small, upgrading middleware packages independently, and so forth.

So, what is unbundled middleware? Remember the magic middleware that we were able to use, simply by typing
app.use(express.middlwarename())? Well, they were coming from the Connect library, but now they are no longer
part of Express.js. It was customary to write, for example, app.use(express.cookieParser()) in Express.js 3.x. Those
modules are essential for pretty much any web application. They were part of the Connect library, but Express.js 4.x
doesn’t have Connect as a dependency. This means that, if we want to use middleware (and we sure do!), we’ll need to
include middleware explicitly, like this:

$ npm install body-parse@1.0.2 --save

http://expressjs.com/

APPENDIX B ■ MIGRATING EXPRESS.JS 3.X TO 4.X: MIDDLEWARE, ROUTE, AND OTHER CHANGES

322

Then, in the Express.js main configuration file (e.g., app.js), we use the included module like this:

var bodyParser = require('body-parse')
// ... other dependencies
app.use(bodyParser())
// ... some other Express.js app configuration

Table B-1 describes the unbundled middleware that developers will have to replace: all except static. That’s right,
static was left out (for convenience?). The table lists the Express.js 3.x middleware names and their NPM module
counterparts for Express.js 4.x usage.

Table B-1. Middleware comparison

Express.js 3.x Express.js 4.x GitHub Link

express.bodyParser body-parser https://github.com/expressjs/body-parser

express.compress compression https://github.com/expressjs/compression

express.timeout connect-timeout https://github.com/expressjs/timeout

express.cookieParser cookie-parser https://github.com/expressjs/cookie-parser

express.cookieSession cookie-session https://github.com/expressjs/cookie-session

express.csrf csurf https://github.com/expressjs/csurf

express.error-handler errorhandler https://github.com/expressjs/errorhandler

express.session express-session https://github.com/expressjs/session

express.method-override method-override https://github.com/expressjs/method-override

express.logger morgan https://github.com/expressjs/morgan

express.response-time response-time https://github.com/expressjs/response-time

express.favicon serve-favicon https://github.com/expressjs/serve-favicon

express.directory serve-index https://github.com/expressjs/serve-index

express.static serve-static https://github.com/expressjs/serve-static

express.vhost vhost https://github.com/expressjs/vhost

Table B-2. Dropped modules and their alternatives

Dropped Module Alternatives

cookieParser cookies and keygrip

limit raw-body

multipart connect-multiparty and connect-busboy

query qs

staticCache st and connect-static

To make matters a bit more complicated, the Express.js/Connect team is dropping support for the modules
shown in Table B-2 and recommending that you use the alternatives:

https://github.com/expressjs/body-parser
https://github.com/expressjs/compression
https://github.com/expressjs/timeout
https://github.com/expressjs/cookie-parser
https://github.com/expressjs/cookie-session
https://github.com/expressjs/csurf
https://github.com/expressjs/errorhandler
https://github.com/expressjs/session
https://github.com/expressjs/method-override
https://github.com/expressjs/morgan
https://github.com/expressjs/response-time
https://github.com/expressjs/serve-favicon
https://github.com/expressjs/serve-index
http://expressjs.com/
https://github.com/expressjs/vhost

APPENDIX B ■ MIGRATING EXPRESS.JS 3.X TO 4.X: MIDDLEWARE, ROUTE, AND OTHER CHANGES

323

Many of these unbundled Express.js/Connect modules are in need of maintainers1; this is your opportunity to
make a dent in the Node.js universe!

Removing Deprecated Methods from Express.js 4 Apps
This section discusses those methods that are deprecated and how to replace them.

app.configure()
Most people have probably never used app.configure(), a nice, but nonessential, method intended primarily for
setting up environments. If you have used it, just replace app.configure('name', function(){...}) with
if (process.env.NODE_ENV === 'name') {...}. For example, this old Express.js 3 production configuration

app.configure('production', function() {
 app.set('port', 80)
})

becomes the following in Express.js 4.x:

if (process.env.NODE_ENV === 'production') {
 app.set('port', 80)
}

app.router
One of the good changes in Express.js 4 is that it has eliminated the need to write app.router! So now, basically,
the order of middleware and routes is the only thing that counts, whereas in Express.js 3x developers were able to
augment the order of execution by placing app.router somewhere in the middle.

If you have any middleware that is supposed to be ordered after the routes, move it after the route, in just the
order you want them.

For example, error handling middleware that is executed after routes in the Express.js 3.x configuration:

app.use(express.cookieParser())
app.use(app.router)
app.use(express.errorHandler())
app.get('/', routes.index)
app.post('/signup', routes.signup)

migrates into this code in Express.js 4.x:

var cookieParse = require('cookie-parser')
var errorHandler = require('errorhandler')
...
app.use(cookieParser())
app.get('/', routes.index)
app.post('/signup', routes.signup)
app.use(errorHandler())

1https://github.com/senchalabs/connect#middleware

https://github.com/senchalabs/connect#middleware

APPENDIX B ■ MIGRATING EXPRESS.JS 3.X TO 4.X: MIDDLEWARE, ROUTE, AND OTHER CHANGES

324

In other words, app.use() and routes with verbs, such as app.get(), app.post(), app.put(), and app.del(),
became equal counterparts.

res.on(‘header’)
The res.on('header') event was removed from Connect 3.

res.charset
In Express.js 4.x, use res.type() or res.set('content-type') instead of res.charset in Express.js 3.x.

res.headerSent
In Express.js 4.x, use res.headersSent instead of res.headerSent.

req.accepted()
In Express.js 4.x, use req.accepts() instead of req.accepted().

req.accepts in Express.js 4.x is powered by the module accepts (https://github.com/expressjs/accepts),
which the GitHub documentation indicates was extracted from Koa (http://koajs.com) for general use.

Other Express.js 4 Changes
This section covers some other Express.js 4 changes.

app.use()
Amazingly, app.use() now accepts URL parameters. This is another step toward making app.use() and verb route
methods equal and less confusing. The parameter is in the req.params object.

For example, if we need to get an ID from the URL, in Express.js 4.x middleware we can write

app.use('/posts/:slug', function(req, res, next) {
 req.db.findPostBySlug(req.params.slug, function(post){
 ...
 })
})

res.location()
In Express.js 4, res.location() no longer resolves relative URLs.

app.route()
See the upcoming section “Exploring the New Express.js 4 Route Instance and How to Chain It” for details about the
role of app.route() in Express.js 4.

http://expressjs.com/
http://expressjs.com/

APPENDIX B ■ MIGRATING EXPRESS.JS 3.X TO 4.X: MIDDLEWARE, ROUTE, AND OTHER CHANGES

325

json spaces
In Express.js 4, json spaces is off by default in development.

req.params
req.params is an object, not an array.

res.locals
res.locals is an object now.

req.is
req.is in Express.js 4.x has been replaced by the module type-is (https://github.com/expressjs/type-is),
which was also extracted from Koa.js (http://koajs.com) for general use, per the GitHub documentation.

Express.js Command-Line Generator
For the command-line generator, use

$ sudo npm install -g express-generator

instead of the plain old $ sudo npm install -g express.

Exploring the New Express.js 4 Route Instance and How
to Chain It
The app.route() method gives us the new Express.js 4 route instance. Before we explore it, let’s take a look at the
router itself.

The Router class has been supercharged in Express.js 4.x. In Express.js 3.x, the app instance used router, but now
we can create many route instances and use them for specific paths by attaching particular middleware and other
logic. This can be used to reorganize code.

Here’s a basic example of how developers can use Router in Express.js 4.x. Let’s say we have reviews for two
categories: books and games. The review’s logic is similar to and packaged as a router:

var express = require('express')
var app = express()
var router = express.Router()

router.use(function(req, res, next) {
 //process each request
});

router.get('/', function(req, res, next) {
 // get the home page for that entity
 next();
});

APPENDIX B ■ MIGRATING EXPRESS.JS 3.X TO 4.X: MIDDLEWARE, ROUTE, AND OTHER CHANGES

326

router.get('/reviews', function(req, res, next) {
 // Get the reviews for that entity
 next();
});

app.use('/books', router);
app.use('/games', router);

app.listen(3000);

app.route() or router.route() returns the new Express.js 4.x route instance, which we can chain like this:

router.route('/post/:slug')
 .all(function(req, res, next) {
 // Runs each time
 // We can fetch the post by id from the database
 })
 .get(function(req, res, next) {
 //Render post
 })
 .put(function(req, res, next) {
 //Update post
 })
 .post(function(req, res, next) {
 //Create new comment
 })
 .del(function(req, res, next) {
 //Remove post
 })

In Express.js 3.x, without the route chain, we would have to type the same path again and again (increasing the
risk of typos):

router.all('/post/:slug', function(req, res, next) {
 // runs each time
 // we can fetch the post by ID from the database
})
router.get('/post/:slug', function(req, res, next) {
 //render post
})
router.put('/post/:slug', function(req, res, next) {
 //update post
})
router.post('/post/:slug', function(req, res, next) {
 //create new comment
})
router.delete('/post/:slug', function(req, res, next) {
 //remove post
})

The same route instance can also have its own middleware, param, and HTTP verb methods (as illustrated above).

APPENDIX B ■ MIGRATING EXPRESS.JS 3.X TO 4.X: MIDDLEWARE, ROUTE, AND OTHER CHANGES

327

Further Express.js 4 Migration Reading Links
So, overall, the Express.js 4.x changes are not very dramatic, and the migration can be a relatively painless process.
But, before you hit $ git checkout -b express4 to create a new Git branch of express4 for your migration from 3.x
to 4.x, consider carefully whether you really need to migrate! I know of many successful production applications that
haven’t updated their main framework versions. At Storify, we used to run Express.js 2.x when 3.x was available, and
it was not a big deal. As another example, from the Ruby world, I’m aware of many apps and developers still working
with Ruby on Rails 2.x, even though Ruby on Rails 4.x is available.

In case you decide to go with Express.js 4, don’t rely just on this brief overview. Take a look at these additional
resources to help make the transition from Express.js 3.x to 4.x easier:

The official migration guide• 2

New features in Express.js 4.x• 3

Express.js 4.x documentation• 4

Express.js 4, Node.js and MongoDB REST API Tutorial5

2https://github.com/strongloop/express/wiki/Migrating-from-3.x-to-4.x
3https://github.com/strongloop/express/wiki/New-features-in-4.x
4http://expressjs.com/4x/api.html
5http://webapplog.com/express-js-4-node-js-and-mongodb-rest-api-tutorial/

https://github.com/strongloop/express/wiki/Migrating-from-3.x-to-4.x
https://github.com/strongloop/express/wiki/New-features-in-4.x
http://expressjs.com/4x/api.html
http://webapplog.com/express-js-4-node-js-and-mongodb-rest-api-tutorial/

329

APPENDIX C

Express.js 4 Cheat Sheet

Pro Express.js is an extensive book with many examples to teach you about middleware, patterns, and configurations.
Therefore, when you start working on your own project, you will find it useful to have a quick reference of the most
important functions and commands—a cheat sheet. I’ve created my own Express.js 4 cheat sheet, shown in Figure C-1,
and I am giving it as a gift to Pro Express.js readers. You can download an awesome, print-ready PDF of this cheat sheet
for free (regular price is $4.99) at https://gum.co/NQiQ/AC30238A-5C5C. This link is for readers of Pro Express.js only,
so please don’t share it with anyone.

Figure C-1. Express.js 4 Cheat Sheet

The information from the cheat sheet is available in this appendix and online at https://github.com/azat-co/
cheatsheets/blob/master/express4/index.md. The cheat sheet has the following sections:

Installation•

Generator•

Basics•

HTTP Verbs and Routes•

Request•

Request Header Shortcuts•

https://gum.co/NQiQ/AC30238A-5C5C
https://github.com/azat-co/cheatsheets/blob/master/express4/index.md
https://github.com/azat-co/cheatsheets/blob/master/express4/index.md

APPENDIX C ■ EXPRESS.JS 4 CHEAT SHEET

330

Response•

Handlers Signatures•

Stylus and Jade•

Body•

Static•

Connect Middleware•

Other Popular Middleware•

The cheat sheet is good for Express 4.10.4 as of this writing.

Installation
Install the latest Express.js locally:•

$ sudo npm install express:

Install Express.js v4.2.0 locally and save to • package.json

$ sudo npm install express@4.2.0 --save

Install Express.js command-line generator v4.0.0•

$ sudo npm install -g express-generator@4.0.0

Generator
Usage: $ express [options] [dir]

Options:

• -h: Print the usage information

• -V: Print the express-generator version number

• -e: Add ejs engine support, defaults to jade if omitted

• -H: Add hogan.js engine support

• -c <library>: Add CSS support for (less|stylus|compass), defaults to plain CSS if omitted

• -f: Generate into a non-empty directory

Basics
Include the module:•

var express = require('express')

Create an instance:•

var app = express()

m

APPENDIX C ■ EXPRESS.JS 4 CHEAT SHEET

331

Start the Express.js server:•

app.listen(portNumber, callback)

Start the Express.js server:•

http.createServer(app).listen(portNumber, callback)

Set a property value by the key:•

app.set(key, value)

Get a property value by the key:•

app.get(key)

HTTP Verbs and Routes
• app.get(urlPattern, requestHandler[, requestHandler2, ...])

• app.post(urlPattern, requestHandler[, requestHandler2, ...])

• app.put(urlPattern, requestHandler[, requestHandler2, ...])

• app.delete(urlPattern, requestHandler[, requestHandler2, ...])

• app.all(urlPattern, requestHandler[, requestHandler2, ...])

• app.param([name,] callback):

• app.use([urlPattern,] requestHandler[, requestHandler2, ...])

Request
• request.params: Parameters middleware

• request.param: Extract one parameter

• request.query: Extract query string parameter

• request.route: Return route string

• request.cookies: Cookies, requires cookie-parser

• request.signedCookies: Signed cookies, requires cookie-parser

• request.body: Payload, requires body-parser

Request Header Shortcuts
• request.get(headerKey): Value for the header key

• request.accepts(type): Checks if the type is accepted

• request.acceptsLanguage(language): Checks language

• request.acceptsCharset(charset): Checks charset

APPENDIX C ■ EXPRESS.JS 4 CHEAT SHEET

332

• request.is(type): Checks the type

• request.ip: IP address

• request.ips: IP addresses (with trust-proxy on)

• request.path: URL path

• request.host: Host without port number

• request.fresh: Checks freshness

• request.stale: Checks staleness

• request.xhr: True for AJAX-y requests

• request.protocol: Returns HTTP protocol

• request.secure: Checks if protocol is https

• request.subdomains: Array of subdomains

• request.originalUrl: Original URL

Response
• response.redirect(status, url): Redirect request

• response.send(status, data): Send response

• response.json(status, data): Send JSON and force proper headers

• response.sendfile(path, options, callback): Send a file

• response.render(templateName, locals, callback): Render a template

• response.locals: Pass data to template

Handlers Signatures
• function(request, response, next) {}: Request handler signature

• function(error, request, response, next) {}: Error handler signature

Stylus and Jade
app.set('views', path.join(__dirname, 'views'))
app.set('view engine', 'jade')
app.use(require('stylus').middleware(path.join(__dirname, 'public')))

Body
var bodyParser = require('body-parser')
app.use(bodyParser.json())
app.use(bodyParser.urlencoded())

APPENDIX C ■ EXPRESS.JS 4 CHEAT SHEET

333

Static
app.use(express.static(path.join(__dirname, 'public')))

Connect Middleware
$ sudo npm install <package_name> --save

• body-parser: Request payload

• compression: Gzip

• connect-timeout: Times out the request in ms, defaulting to 5000

• cookie-parser: Cookies

• cookie-session: Session via Cookies store

• csurf: CSRF

• errorhandler: Error handler

• express-session: Session via in-memory or other store

• method-override: HTTP method override

• morgan: Server logs

• response-time: Response time middleware

• serve-favicon: Favicon

• serve-index: Serves pages that contain directory listings

• serve-static: Static content

• vhost: Virtual Host

Other Popular Middleware
• cookies and keygrip: Analogous to cookieParser

• raw-body: Raw body

• connect-multiparty, connect-busboy: Connect middleware for multiparty,
connect middleware for busboy

• qs: Analogous to query

• st, connect-static Analogous to staticCache

• express-validator: Validation

• less: Less CSS

• passport: Authentication library

• helmet: Security headers

• connect-cors: CORS

• connect-redis: Connect Redis

335

APPENDIX D

ExpressWorks

ExpressWorks is an automated workshop that walks you through the building of Express.js servers, processing of
GET, POST, and PUT requests, and extraction of query string, payload, and URL parameters. ExpressWorks provides
you with tasks and hints. You write the solutions to these tasks. Then, after you write a solution as an Express.js app,
ExpressWorks verifies your solution to the problem.

ExpressWorks is based on workshopper1 and inspired by stream-adventure2 by @substack3 and @maxogden.4
This appendix consists of the following brief introduction to ExpressWorks:

Installation•

Usage•

Resetting•

Tasks•

Installation
The recommended global installation for ExpressWorks v0.0.23 is as follows:

$ npm install -g expressworks@0.0.23
$ expressworks

If you encounter errors, try

$ sudo npm install -g expressworks@0.0.23

Another approach (for advanced developers) is to use the local installation. To do so, run and install the
following locally:

$ mkdir node_modules
$ npm install expressworks@0.0.23
$ cd node_modules/expressworks$ node expressworks

1https://github.com/rvagg/workshopper
2https://github.com/substack/stream-adventure
3https://twitter.com/substack
4https://twitter.com/maxogden

https://github.com/rvagg/workshopper
https://github.com/substack/stream-adventure
https://twitter.com/substack
https://twitter.com/maxogden

APPENDIX D ■ EXPRESSWORKS

336

Usage
After you have completed the installation, ExpressWorks understands these commands:

• $ expressworks: Show a menu to interactively select a workshop.

• $ expressworks list: Show a newline-separated list of all the workshops.

• $ expressworks select NAME: Select a workshop.

• $ expressworks current: Show the currently selected workshop.

• $ expressworks run program.js: Run your program against the selected input.

• $ expressworks verify program.js: Verify your program against the expected output.

Resetting
If you want to reset the list of completed tasks, as shown in Figure D-1, empty the ~/.config/expressworks/
completed.json file.

Tasks
This section describes some of the tasks you’ll come across.

Hello World
Create an Express.js app that runs on localhost:3000, and outputs “Hello World!” when somebody goes to
root '/home'.

ExpressWorks provides you with process.argv[2], which is the port number.

Jade
Create an Express.js app with a home page (/home) rendered by a Jade template engine that shows the current date
(toDateString).

Figure D-1. Completed tasks

APPENDIX D ■ EXPRESSWORKS

337

Good Old Form
Write a route ('/form') that processes an HTML form input (<form><input name="str"/></form>) and prints the
str value backward.

Static
Apply static middleware to the server index.html file without any routes. The index.html file is provided and usable
via the process.argv[3] value of the path to it. However, you can use your own file with this content:

<html>
 <head>
 <link rel="stylesheet" type="text/css" href="/main.css"/>
 </head>
 <body>
 <p>I am red!</p>
 </body>
</html>

Stylish CSS
Style your HTML from the previous example with some Stylus middleware. The path to the main.styl file is provided
in process.argv[3], or you can create your own file/folder from these:

p
color red

The index.html file is as follows:

<html>
 <head>
 <title>expressworks</title>
 <link rel="stylesheet" type="text/css" href="/main.css"/>
 </head>
 <body>
 <p>I am red!</p>
 </body>
</html>

Param Pam Pam
Create an Express.js server that processes PUT /message/:id requests (e.g., PUT /message/526aa677a8ceb64569c9d4fb).

The response of this request returns id SHA1 hashed with a date:

require('crypto')
 .createHash('sha1')
 .update(new Date().toDateString().toString() + id)
 .digest('hex')

APPENDIX D ■ EXPRESSWORKS

338

What’s in a Query
Write a route that extracts data from a query string in the GET /search URL route (e.g., ?results=recent&
include_tabs=true) and then transforms and outputs it back to the user in JSON format.

JSON Me
Write a server that reads a file (file name is passed in process.argv[3]), then parses it to JSON, and outputs the content
to the user with res.json(object).

Summary
ExpressWorks is a command-line tool that will help you to get acquainted with some of the basics of Express.js.
If you have enjoyed this learning approach, check out the similar workshops/tools that are available to you at no cost
at http://nodeschool.io.

http://nodeschool.io/

A���������
Abstraction

__dirname global
variable, 159

middleware, 155, 158
module.exports, 160
query string parameter, 158
routes, 156, 158

AngelList API, 278
app.conigure() method, 47
application.js modules, 292
app.param() method, 257
Authentication patterns, 175
auth.js modules, 278

B���������
Backbone.js app, 274
Behavior-driven development

(BDD) language, 252
bodyParser() method, 257

C���������
Cascading Style Sheets (CCS)

Less, 182
Sass, 183
Stylus, 181

checkAdmin() function, 283
Cluster module

four processes, 179
logical units, 180
master process, 177
process ID, 178
server response, 179
setupMaster() method, 177
worker processes, 177

Coniguration methods, 33
app.conigure(), 47
app.enable() and app.disable(), 34
app.set() and app.get(), 34

console.log(request.route) statement, 110
Create, read, update, and delete (CRUD), 99
Cross-origin resource sharing (CORS), 38
Cross-site request forgery (CSRF), 62, 185

D���������
Database connection

app.listen() method, 162
environment variables approach, 165
in modules, 161
JSON ile approach, 164
streams, 165

decodeURIComponent() method, 173
DELETE method, 259
DerbyJS, 207–210
Domain module

domain.on() function, 200
domain.run() function, 200
error-domain, 200
error-no-domain, 200
setTimeout() function, 199–200

done(), 253

E���������
Environments, 33, 45
Environment variables approach, 165
Error handling

HTTP status codes, 143
JSON, 142
middleware, 142
return keyword, 144
uses, 141

Index

339

Express.js
express-generator (see Generator)
Installation, 7
MVC, 3

structure and modules, 28
watch() method, 29
working principles, 4

coniguring settings, 6
database connections, 5
http server object, 6
instantiations, 5
middleware, 6
routes, 6
third-party dependencies, 5

Express.js App, 273
Express.js request object

attributes and methods, 113
$ npm installation, 104
package.json ile, 104
request.body, 103, 108
request.cookies, 103, 111
request.get() method, 103, 113
request.header() method, 103, 113
request.params, 103, 106
request.query, 103–104
request.route, 103, 110
request.signedCookies, 103, 113
source code, 115

Express.js response object
kitchen-sink app, 119
methods and properties, 133
response.json() method, 119, 130
response.jsonp() method, 119, 132
response.locals object, 119, 122
response.redirect() method, 119, 133
response.render() method, 119
response.send() method, 119, 127
response.set() method, 119, 124
response.status() method, 119, 126–127
source code, 134
streaming vs. nonstreaming, 137–139

F���������
500 Internal Server Error status, 129
indByIdAndRemove() method, 285
indByIdAndUpdate() method, 293
indUserByUsername() function, 90
Frameworks

Compound, 213
DerbyJS, 207–210
Geddy, 213

Hapi, 213
LoopBack, 210–213
Sails.js, 205–207
Total.js, 213

G���������
Generator, 20

code implementation, 23
execution, 21
express command, 13
public folder, 23
routes folder, 23
terminal command, 21
views folder, 23

H���������
HackHall app

deinition, 263
execution

AngelList app, 265
cookie and session secrets, 265
MongoDB server, 268
MongoDB shell method, 266
Procile-based applications, 264
seed-script.js, 265

Express.js App, 273
Mocha tests, 310
Mongoose Models (see Mongoose Models)
package.json ile, 272
routes

application.js modules, 292
auth.js modules, 278
index.js modules, 278
main.js modules, 283
posts.js modules, 295
users.js modules, 286

structure, 271
v3.1.0 release, 264

Hapi, 213
Hello World app, 15

app.get() function, 16
HTTP response headers, 19
HTTP status code, 19
request handler, 17
response.end() method, 19
response.send() method, 19
terminal message, 17
text editor, 16

Helmet, 188
HTTP methods, 94

■INDEX

340

I���������
index.js modules, 278
Input sanitation/validation

error messages, 191
express-validator, 190
if-else statements, 190
index.jade ile, 191
login.jade template, 191
request.assert, 190
request.validationErrors(), 190
test() method, 190

Instagram Gallery, 217

J���������
JSON ile approach, 164

K���������
Kitchen-sink app, 119

L���������
Less, 182
LoopBack, 210–213

M���������
main.js modules, 283
map() function, 253
Middleware, 51, 155, 158

app.use() method, 52
body-parser module, 59
compression() method, 56
connect-busboy module, 72
connect-cors, 73
connect-multiparty, 73
connect-redis, 73
connect-timeout module, 64
cookie-parser, 61
cookies and kegrip, 73
cookie-session, 73
CSRF, 62
errorhandler, 66
everyauth and passport, 73
express-session, 62
express.static() method, 64
express-validator, 73
helmet, 73
method-override, 66
morgan, 58
oauth2-server, 73
query and querystring, 73

raw-body, 73
response-time, 67
serve-favicon, 68
serve-index, 69
static assets, 73
urlencoded(), 60
vhost, 71

Mocha tests, 310
Model-view-controller (MVC), 3
MongoDB shell method, 266
Mongoose Models, 302

AngelList proile, 306
arrays watches, 304
author information, 304
Boolean lags, 306
comments, 304
indProileById() method, 307
Mongoose/BSON data type, 303
Mongoose plug-ins, 307
new operand, 303
ObjectIDs, 307
RegExp, 303
roles array, 306
text, 303
timestamps, 305
url, 303
User model, 305

Mongoskin, 256
Multithreading. See Cluster module

N���������
Node.js http.createServer() method, 100

O���������
OAuth module, 276

P���������
package.json ile, 256, 272
Parameters, 87

admin.jade template, 90
app.param() method, 91
indUserByUsername() function, 90
middleware method, 91
request handlers, 100

param() function, 93
posts.js modules, 295–296

add() function, 296
del() function, 299
getPost() method, 298
updatePost() method, 300

Process permissions, 188

■INDEX

341

Q���������
Query string, 104

R���������
Redis, 171
Representational State

Transfer (REST), 97
request.get() method, 113
request.header() methods, 113
response.end() method, 119
response.render()

callback parameter, 122
RESTful API, 249

BDD language, 252
characteristics, 250
CRUD operations, 250
dependencies, 256
idempotent methods, 251
JSON format, 251
Mocha and SuperAgent methods, 251

BDD language, 252
contain() method, 253
done() callback, 253
map() function, 253
source code, 254
testing, 255

nullipotent method, 251
server implementation

app.param() method, 257
bodyParser() method, 257
DELETE method, 259
GET requests, 261
morgan (logger) middleware, 257
POST request, 261
source code, 259

Routes, 156, 158
Routing, 94

app.all() method, 98
app.VERB() method

get()/post() methods, 95
REST, 97

router class, 98
router.route (path) method, 99
trailing slashes, 98

Running applications
app.listen() function

app.js ile, 148
asynchronous function, 148
https.createServer() methods, 150
HTTP server, 149
SSL protocol, 150–151

app.locals object, 145
app.mountpath property, 146
app.on(‘mount’, callback), 147
app.path() method, 147
app.render() method, 145–146

S���������
Sails.js, 205–207
Sass, 183
Secure Socket Layer (SSL)

protocol, 149, 151
Security tips

cross-site request forgery, 185
helmet, 188
input sanitation/validation, 190
process permissions, 188

Settings, 33
custom, 35
Express.js system, 35

case sensitive routing, 41
env variable, 36
etag, 44
jsonp callback name, 38
query parser, 45
replacer parameter, 40
spaces parameter, 40
strict routing, 42
subdomain ofset, 45
trust proxy, 38
view cache, 36
view engine, 36
views, 38
x-powered-by option, 42

Socket.IO, 193
event listener, 197
execution, 197
listen() method, 195
messageChange, 195, 197
send() function, 196

Streams, 165
Stylus, 181

T���������
Template engines

app.engine() method, 77
Blade, 83
Combyne.js, 83
coniguration statements, 76
consolidate js, 84
EJS
__express() method, 83

■INDEX

342

Haml-Cofee, 83
Haml.js, 82
Handlebars.js, 82
Hogan.js adapters, 83
Jade, 79, 81–82
overview, 75
renderFile() method, 78
render()function, 76
Swig, 80, 83
top-down inclusion, 82
view engine setting, 76
Webiller, 83
Whiskers, 83

Todo app, 223
app.js ile

bodyParser() middleware, 233
code implementation, 236
cookieParser(), 233
CSRF token, 234
express-session option, 233
http method, 235
logger, 233
methodOverride() middleware, 233
Mongoskin, 232
NPM modules, 232
POST method, 235
render calls, 233
require() function, 231
routes, 234
session()., 233
tasks collection, 232

Completed page, 228
Home page, 224

less iles, 247
List page, 225
routes

all_done parameter, 238
completed lag value, 239
error results, 239
list() function, 237
multi\: true option, 239
next() function, 238
remove() method, 240
toArray() function, 238
update() method, 239

setup
MongoDB installations, 231
package.json, 229

templates, 241
index.jade, 243
layout.jade, 242
tasks_completed.jade, 246
tasks.jade, 243

U, V, W, X, Y, Z���������
users.js modules

add() method, 287
admin rights, 288–289
angelListProile, 290
indByIdAndRemove(), 289
indOrAddUser() method, 289
getUser() method, 286–287
getUsers() method, 286
Mongoose schema, 291
update() method, 288

■INDEX

343

Pro Express.js

Azat Mardan

Pro Express.js

Copyright © 2014 by Azat Mardan

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this
legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied speciically
for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0038-4

ISBN-13 (electronic): 978-1-4842-0037-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and
to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Ben Renow-Clarke
Technical Reviewers: Peter Elst and Francois-Denis Gonthier
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jef Olson, Jefrey
Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts
Copy Editor: William McManus
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com/9781484200384 and https://github.com/azat-co/proexpressjs. For detailed information about
how to locate your book’s source code, go to www.apress.com/source-code/. he book’s website is at
http://proexpressjs.com.

Please submit any errors or bugs to Apress (http://www.apress.com/9781484200384) or GitHub Issues
(https://github.com/azat-co/proexpressjs/issues).

www.apress.com
www.apress.com
www.apress.com
www.apress.com
www.apress.com
www.apress.com
www.apress.com
www.apress.com
www.apress.com
www.apress.com
www.apress.com

v

Contents

About the Author .. xv

About the Technical Reviewers .. xvii

Foreword ... xix

Acknowledgments ... xxi

Introduction ... xxiii

Part I: Getting Started ■ ... 1

Chapter 1: Starting with Express.js ■ ...3

How Express.js Works ...4

Third-Party Dependencies ... 5

Instantiations .. 5

Connecting to Databases ... 5

Configuring Express.js App Settings .. 6

Defining Middleware.. 6

Defining Routes .. 6

Starting the App ... 6

Express.js Installation ...7

Express.js Generator Installation ...12

Summary ...14

Chapter 2: Hello World Example ■ ..15

Getting Started ..15

Using Request Handlers ... 17

Outputting Terminal Messages .. 17

Enhancing the App ... 19

■ CONTENTS

vi

Generator Commands ..20

Generating a Skeleton Express.js app .. 21

Reviewing the Application’s Structure ... 22

MVC Structure and Modules ..28

Watching for File Changes ..29

Summary ...30

Part II: Deep API Reference ■ .. 31

Chapter 3: Configuration, Settings, and Environments ■ ..33

Configuration ...33

app.set() and app.get() .. 34

app.enable() and app.disable() ... 34

app.enabled() and app.disabled() ... 35

Settings ...35

env ... 36

view cache... 36

view engine ... 36

views ... 38

trust proxy ... 38

jsonp callback name .. 38

json replacer and json spaces ... 40

case sensitive routing.. 41

strict routing .. 42

x-powered-by .. 42

etag.. 44

query parser .. 45

subdomain offset ... 45

Environments ..45

Summary ...49

■ CONTENTS

vii

Chapter 4: Working with Middleware ■ ..51

Applying Middleware ...52

Essential Middleware ..55

compression .. 56

morgan .. 58

body-parser ... 59

urlencoded() .. 60

cookie-parser .. 61

express-session... 62

csurf .. 62

express.static() .. 64

connect-timeout .. 64

errorhandler ... 66

method-override .. 66

response-time ... 67

serve-favicon ... 68

serve-index .. 69

vhost .. 71

connect-busboy ... 72

Other Middleware ..73

Summary ...73

Chapter 5: Template Engines and Consolidate.js ■ ...75

How to Use Template Engines ...76

app.engine() ... 77

Uncommon Libraries ... 78

Template Engine Choices ..82

Jade ... 82

Haml.js ... 82

EJS... 82

Handlebars.js .. 82

■ CONTENTS

viii

Hogan.js Adapters.. 83

Combyne.js .. 83

Swig ... 83

Whiskers .. 83

Blade.. 83

Haml-Coffee ... 83

Webfiller .. 83

Consolidate.js ..83

Summary ...85

Chapter 6: Parameters and Routing ■ ..87

Parameters ..87

app.param() ... 91

Routing ..94

app.VERB() ... 95

app.all() .. 98

Trailing Slashes ... 98

Router Class .. 98

router.route(path) ... 99

Request Handlers ..100

Summary ...102

Chapter 7: Express.js Request Object ■ ..103

request.query ..104

request.params ...106

request.body ...108

request.route ...110

request.cookies ...111

request.signedCookies ..113

request.header() and request.get() ...113

Other Attributes and Methods ...113

Summary ...117

■ CONTENTS

ix

Chapter 8: Express.js Response Object ■ ...119

response.render() ..119

response.locals ...122

response.set() ...124

response.status() ..126

response.send() ..127

response.json() ...130

response.jsonp() ...132

response.redirect() ..133

Other Response Methods and Properties ..133

Streams ...137

Summary ...139

Chapter 9: Error Handling and Running an App ■ ...141

Error Handling ...141

Running an App ...145

app.locals .. 145

app.render() ... 145

app.mountpath .. 146

app.on(‘mount’, function(parent){...}) ... 147

app.path() .. 147

app.listen() ... 147

Summary ...151

Part III: Solving Common and Abstract Problems ■ 153

Chapter 10: Abstraction ■ ...155

Middleware ...155

Routes ...156

Combining Middleware and Routes ..158

Summary ...160

■ CONTENTS

x

Chapter 11: Database, Keys and Stream Tips ■ ..161

Using Databases in Modules ...161

Keys and Passwords ...163

JSON File ... 164

Environment Variables ... 165

Streams ...165

Summary ...170

Chapter 12: Redis and Authentication Patterns ■ ..171

Redis ...171

Authentication Patterns ...175

Summary ...176

Chapter 13: Multithreading with Clusters ■ ...177

A Multithreading Example ...177

Summary ...180

Chapter 14: Applying Stylus, Less, and Sass ■ ...181

Stylus ..181

Less ...182

Sass ...183

Summary ...183

Chapter 15: Security Tips ■ ..185

Cross-Site Request Forgery ..185

Process Permissions ...188

HTTP Security Headers ..188

Input Validation ..190

Summary ...192

■ CONTENTS

xi

Chapter 16: Socket.IO and Express.js ■ ..193

Using Socket.IO ...193

Running the App ..197

Summary ...198

Chapter 17: Domain and Express.js ■ ...199

Defining the Problem ...199

Exploring a Basic Domain Example ...200

Writing a Domain App ..200

Summary ...204

Chapter 18: Sails.js, DerbyJS, LoopBack, and Other Frameworks ■ 205

Sails.js ...205

DerbyJS ...207

LoopBack ...210

Other Frameworks ...213

Summary ...214

Part IV: Tutorials and Examples ■ .. 215

Chapter 19: Instagram Gallery ■ ..217

Starting the Instagram Gallery ..217

Viewing the Gallery ...221

Summary ...222

Chapter 20: Todo App ■ ..223

Overview ...224

Setup ...229

App.js ..231

Routes ...237

■ CONTENTS

xii

Jade...241

Less ...247

Summary ...248

Chapter 21: REST API ■ ...249

RESTful API Basics ..250

Test Coverage ..251

Dependencies ..256

Server Implementation ..257

Summary ...261

Chapter 22: HackHall ■ ...263

What Is HackHall? ...263

Running HackHall ..264

Structure ...271

Package.json ...272

Express.js App ...273

Routes ...278

index.js .. 278

auth.js .. 278

main.js ... 283

users.js .. 286

application.js ... 292

posts.js .. 295

Mongoose Models ...302

Mocha Tests ..310

Summary ...315

Appendix A: Related Reading and Resources ■ ..317

Other Node.js Frameworks ..317

Node.js Books ..319

JavaScript Classics ...320

■ CONTENTS

xiii

Appendix B: Migrating Express.js 3.x to 4.x: Middleware, Route, and Other Changes ■ 321

Introducing Unbundled Middleware in Express.js 4 ..321

Removing Deprecated Methods from Express.js 4 Apps ...323

app.configure() .. 323

app.router .. 323

res.on(‘header’) ... 324

res.charset ... 324

res.headerSent .. 324

req.accepted().. 324

Other Express.js 4 Changes ..324

app.use() .. 324

res.location() .. 324

app.route() ... 324

json spaces .. 325

req.params .. 325

res.locals ... 325

req.is .. 325

Express.js Command-Line Generator .. 325

Exploring the New Express.js 4 Route Instance and How to Chain It ..325

Further Express.js 4 Migration Reading Links ...327

Appendix C: Express.js 4 Cheat Sheet ■ ...329

Installation ...330

Generator...330

Basics ..330

HTTP Verbs and Routes ...331

Request ...331

Request Header Shortcuts ..331

Response ...332

Handlers Signatures ..332

Stylus and Jade ...332

■ CONTENTS

xiv

Body ..332

Static ...333

Connect Middleware ...333

Other Popular Middleware ...333

Appendix D: ExpressWorks ■ ..335

Installation ...335

Usage ..336

Resetting ...336

Tasks ...336

Hello World .. 336

Jade ... 336

Good Old Form ... 337

Static ... 337

Stylish CSS .. 337

Param Pam Pam .. 337

What’s in a Query .. 338

JSON Me .. 338

Summary ...338

Index ...339

xv

About the Author

Azat Mardan has over a dozen years of experience in web, mobile, and software
engineering. With a Bachelor of Science in Informatics and a Master of Science in
Information Systems Technology, Azat possesses deep academic knowledge as well
as extensive practical experience. He is the author of eight other books on JavaScript
and Node.js, including Practical Node.js (Apress, 2014), and Rapid Prototyping
with JS, an Amazon.com #1 Best Seller in its category.

Currently, Azat teaches the Node Program (http://nodeprogram.com) and
creates online courses, while also working as a Team Lead at DocuSign.com. His
team rebuilds a 50 million user product (DocuSign web app) using the cutting-edge
tech stack of Node.js, Express.js, Backbone.js, CofeeScript, Jade, Stylus, and Redis.

Recently, Azat worked as an engineer at the curated social media news
aggregator web site Storify.com (acquired by LiveFyre.com in 2013), which is used

by BBC, NBC, CNN, he White House, and others. Storify is a partner of Joyent.com (Node.js maintainer) and runs
completely on Node.js, (whereas most companies that use Node.js use it only for certain tasks). Storify.com is the
company behind the open source library jade-browser.

Prior to his stint at Storify.com, Azat developed mission-critical applications for government agencies in
Washington, DC, including the National Institutes of Health, the National Center for Biotechnology Information, and
the Federal Deposit Insurance Corporation, as well as for Lockheed Martin.

Azat has received acclaim for teaching programming classes at Marakana (acquired by Twitter in 2013),
pariSOMA, General Assembly San Francisco, and Hack Reactor. In his spare time, Azat writes about technology on his
blog http://webapplog.com.

Azat is the creator of several open source Node.js projects, including ExpressWorks, mongoui, HackHall.com, and
NodeFramework.com, and is a contributor to express, oauth, jade-browser, and other NPM modules.

http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com
http://sudipto80@yahoo.com

xvii

About the Technical Reviewers

Peter Elst is a web standards enthusiast, coming from a multimedia and
application development background. He works as a Web Solutions Engineer in
Creative Innovation at Google.

With well over a decade of experience, Peter is a regular technical reviewer, has
co-authored a number of books, including HTML5 Solutions: Essential Techniques
for HTML5 Developers (Apress, 2011), and is a well-respected speaker at many
industry events. You can ind out more about his latest interests and ongoing
projects on his personal blog, http://peterelst.com.

Francois-Denis Gonthier is a graduate of the Université de Sherbrooke computer science program. He began
his career with a startup company, delivering cryptographic software using open source technologies. From that
point, he has never strayed far from the Linux and open source world as a big-picture generalist. He went from
programming front ends in JavaScript and HTML 5.0 to coding web site backends using Java, J2EE, JSF, or plain old
Unix daemons. he cool Web 2.0 kids would call this being a “full stack developer.”

http://sudipto80@yahoo.com

xix

Foreword

Dear reader,

You are reading a book that will lead you to the understanding and luent use of the Express.js framework—the de
facto standard in web application programming on Node.js. I would especially recommend this book because it was
written by a practicing engineer who has comprehensive knowledge of the full stack of web application development,
and Express.js in particular.

Azat and I worked on the same Node.js/Express.js code base at Storify.com—the social media curation tool that
he Washington Post, CNN, BBC, he White House press corps, and other news corps use. It was recently acquired by
LiveFyre.com. Azat asked me to write this foreword because he thought it would be objective, sincere, and unbiased
coming from the creator of another Node.js framework: CompoundJS (http://compoundjs.com).

However, hardly anyone reads the foreword. So, instead of a traditional foreword, I’ll share my story. Actually,
 I never thought it was worth sharing, and there’s deinitely nothing exciting about it. But from another point of
view—that of thousands of young programmers living similar ordinary lives—it could be inspiring: it’s a common
story, but a rather successful one.

My path to web development started when I was a student. I’d joined a team as a junior PHP programmer. I was
working there for about ive years, and the main lesson that I learned was that education is nothing compared to real
work experience. he next page of my professional life was my work in outsourcing (PHP and Ruby on Rails). And
then I found Node.js. It ofered something that I had always wanted: processes that do not have to wait for DB/IO
operations, which are keeping all the resources, but doing something useful instead. hat’s why I started using Node.
js—it’s more eicient compared to synchronous programming environments. By “eicient,” I don’t mean speed of
processing, but rather more lexibility in programming style.

As a good example of its lexibility, I can share a solution I recently programmed for a Redis adapter for the
JugglingDB ORM (https://github.com/1602/jugglingdb). he problem: during peaks in web site usage, we were
running a lot of DB queries to serve pages, and most of the queries were the same. he obvious solution is to cache
results of the queries, but this solution requires additional coding and some logic for cache invalidation. We came up
with a better solution: cache queries and not results. When a query comes, we don’t execute it immediately; instead,
we wait for some time, collect identical queries, then execute the query once and run multiple callbacks to serve all
clients. his solution is simple and requires no additional logic. As a result, we have lat DB usage, even during peaks.
his solution is natural in Node.js, and that’s why Node.js rocks!

Life after discovering Node.js was great, full of interesting challenges and work, but one thing was annoying: each
time I started a new project, I had to repeat almost the same work to organize code. For me, as a Rails developer, it’s
really great to be able to create well-structured MVC applications fast, and then generate scafolding controllers/views
and other stuf. But this kind of tool was missing in Node.js, and that’s why I spent my Christmas holidays writing it.
he project was called express-on-railway at irst, then RailwayJS, then CompoundJS.

he main goal of the project was to bring structure to an Express.js application, add the ability to extend
applications in a standard way, and generate application code. So, it was not a new framework, but just Express.
js with decent MVC structure, which is good for developers because they don’t need to learn anything but Express.
js to be able to understand what’s going on in a CompoundJS application. And I was kind of piggybacking on my
Express.js and Rails experience. he idea was to take the best ideas from Rails and bring them to the node platform,
and I selected Express.js as the base because it is the most popular framework for Node.js and has a relatively
big community, so I wouldn’t be alone with my “new framework.” It was the start of my open source years, which
completely changed my attitude toward programming (and other life matters), but that’s another story.

http://sudipto80@yahoo.com
http://sudipto80@yahoo.com

■ FOREWORD

xx

Let me conclude by saying web development in Node.js starts with Express.js. It is a minimalistic and robust
framework that gives you all you need to build decent web applications. Even if you decide to move to some more
advanced frameworks at some point, Express.js knowledge is still a basic skill you have to learn. his book contains
everything you need to know to start using Express.js. It clearly explains all concepts, as well as provides the answers to
the most frequent questions that newcomers ask. For these reasons, this book is a must-read!

Anatoliy Chakkaev
Creator of CompoundJS and JugglingDB

xxi

Acknowledgments

his book would not be possible without the existence of my parents, the Internet, and JavaScript. Furthermore,
I acknowledge the geniuses of Ryan Dahl (creator of Node.js) and TJ Holowaychuk (creator of Express.js).

I express my gratitude to the Apress editors who persuaded me to publish this book as a remake of
Express.js Guide, and to the following editors who have put a lot of energy into making the book great: Christine
Ricketts, Peter Elst, Francois-Denis Gonthier, and William McManus. Also, special thanks to Douglas Wilson and
Tom Rutka.

Last but not least, I would like to thank my high school teacher who always had many toy problems for us to solve
using Turbo Pascal.

	Pro Express.js
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Foreword
	Acknowledgments
	Introduction

