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Foreword

Probabilistic graphical models (PGMs), and their use for reasoning intelligently under
uncertainty, emerged in the 1980s within the statistical and artificial intelligence
reasoning communities. The Uncertainty in Artificial Intelligence (UAI) conference
became the premier forum for this blossoming research field. It was at UAI-92 in
San Jose that I first met Enrique Sucar—both of us graduate students—where he
presented his work on relational and temporal models for high-level vision reasoning.
Enrique’s impressive research contributions to our field over the past 25 years have
ranged from foundational work on objective probabilities, to developing advanced
forms of PGMS such as temporal and event Bayesian networks, to the learning of
PGMs, for example his more recent work on Bayesian chain classifiers for multidi-
mensional classification.

Probabilistic graphical models are now widely accepted as a powerful and
mature technology for reasoning under uncertainty. Unlike some of the ad hoc
approaches taken in early experts systems, PGMs are based on the strong mathe-
matical foundations of graph and probability theory. They can be used for a wide
range of reasoning tasks including prediction, monitoring, diagnosis, risk assess-
ment and decision making. There are many efficient algorithms for both inference
and learning available in open-source and commercial software. Moreover, their
power and efficacy has been proven through their successful application to an
enormous range of realworld problem domains. Enrique Sucar has been a leading
contributor in this establishment of PGMs as practical and useful technology, with
his work across a wide range of application areas. These include medicine, reha-
bilitation and care, robotics and vision, education, reliability analysis and industrial
applications ranging from oil production to power plants.

The first authors to drawn upon the early research on Bayesian networks and
craft it into compelling narratives in the book form were Judea Pearl in
Probabilistic Reasoning in Intelligent Systems and Rich Neapolitan in Probabilistic
Reasoning in Expert Systems. This monograph from Enrique Sucar is a timely
addition to the body of literature following Pearl and Neapolitan, with up-to-date
coverage of a broader range of PGMs than other recent texts in this area: various
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classifiers, hidden Markov models, Markov random fields, Bayesian networks and
its dynamic, temporal and causal variants, relational PGMs, decision graphs and
Markov decision process. It presents these PGMs, and the associated methods for
reasoning (or inference) and learning, in a clear and accessible manner, making it
suitable for advanced students as well as researchers or practitioners from other
disciplines interested in using probabilistic models. The text is greatly enriched by
the way Enrique has drawn upon his extensive practical experience in modelling
with PGMs, illustrating their use across a diverse range of real-world applications
from bioinformatics to air pollution to object recognition. I heartily congratulate
Enrique on this book and commend it to potential readers.

Melbourne, Australia Ann E. Nicholson
May 2015
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Preface

Overview

Probabilistic graphical models have become a powerful set of techniques used in
several domains. This book provides a general introduction to probabilistic
graphical models (PGMs) from an engineering perspective. It covers the funda-
mentals of the main classes of PGMs: Bayesian classifiers, hidden Markov models,
Bayesian networks, dynamic and temporal Bayesian networks, Markov random
fields, influence diagrams, and Markov decision processes; including representa-
tion, inference, and learning principles for all the techniques. Realistic applications
for each type of model are also covered in the book.

Some key features are:

• The main classes of PGMs are presented in a single monograph under a unified
framework.

• The book covers the fundamental aspects: representation, inference, and
learning for all the techniques.

• It illustrates the application of the different techniques in practical problems, an
important feature for students and practitioners.

• It includes some of the latest developments in the field, such as multidimen-
sional Bayesian classifiers, relational graphical models, and causal models.

• Each chapter has a set of exercises, including suggestions for research and
programming projects.

Motivating the application of probabilistic graphical models to real-world prob-
lems is one of the goals of this book. This requires not only knowledge of the
different models and techniques, but also some practical experience and domain
knowledge. To help the professionals in different fields gain some insight into the
use of PGMs for solving practical problems, the book includes many examples of the
application of the different types of models in a wide range of domains, including:

• Computer vision.
• Biomedical applications.
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• Industrial applications.
• Information retrieval.
• Intelligent tutoring systems.
• Bioinformatics.
• Environmental applications.
• Robotics.
• Human–computer interaction.
• Information validation.
• Caregiving.

Audience

This book can be used as a text book for an advanced undergraduate or a graduate
course in probabilistic graphical models for students of computer science, engi-
neering, physics, etc. It could also serve as a reference book for professionals that
want to apply probabilistic graphical models in different areas, or anyone who is
interested in knowing the basis of these techniques.

It does not have specific prerequisites, although some background in probability
and statistics is recommended. It is assumed that the reader has a basic knowledge
of mathematics at the high school level, as well as a certain background in com-
puting and programming. The programming exercises require some knowledge and
experience with any programming language, such as C, C++, JAVA, Matlab, etc.

Exercises

Each chapter (except the introduction) includes a set of exercises. Some of these
exercises are questions and problems designed to reinforce the understanding of the
concepts and techniques presented in the chapter. There are also a few suggestions
for research or programming projects (marked with “***”) in each chapter, which
could be used as projects for a course.

Organization

The book is divided into four parts. The first part provides a general introduction
and motivation for PGMs, and reviews the required background in probability and
graph theory. The second part describes the models which do not consider decisions
or utilities: Bayesian classifiers, hidden Markov models, Markov random fields,
Bayesian networks, and dynamic and temporal Bayesian networks. The third part

x Preface
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starts with a brief introduction to decision theory, and then describes the models
which support decision making, including decision trees, influence diagrams, and
Markov decision processes. Finally, the fourth part presents two extensions to the
standard PGMs, one is relational probabilistic graphical models and the other
causal models.

The dependency relations between the chapters are shown in Fig. 1. An arc from
chapter X to chapter “Y”, X ! Y , indicates that chapter X is required (or at least
recommended) for understanding chapter Y . This graphical representation of the
book gives a lot of information, in an analogous way to the graphical models that
we will cover later.

From Fig. 1, we can deduce different ways of reading this book. First it is
recommended that you read the introduction and the fundamental Chaps. 2 and 3.
Then you can study relatively independently the different models in Part II: clas-
sification (Chap. 4), hidden Markov models (Chap. 5), Markov random fields
(Chap. 6), and Bayesian networks (Chaps. 7–9). Before reading about learning
Bayesian networks (Chap. 8), it is necessary to read Chap. 7—representation and
inference; and both chapters are required before going into dynamic and temporal
Bayesian networks.

Fig. 1 This figure represents the structure of the book as a directed acyclic graph, showing which
chapters are prerequisites for other chapters
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The topics in Part III and IV require some of the chapters in Part II. For Chap. 10,
which covers decision trees and influence diagrams, you should at least read the first
chapter on Bayesian networks. For Chap. 11, which covers sequential decision
making, it is recommended that you have covered hidden Markov models and
dynamic and temporal Bayesian networks. Relational PGMs (Chap. 12) are based on
Markov random fields and Bayesian networks; so Chaps. 6 and 8 are required.
Finally, the causal models included in Chap. 13 are based on Bayesian networks
including the learning techniques.

If there is not enough time in a course to cover all the book, there are several
alternatives. One is to focus on probabilistic models without considering decisions
or the more advanced extensions, covering Parts I and II. Another alternative is to
focus on decision models, including Part I, the necessary prerequisites from Part II,
and Part III. Or you can design your course a la carte, only respecting the depen-
dencies in the graph. However, if you have the time and desire, I suggest you read
all the book in order. Enjoy!

Puebla, Mexico Luis Enrique Sucar
February 2015

xii Preface

http://dx.doi.org/10.1007/978-1-4471-6699-3_10
http://dx.doi.org/10.1007/978-1-4471-6699-3_11
http://dx.doi.org/10.1007/978-1-4471-6699-3_12
http://dx.doi.org/10.1007/978-1-4471-6699-3_6
http://dx.doi.org/10.1007/978-1-4471-6699-3_8
http://dx.doi.org/10.1007/978-1-4471-6699-3_13


Acknowledgments

This book grew out of a course that I have been teaching for several years to
graduate students. It initiated as a course in Uncertain Reasoning at Tec de
Monterrey in Cuernavaca, and became a course on Probabilistic Graphical Models
when I moved to INAOE, Puebla in 2006. During these years, my students have
been the main motivation and the source of inspiration for writing this book. I will
like to thank them all for their interest, questions, and frequent corrections to my
notes. This book is dedicated to all my students, past, present, and future.

I will like to acknowledge those students with whom I have collaborated, usually
in a small part, for their bachelor, master, or Ph.D. thesis. Some of the novel aspects
of this book and most of the application examples originated form their work.
I thank them all, and will mention just a few whose work was more influential for
this manuscript: Gustavo Arroyo, Héctor Hugo Avilés, Leonardo Chang, Ricardo
Omar Chávez, Francisco Elizalde, Hugo Jair Escalante, Lindsey Fiedler, Giovani
Gómez, Carlos Hernández, Pablo Hernández, Yasmín Hernández, Pablo
Ibargüengoytia, Roger Luis-Velásquez, Miriam Martínez, José Antonio Montero,
Julieta Noguez, Annette Morales, Joaquín Pérez-Brito, Miguel Palacios, Mallinali
Ramírez, Alberto Reyes, Andrés Rodríguez, Elías Ruiz, Gerardo Torres-Toledano,
and Julio Zaragoza. Special thanks to Lindsey Fiedler who has helped me with all
the figures in the book and has revised the English.

I will also like to thank my collaborators, the common research projects and
technical discussions have enriched my knowledge of many topics, and have helped
me write this manuscript. In particular, I will like to mention my colleagues and
friends: Juan Manuel Ahuactzin, Olivier Aycard, Concha Bielza, Roberto Ley
Borrás, Cristina Conati, Javier Díez, Hugo Jair Escalante, Duncan Gillies, Jesús
González, Edel García, Jesse Hoey, Pablo Ibargüengoytia, Pedro Larrañaga, Ron
Leder, Jim Little, José Luis Marroquín, Oscar Mayora, Manuel Montes, Eduardo
Morales, Enrique Muñoz de Cote, Julieta Noguez, Felipe Orihuela, Luis Pineda,
David Poole, Alberto Reyes, Carlos Ruiz, Sunil Vadera, and Luis Villaseñor.
I appreciate the comments that Edel, Felipe, and Pablo have made of some earlier
versions of this book. Thanks to Ann Nicholson for providing an excellent Foreword.

xiii



I want to acknowledge the support from my institution, Instituto Nacional de
Astrofísica, Óptica y Electrónica (INAOE), which provides an excellent environ-
ment for doing research and teaching, and has given me all the facilities to dedicate
part of my time to write this book.

Last, but not least, I will like that thank my family. My parents, Fuhedy and
Aida, who promoted the desire to learn and to work hard, and supported my studies.
In particular, my father, who wrote several wonderful books, and gave me the
inspiration (and probably the genes) for writing. My brother Ricardo, and my
sisters, Shafía and Beatriz, who have always supported and motivated my dreams.
And especially to my wife Doris and my children, Edgar and Diana, who have
suffered the long hours I have dedicated to the book instead of them, and whose
love and support is what keeps me going.

xiv Acknowledgments



Contents

Part I Fundamentals

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Effects of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 A Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Basic Probabilistic Models . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 An Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Representation, Inference, and Learning. . . . . . . . . . . . . . . . . 10
1.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Overview of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Basic Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Random Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Two-Dimensional Random Variables. . . . . . . . . . . . . 21
2.4 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Types of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Trajectories and Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Graph Isomorphism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xv

http://dx.doi.org/10.1007/978-1-4471-6699-3_1
http://dx.doi.org/10.1007/978-1-4471-6699-3_1
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_1#Bib1
http://dx.doi.org/10.1007/978-1-4471-6699-3_2
http://dx.doi.org/10.1007/978-1-4471-6699-3_2
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_2#Bib1
http://dx.doi.org/10.1007/978-1-4471-6699-3_3
http://dx.doi.org/10.1007/978-1-4471-6699-3_3
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec5


3.6 Cliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Perfect Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Ordering and Triangulation Algorithms . . . . . . . . . . . . . . . . . 35

3.8.1 Maximum Cardinality Search . . . . . . . . . . . . . . . . . . 35
3.8.2 Graph Filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Part II Probabilistic Models

4 Bayesian Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Classifier Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Bayesian Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Naive Bayes Classifier. . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Alternative Models: TAN, BAN . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Semi-Naive Bayesian Classifiers . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Multidimensional Bayesian Classifiers . . . . . . . . . . . . . . . . . . 50

4.5.1 Multidimensional Bayesian Network Classifiers . . . . . 51
4.5.2 Bayesian Chain Classifiers . . . . . . . . . . . . . . . . . . . . 52

4.6 Hierarchical Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6.1 Chained Path Evaluation . . . . . . . . . . . . . . . . . . . . . 55

4.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7.1 Visual Skin Detection . . . . . . . . . . . . . . . . . . . . . . . 56
4.7.2 HIV Drug Selection . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Parameter Estimation. . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.3 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.1 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.2 Gesture Recognition . . . . . . . . . . . . . . . . . . . . . . . . 78

xvi Contents

http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec12
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Sec12
http://dx.doi.org/10.1007/978-1-4471-6699-3_3#Bib1
http://dx.doi.org/10.1007/978-1-4471-6699-3_4
http://dx.doi.org/10.1007/978-1-4471-6699-3_4
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec14
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec14
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec15
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec15
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec16
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec16
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec17
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec17
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec18
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Sec18
http://dx.doi.org/10.1007/978-1-4471-6699-3_4#Bib1
http://dx.doi.org/10.1007/978-1-4471-6699-3_5
http://dx.doi.org/10.1007/978-1-4471-6699-3_5
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec12
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec12
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec13
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec13
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec14
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec14


5.5 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Markov Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Regular Markov Random Fields . . . . . . . . . . . . . . . . 86
6.3 Gibbs Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.5 Parameter Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5.1 Parameter Estimation with Labeled Data . . . . . . . . . . 90
6.6 Conditional Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7.1 Image Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.7.2 Improving Image Annotation . . . . . . . . . . . . . . . . . . 95

6.8 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Bayesian Networks: Representation and Inference . . . . . . . . . . . . 101
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3.1 Singly Connected Networks: Belief Propagation . . . . . 112
7.3.2 Multiple Connected Networks . . . . . . . . . . . . . . . . . 116
7.3.3 Approximate Inference . . . . . . . . . . . . . . . . . . . . . . 124
7.3.4 Most Probable Explanation . . . . . . . . . . . . . . . . . . . 126
7.3.5 Continuous Variables . . . . . . . . . . . . . . . . . . . . . . . 127

7.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4.1 Information Validation. . . . . . . . . . . . . . . . . . . . . . . 129
7.4.2 Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.5 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8 Bayesian Networks: Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.2.1 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2.2 Parameter Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 138

Contents xvii

http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec15
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec15
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec16
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Sec16
http://dx.doi.org/10.1007/978-1-4471-6699-3_5#Bib1
http://dx.doi.org/10.1007/978-1-4471-6699-3_6
http://dx.doi.org/10.1007/978-1-4471-6699-3_6
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec12
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec12
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec13
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Sec13
http://dx.doi.org/10.1007/978-1-4471-6699-3_6#Bib1
http://dx.doi.org/10.1007/978-1-4471-6699-3_7
http://dx.doi.org/10.1007/978-1-4471-6699-3_7
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec14
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec14
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec17
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec17
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec18
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec18
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec19
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec19
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec20
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec20
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec23
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec23
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec26
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec26
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec27
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Sec27
http://dx.doi.org/10.1007/978-1-4471-6699-3_7#Bib1
http://dx.doi.org/10.1007/978-1-4471-6699-3_8
http://dx.doi.org/10.1007/978-1-4471-6699-3_8
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec4


8.2.3 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2.4 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.3 Structure Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.3.1 Tree Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3.2 Learning a Polytree . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.3.3 Search and Score Techniques . . . . . . . . . . . . . . . . . . 147
8.3.4 Independence Tests Techniques . . . . . . . . . . . . . . . . 152

8.4 Combining Expert Knowledge and Data . . . . . . . . . . . . . . . . 153
8.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.5.1 Air Pollution Model for Mexico City . . . . . . . . . . . . 154
8.6 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9 Dynamic and Temporal Bayesian Networks . . . . . . . . . . . . . . . . . 161
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.2 Dynamic Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . 161

9.2.1 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.2.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.3 Temporal Event Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.3.1 Temporal Nodes Bayesian Networks . . . . . . . . . . . . . 165

9.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.4.1 DBN: Gesture Recognition. . . . . . . . . . . . . . . . . . . . 169
9.4.2 TNBN: Predicting HIV Mutational Pathways . . . . . . . 173

9.5 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Part III Decision Models

10 Decision Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.2 Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10.2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
10.3 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.4 Influence Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

10.4.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.4.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.5.1 Decision-Theoretic Caregiver . . . . . . . . . . . . . . . . . . 193

xviii Contents

http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec12
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec12
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec13
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec13
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec14
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec14
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec18
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec18
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec20
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec20
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec21
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec21
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec22
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec22
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec23
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec23
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec24
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Sec24
http://dx.doi.org/10.1007/978-1-4471-6699-3_8#Bib1
http://dx.doi.org/10.1007/978-1-4471-6699-3_9
http://dx.doi.org/10.1007/978-1-4471-6699-3_9
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec13
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec13
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec16
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec16
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec17
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Sec17
http://dx.doi.org/10.1007/978-1-4471-6699-3_9#Bib1
http://dx.doi.org/10.1007/978-1-4471-6699-3_10
http://dx.doi.org/10.1007/978-1-4471-6699-3_10
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec14
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec14
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec15
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec15


10.6 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

11 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

11.3.1 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
11.3.2 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

11.4 Factored MDPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
11.4.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
11.4.2 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

11.5 Partially Observable Markov Decision Processes. . . . . . . . . . . 207
11.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

11.6.1 Power Plant Operation. . . . . . . . . . . . . . . . . . . . . . . 208
11.6.2 Robot Task Coordination . . . . . . . . . . . . . . . . . . . . . 210

11.7 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
11.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Part IV Relational and Causal Models

12 Relational Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . 219
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
12.2 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

12.2.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . 220
12.2.2 First-Order Predicate Logic . . . . . . . . . . . . . . . . . . . 221

12.3 Probabilistic Relational Models. . . . . . . . . . . . . . . . . . . . . . . 223
12.3.1 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
12.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

12.4 Markov Logic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
12.4.1 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
12.4.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

12.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
12.5.1 Student Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 228

12.6 Probabilistic Relational Student Model . . . . . . . . . . . . . . . . . 228
12.6.1 Visual Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . 231

12.7 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
12.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Contents xix

http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec18
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec18
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec19
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Sec19
http://dx.doi.org/10.1007/978-1-4471-6699-3_10#Bib1
http://dx.doi.org/10.1007/978-1-4471-6699-3_11
http://dx.doi.org/10.1007/978-1-4471-6699-3_11
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec14
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec14
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec17
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec17
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec18
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Sec18
http://dx.doi.org/10.1007/978-1-4471-6699-3_11#Bib1
http://dx.doi.org/10.1007/978-1-4471-6699-3_12
http://dx.doi.org/10.1007/978-1-4471-6699-3_12
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec11
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec12
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec12
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec13
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec13
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec14
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec14
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec17
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec17
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec18
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Sec18
http://dx.doi.org/10.1007/978-1-4471-6699-3_12#Bib1


13 Graphical Causal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
13.2 Causal Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 238
13.3 Causal Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

13.3.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
13.3.2 Counterfactuals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

13.4 Learning Causal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
13.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

13.5.1 Learning a Causal Model for ADHD. . . . . . . . . . . . . 244
13.6 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
13.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

xx Contents

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4471-6699-3_13
http://dx.doi.org/10.1007/978-1-4471-6699-3_13
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec1
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec2
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec3
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec4
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec5
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec6
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec7
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec8
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec9
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Sec10
http://dx.doi.org/10.1007/978-1-4471-6699-3_13#Bib1
http://www.allitebooks.org


Acronyms

ADD Algebraic Decision Diagram
AI Artificial Intelligence
BAN Bayesian network Augmented Naive Bayes classifier
BCC Bayesian Chain Classifier
BCCD Bayesian Constraint-based Causal Discovery
BN Bayesian Network
CBN Causal Bayesian Network
CMI Conditional Mutual Information
CPT Conditional Probability Table
CRF Conditional Random Field
DAG Directed Acyclic Graph
DBN Dynamic Bayesian Network
DBNC Dynamic Bayesian Network Classifier
DD Decision Diagram
DDN Dynamic Decision Network
DT Decision Tree
EC Expected Cost
EM Expectation–Maximization
FN False Negative
FP False Positive
GRM Gibbs Random Field
HMM Hidden Markov Model
ICM Iterative Conditional Modes
ID Influence Diagram
ILP Inductive Logic Programming
KB Knowledge Base
LIMID Limited Memory Influence Diagram
MAG Maximal Ancestral Graph
MAP Maximum a Posteriori
MB Markov Blanket
MBC Multidimensional Bayesian network Classifier

xxi



MC Markov Chain
MDL Minimum Description Length
MDP Markov Decision Process
MLN Markov Logic Network
MN Markov Network
MPE Most Probable Explanation
MRF Markov Random Field
NBC Naïve Bayes Classifier
PAG Parental Ancestral Graph
PGM Probabilistic Graphical Model
PL Pseudolikelihood
POMDP Partially Observable Markov Decision Process
PRM Probabilistic Relational Model
RPGM Relational Probabilistic Graphical Model
SNBC Semi-Naïve Bayesian Classifier
TAN Tree Augmented Naive Bayes classifier
TEN Temporal Event Network
TN Temporal Node
TNBN Temporal Nodes Bayesian Network

xxii Acronyms



Notations

T True
F False
A, B, C, … Propositions (binary variables)
:A Not A (negation)
A ^ B A and B (conjunction)
A _ B A or B (disjunction)
A ! B B if A (implication)
A $ B A if B and B if A (double implication)
X 2 A X is an element of A
8ðXÞ Universal quantifier: for all X
9ðXÞ Existential quantifier: exists an X
C[D Union of two sets
C\D Intersection of two sets
Ω Sample space
X A random variable
x A particular value of a random variable, X ¼ x
X A vector of random variables, X ¼ X1;X2; . . .;XN

x A particular realization of vector X; x ¼ x1; x2; . . .; xN
X1:T Vector of variable X from t = 1 to t = T , X1:T ¼ X1;X2; . . .;XT

PðX ¼ xÞ Probability of X being in state x; for short PðxÞ
PðX ¼ xÞ Probability of X being in state x; for short P(x)
P(x, y) Probability of x and y
Pðx _ yÞ Probability of x or y
P(x | y) Conditional probability of x given y
PðxÞ � y The probability of x is proportional to y, that is PðxÞ ¼ k � y
PðXÞ Cumulative distribution function of a discrete variable X
P(X) Probability function of a discrete variable X
F(X) Cumulative distribution function of a continuous variable X
f ðXÞ Probability density function of a continuous variable X
I(X, Y, Z) X independent of Z given Y
G(V, E) Graph G with set of vertices V and set of edges E

xxiii



Pa(X) Parents of node X in a directed graph
Nei(X) Neighbors of node X in a graph
n! Factorial of n; n! ¼ n� ðn� 1Þ � ðn� 2Þ � . . .1
n
r

� �
Combinations of r from n,

n
r

� �
¼ n!

r!ðn�rÞ!

exp(x) Exponential of x; expðxÞ ¼ ex

jXj The dimension or number of states of a discrete variable X
μ Mean
σ2 Variance
σ Standard deviation
Nðμ; σ2Þ Normal distribution with mean μ and standard deviation σ

I(m) Information
H(M) Entropy
E(X) Expected value of a random variable X
ArgMaxxFðXÞ The value of X for which the function F is maximum

xxiv Notations



Part I
Fundamentals

The first chapters of the book include a general introduction to probabilistic
graphical models, and provide the theoretical foundations required for the rest of the
book: probability theory and graph theory.



Chapter 1
Introduction

1.1 Uncertainty

For achieving their goals, intelligent agents, natural or artificial, have to select a
course of actions among many possibilities. That is, they have to make decisions
based on the information they can obtain from their environment, their previous
knowledge, and their objectives. In many cases, the information and knowledge is
incomplete or unreliable, and the results of their decisions are not certain, that is,
they have to make decisions under uncertainty. For instance: a medical doctor in an
emergency must act promptly even if she has limited information on the patient’s
state; an autonomous vehicle that detects what might be an obstacle in its way must
decide if it should turn or stop without being certain about the obstacle’s distance,
size, and velocity; or a financial agent needs to select the best investment according
to its vague predictions on the expected return of the different alternatives and its
clients’ requirements.

One of the goals of artificial intelligence is to develop systems that can reason and
make decisions under uncertainty. Reasoning under uncertainty presented a chal-
lenge to early intelligent systems, as traditional paradigms were not well suited for
managing uncertainty.

1.1.1 Effects of Uncertainty

Early artificial intelligence systemswerebasedonclassical logic, inwhichknowledge
can be represented as a set of logic clauses or rules. These systems have two impor-
tant properties, modularity and monotonicity, which help to simplify knowledge
acquisition and inference.

A system is modular if each piece of knowledge can be used independently
to arrive at conclusions. That is, if the premises of any logical clause or rule
are true, then we can assert its conclusion without needing to consider other

© Springer-Verlag London 2015
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elements in the knowledge base. For example, if we have the rule, ∀X, stroke(X) →
impairedarm(X), then if we know that Mary had a stroke we know that she has an
impaired-arm.

A system is monotonic if its knowledge always increases monotonically: that is,
any deduced fact or conclusion is maintained even if new facts are known by the
system. For example, if there is a rule such as ∀X, bird(X) → flies(X), then if
Tweety is a bird, we can assert that she flies.

However, if we have uncertainty these two properties are not true in general. In
medical systems there is usually uncertainty about the diagnosis of a patient, so if
a person suffers a stroke, her arm might not be impaired; it depends on the part of
the brain affected by the stroke. Similarly, not all birds fly, so if we later learn that
Tweety is a penguin, we will need to retract the conclusion that she flies.

The loss of these two properties makes a system that has to reason under uncer-
tainty more complex. In principle, the system has to take into account all available
knowledge and facts when deriving a conclusion, and must be able to change its
conclusions when acquiring new data.

1.2 A Brief History

From an artificial intelligence perspective, we can consider the following stages in
the development of uncertainty management techniques:

Beginnings (1950s and 1960s)—artificial intelligence (AI) researchers focused
on solving problems such as theorem proving, games like chess, and the “blocks
world” planning domain, which do not involve uncertainty, making it unnecessary
to develop techniques for managing uncertainty. The symbolic paradigm dominated
AI in the beginnings.

Ad hoc techniques (1970s)—the development of expert systems for realistic
applications such as medicine and mining, required the development of uncer-
tainty management approaches. Novel ad hoc techniques were developed for specific
expert systems, such as MYCIN’s certainty factors [15] and Prospector’s pseudo-
probabilities [3]. Later it was shown that these techniques had a set of implicit
assumptions which limited their applicability [5]. Also in this period, alternative
theories were proposed to manage uncertainty in expert systems, including fuzzy
logic [17] and the Dempster-Shafer theory [14].

Resurgence of probability (1980s)—probability theory was used in some initial
expert systems, however, it was later discarded as its application in naiveways implies
a high computational complexity (see Sect. 1.3). New developments, in particular
Bayesian networks [11], make it possible to build complex probabilistic systems in
an efficient manner, starting a new era for uncertainty management in AI.

Diverse formalisms (1990s)—Bayesian networks continued and were consoli-
dated with the development of efficient inference and learning algorithms. Mean-
while, other techniques such as fuzzy and non-monotonic logics were considered as
alternatives for reasoning under uncertainty.
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Probabilistic graphical models (2000s)—several techniques based on probability
and graphical representations were consolidated as powerful methods for repre-
senting, reasoning, and making decisions under uncertainty, including Bayesian
networks, Markov networks, influence diagrams, and Markov decision processes,
among others.

1.3 Basic Probabilistic Models

Probability theory provides a well-established foundation for managing uncertainty,
therefore it is natural to use it for reasoning under uncertainty. However, if we apply
probability in a naive way to complex problems, we are soon deterred by computa-
tional complexity.

In this section we will show how we can model a problem using a naive prob-
abilistic approach based on a flat representation; and then how we can use this
representation to answer some probabilistic queries. This will help to understand
the limitations of the basic approach, motivating the development of probabilistic
graphical models.1

Many problems can be formulated as a set of variables, X1, X2, . . . , Xn such that
we know the values for some of these variables while the others are unknown. For
instance, in medical diagnosis, the variables might represent certain symptoms and
the associated diseases; usually we know the symptoms and we want to find the most
probable disease(s). Another example could be a financial institution developing a
system to help decide the amount of credit given to a certain customer. In this case
the relevant variables are the attributes of the customer, i.e., age, income, previous
credits, etc.; and a variable that represents the amount of credit to be given. Based
on the customer attributes we want to determine, for instance, the maximum amount
of credit that is safe to give to the customer. In general there are several types of
problems that can be modeled in this way, such as diagnosis, classification, and
perception problems, among others.

Under a probabilistic framework we can consider that each attribute of a problem
is a random variable, such that it can take a certain value from a set of values.2 Let us
consider that the set of possible values is finite; for example, X = {x1, x2, . . . , xm}
might represent the m possible diseases in a medical domain. Each value of a random
variablewill have a certain probability associated in a context; in the case of X it could
be the probability of each disease within certain population (what is called the preva-
lence of the disease), i.e.; P(X = x1), P(x = x2), . . ., for short P(x1), P(x2), . . .

1This and the following sections assume that the reader is familiar with some basic concepts of
probability theory; a review of these and other concepts is given in Chap.2.
2Random variables are formally defined later on.

http://dx.doi.org/10.1007/978-1-4471-6699-3_2
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If we consider two random variables, X , Y , then we can calculate the proba-
bility of X taking a certain value and Y taking a certain value, that is, P(X =
xi ∧ Y = y j ) or just P(xi , y j ); this is called the joint probability of X and Y .
The idea can be generalized to n random variables, where the joint probability is
denoted as P(X1, X2, . . . , Xn). We can think of P(X1, X2, . . . , Xn) as a function
that assigns a probability value to all possible combinations of values of the variables
X1, X2, . . . , Xn .

Therefore, we can represent a domain as:

1. A set of random variables, X1, X2, . . . , Xn .
2. A joint probability distribution associated to these variables, P(X1, X2, . . . , Xn).

Given this representation, we can answer some queries with respect to certain
variables in the domain, such as:

Marginal probabilities: the probability of one of the variables taking a certain value.
This can be obtained by summing over all the other variables of the joint probability
distribution. In other words, P(Xi ) = ∑

∀X �=Xi
P(X1, X2, . . . , Xn). This is known

as marginalization. Marginalization can be generalized to obtain the marginal joint
probability of a subset of variables by summing over the rest.

Conditional probabilities: by definition the conditional probability of Xi given that
we know X j is P(Xi | X j ) = P(Xi , X j )/P(X j ), P(X j ) �= 0. P(Xi , X j ) and
P(X j ) can be obtained viamarginalization, and from themwe can obtain conditional
probabilities.

Total Abduction or MPE: given that a subset (E) of variables is known, abduction
consists in finding the values of the rest of variables (J ) that maximize their con-
ditional probability given the evidence, maxP(J | E). That is, ArgMaxJ [P(X1,

X2, . . . , Xn)/P(E)].
Partial abduction or MAP: in this case there are three subsets of variables: the
evidence, E , the query variables that we want to maximize, J , and the rest of the
variables, K , such that we want to maximize P(J | E). This is obtained by mar-
ginalizing over K and maximizing over J , that is, ArgMax J

[ ∑
X∈K P(X1, X2,

. . . , Xn)/P(E)
]
.

Additionally, if we have data from the domain of interest, we might obtain a model
from this data, that is, estimate the joint probability distribution of the relevant
variables.

Next we illustrate the basic approach with a simple example.

1.3.1 An Example

We will use the traditional golf example to illustrate the basic approach. In this
problemwehavefivevariables:outlook, temperature, humidity, windy, play. Table1.1
shows some data for the golf example; all variables are discrete so they can take a
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Table 1.1 A sample data set for the golf example

Outlook Temperature Humidity Windy Play

Sunny High High False No

Sunny High High True No

Overcast High High False Yes

Rain Medium High False Yes

Rain Low Normal False Yes

Rain Low Normal True No

Overcast Low Normal True Yes

Sunny Medium High False No

Sunny Low Normal False Yes

Rain Medium Normal False Yes

Sunny Medium Normal True Yes

Overcast Medium High True Yes

Overcast High Normal False Yes

Rain Medium High True No

value from a finite set of values, for instance Outlook could be sunny, overcast, or
rain. We will now illustrate how we can calculate the different probabilistic queries
mentioned before for this example.

First, we will simplify the example using only two variables, Outlook and Tem-
perature. From the data in Table1.1 we can obtain the joint probability of Outlook
and Temperature as depicted in Table1.2. Each entry in the table corresponds to the
joint probability P(Outlook,Temperature), for example, P(Outlook = S,Temp. =
H) = 0.143.

Let us first obtain the marginal probabilities for the two variables. If we sum per
row (marginalizing Temperature), then we obtain the marginal probabilities for Out-
look, P(Outlook) = [0.357, 0.286, 0.357]; and if we sum per column we obtain the
marginal probabilities for Temperature, P(Temperature) = [0.286, 0.428, 0.286].
From these distributions, we obtain that the most probable Temperature is M and the
most probable values for Outlook are S and R.

Table 1.2 Joint probability
distribution for Outlook and
Temperature

Outlook Temp.

H M L

S 0.143 0.143 0.071

O 0.143 0.071 0.071

R 0 0.214 0.143

www.allitebooks.com

http://www.allitebooks.org
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Now we can calculate the conditional probabilities of Outlook given Temperature
and vice versa. For instance:

P(Temp. | Outlook = R) = P(Temp. ∧ Outlook = R)/P(Outlook = R)

= [0, 0.6, 0.4]
P(Outlook | Temp. = L) = P(Outlook ∧ Temp. = L)/P(Temp. = L)

= [0.25, 0.25, 0.5]

Given these distributions, the most probable Temperature given that the Outlook
is Rain isMedium, and the most probable Outlook given that the Temperature is Low
is Rain.

Finally, the most probable combination of Outlook and Temperature is {Rain,
Medium}, which in this case can be obtained directly from the joint probability table.

Although it is possible to compute the different probabilistic queries for this small
example, this approach becomes impractical for complex problems with many vari-
ables, as the size of the table and the direct computation of marginal and conditional
probabilities grow exponentially with the number of variables in the model.

Another disadvantage of this naive approach is that to have good estimates for the
joint probabilities from data, we will require a very large database if there are many
variables in the model. A rule of thumb is that the number of instances (records) is
at least 10 times the number of possible combination values for the variables, so if
we consider 50 binary variables, it will require at least 10 × 250 instances!

Finally, the joint probability table does not say much about the problem to a
human; so this approach also has cognitive limitations.

The problems seen with the basic approach are some of the motivations for the
development of probabilistic graphical models.

1.4 Probabilistic Graphical Models

Probabilistic graphical models (PGMs) provide a framework for managing uncer-
tainty based on probability theory in a computationally efficient way. The basic
idea is to consider only those independence relations that are valid for a certain
problem, and include these in the probabilistic model to reduce complexity in terms
of memory requirements and also computational time. A natural way to represent the
dependence and independence relations between a set of variables is using graphs,
such that variables that are directly dependent are connected, and the independence
relations are implicit in this dependency graph.

A probabilistic graphical model is a compact representation of a joint probability
distribution, from which we can obtain marginal and conditional probabilities. It has
several advantages over a flat representation:
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• It is generally much more compact (space).
• It is generally much more efficient (time).
• It is easier to understand and communicate.
• It is easier to learn form data or to construct based on expert knowledge.

A probabilistic graphical model is specified by two aspects: (i) a graph, G(V, E),
that defines the structure of the model; and (ii) a set of local functions, f (Yi ), that
define the parameters, where Yi is a subset of X . The joint probability is obtained by
the product of the local functions:

P(X1, X2, . . . , X N ) = K
M∏

i=1

f (Yi ) (1.1)

where K is a normalization constant (it makes the probabilities sum to one).
This representation in terms of a graph and a set of local functions (called poten-

tials) is the basis for inference and learning in PGMs:

Inference: obtain the marginal or conditional probabilities of any subset of vari-
ables Z given any other subset Y.

Learning: given a set of data values for X (that can be incomplete) estimate the
structure (graph) and parameters (local functions) of the model.

We can classify probabilistic graphical models according to three dimensions:

1. Directed or undirected
2. Static or dynamic
3. Probabilistic or decisional

The first dimension has to do with the type of graph used to represent the depen-
dence relations. Undirected graphs represent symmetric relations, while directed
graphs represent relations in which the direction is important. Given a set of random
variables with the corresponding conditional independence relations, it is not pos-
sible to represent all the relations with one type of graph [11]; thus, both types of
models are useful.

The second dimension defines if themodel represents a set of variables at a certain
point in time (static) or across different times (dynamic). Probabilistic models only
include random variables, while decisional models also include decision and utility
variables.

The most common classes of PGMs and their type according to the previous
dimensions are summarized in Table1.3.

All these types of models will be covered in detail in the following chapters, and
also some extensions that consider more expressive models (relational probabilistic
graphical models) or represent causal relations (causal Bayesian networks).
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Table 1.3 Main types of probabilistic graphical models

Type Directed/Undirected Static/Dynamic Prob./Decisional

Bayesian classifiers D/U S P

Markov chains D D P

Hidden Markov
models

D D P

Markov random fields U S P

Bayesian networks D S P

Dynamic Bayesian
networks

D D P

Influence diagrams D S D

Markov decision
processes (MDPs)

D D D

Partially observable
MDPs

D D D

1.5 Representation, Inference, and Learning

There are three main aspects for each class of probabilistic graphical model,
representation, inference, and learning.

The representation is the basic property of eachmodel, and it defineswhich entities
constitute it and how these are related. For instance, all PGMs can be represented as
graphs that define the structure of the model and by local functions that describe its
parameters. However, the type of graph and the local functions vary for the different
types of models.

Inference consists in answering different probabilistic queries based on the model
and some evidence. For instance, obtaining the posterior probability distribution of
a variable or set of variables given that other variables in the model are known. The
challenge is how to do this efficiently.

To construct thesemodels there are basically two alternatives: to build it “by hand”
with the aid of domain experts or to induce the model from data. The emphasis in
recent years has been to induce the models based on machine learning techniques,
because it is difficult and costly to do it with the aid of experts. In particular obtaining
the parameters for the models is usually done based on data, as humans tend to be
bad estimators of probabilities.

An important property of these techniques from an application point of view is
that they tend to separate the inference and learning techniques from the model. That
is, as in other artificial intelligence representations such as logic and production rules,
the reasoning mechanisms are general and can be applied to different models. As a
result, the techniques developed for probabilistic inference in each class of PGM can
be applied directly for different models in a variety of applications.
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Fig. 1.1 A schematic representation of the general paradigm followed by the different classes of
PGMs, in which there is a clear separation between the learning and inference engines, which are
generic, and the knowledge base, which depends on the particular application

This idea is illustrated schematically inFig. 1.1.Basedondata or expert knowledge
or a combination of both, the knowledge base—in this case a probabilistic graphical
model, is built using the learning engine. Once we have the model, we can use it to
do probabilistic reasoning through the inference engine; based on the observations
and the model, the inference engine derives the results. The learning and inference
engines are generic for a class of PGMs, so they can be applied for modeling and
reasoning in different domains.

For each type of PGM presented in the book, we will first describe its representa-
tion and then present some of the most common inference and learning techniques.

1.6 Applications

Most real-world problems imply dealing with uncertainty and usually involve a large
number of factors or variables to be considered when solving them. Probabilistic
graphical models constitute an ideal framework to solve complex problems with
uncertainty, so they are being applied in a wide range of domains such as:

• Medical diagnosis and decision making.
• Mobile robot localization, navigation, and planning.
• Diagnosis for complex industrial equipment such as turbines and power plants.
• User modeling for adaptive interfaces and intelligent tutors.
• Speech recognition and natural language processing.
• Pollution modeling and prediction.
• Reliability analysis of complex processes.
• Modeling the evolution of viruses.
• Object recognition in computer vision.
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• Information retrieval.
• Energy markets.

Different types of PGMs are more appropriate for different applications, as will
be shown in the following chapters when we present application examples for each
class of PGM.

1.7 Overview of the Book

The book is divided into four parts.
Part I provides the mathematical foundations for understanding the models and

techniques presented in the following chapters. Chapter 2 presents a review of
some basic concepts in probability and information theory which are important for
understanding probabilistic graphical models. Chapter 3 gives an overview of graph
theory, with emphasis on certain aspects that are important for representation and
inference in probabilistic graphical models; including, among others, cliques, trian-
gulated graphs, and perfect orderings.

Part II covers the different types of probabilistic models that only have random
variables, and do not consider decisions or utilities in the model. This is the largest
part and it includes the following types of PGMs:

• Bayesian classifiers
• Markov chains and hidden Markov models
• Markov random fields
• Bayesian networks
• Dynamic Bayesian networks and temporal networks

A chapter is dedicated to each type of model (except for Bayesian networks which
is divided into two chapters), including representation, inference, and learning; and
practical application examples.

Part III presents those models that consider decisions and utilities, and as such
are focused on aiding the decision maker to take the optimal actions under uncer-
tainty. This part includes two chapters. The first chapter covers modeling techniques
for when there are one or few decisions, including decision trees and influence dia-
grams. The second chapter covers sequential decision problems, in particularMarkov
decision processes.

Part IV considers alternative paradigms that can be thought as extensions to the
traditional probabilistic graphical models. It includes two chapters. The first chapter
is dedicated to relational probabilistic models, which increase the representational
power of standard PGMs, by combining the expressive power of first-order logic
with the uncertain reasoning capabilities of probabilistic models. The second chapter
introduces causal graphical models that go beyond representing probabilistic depen-
dencies, to express cause and effect relations.

http://dx.doi.org/10.1007/978-1-4471-6699-3_2
http://dx.doi.org/10.1007/978-1-4471-6699-3_3
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1.8 Additional Reading

In this book we present a broad perspective on probabilistic graphical models. There
are few other books that have a similar coverage. One is by Koller and Friedman [7],
which presents the models under a different structure with less emphasis on appli-
cations. Another is by Lauritzen [8], which has a more statistical focus. Bayesian
programming [1] provides an alternative approach to implement graphical models
based on a programming paradigm.

There are several books that cover one or few types ofmodels in greater depth, such
as: Bayesian networks [2, 10, 11], decision graphs [6], Markov random fields [9],
Markovdecisionprocesses [13], relational probabilisticmodels [4] and causalmodels
[12, 16].
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Chapter 2
Probability Theory

2.1 Introduction

Probability theory originated in games of chance and has a long and interesting
history; it has developed into a mathematical language for quantifying uncertainty.

Consider a certain experiment, such as throwing a die; this experiment can have
different results, we call each result an outcome or element. In the die example,
the possible outcomes or elements are the following: {1, 2, 3, 4, 5, 6}. The set of all
possible outcomes of an experiment is called the sample space, Ω . An event is a set
of elements or subset ofΩ . Continuing with the die example, one event could be that
the die shows an even number, that is, {2, 4, 6}.

Beforewemathematically define probability, it is worth discussing themeaning or
interpretation of probability. Several definitions or interpretations of probability have
been proposed, starting from the classical definition by Laplace, and including the
limiting frequency, the subjective, the logical, and the propensity interpretations [1]:

Classical: probability has to do with equiprobable events; if a certain experiment
has N possible outcomes, the probability of each outcome is 1/N .

Logical: probability is a measure of rational belief; that is, according to the avail-
able evidence, a rational person will have a certain belief regarding an event,
which will define its probability.

Subjective: probability is a measure of the personal degree of belief in a certain
event; this could be measured in terms of a betting factor—the probability of a
certain event for an individual is related to how much that person is willing to bet
on that event.

Frequency: probability is ameasure of the number of occurrences of an event given
a certain experiment, when the number of repetitions of the experiment tends to
infinity.

Propensity: probability is a measure of the number of occurrences of an event
under repeatable conditions, even if the experiment only occurs once.

© Springer-Verlag London 2015
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These interpretations can be grouped into what are the two main approaches in
probability and statistics:

• Objective (classical, frequency, propensity): probabilities exist in the real world
and can be measured.

• Epistemological (logical, subjective): probabilities have to do with human knowl-
edge, they are measures of belief.

Both approaches follow the same mathematical axioms defined below; however,
there are differences in the manner in which probability is applied, in particular in
statistical inference. These differences gaveway to themain two schools for statistics:
the frequentist and the Bayesian schools. In the field of artificial intelligence, in
particular in expert systems, the preferred approach tends to be the epistemological
or subjective one; however, the objective approach is also used [4].

We will consider the logical or normative approach and define probabilities in
terms of the degree of plausibility of a certain proposition given the available evidence
[2]. Based on Cox’s work, Jaynes establishes some basic desiderata that this degree
of plausibility must follow [2]:

• Representation by real numbers.
• Qualitative correspondence with common sense.
• Consistency.

Based on these intuitive principles, we can derive the three axioms of probability:

1. P(A) is a continuous monotonic function in [0, 1].
2. P(A, B | C) = P(A | C)P(B | A, C) (product rule).
3. P(A | B) + P(¬A | B) = 1 (sum rule).

Where A, B, C are propositions (binary variables) and P(A) is the probability of
proposition A. P(A | C) is the probability of A given that C is known, which is
called conditional probability. P(A, B | C) is the probability of A AND B given C
(logical conjunction) and P(¬A | C) is the probability of NOT A (logical negation)
givenC . These rules are equivalent to the most commonly used Kolmogorov axioms.
From these axioms, all conventional probability theory can be derived.

2.2 Basic Rules

The probability of the disjunction (logical sum) of two propositions is given by the
sum rule: P(A + B | C) = P(A | C)+ P(B | C)− P(A, B | C); if propositions A
and B are mutually exclusive given C , we can simplify it to: P(A + B | C) = P(A |
C) + P(B | C). This can be generalized for N mutually exclusive propositions to:

P(A1 + A2 + · · · AN | C) = P(A1 | C) + P(A2 | C) + · · · + P(AN | C) (2.1)
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In the case that there are N mutually exclusive and exhaustive hypotheses,
H1, H2, . . . , HN , and if the evidence B does not favor any of them, then accord-
ing to the principle of indifference: P(Hi | B) = 1/N .

According to the logical interpretation there are no absolute probabilities, all are
conditional on some background information.1 P(H | B) conditioned only on the
background B is called a prior probability; once we incorporate some additional
information D we call it a posterior probability, P(H | D, B). From the product
rule we obtain:

P(D, H | B) = P(D | H, B)P(H | B) = P(H | D, B)P(D | B) (2.2)

From which we obtain:

P(H | D, B) = P(H | B)P(D | H, B)

P(D | B)
(2.3)

This last equation is known as the Bayes rule and the term P(D | H, B) as the
likelihood, L(H).

In some cases the probability of H is not influenced by the knowledge of D,
so it is said that H and D are independent given some background B, therefore,
P(H, D | B) = P(H | B). In the case in which A and B are independent, the
product rule can be simplified to: P(A, B | C) = P(A | C)P(B | C), and this can
be generalized to N mutually independent propositions:

P(A1, A2, . . . , AN | B) = P(A1 | B)P(A2 | B) · · · P(AN | B) (2.4)

If two propositions are independent given only the background information they
are marginally independent; however, if they are independent given some additional
evidence, E , then they are conditionally independent: P(H, D | B, E) = P(H |
B, E). For example, consider that A represents the proposition watering the garden,
B theweather forecast andC raining. Initially,watering the garden is not independent
of the weather forecast; however, once we observe rain, they become independent.
That is (omitting the background term), P(A, B | C) = P(A | C).

Probabilistic graphical models are based on these conditions of marginal and
conditional independence.

The probability of a conjunction of N propositions, that is, P(A1, A2, . . . , AN |
B), is usually called the joint probability. If we generalize the product rule to N
propositions we obtain what is known as the chain rule:

P(A1, A2, . . . , AN | B) = P(A1 | A2, A3, . . . , AN , B)P(A2 | A3, A4, . . . , AN , B)

· · · P(AN | B) (2.5)

1It is commonly written P(H) without explicit mention of the conditioning information. In this
case we assume that there is still some context under which probabilities are considered even if it
is not written explicitly.
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Thus the joint probability of N propositions can be obtained by this rule. Conditional
independence relations between the propositions can be used to simplify this product;
that is, for instance if A1 and A2 are independent given A3, . . . , AN , B, then the first
term in Eq.2.5 can be simplified to P(A1 | A3, . . . , AN , B).

Another important relation is the rule of total probability. Consider a partition,
B = {B1, B2, . . . , Bn}, on the sample space Ω , such that Ω = B1 ∪ B2 ∪ · · · ∪ Bn

and Bi ∩ B j = ∅. That is, B is a set of mutually exclusive events that cover the entire
sample space. Consider another event A; A is equal to the union of its intersections
with each event A = (B1 ∩ A) ∪ (B2 ∩ A) ∪ · · · ∪ (Bn ∩ A). Then, based on the
axioms of probability and the definition of conditional probability we can derive the
rule of total probability:

P(A) =
∑

i

P(A | Bi )P(Bi ) (2.6)

Given the total probability rule, we can rewrite Bayes rule as (omitting the back-
ground term):

P(B | A) = P(B)P(A | B)
∑

i P(A | Bi )P(Bi )
(2.7)

This last expression is commonly known as Bayes Theorem.

2.3 Random Variables

If we consider a finite set of exhaustive and mutually exclusive propositions,2 then a
discrete variable X can represent this set of propositions, such that each value xi of
X corresponds to one proposition. If we assign a numerical value to each proposition
xi , then X is a discrete random variable. For example, the outcome of the toss of a die
is a discrete random variable with six possible values 1, 2, . . . , 6. The probabilities
for all possible values of X , P(X) is the probability distribution of X . Considering
the die example, for a fair die the probability distribution will be:

x 1 2 3 4 5 6
P(x) 1/6 1/6 1/6 1/6 1/6 1/6

This is an example of a uniform probability distribution. There are several prob-
ability distributions that have been defined. Another common distribution is the
binomial distribution. Assume we have an urn with N colored balls, red and black,
of which M are red, so the fraction of red balls is π = M/N . We draw a ball at

2This means that one and only one of the propositions has a value of TRUE.
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random, record its color, and return it to the urn, mixing the balls again (so that, in
principle, each draw is independent of the previous one). The probability of getting
r red balls in n draws is:

P(r | n, π) =
(

n
r

)

πr (1 − π)n−r , (2.8)

where

(
n
r

)

= n!
r !(n−r)! .

This is an example of a binomial distribution which is applied when there are
n independent trials, each with two possible outcomes (success or failure), and the
probability of success is constant over all trials. There are many other distributions;
we refer the interested reader to the additional reading section at the end of the
chapter.

There are two important quantities that in general help to characterize a probability
distribution. The expected value or expectation of a discrete random variable is the
average of the possible values, weighted according to their probabilities:

E(X | B) =
N∑

i=1

P(xi | B)xi (2.9)

The variance is defined as the expected value of the square of the variable minus its
expectation:

Var(X | B) =
N∑

i=1

P(xi | B)(xi − E(X))2 (2.10)

Intuitively, the variance gives a measure of how wide or narrow the probabilities are
distributed for a certain random variable. The square root of the variance is known
as the standard deviation, which is usually more intuitive as its units are the same as
those of the variable.

So far we have considered discrete variables, however, the rules of probability
can be extended to continuous variables. If we have a continuous variable X , we
can divide it into a set of mutually exclusive and exhaustive intervals, such that
P = (a < X ≤ b) is a proposition, thus the rules derived so far apply to it. A
continuous random variable can be defined in terms of a probability density function,
f (X | B), such that:

P(a < X ≤ b | B) =
∫ b

a
f (X | B)dx (2.11)

The probability density function must satisfy
∫ ∞
−∞ f (X | B)dx = 1.
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An example of a continuous probability distribution is the Normal or Gaussian
distribution. This distribution plays an important role in many applications of prob-
ability and statistics, as many phenomena in nature have an approximately normal
distribution; it is also prevalent in probabilistic graphical models due to its mathe-
matical properties.

A normal distribution is denoted as N (μ, σ 2), where μ is the mean (center) and
σ is the standard deviation (spread); and it is defined as:

f (X | B) = 1

σ
√
2π

exp{− 1

2σ 2 (x − μ)2} (2.12)

The density function of a Gaussian distribution is depicted in Fig. 2.1.
Another important continuous distribution is the exponential distribution; for

example, the time it takes for a certain piece of equipment to fail is usually modeled
by an exponential distribution. The exponential distribution is denoted as Exp(β);
it has a single parameter β > 0, and it is defined as:

f (X | B) = 1

β
e−x/β, x > 0 (2.13)

An example of an exponential density function is shown in Fig. 2.2.
It is common to represent probability distributions, in particular for continuous

variables, using the cumulative distribution function, F . The cumulative distribution
function of a random variable, X , is the probability that X ≤ x . For a continuous
variable, it is defined in terms of the density function as:

F(x) =
∫ x

−∞
f (X) (2.14)

Fig. 2.1 Probability density
function of the Gaussian
distribution
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Fig. 2.2 Probability density
function of the exponential
distribution

The following are some properties of cumulative distribution functions:

• In the interval [0, 1]: 0 ≤ F(X) ≤ 1
• Nondecreasing: F(X1) < F(X2) if X1 < X2
• Limits: limx→−∞ = 0 and limx→∞ = 1

In the case of discrete variables, the cumulative probability, P(X ≤ x) is
defined as:

P(x) =
X=x∑

x=−∞
P(X) (2.15)

It has similar properties as the cumulative distribution function.

2.3.1 Two-Dimensional Random Variables

The concept of a random variable can be extended to two or more dimensions. Given
two random variables, X and Y , their joint probability distribution is defined as
P(x, y) = P(X = x ∧ Y = y). For example, X might represent the number of
products completed in one day in product line one, and Y the number of products
completed in one day in product line two, thus P(x, y) corresponds to the probability
of producing x products in line one and y products in line two. P(X, Y ) must follow
the axioms of probability, in particular: 0 ≤ P(x, y) ≤ 1 and

∑
x
∑

y P(X, Y ) = 1.
The distribution for two-dimensional discrete random variables (known as the

bivariate distribution) can be represented in tabular form. For instance, consider the
example of the two product lines, and assume that line one (X ) may produce 1, 2, or 3
products per day, and line two (Y ), 1 or 2 products. Then a possible joint distribution,
P(X, Y ) is shown in Table2.1.
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Table 2.1 An example of a two-dimensional discrete probability distribution

X = 1 X = 2 X = 3

Y = 1 0.1 0.3 0.3

Y = 2 0.2 0.1 0

Given the joint probability distribution, P(X, Y ), we can obtain the distribution
for each individual random variable, what is known as the marginal probability:

P(x) =
∑

y

P(X, Y ); P(y) =
∑

x

P(X, Y ) (2.16)

For instance, if we consider the joint distribution of Table2.1, we can obtain the
marginal probabilities for X and Y . For example, P(X = 2) = 0.3+ 0.1 = 0.4 and
P(Y = 1) = 0.1 + 0.3 + 0.3 = 0.7.

We can also calculate the conditional probabilities of X given Y and vice versa:

P(x | y) = P(x, y)/P(y); P(y | x) = P(x, y)/P(x) (2.17)

Following the example in Table2.1:

P(X = 3 | Y = 1) = P(X = 3, Y = 1)/P(Y = 1) = 0.3/0.7 = 0.4286

The concept of independence canbe applied to two-dimensional randomvariables.
Two random variables, X , Y are independent if their joint probability distribution is
equal to the product of their marginal distributions (for all values of X and Y ):

P(X, Y ) = P(X)P(X) → Independent (X, Y ) (2.18)

Another useful measure is called correlation—it is a measure of the degree of
linear relation between two random variables, X , Y and is defined as:

ρ(X, Y ) = E{[X − E(X)][Y − E(Y )]}/(σxσy) (2.19)

where E(X) is the expected value of X and σx its standard deviation. The correlation
is in the interval [−1, 1]; a positive correlation indicates that as X increases, Y tends
to increase; and a negative correlation that as X increases, Y tends to decrease.

Note that a correlation of zero does not necessarily imply independence, as the
correlation only measures a linear relationship. So it could be that X and Y have
a zero correlation but are related through a higher order function, and thus are not
independent.
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2.4 Information Theory

Information theory originated in the area of communications, although it is relevant
for many different fields. In the case of probabilistic graphical models, it is mainly
applied in learning. In this section we will cover the basic concepts of information
theory.

Assume that we are communicating the occurrence of a certain event. Intuitively,
we can think that the amount of information from communicating an event is inverse
to the probability of the event. For example, consider that a message is sent informing
about one of the following events:

1. It is raining in New York.
2. There was an earthquake in New York.
3. A meteorite fell over New York City.

The probability of the first event is higher than the second, and that of the second
is higher than the third. Thus, the message for event 1 has the lowest amount of
information and the message for event 3 gives the highest amount of information.

Let us now see how we can formalize the concept of information. Assume we
have a source of information that can send q possible messages, m1, m2, . . . , mq ;
where each message corresponds to an event with probabilities P1, P2, . . . , Pq . We
want to find a function I (m) based on the probability of m. The function must satisfy
the following properties:

• The information ranges from zero to infinity: I (m) ≥ 0.
• The information increases as the probability decreases: I (mi ) > I (m j ) if

P(mi ) < P(m j ).
• The information tends to infinity as the probability tends to zero: I (m) → ∞ if

P(m) → 0.
• The information of two messages is equal to the sum of that of the individual
messages if these are independent: I (mi +m j ) = I (mi )+ I (m j ) ifmi independent
of m j .

A function that satisfies the previous properties is the logarithm of the inverse of
the probability, that is,

I (mk) = log(1/P(mk)) (2.20)

It is common to use base two logarithms, so the information is measured in “bits":

I (mk) = log2(1/P(mk)) (2.21)

For example, if we assume that the probability of the message mr “raining in New
York" is P(mr ) = 0.25, the corresponding information is I (mr ) = log2(1/0.25)=2.
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Once we have defined information for a particular message, another important
concept is the average information for the q messages; that is, the expected value of
the information also known as entropy. Given the definition of expected value, the
average information of q message or entropy is defined as:

H(m) = E(I (m)) =
i=q∑

i=1

P(mi )log2(1/P(mi )) (2.22)

This can be interpreted as that on average H bits of information will be sent.
An interesting question is: When will H have its maximum andminimum values?

Consider a binary source such that there are only two messages, m1 and m2; with
P(m1) = p1 and P(m2) = p2. Given that there are only two possible messages,
p2 = 1− p1, so H only depends on one parameter, p1 (or just p). Figure2.3 shows
a graph of H with respect to p. Observe that H is at its maximum when p = 0.5
and at its minimum (zero) when p = 0 and p = 1. In general, the entropy is at its
maximum when there is a uniform probability distribution for the events; it is at its
minimum when there is one element that has a probability of one and the rest have
a probability of zero.

If we consider the conditional probabilities, we can extend the concept of entropy
to conditional entropy:

H(X | y) =
i=q∑

i=1

P(Xi | y)log2[1/P(Xi | y)] (2.23)

Another extension of entropy is the cross entropy:

H(X, Y ) =
∑

X

∑

Y

P(X, Y )log2[P(X, Y )/P(X)P(Y )] (2.24)

The cross entropy provides a measure of the mutual information (dependency)
between two random variables; it is zero when the two variables are independent.

Fig. 2.3 Entropy versus
probability for a binary
source. The entropy is at its
maximum when the
probability is 0.5, and at its
minimum when the
probability is zero and one
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2.5 Additional Reading

Donald Gillies [1] provides a comprehensive account of the different philosophical
approaches to probability. An excellent book on probability theory from a logical
perspective is [2]. Wasserman [5] gives a concise course on probability and statistics
oriented for computer science and engineering students. There are several books on
information theory; one that relates it to machine learning and inference is [3].

2.6 Exercises

1. If we throw two dice, what is the probability that the outcomes add to exactly
seven? Seven or more?

2. If we assume that the height of a group of students follows a normal distribution
with a mean of 1.7m and a standard deviation of 0.1m, how probable is it that
there is a student of height above 1.9m?

3. Demonstrate by mathematical induction the chain rule.
4. Assume that a person has one of two possible diseases, hepatitis (H ) or typhoid

(T ). There are two symptoms associated to these diseases: headache (D) and
fever (F), which could be TRUE or FALSE. Given the following probabilities:
P(T ) = 0.5, P(D | T ) = 0.7, P(D | ¬T ) = 0.4, P(F | T ) = 0.9, P(F |
¬T ) = 0.5. Describe the sampling space and complete the partial probability
tables.

5. Given the data for the previous problem, and assuming that the symptoms are
independent given the disease, obtain the probability that the person has hepatitis
given that she does not have a headache and does have a fever.

6. Given the two-dimensional probability distribution in the table below, obtain:
(a) P(X1), (b) P(Y2), and (c) P(X1 | Y1).

Y1 Y2 Y3

X1 0.1 0.2 0.1
X2 0.3 0.1 0.2

7. In the previous problem, are X and Y independent?
8. In a certain place, the statistics show that in a year the weather behaves in the

following way. From 365 days, 200 are sunny, 60 cloudy, 40 rainy, 20 snowy, 20
with thundershowers, 10 with hail, 10 windy, and 5 with drizzle. If on each day
a message is sent about the weather, what is the information of the message for
each type of weather?
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9. Considering the information for each type of weather in the previous problem,
what is the average information (entropy) of the message?

10. ***Investigate the different philosophical interpretations of probability, and dis-
cuss the advantages and limitations of each one of them. Which one do you
consider the most appropriate? Why?
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Chapter 3
Graph Theory

3.1 Definitions

A graph provides a compact way to represent binary relations between a set of
objects. For example, consider a set of cities in a certain region, and the roads that
connect these cities. Then a map of the region is essentially a graph, in which the
object are the cities and the direct roads between pairs of cities are the relations.
Graphs are usually represented graphically. Objects are represented as circles or
ovals, and relations as lines or arrows; see Fig. 3.1. There are two basic types of
graphs: undirected graphs and directed graphs. Next, we formalize the definitions
of directed and undirected graphs.

Given V, a nonempty set, a binary relation E ⊆ V × V on V is a set of ordered
pairs, (Vj , Vk), such that Vj ∈ V and Vk in V . A directed graph or digraph is an
ordered pair, G = (V, E), where V is a set of vertices or nodes and E is a set of
arcs that represent a binary relation on V ; see Fig. 3.1b. Directed graphs represent
antisymmetric relations between objects, for instance the “parent” relation.

An undirected graph is an ordered pair, G = (V, E), where V is a set of vertices
or nodes and E is a set of edges that represent symmetric binary relations: (Vj , Vk) ∈
E → (Vk, Vj ) ∈ E ; see Fig. 3.1a. Undirected graphs represent symmetric relations
between objects, for example, the “brother” relation.

If there is an edge Ei (Vj , Vk) between nodes j and k, then Vj is adjacent to Vk .
The degree of a node is the number of edges that are incident in that node. In Fig. 3.1a,
the upper node has a degree of 2 and the two lower nodes have a degree of 1.

Two edges associated to the same pair of vertices are said to be parallel edges;
an edge which is incident on a single vertex is a cycle; and a vertex that is not an
endpoint to any edge is an isolated vertex—it has degree 0. These are illustrated in
Fig. 3.2.

© Springer-Verlag London 2015
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Fig. 3.1 Graphs: a undirected graph, b directed graph

Fig. 3.2 Examples of: a parallel edges, b cycle, c isolated vertex

In a directed graph, the number of arcs pointing to a node is its in-degree, and the
number of edges pointing away from a node is its out-degree. In Fig. 3.1b, the two
upper nodes have an in-degree of zero and an out-degree of two; while the two lower
nodes have an in-degree of two and an out-degree of zero.

Given a graph G = (V, E), a subgraph G ′ = (V ′, E ′) of G, is a graph such that
V ′ ⊆ V and E ′ ⊆ E , in which each edge in E ′ is incident on vertices in V ′. For
example, if we take out the direction of the edges in the graph of Fig. 3.1b (making
it an undirected graph), then the graph in Fig. 3.1a is a subgraph of Fig. 3.1b.

3.2 Types of Graphs

In addition to the two basic graphs, directed and undirected, there other types of
graphs, such as:

Chain graph: a hybrid graph that has directed and undirected edges.
Simple graph: a graph that does not include cycles and parallel arcs.
Multigraph: a graph with several components (subgraphs), such that each compo-

nent has no edges to the other components, i.e., they are disconnected.
Complete graph: a graph that has an edge between each pair of vertices.
Bipartite graph: a graph inwhich the vertices are divided into two subsets, G1, G2,

such that all edges connect a vertex in G1 with a vertex in G2; that is, there are
no edges between nodes in each subset.

Weighted graph: a graph that has weights associated to its edges and/or vertices.

Examples of these types of graphs are depicted in Fig. 3.3.
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Fig. 3.3 Types of graphs: a chain graph, b simple graph, c multigraph, d complete graph, e bipartite
graph, f weighted graph

3.3 Trajectories and Circuits

A trajectory is a sequence of edges, E1, E2, . . . , En such that the final vertex of each
edge coincides with the initial vertex of the next edge in the sequence (except for
the final vertex); that is, Ei (Vj , Vk), Ei+1(Vk, Vl), for i = 1 to i = n − 1. A simple
trajectory does not include the same edge two o more times; an elemental trajectory
is not incident on the same vertex more than once. Examples of different trajectories
are illustrated in Fig. 3.4.

Fig. 3.4 Examples of trajectories: a a trajectory that is simple but not elemental, b a simple and
elemental trajectory
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Fig. 3.5 Example of a
circuit that is simple but not
elemental

A graphG is connected if there is a trajectory between each pair of distinct vertices
in G. If a graph G is not connected, each part that is connected is called a component
of G.

A circuit is a trajectory such that the final vertex coincides with the initial one,
i.e., it is a “closed trajectory”. In an analogous way as with trajectories, we can define
simple and elemental circuits. Figure3.5 shows an example of a circuit.

An important type of graph for PGMs is a Directed Acyclic Graph (DAG). A
DAG is a directed graph that has no directed circuits (a directed circuit is a circuit
in which all edges in the sequence follow the directions of the arrows). For instance,
Fig. 3.1b is a DAG and Fig. 3.3f is not a DAG.

Some classical problems in graph theory include trajectories and circuits, such as:

• Finding a trajectory that includes all edges in a graph only once (Euler trajectory).
• Finding a circuit that includes all edges in a graph only once (Euler circuit).
• Finding a trajectory that includes all vertices in a graph only once (Hamiltonian
trajectory).

• Finding a circuit that includes all vertices in a graph only once (Hamiltonian
circuit).

• Finding a Hamiltonian circuit in a weighted graph with minimum cost (Traveling
salesman problem).1

The solution to these problems is beyond the scope of this book, the interested reader
is referred to [2].

3.4 Graph Isomorphism

Two graphs are isomorphic if there is a one-to-one correspondence between their
vertices and edges, so that the incidences are maintained. Given two graphs, G1 and
G2, there are three basic types of isomorphisms:

1In this case the nodes represent cities and the edges roads with an associated distance or time, so
the solution will provide a traveling salesman with the “best” (minimum distance or time) route to
cover all the cities.
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Fig. 3.6 These two graphs
are isomorphic

1. Graph isomorphism. Graphs G1 and G2 are isomorphic.
2. Subgraph isomorphism. Graph G1 is isomorphic to a subgraph of G2 (or vice

versa).
3. Double subgraph isomorphism. A subgraph of G1 is isomorphic to a subgraph

of G2.

Figure3.6 shows an example of two graphs that are isomorphic.
Determining if twographs are isomorphic (type1) is anNPproblem;while the sub-

graph and double subgraph isomorphism problems (types 2 and 3) are NP-complete.
See [1].

3.5 Trees

Trees are a type of graphwhich are very important in computer science in general, and
for PGMs in particular. We will discuss two types of trees: undirected and directed.

An undirected tree is a connected graph that does not have simple circuits; Fig. 3.7
depicts an example of an undirected tree. There are two classes of vertices or nodes

Fig. 3.7 An undirected tree.
This tree has five nodes,
three leaf nodes and two
internal nodes
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in an undirected tree: (i) leaf or terminal nodes, with degree one; (ii) internal nodes,
with degree greater than one. Some basic properties of a tree are:

• There is a simple trajectory between each pair of vertices.
• The number of vertices, |V |, is equal to the number of edges, |E | plus one: |V | =

|E | + 1.
• A tree with two or more vertices has at least two leaf nodes.

Adirected tree is a connected directed graph such that there is only a single directed
trajectory between each pair of nodes (it is also known as a singly connected directed
graph). There are two types of directed trees: (i) a rooted tree (or simply a tree), (ii)
a polytree. A rooted tree has a single node with an in-degree of zero (the root node)
and the rest have in-degree of one. A polytree might have more than one node with
in-degree zero (roots), and certain nodes (zero or more) with in-degree greater than
one (calledmulti-parent nodes). If we take out the direction of the edges in a polytree,
it transforms into an undirected tree. We can think of a tree as a special case of a
polytree. An example of a rooted tree and of a polytree is shown in Fig. 3.8.

Some relevant terminologies for directed trees are the following.

Root: a node with in-degree equal to zero.
Leaf: a node with out-degree equal to zero.
Internal node: a node with out-degree greater than zero.
Parent/Child: if there is a directed arc from A to B, A is parent of B and B is a

child of A.
Brothers: two or more nodes are brothers if they have the same parent.
Ascendants /Descendants: if there is a directed trajectory from A to B, A is an

ascendant of B and B is a descendant of A.
Subtree with root A: a subtree with A as its root.
Subtree of A: a subtree with a child of A as its root.
K-ary Tree: a tree inwhich each internal node has atmost K children. It is a regular

tree if each internal node has K children.
Binary Tree: a tree in which each internal node has at most two children.

Fig. 3.8 a A rooted tree. b A polytree
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Fig. 3.9 An example of a
directed tree to illustrate the
terminology

For example, in the tree in Fig. 3.9; (i) A is a root node, (ii) C, D, F, G are leaf
nodes, (iii) B, E are internal nodes, (iv) A is parent of B and B is child of A, (v) B
and C are brothers, (vi) A is an ascendant of F and F is a descendant of A, (vii) the
subtree B, D, E, F, G is a subtree with root B, (viii) the subtree E, F, G is a subtree
of B. The tree in Fig. 3.9 is a nonregular binary tree.

3.6 Cliques

A complete graph is a graph, Gc, in which each pair of nodes is adjacent; that is,
there is an edge between each pair of nodes. Figure3.3d is an example of a complete
graph. A complete set, Wc is a subset of G that induces a complete subgraph of G.
It is a subset of vertices of G so that each pair of nodes in this subgraph is adjacent.
For example, in Fig. 3.3d, each subset of three nodes in the graph is a complete set.

A clique, C , is a subset of graph G such that it is a complete set that is maximal;
that is, there is no other complete set in G that contains C . The subsets of three nodes
in Fig. 3.3d are not cliques, as these are not maximal; they are contained by the graph
which is complete.

The graph in Fig. 3.10 has five cliques, one with four nodes, one with three nodes,
and three with two nodes. Notice that every node in a graph is part of at least one
clique; thus, the set of cliques of a graph always covers V .

The following sections cover some more advanced concepts of graph theory, as
these are used by some of the inference algorithms for probabilistic graphicalmodels.
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Fig. 3.10 Cliques: the five
cliques in the graph are
highlighted

3.7 Perfect Ordering

An ordering of the nodes in a graph consists in assigning an integer to each vertex.
Given a graph G = (V, E), with n vertices, then α = [V1, V2, . . . , Vn] is an ordering
of the graph; Vi is before Vj according to this ordering, if i < j .

An ordering α of a graph G = (V, E) is a perfect ordering if all the adjacent
vertices of each vertex Vi that are before Vi , according to this ordering, are completely
connected. That is, for every i , Ad j (Vi )∩{V1, V2, . . . , Vi−1} is a complete subgraph
of G. Ad j (Vi ) is the subset of nodes in G that is adjacent to Vi . Figure3.11 depicts
an example of a perfect ordering.

Consider the set of cliques C1, C2, . . . C p of an undirected connected graph G. In
an analogous way as the ordering of nodes, we can define an ordering of the cliques,
β = [C1, C2, . . . , C p]. An ordering β of the cliques has the running intersection
property, if all the common nodes of each clique Ci with previous cliques according
to this order are contained in a clique C j ; C j is the parent of Ci . In other words, for

Fig. 3.11 An example of an
ordering of nodes and
cliques in a graph. In this
case, the nodes have a perfect
ordering, and the ordering of
the cliques satisfies the
running intersection property
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Fig. 3.12 An example of a
graph that is not triangulated.
The circuit 1, 2, 5, 4, 1 does
not have a chord

every clique i > 1 there exists a clique j < i such thatCi ∩{C1, C2, . . . , Ci−1} ⊆ C j .
It is possible that a clique has more than one parent.

The cliques, C1, C2 and C3 in Fig. 3.11 have a perfect ordering. In this example,
C1 is the parent of C2, and C1 and C2 are parents of C3.

A graph G is triangulated if every simple circuit of length greater than three in
G has a chord. A chord is an edge that connects two of the vertices in the circuit
and is not part of that circuit. For example, in Fig. 3.11 the circuit formed by the
vertices 1, 2, 4, 3, 1 has a chord that connects nodes 2 and 3. The graph in Fig. 3.11
is triangulated. An example of a graph that is not triangulated is depicted in Fig. 3.12.
Although visually this graph might seem triangulated, there is a circuit 1, 2, 5, 4, 1
that does not have any chord.

A condition for achieving a perfect ordering of the vertices, and having an ordering
of the cliques that satisfies the running intersection property, is that the graph is
triangulated. In the next section we will present algorithms for (i) ordering the nodes
of a graph to achieve a prefect ordering, (ii) numerating the cliques to guarantee
the running intersection property given a perfect ordering, and (iii) making a graph
triangulated if it is not.

3.8 Ordering and Triangulation Algorithms

3.8.1 Maximum Cardinality Search

Given that a graph is triangulated, the following algorithm, known as maximum
cardinality search, guarantees a perfect ordering. Given an undirected graph
G = (V, E) with n vertices:
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Algorithm 3.1 Maximum Cardinality Search Algorithm
Select any vertex from V and assign it number 1.
while Not all vertices in G have been numbered do
From all the non-labeled vertices, select the one with higher number of adjacent labeled vertices
and assign it the next number. Break ties arbitrarily.

end while

Given a perfect ordering of the vertices, it is easy to number the cliques so that the
order satisfies the running intersection property. For this, the cliques are numbered in
inverse order. Given p cliques, the clique that has the node with the highest number
is assigned p; the clique that includes the next highest numbered node is assigned
p − 1; and so on. This method can be illustrated with the example in Fig. 3.11. The
node with the highest number is 5, so the clique that contains it is C3. The next
highest node is 4, so the clique that includes it is C2. The remaining clique is C1.

Now we will see how we can “fill-in” a graph to make it triangulated.

3.8.2 Graph Filling

The filling of a graph consists of adding arcs to an original graph G, to obtain a new
graph, Gt , such that Gt is triangulated. Given an undirected graph G = (V, E), with
n nodes, the following algorithm makes the graph triangulated:

Algorithm 3.2 Graph Filling Algorithm
Order the vertices V with maximum cardinality search: V1, V2, . . . , Vn .
for i = n to i = 1 do
For node Vi , select all its adjacent nodes Vj such that j > i . Call this set of nodes Ai .
Add an arc from Vi to Vk if k > i and Vk /∈ Ai .

end for

For example, consider the graph in Fig. 3.12 which is not triangulated. If we apply
the previous algorithm, we first order the nodes, generating the labeling illustrated
in the figure. Next we process the nodes in inverse order and obtain the sets A for
each node:

A5: ∅
A4: 5
A3: 4, 5
A2: 3, 5. An arc is added from 2 to 4.
A1: 2, 3, 4. An arc is added from 1 to 5.

The resulting graph has two additional arcs 2 − 4 and 1 − 5 and we can verify that
it is triangulated.

The filling algorithm guarantees that the resulting graph is triangulated, but gen-
erally it is not optimal in terms of adding the minimum number of additional arcs.
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3.9 Additional Reading

There are several books in graph theory that cover most of the concepts introduced
in this chapter in more detail, including [2–4]. Neapolitan [5], Chap. 3, covers the
main graph theory background required for Bayesian networks, including the more
advanced concepts. Some of the graph theory techniques from an algorithmic per-
spective are described in [1], including graph isomorphism.

3.10 Exercises

1. In the eighteenth century, the City of Könisberg (in Prussia, currently part of
Russia) was divided into four parts connected by seven bridges. It is said that
the residents tried to find a circuit along the entire city so that they crossed
every bridge only once. Euler transformed the problem to a graph (illustrated
at the beginning of the chapter) and established the condition for a circuit in a
connected graph that passes through each edge exactly once: all the vertices in
the graph must have an even degree. Determine if the residents of Könisberg
were able to find a Euler circuit.

2. Prove the condition established by Euler: a graph G has a Euler circuit if and
only if all the vertices in G have an even degree.

3. What is the condition for a graph to have a Euler trajectory?
4. Given the graph in Fig. 3.10, determine if it has (a) A Euler circuit (b) A Euler

trajectory (c) A Hamiltonian circuit (d) A Hamiltonian trajectory.
5. Given the graph in Fig. 3.10, is it triangulated? If it is not triangulated, make it

triangulated by applying the graph filling algorithm.
6. Prove that the number of vertices of odd degree in a graph is even.
7. Given the graph in Fig. 3.13, transform it to an undirected graph and order the

nodes applying the maximum cardinality search algorithm.

Fig. 3.13 A graph used in
several exercises
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8. Triangulate the graph of the previous problem.
9. Given the triangulated graphobtained in the previous problem: (a) find its cliques,

(b) order the cliques according to the node ordering and verify that they satisfy
the running intersection property, (c) show the resulting tree (or trees) of cliques.

10. *** Develop a program for generating a tree of cliques given an undirected
graph. For this consider (a) ordering the nodes according tomaximumcardinality
search, (b) triangulating the graph using the graph filling algorithm, (c) finding
the cliques of the resulting graph and numbering them. Think of an adequate data
structure to represent the graph considering the implementation of the previous
algorithms.

11. *** Incorporate to the program of the previous exercise some heuristics for
selecting the node ordering such that the size of the biggest clique in the graph
is minimized (this is important for the junction tree inference algorithm for
Bayesian networks).
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Part II
Probabilistic Models

The main types of probabilistic graphical models are presented, including Bayesian
classifiers, hidden Markov models, Markov random fields, Bayesian networks, and
dynamic and temporal Bayesian networks. A chapter is dedicated to each type of
model, including representation, inference and learning; and practical application
examples. The models covered in Part II do not include decisions, these are covered
in Part III.



Chapter 4
Bayesian Classifiers

4.1 Introduction

Classification consists in assigning classes or labels to objects. There are two basic
types of classification problems:

Unsupervised: in this case the classes are unknown, so the problem consists in
dividing a set of objects into n groups or clusters, so that a class is assigned to
each different group. It is also known as clustering.

Supervised: the possible classes or labels are known a priori, and the problem
consists in finding a function or rule that assigns each object to one of the classes.

In both cases the objects are usually described by a set of properties or attributes. In
this chapter we will focus on supervised classification.

From a probabilistic perspective, the problem of supervised classification consists
in assigning to a particular object described by its attributes, A1, A2, . . . , An , one
of m classes, C = {c1, c2, . . . , cm}, such that the probability of the class given the
attributes is maximized; that is:

ArgC [Max P(C | A1, A2, . . . , An)] (4.1)

If we denote the set of attributes asA = {A1, A2, . . . , An}, Eq. (4.1) can bewritten
as: ArgC [Max P(C | A)].

There are many ways to build a classifier, including decision trees, rules, neural
networks, and support vector machines, among others.1 In this book we will cover
classification models based on probabilistic graphical models, in particular Bayesian
classifiers. Before we describe the Bayesian classifier, we will present a brief intro-
duction to how classifiers are evaluated.

1For an introduction and comparison of different types of classifiers we refer the interested reader
to [10].
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4.1.1 Classifier Evaluation

To compare different classification techniques, we can evaluate a classifier in terms of
several aspects. Which aspects to evaluate, and the importance given to each aspect,
depends on the final application of the classifiers. The main aspects to consider are:

Accuracy: it refers to how well a classifier predicts the correct class for unseen
examples (that is, those not considered for learning the classifier).

Classification time: how long it takes the classification process to predict the class,
once the classifier has been trained.

Training time: how much time is required to learn the classifier from data.
Memory requirements: how much space in terms of memory is required to store

the classifier parameters.
Clarity: if the classifier is easily understood by a person.

Usually themost important aspect is accuracy. This can bemeasured by predicting
N unseen data samples, and determining the percentage of correct predictions. Thus,
the accuracy in percentage is:

Acc = (NC/N ) × 100 (4.2)

where NC is the number of correct predictions.
When comparing classifiers, in general we want to maximize the classification

accuracy; however, this is only optimal if the cost of a wrong classification is the
same for all the classes. Consider a classifier used for predicting breast cancer. If the
classifier predicts that a person has cancer but this is not true (false positive), this
might produce an unnecessary treatment. On the other hand, if the classifier predicts
no cancer and the person does have breast cancer (false negative), this might cause
a delay in the treatment and even death. Clearly the consequences of the different
types of errors are different.

When there is imbalance in the costs of misclassification, we must then minimize
the expected cost (EC). For two classes, this is given by:

EC = FN × P(−)C(− | +) + FP × P(+)C(+ | −) (4.3)

where: FN is the false negative rate, FP is the false positive rate, P(+) is the prob-
ability of positive, P(−) is the probability of negative, C(− | +) is the cost of
classifying a positive as negative, and C(+ | −) is the cost of classifying a negative
as positive. Determining these costs may be difficult for some applications.

4.2 Bayesian Classifier

The formulation of the Bayesian Classifier is based on the application of the Bayes
rule to estimate the probability of each class given the attributes:
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P(C | A1, A2, . . . , An) = P(C)P(A1, A2, . . . , An | C)/P(A1, A2, . . . , An)

(4.4)
which can be written more compactly as:

P(C | A) = P(C)P(A | C)/P(A) (4.5)

The classification problem, based on Eq. (4.5), can be formulated as:

ArgC [Max[P(C | A) = P(C)P(A | C)/P(A)]] (4.6)

Equivalently, we can express Eq. (4.6) in terms of any function that varies
monotonically with respect to P(C | A), for instance:

• ArgC [Max[P(C)P(A | C)]]
• ArgC [Max[log(P(C)P(A | C))]]
• ArgC [Max[(log P(C) + log P(A | C)]]
Note that the probability of the attributes, P(A), does not vary with respect to the
class, so it can be considered as a constant for the maximization.

Based on the previous equivalent formulations for solving a classification problem
we will require an estimate of P(C), known as the prior probability of the classes,
and P(A | C), known as the likelihood; P(C | A) is the posterior probability.
Therefore, to obtain the posterior probability of each class, we just need to multiply
its prior probability by the likelihood which depends on the values of the attributes.2

The direct application of the Bayes rule results in a computationally expensive
problem, as it was mentioned in Chap.1. This is because the number of parameters
in the likelihood term, P(A1, A2, . . . , An | C), increases exponentially with the
number of attributes. This will not only imply a huge amount of memory to store all
the parameters, but it will also be very difficult to estimate all the probabilities from
the data or with the aid of a domain expert. Thus, the Bayesian classifier can only
be of practical use for relatively small problems in terms of the number of attributes.
An alternative is to consider some independence properties as in graphical models,
in particular that all attributes are independent given the class, resulting in the Naive
Bayesian Classifier.

4.2.1 Naive Bayes Classifier

The Naive or simple Bayesian classifier (NBC) is based on the assumption that all
the attributes are independent given the class variable; that is, each attribute Ai is
conditionally independent of all the other attributes given the class: P(Ai | A j , C) =
P(Ai | C), ∀ j �= i . Under this assumption, Eq. (4.4) can be written as:

2The posterior probabilities of the classes will be affected by a constant as we are not considering
the denominator in Eq. (4.6), that is, they will not add to one; however, they can be easily normalized
by dividing each one by the sum for all classes.

http://dx.doi.org/10.1007/978-1-4471-6699-3_1
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P(C | A1, A2, . . . , An) = P(C)P(A1 | C)P(A2 | C) . . . P(An | C)/P(A) (4.7)

where P(A) can be considered, as mentioned before, a normalization constant.
The Naive Bayes formulation drastically reduces the complexity of the Bayesian

classifier, as in this case we only require the prior probability (one dimensional
vector) of the class, and the n conditional probabilities of each attribute given the
class (two-dimensional matrices) as the parameters for the model. That is, the space
requirement is reduced from exponential to linear in the number of attributes. Also,
the calculation of the posterior is greatly simplified, as to estimate it (unnormalized)
only n multiplications are required.

A graphical representation of the NBC is shown in Fig. 4.1. This star-like structure
depicts the property of conditional independence between all the attributes given the
class—as there are no arcs between the attribute nodes.

Learning an NBC consists in estimating the prior probability of the class, P(C),
and the conditional probability of each attribute given the class, P(Ai | C). These
can be obtained via subjective estimates from an expert or from the data bymaximum
likelihood.3

The probabilities can be estimated from data using, for instance, maximum like-
lihood estimation. The prior probabilities of the class variable, C , are given by:

P(ci ) ∼ Ni/N (4.8)

where Ni is the number of times ci occurs in the N samples.
The conditional probabilities of each attribute, A j can be estimated as:

P(A jk | ci ) ∼ N jki/Ni (4.9)

where N jki is the number of times that the attribute A j takes the value k and it is
from class i , and Ni is the number of samples of class ci in the dataset.

Fig. 4.1 An example of a
Naive Bayesian classifier
with the class variable, C ,
and four attributes,
A1, . . . , A4

3We will cover parameter estimation in detail in the chapter on Bayesian Networks.
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Table 4.1 Dataset for the golf example

Outlook Temperature Humidity Windy Play

Sunny High High False No

Sunny High High True No

Overcast High High False Yes

Rain Medium High False Yes

Rain Low Normal False Yes

Rain Low Normal True No

Overcast Low Normal True Yes

Sunny Medium High False No

Sunny Low Normal False Yes

Rain Medium Normal False Yes

Sunny Medium Normal True Yes

Overcast Medium High True Yes

Overcast High Normal False Yes

Rain Medium High True No

Once the parameters have been estimated, the posterior probability can be obtained
just bymultiplying the prior by the likelihood for each attribute. Thus, given the values
for m attributes, a1, . . . , am , for each class ci , the posterior is proportional to:

P(ci | a1, . . . , am) ∼ P(ci )P(a1 | ci ) . . . P(am | ci ) (4.10)

The class ck that maximizes the previous equation will be selected.4

Returning to the golf example, Table4.1 depicts 14 records with 5 variables: four
attributes (Outlook, Temperature, Humidity,Windy) and one class (Play). ANBC for
the golf example is depicted in Fig. 4.2, including some of the required probability
tables.

In summary, the main advantages of the Naive Bayesian classifier are:

• The low number of required parameters, which reduces the memory requirements
and facilitates learning them from data.

• The low computational cost for inference (estimating the posteriors) and learning.
• The relatively good performance (classification precision) in many domains.
• A simple and intuitive model.

While its main limitations are the following:

• In some domains, the performance is reduced given that the conditional indepen-
dence assumption is not valid.

4This assumes that the misclassification cost is the same for all classes; if these costs are not the
same, the class the minimizes the misclassification cost should be selected.
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Fig. 4.2 A Naive Bayesian classifier for the golf example. Some of the parameters of the model
are shown: P(play), P(windy | play)

• If there are continuous attributes, these need to be discretized (or consider alter-
native models such as the linear discriminator).

In the following sections we will focus on alternatives to solve the first limita-
tion. First, we will cover other models that consider certain dependencies between
attributes. Then we will describe techniques that can eliminate or join attributes, as
another way to overcome the conditional independence assumption.

4.3 Alternative Models: TAN, BAN

The generalBayesian classifier and theNaiveBayesian classifier are the two extremes
of possible dependency structures for Bayesian classifiers; the former represents the
most complex structure with no independence assumptions, while the latter is the
simplest structure that assumes that all the attributes are independent given the class.
Between these two extremes there is a wide variety of possible models of varying
complexities. Two interesting alternatives are the TAN and BAN classifiers.

The Tree augmented Bayesian Classifier, or TAN, incorporates some dependen-
cies between the attributes by building a directed tree among the attribute variables.
That is, the n attributes form a graph which is restricted to a directed tree that
represents the dependency relations between the attributes. Additionally there is an
arc between the class variables and each attribute. The structure of a TAN classifier
is depicted in Fig. 4.3.

If we take out the limitation of a tree structure between attributes, we obtain the
Bayesian Network augmented Bayesian Classifier, or BAN, which considers that
the dependency structure among the attributes constitutes a directed acyclic graph
(DAG). As with the TAN classifier, there is a directed arc between the class node
and each attribute. The structure of a BAN classifier is depicted in Fig. 4.4.
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Fig. 4.3 An example of a
TAN classifier

The posterior probability for the class variable given the attributes can be obtained
in a similar way as with the NBC; however, now each attribute not only depends on
the class but also on other attributes according to the structure of the graph. Thus,
we need to consider the conditional probability of each attribute given the class and
its parent attributes:

P(C | A1, A2, . . . , An)

= P(C)P(A1 | C, Pa(A1))P(A2 | C, Pa(A2)) . . . P(An | C, Pa(An))/P(A)

(4.11)

where Pa(Ai ) is the set of parent attributes of Ai according to the attribute depen-
dency structure of the TAN or BAN classifier.

The TAN and BAN classifiers can be considered as particular cases of a more
generalmodel, that is, Bayesian networks,whichwewill cover inChap. 7. InChaps. 7
and 8, we will cover different techniques for inference and for learning Bayesian
networks, which can be applied to obtain the posterior probabilities (inference) and
the model (learning) for the TAN and BAN classifiers.

Fig. 4.4 An example of a
BAN classifier

http://dx.doi.org/10.1007/978-1-4471-6699-3_7
http://dx.doi.org/10.1007/978-1-4471-6699-3_7
http://dx.doi.org/10.1007/978-1-4471-6699-3_8
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4.4 Semi-Naive Bayesian Classifiers

Another alternative to dealwith dependent attributes is to transform thebasic structure
of a Naive Bayesian classifier, while maintaining a star or tree-structured network.
This has the advantage that the efficiency and simplicity of the NBC is maintained,
and at the same time the performance is improved for cases where the attributes
are not independent. These types of Bayesian classifiers are known as Semi-Naive
Bayesian Classifiers (SNBC), and several authors have proposed different variants
of SNBCs [11, 16].

The basic idea of the SNBC is to eliminate or join attributes which are not inde-
pendent given the class, such that the performance of the classifier improves. This
is analogous to feature selection in machine learning, and there are two types of
approaches:

Filter: the attributes are selected according to a local measure, for instance, the
mutual information between the attribute and the class.

Wrapper: the attributes are selected based on a global measure, usually by com-
paring the performance of the classifier with and without the attribute.

Additionally, the learning algorithm can start from an empty structure and add (or
combine) attributes; or from a full structure with all the attributes, and eliminate (or
combine) attributes.

Figure4.5 illustrates the two alternative operations to modify the structure of an
NBC: (i) node elimination, and (ii) node combination, considering that we start from
a full structure.

Node elimination consists in simply eliminating an attribute, Ai , from the model;
this could be because it is not relevant for the class (Ai and C are independent),
or because the attribute Ai and another attribute, A j , are not independent given the
class (which is a basic assumption of the NBC). The rationale for eliminating one
of the dependent attributes is that if the attribute is not independent given the class,
one of them is redundant and could be eliminated.

Node combination consists in merging two attributes, Ai and A j , into a new
attribute Ak , such that Ak has as possible values the cross product of the values of Ai

and A j (assuming discrete attributes). For example, if Ai = a, b, c and A j = 1, 2,
then Ak = a1, a2, b1, b2, c1, c2. This is an alternative when two attributes are not
independent given the class. By merging them into a single combined attribute, the
independence condition is no longer relevant.

Thus, when two attributes are not independent given the class there are two alter-
natives: eliminate one or combine them into a single variable; in principle we should
select the alternative that implies a higher improvement in the performance of the
classifier, although in practice, this could be difficult to evaluate.

As mentioned before, there are several alternatives for learning an SNBC. A
simple greedy scheme is outlined in Algorithm 4.1, where we start from a full NBC
with all the attributes [9].

This process is repeated until there are no more superfluous or dependent
attributes.
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Fig. 4.5 Structural improvement: a original structure, b one attribute is eliminated, c two attributes
are joined into one variable

References [8, 16] introduce an alternative operation for modifying the structure
of an NBC, which consists in adding a new attribute that makes two dependent
attributes independent; see Fig. 4.6. This new attribute is a kind of virtual or hidden
node in the model, for which we do not have any data for learning its parameters. An
alternative for estimating the parameters of hidden variables in Bayesian networks,
such as in this case, is based on the Expectation-Maximization (EM) procedure, and
it is described in Chap.8.

Fig. 4.6 An example of
node creation for making
two dependent attributes
independent. Node V is
inserted in the model given
that E3 and E4 are not
conditionally independent
given H

www.allitebooks.com
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All previous classifiers consider that there is a single class variable; that is, each
instance belongs to one and only one class. Next we consider that an instance can
belong to several classes, which is known as multidimensional classification.

Algorithm 4.1 Structural Improvement Algorithm
Require: A, the attributes
Require: C , the class
/* The dependency between each attribute and the class is estimated (for instance using mutual
information).*/
for all a ∈ A do
/* Those attributes below a threshold are eliminated.*/
if M I (a, C) < ε then
Eliminate a

end if
end for
/* The remaining attributes are tested to see if they are independent given the class, for example,
using conditional mutual information (CMI).*/
for all a ∈ A do

for all b ∈ A − a do
/* Those attributes above a threshold are eliminated or combined based on which option gives
the best classification performance.*/
if C M I (a, b|C) > ω then
Eliminate or Combine a and b

end if
end for

end for

4.5 Multidimensional Bayesian Classifiers

Several important problems need to predict several classes simultaneously. For exam-
ple: text classification, where a document can be assigned to several topics; gene
classification, as a gene may have different functions; image annotation, as an image
may include several objects, among others. These are examples of multidimensional
classification, in which more than one class can be assigned to an object. Formally,
themultidimensional classification problem corresponds to searching for a function h
that assigns to each instance represented by a vector ofm featuresX = (X1, . . . , Xm)

a vector of d class values C = (C1, . . . , Cd). The h function should assign to each
instance X the most likely combination of classes, that is,

ArgMaxc1,...,cd P(C1 = c1, . . . , Cd = cd |X) (4.12)

Multi-label classification is a particular case of multidimensional classification,
where all class variables are binary. In the case of multi-label classification, there
are two basic approaches: binary relevance and label power-set [18]. Binary rele-
vance approaches transform themulti-label classification problem into d independent
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binary classification problems, one for each class variable, C1, . . . , Cd . A classifier
is independently learned for each class and the results are combined to determine the
predicted class set; the dependencies between classes are not considered. The label
power-set approach transforms the multi-label classification problem into a single-
class scenario by defining a new compound class variable whose possible values are
all the possible combinations of values of the original classes. In this case the inter-
actions between classes are implicitly considered. It can be an effective approach for
domains with only a few class variables; however, for many classes this approach
is impractical. Essentially, binary relevance can be effective when the classes are
relatively independent, and label power-set when there are few class variables.

Under the framework of Bayesian classifiers, we can consider two alternatives to
the basic approaches. One is based on Bayesian networks, in which the dependencies
between class variables (and also between attributes) are explicitly considered. The
other implicitly incorporates the dependencies between classes by adding additional
attributes to each independent classifier. Both are described in the following sections.

4.5.1 Multidimensional Bayesian Network Classifiers

AmultidimensionalBayesiannetwork classifier (MBC)over a setV = {Z1, . . . , Zn},
n ≥ 1, of discrete randomvariables is aBayesian networkwith a particular structure.5

The setV of variables is partitioned into two setsVC = {C1, . . . , Cd}, d ≥ 1, of class
variables and VX = {X1, . . . , Xm}, m ≥ 1, of feature variables (d +m = n). The set
A of arcs is also partitioned into three sets, AC, AX, ACX, such that AC ⊆ VC × VC
is composed of the arcs between the class variables, AX ⊆ VX × VX is composed of
the arcs between the feature variables, and finally, ACX ⊆ VC × VX is composed of
the arcs from the class variables to the feature variables. The corresponding induced
sub-graphs are GC = (VC, AC), GX = (VX, AX) and GCX = (V, ACX), called
respectively class, feature and bridge subgraphs (see Fig. 4.7).

Different graphical structures for the class and feature subgraphs may lead to
different families of MBCs [19]. For instance, we could restrict the class sub-
graph to a tree, and assume that the attributes are independent given the class vari-
ables. Or, we could have the same structure for both subgraphs, such as tree–tree,
polytree–polytree or DAG –DAG. As we consider more complex structures for each
subgraph, the complexity of learning these structures increases.

The problem of obtaining the classification of an instance with an MBC, that
is, the most likely combination of classes, corresponds to the MPE (Most Prob-
able Explanation) or abduction problem for Bayesian networks. In other words,
determining the most probable values for the class variables V = {C1, . . . , Cn},
given the features. This is a complex problem with high computational cost. There
are a few ways to try to reduce the time complexity [2], however, this approach is
still limited to problems with only a limited number of classes.

5Bayesian networks are introduced in Chap.7.

http://dx.doi.org/10.1007/978-1-4471-6699-3_7
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Fig. 4.7 A multidimensional Bayesian network classifier, showing the three subgraphs: classes,
features and bridge

We will describe how to learn Bayesian networks (MBCs are a particular type of
Bayesian networks) and the calculation of the MPE in Chaps. 7 and 8.

4.5.2 Bayesian Chain Classifiers

Chain classifiers are an alternative method for multi-label classification that incor-
porate class dependencies, while keeping the computational efficiency of the binary
relevance approach [12]. A chain classifier consists of d base binary classifiers
which are linked in a chain, such that each classifier incorporates the classes pre-
dicted by the previous classifiers as additional attributes. Thus, the feature vector
for each binary classifier, Li , is extended with the labels (0/1) for all previous clas-
sifiers in the chain. Each classifier in the chain is trained to learn the association
of label li given the features augmented with all previous class labels in the chain,
L1, L2, . . . , Li−1. For classification, it starts at L1, and propagates the predicted
classes along the chain, such that for Li ∈ L (whereL = {L1, L2, . . . , Ld}) it pre-
dicts P(Li | X, L1, L2, . . . , Li−1). As in the binary relevance approach, the class
vector is determined by combining the outputs of all the binary classifiers in the
chain.

Bayesian chain classifiers are a type of chain classifier under a probabilistic frame-
work. If we apply the chain rule of probability theory, we can rewrite Eq. (4.12):

ArgMaxC1,...,cd P(C1|C2, . . . , Cd , X)P(C2|C3, . . . , Cd , X) . . . P(Cd |X) (4.13)

If we consider the dependency relations between the class variables, and represent
these relations as a directed acyclic graph (DAG), then we can simplify Eq. (4.13) by
considering the independencies implied in the graph so that only the parents of each
class variable are included in the chain, and all other previous classes according to
the chain order are eliminated. We can rewrite Eq. (4.13) as:

http://dx.doi.org/10.1007/978-1-4471-6699-3_7
http://dx.doi.org/10.1007/978-1-4471-6699-3_8
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ArgMaxC1,...,Cd

d∏

i=1

P(Ci |Pa(Ci ), X) (4.14)

where Pa(Ci ) are the parents of class i in the DAG that represents the dependencies
between the class variables.

Next we make a further simplification by assuming that the most probable joint
combination of classes can be approximated by simply concatenating the individ-
ual most probable classes. That is, we solve the following set of equations as an
approximation of Eq. (4.14):

ArgMaxC1 P(C1|Pa(C1), X)

ArgMaxC2 P(C2|Pa(C2), X)

· · · · · · · · · · · · · · · · · · · · ·
ArgMaxCd P(Cd |Pa(Cd), X)

This last approximation corresponds to a Bayesian chain classifier. Thus, a BCC
makes two basic assumptions:

1. The class dependency structure given the features can be represented by a DAG.
2. The most probable joint combination of class assignments (total abduction) is

approximated by the concatenation of the most probable individual classes.

Thefirst assumption is reasonable ifwe have enough data to obtain a good approxima-
tion of the class dependency structure, and assuming that this is obtained conditioned
on the features. With respect to the second assumption, it is well known that the total
abduction or most probable explanation is not always equivalent to the maximization
of the individual classes. However, the assumption is less strong than that assumed
by the binary relevance approach. Bayesian chain classifiers provide an attractive
alternative to multidimensional classification, as they incorporate in certain way the
dependencies between class variables, and they keep the efficiency of the Binary
relevance approach.

For the base classifier belonging to each class we can use any of the Bayesian
classifiers presented in the previous sections, for instance a NBC. Assuming that
we have a class dependency structure represented as a DAG (this structure can be
learned from data, see Chap.8), each classifier can be learned in a similar way as a
NBC, by simply including as additional attributes the class variables according to the
class dependency structure. The simplest option is to only include the parent nodes
of each class according to this dependency graph. The general idea for building a
BCC is illustrated in Fig. 4.8.

For classifying an instance, all the classifiers are applied simultaneously, and all
the classes that have a posterior probability above a threshold are returned as the
output.

http://dx.doi.org/10.1007/978-1-4471-6699-3_8
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Fig. 4.8 An example of a BCC. a A BN that represents the class dependency structure. b Naive
Bayes classifiers, one for each class. Each base classifier defined forCi includes the set of attributes,
X1, . . . , Xn , plus its parents in the dependency structure as an additional attribute

4.6 Hierarchical Classification

Hierarchical classification is a type of multidimensional classification in which the
classes are ordered in a predefined structure, typically a tree, or in general a directed
acyclic graph (DAG). By taking into account the hierarchical organization of the
classes, the classification performance can be improved. In hierarchical classification,
an example that belongs to certain class automatically belongs to all its superclasses;
this is known as the hierarchy constraint. Hierarchical classification has application
in several areas, such as text categorization, protein function prediction, and object
recognition.

As in the case of multidimensional classification, there are two basic approaches
for hierarchical classification: global classifiers and local classifiers. The global
approach builds a classifier to predicts all the classes at once; this becomes too
complex computationally for large hierarchies. The local classifiers schemes train
several classifiers and combine their outputs. There are three basic approaches. A
Local Classifier per hierarchy Level, that trains one multi-class classifier for each
level of the class hierarchy. Local binary Classifier per Node, in which a binary
classifier is built for each node (class) in the hierarchy, except the root node. Local
Classifier per Parent Node (LCPN), where a multi-class classifier is trained to predict
its child nodes.

Local methods commonly use a top-down approach for classification [14]; the
classifier at the top level selects certain class, so the other classes are discarded, and
then the successors of the selected class are analyzed, and so on. This has the problem
that if there is an error at the upper levels of the hierarchy, this can not be recovered
and it propagates down to the other levels. An alternative approach is to analyze the
paths in the hierarchy, and select the best path according to the results of the local
classifiers. A method based on this idea is described next.
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4.6.1 Chained Path Evaluation

Chained Path Evaluation (CPE) [13] analyzes each possible path from the root to
a leaf node in the hierarchy, taking into account the level of the predicted labels to
give a score to each path and finally return the one with the best score. Additionally,
it considers the relations of each node with its ancestors in the hierarchy, based on
chain classifiers. CPE consists of two parts, training and classification.

4.6.1.1 Training

A local classifier is trained for each node, Ci , in the hierarchy, except the leaf nodes,
to classify its child nodes; that is, using the LCPN scheme, see Fig. 4.9. The classi-
fier for each node, Ci , for instance a Naive Bayes classifier, is trained considering
examples from all it child nodes, as well as some examples of it sibling nodes in
the hierarchy. For instance, the classifier C2 in Fig. 4.9 will be trained to classify
C5, C6, C7; additional examples will be considered from the classes C3 and C4,
which represent an unknown class for C1.

To consider the relation with other nodes in the hierarchy, the class predicted by
the parent (tree structure) or parents (DAG), are included as additional attributes in
each local classifier, inspired byBayesian chain classifiers. For example, the classifier
C2 in Fig. 4.9 will have as an additional attribute the class predicted by its parent, C1.

Fig. 4.9 Example of a hierarchical structure (a tree). For each non-leaf node, a local classifier is
trained to predict its child nodes: C1 classifies C2, C3, C4; C2 classifies C5, C6, C7; and similarly
for C3 and C4
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4.6.1.2 Classification

In the classification phase, the probabilities for each class for all local classifiers are
obtained based on the input data (features of each instance). After computing the
probabilities for each non-leaf node in the hierarchy, these are combined to obtain a
score for each path.

The score for each path in the hierarchy is calculated by a weighted sum of the
log of the probabilities of all local classifiers in the path:

score =
n∑

i=0

wCi × log(P(Ci |Xi , pa(Ci ))) (4.15)

where Ci are the classes for each LCPN, Xi is the vector of attributes, pa(Ci ) is the
parent predicted class, and wCi is a weight. The purpose of these weights is to give
more importance to the upper levels of the hierarchy, as errors at the upper hierarchy
levels (which correspond to more generic concepts) are more expensive than those at
the lower levels (which correspond to more specific concepts) [13]. Taking the sum
of logarithms is used to ensure numerical stability when computing the probability
for long paths.

Once the scores for all the paths are obtained, the path with the highest score will
be selected as the set of classes corresponding to certain instance. For the example
in Fig. 4.9, the score will be calculated for each path from the root to each leaf node:
Path 1: C1 − C2 − C5, Path 2: C1 − C2 − C6, etc. In this case there are eight paths.
Suppose the path with the highest score is Path 4: C1 − C3 − C8; then these three
classes will be returned as the output of the classifier.

4.7 Applications

In this section we show the application of two types of Bayesian classifiers in two
practical problems. First we illustrate the use of the semi-Naive classifier for labeling
pixels in an image as skin or not skin. Then we demonstrate the use of multidimen-
sional chain classifiers for HIV drug selection.

4.7.1 Visual Skin Detection

Skin detection is a useful preprocessing stage for many applications in computer
vision, such as person detection and gesture recognition, among others. Thus it is
critical to have a very accurate and efficient classifier. A simple and very fast way to
obtain an approximate classification of pixels in an image as skin or not-skin is based
on the color attributes of each pixel. Usually, pixels in a digital image are represented
as the combination of three basic (primary) colors: Red (R), Green (G), and Blue
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(B), in what is known as the RG B model. Each color component can take numeric
values in a certain interval, i.e., 0...255. There are alternative color models, such as
HSV, YIQ, etc.

An NBC can be built to classify pixels as skin or not-skin using the three color
values—RGB—as attributes. However, it is possible for a different color model to
produce a better classification. Alternatively, we can combine several color models
into a single classifier, having as attributes all the attributes from the different models.
This last option has the potential of taking advantage of the information provided
by different models; however, if we use an NBC the independence assumption is
violated—the different models are not independent, one model could be derived
from another.

An alternative is to consider a semi-Naive Bayesian classifier and select the best
attributes from the different color models for skin classification by eliminating or
joining attributes. For this we used three different color models: RGB, HSV, and
YIQ, so there are nine attributes in total. The attributes (color components) were
previously discretized into a reduced number of intervals. Then an initial NBC was
learned based on data—examples of skin and not-skin pixels taken from several
images. This initial classifier obtained a 94% accuracy when applied to other (test)
images.

Fig. 4.10 The figure illustrates the process of optimizing the semi-Naive Bayesian classifier for
skin detection, from the initial model with nine attributes (a) to the final one with three attributes (e).
a Initial structure wih color model RGB, HSV and YIG. b Eliminate B, Q and H. c Join R and G.
d Eliminate V and S. e Final model
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Fig. 4.11 An example of an
image in which the pixels
have been classified as skin
or not skin. a Original
image. b Image with skin
pixels detected (in black)

The classifier was then optimized using the method described in Sect. 4.4. Start-
ing from the full NBC with nine attributes, the method applies the variable elimina-
tion and combination stages until the simplest classifier with maximum accuracy is
obtained. The sequence of operations and the final structure are depicted in Fig. 4.10.
We can observe that initially the algorithm eliminates a number of irrelevant or redun-
dant attributes, it then combines two dependent attributes and subsequently elimi-
nates two more attributes, until it arrives to the final structure with three attributes:
RG, Y, I (one is a combination of two original attributes). This final model was
evaluated with the same test images and the accuracy improved to 98%. An example
of an image with the skin pixels detected by this classifier is shown in Fig. 4.11.

In this example, theSNBCobtains a significant advantage compared to the original
NBC, while at the same time producing a simpler model (in terms of the number of
variables and parameters required) [9].

4.7.2 HIV Drug Selection

The Human Immunodeficiency Virus (HIV) is the causing agent of AIDS, a con-
dition in which progressive failure of the immune system allows opportunistic
life-threatening infections to occur. To combat HIV infection several antiretroviral
(ARV) drugs belonging to different drug classes that affect specific steps in the viral
replication cycle have been developed. Antiretroviral therapy (ART) generally
consists of combinations of three or four ARV drugs. Selecting a drug combina-
tion depends on the patient’s condition, which can be characterized according to the
mutations of the virus present in the patient. Thus, it is important to select the best
drug combination according to the virus’ mutations in a patient.

Selecting the best group of antiretroviral drugs for a patient can be seen as an
instance of a multi-label classification problem, in which the classes are the different
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types of antiretroviral drugs and the attributes are the virus mutations. Since multi-
label classification is a subcase of multidimensional classification, this particular
problem can be accurately modeled with an MBC. By applying a learning algorithm
we can discover the relations that exist between antiretrovirals and mutations, while
also retrieving a model with a high predictive power.

An alternative for learning anMBC is theMB-MBC algorithm [3]. This particular
algorithm uses theMarkov blanket of each class variable to lighten the computational
burden of learning the MBC by filtering out those variables that do not improve
classification. A Markov blanket of a variable C , denoted as M B(C) is the minimal
set of variables such that I (C, S|M B(C)) is true for every variable subset S, where
S does not have as members any variables that belong to M B(C) ∪ C . In other
words, the Markov blanket of C is the minimal set of variables under which C is
conditionally independent of all remaining variables.

To predict the most likely group of antiretrovirals drugs for a patient given the
viral mutations present, the Markov blanket for each antiretroviral is learned. For
example, if we consider a group of reverse transcriptase inhibitors (an antiretroviral
drug group that attacks the reverse transcriptase phase of the viral HIV lifecycle) as
the class variables, and a group of mutations as the attributes, the Markov blanket for
the entire set of reverse transcriptase inhibitors is learned to determine the existing
relations of type antiretroviral–antiretroviral and antiretroviral-mutation. Learning
the Markov blanket of each class variable corresponds to learning an undirected
structure for the MBC, i.e., the three subgraphs. Finally, directionality for all three
subgraphs is determined in the last step of the MB-MBC algorithm. Figure4.12
shows the resulting MBC.

Fig. 4.12 A graphical structure for the multidimensional Bayesian network classifier learned with
the MB-MBC algorithm for a set of reverse transcriptase inhibitors (green) and a set of mutations
(yellow) (Figure based on [3])
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4.8 Additional Reading

For a general introduction and comparison of different classification approaches
see [10]. The consideration of classification costs is described in [5]. The TAN
and BAN classifiers are described in [6]; a comparison of different BN classifiers
is presented in [4]. The semi-Naive approach was initially introduced in [16], and
later extended by [11]. Reference [18] presents an overview of multidimensional
classifiers. Different alternatives for MBC are presented in [2]. Chain classifiers
were introduced in [12], and Bayesian chain classifiers in [17]. A review of different
approaches for hierarchical classification and their applications is presented in [15].

4.9 Exercises

1. Given the data for the golf example in Table4.1, complete the CPTs for the NBC
using maximum likelihood estimation.

2. Obtain the class with the maximum probability for the golf NBC of the previous
problem, considering all the combinations of values of the attributes.

3. Based on the results of the previous problem, design a set of classification rules
that are equivalent to theNBC for determining play/no-play based on the attribute
values.

4. Consider that we transform the NBC for golf to a TANwith the following depen-
dency structure for the attributes: outlook → temperature, outlook → humidity,
temperature → wind. Using the same dataset, estimate the CPTs for this TAN.

5. Given the data set for the golf example, estimate the mutual information
between the class and each attribute. Build a semi-Naive Bayesian classifier by
eliminating those attributes that have a low mutual information with the class
(define a threshold).

6. Extend the previous problem by now estimating the mutual information between
each pair of attributes given the class variable. Eliminate or join those attributes
that are not conditionally independent given the class according to a predefined
threshold. Show the structure and parameters of the resulting classifiers.

7. Consider that we transform the golf example to a multidimensional problem such
that there are two classes, play and outlook, and three attributes, temperature,
humidity and windy. Consider that we build a multidimensional classifier based
on binary relevance—an independent classifier for each class variable. Given that
each classifier is a NBC, what will the structure of the resulting classifier be?
Obtain the parameters for this classifier based on the same data in Table4.1.

8. For the previous problem, consider that we now build a NBC based on the power
set approach. What will the structure and parameters of the resulting model be?
Use the same dataset.

9. *** Compare the structure, complexity (in terms of the number of parameters)
and classification accuracyof differentBayesian classifiers—NBC,TAN,BAN—
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using several datasets (use, for example, the WEKA [7] implementation of the
Bayesian classifiers; and some of the data sets from the UCI repository [1]). Do
TAN or BAN always outperform the Naive Bayes classifier? Why?

10. *** A hierarchical classifier is a particular type of multidimensional classifier in
which the classes are arranged in a hierarchy; for instance, an animal hierarchy.
A restriction of a hierarchy is that an instance that belongs to a certain class, must
belong to all its superclasses in the hierarchy (hierarchical constraint). How can a
multidimensional classifier be designed to guarantee the hierarchical constraint?
Extend the Bayesian chain classifier for hierarchical classification.
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Chapter 5
Hidden Markov Models

5.1 Introduction

Markov Chains are another class of PGMs that represent dynamic processes, in
particular how the state of a process changes with time. For instance, consider that
we are modeling how the weather in a particular place changes over time. In a very
simplified model, we assume that the weather is constant throughout the day, and can
have three possible states: sunny, cloudy, raining. Additionally, we assume that the
weather on a certain day only depends on the previous day. Thus, we can think of this
simple weather model as a Markov chain in which there is a state variable per day,
with three possible values; these variables are linked in a chain, with a directed arc
from one day to the next, (see Fig. 5.1). This implies what is known as the Markov
property, the state of the weather for the next day, St+1, is independent of all previous
days given the presentweather, St , i.e., P(St+1 | St , St−1, . . .) = P(St+1 | St ). Thus,
in a Markov chain the main parameter required is the probability of a state given the
previous one.

The previous model assumes that we canmeasure the weather with precision each
day, that is, the state is observable. However, this is not necessarily true. In many
applications we cannot observe the state of the process directly, so we have what is
called a Hidden Markov Model, where the state is hidden. In this case, in addition
to the probability of the next state given the current state, there is another parameter
which models the uncertainty about the state, represented as the probability of the
observation given the state, P(Ot | St ). This type of model is more powerful than
the simple Markov chain and has many applications, for example, in speech and
gesture recognition.

After a brief introduction to Markov chains, in the following sections we will
discuss hidden Markov models in detail, including how the computations of interest
for this type of model are solved. Then we discuss several extensions to standard
HMMs, and we conclude the chapter with two application examples.
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Fig. 5.1 The figure illustrates a Markov chain where each node represents the state at certain point
in time

5.2 Markov Chains

A Markov chain (MC) is a state machine that has a discrete number of states,
q1, q2, . . . , qn , and the transitions between states are nondeterministic, i.e., there is a
probability of transiting from a state qi to another state q j : P(St = q j | St−1 = qi ).
Time is also discrete, such that the chain can be at a certain state qi for each time
step t . It satisfies the Markov property, that is, the probability of the next state only
depends on the current state.

Formally, a Markov chain is defined as

Set of states: Q = {q1, q2, . . . , qn}
Vector of prior probabilities: Π = {π1, π2, . . . , πn}, where πi = P(S0 = qi )

Matrix of transition probabilities: A = {ai j }, i = [1..n], j = [1..n], where ai j =
P(St = q j | St−1 = qi )

where n is the number of states, and S0 is the initial state. In a compact way, an MC
is represented as λ = {A,Π}.

A (first order) Markov chain satisfies the following properties:

1. Probability axioms:
∑

i πi = 1 and
∑

j ai j = 1
2. Markov property: P(St = q j | St−1 = qi , St−2 = qk, . . .) = P(St = q j |

St−1 = qi )

For example, consider the previous simple weather model with three states: q1 =
sunny, q2 = cloudy, q3 = raining. In this case to specify an MC we will require a
vector with three prior probabilities (see Table5.1) and a 3 × 3 matrix of transition
probabilities (see Table5.2).

The transition matrix can be represented graphically with what is called a state
transition diagram or simply a state diagram. This diagram is a directed graph,

Table 5.1 Prior probabilities
for the weather example

Sunny Cloudy Raining

0.2 0.5 0.3

Table 5.2 Transition
probabilities for the weather
example

Sunny Cloudy Raining

Sunny 0.8 0.1 0.1

Cloudy 0.2 0.6 0.2

Raining 0.3 0.3 0.4
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Fig. 5.2 The figure
illustrates the state transition
diagram for the weather
example

where each node is a state and the arcs represent possible transitions between states.
If an arc between state qi and q j does not appear in the diagram, it means that the
corresponding transition probability is zero. An example of a state diagram for the
weather example is depicted in Fig. 5.2.1

Given a Markov chain model, there are three basic questions that we can ask:

• What is the probability of a certain state sequence?
• What is the probability that the chain remains in a certain state for a period of
time?

• What is the expected time that the chain will remain in a certain state?

Next, we will see how we can answer these questions and we will illustrate them
using the weather example.

The probability of a sequence of states given the model is basically the product
of the transition probabilities of the sequence of states:

P(qi , q j , qk, . . .) = a0i ai j a jk . . . (5.1)

where a0i is the transition to the initial state in the sequence, which could be its prior
probability (πi ) or the transition from the previous state (if this is known).

For example, in the weather model, we might want to know the probability of the
following sequence of states: Q = sunny, sunny, rainy, rainy, sunny, cloudy, sunny.
Assuming that sunny is the initial state in the MC, then:

P(Q) = π1a11a13a33a31a12a21 = (0.2)(0.8)(0.1)(0.4)(0.3)(0.1)(0.2)

= 3.84 × 10−5

The probability of staying d time steps in a certain state, qi , is equivalent to the
probability of a sequence in this state for d − 1 time steps and then transiting to a
different state. That is,

P(di ) = ad−1
i i (1 − aii ) (5.2)

1Do not confuse a state diagram, where a node represents each state—a specific value of a random
variable—and the arcs transitions between states, with a graphical model diagram, where a node
represents a random variable and the arcs represent probabilistic dependencies.
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Considering the weather model, what is the probability of three cloudy days? This
can be computed as follows:

P(d2 = 3) = a2
22(1 − a22) = 0.62(1 − 0.6) = 0.144

The average duration of a state sequence in a certain state is the expected value of
the number of stages in that state, that is, E(D) = ∑

i di P(di ). Substituting Eq. (5.2)
we obtain:

E(di ) =
∑

i

di a
d−1
i i (1 − aii ) (5.3)

which can be written in a compact form as:

E(di ) = 1/(1 − aii ) (5.4)

For instance, what is the expected number of days that the weather will remain
cloudy? Using the previous equation:

E(d2) = 1/(1 − a22) = 1/(1 − 0.6) = 2.5

5.2.1 Parameter Estimation

Another important question is how to determine the parameters of the model, which
is known as parameter estimation. For an MC, the parameters can be estimated
simply by counting the number of times that the sequence is in a certain state, i , and
the number of times there is a transition from a state i to a state j . Assume there are
N sequences of observations. γ0i is the number of times that the state i is the initial
state in a sequence, γi is the number of times that we observe state i , and γi j is the
number of times that we observe a transition from state i to state j . The parameters
can be estimated with the following equations.

Initial probabilities:
πi = γ0i/N (5.5)

Transition probabilities:
ai j = γi j/γi (5.6)

Note that for the last observed state in a sequence we do not observe the next
state, so the last state for all the sequences is not considered in the counts.
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Table 5.3 Calculated prior
probabilities for the weather
example

Sunny Cloudy Raining

0.25 0.5 0.25

Table 5.4 Calculated
transition probabilities for the
weather example

Sunny Cloudy Raining

Sunny 0 0.33 0.67

Cloudy 0.285 0.43 0.285

Raining 0.18 0.18 0.64

For instance, consider that for the weather example we have the following four
observation sequences (q1 = Sunny, q2 = Cloudy, q3 = Raining):

q2, q2, q3, q3, q3, q3, q1
q1, q3, q2, q3, q3, q3, q3
q3, q3, q2, q2
q2, q1, q2, q2, q1, q3, q1

Given these four sequences, the corresponding parameters can be estimated as
depicted in Tables5.3 and 5.4.

5.2.2 Convergence

An additional interesting question is: if a sequence transits from one state to another
a large number of times, M , what is the probability in the limit (as M → ∞) of each
state, qi?

Given an initial probability vector, Π , and transition matrix, A, the probability of
each state, P = {p1, p2, . . . , pn} after M iterations is:

P = π AM (5.7)

What happens when M → ∞? The solution is given by the Perron-Frobenius
theorem, which says that when the following two conditions are satisfied:

1. Irreducibility: from every state i there is a probability ai j > 0 of transiting to any
state j .

2. Aperiodicity: the chain does not form cycles (a subset of states in which the chain
remains once it transits to one of these state).

Then as M → ∞, the chain converges to an invariant distribution P , such that
P × A = P , where A is the transition probability matrix. The rate of convergence
is determined by the second eigenvalue of matrix A.
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For example, consider an MC with three states and the following transition
probability matrix:

A =
0.9 0.075 0.025
0.15 0.8 0.05
0.25 0.25 0.5

It can be shown that in this case the steady-state probabilities converge to P =
{0.625, 0.3125, 0.0625}.

An interesting application of this convergence property of Markov chains for
ranking web pages is presented in the applications section. Next we discuss hidden
Markov models.

5.3 Hidden Markov Models

AHidden Markov model (HMM) is a Markov chain where the states are not directly
observable. For example, if we consider the weather example, the weather cannot be
directly measured; in reality, the weather is estimated based on a series of sensors—
temperature, pressure, wind velocity, etc. So in this, as in many other phenomena,
states are not directly observable, and HMMs provide a more appropriate and pow-
erful modeling tool. Another way of thinking about an HMM is that it is a double
stochastic process: (i) a hidden stochastic process that we cannot directly observe,
(ii) and a second stochastic process that produces the sequence of observations given
the first process.

For instance, consider that we have two unfair or “biased” coins, M1 and M2.
M1 has a higher probability of heads, while M2 has a higher probability of tails.
Someone sequentially flips these two coins, however, we do not know which one.
We can only observe the outcome, heads or tails:

H, T, T, H, T, H, H, H, T, H, T, H, T, T, T, H, T, H, H, . . .

Assume the person flipping the coins selects the first coin in the sequence (prior
probabilities) and the next coin to flip given the previous one (transition probabilities)
with equal probability. Aside from the prior and transition probabilities for the states
(as with a MC), in an HMMwe need to specify the observation probabilities, in this
case the probabilities of H or T given each coin (the state). Let us assume that M1
has an 80% probability for heads and M2 has an 80% probability for tails. Then
we have specified all the required parameters for this simple example, which are
summarized in Table5.5.

The state diagram for the coins example is depicted in Fig. 5.3, with two state
variables and two possible observations, which depend on the state.
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Table 5.5 The prior probabilities (Π ), transition probabilities (A) and observation probabilities
(B) for the unfair coins example

Π =
M1 M2

0.5 0.5
A =

M1 M2

M1 0.5 0.5
M2 0.5 0.5

B =
M1 M2

H 0.8 0.2
T 0.2 0.8

Fig. 5.3 State diagram for
the HMM coins example.
The two states, q1 and q2,
and two observations, H and
T are shown, with arcs
representing the transitions
and observation probabilities

Formally, a hidden Markov model is defined as

Set of states: Q = {q1, q2, . . . , qn}
Set of observations: O = {o1, o2, . . . , om}
Vector of prior probabilities: Π = {π1, π2, . . . , πn}, where πi = P(S0 = qi )

Matrix of transition probabilities: A = {ai j }, i = [1..n], j = [1..n], where ai j =
P(St = q j | St−1 = qi )

Matrix of observation probabilities: B = {bi j }, i = [1..n], j = [1..m], where
bik = P(Ot = ok | St = qi )

where n is the number of states and m the number of observations; S0 is the initial
state. Compactly, an HMM is represented as λ = {A, B,Π}.

A (first order) HMM satisfies the following properties:

Markov property: P(St = q j | St−1 = qi , St−2 = qk, . . .) = P(St = q j |
St−1 = qi )

Stationary process: P(St−1 = q j | St−2 = qi ) = P(St = q j | St−1 = qi ) and
P(Ot−1 = ok | St−1 = q j ) = P(Ot = ok | St = qi ), ∀(t)

Independence of observations: P(Ot = ok | St = qi , St−1 = q j , . . .) = P(Ot =
ok | St = qi )

As in the case of an MC, the Markov property implies that the probability of the
current state only depends on the previous state, and it is independent of the rest of
the history. The second property says that the transition and observation probabilities
do not change over time, i.e., the process is stationary. The third property specifies
that the observations only depend on the current state. There are extensions to the
basic HMM that relax some of these assumptions; some of these will be discussed
in the next section and in further chapters.

According to the previous properties, the graphical model of an HMM is shown
in Fig. 5.4, which includes two series of random variables, the state at time t , St , and
the observation at time t , Ot .
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Fig. 5.4 Graphical model
representing a hidden
Markov model

Given an HMM representation of a certain domain, there are three basic questions
that are of interest in most applications [7]:

1. Evaluation: given amodel, estimate the probability of a sequence of observations.
2. Optimal Sequence: given a model and a particular observation sequence, estimate

the most probable state sequence that produced the observations.
3. Parameter learning: given a number of sequence of observations, adjust the para-

meters of the model.

Algorithms for solving these questions, assuming a standard HMM with finite
number of states and observations, are described next.

5.3.1 Evaluation

Evaluation consists in determining the probability of an observation sequence, O =
{o1, o2, o3, . . .}, given a model, λ, that is, estimating P(O | λ). We present two
methods. First we present the direct method, a naive algorithm that motivates the
need for a more efficient one, which is then described.

5.3.1.1 Direct Method

A sequence of observations, O = {o1, o2, o3, . . . oT }, can be generated by different
state sequences, Qi , as the states are unknown for HMMs. Thus, to calculate the
probability of an observation sequence,we can estimate it for a certain state sequence,
and then add the probabilities for all the possible state sequences:

P(O | λ) =
∑

i

P(O, Qi | λ) (5.8)

To obtain P(O, Qi | λ) we simply multiply the probability of the initial state, q1,
by the transition probabilities for a state sequence, q1, q2, . . . and the observation
probabilities for an observation sequence, o1, o2, . . .:

P(O, Qi | λ) = π1b1(o1)a12b2(o2) . . . a(T −1)T bT (oT ) (5.9)
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Thus, the probability of O is given by a summation over all the possible state
sequences, Q:

P(O | λ) =
∑

Q

π1b1(o1)a12b2(o2) . . . a(T −1)T bT (oT ) (5.10)

For a model with N states and an observation length of T , there are N T possible
state sequences. Each term in the summation requires 2T operations. As a result, the
evaluation requires a number of operations of the order of 2T × N T .

For example, if we consider a model with five states, N = 5, and an observation
sequence of length T = 100, which are common parameters for HMM applications,
the number of required operations is of the order of 1072. A more efficient method
is required!

5.3.1.2 Iterative Method

The basic idea of the iterative method, also known as Forward, is to estimate the
probabilities of the states/observations per time step. That is, calculate the probability
of a partial sequence of observations until time t (starting form t = 1), and based on
this partial result, calculate it for time t + 1, and so on.

First, we define an auxiliary variable called forward:

αt (i) = P(o1, o2, . . . , ot , St = qi | λ) (5.11)

That is, the probability of the partial sequence of observations until time t , being in
state qi at time t .

The iterative algorithm consists of three main parts: initialization, induction, and
termination. In the initialization phase, the α variables for all states at the initial time
are obtained. The induction phase consists in calculating αt+1(i) in terms of αt (i);
this is repeated from t = 2 to t = T . Finally, P(O | λ) is obtained by adding all the
αT in the termination phase. The procedure is shown in Algorithm 5.1.

Algorithm 5.1 The Forward Algorithm
Require: HMM, λ; Observation sequence, O; Number of states, N ; Number of observations, T

for i = 1 to N do
α1(i) = P(O1, S1 = qi ) = πi bi (O1) (Initialization)

end for
for t = 2 to T do

for j = 1 to N do
αt ( j) = [∑i αt−1(i)ai j ]b j (Ot ) (Induction)

end for
end for
P(O) = ∑

i αT (i) (Termination)
return P(O)



72 5 Hidden Markov Models

Let us now analyze the time complexity of the iterative method. Each iteration
requires N multiplications and N additions (approx.), so for the T iterations, the
number of operations is of the order of N 2×T . Thus, the time complexity is reduced
from exponential in T for the direct method to linear in T and quadratic in N for
the iterative method, a significant reduction in complexity; note that in most appli-
cations T � N .

Returning to the example where N = 5 and T = 100, now the number of
operations is approximately 2500, which can be carried out in a few milliseconds
with a standard personal computer.

The iterative procedure just described is the basis for solving the other two ques-
tions for HMMs. These are described next.

5.3.2 State Estimation

Finding the most probable sequence of states for an observation sequence, O =
{o1, o2, o3, . . .}, can be interpreted in two ways: (i) obtaining the most probable
state, St at each time step t , (ii) obtaining the most probable sequence of states,
s0, s1, . . . sT . Notice that the concatenation of the most probable states for each time
step, for t = 1 . . . T , is not necessarily the same as the most probable sequence of
states.2 First, we solve the problem of finding the most probable or optimum state
for a certain time t , and then the problem of finding the optimum sequence.

We first need to define some additional auxiliary variables. The backward vari-
able is analogous to the forward one, but in this case we start from the end of the
sequence, that is,

βt (i) = P(ot+1, ot+2, . . . , oT , St = qi | λ) (5.12)

That is, the probability of the partial sequence of observations from t + 1 to T ,
being in state qi at time t . In a similar way to α, it can be calculated iteratively but
now backwards:

βt (i) =
∑

j

βt+1( j)ai j b j (ot ) (5.13)

The β variables for T are defined as βT ( j) = 1.
Thus, we can also solve the evaluation problem of the previous section using β

instead of α, starting from the end of the observation sequence and iterating back-
wards through time. Or we can combine both variables, and iterate forward and
backward, meeting at some intermediate time t ; that is,

P(O, st = qi | λ) = αt (i)βt (i) (5.14)

2This is a particular case of theMost Probable ExplanationorMPEproblem,whichwill be discussed
in Chap.7.

http://dx.doi.org/10.1007/978-1-4471-6699-3_7
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Then:
P(O | λ) =

∑

i

αt (i)βt (i) (5.15)

Now we define an additional variable, γ , that is, the conditional probability of
being in a certain state qi given the observation sequence:

γt (i) = P(st = qi | O, λ) = P(st = qi , O | λ)/P(O) (5.16)

which can be written in terms of α and β as:

γt (i) = αt (i)βt (i)/
∑

i

αt (i)βt (i) (5.17)

This variable, γ , provides the answer to the first subproblem, the most probable
state (MPS) at a time t ; we just need to find for which state it has the maximum
value. That is,

MPS(t) = ArgMaxiγt (i) (5.18)

Let us now solve the second subproblem—the most probable state sequence Q
given the observation sequence O , such that we want to maximize P(Q | O, λ). By
Bayes rule: P(Q | O, λ) = P(Q, O | λ)/P(O). Given that P(O) does not depend
on Q, this is equivalent to maximizing P(Q, O | λ).

The method for obtaining the optimum state sequence is known as the Viterbi
algorithm, which in an analogous way as the forward algorithm, solves the problem
iteratively. Before we see the algorithm, we need to define an additional variable, δ.
This variable gives the maximum value of the probability of a subsequence of states
and observations until time t , being at state qi at time t ; that is:

δt (i) = MAX [P(s1, s2, . . . st = qi , o1, o2, . . . , ot | λ)] (5.19)

which can also be obtained in an iterative way:

δt+1(i) = [MAX δt (i)ai j ]b j (ot+1) (5.20)

The Viterbi algorithm requires four phases: initialization, recursion, termination,
and backtracking. It requires an additional variable, ψt (i), that stores for each state
i at each time step t the previous state that gave the maximum probability. This is
used to reconstruct the sequence by backtracking after the termination phase. The
complete procedure is depicted in Algorithm 5.2.

With the Viterbi algorithm we can obtain the most probable sequence of states,
even if these are hidden for HMMs.
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Algorithm 5.2 The Viterbi Algorithm
Require: HMM, λ; Observation sequence, O; Number of states, N ; Number of observations, T

for i = 1 to N do
(Initialization)
δ1(i) = πi bi (O1)

ψ1(i) = 0
end for
for t = 2 to T do

for j = 1 to N do
(Recursion)
δt ( j) = MAXi [δt−1(i)ai j ]b j (Ot )

ψt ( j) = ARGMAXi [δt−1(i)ai j ]
end for

end for
(Termination)
P∗ = MAXi [δT (i)]
q∗

T = ARGMAXi [δT (i)]
for t = T to 2 do
(Backtracking)
q∗

t−1 = ψt (q∗
t )

end for

5.3.3 Learning

Finally, we will see how we can learn an HMM from data via the Baum-Welch
algorithm. First, we should note that this method assumes that the structure of the
model is known: the number of states and observations is previously defined; there-
fore, it only estimates the parameters. Usually the observations are given by the
application domain, but the number of states, which are hidden, are not so easy to
define. Sometimes the number of hidden states can be defined based on domain
knowledge; at other times it is done experimentally through trial and error: test the
performance of the model with different numbers of states (2, 3, . . .) and select the
number that gives the best results. It should be noted that there is a tradeoff in this
selection, as a larger number of states tend to produce better results but also imply
additional computational complexity.

TheBaum-Welch algorithmdetermines the parameters of anHMM,λ = A, B,Π ,
given a number of observation sequences,O = O1, O2, . . . OK . For this itmaximizes
the probability of the model given the observations: P(O | λ). For an HMM with N
states and M observations, we need to estimate N + N 2 + N × M parameters, for
Π , A and B, respectively.

We need to define one more auxiliary variable, ξ , the probability of a transition
from a state i at time t to a state j at time t + 1 given an observation sequence O:

ξt (i, j) = P(st = qi , st+1 = q j | O, λ) = P(st = qi , st+1 = q j , O | λ)/P(O)

(5.21)
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In terms of α and β:

ξt (i, j) = αt (i)ai j b j (ot+1)βt+1( j)/P(O) (5.22)

Writing P(O) also in terms of α and β:

ξt (i, j) = αt (i)ai j b j (ot+1)βt+1( j)/
∑

i

∑

j

αt (i)ai j b j (ot+1)βt+1( j) (5.23)

γ can also be written in terms of ξ : γt (i) = ∑
j ξt (i, j)

By adding γt (i) for all time steps,
∑

t γt (i), we obtain an estimate of the number
of times that the chain is in state i , and by accumulating ξt (i, j) over t ,

∑
t ξt (i, j),

we estimate the number of transitions from state i to state j .
Based on the previous definitions, the Baum-Welch procedure for parameter esti-

mation for HMMs is summarized in Algorithm 5.3.

Algorithm 5.3 The Baum-Welch Algorithm
1. Estimate the prior probabilities—the number of times being in state i at time t .

πi = γ1(i)

2. Estimate the transition probabilities—the number of transitions from state i to j between the
number of times in state i .

ai j =
∑

t

ξt (i, j)/
∑

t

γt (i)

3. Estimate the observation probabilities—the number of times being in state j and observing k
between the number of times in state j .

b jk =
∑

t,O=k

γt ( j)/
∑

t

γt ( j)

Notice that the calculation of γ and ξ variables is done in terms of α and β, which
require the parameters of the HMM, Π, A, B. So we have encountered a “chicken
and egg” problem—we need the model parameters for the Baum-Welch algorithm,
which estimates the model parameters! The solution to this problem is based on the
EM (for expectation-maximization) principle.

The idea is to start with some initial parameters for the model (E-step), λ =
{A, B,Π}, which can be initialized randomly or based on some domain knowledge.
Then, via the Baum-Welch algorithm, these parameters are re-estimated (M-step).
This cycle is repeated until convergence; that is, until the difference between the
parameters for the model from one step to the next is below a certain threshold.
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The EM algorithm provides what is known as a maximum-likelihood estimator,
which does not guarantee an optimal solution—it depends on the initial conditions.
However, this estimator tends to work well in practice.3

5.3.4 Extensions

Several extensions to standard HMMs have been proposed to deal with particular
issues in several applications [2]. Next we briefly describe some of these extensions,
whose graphical models are depicted in Fig. 5.5.

Parametric HMMs (PHMMs) represent domains that involve variations in the
models. In PHMMs, observation variables are conditioned to the state variable and
one or more parameters that account for such variations, see Fig. 5.5b. Parame-
ter values are known and constant on training. On testing, values that maximize

Fig. 5.5 Graphical model representation for the basic HMMand several extensions. a Basic model.
b Parametric HMMs. c Coupled HMMs. d Input-Output HMMs. e Parallel HMMs. f Hierarchical
HMMs. g Mixed-state dynamic Bayesian networks. h Hidden semi-Markov models

3If we have some domain knowledge this could provide a good initialization for the parameters;
otherwise, we can set them to uniform probabilities.
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the likelihood of the PHMM are recovered via a tailored expectation-maximization
algorithm.

Coupled HMMs (CHMMs) join HMMs by introducing conditional dependen-
cies between state variables—see Fig. 5.5c. These models are suitable to represent
influences between subprocesses that occur in parallel.

Input–Output HMMs (IOHMMs) consider an extra input parameter that affects
the states of the Markov chain, and optionally, the observation variables. These
types of models are illustrated in Fig. 5.5d. The input variable corresponds to the
observations. The output signal of IOHMMs is the class of model (e.g., a phoneme
in speech recognition or a particular movement in gesture recognition) that is being
executed. A single IOHMM can describe a complete set of classes.

Parallel HMMs (PaHMMs) require fewer HMMs than CHMMs for composite
processes by assumingmutual independence betweenHMMs, see Fig. 5.5e. The idea
is to construct independent HMMs for two (or more) independent parallel processes
(for example, the possible motions of each hand in gesture recognition), and combine
them by multiplying their individual likelihoods. PaHMMs with the most probable
joint likelihood define the desired class.

Hierarchical hidden Markov models (HHMMs) arrange HMMs into layers at
different levels of abstraction; Fig. 5.5f. In a two-layer HHMM, the lower layer is
a set of HMMs that represents submodel sequences. The upper layer is a Markov
chain that governs the dynamics of these submodels. Layering allows us to reuse the
basic HMMs simply by changing upper layers.

Mixed-state dynamic Bayesian networks (MSDBNs)4 combine discrete and con-
tinuous state spaces into a two-layer structure. MSDBNs are composed of an HMM
in the upper layer and a linear dynamic system (LDS) in the lower layer. The LDS
is used to model transitions between real-valued states. The output values of the
HMM drive the linear system. The graphical representation of MSDBNs is depicted
in Fig. 5.5g. In MSDBNs, HMMs can describe discrete high-level concepts, such as
a grammar, while the LDS describes the input signals in a continuous-state space.

Hidden semi-Markov models (HSMMs) exploit temporal knowledge belonging
to the process by defining an explicit duration on each state, see Fig. 5.5h. HSMMs
are suitable to avoid an exponential decay of the state probabilities when modeling
large observation sequences.

5.4 Applications

In this section we illustrate the application of Markov chains and HMMs in two
domains. First we describe the use of Markov chains for ordering web pages with
the PageRank algorithm. Then we present an application of HMMs in gesture
recognition.

4Hidden Markov models, including these extensions, are particular types of dynamic Bayesian
networks, a more general model that is described in Chap.9.

http://dx.doi.org/10.1007/978-1-4471-6699-3_9


78 5 Hidden Markov Models

Fig. 5.6 A small example of a WWW with 3 pages

5.4.1 PageRank

We can think of the World Wide Web (WWW) as a very large Markov chain, such
that each web page is a state and the hyperlinks between web pages correspond to
state transitions. Assume that there are N web pages. A particular web page, wi ,
has m outgoing hyperlinks. If someone is at web page wi , she can select any of the
hyperlinks in this page to go to another page. A reasonable assumption is that each
outgoing link can be selected with equal probability; thus, the transition probability
from wi to any of the web pages with which it has hyperlinks, w j , is Ai j = 1/m. For
the other web pages for which it has no outgoing links, the transition probability is
zero. In this way, according to the structure of theWWW,we can obtain the transition
probability matrix, A, for the corresponding Markov chain. The state diagram of a
small example with three web pages is shown in Fig. 5.6.

Given the transition probability matrix of the WWW, we can obtain the con-
vergence probabilities for each state (web page) according to the Perron-Frobenius
theorem (see Sect. 5.2). The convergence probability of a certain web page can be
thought to be equivalent to the probability of a person, who is navigating the WWW,
visiting this web page. Intuitively, web pages that have more ingoing links, fromweb
pages with more ingoing links, will have a higher probability of being accessed.

Based on the previous ideas, L. Page et al. developed the PageRank algorithm,
which is the basis of howwebpages are orderedwhenwemake a search inGoogle [6].
The web pages retrieved by the search algorithm are presented to the user according
to their convergence probabilities. The idea is that more relevant (important) web
pages will tend to have higher convergence probability.

5.4.2 Gesture Recognition

Gestures are essential for human–human communication, so they are also important
for human–computer interaction. For example, we can use gestures to command a
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Fig. 5.7 A video sequence depicting a person performing a stop gesture with his right hand. A few
key frames are shown

service robot. We will focus on dynamic hand gestures, those that consist in move-
ments by the hand/arm of a person. For example, Fig. 5.7, depicts some frames of a
person executing a stop gesture.

For recognizing gestures, a powerful option is a hidden Markov model [1, 9].
HMMs are appropriate for modeling sequential processes, and are robust to the
temporal variations common in the execution of dynamic gestures. Before we can
apply HMMs to model and recognize gestures, the images in the video sequence
need to be processed and a set of features extracted from them; these will constitute
the observations for the HMM.

Image processing consists in detecting the person in the image, detecting their
hand, and then tracking the hand in the sequence of images. From the image sequence,
the position of the hand (XYZ) is extracted from each image. Additionally, some other
regions of the body could be detected, such as the head and torso, which are used to
obtain posture features as described below.

Alternatives to describe gestures can be divided in: (a)motion features, (b) posture
features, and (c) posture-motion features. Motion features describe the motion of the
person’s hand in the Cartesian space XYZ. Posture features represent the position of
the hand with respect to other parts of the person’s body, such as the head or torso.
These motion and posture features are usually codified in a finite number of code
words that provide the observations for the HMMs. For example, if we consider
three values to describe each motion coordinate and two binary posture features
(e.g., hand above the head, etc.), there will be m = 3 × 3 × 3 × 2 × 2 = 108
possible observations. These are obtained for each frame (or each n frames) in the
video sequence of the gesture.

To recognize N different gestures,we need to train N HMMs, one for each gesture.
The first parameter that needs to be defined is the number of hidden states for each
model. Asmentioned before, this can be set based on domain knowledge, or obtained
via cross-validation by experimentally evaluating different amounts of states. In the
case of dynamic gestures, we can think of the states as representing the different
stages in the movement of the hand. For instance, the stop gesture can be thought
of as having three phases: moving the arm up and forward, extending the hand, and
moving the arm down; this implies three hidden states. Experimentally, it has been
found that using three–five states usually produces good results.

Once the number of states for each gesture model is defined (these could be differ-
ent for each model), the parameters are obtained using the Baum-Welch procedure.
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Fig. 5.8 Gesture recognition using HMMs. The features extracted from the video sequence are fed
as observations to each HMM, one per gesture class, and the probability of each model is obtained.
The model with highest probability defines the recognized gesture

For this, a set of M training sequences for each gesture class are required, and the
more samples the better. Thus, N HMMs are obtained, one for each gesture type.

For recognition, the features are extracted from the video sequence. These are
the observations, O , for the N HMMs models λi , one for each gesture type. The
probability of each model given the observation sequence, P(O | λi ), are obtained
using the Forward algorithm. The model with the highest probability, λ∗

k , is selected
as the recognized gesture. Figure5.8 illustrates the recognition process, considering
five classes of gestures.

5.5 Additional Reading

A general introduction to Markov chains is provided in [4]. Rabiner [7] presents an
excellent introduction to HMMs and their application to speech recognition; [8] pro-
vides a more general overview of speech recognition. A review of several extensions
of HMMs in the context of gesture recognition is given in [2]. Reference [5] analyzes
search engines and the PageRank algorithm. The application of HMMs to gesture
recognition is described by [1, 9]. Open software for HMMs is available in [3].

5.6 Exercises

1. For the Markov chain weather model: (i) Determine the probability of the
state sequence: cloudy, raining, sunny, sunny, sunny, cloudy, raining, raining.
(ii) What is the probability of four continuous rainy days? (iii) What is the
expected number of days that it will continue raining?

2. For the small web page example of Fig. 5.6, determine: (i) if the convergence
conditions are satisfied, and if so, (ii) the order in which the three web pages will
be presented to the user.
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3. Consider the unfair coin example. Given the parameters in Table5.5, obtain the
probability of the following observation sequence: HHTT using (i) the direct
method, (ii) the forward algorithm.

4. For the previous problem, what is the number of operations for each of the two
methods?

5. For problem3, obtain themost probable state sequence usingViterbi’s algorithm.
6. What are the three basic assumptions in standard HMMs? Express them math-

ematically.
7. Assume there are two HMMs that represent two phonemes: ph1 and ph2. Each

model has two states and two observations with the following parameters:
Model 1: Π = [0.5, 0.5], A = [0.5, 0.5 | 0.5, 0.5], B = [0.8, 0.2 | 0.2, 0.8]
Model 2: Π = [0.5, 0.5], A = [0.5, 0.5 | 0.5, 0.5], B = [0.2, 0.8 | 0.8, 0.2]
Given the following observation sequence: “o1,o1,o2,o2”, which is the most
probable phoneme?

8. We want to develop a head gesture recognition system and we have a vision
system that can detect the following movements of the head: (1) up, (2) down,
(3) left, (4) right, (5) stable. The vision system provides a number for each type
of movement (1–5) each second, which is the input (observation) to the ges-
ture recognition system. The gesture recognition system should recognize four
classes of head gestures: (a) affirmative action, (b) negative action, (c) turn right,
(d) turn left. (i) Specify a model that is adequate for this recognition problem,
including the structure and required parameters. (ii) Indicate which algorithms
are appropriate for learning the parameters of the model, and for recognition.

9. *** Develop a program to solve the previous problem.
10. *** An open problem for HMMs is establishing the optimum number of states

for each model. Develop a search strategy for determining the optimum number
of states for each model for the head gesture recognition system that maximizes
the recognition rate. Consider that the data set (examples for each class of ges-
ture) is divided into three sets: (a) training—to estimate the parameters of the
model, (b) validation—to compare the different models, (c) test—for testing the
final models.
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Chapter 6
Markov Random Fields

6.1 Introduction

Certain processes, such as a ferromagnetic material under a magnetic field, or an
image, can be modeled as a series of states in a chain or a regular grid. Each state can
take different values and is influenced probabilistically by the states of its neighbors.
These models are known as Markov random fields (MRFs).

MRFs originated frommodelling ferromagnetic materials in what is known as the
Ising model [2]. In an Ising model, there are a series of random variables in a line;
each random variable represents a dipole that could be in two possible states, up (+)
or down (−). The state of each dipole depends on an external field and the state of
its neighbor dipoles in the line. A simple example with four variables is illustrated
in Fig. 6.1. A configuration of an MRF is a particular assignment of values to each
variable in the model; in the case of the model in Fig. 6.1, there are 16 possible
configurations: + + ++, + + +−, + + −+, . . . , − − −−.

An MRF is represented as an undirected graphical model, such as in the previous
example. An important property of an MRF is that the state of a variable is inde-
pendent of all other variables in the model given its neighbors in the graph. For
instance, for the example in Fig. 6.1, q1 is independent of q3 and q4 given q2. That
is P(q1 | q2, q3, q4) = P(q1 | q2).

The central problem in an MRF is to find the configuration of maximum proba-
bility. Usually, the probability of a configuration depends on the combination of an
external influence (e.g., a magnetic field in the Ising model) and the internal influ-
ence of its neighbors. More generally, the posterior probability of a configuration
depends on the prior knowledge or context, and the data or likelihood.

Using a physical analogy, an MRF can be thought of as a series of rings in poles,
where each ring represents a random variable, and the height of a ring in a pole corre-
sponds to its state. The rings are arranged in a line, see Fig. 6.2. Each ring is attached
to its neighbors with a spring, this corresponds to the internal influences, and it is also
attached to the base of its pole with another spring, representing the external influ-
ence.The relation between the springs’ constants defines the relative weight between
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Fig. 6.1 An example of an Ising (MRF) model with four variables

Fig. 6.2 Physical analogy of an MRF. The rings will tend to the configuration of minimum energy
according to the springs that attach them to the base (external influence) and its neighbors (internal
influence)

the internal and external influences. If the rings are left loose, they will stabilize to
a configuration of minimum energy, which corresponds to the configuration with
maximum probability in an MRF.

Markov random fields, also known as Markov networks, are formally defined in
the next section.

6.2 Markov Networks

A random field (RF) is a collection of S random variables,F = F1, . . . Fs , indexed by
sites. Randomvariables can be discrete or continuous. In a discreteRF, a randomvari-
able can take a value fi from a set of m possible values or labels L = {l1, l2, . . . lm}.
In a continuous RF, a random variable can take values from the real numbers, R, or
from an interval of them.

A Markov random field or Markov network (MN) is a random field that satisfies
the locality property: a variable Fi is independent of all other variables in the field
given its neighbors, Nei(Fi ). That is,

P(Fi | Fc) = P(Fi | Nei(Fi )) (6.1)

where Fc is the set of all random variables in the field except Fi .
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Fig. 6.3 Example of a
Markov network, in which
q1, q5 (a) are independent of
q3 (c) given q2, q5 (b)

Graphically, a Markov network (MN) is an undirected graphical model which
consists of a set of random variables, V, and a set of undirected edges, E. These form
an undirected graph that represents the independency relations between the random
variables according to the following criteria. A subset of variables A is independent
of the subset of variables C given B, if the variables in B separate A and C in the
graph. That is, if the nodes in B are removed from the graph, then there are no
trajectories between A and C.

Figure6.3 depicts an example of aMarkov networkwith five variables, q1, . . . , q5.
For instance, in this example, q1, q4 (A) are independent of q3 (C) given q2, q5 (B).

The joint probability of an MN can be expressed as the product of local functions
on subsets of variables in the model. These subsets should include, at least, all the
cliques in the network. For the MN of Fig. 6.3, the joint probability distribution can
be expressed as:

P(q1, q2, q3, q4, q5) = (1/k)P(q1, q4, q5)P(q1, q2, q5)P(q2, q3, q5) (6.2)

where k is a normalizing constant. For practical convenience, other subsets of vari-
ables can also be considered for the joint probability calculation. If we also include
subsets of size two, then the joint distribution for the previous example can be
written as:

P(q1, q2, q3, q4, q5) = (1/k)P(q1, q4, q5)P(q1, q2, q5)P(q2, q3, q5) (6.3)

P(q1, q2)P(q1, q4), P(q1, q5)P(q2, q3)P(q2, q5)P(q3, q5)P(q4, q5)

Formally, a Markov network is a set of random variables, X = X1, X2, . . . , Xn that
are indexed by V , such that G = (V, E) is an undirected graph, which satisfies
the Markov property: a variable Xi is independent of all other variables given its
neighbors, Nei(Xi ):

P(Xi | X1, . . . Xi−1, Xi+1, . . . , Xn) = P(Xi | Nei(Xi )) (6.4)
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The neighbors of a variable are all the variables that are directly connected to it in the
graph. Under certain conditions (if the probability distribution is strictly positive),
the joint probability distribution of an MRF can be factorized over the cliques of the
graph:

P(X) = (1/k)
∏

C∈Cliques(G)

φC (XC ) (6.5)

where k is a normalizing constant and φC is a local function over the variables in the
corresponding clique C .

AnMRFcanbe categorized as regularor irregular.When the randomvariables are
in a lattice it is considered regular; for instance, they could represent the pixels in an
image, if not, they are irregular. Next we will focus on regular Markov random fields.

6.2.1 Regular Markov Random Fields

A neighboring system for a regular MRF F is defined as:

V = {Nei(Fi ) | ∀i ∈ Fi} (6.6)

V satisfies the following properties:

1. A site in the field is not a neighbor to itself.
2. The neighborhood relations are symmetric, that is, if Fj ∈ Nei(Fi ) then Fi ∈

Nei(Fj ).

Typically, an MRF is arranged as a regular grid. An example of a 2D grid is
depicted in Fig. 6.4. For a regular grid, a neighborhood of order i is defined as:

Neii (Fi ) = {Fj ∈ F | dist(Fi , Fj ) ≤ r} (6.7)

Fig. 6.4 A regular 2D MRF
with a first-order
neighborhood
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Fig. 6.5 A regular 2D MRF
with a second-order
neighborhood

where dist(x, y) is the Euclidean distance between x and y, considering a unit
distance as the vertical and horizontal distance between sites in the grid. The radius,
r , is defined for each order. For example, r = 1 for order one, each interior site has 4
neighbors; r = √

2 for order two, each interior site has 8 neighbors; r = 2 for order
three, each interior site has 12 neighbors; and so on. Figure6.4 shows and example
of a neighborhood of order one, and Fig. 6.5 of a neighborhood of order two.

Once the structure of the MRF is specified based on the neighborhood order, its
parameters must be defined. The parameters of a regular MRF are specified by a set
of local functions. These functions correspond to joint probability distributions of
subsets of completely connected variables in the graph. It is sufficient to include all
the cliques in the graph, but other completely connected subsets can also be included.
For instance, in the case of a first-order MRF, there are subsets of 2 variables; in the
case of a second-order MRF, there are subsets of 2, 3, and 4 variables. In general,
the joint probability distribution for the whole field can be expressed as the product
of the local functions for different subsets of variables:

P(F) = (1/k)
∏

i

f (Xi ) (6.8)

where f (Xi ) are the local functions for subsets of variables Xi and k is a normal-
izing constant. We can think of these local functions as constraints that will favor
certain configurations. For example, in the case of the Ising model, if we consider
two neighboring variables, X, Y , the local function will favor (higher probabilities)
configurations in which X = Y and will disfavor (lower probabilities) configurations
in which X �= Y . These local functions can be defined subjectively depending on
the application domain, or they can be learned from data.
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6.3 Gibbs Random Fields

The joint probability of an MRF can be expressed in a more convenient way given
its equivalence with a Gibbs Random Field (GRM), according to the Hammersley–
Clifford theorem [4]. Given this equivalence, we can rewrite Eq. (6.8) as:

P(F) = (1/z) exp(−U) (6.9)

where U is known as the energy, given its analogy with physical energy. So maxi-
mizing P(F) is equivalent to minimizing U. The energy function can also be written
in terms of local functions, but as this is an exponent, it is the sum of these functions
(instead of a product):

UF =
∑

i

Ui (Xi ) (6.10)

Considering a regular MRF of order n, the energy function can be expressed in
terms of functions of subsets of completely connected variables of different sizes,
1, 2, 3, . . .:

UF =
∑

i

U1(Fi ) +
∑

i, j

U2(Fi , Fj ) +
∑

i, j,k

U3(Fi , Fj , fk) + · · · (6.11)

where Ui are the local energy functions, known as potentials, for subsets of size i .
Note that potentials are the inverse of probabilities, so low potentials are equivalent
to high probabilities.

Given the Gibbs equivalence, the problem of finding the configuration of maxi-
mum probability for anMRF is transformed to finding the configuration of minimum
energy.

In summary, to specify an MRF we must define:

• A set of random variables, F, and their possible values, L .
• The dependency structure, or in the case of a regularMRF a neighborhood scheme.
• The potentials for each subset of completely connected nodes (at least the cliques).

6.4 Inference

As mentioned before, the more common application of MRFs consists in finding the
most probable configuration; that is, the value for each variable that maximizes the
joint probability. Given the Gibbs equivalence, this is the same as minimizing the
energy function, expressed as a sum of local functions.

The set of all possible configurations of an MRF is usually very large, as it
increases exponentially with the number of variables in F. For the discrete case
with m possible labels, the number of possible configurations is m N , where N is the
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number of variables in the field. If we consider an MRF representing a binary image
of 100 × 100 pixels (a small image), then the number of configurations is 210,000!
Thus, it is impossible to calculate the energy (potential) for every configuration,
except in the case of very small fields.

Finding the most probable configuration is usually posed as a stochastic search
problem. Starting from an initial, random assignment of each variable in the MRF,
this configuration is improved via local operations, until a configuration of mini-
mum energy is obtained. In general, the minimum is a local minimum in the energy
function; it is difficult to guarantee a global optimum.

A general stochastic search procedure for finding a configuration of minimum
energy is outlined in Algorithm6.1. After initializing all the variables with a random
value, each variable is changed to an alternative value and its new energy is estimated.
If the new energy is lower than the previous one, the value is changed; otherwise,
the value may also change with a certain probability—this is done to avoid local
minima. This process is repeated for a number of iterations (or until convergence).

Algorithm 6.1 Stochastic Search Algorithm
Require: MRF, F; Energy function, UF ; Number of iterations, N ; Number of variables, S; Proba-
bility threshold, T ; Convergence threshold, ε
for i = 1 to S do

F(i) = lk (Initialization)
end for
for i = 1 to N do

for j = 1 to S do
t = lk+1 (An alternative value for variable F(i))
if U (t) < U (F(i)) then

F(i) = t (Change value of F(i) if the energy is lower)
else

if random(U (t) − U (F(i))) < T then
F(i) = t (With certain probability change F(i) if the energy is higher)

end if
end if

end for
end for
return F∗ (Return final configuration)

There are several variants of this general algorithm according to variations on
different aspects. One is the way in which the optimal configuration is defined, for
which there are twomain alternatives: MAP andMPM. In the Maximum A posteriori
Probability or MAP, the optimum configuration is taken as the configuration at the
end of the iterative process. In the case of Maximum Posterior Marginals or MPM,
the most frequent value for each variable in all the iterations is taken as the optimum
configuration.
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Regarding the optimization process, there are three main variations:

Iterative Conditional Modes (ICM): it always selects the configuration of mini-
mum energy.

Metropolis: with a fixed probability, P , it selects a configuration with a higher
energy.

Simulated annealing (SA): with a variable probability, P(T ), it selects a config-
uration with higher energy; where T is a parameter known as temperature. The
probability of selecting a value with higher energy is determined based on the
following expression: P(T ) = e−δU/T ; where δU is the energy difference. The
algorithm starts with a high value for T and this is reduced with each iteration.
This makes the probability of going to higher energy states high initially, and it
subsequently decreases tending to zero at the end of the process.

6.5 Parameter Estimation

The definition of a Markov random field includes several aspects:

• The structure of themodel—in the case of a regularMRF the neighborhood system.
• The form of the local probability distribution functions—for each complete set in
the graph.

• The parameters of the local functions.

In some applications, the previous aspects can be defined subjectively, however,
this is not always easy.Different choices for the structure, distribution, andparameters
canhave a significant impact on the results of applying themodel to specific problems.
Thus, it is desirable to learn the model from data, which can have several levels of
complexity. The simplest case, which is nontrivial, is when we know the structure
and functional form, and we only need to estimate the parameters given a clean
realization (without noise) of the MRF, f . It becomes more complex if the data is
noisy, and evenmore difficult ifwewant to learn the functional formof the probability
distribution and the order of the neighborhood system. Next we will cover the basic
case, learning the parameters of an MRF from data.

6.5.1 Parameter Estimation with Labeled Data

The set of parameters, θ , of an MRF, F , is estimated from data, f , assuming no
noise. Given f , the maximum likelihood (ML) estimator maximizes the probability
of the data given the parameters, P( f | θ); thus the optimum parameters are:

θ∗ = ArgMaxθ P( f | θ) (6.12)
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When the prior distribution of the parameters, P(θ), is known, we can apply a
Bayesian approach andmaximize the posterior density obtaining theMAP estimator:

θ∗ = ArgMaxθ P(θ | f ) (6.13)

where:
P(θ | f ) ∼ P(θ)P( f | θ) (6.14)

The main difficulty in the ML estimation for an MRF is that it requires the eval-
uation of the normalizing partition function Z , in the Gibbs distribution, since it
involves summing over all possible configurations. Remember that the likelihood
function is given by:

P( f | θ) = (1/Z) exp(−U ( f | θ)) (6.15)

where the partition function is:

Z =
∑

f ∈F

exp(−U ( f | θ)) (6.16)

Thus, the computation of Z is intractable even for MRFs of moderate size. So
approximations are used for solving this problem efficiently.

One possible approximation is based on the conditional probabilities of each
variable in the field, fi , given its neighbors, Ni : P( fi | fNi ), and assuming that these
are independent, we obtain what is known as the pseudo-likelihood (PL) [1]. Then
the energy function can be written as:

U ( f ) =
∑

i

Ui ( fi , fNi ) (6.17)

Assuming afirst-order regularMRF, only single and pairs of nodes are considered, so:

Ui ( fi , Ni ) = V1( fi ) +
∑

j

V2( fi , f j ) (6.18)

where V1 and V2 are the single and pair potentials, respectively, and f j are the
neighbors of fi .

The pseudo-likelihood (PL) is defined as the simple product of the conditional
likelihoods:

P L( f ) =
∏

i

P( fi | fNi ) =
∏

i

exp−Ui ( fi , fNi )∑
fi
exp−Ui ( fi , fNi )

(6.19)
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Given that fi and fNi are not independent, the PL is not the true likelihood;
however, it has been proven that in the large lattice limit it converges to the truth with
probability one [3].

Using the PL approximation, and given a particular structure and form of the local
functions, we can estimate the parameters of an MRF model based on data.

Assuming a discrete MRF and given several realizations (examples), the parame-
ters can be estimated using histogram techniques. Assume there are N distinct sets of
instances of size k in the dataset, and that a particular configuration ( fi , fNi ) occurs H
times, then an estimate of the probability of this configuration is P( fi , fNi ) = H/N .

6.6 Conditional Random Fields

A limitation of MRFs (and HMMs) is that it is usually assumed that the observations
are independent given each state variable. For example, in a hidden Markov model,
an observation Ot is conditionally independent of all other observations and states
given St . In traditional MRFs, it is also assumed that each observation only depends
on a single variable, and it is conditionally independent of the other variables in the
field (see Sect. 6.7). There are applications in which these independence assumptions
are not appropriate, for example labeling the words in a sentence in natural language,
in which there could be long-range dependencies between observations (words).

HMMs and traditional MRFs are generative models, which represent the joint
probability distribution as the product of local functions based on the independence
assumptions. If these conditional independence assumptions are removed, the mod-
els become intractable. One alternative that does not require these assumptions are
conditional random fields (CRF) [10, 11].

A conditional random field is an undirected graphical model globally conditioned
onX, the randomvariable representing observations [8]. Conditionalmodels are used
to label an observation sequence X by selecting the label sequence Y that maximizes
the conditional probability P(Y|X). The conditional nature of such models means
that no effort is wasted on modeling the observations, and one is free from having
to make unnecessary independence assumptions. The simplest structure of a CRF
is that in which the nodes corresponding to elements of Y form a simple first-order
chain, as illustrated in Fig. 6.6.

Fig. 6.6 Graphical
representation of a
chain-structured conditional
random field
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In an analogous way to MRFs, the joint distribution is factorized on a set of
potential functions, where each potential function is defined over a set of random
variables whose corresponding vertices form a maximal clique of G, the graphical
structure of the CRF. In the case of a chain-structured CRF each potential function
will be specified on pairs of adjacent label variables, Yi and Yi+1.

The potential functions can be defined in terms of feature functions [8], which
are based on real-valued features that express some characteristic of the empirical
distribution of the training data. For instance, a featuremay represent the presence (1)
or absence (0) of a word in a text sequence; or the presence of a certain element (edge,
texture) in an image. For a first-order model (like a chain), the potential functions
are defined in terms of the feature functions of the entire observation sequence, X,
and a pair of consecutive labels, Yi−1, Yi : U (Yi−1, Yi , X, f ).

Considering a first-order chain, the energy function can be defined in terms of the
potential function of single variables and pairs of variables, similar to MRFs:

E =
∑

j

λ j t j (Yi−1, Yi , X, f ) +
∑

k

μk(Yi , X, f ), (6.20)

where λ j and μk are parameters that weigh the contribution of the variable pairs
(internal influence) and the single variables (external influence) respectively; these
could be estimated from training data. The main difference from MRFs is that these
potentials are conditioned on the entire observation sequence. Parameter estimation
and inference are performed in a similar way as for MRFs.

6.7 Applications

Markov random fields have been applied to several tasks in image processing and
computer vision. For example, MRFs are used for image smoothing, image restora-
tion, segmentation, image registration, texture synthesis, superresolution, stereo
matching, image annotation, and information retrieval. We describe two applica-
tions: image smoothing and improving image annotation.

6.7.1 Image Smoothing

Digital images are usually corrupted by high frequency noise. For reducing the noise a
smoothing process can be applied to the image. For this, there are several alternatives;
one is to use an MRF.

We can define an MRF associated to a digital image, in which each pixel
corresponds to a random variable. Considering a first-order MRF, each interior vari-
able is connected to its four neighbors. Additionally, each variable is also connected
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Fig. 6.7 An example of an
MRF associated to an image.
The upper part depicts a
first-order 2D MRF for a
3 × 3 image. The lower part
represents the image pixels,
each one connected to a
corresponding variable in the
field

to an observation variable that has the value of the corresponding pixel in the image,
see Fig. 6.7.

Once the structure of the MRF is defined, we need to specify the local potential
functions.Aproperty of natural images is that, in general, theyhave certain continuity,
that is, neighboring pixels will tend to have similar values. Thus, we can propose a
restriction that forces neighboring pixels to have similar values, by punishing (higher
energy) configurations in which neighbors have different values. At the same time,
it is desirable for each variable in the MRF to have a value similar to the one in the
original image; so we also punish configurations in which the variables have different
values to their corresponding observations. So the solution will be a compromise
between these two types of restrictions, similarity to neighbors and similarity to
observations.

The energy function, in this case, can be expressed as the sum of two types of
potentials: one associated to pairs of neighbors, Uc( fi , f j ); and the other for each
variable and its corresponding observation, Uo( fi , gi ). Thus, the energy will be the
summation of these two types of potentials:

UF =
∑

i, j

Uc(Fi , Fj ) + λ
∑

i

Uo(Fi , Gi ) (6.21)

where λ is a parameter which controls which aspect is given more importance, the
observations (λ > 1) or the neighbors (λ < 1); and Gi is the observation variable
associated to Fi .

Depending on the desired behavior for each type of potential, these can be defined
to penalize the difference with the neighbors or the observations. Thus, a reasonable
function is the quadratic difference. Then, the neighbors potential is:

Uc( fi , f j ) = ( fi − f j )
2 (6.22)
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Fig. 6.8 An illustration of image smoothing with an MRF. Left original image; center processed
image with λ = 1; right processed image with λ = 0.5. It can be observed that a smaller value of
λ produces a smoother image

And the observation potential is:

Uo( fi , gi ) = ( fi − gi )
2 (6.23)

Using these potentials and applying the stochastic optimization algorithm, a
smoothed image is obtained as the final configuration of F. Figure6.8 illustrates
the application of a smoothing MRF to a digital image varying the value of λ.

6.7.2 Improving Image Annotation

Automatic image annotation is the task of automatically assigning annotations or
labels to images or segments of images, based on their local features. Image anno-
tation is frequently performed by automatic systems; it is a complex task due to the
difficulty of extracting adequate features which allow to generalize and distinguish
an object of interest from others with similar visual properties. Erroneous labeling
of regions is a common consequence of the lack of a good characterization for the
classes by low-level features.

When labeling a segmented image, we can incorporate additional information to
improve the annotation of each region of the image. The labels of each region of an
image are usually not independent; for instance in an image of animals in the jungle,
we will expect to find a sky region above the animal, and trees or plants below or near
the animal. Thus, the spatial relations between the different regions in the image can
help to improve the annotation [5].

We can use Markov random fields to represent the information about the spatial
relations among the regions in an image, such that the probability of occurrence of a
certain spatial relation between each pair of labels could be used to obtain the most
probable label for each region, i.e., the most probable configuration of labels for
the entire image. Thus, using an MRF we can combine the information provided by
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Fig. 6.9 Improving image labeling by incorporating spatial relations with an MRF. 1 Automatic
image segmentation. 2a Initial region labeling. 2b Spatial relations among regions are obtained.
3 Improved labeling with an MRF. 4 Segmentation is improved [5]

the visual features for each region (external potential) and the information from the
spatial relations with other regions in the image (internal potential). By combining
both aspects in the potential function, and applying the optimization process, we can
obtain a configuration of labels that best describe the image.

The procedure is basically the following (see Fig. 6.9):

1. An image is automatically segmented (using Normalized cuts).
2. The obtained segments are assigned a list of labels and their corresponding prob-

abilities based on their visual features using a classifier.
3. Concurrently, the spatial relations among the same regions are computed.
4. TheMRF is applied, combining the original labels and the spatial relations, result-

ing in a new labeling for the regions by applying simulated annealing.
5. Adjacent regions with the same label are joined.

The energy function to be minimized combines the information provided by the
classifiers (labels’ probabilities) with the spatial relations (relations’ probabilities).
In this study, spatial relations are divided into three groups: topological relations,
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horizontal relations, and vertical relations. Thus, the energy function contains four
terms, one for each type of spatial relation and one for the initial labels. So the energy
function is:

Up( f ) = α1VT ( f ) + α2VH ( f ) + α3VV ( f ) + λ
∑

o

Vo( f ) (6.24)

whereVT is the potential for topological relations,VH for horizontal relations, andVV

for vertical relations; α1, α2, α3 are the corresponding constants for giving more or
less weight to each type of relation. Vo is the classification (label) potential weighted
by the λ constant. These potentials can be estimated from a set of labeled training
images. The potential for a certain type of spatial relation between two regions of
classes A and B is inversely proportional to the probability (frequency) of that relation
occurring in the training set.

By applying this approach, a significant improvement can be obtained over the
initial labeling of an image [6]. In some cases, by using the information provided
by this new set of labels, we can also improve the initial image segmentation as
illustrated in Fig. 6.10.

Fig. 6.10 An example of improving image segmentation by joining adjacent regions with the same
label. Left original segmented images. Right improved segmentation [5]
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6.8 Additional Reading

An introduction to Markov random fields and their applications is given in [7]. A
comprehensive coverage of MRFs for image processing is presented in [9]. General
introductions to conditional Markov random fields are given in [10, 11].

6.9 Exercises

1. For the Markov network in Fig. 6.3: (a) determine the cliques in the graph, (b)
express the joint probability as a product of clique potentials, (c) assuming all
the variables are binary, define the required parameters for this model.

2. Given the first-order MRF of Fig. 6.4, specify the minimum Markov blanket for
each variable. The Markov blanket of a variable, qi , is a set of variables that
make it independent from the rest of the variables in the graph.

3. Repeat the previous problem for the second-order MRF of Fig. 6.5.
4. Given a regularMRF of 4× 4 sites with a first-order neighborhood, consider that

each site can take one of two values, 0 and 1. Consider that we use the smoothing
potentials as in the image smoothing application, withλ = 4, givingmoreweight
to the observations. Given the initial configuration F and the observation G,
obtain theMAP configuration using the ICM variant of the stochastic simulation
algorithm.

F :
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

G :
0 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0

5. Repeat the previous problem using the Metropolis version of stochastic
simulation, with P = 0.5. Hint: you can use a coin flip to decide if a higher
energy configuration is kept or not.

6. Solve the previous two problems using MPM instead of MAP.
7. An edge in an image is where there is an abrupt change in the values of the

neighboring pixels (a high value of the first derivative if we consider the image
as a two dimensional function). Specify the potentials for a first-order MRF that
emphasizes the edges in an image, considering that each site is binary, where 1
indicates an edge and 0 no edge. The observation is a gray level image in which
each pixel varies from 0 to 255.
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8. What is the time complexity of the stochastic simulation algorithm for its dif-
ferent variants?

9. *** Implement the image smoothing algorithm using a first-order regular MRF.
Vary the parameter λ and observe the effects on the processed image. Repeat
considering a second-order MRF.

10. *** Implement a program to generate a superresolution image using MRFs. For
example, generate an image that doubles the dimensions 2n ×2m of the original
n × m image.
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Chapter 7
Bayesian Networks: Representation
and Inference

7.1 Introduction

In contrast to Markov networks, which are undirected graphical models, Bayesian
networks are directed graphical models that represent the joint distribution of a set of
random variables. Some of the techniques that we have revised in previous chapters,
such as Bayesian classifiers and HMMs, are particular cases of Bayesian networks.
Given their importance and the amount of research done for this topic in recent years,
we have devoted two chapters to Bayesian networks. In this chapter, we will cover
the representational aspects and inference techniques. The next chapter will discuss
learning; specifically, structure and parameter learning.

An example of a hypothetical medical Bayesian network is shown in Fig. 7.1. In
this graph, the nodes represent random variables and the arcs direct dependencies
between variables. The structure of the graph encodes a set of conditional inde-
pendence relations between the variables. For instance, the following conditional
independencies can be inferred from the example:

• Fever is independent of body ache given flu (common cause).
• Fever is independent of unhealthy food given typhoid (indirect cause).
• Typhoid is independent of flu when Fever is NOT known (common effect). Know-
ing fever makes typhoid and flu dependent—for example, if we now that someone
has typhoid and fever, this diminishes the probability of having flu.

In addition to the structure, a Bayesian network considers a set of local parameters,
which are the conditional probabilities for each variable given its parents in the graph.
For example, the conditional probability of fever given flu and typhoid, P(fever |
typhoid, flu). Thus, the joint probability of all the variables in the network can be
represented based on these local parameters; this usually implies an important saving
in the number of required parameters.
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Fig. 7.1 A simple,
hypothetical example of a
medical Bayesian network

Given a Bayesian network (structure and parameters), we can answer several
probabilistic queries. For instance, for the previous example: What is the probabil-
ity of Fever given Flu? Which is more probable, Typhoid or Flu, given Fever and
Unhealthy food?

In the next section, we formalize the representation of a Bayesian network, and
then we present several algorithms to answer different types of probabilistic queries.

7.2 Representation

A Bayesian network (BN) represents the joint distribution of a set of n (discrete)
variables, X1, X2, . . . , Xn , as a directed acyclic graph (DAG) and a set of conditional
probability tables (CPTs). Each node, that corresponds to a variable, has an associated
CPT that contains the probability of each state of the variable given its parents in
the graph. The structure of the network implies a set of conditional independence
assertions, which give power to this representation.

Figure7.2 depicts an example of a simple BN. The structure of the graph implies
a set of conditional independence assertions for this set of variables. For example,

Fig. 7.2 A Bayesian
network
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R is conditionally independent of C, G, F, D given T , that is:

P(R | C, T, G, F, D) = P(R | T ) (7.1)

7.2.1 Structure

The conditional independence assertions implied by the structure of a BN should
correspond to the conditional independence relations of the joint probability distrib-
ution, and vice versa. These are usually represented using the following notation. If
X is conditionally independent of Z given Y :

• In the probability distribution: P(X |Y, Z) = P(X |Y ).
• In the graph: I < X | Y | Z >.

Conditional independence assertions can be verified directly from the structure
of a BN using a criteria called D-separation. Before we define it, we consider the 3
basic BN structures for 3 variables and 2 arcs:

• Sequential: X → Y → Z .
• Divergent: X ← Y → Z .
• Convergent: X → Y ← Z .

In the first two cases, X and Z are conditionally independent given Y ; however, in
the third case this is not true. This last case, called explaining away, corresponds
intuitively to having two causes with a common effect; knowing the effect and one
of the causes, alters our belief in the other cause. These cases can be associated to
the separating node, Y , in the graph. Thus, depending on the case, Y is sequential,
divergent, or convergent.

D-Separation

Given a graph G, a set of variables A is conditionally independent of a set B given
a set C , if there is no trajectory in G between A and B such that:

1. All convergent nodes are or have descendants in C .
2. All other nodes are outside C .

For instance, for the BN in Fig. 7.2, R is independent of C given T , but T and G are
not independent given F .

Another way to verify D-Separation is by using an algorithm known as the Bayes
ball. Consider that we have a path from node X to Z with Y in the middle (see
Fig. 7.3); Y is shaded if it is known (instantiated), otherwise it is not shaded. We
throw a ball from X to Z , if the ball arrives to Z then X and Z are NOT independent
given Y according to the following rules:

1. If Y is sequential or divergent and is not shaded, the ball goes through.
2. If Y is sequential or divergent and it is shaded, the ball is blocked.
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Fig. 7.3 An illustration of
the different cases for
D-Separation using the
Bayes ball procedure. In the
cases where the ball is
blocked by Y the conditional
independence condition is
satisfied; when the ball
passes (over Y ) the
conditional independence
condition is not satisfied

3. If Y is convergent and not shaded, the ball is blocked.
4. If Y is convergent and shaded, the ball goes through.

According to the previous definition of D-separation, any node X is conditionally
independent of all nodes in G that are not descendants of X given its parents in the
graph, Pa(X). This is known as the Markov assumption. The structure of a BN can
be specified by the parents of each variable; thus the set of parents of a variable X is
known as the contour of X . For the example in Fig. 7.2, its structure can be specified
as:

1. Pa(C) = ∅
2. Pa(T) = C
3. Pa(G) = ∅
4. Pa(R) = T
5. Pa(F) = T, G
6. Pa(D) = T, G

Given this condition and using the chain rule, we can specify the joint probability
distribution of the set of variables in aBN as the product of the conditional probability
of each variable given its parents:

P(X1, X2, . . . , Xn) =
n∏

i=1

P(Xi |Pa(Xi )) (7.2)

For the example in Fig. 7.2:

P(C, T, G, R, F, D) = P(C)P(G)P(T | C)P(R | T )P(F | T, G)P(D | T, G)
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The Markov Blanket of a node X , MB(X), is the set of nodes that make it inde-
pendent of all the other nodes in G, that is P(X | G − X) = P(X | MB(X)). For a
BN, the Markov blanket of X is:

• the parents of X ,
• the sons of X ,
• and other parents of the sons of X .

For instance, in the BN of Fig. 7.2, the Markov blanket of R is T and the Markov
blanket of T is C, R, F, D, G.

Mappings

Given a probability distribution P of X, and its graphical representation G, there
must be a correspondence between the conditional independence in P and in G; this
is called a mapping. There are three basic types of mappings:

D-Map: all the conditional independence relations in P are satisfied (by D-
Separation) in G.

I-Map: all the conditional independence relations in G are true in P .
P-Map: or perfect map, it is a D-Map and an I-Map.

In general, it is not always possible to have a perfect mapping of the independence
relations between the graph (G) and the distribution (P), sowe settle forwhat is called
a Minimal I-Map: all the conditional independence relations implied by G are true
in P , and if any arc is deleted in G this condition is lost [14].

Independence Axioms

Given some conditional independence relations between subsets of random vari-
ables, we can derive other conditional independence relations axiomatically, that is,
without the need to estimate probabilities or independence measures. There are some
basic rules to derive new conditional independence relations from other conditional
independence relations, known as the independence axioms:

Symmetry: I (X, Z , Y ) → I (Y, Z , X)

Decomposition: I (X, Z , Y ∪ W ) → I (X, Z , Y ) ∧ I (X, Z , W )

Weak Union: I (X, Z , Y ∪ W ) → I (X, Z ∪ W, Y )

Contraction: I (X, Z , Y ) ∧ I (X, Z ∪ Y, W ) → I (X, Z , Y ∪ W )

Intersection: I (X, Z ∪ W, Y ) ∧ I (X, Z ∪ Y, W ) → I (X, Z , Y ∪ W )

Graphical examples of the application of the independence axioms are illustrated
in Fig. 7.4.
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Fig. 7.4 Graphical examples
of the independence axioms:
a Symmetry,
b Decomposition, c Weak
Union, d Contraction,
e Intersection

7.2.2 Parameters

To complete the specification of a BN, we need to define its parameters. In the case
of a BN, these parameters are the conditional probabilities of each node given its
parents in the graph. If we consider discrete variables:

• Root nodes: vector of marginal probabilities.
• Other nodes: conditional probability table (CPT) of the variable given its parents
in the graph.

Figure7.5 shows some of the CPTs of the BN in Fig. 7.2. In case of continuous
variables, we need to specify a function that relates the density function of each
variable to the density of its parents (for example, Kalman filters consider Gaussian
distributed variables and linear functions).

In the case of discrete variables, the number of parameters in a CPT increases
exponentially with the number of parents of a node. This can become problematic
when there are many parents. The memory requirements can become very large, and
it is also difficult to estimate so many parameters. Two main alternatives have been
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Fig. 7.5 Parameters for the
BN in Fig. 7.2. It shows the
CPTs for some of the
variables in the example:
P(C); P(T | C); and
P(F | T, G). We assume in
this case that all variables are
binary

proposed to overcome this issue, one is based on canonical models and the other on
graphical representations of CPTs. Next we briefly present both schemes.

7.2.2.1 Canonical Models

Canonical models represent the relations between a set of random variables for
particular interactions using few parameters. It can be applied when the probabilities
of a random variable in a BN conform to certain canonical relations with respect
to the configurations of its parents. There are several classes of canonical models,
the most common are the Noisy OR and Noisy AND for binary variables, and their
extensions for multivalued variables, Noisy Max and Noisy Min, respectively.

The Noisy OR is basically an extension of the OR relation in logic. Consider an
OR logic gate, in which the output is True if any of its inputs are True. The Noisy OR
model is based on the concept of the logic OR; the difference is that there is a certain
(small) probability that the variable is not True even if one or more of its parents are
True. In an analogous way, the Noisy Andmodel is related to the logical AND. These
models apply only when all the variables are binary; however, there are extensions
for multivalued variables, which consider a set of ordered values for each variable.
For example, consider a variable that represents a disease, D. In the case of the
binary canonical models, it has two values, True and False. For a multivalued model,
it could be defined as D ∈ {False, Mild, Intermediate, andSevere}, such that these
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values follow a predefined order. TheNoisy Max andNoisy Minmodels generalize the
Noisy OR and Noisy AND models, respectively, for multivalued-ordered variables.

Next, we describe the Noisy OR model in detail; the other cases can be defined
in a similar way.

Noisy OR

The Noisy OR model is applied when several variables or causes can produce an
effect if any one of them is True, and as more of the causes are true, the probability
of the effect increases. For instance, the effect could be a certain symptom, S, and
the causes are a number of possible diseases, D1, D2, . . . , Dm , that can produce
the symptom, such that if none of the diseases is present (all False) the symptom
does not appear; and when any disease is present (True) the symptom is present with
high probability and increases as the number of Di = True increases. A graphical
representation of a Noisy OR relation in a BN is depicted in Fig. 7.6.

Formally, the following two conditionsmust be satisfied for a Noisy OR canonical
model to be applicable:

Responsibility: the effect is false if all the possible causes are false.
Independence of exceptions: if an effect is the manifestation of several causes,

the mechanisms that inhibit the occurrence of the effect under one cause are
independent of the mechanisms that inhibit it under the other causes.

The probability that the effect E is inhibited (it does not occur) under cause Ci is
defined as:

qi = P(E = False | Ci = True) (7.3)

Given this definition and the previous conditions, the parameters in the CPT for
a Noisy OR model can be obtained using the following expressions when all the m
causes are True:

P(E = False | C1 = True, . . . Cm = True) =
m∏

i=i

qi (7.4)

P(E = True | C1 = True, . . . Cm = True) = 1 −
m∏

i=i

qi (7.5)

Fig. 7.6 Graphical
representation of a Noisy OR
structure. The n cause
variables (C) are the parents
of the effect variable (E)
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Table 7.1 Conditional probability table for a Noisy OR variable with three parents and parameters
q1 = q2 = q3 = 0.1

C1 0 0 0 0 1 1 1 1

C2 0 0 1 1 0 0 1 1

C3 0 1 0 1 0 1 0 1

P(E = 0) 1 0.1 0.1 0.01 0.1 0.01 0.01 0.001

P(E = 1) 0 0.9 0.9 0.99 0.9 0.99 0.99 0.999

In general, if k of m causes are True, then P(E = False | C1 = True, . . . Ck =
True) = ∏k

i=i qi , so that if all the causes are False then the effect is False with
a probability of one. Thus, only one parameter is required per parent variable to
construct theCPT, the inhibition probability qi . In this case, the number of parameters
increases linearly with the number of parents, instead of exponentially.

As an example, consider a Noisy OR model with 3 causes, C1, C2, C3, where the
inhibition probability is the same for the three, q1 = q2 = q3 = 0.1. Given these
parameters, we can obtain the CPT for the effect variable, as shown in Table7.1.

7.2.2.2 Other Representations

Canonical models apply in certain situations but do not provide a general solution
for compact representations of CPTs. An alternative representation is based on the
observation that in the probability tables for many domains, the same probability
values tend to be repeated several times in the same table; for instance, it is common
to have many zero entries in a CPT. Thus, it is not necessary to represent these
repeated values many times, is should be sufficient to represent each different value
once.

A representation that takes advantage of this condition is a decision tree (DT), such
that it could be used for representing a CPT in a compact way. In a DT, each internal
node corresponds to a variable in the CPT, and the branches from a node correspond
to the different values a variable can take. The leaf nodes in the tree represent the
different probability values. A trajectory from the root to a leaf specifies a probability
value for the corresponding variables–values in the trajectory. If a variable is omitted
in a trajectory, it means that the CPT has the same probability values for this variable.

For example, Table7.2 depicts the CPT P(X | A, B, C, D, E, F, G), assuming
all variables are binary (F , T ). Figure7.7 shows a DT for the CPT in Table7.2. In
this example, the savings in memory are not significant; however, for large tables
there could be a significant reduction in the memory space requirements.

A decision diagram (DD) extends a DT by considering a directed acyclic graph
structure, such that it is not restricted to a tree. This avoids the need to duplicate
repeated probability values in the leaf nodes, and in some cases provides an even
more compact representation. An example of a decision diagram representation of
the CPT of Table7.2 is depicted in Fig. 7.8.
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Table 7.2 Conditional probability table of P(X | A, B, C, D, E, F, G),whichhas several repeated
values

A B C D E F G X

T T/F T/F T/F T/F T/F T/F 0.9

F T T/F T T/F T T 0.9

F T T/F T T/F T F 0.0

F T T/F T T/F F T/F 0.0

F T T F T T/F T 0.9

F T T F T T/F F 0.0

F T T F F T/F T/F 0.0

F T F F T/F T/F T/F 0.0

F F T T/F T T/F T 0.9

F F T T/F T T/F F 0.0

F F T T/F F T/F T/F 0.0

F F F T/F T/F T/F T/F 0.0

Fig. 7.7 Decision tree representation of a CPT. The DT represents the CPT shown in Table7.2.
For each variable (node in the tree), the left arrow corresponds to the value F and the right arrow
to the value T
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Fig. 7.8 Decision diagram
representation of a CPT. The
DD represents the CPT
shown in Table7.2. As in
Fig. 7.7, the left arrow
corresponds to the value F
and the right arrow to the
value T

7.3 Inference

Probabilistic inference consists in propagating the effects of certain evidence in a
Bayesian network to estimate its effect on the unknown variables. That is, by knowing
the values for some subset of variables in the model, the posterior probabilities of
the other variables are obtained. The subset of unknown variables could be empty;
in this case, we obtain the prior probabilities of all the variables.

There are basically two variants of the inference problem in BNs. One is obtaining
the posterior probability of a single variable, H , given a subset of known (instanti-
ated) variables, E, that is, P(H | E). Specifically, we are interested in the marginal
probabilities of the unknown variables in the model. This is the most common appli-
cation of BNs, and we will denominate it as single query inference.

The second variant consists in calculating the posterior probability of a set of
variables, H given the evidence, E, that is, P(H | E). This is known as conjunctive
query inference. In principle, it can be solved using single query inference several
times by applying the chain rule, making it a more complex problem. For exam-
ple, P(A, B | E) can be written as P(A | E)P(B | A, E), which requires two
single query inferences, and a multiplication. In some applications, it is of inter-
est to know which are the most probable values in the set of hypothesis. That is,
ArgMaxH P(H | E). When H includes all nonobserved variables, it is known as
the most probable explanation (MPE) or the total abduction problem. When we are
interested in the most likely joint state of some (not all) of the unobserved variables,
it corresponds to the maximum a posteriori assignment (MAP) or partial abduction
problem.

We will first focus on the single query inference problem, and later on the MPE
and MAP problems. If we want to solve the inference problem using a direct (brute
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force) computation (i.e., from the joint distribution), the computational complexity
increases exponentially with respect to the number of variables, and the problem
becomes intractable even with few variables. Many algorithms have been devel-
oped for making this process more efficient, which can be roughly divided into the
following classes:

1. Probability propagation (Pearl’s algorithm [13]).
2. Variable elimination.
3. Conditioning.
4. Junction tree.
5. Stochastic simulation.

The probability propagation algorithm only applies to singly connected graphs
(trees and polytrees1), although there is an extension for general networks called
loopy propagation which does not guarantee convergence. The other four classes
of algorithms work for any network structure, the last one being an approximate
technique, while the other three are exact.

In the worst case, the inference problem is NP-hard for Bayesian networks [1].
However, there are efficient (polynomial) algorithms for certain types of structures
(singly connected networks); while for other structures it depends on the connectivity
of the graph. In many applications, the graphs are sparse and in this case there are
inference algorithms which are very efficient.

Next, we will describe probability propagation for singly connected networks,
and then the most common techniques used for multiconnected BNs.

7.3.1 Singly Connected Networks: Belief Propagation

We now describe the tree propagation algorithm proposed by Pearl, which provides
the basis for several of the more advanced and general techniques.

Given certain evidence, E (subset of instantiated variables), the posterior proba-
bility for a value i of any variable B, can be obtained by applying the Bayes rule:

P(Bi |E) = P(Bi)P(E|Bi)/P(E) (7.6)

Given that the BN has a tree structure, any node divides the network into two inde-
pendent subtrees. Thus, we can separate the evidence into (see Fig. 7.9):

E-: Evidence in the tree rooted in B.
E+: All other evidence.

Then:
P(Bi |E) = P(Bi)P(E−, E + |Bi)/P(E) (7.7)

1A polytree is a singly connectedDAG inwhich some nodes havemore than one parent; in a directed
tree, each node has at most one parent.
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Fig. 7.9 In a tree–structured
BN, every node (B) divides
the network into two
conditionally independent
subtrees, E+ and E−

Given thatE+ andE− are independent, by applying the Bayes rule again, we obtain:

P(Bi |E) = αP(Bi |E+)P(E − |Bi) (7.8)

where α is a normalization constant. If we define the following terms:

λ(Bi) = P(E − |Bi) (7.9)

π(Bi) = P(Bi |E+) (7.10)

Then Eq. (7.8) can be written as:

P(Bi |E) = απ(Bi)λ(Bi) (7.11)

Equation (7.11) is the basis for a distributed propagation algorithm to obtain the
posterior probability of all noninstantiated nodes. The computation of the posterior
probability of any node B is decomposed into two parts: (i) the evidence coming
from the sons of B in the tree (λ), and the evidence coming from the parent of
B, (π ). We can think of each node B in the tree as a simple processor that stores
its vectors π(B) and λ(B), and its conditional probability table, P(B | A). The
evidence is propagated via a message passing mechanism, in which each node sends
the corresponding messages to its parent and sons in the tree. A message sent from
node B to its parent A:

λB(Ai) =
∑

j

P(B j | Ai )λ(B j ) (7.12)

A message sent from node B to its son Sk :

πk(Bi) = απ(B j )
∏

l �=k

λl(B j ) (7.13)
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Fig. 7.10 Bottom-up
propagation. λ messages are
propagated from the leaf
nodes to the root

Fig. 7.11 Top-down
propagation. π messages are
propagated from the root
node to the leaves

where l refers to each one of the sons of B.
Each node can receive several λ messages, which are combined via a term-by-

term multiplication for the λ messages received from each son. Therefore, the λ for
a node A with m sons is obtained as:

λ(Ai) =
m∏

j=1

λSj (Ai) (7.14)

The propagation algorithm starts by assigning the evidence to the knownvariables,
and then propagating it through the message passing mechanism until the root of the
tree is reached for the λ messages, and the leaves are reached for the π messages.
Figures7.10 and7.11 illustrate the propagation scheme.At the endof the propagation,
each node has its updated λ and π vectors. The posterior probability of any variable
B is obtained by combining these vectors using Eq. (7.11) and normalizing.

For the root and leaf nodes we need to define some initial conditions:

Leaf nodes: If not known, λ = [1, 1, . . . , 1] (a uniform distribution). If known,
λ = [0, 0, . . . , 1, . . . , 0] (one for the assigned value and zero for all other values).
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Fig. 7.12 A simple BN used
in the belief propagation
example

Root node: If not known,π = P(A) (prior marginal probability vector). If known,
π = [0, 0, . . . , 1, . . . , 0] (one for the assigned value and zero for all other values).
We now illustrate the belief propagation algorithm with a simple example. Con-

sider the BN in Fig. 7.12 with 4 binary variables (each with values false and true),
C, E, F, D, with the CPTs shown in the figure.

Consider that the only evidence is F = false. Then the initial conditions for the
leaf nodes are: λF = [1, 0] and λD = [1, 1] (no evidence). Propagating to the parent
node (E) is basically multiplying the λ vectors by the corresponding CPTs:

λF (E) = [1, 0]
[
0.9, 0.5
0.1, 0.5

]

= [0.9, 0.5]

λD(E) = [1, 1]
[
0.7, 0.4
0.3, 0.6

]

= [1, 1]

Then, λ(E) is obtained by combining the messages from its two sons:

λ(E) = [0.9, 0.5] × [1, 1] = [0.9, 0.5]

And now it is propagated to its parent, C :

λE (C) = [0.9, 0.5]
[
0.9, 0.7
0.1, 0.3

]

= [0.86, 0.78]

In this case, λ(C) = [0.86, 0.78], as C has only one son. In this way, we complete
the bottom-up propagation; we will now do it top-down.

Given that C is not instantiated, π(C) = [0.8, 0.2], we propagate to its son, E ,
which also corresponds to multiplying the π vector by the corresponding CPT:

π(E) = [0.8, 0.2]
[
0.9, 0.7
0.1, 0.3

]

= [0.86, 0.14]
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We now propagate to its son D; however, given that E has another son, F , we
also need to consider the λ message from this other son, thus:

π(D) = [0.86, 0.14] × [0.9, 0.5]
[
0.7, 0.4
0.3, 0.6

]

= [0.57, 0.27]

This completes the top-down propagation (we do not need to propagate to F as
this variable is known). Given the λ and π vectors for each unknown variable, we just
multiply them term by term and then normalize to obtain the posterior probabilities:

P(C) = [0.86, 0.2] × [0.86, 0.78] = α[0.69, 0.16] = [0.815, 0.185]
P(E) = [0.86, 0.14] × [0.9, 0.5] = α[0.77, 0.07] = [0.917, 0.083]
P(D) = [0.57, 0.27] × [1, 1] = α[0.57, 0.27] = [0.67, 0.33]

This concludes the belief propagation example.
Probability propagation is a very efficient algorithm for tree-structured BNs. The

time complexity to obtain the posterior probability of all the variables in the tree is
proportional to the diameter of the network (the number of arcs in the trajectory from
the root to the most distant leaf).

The message passing mechanism can be directly extended to polytrees, as these
are also singly connected networks. In this case, a node can have multiple parents,
so the λ messages should be sent from a node to all its parents. The time complexity
is in the same order as for tree structures.

The propagation algorithm only applies to single connected networks. Next, we
will present general algorithms that apply to any structure.

7.3.2 Multiple Connected Networks

There are several classes of algorithms for probabilistic inference on multiconneced
BNs. Next, we review the main ones: (i) variable elimination, (ii) conditioning, and
(iii) junction tree.

7.3.2.1 Variable Elimination

The variable elimination technique is based on the idea of calculating the probability
by marginalizing the joint distribution. However, in contrast to the naive approach,
it takes advantage of the independence conditions of the BN and the associative
and distributive properties of addition and multiplication to do the calculations more
efficiently.

Assume a BN representing the joint probability distribution of X = {X1, X2,

. . . , Xn}. We want to calculate the posterior probability of a certain variable or
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subset of variables, X H , given a subset of evidence variables, X E ; the remaining
variables are X R , such that X = {X H ∪ X E ∪ X R}.

The posterior probability of X H given the evidence is:

P(X H | X E ) = P(X H , X E )/P(X E ) (7.15)

We can obtain both terms via marginalization of the joint distribution:

P(X H , X E ) =
∑

X R

P(X) (7.16)

and
P(X E ) =

∑

X H

P(X H , X E ) (7.17)

A particular case of interest is to obtain the marginal probability of the variables
when there is no evidence; in this case X E = ∅. Another calculation of interest is to
obtain the probability of the evidence; this is given by the last equation.

The objective of the variable elimination technique is to perform these calculations
efficiently. To achieve this, we can first represent the joint distribution as a product
of local probabilities according to the network structure. Then, summations can
be carried out only on the subset of terms which are a function of the variables
being normalized. This approach takes advantage of the properties of summation
and multiplication, resulting in the number of necessary operations being reduced.
Next we will illustrate the method through an example.

Consider the BN in Fig. 7.13 where we want to obtain P(A | D). In order to
achieve this, we need to obtain P(A, D) and P(D). To calculate the first term, we
must eliminate B, C, E from the joint distribution, that is:

Fig. 7.13 A Bayesian
network used to illustrate the
variable elimination
algorithm



118 7 Bayesian Networks: Representation and Inference

P(A, D) =
∑

B

∑

C

∑

E

P(A)P(B | A)P(C | A)P(D | B, C)P(E | C) (7.18)

By distributing the summations we can arrive to the following equivalent expression:

P(A, D) = P(A)
∑

B

P(B | A)
∑

C

P(C | A)P(D | B, C)
∑

E

P(E | C) (7.19)

If we consider that all variables are binary, this implies a reduction from32 operations
to 9 operations; of course, this reduction will be more significant for larger models
or when there are more values per variable.

As an example, consider theBN in Fig. 7.12 and thatwewant to obtain P(E | F =
f1) = P(E, F = f1)/P(F = f1). Given the structure of the BN, the joint probabil-
ity distribution is given by P(C, E, F, D) = P(C)P(E | C)P(F | E)P(D | E).
We first calculate P(E, F); by reordering the operations:

P(E, F) =
∑

D

P(F | E)P(D | E)
∑

C

P(C)P(E | C)

We must do this calculation for each value of E , given F = f1:

P(e1, f1) =
∑

D

P( f1 | e1)P(D | e1)
∑

C

P(C)P(e1 | C)

P(e1, f1) =
∑

D

P( f1 | e1)P(D | e1)[0.9 × 0.8 + 0.7 × 0.2]

P(e1, f1) =
∑

D

P( f1 | e1)P(D | e1)[0.86]

P(e1, f1) = [0.9 × 0.7 + 0.9 × 0.3][0.86]
P(e1, f1) = [0.9][0.86] = 0.774

In a similar way, we obtain P(e2, f1); and then from these values we can calculate
P( f1) = ∑

E P(E, f1). Finally, we calculate the posterior probability of E given
f1: P(e1 | f1) = P(e1, f1)/P( f1) and P(e2 | f1) = P(e2, f1)/P( f1).
The critical aspect of the variable elimination algorithm is to select the appropriate

order for eliminating each variable, as this has an important effect on the number of
required operations. The different terms that are generated during the calculations are
known as factorswhich are functions over a subset of variables, that map each instan-
tiation of these variables to a non-negative number (these numbers are not necessar-
ily probabilities). In general, a factor can be represented as f (X1, X2, . . . Xm). For
instance, in the previous example, one of the factors is f (C, E) = P(C)P(E | C),
which is a function of two variables.

The computational complexity in terms of space and time of the variable elim-
ination algorithm is determined by the size of the factors; that is, the number of
variables, w, on which the factor is defined. Basically, the complexity for eliminating
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(marginalize) any number of variables is exponential on the number of variables
in the factor, O(exp(w)) [2]. Thus, the order in which the variables are eliminated
should be selected so that the largest factor is kept to a minimum. However, finding
the best order is in general a NP-Hard problem.

There are several heuristics that help to determine a good ordering for variable
elimination. These heuristics can be explained based on the interaction graph—a
undirected graph that is built during the process of variable elimination. The variable
of each factor forms a clique in the interaction graph. The initial interaction graph
is obtained from the original BN structure by eliminating the direction of the arcs,
and adding additional arcs between each pair of nonconnected variables that have
a common child. Then, each time a variable X j is eliminated, the interaction graph
is modified by: (i) adding an arc between each pair of neighbors of X j that are not
connected, (ii) deleting variable X j from the graph.

We illustrate the interaction graphs that result from the BN in Fig. 7.13 by the
following elimination ordering: E, C, B, D, depicted in Fig. 7.14.

Two popular heuristics for determining the elimination ordering, which can be
obtained from the elimination graph, are the following:

Min-degree: eliminate the variable that leads to the smallest possible factor; which
is equivalent to eliminating the variable with the smallest number of neighbors in
the current elimination graph.

Fig. 7.14 Interaction graphs resulting from the elimination of variables with the following elimi-
nation ordering: E, C, B, D from the BN in Fig. 7.13
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Min-fill: eliminate the variable that leads to adding the minimum number of edges
to the interaction graph.

A disadvantage of variable elimination is that it only obtains the posterior proba-
bility of one variable (or subset of variables). To obtain the posterior probability of
each noninstantiated variable in a BN, the calculations have to be repeated for each
variable. Next, we describe two algorithms that calculate the posterior probabilities
for all variables at the same time.

7.3.2.2 Conditioning

The conditioning method is based on the fact that an instantiated variable blocks the
propagation of the evidence in a Bayesian network, Thus, we can cut the graph at an
instantiated variable, and this can transform a multiconnected graph into a polytree,
for which we can apply the probability propagation algorithm.

In general, a subset of variables can be instantiated to transform a multiconnected
network into a singly connected graph. If these variables are not actually known, we
can set them to each of their possible values, and then do probability propagation
for each value. With each propagation, we obtain a probability for each unknown
variable. Then, the final probability values are obtained as a weighted combination
of these probabilities.

First we will develop the conditioning algorithm assuming we only need to parti-
tion a single variable and then we will extend it for multiple variables. Formally, we
want to obtain the probability of any variable, B, given the evidence E , conditioning
on variable A. By the rule of total probability:

P(B | E) =
∑

i

P(B | E, ai )P(ai | E) (7.20)

where:

P(B | E, ai ) is the posterior probability of B which is obtained by probability
propagation for each possible value of A.

P(ai | E) is a weight.

By applying the Bayes rule, we obtain the following equation to estimate the
weights:

P(ai | E) = αP(ai )P(E | ai ) (7.21)

The first term, P(ai ), can be obtained by propagating without evidence. The
second term, P(E | ai ), is calculated by propagation with A = ai to obtain the
probability of the evidence variables. α is a normalizing constant.

For example, consider the BN in Fig. 7.13. This multiconnected network can
be transformed into a polytree by assuming A is instantiated (see Fig. 7.15). If the
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Fig. 7.15 The Bayesian
network in Fig. 7.13 is
transformed into a singly
connected network by
instantiating A

evidence is D, E , then probabilities for the other variables, A, B, C can be obtained
via conditioning following these steps:

1. Obtain the prior probability of A (in this case it is already given as it is a root
node).

2. Obtain the probability of the evidence nodes D, E for each value of A by propa-
gation in the polytree.

3. Calculate the weights, P(ai | D, E), from (1) and (2) with the Bayes rule.
4. Estimate the probability of B and C for each value of A given the evidence by

probability propagation in the polytree.
5. Obtain the posterior probabilities for B and C from (3) and (4) by applying

Eq. (7.20).

In general, to transform a multiconnected BN to a polytree, we need to instantiate
m variables. Thus, propagation must be performed for all the combinations of values
(cross product) of the instantiated variables. If each variable has k values, then the
number of propagations is km . The procedure is basically the same as described
above for one variable, but the complexity increases.

7.3.2.3 Junction Tree Algorithm

The junction tree method is based on a transformation of the BN to a junction tree,
where each node in this tree is a group or cluster of variables from the original
network. Probabilistic inference is performed over this new representation. Next,
we give a brief overview of the basic algorithm, for more details see the additional
reading section.

The transformation proceeds as follows (see Fig. 7.16):

1. Eliminate the directionality of the arcs.
2. Order the nodes in the graph (based on maximum cardinality).
3. Moralize the graph (add an arc between pairs of nodes with common children).
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Fig. 7.16 Transformation of a BN to a junction tree: a original net, b triangulated graph, c junction
tree

4. If necessary add additional arcs to make the graph triangulated.
5. Obtain the cliques of the graph (subsets of nodes that are fully connected and are

not subsets of other fully connected sets).
6. Build a junction tree in which each node is a clique and its parent is any node that

contains all common previous variables according to the ordering.

Once the junction tree is built, inference is based on probability propagation over
the junction tree, in an analogous way as for tree-structured BNs. Initially, the joint
probability (potential) of each macronode is obtained, and given some evidence, this
is propagated to obtain the posterior probability of each junction. The individual
probability of each variable is obtained from the joint probability of the appropriate
junction via marginalization. We now describe the procedure in more detail.

The junction tree algorithm can be divided in two stages: preprocessing and prop-
agation. In the preprocessing phase, the potentials of each clique are obtained fol-
lowing the next steps:

1. Determine the set of variables for each clique, Ci .
2. Determine the set of variables that are common with the previous (parent) clique,

Si .
3. Determine the variables that are in Ci but not in Si : Ri = Ci − Si .
4. Calculate the potential of each clique, clqi , as the product of the corresponding

CPTs: ψ(clqi ) = ∏
j P(X j | Pa(X j )); where X j are the variables in clqi .

For example, consider the BN in Fig. 7.16, with cliques: clq1 = {1, 2, 3}, clq2 =
{2, 3, 4}, clq3 = {3, 5}. Then the preprocessing phase is:

C : C1 = {1, 2, 3}, C2 = {2, 3, 4}, C3 = {3, 5}.
S: S1 = ∅, S2 = {2, 3}, S3 = {3}.
R: R1 = {1, 2, 3}, R2 = {4}, R3 = {5}.
Potentials: ψ(clq1) = P(1)P(2 | 1)P(3 | 2), ψ(clq2) = P(4 | 3, 2), ψ(clq3) =

P(5 | 3).
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The propagation phase proceeds in a similar way to belief propagation for trees,
by propagating λ messages bottom-up and π messages top-down.

Bottom-Up Propagation

1. Calculate the λ message to send to the parent clique: λ(Ci ) = ∑
R ψ(Ci ).

2. Update the potential of each clique with the λ messages of its sons: ψ(C j )
′ =

λ(Ci )ψ(C j ).
3. Repeat the previous two steps until reaching the root clique.
4. When reaching the root node obtain P ′(Cr ) = ψ(Cr )

′.

Top-Down Propagation

1. Calculate the π message to send to each child node i : π(Ci ) = ∑
C j −Si

P ′(C j ).
2. Update the potential of each clique when receiving the π message of its parent:

P ′(Ci ) = π(Ci)ψ(Ci )
′.

3. Repeat the previous two steps until reaching the leaf nodes in the junction tree.

When there is evidence, the potentials for each clique are updated based on the
evidence, and the same propagation procedure is followed.

Finally, the marginal posterior probabilities of each variable are obtained from
the clique potentials via marginalization: P(X) = ∑

Ci −X P ′(Ci ).
There are two main variations on the junction tree algorithm, which are known

as the Hugin [6] and Shenoy–Shafer [16] architectures. The description above is
based on the Hugin architecture. The main differences between them are in the
information they store, and in the way they compute the messages. These differences
have implications in their computational complexity. In general, the Shafer–Shenoy
architecture will require less space but more time.

7.3.2.4 Complexity Analysis

In the worst case, probabilistic inference for Bayesian networks is NP-Hard [1]. The
time and space complexity is determined by what is known as the tree-width, and has
to do with how close the structure of the network is to a tree. Thus, a tree-structured
BN (maximum one parent per variable) has a tree-width of one. A polytree with at
most k parents per node has a tree-width of k. In general, the tree-width is determined
by how dense the topology of the network is, and this has affects: (i) the size of the
largest factor in the variable elimination algorithm; (ii) the number of variables that
need to be instantiated in the conditioning algorithm, and (iii) the size of the largest
clique in the junction tree algorithm.

In practice, BNs tend to be sparse graphs, and in this case the junction tree tech-
niques are very efficient even for models with hundreds of variables. In the case
of complex networks, an alternative is to use approximate algorithms. These are
described next.
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7.3.3 Approximate Inference

7.3.3.1 Loopy Propagation

This is simply the application of the probability propagation algorithm for multi-
connected networks. Although in this case the conditions for this algorithm are not
satisfied, and it only provides an approximate solution for the inference problem,
making it very efficient. Given that the BN is not singly connected, as the messages
are propagated, these can loop through the network. Consequently, the propagation
is repeated several times. The procedure is the following:

1. Initialize the λ and π values for all nodes to random values.
2. Repeat until convergence or a maximum number of iterations:

a. Do probability propagation according to the algorithm for singly connected
networks.

b. Calculate the posterior probability for each variable.

The algorithm converges when the difference between the posterior probabilities
for all variables of the current and previous iterations is below a certain threshold. It
has been found empirically that for certain structures this algorithm converges to the
true posterior probabilities; however, for other structures it does not converge [11].

An important application of loopy belief propagation is in “Turbo Codes” which
is a popular error detection and correction scheme used in data communications.

7.3.3.2 Stochastic Simulation

Stochastic simulation algorithms consist in simulating the BN several times, where
each simulation gives a sample value for all noninstantiated variables. These val-
ues are chosen randomly according to the conditional probability of each variable.
This process is repeated N times, and the posterior probability of each variable is
approximated in terms of the frequency of each value in the sample space. This gives
an estimate of the posterior probability which depends on the number of samples;
however, the computational cost is not affected by the complexity of the network.
Next, we present two stochastic simulation algorithms for BNs: logic sampling and
likelihood weighting.

Logic Sampling

Logic sampling is a basic stochastic simulation algorithm that generates samples
according to the following procedure:

1. Generate sample values for the root nodes of the BN according to their prior prob-
abilities. That is, a random value is generated for each root variable X , following
a distribution according to P(X).
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Table 7.3 Samples generated using logic sampling for the BN in Fig. 7.13

variables A B C D E

sample1 T F F F T

sample2 F T T F F

sample3 T F F T F

sample4 F F T F T

sample5 T F T T F

sample6 F F F F T

sample7 F T T T F

sample8 F F F F F

sample9 F F F T F

sample10 T T T T F

All variables are binary with two possible values, True = T or False = F

2. Generate samples for the next layer, that is the sons of the already sampled nodes,
according to their conditional probabilities, P(Y | Pa(Y )), where Pa(Y ) are the
parents of Y .

3. Repeat (2) until all the leaf nodes are reached.

The previous procedure is repeated N times to generate N samples. The proba-
bility of each variable is estimated as the fraction of times (frequency) that a value
occurs in the N samples, that is, P(X = xi ) ∼ No(xi )/N ; where No(xi ) is the
number of times that X = xi in all the samples.

The direct application of the previous procedure gives an estimate of the marginal
probabilities of all the variables when there is no evidence. If there is evidence (some
variables are instantiated), all samples that are not consistent with the evidence are
discarded and the posterior probabilities are estimated from the remaining samples.

For example, consider the BN in Fig. 7.13, and 10 samples generated by logic
sampling. Assuming all variables are binary, the 10 samples generated are shown in
Table7.3.

If there is no evidence, then given these samples, the marginal probabilities are
estimated as follows:

• P(A = T ) = 4/10 = 0.4
• P(B = T ) = 3/10 = 0.3
• P(C = T ) = 5/10 = 0.5
• P(D = T ) = 5/10 = 0.5
• P(E = T ) = 3/10 = 0.3

The remaining probabilities are just the complement, P(X = F) = 1− P(X = T ).
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In the case where there is evidence with D = T , we eliminate all the samples
where D = F , and estimate the posterior probabilities from the remaining five
samples:

• P(A = T | D = T ) = 3/5 = 0.6
• P(B = T | D = T ) = 2/5 = 0.4
• P(C = T | D = T ) = 3/5 = 0.6
• P(E = T | D = T ) = 1/5 = 0.2

A disadvantage of logic sampling when evidence exists is that many samples have
to be discarded; this implies that a larger number of samples are required to have
a good estimate. An alternative algorithm that does not waste samples is presented
below.

Likelihood Weighting

Likelihoodweighting generates samples in the sameway as logic sampling; however,
when there is evidence the nonconsistent samples are not discarded. Instead, each
sample is given a weight according to the weight of the evidence for this sample.
Given a sample s and the evidence variablesE = {E1, . . . , Em}, theweight of sample
s is estimated as:

W (E | s) = P(E1)P(E2) . . . P(Em) (7.22)

where P(Ei ) is the probability of the evidence variable Ei for that sample.
The posterior probability for each variable X taking value xi is estimated by

dividing the sum of the weights Wi (X = xi ) for each sample where X = xi by the
total weight for all the samples:

P(X = xi ) ∼
∑

i

Wi (X = xi)/
∑

i

Wi (7.23)

7.3.4 Most Probable Explanation

The most probable explanation (MPE) or abduction problem consists in determining
the most probable values for a subset of variables (explanation subset) in a BN given
some evidence. There are two variants of this problem, total abduction and partial
abduction. In the total abduction problem, the explanation subset is the set of all
noninstantiated variables; while in partial abduction, the explanation subset is a
proper subset of the noninstantiated variables. In general, the MPE is not the same as
the union of the most probable value for each individual variable in the explanation
subset.

Consider the set of variables X = {X E , X R, X H }, where X E is the subset of
instantiated variables; then we can formalize the MPE problems as follows:

Total abduction: ArgMaxX H ,X R
P(X H , X R | X E ).

Partial abduction: ArgMaxX H
P(X H | X E ).
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One way to solve the MPE problem is based on a modified version of the variable
elimination algorithm. For the case of total abduction, we substitute the summations
by maximizations:

maxX H ,X R P(X H , X R | X E )

For partial abduction, we sum over the variables that are not in the explanation
subset and maximize over the explanation subset:

maxX H

∑

X R

P(X H , X R | X E )

The MPE problem is computationally more complex than the single query infer-
ence.

7.3.5 Continuous Variables

Up to now, we have considered BNs with discrete multivalued variables. When
dealing with continuos variables, one option is to discretize them; however, this
could result in a loss of information (few intervals) or in an unnecessary increase
in computational requirements (many intervals). Another alternative is to operate
directly on the continuous distributions. Probabilistic inference techniques have been
developed for some distribution families, in particular for Gaussian variables. Next,
we describe the basic propagation algorithm for linear, Gaussian BNs [14].

The basic algorithm makes the following assumptions:

1. The structure of the network is a polytree.
2. All the sources of uncertainty are Gaussians and uncorrelated.
3. There is a linear relationship between each variable and its parents:

X = b1U1 + b2U2 + · · · + bnUn + WX

whereUi are parents of variable X , bi are constant coefficients and WX represents
Gaussian noise with a zero mean.

The inference procedure is analogous to belief propagation in discrete BNs, but
instead of propagating probabilities, it propagates means and standard deviations.
In the case of Gaussian distributions, the marginal distributions of all the variables
are also Gaussians. Thus, in general, the posterior probability of a variable can be
written as:

P(X | E) = N (μX , σX )

where μX and σX are the mean and standard deviation of X given the evidence E ,
respectively.
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Next, we describe how to calculate the mean and standard deviation via the prop-
agation algorithm. Each variable sends to its parent variable i :

μ−
i = (1/bi )

⎡

⎣μλ −
∑

k �=i

bkμ
+
k

⎤

⎦ (7.24)

σ−
i = (1/b2i )

⎡

⎣σλ −
∑

k �=i

b2kσ
+
k

⎤

⎦ (7.25)

Each variable sends to its child node j :

μ+
j =

∑
k �= j μ−

k /σk + μπ/σπ ]
∑

k �= 1/σ−
k + μπ/σπ

(7.26)

σ+
j =

⎡

⎣
∑

k �= j

1/σ−
k + 1/σπ

⎤

⎦

−1

(7.27)

Each variable integrates the messages it receives from its sons and parents via the
following equations:

μπ =
∑

i

biμ
+
i (7.28)

σπ =
∑

i

b2i σ
+
i (7.29)

μλ = σλ

∑

j

μ−
j /σ−

j (7.30)

σλ =
⎡

⎣
∑

j

1/σ−
j

⎤

⎦

−1

(7.31)

Finally, each variable obtains its mean and standard deviation by combining the
information from its parent and children nodes:

μX = σπμλ + σλμπ

σπ + σλ

(7.32)

σX = σπσλ

σπ + σλ

(7.33)

Propagation for other distributions is more difficult, as they do not have the same
properties of the Gaussian; in particular, the product of Gaussians is also a Gaussian.
An alternative for other types of distributions is to apply stochastic simulation tech-
niques.
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7.4 Applications

Bayesian networks have been applied inmanydomains, includingmedicine, industry,
education, finance, biology, etc. To exemplify the application of BNs, in this chapter
we will describe: (i) a technique for information validation and (ii) a methodology
for system reliability analysis. In the following chapters, we will illustrate their
application in other areas.

7.4.1 Information Validation

Many systems use information to make decisions; if this information is erroneous
it could lead to nonoptimal decisions, and in some cases decisions made based on
erroneous data could be dangerous. Consider, for example, an intensive care unit
of a hospital in which sensors monitor the status of an operated patient so that the
body temperature is kept beneath certain levels. Given that the sensors are working
constantly, there is potential for them to produce erroneous readings. If this happens,
two situations may arise:

• the temperature sensor indicates no changes in temperature even if it has increased
to dangerous levels,

• the temperature sensor indicates a dangerous level even if it is normal.

The first situation may cause severe damage to the patient’s health. The second
situation may cause an emergency treatment of the patient that can also worsen
his/her condition.

In many applications, there are different sources of information, i.e., sensors,
which are not independent; the information from one source gives us clues about the
other sources. If we can represent these dependencies between the different sources,
thenwe can use it to detect possible errors and avoid erroneous decisions. This section
presents an information validation algorithm based on Bayesian networks [4]. The
algorithm starts by building a model of the dependencies between sources of infor-
mation (variables) represented as a Bayesian network. Subsequently, the validation
is done in two phases. In the first phase, potential faults are detected by comparing
the actual value with the one predicted from the related variables via propagation in
the Bayesian network. In the second phase, the real faults are isolated by constructing
an additional Bayesian network based on the Markov blanket property.

7.4.1.1 Fault Detection

It is assumed that it is possible to build a probabilistic model relating all the variables
in the application domain. Consider, for example, the network shown in Fig. 7.17
which represents the most basic function of a gas turbine.
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Fig. 7.17 A basic probabilistic model of a gas turbine. The mega watts generated in a gas turbine
(node Mw) depends on the temperature (node T ) and pressure in the turbine (node Pt). Temperature
depends on the flow of gas (node Fg) and this flow depends on the valve of gas position (node Pv)
and the gas fuel pressure supply (node Ps). The pressure for the turbine depends on the pressure at
the output of the compressor (node Pc)

Suppose it is required to validate the temperature measurements in the turbine. By
reading the values of the rest of the sensors, and applying probability propagation, it
is possible to calculate a posterior probability distribution of the temperature given
all the evidence, i.e., P(T | Mw, P, Fg, Pc, Pv, Ps). Assuming that all the vari-
ables are discrete or discretized if continuous, by propagation we obtain probability
distributions for each value of T . If the real observed value coincides with a valid
value—that has a high probability, then the sensor is considered correct; otherwise,
it is considered faulty.

This procedure is repeated for all the sensors in themodel. However, if a validation
of a single sensor is made using a faulty sensor, then a faulty validation can be
expected. In the example above, what happens if T is validated using a faulty Mw
sensor? How do we know which of the sensors is faulty? Thus, by applying this
validation procedure, we may only detect a faulty condition, but we are not able to
identify which is the real faulty sensor. This is called an apparent fault. An isolation
stage is needed.

7.4.1.2 Fault Isolation

The isolation phase is based on the Markov Blanket (MB) property. For example, in
the network of Fig. 7.17, the MB(T ) = {Mw, Fg, Pt}, and the MB(Pv) = {Fg}.
The set of nodes that constitute the MB of a sensor can be seen as a protection of the
sensor against changes outside its MB. Additionally, we define the Extended Markov
Blanket of a node X (EMB(X)) as the set of sensors formed by the sensor itself plus
its MB. For example, EMB(Fg) = {Fg, Pv, Ps, T }.
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Utilizing this property, if a fault exists in one of the sensors, it will be revealed
in all of the sensors in its EMB. On the contrary, if a fault exists outside a sensors’
EMB, it will not affect the estimation of that sensor. It can be said then, that the EMB
of a sensor acts as its protection against others faults, and also protects others from its
own failure. We utilize the EMB to create a fault isolation module that distinguishes
the real faults from the apparent faults. The full theory is developed in [5].

After a cycle of basic validations of all sensors is completed, a set S of apparent
faulty sensors is obtained. Thus, based on the comparison between S and the EMB
of all sensors, the theory establishes the following situations:

1. If S = φ there are no faults.
2. If S is equal to the EMB of a sensor X , and there is no other EMB which is a

subset of S, then there is a single real fault in X .
3. If S is equal to the EMB of a sensor X , and there are one or more EMBs which

are subsets of S, then there is a real fault in X , and possibly, real faults in the
sensors whose EMBs are subsets of S. In this case, there are possibly multiple
indistinguishable real faults.

4. If S is equal to the union of several EMBs and the combination is unique, then
there are multiple distinguishable real faults in all the sensors whose EMB are in
S.

5. If none of the above cases is satisfied, then there aremultiple faults but they cannot
be distinguished. All the variables whose EMBs are subsets of S could have a real
fault.

For example, considering the Bayesian network model in Fig. 7.17, some of the
following situations may occur (among others):

• S = {T, Pt, Mw}, which corresponds to case 2, and confirms a single real fault
in Mw,

• S = {T, Pc, Pt, Mw}, which corresponds to case 3, and as such, there is a real
fault in Pt and possibly in Pv and Mw,

• S = {Pv, Ps, Fg}, which corresponds to case 4, and as such, there are real faults
in Pv and Ps.

The isolation of a real fault is carried out in the following manner. Based on the
EMB property described above, there will be a real fault in sensor X if an apparent
fault is detected in its entire EMB. Also, we can say that an apparent fault will be
revealed if a real fault exists in any sensor of its EMB. With these facts, we define
the isolation network formed by two levels. The root nodes represent the real faults,
where there is one per sensor or variable. The lower level is formed by one node
representing the apparent fault for each variable. Each node is a binary variable
with two values: {correct, faulty}. Notice that the arcs are defined by the EMB of
each variable. Figure7.18 shows the isolation network for the detection network of
Fig. 7.17. For instance, the apparent fault node corresponding to variable Mw (node
Amw) is connected with nodes Rmw, RT and RP , which represent the real faults of the
EMB nodes of Mw. At the same time, node Rmw is connected with all the apparent
faults that this real fault causes, i.e., to nodes Amw, AT , and AP . Fault isolation is
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Fig. 7.18 Isolation network of the example in Fig. 7.17. The upper level nodes represent the real
faults and the lower level nodes the apparent faults

Algorithm 7.1 Function isolate
Require: A sensor n and the state of sensor n.
1: Assign a value (instantiate) to the apparent fault node corresponding to n
2: Propagate probabilities and obtain a posterior probability of all nodes Real fault
3: Update vector Pf (sensors)

carried out by the isolation procedure described in Algorithm7.1. The faulty sensors
will be determined by the real fault nodes with “high” probability.

7.4.2 Reliability Analysis

In the reliability analysis of a complex system, a common approach is to divide the
system into smaller elements, units, subsystems, or components. The main assump-
tion is that every entity has two states: success and failure. This subdivision generates
a “block diagram” that is similar to the description of the system in operation. For
each element, the failure rate is specified, and based on these, the reliability of the
complete system is obtained.

Traditionally, fault trees are used for reliability analysis; however, this technique
has its limitations, as it assumes independent events, thus it is difficult tomodel depen-
dency between events or faults. Dependent events can be found in reliability analysis
in the following cases: (i) common causes—condition or event which provokes mul-
tiple elemental failures; (ii) mutually exclusive primary events—the occurrence of
one basic event precludes another; (iii) standby redundancies—when an operating
component fails, a standby component is put into operation, and the redundant config-
uration continues to function; and (iv) components supporting loads—failure of one
component increases the load supported by the other components. Using Bayesian
networks, we can explicitly represent dependencies between failures, and in this way
model complex systems that are difficult for traditional techniques [17].
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Fig. 7.19 Reliability block diagrams for the basic reliability structures with two components:
a serial, b parallel

Fig. 7.20 Bayesian network structure for the two basic reliability block diagrams from Fig. 7.19

Table 7.4 Conditional probability table, P(X | A, B), for two components with a serial structure

X A, B A,¬B ¬A, B ¬A,¬B

Success 1 0 0 0

Failure 0 1 1 1

A means that the component A is operational and ¬A that it has failed

7.4.2.1 Reliability Modeling with Bayesian Networks

Reliability analysis starts by representing the structure of the system in terms of
a reliability block diagram. In this representation, there are two basic structures:
serial and parallel components (see Fig. 7.19). A serial structure implies that the two
components should operate correctly for the system to function; or in other words,
if one fails the entire system fails (this corresponds to an AND gate in fault trees). In
parallel structures, it is sufficient for one of the components to operate for the system
to function (OR gate in fault tress).

We can represent the previous basic block diagrams with a Bayesian network as
is depicted in Fig. 7.20. The structure is the same in both cases, the difference is the
conditional probability matrix. The CPTs for both cases are depicted in Tables7.4
and 7.5. In both cases, the prior probabilities of the basic components (A, B) will
represent there failure rate. Thus, by applying probabilistic inference in the BN
representation, we obtain the failure rate of the system, X .

TheBN representation of the basic serial/parallel cases can be directly generalized
to represent any block diagram that can be reduced to a set of serial and parallel
combinations of components, which, in practice is the case for most systems. There
are some structures that cannot be decomposed to a serial/parallel combination, such
as a bridge. However, it is also possible to model these cases using BNs [17].
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Table 7.5 Conditional probability table, P(X | A, B), for two components in parallel

X A, B A,¬B ¬A, B ¬A,¬B

Success 1 1 1 0

Failure 0 0 0 1

A means that the component A is operational and ¬A that it has failed

Fig. 7.21 Bayesian network
structure for the system with
a common cause failures

7.4.2.2 Modeling Dependent Failures

Themain advantage of reliability modeling with BNs is that we canmodel dependent
failures. We will illustrate this for the case of a system with common cause failures.

Suppose that a system has two components that are affected by three possible
failure sources. Source S1 affects component C1, source S2 affects component C2,
and source S3 affects both components (common cause). For instance, the system
could be a power plant with two subsystems; each subsystem has elements that can
fail, but an earthquake canmake both fail.ABayesian networkmodel for this example
of dependent failures is depicted in Fig. 7.21. In this model, the CPT for all three
nonroot nodes (C1, C2, X ) is equivalent to that of a serial component combination.
X represents the failure rate of the system, which can be obtained by probability
propagation given the failure rates for the three failure sources.

7.5 Additional Reading

An introduction to Bayesian networks is given in the classic book by Judea Pearl
[14]. Other general books on BNs are [7, 12]. A more recent account with emphasis
on modeling and inference is given by [2]; it includes a complexity analysis for
the different inference techniques. Other books with more emphasis on applications
are [8, 15]. An overview of canonical models is presented in [3]. The junction tree
algorithmwas initially introducedby [9], and the twomain architectures are described
in [6, 16]. An analysis of loopy propagation can be seen in [11]. Inference for
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continuous Gaussian variables was introduced in [14], and a more general approach
based on truncated exponentials is presented in [10].

7.6 Exercises

1. For the BN in Fig. 7.2 determine: (a) the contour of each variable, (b) theMarkov
blanket of each variable, (c) all the conditional independence relations implied
by the network structure.

2. Deduce some of the independence relations in the previous problem using the
independence axioms.

3. Complete the CPTs for the BN in Fig. 7.5 assuming all the variables are binary.
4. Investigate the Noisy AND model and obtain the CPT for a variable with three

causes with inhibition probabilities equal to 0.05, 0.1, and 0.2, respectively.
5. Consider the belief propagation example in Sect. 7.3.1, obtain the posterior prob-

abilities of all the variables via belief propagation considering that the only
evidence is C = true.

6. Repeat the previous problem using the variable elimination procedure.
7. Estimate the posterior probabilities of the example in Sect. 7.3.1 under the same

conditions as the previous two problems (C = true) using the logic sampling
method for different numbers of samples (10, 20, …) and compare the results
using exact inference.

8. For the BN in Fig. 7.18: (a) moralize the graph, (b) triangulate the graph, (c)
determine the cliques and obtain a junction tree, (d) obtain the sets C , S and R
for each clique according to the junction tree algorithm.

9. *** Develop a program based on the Bayes ball procedure to illustrate
D-Separation. Given a BN structure, the user selects two nodes and a separation
subset. The program should find all the trajectories between the two nodes, and
then determines if these are independent given the separation subset by apply-
ing the Bayes ball procedure, illustrating graphically if the ball goes through a
trajectory or is blocked.

10. ***Develop a general program for the belief propagation algorithm for polytrees
considering discrete variables. Develop a parallel version of the previous pro-
gram, establishing how the processors are assigned for an efficient parallelization
of the algorithm. Extend the previous programs for loopy belief propagation.
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Chapter 8
Bayesian Networks: Learning

8.1 Introduction

Learning aBayesian network includes twoaspects: learning the structure and learning
the parameters. When the structure is known, parameter learning consists in estimat-
ing the conditional probability tables (CPTs) from data. For structure learning there
are two main types of methods: (i) global methods based on search and score and
(ii) local methods that use conditional independence tests. Next we describe both
aspects, starting with parameter learning.

8.2 Parameter Learning

If we have sufficient and complete data for all the variables, and we assume the
topology of the BN is known, parameter learning is straight forward. The CPT for
each variable can be estimated from the data based on the frequency of each value
(or combination of values) obtaining a maximum likelihood (ML) estimator of the
parameters. For example, to estimate the CPT of B given it has two parents, A, C :

P(Bi | A j , Ck) ∼ NBi A j Ck/NA j Ck (8.1)

where NBi A j Ck is the number of cases in the database in which B = Bi , A = A j

and C = Ck , and NA j Ck is the total number of cases in which A = A j and C = Ck .

8.2.1 Smoothing

When we estimate probabilities from data, it can sometimes happen that a particular
event never occurs in the dataset. This leads to the corresponding probability value
being zero, implying an impossible case; if in the inference process this probability
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is considered, it will also make the result zero. This situation occurs, in many cases,
because there is insufficient data to have a robust estimate of the parameters, and not
because it is an impossible event.

The previous situation can be avoided by using some type of smoothing for the
probabilities, eliminating zero probability values. There are several smoothing tech-
niques, one of the most common and simplest being Laplacian smoothing.

Laplacian smoothing consists in initializing the probabilities to a uniform distrib-
ution, and then updating these values based on the data. Consider a discrete variable,
X , with k possible values. Initially, each probability will be set to P(xi ) = 1/k.
Then, consider a dataset with N samples, in which the value xi occurs m times; the
estimate of its probability will be the following:

P(xi ) = (1 + m)/(k + N ) (8.2)

8.2.2 Parameter Uncertainty

If there is not sufficient data, a situation common in practice, we have uncertainty
in the parameters. This uncertainty can be modeled using a second-order probability
distribution, and could be propagated in the inference process so we have an estimate
of the uncertainty in the resulting probabilities. For binary variables, the uncertainty
in the parameters can be modeled using a Beta distribution:

β(a, b) = (a + b + 1)!
a!b! xa(1 − x)b (8.3)

For multivalued variables, uncertainty in the parameters can be represented by an
extension of the Beta known as the Dirichlet distribution.

For the binary case, the expected value of the Beta distribution is given by:
P(bi ) = a + 1/a + b + 2, where a and b are the parameters of the Beta distri-
bution. This representation could also be used when we have experts’ estimates of
the probabilities. The parameters of the Beta distribution can represent a measure of
confidence in the expert’s estimates, expressed by varying the term a + b with the
same probability value. For instance:

• Complete ignorance: a = b = 0.
• Low confidence: a + b small (10).
• Medium confidence: a + b intermediate (100).
• High confidence: a + b large (1000).

This representation could be used to combine experts’ estimations with data. For
example, to approximate the probability value of a binary variable, bi we can use:

P(bi ) = k + a + 1/n + a + b + 2 (8.4)
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where a/a + b represents the expert’s estimate and k/n is the probability obtained
from the data (k is the number of times bi occurs in n samples).

For example, let us assume an expert gives an estimate of 0.7 for a certain para-
meter, and that the experimental data provides 40 positive cases among 100 samples.
The parameter estimation for different confidences assigned to the expert will be the
following:

Low confidence (a + b = 10): P(bi ) = 40+ 7+ 1
100+ 10+ 2 = 0.43

Medium confidence (a + b = 100): P(bi ) = 40+ 70+ 1
100+ 100+ 2 = 0.55

High confidence (a + b = 1000): P(bi ) = 40+ 700+ 1
100+ 1000+ 2 = 0.67

We observe that in the first case the estimate is dominated by the data, while in the
third case the probability is closer to the expert’s estimate; the second case provides
a compromise.

8.2.3 Missing Data

Another common situation is to have incomplete data. There are two basic cases:

Missing values: In some registers there are missing values for one or more vari-
ables.

Hidden nodes: A variable or set of variables in the model for which there is no
data at all.

For dealing with missing values, there are several alternatives:

1. Eliminate the registers with missing values.
2. Consider a special “unknown” value.
3. Substitute the missing value by the most common value (mode) of the variable.
4. Estimate the missing value based on the values of the other variables in the

corresponding register.

The first and second alternatives are acceptable if there is sufficient data, otherwise
we could be discarding useful information. The third alternative does not consider the
other variables and as a result, it could bias the model. In general the best alternative
is the fourth option. In this case, we first learn the parameters of the BN based on
the complete registers, and then complete the data and re-estimate the parameters,
applying the following process. For each register with missing values:

1. Instantiate all the known variables in the register.
2. Through probabilistic inference obtain the posterior probabilities of the missing

variables.
3. Assign to each variable the value with highest posterior probability.
4. Add this completed register to the database and re-estimate the parameters.
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An alternative to the previous process is that instead of assigning the value with the
highest probability,we assign apartial case for each value of the variable proportional
to the posterior probability.

For hidden nodes, the approach to estimate their parameters is based on the
Expectation–Maximization (EM) technique.

8.2.3.1 Hidden Nodes: EM

The EM algorithm is a statistical technique used for parameter estimation when there
are non-observable variables. It consists of two phases which are repeated iteratively:

E step: the missing data values are estimated based on the current parameters.
M step: the parameters are updated based on the estimated data.

The algorithm starts by initializing the missing parameters with random values.
Given a database with one or more hidden nodes, H1, H2, . . . , Hk , the EM algo-

rithm to estimate their CPTs is the following:

1. Obtain the CPTs for all the complete variables (the values of the variable and all
its parents are in the database) based on an ML estimator.

2. Initialize the unknown parameters with random values.
3. Considering the actual parameters, estimate the values of the hidden nodes based

on the known variables via probabilistic inference.
4. Use the estimated values for the hidden nodes to complete/update the database.
5. Re-estimate the parameters for the hidden nodes with the updated data.
6. Repeat 3–5 until converge (no significant changes in the parameters).

The EM algorithm optimizes the unknown parameters and gives a local maximum
(the final estimates depend on the initialization).

8.2.3.2 Example

We now illustrate how to handle missing values and hidden variables using data
from the Golf example (see Table8.1). In this dataset, there are some missing values
for the variable Temperature (registers 1 and 9), and there is no information about
Wind, which is a hidden node. We first illustrate how to fill-in the missing values for
temperature and then how to manage the hidden node.

Assume that we learn a naive Bayes classifier (an NBC is a particular type of
BN) based on the available data (12 complete registers without the wind variable),
considering Play as the class variable and the other variables as attributes. Then,
based on thismodel, we can estimate the probability of temperature for the registers in
which it is missing, via probabilistic inference using the values of the other variables
in the corresponding registers as evidence. That is:

Register 1: P(Temperature | sunny, high, N )

Register 9: P(Temperature | sunny, normal, P)
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Table 8.1 Data for the golf example with missing values for Temperature and a hidden variable,
Wind

Outlook Temperature 1 Humidity Wind Play

Sunny xxx High – N

Sunny High High – N

Overcast High High – P

Rainy Medium High – P

Rainy Low Normal – P

Rainy Low Normal – N

Overcast Low Normal – P

Sunny Medium High – N

Sunny xxx Normal – P

Rainy Medium Normal – P

Sunny Medium Normal – P

Overcast Medium High – P

Overcast High Normal – P

Rainy Medium High – N

Then we can select as the value of temperature the one with highest posterior prob-
ability, and fill-in the missing values, as shown in Table8.2.

For the case of the hidden node, Wind, we cannot obtain the corresponding CPT
from the NBC, P(Wind | Play), as there are no values for wind. However, we can
apply the EM procedure, where we first pose initial random parameters for the CPT,
which could be, for example, a uniform distribution:

P(Wind | Play) = 0.5 0.5
0.5 0.5

Given this CPT we have a complete, initial model for the NBC, and can estimate
the probability of wind for each register based on the values of the other variables in
the register. By selecting the highest probability value for each register, we can fill-in
the table, as depicted in Table8.2. Based on this new data table, we re-estimate the
parameters, and obtain a new CPT:

P(Wind | Play) = 0.60 0.44
0.40 0.56

This completes one cycle of the EM algorithm; the process is then repeated until
all parameters in the CPT have almost no change from the previous iteration. At
this point, the EM procedure has converged, and we have an estimate of the missing
parameters of the BN.
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Table 8.2 Data for the golf example after completing the missing values for Temperature and one
iteration of the EM procedure to estimate the values of Wind

Outlook Temperature 1 Humidity Wind Play

Sunny Medium High No N

Sunny High High No N

Overcast High High No P

Rainy Medium High No P

Rainy Low Normal Yes P

Rainy Low Normal Yes N

Overcast Low Normal Yes P

Sunny Medium High No N

Sunny Medium Normal No P

Rainy Medium Normal No P

Sunny Medium Normal Yes P

Overcast Medium High Yes P

Overcast High Normal Yes P

Rainy Medium High Yes N

8.2.4 Discretization

Usually Bayesian networks consider discrete or nominal values. Although there are
some developments for continuous variables, these are restricted to certain distribu-
tions, in particular Gaussian variables and linear relations. An alternative to include
continuous variables in BNs is to discretize them. Discretization methods can be (i)
unsupervised and (ii) supervised.

8.2.4.1 Unsupervised Discretization

Unsupervised techniques do not consider the task for which the model is going to
be used (e.g., classification), such that the intervals for each variable are determined
independently. The two main types of unsupervised discretization approaches are:
equal width and equal data.

Equal width consists in dividing the range of a variable, [Xmin; Xmax], into k
equal bins; such that each bin has a size of [Xmin; Xmax]/k. The number of intervals
k is usually set by the user.

Equal data divides the range of the variable in k intervals, such that each interval
includes the same number of data points from the training data. In other words, if
there are n data points, each interval will contain n/k data points; this means that the
intervals will not necessarily have the same width.
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8.2.4.2 Supervised Discretization

Supervised discretization considers the task to be performedwith themodel, such that
the variables are discretized to optimize this task, for instance classification accuracy.
If we consider a BN for classification, i.e. a Bayesian classifier, then the supervised
approach can be directly applied. Assuming continuous attribute variables, these
are discretized according to the class values. This can be posed as an optimization
problem.

Consider the attribute variable X with range [Xmin; Xmax] and a class variable C
with m values c1, c2, . . . , cm . Given n training samples, so that each one has a value
forC and X , the problem is to determine the optimal partition of X such that the clas-
sifier precision is maximized. This a combinatorial problem that is computationally
complex, and can be solved using a search process as follows:

1. Generate all potential divisions in X which correspond to a value in [Xmin; Xmax]
where there is a change in the class value.

2. Based on the potential division points generate an initial set of n intervals.
3. Test the classification accuracy of the Bayesian classifier (usually on a different

set of data known as a validation set) according to the current discretization.
4. Modify the discretization by partitioning an interval or joining two intervals.
5. Repeat (3) and (4) until the accuracy of the classifier cannot be improved or some

other termination criteria occurs.

Different search approaches can be used, including basic ones such as hill-climbing
or more sophisticated methods like genetic algorithms.

The previous algorithm does not apply for the general case of a Bayesian net-
work which can be used to predict different variables based on different evidence
variables. In this case, there is a supervised method [6] that discretizes continu-
ous attributes while it learns the structure of the BN. The method is based on the
Minimum Description Length (MDL) principle—described in Sect. 8.3.3. For each
continuous variable, the number of intervals is determined according to its neighbors
in the network. The objective is to minimize the MDL (a compromise between the
precision and complexity of the model), using a search and test approach analogous
to the process for Bayesian classifiers. This is repeated iteratively for all continuous
variables in the network.

8.3 Structure Learning

Structure learning consists in obtaining the topology of the BN from the data. This is
a complex problem because: (i) the number of possible structures is huge even with
a few variables (it is super-exponential on the number of variables; for example, for
10 variables the number of possible DAGs is in the order of 4 × 1018), and (ii) a
very large database is required to obtain good estimates of the statistical measures
on which all methods depend.
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For the particular case of a tree structure, there is a method that guarantees the
best tree. For the general case several methods have been proposed, which can be
divided into two main classes:

1. Global methods: these [4, 5] perform a heuristic search over the space of network
structures, starting from some initial structure, and generating a variation of the
structure at each step. The best structure is selected based on a score that measures
how well the model represents the data. Common scores are BIC [4] and MDL
[5].

2. Local methods: these are based on evaluating the (in)dependence relations
between subsets of variables given the data, to sequentially obtain the structure of
the network. The most well-known variant of this approach is the PC algorithm
[10].

Both classes of methods obtain similar results with enough data. Local methods tend
to be more sensitive when there are few data samples, and global methods tend to be
more computationally complex.

Next we review the tree learning algorithm developed by Chow and Liu [1] and
its extension to polytrees. Then we present the techniques for learning a general
structure.

8.3.1 Tree Learning

Chow and Liu [1] developed a method for approximating any multivariable proba-
bility distribution as a product of second-order distributions, which is the basis for
learning tree-structured BNs. The joint probability of n random variables can be
approximated as:

P(X1, X2, . . . , Xn) =
n∏

i=1

P(Xi | X j (i)) (8.5)

where X j (i) is the parent of Xi in the tree.
The problem consists in obtaining the best tree, that is, the tree structure that best

approximates the real distribution. A measure of how close the approximation is
based on the information difference between the real distribution (P) and the tree
approximation (P∗) is as follows:

DI(P, P∗) =
∑

X

P(X)log(P(X)/P∗(X)) (8.6)

Thus, now the problem consists in finding the tree that minimizes DI .
The mutual information between any pair of variables is defined as:
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I (Xi , X j ) =
∑

Xi ,X j

P(Xi , X j )log(P(Xi , X j )/P(Xi )P(X j )) (8.7)

Given a tree-structured BN with variables X1, X2, . . . , Xn , we define its weight, W ,
as the sum of the mutual information of the arcs (pairs of variable) that constitute
the tree:

W (X1, X2, . . . , Xn) =
n−1∑

i=1

I (Xi , X j ) (8.8)

where X j is the parent of Xi in the tree (a tree with n nodes has n − 1 arcs).
It can be shown [1] that minimizing DI is equivalent to maximizing W . Therefore,

obtaining the optimal tree is equivalent to finding themaximum weight spanning tree,
using the following algorithm:

1. Obtain the mutual information (I ) between all pairs of variables (for n variables,
there are n(n − 1)/2 pairs).

2. Order the mutual information values in descending order.
3. Select the pair with maximum I and connect the two variables with an arc, this

constitutes the initial tree.
4. Add the pair with the next highest I to the tree, while they do not make a cycle;

otherwise skip it and continue with the following pair.
5. Repeat 4 until all the variables are in the tree (n − 1 arcs).

This algorithm obtains the skeleton of the tree; that is, it does not provide the direction
of the arcs in the BN. The directions of the links have to be obtained using external
semantics or using higher order dependency tests (see below).

To illustrate the tree learning method consider the classic golf example with 5
variables: play, outlook, humidity, temperature, wind. Given some data, we obtain
the mutual information shown in Table8.3.

Table 8.3 Mutual information in descending order for the golf example

No. Var 1 Var 2 Mutual information

1 Temp. Outlook 0.2856

2 Play Outlook 0.0743

3 Play Humidity 0.0456

4 Play Wind 0.0074

5 Humidity Outlook 0.0060

6 Wind Temp. 0.0052

7 Wind Outlook 0.0017

8 Play Temp. 0.0003

9 Humidity Temp. 0

10 Wind Humidity 0
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Fig. 8.1 Tree structure
obtained for the golf example
(P is play, O is outlook, H is
humidity, T is temperature,
and W is wind). Arc
directions are set arbitrarily

In this case, we select the first four pairs (arcs) and obtain the tree in Fig. 8.1,
where the directions were assigned arbitrarily.

8.3.2 Learning a Polytree

Rebane and Pearl [9] developed a method that can be used to direct the arcs in the
skeleton, and in general, learn a polytreeBN.The algorithm is based on independence
tests for variable triplets, and in this way it can distinguish convergent substructures;
once one or more substructures of this type are detected in the skeleton, it can direct
additional arcs by applying the independence tests to neighboring nodes. However,
there is no guarantee for obtaining the direction for all the arcs in the tree. This same
idea is used in the PC algorithm for learning general structures.

The algorithm begins with the skeleton (undirected structure) obtained with the
Chow and Liu algorithm. Subsequently, the direction of the arcs is learned using
independence tests for variable triplets. Given three variables, there are three possi-
bilities:

1. Sequential arcs: X → Y → Z .
2. Divergent arcs: X ← Y → Z .
3. Convergent arcs: X → Y ← Z .

The first two cases are indistinguishable under statistical independence testing; that
is, they are equivalent. In both cases, X and Z are independent given Y . However, the
third case is different, since X and Z are NOT independent given Y . Consequently,
this case can be used to determine the directions of the two arcs that connect these
three variables; additionally, we can apply this knowledge to learn the directions of
other arcs using independence tests. With this in mind, the following algorithm can
be used for learning polytrees:
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1. Obtain the skeleton using the Chow and Liu algorithm.
2. Iterate over the network until a convergent variable triplet is found. We will call

the variable to which the arcs converge a multi-parent node.
3. Starting with a multi-parent node, determine the directions of other arcs using

independence tests for variable triplets. Continue this procedure until it is no
longer possible (causal base).

4. Repeat 2–3 until no other directions can be determined.
5. If any arcs are left undirected, use the external semantics to infer their directions.

To illustrate this algorithm, let us consider the golf example again, with the
obtained skeleton (undirected structure). Suppose the variable triplet H, P, W falls
in the convergent case. Then, the arcs will be directed such that H points to P and
W points to P . Subsequently, the dependence between H and W is measured with
respect to O given P . If H and W are independent from O given P then there will
be an arc that points from P to O . Finally, the dependence relation between P and T
given O is tested, and if they are again found to be independent, then the arc points
from O to T . Figure8.2 shows the resulting structure.

8.3.3 Search and Score Techniques

The previous methods are restricted to tree and polytree structures; in this and the
following section we will cover general structure learning techniques, starting with
global approaches.

Global methods search for the best structure based on a global metric. That is,
different structures are generated and these are evaluated with respect to the data
using some scoring method. There are different variants of these methods, all of
which basically depend on two aspects: (i) a fitness measure between the structure
and the data, and (ii) a method for searching for the best structure.

Fig. 8.2 A polytree obtained
for the golf example using
the Rebane and Pearl
algorithm
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8.3.3.1 Scoring Functions

There are several possible fitness measures or scoring functions. Two desirable prop-
erties for scoring functions are [3]:

Decomposability: a scoring function is decomposable if the value assigned to each
structure can be expressed as a sum (in the logarithmic space) of local values that
depend only on each node and its parents. This is important for efficiency reasons
during the search process; given this property when a local change is made to the
structure, only a part of the score has to be re-evaluated.

Score Equivalence: a scoring function S is score equivalent if it assigns the same
value to all DAGs that are represented by the same essential graph. In this way,
the result of evaluating an equivalence class will be the same regardless of the
DAG that is selected from this class. The structures of two BNs correspond to the
same essential graph if they are equivalent in terms of the independence relations
they represent.

Next we describe some common scoring functions, including: the maximum like-
lihood (ML), the Bayesian information criterion (BIC), the Bayesian score (BD),
and the minimum description length (MDL) criterion.

Themaximum likelihood score selects the structure thatmaximizes the probability
of the data, D, given the structure, G:

G∗ = ArgMaxG[P(D | ΘG , Gi )] (8.9)

where Gi is the candidate structure and ΘG the corresponding vector of parameters
(probability of each variable given its parents according to the structure).

The direct application of the ML score might result in a highly complex network,
which usually implies overfitting the data (poor generalization) and also makes infer-
ence more complex. Therefore, a way to penalize complex models is required.

A commonly used scoring function that includes a penalty term is the Bayesian
Information Criterion or BIC defined as:

BIC = logP(D | ΘG , Gi ) − d

2
logN (8.10)

where d is the number of parameters in the BN and N the number of cases in the data.
An advantage of this metric is that it does not require a prior probability specification
and it is related to the MDL measure, compromising between the precision and
complexity of the model. However, given the high penalty on the complexity of the
model, it tends to choose structures that are too simple.

Bayesian scores

An alternative metric is obtained by following a Bayesian approach, obtaining the
posterior probability of the structure given the data with the Bayes rule:

P(Gi | D) = P(Gi )P(D | Gi )/P(D) (8.11)
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Given that P(D) is a constant that does not depend on the structure, it can be discarded
from the metric to obtain de Bayesian or BD score:

BD = P(Gi )P(D | Gi ) (8.12)

P(Gi ) is the prior probability of the model. This can be specified by an expert or
defined such that simpler structures are preferred; or just set to a uniform distribution.

The BDe score is a variation of the BD score which makes the following assump-
tions: (i) the parameters are independent and have a prior Dirichlet distribution,
(ii) equivalent structures have the same score, (iii) the data samples are independent
and identically distributed (iid). Under these assumptions the virtual counts required
to compute the score can be estimated as:

Ni jk = P(Xi = k, Pa(Xi ) = j | Gi ,ΘG) × N ′ (8.13)

This is the estimated count of a certain configuration: Xi = k given Pa(Xi ) = j ;
N ′ is the equivalent sample size.

By assuming that the hyperparameters of the priors are one,we can further simplify
the calculation of the Bayesian score, and obtain what is known as the K2 metric.1

This score is decomposable and it is calculated for each variable Xi given its parents
Pa(Xi ):

Si =
qi∏

j=1

(ri − 1)!
(Ni j + ri − 1)!

ri∏

k=1

αi jk ! (8.14)

where ri is the number of values of Xi , qi is the number of possible configurations
for the parents of Xi , αi jk is the number of cases in the database where Xi = k and
Pa(Xi ) = j , and Ni j is the number of cases in the database where Pa(Xi ) = j .

This metric provides a practical alternative for evaluating a BN. Another common
alternative that is based on the MDL principle is described next.

MDL

The MDL measure makes a compromise between accuracy and model complexity.
Accuracy is estimated by measuring the mutual information between the attributes
and the class. Model complexity is evaluated by counting the number of parameters.
A constant, α within [0, 1], is used to balance the weight of each aspect, that is,
accuracy against complexity. The fitness measure is given by the following equation:

MC = α(W/Wmax) + (1 − α)(1 − L/Lmax) (8.15)

where W represents the accuracy of the model, and L the complexity. Wmax and
Lmax represent the maximum accuracy and complexity, respectively. To determine
the maximums, usually an upper bound is set on the number of parents each node is

1K2 is an algorithm for learning BNs described below.
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allowed to have. A value of α = 0.5 gives equal importance to the model complexity
and accuracy, while a value near 0 gives more importance to the complexity, and a
value near 1 more importance to accuracy.

Complexity is given by the number of parameters required for representing the
model, which can be measured with the following equation:

L = Si [ki log2n + d(Si − 1)Fi ] (8.16)

where n is the number of nodes, k is the number of parents per node, Si is the average
number of values per variable, Fi is the average number of values per parent variable,
and d the number of bits per parameter.

The accuracy can be estimated based on the ‘weight’ of each node; this is analo-
gous to the weights in the methodology for learning trees. In this case, the weight of
each node, Xi , is estimated based on its mutual information with its parents, Pa(Xi ):

w(Xi , Pa(Xi )) =
∑

xi

P(Xi , Pa(Xi ))log[P(Xi , Pa(Xi ))/P(Xi )P(Pa(Xi ))]
(8.17)

and the weight (accuracy) total is given by the sum of the weights for each node:

W =
∑

i

w(Xi , Pa(Xi )) (8.18)

8.3.3.2 Search Algorithms

Once a fitness measure for the structure has been established, we need to estab-
lish a method for choosing the ‘best’ structure among the possible options. Since
the number of possible structures is exponential on the number of variables, it is
impossible to evaluate every structure. To limit the number of structures that are
evaluated, a heuristic search is carried out. Several different search methods can be
applied. One common strategy is to use a hill climbing approach, where we begin
with a simple tree structure that is improved until we obtain the ‘best’ structure. A
basic greedy algorithm to search for the best structure is the following:

1. Generate an initial structure-tree.
2. Calculate the fitness measure of the initial structure.
3. Add/invert an arc from the current structure.
4. Calculate the fitness measure of the new structure.
5. If the fitness improves, keep the change; if not, return to the previous structure.
6. Repeat 3–5 until no further improvements exist.

The previous algorithm is not guaranteed to find the optimum structure, since it is
possible to reach only a local maximum. Figure8.3 illustrates the search procedure
for the golf example, starting with a tree structure that is improved until the final



8.3 Structure Learning 151

structure is obtained. Other search methods, such as genetic algorithms, simulated
annealing, bidirectional searches, etc., can also be applied to obtain the best structure.

An alternative to reduce the number of potential structures to be evaluated, is to
set an ordering on the variables, known as a causal ordering. Given this ordering,
the arcs in the network are restricted to follow this order; that is, there could be NO
arc from Vj to Vi if j > i according to the ordering. The K2 algorithm [4] takes
advantage of this, providing and efficient and popular method for learning BNs.

8.3.3.3 The K2 Algorithm

Given a causal ordering for all the variables, learning the best structure is equivalent to
selecting the best set of parents for each node independently. Initially, each variables
has no parents. Then, the K2 algorithm incrementally adds parents to each node,
as long as it increases the global score. When adding parents to any node does not
increase the score, the search stops. Also, given a causal ordering it guarantees that
there are not cycles in the graph.

Algorithm 8.1 provides a summary of the K2 procedure. The inputs to the algo-
rithm are the set of n variables with a causal ordering, X1, X2, . . . Xn , a database D
containing m cases, and, usually, a restriction on the maximum number of parents
for each variable, u. The output is the set of parents, Pa(Xi ), for each variable, which
defines the structure of the network. Starting from the first variable according to the
ordering, the algorithm tests all possible parents of a variable that have not been
added, and includes the one that makes the maximum increment in the score of the
network. This is repeated until there is no additional parent that increases the score;
for every node on the network.

Fig. 8.3 A few steps in the procedure for learning the structure of the “golf” example, beginning
with a tree structure (left) until the final structure (right) is obtained
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Algorithm 8.1 The K2 Algorithm
Require: Set of variables X with a causal ordering, scoring function S, and maximum parents u
Ensure: Set of parents for each variable, Pa(Xi )

for i = 1 to n do
oldScore = S(i, Pa(Xi ))

incrementScore = true
Pa(Xi ) = ∅
while incrementScore and |Pa(Xi )| < u do
let Z be the node in Predecessors(Xi ) − Pa(Xi ) that maximizes S
newScore = S(i, Pa(Xi ) ∪ Z)

if newScore > oldScore then
oldScore = newScore
Pa(Xi ) = Pa(Xi ) ∪ Z

else
incrementScore = false

end if
end while

end for
return Pa(X1), Pa(X2) . . . Pa(Xn)

8.3.4 Independence Tests Techniques

The other class of structure learning techniques use a local approach instead of
the global one used by the score and search techniques. The basic idea is to apply
independence tests to sets of variables to recover the structure of the BN. An example
of this type of techniques is the Chow and Liu algorithm for trees. Next we present
a method for learning general structures, the PC algorithm.

8.3.4.1 The PC Algorithm

The PC algorithm [10] first recovers the skeleton (underlying undirected graph) of
the BN, and then it determines the orientation of the edges.

To determine the skeleton, it starts from a fully connected undirected graph, and
determines the conditional independence of each pair of variables given some subset
of the other variables. For this it assumes that there is a procedure that can deter-
mine if two variables, X, Y , are independent given a subset of variables, S, that is,
I (X, Y | S). An alternative for this procedure is the conditional cross entropy mea-
sure. If this measure is below a threshold value set according to a certain confidence
level, the edge between the pair of variables is eliminated. These tests are iterated
for all pairs of variables in the graph.

In the second phase the direction of the edges are set based on conditional inde-
pendence tests between variable triplets. It proceeds by looking for substructures in
the graph of the form X − Z − Y such that there is no edge X − Y . If X, Y are not
independent given Z , it orients the edges creating a V-structure X → Z ← Y . Once
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all the V-structures are found, it attempts to orient the other edges based on indepen-
dence tests and avoiding cycles. Algorithm 8.2 summarizes the basic procedure.2

Algorithm 8.2 The PC algorithm.
Require: Set of variables X, Independence test I
Ensure: Directed Acyclic Graph G
1: Initialize a complete undirected graph G ′
2: i=0
3: repeat
4: for X ∈ X do
5: for Y ∈ ADJ(X) do
6: for S ⊆ ADJ(X) − {Y }, | S |= i do
7: if I (X, Y | S) then
8: Remove the edge X − Y from G ′
9: end if
10: end for
11: end for
12: end for
13: i=i + 1
14: until | ADJ(X) |≤ i , ∀X
15: Orient edges in G ′
16: Return G

If the set of independencies are faithful to a graph3 and the independence tests
are perfect, the algorithm produces a graph equivalent to the original one; that is, the
BN structure that generated the data.

The independence test techniques rely on having enough data for obtaining good
estimates from the independence tests. Search and score algorithms are more robust
with respect to the size of the dataset, however their performance is also affected
by the size and quality of the available data. An alternative for when there is not
sufficient data, is to combine expert knowledge and data.

8.4 Combining Expert Knowledge and Data

When domain expertise is available, this can be combined with learning algorithms
to improve the model. In the case of parameter learning, we can combine data and
expert estimates based on the Beta or Dirichlet distributions as described in Sect. 8.2.

2ADJ(X) is the set of nodes adjacent to X in the graph.
3The Faithfulness Condition can be thought of as the assumption that conditional independence
relations are due to causal structure rather than to accidents in parameter values [10].
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For structure learning, there are two basic approaches to combine expert knowl-
edge and data:

• Use expert knowledge as restrictions to reduce the search space for the learning
algorithm.

• Start from a structure proposed by an expert and use data to validate and improve
this structure.

There are several ways to use expert knowledge to aid the structure learning
algorithm, such as:

1. Define an ordering for the variables (causal order), such that there could be an
arc from Xi to X j only if X j is after Xi according to the specified ordering.

2. Define restrictions in terms of directed arcs that must exist between two variables,
i.e., Xi → X j .

3. Define restrictions in terms of an arc between two variables that could be directed
either way.

4. Define restrictions in terms of pairs of variables that are not directly related, that
is, there must be no arc between Xi and X j .

5. Combinations of the previous restrictions.

Several variants of both types of techniques, search and score and independence tests,
incorporate the previous restrictions.

In the case of the second approach, an example was presented in Chap.4, with the
structural improvement algorithm. This technique starts from a naive Bayes structure
which is improved by eliminating, joining or inserting variables. This idea can be
extended to general BN structures, in particular for tree-structured BNs.

8.5 Applications

There are many domains in which learning Bayesian networks has been applied
to get a better understanding of the domain or make predictions based on partial
observations; for example medicine, finance, industry and the environment, among
others. Next we present an example for modeling the air pollution in Mexico City.

8.5.1 Air Pollution Model for Mexico City

Air quality in Mexico City is a major problem. There, air pollution is one of the
highest in the world, with a high average of daily emissions of several primary
pollutants, such as hydrocarbons, nitrogen oxides, carbon monoxide, and others.
The pollution is due primarily to transportation and industrial emissions. When the
primary pollutants are exposed to sunshine, they undergo chemical reactions and
yield a variety of secondary pollutants, ozone being the most important. Besides the

http://dx.doi.org/10.1007/978-1-4471-6699-3_4
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health problems it may cause, ozone is considered an indicator of the air quality in
urban areas.

The air quality is monitored in 25 stations within Mexico City, with five of these
being the most complete. Nine variables are measured in each of the five main
stations, including:wind direction and velocity, temperature, relative humidity, sulfur
dioxide, carbon monoxide, nitrogen dioxide and ozone. These are measured every
minute 24 hours a day, and are averaged every hour.

It is important to be able to forecast the pollution level several hours, or even a
day in advance for several reasons, including:

1. To be able to take emergency measures if the pollution level is going to be above
a certain threshold.

2. Helping industry make contingency plans in advance in order to minimize the
cost of the emergency measures.

3. To estimate the pollution in an area where there are no measurements.
4. To take preventive actions in some places, such as schools, in order to reduce the

health hazards produced by high pollution levels.

In Mexico City, the ozone level is used as a global indicator for the air quality
within the different parts of the city. The concentrations of ozone are given in IMECA
(Mexican air quality index). It is important to predict the daily ozone, or at least,
predict it several hours in advance using the other variables measured at different
stations.

It is useful to know the dependencies between the different variables that are
measured, and specially their influence in the ozone concentration. This will provide
a better understanding of the problem with several potential benefits:

• Determinewhich factors aremore important for the ozone concentration inMexico
City.

• Simplify the estimation problem, by taking into account only the relevant infor-
mation.

• Discover the most critical primary causes of pollution in Mexico City; these could
help in future plans to reduce pollution.

We started by applying a learning algorithm to obtain an initial structure of the
phenomena [11]. For this we considered 47 variables: 9 measurements for each of
the 5 stations, plus the hour and month in which they were recorded. We used nearly
400 random samples, and applied the Chow and Liu algorithm to obtain the tree
structure that best approximates the data distribution. This tree-structured Bayesian
network is shown in Fig. 8.4.

We then considered the ozone in one station (Pedregal) as unknown, and we
estimate it, one hour in advance, using the othermeasurements. Thuswemake ozone-
Pedregal the hypothesis variable and consider it as the root in the probabilistic tree,
as shown in Fig. 8.4. From this initial structure we can get an idea of the relevance or
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Fig. 8.4 A Bayesian tree that represents the ozone phenomena in five stations in Mexico City. The
nodes represent the 47 variables according to the following nomenclature. For the measured vari-
ables, each name is formed by two parts, “measurement-station,” using the following abbreviations.
The measurements: O3-ozone, SO2-sulfur dioxide, CO-carbon monoxide, NO2-nitrogen diox-
ide, NOX-nitrogen oxides, VV-wind velocity, DV-wind direction, TMP-temperature, RH-relative
humidity; the monitoring stations, T-Pedregal, F-Tlanepantla, Q-Merced, L-Xalostoc, X-Cerro de
la Estrella. The other two variables correspond to the time when the measurements were taken, and
they are: HORA-hour, MES-month
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influence of the other variables for estimating ozone-Pedregal. The nodes “closest”
to the root are the most important ones, and the “far-away” nodes are less important.

In this case we observe that there are three variables (ozone-Merced, ozone-
Xalostoc, and wind velocity in Pedregal) that have the greatest influence in ozone-
Pedregal. Furthermore, if the tree structure is a good approximation to the “real”
structure, these three nodes make ozone-Pedregal independent from the rest of the
variables (see Fig. 8.4). Thus, as a first test of this structure, we estimated ozone-
Pedregal using only these three variables. We carried out two experiments: (1) esti-
mate ozone-Pedregal using 100 random samples taken from the training data, and (2)
estimate ozone-Pedregalwith another 100 samples taken from separate data, not used
for training. We observe that even with only three parameters, the estimations are
quite good. For training data the average error (absolute difference between the real
and the estimated ozone concentration) is 11 IMECA or 12%, and for non-training
data it is 26 IMECA or 22%.

An interesting observation from the obtained structure is that ozone-Pedregal
(located in the south of the city) depends basically on three variables, ozone-Merced
and ozone-Xalostoc (located in the center and north of the city), and the wind veloc-
ity in Pedregal. Otherwise stated, pollution in the south depends basically on the
pollution in the center and north of the city (where there is more transit and industry)
and the wind velocity—which carries the pollution from the north to the south. This
phenomenon was already known, but it was discovered automatically by learning a
BN. Other, not so well-known relations, can also be discovered and could be useful
for making decisions to control pollution and take emergency measures.

8.6 Additional Reading

A general book on learning Bayesian networks is [7]; Heckerman [4] has
comprehensive tutorial on learning BNs. The tree and polytree learning algorithms
are described in [8]. A general introduction to learning BNs from a statistical per-
spective is given in [10]. An analysis of different scoring functions is presented
in [3].

8.7 Exercises

1. The table below gives the original data for the golf example using numeric values
for some of the variables. Discretize these variables using three intervals for each
variable: (a) use equal width discretization, (b) use equal data.
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Outlook Temperature Humidity Wind Play
Sunny 19 High 5 N
Sunny 25 High 3 N
Overcast 26 High 3 P
Rainy 17 High 6 P
Rainy 11 Normal 15 P
Rainy 7 Normal 17 N
Overcast 8 Normal 11 P
Sunny 20 High 7 N
Sunny 19 Normal 1 P
Rainy 22 Normal 5 P
Sunny 21 Normal 20 P
Overcast 22 High 18 P
Overcast 28 Normal 16 P
Rainy 18 High Yes 3

2. Using the discretized data from the previous problem, obtain the CPTs for the
Bayesian network structure given in Fig. 8.2.

3. Continue the EM algorithm for the example in Sect. 8.2.3.2 until convergence.
Show the final CPT, P(Wind | Play), and the final data table.

4. Based on the data for the golf example in Table8.2, learn the skeleton of a tree
BN using Chow and Liu’s algorithm.

5. Obtain the directions for the arcs of the skeleton from the previous problem by
applying the polytree learning technique.

6. Based on the same dataset from the previous problem, Table8.2, learn a BN
using the PC algorithm. Use the cross entropy measure (seen in Chap.2) for
testing conditional independence.

7. Given the dataset in the following table, (a) learn a naive Bayesian classifier
considering C as the class, (b) learn a tree-structured BN and fix the directions
of the arcs considering C as the root, (c) compare the structures of both models.

A1 A2 A3 C
0 0 0 0
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 0
0 1 1 0
1 1 0 1
0 0 0 1
0 1 0 0
0 1 1 0

http://dx.doi.org/10.1007/978-1-4471-6699-3_2
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8. For the dataset in the previous problem, use the Laplacian smoothing technique
to obtain the conditional probability tables for both, the NBC and the tree BN.
Compare the tables to the ones obtained without smoothing.

9. *** Develop a program that implements the polytree learning algorithm. Apply
it to the golf data and compare with the results from Exercise 2.

10. *** Implement a program for learning a BN from data using a score and search
technique based on the MDL scoring function, and another based on indepen-
dence tests (PC algorithm). Apply both to different datasets and compare the
results.

References

1. Chow,C.K., Liu, C.N.: Approximating discrete probability distributionswith dependence trees.
IEEE Trans. Inf. Theory 14, 462–467 (1968)

2. Cooper, G.F., Herskovitz, E.: A Bayesian method for the induction of probabilistic networks
from data. Mach. Learn. 9(4), 309–348 (1992)

3. De Campos, L.M.: A scoring function for learning Bayesian networks based on mutual infor-
mation and conditional independence tests. J. Mach. Learn. Res. 7, 2149–2187 (2006)

4. Heckerman, D.: A Tutorial on Learning with Bayesian Networks. Innovations in Bayesian
Networks, pp. 33–82. Springer, Netherlands (2008)

5. Lam, W., Bacchus, F.: Learning Bayesian belief networks: an approach based on the MDL
principle. Comput. Intell. 10, 269–293 (1994)

6. Martínez, M, Sucar, L.E.: Learning an optimal naive Bayes classifier. In: 18th International
Conference on Pattern Recognition (ICPR), vol. 3, pp. 1236–1239 (2006)

7. Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall, New Jersey (2004)
8. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, San Francisco (1988)
9. Rebane, G., Pearl, J.: The recovery of causal poly-trees from statistical data. In: Kanal, Laveen

N., Levitt, Tod S., Lemmer, John F. (eds.) Uncertainty in Artificial Intelligence, pp. 175–182
(1987)

10. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Springer, Berlin
(1993)

11. Sucar, L.E., Ruiz-Suarez, J.C.: Forecasting air pollution with causal probabilistic networks.
In: Barnett, V., Turkman, K.F. (eds.) Statistics for the Environment 3: Statistical Aspects of
Pollution, pp. 185–197. Wiley, Chichester (2007)



Chapter 9
Dynamic and Temporal Bayesian Networks

9.1 Introduction

Bayesian networks usually represent the state of certain phenomena at an instant in
time. However, in many applications, we want to represent the temporal evolution
of a certain process, that is, how the different variables evolve over time, known also
as time series.

There are two basic types of Bayesian network models for dynamic processes:
state based and event based. State-based models represent the state of each variable
at discrete time intervals, so that the networks consist of a series of time slices, where
each time slice indicates the value of each variable at time t ; these models are known
as dynamic Bayesian networks. Event-based models represent the changes in state
of each state variable; each temporal variable will then correspond to the time in
which a state change occurs. These types of models are known as event networks or
temporal networks.

In this chapter we will review both, dynamic Bayesian networks and temporal
networks, including representation, inference, and learning.

9.2 Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) are an extension of Bayesian networks tomodel
dynamic processes. A DBN consists of a series of time slices that represent the state
of all the variables at a certain time, t ; a kind of snapshot of the evolving temporal
process. For each temporal slice, a dependency structure between the variables at
that time is defined, called the base network. It is usually assumed that this structure
is duplicated for all the temporal slices (except the first slice, which can be different).
Additionally, there are edges between variables from different slices, with their direc-
tions following the direction of time, defining the transition network. Usually, DBNs
are restricted to have directed links between consecutive temporal slices, known as
a first-order Markov model; although, in general, this is not necessary. An example
of a DBN with 3 variables and 4 time slices is depicted in Fig. 9.1.
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Fig. 9.1 An example of a
DBN with 3 variables and 4
time slices. In this case, the
base structure is
X → S → E which is
repeated across the 4 time
slices

Most of the DBNs considered in practice satisfy the following conditions:

• First-order Markov model. The state variables at time t depend only on the state
variables at time t − 1 (and other variables at time t).

• Stationary process. The structure and parameters of the model do not change over
time.

DBNs can be seen as a generalization of Markov chains and hidden Markov
models (HMMs). A Markov chain is the simplest DBN, in which there is only one
variable, Xt , per time slice, directly influenced only by the variable in the previous
time. In this case, the joint distribution can be written as:

P(X1, X2, . . . , XT ) = P(X1)P(X2 | X1) . . . P(XT | XT −1) (9.1)

A hidden markov model has two variables per time stage, one that is known as the
state variable, S; and the other as the observation variable, Y. It is usually assumed
that St depends only on St−1 and Yt depends only on St. Thus, the joint probability
can be factored as follows:

P({S1:T , Y1:T }) = P(S1)P(Y1 | S1)
T∏

t=2

P(St | St−1)P(Yt | St ) (9.2)

Markov chains and HMMS are particular cases of DBNs, which in general can
have N variables per time step, with any base and transition structures. Another
particular variant of DBNs are Kalman Filters, which also have one state and one
observation variable, but both variables are continuous. The basic Kalman filter
assumesGaussian distributions and linear functions for the transition and observation
models.
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Table 9.1 Learning dynamic Bayesian networks: 4 basic cases

Structure Observability Method

Known Full Maximum likelihood
estimation

Known Partial Expectation–maximization
(EM)

Unknown Full Search (global) or tests (local)

Unknown Partial EM and global or local

9.2.1 Inference

There are several classes of inferences that can be performed with DBNs. In the fol-
lowing, we briefly mention the main types of inference, where X are the unobserved
(hidden) variables, and Y are the observed variables [9]:

• Filtering. Predict the next state based on past observations: P(Xt+1 | Y1:t ).
• Prediction. Predict future states based on past observations: P(Xt+n | Y1:t ).
• Smoothing.Estimate the current state based on past and future observations (useful
for learning): P(Xt | Y1:T ).

• Decoding. Find the most likely sequence of hidden variables given the observa-
tions: ArgMax(X1:T ) P(X1:T | Y1:T ).

Efficient inference methods have been developed for particular types of models,
such as HMMs [10] (see Chap. 5). However, for more complex models, inference
becomes computationally intractable. In these cases,we can apply approximatemeth-
ods based on sampling, such as Markov chain Monte Carlo [6]. A popular approxi-
mate method is particle filters, which approximate the state probability distribution
(belief state) with a set of weighted particles or samples [9].

9.2.2 Learning

As with BNs, learning dynamic Bayesian networks involves two aspects: (i) learning
the structure or graph topology and (ii) learning the parameters or CPTs for each
variable. Additionally, we can consider two cases in terms of the observability of the
variables: (a) full observability, when there is data for all the variables and (b) partial
observability, when some variables are unobserved or hidden, or we have missing
data. There are four basic cases for learning DBNs, see Table9.1.

For all the cases, we can apply extensions of the methods for parameter and struc-
ture learning for Bayesian networks that we reviewed in Chap.8. We describe one
of these extensions below, for the case of unknown structure and full observability.

http://dx.doi.org/10.1007/978-1-4471-6699-3_5
http://dx.doi.org/10.1007/978-1-4471-6699-3_8
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Fig. 9.2 Learning a DBN:
first, we obtain the base
structure (left), and then the
transition structure (right)

Assuming that the DBN is stationary (time invariant), we can consider that the
model is defined by two structures: (i) the base structure and (ii) the transition struc-
ture. Thus, we can divide the learning of a DBN into two parts, first learn the base
structure, and then, given the base structure, learn the transition structure, see Fig. 9.2.

For learning the base structure, we can use all the available data for each variable,
ignoring the temporal information. This is equivalent to learning a BN, so we can
apply any of the methods used for learning BNs (see Chap.8).

For learning the transition network, we consider the temporal information, in
particular the data for all variables in two consecutive time slices, Xt and Xt+1.
Considering the base structure, we can then learn the dependencies between the
variables at time t and t + 1 (assuming a first–order Markov model), and restricting
the direction of the edges from the past to the future.

Here, we have described in a simple, general way the two phases for learning a
DBN; however, there are several variants of this idea that have been developed (see
the additional readings section).

Aside from DBNs, there are some alternative BN representations for describing
temporal processes that have been developed. An example of a different type of
temporal Bayesian network is event networks [1, 5].

9.3 Temporal Event Networks

Temporal event networks (TENs) are an alternative to DBNs for modeling dynamic
processes. In a temporal event network, a node represents the time of occurrence
of an event or state change of certain variable, in contrast to a node in a DBN that
represents the state value of a variable at a certain time. For some problems, in which
there are few state changes in the temporal range of interest, event networks provide
a simpler and more efficient representation; however, for other applications such as
monitoring or filtering, DBNs are more appropriate.

Several variants of TENs have been proposed, such as time nets and temporal
nodes Bayesian networks (TNBNs). In the rest of this section we will focus on
TNBNs.

http://dx.doi.org/10.1007/978-1-4471-6699-3_8
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9.3.1 Temporal Nodes Bayesian Networks

A Temporal Nodes Bayesian Network (TNBN) [1, 5] is composed of a set of Tem-
poral Nodes (TNs). TNs are connected by edges, where each edge represents a
causal–temporal relationship between TNs. There is at most one state change for
each variable (TN) in the temporal range of interest. The value taken by the variable
represents the interval in which the event occurs. Time is discretized in a finite num-
ber of intervals, allowing a different number and duration of intervals for each node
(multiple granularity). Each interval defined for a child node represents the possible
delays between the occurrence of one of its parent events (cause) and the correspond-
ing child event (effect). Some Temporal Nodes do not have temporal intervals, these
correspond to Instantaneous Nodes. Root nodes are instantaneous by definition [1].
Formally, a TNBN is defined as follows.

A TNBN is defined as a pair B = (G,Θ). G is a Directed Acyclic Graph,
G = (V, E). G is composed of V, a set of Temporal and Instantaneous Nodes; E a
set of edges between Nodes. The Θ component corresponds to the set of parameters
that quantify the network. Θ contains the values Θvi = P(vi |Pa(vi )) for each
vi ∈ V; where Pa(vi ) represents the set of parents of vi in G.

A Temporal Node, vi , is defined by a set of states S, each state is defined by an
ordered pair S = (λ, τ ), where λ is the value of a random variable and τ = [a, b]
is the interval associated, with an initial value a and a final value b. These values
correspond to the time interval in which the state change occurs. In addition, each
Temporal Node contains an extra default state s = (“no change”,∅), which has no
interval associated. If a Node has no intervals defined for any of its states, then it
receives the name of Instantaneous Node.

The following is an example based on [1]:

Example 9.1 Assume that at time t = 0, an automobile accident occurs, that is,
a Collision. This kind of accident can be classified as severe, moderate, or mild.
To simplify the model, we will consider only two immediate consequences for the
person involved in the collision: Head Injury and Internal Bleeding. A Head Injury
can bruise the brain and chest injuries can lead to internal bleeding. These are all
instantaneous events that may generate subsequent changes; for example, the head
injury event might generate dilated pupils and unstable vital signs. Suppose that we
gathered information about accidents that occurred in a specific city. The information
indicates that there is a strong causal relationship between the severity of the accident
and the immediate effect of the patient’s state. Additionally, a physician domain
expert provided some important temporal information: If a head injury occurs, the
brain will start to swell and if left unchecked the swelling will cause the pupils to
dilate within 0–60 min. If internal bleeding begins, the blood volume will start to
fall, which will tend to destabilize vital signs. The time required to destabilize vital
signs will depend on the severity of the bleeding: if the bleeding is gross, it will take
from 0 to 15min; if the bleeding is slight it will take from 15 to 45min. A head injury
also tends to destabilize vital signs, taking from 0 to 15 min to make them unstable.
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Fig. 9.3 A TNBN for the accident example. C = Collision, HI = Head Injury, IB = Internal
Bleeding, DP = Dilated Pupils, and VS = Vital Signs

The graphical representation of a TNBN for the accident example is shown in
Fig. 9.3. The model presents three instantaneous nodes: Collision, Head Injury and
Internal Bleeding. These events will generate subsequent changes that are not im-
mediate: Dilated Pupils and unstable Vital Signs, which depend on the severity of
the accident, and therefore have temporal intervals associated to them. This TNBN
contains only 5 nodes (in contrast to the 25 nodes that would be required for the
equivalent DBN).

In TNBNs, each variable represents an event or state change. So, only one (or
a few) instance(s) of each variable is required, assuming there is one (or a few)
change(s) of a variable’s state in the temporal range of interest. No copies of the
model are needed, and no assumption about the Markovian nature of the process is
made. TNBNs can deal with multiple granularity, because the number and the size
of the intervals for each node can be different.

9.3.1.1 Inference

A TNBN allows for reasoning about the probability of occurrence of certain events,
for diagnosis (i.e., finding the most probable cause of a temporal event) or prediction
(i.e., determining the probable future events that will occur given a certain event). For
this, standard probability propagation techniques for standard BNs (see Chap. 7) can
be applied. However, given that a TNBN represents relative times between events,
the cases of prediction and diagnosis have to be differentiated for doing probabilistic
inference:

Prediction. In the case where at least one of the root (instantaneous) nodes of
the TNBN is part of the evidence, then the time reference for the model is fixed
and probability propagation can be performed directly, obtaining the posterior
probability of the subsequent events (a probability for each temporal interval

http://dx.doi.org/10.1007/978-1-4471-6699-3_7
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of each non-instantiated temporal node). For example, considering the example
in Fig. 9.3, if we know the severity of the Collision (e.g. moderate), then via
probability propagation we obtain the posterior probability of the event Dilated
Pupils occurring during each temporal interval and not occurring at all (False).
The posterior probability of other temporal and instantaneous nodes is obtained
in a similar manner. Note that the time intervals of the TNs will be with respect
to the occurrence of the Collision, which will correspond to t = 0.

Diagnosis. In the case where none of the instantaneous nodes are known, and
the evidence is given only for temporal nodes, then several scenarios need to be
considered, as we do not know to which interval to assign the evidence given
that there is no time reference. In this case, all the n possible intervals for the
TN have to be considered, performing inference n times, one for each interval.
The results for each scenario have to be maintained, until there is additional ev-
idence, such as the occurrence of another event, that allows for discarding some
scenarios. Considering the accident example of Fig. 9.3, assume that a paramedic
arrives and finds that the person has his Pupils Dilated. As the time of the ac-
cident is unknown, then the evidence must be given to all the three temporal
intervals for this variable, generating 3 scenarios. If later on, the time of the
accident is determined, then the appropriate scenario is kept and the others are
discarded.

9.3.1.2 Learning

Learning a TNBN involves three aspects: (i) learning the temporal intervals for
the temporal nodes, (ii) learning the structure of the model, and (iii) learning the
parameters of the model. As these three components are interrelated, an iterative
procedure is required, that learns an initial estimate of one (or more) of these aspects,
and then improves these initial estimates iteratively. Next, we present an algorithm
for learning the three components of a TNBN [7].

The algorithm assumes that the root nodes are instantaneous nodes and it obtains
a finite number of non overlapping intervals for each temporal node. It uses the
times (delays) between parent events and the current node as input for learning the
intervals. With this top–down approach the algorithm is guaranteed to arrive at a
local maximum in terms of predictive score. The algorithm initially assumes that
the structure of the network is known, and later the structure learning component is
incorporated.

A learning algorithm (known as LIPS) [7] for TNBNs is summarized as follows:

1. First, it performs an initial discretization of the temporal variables, for exam-
ple using an Equal-Width discretization. With this process it obtains an initial
approximation of the intervals for all the Temporal Nodes.

2. Then it performs standard BN structural learning. Specifically, the K2 learning
algorithm [3] (seeChap.8) is used to obtain an initial structure and corresponding
parameters.

http://dx.doi.org/10.1007/978-1-4471-6699-3_8


168 9 Dynamic and Temporal Bayesian Networks

Table 9.2 Initial sets of intervals obtained for the node Dilated Pupils

Partition Intervals

Head Injury = true [11-35]

[11–27] [32–53]

[8–21] [25–32] [45–59]

Head Injury = false [3–48]

[0–19] [39–62]

[0–14] [28–40] [47–65]

There are three sets of intervals for each partition

3. The interval learning algorithm refines the intervals for each temporal node (TN)
by means of clustering. For this, it uses the information of the configurations
of the parent nodes. To obtain a set of intervals a Gaussian mixture model is
used as a clustering algorithm for the temporal data. Each cluster corresponds,
in principle, to a temporal interval. The intervals are defined in terms of the mean
and the standard deviation of the clusters. The algorithm obtains different sets of
intervals that are merged and combined, this process generates different interval
sets that will be evaluated in terms of the predictive accuracy. The algorithm
applies two pruning techniques in order to remove sets of intervals that may
not be useful and also to keep a low complexity for the TNBN. The best set
of intervals (which may not be those obtained in the first step) for each TN is
selected based on predictive accuracy. When a TN has as parents other Temporal
Nodes, the configurations of the parent nodes are not initially known. In order to
solve this problem, the intervals are sequentially selected in a top–down fashion
according to the TNBN structure.

4. Finally, the parameters (CPTs) are updated according to the new set of intervals
for each TN.

The algorithm then iterates between structure learning and interval learning.
We illustrate the process of obtaining the intervals for the TN Dilated Pupils (DP)

of Fig. 9.3 (the intervals in this example are different from those shown in the figure).
We can see that its parent node (Head Injury) has two configurations, true and false.
Thus, the temporal data of Dilated Pupils is divided into two partitions, one for each
configuration of the parent node. Then, for each partition, the first approximation
of the interval learning step of the previous algorithm is applied. The expectation-
maximization algorithm is applied to get Gaussian mixture models with parameters
1, 2, and 3 as the number of clusters. That gives six different sets of intervals, as
shown in Table9.2. Then each set of intervals is evaluated in terms of its prediction
performance to measure its quality and the set of intervals with the best score is
selected.

Nowwe present a complete example of the TNBN learning algorithm considering
that we have data for the accident example illustrated in Fig. 9.3. First we assume we
have data from other accidents that is similar to the one presented in the upper part of
Table9.3. The first three columns have nominal data; however, the last two columns
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Table 9.3 Collected data to learn the TNBN of Fig. 9.3

Collision Head Injury Internal Bleeding Dilated Pupils Vital Signs

Severe True Gross 14 20

Moderate True Gross 25 25

Mild False False - -

… … … … …

Severe True Gross [10–20] [15–30]

Moderate True Gross [20–30] [15–30]

Mild False False - -

… … … … …

Top original data showing the time of occurrence of the temporal events. Bottom temporal data after
the initial discretization. For dilated pupils and vital signs the temporal data represents the minutes
after the collision occurred

have temporal data which represent the occurrence of those events after the collision.
Those two columns would correspond to Temporal Nodes of the TNBN. We start
by applying the equal-width discretization on the numerical data, so it would yield
results similar to the ones presented in the lower part of Table9.3.

Using the discretized data, we can apply a structure learning algorithm (like K2)
using the partial ordering of the temporal events: {Collision}, {Head Injury, Internal
Bleeding}, and {Dilated Pupils, Vital Signs}. Now we have an initial TNBN; how-
ever, the obtained intervals are somewhat naive, so the interval learning step of the
algorithm can be applied to improve the initial temporal intervals. This process will
learn a TNBN similar to the one presented in Fig. 9.3.

9.4 Applications

We illustrate the application of dynamic BN models in two domains. First, dynamic
Bayesian networks are used for dynamic gesture recognition. Then, temporal event
networks are used for predicting HIV mutational pathways.

9.4.1 DBN: Gesture Recognition

Dynamic Bayesian networks provide an alternative to HMMs for dynamic gesture
recognition. They have the advantage of greater flexibility in terms of the struc-
ture of the models. In this section we consider a particular type of DBN known as
dynamic Bayesian network classifier (DBNC) [2]. Similarly to HMMs, a DBNC has
a hidden state variable for each time instant, St ; however, the observation variable is
decomposed into m attributes, A1

t , . . . , Am
t , which are assumed to be conditionally
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Fig. 9.4 Graphical Representation of a DBNC with 3 attributes unrolled two times

independent given St . Thus, the base structure for a DBNC has a star-like structure
with the directed links from St to each attribute Ai

t (see Fig. 9.4).
The joint probability of a DBNC can be factored as follows:

P({S1:T , A1:T }) = P(S1)

[
M∏

m=1

P(Am
1 | S1)

]
T∏

t=2

P(St | St−1)

[
M∏

m=1

P(Am
t | St )

]

(9.3)
where A = A1, . . . , Am .

The difference with the joint probability of a HMM is that instead of having
P(At | St ), we have the product of each attribute given the state,

∏M
m=1 P(Am

t | St ).
Parameter learning and classification with DBNCs are done in a similar manner as

with HMMs, using a modified version of the Baum-Welch and Forward algorithms,
respectively.

9.4.1.1 Gesture Recognition with DBNCs

DBNC have been applied for recognizing different hand gestures oriented to com-
mand a mobile robot. A set of 9 different gestures were considered; a key frame
for each type of gesture is illustrated in Fig. 9.5. Initially, the hand of the per-
son performing the gesture is detected and tracked using a camera and specialized
vision software. A rectangle approximates the position of the hand in each image in
the sequence, and from these rectangles a set of features is extracted which are the
observations for the DBNCs.

The features include motion and posture information, including in total seven
attributes: (i) three features to describe motion and (ii) four to describe posture.
Motion features are Δarea—or changes in the hand area-, Δx and Δy -or changes in
hand position on the XY-plane of the image. The conjunction of these three attributes
allows us to estimate hand motion in the Cartesian space, XYZ. Each one of these
features takes only one of three possible values: +,−, 0, that indicate increment,
decrement, or no change, depending on the area and position of the hand in the
previous image of the sequence.
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Fig. 9.5 Types of gestures considered in the experiments: a come, b attention, c stop, d right, e left,
f turn left, g turn right, h waving-hand and i pointing; j initial and final position for each gesture

Posture features named form, right, above, and torso describe hand orientation
and spatial relations between the hand and other body parts, such as the face and
torso. Hand orientation is represented by form. This feature is discretized into one
of three values: + if the hand is vertical, − if the hand is horizontal, or 0 if the hand
is leaning to the left or right over the XY plane. right indicates if the hand is to the
right of the head, above if the hand is above the head, and torso if the hand is in
front of the torso. These three latter attributes take binary values, true or false, that
represent if their corresponding condition is satisfied or not. An example of posture
extraction in terms of these variables is depicted in Fig. 9.6.

As with HMMs, a DBNC is trained for each type of gesture; and for classification
the probability of each model is evaluated and the one with the highest probability
is selected as the recognized gesture.

9.4.1.2 Experiments

Three experiments were done to compare classification and learning performances
of DBNCs and HMMs. In the first experiment, gestures taken from the same person
are used for recognition. In the second experiment, the generalization capabilities
of the classifiers are evaluated by training and testing with gestures from different
people. Experiment three considers gestures with variations on distance and rotation.
Additionally, the DBNC and HMMmodels using only motion, and using motion and
posture information were compared. The number of hidden states in each model was
varied between 3 and 18.

For the first experiment, 50 executions of each type of gesture by one individual
were recorded; 20 samples were used for training and 30 for testing. In the second
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Fig. 9.6 The image illustrates the posture features. It shows that the hand has a vertical position,
below the head, to the right of the user and not over the user’s torso. Thus, the attribute values are
above = false, right = true, torso = false, and form = +

experiment, themodels learned for one personwere evaluated with gestures executed
byother 14persons, 2 samples per person for eachgesture class. For the experiment on
distance variation, 15 sampleswere randomly extracted for each gesture performed at
2 and 4m, giving a test set of 30 samples per gesture. Similarly, for rotation variation,
15 random samples of each gesture at +45 and −45 degrees were used.

An important difference between the DBNCs and the HMMs is the number of
parameters that are required for each model. The number of parameters to specify
state observation distributions of HMMs with posture-motion features is 648 and
with only motion data is 27. With DBNCs, parameters are 21 in the former case, and
12 in the latter case. This significant reduction in the number of parameters for the
DBNC has an important impact in the training time, as well as in the classification
accuracy when the number of training instances is low.

In the case of the experiments with the same person using motion and posture
attributes, bothHMMsandDBNCs obtain a very good performance,with recognition
rates between 96 and 99%, depending on the number of states (best results with
12–15 states). DBNCs obtain slightly better recognition results, but with a significant
reduction in training time, about ten times faster than HMMs.

For the experiments with multiple people, as expected the performance of both,
HMMs and DBNCs decreases, to about 86% recognition with motion-posture at-
tributes. If only motion attributes are used, the performance is in the order of 65%,
about 20 points less than when incorporating posture! As with most classification
problems, the selection of the appropriate set of attributes is critical.
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In the case of the third experiments, variations in distance and orientation also have
an impact in the recognition rates, with the second aspect having a greater effect.
Varying the distance from the camera to the user between 2 and 4m, reduces the
recognition rate to about 90% (single user); if the orientation is varied in the interval
between +45 and −45 degrees, the performance goes down to approx. 70%. In both
situations, the results with HMMs and DBNCs are similar in terms of performance.

Experimental results show the competitiveness in terms of recognition rates of
DBNCs in comparison to standard HMMs in various issues in gesture recognition.
Attribute factorization allows an important decrease on training time for a DBNC in
comparison with equivalent HMMs, this allows online learning of gestures. Addi-
tionally, DBNCs require less training examples to achieve a similar performance as
the corresponding HMMs, in particular when the number of attributes increases.

9.4.2 TNBN: Predicting HIV Mutational Pathways

In this section,we explore the application of TNBNs to uncover the temporal relation-
ships between drug-resistance mutations of the HIV virus and antiretroviral drugs,
unveiling possible mutational pathways and establishing their probabilistic-temporal
sequence of appearance [8].

The human immunodeficiency virus (HIV) is one of the fastest evolving organ-
isms on the planet. Its remarkable variation capabilitymakesHIV able to escape from
multiple evolutionary forces naturally or artificially acting on it, through the devel-
opment and selection of adaptive mutations. This is the case of antiretroviral therapy
(ART), a strong selective pressure acting on HIV that, under suboptimal conditions,
readily selects for mutations that allow the virus to replicate even in the presence of
highly potent antiretroviral drug combinations. In particular, we address the problem
of finding mutation–mutation and drug–mutation associations in individuals receiv-
ing antiretroviral therapy. We have focused on protease inhibitors (PIs), a family of
antiretroviral drugs widely used in modern antiretroviral therapy. The development
of drug-resistant viruses compromises HIV control, with a consequent further deteri-
oration of the patient’s immune system. Hence, there is interest in having a profound
understanding of the dynamics of appearance of drug-resistance mutations.

Historical data from HIV patients was used to learn a TNBN, and then this model
was evaluated in terms of the discovered relationships according to a domain expert
and its predictive power.

9.4.2.1 Data

Clinical data from 2373 patients with HIV subtype B was retrieved from the HIV
Stanford Database (HIVDB) [11]. The isolates in the HIVDB were
obtained from longitudinal treatment profiles reporting the evolution of mutations
in individual sequences. For each patient, data consisted of an initial treatment
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(a combination of drugs) administered to the patient and a list of laboratory re-
sistance tests at different times (in weeks). Each test included a list of the most
frequent mutations in the viral population within the host at a specific time after the
initiation of treatment. An example of the data is presented in Table9.4. The number
of studies available varied from 1 to 10 studies per patient history.

Antiretrovirals are usually classified according to the enzyme that they target. We
focused on the viral protease, as this is the smallest of the viral enzymes in terms
of number of aminoacids. Nine protease inhibitors are currently available, namely:
Amprenavir (APV), Atazanavir (ATV), Darunavir (DRV), Lopinavir (LPV), Indi-
navir (IDV), Nelfinavir (NFV), Ritonavir (RTV), Tripanavir (TPV), and Saquinavir
(SQV).

To test the ability of the model for predicting clinically relevant data, a subset of
patients from the original dataset was selected, including individuals that received
ART regimes including LPV, IDV, and SQV. Relevant major drug-resistance mu-
tations associated with the selected drugs were included. The mutations selected
were: V32I, M46I, M46L, I47V, G48V, I54V, V82A, I84V, and L90M. Since we
used a subset of drugs, the number of patients in the final dataset was reduced to 300
patients.

9.4.2.2 Model and Evaluation

ATNBNwas learned from the reducedHIVDBwith the learning algorithmdescribed
in Sect. 9.3. Two modifications to the original algorithm were made, one to measure
the strength of the temporal-probabilistic relations, and another to vary the variable
order given to the structure learning algorithm (K2), so the results are not biased by
a particular predefined order.

In order to evaluate the models and to measure the statistical significance of edge
strengths, non-parametric bootstrapping was used (obtaining several models). Two
thresholds were defined for considering a relation as important. A strong relation
was defined as one that appeared in at least 90% of the graphs, and a suggestive
relation was defined as one that occurred with values between 70 and 90%. Since the
approach for selecting the drugs and mutations is based on experts opinions, we used
a more elaborate way to obtain the order for the K2 algorithm. For this experiment,

Table 9.4 An example of the data

Patient Initial Treatment List of Mutations Time (Weeks)

Pat1 LPV, FPV, RTV L63P, L10I 15

V77I 25

I62V 50

Pat2 NFV, RTV, SQV L10I 25

V77I 45

Patient Pat1 with 3 temporal studies, and patient Pat2 with two temporal studies
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different orderings for the K2 algorithmwere considered and the one with the highest
predictive accuracy was selected.

Figure9.7 depicts theTNBNobtained.Thegreennodes represent the antiretroviral
drugs, and the yellow nodes the mutations. For each mutation (temporal nodes), the
associated temporal intervals with the probability of occurrence of the mutation in
that interval are shown. Arcs that suggest a strong relation are marked with a ∗.

The model was able to predict clinically relevant associations between the chosen
drugs and mutations. Indeed, a strong association between SQV, G48V, and I84V
was readily predicted in the model, although no temporal associations were observed
between the two mutations. All three drugs showed direct associations with L90M
reflecting the fact that this mutation causes cross-resistance to many members of the
PI family. Remarkably, the two possible mutational pathways for LPV resistance [8]
were predicted:

• I54V → V32I → I47V
• L90M → M46IL → I84V

Whether the temporal order of mutations is relevant, still needs to be further
evaluated. Also, the sharedmutational pathway between IDV and LPVwas observed,
involving mutations L90M, M46IL, I54V, V82A, and I84V.

Fig. 9.7 The learned TNBN model that depicts the temporal-probabilistic relations between a set
of antiretroviral drugs (upper 3 nodes) and relevant HIV mutations (other nodes). An arc labeled
with a * represents a strong relation. Only a few sets of intervals associated with their respective
temporal nodes are shown
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9.5 Additional Reading

Acomprehensive review of dynamicBayesian networks is presented in [9]. Friedman
et al. [4, 6] include techniques for learningDBNs.Temporal nodesBayesiannetworks
are introduced in [1], and extended with canonical temporal models in [5]. The
algorithm for learning a TNBN is described in [7].

9.6 Exercises

1. Given the DBN in Fig. 9.1, consider that it is a stationary model. Which para-
meters are required for the complete specification of the model?

2. Assuming that all the variables are binary (false, true), specify the CPTs for the
previous exercise (define the probabilities arbitrarily, just satisfying the proba-
bility axioms).

3. Given the DBN in Fig. 9.1, and the CPTs for the previous exercise: (a) obtain
the posterior probability of Xt+1 given Xt = St = true (filtering), (b) obtain
the posterior probability of Xt+2 and Xt+3 given Xt = St = true (prediction),
(c) obtain the posterior probability of Xt+1 given Et = Et+1 = Et+2 = f alse
(smoothing).

4. Consider the TNBN in Fig. 9.3. Define the CPTs for all the variables according
to the values/intervals shown in the figure. Specify the parameters according to
your intuition (subjective estimates).

5. Considering the structure and parameters for the TNBN of the previous exercise,
obtain the posterior probability of all the variables given the evidence C =
moderate using probabilistic inference (you can apply any of the inference
techniques for BNs).

6. Repeat the previous problem considering as evidence DP = dilated. As the
relative time of occurrence of this event is not known, consider the different
possible scenarios. Which scenario will apply if we later find out that the pupils
became dilated 4 time units after the accident?

7. Modify the inference (forward) and learning (Baum–Welch) algorithms for
HMMs (see Chap.5) so that they can be applied to dynamic Bayesian network
classifiers.

8. *** Search for data sets in different dynamic domains to learn dynamic Bayesian
models (see next exercises). For example, stock exchange data, weather data,
medical longitudinal studies, etc. Determine, according to each application,
which type of model, state based or event based, is more appropriate.

9. *** Develop a program that learns a DBN considering a two phase procedure:
first learn the initial structure and parameters (for t = 0); then learn the transition
structure and parameters (for t = k + 1 given t = k).

10. ***Develop a program that implements theLIPS algorithm for learning TNBNs.

http://dx.doi.org/10.1007/978-1-4471-6699-3_5
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Part III
Decision Models

Probabilistic graphical models that involve decisions are presented in this
part. These models involve, besides random variables, decision variables and
utilities; and their aim is to help decision makers to take the best decisions under
uncertainty. One chapter is dedicated to models that have one or few decisions;
while the other chapter focuses on sequential decision problems in which many
decisions have to be taken over time.



Chapter 10
Decision Graphs

10.1 Introduction

The models that were covered in Part II have only random variables, so they can
be used for estimating the posterior probability of a set of variables given some
evidence; for example, for classification, diagnosis, or prediction. They can also
provide the most probable combination of values for a subset of variables (most
probable explanation) or the global probability of themodel given some observations.
However, they cannot be directly used to make decisions.

In this, and the following chapter, we will present decision models, whose aim is
to help the decision-maker to choose the best decisions under uncertainty. We will
consider that the best decisions are those that maximize the expected utility of an
agent, given its current knowledge (evidence) and its objectives, under a decision-
theoretic framework. These types of agents are known as rational agents.

After a brief introduction to decision theory, in this chapter we will describe two
types of modeling techniques for problems with one or few decisions: decision trees
and influence diagrams. As in the case of probabilistic models, these techniques
take advantage of the dependency structure of the problem to have a more compact
representation and a more efficient evaluation.

10.2 Decision Theory

Decision Theory provides a normative framework for decision-making under uncer-
tainty. It is based on the concept of rationality, that is, that an agent should try to
maximize its utility or minimize its costs. This assumes that there is some way to
assign utilities (usually a number that can correspond to monetary value or any other
scale) to the result of each alternative action, such that the best decision is the one that
has the highest utility. In general, an agent is not sure about the results of each of its
possible decisions, so it needs to take this into account when it estimates the value of
each alternative. In decision theory we consider the expected utility, which makes an

© Springer-Verlag London 2015
L.E. Sucar, Probabilistic Graphical Models,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-6699-3_10

181
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average of all the possible results of a decision, weighted by their probability. Thus,
in a nutshell, a rational agent must select the decision that maximizes its expected
utility.

Decision theory was initially developed in economics and operations research
[11], but in recent years has attracted the attention of artificial intelligent (AI)
researchers interested in understanding and building intelligent agents. These intelli-
gent agents, such as robots, financial advisers, intelligent tutors, etc., must deal with
similar problems such as those encountered in economics and operations research,
but with twomain differences. One difference has to dowith the size of the problems,
which in artificial intelligence tend to be much larger, in general, than in traditional
applications in economics. The othermain difference has to dowith knowledge about
the problem domain. In many AI applications a model is not known in advance, and
could be difficult to obtain.

10.2.1 Fundamentals

The principles of decision theory were initially developed in the classic text by
Von Neuman and Morgensten, Theory of Games and Economic Behavior [11]. They
established a set of intuitive constraints that should guide the preferences of a rational
agent, which are known as the axioms of utility theory. Before we list these axioms,
we need to establish some notation. In a decision scenario there are four elements:

Alternatives: Are the choices that the agent has and are under his control. Each
decision has at least two alternatives (e.g., to do or not do some action).

Events: Are produced by the environment or by other agents; they are outside of
the agent’s control. Each random event has at least two possible results, although
we do not know in advance which result will occur, we can assign a probability
to each one.

Outcomes: Are the results of the combination of the agent’s decisions and the
random events. Each possible outcome has a different preference (utility) for the
agent.

Preferences: These are established according to the agent’s goals and objectives
and are assigned by the agent to each possible outcome. They establish a value
for the agent for each possible result of its decisions.

In utility theory, the different scenarios are called lotteries. In a lottery each
possible outcomeor state, A, has a certain probability, p, and an associated preference
to the agent which is quantified by a real number, U . For instance, a lottery L with
two possible outcomes, A with probability p, and B with probability 1 − p, will be
denoted as:

L = [p, A; 1 − p, B]
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If an agent prefers A rather than B it is written as A � B, and if it is indifferent
between both outcomes it is denoted as A ∼ B. In general a lottery can have any
number of outcomes; an outcome can be an atomic state or another lottery.

Based on these concepts, we can define utility theory in an analogous way as
probability theory by establishing a set of reasonable constraints on the preferences
for a rational agent; these are the axioms of utility theory:

Order: Given two states, an agent prefers oneor the other or it is indifferent between
them.

Transitivity: If an agent prefers outcome A to B and prefers B to C , then it must
prefer A to C .

Continuity: If A � B � C , then there is some probability p such that the agent
is indifferent between getting B with probability one, or the lottery L = [p, A;
1 − p, C].

Substitutability: If an agent is indifferent between two lotteries A and B, then the
agent is indifferent between two more complex lotteries that are the same except
that B is substituted for A in one of them.

Monotonicity: There are two lotteries that have the same outcomes, A and B. If the
agent prefers A, then it must prefer the lottery in which A has higher probability.

Decomposability: Compound lotteries can be decomposed into simple ones using
the rules of probability.

Then, the definition of a utility function follows from the axioms of utility.
Utility Principle: If an agent’s preferences follow the axioms of utility, then there

is a real-valued utility function U such that:

1. U (A) � U (B) if and only if the agent prefers A over B,
2. U (A) = U (B) if and only if the agent is indifferent between A and B.

Maximum Expected Utility Principle: The utility of a lottery is the sum of the
utilities of each outcome multiplied by its probability:

U [P1, S1; P2, S2; P3, S3; ...] =
∑

j

PjU j

Based on this concept of a utility function, we can now define the expected utility
(EU) of a certain decision D taken by an agent, considering that there are N possible
results of this decision, each with probability P:

EU (D) =
N∑

j=1

P(result j (D))U (result j (D))

The principle of Maximum Expected Utility states that a rational agent should
choose an action that maximizes its expected utility.
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10.2.1.1 Utility of Money

In many cases it seems natural to measure utility in monetary terms; the more money
we make based on our decisions, the better. Thus, we can think of applying the
maximum expected utility principle measuring utility in terms of its monetary value.
But this is not as straightforward as it seems.

Suppose that you are participating in a game, such as those typical TV shows,
and that you have already won one million dollars. The host of the game asks you
if you want to keep what you have already won and finish your participation in the
game, or continue to the next stage and gain $3,000,000. Instead of asking some
difficult question, the host will just flip a coin and if it lands on heads you will get
three million, but if it lands on tails you will loose all the money you have already
won. You have to make a decision with two options: (D1) keep the money you have
already won, (D2) go to the next stage, with a possibility of winning three million
(or loosing everything). What will your decision be?

Let us see what the principle of maximum expected utility will advise us if we
measure utility in dollars (known asExpected Monetary Value or EMV).We calculate
the EMV for both options:

D1: EMV(D1) = 1 × $1,000,000 = $1,000,000
D2: EMV(D2) = 0.5 × 0 + 0.5 × $3,000,000 = $1,500,000

Thus, it seems that if we want to maximize the expected utility in terms of dollars
we must take the bet. However, most of us would probably select to keep the one
million that we already have and not take the risk of loosing it! What is the reasoning
behind this? Are we not being rational?

The relation between utility and monetary value is not linear for most people;
instead they have a logarithmic relation which denotes risk aversion (see Fig. 10.1).
It is approximately linear for low values of money (for instance, if we have $10
instead of $1,000,000 on the line, we will probably go for the bet); but once we have
a large amount of money (the amount will depend on each individual), the increase
in utility given more money is no longer linear.

The utility–monetary value relation varies from person to person (and organiza-
tions) depending on their perception of risk; there are three basic types: risk aversion,
risk neutral, and risk seeking; these are depicted in Fig. 10.1.

Fig. 10.1 The graphs show
typical relations between
utility (U) and monetary
value ($). Top: risk seeking,
middle: neutral, bottom: risk
averse
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Although it seems straightforward to apply the principle of maximum expected
utility to determine the best decision, as the decision problemsbecomemore complex,
involving several decisions, events and possible outcomes, it is not as easy as it
seems and a systematic approach is required to model and solve complex decision
problems.One of the earliestmodeling tools developed for solving decision problems
are decision trees [1].

10.3 Decision Trees

A decision tree is a graphical representation of a decision problem, which has three
types of elements or nodes that represent the three basic components of a decision
problem: decisions, uncertain events, and results.

A decision node is depicted as a rectanglewhich has several branches, each branch
represents each of the possible alternatives present at this decision point. At the end
of each branch there could be another decision point, an event, or a result.

An event node is depicted as a circle, and also has several branches, each branch
represents one of the possible outcomes of this uncertain event. These outcomes
correspond to all the possible results of this event, that is, they should be mutually
exclusive and exhaustive. A probability value is assigned to each branch, such that
the sum of the probabilities for all the branches is equal to one. At the end of each
branch there could be another event node, a decision node or a result.

The results are annotatedwith the utility they express for the agent, and are usually
at the end of each branch of the tree (the leaves).

Decision trees are usually drawn from left to right, with the root of the tree (a
decision node) at the extreme left, and the leaves of the tree to the right. An example of
a hypothetical decision problem (based on an example in [6]) is shown in Fig. 10.2.
It represents an investment decision with 3 alternatives: (i) Stocks, (ii) Gold, and
(iii) No investment. Assuming that the investment is for one year, if we invest in
stock, depending on how the stock market behaves (uncertain event), we could gain
$1000 or loose $300, both with equal probability. If we invest in gold, we have to
make another decision, to have insurance or not. If we get insurance, then we are
sure to gain $200; otherwise we win or loose depending on if the price of gold is
up, stable, or down; this is represented as another event. Each possible outcome has
a certain value and probability assigned, as shown in Fig. 10.2. What should the
investor decide?

To determine the best decision for each decision point, according to the maximum
expected utility principle, we need to evaluate the decision tree. The evaluation of a
decision tree consists in determining the values of both types of nodes, decision and
event nodes. It is done from right to left, starting from any node that has only results
for all its branches:
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• The value of a decision node D is the maximum value of all the branches that
emanate from it:

V (D) = max jU (result j (D)).

• The value of an event node E is the expected value of all the branches that emanate
from it, obtained as the weighted sum of the result values multiplied by their
probabilities:

V (E) =
∑

j

P(result j (E))U (result j (E))

Following this procedure we can evaluate the decision tree of Fig. 10.2:

Event 1—Market Price: V (E1) = 1000 × 0.5 − 300 × 0.5 = 350.
Event 2—Gold Price: V (E2) = 800 × 0.7 + 100 × 0.2 − 200 × 0.1 = 560.
Decision 2—Insurance: V (D2) = max(200, 560) = 560 – No insurance.
Decision 1—Investment: V (D1) = max(150, 560, 0) = 560 – Invest in Gold.

Thus, in this case the best decisions are to invest in gold without insurance.
Decision trees are a tool for modeling and solving sequential decision problems,

as decisions have to be represented in sequence as in the previous example. However,
the size of the tree (number of branches) grows exponentially with the number of
decision and event nodes, so this representation is practical only for small problems.
An alternative modeling tool is the Influence Diagram [3, 8], which provides a
compact representation of a decision problem.

Fig. 10.2 An example of a decision tree (see text for details)
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10.4 Influence Diagrams

Influence Diagrams (IDs) are a tool for solving decision problems that were intro-
duced by Howard and Matheson [3] as an alternative to decision trees to simplify
modeling and analysis. From another perspective, we can view IDs as an extension
of Bayesian networks that incorporates decision and utility nodes. In the following
sections we present a brief introduction to IDs, including their representation and
basic inference techniques.

10.4.1 Modeling

An influence diagram is a directed acyclic graph,G, that contains nodes that represent
random, decision, and utility variables:

Random nodes (X): represent random variables as in BNs, with an associated CPT.
These are represented as ovals.

Decision nodes (D): represent decisions to be made. The arcs pointing toward a
decision node are informational; that is, it means that the random or decision node
at the origin of the arc must be known before the decision is made. Decision nodes
are represented as rectangles.

Utility nodes (U): represent the costs or utilities associated to the model. Asso-
ciated to each utility node there is a function that maps each permutation of its
parents to a utility value. Utility nodes are represented as diamonds. Utility nodes
can be divided into ordinary utility nodes, whose parents are random and/or deci-
sion nodes; and super-value utility nodes,whose parents are ordinary utility nodes.
Usually, the super-value utility node is the (weighted) sum of the ordinary utility
nodes.

There are three types of arcs in an ID:

Probabilistic: they indicate probabilistic dependencies, pointing toward random
nodes.

Informational: they indicate information availability, pointing toward decision
nodes. That is, X → D indicates that value of X is known before the decision D
is taken.

Functional: they indicate functional dependency, pointing toward utility nodes.

An example of an ID is depicted in Fig. 10.3, which gives a simplified model for the
problem of determining the location of a new airport, considering that the probability
of accidents, the noise level and the estimated construction costs are the factors that
directly affect the utility.

In an ID theremust be a directed path in the underlying directed graph that includes
all the decision nodes, indicating the order in which the decisions are made. This
order induces a partition on the random variables in the ID, such that if there are
n decision variables, the random variables are partitioned into n + 1 subsets. Each
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Fig. 10.3 A simplified model of the airport location problem represented as a simple ID. The
decision node represents the different options for the location of a new airport, and the utility node
represents the utility (or cost) which depends on several factors, which in turn depend on other
random variables

subset, Ri, contains all the random variables that are known before decision Di and
unknown for previous decisions. Some of the algorithms for evaluating influence
diagrams take advantage of these properties to make the evaluation more efficient.

IDs are used to aid a decision-maker in finding the decisions that maximize its
expected utility. That is, the goal in decision analysis is to find an optimal policy,
π = {d1, d2, ..., dn}, which selects the best decisions for each decision node to
maximize the expected utility, Eπ (U ). If there are several utility nodes, in general
we consider that we have additive utility, so we will maximize the sum of these
individual utilities:

Eπ (U ) =
∑

ui ∈U

Eπ (ui ) (10.1)

10.4.2 Evaluation

Evaluating an influence diagram is finding the sequence of best decisions or optimal
policy. First, we will see how we can solve a simple influence diagram with only one
decision; then we will cover general techniques for solving IDs.

We define a simple influence diagram as one that has a single decision node and
a single utility node. For this case we can simple apply BN inference techniques to
obtain the optimal policy following this algorithm:

1. For all di ∈ D:

a. Set D = di .
b. Instantiate all the known random variables.
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c. Propagate the probabilities as in a BN.
d. Obtain the expected value of the utility node, U .

2. Select the decision, dk , that maximizes U .

For more complex decision problems in which there are several decision nodes,
the previous algorithm becomes impractical. In general, there are three main types
of approaches for solving IDs:

• Transform the ID to a decision tree and apply standard solution techniques for
decision trees.

• Solve the ID directly by variable elimination, applying a series of transformations
to the graph.

• Transform the ID to a Bayesian network and use BN inference techniques.

Next, we describe the second and third approaches.

10.4.2.1 Variable Elimination

The variable elimination algorithm [8] is based on evaluating the decision nodes one
by one according to a certain order. Decision nodes that have been evaluated can be
eliminated from the model, and this process continues until all the decision nodes
have been evaluated. To apply this technique the influence diagram must be regular;
that is, it satisfies the following conditions:

1. The structure of the ID is a directed acyclic graph.
2. The utility nodes do not have successors.
3. There is a directed path in the underlying directed graph that includes all the

decision nodes, indicating the order in which the decisions are made.

In general, to evaluate the decision nodes, it is necessary to perform a series
of transformations to the ID; these transformations are guaranteed to preserve the
optimal series of decisions or optimal policy. The possible transformations are the
following:

• Eliminate barren nodes, random or decision nodes that are leaf nodes in the
graph—they do not affect the decisions.

• Eliminate random nodes that are parents of the utility node and do not have other
children—the utility is updated according to the value of the node (if the node is
not instantiated, then the expected utility is calculated).

• Eliminate decision nodes that are parents of the utility node where their parents are
also a parent to the utility node—evaluate the decision node and take the decision
that maximizes the expected utility; modifying accordingly the utility function.

• In case none of the previous operations can be applied, invert an arc between two
random variables. To invert an arc between nodes i and j it is required that there
be no other trajectory between these nodes. Then the arc i → j is inverted and
each node inherits the parents of the other node.
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Fig. 10.4 An example of the
variable elimination
algorithm: initial influence
diagram

We illustrate graphically the variable elimination algorithm with an example.
Assume that we initially have the ID depicted in Fig. 10.4. We can eliminate the
barren random node at the bottom left; when this node is eliminated, its parent also
becomes a barren node, which is also eliminated and we obtain the ID shown in
Fig. 10.5.

Next we eliminate the randomnode on the top, parent of the utility node absorbing
it in the utility, and we then evaluate the first decision, that is, the decision node at
the bottom, resulting in the ID seen in Fig. 10.6.

Then we invert the arc between the two remaining random nodes, so we can
eliminate the bottom random node, obtaining the model shown in Fig. 10.7. From
this graphwe can evaluate the decision node on the right, then eliminate the remaining
random node, and finally evaluate the decision node to the left.

Fig. 10.5 An example of the
variable elimination
algorithm: after eliminating
two barren nodes
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Fig. 10.6 An example of the
variable elimination
algorithm: after the
evaluation of the first
decision

Fig. 10.7 An example of the
variable elimination
algorithm: after arc inversion
and elimination of a random
node

Next, we describe an alternative evaluation technique for IDs that take advantage
of the efficient inference algorithms that have been developed for BNs.

10.4.2.2 Transformation to a BN

The idea to reduce an ID to aBNwas originally proposed byCooper [2]. To transform
an ID to a BN, the basic idea is to transform decision and utility nodes to random
nodes, with an associated probability distribution. A decision node is converted to
a discrete random variable by considering each decision, di , as a value for this
variable, and using a uniform distribution as a CPT (a decision node has no parents
as all incoming arcs are informational). A utility node is transformed to a binary
random variable by normalizing the utility function so it is in the range from 0 to 1,
that is:

P(ui = 1 | Pa(ui )) = val(Pa(ui ))/maximum(val(Pa(ui ))) (10.2)

where Pa(ui ) are the parents of the utility node in the ID, and val is the value assigned
to each combination of values of the parent nodes.

After the previous transformation, and considering a single utility node, the prob-
lem of finding the optimal policy is reduced to finding the values of the decision
nodes that maximize the probability of the utility node: P(u = 1 | D, R), where
D is the set of decision nodes, and R is the set of the other random variables in
the ID. This probability can be computed using standard inference techniques for
BNs; however, it will require an exponential number of inference steps, one for each
permutation of D.
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Given that in a regular ID the decision nodes are ordered, a more efficient evalua-
tion can be done by evaluating the decisions in (inverse) order [9]. That is, instead of
maximizing P(u = 1 | D, R), we maximize P(D j | u = 1, R). We can recursively
optimize each decision node, D j , starting from the last decision, continuing with the
previous decision, and so on, until we reach the first decision. This gives a much
more efficient evaluation procedure. Additional improvements have been proposed
to the previous algorithms based on decomposable IDs (see the additional readings
section).

Traditional techniques for solving IDs make two important assumptions:

Total ordering: all the decisions follow a total ordering according to a directed
path in the graph.

Non-forgetting: all previous observations are remembered for future decisions.

These assumptions limit the applicability of IDs to some domains, in particular
temporal problems that involve several decisions at different times. In some domains,
such as in medical decision-making, a total ordering of the decisions is an unrealistic
assumption since there are situations in which the decision-maker does not know in
advance what decision should be made first to maximize the expected utility. For a
system that evolves over a large period of time, the number of observations grows
linearly with the passing of time, so the non-forgetting requirement implies that the
size of policies grows exponentially.

10.4.3 Extensions

10.4.3.1 Limited Memory Influence Diagrams

In order to avoid the previous limitations of IDs, Lauritzen and Nilsson [5] proposed
limitedmemory influence diagrams (LIMIDs) as an extension of influence diagrams.
The term limited memory reflects the property that a variable known when making
a decision is not necessarily remembered when making a posterior decision. Elim-
inating some variables reduces the complexity of the model so it is solvable with a
computer, although at the price of obtaining a suboptimal policy.

10.4.3.2 Dynamic Decision Networks

Another extension is applied for sequential decision problems that involve several
decisions over time. As with BNs, we can consider decision problems in which a
series of decisions have to be taken at different time intervals; this type of problem
is known as a sequential decision problem. A sequential decision problem can be
modeled as a dynamic decision network (DDN)—also known as a dynamic influence
diagram which can be seen as an extension of a DBN, with additional decision and
utility nodes for each time step, see Fig. 10.8.
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Fig. 10.8 An example of a
dynamic decision network
with 4 decision epochs

In principle, we can evaluate a DDN in the same way as an ID, considering that
the decisions have to be ordered in time. That is, each decision node Dt has incoming
informational arcs from all previous decision nodes, Dt−1, Dt−2, etc. However, as
the number of time epochs increases, the complexity increases and can become
computationally intractable. Additionally, in some applications we do not know in
advance the number of decision epochs, so in principle there might be an infinite
number of decisions.

DDNs are closely related to Markov decision processes which are the topic of the
next chapter.

10.5 Applications

The application of decision graphs is exemplified with a system for assisting elderly
or handicapped persons in washing their hands.

10.5.1 Decision-Theoretic Caregiver

The objective of the caregiver is to guide a person in completing a task using an
adequate selection of prompts. We consider the particular task of cleaning one’s
hands. The system acts as a caregiver that guides an elderly or handicapped person
in performing this task correctly [7].

The relevant objects in the washstand environment are: soap, faucet, and towel.
The system detects the behavior of the user when interacting with these objects. Then
it chooses an action (we use audible prompts) to guide the user to complete a task,
or it may simply say nothing (null action) if the user is performing the sequence of
steps required correctly.
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10.5.1.1 Model

A DDN is used to model the user’s behavior and make the optimal decisions at
each time step based on the user’s behavior (observations) and the objectives of the
system (utilities). As optimal actions might involve evaluating the model many steps
in advance until the task of washing the hands is completed, a compromise between
optimality and efficiency is obtained by analyzing k steps in advance (lookahead).
For this, the optimal decisions for k decision nodes are obtained by solving the DDN
with one of the techniques presented previously in this chapter. In this case the DDN
was transformed to a DBN and solved using BN inference.

The DDN for this scenario is illustrated in Fig. 10.9. In this model, the state
variables (S) represent the activity of the user at each time step, which are not directly
observable. The observation nodes (O) represent the information obtained from a
vision system used to recognize the activity being performed by the user. The action
nodes (A) correspond to the different actions (prompts) that can be selected by the
controller at each time. Finally, the rewards (R) represent the immediate reward that
depends on the current state and preferred action. These elements of the model are
described in detail below.

States. The state space is characterized by the activities (hand gestures) carried out
by a person. In this case, the state variable has 6 possible values: s1 = opening
the faucet, s2 = closing the faucet, s3 = using the soap, s4 = drying the hands,
s5 = taking the towel, and s6 = washing the hands.

Observations. These correspond to the information obtained by a visual gesture
recognition system [7] that tries to recognize the activity performed by the person
while washing their hands. The observation values are the same as the state values.

Actions. Actions are audible prompts to help the person complete the task. There
are 8 actions that correspond to the possible prompts considered by the system:

Fig. 10.9 A 4 stage dynamic
decision network that models
the caregiver scenario. St
represents the activity of the
user, Ot corresponds to
the observed activity, At
is the action selected, and Rt
the immediate reward
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a1 = open the faucet, a2 = close the faucet, a3 = put soap on the hands, a4 = wash
the hands, a5 = take the towel, a6 = dry the hands, a7 = Null, and a8 = call for
help.

Rewards. Rewards are associated with the preferences of the different actions
selected by the system. In the caregiver setting, we must consider the prompts, clar-
ity of the prompts and user’s response. Three different reward values were used: +3
indicates a preference,−3 indicates a penalty, and−6 is used for selecting the action
call for help. The idea is that asking for help should be the last option.

Additionally, the model requires two conditional probability tables: the transition
function, P(St+1 | St ) and the observation function, P(Ot | St ):

Transition function. The transition function defines the probability of the next state
(next gesture) given the current state and action. In this setting this is predictable,
with some degree of uncertainty. The transition functions were defined subjectively.

Observation function. In this case, the observation function consists of the prob-
ability of the observed gesture given the state, that is, the actual gesture. It can be
easily obtained from the confidence (confusion matrix) of the gesture recognition
system.

It is assumed that the model is time invariant, that is, that the previous CPTs do
not change over time.

10.5.1.2 Evaluation

The model was evaluated in terms of its: (i) sensitivity relative to the number of
stages or lookahead, (ii) efficiency in terms of the time required to solve the model
for selecting the next action, and (iii) performance, comparing the actions selected
by the system with a human caregiver.

The DDN was solved with 2 to 11 stages, and the actions selected under different
scenarios were compared for the different model sizes. The expected utility increases
as the lookahead is increased, tending to stabilize after 6 or 7 stages. However, the
selected actions do not vary after a lookahead of 4, so this value was selected.

The model with 4 times stages (4 decision nodes) was evaluated in terms of its
response time, and it could be solved in about 3 seconds with a standard personal
computer. Thus, this number of stages provides a good compromise between perfor-
mance and efficiency.

To evaluate the quality of the actions selected by the system, its decisions were
compared to those of a human performing the same task. A preliminary evalua-
tion was done with normal persons simulating that they had problems washing their
hands. Ten adults participated in the experiment, divided in two groups, 5 each (test
and control). The first group was guided to complete the task of washing their hands
by verbal prompts given by the system, the control group was guided by verbal
instructions given by a human assistant. The aspects evaluated in a questionnaire
given to each participant were: (i) clarity of the prompt, (ii) detail of the prompt,
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Table 10.1 Results obtained in the caregiver setting, where a person simulating memory problems
is guided to complete the activity of cleaning their hands

Human System

Clarity 4.4 3.9

Detail 4.6 3.6

Effectiveness 4.2 3.6

It compares the decisions of a human assistant and the decision-theoretic system based on a DDN.
The evaluation scale is from 1 (worst) to 5 (best)

and (iii) effectiveness of the system. Detail of the prompt refers to the level of speci-
ficity. Clarity considers the user’s ease of understanding the message. Effectiveness
evaluates the system’s guidance for the successful completion of the task.

The results obtained are summarized in Table10.1. The results indicate a small
advantage when the best prompt is selected by a human, however, the difference
between the system and human controller is not considerable. Two aspects show a
small difference (0.6 or less), and one shows a more significant difference (detail
of the prompt). This last aspect has to do with the verbal phrase recorded to be
associated with each prompt, which could be easily improved; and not so much with
the decisions of the system.

10.6 Additional Reading

The original reference on influence diagrams is the book by Howard and Matheson
[3]. The book by Jensen includes decision networks [4]. Decision trees are described
in [1]. The elimination algorithm for evaluating influence diagrams is presented in [8];
the alternative evaluation technique based on a transformation to a BN is described
in [2]. Limited memory influence diagrams are introduced in [5] and extended to
dynamic models in [10].

10.7 Exercises

1. Define a function for utility in terms ofmonetary value considering risk aversion,
such that the optimal decision for the example of Sect. 10.2.1.1 is to keep the
money (D1) when calculating the expected utility for both possible decisions.

2. Consider the decision tree in Fig. 10.2. The futures on the stock market have
changed, and now the potential gain has increased to $3000. Also, the insurance
price for gold has increased to $600. After applying these changes to the deci-
sion tree, reevaluate it. Have the decisions changed with respect to the original
example?

3. Define the required CPTs for the influence diagram of Fig. 10.3. Consider two
possible airport locations, LocA and LocB , and that all the random variables are
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binary: traffic = {low, high}, demand = {no, yes}, construction = {simple,
complex}, accidents = {very − low, low}, noise = {low, medium}, costs =
{medium, high}. Define the parameters according to your intuition and following
the axioms of probability.

4. For the ID of Fig. 10.3 define a utility function in terms of the accidents, noise
and costs, using the same values as in the previous exercise: (a) Define it as a
mathematical function, U = f (accidents, noise, costs). (b) Define it as a table.

5. Based on the parameters and utilities of the previous two exercises, evaluate
the ID of Fig. 10.3 by calculating the utility function for each possible location,
considering there is no evidence. Which is the best location according to the
model?

6. Repeat the previous exercise for different scenarios, for instance: traffic =
low, demand = no, construction = simple; and traffic = high, demand = yes,
construction = complex. Does the optimal location change under the different
scenarios?

7. Consider the problem of deciding whether to take an umbrella according to the
weather forecast. There are two decisions for this problem: watch the weather
forecast (no, yes) and take the umbrella (no, yes); and one random variable:
weather = {sunny, light− rain, heavy− rain}. Model this problem as a decision
tree, establishing costs/utilities for the different scenarios, i.e.: take the umbrella
and sunny, take the umbrella and light rain, do not take the umbrella and heavy
rain, etc.

8. Define an influence diagram for the umbrella decision problem of the previous
exercise.

9. *** Develop a program that transforms an ID to a BN. Then use probabilistic
inference to evaluate the BN. Apply it to solve the airport location model using
the parameters and utilities defined in the previous exercises.

10. *** Investigate the procedure used to transform an ID to a decision tree. Apply
it to solve the airport location model.
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Chapter 11
Markov Decision Processes

11.1 Introduction

In this chapter, we will see how to solve sequential decision problems; that is, those
that involve a series of decisions over time. It is assumed that the decision agent
is rational, so the objective is to maximize the expected utility for the long term.
Considering that there is uncertainty in the results of the agent’s decisions, these
type of problems can be modeled as Markov decision processes (MDPs). By solving
the MDP model, we obtain what is known as a policy, which indicates to the agent
which action to select at each time step based on its current state; the optimal policy
is the one that selects the actions so that the expected value is maximized.

We will first formalize the MDP model, and then present two standard ways to
solve it: value iteration and policy iteration. Although the complexity of solving
an MDP is quadratic in terms of the number of state–actions, it could still become
impractical in terms of memory and time when the number of state–actions is too
large. Factored MDPs provide a representation based on graphical models to solve
very large MDPs.

Finally, we will introduce partially observable MDPs (POMDPs), in which there
is not only uncertainty in the results of the actions but also in the state.

11.2 Modeling

A Markov decision process (MDP) [13] models a sequential decision problem, in
which a system evolves over time and is controlled by an agent. The system dynamics
are governed by a probabilistic transition function Φ that maps states S and actions
A to new states S’. At each time, an agent receives a reward R that depends on the
current state s and the applied action a. By solving an MDP representation of the
problem,we obtain a recommendation strategy or policy that maximizes the expected
reward over time and that also deals with the uncertainty of the effects of an action.
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Fig. 11.1 A robot in the grid world. Each cell represents the possible states of the robot, with a
smiling face for the goal and a forbidden sign for danger. The robot is shown in a cell with the
arrows illustrating the probability for the next state given the action up

For example, consider an agent (a simulated robot) that lives in a grid world, so
the state of the robot is determined by the cell where it is; see Fig. 11.1. The robot
wants to go to the goal (cell with a smiling face) and avoid the obstacles and dangers
(filled cells and a forbidden sign). The robot’s possible actions are to move to the
neighboring cells (up, down, left, right). We assume that the robot receives a certain
immediate rewardwhen it passes through each cell, for instance+100when it arrives
to the goal, −100 if it goes to the forbidden cell (this could represent a dangerous
place), and −1 for all the other cells (this will motivate the robot to find the shortest
route to the goal).

Consider that there is uncertainty in the result of each action taken by the robot. For
example, if the selected action is up the robot goes to the upper cell with a probability
of 0.8 and with probability of 0.2 to other cells (left and right). This is illustrated
with the width of the arrows in Fig. 11.1. Having defined the states, actions, rewards,
and transition function, we can model this problem as an MDP.

The objective of the robot is to go to the goal cell as fast as possible and avoid the
dangers. This will be achieved by solving the MDP that represents this problem, and
maximizing the expected reward.1 The solution will provide the agent with a policy,
that is, what is the best action to perform in each state, as illustrated graphically (by
the arrows) for this small example in Fig. 11.2.

Formally, an MDP is a tuple M =< S, A, Φ, R >, where S is a finite set of
states {s1, . . . , sn}. A is a finite set of actions {a1, . . . , sm}. Φ : A × S × S → [0, 1]
is the state transition function specified as a probability distribution. The probability
of reaching state s′ by performing action a in state s is written as Φ(a, s, s′). R :
S × A → � is the reward function. R(s, a) is the reward that the agent receives if it
takes action a in state s.

Depending on howmuch into the future (horizon) we consider there are two main
types of MDPs: (i) finite horizon and (ii) infinite horizon. Finite horizon problems
consider that there exists a fixed, predetermined number of time steps for which

1This assumes that the defined reward function correctly models the desired objective.



11.2 Modeling 201

Fig. 11.2 The policy resulting from solving the MDP model is illustrated, with an arrow for each
cell indicating the optimal action

we want to maximize the expected reward (or minimize the cost). For example,
consider an investor that buys or sells actions each day (time step) and wants to
maximize his profit for a year (horizon). Infinite horizon problems do not have a
fixed, predetermined number of time steps, these could vary and in principle could
be infinite. This is the case for the robot planning problem in general, as initially the
number of movements (actions) that the robot will require to reach its goal or goals
is unknown.

In the rest of this chapter, we will focus on infinite horizon problems, as these are
more common in practice. They also have the advantage that under certain conditions
the optimal policy is stationary; that is, it only depends on the state and not on the
time step.

A policy, π , for an MDP is a function π : S → A that specifies for each state,
si , the action to be executed, ai. Given a certain policy, the expected accumulated
reward for a certain state, s, is known as the value for that state according to the
policy, V π (s); it can be calculated using the following recursive equation:

V π (s) = R(s, a) +
∑

s∈S

Φ(a, s, s′)V π (s′) (11.1)

where R(s, a) represents the immediate reward given action a, and
∑

s∈S Φ(a, s, s′)
V π (s′) is the expected value of the next states according to the chosen policy.

For the infinite horizon case, a parameter known as the discount factor, 0 ≤ γ < 1,
is included so that the sum converges. This parameter can be interpreted as giving
more value to the rewards obtained at the present time than those obtained in the
future.2

2This has an obvious value in the case of financial investments, related to the inflation or interest
rates. For other applications, there usually is not a clear way to determine the discount factor, and
in general, a value close to one, such as 0.9, is used.
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Including the discount factor, the value function is written as:

V π (s) = R(s, a) + γ
∑

s∈S

Φ(a, s, s′)V π (s′) (11.2)

What is desired is to find the policy thatmaximizes the expected reward; that is, the
policy that gives the highest value for all states. For the discounted infinite-horizon
case with any given discount factor γ , there is a policy π∗ that is optimal regardless
of the starting state and that satisfies what is known as the Bellman equation [2]:

V π (s) = maxa

{

R(s, a) + γ
∑

s∈S

Φ(a, s, s′)V π (s′)
}

(11.3)

The policy that maximizes the previous equation is then the optimal policy, π∗:

π∗(s) = argmaxa

{

R(s, a) + γ
∑

s∈S

Φ(a, s, s′)V π (s′)
}

(11.4)

The Bellman equation is a recursive equation that cannot be solved directly. How-
ever, there are several methods to solve it efficiently; these will be covered in the
next section.

11.3 Evaluation

There are three basic methods for solving an MDP and finding an optimal policy: (a)
value iteration, (b) policy iteration, and (c) linear programming [13]. The first two
techniques solve the problem iteratively, improving an initial value function or policy,
respectively. The third one transforms the problem to a linear program which can
then be solved using standard optimization techniques such as the simplex method.
We will cover the first two approaches; for more on the third one see the additional
reading section.

11.3.1 Value Iteration

Value iteration starts by assigning an initial value to each state; usually this value is
the immediate reward for that state. That is, at iteration 0, the Vo(s) = R(a, s). Then
these estimates of the values are improved in each iteration by maximizing using the
Bellman equation. The process is terminated when the value for all states converges,
this is when the difference between the values in the previous and current iterations is
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less than a predefined threshold. The actions selected in the last iteration correspond
to the optimal policy. The method is shown in Algorithm11.1.

Algorithm 11.1 The Value Iteration Algorithm.
1: ∀s V0(s) = R(s, a) {Initialization}
2: t = 1
3: repeat
4: ∀s Vt (s) = maxa{R(s, a) + γ

∑
s∈S Φ(a, s, s′)Vt−1(s′)} {Iterative improvement}

5: until ∀s | Vt (s) − Vt−1(s) |< ε

6: π∗(s) = argmaxa{R(s, a) + γ
∑

s∈S Φ(a, s, s′)Vt (s′)} {Obtain optimal policy}

The time complexity of the algorithm is quadratic in terms of the number of
state–actions.

Usually, the policy converges before the values converge; this means that there is
no change in the policy even if the value has not yet converged. This gives rise to the
second approach, policy iteration.

11.3.2 Policy Iteration

Policy iteration starts by selecting a random, initial policy (if we have certain domain
knowledge, this can be used to seed the initial policy). Then the policy is iteratively
improved by selecting the action for each state that increases the most the expected
value. The algorithm terminates when the policy converges, that is, the policy does
not change from the previous iteration. The method is shown is Algorithm11.2.

Algorithm 11.2 The Policy Iteration Algorithm.
1: π0 : ∀sa0(s) = ak {Initialize the policy}
2: t = 1
3: repeat
4: {Iterative improvement}
5: ∀s V πt−1

t (s) = {R(s, a) + γ
∑

s∈S Φ(a, s, s′)Vt−1(s′)} {Calculate values for the current pol-
icy}

6: ∀sπt (s) = argmaxa{R(s, a) + γ
∑

s∈S Φ(a, s, s′)Vt (s′)} {Iterative improvement}
7: until πt = πt−1

Policy iteration tends to converge in fewer iterations than value iteration, however
the computational cost of each iteration is higher, as the values have to be updated.

Solving small MDPs with the previous algorithms is very efficient; however it
becomes difficult when the state–actions space is very large. Consider, for instance,
a problem with 10,000 states and 10 actions, which is common in applications
such as robot navigation. In this case, the space required to store the transition
table will be 10,000 × 10,000 × 10 = 109; and updating the value function will
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require in the order of 108 operations per iteration. So solving very large MDPs
could become problematic even with current computer technology. An alternative is
to decompose the state space and take advantage of the independence relations to
reduce the memory and computation requirements, using a graphical model-based
representation of MDPs known as Factored MDPs.

11.4 Factored MDPs

In a factored MDP, the set of states is described via a set of random variables
X = {X1, . . . , Xn}, where each Xi takes on values in some finite domain Dom(Xi ).
A state s defines a value xi ∈ Dom(Xi ) for each variable Xi . The transition model
and reward function can become exponentially large if they are explicitly represented
as matrices; however, the frameworks of dynamic Bayesian networks (see Chap.7)
and decision trees [14] give us the tools to describe the transition model and the
reward function concisely.

Let Xi denote a variable at the current time and X ′
i the variable at the next step.

The transition function for each action, a, is represented as a two–stage dynamic
Bayesian network, that is a two–layer directed acyclic graph GT whose nodes are
{X1, . . . , Xn, X ′

1, . . . , X ′
n}; see Fig. 11.3 (left). Each node X ′

i is associated with a
conditional probability distribution PΦ(X ′

i | Parents(X ′
i )), which is usually repre-

sented by a matrix (conditional probability table) or more compactly by a decision
tree. The transition probabilityΦ(a, si , s′

i ) is then defined to beΠi PΦ(x ′
i | ui)where

ui represents the values of the variables in Parents(X ′
i ).

The reward associated with a state often depends only on the values of certain
features of the state. The relationship between rewards and state variables can be
represented with value nodes in an influence diagrams, as shown in Fig. 11.3 (center).
The conditional reward table (CRT) for such a node is a table that associates a reward
with every combination of values for its parents in the graph. This table is exponential
in the number of relevant variables. Although in the worst case the CRT will take
exponential space to store the reward function, in many cases the reward function
exhibits structure allowing it to be represented compactly using decision trees or
graphs, as shown in Fig. 11.3 (right).

In many cases, the conditional probability tables (CPTs) in the DBN exhibit a
certain structure; in particular some probability values tend to be repeatedmany times
(such as a zero probability). Taking advantage of these properties, the representation
can be compacted even more by representing a CPT as a tree or a graph, such
that repeated probability values appear only once in the leaves of these graphs. A
particular presentation that is very efficient is an algebraic decision diagram orADD.
An example of a CPT represented as an ADD is depicted in Fig. 11.4.

The representation of the transition functions inMDPs as two-stageDBNs, and the
reward function as a DT with the further reduction of these based on trees or ADDs,
implies, in many cases, huge savings in memory for storing very large MDPs. An
example of this will be shown in the applications section of this chapter.

http://dx.doi.org/10.1007/978-1-4471-6699-3_7
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Fig. 11.3 Left ADBNwith five state variables that represents the transition function for one action.
Center Influence diagram denoting a reward function. Right Structured conditional reward (CR)
represented as a binary decision tree

Fig. 11.4 An example of a CPT represented as an algebraic decision diagram. Left two-stage DBN
representing the transition function. Center CPT for one of the variables. Right ADD representation
for the CPT—for each node, the right arrow corresponds to the value T and the left arrow to the
value F

Additionally, based on this compact representation, very efficient versions of
the value and policy iteration algorithms have been developed that also reduce the
computational time required to solve complex MDP models. An example of this is
the SPUDD algorithm [8].

Further reduction in computational complexity can be achieved using other tech-
niques, such as abstraction and decomposition, which are summarized below.
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11.4.1 Abstraction

The idea of abstraction is to reduce the state space by creating an abstract model
where states with similar features are grouped together [9].

Equivalent states are those that have the same transition and reward functions;
these can be grouped together without altering the original model, so that the optimal
policy will be the same for the reduced model. However, the state space reduction
achieved by only joining equivalent states is in general not significant; further reduc-
tions can be achieved by grouping similar states; this results in approximate models
and creates a tradeoff between the precision of the model (and the resulting policy)
and its complexity.

Different strategies have been used to create reduced, approximate models. One
is to partition the state space into a set of blocks such that each block is stable; that
is, it preserves the same transition probabilities as the original model [5]. Another
alternative is to partition the state space into qualitative states that have similar reward
functions [15].

11.4.2 Decomposition

Decomposition consists in dividing the global problem into smaller subproblems that
are solved independently and their solutions combined [4, 10]. There are two main
types of decomposition: (i) serial or hierarchical, and (ii) parallel or concurrent.

Hierarchical MDPs provide a sequential decomposition, in which different sub-
goals are solved in sequence to reach the final goal. That is, at the execution phase,
only one task is active at a given time. Hierarchical MDPs accelerate the solution
of complex problems by defining different subtasks that correspond to intermediate
goals, solving for each subgoal, and then combining these subprocesses to solve the
overall problem; examples of hierarchical approaches are HAM [11] and MAXQ
[6].

In concurrent or parallel MDPs, the subtasks are executed in parallel to solve the
global task. In general, these approaches consider that the task can be divided in
several relatively independent subtasks that can be solved independently and then
the solutions combined to solve the global problem. When the subtasks are not
completely independent some additional considerations are required. For instance,
Loosely Coupled MDPs [10] consider several independent subprocesses which are
coupled due to common resource constraints. To solve them they use an iterative
procedure based on a heuristic allocation of resources to each task. An alternative
approach is taken by [4], which initially solves each subtask independently, andwhen
the solutions are combined, they take into account potential conflicts between the
partial policies, and solve these conflicts to obtain a global, approximately optimal
policy. An example of the application of this last technique in robotics is given below
in Sect. 11.6.
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11.5 Partially Observable Markov Decision Processes

In some domains, the state cannot be observed completely, there is only partial
information about the state of the system; these type of problems are known as
partially observable Markov decision processes (POMDPs). In this case, there are
certain observations from which the state can be estimated probabilistically. For
instance, consider the previous example of the robot in the grid world. It could be that
the robot can not determine precisely the cell where it is (its state), but can estimate
the probability of being in each cell by observing the surrounding environment.
Such is the case in real mobile robot environments, where the robot cannot know
with precision its localization in the environment, only probabilistically by using its
sensors and certain landmarks.

Formally, a POMDP is a tuple M =< S, A, Φ, R, O,Ω,Π >. The first four
elements are the same as in an MDP. O is a finite set of observations {o1, . . . , ol}.
Ω : S×O → [0, 1] is the observation function specified as a probability distribution,
which gives the probability of an observation o given that the process is in state s,
P(o | s). Π is the initial state distribution that specifies the probability of being in
state s at t = 0.

In a POMDP, the current state is not known with certainty, only the probability
distribution of the state, which is known as the belief state. So solving a POMDP
requires finding a mapping form the belief space to the action space, such that the
optimal action is selected. This is equivalent to a continuous state space MDP. Thus,
solving a POMDP is much more difficult than solving an MDP, as the belief space
is in principle infinite.

Solving a POMDP exactly is computationally intractable except for very small
problems. As a result, several approximate solution techniques have been developed.
Some of themain types of approaches for finding approximate solutions to a POMDP
are the following:

Policy tree and DDN techniques: assuming a finite horizon, a POMDP can be rep-
resented as a policy tree (similar to a decision tree) or as a dynamic decision
network; then, algorithms for solving these types of models can be applied.

Sampling techniques: the value function is computed for a set of points in the
belief space, and interpolation is used to determine the optimal action to take for
other belief states which are not in the set of sampling points.

Value function approximation techniques: given that the value function is convex
and piece-wise linear, it can be described as a set of vectors (called α vectors).
Thus, it can be approximated by a set of vectors that dominate the others, and in
this way find an approximate solution.

The additional reading section gives pointers to more information on POMDPs.
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11.6 Applications

The application of MDPs is illustrated in two different domains. One is for assisting
power plant operators in the operation of a power plant under difficult situations. The
other is for coordinating a set of modules to solve a complex task for service robots.

11.6.1 Power Plant Operation

The steam generation system of a combined-cycle power plant provides superheated
steam to a steam turbine. It is composed by a recovery steamgenerator, a recirculation
pump, control valves, and interconnection pipes. A heat recovery steam generator
(HRSG) is a process machinery capable of recovering residual energy from a gas
turbine’s exhaust gases to generate high-pressure (Pd) steam in a special tank (steam
drum). The recirculation pump is a device that extracts residual water from the
steam drum to keep a water supply in the HRSG (Ffw). The result of this process
is a high-pressure steam flow (Fms) that keeps running a steam turbine to produce
electric energy (g) in a power generator. The main control elements associated are
the feedwater valve (fwv) and the main steam valve (msv).

During normal operation, a three-element feedwater control systemcommands the
feedwater control valve (fwv) to regulate the level (dl) and pressure (pd) in the drum.
However, this traditional controller does not consider the possibility of failures in the
control loop (valves, instrumentation, or any other process devices). Furthermore,
it ignores whether the outcomes of executing a decision will help, in the future, to
increase the steam drum lifetime, security, and productivity. The problem is to obtain
a function that maps plant states to recommendations for the power plant operator;
this function should consider all these aspects.

This problem was modeled as an MDP, which served as the basis for developing
a tool for training and assistance for power plant operators.

11.6.1.1 Power Plant Operator Assistant

AsistO [16] is an intelligent assistant that provides recommendations for training and
online assistance in the power plant domain. The assistant is coupled to a power plant
simulator capable of partially reproducing the operation of a combined-cycle power
plant.

AsistO is based on a decision-theoretic model that represents the main elements
of the steam generation system of a combined-cycle power plant. The main variables
in the steam generation system represent the state in a factored form. Some of these
variables are continuous, so they are discretized into a finite number of intervals.
The actions correspond to the control of the main valves in this subsystem of the
power plant, in particular those that have to do with controlling the level of the
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drum (a critical element of the plant): feedwater valve (fwv) and main steam valve
(msv). The reward function is defined in terms of a recommended operation curve
for the relation between the drum pressure and steam flow (see Fig. 11.5). The idea
is to maintain a balance between the efficiency and safety of the plant. As such, the
control actions should try to maintain the plant within this recommended operation
curve; if it deviates they should return it to a safe point; this is shown schematically
with arrows in Fig. 11.5.

The last element to be defined to complete the MDP model is the transition
function. In this application, it can be learned by using the power plant simulator
and sampling the state and action spaces. Once the MDP is built, it can be solved
to obtain the optimal policy, and from this, the system can give recommendations to
the operator under different plant conditions.

11.6.1.2 Experimental Results

A relatively simple example was considered with five state variables: Fms, Ffw,
Pd, g, d; and four actions: open/close the feedwater (fwv) and main steam (msv)
valves a certain amount. The reward functionwas defined based on the recommended
operation curve. To learn the transition function, samples of the system dynamics
were gathered using simulation.

The memory requirements for a flat MDP representation and a factored repre-
sentation were compared. The flat MDP required 589,824 parameters (probability
values) while the factoredMDP only 758. The optimal solution for the factoredMDP
was obtained in less than two minutes on a standard personal computer.

The recommended actions of the MDP controller and the traditional automatic
control were compared using the power plant simulator. The actions taken by both
are similar, however the MDP-based controller takes less time to return the plant to
a safe operating point when a disturbance occurs.

Fig. 11.5 Recommended
operation curve for the drum
of a combined-cycle power
plant, defining the desirable
relation between drum
pressure and steam flow. The
arrows illustrate
schematically the idea of the
recommender
system—returning the
operation to a safe relation
(circle) when the plant
deviates from the
recommended operation
curve
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11.6.2 Robot Task Coordination

Service robots are, in general, mobile robots developed for assisting humans in
different activities, such as helping a person to clean his home, assisting senior
citizens in nursing homes or taking medicines to a patient in a hospital. To perform
these types of tasks, a service robot should combine several capabilities, such as
localization and navigation, obstacle avoidance, people detection and recognition,
object recognition and manipulation, etc. To simplify the development of service
robots and promote reutilization, these different capabilities can be implemented as
independent software modules, which can then be combined for solving a particular
task, such as deliveringmessages or objects between people in an office environment.
In this case, it is necessary to coordinate the different modules to perform a task,
ideally in an optimal way.

Markov decision processes provide an appropriate framework for task coordina-
tion for service robots [7]. The state space can be defined in terms of a number of
variables that define the high-level situation of the tasks. The actions correspond to
commands (calls) to the different software modules, for instance indicating to the
navigator tomove the robot to a certain position in the environment. The reward func-
tion can be defined based on the objectives of the task. For example, for a message
delivery robot, a certain reward for when it receives a message from the sender, and
another, higher reward, when it delivers it to the recipient. Once a task is modeled
as an MDP, the MDP can be solved to obtain a policy to perform the task. This is in
general better than a traditional plan, as it provides a plan for any initial state (a kind
of general plan) and it is robust with respect to the uncertainty in the results of the
different actions.

Under this framework, based on general software modules and an MDP-based
coordinator, it is in principle relatively easy for a service robot to solve different
tasks. We just need to modify the MDP reward function according to the new task
objectives, and solve the modified MDP to obtain a policy for the other task.

Additionally, it is desirable for the robot to perform several actions simultaneously,
such as navigation to a certain location, avoiding obstacles and looking for people;
all at the same time. However, if we represent the robot task coordination problem
as a single MDP, we have to consider all possible combinations of all the possible
simultaneous actions. This implies an explosion in the action–state space and thus
an important increase in the complexity for solving the MDP. It also becomes much
more difficult to specify or learn the model.

An alternative is to model each subtask as an independent MDP, then solve each
MDP to obtain its optimal policy, and then execute these policies concurrently. This
approach is known as concurrent MDPs [4].
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11.6.2.1 Concurrent Markov Decision Processes

Based on functional decomposition, a complex task is partitioned into several sub-
tasks. Each subtask is represented as an MDP and solved independently, and the
policies are executed in parallel assuming no conflicts. All the subtasks have a com-
mon goal and can share part of the state space, that is represented in a factored form.
However, conflicts may arise between the subtasks.

There are twomain types of conflicts: (i) resource conflicts, and (ii) behavior con-
flicts. Resource conflicts occur when two actions require the same physical resource
(e.g., to control the wheels of a robot) and cannot be executed concurrently. This type
of conflict is solved offline by a two-phase process [3]. In the first phase, we obtained
an optimal policy for each subtask (MDP). An initial global policy is obtained by
combining the local policies, such that if there is a conflict between the actions
selected by eachMDP for a certain state, the one with maximum value is considered,
and the state is marked as a conflict state. This initial solution is improved in a second
phase using policy iteration. By taking the previous policy as its initial policy and
considering only the states marked as conflicts, the time complexity is drastically
reduced and a near-optimal global policy is obtained.

Behavior conflicts arise in situations in which it is possible to execute two (or
more) actions at the same time but it is not desirable given the application. For
example, it is not desirable for a mobile robot to be navigating and handing an object
to a person at the same time (this situation is also difficult for a person). Behavior
conflicts are solved online based on a set of restrictions specified by the user. If there
are no restrictions, all the actions are executed concurrently; otherwise, a constraint
satisfaction module selects the set of actions with the highest expected utility.

11.6.2.2 Experiments

An experimentwas donewithMarkovito, a service robot, which performed a delivery
task; conflicts were considered. Markovito is a service robot based on an ActivMedia
PeopleBot robot platform, which has laser, sonar, and infrared sensors; a camera, a
gripper and two computers (see Fig. 11.6) [1].

In the task considered forMarkovito, the goal is for the robot to receive and deliver
a message, an object or both, under a user’s request. The user gives an order to send
a message/object and the robot asks for the name of the sender and the receiver. The
robot either records a message or uses its gripper to hold an object, and navigates to
the receiver’s position for delivery. The task is decomposed into five subtasks, each
represented as an MDP:

1. navigation, the robot navigates safely in different scenarios;
2. vision, for looking and recognizing people and objects;
3. interaction, for listening and talking with a user;
4. manipulation, to receive and deliver an object safely; and
5. expression, to show emotions using an animated face.



212 11 Markov Decision Processes

Fig. 11.6 Markovito, a service robot

Each subtask is represented as a factored MDP:

Navigation: States: 256 decomposed into 6 state variables (located, has-place,
has-path, direction, see-user, listen-user). Actions: 4 (go-to, stop, turn, move).

Vision: States: 24 decomposed into 3 state variables (user-position, user-known,
user-in-db). Actions: 3 (look-for people, recognize-user, register-user).

Interaction: States: 9216 decomposed into 10 state variables (user-position, user-
known, listen, offer-service, has-petition, has-message, has-object, has-user-id,
has-receiver-id, greeting). Actions: 8 (hear, offer-service, get-message, deliver-
message, ask-receiver-name, ask-user-name, hello, bye).

Manipulation: States: 32 decomposed into 3 state variables (has-petition, see-user,
has-object). Actions: 3 (get-object, deliver-object, move-gripper).

Expression: States: 192 decomposed into 5 state variables (located, has-petition,
see-user, see-receiver, greeting). Actions: 4 (normal, happy, sad, angry).
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Table 11.1 Restriction set for the messenger robot

Action(s) Restriction Action(s)

get message not_during turn OR advance

ask_user_name not_before recognize_user

recognize_user not_start avoid_obstacle

get_object directed toward

OR not_during OR turn

deliver_object OR moving

Note that several state variables are common to two or more MDPs. If we represent
this task as a single, flat MDP, there are 1,179,648 states (considering all the non-
duplicated state variables) and 1,536 action combinations, giving a total of nearly
two billion state-actions. Thus, to solve this task as a single MDP will be difficult
even for state of the art MDP solvers.

The MDP model for each subtask was defined using a structured representa-
tion [8]. The transition and reward functions were specified by the user based on task
knowledge and intuition. Given that theMDP for each subtask is relatively simple, its
manual specification is not too difficult. In this task, conflicts might arise between the
different subtasks, so we need to include conflict resolution strategies. The conflicts
considered are behavior conflicts, so these are solved based on a set of restrictions,
which are summarized in Table11.1.

For comparison, the delivery task was solved under two conditions: (i) without
restrictions and (ii) with restrictions.

In the case without restrictions, all actions can be executed concurrently, but the
robot performs some undesirable behaviors. For example, in a typical experiment,
the robot is not able to identify the person who wants to send a message for a long
time, after which it is able to complete the task. This is because the vision MDP
cannot get a good image to analyze and recognize the user because the navigation
MDP is moving trying to avoid the user. Also, because of this, the user has to follow
the robot to provide an adequate input to the microphone.

In the case where restrictions were used, these allowed a more fluid and efficient
solution. For example, in a similar experiment as without restrictions, the vision
MDP with the restriction set is now able to detect and recognize the user much
earlier. When the interaction MDP is activated, the navigation MDP actions are not
executed, allowing an effective interaction and recognition.

On average, the version with restrictions takes about 50% of the time steps
required by the version without restrictions to complete the task. In summary, by
considering conflicts via restrictions, not only does the robot perform the expected
behavior, but it also has more robust performance, avoids conflicts, and displays a
significant reduction in the time required to complete the task.
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11.7 Additional Reading

Puterman [13] is an excellent reference for MDPs, including their formal definition
and the different solution techniques. A recent overview of decision-theoretic models
and their applications is given in [18]. Reference [12] reviews MDPs and POMDPs.
The representation of MDPs using ADDs and SPUDD are described in [8]. A review
of different approaches for solving POMDPs is presented in [17].

11.8 Exercises

1. For the grid world example of Fig. 11.1, consider that each cell is a state and that
there are four possible actions: up, down, left, right. Complete the specification
of the MDP, including the transition and reward functions.

2. Solve the MDP for the previous exercise by value iteration. Initialize the values
for each state to the immediate reward, and show how the values change with
each iteration.

3. Solve the grid world MDP using policy iteration. Initialize the policy to up for
all states. Show how the policy changes with each iteration.

4. Define a factored representation for the grid world example, considering that
a state is represented in terms of two variables, row and column. Specify the
transition function as a two-stage DBN and the reward function as a decision
tree.

5. Consider a grid world scenario in which the grid is divided in several rooms and
a hallway that connects the rooms. Develop a hierarchical solution to the robot
navigation for this scenario, considering one MDP to go from any cell in a room
to the door that connects to the hallway, other MDP that navigates through the
hallway from one door to another, and a third MDP to navigate from the door
entering a room to the goal in the room. Specify eachMDP and then a high-level
controller that coordinates the low-level policies.

6. Develop a solution to the grid navigation problem based on two concurrent
MDPs, one that navigates toward the goal (without considering obstacles) and
another that avoids obstacles. Specify the model for each of these two subtasks
and how to combine their resulting policies to navigate to the goal and avoid
obstacles. Does the solution always reach the goal or can it get stuck in local
maxima?

7. Prove that the solution to the Bellman equation using value iteration always
converges.

8. *** Develop a general program that implements the value iteration algorithm.
9. ***Develop a program to solve the grid world robot navigation problem, includ-

ing a graphical interface to define the size of the grid, the obstacles and the
position of the goal. Considering a high positive reward for the goal cell, high
negative rewards for the obstacles, and small negative rewards for the other cells,
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represent the problem as an MDP and obtain the optimal policy using value
iteration.

10. *** When the model for an MDP is not known, an alternative is to learn the
optimal policy by trial and error with reinforcement learning. Investigate the
basic algorithms for reinforcement learning, such as Q-learning, and implement
a program to learn a policy to solve the robot navigation problem for the grid
world example of Fig. 11.1 (use the same rewards as in the example). Is the
policy obtained the same as the solution to the MDP model?
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Part IV
Relational and Causal Models

The fourth and last part of the book describes two interesting extensions to prob-
abilistic graphical models: relational probabilistic models and causal graphical
models. Relational probabilistic models increase the representational power of
standard PGMs, by combining the expressive power of first-order logic with the
uncertain reasoning capabilities of probabilistic models. Causal graphical models
go beyond representing probabilistic dependencies, to express cause and effect
relations, based on the same framework of graphical models.



Chapter 12
Relational Probabilistic Graphical Models

12.1 Introduction

The standard probabilistic graphical models that have been covered until now, have
to represent explicitly each object in the domain, so they are equivalent in terms of
their logical expressive power to propositional logic. However, there are problems
in which the number of objects (variables) could increase significantly, so a more
expressive (compact) representation is desirable. Consider, for instance, that wewant
to model a student’s knowledge of a certain topic (this is known as student modeling
or, in general, user modeling), and that we want to include in the model all of the
students in a college, where each student is enrolled in several topics. If wemodel this
explicitly with a PGM such as a Bayesian network, it could become a huge model,
difficult to acquire and store. Instead, it would be more efficient if in some way we
could have a general model that represents the dependency relations for any student,
S and any course, C , which could then be parameterized for particular cases. This
can be done using predicate logic; however, standard logical representations do not
consider uncertainty. Thus, a formalism is required that combines predicate logic
and probabilistic models.

Relational probabilistic graphicalmodels (RPGMs) combine the expressive power
of predicate logic with the uncertain reasoning capabilities of probabilistic graph-
ical models. Some of these models extend PGMs such as Bayesian networks or
Markov networks by representing objects, their attributes, and their relations with
other objects. Other approaches extend the logic-based representations, in order to
incorporate uncertainty, by describing a probability distribution over logic formulas.

Different formalismshave beenproposed to combine logic andPGMs.Wepropose
a taxonomy for the classification of RPGMs (inspired and partially based on [5]):

1. Extensions of logic models

a. Undirected graphical models
i. Markov Logic Networks
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b. Directed graphical models
i. Bayesian Logic Programs
ii. Bayesian Logic Networks

2. Extensions of probabilistic models

a. Undirected graphical models
i. Relational Markov Networks
ii. Relational Dependency Networks

b. Directed graphical models
i. Relational Bayesian Networks
ii. Probabilistic Relational Models

3. Extensions of programming languages

a. Stochastic Logic Programs
b. Probabilistic Inductive Logic programming
c. Bayesian Logic (BLOG)
d. Probabilistic Modeling Language (IBAL)

In this chapter we will review two of them. One, probabilistic relational models
[3], extends Bayesian networks to incorporate objects and relations, as in a relational
database. The other are Markov logic networks [11], which add weights to logical
formulas, and can be considered as an extension of Markov networks. First, a brief
review of first-order logic is presented, then we describe the two relational proba-
bilistic approaches, and finally we illustrate their application in two domains: student
modeling and visual object recognition.

12.2 Logic

Logic is a very well-studied representation language with well-defined syntax
and semantic components. Here we only include a concise introduction, for more
extensive references see the additional reading section. We will start by defining
propositional logic, and then go into first-order logic.

12.2.1 Propositional Logic

Propositional logic allows us to reason about expressions or propositions that are
True (T) or False (F). For instance, Joe is an engineering student. Propositions are
denoted with capital letters, such as P, Q, …, known as atomic propositions or atoms.
Propositions are combined using logic connectives or operators, obtaining what are
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known as compound propositions. The logic operators are:

• Negation: ¬
• Conjunction: ∧
• Disjunction: ∨
• Implication: →
• Double implication ↔
For example, if P = “Joe is an engineering student” and Q = “Joe is young,” then
P ∧ Q means “Joe is an engineering student AND Joe is young.”

Atoms and connectives can be combined according to a set of syntactic rules; valid
combinations are known as well-formed formulas (WFF). A well-formed formula in
propositional logic is an expression obtained according to the following rules:

1. An atom is a WFF.
2. If P is a WFF, then ¬P is a WFF.
3. If P and Q are WFFs, then P ∧ Q, P ∨ Q, P → Q, and P ↔ Q are WFFs.
4. No other formula is a WFF.

For instance, P → (Q ∧ R) is a WFF; → P and ∨Q are not WFFs.
The meaning (semantics) of a logical formula can be expressed by a function

which gives a T rue or False value to the formula for each possible interpretation
(truth values of the atoms in the formula). In the case of propositional logic, the
interpretation can be represented as a truth table. Table12.1 depicts the truth tables
for the basic logic operators. An interpretation that assigns a truth value to a formula
F is a model of F .

A formula F is a logical consequence of a set of formulas G = {G1, G2, . . . , Gn}
if for every interpretation for which G is True, F is True. It is denoted as G |= F .

Propositional logic cannot express general properties, such as all engineering
students are young. For this we need first-order logic.

12.2.2 First-Order Predicate Logic

Consider the two statements: “All students in a technical university are engineering
majors” and “A particular person t of a particular universityI is a computer science

Table 12.1 Truth tables for the logical connectives

P Q ¬P P ∧ Q P ∨ Q P → Q P ↔ Q

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T
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major.” Whereas the first statement declares a property that applies to all persons
in a technical university, the second applies only to a specific person in a particular
university. First-order logic lets us deal with these differences.

Expressions or formulas in first-order predicate logic are constructed using four
types of symbols: constants, variables, functions, and predicates. Constant symbols
represent objects in the domain of interest (e.g., persons, courses, universities, etc.).
Variable symbols range over the objects in the domain. Variables, which could be
arguments for a predicate or function, are represented with lower case letters, i.e.,
x, y, z.

Predicates are expressions that can be True or False; they contain a number of
arguments. Predicates can represent relations among objects in the domain (e.g.,
Above) or attributes of objects (e.g., IsRed). If the number of arguments is zero then
it is an atom as in propositional logic. Predicates are represented with capital letters,
for instance, P(x).

Function symbols (e.g., neighborOf) represent mappings from tuples of objects
to objects. They are represented with lower case letters and can also have a number
of arguments. For example, f (x) will represent a function with one argument, x . A
function with no arguments is a constant.

Predicate logic includes the logical connectives of propositional logic, plus other
operators known as quantifiers:

Universal quantifier: ∀x (for all x).
Existential quantifier: ∃x (exists an x).

A term is a constant, variable, or a function of terms. An atomic formula or atom is
a predicate that has as arguments N terms.

Nowwe can rewrite the example at the beginning of the section in first-order logic.
If the formula M(tx ,I ) represents the major of a person tx in a technical university
I , the statement “All students in a technical university are engineering majors” can
be rewritten as:

∀tx∀I : M(tx ,I ) = engineering. (12.1)

Similarly to predicate logic, in first-order predicate logic there are a set of syntactic
rules that define which expressions are well-formed formulas:

1. An atom is a WFF.
2. If P is a WFF, then ¬P is a WFF.
3. If P and Q are WFFs, then P ∧ Q, P ∨ Q, P → Q, and P ↔ Q are WFFs.
4. If P is a WFF and x is a free variable in P , then ∀x P and ∃x P are WFFs.
5. No other formula is a WFF.

Roughly speaking, a first-order knowledge base (KB) is a set of sentences or
formulas in first-order logic [4].

An L -interpretation specifies which objects, functions, and relations in the
domain are represented by which symbols. Variables and constants may be typed, in
which case variables range only over objects of the corresponding type, and constants
can only represent objects of the corresponding type. For example, the variable x
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might range over universities (e.g., public universities, private universities, etc.), and
the constant might represent a university or a specific set of universities (e.g., u2,
(u6 ∪ u2), etc.). An atomic formula (or simply atom) is a predicate symbol applied
to a tuple of terms: Near(u4, u1).

In standard predicate logic all predicates are True or False, so it cannot deal with
probabilistic uncertainty directly. For example, if we do not know if a person is in
a certain university, we can only say that Univ(p) = u1 OR Univ(p) = u2; but we
cannot specify if it is more probable that she is in u1 than in u2.

To have the expressive power of predicate logic and at the same time be able to
represent and reason under uncertainty (in probabilistic terms) we need to combine
predicate logic with probabilistic models under a single framework. Next we will
describe two of these frameworks.

12.3 Probabilistic Relational Models

Probabilistic relational models (PRMs) [6] are an extension of Bayesian networks
that provide amore expressive, object-oriented representation facilitating knowledge
acquisition. They also make it easier to extend a model to other domains. For the
case of a very large model, only part of it is considered at any time, so the inference
complexity is reduced.

The basic entities in a PRM are objects or domain entities. Objects in the domain
are partitioned into a set of disjoint classes X1, . . . , Xn . Each class is associated
with a set of attributes A(Xi ). Each attribute Ai j ∈ A(Xi ) (that is, attribute j of
class i) takes on values in some fixed domain of values V (Ai j ). X : A denotes the
attribute A of an object in class X [6]. A set of relations, R j , are defined between the
classes. A binary relation R(Xi , X j ) between classes Xi and X j can be viewed as a
slot of Xi . The classes and relations define the schema of the model. Then, a PRM
defines a probability distribution over a set of instances of a schema; in particular, a
distribution over the attributes of the objects in the model.

The dependency model is defined at the class level, allowing it to be used for
any object in the class. PRMs explicitly use the relational structure of the model,
so an attribute of an object will depend on some attributes of related objects. A
PRM specifies the probability distribution using the same underlying principles used
in Bayesian networks. Each of the random variables in a PRM, the attributes x .a
of the individual objects x , is directly influenced by other attributes, which are its
parents. A PRM, therefore, defines for each attribute, a set of parents, which are the
directed influences on it, and a local probabilistic model that specifies probabilistic
parameters.

There are two basic differences between PRMs and Bayesian networks [6]: (i) In
a PRM the dependency model is specified at the class level, allowing it to be used
for any object in the class. (ii) A PRM explicitly uses the relational structure of the
model, allowing an attribute of an object to depend on attributes of related objects.
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An example of a PRM for the school domain, based on [6], is shown in Fig. 12.1.
There are 4 classes, with 2 attributes each in this example:

Professor: teaching-ability, popularity
Student: intelligence, ranking
Course: rating, difficulty
Registration: satisfaction, grade

This representation allows for two types of attributes in each class: (i) informa-
tion variables, (ii) random variables. The random variables are the ones that are
linked in a kind of Bayesian network that is called a skeleton. From this skeleton,
different Bayesian networks can be generated, according to other variables in the
model. For example, in the student model described in Sect. 12.5, we define a gen-
eral skeleton for an experiment, from which particular instances for each experiment
are generated. This gives the model a greater flexibility and generality, facilitating
knowledge acquisition. It also makes inference more efficient, because only part of
the model is used in each particular case.

The probability distribution for the skeletons are specified as in Bayesian net-
works. A PRM, therefore, defines for each attribute x .a, a set of parents, which
are the directed influences on it, and a local probabilistic model that specifies the
conditional probability of the attribute given its parents. To guarantee that the local
models define a coherent global probability distribution, the underlying dependency
structure should be acyclic, as in a BN. Then, the joint distribution is equal to the
product of the local distributions, similar to Bayesian networks.

Fig. 12.1 An example of a PRM structure for the school domain. Dashed edges represent relations
between classes, and arrows correspond to a probabilistic dependency. The AVG in a link indicates
that the conditional probabilities depend on this variable
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12.3.1 Inference

The inference mechanism for PRMs is the same as for Bayesian networks, once the
model is instantiated to particular objects in the domain. However, PRMs can take
advantage of two properties to make inference more efficient. These properties are
made explicit by the PRM representation, in contrast to Bayesian networks where
they are only implicit.

One property is the locality of influence, most attributes will tend to depend
mostly on attributes of the same class, and there are few interclass dependencies.
Probabilistic inference techniques can take advantage of this locality property by
using a divide and conquer approach.

The other aspect which canmake inference more efficient is reuse. In a PRM there
are usually several objects of the same class, with similar structure and parameters.
Then, once inference is performed for one object, this can be reused for the other
similar objects.

12.3.2 Learning

Given that PRMs share the same underlying principles of BNs, the learning tech-
niques developed for BNs can be extended for PRMs. The expectation maximization
algorithm has been extended to learn the parameters of a PRM, and structure learning
techniques have been developed to learn the dependency structure from a relational
database [3].

12.4 Markov Logic Networks

In contrast to PRMs,Markov logic networks (MLN) start from a logic representation,
adding weights to formulas to incorporate uncertainty.

In logic, a L -interpretation which violates a formula given in a knowledge base
(KB) has zero probability. It means that its occurrence is impossible, because all the
possible worlds must be consistent with the KB. In Markov Logic Networks, this
assumption is relaxed. If the interpretation violates theKB, it has less probability than
otherswith no violations. Less probabilitymeans that it has a nonzero probability. In a
MLN, a weight to each formula is added in order to reflect how strong the constraint
is: higher weights entail higher changes in probability whether that interpretation
satisfies that formula or not.

Before we formally define a MLN, we need to review Markov networks (see
Chap.6). A Markov network is a model for the joint distribution of a set of variables
X = (X1, X2, . . . , Xn) ∈ X . It is composed of an undirected graph G and a set of
potential functions φk . The associated graph has a node for each variable, and the

http://dx.doi.org/10.1007/978-1-4471-6699-3_6
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model has a potential function for each clique in the graph. The joint distribution
represented by a Markov network is given by

P(X = x) = 1

z

∏

k

φk(x{k}) (12.2)

where x{k} is the state of the kth clique, and Z is the partition function.
Normally, Markov networks can also be represented using log-linear models,

where each clique potential function is replaced by an exponential weighted sum:

P(X = x) = 1

z
exp

∑

j

w j f j (x) (12.3)

where w j is a weight (real value) and f j is, for our purposes, a binary formula
f j (x) ∈ {0, 1}.
We now provide a formal definition for a MLN [1].
An MLN L is a set of pairs (Fi , wi ), where Fi is a formula in first-order logic and

wi is a real number. Together with a finite set of constants C = {c1, c2, . . . , c|C|}, it
defines a Markov network ML ,C Eqs. 12.2 and 12.3:

1. ML ,C contains one binary node for each possible grounding of each formula
appearing in the MLN L . The value of the node is 1 if the ground atom is true
and 0 otherwise.

2. ML ,C contains one feature for each possible grounding of each formula Fi in L .
The value of this feature is 1 if the ground formula is true and 0 otherwise. The
weight of the feature is the wi associated with Fi in L .

MLNs are a generalization of Markov networks, so they can be seen as templates
for constructing Markov networks. Given a MLN and a set of different constants,
different Markov networks can be produced; these are known as ground Markov
networks. The joint probability distribution of a ground Markov network is defined
in a similar way as a Markov network, using Eq.12.3.

The graphical structure of a MLN is based on its definition; there is an edge
between two nodes of the MLN if the corresponding ground atoms appear together
in at least one grounding of one formula in the knowledge base, L . For example [1],
consider the following MLN consisting of two logical formulas:

∀xSmoking(x) → Cancer(x)

∀x∀yFriends(x) → (Smoking(x) ↔ Smoking(y))

If the variables x and y are instantiated to the constants A and B, we obtain the
structure depicted in Fig. 12.2.
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Fig. 12.2 Structure of the ground MLN obtained from the two logical formulas of the example.
(Figure based on [1])

12.4.1 Inference

Inference in MLN consists on estimating the probability of a logical formula, F1,
given that another formula (or formulas), F2, are true. That is, calculating P(F1 |
F2, L , C), where L is a MLN consisting of a set of weighted logical formulas, and
C is a set of constants. To compute this probability, we can estimate the proportion
of possible worlds in which F1 and F2 are true, over the possible worlds in which
F2 holds. For this calculation, the probability of each possible world is considered
according to the weights of the formulas and the structure of the corresponding
grounded Markov network.

Performing the previous calculations directly is, computationally, very costly;
thus, it becomes prohibitive but for very small models. Several alternative proba-
bilistic inference techniques can be used to make this computation more efficient.
One alternative is using stochastic simulation; by sampling the possible worlds we
can obtain an estimate of the desired probability; for instance, using the Markov
chain Montecarlo techniques.

Another alternative is to make certain reasonable assumptions about the structure
of the logical formulas that simplify the inference process. In [1], they develop
an efficient inference algorithm for the case that F1 and F2 are conjunctions of
ground literals.

12.4.2 Learning

Learning a MLN involves two aspects, just as for learning Bayesian networks. One
aspect is learning the logical formulas (structure), and the other is learning theweights
for each formula (parameters).

For learning the logical formulas, we can apply techniques from the area of induc-
tive logic programming (ILP). In the area of ILP there are different approaches that
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can induce logical relations from data, usually considering some background knowl-
edge. For more information, see the additional reading section.

The weights of the logical formulas can be learned from a relational database.
Basically, the weight of a formula is proportional to its number of true groundings in
the data with respect to its expectation according to the model. Counting the number
of true groundings of a formula could be too computationally expensive for large
domains. An alternative is make an estimate based on sampling the groundings of a
formula and verifying if they are true in the data.

An example of aMLN in the context of an application for visual object recognition
is presented in Sect. 12.5.

12.5 Applications

Wewill illustrate the application of the twoclasses ofRPGMpresented in the previous
sections in twodifferent domains. First,wewill see howwecanbuild a kindofgeneral
student model for virtual laboratories based on PRMs. Then we will use MLNs for
representing visual grammars for object recognition.

12.5.1 Student Modeling

A particularly challenging area for student modeling is virtual laboratories. A virtual
lab provides a simulated model of some equipment, so that students can interact with
it and learn by doing. A tutor serves as a virtual assistant in this lab, providing help
and advice to the user, and setting the difficulty of the experiments, according to the
student’s level. In general, it is not desirable to trouble the student with questions
and tests to update the student model. So the cognitive state should be obtained
based solely on the student’s interactions with the virtual lab and the results of the
experiments. For this a studentmodel is required. Themodel infers, from the student’s
interactions with the laboratory, the cognitive state; and based on this model, an
intelligent tutor can give personalized advice to the student [13].

12.6 Probabilistic Relational Student Model

PRMs provide a compact and natural representation for student modeling. Proba-
bilistic relational models allow each attending student to be represented in the same
model. Each class represents the set of parameters of several students, like in data-
bases, but the model also includes the probabilistic dependencies between classes
for each student.
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In order to apply PRMs to student modeling we have to define the main objects
involved in the domain. A general student model oriented to virtual laboratories
was designed, starting from a high-level structure at the class level, and ending with
specific Bayesian networks for different experiments at the lower level. As shown in
Fig. 12.3, the main classes, related with students and experiments, were defined. In
this case there are 8 classes, with several attributes for each class, as listed below:

Student: student-id, student-name, major, quarter, category.
Knowledge Theme: student-id, knowledge-theme-id, knowledge-theme-known.
Knowledge Sub-theme: student-id, knowledge-sub-theme-id, knowledge-sub-

theme-known.
Knowledge Items: student-id, knowledge-item-id, knowledge-item-known.
Academic background: previous-course, grade.
Student behavior: student-id, experiment-id, behavior-var1, behavior-var2, …
Experiment results: student-id, experiment-id, experiment-repetition, result-var1,

result-var2, …
Experiments: experiment-id, experiment-description, exp-var1, exp-var2, …

The dependency model is defined at the class level, allowing it to be used for any
object in the class. Some attributes in this model represent probabilistic values. This
means than an attribute represents a random variable that is related to other attributes
in the same class or in other classes.

Fig. 12.3 A high-level view of the PRM structure for the student model, showing the main classes
and their relations
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From the PRM student model we can define a general Bayesian network, a skele-
ton, that can be instantiated for different scenarios, in this case experiments. In this
model it is easy to organize the classes by levels to improve the understanding of the
model. From the class model we obtain a hierarchical skeleton, as shown in Fig. 12.4.
We partitioned the experiment class, according to our object of interest, creating two
subclasses: experiment performance and experiment behavior, which constitute the
lowest level in the hierarchy. The intermediate level represents the different knowl-
edge items (concepts) associated to each experiment. These items are linked to the
highest level which groups the items in sub-themes and themes, and finally into the
students’ general category. We defined three categories of students: novice, interme-
diate, and advanced. Each category has the same Bayesian net structure, obtained
from the skeleton, but different CPTs are used for each one.

From the skeleton, it is possible to definedifferent instances according to the values
of specific variables in the model. For example, from the general skeleton for the
experiments of Fig. 12.4, we can define particular instances for each experiment (for
example, in the robotics domain, there could be experiments related to robot design,
control, motion planning, etc.) and student level (novice, intermediate, advanced).

Once a specific Bayesian network is generated, it can be used to update the student
model via standard probability propagation techniques. In this case, it is used to
propagate evidence from the experiment evaluation to the knowledge items, and then
to the knowledge sub-themes and to the knowledge themes. After each experiment,
the knowledge level at each different level of granularity—items, sub-themes and

Fig. 12.4 A general skeleton for an experiment derived from the PRM student model for virtual
laboratories. Basically, the network has a hierarchical structure, starting form a node that represents
the student category at the top, and then with three layers of variables that represent the knowledge
the student has of the domain at different levels of abstraction: themes, sub-themes, and items. At the
bottom level there are two sets of variables that correspond to the results of the student’s interaction
with an experiment in the virtual lab, divided in experimental results and student behavior [13]
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themes, is used by the tutor to decide if it should provide help to the student, and at
what level of detail. For example, if in general the experiment was successful, but
some aspect was not very good, a lesson on a specific concept (item) is given to the
student. While if the experiment was unsuccessful, a lesson on a complete theme
or sub-theme is recommended. Based on the student category, the tutor decides the
difficulty of the next experiments to be presented to the student.

12.6.1 Visual Grammars

A visual grammar describes objects hierarchically. It can represent a diagram, a
geometric drawing or an image. For example, the description of a flowchart is made
by decomposition: complex elements are decomposed into simple elements (from
the complete image to arrows or simple boxes).

For visual object recognition, we need a grammar that allows us to model the
decomposition of a visual object into its parts and how they relate with each other
[12].One interesting kindof relational grammar areSymbol-RelationGrammars (SR-
grammars) [2], because they can provide this type of description and also incorporate
the possibility of adding rewritten rules to specify relationships between terminal and
nonterminal symbols once a decomposition for all the nonterminal symbols has taken
place.

12.6.1.1 Representing Object with SR Grammars

Classes of objects are represented based on symbol-relational grammars. This
includes three basic parts: (i) the basic elements of the grammar or lexicon,
(ii) the spatial relations, (iii) the transformation rules. Next, we briefly describe
them.

The idea is to use simple and general features as basic elements so they can be
applied to different classes of objects. These regions define a visual dictionary. The
visual features considered are: uniform color regions (color is quantized in 32 levels)
and edges at different orientations (obtained with Gabbor filters). These features
form a set of training examples that are clustered and the centroids of these clusters
constitute the Visual Lexicon.

The spatial relations include topological and order relationships. The relationships
used are: Inside_of (A, B) (A region is within B region), Contains(A, B) (A region
covers completely B region), Left(A, B) (A is touched byB andA is located left from
B), Above(A, B) (A is touched by B and A is located above fromB), Invading(A, B)

(A is partially covering B more than Above and Left but less than Contains).
The next step is to generate the rules that make up the grammar. Using training

images for the class of the object of interest, the most common relationships between
clusters are obtained. Such relationships become candidate rules to build the gram-
mar. This is an iterative process where the rules are subsumed and converted to new
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nonterminal elements of the grammar. This process is repeated until a threshold (in
terms of the minimum number of elements) is reached; the starting symbol of the
grammar represents the class of objects to be recognized.

Visual object recognition involves uncertainty: noise in the image, occlusions,
imperfect low-level processing, etc. SR grammars do not consider uncertainty, so to
incorporate it, they can be extended using RPGMs, in particular MLNs.

12.6.1.2 Transforming a SR Grammar into a Markov Logic Network

The SR grammar for a class of objects is transformed directly to formulas in theMLN
language. In this way the structural aspect of theMLN is obtained. The parameters—
weights associated to each formula—are obtained from the training image set.

Consider a simple example, a SR grammar to recognize faces based on high-level
features: eyes, mouth, nose, head. The productions of this simple SR grammar for
faces are:

1 : FACE0 → < {eyes2, mouth2}, {above(eyes2, mouth2)} >

2 : FACE0 → < {nose2, mouth2}, {above(nose2, mouth2)} >

3 : FACE0 → < {eyes2, head2}, {inside_of(eyes2, head2)} >

4 : FACE0 → < {nose2, head2}, {inside_of(nose2, head2)} >

5 : FACE0 → < {mouth2, head2}, {inside_of(mouth2, head2)} >

The transformation into aMLN is nearly straightforward. First, we need to declare
the formulas:

aboveEM(eyes,mouth)
aboveNM(nose,mouth)
insideOfEH(eyes,head)
insideOfNH(nose,head)
insideOfMH(mouth,head)
isFaceENMH(eyes,nose,mouth,head)

Subsequently, we need to declare the domain:

eyes={E1,E2,E3,E4}
nose={N1,N2,N3,N4}
mouth={M1,M2,M3,M4}
head={H1,H2,H3,H4}

Finally, we need to write the weighted first-order formulas. We used a validation
image dataset and translated the probabilities into weights:

1.58 isFaceENMH(e,n,m,h) => aboveEM(e,m)
1.67 isFaceENMH(e,n,m,h) => aboveNM(n,m)
1.16 isFaceENMH(e,n,m,h) => insideOfEH(e,h)
1.25 isFaceENMH(e,n,m,h) => insideOfNH(n,h)
1.34 isFaceENMH(e,n,m,h) => insideOfMH(m,h)
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To recognize a face in an image, the relevant aspects of the image are transformed
into a first-order KB. For this, the terminal elements are detected (in the example the
eyes, mouth, nose and head) in the image, as well as the spatial relations between
these elements. Then, the particular image KB is combined with the general model
represented as aMLN; and from this combination a grounded Markov network is gen-
erated. Object (face) recognition is performed using standard probabilistic inference
(see Chap.6) over the Markov network.

12.7 Additional Reading

There are several introductory books on logic, such as [8, 9]. From an artificial
intelligence perspective, [4] provides a good introduction to predicate logic and
logic-based representations. Most of the current relational probabilistic models are
described in [5], which includes a chapter on each approach. Probabilistic relational
models are introduced in [6]; and how to learn PRMs from data is presented in
[3]. A review of Markov logic networks is included in [1]. References [7, 10] are
introductory books to inductive logic programming.

12.8 Exercises

1. If p and r are false, and q and s are true, determine the truth values of the
following expressions:

• p ∨ q
• ¬p ∧ ¬(q ∧ r)

• p → q
• (p → q) ∧ (q → r)

• (s → (p ∧ ¬r)) ∧ ((p → (r ∨ q)) ∧ s)

2. Which of the following expressions are true?

• ∀x((x2 − 1) > 0)
• ∀x(x2 > 0)
• ∃x(1/(x2 + 1) > 1)
• ¬∃x((x2 − 1) ≤ 0)

3. Determine if the next expressions are WFFs:

• ∀x¬(p(x) → q(x))

• ∃x∀x(p(x) ↔ q(x))

• ∃x ∨ q(x) ∧ q(y)

• ∀x∃yp(x) ∨ (p(x) ↔ q(y))

4. Write the following sentences in first-order predicate logic: (i) all persons have
a father and a mother, (ii) some persons have brothers or sisters or brothers and
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sisters, (iii) if a person has a brother, then his father is also the father of his
brother, (iv) no person has two natural fathers or two natural mothers.

5. Given the PRM of Fig. 12.1, assume that all variables are binary (i.e., Teaching-
Ability = {Good, Average}, Popularity = {High, Low}, etc.). According to the
structure of the model, specify the required conditional probability tables.

6. Based on the PRM of the previous exercise, assume there are two professors,
three students, three courses, and five registrations (one student registers for
two courses and the other to three courses). Expand the PRM according to the
previous objects and generate the corresponding Bayesian network.

7. Consider the MLN example of Sect. 12.4 with two logical formulas and an
additional third formula: ∀xUnhealthyDiet(x) → Cancer(x). Given that the
variables x and y are instantiated to Tim, Sue and Maria, obtain the graphical
dependency structure of the MLN.

8. Determine the weights for the two logical formulas of the MLN example of
Sect. 12.4, assuming that you have extracted the following statistics from a data-
base: (i) 19 persons smoked and have cancer, (ii) 11 persons smoked and do not
have cancer, (iii) 10 persons did not smoke and do not have cancer, (iv) 5 persons
did not smoke and have cancer, (v) 15 pairs of persons were friends and both
smoked, (vi) 5 pairs of persons were friends, one smoked and the other did not.

9. *** Investigate alternative formalisms that combine logic and probability. Ana-
lyze their advantages and disadvantages in terms of expressive power and com-
putational efficiency.

10. ***Develop a program for doing inferencewithPRMs.Given thePRMdescribed
at the class level (you can use an object-oriented database), and a set of objects,
transform it to a BN. Then perform inference over the BN (use the algorithms
developed previously).
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Chapter 13
Graphical Causal Models

13.1 Introduction

Causality has to do with cause-effect relations; that is, identifying when there are two
(or more) related phenomena, which is the cause and which is the effect. However,
there could be a third explanation, namely, there is another phenomena which is the
common cause of the original two phenomena of interest.

Probabilistic models do not necessarily represent causal relations. For instance,
consider the following two directed Bayesian networks: BN1: A → B → C and
BN2: A ← B ← C . From a probabilistic perspective, both represent the same set
of dependency and independency relations: direct dependencies between A and B,
B and C ; and I (A, B,C), that is, A and C are independent given B. However, if we
define that a directed link A → B means A causes B, both models represent very
different causal relations.

Given that we can model and solve complex phenomena with probabilistic graph-
ical models, and also that causality is for many a complex and controversial concept,
we may ask ourselves,Why do we need causal models? There are several advantages
to causal models, in particular, graphical causal models.

First, if we build a Bayesian network based on causal relations, the models tend to
be easier to construct and understand (e.g., for communicating with domain experts),
and are usually simpler. For example, in the medical domain it is common to have a
disease that produces several symptoms,which usually are conditionally independent
given the disease. If we represent this as a BN in the direction of causality, we obtain
the structure of Fig. 13.1a.An alternative structure is shown in Fig. 13.1b, inwhichwe
require links between the symptom variables, as these are conditionally independent
given the disease but not marginally independent. The model built based on causal
information is simpler.

Secondly, with causal models we can perform other types of reasoning that are
not possible, at least in a direct way, with PGMs such as Bayesian networks. These
other inference situations are: (i) interventions, in which we want to find the effects
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Fig. 13.1 ABayesian network that represents a disease (D) and three symptoms (S1, S2, S3) which
are conditionally independent given D. a Structure based on causal relations. bAlternative structure

of setting a certain variable to a specific value by an external agent (note that this
is different from observing a variable); and (ii) counterfactuals, where we want to
reason about what would have happened if certain information had been different
from what actually happened. We will discuss these two situations in more detail in
the rest of the chapter.

Several causal modeling techniques have been developed; for example, functional
equations, path diagrams, and structural equation models, among others. In this
chapter we will focus on graphical models, in particular causal Bayesian networks.

13.2 Causal Bayesian Networks

A Causal Bayesian network (CBN) is a directed acyclic graph, G, in which each
node represents a variable and the arcs in the graph represent causal relations; that
is, the relation A → B represents some physical mechanism such that the value of
B is directly affected by the value of A. This relation can be interpreted in terms
of interventions—setting of the value of some variable or variables by an exter-
nal agent. For example, assume that A stands for a water sprinkler (OFF/ON) and
B represents if the grass is wet (FALSE/TRUE). If the grass (B) is originally not
WET and the sprinkler is set to ON by an intervention, then B will change to TRUE.

As in BNs, if there is an arc from A to B (A is a direct cause of B), then A is
a parent of B, and B is a child of A. Given any variable X in a CBN, Pa(X) is
the set of all parents of X . Also, similarly to BNs, when the direct or immediate
causes—parents—of a variable are known, the more remote causes (or ancestors)
are irrelevant. For example, once we know that the grass is WET, this makes it
SLIPPERY, no matter how the grass became wet (we turned on the sprinkler or it
rained).

Causal networks represent stronger assumptions than Bayesian networks, as all
the relations implied by the network structure should correspond to causal relations.
Thus, all the parent nodes, Pa(X), of a certain variable, X , correspond to the direct
causes of X . This means that if any of the parent variables of X , or any combination
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Fig. 13.2 A simple example
of a CBN which represents
the relations: Sprinkler
causes Wet, Rain causes Wet,
and Wet causes Slippery.
(Example taken from
J. Pearl [3].)

of them, is set to a certain value via an intervention, this will have an effect on X . In a
CBN, a variable which is a root node (variable with no parents) is called exogenous,
and all other variables are endogenous.

A simple example of a CBN is depicted in Fig. 13.2, which basically encodes the
following causal relations: (i) Sprinkler causes Wet, (ii) Rain causes Wet, (iii) Wet
causes Slippery. In this case, Sprinkler and Rain are exogenous variables, and Wet
and Slippery are endogenous variables.

If a P(X) is the joint probability distribution of the set of variables X, then we
define Py(X) as the distribution resulting from setting the value for a subset of vari-
ables, Y, via an intervention. This can be represented as do(Y = y), where y is
a set of constants. For instance, given the CBN of Fig. 13.2, if we set the sprin-
kler to ON—do(Sprinkler=ON), then the resulting distribution will be denoted as
PSprinkler=ON(Sprinkler, Rain, Wet, Slippery).

Formally, a Causal Bayesian Network can be defined as follows [3]:

A CBN G is a directed acyclic graph over a set of variables X that is compati-
ble with all the distributions resulting from interventions on Y ⊆ X, in which the
following conditions are satisfied:

1. The probability distribution Py(X) resulting from an intervention isMarkov com-
patible with the graph G; that is, it is equivalent to the product of the conditional
probability of each variable X ∈ G given its parents: Py(X) = ∏

Xi
P(Xi |

Pa(Xi )).
2. The probability of all the variables that are part of an intervention is equal to

one for the value it is set to: Py(Xi ) = 1 if Xi = xi is consistent with Y = y,
∀Xi ∈ Y.

3. The probability of each of the remaining variables that are not part of the interven-
tion is equal to the probability of the variable given its parents and it is consistent
with the intervention: Py(Xi | Pa(Xi )) = P(Xi | Pa(Xi )), ∀Xi /∈ Y.
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Given the previous definition, and in particular the fact that the probability of
the variables that are set in the intervention is equal to one (condition 2), the joint
probability distribution can be calculated as a truncated factorization:

Py(X) =
∏

Xi /∈Y

P(Xi | Pa(Xi )) (13.1)

such that all Xi are consistent with the intervention Y.
Another consequence of the previous definition, is that once all the parents of a

variable Xi are set by an intervention, setting any other variable, W, does not affect
the probability of Xi :

PPa(Xi ),W(Xi ) = PPa(Xi )(Xi ) (13.2)

such that W ∩ (Xi ,Pa(Xi )) = ∅.
Considering again the example in Fig. 13.2, if we make the grass wet by any

mean, do(Wet = TRUE), then the probability of Slippery is not affected by Rain or
Sprinkler.

13.3 Causal Reasoning

Causal reasoning has to do with answering causal queries from a causal model, and
in our case in particular from graphical causal models. There are several types of
causal queries we might consider, we will start by analyzing causal predictions, and
then we will analyze counterfactuals.

13.3.1 Prediction

Consider a causal Bayesian network which includes a set of variables: XG =
{XC , X E , X O}; where XC is a subset of causes and X E is a subset of effects; X O

are the remaining variables. We want to perform a causal query on the model: What
will be the effect on X E when setting XC = xC? That is, we want to obtain the
probability distribution of X E that results from the intervention XC = xC :

PC (X E | do(XC = xC )) (13.3)

To perform causal prediction with a CBN, G, the following procedure is followed:

1. Eliminate all incoming arrows in the graph to all nodes in XC , thus obtaining a
modified CBN, Gr .

2. Fix the values of all variables in XC , XC = xC .



13.3 Causal Reasoning 241

3. Calculate the resulting distribution in the modified model Gr (via probability
propagation as in Bayesian networks).

For example, consider the hypothetical CBN depicted in Fig. 13.3a that represents
certain causal knowledge about a stroke. If we want to measure the effect of an “un-
healthy diet” in the variable “stroke,” then, according to the previous procedure, we
eliminate the link from “health consciousness” to “diet,” resulting in the model in
Fig. 13.3b. Then we should set the value of “unhealthy diet” to TRUE, and by prob-
ability propagation obtain the distribution of “stroke.” If the distribution of “stroke”
changes depending on the value of “unhealthy diet,” we can conclude according to
this model that it does have an effect.

An interesting question is: When is the distribution resulting from an interven-
tion equal to the distribution resulting from an observation? In mathematical terms,
is P(X E | XC ) = PC (X E | do(XC = xC ))? Both are equal if XC includes all the
parents of X E and none of its descendants; given that any variable in a BN is indepen-
dent of its non-descendants given its parents. In other cases they are not necessarily
equal, they will depend on other conditions.

13.3.2 Counterfactuals

Counterfactuals are a way of reasoning that we commonly perform in our life. For
instance, consider the causal model of Fig. 13.3a. A typical counterfactual question

Fig. 13.3 An example of causal prediction. a A simple, hypothetical CBN that represents some
causal relations related to a stroke. b The resulting graphical model obtained from (a) by the
intervention do(unhealthy-diet = TRUE)
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Fig. 13.4 An example of the difficulty of learning causal models. a The initial network that shows
an apparent causal relation between “drinking wine” and “heart attack.” b An alternative network
with a common cause, “income,” that explains the dependency between “drinking wine” and “heart
attack”

would be: If some person suffered a stroke, would he still have suffered the stroke
(“stroke”=TRUE) if he had exercised more (“lack of exercise”=FALSE)?

Counterfactual inference involves three main steps:

1. Abduction: modify the model in terms of the new evidence (in the example,
modify the value of “stroke” to unknown).

2. Action: perform the minimal intervention in the model according to the hypo-
thetical evidence (in the example, set “lack of exercise” to FALSE, removing the
link from “health consciousness” to “lack of exercise”).

3. Prediction: perform probabilistic inference on the modified model and obtain
the probability of the variable(s) of interest (in the example, perform probability
propagation to estimate Plack-exercise(stroke | do(lack-exercise = FALSE))).

13.4 Learning Causal Models

Learning causal models from data without direct interventions poses many chal-
lenges. As we mentioned before, if we discover that there is a certain dependency
between two variables, X and Y , we cannot determine, without additional informa-
tion, if X causes Y or vice versa. Additionally, there could be some other factor that
produces the dependency between these two variables.

For instance, consider that based on data we discover that people who drink wine
tend to have less heart attacks. Then we might be inclined to conclude that drinking
wine tends to decrease the probability of a heart attack (Fig. 13.4a). However, there
might be another variable that produces this apparent causal relation, known as a
latent common cause. It could be that both, wine drinking and heart attacks, have to
do with the income level of the person, as persons with high income tend to drink
more wine and at the same time have a lower probability of heart attack because of
better medical services (see Fig. 13.4b). Thus, a difficulty of learning causal relations
lies in how to include in the model all the relevant factors.
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Several algorithms have been developed for learning causal networks. In general,
the following assumptions are used when learning the structure of causal networks:

Causal Markov Condition: a variable is independent of its non-descendants given
its direct causes (parents in the graph).

Faithfulness: there are no additional independencies between the variables in the
model that are not implied by the causal Markov condition.

Causal Sufficiency: there are no common confounders of the observed variables
in the model.

An algorithm for learning causal networks is the Bayesian Constraint-Based
Causal Discovery (BCCD) [2]. This technique is an extension of the PC Bayesian
network structure learning algorithm (see Chap.8) that consists of two main phases:

1. Start with a completely connected graph and estimate the reliability of each causal
link, X − Y , by measuring the conditional independence between X and Y . If a
pair of variables are conditionally independent with a reliability above a certain
threshold, then delete the edge between these variables.

2. The remaining causal relations (undirected edges in the graph) are ordered ac-
cording to their reliability. Then the edges in the graph are oriented starting from
themost reliable relations, based on the conditional independence test for variable
triples.

To estimate the reliability of a causal relation, R = X → Y , the algorithm uses a
Bayesian score:

P(R | D) = P(D | MR)P(MR)

P(D | M)p(M)
(13.4)

where D is the data, M are all the possible structures, and MR are all the structures
that contain the relation R. Thus, P(M) denote the prior probability of a structure
M and P(D | M) the probability of the data given the structure. Calculating (13.4)
is very costly, so it is approximated by the marginal likelihood of the data given the
structure, and usually restricted to a maximum number of variables in the network.

Depending on the reliability threshold, the resulting network can have undirected
edges, −, which means that there is not enough information to obtain the direction
of the link, and bidirected edges, ↔, indicating that there is a common cofounder.
This type of structure is called a Maximal Ancestral Graph (MAG). The equivalence
class for MAGs is a Partial Ancestral Graph (PAG). In a PAG there are three types
of edges: directed, →, and undirected, −, when these are consistent for all the
graphs in the equivalence class; and those which are not consistent are marked with a
circle “o”.

In the next section, we will illustrate the resulting PAG when learning a casual
model for a real-world application.

http://dx.doi.org/10.1007/978-1-4471-6699-3_8
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13.5 Applications

There are many practical applications in which a causal model is useful. Just to
mention a few:

• Predicting the effects of certain interventions.
• Learning causal graphical models from data.
• Diagnosis of physical systems.
• Generating explanations.
• Understanding causal expressions.

Next, we describe an application for learning causal graphical models from data.

13.5.1 Learning a Causal Model for ADHD

In [4], the authors extended the BCCD algorithm for amixture of discrete and contin-
uous variables, and apply it to a dataset that contains phenotypic information about
children with Attention Deficit Hyperactivity Disorder (ADHD). They used a re-
duced dataset that contains data from 223 subjects, with the following nine variables
per subject:

1. Gender (male/female)
2. Attention deficit score (continuous)
3. Hyperactivity/impulsivity score (continuous)
4. Verbal IQ (continuous)
5. Performance IQ (continuous)
6. Full IQ (continuous)
7. Aggressive behavior (yes/no)
8. Medication status (naïve/not naïve)
9. Handedness (right/left)

Given the small dataset they included some background information, in particular
that no variable in the network can cause “gender.” Using a reliability threshold
of 50%, the network depicted in Fig. 13.5 was obtained; which is represented as a
parental ancestral graph.

Several interesting causal relations are suggested by the resulting network, some
of which were already known from previous medical studies [4]:

• There is a strong effect from gender on the level of attention deficit.
• The level of attention deficit affects hyperactivity/impulsivity and aggressiveness.
• Handedness (left) is associated with aggressive behavior.
• The association between performance IQ, verbal IQ, and full IQ is explained by a
latent common cause.

• Only the performance IQ has a direct causal link with attention deficit.
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Fig. 13.5 The causal model obtained from the ADHD dataset. The graph represents the resulting
PAG in which edges are marked as → or − for invariant relations and as “o” for non-invariant
relations. The reliability of each edge is indicated. (AD attention deficit score, HI hyperactiv-
ity/impulsivity score, PerfIQ performance IQ, VerbIQ verbal IQ, Med medication status.) Figure
based on [4]

13.6 Additional Reading

Graphical causal modeling was originally introduced by [6] in genetics. Two com-
prehensive books on graphical causal models are [3, 5]. The BCCD algorithm for
learning causal graphs is introduced in [2]. A review of alternative approaches for
learning causal networks can be found in [1].

13.7 Exercises

1. What are the differences between a directed graphical model, such as a Bayesian
network, and a causal model?

2. Consider the CBN in Fig. 13.2. Obtain some other alternative Bayesian network
models for these four variables which are not necessarily causal. How do these
networks compare in terms of simplicity and clarity to the original model?

3. Given the CBN in Fig. 13.3a: (a) assuming all variables are binary, define
the conditional probability tables based on your intuition; (b) obtain the prior
probability for all the variables via probabilistic inference; (c) given the in-
tervention do(Unhealthy-diet = true), calculate the posterior probability of
Overweight and Stroke.

4. According to the results of the previous exercise, does an unhealthy-diet have
an effect on Stroke? Why?

5. Compute the posterior probability of Overweight and Stroke given the observa-
tionUnhealthy-diet = true for the network inFig. 13.3a (use the sameparameters
as for Exercise 3). Do the obtained probabilities coincide with the ones from the
corresponding intervention? Why?
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6. Given the CBN in Fig. 13.3a, consider the counterfactual question: Will the
probability for a stroke decrease if the person has a healthy diet (Unhealthy-
diet = false)? Perform the required operations on the model (using the same
parameters as in Exercise 3) to answer this question.

7. Given the data on the golf example (in Chap. 8), apply the standard PC algorithm
to learn the structure of a BN. Then apply the BCCD algorithm, using an estimate
of the reliability of each causal link to order the causal relation, and setting a
threshold to determine if a link has certain direction or remains undirected.
Compare the structures obtained with PC and BCCD.

8. Given the PAG in Fig. 13.5, show all the MAGs included in this PAG.
9. *** Develop a program that implements the BCCD algorithm for discrete vari-

ables.
10. *** Obtain data from some real-world domain and use the program from the

previous exercise to obtain a causal model. Vary the reliability threshold and
compare the models obtained.
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Glossary

Bayesian Classifier A classifier that assigns probabilities to the different object
labels based on Bayes rule.

Bayesian network A directed cycling graph that represents the joint distribution
of a set of random variables such that each variable is conditionally independent
of its non-descendants given its parents in the graph.

Causal Bayesian Network A directed acyclic graph in which the nodes represent
random variables and the arcs causal relations.

Causal reasoning A procedure for answering causal queries form a causal model.
Classifier A method or algorithm that assigns labels to objects.
Clique A completely connected subset of nodes in a graph that is maximal.
Conditional independence Two variables are conditionally independent given a

third variable if they become independent when the third variable is known.
Conditional Probability Probability of certain event given that another event has

occurred.
Conditional Random Field A random field in which all the variables are globally

conditioned on the observations.
Decision Tree A tree that represents a decision problem and has three types of

nodes: decisions, uncertain events and results.
Directed Acyclic Graph A directed graph that has no directed circuits (a directed

circuit is a circuit in which all edges in the sequence follow the directions of the
arrows).

D-separation A graphical criteria for determining if two subsets of variables are
conditionally independent given a third subset in a Bayesian network.

Dynamic Bayesian Network An extension of Bayesian networks to model dy-
namic processes; it consists of series of time slices, each time slice represents the
state of all variables at certain time.

Expectation-Maximization An statistical technique used for parameter estima-
tion when there are non-observable variables.

Graph A graphical representation of binary relations between a set of objects.
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Hidden Markov Model A Markov chain in which the states are not directly
observable.

Independent variables Two random variables are independent if knowing the
value of one of them does not affect the probability distribution of the other one.

Influence Diagram A graphical model for solving decision problems. It is an
extension of Bayesian networks that incorporates decision and utility nodes.

Junction Tree A tree in which each node corresponds to a subset of variables of
a probabilistic graphical model.

Limited Memory Influence Diagram An influence diagram in which the vari-
ables known when making a decision are not necessarily remembered for future
decisions.

Markov Blanket A set of variables that make a variable independent of all other
variables in a probabilistic graphical model.

Markov Chain A state machine in which the transition between states are non-
deterministic and satisfy the Markov property.

Markov Decision Process A graphical model for sequential decision making
composed of a finite set of states and actions, in which the states follow the
Markov property.

Markov Network A random field represent as an undirected graph that satisfies
the locality property—each variable in the field is independent of all other vari-
ables given its neighbors in the graph.

Markov Property The probability of the next (future) state is independent of the
previous states (past) given the current (present) state.

Markov Random Field Markov network.
Multidimensional classifier A classifier that can assign more than one label to

each object.
Naive Bayes Classifier A Bayesian classifier that assumes that all attributes are

independent given the class variable.
Partially Observable Markov Decision Process A Markov decision process in

which the states are not directly observable.
Policy A function that maps states to actions.
Probabilistic Graphical Model A compact representation of a joint probability

distribution of a set of random variables composed by a graph and a set of local
probability distributions.

Probabilistic Inference A procedure for calculating the posterior probability of
the unknown variables in a probabilistic graphical model given certain evidence
(a subset of known or instantiated variables).

Probability A function that assigns a real number to each event (subset of a sample
space) and satisfies certain axioms known as the probability axioms.

Random Field A collection of random variables indexed by sites.
Random Variable A mapping form a sample space to real numbers.
Rational Agent An agent that selects its decisions tomaximize its expected utility

according to its preferences.
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Relational Probabilistic Graphical Models Anextension of probabilistic graph-
ical models that are more expressive by incorporating some type of relational
representation.

Sample space The set of possible outcomes of an experiment.
Temporal Event Network A Bayesian network for modeling dynamic processes

in which each node represents the time of occurrence of an event or state change
of certain variable.

Tree A connected graph that does not have simple circuits.
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A
Algebraic decision diagram, 204
Axioms of utility theory, 183

B
BAN classifier, 46
Baum-Welch algorithm, 74
Bayes ball algorithm, 103
Bayes rule, 17
Bayesian chain classifiers, 52
Bayesian classifier, 42
Bayesian constraint-based causal discovery,

243
Bayesian network, 102
Bellman equation, 202
Beta probability distribution, 138
Binomial probability distribution, 19

C
Canonical models, 107
Causality, 237
Causal prediction, 240
Causal query, 240
Causal sufficiency, 243
Chain classifiers, 52
Chain rule, 17
Circuit, 30
Classification, 41
Classification of PGMs, 9
Classifier evaluation, 42
Clique, 33
Complete graph, 33
Concurrent MDPs, 206

Conditional independence, 17
Conditional random field, 92
Conditioning algorithm, 120
Correlation, 22
Counterfactual, 242

D
Decision diagram, 109
Decision nodes, 187
Decision theory, 182
Decision tree, 109, 185
Directed acyclic graph, 30
Directed graph, 27
Discount factor, 201
Discretization, 142
D–separation, 103
Dynamic Bayesian network, 161
Dynamic Bayesian network classifier, 170
Dynamic decision networks, 192

E
Elimination ordering heuristics, 119
Endogenous variables, 239
Entropy, 24
Equivalent states, 206
Existential quantifier, 222
Exogenous variables, 239
Expectation–Maximization (EM), 140
Expected monetary value, 184
Expected value, 19
Exponential probability distribution, 20
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F
Factored MDP, 204
Faithfulness, 243
Feature selection, 48
Finite horizon, 201
Flat representation, 5
Forward algorithm, 71

G
Gaussian Bayesian networks, 127
Gaussian probability distribution, 20
General schema, 11
Gibbs random field, 88
Graph isomorphism, 30

H
Hidden Markov model, 68
Hierarchical MDPs, 206

I
Independence, 17
Independence axioms, 105
Infinite horizon, 201
Influence diagrams, 187
Information, 23
Information validation, 129
Interaction graph, 119
Intervention, 239
Ising model, 83
Iterative conditional modes (ICM), 90

J
Joint probability, 17
Junction tree algorithm, 121

L
Laplacian smoothing, 138
Learning DBNs, 163
Learning polytree BNs, 146
Learning TNBNs, 167
Learning tree BNs, 145
Likelihood weighting algorithm, 126
Limited memory influence diagrams, 192
Logical consequence, 221
Logic connectives, 221
Logic sampling algorithm, 124
Loopy belief propagation, 124
Lottery, 182

M
Mappings, 105
Markov blanket, 105
Markov chain, 64
Markov decision process, 199
Markov logic network, 226
Markov network, 84
Markov property, 64
Markov random field, 84
Maximal ancestral graph, 243
Maximum a posteriori probability (MAP),

89
Maximum cardinality search, 35
Maximum expected utility, 183
Maximum posterior marginals (MPM), 89
Metropolis, 90
Minimum description length, 149
Missing values, 139
Most probable explanation, 126
Multidimensional Bayesian classifier, 50
Multidimensional BN classifier, 51

N
Naive Bayes classifier, 43
Neighborhood order in an MRF, 87
Noisy OR, 108

O
Object-oriented BNs, 223

P
PageRank, 78
Parameter learning, 137
Parameter uncertainty, 138
Parental ancestral graph, 243
Partially observable MDP, 207
PC algorithm, 152
Perfect ordering, 34
Perron-Frobenius Theorem, 67
Policy, 201
Policy iteration algorithm, 203
Predicates, 222
Probabilistic graphical model, 8
Probability definition, 16
Probability interpretations, 15
Probability propagation algorithm, 112

R
Random variables, 18
Regular Markov random fields, 86
Running intersection property, 35
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S
Semi-naive Bayesian classifiers, 48
Simulated annealing, 90
Single query inference, 112
Skeleton, 224
State diagram, 65
Stationary process, 162
Stochastic search algorithm, 89
Structure learning, 143
Symbol-relational grammars, 231

T
TAN classifier, 46
Taxonomy of RPGMs, 219
Temporal event networks, 164
Temporal node, 165
Temporal nodes Bayesian networks, 165
Total Probability, 18
Trajectory, 29
Tree-width, 123

Trees, 31
Triangulated graph, 35

U
Uncertainty effects, 3
Undirected graph, 27
Uniform probability distribution, 18
Universal quantifier, 222
Utility nodes, 187
Utility theory, 182

V
Value iteration algorithm, 203
Variable elimination algorithm, 116
Viterbi algorithm, 73

W
Well formed formula, 221
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