Pro

HTIVILO witn

Visual Studio 2015

Mark J. Collins

Apress:

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

vww allitebooks.conl

http://www.allitebooks.org

Contents at a Glance

About the AUNOFccouusemmmsnnmmssnmsssssmssssssssssssssssnsssssnsssssnnesssnnssssnnesssnnsssnnnnsssnnnsss xvii
About the Technical ReVIEWEFsvcssissmssssssmssssssmssssssssssssssssssssnsssssssssssssssnsassnsass Xix
Acknowledgments........cccciuiissssmmmnmmmmmmsssssssssssnmnmmsssssssssssssnsseesssssssssnnnnnnnsessssssnnnnnnns XXi
INtroductionccuuieemmssennmsssnnsssansmsssnnmsssnsssssnnssssnnssssnnnsssnnnsssnnesssnnnsssnnnsssnnnsssnnnsssnnns Xxiii
Part I: What is HTMLS?cccccuseemmmmssssmsmmssssssssmssssssssnsssssnsssssssnnsnnssnnns 1
Chapter 1: Before YoOU BegiN.....ccuoccurrrsssnnsnmssssssnssssssssssssssssssssssssssssssssssnssssssssnnnsssns 3
Part II: Using the New HTML5 Featuresccuuseememmmnnnsssssssssnsnnnnssssns 17
Chapter 2: ASP.NET Web FOrmscccccuurmmmsssssssssnnssssssssssssssssnsssssssssssssssssssssssssssns 19
Chapter 3: MVC Web Applicationsc.ucccmmrmmssmsnmmmsssssnnsssssssssssssssssssssssssssssssssnnnns 43
Chapter 4: Cascading Style Sheets..........cccinnmmmmmnnnmmmmsssnmmssssnsss———" 79
Chapter 5: Scripting Enhancements.........oouveemmmmmmnnmnmssssssssmmmmssssssssssssssesnns 119
Chapter 6: Mobile Web Applications........ccccuuseemmmsssnnnmmssssssnmmssssssssssssssssssssssnnns 139
Part lIl: Digging DEepPerccccccrsssssemmenmmmmssssssssssssssssssssssnnnnnsnsesssnas 167
Chapter 7: Supporting Older BroWSerS......cccusesmmmssssssnssssssssnsssssssssssssssnnsssssssnnnss 169
Chapter 8: Audio and Videoccccurrssssmmnmmssssnsnsmssssnssssssssssssssssssssssssssnnnssssssnnnss 189
Chapter 9: Scalable Vector GraphiCscccuusssessssssssnsnssssssnsssssssssssssssssssnssssssnnnss 209
Chapter 10: CANVASccurruissmmmmmmsssssnmmssssssnmsssssnsnssssssssnssssssnnnssssssnnnsssssnnnnsssssnnnnss 237

v

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS AT A GLANCE

Part IV: Advanced Featuresccccccemmmmmmmmmmmmnnmmsssssssssssnsssssssns 271
Chapter 11: Indexed DB........cccounnmmmmmmmmmmmmssssssssssnmmmmssssssssssssssssessssssssssssnnsssssssnns 273
Chapter 12: Geolocation and Mappingcccuscemmmsssennmmssssssnmsssssssssssssssssssssssnnns 301
Chapter 13: WehSoCKetS.......ccciuunummmmmmsssnnmmmssssnsnmmssssnsnssssssssnsssssssnsssssssnnnsssssnnnnss 319
Chapter 14: Drag and Dropcccuseesresssnnssssssnnnnss 367
Part V: APPendiXes ..uuussssssssnnnnnnnnnnnnsnnnnnnnnnnnmmsmmmmmmssssssssssssssssssnnnnnns 395
Appendix A: Sample Content for Chapter 4............ccccciimmnnineennmnnsessnmnssssn. 397
Appendix B: Completed Style for Chapter 4ccoccccrrmrnsmmnssssssssssssssssssnn 403
Appendix C: Final Code for Chapter 14.........ccunmmmmmmmmmmmmmmssssssssnnmssmsssssssssns 409
INO@X uueerissnnnsssnnnsssannsssanssssanssssanssssannsssannssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnsnssnnnsssnns 417

vi

[vww allitebooks.cond

http://www.allitebooks.org

Introduction

HTMLS5 is such an exciting opportunity for software developers. For a long time, the Web has been the
favorite platform for providing software applications to both external and internal users because of its reach
and ease of deployment and maintenance. The primary limitation has been the client-side support, which
can severely limit the user experience. With the lack of cross-browser standardization, using any of the
advanced features often meant broken pages on older browsers or difficult polyfills.

HTMLS5 is a game-changer. Not only does it bring browser vendors together with a common set of
specifications, the features included in HTML5 enable web applications to provide a user experience that
rivals even client applications. With mobile devices rapidly jumping on the HTML5 bandwagon, the number
of HTMLS5 devices is expected to exceed 2 billion in the next year. I have seen the rise of many technologies
and standards that promised to change the future of software development, but the momentum and support
for HTML5 seem unprecedented.

Having said that, we are not quite there yet. Many of the specifications are still in draft form, and
browsers, even current releases of them, do not support all the features that have been agreed upon.
However, there are already enough features that are generally supported by browser vendors to make the
switch to HTMLS5 attractive. And the future is even more promising.

Who This Book Is For

HTMLS5 consists of changes in the markup, CSS improvements, and JavaScript enhancements and can
be used with any implementation platform. However, this book presents these new features with the
professional Visual Studio developer in mind. My goal is to answer the question “What would most ASP.NET
developers need to know to incorporate the benefits of HTML5?” The sample applications are written using
Visual Studio 2015, and some of the examples are specific to the ASP.NET platform, including web forms
and MVC 6.

Each chapter covers a different topic, providing both an explanation of how the feature is used and
hand-on exercises that will reinforce the important concepts.

How This Book Is Structured

I've split the book into four parts, each going a bit deeper into the more advanced features.

Part 1 provides a quick introduction to web application technologies. This part explains the operating
environment that web developers find themselves in and where the HTML5 umbrella fits in.

Part 2 covers the basics of HTML5, including form development with both traditional web forms and
the MVC model. Chapter 4 provides a really good overview of CSS with a focus on the new features available
in CSS3. This part also demonstrates some of the scripting enhancements in Visual Studio 2015 and includes
discussions on how to use web workers and how to support mobile devices with HTMLS5.

Part 3 takes this further and demonstrates some of the really cool features including the new audio and
video elements. I then demonstrate the graphics support available using both SVG and canvas. This part also
discusses how to use polyfills to deal with older browsers.

xxiii

[vww allitebooks.cond

http://dx.doi.org/10.1007/9781484211489_4
http://www.allitebooks.org

INTRODUCTION

Part 4 explains some of the more advanced features such as Indexed DB, which provides a persistent,
client-side data store. This part also demonstrates geolocation and mapping using Bing Maps. Finally, it
explains how web sockets and drag-and-drop can be used for advanced applications.

Downloading the Code

The code for the examples shown in this book is available on the Apress web site, www.apress.com. You
can find a link on the book’s information page on the Source Code/Downloads tab, which is located in the
Related Titles section of the page. The download file also contains resources that you'll need when working
through the exercises in this book.

Contacting the Author

Should you have any questions or comments—or even spot a mistake you think I should know about—you
can contact me at markc@thecreativepeople.com.

XXiv

[vww allitebooks.cond

http://www.apress.com
http://markc@thecreativepeople.com
http://www.allitebooks.org

PART |

What is HTML5?

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1

Before You Begin

Throughout this book I will be demonstrating how you can take advantage of the really cool new features
included in Hypertext Markup Language (HTMLS5). It will be very hands-on with lots of code samples and
working web pages. Before we get started, however, I will set the stage and provide some context for where
we will be going. What is generally referred to as HTMLS5 includes many technologies, and HTML is just the
tip of the iceberg.

In this chapter, I will briefly review the operating environments that host web sites, currently and
historically. I will also describe the development tools that are available. While this book is specifically
focused on Visual Studio 2015, there are some free alternatives that will enable you to work through most of
these exercises. Finally, I'll take a quick inventory of the HTML5 support in current and future browsers.

Reviewing the Web Environment

So you can better understand where HTMLS5 sits from the web developer’s view, I will first review the web
environment that we find ourselves in. This will be a basic overview and quite familiar to most readers.
However, I often find it useful to step back, once in a while, and get a better perspective.

The Basic HTTP Page

In the early days of the Web, the model was quite simple. It included a web server that was responsible for
serving up web pages and a browser that would render them on the client. In the Microsoft stack, Internet
Information Services (IIS) provided the server component, and Internet Explorer was the de facto browser.
There were other browsers, of course, such as Netscape. The browser would request a page from the web
server by passing the address (URL) in a Hypertext Transfer Protocol (HTTP) GET request. The server
would respond by providing an HTML document, which was then rendered by the browser, as illustrated in
Figure 1-1.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 " BEFORE YOU BEGIN

Web Server
(nS)

HTTP Get HTML
(Page) (Postback)

Browser
(Internet Explorer, etc.)

Figure 1-1. A simple page-centric web model

If the web page included a form with input fields, the browser would provide for this data to be entered.
When the page was submitted, this data was sent to the web server through an HTTP POST request. The web
application would do something with this data and then return an updated web page. The browser would

then render the entire page on the client.

There are two key aspects that I want to focus on here that still have a significant influence even with

today’s web environment:

e The model is very page-centric.

e There are both server and client aspects to web development.

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 ' BEFORE YOU BEGIN

Page-Centric Web

AsImentioned, web sites are predominantly focused on web pages. A page is requested, returned, and
rendered. Data on a page is posted to the server and processed, and an updated page is returned and
rendered. Because the web server is stateless, it has no knowledge of previous pages that were returned. This
is why the entire page must be submitted and returned. Current and future technology is helping to move
away from this paradigm, and I'll demonstrate many of these techniques throughout this book. However,
page-centric designs are still prevalent and will likely to continue to be for some time.

Client-Server Model

There are both server and client components to consider when building a web application. On the server,
IIS responds to the HTTP requests as I mentioned. For static content, the HTML files can be simply stored
in a virtual folder within IIS, and no programming is required. For dynamic content, a web application is
needed to generate HTML. Enter ASP.NET.

ASP.NET allows you to write code to dynamically create HTML. For example, the page can query a
database and populate a grid using the data returned from the database. Likewise, the data presented in
an HTTP POST request can be written to a database. Also, while a web application is generally considered
stateless, ASP.NET provides several techniques for saving information between requests.

On the client side, the browser is responsible for rendering the content. This content is provided as
HTML, which is essentially text with embedded formatting tags. In addition, Cascading Style Sheets (CSS)
can be used to instruct the browser how to format the content. The support for these HTML tags and CSS
constructs will vary, however, between the available browsers and herein lies some of the biggest challenges
of web development.

Improving the Web Experience

The page-centric approach is a major obstacle in raising the bar of the overall user experience. Refreshing an
entire page is not very efficient. To address this issue, two key improvements were introduced:

e (Client-side scripting

e Asynchronous JavaScript and XML (AJAX)

Using Client-Side Scripting

All browsers now provide the ability to run client-side scripts, which are predominantly written in JavaScript,
although others such as VBScript are also possible in some browsers. The ability to run scripts in the browser
is a huge improvement. For example, a script can hide or show a section or modify the format of the content
based on the user input. Since this happens on the client, no round-trip to the server is necessary. This
makes the web site seem much more responsive.

Caution JavaScript can be disabled on the client, and you should consider, and test, how your page will
function with scripting disabled.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 " BEFORE YOU BEGIN

Using AJAX

AJAX is an acronym for Asynchronous JavaScript and XML. While a bit of a misnomer since it doesn’t have
to be asynchronous, use JavaScript, or use XML, the term refers to a collection of technologies that enable
client-side scripting to communicate with the web server outside of the typical page refresh scenario. In a
nutshell, AJAX uses JavaScript to request data from the web server. It then updates the page content using
the Document Object Model (DOM). This allows portions of the web page to be updated as needed without
a complete refresh.

AJAX can also be used to call web services independently from the web server that is hosting the web
page. You can use AJAX to access data provided by a third party such as stock quotes or currency conversion.
You can also call your own web services to perform real-time updates or load data based on user input.

For example, you can provide a product search feature and use AJAX to call a web service that returns the
matching products. Again, this is all independent of the standard page-refresh paradigm.

Figure 1-2 illustrates the more robust model that most web sites use today.

Web
Services

HTTP Get HTML
(URL) Content HTML Post
(Page) (Postback)

Script

Browser
(Internet Explorer, etc.)

Figure 1-2. A more robust web environment

With the inclusion of client-side scripting and AJAX requests, you can now create much more interactive
and responsive web-based solutions. Of course, this requires more complex web applications and a broad
set of technologies to work with on both the server and the client.

6

CHAPTER 1 ' BEFORE YOU BEGIN

Reviewing Web Technologies

Let’s quickly review the various technologies that you will likely need to use when building great-looking
interactive web applications.

e HTML: Hypertext Markup Language is the primary means for delivering content
to the browser. In addition to the actual text that is displayed, HTML contains
embedded tags that control how the content is formatted. Tags are used to align the
content in sections and tables, modify text attributes, and include nontextual content
including links and graphics.

e (CSS: Cascading Style Sheets are used as a central place for controlling visual aspects of
the web pages such as fonts, colors, background images, and margins. They are called
cascading because the style options are defined at various levels in the DOM. You can
define site-level styles in one style sheet and then provide additional style sheets as
necessary to either further define or override these for specific pages, sections, or classes.

e DOM: The HTML that is rendered by the browser is similar to an XML document,
and the Document Object Model defines the structure of this document. This is used
for programmatically accessing and modifying the document’s content.

e ECMAScript: Client-side scripts are interpreted and executed by the browser.
To improve cross-browser compatibility, the ECMAScript standard defines the
syntax and features of the scripting language. JavaScript is a dialect of the
ECMAScript standard.

Note Historically, JavaScript and JScript were two implementations of the same scripting language.
Microsoft named its implementation JScript to avoid trademark issues with Sun, but they are essentially the
same and follow the evolving ECMAScript standards. With Internet Explorer 10, Microsoft is moving away
from this distinction and referring to its scripting language as JavaScript. And just to keep things interesting,
Microsoft still provides a JScript language, which provides access to .NET and is very different from JavaScript.
| will refer to JavaScript throughout this book as the standard ECMAScript-compliant scripting language.

Exploring HTML5

So, where does HTMLS fit in to this equation? Just about everywhere! What is generally classified as HTML5
is actually a broad set of specifications related to web browser standardization, many of which having
nothing to do with HTML. I will briefly summarize these here and then demonstrate these features in detail
throughout the rest of this book. The following are a few things that you should keep in mind:

e Many of the specifications have not been finalized yet. Much of the core
specifications are completed, but some of the advanced features are still
subject to change.

e Browser-support for these features will vary. Browser vendors are aggressively
incorporating new features in each subsequent release.

e The specifications leave room for each browser vendor to decide how each feature is
implemented. For example, all compliant browsers will provide a date picker control
for entering dates, but each browser may implement this in a different way.

CHAPTER 1 " BEFORE YOU BEGIN

The general trend with HTMLS5 is to provide more native support in the browser. As you will see
throughout this book, browsers are providing an increasingly impressive set of features. This will enable you
to build better web applications with less work.

Reviewing Markup Changes

As you would expect, HTML5 includes some important improvements in the markup elements. There is a
sizeable list of new markup elements, and I will demonstrate many of these in Chapters 2, 3, and 4.

The generic <div> element is still supported, but new, more context-specific elements are also
provided. I will explain and demonstrate this in Chapter 4. The new content tags are as follows:

e <article»
e <aside>

o <footer>
e <header>
e <hgroup>
e <nav>

e <section>

Several new input type elements are provided that allow native formatting and validation capabilities.
These will be described in Chapters 2 and 3. The new types are as follows:

e color

e datetime (aswell as datetime-local, date, time, month, and week)

e email
e number
e range
e search
o tel

o url

There are also some new elements that enable you to use browser-implemented controls such as
the following:

e <audio>

o <figcaption>
o <figure>

e <meter>

e <output>

e <progress>

e <video>

http://dx.doi.org/10.1007/9781484211489_2
http://dx.doi.org/10.1007/9781484211489_3
http://dx.doi.org/10.1007/9781484211489_4
http://dx.doi.org/10.1007/9781484211489_4
http://dx.doi.org/10.1007/9781484211489_2
http://dx.doi.org/10.1007/9781484211489_3

CHAPTER 1 ' BEFORE YOU BEGIN

There are a few other elements introduced with HTMLS5 that I will describe in more detail later.
I will demonstrate the <audio> and <video> tags in Chapter 8. The new <canvas> element provides some
significant graphics capabilities, and I will demonstrate this in Chapter 10.

Understanding Cascading Style Sheets

Like HTML, CSS capabilities are defined by an evolving set of specifications. The current published
recommendation is CSS 2.1, and the next version being drafted is referred to as CSS3. However, it has been
broken down into more than 50 “modules” with a separate specification for each. As of this writing, only

a few of these modules have become official W3C Recommendations (REC) and several more are at W3C
Candidate Recommendation (CR) status.

Tip Since the status of each CSS module is ever changing, for complete information about the current
status of each, see the article at www.w3.org/Style/CSS/current-work.

So, the actual CSS3 “specification” is very much a moving target at the moment, and browser support
for these specifications will also vary. However, there are already a number of cool features that are generally
available, and I will demonstrate some of these in Chapter 4.

Reviewing Other HTML Functionality

The actual scripting syntax is defined by the ECMAScript specification I mentioned earlier. The current
version, 5.1, was published in June 2011. While it’s not actually part of the HTMLS5 specifications,
HTML5-compliant browsers are expected to support the ECMAScript 5.1 standard. As I said, however, this
specification describes the language syntax and some built-in functions such as element selectors.

In addition to the language specification, there are quite a few other specifications that are loosely
included under the HTML5 umbrella that define specific client-side functionality. I will demonstrate
many of these in Chapter 5, and the rest will be covered in later chapters. The new functionality includes
the following:

e Dragand Drop: This provides the ability to select an item and drop it on another
item on the web page. I will demonstrate this in Chapter 14.

e Web workers: This allows you to execute a script on a separate thread. This includes
mechanisms to communicate with workers and the ability to share workers between
multiple web pages. I will explain this in Chapter 5.

e Web storage: This includes sessionStorage for isolating session data between
multiple tabs connected to the same site as well as localStorage for storing data on
the client that persists after the session is closed. IndexedDB is another technique for
client-side data storage, which I will demonstrate in Chapter 11.

http://dx.doi.org/10.1007/9781484211489_8
http://dx.doi.org/10.1007/9781484211489_10
http://www.w3.org/Style/CSS/current-work
http://dx.doi.org/10.1007/9781484211489_4
http://dx.doi.org/10.1007/9781484211489_5
http://dx.doi.org/10.1007/9781484211489_14
http://dx.doi.org/10.1007/9781484211489_5
http://dx.doi.org/10.1007/9781484211489_11

CHAPTER 1 " BEFORE YOU BEGIN

e Geolocation: This is not part of the official specifications but has been generally
included when discussing HTML5 features. Geolocation defines an API that can
be called from JavaScript to determine the current geographic location. How the
browser implements this is determined by the available hardware. On a GPS-enabled
device, it will use a GPS satellite. If GPS support is not available, it will use Wi-Fj, if
possible, to determine the location. Mobile devices can use cell tower triangulation.
If all else fails, the IP address can at least provide some estimate of location.
Obviously, the accuracy will vary greatly, and the API handles this. I will demonstrate
geolocation in Chapter 12.

e Web sockets: This provides asynchronous communication between the web page
(browser) and the server. Once the connection is established, the server can send
real-time updates to the client. This will be demonstrated in Chapter 13.

Choosing a Development Tool

There are several development environments that you can use to create ASP.NET applications that take
advantage of the HTML5 features. I will present them here briefly and cover them in a little more detail in
subsequent chapters. The key thing to know is that there are some free alternatives to Visual Studio.

Using Visual Studio 2015

Visual Studio 2015 is the premier development environment for building ASP.NET applications. I won't say
much about it here because I will be using it predominantly throughout this book to demonstrate HTML5
implementations. However, if acquiring Visual Studio is cost prohibitive, there are some free alternatives that
will still allow you to work most of the exercises in this book.

Tip You can use earlier versions of Visual Studio for most of the exercises. Some of the details for
configuring projects will vary with older versions, especially in Chapters 2 and 3. However, most of the HTML,
CSS, and JavaScript examples in this book are also relevant to any version of Visual Studio.

Using Microsoft’s WebMatrix

Microsoft’s WebMatrix is a lightweight integrated development environment (IDE) that is specifically
targeted for building web sites. While not limited to just ASP.NET pages, you can build full-fledged ASP.
NET applications. It includes SQL Server Compact, which is a file-based version of SQL Server. It also uses
IIS Express to host a local web site for debugging. This is the same hosting environment provided in Visual
Studio 2012, which replaces the ASP.NET Development Server used in previous versions of Visual Studio.

The ASP pages are based on ASPNET MVC and use the Razor view engine. Consequently, the file
extensions are .cshtml (or .vbhtml if you're using Visual Basic). The classic ASP model with an .aspx
markup file and separate . cs code-behind file is not supported, however. You can create .aspx files, but
adding a code-behind file is not a practical option.

You can download and install WebMatrix version 3 from this site: www.microsoft.com/web/webmatrix.
When creating a new site, if you use the Starter Site template, it will create a familiar default ASP web
application, as shown in Figure 1-3.

10

http://dx.doi.org/10.1007/9781484211489_12
http://dx.doi.org/10.1007/9781484211489_13
http://dx.doi.org/10.1007/9781484211489_2
http://dx.doi.org/10.1007/9781484211489_3
http://www.microsoft.com/web/webmatrix

CHAPTER 1 ' BEFORE YOU BEGIN

[Home Page - My ASP.NET x
& = C A [localhost:3602

your logo here

Home About Contact

Home Page. Modify this template to jump-start your ASP.NET Web
Pages application.

We suggest the following:

o Getting Started
ASP.NET Web Pages and the new Razor syntax provide a fast, approachable, and lightweight way to combine server code with HTML
to create dynamic web content. Connect to databases, add video, link to social networking sites, and include many more features that
let you create beautiful sites using the latest web standards. Learn more...

o Add NuGet packages and jump start your coding
MuGet makes it easy to install and update free libraries and tools. Learn more..,

o Find Web Hosting
You can easily find a web hosting company that offers the right mix of features and price for your applications. Learn more...

© 2015 - My ASP.NET Web Page

Figure 1-3. The default ASP application

" Note When selecting the Starter Site template, | got a 404 error trying to download the template. | found
that others experienced this error as well. However, it seems to be intermittent because it worked fine when
| tried it again sometime later.

Figure 1-4 shows the IDE. Notice the .cshtml extensions and the Razor syntax for the page
implementation.

11

CHAPTER 1

BEFORE YOU BEGIN

" Flle Home | Remote Source Control Sign in '. -~ @
Start |~__'j = Open J & cut ‘:ﬁ % Replace ‘=+Waord Wrap m ! .a
| Stop 7 Add Bristing [)Copy i~GoToline.. |{[)Line Numbers |
New . Paste Find 5 Visual Extensions NuGet
- Q) Restart » X Close All - ﬁl’nnt Studio
Site. Flles Lipbeard Editing Viewy | Launch: | _Gaileries
- . $ Default.cshtm| >
4 | Starter Sitel 1 BB =
b [Account 2 Layout = "~/_Sitelayout.cshtml®;
| App_Data Page.Title = "Home Page";
¢ [bin 4 |}
] Content 5
¢ Images o f@section featured {
Sciipts 7 B<section class="featured">
Q gt | 55 ale et e
| Sitelayout.cshtml 18 <h1:@Page.Title.</h1>
| About.cshtm| 11 <h2:Modify this template to jump-start your ASP.NET Web Pages application.</h2>
= = 1 </hgroup>
[| <p>
| faviconiico 4 To learn more about ASP.NET Web Pages, visit
3 Web.config 15 http://fasp.m
16 The page features <mark>videos, tutorials, and samples</mark> to help you get th:
17 1If you have any questions about ASP.NET Web Pages, visit
18 our foi
% 19 | </p> v
b [100% ~|4 ,
m Site Logs Find Results Error List v
Description File Line
[Fites
_' _i Databases

m Reports

Figure 1-4. The WebMatrix IDE
The WebMatrix IDE includes the ability to manage SQL Server databases. You can create new databases

or connect to existing SQL Server databases. You can create and alter tables and view and edit data. You can
also run SQL queries, as shown in Figure 1-5.

12

CHAPTER 1 ' BEFORE YOU BEGIN

File Home Remote Sign in V -~ @
& Start e T a £ x :.':IEI 5 @
& E | - L =
b | | 3 I
9 g t = S
Run Publish New New New Edit Delete New Execute Migrate

Q Restart | Database = Table - Query

Site Database Connections Query SCL Server

£ (StarterSite.sdf).SQLQuery_1 *
“ ___jStafte:Si'le‘l 1 select * from UserProfile -
4 iy Startersite sdf where Email like 'mark%’|
4 Tables
7] UserProfile
] webpages_Membership
] webpages_OAuthMembership
2] webpages_Roles
=] webpages_UsersinRoles
- Other Connections

[100% ~|« v
. Email Userld
Site -
i markc@thecreativepeople.com 2
] Fites
|
Databases
@ Reports

Figure 1-5. WebMatrix database IDE

For more information on using WebMatrix, I suggest starting with the tutorial at www.microsoft.com/
web/post/how-to-use-the-starter-site-template-for-aspnet-web-pages.

Using Visual Studio Community Edition

Microsoft announced a free version of Visual Studio in November 2014, called Community Edition. There
have been other free editions, such as Visual Studio Express for Web; however, the Community Edition is
significant in that it looks and functions just like the full retail version of Visual Studio Professional. Visual
Studio Express editions were targeted to specific technologies (for example, for Web or for Desktop). Also,
the Express editions were not integrated with Team Foundation Server, and they did not support Visual
Studio extensions.

The Community Edition is functionally equivalent to the Professional Edition. Its restrictions are
primarily based on who is allowed to use it. Generally, any academic or nonprofit use is allowed. Enterprise
organizations can also use it with some limitations. For more details, see the article at www.visualstudio.com/
en-us/products/visual-studio-community-vs. If these restrictions are a problem, you should consider
one of the Express versions of Visual Studio, which are also free but with some limited capability.

You can download Visual Studio Community Edition at https://www.visualstudio.com/en-us/
downloads/visual-studio-2015-downloads-vs.

13

http://www.microsoft.com/web/post/how-to-use-the-starter-site-template-for-aspnet-web-pages
http://www.microsoft.com/web/post/how-to-use-the-starter-site-template-for-aspnet-web-pages
http://www.visualstudio.com/en-us/products/visual-studio-community-vs
http://www.visualstudio.com/en-us/products/visual-studio-community-vs
https://www.visualstudio.com/en-us/downloads/visual-studio-2015-downloads-vs
https://www.visualstudio.com/en-us/downloads/visual-studio-2015-downloads-vs

CHAPTER 1 " BEFORE YOU BEGIN

ASP.NET 5

The latest version of ASP.NET 5 is a pretty significant departure from previous versions. This article,
http://docs.asp.net/en/latest/conceptual-overview/aspnet.html, provides good overview of the
changes introduces with ASP.NET 5. When creating a new project, Visual Studio 2015 provides separate
templates for version 5 as well as 4.6 since the structures are very different. Figure 1-6 shows the available
templates.

New ASP.NET Project - WebApplication14 » Bl

Select a template:
An empty project template for creating ASP.NET

ASF.NET 4.6 Templates applications. This template does not have any content in
it.
FC- Fc " Fc- Fc " F‘c- Fc.
®J e @—1 @—] @J @_1 Learn more

Empty WebForms MVC Web APl Single Page Azure Mobile
Application Service

ASP.NET 5 Preview Templates

el el el
Empty Web APl Web Site

Change Authentication

Authentication: No Authentication

Add folders and core references for: S Microsoft Azure
[]WebForms []MVC [[] Web APl (A) [] Hostin the cloud
Web App v
[[] Add unit tests Signed in as

Manage Subscriptions

Test project name: WebApplication14.Tests

oK | [Cancel

Figure 1-6. The ASP.NET project templates

Most of the topics in this book will work equally well in both versions. For the sample projects that you
will build, the differences lie only in how the projects are created and which files you'll need to add and edit.

Chapter Exercises

The exercises in this book will use both 4.6 and 5 as well as the WebMatrix application. Chapters 2 and 3
will use ASP.NET 4.6 and you'll be modifying standard Web Forms and MVC applications. Chapter 4

will use WebMatrix as will Chapter 6, since it uses the completed Chapter 4 project as its starting point.
The remaining chapter exercises use the new ASP.NET 5 structure. Chapter 9 uses SQL Server and Entity
Framework, but most of the chapters are just basic HTML, CSS, and JavaScript. If you prefer to use a single
project type, you can adjust the initial steps to suit your needs.

14

http://docs.asp.net/en/latest/conceptual-overview/aspnet.html
http://dx.doi.org/10.1007/9781484211489_2
http://dx.doi.org/10.1007/9781484211489_3
http://dx.doi.org/10.1007/9781484211489_4
http://dx.doi.org/10.1007/9781484211489_6
http://dx.doi.org/10.1007/9781484211489_4
http://dx.doi.org/10.1007/9781484211489_9

CHAPTER 1 ' BEFORE YOU BEGIN

Project Structure

When you create an ASP.NET 5 project for the first time, you'll find the folder structure has changed
sigficantly. A typical structure is shown in Figure 1-7.

Solution Explorer v 2 X

& -5 ,=R

Search Solution Explorer (Ctrl+;) P~
4 Solution ltems
&T global,json
4 src
4 [5] WebApplication13
M Properties

b =B References
@ wwwroot
. Dependencies
b £&T projectjson
[Project_Readme.html
c# Startup.cs

Figure 1-7. A sample project structure

The wwwroot folder is were you'll put your static web files such as HTML, CSS, JavaScript files as well as
other content including images and audio and video files. The compiled files such as controllers, views, and
web forms are placed in other folders. You will be working mostly with files in the wwwroot folder.

Notice that there is no web. config file. With ASP.NET 5, configuration information can be placed in
multiple files and in various formats including JSON, .ini files, and environment variables. The project
template generates JSON files such as global.json and project. json files shown in Figure 1-7. I will
explain this further in Chapter 5.

Deciphering Browser Support for HTML5

All of the work to move applications to HTMLS5 is based on the assumption that the majority of browsers
will be HTML5 compatible. This requires that the browser vendors step up to the plate and provide
HTML5-compatible browsers and that the public at large will adopt them. This also includes mobile devices,
which are a key part of the push for HTML5 compliance. The general consensus is that everyone is moving
in that direction at a pretty good clip.

AsImentioned earlier, the actual HTML5 specifications are still being defined. Initial estimates were
as late as 2022 before the final recommendation was complete, according to HTMLS5 editor Ian Hickson.
However, as large parts of the specification are being finalized, vendors are implementing them, so much is
already available in browsers that are currently in use. As web developers, we should focus on the features
that are generally available now or expect to be soon, and these are the features that I will cover in this book.

15

vww allitebooks.conl

http://dx.doi.org/10.1007/9781484211489_5
http://www.allitebooks.org

CHAPTER 1 " BEFORE YOU BEGIN

There is a really good web site at http://html5test. com that provides a summary of the browsers
that are currently available and those that are still in development. Each browser is awarded points based
on the HTMLS5 features it supports. In addition to an overall score that allows you to compare browsers,
the scores are also broken down by functional area so you can see which areas have good support from
most browsers.

Summary

HTMLS5 covers a broad set of technologies that include improvements to the HTML markup, Cascading
Style Sheets, and client-side scripting. In addition, there are some significant enhancements to browsers
that make it easier to provide some great web applications. While the official specifications are still a
work-in-progress and the browser vendors are playing catch-up, there is quite a bit of functionality already
available. Also, as you'll see in the next few chapters, Visual Studio and the ASP.NET platform have been
expanded to leverage the HTML feature set.

16

http://html5test.com/

PART Il

Using the New HTMLS Features

CHAPTER 2

ASP.NET Web Forms

In this chapter, I will demonstrate some of the new input types defined by HTML5 and show you how to
use these in an ASP.NET web form. Typically, the TextBox control is used when data needs to be entered
on a form. Users can enter all kinds of data in a TextBox including strings, numbers, dates, and so on. To
ensure valid data, the form needs to supply either server-side or client-side validation logic. The HTML5
specification provides several new input types that can do much of this for you and implement a better
customer experience.

The following input types are defined (however, not all browsers support all of them yet):

e select
e color

e datetime (including datetime-local, date, time, month, and week)

e email
e number
e range
o tel

o url

When you build a web form using ASP.NET, the actual HTML that is sent to the browser is generated
by .NET. I'll show you the ASP.NET way of inserting the new input types. Also, using some of the new HTML
elements requires a little extra manipulation, so I'll demonstrate how to handle that as well.

Introducing the New Input Types

I'll start with a fairly simple example to demonstrate how to use the new e-mail control combined with the
placeholder attribute to quickly provide client-side instructions and validation. You'll start by creating a
standard ASP project using the Visual Studio template and then modify the registration page. Then you'll
inspect the HTML that is being rendered.

Creating an ASP.NET Project

In this chapter, you'll create an ASP.NET project using the standard Web Forms template in Visual Studio
2015. Start Visual Studio 2015. From the Start Page, click the New Project link. In the New Project dialog box,
select the Web category and select the ASP.NET Web Application template, enter Chapter 2 for the project
name and select an appropriate location, as shown in Figure 2-1. Turn off Application Insights if it’s selected.

19

http://dx.doi.org/10.1007/9781484211489_2

CHAPTER 2 © ASP.NET WEB FORMS

New Project Bl

P Recent NET Framework 4.6 - Sort by: Default - arch Installed Te O -

4 |nstalled L -
. ASP.NET Web Application Visual C# Type: Visual C#
4 Templates

A project template for creating

4 Visual C# b : Vi * ASP.NET applications. You can create
fla! Class Library (Package) isual C ASP.NET Web Forms, MVC. or Web

Pndove 7 AP applications and add many other
Web E Console Application (Package) Visual C# features in ASP.NET.
Android
Cloud ? Application Insights
i0s [[] Add Application Insights to Project
Reporting Help you understand and optimize
Silverlight your application.
Tact - Learn more
b Online Click here to go online and find templates. Privacy statement =
L g | v owe ome -
Name: Chapter2
Location: C\Books\HTML5S > Browse...
Selution name: Chapter2 Create directory for solution

[mAZERSEEU)

o] (o]

Figure 2-1. Creating an ASP.NET Web Application project

Prior versions of Visual Studio provided three different ways of creating web applications.
e Web Forms are best suited for fairly lightweight web pages.
e MVC provides a framework for building more complex web applications.
e Web APIis primarily used for creating web services.

While some of the concepts were similar across all three technologies, they were implemented on
completely different stacks. From a developer’s perspective, once you chose one approach, it was not easy
to transition to another one. Also, skill sets were not readily transferrable to other technologies. With MVC 6,
Microsoft merged all three onto a single implementation.

If you have used previous versions of Visual Studio, you'll notice one of the subtle differences resulting
from this. When selecting the project type, you simply choose ASP.NET Web Application. The choice of
which style of application to use is deferred to the next step, where you select the template. A template
defines the files that are created for you when you build a new project. An MVC app will need different files
and folders than a Web Forms application.

In the next dialog box, shown in Figure 2-2, select the Web Forms template. Notice one of the available
styles (Web Forms, MVC, or Web API) is automatically checked based on the selected template.

20

CHAPTER 2 © ASP.NET WEB FORMS

New ASP.NET Project - Chapter2

Select a template:

ASP.NET 4.6 Templates

=l =i =

@_] @_] @_] @J 9—] =]

Empty NGEAGHUE MVC Web APl Single Page Azure Mobile
Application Service

ASP.NET 5 Preview Templates

e-l el el
Empty Web APl Web Site

Add folders and core references for:

+ WebForms [MVC [] WebAPI
[] Add unit tests

Test project name: Chapter2 Tests

Figure 2-2. Choosing the Web Forms template

Using the Email Control

A project template for creating ASP.NET Web Forms
applications. ASP.NET Web Forms lets you build
dynamic websites using a familiar drag-and-drop,
event-driven model. A design surface and hundreds of
controls and components let you rapidly build
sophisticated, powerful Ul-driven sites with data access.

Learn more

Change Authentication

Authentication: Individual User Accounts
2 Microsoft Azure

@ [] Host in the cloud
Web App e

Signed in as mark.collins@fusion.com
Manage Subscriptions

oK] Cancel |

» Il

For the first exercise, you'll use the placeholder attribute to let the users know that an e-mail address is

needed in the field.

EXERCISE 2-1. MODIFYING THE REGISTRATION PAGE

In the Chapter2 project, open the Register.aspx page, which you'll find in the
Account folder.

There are several div elements in the fieldset node that include the input fields.
The first one is for the Email field. Change this as follows by entering the attributes
shown in bold:

<asp:TextBox runat="server" ID="Email" CssClass="form-control"
TextMode="Email"
placeholder="use your email address" Width="200" />
<asp:RequiredFieldValidator runat="server" ControlToValidate="Email"
CssClass="text-danger" ErrorMessage="The email field is required." />

Start the application by pressing F5. Using the Chrome browser, the Register page
will look like Figure 2-3. Notice the text in the Email field.

21

http://dx.doi.org/10.1007/9781484211489_2

CHAPTER 2 © ASP.NET WEB FORMS

Register.

Create a new account

Emall use your emall address

Password

Confirm password

Figure 2-3.

4,

Emall

sword

Figure 2-4.

22

Register

The initial Register page

If you enter an invalid email address, you should see the error message shown in
Figure 2-4 when you attempt to submit the page.

Invalid emall address|

- Please include an '@’ in the email
address. 'invalid email address' is
missing an '@".

Tha nacewn. S—

The invalid email error message

Close the browser and stop debugging.

For this example, we used Google Chrome as the browser. If you want to use a
different browser, you can select it from the drop-down list in the menu, as shown
in Figure 2-5.

CHAPTER 2 © ASP.NET WEB FORMS

[> Google Chrome ~ FvIRlN-Tl

P Google Chrome

M

Firefox

v Google Chrome
Internet Explorer
Opera Internet Browser
Safari

Windows Phone ’

Browse With...

More Emulators...

Figure 2-5. Selecting the browser to use for debugging

7. Try viewing this page with several different browsers. Notice that the email
validation message looks different in each. In Firefox this will look like Figure 2-6,
and in Opera it looks like Figure 2-7.

Emali Invalid emall address

Please enter an email address.

ewrnrdd

Figure 2-6. The invalid e-mail message in Firefox

Emall Invalid emall address

Please include an '@’ in the email address.
| 'invalid email address' is missing an '@".
sword ’

Figure 2-7. The invalid e-mail message in Opera

Tip This drop-down list automatically includes all of the browsers that are currently installed. You don’t
have to do anything to add them. If you install a new browser, you will need to restart Visual Studio before it will
be included in the list. If you use Internet Explorer, the browser will be more integrated with the debugger.

For example, when you close the browser, Visual Studio will automatically stop debugging. However, when
testing HTMLS5 support, you’ll need to use other browsers in addition to Internet Explorer.

23

CHAPTER 2 © ASP.NET WEB FORMS

Using the Page Inspector

Display the Register page using Internet Explorer. Select the Tools drop-down menu and click the F12
Developer Tools link. This will allow you to look at the actual HTML that was generated. Press Ctrl+B to
enable element selection and then click the Email field. This will show the relevant markup highlighted, as
shown in Figure 2-8.

Emalil

- DOM Explorer Console Debugger Network Ul Responsiveness Profiler Memory Emulation

% G -

<div class="text-danger” id="MainContent_ct18@" style="display: none;" data-valsummary="true"><{/div>
4 <div class="form-group™>
<label class="col-md-2 control-label” for="MainContent_Email">Email</label>
4 <div class="col-md-10">
<input name="ct10@$MainContent$Email™ class="form-control” id="MainContent_Email™ style="width: 28@px;"
type="email"” placeholder="use your email address"></input>

Figure 2-8. The HTML generated for the email control

Tip Most of the other browsers have a similar feature that lets you inspect the form content, which is
usually accessed through their Tools menu.

Except for the rather cryptic control name and id, this is standard HTMLS5 syntax. In particular, notice
the following attributes; the email type value and the placeholder attribute are new in HTMLS5:

type="email"
placeholder="use your email address"

The placeholder attribute that you entered in the Register.aspx page is not an ASP.NET attribute.
It was not processed by .NET but passed directly to the generated HTML.

Notice also the pane to the right that provides several tabs for viewing the CSS styles. We've selected the
Attributes tab, which shows the values for all of the element’s attributes. The other tabs show you the styles
that are applied. Stop the debugger to close the page inspector.

Exploring the Other Input Types

HTMLS5 introduces several other input types. To see them in action, you'll add a feedback form with some
rather contrived questions. These will implement the other types that are available to you.

Tip To get a detailed explanation of each of the input elements, check out the actual HTML5 specification.
This address will take you to the section on input elements: www.whatwg.org/specs/web-apps/current-
work/multipage/the-input-element.html#the-input-element.

24

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-input-element.html#the-input-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-input-element.html#the-input-element

CHAPTER 2 © ASP.NET WEB FORMS

Implementing a Feedback Form

In the next exercise, you'll create a new form and add several input controls, one of each type. After you have
created the form, I'll discuss each of the controls.

EXERCISE 2-2. ADDING A FEEDBACK FORM

1. Open the Chapter2 project in Visual Studio if not already open.

2. Inthe Solution Explorer, right-click the Chapter2 project and click the Add and
Webform links. Enter Feedback when prompted for the form name.

3. This will create a new form with a single div, as shown in Listing 2-1.

Listing 2-1. The Blank Form Implementation

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Feedback.aspx.cs"
Inherits="Chapter2.Feedback" %>

<!DOCTYPE html>

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<titley</title>
</head>
<body>
<form id="form1i" runat="server">
<div>

</div>

</form>
</body>
</html>

4. Within the empty div, enter the code shown in Listing 2-2. This will add several
fields that each demonstrate one of the new input types.

Listing 2-2. Adding Feedback Fields

<fieldset>
<legend>Feedback Form</legend>

<1li>
<asp:Label ID="1blURL" runat="server"
AssociatedControlID="URL">Default home page</asp:Label>
<asp:textbox runat="server" ID="URL" TextMode="Url"></asp:textbox>
</1i>
<1li>
<asp:Label ID="1blOptions" runat="server"
AssociatedControlID="0Options">Default browser</asp:Label>
<asp:DropDownlist ID="Options" runat="server">

25

http://dx.doi.org/10.1007/9781484211489_2
http://dx.doi.org/10.1007/9781484211489_2
http://www.w3.org/1999/xhtml

CHAPTER 2 © ASP.NET WEB FORMS

<asp:ListItem Text="Internet Explorer" Value="1">
</asp:ListItem>
<asp:ListItem Text="Google Chrome" Value="2" Selected>
</asp:ListItem>
<asp:ListItem Text="Firefox" Value="3"></asp:ListItem>
<asp:ListItem Text="Opera" Value="4"></asp:ListItem>
</asp:DropDownlList>
</1i>
<1li>
<asp:Label ID="1blBirthday" runat="server"
AssociatedControlID="Birthday">Birthday</asp:Label>
<asp:TextBox runat="server" ID="Birthday" TextMode="Date">
</asp:TextBox>
</1i>
<1li>
<asp:Label ID="1blMonth" runat="server"
AssociatedControlID="Month">Favorite Month</asp:Label>
<asp:TextBox runat="server" ID="Month" TextMode="Month">
</asp:TextBox>
</1i>
<1li>
<asp:Label ID="lblWeek" runat="server"
AssociatedControlID="Week">Busiest Week</asp:Label>
<asp:TextBox runat="server" ID="Week" TextMode="Week">
</asp:TextBox>
</1i>
<1i>
<asp:Label ID="1blStart" runat="server"
AssociatedControlID="DateTime">Start Date/Time</asp:Label>
<asp:TextBox runat="server" ID="DateTime"
TextMode="DateTimeLocal"></asp:TextBox>
</1i>
<1li>
<asp:Label ID="1blTime" runat="server"
AssociatedControlID="Time">Current Time</asp:Label>
<asp:TextBox runat="server" ID="Time" TextMode="Time" >
</asp:TextBox>
</1i>
<1li>
<asp:Label ID="1blPhone" runat="server"
AssociatedControlID="Phone">Phone</asp:Label>
<asp:TextBox runat="server" ID="Phone" TextMode="Phone">
</asp:TextBox>
</1i>
<1li>
<asp:Label ID="1blRange" runat="server"
AssociatedControlID="Range">Overall satisfaction</asp:Label>
<asp:TextBox runat="server" ID="Range" TextMode="Range"
Width="200" Height="30"></asp:TextBox>
</1i>

26

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 © ASP.NET WEB FORMS

<asp:Label ID="1blColor" runat="server"
AssociatedControlID="Color">Preferred color</asp:Label>
<asp:TextBox runat="server" ID="Color" TextMode="Color">
</asp:TextBox>
</1i>

<asp:Label ID="1blScore" runat="server"
AssociatedControlID="Score">Overall Rating</asp:Label>
<asp:TextBox ID="Score" runat="server" TextMode="Number"
MaxLength="1"></asp:TextBox>
</1i>
<1li>
<asp:Label ID="1blComments" runat="server"
AssociatedControlID="Multi">Comments</asp:Label>
<asp:TextBox runat="server" ID="Multi" TextMode="Multiline"
Rows="5" Columns="30"></asp:TextBox>
</1i>

<asp:Button ID="Submit" runat="server" CommandName="Submit" Text="Submit" />
</fieldset>

Save the changes and press F5 to display the new page in the browser. Figure 2-9
shows the feedback form as rendered by the Opera browser.

27

CHAPTER 2 © ASP.NET WEB FORMS

— Feedback Form

Default home page _ _
Default browser Google Chrome |v |
Birthday |mm/dd/yyyy

Wl b =

4. Favorite Month | --------- Gt

5. Busiest Week |ueek -y ===

6. Start Date/Time .mm/dd/_\,fyyy -—i=- 2t
7. Current Time |--: -- --

8. Phone “

9. Overall satisfaction

10. Preferred color | N
11. Overall Rating |

12. Comments 4

" Submit

Figure 2-9. The initial feedback form

Note I'm using the Opera browser to render the feedback form because it has the best support for the
new input types, as of this writing. I'll explain that more later in this chapter. You can download Opera from
www . opera. com. Chrome also has excellent support for these features.

Reviewing the New Input Types

Now let’s look at each of the new input types and see how they have been implemented in Opera. Keep in
mind that different browsers may present the control differently.

28

http://www.opera.com/

CHAPTER 2 © ASP.NET WEB FORMS

URL

The first field uses the url input type, which expects a valid web address. If you enter an invalid address,
when the page is submitted, you'll see the validation error shown in Figure 2-10

. Default home page

_ Default brow "
‘ Birt: i ki Please enter a valid web address

T R

Figure 2-10. The URL field

Note The protocol, such as http://, is required in the URL. For example, if you enter www.apress. com and
try to submit the form, the address is considered invalid. Enter http://www.apress.com instead.

Selection List

The next field provides a drop-down list of available browsers. In ASP.NET this is coded as a DropDownList
that contains a number of ListItem elements. The generated HTML uses a select element that contains
option elements like this:

<select name="Options" id="Options">
<option value="1">Internet Explorer</option>
<option selected="selected" value="2">Google Chrome</option>
<option value="3">Firefox</option>
<option value="4">Opera</option>
</select

Notice that the selected item is indicated with the selected attribute. This is a boolean and doesn’t
need a value. Visual Studio will show a warning, and the generated markup has the value set to selected.
The browser will ignore the value and simply look for the existence of the selected attribute.

Date/Time Fields

The feedback form contains the following date/time fields that demonstrate the browser support for various
date-type fields:

e Birthday: (Date) a single date (no time portion)

e Favorite Month: (Month) an entire month, including the year

e Busiest Week: (Week) an entire week, including the year

e Start Date/Time: (DateTime) a single date including the time portion
e Current Time: (Time) the time without any date

The date fields are text boxes where you can key the desired value but with intelligence built in.
For example, go to the Birthday field and type 7, and the cursor will automatically go to the day portion of
the date. If you type a 1 instead, you'll need to either enter a 0, 1, or 2 to complete the month entry or just hit
Tab to move to the day.

29

http://www.apress.com/
http://www.apress.com/

CHAPTER 2 © ASP.NET WEB FORMS

There is also an icon that displays a date picker control. The different formats of this control (date,
month, and week) are shown in Figures 2-11, 2-12, and 2-13, respectively. These controls are essentially the
same except that the month and week versions will only allow you to select the entire month or week. Notice
that the week format also displays the week number (from 1 to 52).

March 2015 ~ q ol{j_

Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 1 12 13 14
15 ‘16 17 18 19 20 21
22: 23 24 25 26 2. 28
20 30 31

Figure 2-11. The date picker control

April 2015 = <- o ‘» ‘

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 1& 18
195 200 2% 225 230 24 25
26 27 28 29 30

Figure 2-12. The date picker selecting an entire month

March 2015 ~ . o[]

Week Sun Mon Tue Wed Thu Fri Sat
10 1 2 3 4 5 6 7
11 8 9: ‘0 W3 1 13 44
12 15 16 dZ 18- 19 2000 21
13 224l 23 24 25 26. 27 28
14 29 30 3

Figure 2-13. The date picker selecting an entire week

30

CHAPTER 2 © ASP.NET WEB FORMS

Both the Start Date/Time and Current Time fields include a time control that allows the hour and
minute to be entered separately, shown in Figure 2-14. You can also use the up/down arrows to increment
the hour or minute portion depending on which is currently in focus. But there is no drop-down where you
can select the hour or minute.

6. Start Date/Time mm/dd/yyyy --:-- -- v

7. Current Time |--:-- --

Figure 2-14. The time control

Caution As of this writing, ASP.NET supports both DateTime and DateTimeLocal text modes. These are
translated to the HTML types datetime and datetime-local. However, datetime has been deprecated in favor
of datetime-local. So, be sure to use the DateTimeLocal text mode in your forms.

Phone

The feedback form includes a Phone field that uses the new tel input type. At the time of this writing, none
of the desktop browsers supports this type. I included it in the exercise with the hope that by the time you
read this you'll have a browser that will support it. As with all nonsupported types, the browser treats this as
a standard TextBox control.

Range

The next control uses the is similar to a fuel gauge in a car where the specific value is not as important as the
relative value such as new range input type. This allows you to slide the indicator across the extent of the control,
providing a relative value such as three-quarters full. I defined this with a width of 300 and a height of 30.

There are some other attributes of the range control that you can manipulate in HTML that are not
supported in ASP.NET. You could still specify these in the .aspx page, and they would be passed to the
generated HTML just like the placeholder attribute. However, I will show you another way to configure the
range control later in this chapter.

Color

The color control includes a small rectangle that displays the selected color. If you click this, you can select a
color from the color picker, as shown in Figure 2-15.

31

CHAPTER 2 © ASP.NET WEB FORMS

8

EEENTT

HE EEEENRN
HE EEERET]
EE 'EETER
EE EEERENT
EE EEENT

—
-
[
[
]
[

Hue: TI@

sat:|0_|
Define Custom Colors >> ColoriSolid Lum: U _-l

| ok || cancel | | Add to Custom Colors

Figure 2-15. The color-picker control

Number

The Overall Rating field uses the number input type. Several browser now include up and down arrows that
allow you to increment and decrement the current value. When the form is submitted, if a non-numeric
value was entered, an error will be displayed, as shown in Figure 2-16.

11. Overall Rating |8a7 -

Please enter a number,

Figure 2-16. A non-numeric value error

Text Area

The last field uses the text area input type. I specified this to use 5 rows and 30 columns. This affects only
how the field is displayed on the page. The text is stored as a single string. The text will be wrapped to fit into
the allotted size on the page, but it can contain any number of rows.

32

CHAPTER 2 © ASP.NET WEB FORMS

Reviewing the Form

Figure 2-17 shows a completed form.

— Feedback Form

Default home page |http:f!www.apress,com
Default browser | Opera v
Birthday ©3/17/1995

R R

Favorite Month | July 1999

e

Lh

Busiest Week |ueek 14, 2015
Start Date/Time 26/14/2014 02:30 PM
Current Time 29:52 AM

Phone 800 555-1212

00 T ON

9. Overall satisfaction

10. Preferred color [|
11. Overall Rating 8
This is a multi-line input box

with S rows and 32 columns.

Notice my spellling mistake is

12. Comments |Underlined. 4

Submit

Figure 2-17. The completed feedback form

Browsers try to be smart about performing spell-check on the contents of appropriate fields. Notice
in the Comments field, misspelled words are underlined. You can explicitly turn this on or off using the
spellcheck attribute. To disable spell-checking, add the code shown in bold here:

<asp:TextBox runat="server" ID="Multi" TextMode="Multiline"
Rows="5" Columns="30" spellcheck="false"></asp:TextBox>

After entering values for each of the fields, click the Submit button and then view the page’s source.
Each of the fields will now have a value attribute that contains the value that was included when the page
was submitted. This is what the server-side code would use to store and/or process the submitted data.

I extracted a portion of this, which is shown in Listing 2-3. Look at how the various date/time field values are
formatted. These are shown in bold. Also, notice that the color is stored as a hexadecimal representation of
the selected RGB values.

33

CHAPTER 2 © ASP.NET WEB FORMS

Listing 2-3. The Source with Submitted Values

<1li>
<label for="URL" id="1blURL">Default home page</label>
<input name="URL" type="url" value="http://www.apress.com" id="URL" />
</1i>
<1i>
<label for="Options" id="1blOptions">Default browser</label>
<select name="Options" id="Options">
<option value="1">Internet Explorer</option>
<option value="2">Google Chrome</option>
<option value="3">Firefox</option>
<option selected="selected" value="4">Opera</option>
</select>
</1i>

<label for="Birthday" id="1lblBirthday">Birthday</label>
<input name="Birthday" type="date" value="1995-03-17" id="Birthday" />
</1i>

<label for="Month" id="1blMonth">Favorite Month</label>
<input name="Month" type="month" value="1999-07" id="Month" />
</1i>
<1li>
<label for="Week" id="1blWeek">Busiest Week</label>
<input name="Week" type="week" value="2015-W14" id="Week" />
</1i>
<1li>
<label for="DateTime" id="lblStart">Start Date/Time</label>
<input name="DateTime" type="datetime-local"
value="2014-06-14T14:30" id="DateTime" />
</1i>

<label for="Time" id="1blTime">Current Time</label>
<input name="Time" type="time" walue="09:52" id="Time" />
</1i>
<1li>
<label for="Phone" id="1blPhone">Phone</label>
<input name="Phone" type="tel" value="800 555-1212" id="Phone" />
</1i>
<1i>
<label for="Range" id="1lblRange">Overall satisfaction</label>
<input name="Range" type="range" value="76" id="Range"
style="height:30px;width:200px;" />
</1i>

34

http://www.apress.com/

CHAPTER 2

<label for="Color" id="1blColor">Preferred color</label>
<input name="Color" type="color" value="#ffbe7d" id="Color" />
</1i>
<1li>
<label for="Score" id="1lblScore">Overall Rating</label>
<input name="Score" type="number" value="8" maxlength="1" id="Score" />
</1i>
<1li>
<label for="Multi" id="1blComments">Comments</label>
<textarea name="Multi" rows="5" cols="30" id="Multi">
This is a multi-line input box with 5 rows and 30 columns.
Notice my spellling mistake is underlined.
</textarea>
</1i>.

Using the HTML5Test Web Site

ASP.NET WEB FORMS

I mentioned that we're using Opera for this exercise. Each browser may implement a different subset of
HTMLS5 features. The HTML5Test . com web site mentioned in the previous chapter is a really useful tool for

figuring out which browser works best for a specific set of features.

If you go to the Compare tab, you can select up to five different browsers to see a side-by-side
comparison for each feature. For example, I selected Opera, Google Chrome, Firefox, IE, and Safari to see
how they stack up for the form features. The results are displayed in Figure 2-18. Opera and Chrome are

significantly more advanced when it comes to supporting forms.

35

CHAPTER 2 © ASP.NET WEB FORMS

forms

Field types

P input type=text

|

Figure 2-18. A side-by-side comparison of Opera, Chrome, Firefox, IE, and Safari

36

input
input
input
input
input
input
input
input
input
input
input
input
input
input
input

input

type=search
type=tel
type=url
type=email
type=date
type=month
type=week
type=time
type=datetime
type=datetime-local
type=number
type=range
type=color
type=checkbox
type=image

type=file

textarea

select

fieldset

datalist

keygen

output

progress

meter

3

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

LS IR 5 Ol B o o G- 6 o) IR el ol sl S ol I o <8 6 Sl I 96 G RSl RSl < (. 5 G

3

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Gl S PSTS BES S € SN S PSS [RS8 B S S TR PES TS ES] S]] S

49

Yes
Yes
Yes
Yes
Yes

No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes

Yes

vww allitebooks.conl

ot (RS Rl o IRC (0l 2 IR < I < <ol <0 <o Rl N) e [8 e ol IR (ol ol RSl (el I < I S

3

Partial ©
Yes
Yes
Yes
Yes
No
No
No
No
No
No
Yes
Yes
No
Yes
Yes
Yes

Yes

SO 50 S I o R = 8 2 [8) 6 [S I

Yes

No X

No X

Yes

No X

4]

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

G I [S O (RS S IR I O) e R 5 el et el el Rl) (R G O S

http://www.allitebooks.org

CHAPTER 2 © ASP.NET WEB FORMS

Another way to use this site is to see how all browsers support a specific feature. From the Features
subtab (in the Compare tab), you can select up to three specific features to see which browsers support it.
We selected three features related to the range input type, as shown in Figure 2-19. Currently, Chrome and
Opera are the only desktop browsers that fully support these features.

FEATURES

element

step max
Select up to five features and ihute attribute

immediately see how well it is support

supported by each browser

desktop browsers

Chrome 10 » Yes Yes ./ Yes
Chrome 26 » Yes ./ Yes v/ Yes
Chrome 34 » Yes Yes Yes
Chrome 35 » Yes Yes v/ Yes v/
Chrome 37 Yes Yes Yes
Chrome 38 » Yes -/ Yes Yes /
Chrome 39 » Yes Yes Yes
Firefox 17 Yes No X No X

Figure 2-19. Viewing each browser’s support of the range control

Caution These comparisons and analysis are provided only for demonstration purposes. Browser support
is changing at a pretty rapid pace, and by the time you’re reading this, you may have different results.
The method for comparing browser support will still be valid, however.

Using the Range Control

The range control supports attributes that allow you to configure its behavior. For example, you can specify
the min and max attributes that define the value of the field when the slider is at each end of the control.
You can also indicate the step attribute that controls stops along the scale where the slider can stop at.

For example, if the min is 0, the max is 100, and the step is 20, the control will allow you to stop only at
increments of 20 (for example, 0, 20, 40, 60, 80, and 100).

37

CHAPTER 2 © ASP.NET WEB FORMS

You would code this in HTML like this:
<!DOCTYPE html>
<input name="Range" type="range" id="Range"
min="0" max="200" step="20"
style="height:30px;width:200px;" />
Even though IntelliSense does not support these attributes, you could specify them in your .aspx page,

and they would be included in the final HTML. Another way to do this is to modify the control when the
page is loaded using JavaScript.

Modifying the Step Attribute

Now you’ll write a simple script to configure the range attributes.

EXERCISE 2-3. MODIFYING THE RANGE CONTROL

1. Load the Chapter 2 project in Visual Studio and open the Feedback.aspx page.

2. Inside the head tag, add the following script element shown in bold:

<head runat="server">
<titles</title>
<script type="text/javascript"»
function configureRange() {

var range = document.getElementById("Range");
range.min = 0;
range.max = 200;
range.step = 20;
}
</scripty

</head>

3. This simple JavaScript function modifies the attributes of the range control.
The document property represents the HTML document of the current
page. The getElementById() function is a selector that returns the specified
element, the range control in this case. (I will cover selectors in JavaScript in more
detail in Chapter 5.)

4. Now that the function has been implemented, you need to tell the page to execute
it. To do that, add the following code in bold to the <body> tag:

<body onload="configureRange()">
<form id="form1" runat="server"»

5. This instructs the page to call the configureRange() function when the OnLoad
event occurs.

38

http://dx.doi.org/10.1007/9781484211489_2
http://dx.doi.org/10.1007/9781484211489_5

CHAPTER 2 © ASP.NET WEB FORMS

6. Save your changes and press F5 to load the page.

7. The range control will look just like it did before, but when you move the slider, it
will stop only at the preset values.

Adding Custom Tick Marks

Previous versions of Opera would display tick marks to help graduate the scale of the range control, but the
current version does not, and neither does Chrome. However, you can add these yourself using a datalist
tag. As of this writing, Firefox doesn’t support this feature.

EXERCISE 2-4. ADDING CUSTOM TICK MARKS

1. Add the following anywhere inside the fieldset tag. This defines the list of values
where the tick marks should be placed.

<datalist id="ticks">
<option>0</option>
<option>20</option>
<option>40</option>
<option>60</option>
<option>80</option>
<option>100</option>
<option>120</option>
<option>140</option>
<option>160</option>
<option>180</option>
<option>200</option>

</datalist>

2. Inthe Range control, add the list attribute shown in bold. This specifies the
datalist tag that defines where the tick marks should be.

<asp:Label ID="1blRange" runat="server"
AssociatedControlID="Range">Overall satisfaction</asp:Label>

<asp:TextBox runat="server" ID="Range" TextMode="Range"
Width="200" Height="30" list="ticks"> </asp:TextBox>

3. Save your changes and press F5 to display the modified form.

4. You should see tick marks at each step, as shown in Figure 2-20.

9. Overall satisfaction

Figure 2-20. The Range control with tick marks

39

CHAPTER 2 © ASP.NET WEB FORMS

Displaying the Range Value

While you're working on the Range control I will show you a simple trick to display its value. You'll add a
TextBox control next to the range control and then use JavaScript to update its value when the range control
is modified.

Note Internet Explorer 11 automatically displays the current value of the range control while the user is
moving it. This is an example of how each browser can implement features in different ways.

EXERCISE 2-5. DISPLAYING THE RANGE VALUE

1. Inthe Feedback.aspx page, add the following code in bold to the range item:

<1li>
<asp:Label ID="1blRange" runat="server"
AssociatedControlID="Range">Overall satisfaction</asp:Label>
<asp:TextBox runat="server" ID="Range" TextMode="Range"
Width="200" Height="30" list="ticks"></asp:TextBox>
<asp:TextBox runat="server" ID="RangeValue" Width="50"></asp:TextBox>
</1i>

2. Next, add the code in bold to the script section:

<script type="text/javascript">
function configureRange() {
var range = document.getElementById("Range");
range.min = 0;
range.max = 200;
range.step = 20;
updateRangeValue();
}
function updateRangeValue() {
document.getElementById("RangeValue").value
= document.getElementById("Range").value;
}

</script>

3. The updateRangevalue() function takes the current value of the Range control and
stores it in the text box. Also, the configureRange() function that is called when
the page is loaded calls updateRangevalue() to set its initial value.

40

CHAPTER 2 © ASP.NET WEB FORMS

Now you’ll need to call the updateRangevalue() function whenever the range
control is updated. To do that, add the code in bold to the Page Load() event
handler in the Feedback.aspx.cs code-behind file.

public partial class Feedback : System.Web.UI.Page

{
protected void Page Load(object sender, EventArgs e)
{
Range.Attributes.Add("onChange", "updateRangeValue()");
}
}

Save your changes and execute the page. As you move the slider, the selected
value is displayed. Notice that it is updated in increments of 20 (if the step attribute
is still set at 20).

Summary

In this chapter, you created a basic ASP.NET web form application using the template provided by Visual
Studio. After briefly trying the email control, you then created a feedback page that demonstrated many of
the other input types. Using some simple JavaScript, you configured the range control and provided a real-
time display of its value.

Along the way, I also provided some useful information regarding the development environment
including the following:

Configuring browsers to test with
Inspecting the page elements in Internet Explorer

Using the HTML5Test . com web site to research browser support

41

CHAPTER 3

MVC Web Applications

In this chapter, you will use ASPNET MVC to create a feedback form that will demonstrate several of the new
input types. I will first provide a brief introduction of the Model-View-Controller (MVC) framework included with
the .NET platform and then show you how to build an HTML5-based web page using MVC. The end result will be
something similar to what you did in Chapter 2, but the implementation will be quite different. As you will see, the
solution will rely heavily on the ability to extend the MVC framework to incorporate the new HTMLS5 features.

Model-View-Controller is an architectural pattern that has been around since as early as the late 1970s.
The primary benefit of this pattern is the separation of concerns, allowing independent development,
testing, and maintenance of each. The model provides the data and business logic. If the application is
presenting a product catalog, for example, the model will provide the product details. If changes are made,
the model is responsible for persisting the data, when invoked by the controller. The view provides the user
experience, both formatting the presentation of data as well as enabling user interaction with input controls,
buttons, and links. The controller handles the user requests, passing this to the model and invoking the
appropriate view. Figure 3-1 illustrates this process.

N/

HTTP request HTML document

Figure 3-1. The MVC architectural pattern
43

http://dx.doi.org/10.1007/9781484211489_2

CHAPTER 3 © MVC WEB APPLICATIONS

Introducing ASP.NET MVC6

ASP.NET MVC is a framework based on .NET that was first released in 2009 and implements the MVC
pattern. The initial release used the same .aspx Web Forms syntax that was used in the traditional ASP.NET
framework. In 2010, a new view engine called Razor was released, which generates web pages in a more
natural, HTML-like syntax. Also, instead of a code-behind file, the Razor engine allows the code to be
included in the markup file. MVC version 6, included with the Visual Studio 2015 release, has merged much
of the implementation stack with Web Forms and Web APL

Like the traditional ASP.NET Web Forms I discussed in the previous chapter, MVC6 does not support
many of the new HTMLS5 tags out of the box. However, the MVC framework is much more extensible, making
it relatively easy to add HTML5 support. In this chapter, I will explain different techniques for extending the
MVC framework to incorporate the new HTMLS5 features. There are also several open source extensions that
you can install, and I will briefly demonstrate one of these as well.

Creating an ASPNET MVC Project

In this chapter, you'll create an ASP.NET MVC project using the standard template in Visual Studio 2015.
Start Visual Studio 2015. From the Web category, select the ASP.NET Web Application template, enter
Chapters3 for the project name, and select an appropriate location, as shown in Figure 3-2. Click the OK
button to continue.

New Project > IEE

b Recent NET Framework 4.6 ~ Sortby: Default - i ﬂ Search Installed Te P ~

4 |nstalled c* ! i i
. ASP.NET Web Application Visual C# Type: Visual C=
A project template for creating

4 Templates

4 Visual C2 G I : P Vicual C# ASP.NET applications. You can create
il . oty Pacao il ASP.NET Web Forms, MVC, or Web
Mcows - API applications and add many other
Web E Console Application (Package) Visual C# features in ASP.NET.
Android
Cloud ? Application Insights
105 [[] Add Application Insights to Project
Reporting Help you understand and optimize
Silverlight your application.
Tart v Learn more
b Online Click here to go online and find templates. _ Privacy statement _
Mame: Chapter3
Location: C:\Books\HTMLS -
Solution name: Chapter3 [V] Create directory for solution
O MAEFESEEEU)
i oK | | Cancel

Figure 3-2. Selecting the ASPNET Web project

This is the same way you created the project in the previous chapter. However, in the next dialog box,
select the MVC template, as shown in Figure 3-3. This will create a web application that looks just like the
project in Chapter 2, but it is implemented using the MVC style.

44

http://dx.doi.org/10.1007/9781484211489_3
http://dx.doi.org/10.1007/9781484211489_2

CHAPTER 3 " MVC WEB APPLICATIONS

New ASP.NET Project - Chapter3 » B
Select a template:
| A project template for creating ASP.NET MVC
ASP.NET 4.6 Templates applications. ASP.NET MVC allows you to build
applications using the Model-View-Controller
=<3 '-j "j m=c3 [-j =<3 architecture. ASP.NET MVC includes many features that
=] e (=) e e e enable fast, test-driven development for creating
Empty Web Forms [\ /(& Web API Single Page Azure Mobile | applications that use the latest standards.
Application Service Learn more

ASPNET 5 Preview Templates

55 81 &3

Empty Web APl Web Site
Authentication: Individual User Accounts

Add folders and core references for: 2 Microsoft Azure

[[] WebForms &/ MVC [_] Web API @ [T] Host in the cloud
Web App ¥
[T] Add unit tests | Signed in as mark.collins@fusion.com

Manage Subscriptions

Test project name: Chapter3.Tests

oK [[Cancel

Figure 3-3. Selecting the MVC template

After the project has been created, you'll see a number of folders in the Solution Explorer. Notice there
are separate folders for controllers, models, and views, as shown in Figure 3-4. The sample project includes
several examples of each of these items.

45

CHAPTER 3 © MVC WEB APPLICATIONS

Solution Explorer v 0 X
@ ©-5Sd Fl=H
Search Solution Explorer (Ctrl+;) ot

@ Solution 'Chapter3' (1 project) -

4 7] Chapter3
b M Properties
P =m References

" App_Data
b 8 App_Start
P Content
4 .| Controllers
P ¢# AccountController.cs
p ¢ HomeController.cs
b €* ManageController.cs
b 1 fonts
4 L. Models
P ¢ AccountViewModels.cs
P c# |dentityModels.cs
b ManageViewModels.cs
P ¥ Scripts
4 L. Views

4 L Account
[@ _ExternalLoginsListPartial.cshtml
[@ ConfirmEmail.cshtml
[@ ExternalLoginConfirmation.cshtml +
Solution Explorer Team Explorer Class View

Figure 3-4. The initial Solution Explorer window
Exploring a Razor View
For a quick demonstration of the Razor view syntax you can look at the existing views provided by the project

template. Open the Register.cshtml file, which you'll find in the Views\Account folder. This implements
the view for the registration page. Listing 3-1 shows the main portion of the page.

46

CHAPTER 3 " MVC WEB APPLICATIONS

Listing 3-1. The Initial Register.cshtml Implementation

<h4>Create a new account.</h4>
<hr />
@Html.vValidationSummary("", new { @class = "text-danger" })
<div class="form-group">
@Html.LabelFor(m => m.Email, new { @class = "col-md-2 control-label" })
<div class="col-md-10">
@Html.TextBoxFor(m => m.Email, new { @class = "form-control" })
</div>
</div>
<div class="form-group">
@Html.LabelFor(m => m.Password, new { @class = "col-md-2 control-label" })
<div class="col-md-10">
@Html.PasswordFor(m => m.Password, new { @class
</div>
</div>
<div class="form-group">
@Html.LabelFor(m => m.ConfirmPassword, new { @class
<div class="col-md-10">
@Html.PasswordFor(m => m.ConfirmPassword, new { @class = "form-control" })
</div>
</div>
<div class="form-group">
<div class="col-md-offset-2 col-md-10">
<input type="submit" class="btn btn-default" value="Register" />
</div>
</div>

"form-control" })

"col-md-2 control-label" })

In the Razor syntax, an @ indicates the text that follows is code instead of literal markup. The code will
generate HTML content at runtime. You'll notice that much of the code uses the Html class. This is a helper
class with methods that generate HTML markup. The LabelFor () method, for example, generates markup to
insert a Label control.

For each of the fields in the form, the code uses the LabelFor() and TextBoxFor () methods of the Html
helper class. (The password fields use the PasswordFor () method.) Each of these methods takes a lambda
expression (for example, m => m.Email) that specifies a data element from the associated model. The model
that is used for the view is defined by the following instruction at the top of the file:

@model Chapter3.Models.RegisterViewModel

If you look at the AccountViewModels. cs file, you'll find the definition of the RegisterViewModel class.
This class has three public properties.
e Email
e Password

e ConfirmPassword

Each of these properties has some metadata attributes such as Required and DataType that are used to
generate the correct HTML. I will explain this further later in the chapter.

47

[vww allitebooks.cond

http://dx.doi.org/10.1007/9781484211489_3
http://www.allitebooks.org

CHAPTER 3 © MVC WEB APPLICATIONS

Using Editor Templates

The TextBoxFor () method will output a standard TextBox control. To use the new HTMLS5 input types,
you'll need to modify this implementation. The MVC framework allows you to use the EditorFor () method
instead of TextBoxFoxr (). By itself that doesn’t change the markup that is generated since the default
implementation of EditorFor () will still use the type="text" attribute. I'll show you how to create an editor
template to override this default behavior.

EXERCISE 3-1. ADDING AN EDITOR TEMPLATE

Open the Register.cshtml file, which you'll find in the Views\Account folder.

For the Email field, replace TextBoxFor with EditoexFor. The code will look like this:

<div class="form-group">
@Html.LabelFor(m => m.Email, new { @class =
"col-md-2 control-label" })
<div class="col-md-10">
@Html.EditorFor(m => m.Email, new { @class = "form-control" })
</div>
</div>

In the Solution Explorer, right-click the Views\Shared folder and choose Add and
New Folder. Enter EditorTemplates for the folder name.

Caution Later in the chapter | will explain how the appropriate editor template is selected for each
property. Editor templates must be in the EditorTemplates folder for the MVC framework to be able to use
them. Because this folder was added to the Views\Shared folder, the templates are available to all views in
your projects. You could create the EditorTemplates folder in the Views\Account folder. This would make
them available to all views in the Account folder but not in other folders such as the Home folder. This would
also allow you to create a separate set of editor templates for each folder if you wanted the Home templates
to be different from the Account templates. If you have the same name in both folders, the one in the Home or
Account folder will override the Shared version.

48

Right-click the views\Shared\EditorTemplates folder and choose Add and
View links.

In the Add View dialog box, enter EmailAddress as the view name and make sure
all the check boxes are unselected, as shown in Figure 3-5. Click the Add button to
create the template.

CHAPTER 3 " MVC WEB APPLICATIONS

View name: | EmailAddress

Template: f' _-Empt)_._: (without model)

Options:
[] Create as a partial view
' Reference script libraries

[] Use a layout page:

| Add H Cancel |

Figure 3-5. Adding the EmailAddress template

6. This will generate a view page named EmailAddress.cshtml. Delete the entire
content and replace it with the following code. This uses the TextBox() method but
specifies some additional attributes including type and placeholder.

@Html.TextBox("", null, new
{
@class = "text-box single-line",
type = "email",
placeholder = "Enter an e-mail address”

1)

7. Save your changes and debug the application. By default, the debugger will try to
display the page you have open. Open the Register.cshtml file before pressing
F5, and that page will be opened in the browser. Go to the Registration page, and
you should see the placeholder text displayed in the empty Email field, as shown in
Figure 3-6.

49

CHAPTER 3 © MVC WEB APPLICATIONS

Register.

Create a new account.
Emall

Password
Confirm password

Register

Figure 3-6. The blank register form

8. Ifyou look at the page’s source or the Page Inspector, the actual HTML will look
similar to this:

<input name="Email"
class="text-box single-line"
id="Email"
type="email"
placeholder="Enter an e-mail address"
value=""
data-val-required="The Email field is required.
data-val-email="The Email field is not a valid e-mail address."
data-val="true" >

9. Close the browser and stop the debugger.

50

CHAPTER 3 " MVC WEB APPLICATIONS

Tip As with the previous chapter, | will be using the Opera browser for most of the exercises since it has
the best support for the new input types.

Notice the data-val tags in the generated markup. They are used to control the client-side validation logic.

ATTRIBUTE DRIVEN VALIDATION

Data validation in ASP.NET MVC starts with the model. If you look at the AccountViewModel.cs file,
you’ll see metadata attributes such as Required attached to each property. For example, the Email
property looks like this:

[Required]

[EmailAddress]

[Display(Name = "Email")]

public string Email { get; set; }

The TextBoxFor () helper function uses the metadata atiributes to generate HTML like you saw
with the Email field. Specifically, the data-val and data-val-required HTML attributes are generated.
The view also includes these jQuery libraries:

<script src="~/Scripts/jquery.validate.js"></script>
<script src="~/Scripts/jquery.validate.unobtrusive.js"></script>

These JavaScript libraries use the HTML attributes such as data-val to perform client-side validation.
For more information, see the article at www.datahaunting.com/mvc/client-and-server-side-
validation-using-dataannotation-in-mvc.

Adding a Feedback Page

You will now create a feedback form and use this to demonstrate how to implement the new HTML5
capabilities. You'll start by creating a model and then implement a strongly typed view based on this model.
You'll then add a controller action as well as a link to the new page.

Tip Adding a page to the web application usually involves adding a model, adding a view, and creating or
modifying a controller. The MVC pattern allows these to be developed separately, and in a large project, you will
often have different people responsible for the views and models. You may be able to use an existing model.
However, in a small project like this, where you are the sole developer, you will generally need to touch all three
areas to add a page.

51

http://www.datahaunting.com/mvc/client-and-server-side-validation-using-dataannotation-in-mvc
http://www.datahaunting.com/mvc/client-and-server-side-validation-using-dataannotation-in-mvc

CHAPTER 3 © MVC WEB APPLICATIONS

Creating the Feedback Model

A model defines the data elements that can be included on your page. By designing the model first, you can
simplify the view implementation.

In the Solution Explorer, right-click the Models folder, choose Add and Class, and enter
FeedbackModel.cs for the class name. Click the OK button to create the class. For the class implementation,
enter the code shown in Listing 3-2.

Listing 3-2. The FeedbackModel Class

using System;

using System.Collections.Generic;

using System.Ling;

using System.Web;

using System.ComponentModel.DataAnnotations;

namespace Chapter3.Models

public class FeedbackModel

{
[Display(Name = "Name", Prompt = "Enter your full name"),
Required]
public string Name { get; set; }

[Display(Name = "Average Score", Prompt = "Your average score"),
Range(1.0, 100.0),

Required]

public decimal Score { get; set; }

[Display(Name = "Birthday"),
DataType(DataType.Date)]
public DateTime? Birthday { get; set; }

[Display(Name = "Home page", Prompt = "Personal home page"),
DataType(DataType.Url),

Required]

public string Homepage { get; set; }

[Display(Name = "Email", Prompt = "Preferred e-mail address"),
DataType(DataType.EmailAddress),

Required]

public string Email { get; set; }

[Display(Name = "Phone number", Prompt = "Contact phone number"),
DataType(DataType.PhoneNumber),

Required]

public string Phone { get; set; }

[Display(Name = "Overall Satisfaction")]
public string Satisfaction { get; set; }

52

http://dx.doi.org/10.1007/9781484211489_3

CHAPTER 3 " MVC WEB APPLICATIONS

Note The view files use the Razor syntax and have the .cshtml (or .vbhtml) extension. However, the
model and controller files are standard C# (or VB) classes.

Rebuild the application. This will make the model available when defining the view.

Defining the Feedback View

Now you'll define a new view based on this model. Initially, this will be a simple form with a single field.
Then you will add a link on the home page and a controller action to handle this. Later in the chapter you'll
add more fields to the form.

EXERCISE 3-2. DESIGNING THE INITIAL FEEDBACK FORM

1. In the Solution Explorer, expand the views folder. Right-click the Home folder and
choose Add and View. Enter the name Feedback, select the Empty template, and
select the FeedbackModel, as shown in Figure 3-7. Click the Add button to create
the view.

View name: | Feedback

Template: 'Empty

Model class: E_FeédbackModel (.CﬁapteIIB.Models]

Data context class: '

Options:

[T] Create as a partial view
Reference script libraries
[[] Use a layout page:

Figure 3-7. Creating the Feedback view

53

CHAPTER 3 © MVC WEB APPLICATIONS

2. The new view is generated with a single empty div inside the body tag. Enter the
code shown in bold in Listing 3-3. This code includes an input control for the Email
property using the EditorFor() method.

Listing 3-3. Defining the Initial Form
@model Chapter3.Models.FeedbackModel

of
}

<!DOCTYPE html>

Layout = null;

<html>
<head>
<meta name="viewport" content="width=device-width" />
<title>Feedback</title>
</head>
<body>
<div>
@using (Html.BeginForm((string)ViewBag.FormAction, "Home"))
{
<fieldset>
<legend>Feedback Form</legend>
<div>
@Html.EditoxFor(m => m.Email)
</divy
<p>
<input type="submit" value="Submit" />
</p>
</fieldsets
}
</div>
</body>
</html>

3. Views are invoked by a controller, so you’ll need to add a controller action that
will load this page. Open the HomeController.cs class, which you'll find in the
Controllers folder.

4. Add the following method:

public ActionResult Feedback()
{

}

return View();

54

http://dx.doi.org/10.1007/9781484211489_3

CHAPTER 3 " MVC WEB APPLICATIONS

5. Finally, you'll need a link that triggers this controller action. Open _Layout.cshtml
in the View\Shared folder.

6. Add the line shown in bold:

<ul id="menu">
@Html.ActionLink("Home", "Index", "Home")</1li»
@Html.ActionLink("About", "About", "Home")</1li>
@Html.ActionLink("Contact", "Contact", "Home")
<liy@Html.ActionLink("Feedback", "Feedback", "Home")</1is

7. Save your changes and press F5 to debug. You should now have a Feedback link on
the home page, as shown in Figure 3-8.

Home About Contact Feedback

Figure 3-8. The Feedback link on the home page

8. Click this link to display the feedback form, which is shown in Figure 3-9.

Feedback Form

Submit

Figure 3-9. The initial feedback form

9. Enter an invalid email address and click the Submit button. You should see the
standard HTML5 validation error, as shown in Figure 3-10.

Feedback Form

bad email address|

Submit Please include an '@' in the email address.
'bad email address’ is missing an '@".

Figure 3-10. The standard HTMLS5 validation error

55

CHAPTER 3 © MVC WEB APPLICATIONS

10. View the source of the feedback form, which should be similar to this:

<form action="/Home/Feedback" method="post">
<fieldset>
<legend>Feedback Form</legend>
<div>
<input class="text-box single-line" data-val="true"
data-val-required="The Email field is required."
id="Email"
name="Email" placeholder="Enter an e-mail address
type="email" value="" />
</div>
<p>
<input type="submit" value="Submit" />
</p>
</fieldset>
</form>

Completing the Feedback Form

Now you'll add the remaining fields to the feedback form. You'll also need to provide editor templates for the
additional data types. I will show you how the framework determines which template to use.

Adding the Other Fields

You'll start by adding the other fields that are defined in the FeedbackModel. cs class. For each one you'll
include a label and use the EditorFor () method to generate the input field.

56

CHAPTER 3

MVC WEB APPLICATIONS

EXERCISE 3-3. COMPLETING THE FEEDBACK FORM

Open the Feedback.cshtml file and add the code shown in bold in Listing 3-4.

Listing 3-4. The Feedback View Implementation

<div>
@Html.EditorFor(m => m.Email)

</div>

<div class="editor-label"»
@Html.LabelFox(m => m.Name)

</divy

<div class="editor-field"»
@Html.EditorFor(m => m.Name)

</divy

<div class="editor-label"»
@Html.LabelFox(m => m.Birthday)

</divy

<div class="editor-field"»
@Html.EditorFor(m => m.Birthday)

</divy

<div class="editor-label"»
@Html.LabelFox(m => m.Homepage)

</divy

<div class="editor-field"»
@Html.EditorFor(m => m.Homepage)

</divy

<div class="editor-label"»
@Html.LabelFox(m => m.Phone)

</divy

<div class="editor-field"»
@Html.EditorFor(m => m.Phone)

</divy

<div class="editor-label"»
@Html.LabelFox(m => m.Score)

</divy

<div class="editor-field"»
@Html.EditorFor(m => m.Score)

</divy

<div class="editor-label"»
@Html.LabelFox(m => m.Satisfaction)

</divy

<div class="editor-field"»
@Html.EditorFor(m => m.Satisfaction)

</divy

<p>
<input type="submit" value="Submit" />

</p>

[vww allitebooks.cond

57

http://www.allitebooks.org

CHAPTER 3 © MVC WEB APPLICATIONS

2. Save your changes and press F5 to view the modified form. Click the Feedback link
to display the page, which will look similar to Figure 3-11.

— Feedback Form

Name

Birthday
mm/dd/yyyy
Home page

Phone number
Average Score

Overall Satisfaction

Submit

Figure 3-11. The feedback form

3. Notice that all the new fields, except Birthday, use the standard TextBox control
and do not include a placeholder text. This is because there is no editor template
defined for these data types. The Birthday property was defined in the model
as a DateTime value, and the implementation of the Textbox control uses this
placeholder for dates.

Adding Editor Templates

You may have been asking yourself, how does the framework know which editor template to use? The
framework tries to use the correct template based on the data type of the property. This is not very reliable
because e-mail, URLs, and phone numbers are all stored in a string variable. The preferred method is to
define this using metadata.

If you include the System.ComponentModel.DataAnnotations namespace in your model class, you
can include metadata in your model. There are two metadata attributes that are used to determine the
appropriate template.

e DataType
e UIHint

58

CHAPTER 3 © MVC WEB APPLICATIONS

The DataType attribute is specified using the DataType enum. This includes a fairly large but fixed set
of values, such as the contextual types EmailAddress, CreditCard, Currency, PostalCode, and Url. If you
add a DataType attribute, the editor template with the matching name is used. You included the DataType
attributes when you implemented the FeedbackModel.

The UIHint attribute is specified with a string, and you can therefore use any value to want. If you want
a property displayed in green font, you can specify the UIHint ("GreenFont") attribute in the model and
then provide a GreenFont.cshtml template. The UIHint takes precedence over the DataType attribute when
determining the appropriate template to use.

Tip My GreenFont example was used to illustrate how the UTHint attribute works. You should not use it for
setting style properties because this is the role of the style sheets. A more appropriate application of the UTHint
attribute will be demonstrated later in this chapter when you implement a range control.

4. Right-click the Views\Shared\EditorTemplates folder and choose Add and
View. In the Add View dialog box, enter the name Date and unselect all of the
check boxes. Replace the view implementation with the following code:

@Html.TextBox("", null, new
{

@class = "text-box single-line",
type = "date"
3]

5. Inthe same way, add another editor template named Url and use the following
implementation:

@Html.TextBox("", null, new

{
@class = "text-box single-line",
type = "url",
placeholder = "Enter a web address"”
1)

6. Create a PhoneNumber template using the following code:

@Html.TextBox("", null, new

{
@class = "text-box single-line",
type = "tel",
placeholder = "Enter a phone number"
1

59

CHAPTER 3 © MVC WEB APPLICATIONS

7. Create a Number template using the following code (you will be using this in a
later exercise):

@Html.TextBox("", null, new

{
@class = "text-box single-line",
type = "number",
placeholder = "Enter a number"
1)

8. Save your changes and press F5 to debug your application. The feedback form
should now use the HTMLS5 controls, as shown in Figure 3-12.

— Feedback Form

Name

Birthday
mm/dd/yyyy
Home page

Phone number
Average Score

Overall Satisfaction

Submit

Figure 3-12. The form using HTML5 controls

Generating Custom HTML

The editor templates that you have implemented are all based on the TextBox () method of the Html helper
class. The templates simply add some additional attributes such as type and placeholder. However, you can
implement templates that will output any HTML content you want. To demonstrate that, I'll show you how
to build your own helper extension that generates the markup from scratch. You will use this to replace the
EmailAddress template.

60

CHAPTER 3 " MVC WEB APPLICATIONS

Adding a Custom Helper Class

You can create your own helper class and add it as a property of the existing Html helper class. You can then
access your custom method as follows:

@Html.<CustomClass>.<CustomMethod> ()

EXERCISE 3-4. CREATING A HELPER EXTENSION

1. Inthe Solution Explorer, right-click the Chapter3 project and choose Add and Class
links. Enter the name Html5.cs when prompted for the class name.

2. Enter the source shown in Listing 3-5.

Listing 3-5. The Initial HTML5 Helper Class

using System;

using System.Collections.Generic;
using System.ling;

using System.lWeb;

using System.Globalization;

namespace System.Web.Mvc

public class Html5Helper

{
private readonly HtmlHelper htmlHelper;

public Html5Helper(HtmlHelper htmlHelper)
{

}

private static CultureInfo Culture

{

this.htmlHelper = htmlHelper;

get
{

}

return CultureInfo.CurrentCulture;

}
// Add custom methods here...

}

public static class HtmlHelperExtension

{

public static Html5Helper Html5(this HtmlHelper instance)
{

}

return new Html5Helper(instance);

61

http://dx.doi.org/10.1007/9781484211489_3

CHAPTER 3 © MVC WEB APPLICATIONS

62

There are a couple of things to point out here. First, note that the namespace is set as
System.Web.Mvc and not your application’s namespace, Chapter3. Your custom helper class is named
Html5Helper, and its constructor takes an HtmlHelper parameter. This is a reference to the standard
helper class, which is stored as a private class member. Your custom methods will need this to access
data from the framework such a view and model information. Finally, this code also declares a static
HtmlHelperExtension class, which provides a static method that returns your custom class. Notice
that the method name is Htm15, so you will access your custom class from the view as follows:

@Html.Html5().<CustomMethod> ()

The purpose of having your own custom helper class is to be able to implement custom helper methods.
So, let’s add one now. The first method will generate an e-mail input control. You will then use this in
your EmailAddress.cshtml template

3. Add the code shown in Listing 3-6 to your custom class where the // Add custom
methods here placeholder is.

Listing 3-6. The EmailControl Implementation

public IHtmlString EmailControl()
{

string id;

string name;

string placeHolder;

string value;

string valueAttribute;

ViewDataDictionary viewData = htmlHelper.ViewData;
ModelMetadata metaData = viewData.ModelMetadata;

// Build the HTML attributes
id = viewData.TemplateInfo.GetFullHtmlFieldId(string.Empty);
name = viewData.TemplateInfo.GetFullHtmlFieldName(string.Empty);

if (string.IsNullOrWhiteSpace(metaData.Watermark))
placeHolder = string.Empty;
else
placeHolder = "placeholder=\

+ metaData.Watermark + "\"";

value = viewData.TemplateInfo.FormattedModelValue.ToString();
if (string.IsNullOrWhiteSpace(value))

valueAttribute = string.Empty;
else

valueAttribute = "value=\

+ value + "\"";

// Determine the css class
string css = "text-box single-line";

http://dx.doi.org/10.1007/9781484211489_3

CHAPTER 3 " MVC WEB APPLICATIONS

ModelState state;
if (viewData.ModelState.TryGetValue(name, out state)
88 (state.Errors.Count > 0))

€SS += + HtmlHelper.ValidationInputCssClassName;

// Format the final HTML

string markup = string.Format(Culture,
"<input type=\"email\" id=\"{0}\" name=\"{1}\" {2} {3} " +
"class=\"{4}\"/>", id, name, placeHolder, valueAttribute, css);

return MvcHtmlString.Create(markup);
}

This method gathers the various HTML attributes such as id, name, class, and placeholder. This
information is extracted from the model or the model metadata. At the end of this method, the markup
string is built using the standard string.Format() method, which assembles the various attributes.
This is then passed to the static MvcHtm1String.Create() method to provide this as the IHtmlString
interface that the MVC framework requires.

The primary difference in this implementation of the EmailAddress template is that the placeholder
attribute is set using the model metadata. The previous implementation used a hard-coded placeholder,
“Enter an e-mail address.” Unfortunately, the property names are completely inconsistent. In the
model, this is specified using the Prompt attribute (Prompt = "Preferred e-mail address").In the
ModelMetadata class, this value is provided as the Watermark property. And, of course, this is included
in the HTML document as a placeholder attribute.

Re-implementing the Custom E-mail Template

Now you’ll replace the EmailAddress template with a much simpler one that uses the new helper extension
that you've just implemented.

EXERCISE 3-5. RE-IMPLEMENTING THE E-MAIL TEMPLATE

1. Save the changes and open the EmailAddress.cshtml template.

2. Replace the entire implementation with the following:
@Html.Htm15().EmailControl()

3. Save the changes and press F5 to debug. The placeholder text should now reflect
the prompt specified in the model metadata, as demonstrated in Figure 3-13.

’7 Feedback Form

Figure 3-13. The modified Email field

63

CHAPTER 3 © MVC WEB APPLICATIONS

4. \View the source of this page, and the HTML markup for the Email field should look
like this:

<input type="email"
id="Email"
name="Email"
placeholder="Preferred e-mail address"
class="text-box single-line">

Implementing a Range Control

Asyou saw in the previous chapter, the range control supports some additional attributes that are not
available in the standard TextBoxFor (or even EditorFor) implementations. To implement this using the
MVC framework, you'll implement a custom helper method. You'll then provide an editor template that calls
this custom method. Finally, you'll add a UIHint attribute in the model metadata that will tell the framework
to use the new template.

Implementing a Custom Helper Method

The first step is to create a custom helper method that will generate the appropriate markup for a range
control. This will be similar to the EmailControl() method that you just implemented except that is doesn’t
include the placeholder attribute. Also, the min, max, and step attributes are passed in to the method.

Add the code in Listing 3-7 to the Htm15. cs file (inside the Htm15Helper class).

Listing 3-7. The RangeControl Implementation

public IHtmlString RangeControl(int min, int max, int step)
{

string id;

string name;

string value;

string valueAttribute;

ViewDataDictionary viewData = htmlHelper.ViewData;

// Build the HTML attributes
id = viewData.TemplateInfo.GetFullHtmlFieldId(string.Empty);
name = viewData.TemplateInfo.GetFullHtmlFieldName(string.Empty);

value = viewData.TemplateInfo.FormattedModelValue.ToString();
if (string.IsNullOrWhiteSpace(value))

valueAttribute = string.Empty;
else

valueAttribute = "value=\

+ value + "\"";

// Determine the css class
string css = "range";

64

CHAPTER 3 © MVC WEB APPLICATIONS

ModelState state;
if (viewData.ModelState.TryGetValue(name, out state)
88 (state.Errors.Count > 0))

€SS += + HtmlHelper.ValidationInputCssClassName;

// Format the final HTML

string markup = string.Format(Culture,
"<input type=\"range\" id=\"{O}\" name=\"{1}\" " +
"min=\"{2}\" max=\"{3}\" step=\"{4}\" {5} class=\"{6}\"/>",
id, name, min.ToString(), max.ToString(), step.ToString(),
valueAttribute, css);

return MvcHtmlString.Create(markup);

Adding the Range Template

Now you'll need to create an editor template for the range control that will use this new custom method.

EXERCISE 3-6. ADDING A RANGE TEMPLATE

1. Right-click the views\Shared\EditorTemplates folder and choose Add and View.

2. Inthe Add View dialog box, enter the name Range and unselect all of the text
boxes.

3. Replace the default implementation with the following:
@Html.Html5().RangeControl(0, 200, 20)

4. Open the FeedbackModel.cs file and add the UIHint attribute to the
Satisfaction property like this:

[Display(Name = "Overall Satisfaction"), UIHint("Range")]
public string Satisfaction { get; set; }

5. While you have the FeedbackModel.cs file open, add a UTHint attribute for the
Score property as follows:

[Display(Name = "Average Score", Prompt = "Your average score"),
Range(1.0, 100.0), UIHint("Number"),

Required]

public decimal Score { get; set; }

CHAPTER 3 © MVC WEB APPLICATIONS

6. Save your changes and press F5 to debug. Go to the Feedback page; the page should look like
Figure 3-14.

— Feedback Form

Name

Birthday
mm/dd/yyyy
Home page

Phone number

Average Score

4

Overall Satisfaction

Submit

Figure 3-14. The updated score and range control

Using Open Source Extensions

So far you have created two editor templates that are based on custom helper methods and four simple
templates based on the TextBox() method. However, you will likely need quite a few other templates beside
these. Before you spend all that time implementing them, you might be wondering if someone else has
already done this for you. Well, the answer is yes.

There are a lot of third-party libraries and tools that are available to you. Visual Studio provides a
package manager called NuGet that makes it easy to find, download, install, and manage these third-party
packages. I'll show you how to use NuGet to install a package of editor templates so you don’t have to write
them yourself. Of course, now that you know how to write your own, feel free to do so if any of these don’t
work quite like you want them to.

66

CHAPTER 3 " MVC WEB APPLICATIONS

EXERCISE 3-7. INSTALLING EDITOR TEMPLATES

1. When the third-party package is installed, it will prompt you before overwriting
any existing templates. So before you begin, you should delete the existing editor
templates. Delete all of the files in the EditorTemplates folder except for
Range.cshtml (the third-party package does not include this template).

2. InVisual Studio, with the Chapter3 project still open, choose Tools and NuGet
Package Manager and Manage NuGet Packages for Solution.

3. This will display the Manage NuGet Packages dialog box. If you select Installed
in the Filter drop-down, it will list the packages currently installed. You might
be surprised to find that quite a few have already been installed by the project
template. The blue icon to the right of each package indicates whether there is an
update available for it, as demonstrated in Figure 3-15.

Jasery o '@ iquery
jQuery is a new kind of JavaScript Library.
jQuery is a fast and concise JavaScript Library that simplifies HTML document... Action: Version:
Upgrade * Lateststable 2.1.3

WebGrease O

Web Grease is a suite of tools for optimizing javascript, css files and images. _
v 9) ot 9 Installed version: 1.10.2

|V Upgrade
Microsoft.Net.Http
This package provides a programming interface for modern HTTP/REST based
applications. Options

[] Show preview window

Microsoft.AspNet.WebApi Dependency behavior: Lowest
This package contains everything you need to host ASP.NET Web APl on lIS.

H BH &5 &5

File conflict action: Prompt

Learn about Options

jQuery.UlL.Combined

The full jQuery Ul library as a single combined file. Includes the base theme. Description

jQuery is a new kind of JavaScript Library.
jQuery is a fast and concise JavaScript Library that

Figure 3-15. Listing the installed packages
4. Change the Filter drop-down to All, and enter htmi5 editor templates in the
search field.

5. Select the package named HtmlI5EditorTemplates, as shown in Figure 3-16. The
pane on the right displays details of this package including author, description, and
links for more information.

67

vww allitebooks.conl

http://dx.doi.org/10.1007/9781484211489_3
http://www.allitebooks.org

CHAPTER 3 © MVC WEB APPLICATIONS

0

o)

Htmi5EditorTemplates

HTML 5 EditorTemnplates for MVC 3 in Razor. A fork of skirkland's

MuvcHtmi5Templates with additional functionality. Adds support for...

MVCIHTMLSEDITORTEMPLATES
Use:

@Html.EditerFor{imodel => model Subject, new ViewDataDictionary...

Altairis.Mvc.EditorTemplates
lined MVCC editor 1

Bootstrap.MVC EditorTemplates.Sample
This package shows EditorTemplates for many datatypes that make it

E Html5EditorTemplates

Action: Version:
Install = Latest stable 1.0.2
Options

[¥] Show preview window
Dependency behavior: Lowest
File conflict action: Prompt

Leam about Options

easy to create good-loking and functional web forms, using the Boo...

Description

HTML 5 EditorTemplates for MVC 3 in Razor, A fork of skirkland's MveHtmI5Templates
with additional functionality. Adds support for placeholder and required attributes
among cther additions.

. Sk 4, Mvc.EditorT

Common editor templates for ASP.Net MVC applications.

Authori(s): Paul Tyng
L Bootstrap.MVCEditorTemplates 3
e This package adds EditorTemplates for many datatypes that make it License:
easy to create professional web forms, using the awesome responsiv...

https://raw.github.com/paultyng/Htmi3EditorTemplates/master/
LICENSE bt

Figure 3-16. Selecting the HtmlI5EditorTemplates package

6. Click the Install button.

7. Once the install has completed, you should now see quite a few templates in
the EditorTemplates folder. Open the EmailAddress.cshtml file. Listing 3-8
shows the third-party implementation for this template. While this is implemented
differently from yours, it accomplishes basically the same thing, including getting
the placeholder from the metadata.

Listing 3-8. The Open Source Email Template
of

var attributes = new Dictionary<string, object>();

attributes.Add("type", "email");

attributes.Add("class", "text-box single-line");
attributes.Add("placeholder"”, ViewData.ModelMetadata.Watermark);

//since this is a constraint, IsRequired and other constraints
//won't necessarily apply in the browser, but in case script
//turns off readonly we want the constraints passed

if (ViewData.ModelMetadata.IsReadOnly)

{

attributes.Add("readonly", "readonly");
}
if (ViewData.ModelMetadata.IsRequired)
{

attributes.Add("required", "required");
}

}
@Html.TextBox("", ViewData.TemplateInfo.FormattedModelValue, attributes)

68

CHAPTER 3 " MVC WEB APPLICATIONS

8. Press F5 to debug the Feedback page, which should look like Figure 3-17.

— Feedback Form

Name

Birthday
mm/dd/yyyy
Home page

Phone number
Average Score

Overall Satisfaction

Submit

Figure 3-17. The feedback page using third-party templates

Adding Literal HTML

Using the Html helper class, including the EditorFor () method, is the recommended way to implement
forms with ASP.NET MVC. This provides tight integration with the model including the model metadata and
the separation of concerns (business rules and user experience). However, you can always embed the actual
HTML markup in your view. An appropriate use of this would be to include static content or a control that is
not connected to a model, such as a progress bar.

I'll now demonstrate three examples, each inserting one of the new HTMLS5 controls into the feedback
form using direct HTML markup.

e Range
e Progress

° Meter

69

CHAPTER 3 © MVC WEB APPLICATIONS

Adding a Range Control

You already included a range control using a custom editor template. Now you’ll insert another one by
simply adding the appropriate HTML markup. And just for fun, you'll make this a vertical slider by setting the
transform to rotate 90 degrees. To do this, add the code in bold in Listing 3-9 to the Feedback.cshtml view.

Caution Previous versions of Opera would render a range control vertically if the height was larger than
the width. The current version (as of this writing) does not do that. There seems to be little agreement between
browser implementations on how this should be implemented. | have found that using the transform property
is the most consistent way to accomplish this. | will explain transforms in more detail in Chapter 4.

Listing 3-9. Adding a range Control in HTML
<fieldset>

<div class="editor-label">
@Html.LabelFor(m => m.Satisfaction)
</div>
<div class="editor-field">
@Html.EditorFor(m => m.Satisfaction)
</div>
<divy
Custom range
<input type="range" id="CustomRange" name="CustomRange"
class="range"
style="width: 100px; height: 30px; transform: rotate(90deg)”
min="0" max="200" step="20" /»
</div>
<p>
<input type="submit" value="Submit" />
</p>
</fieldset>

Save your changes and press F5 to debug. The form should look like Figure 3-18.

70

http://dx.doi.org/10.1007/9781484211489_4

CHAPTER 3 © MVC WEB APPLICATIONS

— Feedback Form

Name

Birthday
mm/dd/yyyy
Home page

Phone number
Average Score

Overall Satisfaction

Custom ra nge

Submit

Figure 3-18. Adding a vertical range control

Note The value of this control is not part of the model and will not be saved with the form. This is
appropriate if the control is used solely to aid the user experience and does not need to be persisted.
For example, it could control the volume of a video or audio clip.

Adding a Progress Bar

Next, you'll add a progress bar by inserting a progress tag in the form. Add the following code in bold after
the Submit button:

<p>
<input type="submit" value="Submit" />
</p>
<div>
<progress id="FormProgress" value="60" max="100"»
Progress: 60%
</progress»
</divy:
</fieldset>

71

CHAPTER 3 © MVC WEB APPLICATIONS

The progress tag does not support a min attribute but only a max attribute. The minimum value is
assumed to be zero. The value attribute specifies the current progress. Press F5 to debug the application and
navigate to the feedback form. The progress should appear as shown in Figure 3-19.

Submit

Figure 3-19. The progress control in Opera

The content within the progress tag is used for browsers that do not support the progress tag. For
example, in IE9, the form would look like Figure 3-20.

Progress: 60%

Figure 3-20. The progress control in IE9

Updating the Progress Bar

However, a static progress bar is not very interesting; one might even find a progress bar that never changes
to be frustrating. Now you’ll add some JavaScript code to update the progress bar as fields on the form have
been entered.

First, you'll create a function called calculateProgress() that iterates through all the input fields
to see which ones have a value. There are six fields, so you'll give each one a value of 17 (6 x 17 = 102).
Setting the value to anything over 100 will just show as 100 percent complete. This code uses the document.
getElementsByClassName() selector that returns all elements with the specified class attribute. In this
case, you want elements with the text=box single-1line class. The function then updates the value of the
progress bar using the computed value.

Then, you'll need to call this function whenever an input field is changed. To do that, you'll create a
function named bindEvents() and use the same getElementsByClassName() selector. This time, you'll use
the addEventListener() function to bind the calculateProgress() function to the onChange event. Finally,
you'll call bindEvents () function in the onLoad event handler.

Enter the code in bold in Listing 3-10 to your feedback form.

72

CHAPTER 3 © MVC WEB APPLICATIONS

Listing 3-10. Adding JavaScript to Update the Progress Bar

<head>
<meta name="viewport" content="width=device-width" />
<title>Feedback</title>
<script type="text/javascript"s
function calculateProgress() {
var value = 0;
var fieldList = document.getElementsByClassName("text-box single-line");
for (var i = 0; i < fieldList.length; i++) {
if (fieldList[i].value > "")
value += 17;
}
if (value » 100)
value = 100;
var progress = document.getElementById("FoxrmProgress");
progress.value = value;
s
function bindEvents() {
var fieldList = document.getElementsByClassName("text-box single-line");
for (var i = 0; i ¢ fieldList.length; i++) {
fieldList[i].addEventListener("change", calculateProgress, false);
}
}

</script>
</head>
<body onload="bindEvents();">

Note In calculating the progress, this code ignores the range control used for the Satisfaction field as
well as the overall score. This was done because these controls always have a value and so you can’t tell when
a value was “entered.”

Also, change the initial value property of the progress tag from 60 to 0 like this:

<progress id="FormProgress" value="0" max="100">

73

CHAPTER 3 © MVC WEB APPLICATIONS

Press F5 to debug the application. As you enter values in the input fields, notice that the progress bar is
automatically updated, as shown in Figure 3-21.

Overall Satisfaction

Custom range

Submit

Figure 3-21. The progress and range controls in Chrome

Tip As | mentioned, the text inside the progress tag is displayed when the browser does not support the
progress control. You could update this dynamically with JavaScript; however, you could also just leave it blank
and not show the progress when this is not supported.

Using the Meter Control

For the last example, you'll add a meter control, which is similar to the progress bar. A meter allows you
to define intervals within the range that will enable the color-coding of the status indicator. For example,
consider an oil-pressure gauge on a car. A “normal” range is indicated on the gauge, and low or high values
are highlighted. I don’t need to know what the oil pressure is or even what it should be; I just want to know
whether it’s in the normal range.

Like the range control, the meter control supports the min and max attributes as well as the current
value. It also provides low, high, and optimum attributes that define the normal range. Enter the following
code in bold:

<div>
<progress id="FormProgress" value="0" max="100">
Progress: 60%
</progress>
</div>
<divy
<meter id="Meter" value="50" min="20" max="120"
low="50" high="100" optimum="75">
Meter:
</meter>
</div>
</fieldset>

74

CHAPTER 3 " MVC WEB APPLICATIONS

To demonstrate how different values are displayed, you'll add some JavaScript code to update the
control with a random value every second. To do that, add the following code in bold to the bindEvents ()
function:

function bindEvents() {
var fieldlList = document.getElementsByClassName("text-box single-line");
for (var i = 0; i < fieldlList.length; i++) {
fieldList[i].addEventListener("change", calculateProgress, false);
}

setInterval(function () {

var meter = document.getElementById("Meter");

meter.value = meter.min + Math.random() * (meter.max - meter.min);
}» 1000);

This code uses the setInterval () function, so the anonymous function is called every 1,000
milliseconds. Press F5 to start the application. Depending on the value, the color will change from green to
yellow, as shown in Figure 3-22.

Submit

Figure 3-22. The meter control

Summary

In case you've gotten lost in all the various updates, Listing 3-11 shows the complete implementation of the
Feedback.cshtml view.

Listing 3-11. The Final Feedback.cshtml Implementation
@model Chapter3.Models.FeedbackModel

of
}

<!DOCTYPE html>

Layout = null;

<html>

<head>
<meta name="viewport" content="width=device-width" />
<title>Feedback</title>
<script type="text/JavaScript">

75

http://dx.doi.org/10.1007/9781484211489_3

CHAPTER 3 © MVC WEB APPLICATIONS

function calculateProgress() {
var value = 0;
var fieldList = document.getElementsByClassName("text-box single-line");
for (var i = 0; i < fieldlList.length; i++) {
if (fieldlList[i].value > "")
value += 17;
}
if (value > 100)
value = 100;
var progress = document.getElementById("FormProgress");
progress.value = value;
};
function bindEvents() {
var fieldList = document.getElementsByClassName("text-box single-line");
for (var i = 0; i < fieldlList.length; i++) {
fieldList[i].addEventListener("change", calculateProgress, false);
}

setInterval(function () {
var meter = document.getElementById("Meter");
meter.value = meter.min + Math.random() * (meter.max - meter.min);

}» 1000);
}
</script>
</head>
<body onload="bindEvents();">
<div>
@using (Html.BeginForm((string)ViewBag.FormAction, "Home"))
{
<fieldset>
<legend>Feedback Form</legend>
<div>
@Html.EditorFor(m => m.Email)
</div>

<div class="editor-label">
@Html.LabelFor(m => m.Name)

</div>

<div class="editor-field">
@Html.EditorFor(m => m.Name)

</div>

<div class="editor-label">
@Html.LabelFor(m => m.Birthday)

</div>

<div class="editor-field">
@Html.EditorFor(m => m.Birthday)

</div>

<div class="editor-label">
@Html.LabelFor(m => m.Homepage)

</div>

<div class="editor-field">
@Html.EditorFor(m => m.Homepage)

</div>

76

CHAPTER 3 © MVC WEB APPLICATIONS

<div class="editor-label">
@Html.LabelFor(m => m.Phone)
</div>
<div class="editor-field">
@Html.EditorFor(m => m.Phone)
</div>
<div class="editor-label">
@Html.LabelFor(m => m.Score)
</div>
<div class="editor-field">
@Html.EditorFor(m => m.Score)
</div>
<div class="editor-label">
@Html.LabelFor(m => m.Satisfaction)
</div>
<div class="editor-field">
@Html.EditorFor(m => m.Satisfaction)
</div>
<div>
Custom range
<input type="range" id="CustomRange" name="CustomRange"
class="range vertical"
style="width: 100px; height: 30px; transform: rotate(90deg)"
min="0" max="200" step="20" />
</div>
<p>
<input type="submit" value="Submit" />
</p>
<div>
<progress id="FormProgress" value="0" max="100">
Progress: 0%
</progress>
</div>
<div>
<meter id="Meter" value="50" min="20" max="120"
low="50" high="100" optimum="75">
Meter:

</meter>
</div>
</fieldset>
}
</div>
</body>
</html>

7

CHAPTER 3 © MVC WEB APPLICATIONS

In this chapter, you used some of the new HTML5 input types in an ASP.NET MVC project. As with the
traditional Web Forms project, you have to do a little extra work to use them, but it’s fairly easy to incorporate
the new HTMLS5 features. In particular, the MVC framework is designed to be extensible, which provides a
clean platform for building HTMLS5 applications.

The MVC pattern provides models that define the data elements used on the forms. By including some
metadata attributes in the model and then providing custom templates, you can take advantage of the
HTMLS5 semantic-specific controls. There are open source extensions that you can download and install,
making it easy to build HTML5-compliant applications. However, in this chapter I showed you how to build
your own custom helper extension and build your own editor templates. If you find yourself in a unique
situation where you need a specific implementation, you can always build your own.

With the MVC Razor view engine, you can also include literal HTML markup so you have ultimate
control of the user experience. I also introduced two new HTML controls, progress and meter, and
demonstrated how these work with some simple JavaScript to manipulate them.

78

CHAPTER 4

Cascading Style Sheets

In Chapters 2 and 3, I showed you the some of the new HTML elements and how to use them in ASP.NET
applications. The second major area in the overall HTML5 umbrella includes the improvements in the style
sheets. As I explained in Chapter 1, the CSS3 recommendations are broken down into more than 50 modules,
most of which are still in draft (as of this writing). However, there is quite a bit of new functionality that is
already available in most browsers.

In this chapter, I will demonstrate many of the more useful features. I will start by explaining the basics
of creating style sheets. If you have some experience with CSS, this may seem like review, but some of this
is new with CSS3, especially the selectors, which have been significantly improved with CSS3. You'll then
create a single web page using some of the new structural elements such as nav, aside, and footer. With the
page content complete, I'll then explain some of the fun things you can do with CSS.

Reviewing Style Syntax

A style sheet is comprised of a set of rules. Each rule consists of a selector that indicates what elements
the rule applies to and one or more declarations. Each declaration contains a property-value pair. A rule is
specified with the following syntax:
<selector> {<property:value>; <property:value>; ... }
For example, if you wanted all the paragraph tags to use a green 12px font, the rule would look like this:

p {color:green; font-size:12px;}

As with HTML, white space is ignored in a style sheet, so this rule could also be written as follows:

T

color:green;
font-size:12px;

I'will use this format throughout the rest of this chapter because I think it’s a little easier to read.

79

http://dx.doi.org/10.1007/9781484211489_2
http://dx.doi.org/10.1007/9781484211489_3
http://dx.doi.org/10.1007/9781484211489_1

CHAPTER 4 © CASCADING STYLE SHEETS

Using Selectors

There were a lot of different ways to select elements from the document, and the CSS3 specifications
nearly double this list. I'll provide an overview of the selectors that are available. Many of these will be
demonstrated later in the chapter.

Element Selectors

The first one that I just showed you is an element selector. To use this, simply specify the element type

such as p, h1, input, ol, div, and so on. HTMLS5 introduces a large number of new tags that you can take
advantage of when applying styles. These context-specific elements, such as article, footer, and nav,
communicate their purpose more clearly and therefore make it more likely that consistent formatting will be
applied to all pages. These new element types are as follows:

e article: A stand-alone portion of content such as a blog entry

e aside: Content usually put to one side of the page; typically used for related
information

e details: Used for expandable content that can be hidden or displayed based
on user input

e figcaption: Used with figure to associate a caption with an image

e figure: Used to wrap embedded content such as an image or graphic
e footer: The page or section footer

e header: The page or section header

e hgroup: Used to group header elements such as h1, h2, and so on

e nav: Used to contain navigation links

e output: Contains output such as the result of a user action

e section: Used to organize content into logical sections

e summary: Usually used in conjunction with one or more details elements

Using Combinators

If you want to apply the same declarations to more than one element type, you can group them like this:

p, hi, h2
{

color:green;
font-size:12px;

80

CHAPTER 4 © CASCADING STYLE SHEETS

The comma (,) character serves as a logical OR operation, for example, “all elements of type p OR h1
OR h2”. This is just a special case of a selector combinator. You can also combine selectors to specify certain
element hierarchies. By combining elements with one of the following operators, you can create a more
complex selector:

e , (forexample, p, h1): Selects all p elements as well as all h1 elements.

e space (for example, header p): Selects the second element when it is inside the first
element. For example, if you want all p elements that are inside a header element,
use header p.The header element does not have to be the immediate parent, just
somewhere in the node’s parentage.

e *(for example, header*p): Selects the second element when it is a grandchild or later
descendant of the first element.

e > (for example, header>p): Selects the second element when the first element is
the immediate parent. The header>p selector returns all p elements whose parent
(immediate) is a header element.

e +(for example, header+p): Selects the second element when the first element is the
preceding sibling.

e ~(for example, p~header): Selects the second element when it follows the first
element (not necessarily immediately).

To illustrate the last two, if your document looks like the following, the h1+p selector will not return any
element, but both h2+p and h1~p will both return the p element:

<h1>Some header</h1>
<h2>Some sub-header</h2>
<p>Some text</p>

Class and ID Selectors

The class selector allows you to select elements with a specific class attribute. For this reason, the class
attribute is often referred to as the CSS class. A class selector is created by prefixing the class name with a
dot (.) like this:

.featured

{
}

background-color:yellow;

This will apply the background color for all elements that have the class="featured" attribute. The
class selector looks for whole words that match the selector value. An element can have multiple words in
the class attribute like class="the featured article", and the .featured selector will return it.

81

CHAPTER 4 © CASCADING STYLE SHEETS

Caution In the HTML document, the class attribute is a string that can have any value you want to give it.
However, to be able to use it in a class selector, it must not have any white space or other characters that are
not compatible with the CSS syntax. For example, you cannot select the whole class="featured content" in
a class selector. If you really want a class for featured content, use featured content or featuredContent.
However, you will not be able to select just featured with a class selector. Instead, you’ll need to use an
attribute selector, which | will demonstrate later.

An ID selector works just like a class selector except that it uses the id attribute instead of class and you
prefix it with a hash symbol (#) like this:

#Submit
{

}

color:blue;

An ID selector specifies a single element based on its unique ID, so, by definition, the style will not be
reused. It is better to define styles based on elements or classes so similar elements can be styled the same
way. ID selectors should be used sparingly and only for unique situations where the style does not need to
be reused.

Using Attribute Selectors

Attribute selectors give you a great deal of flexibility, allowing you to select elements based on any of the
element’s attributes. These are specified as [attribute=value] like this:

[class="book"]

{
}

background-color:yellow;

This is functionally equivalent to using the . book class selector; however, the attribute selector allows
you to select using only portions of the attribute’s value. To do that, prefix the equal sign (=) with one of the
following:

e ~(for example, [class~="book"]): The attribute value must include the word
indicated by the selector value (for example, class="some book titles"). Thisis
exactly how the class selector works.

e | (for example, [class|="book"]): The attribute value must begin with a word that
matches the selector value (for example, class="book titles")

e "=(for example, [class*="book"]): The attribute value must begin with the selector
value (for example, class="books")

e $(for example, [class$="book"]): The attribute value must end with the selector
value (for example, class="checkbook")

e *(for example, [class*="book"]): The attribute value must contain the selector
value (for example, class="overbooked")

82

CHAPTER 4 CASCADING STYLE SHEETS

You can specify the attribute without a value, which will return all elements that have the attribute. A good
example of this is the [href] selector, which will select all elements that have the href attribute, regardless of
its value. You can also include an element selector before an attribute selector to further restrict the selected
elements. For example, img[src*="https"] will return all img elements whose src attribute begins with https.

Pseudo-class Selectors

Quite a few selectors are based on the dynamic properties of an element. Consider a hyperlink, for example.
If the page referenced by the link has been displayed, the link is usually displayed with a different color.
This is achieved using a CSS rule that uses the visited property like this:

a:visited

{
}

color: purple;

This will change the color of all a elements that have the visited flag set. Several of these selectors have
been available for some time, but CSS3 defines a fairly large set of new ones. Here is the complete list:

e :active: Selects the active link
e :checked: Selects elements that are checked (applies to check boxes)

. :disabled: Selects elements that are currently disabled (typically used for input elements)
e :empty: Selects elements that have no children (elements that include text are

not selected)

:enabled: Selects elements that are enabled (typically used for input elements)

:first-child: Selects the elements that are the first child of its immediate parent

<tag>:first-of-type: Selects the elements that is the first of the specified type
within its parent

e :focus: Selects the element that currently has the focus

e :hover: Selects the element that the mouse is currently hovering over

e :in-range: Selects input elements that have values within the specified range
e :invalid: Selects input elements that do not have a valid value

e :lang(value): Selects the elements that have a lang attribute that start with the
specified value

e :last-child: Selects the elements that are the last child within its parent
e :link: Selects all unvisited links

e <tag>:last-of-type: Selects the elements that are the last of the specified type
within its parent

e :nth-child(n): Selects the elements that are the nth child within its parent

e :nth-last-child(n): Selects the elements that are the nth child within its parent,
counting in reverse

e <tag>:nth-last-of-type(n): Selects the nth child of the specified type within its
parent, counting in reverse

83

CHAPTER 4 © CASCADING STYLE SHEETS

e <tag>:nth-of-type(n): Selects the nth child of the specified type within its parent
e :only-child: Selects the elements that are the only child element of its parent

e <tag>:only-of-type: Selects the elements that are the only sibling of the specified
type within its parent

e :optional: Selects input elements that are not required (that is, do not have the
required attribute)

e :read-only: Selects input elements that have the readonly attribute

e :read-write: Selects input elements that do not have the readonly attribute
e :required: Selects input elements that have the required attribute

e :root: Selects the root element of the document

e :target: Selects the elements with a target attribute where the target is the
active element

e :valid: Selects input elements that have a valid value
e :visited: Selects all visited links

The nth-child(n) selector counts all child elements of the parent, while the nth-of-type(n) counts
only child elements of the specified type. The distinction here is subtle but important. The same is true with
the only-child and only-of-type selectors.

Caution There are four pseudo-classes that can be used with an anchor (a) element (:1ink, :visited,
:hover, and :active). If you use more than one, they should appear in this order in the style rules. For example,
:hover must come after :1ink and :visited if they are used. Likewise, :active must come after :hover.

These pseudo-elements can be used to return a portion of the selected elements:

o :first-letter: Selects the first character of every selected element
e :first-line: Selects the first line of every selected element
e :selection: Returns the portion of an element that is selected by the user

You can add the :before or :after qualifiers to a selector to insert content in the document before or
after the selected elements. Use the content: keyword to specify the content and include any desired style
commands (the style applies only to the inserted content). For example, to add “Important!” before each p
tag that immediately follows a header tag, use the following rule:

header+p:before

{
content:"Important! ";
font-weight:bold;
color:red;

}

You can also prefix a selector with :not to return all the elements not selected. For example,
:not(header+p) selects all elements except p tags that immediately follow a header tag.

84

CHAPTER 4 © CASCADING STYLE SHEETS

Understanding Unions

You can also combine complex selectors in a logical OR relationship by separating them with commas.
For example, the p, h1, h2 selector I showed earlier in this chapter is an example of a union. It will return
all elements that satisfy any of the included selectors. Each selector can be any of the more complex types.
This is also a valid selector:

header+p, .book, a:visited

It will return all elements that are either a p element that immediately follows a header element,
an element with the book class, or a visited a element.

Tip For a definitive list of available selectors, see the article at
www.w3schools.com/cssref/css_selectors.asp.

Using CSS Properties

All of these selectors are provided so you can specify the appropriate elements that you want to apply the
desired style properties to. This is the real meat of CSS. There are hundreds of CSS properties available, and

I can’t describe them all here. I will demonstrate many of the newer, more useful features in the rest of this
chapter. You will find a really good reference of all CSS properties at www.w3schools.com/cssref/default.asp.

Using Vendor Prefixes

Oh, the joys of living on the edge! As with other areas of HTMLS5, browser vendors will have varying support
for the CSS specifications. In many cases, however, these vendors implement new properties before

they become part of the official recommendation. In fact, much of what is being included in the CSS3
specification has already been available from one or more browsers.

When a browser vendor adds a new feature that is not part of the CSS3 recommendation, the property
is given a vendor-specific prefix to indicate this is a nonstandard feature. If this becomes part of the
recommendation, the prefix is eventually dropped. To take advantage of some of the newer properties, you
may need to use the vendor-specific properties, and since you want your page to work on all vendors, you'll
need to add all of them. For example, to specify the border radius, in addition to the standard border-radius
property, you may need to set all of the vendor-specific properties as well like this:

header

{
-moz-border-radius: 25px;
-webkit-border-radius: 25px;
-ms-border-radius: 25px;
border-radius: 25px;

Table 4-1 lists the most common prefixes. There are others, but this table covers the vast majority of
browsers.

85

http://www.w3schools.com/cssref/css_selectors.asp
http://www.w3schools.com/cssref/default.asp

CHAPTER 4 © CASCADING STYLE SHEETS

Table 4-1. Vendor Prefixes

Prefix Browser Vendor
-moz- Firefox

-webkit- Chrome, Safari, Opera
-ms- Internet Explorer

You can’t blindly assume that all vendor-prefixed properties have the same name as the standard
property, with the prefix added, although that is true most of the time. Here is a good article that lists many of
the vendor-specific properties: http://peter.sh/experiments/vendor-prefixed-css-property-overview.
Unfortunately, this page has not been updated for a while and may be out of date. If you find that a standard
property doesn’t work in a particular browser, you may need to do some research to see whether there is
a prefixed property available from their developer’s site. For example, use this link for Webkit extensions:
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference/Webkit Extensions.

Caution You should always list the standard property last so it will override the vendor-specific version.
Some browsers will support both, and while most of the time the implementation is identical, sometimes the
vendor-specific version behaves differently.

Understanding the Box Model

Each element in the document takes up a certain amount of space, which depends on the content of that
element. In addition, factors such as padding and margin affect this. Padding is the space between the
content and the element’s border. The margin is the space between the border and adjacent elements.
This is illustrated in Figure 4-1.

Margin

Padding

Content

I
Border

Figure 4-1. The box model

86

http://peter.sh/experiments/vendor-prefixed-css-property-overview
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference/Webkit_Extensions

CHAPTER 4 CASCADING STYLE SHEETS

You can specify the margin with the margin declaration and specify the values either in pixels or as a
percentage of the page size. You can specify the top, right, bottom, and left margins individually using the
margin-top, margin-right, margin-bottom, and margin-left declarations or with the margin declaration
specifying all four values (in that order—top, right, bottom, and left). You can also use the margin declaration
with a single value, which will set all four margins to this value. If you pass two values, the first will set the
top and bottom margins, and the second will specify the left and right margins. You set the padding the same
way using the padding declaration.

When determining the space used, remember to include the border width. For example, if the padding
is set to 10px, the margin set to 5px, and the border-width set to 3px, the space used (in addition to the actual
element content) will be (2*10) + (2 *5) + (2 *3) = 36px.

Applying Style Rules

Styles are specified from various sources and in several different ways, and as the name suggests, they are
cascaded, or inherited. It's important to understand how this works, especially when there are conflicting
declarations.

Including Style Specifications
There are three sources of style sheets:

e Author: These are the style sheets created by the web developer and what you
normally think of when referring to a style sheet.

e User: A user can also create a style to control how web pages are displayed for them
specifically.

e User Agent: A user agent (web browser) will have a default style sheet. For example,
if you create a document with no style rules, the browser will display the content
using a default font family and size. These are actually defined in a style sheet that is
specific to the browser.

For author styles, which are the only source you can control, there are three ways to include style rules
in an HTML document.

e Inline: The style is set directly in the element using the style attribute like this:
<p style="color:red">This is red text</p>.Of course, with this method, you
don’t use a selector since the style applies only to the current element (as well as all
child elements).

e Internal: Style rules can be included in the actual HTML document using the style
element. This is normally placed in the head tag and applies to the entire document.
Styles defined this way will require a selector to indicate on which elements the style
should be used. This approach is sometimes referred to as embedded styles.

e External: The most common way to apply styles is to place all of the style rules in a
separate file with a . css extension. The style rules are formatted just like the internal
styles. The obvious benefit of using an external style sheet is that the same set of rules
can be applied to multiple pages. Each page references this style sheet with a 1ink
element like this:

<link rel="stylesheet" type="text/css" href="MyStyleSheet.css"

87

CHAPTER 4 © CASCADING STYLE SHEETS

Cascading Rules

When rendering a page, the browser has to process styles from all of these sources to determine the
appropriate style for each element. When there are conflicting rules, the author style sheet takes precedence
over the user style sheet, which takes precedence over the user agent styles (browser defaults). The author
styles can be specified using the three methods I explained earlier (inline, internal, and external). Within
the author styles, inline declarations take precedence over internal declarations and external style sheets.

If a page uses an internal style element and also uses the 1ink element to include an external style sheet,
the internal declarations will override conflicting rules in the external style sheet as long as it comes after the
link element.

Caution If an external style sheet is referenced after the style tag, it will take precedence over the internal
styles. If you have both external style sheets and an internal style element, you should reference the external
sheet first so the precedence rules work as expected.

In addition, consider that even within a single style sheet there may be conflicting declaration. For
example, a style sheet may include the following:

p
{
color: black;
}
header p
{
color: red;
}

A p element within a header element is selected by both rules, so which one is used? In this case, the
specificity rule applies, which states that the more specific selector is used, which is the header p selector.
With all the selectors that are available, determining which one is more specific is not as straightforward as
you might think. ID selectors are considered more specific than class or attribute selectors, which are more
specific than element selectors. If there are only element selectors, the rule with the most elements takes
precedence, so header p, which contains two elements, is more specific than just p.

Finally, what if the same selector is used twice in the same style sheet with different declarations? Say
p { color:black; } appearsin the style sheetand laterp { color:green } appears. In this case, the rule
that appears last takes precedence, so you'll have green text.

Using the Important Keyword

The one sort of “ace-in-the-hole” is the important keyword. If this is used in a style rule, this trumps all other
rules. You can add the important keyword like this:

p

{
color: red;
limportant;

88

CHAPTER 4 © CASCADING STYLE SHEETS

If two conflicting rules both have the important keyword, then the precedence is determined based on
the rules I already mentioned. There is one significant difference, however. Normally rules in the author style
sheet override rules in the user style sheet. If they have the important keyword, this is reversed; the user
style sheet will override the author rules. That may seem odd at first, but this has an important application.
This allows the user to override the author styles for certain properties. For example, someone who is
visually impaired may need to increase the font size. The important tag will ensure that this style does not
get overridden.

Caution You might be tempted to use the important keyword to make a quick fix and override a cascaded
style rule. With all the precedence rules that | just described, you shouldn’t need to do this. | recommend using
this as a last resort. Overuse of the important keyword can make your style sheets difficult to maintain.

Creating a Web Page

For the rest of this chapter I will show you how to build a single web page that will demonstrate many of the
new CSS features. For variety, I will be using the WebMatrix application instead of Visual Studio to create a
single web page. The style rules will use the internal style element so everything can be placed in a single
file. The small amount of JavaScript will also be included in the single file.

I will be using the Chrome browser for this project because it supports most of the CSS features that I
will be demonstrating. At the time of this writing, the other browsers do not support one or more of these
features. By the time you read this, other browsers may support these also.

Note I explained how to install the WebMatrix application in Chapter 1. This is a free download provided
by Microsoft. If you prefer, you can also implement the web site using Visual Studio with the MVC project
template. Follow the instructions in the rest of this chapter using the Index.cshtml file, which you’ll find in the
Views\Home folder, instead of Default.cshtml. You can also download the completed Visual Studio project that
is included in the source code from www.apress.com.

Planning the Page Layout

Before creating a new web page, it’s a good idea to sketch out the basic page structure. This will help you
visualize the overall layout and see how the elements are nested together.

The page that you will develop in this chapter will use header and nav elements at the top and a footer
element at the bottom. The main area in the middle will use a div element and have two side-by-side areas,
each with a series of article tags. The larger area will be enclosed with another div element and provide the
primary content, which is organized into articles. The smaller area, on the right, will use an aside element
and will contain a section element. This will contain a series of article elements that will present related
information. Figure 4-2 illustrates the page layout.

89

http://dx.doi.org/10.1007/9781484211489_1
http://www.apress.com/

CHAPTER 4 © CASCADING STYLE SHEETS

header
nav
div
div aside
section
section
section .
article
article
article
article
article
article
footer

Figure 4-2. Planning the page layout

Note This diagram shows spaces between each of the elements to make it easier to understand. In the
actual web page, in most cases this space is removed by setting the padding attribute to 0.

Creating the Web Project

With the content planned out, you're ready to begin building the web page. You'll start by creating a project
using WebMatrix. Then you'll enter the basic page structure and add content to each element. Later, I'll

show how to implement the style rules.
Start the WebMatrix application, click the New icon, and then click the Template Gallery button, as

shown in Figure 4-3.

90

CHAPTER 4 © CASCADING STYLE SHEETS

ﬁ Template Gallery
Template Gallery

K Uj App Gallery 3

5:"} Empty Site

My Sites

[_I Skip this page on start-up

Figure 4-3. Launching the WebMatrix application

Tip For future reference, the App Gallery button will display a fairly large list of prebuilt web applications
that you can download and use to build your web project. This includes packages such as WordPress, Joomla,
and Drupal.

91

CHAPTER 4 © CASCADING STYLE SHEETS

There are several templates to choose from. The Starter Site template, for example, will create an
ASP.NET MVC project. For this chapter, you'll use the Empty Site template. Select this and enter Chapter4
for the site name, as shown in Figure 4-4. Click the OK button to create the project.

Site from Template

ASP.NET (5)

- 1y : LN By
PHP (2) If ~ L v o~ LY
= = =l
Node,js (3) i | l]

1] Y A

HTML (2)
Empty Site Starter Site Photo Gallery

All (12)

Personal Site

Empty Site
Empty website with a default page.

Site Name I Chapterd|

Figure 4-4. Selecting the Empty Project template

When the project has been created, click the Files button in the navigation pane. The files and folders
that were created for you should look like Figure 4-5

92

http://dx.doi.org/10.1007/9781484211489_4

CHAPTER 4 © CASCADING STYLE SHEETS

4 | Chapterd
App_Data
bin
_| Default.cshtml
|| favicon.ico
| Web.config

Site

D Files

Databases

@ Reports

Figure 4-5. The initial files and folders

There should be a single web page named Default.cshtml. Double-click the file name in the navigation
page to open it. The initial contents will look like this:

of
}

<!DOCTYPE html>

<html lang="en">
<head>
<meta charset="utf-8" />
<title>My Site's Title</title>
<link href="~/favicon.ico" rel="shortcut icon" type="image/x-icon" />
</head>
<body>

</body>
</html>

93

CHAPTER 4 © CASCADING STYLE SHEETS

Defining the Page Structure

Ifind it helpful to start by entering the structural elements first before adding the contents. This will give you
an opportunity to see the structure clearly, uncluttered by the actual content. Open the Default.cshtml file
and enter the elements shown in Listing 4-1.

Listing 4-1. Entering the Page Structure
<!DOCTYPE html>

<html lang="en">
<head>
<meta charset="utf-8" />
<title>Chapter 4 - CSS Demo</title>
</head>
<body>
<header class="intro">
</header>

<nav>
</nav>

<div id="contentArea">

<div id="mainContent">
<section class="rounded">
<header>
</header>
</section>

<section>
<article class="featuredContent">

<header>
</header>

<div>
</div>
</article>

<article class="otherContent">

<header>
</header>

<divy>

</div>
</article>

94

http://dx.doi.org/10.1007/9781484211489_4

CHAPTER 4

<article class="otherContent">

<header>
</header>

<div>
</div>
</article>
</section>
</divy>

<aside id="sidebar">
<section id="titles">
<article class="book">
<header>
</header>
</article>

<article class="book">
<header>
</header>
</article>

<article class="book">
<header>
</header>
</article>

<article class="book">
<header>
</header>
</article>

<article class="book">
<header>
</header>
</article>
</section>
</aside>
</div>

<footer>
</footer>

</body>
</html>

CASCADING STYLE SHEETS

95

CHAPTER 4 © CASCADING STYLE SHEETS

This is just a basic HTML structure that you could have inferred from the diagram shown in
Figure 4-2. The article elements have the class attribute assigned because you will use this for styling
purposes. I assigned the id attribute to a few of the top-level elements. I also added an anchor element
() to each of the main content articles. You will set up navigation links to these in
the nav element.

Adding the Content

There’s nothing particularly special about the content. It’s a lot of text (mostly Lorem ipsum), a few images,
and some links.

In the Navigation pane, right-click the Chapter4 project and click the New Folder link. Enter Images for
the folder name. An Images.zip file is included with the downloadable source code. Copy the images from
this file to the new Images folder in your project.

I recommend downloading the content rather than entering it manually. There is a
Default_content.cshtml file available in the source code. Replace your current implementation of this
with the code in this file. It contains only the content of this page without any styles defined. If you want to
enter the content manually, you can find it in Appendix A.

Note | wanted to point out one minor detail in the content. The footer element uses the new time element
that was added with HTML5. The text between the begin and end tags (March 7th 2015) is displayed, but the
datetime attribute contains a machine-readable format that can be used by the browser, search engines, or
JavaScript. Check out this article for more details: www. sitepoint.com/htmls-time-element-guide.

After the content has been added, click the Run button in the ribbon to see what the page looks like so
far. It should be similar to Figure 4-6.

96

http://dx.doi.org/10.1007/9781484211489_4
http://www.sitepoint.com/html5-time-element-guide

CHAPTER 4 © CASCADING STYLE SHEETS

CSS Demo

Introducing the new HTMLS features

Use the new CSS3 features to build some of the most visually appealing web sites.

Feature
Article
Archives
Apress

Main content area

Lorem ipsum dolor sit amet. consectetur adipisicing elit. sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam. quis nostrud exercitation ullamco laboris nisi ut.

Featured Article

This 1s really cool...

Figure 4-6. The initial page with only default styles

97

CHAPTER 4 © CASCADING STYLE SHEETS

Implementing the Style Rules

Now you are at the fun part, adding style. There is a huge number of style attributes that are available to
you, and I will demonstrate some of the more useful techniques that are new to CSS3. Many of these styles
have been used for a while, but prior to CSS3, their implementation was more complicated, often requiring
JavaScript. After assigning some basic style rules, I'll show you how to use more advance features including
the following:

e Rounded corners

e Gradient backgrounds

e Tables

e Multiple columns

e Boxshadows

e Zebra striping Text decorations
e 3D transforms

. CSS animation

Adding Basic Styles

Before you start adding the new styling features, you'll need to define the basic style formats. Add a style
element inside the head element at the top of the Default.cshtml file. Then add the rules shown in Listing 4-2.
Again, if you prefer, you can download the Default_styled.cshtml file and copy the code from there.

Listing 4-2. Adding the Basic Styles

<style>

/* Basic tag settings */

body

{
margin: 0 auto;
width: 940px;
font: 13px/22px Helvetica, Arial, sans-serif;
background: #fofofo;

}

h2

{
font-size: 18px;
line-height: 5px;
padding: 2px 0;

}

h3

{
font-size: 12px;
line-height: 5px;
padding: 2px 0;

}

98

h1, h2, h3
{
text-align: left;
}
p
{
padding-bottom: 2px;
}
.book
{
padding: 5px;
}
/* Content sections */
.featuredContent
{

background-color: #ffffff;
border: 2px solid #6699cc;
padding: 15px 15px 15px 15px;

.otherContent

{
background-color: #c0c0co0;
border: 1px solid #999999;
padding: 15px 15px 15px 15pX;

aside

{

background-color: #6699cc;
padding: 5px 5px 5px 5px;

}
footer
{
margin-top: 12px;
text-align:center;
background-color: #ddd;
}
footer p
{
padding-top: 10px;
}

CHAPTER 4 © CASCADING STYLE SHEETS

99

CHAPTER 4 © CASCADING STYLE SHEETS

/* Navigation Section */

nav

{
left: o;
background-color: #003366;

}

nav ul

{
margin: 0;
list-style: none;

}

nav ul 1i

{
float: left;

}

nav ul 1i a

{
display: block;
margin-right: 20px;
width: 140px;
font-size: 14px;
line-height: 28px;
text-align: center;
padding-bottom: 2px;
text-decoration: none;
color: #ccccec;

}

nav ul 1i a:hover

{
color: #fff;

}

</style>

Iwon’t say much about this because it’s all pretty standard CSS stuff. It uses mostly element selectors
with an occasional class selector. If you preview your web page now, it should look like Figure 4-7.

100

CHAPTER 4 © CASCADING STYLE SHEETS

CSS Demo

Introducing the new HTMLS5 features
Use the new CSS3 features to build some of the most visually appealing web sites.

Main content area
Lorem ipsum dolor sit amet, consectetur
dipisicing elit, sed do ei d tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut.
Featured Article
This is really cool...

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut.

Rounded Borders
Details about rounded comers

Figure 4-7. The web page with only basic styling

Note To simplify the sample code, | will use only the Chrome vendor prefix, -webkit-, and only when the
current version (43) doesn’t support the standard attribute. | can get away with this because | am expecting the
page to work only in the Chrome browser. Normally, you cannot make this assumption and will need to include
all of the vendor prefixes.

101

CHAPTER 4 © CASCADING STYLE SHEETS

Using Rounded Corners

Adding rounded corners is easy to do with CSS3; just define the border-radius attribute. Your web page will
use rounded corners for the aside, nav, and footer elements as well as elements with the rounded class.

Note In Chapter 7, | will show you how to implement rounded corners in older browsers that do not support
this feature. After reading that chapter, you'll likely have a better appreciation for having features like this
supported natively in the browser.

Add the rules shown in Listing 4-3 to the end of the style element.

Listing 4-3. Using Rounded Borders

/* Rounded borders */

.rounded

{
border: 1px solid;
border-color:#999999;
border-radius:25px;
padding: 24px;

}

aside

{
border: 1px solid #999999;
border-radius:12px;

}

/* Make the radius half of the height */

nav

{
height: 30px;
border-radius:15px;

}

footer

{
height: 50px;
border-radius:25px;

}

For the nav and footer elements, since they are fairly short sections, you'll set the radius to be half of
the height. This will form a semicircle on both ends. The top navigation section should look like Figure 4-8.

102

http://dx.doi.org/10.1007/9781484211489_7

CHAPTER 4 © CASCADING STYLE SHEETS

Archives Apress

Main content area

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut.

Figure 4-8. Using rounded borders

Working with Gradients

With CSS3 you can easily create a gradient by setting the background-image attribute using the 1inear-gradient
function. With this function you can specify the beginning and ending colors as well as the angle at which the
gradient should be applied. You'll use a gradient in the main heading, which has the intro class.

Add the following rule at the end of the style element:

/* Gradients */
.intro
{
border: 1px solid #999999;
text-align: left;
padding-left: 15px;
margin-top: 6px;
border-radius: 25px;
background-image: linear-gradient(45deg, #ffffff, #6699cc);

This will apply the gradient as a 45° angle. This also creates a rounded border. The top of the page
should now look like Figure 4-9.

CSS Demo

Introducing the new HTML5 features
Use the new CSS3 features to build some of the most visually appealing web sites.

Feature Archives

Main content area

Figure 4-9. Using a gradient background

Creating Tables

It is generally considered bad practice to use tables in your markup for formatting purposes. This type of
formatting is better done in the style sheet. You can then update the style if a different format is needed. You
might have noticed that the current web page has the aside element following the main content instead of
the two aligned side-by-side. You'll set up a table now using CSS to correct that.

Add the rules shown in Listing 4-4 at the end of the style element.

103

CHAPTER 4 © CASCADING STYLE SHEETS

Listing 4-4. Creating a Table
/* Setup a table for the content and sidebar */

#contentArea
{
display: table;
}
#mainContent
{
display: table-cell;
padding-right: 2px;
aside
{
display: table-cell;
width: 280px;
}

These rules set the display attribute on the top-level elements. The contentArea element is set to
table, and the mainContent and aside elements are set to table-cell. These elements are then rendered
as cells within the overall content element. To complete the alignment, the padding on the mainContent is
set to 2px, and the width of the aside element is set to 280px. The width of the mainContent is calculated
automatically using the remaining space.

The page layout should now look like Figure 4-10.

' CSS Demo

Introducing the new HTMLS features
| Use the new CSS3 features to build some of the most visually appealing web sites.

Main content area

Lorem ipsum dolor sit amet, dipisicing elit, sed do ei d tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut.

Featured Article

This is really cool...

Figure 4-10. The page layout with the sidebar on the right

104

CHAPTER 4 © CASCADING STYLE SHEETS

Adding Column Layout

Another neat feature that is new with CSS3 is the ability to format the content into columns like you would
see in a newspaper or magazine. This is done using the column-count attribute. You should also specify the
column-gap attribute that defines the vertical space between the columns.

Add the following rules at the end of the style element:

/* Setup multiple columns for the articles */
.otherContent
{

text-align:justify;

padding:6px;

-webkit-column-count: 2;
column-count: 2;

-webkit-column-gap: 20px;
column-gap: 20px;

The articles should now be formatted with two columns, as demonstrated in Figure 4-11.

Figure 4-11. Using two columns

105

CHAPTER 4 © CASCADING STYLE SHEETS

Adding Box Shadows

Images can look a bit harsh, and adding a shadow can soften the look and make the page more visually
appealing. A shadow is easily added using the box-shadow attribute, which takes the following values:

* Horizontal position: The position of the horizontal shadow. If negative, the shadow is
on the left side.

e Vertical position: The position of the vertical shadow. If negative, the shadow is
at the top.

e Blur: The size of the blurred area just after the shadow.
e Spread: The width of the shadow.
e Color: The color of the shadow.

e Inset: Makes the image appear lower than the surrounding area, causing the shadow
be on the image rather that outside the image.

The values are specified in a comma-separated list. It expects from two to four position/size values,
an optional color property, and the optional inset keyword. Only the first two are required, which are the
horizontal and vertical positions. The blur and spread values will default to zero if not specified. Add the
following rules to the end of the style element:

/* Add the box shadow */
article img

{
margin: 10px O;
box-shadow: 3px 3px 12px #222;
}
.book img
{
margin: 10px O;
display: block;
box-shadow: 2px 2px 5px #444;
margin-left: auto;
margin-right: auto;
}
aside
{
box-shadow: 3px 3px 3px #aaaaaa;
}

The .book img rule also includes both the margin-left and margin-right attributes, which are both
set to auto. This causes the images to be centered horizontally. Figures 4-12 and 4-13 show a close-up of the
images in the featured content and the sidebar items. Notice the first image has a larger blur area than the
sidebar images.

106

CHAPTER 4 © CASCADING STYLE SHEETS

Figure 4-12. The shadow of the phone in booth image the featured content section

Figure 4-13. The shadow on the sidebar images

Using Zebra Striping

One styling approach that has been used for a long time is to alternate the background when there is a list
of items, which is sometimes referred to as zebra-striping. This goes back to the old blue-bar paper used to
enter accounting journals. The alternating backgrounds make it easier to distinguish between each item.
Prior to CSS3 this was accomplished with JavaScript that would programmatically change the background
on every other element.

107

CHAPTER 4 © CASCADING STYLE SHEETS

CSS3 introduces the nth-child selector, which is perfect for this application because it returns every
nth element. Using this with n set to 2 will return every other element. Add the following code to the end of
the style element:

/* Stripe the title list */
#titles article:nth-child(2n+1)

{
background: #cococo;
border: 1px solid #6699cc;
border-radius: 10px;

}

#titles article:nth-child(2n+0)

{
background: #6699cc;
border: 1px solid #c0cOcoO;
border-radius: 10px;

}

This rule uses a complex selector #titles article:nth-child(2n+1), which first selects the #titles
element. This is a section element that contains the book titles. Each book title is in a separate article
element. The article:nth-child selector then returns every nth article element inside the #titles
element. The 2n+1 parameter may seem a bit odd, however. To get every other element, you specify 2n as the
parameter, which would return the odd items (first, third, fifth, and so on). By using 2n+1, the list is offset by 1, so
you will get the even items (second, fourth, sixth and so on). So, the first rule formats the even items, and the
second rule, which uses 2n+0, will format the odd items. You could simply use 2n instead of 2n+0 because
these are equivalent, but I like using 2n+0 for consistency. The only difference between these two style rules
is the background and border colors. Figure 4-14 shows the effect.

108

CHAPTER 4 © CASCADING STYLE SHEETS

Figure 4-14. Applying the zebra striping to the sidebar

109

CHAPTER 4 © CASCADING STYLE SHEETS

Adding Text Decorations

Text decorations allow you to embellish text with various effects. There are three types of decorations that
have been defined: lines (such as underline and strikethrough), emphasis marks, and shadows. The official
recommendation defines this capability although browser implementation is a bit sketchy and inconsistent.
I'll first explain how the standard has been defined and then show you the workarounds that you may need
to do to make it work.

Note The text decoration details are explained well in the WC3 recommendation, which you can access
at www.w3.org/TR/css-text-decor-3.

Line Decorations

Line decorations are defined by a combination of three attributes:

e text-decoration-line: Specifies whether the line should be above
the text (overline), below the text (underline), or through the middle of the text
(1ine-through)

e text-decoration-style: Defines the style of the line such as solid, dashed, dotted,
double, or wavy

e text-decoration-color: Indicates the color of the line
The recommendation also allows for the text-decoration shortcut where you can specify all three
properties in one attribute. For example, you could use this to define a red, wavy underline:

text-decoration: underline wavy red;

If the style and color are omitted from the shortcut, this is backward compatible with CSS levels 1 and 2.
And, as of this writing, this is all most browsers support. So, you can add an underline, an overline, or a
strikethrough, but you cannot adjust its style or color. To try it, add the following at the end of the style
element:

h2
{

}

text-decoration: underline overline line-through;

This will display all three lines in your text. Save these changes and refresh the browser window, and the
header text should look like Figure 4-15.

110

http://www.w3.org/TR/css-text-decor-3

CHAPTER 4 © CASCADING STYLE SHEETS

' CSS Demo

_ Use the new CSS3 features to build some of the most visu

Figure 4-15. Adding line decorations

Firefox supports some of the line decoration styles, but you'll need to use their vendor prefix.
To demonstrate how to do that, replace the h2 selector that you just added with the following:

h2

{
text-decoration: underline;
-moz-text-decoration-1line: underline;
-moz-text-decoration-style: wavy;
-moz-text-decoration-color: red;
text-decoration-line: underline;
text-decoration-style: wavy;
text-decoration-color: red;

The first line uses the backward-compatible attribute that most browsers will support. This will define a
solid underline using the same color as the text. The next three lines define the same wavy red line using the
Firefox vendor prefix, which will be ignored by all other browsers. The last three lines define a wavy red line
using the CSS3 standards. If you display this page using most browsers, you'll have a solid black line like you
saw previously. If you use Firefox, the page will look like Figure 4-16.

CSS Demo

Introducing the new HTMLS5 features

Use the new CSS3 features to build some of the most visuz

Figure 4-16. Displaying line decorations in Firefox

Over time, however, as browsers adopt the CSS3 standards, the wavy underline will replace the solid
line. This is a good example of how you can design your page to use the features that are currently available
and position it to take advantage of emerging capabilities.

111

CHAPTER 4 © CASCADING STYLE SHEETS

Emphasis Marks

The use of emphasis marks is similar to adding lines; they add a symbol or mark to emphasize the specified
text. As of this writing, none of the desktop browsers supports this feature. Emphasis marks are defined using
a combination of three attributes.

e text-emphasis-style: Specifies the type of symbol to use such as dot, triangle,
double-circle, or sesame.

e text-emphasis-color: Indicates color to use for the emphasis mark.

e text-emphasis-position: Defines the position of the mark relative to the text;
possible values are over, under, left, and right. You can include combinations such
asover right.

A shortcut definition is also allowed so you can specity this with a single attribute like this:

text-emphasis: dot red;

Text Shadows

Text shadows are defined like box shadows, which I explained earlier. Unlike some of the other text
decoration features, text shadows are supported by all major browsers.
A text shadow is defined with a single attribute that contains the following parameters:

e Horizontal offset
e Vertical offset

e Blurradius

e Color

The offset values can be negative. A negative vertical offset will place the shadow above the text, and a
negative horizontal shadow will put the shadow to the left. If the color parameter is omitted, the shadow will
be the same color as the text.

Caution The blur radius for text shadows should be small. Unless you have a really large font, using values
more than 1px or 2px will make the text unreadable. You can specify Opx, which will cause the shadow to not
be blurred at all.

To demonstrate text shadows, add the following to the end of your style element:

h3:first-letter
{

}

text-shadow: 2px -5px 1px blue;

Save your changes and refresh the browser. The header text should look like Figure 4-17.

112

CHAPTER 4 © CASCADING STYLE SHEETS

F'-:eatured Article

Figure 4-17. Adding a text shadow

Tip This example also demonstrates the first-letter pseudo-class. This selects the first letter from each
h3 element.

Using 3D Transforms

Adding a 3D transform can add some pizzazz to your web page. I'll demonstrate a fairly simple application
where you can flip the phone booth image in 3D. You'll also add some JavaScript to animate the rotation.

To format the 3D transformation, you'll specify a couple of attributes. First, you'll set the perspective
property on the div that contains the image. This establishes the vanishing point that is used to determine
how the 3D effect is rendered. Then, you'll set the preserve-3d attribute on the image itself, which tells the
browser to maintain the 3D perspective when rotating the image. To do this, add the following to the end of
the style section:

/* Transforms */
.rotateContainer
{
-webkit-perspective: 360;
perspective: 360px;

.rotate

{
-webkit-transform-style: preserve-3d;
transform-style: preserve-3d;

Note The standard perspective attribute expects the units (for example, 360px), but the IntelliSense in
WebMatrix doesn’t recognize this and will show this as a CSS validation error. You can ignore this. Also note
that the vendor-prefixed attribute, -webkit-perspective, does not require the units.

113

CHAPTER 4 © CASCADING STYLE SHEETS

Now you’ll add a JavaScript function that will animate the image rotation. Enter the code in bold in the
head element:

<head>
<meta charset="utf-8" />
<title>Chapter 4 - CSS Demo</title>

<script type="text/javascript"s
var angle = 0;
var t;
function rotateImage(value) {
document.getElementById("phone").style.transform
= "rotateY(" + value + "deg)";
}
function toggleAnimation() {
if (angle == 0) {
t = setInterval(function () {
rotateImage(angle);
angle += 1;
if (angle »= 360)
angle = 0;
}, 100);

else {
clearInterval(t);
angle = 0;
rotateImage(angle);
}
}
</scripty
<style>

The angle variable stores the current rotation angle of the image, and the t variable is a reference to
the interval timer. The rotateImage() function simply sets the rotateY style for the image element. This is
equivalent to adding this to the CSS:

transform: rotate(20deg);

This is done in JavaScript because it will specify a different angle every time this is called. The
toggleAnimation() function will either start or stop the animation. To start the animation, this calls
the setInterval() function, supplying an anonymous function that will be called every 100 milliseconds.
The anonymous function calls rotateImage() at the current angle and then increments the angle. To cancel
the animation, the clearInterval() method is called, and then the image is set back to the initial rotation.
Lastly, add the code shown in bold, which calls the toggleAnimation() function when the image
is clicked:

<div id="rotateContainer">
<p>This is really cool...</p>
<img class="rotate" id="phone"
src="1images/phonebooth. jpg"

114

http://dx.doi.org/10.1007/9781484211489_4

CHAPTER 4 © CASCADING STYLE SHEETS

alt="phonebooth"
onclick="toggleAnimation()"/>

Save these changes and refresh your browser window. To start the animation, click the image. You
should see the image rotate slowly, as demonstrated in Figure 4-18.

,eatured Article

Lorem ipsum dolor sit amet, consectetu
dolore magna aliqua. Ut enim ad minim

Figure 4-18. The rotated phonebooth—in 3D!

115

CHAPTER 4 © CASCADING STYLE SHEETS

Tip As of this writing, Chrome, Opera, and Safari have an interesting bug. The transformation is a simple 2D
transform until you inspect the element. Right-click the image element and choose Inspect Element. Once the
transform has changed to 3D, you can close the inspection window.

Adding Animation

For the last effect, I'll show you how to create an animation effect without using any JavaScript. You can’t
modify the image with CSS because that is considered content, not format. However, you can change the
background image, and you'll take advantage of that to achieve the animation effect.

The aside element has a div defined as follows:

<div id="moon"></div>

Because there is no content or size defined, this has no effect on the page layout currently. Now you’ll
use the animation feature in CSS3 to iterate through various images that illustrate the phases of the moon.

In CSS, animation is achieved by defining a set of keyframes. Each frame defines one or more CSS
attributes. In this application you'll specify the appropriate background image, but you could just as easily
change the color or size or any other CSS attribute. For each frame you also specify the percentage of the
animation duration when this frame should appear. You should always have a 0% and 100% frame, which
specify the beginning and ending properties. You can include any number of steps in between. In this
example, there are eight images, so, to keep the frames spaced evenly, the frames will transition at 0%, 12%,
25%, 37%, 50%, 62%, 75%, 87%, and 100%.

Once you have defined the keyframes, you then then set the animation attributes on the element that
you want to animate. You'll specify the name of the keyframes by setting the animation-name attribute. You
can also set the duration (in seconds) that the animation will take using the animation-duration attribute.
Add the code shown in Listing 4-5 to the end of the style section.

Listing 4-5. Defining the Animation Effect

/* Animate the moon phases */
@@-webkit-keyframes moonPhases

0% {background-image:url("images/moonl.png");}

12% {background-image:url("images/moon2.png");}
25% {background-image:url("images/moon3.png");}
37% {background-image:url("images/moon4.png");}
50% {background-image:url("images/moon5.png");}
62% {background-image:url("images/moon6.png");}
75% {background-image:url("images/moon7.png");}
87% {background-image:url("images/moon8.png");}
100% {background-image:url("images/moonl.png");}

@@keyframes moonPhases

{

0% {background-image:url("images/moonl.png");}
12% {background-image:url("images/moon2.png");}
25% {background-image:url("images/moon3.png");}
37% {background-image:url("images/moon4.png");}

116

CHAPTER 4 © CASCADING STYLE SHEETS

50% {background-image:url("images/moon5.png");}
62% {background-image:url("images/moon6.png");}
75% {background-image:url("images/moon7.png");}
87% {background-image:url("images/moon8.png");}
100% {background-image:url("images/mooni.png");}

}

#moon

{
width:115px;
height:115px;
background-image: url("images/mooni.png");
background-repeat: no-repeat;
-webkit-animation-name:moonPhases;
-webkit-animation-duration:4s;
-webkit-animation-delay:3s;
-webkit-animation-iteration-count:10;

animation-name:moonPhases;
animation-duration:4s;
animation-delay:3s;
animation-iteration-count:10;

This code sets the total duration at four seconds, so the image should transition every half second.
It also specifies to wait three seconds before starting and to repeat the animation ten times. When you
refresh the web page, after about three seconds it should cycle through the phases of the moon, as shown in
Figure 4-19.

Figure 4-19. Animating the moon’s phases

117

CHAPTER 4 © CASCADING STYLE SHEETS

Tip If you want the animation to continue indefinitely, set the animation-iteration-count attribute to
infinite.

There are two other animation properties that were not applicable here, timing-function and
direction. If you're using a simple animation and define only the begin and end values, the
timing-function defines the speed of the transition. For example, if you're moving an element to a
different position, setting this to 1inear will move the object at a constant rate. However, using the default
value, ease, the transition will start out slow and then speed up and then slow down near the end. There are
other options, like ease-in, which will start out slow and then speed up for the remainder of the transition.
The direction property, if set to alternate, will reverse the transition on alternating iterations. The default
value, normal, will replay the same transition each time.

Summary

In this chapter, I covered a lot of information about CSS, especially the new features in CSS3. The selectors
are quite powerful and offer a great deal of flexibility when applying styles. Prior to CSS3, much of this had
to be done with a lot of JavaScript functions. I also showed you how to plan and structure a sample web page
using a lot of the new structural HTML5 elements. Appendix B shows the complete style element.

Using the WebMatrix application, you created a simple web page, defined the basic structure, and then
populated the content. Using some of the new CSS3 features, you then added some significant style features
including the following:

e Rounded borders
e Gradients

e Tables

e Multiple columns
e Shadows

e Zebra striping

e Textdecorations
e 3D transforms

e Animation

In the next chapter, I'll introduce some of the new features of HTMLS5 related to scripting.

118

CHAPTER 5

Scripting Enhancements

In this chapter, I will demonstrate a few miscellaneous improvements that affect the scripting aspect of web
development. So far, I have introduced the markup changes and the CSS enhancements. Scripting is the
third leg of the overall HTML5 umbrella, and a significant amount of attention was given to this area. This
chapter will explain some improvements that have broad application.

e Query selectors
e Web workers
e Managing packages and builds

Package management is not actually part of HTML5 but is accomplished through open source tools
such as Bower and Gulp, which have been integrated into Visual Studio.

Using Query Selectors

In Chapter 4, I explained the CSS selectors that you can use to create powerful style rules. CSS3 introduced a
significant improvement in this area. With the robust attribute selectors and quite a few new pseudo-classess
such as nth-child that you used in Chapter 4, there is considerable functionality for selecting DOM elements.
But it gets even better: all of this ability is available from JavaScript as well.

The HTMLS5 specification includes two new functions, querySelector () and querySelectorAll().
The querySelector () function returns a single element, the first one that matches the specified selector. The
querySelectorAll() function returns an array of matching elements. For both functions, you pass in the
CSS selector, formatted just like you would in a style sheet. So, once you've learned how to use CSS selectors,
you can apply that same experience to JavaScript.

To try these functions, you will use the same web page you created in Chapter 4. The final version of the
Chapter 4 project is available in the source code download if you want to use that.

Using querySelector

The querySelector() function can be used to replace the getElementById() function. Of course, it is much
more useful than that because you can pass in any type of CSS selector.

Open the Default.cshtml file and modify the rotateImage() function, replacing the
getElementById() function like this:

function rotateImage(value){

document . querySelector("#phone").style.transform
="rotateY(" + value + "deg)";

119

http://dx.doi.org/10.1007/9781484211489_4
http://dx.doi.org/10.1007/9781484211489_4
http://dx.doi.org/10.1007/9781484211489_4
http://dx.doi.org/10.1007/9781484211489_4

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

Caution Don't forget to prefix the ID with #. Because the querySelector() function can be used with any
type of selector, you'll need the hash symbol to indicate this is an ID selector.

Run the web page using Firefox and verify the 3D rotation still works.

Using querySelectorAll

That was a fairly trivial example, so now I'll demonstrate a more complex selector. You'll add a JavaScript
function that will change the color on all of the internal links in the nav element. Arguably you could just
do this in the style sheet, but sometimes you need to do it in code as well. For example, you might need to
change the style programmatically based on user input.

Add the following function to the script element in the Default.cshtml page:

function adjustInternallinks(){
var links = document.querySelectorAll("nav ul 1i a[href ~='#"']");
for (var i=0; i < links.length; i++){
links[i].style.color = "green";
}

The CSS selectoris nav ul 1i a[href ~='#'], which returns all a elements with an href attribute that
begins with the # character. This is further filtered to only elements that have the nav, ul, and 11 parentage.
This will exclude links that may appear in other sections.

The querySelectorAll() function returns an array, so this code iterates through the array making
each element green. Now you'll need to call this function. Add the following code shown in bold to the
body element:

<body onload="adjustInternallLinks()">

This will call the function when the page is loaded, but you could just as easily call this based on some
appropriate user input to make the style dynamic. Save the changes and reload the page. You should now
have green links. Note that the link to www.apress.com is not green because it is an external link and doesn’t
start with #.

Creating the Visual Studio Project

For the rest of the exercises in this chapter you'll use a Visual Studio project. Start Visual Studio 2015 and
click New Project. Select the ASP.NET Web Application project template and enter Chapter5 for the name, as
shown in Figure 5-1.

120

http://www.apress.com/
http://dx.doi.org/10.1007/9781484211489_5

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

New Project » IEl
b Recent NET Eramework 4.6 - Sort by: Default . Search Installed Te O ~
4 |nstalled cs - -
> ASP.NET Web Application Visual C# Type: Visual &
4 Templates A project template for creating
4 Visual C# L ; . 2 ASP.NET applications. You can create
: ffa! Shess Hbrary (BAckage) LT ASP.NET Web Forms, MVC, or Web
b Windows AP e
m applications and add many other

Web E Console Application (Package) Visual C# features in ASP.NET.

Android

Cloud ? Application Insights

i0s [] Add Application Insights to Project

Reporting Help you understand and optimize

Sitverlight your application.

Tact - Learn more
b Online Click here to go online and find templates. Privacy statement =

L g] v owe me -
Name: Chapters
Location: CA\Books\HTMLS -
Selution name: Chapters Create directory for solution
[] MAZEEAEES()
[0K W Cancel |

Figure 5-1. Creating the Chapter5 project

In the second dialog, select the ASP.NET 5 Web Site template.

Employing Web Workers

With more and more work being done on the client, making the client application multithreaded becomes
more important. Fortunately, the use of web workers is a convenient way to accomplish that. Functions that
are CPU intensive or may take some time to complete can be executed on a background thread leaving the
main Ul thread available to respond to user actions.

Web workers use a fairly simple concept. You create a worker and pass it a JavaScript file that defines its
execution. The web page can then communicate with the worker through messages. The worker implements
the onmessage event handler to respond to an incoming message from the page and uses the postMessage()
function to send data back to the caller. The caller must also handle the onmessage event to receive the
messages from the worker. This is illustrated in Figure 5-2.

121

http://dx.doi.org/10.1007/9781484211489_5

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

Web page
(Ul thread)
Worker
(separate thread)
var worker = new Worker() » onconnect
worker.postMessage() »| onmessage
onmessage i« postMessage()
worker.terminate() = — — — »|

Figure 5-2. Communicating with a dedicated web worker

Tip For the demo application that you’ll create in this chapter, the messages between the caller and the
worker will be simple text messages. However, they can be any format you want, including JSON-encoded data.

One of the most significant limitations of web workers is that they cannot access the DOM, so you can’t
use them to update the page content or style. Also, they cannot access the window object, which means,
among other things, that you can’t use timers. With these limitations in mind, you might be wondering when
you would use a web worker.

Web workers are great for performing tasks such as retrieving data. For example, if you need to look up
information from an external source (such as a database, local file system, or web), you can pass the lookup
parameters to the worker, and when the lookup finishes, the data can be passed back as a JSON message.
This allows the web page to respond to user actions while the data is being retrieved.

Web workers come in two varieties: dedicated and shared. A dedicated worker can be used by
only a single page, whereas a shared worker can be used by multiple web pages. Both dedicated and
shared workers function the same basic way, but the communication is a little different. You'll start by
implementing a dedicated web worker.

Using a Dedicated Worker

A dedicated web worker, as its name implies, is dedicated to the web page that created it. The web page
creates it, uses it as needed, and closes it when it no longer needs it. A web page can create as many workers
as it needs.

To demonstrate a dedicated web worker, you'll build a simple web page that will allow you to create a
worker and send messages to it. It will also display the response so you can see the two-way communication.
The worker implementation is trivial, simply echoing back the message that was sent to it.

122

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

EXERCISE 5-1. USING A DEDICATED WEB WORKER

In the Chapters project you created earlier, open the Index.cshtml file, which
you’ll find in the views\Home folder. Replace the default implementation of this view
using the code shown in Listing 5-1. This will create a simple form with a text area
for displaying messages and three buttons for communicating with the worker.

Listing 5-1. The Index View Implementation

<!DOCTYPE html>

<html lang="en">
<head>
<meta charset="utf-8" />
<title>Chapter 5 - Web Workers</title>
<link rel="stylesheet" type="text/css" href="~/css/Sample.css" />
<script type="text/javascript" src="~/controlWorker.js"></script>
</head>
<body>
<header>
<h1>Web Workers Demo</h1>
</header>

<div>
<textarea id="output"></textarea>
</div>
<form id="control" method="post" action="">
<input id="create" type="button" class="button" value="Create Worker"
onclick="createWorker()">

<input id="send" type="button" class="button" value="Send Message"
onclick="sendWorkerMessage()">
<input id="message" type="text" class="text" value="Hello,
World!">

<input id="kill" type="button" class="button" value="Close Worker"
onclick="closeWorker()">
</form>

</body>
</html>

From the Solution Explorer, right-click the wwwroot\css folder and choose Add and
New Item. Select the Style Sheet item and enter Sample.css for the file name, as
shown in Figure 5-3. Click the Add button to create the file.

123

http://dx.doi.org/10.1007/9781484211489_5
http://dx.doi.org/10.1007/9781484211489_5

CHAPTER 5 " SCRIPTING ENHANCEMENTS

Add New Item - Chapter5 Kl
4 Installed Sortby: Default - Search Installed Templates (Ctrl+E) @ =
4 ASP.NET5 -
e ([;j HTML Page ASP.NET 5 Type: ASP.NET 5
p I'Sl.'l . fEVISW P A cascading style sheet (CSS) used for rich
owWel & Tk
EJ JavaScript File ASP.NET 5 HITML style definitions
P Online
Style Sheet ASP.NET 5
c‘
a ASP.NET 5
Q 1355
cl
Q_] Startup class ASP.NET 5
c.
gj MVC Controller Class ASP.NET 5
cs
[6] MvcviewPage ASP.NET 5
w
lick her nline and fin mpl
Name: Sample.css
Add || Cancel

Figure 5-3. Adding the Sample.css style sheet

3. Replace the default implementation with the code shown in Listing 5-2.

Listing 5-2. The Sample.css style Sheet

h1

{
font-size:22px;
color:purple;

}

#output

{
width: 500px;
height: 250px;
background-color:#dfcaca;

}

.button

{
width:125px;
height:25px;
color:green;

}

.text

{
width:260px;

}

124

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

4. Press F5 to debug the application; the form should look similar to Figure 5-4.

Web Workers Demo

Create Worker

Send Message lHeIIo, World!
Close Worker

Figure 5-4. The initial form design

5. Close the browser and stop the debugger.

6. In the Solution Explorer, right-click the wwwroot folder and choose Add and New
[tem. In the Add New Item dialog box, select the JavaScript File item. Enter worker.js
for the file name, as shown in Figure 5-5.

125

CHAPTER 5 " SCRIPTING ENHANCEMENTS

Add New Item - Chapter5 IEN
4 |nstalled Sort by: Default - Search Installed Templates (Ctri+E) P -
4 ASP.NET 5 A
e ‘l:)j HTML Page ASP.NET 5 Type: ASP.NET 5
p rSl; . feview A script file containing JavaScript code
OWe &
@ JavaScript File ASP.NET 5
P Online
Style Sheet ASP.NET 5
c’
g':l Class ASP.NET 5
c’
gﬁ Startup class ASP.NET 5
ce
gj MVC Controller Class ASP.NET 5
ce
@] MVC View Page ASP.NET 5
b4
Click here to go online and find templates.
Name: worker.js
Add || cancel |

Figure 5-5. Adding the workerjs file

126

For the contents of this file, enter the following code. This is the implementation
of the worker. It handles both the onconnect event (when the worker is first
created) and the onmessage event (when a message is sent to the worker). The
implementation simply echoes the message back to the caller.

/* This file implements the web worker */

// This event is fired when the web worker is started
onconnect = sendResponse("The worker has started");

// This event is fired when a message is received
onmessage = function (event) {

sendResponse("Msg received:
}

+ event.data);

// Sends a message to the main thread

function sendResponse(message) {
postMessage(message);

}

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

8. Using the same instructions, add a controlWorker.js file in the wwwroot folder.

9. Enter the code shown in Listing 5-3 for its implementation. | will explain this in
more detail later in the chapter.

Listing 5-3. The controlWorker.js Implementation

/* This file contains functions used to
communicate with the web worker */

var myWorker;

function createWorker() {
if (typeof(Worker) !== "undefined") {
var log = document.querySelector("#output");

log.value += "Starting worker process.. ";

myWorker = new Worker("worker.js");

log.value += "Adding listener.. ";
myWorker.onmessage = function(event){
log.value += event.data + "\n";

}

log.value += "Done!\n";
}
else {

alert("Your browser does not support web workers");
}

}

function sendWorkerMessage(){
if (myWorker !== null) {
var log = document.querySelector("#output");
log.value += "Sending message.. ";
var message = document.querySelector("#message");
myWorker .postMessage(message.value);

log.value += "Done!\n";

}

function closeWorker(){
if (myWorker !== null) {
var log = document.querySelector("#output");

log.value += "Closing worker.. ";

myWorker.terminate;
myWorker = null;

log.value += "Done!\n";

127

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

10. Press F5 to debug the application. Click the Create Worker button and then click the

Send button. Modify the message and try clicking the Send Message button again.
Finally, click the Close Worker button. The text area should look like Figure 5-6.

Starting worker process... Adding
listener... Donel!

The worker has started

Sending message... Done!

Msg recelved: Hello, World!
Sending message... Done!

Msg recelved: Hello, again
Closing worker... Done!

Figure 5-6. The message log

The controlWorker. js file contains three functions that provide the implementation for the three
buttons on the form. It first declares a myWorker variable, which holds a reference to the dedicated web
worker, and then implements the following functions:

createWorker (): This function first checks to see whether the browser supports web
workers by seeing whether the Worker class is defined. If not, an alert is raised. It then
creates an instance of the Worker class, saving its reference in the myWorker variable.
The worker implementation is passed to its constructor by referencing the worker. js
script file. It then implements the onmessage event handler that adds the incoming
message to the output field.

sendWorkerMessage(): This simply calls the worker’s postMessage () method, passing
in the text specified in the message field. Notice it is using the querySelector()
method that | explained earlier in this chapter.

closelorker (): This calls the worker’s terminate() method and sets the mywWorker
variable to null. The worker is closed immediately without any ability to perform any
cleanup operations.

Tip

In the same way that you added an onmessage event handler, you can also create an onerror event

handler to respond to errors from the worker. The web worker can report errors by using the throw function.

With this simple implementation you can see how easy it is to create a worker and use messages to
communicate with it.

128

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

Creating a Shared Worker

A shared web worker allows you to create a worker and then reuse it from other pages. There are a couple of
advantages to using shared workers. The most obvious one is that multiple pages can share the same thread
instead of having to create a new worker thread for every page. The other, which I'll explain later, is to share

state information across pages.

Caution [E 11 supports dedicated web workers but does not support shared workers.

Now you'll create a shared worker, which is implemented in a JavaScript file. The concept is essentially
the same, but the communication is done a little differently. You'll add a few more buttons to the web page
and implement a new set of JavaScript functions to communicate with the shared worker.

EXERCISE 5-2. CREATING A SHARED WORKER

1. Open the Index.cshtml file and add the following script reference in the head
element after the previous reference:

<script type="text/javascript" src="~/controlSharedWorker.js"></script>

2. Add the code shown in bold in Listing 5-4 to the form element. This will add
another set of buttons to control the shared worker.

Listing 5-4. The Additional Buttons in Index.cshtml

<form id="control" method="post" action="">

<input id="create" type="button" class="button" value="Create Worker"
onclick="createlWorker()">

<input id="send" type="button" class="button" value="Send Message"
onclick="sendWorkerMessage()">

<input id="message" type="text" class="text" value="Hello, World!">

<input id="kill" type="button" class="button" value="Close Worker"
onclick="closeWorker()">

<input id="createS" type="button" class="button" value="Create Shared"
onclick="createSharedWorker()"»> <br»

<input id="sendS" type="button" class="button" value="Send Shared Msg"
onclick="sendSharediorkerMessage()"»

<input id="messageS" type="text" class="text" value="Hello, World!"»<brs

<input id="killS" type="button" class="button" value="Close Shared"

</form>

onclick="closeSharedWorker()">

129

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

130

From the Solution Explorer, add another file to the wwwroot folder named
sharedWorker.js and enter the code shown in Listing 5-5. This is the
implementation of the shared worker.

Listing 5-5. The sharedWorker.js Implementation

/* This file implements the shared web worker */
var clients = 0;

onconnect = function(event) {
var port = event.ports[o0];
clients++;

/* Attach the event listener */
port.addEventListener("message", function(event){

sendResponse(event.target, "Msg received: " + event.data);
}, false);

port.start();

sendResponse(port, "You are client # " + clients + "\n");

}

function sendResponse(senderPort, message) {
senderPort.postMessage(message);
}

Add another file in the wwwroot folder named controlSharedworker.js and enter
the implementation shown in Listing 5-6. | will explain this code later.

Listing 5-6. The controlSharedWorker.js Implementation

/* This file contains functions used to
communicate with the web worker */

var mySharedWorker;

function createSharedWorker() {
if (typeof(SharedWorker) !== "undefined") {
var log = document.querySelector("#output");
log.value += "Starting shared worker process.. ";

mySharedWorker = new SharedWorker("sharedWorker.js");

log.value += "Adding listener.. ";

mySharedWorker.port.addEventListener("message", function(event){
log.value += event.data + "\n";

}, false);

mySharedwWorker.port.start();

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

log.value += "Done!\n";

}
else {

alert("Your browser does not support shared web workers");
}

}

function sendSharedWorkerMessage(){
if (mySharedWorker !== null) {
var log = document.querySelector("#output");

log.value += "Sending message.. ";

var message = document.querySelector("#messageS");
mySharedWorker.port.postMessage(message.value);

log.value += "Done!\n";

}

function closeSharedWorker(){
if (mySharedWorker !== null) {
var log = document.querySelector("#output");

log.value += "Closing worker.. ";

mySharedWorker.port.terminate;
mySharedWorker = null;

log.value += "Done!\n";

}

Press F5 to debug the application. Create a shared worker and send a message to
it. It should work just like the previous exercise.

Leaving the browser tab running, create a new tab and enter the same URL

as the first tab. This will open the same page in a second tab. Create a shared
worker from the second tab. Then click the Send Shared Message button to
test the connection. Notice the message says that you are the second client, as
demonstrated in Figure 5-7.

131

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

Web Workers Demo

Starting shared worker process...
Adding listener... Done!
You are client # 2

Sending message... Done!

sg recelved: Hello, World!

Create Worker

Send Message | Hello, World!

Close Worker

Create Shared

Send Shared Ms| Hello, World!

Close Shared

Figure 5-7. Opening a second copy of the page

132

Messages go between the worker and the page that invoked the worker. Multiple pages can invoke
a shared worker, but messages are not shared; each message is still between a single page and the
worker. However, the data within the worker is shared and accessible from multiple pages.

Now let’s look at how the shared worker was implemented. Just like the dedicated worker, it must
handle the onconnect and onmessage events. However, you can’t attach the ommessage handler directly
to the worker; instead, you must access a port and attach to that. The onconnect event receives an
event parameter, and you access the port by event.ports[0]. Once you have the port, you can attach
the event handler to it. You use the port’s addEventHandlexr () method. This takes two parameters. The
first is the name of the event, message in this case. The second parameter is the function that will be
called when the event is raised.

When sending a message, you must also use the port object. This port object is provided in the
event.target property of the incoming message. Both this event handler and the onconnect event
handler use the sendResponse() function passing in the port object.

The functions in the controlSharedWorker. js file are almost identical to their dedicated counterparts.
However, they must also use the port object. The port is included in the event.

CHAPTER 5 " SCRIPTING ENHANCEMENTS

Notice in the sharedWorker. js file that the clients variable is declared and then incremented in the
onconnect event handler. This is used to keep track of how many clients have connected to the shared
worker. | added this just to demonstrate how this variable is global to all the clients attached to the
worker. In fact, there is no per-port instance data; all data is global.

Also, when a message comes in, the event parameter includes the port that the response should be
sent to. The worker doesn’t “remember” the port for each client. It just does what it’s instructed to do
and returns a response on the specified port.

Client-Side Package Management

Visual Studio 2015 and ASP.NET 5 introduce a pretty significant shift in how client-side packaging is
accomplished. NuGet is still around but has been relegated to server-side packages. On the client, you'll now
use tools such as Bower, Grunt, Gulp, and Node Package Manager (NPM). Most of the basic functionality

is preconfigured for you by the project templates. You won’t need to deal with any of this to implement the
examples in this book. However, I wanted to give you an overview of what each of these tools do and how
they work. Let’s start by looking at the projects files that were created for you.

Configuration: IConfiguration

If you take a look at the Solution Explorer, you might find yourself asking, “Where’s the web.config file?”
If you look near the end of the file list, you'll see a config. json file, which is where you'll find configuration
settings such as connection strings. Configuration data can be stored in either JSON, XML, or INI files, and
you can have many configuration files.

Take alook at the Startup.cs file. It defines an IConfiguration member and a constructor that defines
the files to be loaded.

public Startup(IHostingEnvironment env)
{
// Setup configuration sources.
var configuration = new Configuration()
.AddJsonFile("config.json")
.AddJsonFile($"config.{env.EnvironmentName}.json", optional: true);

if (env.IsEnvironment("Development"))

{

// This reads the configuration keys from the secret store.
// For more details on using the user secret store see

// http://go.microsoft.com/fwlink/?LinkID=532709
configuration.AddUserSecrets();

}

configuration.AddEnvironmentVariables();
Configuration = configuration;

}

public IConfiguration Configuration { get; set; }

133

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

So, you can decide how you want the configuration data organized and what file format to use.
The initial code that is generated by the project template loads data from the config. json file using
the AddJsonFile() method. It also loads any environment variables that may be defined using the
AddEnvironmentVariables() method.

Here’s a good article that explains the new configuration model: http://blog.jsinh.in/asp-net-5-
configuration-microsoft-framework-configurationmodel/#.VQ3TUvnF9Cg.

Static Files: wwwroot

The wwwroot folder is new with ASP.NET 5 and provides a place to put all of your static content such as CSS,
JavaScript, images, and static HTML. The idea here is to make a clear distinction between content that is
generated through server-side code and content that is simply provided to the browser as is.

This folder is known as the web root. This is roughly equivalent to the Content and Scripts folders that
were used with previous version of MVC. These folders were at the same level in the Solution Explorer as
Models, Views, and Controllers. Moving them up a level, consolidating them into one, and calling it the
web root make it a little more obvious what should be in there.

Package Management: Bower

While NuGet has been a welcome friend of .NET developers, Bower has been popular for managing
client-side dependencies. So, with ASP.NET 5, you'll use Bower to configure the client-side packages that
are needed for your application. (You'll continue to use NuGet for server-side packages.) The client-side
dependencies are listed in the bower . json file; Listing 5-7 shows the initial, template-generated file.

Listing 5-7. The bower.json Configuration File

{
"name": "WebApplication",
"private": true,
"dependencies": {
"bootstrap": "3.0.0",
"jquery": "1.10.2",
"jquery-validation": "1.11.1",
"jquery-validation-unobtrusive": "3.2.2",
"hammer.js": "2.0.4",
"bootstrap-touch-carousel”: "0.8.0"
35
"exportsOverride": {
"bootstrap": {
"js": "dist/js/*.*",
"css": "dist/css/*. *",
"fonts": "dist/fonts/*.*"
),
"bootstrap-touch-carousel”: {
"js": "dist/js/*.*",
"css": "dist/css/*.*"
b
"jquery": {
"": "jquery.{js,min.js,min.map}"

)

134

http://blog.jsinh.in/asp-net-5-configuration-microsoft-framework-configurationmodel/#.VQ3TUvnF9Cg
http://blog.jsinh.in/asp-net-5-configuration-microsoft-framework-configurationmodel/#.VQ3TUvnF9Cg

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

"jquery-validation": {
"": "jquery.validate.js"
1

"jquery-validation-unobtrusive": {
"": "jquery.validate.unobtrusive.{js,min.js}"

b
"hammer": {
"": "hammer.{js,min.js}"
}
}

}

The nice thing about working with this file is the IntelliSense support. For example, open this file and
go to the dependencies section. On the last line, where bootstrap-touch-carousel is defined, go to the end
of the line, enter a comma, and hit Return. Then enter a quote and start typing a package name. Notice that

”n,n

the list of available packages is automatically shown as you type. Enter “modernizr”: ” and notice that the
available version number is displayed for you, as shown in Figure 5-8.

"name”: "WebApplication",
"private”: true,
"dependencies”: {
"bootstrap": "3.0.0",
"jquery": "1.10.2",
"jquery-validation”: "1.11.1",
"jquery-validation-uncbtrusive”: "3.2.2",
"hammer.js": "2.0.4",
"bootstrap-touch-carousel”: "@.8.0",
"modernizr”: "
b -
"exportsOverride” & 7283
"bootstrap”: { st
"dist/js/ B ~283
e rdisEfesSr . T,
ts”: “dist/fonts/*.*"

i

et
]

-
css

"fon

¥s
Figure 5-8. Bower IntelliSense supportr

Also notice the version semantics. The current stable version as of this writing is 2.8.3. These numbers
specify the major version, minor version, and patch number, respectively. Prefixing a version with a carat
symbol (#) indicates that the major version must match. For example, if 22.8.3 was specified, any version
equal to or greater than 2.8.3 would be used as long as the major version was 2. So, 2.8.5 or 2.9 would be used
but not 3.1. The tilde symbol (~) indicates that both the major and minor versions must match. So, ~2.8.3 will
use any path level of 2.8 greater or equal to 3; so, 2.8.5 would be used, but 2.9 would not. Omitting both of
these indicates that the latest version should be used, as long as it is at least 2.8.3.

135

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

Build Tasks: Gulp

With all the client-side files that are needed in most web applications, acquiring, organizing, and preparing
them can be a tedious task. You already looked at Bower as a great tool for managing dependencies. Gulp is
another useful tool that allows you to automate build tasks. Gulp is a JavaScript-based framework that uses
Node.js and the NPM.

One typical scenario for Gulp is to tell Bower to check for and download dependencies. In fact,
the initial gulpfile. js, shown in Listing 5-8, does just that.

Listing 5-8. The Initial gulpfile.js File
/// <binding Clean='clean' />

var gulp = require("gulp"),
rimraf = require("rimraf"),
fs = require("fs");

eval("var project = " + fs.readFileSync("./project.json"));
var paths = {

bower: "./bower_components/",

lib: "./" + project.webroot + "/lib/"

};

gulp.task("clean", function (cb) {
rimraf(paths.lib, cb);
D;

gulp.task("copy", ["clean"], function () {
var bower = {

"bootstrap": "bootstrap/dist/**/*.{js,map,css,ttf,svg,woff,eot}",
"bootstrap-touch-carousel”: "bootstrap-touch-carousel/dist/**/*.{js,css}",
"hammer.js": "hammer.js/hammer*.{js,map}",
"jquery": "jquery/jquery*.{js,map}",
"jquery-validation": "jquery-validation/jquery.validate.js",
"jquery-validation-unobtrusive": "jquery-validation-unobtrusive/jquery.validate.
unobtrusive.js"

}

for (var destinationDir in bower) {
gulp.src(paths.bower + bower[destinationDir])
.pipe(gulp.dest(paths.lib + destinationDir));

}
1

Of course, there are many other tasks that you could do such as bundling and minifying your JavaScript
or CSS files. Another example is precompiling a Less style sheet into a CSS file.

136

CHAPTER 5 ' SCRIPTING ENHANCEMENTS

Note In addition to Gulp, Grunt is used for client-side build automation. Grunt can perform the same types
of tasks as Gulp but accomplishes this in a different way. Both Grunt and Gulp will likely be around for a while.
If you’re thinking about diving into one of these tools but not sure which one, here is a good article that
describes the differences between Grunt and Gulp with some advice about which one you should consider
using: https://medium.com/@preslavrachev/gulp-vs-grunt-why-one-why-the-other-f5d3b398edc4.

Summary

In this chapter, you tried a few useful techniques that you may likely use in many of your web projects.

¢ Query selectors take advantage of the same powerful CSS selectors in your
JavaScript code.

e Web workers execute CPU-intensive or slow operations on a separate thread to
improve overall responsiveness.

I also introduced some of the new client-side tools that are available for managing your web application.
In Chapter 6, I'll show you how the HTML5 improvements can be used in creating mobile-friendly web
applications.

137

https://medium.com/@preslavrachev/gulp-vs-grunt-why-one-why-the-other-f5d3b398edc4
http://dx.doi.org/10.1007/9781484211489_6

CHAPTER 6

Mobile Web Applications

So far, we have looked only at desktop browsers; however, one of the really great aspects of HTMLS5 is

how well it is supported on a wide variety of devices including mobile phone, tablets, and TVs. As of this
writing, the Chrome and Opera platforms lead the pack with 523 and 489 points, respectively, as reported by
Html5Test.com. But Amazon Silk, Firefox Mobile, Android, and BlackBerry are not far behind with 468, 456,
452, and 449 points, out of a possible score of 555.

On a mobile device you will use native applications as well as web applications. Native apps are
developed for a specific mobile platform and installed on the device, or they are downloaded through the
phone service. Native apps can often provide the best user experience because they can make maximum
use of the device’s specific hardware and OS features. However, web apps, in part because of the popularity
of HTMLS5, are increasingly in demand as well. And they can be developed almost as easily as those used by
desktop browsers.

Using Emulators

To see how your web site works on a mobile device, you can use a number of phone emulator applications.
While these may not function exactly like the actual hardware, they provide a reasonable approximation. I'll
show you how to install and use several of the more common utilities.

Using the Opera Mobile Emulator

Opera provides a free mobile emulator application, which you can download from www.opera. com/
developer/tools/mobile. One thing that is particularly nice about this utility is that you can choose, from a
pretty long list, which device you want to emulate. After you have installed this application, start it and you
should see the launch window shown in Figure 6-1.

139

http://www.opera.com/developer/tools/mobile
http://www.opera.com/developer/tools/mobile

CHAPTER 6 * MOBILE WEB APPLICATIONS

(o) Opera Mobile Emulator - o IEN
Profile
HTC Evo 4G ~ | Resolution HVGA Portrait (320x480) v
HTC Flyer
HTC Hero Add | Remove
HTC One S Pixel Density 160 v
HTC One X
HTC Sensation Add Remove
ESIC TaFto9 User Interface Touch v
HTC Wildfire
LG Intuition User Agent String | Android v
LG Optimus 3D = =
|LG Optimus One | v Yidow Scale 100%
R Arguments
Savefsave as ... Remove Full browser reset on startup [|
" Launch Help .Change language

Figure 6-1. The Opera emulator launch window

When you select a device, the window displays the hardware details such as screen resolution. Select
the LG Optimus One device and click the Launch button. With this emulator you can use either the device
keypad or your desktop keyboard. Enter the URL of your site from Chapter 4, which should look like
Figure 6-2.

140

http://dx.doi.org/10.1007/9781484211489_4

{ Opera Mobile - LG Optimus ...

Chapter 4 - CSS Demo
localhost:8453/

CSS Demo

L s ks 1 i B g 8 o b L 8

8 g pn b o g S i S i o s sl a0

ot ek 8 b s 0 o e B s o i e s g Lt 8 08

lr e paus Sem e CmR e
[S et ety 4 ed e e e by b s 0

Sl v g A o
Thw sl e o ons rorn s o b o8 Gt s S ' e .

s s din, by sesligsig the Se win asd
ratm ey pra ca w s ek e ade

[ErT——— e e e ST T
Fonir Ward | wodn gam o s o smon
Smidey e Ul pae e sbgmey -

T e s

R L L T e T
by ees hsy thet e s b -

Mk g

LG Optimus One 320x420 PPI: 160 (O3] | 100% |

Figure 6-2. Emulating the LG Optimus One device

CHAPTER 6 © MOBILE WEB APPLICATIONS

Notice that page is scaled to fit in the screen, which makes it mostly unreadable. You will deal with that
later in the chapter. You can try some other devices such as the Nokia N800, which is shown in Figure 6-3.

As you might expect, the larger form factors handle the page better.

141

CHAPTER 6 * MOBILE WEB APPLICATIONS

O Opera Mobile - Nokia N800 -

Chapter 4 - CSS Demo

| CSS Demo

Introducing the new HTMLS features
¥se the new €553 features to build some of the most visually appealing web sites.

Main content area
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do esusmod tempor ncididunt ut labore
et dolore magna abqua Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut

Featured Article

This is really cool_.

Nokia NE00 640x360 PPI: 225 ﬁ 100% ~

Figure 6-3. Emulating the Nokia N800

Installing Chrome Ripple

Emulating a mobile device on Chrome and Firefox requires a different approach by using add-ons to the
desktop browser. When using the emulators, you are essentially using the desktop browser with some add-
on functionality to simulate the device’s form factor.

Start the Chrome desktop browser and click the Apps icon and select the Web Store app. In the search
box, select the Extensions option and type ripple emulator. The results should look like Figure 6-4. Click the
FREE button to install the extension.

g~ chrome web store Signin | 4 |

from ripple.tinyhippos.com Developer Tools

« Home | Reset filters
! A browser based htmi5 mobile application development and testing tool dkkk e (516)

rple emlaor x | Ripple Emulator (Beta)
ﬁi‘w‘ﬁﬂh

) Apps Clear
'®) Extensions

) Themes

Figure 6-4. The Ripple emulator in the web store

142

CHAPTER 6 © MOBILE WEB APPLICATIONS

Once you have installed the add-on, use the Chrome browser and enter the URL of the Chapter4 web
site. In the top-right corner, there is a button, shown in Figure 6-5, which is used to start the emulator.

Figure 6-5. Launching Ripple

Click this button and then click the Enable button, as shown in Figure 6-6.

=\ —-—
S 7 —
L~y | —

Ripple Mission Control

This is the Ripple control panel, where you can
enable and disable Ripple for the current page
URL and all pages contained within it.

Enable

Disable

New to Ripple? Hit up theMain
Documentationto get started.

Figure 6-6. Enabling the Ripple emulator

143

http://dx.doi.org/10.1007/9781484211489_4

CHAPTER 6 © MOBILE WEB APPLICATIONS

This will display the current page using the emulator mode. The first time you start Ripple for a specific
URL, you'll see the prompt shown in Figure 6-7. Click the BlackBerry 10 WebWorks button to choose this
platform to emulate.

Are you ready for this?!?!
You're seeing this window because this is the first time you've enabled

for this specific URL. Please select the platform/runtime you wish to
start testing with.

Apache Cordova / PhoneGap (1.0.0)

MOBILE
ENVIRONMENT

Apache Cordova (2.0.0)

BlackBerry 10 WebWorks (1.0.0)

WebWorks (2.0.0)

WebWorks-TabletOS (2.0.0)

Mobile Web (defauit)

Figure 6-7. Selecting the desired platform

144

CHAPTER 6

Your web page on the BlackBerry 10 device should look like Figure 6-8.

CSS Demo
Introducing the new HTMLS features

ﬂ'sememCSSSreamleshluildmulﬂnnmslwsualyamahmmm.

Featura Archives

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameo laboris nisi ut.

Featured Article

This is really cool...

Figure 6-8. The web page on the BlackBerry 10 device

MOBILE WEB APPLICATIONS

There are two small buttons at the top-left and top-right corners of the browser window with arrows on
them. Use these to show/hide the option windows. For example, the one on the left, shown in
Figure 6-9, allows you to change the device orientation or to choose a different platform to emulate. It also
provides some technical details of the current device such as the screen resolution. The button on the right

includes the Settings tab where you can switch between dark and light themes.

145

CHAPTER 6 * MOBILE WEB APPLICATIONS

localhost:8453
¢« - C [D localhost:8453

Devices)

- . BlackBerry Z10

Orientation D (I

—

Platforms =3

Platform ~ BlackBerry 10 WebWorks i

Version (100
Change Platform

Information ey

Platform: BlackBerry 10 WebWorks

Device: BlackBermry Z10

OS: BlackBerry 10.0.10

Manufacturer: BlackBerry

Screen: 768x1280

Density: 356 PPI

CSS Pixel Ratio: 2.24

CSS Pixels: 342x571

User Agent: Mozilla/5.0 (BB10; Touch)
AppleWebKit/537.10+ (KHTML, like Gecko)
Version/10.0.10.261 Mobile Safari/537.10+

|: = e—— B
Accelerometer [+)
: ’)
Invoke ()

Figure 6-9. Displaying the emulator options

146

CHAPTER 6 © MOBILE WEB APPLICATIONS

Emulating the Other Devices

To simulate your web site on an iPhone, using Chrome, go to this site: http://iphone-emulator.org. When
the emulator is displayed, enter the URL of the Chapter4 site into the search box on the device. The site will
look like Figure 6-10.

e

all ATEAT = 07:22 PM oy

iPhone-Emulator.org - Free iPhone Emulator

CSS Demo
Introducing the new HTMLS features

e manew C

Lotam ot amet,
ol magna akga. U Crim ad minkm verkam, gus

00 60 chmmod kmpor RO i bboe el T

Figure 6-10. Emulating the web page on an iPhone

147

http://iphone-emulator.org/
http://dx.doi.org/10.1007/9781484211489_4

CHAPTER 6 © MOBILE WEB APPLICATIONS

Notice the buttons at the top of the page that enable you to also emulate other devices such as the iPad
and Android.

Tip There are other emulators available; I've covered only a few. If you want to look into other options,
try BrowserStack at https://www.browserstack.com/1list-of-browsers-and-platforms?product=1ive.
You can also check out the resources on ASP.net at www.asp.net/mobile/device-simulators.

Handling Form Factors

The biggest challenge when creating web applications that work well on mobile devices is handling the
various form factors. On the larger devices you’ll want to take advantage of the extra space while still making
areasonable appearance on the smaller ones. In the samples that I've shown you so far, the device either
scaled the page to fit or cropped it. Neither approach is optimal.

There are three techniques that will help you improve how your site looks across all form factors.

e Media queries: This allows you to apply different styles based on attributes of the
existing viewport. I will spend most the rest of this chapter demonstrating this.

e Usea CSS flexbox layout: This is similar to designing forms with Windows
Presentation Foundation (WPF) that allows the browser to resize or move elements
dynamically based on the window size. I will explain how this works, and you'll then
use it to configure the navigation links.

e Flexible images and videos: This simply instructs the browser to stretch or shrink the
image to fit the available space.

Tip One of the things that the various emulators do is limit the window size based on the device
characteristics. You can accomplish the same thing by simply resizing your browser window. For your initial
testing, you can shrink the window and see how the layout responds. Then use the emulators for the
final testing.

Understanding Media Queries

CSS 2.1 introduced the media keyword, allowing you to define a printer-friendly style sheet. For example, you
can use something like this:

<link rel="stylesheet" type="text/css" href="screen.css" media="screen" />
<link rel="stylesheet" type="text/css" href="print.css" media="print" />

148

https://www.browserstack.com/list-of-browsers-and-platforms?product=live
http://www.asp.net/mobile/device-simulators

CHAPTER 6 © MOBILE WEB APPLICATIONS

You can then define one style sheet for browsers (screen) and a different style sheet for the print version
of your web page. Alternatively, you could embed media-specific style rules within a single style sheet.
For example, this will change the font size when printed:

@media print

{
h1, h2, h3
{
font-size: 14px;
}
}

Tip There are other media types that are supported including aural, braille, handheld, projection,
tty, and tv. As you can see, the media type was initially used to represent the type of device that is rendering
the page. Also, the a1l type is supported but is also implied if no media type is specified. Styles with the all
type are applied for every device.

With CSS3, this has been enhanced significantly to allow you to query various attributes to determine
the appropriate styles. For example, you can apply a style when the width of the windows is 600px or smaller
like this:

@media (max-width:600px)

{
h1
{
font-size: 12px;
}
}
The features that can be selected in a media query are as follows:
e width
e height

e device-width

e device-height

e orientation

e aspect-ratio

e device-aspect-ratio

e color (0 if monochrome or number of bits used to specify a color)
e color-index (number of colors available)

e monochrome (0 if color, or number of bits for grayscale)

e resolution (specified in dpi or dpcm)

e scan (for TV, specifies scanning mode)

e grid(1ifagrid device such as TTY display, 0 if bitmap)

149

CHAPTER 6 © MOBILE WEB APPLICATIONS

Most of these support min- and max- prefixes, which means you don’t have to use a greater-than or
lesser-than operator. For example, if you wanted a style for windows between 500px and 700px, inclusive,
you would specify this as follows:

@media screen and (min-width: 500px) and (max-width: 700px)

Notice in this example I also included the screen media type. In this case, this style is ignored for all
other types such as print.

Tip For a complete definition on each of these features, see the W3 specification at
www.w3.0rg/TR/css3-mediaqueries/#medial.

Using Media Queries

There is a lot that you can do with media queries to dynamically style your web page. For example, you could
use the color and monochrome features to apply more appropriate styles when displayed on a monochrome
device. The color feature returns the number of colors supported, so (min-color: 2) will select all color
devices. You can also use (orientation: portrait) and (orientation: landscape) to arrange the
elements based on the device’s orientation.

For this demonstration you will focus on the width of the window, but the same basic concept
applies to the other features as well. As the width of the window shrinks, the styles will gradually adjust to
accommodate the size while retaining as much of the original layout as possible.

A typical approach is to plan for three different styles: large, medium, and small. The large style is
probably how the site is initially designed, as is the case with your Chapter4 site. There are sidebars and
multiple columns of content. The medium style will keep the same basic layout but start to shrink areas as
needed. A useful technique is to use relative sizing so as the window shrinks, each element gradually shrinks
as well. The small style will be used for handheld devices, and you'll generally keep the layout to a single
column. Since the page will tend to be longer now, links to bookmarks on the page become more important.

Modifying the Chapter4 Site

To demonstrate these techniques, you'll add some additional style rules to the site that you built in Chapter 4.
You'll use media queries to selectively apply these styles based on the width of the window.

Tip The Chapter4 site was created using the WebMatrix application. However, the source code download
provides this as both a WebMatrix project and a Visual Studio project. You'll find these in the Chapter4 folder.
You can use whichever you prefer. The instructions will tell you how to modify the Default.cshtml file. If you're
using Visual Studio, this will be the Index.cshtml file; the changes are identical in both files. I'm using the
version that was also modified in Chapter 5 to set the internal links to green using JavaScript.

150

http://www.w3.org/TR/css3-mediaqueries/#media1
http://dx.doi.org/10.1007/9781484211489_4
http://dx.doi.org/10.1007/9781484211489_4
http://dx.doi.org/10.1007/9781484211489_4
http://dx.doi.org/10.1007/9781484211489_4
http://dx.doi.org/10.1007/9781484211489_4
http://dx.doi.org/10.1007/9781484211489_5

CHAPTER 6 © MOBILE WEB APPLICATIONS

Open the Chapter4 project and run the application. We'll continue to use the Chrome browser, but most
browsers will support the styling features that were demonstrated in this chapter. Try shrinking the width of
the browser window. Notice that the page does not scale at all; the browser simply clips whatever does not fit
in the window. That’s your first clue that you have some work to do. Web pages should be fluid and adjust to
the window size.

Caution To make the changes easier to follow, you will simply append additional style rules to the end of
your style tag. As | mentioned in Chapter 4, identical selectors will overwrite styles defined earlier in the file.
However, it is important to use identical selectors. You can write a similar selector that will return the same
elements, but if it is considered less specific, it won't override the previous style. For example, in this document,
nav a will return the same elements as nav ul 1i a, but the latter is considered more specific and will be
preferred over the former even if it is earlier in the file.

Configuring the Medium Layout

The current layout of your web page is based on a relatively large window such as a desktop browser. When
designing a web page, you should also consider the appropriate layout for smaller devices. I suggest creating
a separate design for small-resolution devices such as typical mobile devices. In this chapter, you'll use
media queries to implement small, medium, and large configurations. However, the medium layout is often
a compromise between small and large. Starting with a large layout and then designing the small layout
usually works best.

Scrolling horizontally is not intuitive and should be avoided if at all possible. So if you have a narrow
resolution, you should stack elements vertically. The aside element, for example, will need to go to the
bottom of the page. You might consider eliminating the images or changing the font sizes.

Once you have a small layout in mind, you can gradually introduce these changes as the width shrinks.
The approach I like to take is to gradually start shrinking the width of the browser window and see what
breaks. Then make the corrections to deal with that and try shrinking it some more. With the small layout
already designed, you'll know where you're going as you make adjustments in this iterative process.

Now you'll define the style for the medium and small layouts, starting with medium. On medium-sized
devices, you'll use the same basic layout but just shrink some of the elements. For this site, medium will be
defined as widths between 600px and 940px. The size of the web page is 940px, so if the window is wider
than that, no adjustment is necessary. The 600px minimum size is somewhat arbitrary. I'll explain how I
arrived at that figure later.

The medium layout needs a little adjustment. You'll use a simple trick of defining the elements with
relative sizes. This allows them to automatically shrink or stretch as the window is resized. Open the
Default.cshtml file and add the rules shown in Listing 6-1 to the existing style element. Add this after all
the existing rules.

151

http://dx.doi.org/10.1007/9781484211489_4
http://dx.doi.org/10.1007/9781484211489_4

CHAPTER 6 © MOBILE WEB APPLICATIONS

Listing 6-1. Defining the Medium Layout

@@media screen and (max-width: 940px)

{
body
{
width: 100%;
}
aside
{
width: 30%;
}
nav ul 1i a
{
width: 100px;
}
}

Note In the Razor syntax, an ampersand (@) is used to indicate that what follows it is code, not content.
To include an ampersand in the context such as a media query, you’ll need to use a double ampersand.

By setting the body width to 100,% it will automatically shrink to fit the window. It won’t stretch past
940px, however, because this style is applied only when the width is smaller than that. The aside element
is set to 30%. The current ratio (280px/940px) is approximately 30%. As you continue shrinking the window,
the links in the nav element will eventually be clipped, so this style also reduces their width, moving them
closer together.

Run the application and try shrinking the window. You should notice a nice fluid layout that adjusts to
the window size, as shown in Figure 6-11.

152

CHAPTER 6 © MOBILE WEB APPLICATIONS

- CSS Demo
Introducing the new HTMLS features

. Use the new CSS3 features to build some of the most visually appealing web sites.

Apress

in con I

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut.

Featured Article
This is really cool...

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

Figure 6-11. Displaying the medium layout

153

CHAPTER 6 * MOBILE WEB APPLICATIONS

Configuring the Small Layout

Eventually, however, the layout doesn’t work well, as illustrated in Figure 6-12.

(CSS Demo

Introducing the new HTMLS5 features
_ Ypethe new CSS3 features to build some of the most visually aj

Main content area

Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut.

Featured Article

This is really cool...

Figure 6-12. The medium layout when shrunk too much

154

CHAPTER 6 © MOBILE WEB APPLICATIONS

There are several issues here that you'll address.
e The header text is wrapping to another line and overlapping.

e The text columns are too narrow; this size cannot adequately support three content
columns.

The primary change that you'll make that will adjust the layout is to move the aside element to the

bottom of the page rather than alongside the other content. As you resize the window, the other changes

were gradual, but this change will cause a jump. The main content will go from 70% of the window size to
100%. You'll need to determine the appropriate width that should trigger the change. I choose 600px, but
you can experiment with other values and see how the page works.

Enter the code in Listing 6-2 to the end of the existing style element.

Listing 6-2. Defining the Small Layout

@@media screen and (max-width: 600px)

{

/* Move the aside to the bottom of the page */
#contentArea, #MainContent, aside

{
display: block;
}
aside
{
width: 98%;
}
/* Use a single column for the article content */
.otherContent
{
-webkit-column-count: 1;
column-count: 1;
}
/* Fix the line spacing of the header */
h2, h3
{
line-height:normal;
}
/* Force the intro element to stretch to fit the content */
.intro
{
height: min-content;
}

155

CHAPTER 6 © MOBILE WEB APPLICATIONS

/* Move the book images to the left */
.book img
{
float: left;
margin-right: 10px;
margin-bottom: 5px;

}
/* Make the book elements tall enough to fit the image */
.book
{
min-height: 120px;
}

Note The previous style that you added for the medium size also applies to the small style since both
apply to widths less than 940px. The small style will define additional rules, but keep in mind the previous styles
apply as well.

The small layout rules make the following adjustments:

e The aside element is moved to the bottom. This is done by undoing the table and
cell attributes that you entered in Chapter 4 and then changing the width to be 98%.
Previously, the #contentArea element had the display attribute set to table, and
the #mainContent and aside elements were set to table-cell. By setting all three of
these to block, the virtual table is removed.

e The content is displayed in two columns, and this will be reduced to a single column.

e Since the header text can now use more than one line, change the line height so the
lines do not overlap.

e Force the intro section to stretch vertically to ensure all the content fits.
e Move the book images to the left and the corresponding text to the right.
e Ensure the book elements are large enough to fit the image.

Display the web page with these changes and resize the window. If you make the window narrow
enough, the links will wrap, as shown in Figure 6-13.

156

http://dx.doi.org/10.1007/9781484211489_4

CHAPTER 6 © MOBILE WEB APPLICATIONS

CSS Demo 1

‘ Introducing the new HTMLS features

Use the new CSS3 features to build some of the most visually
appealing web sites.

Main content area

Figure 6-13. The web page with a narrow window

Using a Flexbox

When creating the style for a medium-sized window, you decreased the width of the links so they would fit
in the smaller window. You could do that again so they still fit, but eventually you will need a better solution.
What if you needed to add another link or two or if one of them was longer than the fixed width that you
assigned? To resolve this issue, you'll use a flexible box, or flexbox. A flexbox allows you to define blocks of
content that are automatically arranged based on the available space.

When working with the flexbox, you will need to configure the container as well as the items that are
included in the container. These are sometime referred to as the parent and its children. For example, the
nav tag in the document has the following content. The ul tag contains a series of 11 tags.

<nav>

Feature</1i>
Article</1i>
Archives</1i>
Apress</1i>

</nav>

157

http://www.apress.com/

CHAPTER 6 © MOBILE WEB APPLICATIONS

Configuring the Container

On the container element, ul in this case, you'll set the display attribute to flex to indicate that a flexbox
should be used. You can then specify flow-direction, which is either row or column. With the direction set
to row, the items are aligned horizontally, left to right; with column, they are stacked vertically, top to
bottom. You could also add -reverse to reverse the order (right to left or bottom to top). These are the
allowed values:

e row: Horizontally, left to right (this is the default value)
e row-reverse: Horizontally, right to left

e column: Vertically, top to bottom

e column-reverse: Vertically, bottom to top

Then you can specify the flex-wrap attribute, which determine what happens when the items do not fit
into the allotted space. The following are the possible settings:

e nowrap: The content is displayed in a single row (or column) and clipped if necessary
(this is the default value).

e wrap: The items wrap to the next row or column in the same direction.

e wrap-reverse: The items will wrap to the next row (or column) in reverse direction.
For example, if the flow-direction is row (left to right), the second row will be from
right to left.

Both flex-direction and flex-wrap can be combined into a single flex-flow attribute with the
direction and wrap options included. For example, flex-flow: row wrap will align the items horizontally
and enable wrapping to the next row.

Note The direction specifies the main axis, horizontal or vertical. There are several attributes that you can
use to configure the alignment; some affect the alignment along the main axis, and some apply to the minor
axis. | will discuss these assuming the row direction is used. This is the most common, and it will be easier
to follow using these terms. The CSS attributes and values are purposely generic, using words like start/end
instead of fop/bottom or left/right. If you're using the column direction, the attributes and values apply equally
well, but the words to describe them will be different (for example, top-aligned instead of left-aligned).

The following attributes can be used to further configure the alignment of items:
e justify-content: Main axis, affects the horizontal spacing of items within a row
e align-items: Minor axis, affects the vertical alignment within a row
e align-content: Minor axis, affects the vertical spacing between rows

You can specify how you want the items justified along the main axis, which determines how any extra
space should be allocated. The justify-content attribute supports the following options:

e flex-start: The default. The items are left justified (or top justified if using the
column direction). All extra space is at the end.

e flex-end: The items are right-justified (or bottom-justified).

158

CHAPTER 6 © MOBILE WEB APPLICATIONS

e center: The items are placed in the center, with extra space divided at the beginning
and end.

e space-between: The first item is left aligned, the last item is right aligned, and the
extra space is distributed over the spaces between the items.

e space-around: This is similar to space-between, except the extra space is also added
before the first item and after the last item.

The align-items attribute specifies how items are aligned in the minor axis. For example, if the flow-
directionis row, the justify-content attribute describes how the horizontal spacing is arranged. However,
the align-items attribute specifies how items within the row are aligned vertically. If the items in the row
have differing heights, you can choose to align the tops or the bottoms, for example. These are the available
options:

e flex-start: The default. This aligns the tops.
e flex-end: This aligns the bottoms.

e center: This centers each item, with extra space evenly distributed between top and
bottom.

e stretch: This stretches the item to the size of the largest item in the row.

e baseline: The items are aligned using their baseline.

Tip The term baseline came from the print world where characters were aligned along a baseline. This
is not necessarily the bottom of the text because of fonts with serifs as well as superscripts and subscripts.
However, the baseline provides a visual guide to placing characters so the line appears straight. In CSS, this
concept is even more complicated because we’re not just dealing with text. If you want to delve into this
subject, here is a good article: www. smashingmagazine.com/2012/12/17/css-baseline-the-good-the-bad-
and-the-ugly.

If you have multiple rows of items, the align-content attribute specifies how the extra vertical spaced
is placed around the rows. This supports the same options as justify-content: flex-start, flex-end,
center, space-between, and space-around. It also supports the stretch option.

Configuring the Items

There are several attributes that can be applied to the child items that influence how they are aligned. You
can assign a numeric value for the flex-grow and flex-shrink attributes. This indicates how much the item
can grow or shrink relative to the other items. For example, items with a value of 2 will grow twice as much
as items with a value of 1. Also, the flex-basis attribute is used to indicate the basis of an item’s initial size.
This is a numeric value that indicates the initial value to be used. If set to auto, which is the default value,
this will be the actual width of the item.

You can also specify a numeric value for the order property. By default, items are displayed in the order
that they appear in the HTML content. However, the order property, if used, will override this.

As I explained previously, the alignment along the minor axis is determined by the align-items
attribute. However, this can be overridden on one or more items. If you have set align-items to flex-start,
for example, this will align them along the top. You can override this for an individual item by setting its
align-self attributes. This takes the same values as the align-items attribute.

159

http://www.smashingmagazine.com/2012/12/17/css-baseline-the-good-the-bad-and-the-ugly
http://www.smashingmagazine.com/2012/12/17/css-baseline-the-good-the-bad-and-the-ugly

CHAPTER 6 © MOBILE WEB APPLICATIONS

Note You can find the complete specification at www.w3.org/TR/css-flexbox-1. As of this writing, this
was in a Working Draft status. Some of these concepts are better understood with some visual examples. Here
is a good article that demonstrates these techniques: https://developer.mozilla.org/en-US/docs/Web/
Guide/CSS/Flexible boxes.

Adjusting the Links

Now you'll modify your sample page to fix the link alignment using a flexbox. Add the following to the
end of the style tag. This will configure the ul element to display the elements horizontally and to enable
wrapping, if necessary. The links will also be left-justified. The width of the links is set to auto so it can
accommodate long and short elements.

nav ul

{
display: flex;
flex-flow: row wrap;
justify-content: flex-start;

nav ul 1i a

{
}

width: auto;

You'll also need to fix the size of the nav element so it can grow, vertically, if the links need to be
wrapped. The height is currently set to 30px. Change the height attribute to min-height, as shown in the
following code. This will set the initial height to 30px but allow it to grow to fit the contents.

/* Make the radius half of the height */
nav

{
min-height: 30px;
border-radius:15px;

Save your changes and refresh the web page. Shrink the window as narrow as it will go. Even at this size,
the page layout still looks good, as shown in Figure 6-14.

160

http://www.w3.org/TR/css-flexbox-1
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Flexible_boxes
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Flexible_boxes

CHAPTER 6 © MOBILE WEB APPLICATIONS

CSS Demo

Introducing the new HTML5
features

Use the new CSS3 features to build some oﬂhe;
most visually appealing web sites.

Apress

Main content area

Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation

ullamco laboris nisi ut.

Featured Article

This is really cool...

Figure 6-14. The web page with its smallest size

161

CHAPTER 6 © MOBILE WEB APPLICATIONS

The flexbox works well when combined with media queries. One example of this is to configure the
direction of the links to be vertical when the window width is small. Try entering this at the end of your
style element to demonstrate this:

@@media screen and (max-width: 400px)

{
nav ul
{
flex-direction: column;
}
}

If you shrink the page small enough, the links be aligned vertically, as shown in Figure 6-15.

CSS Demo

Introducing the new
HTMLS5 features

Yse the new CSS3 features to build
some of the most visually appealing
web sites.

Main content area

Figure 6-15. Using vertical links

162

CHAPTER 6 © MOBILE WEB APPLICATIONS

Using Flexible Images

If you have large images, you may find them being clipped. To prevent that, set the max-width property

to 100%. This will cause the images to be resized to fit the width of the container. This is not done inside a
media query, and this format will be applied at all resolutions. For example, you can specify the following to
configure the phone booth image:

#phone
{

max-width: 100%;
height: auto;

Setting the height to auto will change the height to maintain the existing aspect ratio. You can do the
same thing with video elements using the following style rule:

.video embed, .video object, .video iframe

{
width: 100%;
height: auto;

Viewing the Page on a Mobile Device

For a final test, display the site using Chrome and enable the Ripple emulator as I showed you earlier. Select
the PhoneGap platform. Your page should look like Figure 6-16.

163

CHAPTER 6 © MOBILE WEB APPLICATIONS

 CSS Demo
Introducing the new HTMLS5 features

se the new CSS3 features to build some of the most visually appealing web sites.

Main content area

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut.

Eeatured Article

This is really cool...

T

O e .
- ——

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

L s | s W gy 2 3

Figure 6-16. The web page as seen on the Ripple emulator

164

CHAPTER 6 © MOBILE WEB APPLICATIONS

Summary

In this chapter, I showed you how to install and use several mobile device emulators including the following:
e Opera Mobile Emulator
e Chrome Ripple add-on
e iPhone emulator

To handle the various form factors, media queries were used to selectively apply styles based on the
window width. You implemented large, medium, and small layouts that scale cleanly as the window is
resized. Also, by setting the width to 100%, you can auto-size images and video. Finally, you used a flexbox to
dynamically arrange the navigation links.

165

PART il

Digging Deeper

CHAPTER 7

Supporting Older Browsers

Now you have this great-looking, HTML5-compliant web page that you created in Chapter 4. You want to
show it off, so you send a link to a colleague who just happens to still use IE 8, and they see something
like Figure 7-1.

CSS Demo

niroauc e ures

Use the new CSS3 features to bulld some of the most visually appeallng web sites.

Malin content area Other Titles
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut.

Featured Article
This is really cool...

Check out some of the other titles available from
Apress.

Pro Office 365 Development is a practical,
hands-on guide to building cloud-based solutions
using the Office 365 platform.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut.

Figure 7-1. The CSS demo as shown in IE 8

169

http://dx.doi.org/10.1007/9781484211489_4

CHAPTER 7 © SUPPORTING OLDER BROWSERS

The page looks awful and nothing like what you were expecting. You're certainly not going to win any
prizes for it. Not to be deterred, you send the link to your boss, and things get worse. Your boss is using IE 7
and sees something like Figure 7-2.

CSS Demo

Introducing the new HTMLS5 features

Use the new CSS3 features to bulld some of the most visually appealing web sites.

Maln content area
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut.

Featured Article

This is really cool...

Figure 7-2. The CSS demo as shown in IE 7

The sidebar is no longer on the side but tacked on at the bottom of the page. Your boss begins
wondering what you've been doing in all your spare time. You've just learned two important lessons, the
hard way.

e Always control your demo environment; in this case, let them see the page on your
browser.

e More importantly, test your web site on several different browsers.

In this chapter, I will show you some fairly simple techniques to get your page looking its best even with
older browsers. You don’t have to write much code because there is a lot of open source code that you can
easily add to your site.

Making Some Simple Changes

There are a couple of really easy changes that will make the web page look much better. You'll start with
those, and then later I'll show you some of the more involved solutions.

Emulating Older Browsers

To test your web page using some older versions of Internet Explorer, you'll use IE 11 in Emulator mode.
After launching Internet Explorer, hit F12 to display the Developer Tools pane. By default, the browser will
use “edge” mode, which is the latest version. To change this, click the Edge drop-down menu, as shown in
Figure 7-3.

170

CHAPTER 7 © SUPPORTING OLDER BROWSERS

- DOM Explorer Console Debugger Network Ul Responsiveness 5 [Edge ? X

O [Oo ¢ v Edge (Default)
4 <html> Styles Computed Layout Even| L
<head></head> 9
<body></body> 8
</html> 7
5

Figure 7-3. Modifying the emulation mode

For this chapter, use the same project you created in Chapter 4 (Visual Studio version), which you can
download from www.apress.com.

Using Modernizr

When supporting older browsers, the first thing you should do is employ the Modernizr open source
JavaScript library. This library performs two essential functions.

e Detects the current browser’s available features and provides this information as
queryable properties. For example, in your JavaScript, you can place conditional
logic like this:

if (!Modernizr.cssanimations) {
alert("Your browser does not support CSS animation");
}

e Provides shims to implement missing functionality. This includes the html5shim
library that allows you to style your content using the new elements such as header,
footer, nav, and aside.

Tip For more information, check out the Modernizr web site at http://modernizr.com.

So, let’s add the Modernizr library to your page and see what happens! In Chapter 5 I briefly explained
the Bower tool that is used as a client-side package manager. Now, you'll see it in action. Because this project
was created using the Empty template, you'll need to install Bower. Go to the NuGet PackageManager from
the Tools menu. Enter bower in the search box and select Bower as shown in Figure 7-4. Click the Install
button to begin the install.

171

http://dx.doi.org/10.1007/9781484211489_4
http://www.apress.com/
http://modernizr.com/
http://dx.doi.org/10.1007/9781484211489_5

CHAPTER 7 © SUPPORTING OLDER BROWSERS

NuGet Package Manager: Chapter7

Package source: nuget.org 5 Filter: All

| bower *x H o3

€&

Bower
A package manager for the web.

'e Mobisys.MSBuild.Bower

Run a bower command as a MSBuild task

. MSBuild.Bower
e Run a bower command as a MSBuild task

Figure 7-4. Adding Bower to the project

Include prerelease

& Bower <

Action: Version:

Install -

Options
Show preview window

Latest stable 1.3.11 -

Dependency behavior: Lowest -

Now you'll also need to create the bower . json file. From the Solution Explorer, right-click the Chapter 7
project and select the Add and New Item links. Select the Bower JSON Configuration file option as shown in
Figure 7-5. The file name should default to bower. json.

4 |nstalled Sort by:
4 ASP.NET 5 £+
b ASP.NET 5 Preview @
PowerShell c*
P Online &3
(K]
5]
&J
Name: bowerjson

Add New Item - Chapter7

Default -

MVC View Page ASP.NET 5
Web API Controller Class ASP.NET 5
ASP.NET Configuration File ~ ASP.NET 5

Bower JSON Configuration File ASP.NET 5

Grunt Configuration file ASP.NET 5
Gulp Configuration file ASP.NET 5
NPM configuration file ASP.NET 5

Click here to go online and find templates.

-

> IEH|
Search Installed Templates (Ctri+E) P~

Type: ASP.NET5
JSON Configuration file for Bower

Add l | Cancel

Figure 7-5. Adding the bower.json file.

172

http://dx.doi.org/10.1007/9781484211489_7

CHAPTER 7 © SUPPORTING OLDER BROWSERS

Add the line shown in bold in the following code:

"name": "Chapter7",
"private": true,
"dependencies": {

"modernizx": "2.8.3"
}

Tip Aslexplained in Chapter 5, Visual Studio provides IntelliSense while you’re editing this file. After
selecting modernizr from the list and typing the colon, the current version will be displayed. As of this writing, it
is 2.8.3. You should take whatever the latest version that is displayed by IntelliSense.

You can install Grunt or Gulp and setup a task to automatically update the Modernizr file and copy
it to the wwwroot folder. For simplicity, you'll perform this manually. In the Solution Explorer, expand the
Dependencies folder and right-click the Bower item. Select the Restore Packages link. This will force a
download of the latest version.

In the Solution Explorer, right-click the wwwroot folder and select the Add and New Item links and enter
the name lib. Then right-click the modernizr item in the Dependencies\Bower folder and select the Open in
File Explorer link. This will open Windows Explorer in this location. You should see a modernizr. js file; copy
this to the wwwroot\1ib folder in the Solution Explorer.

With Modernizr now installed, you can include the Modernizer library in your page by adding this at the
top of your Index.html file, just after the DOCTYPE tag:

<script type="text/javascript" src="lib/modernizr.js"></script>

Display the page using Internet Explorer; then go to the Developer Tools pane and change the browser
mode to IE 7, as I explained earlier. Your page should look like Figure 7-6.

173

http://dx.doi.org/10.1007/9781484211489_7
http://dx.doi.org/10.1007/9781484211489_5

CHAPTER 7 © SUPPORTING OLDER BROWSERS

CSS Demo

Introducing the new HTMLS5 features

Use the new CSS2 features to bulld some of the most visually appealing web sites.

Main content area

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut.

Featured Article

This is really cool...

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut.

Figure 7-6. The demo page with Modernizr as viewed in IE 7

Notice that the border and background colors are now showing, which goes a long way to making the
page look like it was originally intended. Also, the navigation links are arranged horizontally.

Note A shimis a thin object, often made of wood, that is used to fill a gap between two objects. In this
context, the term refers to a relatively small piece of code that fills in the gap between a browser’s current
functionality and the full HTML5 specification. The term shim has been used in software development circles for
a long time. The term polyfill was introduced for referring to a browser-related shim. So, in this context, the two
terms are synonymous.

174

CHAPTER 7 © SUPPORTING OLDER BROWSERS

Adding More Polyfills

Now you're probably starting to feel a little better. By adding Modernizr, the page looks decent. However,
upon closer inspection, there is a fairly long list of features that are not working, including the following:

e Tables

e Rounded corners

e Gradient background fills
e Striped articles

e Animation

e 3D transforms

e Multiple columns

Given a sufficient amount of patience and persistence (and, of course, time), you could probably
implement all of these features so that your page looks the same in both IE 7 and the latest version of
Chrome. However, I don’t recommend you do that. Essentially, you should make sure your page works great
on the latest HTML5-compliant browsers and works acceptably on older browsers. It doesn’t have to work
great on every browser. Consider the following:

e Most users are not going to view your site on a host of browsers and compare the
experience of each. Your page does not need to look identical in every browser.

e Ifsomeone is using IE 7, they are used to bad-looking web sites. Implementing just a
few of these polyfills will probably make your page stand out as one of the better sites
they've visited.

e HTMLS5 is supposed to make your job as web developer easier. However, if you try to
make every page work like native HTML5 on older browsers, you'll be spending far
more time, not less.

For each feature that your page uses that is not natively supported by commonly used browsers, you
have the following options:

e Fail: Simply display an error stating this browser does not support the necessary
features and offer some suggested browsers to use. For example, the primary
purpose of the sample site you created in Chapter 5 was to demonstrate how web
workers are used. If the page is viewed by a browser that doesn’t support web
workers, there’s no point trying to make the page work. Just fail!

e Polyfill: Implement an alternate solution to provide the needed feature. This can
range from simple solutions to rather complex. For example, if a gradient fill is not
supported, you could just use a solid color fill, or you could provide a shim and
implement a gradient using JavaScript.

e Ignore: Just leave the feature unimplemented. For example, you could ignore
rounded corners; in older browsers, they’ll be square corners.

There are no hard-and-fast rules here; you'll need to decide on a case-by-case basis which features are
important to you and how much time you’re willing to spend making them work on older browsers. In the
rest of this chapter, I will demonstrate some techniques to backfill some of these features using mostly open
source shims that are publicly available. I don’t want to leave you with the impression, however, that you
have to backfill every feature. In fact, several of these features for this demo, including multicolumn support,
3D transforms, and animation will be ignored because they are relatively difficult or just not that important.

175

http://dx.doi.org/10.1007/9781484211489_5

CHAPTER 7 © SUPPORTING OLDER BROWSERS

Tip There are a plethora of shims and polyfills available. This article provides a good reference if you're
looking for something specific: https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-
Polyfills. Keep in mind that these may not always work properly, so test them and keep what works. Also,
combining various shims can create some interesting results because the side effects from one can break
another one.

Displaying Tables

As you test your page in several browsers, note the features that are not working correctly and then prioritize
them. In this case, the aside element should be alongside the main content, not at the end of the page. In my
opinion, this is the most critical issue and should therefore be addressed first.

Tip Tables were first supported in IE 8. If you change the browser mode to IE 8, you’ll see the sidebar
is alongside the main content. So, table support is an issue only for IE 7 and older. You might consider simply
ignoring the issue and explain that your site works best with IE 8 and newer. To see how many users that would
affect, check out the latest browsers’ stats at www.w3schools.com/browsers/browsers_stats.asp. According
to these statistics, that’s only about 0.1 percent of the total number of browsers in use. These statistics
represent an overall usage; you may have a specific target audience that can have different characteristics.

To support tables in IE 7, you’ll use a behavioral CSS extension, which allows you to embed a JavaScript
in a style sheet. An extension is invoked by adding a rule like this:

header

{
}

behavior: url(customBehavior.htc);

The implementation is provided in an HTML component (HTC) file with the . htc extension. There are
a few things about using . htc files that you should be aware of.

e Ingeneral, you can open an HTML file in a browser without using IIS. For example,
you could simply open the Index.html file with Internet Explorer (or any browser)
and the page would work fine. However, . htc files are ignored if the page is not
actually served up by a web server such as IIS or Apache.

e You may need to define the HTC content type on your web server. IIS and IIS Express
both support this by default, but you may need to add this with Apache or other web
servers.

e Even though the .htc file is typically referenced in a CSS file, the URL specified in
the behavior attribute must be relative to the location of the HTML document that
invoked the style sheet. If you put the . htc file in the css folder (with all the other style
sheets), you'll need to reference it with a relative path, css/customBehavior.htc.

To display tables, you will use an open source HTC that can be downloaded from http://tanalin.com/
en/projects/display-table-htc.

176

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills
http://www.w3schools.com/browsers/browsers_stats.asp
http://tanalin.com/en/projects/display-table-htc
http://tanalin.com/en/projects/display-table-htc

CHAPTER 7 © SUPPORTING OLDER BROWSERS

EXERCISE 7-1. SUPPORTING TABLES

1. Inthe Solution Explorer, right-click the wwwroot folder and select the Add and New
Folder links. Enter the name css.

2. Download the latest .zip file from this site: http://tanalin.com/en/projects/
display-table-htc. (The latest file as of this writing is display-table.
htc_2011-11-25.zip.) This file contains an uncompressed and a minimized
version. Copy the display-table.htc file to the css folder in the Solution Explorer.

3. Open the Index.html and find the portion where the table is defined. Add the code
shown in bold from Listing 7-1 to the existing style rules. This specifies a vendor-
prefixed version of the display attribute and invokes the display-table.htc
component.

Listing 7-1. Defining a New Table

/* Setup a table for the content and sidebar */
#contentArea
{

display: table;

-dt-display: table;

behavior: url(css/display-table.htc);

}
#mainContent
{
display: table-cell;
-dt-display: table-cell;
padding-right: 2px;
behavior: url(css/display-table.htc);
}
aside
{
display: table-cell;
-dt-display: table-cell;
width: 280px;
behavior: url(css/display-table.htc);
}

4. Save your changes and view the Index.html page in Internet Explorer. Change
the emulator mode to IE 7, and you should now see a table set up, as shown in
Figure 7-7.

177

http://tanalin.com/en/projects/display-table-htc
http://tanalin.com/en/projects/display-table-htc

CHAPTER 7 © SUPPORTING OLDER BROWSERS

CSS Demo

Introducing the new HTMLS5 features

Use the new CSS3 features to bulld some of the most visually appealing web sites.

Feature Article

Other Titles
Main content area

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore

et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut.

Check out some of the other titles available
Featured Article from Apress.

This is really cool...

Pro Office 365 Development is a practical,
hands-on guide to building cloud-based
solutions using the Office 365 platform.

Figure 7-7. The table support added in IE 7

Note The display-table.htc file uses its own, nonstandard, vendor-specific prefix. So, you needed to
add the -dt-display attribute. You can also ignore the warning that is generated because of this.

5. Now there’s one more thing that needs to be fixed. You'll notice that the aside
element is missing some styles such as background-color and padding. This is a
side effect of the CSS extension. To create the table in your page, this code created
real table elements for you such as tr and td. So, once the JavaScript runs, the
aside element is removed and replaced with rows and cells. Since there is no
aside element anymore, you can’t use an element selector to style it. However,
there is only one aside element in your source document, and it has the sidebar id
attribute.

6. Close the browser.

7. Replace all aside selectors with #sidebar, including the one you just added. There
are several places in the Index.html file that you’ll need to change.

8. View the page again and change the emulator mode to IE 7. The sidebar should
now have a background color, and there is also padding around the text.

178

CHAPTER 7 © SUPPORTING OLDER BROWSERS

Adding Rounded Corners

If the browser does not support rounded corners, you can easily add them thanks to a nifty jQuery plug-in
written by Dave Methvin. In addition to rounded corners, this plug-in can also create a number of other
patterns, which are displayed at http://jquery.malsup.com/corner. This is provided through an open
source license so you can freely download and use it in your application.

You'll use this plug-in to implement rounded corners for the nav and footer elements. However, this
should be done only if rounded corners are not supported natively. So, the first question is how do you know
if the browser supports rounded corners? The answer again is Modernizer. Adding a statement like this will
conditionally call the custom method:

if (!Modernizr.borderradius)

Tip | will show you another technique for rounding corners later in this chapter.

EXERCISE 7-2. ADDING ROUNDED CORNERS

1. Gotohttp://jquery.malsup.com/corner. Click the jquery.corner.js link near
the top of the page. This will download the latest version. Save the file in your
wwwroot\1ib folder in the Solution Explorer.

Note This plug-in is not available through Bower, so you’ll need to download and install this the old-
fashioned way.

2. This function is based on jQuery, so you'll also need to reference that in your page.
Open the bower . json file and add the lines shown in bold (don’t forget to add the
comma at the end of the previous line).

{
"name": "Chapter7",
"private": true,
"dependencies": {
"modernizr": "2.8.3",
"jquery": "2.1.4",
"jquery-validation-unobtrusive": "3.2.2"

}

3. Atfter saving the bower. json file, you should see a jquery item in the
Dependencies\Bower folder. Like you did for Modernizr, right-click the jquery item
and select the Open in File Explorer link. Go to the dist subfolder and copy the
jquery. js file to the wwwroot\1ib folder in the Solution Explorer.

179

http://jquery.malsup.com/corner
http://jquery.malsup.com/corner
http://dx.doi.org/10.1007/9781484211489_7

CHAPTER 7 © SUPPORTING OLDER BROWSERS

4. Inthe same way, copy the jquery.validation.unobtrusive. js file to the
wwwroot\1ib folder.

5. Open the Index.html file and add these references near the top of the page, just
after the Modernizr script;

<script type="text/javascript" src="lib/jquery.js"></script>
<script type="text/javascript" src="lib/jquery.corner.js"></script>

6. Now invoke this by adding this script element at the end of the Index.html file,
after the footer element and just before the body closing tag.

<script type="text/javascript">

if (!Modernizr.borderradius) {
$("nav").corner("15px");
$("footer").corner("25px");

}

</script>

7. This code uses the jQuery selector to find the nav and footer elements and calls
the corner () method specifying the radius.

8. Save your changes and view the page using Internet Explorer. Switch the emulator
mode to IE 7, and your page should look like Figure 7-8.

CSS Demo

Introducing the new HTMLS5 features

Use the new CSS3 features to bulld some of the most visually appealing web sites.

Article

Malin content area
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut.

Figure 7-8. The demo page with rounded corners

Adding Gradients

Next, you'll add a gradient background to the intro section using another open source solution from PIE
(progressive Internet Explorer). This is implemented as an HTC file just like the table support that you added
earlier. Once you have downloaded the component, you simply invoke it using the behavior property of your
style sheet rule.

180

CHAPTER 7 © SUPPORTING OLDER BROWSERS

EXERCISE 7-3. ADDING BACKGROUND GRADIENTS

1. Gotothe http://css3pie.com site and click the Download button. This will
download a PIE-1.0.0.zip file (you may see a different version number; just
download the latest version).

2. There are several files inside this . zip file. Copy the PIE.htc file to your wwwroot\
css folder.

3. From Solution Explorer, right-click the wwwroot\css folder and click the Add and
Existing Item links. Navigate to the css folder and select the PIE.htc file.

4. Open the Index.html file and find where the rules for the .intro class are defined.
Add the following lines shown in bold. This code will add another vendor-prefixed
attribute (-pie-) and then invoke the PIE component using the behavior property.

/* Gradients */
.intro
{
border: 1px solid #999999;
text-align:left;
margin-top: 6px;
padding-left: 15px;
border-radius:25px;
background-image: linear-gradient(45deg, #ffffff, #6699cc);
-pie-background: linear-gradient(45deg, #ffffff, #6699cc);
behavior: url(css/PIE.htc);
}

5. Save your changes, view the page using Internet Explorer, and switch the emulator
mode to IE 7. You should now have a linear gradient that looks just like the native
gradient. You might have also noticed that the corners are rounded as well. The
PIE.htc shim also supports rounded corners and took care of that for you.

Note PIE is designed to backfill several CSS3 features, which are listed in this article: http://css3pie.
com/documentation/supported-css3-features. It will attempt to address any of these features that are
included in the element that references the PIE.htc shim. However, it does not do anything with features that
are supported natively.

The page should now look like Figure 7-9.

181

http://css3pie.com/
http://css3pie.com/documentation/supported-css3-features
http://css3pie.com/documentation/supported-css3-features

CHAPTER 7 © SUPPORTING OLDER BROWSERS

CSS Demo

Introducing the new HTMLS features
. Use the new CS53 features to bulld some of the most visually appealing web sites.

Main content area
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut.

Featured Article

Figure 7-9. The demo page with a gradient background

Striping the Book List

Recall from Chapter 4 that the list of books was styled using an :nth-child selector so alternating elements
would have a different background. In older browsers that do not support this, you can accomplish this the

old-fashioned way, by iterating the list in JavaScript and changing the style on alternating elements.

The trick, however, is determining whether the :nth-child selector is available because Modernizr
does not provide this. As of this writing, Modernizr is working on a version 3 beta that will include this
ability. For more details, check out the list of features at http://v3.modernizr.com/download.

Note

The solution provided here is based on a post by Lea Verou. | had to adjust this to work with

IE, however. For more details, check out the article at http://lea.verou.me/2011/07/detecting-css-
selectors-support-my-jsconf-eu-talk/.

EXERCISE 7-4. STRIPING THE BOOK LIST

1.

182

Open the Index.html file and add the following code to the script element at the
top of the file:

function supportsSelector(selector) {
var el = document.createElement('div');
el.innerHTML = ['­', '<style>', selector, '{}', '</style>'].join('');
try

{
el = document.body.appendChild(el);
var style = el.getElementsByTagName('style')[0],
ret = !l(style.sheet.rules || style.sheet.cssRules)[0];
}

http://dx.doi.org/10.1007/9781484211489_4
http://v3.modernizr.com/download
http://lea.verou.me/2011/07/detecting-css-selectors-support-my-jsconf-eu-talk/
http://lea.verou.me/2011/07/detecting-css-selectors-support-my-jsconf-eu-talk/

CHAPTER 7 © SUPPORTING OLDER BROWSERS

catch(e){
ret = false;
}

document .body.removeChild(el);
return ret;

This code creates a new style element and adds the selector in question. It then
checks to see whether it is actually there. If not, the selector is not supported. This
is done in a try/catch block in case older browsers do not support either the
style.sheet.rules or style.sheet.cssRules property.

Now with your handy supportsSelector() function, you can implement the
manual striping technique. Add the following code to the script element at the
bottom of the file after the existing function you added for the rounded corners:

if (!supportsSelector(":nth-child(2n+0)")) {
var titles = document.getElementById("titles");
var articles = titles.getElementsByTagName("article");
for (var i = 0; i < articles.length; i++) {
var title = articles[i];
if (1% 2) {
title.style.background = "#6699cc";
title.style.border = "1px solid #c0c0c0";

}
else {
title.style.background = "#c0c0co0";
title.style.border = "1px solid #6699cc";
}

}

If the :nth-child selector is not supported, this code gets the #titles element
using the getElementById() function. This is the section element that contains

a series of article elements, one for each book. It then gets an array of child
article elements using the getElementsByTagName() function. Note that this
method is invoked on the titles object and not the document object. Once it has
the array of elements, the code simply iterates the array, modifying the background
and border properties.

Save your changes and view the page using the IE 7 emulation mode. The page
should look like Figure 7-10.

183

CHAPTER 7 © SUPPORTING OLDER BROWSERS

Figure 7-10. The aside element with manual striping

184

CHAPTER 7 © SUPPORTING OLDER BROWSERS

Hiding Unsupported Elements

As stated earlier in the chapter, for each unsupported feature you need to decide whether this is a deal-
breaker and the page just needs to fail, whether you want to polyfill that feature, or whether you want to
simply ignore it on older browsers. From the initial list of unsupported changes, there are three left that you
have not implemented yet:

e (CSS animation
e 3D transforms
e Multiple columns

You can fairly easily implement animation by using JavaScript to change the background image as
a timer expires. That’s the way it was normally done before we had CSS animation. Implementing a 3D
transform in an older browser, however, just isn’t going to work. I would categorize both of these as nice to
have but not really worth the trouble, so we’ll leave these features out if the browser doesn’t support them.

The one feature that would be nice to emulate is the multiple-column support. There are shims
available for this such as this one available from GitHub: https://github.com/gryzz1ly/CSS-Multi-
column-Layout-Module-Polyfill/blob/master/index.html. Perhaps with enough time and patience you
could get something to work, but this is one of those hard decisions. Is it worth the effort? In some unique
circumstances, it might be, but in general you probably shouldn’t spend 80 percent of your time on a nice-
to-have feature that will affect only a few percent of the expected audience.

One thing you should consider, though, is hiding elements that aren’t functional. The static picture of
the moon isn’t very interesting, for example, so you'll hide this element by setting its size to 0.

EXERCISE 7-5. HIDING ELEMENTS

1. Add the following code to the script element at the bottom of the Index.html file:

if (!Modernizr.cssanimations) {
document.getElementById("moon").style.width = "opx";
document.getElementById("moon").style.height = "opx";

}

2. This code simply shrinks the moon div if CSS animations are not supported. View
the page in Internet Explorer and switch the emulator mode to IE 7. The final web
page should look like Figure 7-11.

185

https://github.com/gryzzly/CSS-Multi-column-Layout-Module-Polyfill/blob/master/index.html
https://github.com/gryzzly/CSS-Multi-column-Layout-Module-Polyfill/blob/master/index.html

CHAPTER 7 © SUPPORTING OLDER BROWSERS

' CSS Demo

Introducing the new HTMLS features
. Use the new CSS3 features to bulld some of the most visually appealing web sites.

Main content area

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut.

Featured Article
This is really cool...

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore

et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut.

Figure 7-11. The final demo page as shown in IE7

3. Finally, after all this work, you should try the page in a browser that supports all
these features to make sure it still looks great there. The final version in Chrome
should look like Figure 7-12.

186

CHAPTER 7 © SUPPORTING OLDER BROWSERS

CSS Demo

Introducing the new HTMLS5 feat
-..\Hsemenwmhmswwnumummwmmmm

Feature

Main content area
Lorem ipsum dolor sit amet, cor dipisicing elit, sed do ei d tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis d itation ullamco laboris nisi ut.
\
Featured Article
This is really cool...

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut,

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut.

Deta IB..diﬂ' i ronded comers Lorem ipsum dolor sit mmm
: alit cad ds A tomnar insididint 14 lahars ot

Figure 7-12. The final demo page as shown in Chrome

Tip The source code download contains the complete Index.html file. Refer to this if there are any
questions about exactly how or where a change should be made.

187

CHAPTER 7 © SUPPORTING OLDER BROWSERS

Summary

In this chapter, I showed you some techniques for making your web page look great even with older
browsers that do not support the new HTMLS5 features. These techniques include the following:

e Using Modernizr for feature detection and basic element support
e Displaying tables
¢ Adding rounded corners
e Supporting gradient background images
e Manually striping a list
e Hiding unsupported elements
For every unsupported feature you’ll need to decide the following:
e Whether the feature is critical to the page (and if so, the page should fail)
e Whether the feature can be easily polyfilled
e Whether the feature can be ignored

This is a bit of a balancing act because you want the page to look good in all browsers but you don’t
want to spend an excessive amount of time supporting every possible browser.

The final implementation of the demo page struck a good compromise. The site looks great and
functions properly. While a few of the new HTML5 features are omitted, overall it’s still a great site
considering the browser support, and the additional work was minimal.

In the next chapter, I'll show you how to use the new audio and video elements that were introduced in
HTML5.

188

CHAPTER 8

Audio and Video

In this chapter, I will demonstrate the new audio and video elements introduced with HTML5. The two
elements are identical in terms of their attributes and the methods and events they support. I will spend
most of the chapter discussing and demonstrating the audio element, but just keep in mind that everything
I'm showing you applies to video as well. There are some exercises at the end of the chapter that will apply
these same techniques to the video element so you can see this for yourself.

I will demonstrate how to add audio and video elements using the native controls provided by the
browser. This approach makes embedding audio and video in your web site a trivial matter of adding some
simple markup. If you want to write your own controls, however, this chapter will also demonstrate how to
do that and to wire up all the events with JavaScript.

Because each browser supports different media formats, you might need to encode multiple versions of
your media files. However, most major browsers now support the MP3 and MP4 formats, so this is becoming
less of a concern. The audio and video elements can support multiple sources, so each browser can choose
the appropriate version to use.

Note The video element supports three additional attributes (width, height, and poster) that the audio
element doesn’t. | will explain these later in the chapter.

Using the audio Element

I'll start with a pretty simple exercise of adding an audio element to a web page. Then you'll support multiple
formats and try your site on various bowsers.

Creating the Sample Project

In this chapter, you'll create a web site project that you'll use to try the audio and video HTML5 elements.
You'll create an empty web site now and then progressively add features to it throughout the chapter.

189

CHAPTER 8

AUDIO AND VIDEO

EXERCISE 8-1. ADDING AUDIO TO A PAGE

Start Visual Studio 2015 and click New Project. Select the ASP.NET Web Application
project template and enter Chapter8 for the name.

In the second dialog, select the ASP.NET 5 Empty project.

In Solution Explorer, right-click the wwwroot folder and click the Add and New Folder
links. Enter the name Media.

You’ll need an MP3 file to use as a sample audio clip. The file I'm using is
copyrighted, so | can’t include it with the source code. You should be able to find
one on your computer or download one from the internet. You can also rip a CD
through Windows Media Player and select MP3 as the format.

Drag the MP3 file from Windows Explorer to the wwwroot\Media folder in Visual Studio.

Now you’ll add the web page that you’ll be working on throughout this chapter.
From Solution Explorer, right-click the wwwroot folder and click the Add and New
Item links. In the Add New Item dialog, select HTML Page and enter the name
Index.html, as shown in Figure 8-1.

4 |nstalled

SR e @ HTML Page PN ET I = Type: ASP.NET 5 Preview
Y b Online

Add New Item - Chapter8 » IEH

Sort by: Default |5 IE! Search Installed Templates (Ctrl+E) P~

An HTML page that can include client-

s 5
El JavaScript File ASP.NET 5 Preview side code
Style Sheet ASP.NET 5 Preview
Class ASP.NET 5 Preview
]
Startup class ASP.NET 5 Preview

MVC Controller Class ASP.NET 5 Preview

1 &) &) &)

@] MVC View Page ASP.NET 5 Preview

Click here to go online and find templates.

Name: Index.html
Add || Cancel
Figure 8-1. Adding the Index.html page
7. Open the Index.html file. In the empty body that was created by the file template,

190

create a div element. Inside that div, enter <audio src=, and you should see a
link that you can use to select the source from a file in your project. Select the
Media folder and then your MP3 file, as shown in Figure 8-2.

http://dx.doi.org/10.1007/9781484211489_8

CHAPTER 8 ' AUDIO AND VIDEO

<body>
<div>
<audio src="Media/"
<fdiv> @BL- |
b J| Linus and Lucy.mp3
</html> =

Figure 8-2. Using a link to select the source

8. Add the autoplay attribute and close the audio element. Add text inside the audio
element like this:

<body>
<div>
<audio src="Media/Linus and Lucy.mp3" autoplay>
<p>HTML5 audio is not supported on your browser</p>
</audio>
</div>
</body>

9. Save your changes, make sure Internet Explorer is chosen as your default browser
for debugging, and browse the Index.html page.

10. Open the Startup.cs file and comment out the implementation of the
Configure() method.

11. Once the page has loaded, your audio clip should start playing. The page, however,
will be blank.

12. Press F12 to open the Developer Tools pane, if not already opened. Change the
browser mode to IE 8. The music will stop, and you’ll see the “HTML5 audio is not
supported on your browser” text displayed.

This first exercise demonstrated the basic use of the audio element. You simply enter the sxc attribute,
which specifies the URL of the audio file. The content inside the audio element is used when the
browser does not support the audio element. Since IE 8 does not support the audio element, the text
included in the p tag is displayed instead. You can take advantage of this to simply display a message
as you did here. However, you could use this to provide a link to download the file or use a plug-in to
implement a fallback solution.

Using the Native Controls
In terms of the UI, there are basically three options:

e No controls: The audio plays, but there are no controls available to the user. The clip
can be started automatically when the page is loaded using the autoplay attribute.
You can also start, pause, and stop the audio clip using JavaScript.

e Native controls: The browser provides controls for the user to play, pause, and stop
the audio clip and control the volume.

e Custom controls: The page provides custom controls that interact with the audio
element through JavaScript.

191

CHAPTER 8 " AUDIO AND VIDEO

To enable the native control, simply add the controls attribute like this:
<audio src="~/Media/Linus and Lucy.mp3" autoplay controls>

Save your changes and browse to your page, and the native controls should appear similar to Figure 8-3.

Figure 8-3. Displaying the native audio controls in Internet Explorer

In Opera and Chrome, the controls look like Figure 8-4.

nh e 0:05) o=@

Figure 8-4. The audio controls in Opera

In Firefox, the controls look like Figure 8-5.

Figure 8-5. The audio controls in Firefox

In Safari, the audio controls look like Figure 8-6.

® Il)

Figure 8-6. The audio control in Safari

Tip Safari on Windows requires that QuickTime be installed in order to support the audio element. You can
download it from this site: https://support.apple.com/kb/DL837?1ocale=en_US.You may need to reboot
your PC after installing QuickTime before Safari will be able to work.

Asyou can see, the controls are styled differently in each browser. With native controls you have little
control over how the audio controls are displayed. You can change the width by setting the style attribute,
which will stretch the progress bar. Extending the height beyond the normal height will only add white space
on top of the control, as shown in Figure 8-7. In IE, decreasing the height, however, will shrink the control; in
Chrome, it will clip it.

192

https://support.apple.com/kb/DL837?locale=en_US

CHAPTER 8 " AUDIO AND VIDEO

Figure 8-7. Extending the size of the native controls

Reviewing Browser Support

While all major browsers support the audio element, they don’t all support the same audio formats. Until
recently, browsers generally supported either MP3 or Vorbis, and you would need to provide both. However,
most current browsers now support MP3, as well as MP4 for videos. HTML5 provides a way to supply
multiple formats, if needed, to support older browsers.

Tip Here’s a handy page that tests browser support for the audio and video elements:
http://hpr.dogphilosophy.net/test/. It also provides an overview of the support for various browsers.

The audio element allows you to specify multiple sources, and the browser will iterate through the
sources until it finds one that it supports. Instead of using a src attribute, you'll provide one or more source
elements within the audio element, like this:

<audio autoplay controls>

<source src="Media/Linus and Lucy.ogg" />

<source src="Media/Linus and Lucy.mp3" />

<p>HTML5 audio is not supported on your browser</p>
</audio>

The browser will use the first source that it supports, so if it matters to you, you should list the preferred
file first. For example, Chrome supports both MP3 and Vorbis formats. If you prefer that the MP3 file be used,
you should list it before the .ogg file.

While just listing the sources like this will work, the browser must download the file and open it to see
whether it is able to play it. That’s not very efficient to download a fairly large file only to find out it can’t be
used. You should also include the type attribute, which specifies the type of resource this is. The browser
can then determine whether the file is supported by looking at the markup. The type attribute specifies the
MIME format like this:

<source src="Media/Linus and Lucy.ogg" type="audio/ogg" />
<source src="Media/Linus and Lucy.mp3" type="audio/mp3" />

You can also specify the codec in the type attribute like this:
<source src="Media/Linus and Lucy.ogg" type='audio/ogg; codecs="vorbis"' />
This will help the browser choose a compatible media file more efficiently, as I'll explain later in the

chapter. Notice that the codecs values are included within double quotes, so you'll need to use single quotes
around the type attribute value. Now you'll modify your web page so it will work on other browsers as well.

193

http://hpr.dogphilosophy.net/test/

CHAPTER 8 " AUDIO AND VIDEO

EXERCISE 8-2. ADDING MULTIPLE SOURCES

1. Create a Vorbis-encoded audio file of your sample audio clip that has the .ogg
extension and copy this to the wwwroot\Media folder.

Tip lused a utility called XMedia Recode that you can download at http://www.xmedia-recode.de/
download.html. You can use this utility to format both audio and video files. After you have installed this
application, run it, click the Open File button in the ribbon, and select the MP3 file. On the Format tab, select the
0GG format. Notice the File Extension option is automatically set to .ogg and the Codec option is set to Vorbis on
the Audio tab. Click the “Add to queue” button in the ribbon. Select the Queue tab to see the job that has been
defined to convert this file. At the bottom of the window you can specify the location that the new file should be
saved in. Click the Browse button and navigate to the Chapter8\Media folder. Finally, click the Encode button to
start the job. A dialog will be displayed to show the progress of the job.

2. In Solution Explorer, right-click the Media folder and click the Add and Existing Item
links. Navigate to the Chapter8\wwwroot\Media folder and select the .ogg file that
you just encoded.

3. Inthe Index.html file, replace the audio element with the following code (you’ll
need to adjust the actual file name to match yours):

<audio autoplay controls >
<source src="Media/Linus and Lucy.ogg" type="audio/ogg" />
<source src="Media/Linus and Lucy.mp3" type="audio/mp3" />
<p>HTML5 audio is not supported on your browser</p>
</audio>

4. Save your changes and browse to your page. Open the page using several
browsers and verify that the controls are displayed and the audio starts playing
when the page is loaded.

Building Your Own Controls

All of the DOM elements and events are available in JavaScript, so it’s a fairly straightforward process to
create your own controls to work with the audio element. However, there are several facets that you'll need
to control, so it’s not a trivial exercise. There are three areas that you'll need to address:

e Play/Pause
e Displaying progress and fast-forwarding/rewinding

¢ Adjust volume/mute

194

http://www.xmedia-recode.de/d