
K11207

Programming

 in

for Engineering
and Science

C++

Larry Nyhoff

N
y

h
o

ff
P

ro
g

ra
m

m
in

g
 in

 C
+

+

fo
r E

n
g

in
e
e
rin

g
 a

n
d

 S
c
ie

n
c
e

Programming in C++

for Engineering and Science

Developed from the author’s many years of teaching computing courses, Programming in C++
for Engineering and Science guides readers in designing programs to solve real problems
encountered in engineering and scientific applications. These problems include radioactive
decay, pollution indexes, digital circuits, differential equations, Internet addresses, data analysis,
simulation, quality control, electrical networks, data encryption, beam deflection, and many other
areas.

To make it easier for novices to develop programs, the author uses an object-centered design
approach that helps readers identify the objects in a problem and the operations needed; develop
an algorithm for processing; implement the objects, operations, and algorithm in a program;
and test, correct, and revise the program. He also revisits topics in greater detail as the text
progresses. By the end of the book, readers will have a solid understanding of how C++ can be
used to process complex objects, including how classes can be built to model objects.

Features
•	 Uses standard C++ throughout
•	 Explains key concepts, such as functions and classes, through a “use it first, build it later”

approach
•	 Shows how to develop programs to solve real problems, emphasizing the proper techniques

of design and style
•	 Introduces the very powerful and useful Standard Template Library along with important

class and function templates
•	 Develops numeric techniques and programs for some engineering and science example

problems
•	 Highlights key terms, important points, design and style suggestions, and common

programming pitfalls in the chapter summaries
•	 Includes self-study questions and programming projects in each chapter
•	 Provides ancillary materials on the book’s website

Computer Science

K11207_Cover.indd 1 6/19/12 9:01 AM

www.allitebooks.com

http://www.allitebooks.org

Programming in C++

for Engineering and Science

K11207.indb 1 6/15/12 10:06 AM

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blankThis page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Larry Nyhoff

Programming in C++

for Engineering and Science

K11207.indb 3 6/15/12 10:06 AM

www.allitebooks.com

http://www.allitebooks.org

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120409

International Standard Book Number-13: 978-1-4398-2535-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro-
duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy-
right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica-
tion and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.allitebooks.org

v

Contents

Preface, vii

Acknowledgments, xi

About the Author, xiii

Chapter 1 ■ Introduction to Computing 1

Chapter 2 ■ Programming and Problem Solving—
Software Engineering 21

Chapter 3 ■ Types in C++ 39

Chapter 4 ■ Getting Started with Expressions 63

Chapter 5 ■ Control Structures 107

Chapter 6 ■ Functions and Libraries 149

Chapter 7 ■ Using Classes 207

Chapter 8 ■ More Selection Control Structures 261

Chapter 9 ■ More Repetition Control Structures 295

Chapter 10 ■ Functions in Depth 351

Chapter 11 ■ Files and Streams 409

Chapter 12 ■ Arrays and the vector Class Template 451

Chapter 13 ■ Multidimensional Arrays and Vectors 503

www.allitebooks.com

http://www.allitebooks.org

vi    ◾    Contents

Chapter 14 ■ Building Classes 553

Chapter 15 ■ Pointers and Linked Structures 593

Chapter 16 ■ Data Structures 637

AnSwERS To TEST YoURSELF QUESTIonS, 677

APPEnDIx A: ASCII ChARACTER CoDES, 693

APPEnDIx B: C++ KEYwoRDS, 697

APPEnDIx C: C++ oPERAToRS, 699

APPEnDIx D: oThER C++ FEATURES, 701

InDEx, 715

K11207.indb 6 6/15/12 10:06 AM

www.allitebooks.com

http://www.allitebooks.org

vii

Preface

C++ is a general-purpose programming lan-
guage that has both high-level and low-level lan-

guage features. Bjarne Stroustrup developed it in 1979
at Bell Labs as a series of enhancements to the C pro-
gramming language, which, although developed for
system programming, has been used increasingly in
engineering and scientific applications.

Because the first enhancement was the addition of
classes, the resulting language was originally named
“C with Classes,” but was renamed C++ in 1983.
Along with overcoming some of the dangers and disadvantages of C, these and subsequent
enhancements have resulted in a very powerful language in which very efficient programs
can be written and developed using the object-oriented paradigm. A programming lan-
guage standard for C++ (ISO/IEC148821998) was adopted in 1998 and revised in 2003 and
is the basis for this text.

BACKGRoUnD AnD ConTEnT
This text grew out of many years of teaching courses in computing, including program-
ming courses intended for students majoring in engineering and science. Although the
Fortran language was first used, these courses are now taught using C++. However, most
C++ textbooks are written for the general college student and thus include examples and
some content that is not aimed at or especially relevant to science and engineering students.

In this text, nearly all of the examples and exercises involve engineering and scientific
applications, including the following (and many more):

•	 Temperature conversion

•	 Radioactive decay

•	 Einstein’s equation

•	 Pollution indexes

•	 Digital circuits

•	 Root finding, integration, differential equations

Bjarne Stroustrup

www.allitebooks.com

http://www.allitebooks.org

viii    ◾    Preface

•	 Internet addresses

•	 A-C circuits

•	 Simulation

•	 Quality control

•	 Street networks

•	 Environmental data analysis

•	 Searching a chemistry database

•	 Oceanographic data analysis

•	 Electrical networks

•	 Coordinate transformations

•	 Data encryption

•	 Beam deflection

•	 Weather data analysis

•	 Oceanographic data analysis

Some examples are described and solved in detail, while for others the presentation in the
text outlines the solution and the complete development is available on the text’s website
maintained by the author:

http://cs.calvin.edu/books/c++/engr-sci

This text also focuses on those features of C++ that are most important in engineering
and science applications, with other features described in optional sections, appendices, or
on the text’s website. This makes it useable in a variety of courses ranging from a regular
full-credit course to one with reduced credit such as a two-credit course that the author has
taught many times, where the class lectures are supplemented by lab exercises—tutorial in
nature—in which the students develop a program to solve some problem using the new
language features presented in class.

PRESEnTATIon
The basic approach of the text is a spiral approach that revisits topics in increasingly more
detail. For example, the basic C++ operations used to build expressions are presented first,
and then predefined functions provided in C++ libraries are added. Once students have
experience with functions, they learn how to define their own simple functions and then
more complicated ones. Later they learn how to incorporate these into libraries of their
own, thus extending the C++ language with custom-designed libraries.

K11207.indb 8 6/15/12 10:06 AM

www.allitebooks.com

http://www.allitebooks.org

Preface    ◾    ix

Learning how to develop a program from scratch, however, can be a difficult and chal-
lenging task for novice programmers. A methodology used in this text for designing
programs to solve problems, developed over years of teaching C++ to computer science,
engineering, and science students and coauthoring texts in C++, is called object-centered
design (OCD):

•	 Identify the objects in the problem that need to be processed.

•	 Identify the operations needed to do this processing.

•	 Develop an algorithm for this processing.

•	 Implement these objects, operations, and algorithm in a program.

•	 Test, correct, and revise the program.

Although this approach cannot technically be called object-oriented design (OOD), it does
focus on the objects and operations on these objects in a problem. As new language con-
structs are learned, they are incorporated into the design process. For example, simple
types of objects are used in early chapters, but Chapter 7 introduces students to some of the
standard classes provided in C++ for processing more complex objects—those that have
multiple attributes. In subsequent chapters, more classes are introduced and explained,
and students gain more practice in using them and understanding the structure of a class.
Once they have a good understanding of these predefined standard classes, in Chapter 14
they learn how to build their own classes to model objects, thus extending the C++ lan-
guage to include a new custom-built type.

IMPoRTAnT FEATURES
•	 Standard C++ is used throughout.

•	 A “use it first—build it later” approach is used for key concepts such as functions (use
predefined functions first, build functions later) and classes (use predefined classes
first, build classes later). Various other topics are similarly introduced early and used,
and are expanded later—a spiral kind of approach.

•	 The very powerful and useful Standard Template Library (STL) is introduced and
some of the important class templates (e.g., vector) and function templates (e.g.,
sort()) are presented in detail.

•	 C++’s language features that are not provided in C are noted.

•	 Engineering and science examples, including numeric techniques, are emphasized.

•	 Programs for some examples are developed in detail; for others, the design of a pro-
gram is outlined and a complete development is available on the text’s website.

•	 Object-centered design (OCD) helps students develop programs to solve problems.

•	 Proper techniques of design and style are emphasized and used throughout.

K11207.indb 9 6/15/12 10:06 AM

www.allitebooks.com

http://www.allitebooks.org

x    ◾    Preface

•	 Test-yourself questions (with answers supplied) provide a quick check of understand-
ing of the material being studied.

•	 Chapter summaries highlight key terms, important points, design and style sugges-
tions, and common programming pitfalls.

•	 Each chapter has a carefully selected set of programming projects of varying degrees
of difficulty that make use of the topics presented in that chapter. Solutions of
selected projects are available on an instructor’s website and can be used for in-class
presentations.

PLAnnED SUPPLEMEnTARY MATERIALS
•	 A lab manual (perhaps online) containing laboratory exercises and projects coordinated

with the text

•	 A website (http://cs.calvin.edu/books/c++/engr-sci) for the text containing

•	 Source code for the programs in the text

•	 Expanded presentations and source code for some examples

•	 Links to important sites that correspond to items in the text

•	 Corrections, additions, reference materials, and other supplementary materials

•	 A website for instructors containing

•	 PowerPoint slides to use in class presentations

•	 Solutions to exercises

•	 Other instructional materials and links to relevant items of interest

K11207.indb 10 6/15/12 10:06 AM

xi

Acknowledgments

I express my special appreciation to Alan Apt, whose friendship extends over many
years and who encouraged me to write this text; to Randi Cohen, David Tumarkin,

Suzanne Lassandro, and Jennifer Ahringer, who managed all the details involved in getting
it into production; and to Yong Bakos, for his technical review of the manuscript. And,
of course, I pay homage to my wife, Shar, and to our children and grandchildren—Jeff,
Rebecca, Megan, and Sara; Jim; Greg, Julie, Joshua, Derek, and Isabelle; Tom, Joan, Abigail,
Micah, Lucas, Gabriel, Eden, and Josiah—for their love and understanding when my
busyness restricted the time I could spend with them. Above all, I give thanks to God for
the opportunity and ability to prepare this text.

This page intentionally left blankThis page intentionally left blank

xiii

About the Author

After graduating from Calvin College in 1960 with a degree in mathematics,
Larry Nyhoff went on to earn a master’s degree in mathematics from the University

of Michigan in 1961, and then returned to Calvin in 1963 to teach. After earning his PhD
from Michigan State University in 1969, he settled in for an anticipated lifelong career as a
mathematics professor and coauthored his first textbook, Essentials of College Mathematics
(Holt, Rinehart, Winston, Inc.), in 1969.

However, as students began clamoring for computing courses in the ‘70s, Professor
Nyhoff volunteered to help develop a curriculum and coauthored several manuals for the
BASIC, FORTRAN, and COBOL programming languages. Following graduate work in
computer science at Western Michigan University from 1981–1983, he made the transition
from mathematics to computing and became a professor in the newly formed Computer
Science Department.

A long stint of textbook writing soon commenced, beginning with a coauthored
FORTRAN 77 programming text that was published by Macmillan in 1983. This was
then followed by a Pascal programming text, which went through three editions and
became a top seller. Over 25 other books followed, covering FORTRAN 90, Turbo Pascal,
Modula-2, and Java, and including three editions of a very popular C++ text and an
introductory text in data structures using C++. Several of these texts are still used world-
wide and some have been translated into other languages, including Spanish, Chinese,
and Greek.

A year before his retirement in 2003, after 41 years of full-time teaching, Professor
Nyhoff was awarded the Presidential Award for Exemplary Teaching, Calvin College’s
highest faculty honor. Since retirement, he has continued instructing part-time, teaching
sections of “Applied C++,” a two-credit course required of all engineering students and
also taken by several science students. This textbook is the result of preliminary versions
used in that course over several semesters.

This page intentionally left blankThis page intentionally left blank

1

C h a p t e r 1

Introduction to Computing

I wish these calculations had been executed by steam.

CHARLES BABBAGE

One machine can do the work of fifty ordinary men. No machine can do the work
of one extraordinary man.

ELBERT HUBBARD

Where a computer like the ENIAC is equipped with 18,000 vacuum tubes and
weighs 30 tons, computers in the future may have only 1000 vacuum tubes and
weigh only 1-1/2 tons.

POPular MEChaniCs (MARCH 1949)

640K ought to be enough for anyone.

BILL GATES (1981)

So IBM has equipped all XTs with what it considers to be the minimum gear for a
serious personal computer. Now the 10-megabyte disk and the 128K of memory are
naturals for a serious machine.

PETER NORTON (1983)

ConTEnTS
1.1 Computing Systems 2
1.2 Computer Organization 14
Exercises 20

2    ◾    Programming in C++ for Engineering and Science

The modern electronic computer is one of the most important products of the twen-
tieth century. It is an essential tool in many areas, including business, industry, govern-

ment, science, and education; indeed, it has touched nearly every aspect of our lives. The
impact of the twentieth-century information revolution brought about by the development of
high-speed computing systems has been nearly as widespread as the impact of the nineteenth-
century industrial revolution. In this chapter we begin with some background by describing
computing systems, their main components, and how information is stored in them.

Early computers were very difficult to program. In fact, programming some of the earli-
est computers consisted of designing and building circuits to carry out the computations
required to solve each new problem. Later, computer instructions could be coded in a lan-
guage that the machine could understand. But these codes were very cryptic, and pro-
gramming was therefore very tedious and error prone. Computers would not have gained
widespread use if it had not been for the development of high-level programming lan-
guages that made it possible to enter instructions using an English-like syntax.

Fortran, C, C++, Java, and Python are some of the languages that are used extensively in
engineering and scientific applications. This text will focus on C++ but will also describe
some properties of its parent language, C, noting features that these two languages have in
common, as well as their differences.

1.1 CoMPUTInG SYSTEMS
Four important concepts have shaped the history of computing:

 1. The mechanization of arithmetic

 2. The stored program

 3. The graphical user interface

 4. The computer network

This section briefly describes a few of the important events and devices that have imple-
mented these concepts. Additional information can be found on the website for this book
described in the preface.

1.1.1 Machines to Do Arithmetic

One of the earliest “personal calculators” was the abacus (Figure 1.1a), with movable beads
strung on rods to count and to do calculations. Although its exact origin is unknown, the
abacus was used by the Chinese perhaps 3000 to 4000 years ago and is still used today
throughout Asia. Early merchants used the abacus in trading transactions. The ancient
British stone monument stonehenge (Figure 1.1b), located near Salisbury, England, was
built between 1900 and 1600 BC and, evidently, was used to predict the changes of the
seasons. In the twelfth century, a Persian teacher of mathematics in Baghdad, Muhammad
ibn-Musa al-Khowarizm, developed some of the first step-by-step procedures for doing
computations. The word algorithm, used for such procedures, is derived from his name.

K11207.indb 2 6/15/12 10:06 AM

Introduction to Computing    ◾    3  

(a)

(b)

(c)

FIGURE 1.1 (a) Abacus. (Image courtesy of the Computer History Museum.) (b) Stonehenge.
(c) Slide rule.

K11207.indb 3 6/15/12 10:06 AM

4    ◾    Programming in C++ for Engineering and Science

The English mathematician William Oughtred invented a circular slide rule in the early
1600s, and more modern ones (Figure 1.1c) were used by engineers and scientists through
the 1950s and into the 1960s to do rapid approximate computations.

In 1642, the young French mathematician Blaise Pascal invented one of the first mechan-
ical adding machines to help his father with calculating taxes. This Pascaline (Figure 1.2a)
was a digital calculator because it represented numerical information as discrete digits, as
opposed to a graduated scale like that used in analog instruments of measurement such
as slide rules and nondigital thermometers. Each digit was represented by a gear that
had 10 different positions (a ten-state device) so that it could “count” from 0 through 9
and, upon reaching 10, would reset to 0 and advance the gear in the next column so as to
represent the action of “carrying” to the next digit. In 1673, the German mathematician
Gottfried Wilhelm von leibniz invented an improved mechanical calculator (Figure 1.2b)
that also used a system of gears and dials to do calculations. However, it was more reliable
and accurate than the Pascaline and could perform all four of the basic arithmetic opera-
tions of addition, subtraction, multiplication, and division. A number of other mechanical
 calculators followed that further refined Pascal’s and Leibniz’s designs, and by the end of
the nineteenth century, these calculators had become important tools in science, business,
and commerce.

1.1.2 The Stored Program Concept

The fundamental idea that distinguishes computers from calculators is the concept of a
stored program that controls the computation. A program is a sequence of instructions
that the computer follows to solve some problem. An income tax form is a good analogy.
Although a calculator can be a useful tool in the process, computing taxes involves much
more than arithmetic. To produce the correct result, one must execute the form’s precise
sequence of steps of writing numbers down (storage), looking numbers up (retrieval), and
computation to produce the correct result.

The stored program concept also gives the computer its amazing versatility. Unlike most
other machines, which are engineered to mechanize a single task, a computer can be pro-
grammed to perform many different tasks. Although its hardware is designed for a very
specific task—the mechanization of arithmetic—computer software programs enable the
computer to perform a wide variety of tasks, from navigational control of the space shuttle
to word processing to musical composition.

(a) (b)

FIGURE 1.2 (a) Pascaline. (b) Leibnitz’s calculator. (Images courtesy of the Computer History
Museum.)

K11207.indb 4 6/15/12 10:06 AM

Introduction to Computing    ◾    5  

The Jacquard loom (Figure 1.3a), invented in 1801 by the Frenchman Joseph Marie
Jacquard, is an early example of a stored program automatically controlling a hardware
device. Holes punched in metal cards directed the action of this loom: a hole punched in
one of the cards would enable its corresponding thread to come through and be incorpo-
rated into the weave at a given point in the process; the absence of a hole would exclude
an undesired thread. To change to a different weaving pattern, the operator of this loom
would simply switch to another set of cards. Jacquard’s loom is thus one of the first exam-
ples of a programmable machine, and many later computers would make similar use of
punched cards.

(a) (b)

(c)

FIGURE 1.3 (a) Jacquard Loom. (Image courtesy of the Computer History Museum.) (b) Charles
Babbage. (c) Difference Engine.

K11207.indb 5 6/15/12 10:06 AM

www.allitebooks.com

http://www.allitebooks.org

6    ◾    Programming in C++ for Engineering and Science

The English mathematician Charles Babbage (1792–1871) (Figure 1.3b) combined the
two fundamental concepts of mechanized calculation and stored program control. In
1822, supported by the British government, he began work on a machine that he called the
Difference Engine (Figure 1.3c). Comprised of a system of gears, the Difference Engine was
designed to compute polynomials for preparing mathematical tables.

Babbage abandoned this effort and began the design of a much more sophisticated
machine that he called his analytical Engine (Figure 1.4a). It was to have over 50,000 com-
ponents, and its operation was to be far more versatile and fully automatic, controlled by
programs stored on punched cards, an idea based on Jacquard’s earlier work. Although
this machine was not built during his lifetime, it is an important part of the history of
computing because many of the concepts of its design are used in modern computers.
For this reason, Babbage is sometimes called the “Father of Computing.” ada augusta
(Figure 1.4b), Lord Byron’s daughter, was one of the few people other than Babbage who
understood the Analytical Engine’s design. This enabled her to develop “programs” for the
machine, and for this reason she is sometimes called “the first programmer.” In the 1980s,
the programming language Ada was named in her honor.

(a)

(b)

FIGURE 1.4 (a) Analytical Engine. (b) Ada Augusta.

K11207.indb 6 6/15/12 10:06 AM

Introduction to Computing    ◾    7  

During the next 100 years, the major significant event was the invention by herman
hollerith of an electric tabulating machine (Figure 1.5a) that could tally census statistics
stored on punched cards. This was noteworthy because the U.S. Census Bureau feared it
would not be possible to complete the 1890 census before the next one was to be taken, but
Hollerith’s machine enabled it to be completed in 2-1/2 years. The Hollerith Tabulating
Company later merged with other companies to form the International Business Machines
(IBM) Corporation in 1924.

The development of electromechanical computing devices continued at a rapid pace for
the next few decades. These included the “Z” machines, developed by the German engineer
Konrad Zuse in the 1930s, which used binary arithmetic instead of decimal so that two-
state devices could be used instead of ten-state devices. Some of his later machines replaced

(a)

(b)

FIGURE 1.5 (a) Hollerith’s tabulating machine. (b) Harvard Mark I. (Images courtesy of the
Computer History Museum.)

K11207.indb 7 6/15/12 10:06 AM

8    ◾    Programming in C++ for Engineering and Science

mechanical relays with vacuum tubes. Zuse also designed a high-level programming lan-
guage called Plankalkül. World War II also spurred the development of computing devices,
including the Collosus computers developed by Alan Turing and a British team to break
codes generated by Germany’s Enigma machine. The best-known computer built before
1945 was probably the Harvard Mark I (Figure 1.5b). Like Zuse’s “Z” machines, it was
driven by electromechanical relay technology. Repeating much of the work of Babbage,
Howard Aiken and others at IBM constructed this large, automatic, general-purpose, elec-
tromechanical calculator, sponsored by the U.S. Navy and intended to compute mathemat-
ical and navigational tables.

In 1944, Grace Murray hopper (1907–1992) began work as a coder—what we today
would call a programmer—for the Mark I. Later, while working on its successor, the
Mark II, she found one of the first computer “bugs”—an actual bug stuck in one of the
thousands of relays.1 To this day, efforts to find the cause of errors in programs are still
referred to as “debugging.” In the late 1950s, “Grandma COBOL,” as she has affection-
ately been called, developed the FLOW-MATIC language, which was the basis for COBOL
(COmmon Business-Oriented Language), a widely-used programming language for busi-
ness applications.

John atanasoff and Clifford Berry developed the first fully electronic binary computer
(Figure 1.6a), the aBC (Atanasoff-Berry Computer), at Iowa State University during 1937–
1942. It introduced the ideas of binary arithmetic, regenerative memory, and logic circuits.
Unfortunately, because the ABC was never patented and others failed at the time to see
its utility, it took three decades before Atanasoff and Berry received recognition for this
remarkable technology. Until then, the Electronic Numerical Integrator and Computer,
better known as the EniaC (Figure 1.6b), bore the title of the first fully electronic computer.
The designers, J. Presper Eckert and John Mauchly, began work on it in 1943 at the Moore
School of Engineering at the University of Pennsylvania. When it was completed in 1946,
this 30-ton machine had 18,000 vacuum tubes, 70,000 resistors, and 5 million soldered
joints, and consumed 160 kilowatts of electrical power. Stories are told of how the lights in
Philadelphia dimmed when the ENIAC was operating. This extremely large machine could
multiply numbers approximately 1000 times faster than the Mark I, but it was quite limited
in its applications and was used primarily by the Army Ordnance Department to calculate
firing tables and trajectories for various types of artillery shells. Eckert and Mauchly later
left the University of Pennsylvania to form the Eckert-Mauchly Computer Corporation,
which built the uniVaC (Universal Automatic Computer). Started in 1946 and completed
in 1951, it was the first commercially available computer designed for both scientific and
business applications. The UNIVAC achieved instant fame partly due to its correct (albeit
not believed) prediction on national television of the election of President Eisenhower in
the 1952 U.S. presidential election, based on 5% of the returns.

The instructions that controlled the ENIAC’s operation were entered into the machine by
rewiring some of the computer’s circuits. This complicated process was very time-consuming,
sometimes taking a number of people several days; during this time, the computer was idle.

1 This bug has been preserved in the National Museum of American History of the Smithsonian Institution.

K11207.indb 8 6/15/12 10:06 AM

Introduction to Computing    ◾    9  

In other early computers, the instructions were stored outside the machine on punched cards
or some other medium, and were transferred into the machine one at a time for interpretation
and execution.

It must be pointed out, however, that although men had built the machine, it was women
who learned how to make it work to solve mathematical problems that would have taken
hours by hand (Figure 1.7). And there were thousands of women doing similar work all
across the United States. A documentary called Top secret rosies: The Female Computers of
World War ii that debuted in 2010 acknowledges their important work.2

2 http://www.topsecretrosies.com/Top_Secret_Rosies/Home.html

(a)

(b)

FIGURE 1.6 (a) The ABC. (b) ENIAC. (U.S. Army photo. Image courtesy of the Computer History
Museum.)

K11207.indb 9 6/15/12 10:06 AM

10    ◾    Programming in C++ for Engineering and Science

In 1945, Princeton mathematician John von neumann wrote First Draft of a report on the
EDVaC (Electronic Discrete Variable automatic Computer) in which he described a scheme
that required program instructions to be stored internally before execution. This led to
his being credited as the inventor of the stored-program concept. The architectural design
he described is still known as the von neumann architecture. The advantage of executing
instructions from a computer’s memory rather than directly from a mechanical input
device is that it eliminates time that the computer must spend waiting for instructions.
Instructions can be processed more rapidly and, more importantly, they can be modified
by the computer itself while computations are taking place. The introduction of this scheme
to computer architecture was crucial to the development of general-purpose computers.

The actual physical components used in constructing a computer system are its hard-
ware. Several generations of computers can be identified by the type of hardware used. The
ENIAC and UNIVAC are examples of first-generation computers, which are character-
ized by their extensive use of vacuum tubes. Advances in electronics brought changes in
computing systems, and in 1958 IBM introduced the first of the second-generation com-
puters, the IBM 7090. These computers were built between 1959 and 1965 and used transis-
tors in place of vacuum tubes. Consequently, these computers were smaller, required less
power, generated far less heat, and were more reliable than their predecessors. They were
also less expensive, as illustrated by the introduction of the first minicomputer in 1963,
the PDP-8, which sold for $18,000, in contrast with earlier computers whose six-digit price
tags limited their sales to large companies. The third-generation computers that followed
used integrated circuits and introduced new techniques for better system utilization, such
as multiprogramming and time sharing. The IBM System/360 introduced in 1964 is com-
monly accepted as the first of this generation of computers. Computers from the 1980s
on, called fourth-generation computers, use very large-scale integrated circuits (VLSI) on
silicon chips and other microelectronic advances to shrink their size and cost still more
while enlarging their capabilities.

The first chip was the 4004 chip (Figure 1.8) designed by Intel’s Ted hoff, giving birth to
the microprocessor, which marked the beginning of the fourth generation of computers.

FIGURE 1.7 Men built the ENIAC, but women made it work. (U.S. Army photo.)

K11207.indb 10 6/15/12 10:06 AM

Introduction to Computing    ◾    11  

This, along with the first use of an 8-inch floppy disk at IBM, ushered in the era of the per-
sonal computer. Robert Noyce, one of the cofounders of the Intel Corporation, contrasted
microcomputers with the ENIAC as follows:

An individual integrated circuit on a chip perhaps a quarter of an inch square now
can embrace more electronic elements than the most complex piece of electronic
equipment that could be built in 1950. Today’s microcomputer, at a cost of perhaps
$300, has more computing capacity than the first electronic computer, ENIAC. It is
twenty times faster, has a larger memory, consumes the power of a light bulb rather
than that of a locomotive, occupies 1/30,000 the volume and costs 1/10,000 as much.
It is available by mail order or at your local hobby shop.

1.1.3 System Software

The stored-program concept was a significant improvement over manual programming
methods, but early computers still were difficult to use because of the complex coding
schemes required for representing programs and data. Consequently, in addition to
improved hardware, computer manufacturers began to develop collections of programs
known as system software, which make computers easier to use. One of the more impor-
tant advances in this area was the development of operating systems, which allocate stor-
age for programs and data and carry out many other supervisory functions. They also act
as an interface between the user and the machine, interpreting commands given by the
user from the keyboard, by a mouse click, or by a spoken command, and then directing
the appropriate system software and hardware to carry them out. Two important early
operating systems are unix (1971) and Ms-DOs (1981). Unix was developed in 1971 by
Ken Thompson and Dennis ritchie at AT&T’s Bell Laboratories and is the only operating
system that has been implemented on computers ranging from microcomputers to super-
computers. The most popular operating system for personal computers for many years was
MS-DOS, developed in 1981 by Bill Gates, founder of the Microsoft Corporation. More
recently, graphical user interfaces (GUIs), such as MIT’s X Window System for UNIX-
based machines, Microsoft’s Windows for personal computers, and Apple’s Macintosh
interface, were devised to provide a simpler and more intuitive interface between humans
and computers.

FIGURE 1.8 Intel 4004 chip (1971).

K11207.indb 11 6/15/12 10:06 AM

12    ◾    Programming in C++ for Engineering and Science

As noted in the introduction to this chapter, one of the most important advances in
system software was the development of high-level languages, which allow users to write
programs in a language similar to natural language. A program written in a high-level
language is known as a source program. For most high-level languages, the instructions
that make up a source program must be translated into machine language, that is, the
language used directly by a particular computer for all its calculations and processing.
This machine-language program is called an object program. The programs that translate
source programs into object programs are called compilers.

This summary of the history of computing has dealt mainly with the first two impor-
tant concepts that have shaped the history of computers: the mechanization of arith-
metic and the stored-program concept. Looking back, we marvel at the advances in
technology that have, in little more than a half century, led from ENIAC to today’s wide
array of computer systems, ranging from smart phones, tablet PCs, and laptops to pow-
erful desktop machines, to supercomputers capable of performing billions of operations
each second, and to massively parallel computers that use thousands of microprocessors
working together in parallel to solve large problems. Someone once noted that if prog-
ress in the automotive industry had been as rapid as in computer technology since 1960,
today’s automobile would have an engine that is less than 0.1 inch in length, would get
120,000 miles to a gallon of gas, would have a top speed of 240,000 miles per hour, and
would cost $4.

1.1.4 The Graphical User Interface

The third key concept that has produced revolutionary change in the evolution of the com-
puter is the graphical user interface (GUI). A user interface is the portion of a software
program that responds to commands from the user. User interfaces have evolved greatly
in the past two decades, in direct correlation to equally dramatic changes in the typical
computer user.

In the early 1980s, the personal computer burst onto the scene. However, at the out-
set, the personal computer did not suit the average person very well. The explosion in the
amount of commercially available application software spared computer users the task of
learning to program in order to compose their own software; for example, the mere avail-
ability of the Lotus 1-2-3 spreadsheet software was enough to convince many to buy a PC.
Even so, using a computer still required learning many precise and cryptic commands, if
not outright programming skills.

In the early 1980s, the Apple Corporation decided to take steps to remedy this situation.
The Apple II, like its new competitor, the IBM PC, employed a command-line interface,
requiring users to learn difficult commands. In the late 1970s, Steve Jobs visited Xerox’s
Palo Alto Research Center (PARC) and viewed several technologies that amazed him: the
laser printer, Ethernet, and the graphical user interface. It was the last of these that excited
Jobs the most, for it offered the prospect of software that computer users could understand
almost intuitively. In a 1995 interview he said, “I remember within 10 minutes of seeing
the graphical user interface stuff, just knowing that every computer would work this way
some day.”

K11207.indb 12 6/15/12 10:06 AM

Introduction to Computing    ◾    13  

Drawing upon child development theories, Xerox PARC had developed the graphical
user interface for a prototype computer called the Alto developed in 1973. The Alto fea-
tured a new device that had been dubbed a “mouse” by its inventor, PARC research scien-
tist Douglas Engelbart. The mouse allowed the user to operate the computer by pointing
to icons and selecting options from menus. At the time, however, the cost of the hardware
that the Alto required made it unfeasible to market, and the brilliant concept went unused.
Steve Jobs saw, however, that the same remarkable change in the computer hardware mar-
ket that had made the personal computer feasible also made the graphical user inter-
face a reasonable possibility. In 1984, in a famous commercial first run during halftime
of the Super Bowl, Apple introduced the first GUI personal computer to the world: the
Macintosh. In 1985, Microsoft responded with a competing product, the Windows oper-
ating system, but until Windows version 3.0 was released in 1990, Macintosh reigned
unchallenged in the world of GUI microcomputing. Researchers at the Massachusetts
Institute of Technology also brought GUI to the UNIX platform with the release of the X
Window system in 1984.

The graphical user interface has made computers easy to use and has produced many
new computer users. At the same time, it has greatly changed the character of computing:
computers are now expected to be “user friendly.” The personal computer, especially, must
indeed be “personal” for the average person and not just for computer programmers.

1.1.5 networks

The computer network is a fourth key concept that has greatly influenced the nature of
modern computing. Defined simply, a computer network consists of two or more com-
puters that have been connected in order to exchange resources. This could be hardware
resources such as processing power, storage, or access to a printer; software resources such
as a data file or access to a computer program; or messages between humans such as elec-
tronic mail or multimedia World Wide Web pages.

As computers became smaller, cheaper, more common, more versatile, and easier to
use, computer use rose, and with it the number of computer users. Thus, computers had to
be shared. In the early 1960s, timesharing was introduced, in which several persons make
simultaneous use of a single computer called a host by way of a collection of terminals, each
of which consists of a keyboard for input and either a printer or a monitor to display out-
put. With a modem (short for “modulator/demodulator,” because it both modulates binary
digits into sounds that can travel over a phone line and, at the other end, demodulates such
sounds back into bits), such a terminal connection could be over long distances.

Users, however, began to wish for the ability for one host computer to communicate
with another. For example, transferring files from one host to another typically meant
transporting tapes from one location to the other. In the late 1960s, the Department of
Defense began exploring the development of a computer network by which its research
centers at various universities could share their computer resources with each other. In
1969, the ARPANET began by connecting research center computers, enabling them to
share software and data and to perform another kind of exchange that surprised everyone
in terms of its popularity: electronic mail. Hosts were added to the ARPANET backbone

K11207.indb 13 6/15/12 10:06 AM

14    ◾    Programming in C++ for Engineering and Science

in the 1970s, 1980s, and 1990s at an exponential rate, producing a global digital infrastruc-
ture that came to be known as the Internet.

Likewise, with the introduction of microcomputers in the late 1970s and early 1980s,
users began to desire the ability for PCs to share resources. The invention of Ethernet
network hardware and such network operating systems as Novell NetWare produced the
Local Area Network, or LAN, enabling PC users to share printers and other peripherals,
disk storage, software programs, and more. Microsoft also included networking capability
as a major feature of its Windows NT operating system.

The growth of computer connectivity has continued at a surprising rate. Computers
have become common, and they are used in isolation less and less. With the advent of
affordable and widely available Internet Service Providers (ISPs) and WiFi, computer users
can now connect to the growing global digital infrastructure almost anywhere.

1.1.6 A Brief history of C++

To simplify the task of transferring the Unix operating system to other computers, Ken
Thompson began to search for a high-level language in which to rewrite Unix. None of
the languages in existence at the time were appropriate; therefore, in 1970, Thompson
began designing a new language called B. By 1972, it had become apparent that B was
not adequate for implementing Unix. At that time, Dennis Ritchie, also at Bell Labs,
designed a successor language to B that he called C, and approximately 90% of Unix was
rewritten in C.

By the late 1970s, a new approach to programming appeared on the scene—object-oriented
programming (OOP)—that emphasized the modeling of objects through classes and inheri-
tance. A research group at Xerox PARC created the first truly object-oriented language, named
Smalltalk-80. Another Bell Labs researcher, Bjarne Stroustrup, began the work of extending C
with object-oriented features. In 1983, the redesigned and extended programming language C
With Classes was introduced with the new name C++.

In the years that followed, as computer manufacturers developed C and C++ compil-
ers for their machines, some added extensions and variations that were specific to their
particular computers. As a consequence, programs written for one machine might not be
usable on a different machine without modification. To remedy these problems, a standard
for C++ was developed so that programs written in C++ are portable, which means they
can be processed on several different machines with little or no alteration.

1.2 CoMPUTER oRGAnIzATIon
The basic design of the Analytical Engine corresponded remarkably to that of modern
computers in that it involved the four primary operations of a computer system: process-
ing, storage, input, and output. It included a mill for carrying out the arithmetic computa-
tions according to a sequence of instructions (like the central processing unit in modern
machines); the store was the machine’s memory for storing up to one thousand 50-digit
numbers and intermediate results; input was to be by means of punched cards; output was
to be printed; and other components were designed for the transfer of information between
components. When completed, it would have been as large as a locomotive, powered by

K11207.indb 14 6/15/12 10:06 AM

Introduction to Computing    ◾    15  

steam, and able to calculate to six decimal places of accuracy very rapidly and print out
results, all of which was to be controlled by a stored program!

The design of Babbage’s Analytical Engine as a system of several separate components,
each with its own particular function, was incorporated in many later computers and is,
in fact, a common feature of most modern computers. In this section we briefly describe
the major components of a modern computing system and how program instructions and
data are stored and processed. A more complete description of computer architecture can
be found on the website for this text described in the Preface.

1.2.1 Computing Systems

Most present-day computers exhibit a structure that is often referred to as the von Neumann
architecture after Hungarian mathematician John von Neumann, whose pioneering work
in the stored program concept and whose theories defined many key features of the mod-
ern computer. According to the von Neumann architecture (see Figure 1.9), the heart of the
computing system is its central processing unit (CPU). The CPU controls the operation
of the entire system, performs the arithmetic and logic operations, and stores and retrieves
instructions and data. Every task that a computer performs ultimately comes down to

Input devices CPU = Central Processing Unit

Control
unit

Arithmetic-
logic unit

Main
memory

External memory

Output devices

FIGURE 1.9 Major components of a computing system.

K11207.indb 15 6/15/12 10:06 AM

www.allitebooks.com

http://www.allitebooks.org

16    ◾    Programming in C++ for Engineering and Science

instructions and data that can be operated upon by the CPU. The instructions and data are
stored in a high-speed memory unit, and the control unit fetches these instructions from
memory, decodes them, and directs the system to execute the operations indicated by the
instructions. Those operations that are arithmetical or logical in nature are carried out
using the circuits of the arithmetic-logic unit (ALU) of the CPU. These operations of the
CPU are known as processing.

In contrast to the one-instruction-at-a-time operation by the CPU in the von Neumann
architecture, parallel processing computers improve performance by employing two or
more CPUs. The world’s fastest supercomputers employ thousands of CPU chips and for
this reason are termed massively parallel processing computers. Parallel computing, how-
ever, requires a very different programming strategy in order to make use of the power of
systems with thousands of processors.

1.2.2 Storage

The memory unit of a computer system serves several purposes. Main memory is also
known as internal, primary, or random access memory (RAM), and its main function is
to store the instructions and data of the programs being executed. Most modern comput-
ers also have a smaller amount of high-speed memory called cache memory that is usu-
ally on the same chip as the CPU. It is used to speed up execution by storing a set of recent
or current instructions being executed so they need not be fetched from main memory.
Also, as part of the CPU’s processing, it may need to temporarily write down (store) a
number and read (retrieve) it later. The CPU can use main memory in this manner, but
there is also a set of special high-speed memory locations within the CPU called registers.
Values that are stored in registers can typically be accessed thousands of times faster than
values that are stored in RAM.

One problem with RAM and registers is that they are volatile; that is, if the power to the
computing system is shut off (either intentionally or accidentally), values that are stored
in these memory components are lost. To provide long-term storage of software programs
and data, most computing systems also have components that are called secondary, exter-
nal, or auxiliary storage. Common forms of this type of storage include magnetic media
such as hard disks and optical media such as CD-ROM and DVD, which make use of
laser technology to store and retrieve information. These devices are nonvolatile, in that
they provide long-term storage for large collections of data, even if power is lost. However,
the time required to access data that is stored on such devices can be thousands of times
greater than the access time for data stored in RAM.

Both main memory and secondary storage are collections of two-state devices. There are
only two possible digits, 0 and 1, in the binary number system. Thus, if one of the states of a
two-state device is interpreted as 0 and the other as 1, then a two-state device can be said to be
a 1-bit device, because it is capable of representing a single binary digit (or “bit”). Such two-
state devices are organized into groups called bytes, with one byte consisting of eight bits.

To indicate larger amounts of storage, some of the prefixes of the metric system are
used—for example, kilo. However, there is an important difference. The metric system is
convenient precisely because it is a decimal system, based on powers of 10, but modern

K11207.indb 16 6/15/12 10:06 AM

Introduction to Computing    ◾    17  

computers are binary computers, based on powers of two. Thus, in computing, the prefix
kilo usually is not used for 1000 but, rather, is equal to 210 or 1024. Thus, a kilobyte (KB) is
1024 bytes, not 1000 bytes; one megabyte (MB) is 1024 KB or 1,048,576 bytes, not 1 million
bytes; and one gigabyte (GB) is 1024 MB or 1,073,741,824 bytes, not 1 billion bytes.

Bytes are typically grouped together into words. The number of bits in a word is equal to
the number of bits in a CPU data register. The word size thus varies on different computers,
but common word sizes are 16 bits (= 2 bytes), 32 bits (= 4 bytes), and 64 bits (= 8 bytes).
Associated with each word or byte is an address that can be used to directly access that
word or byte. This makes possible random access (direct access): the ability to store infor-
mation in a specific memory location and then to directly retrieve it later from that same
location. The details of how various types of data are represented in a binary form and
stored are described in Chapter 3.

1.2.3 Input and output

For instructions and data to be processed by a computer’s CPU, they must be digitized—
that is, they must be encoded in binary form and transmitted to the CPU. This is the main
function of input devices. The keyboard is the most common input device, followed by
such pointing devices as the mouse, trackball, and joystick. Similarly, scanners convert and
input graphics as binary information, and audio and video capture boards can encode and
input sounds and video.

Once a CPU has completed a process, in order for that binary result to be meaningful
to a human, it needs to be converted to another form. This is the main function of out-
put devices. Two of the more common types of output device are monitors and printers.
However, the varieties of output that can be generated by a computer are of a growing
and surprising variety. Computers can output information as graphics, sound, video, and
motion (in the case of robotics).

The communication between the CPU and input and output devices often happens
by way of a port, a point of connection between the computer system’s internal compo-
nents and its peripherals (external components). Some ports, such as a monitor port, are
designed for a single and specific use. Others, such as parallel and serial ports, are more
flexible and can accommodate a variety of types of peripherals. Ports in turn connect to
the computer system’s bus, a kind of highway running through the computer system. By
way of the bus, the computer system’s components can send instructions and data to and
from the CPU and memory.

1.2.4 operating Systems

In order for a computer to be a general-purpose computer, it must first load a system
software program called an operating system (OS). In very general terms, this software
program performs two main functions:

 1. It serves as an interface between the computer user(s) and the system hardware.

 2. It serves as an environment in which other software programs can run.

K11207.indb 17 6/15/12 10:06 AM

18    ◾    Programming in C++ for Engineering and Science

The OS and the computer system hardware together comprise a platform upon which
additional functionality can be built. Some operating systems can run only on a single
type of hardware. For example, the DOS and Windows operating systems run only on PC
hardware. In contrast, the UNIX operating system will operate on several types of com-
puter hardware.

1.2.5 Programming

Program instructions for the CPU must be stored in memory. They must be instructions
that the machine can execute, and they must be expressed in a form that the machine
can understand—that is, they must be written in the machine language for that machine.
These instructions consist of two parts: (1) a numeric opcode, which represents a basic
machine operation, such as load, multiply, add, and store; and (2) the address of the oper-
and. Like all information stored in memory, these instructions must be represented in a
binary form.

As an example, suppose that values have been stored in three memory locations with
addresses 1024, 1025, and 1026, and that we want to multiply the first two values, add the
third, and store the result in a fourth memory location, 1027. To perform this computation,
the following instructions must be executed:

 1. Fetch the contents of memory location 1024, and load it into a register in the ALU.

 2. Fetch the contents of memory location 1025, and compute the product of this value
and the value in the register.

 3. Fetch the contents of memory location 1026, and add this value to the value in the
register.

 4. Store the contents of the register in memory location 1027.

If the opcodes for load, store, add, and multiply are 16, 17, 35, and 36, respectively, these
four instructions might be written in machine language as follows:3

1. 00010000000000000000010000000000
2. 00100100000000000000010000000001
3. 00100011000000000000010000000010
4. 00010001000000000000010000000011

 opcode operand

These instructions can then be stored in four (consecutive) memory locations. When
the program is executed, the control unit will fetch each of these instructions, decode it

3 In binary notation, the opcodes 16, 17, 35, and 36 are 10000, 10001, 100011, and 100100, respectively, and the addresses
1024, 1025, 1026, and 1027 are 10000000000, 10000000001, 10000000010, and 10000000011, respectively. See the text’s
website for more information about nondecimal number systems, including methods for converting base-10 numbers to
base-2 (binary) numbers.

K11207.indb 18 6/15/12 10:06 AM

Introduction to Computing    ◾    19  

to determine the operation and the address of the operand, fetch the operand, and then
perform the required operation, using the ALU if necessary.

Programming in the machine language of an early computer was obviously a very dif-
ficult and time-consuming task in which errors were common. Only later did it become
possible to write programs in assembly language, which uses mnemonics (names) in place
of numeric opcodes and variable names in place of numeric addresses. For example, the
preceding sequence of instructions might be written in assembly language as

 1. LOAD a, ACC
 2. MULT b, ACC
 3. ADD c, ACC
 4. STOR ACC, x

An assembler, which is part of the system software, translates such assembly language
instructions into machine language.

LOAD a, ACC
MULT b, ACC
ADD c, ACC
STORE ACC, x

00010000000000000000010000000000
00100100000000000000010000000001
00100011000000000000010000000010
00010001000000000000010000000011

Assembler

Today, most programs are written in high-level languages such as C++ and Java. Such
programs are known as source programs. The instructions that make up a source program
must be translated into machine language before they can be executed. For some languages
(e.g., C++), a compiler that translates the source program into an object program car-
ries this out. For example, for the preceding problem, a programmer might write the C++
statement

x = a * b + c;

which instructs the computer to multiply the values of a and b, add the value of c, and
assign the value to x. A C++ compiler would translate this statement into a sequence of
machine language instructions like those considered earlier.

x = a * b + c;

00010000000000000000010000000000
00100100000000000000010000000001
00100011000000000000010000000010
00010001000000000000010000000011

Compiler

For a complete program like those in the chapters that follow, the compiler will con-
vert each C++ statement into machine language. A linker will then be used to connect
items such as input/output libraries that are defined outside of the resulting object file
with their definitions to produce an executable program, which can then be loaded
into memory and executed by the computer to generate the output produced by the
program.

K11207.indb 19 6/15/12 10:06 AM

20    ◾    Programming in C++ for Engineering and Science

ExERCISES

 1. Match each item in the first column with the associated item in the second column.

 peripheral devices A. high-speed memory used by the CPU

 bit B. central processing unit

 byte C. 1024

 megabyte D. terminals, scanners, printers

 object program E. binary digit

 source program F. group of binary digits

 CPU G. 1024 K bytes

 K H. written in machine language

 RAM I. written in high-level language

 cache J. language translator

Briefly define each of the terms in Exercises 2–16.

 2. ALU

 3. CPU

 4. peripheral devices

 5. bit

 6. byte

 7. word

 8. K

 9. megabyte

 10. source program

 11. object program

 12. machine language

 13. assembly language

 14. compiler

 15. assembler

 16. interpreter

K11207.indb 20 6/15/12 10:06 AM

21

C h a p t e r 2

Programming and
Problem Solving—
Software Engineering

If we really understand the problem, the answer will come out of it, because the
answer is not separate from the problem.

JIDDU KRISHNAMURTI

People always get what they ask for; the only trouble is that they never know, until
they get it, what it actually is that they have asked for.

ALDOUS HUXLEY

It’s the only job I can think of where I get to be both an engineer and an artist.
There’s an incredible, rigorous, technical element to it, which I like because you have
to do very precise thinking. On the other hand, it has a wildly creative side where
the boundaries of imagination are the only real limitation.

ANDY HERTZFELD

ConTEnTS
2.1 A Sneak Peak at C++ 22
2.2 Programming and Problem Solving—An Overview 24
Chapter Summary 34
Test Yourself 35
Exercises 35
Programming Problems 36

6/15/12 10:06 AM

22    ◾    Programming in C++ for Engineering and Science

2.1 A SnEAK PEAK AT C++
A program is a collection of statements written in a programming language. In the same
way that grammar rules dictate how to construct English sentences, there are C++ gram-
mar rules that govern how C++ statements are formed and combined into more complex
statements and into programs. Much of this text is devoted to learning these rules, and in
this section we take a first look at a few of these in a simple C++ program.

It is traditional to use as a first example a program like the one in Example 2.1 that dis-
plays a greeting. The user is prompted to enter his or her first name and then a greeting is
output. We will use this program to illustrate the basic structure of C++ programs.

Example 2.1 Greeting a User

/* Program that greets the user.
 Written by John Doe for CS 104, Assignment 1, Feb. 2, 2012

 Input: the name of the user
 Output: a personalized greeting
 --*/

 #include <iostream> // cin, cout, <<, >>
 #include <string> // string
 using namespace std;

 int main()
 {
 cout << "What is your first name? ";
 string firstName;
 cin >> firstName;

 cout << "\nWelcome to CS 104, " << firstName <<"!\n";
 }

SAMPLE RUN:
 What is your first name? Sharlene user input
 Welcome to CS 104, Sharlene!

The first line of the program begins with the pair of characters /* and the seventh line
ends with the pair */. In a C++ program, anything contained between these character
pairs is a comment. This multiline comment in these opening lines of the program is
opening documentation that gives information about the program such as what it does,
who wrote it, when it was written (or last updated), and what is input to and output by
the program. The dashes in the sixth line are optional and are used in the examples of
this text as a border to set this opening documentation off from the program statements
that follow.

K11207.indb 22 6/15/12 10:06 AM

Programming and Problem Solving—Software Engineering    ◾    23  

The two lines that follow begin with #include and are called compiler directives. The
first one instructs the compiler to add to the program the items in the library iostream
that are needed to perform input and output; it will appear in all of our C++ programs. The
second directive adds the items in the library string that are needed to process character
strings. The // following each directive indicates that what follows to the end of the line is
a comment. Here these comments indicate which items from the libraries are being used.

The next line using namespace std; will be present in nearly all of our programs.
It informs the compiler that we want these to be the standard libraries from the namespace
named std.1 Without it, we would have to qualify each library item (such as cout) with
the prefix std::; for example:

std::cout << "What is your first name? ";

However, this soon becomes annoying because the standard library identifiers such as cin
and cout are used so frequently.

The rest of the program has the form

int main()
{
 A list of C++ statements
}

This is actually a function named main and is called the main function of the program.
The C++ keyword int preceding the word main specifies the return type of the function
and indicates that it will return an integer value to the operating system. Normal termi-
nation is indicated by returning zero; nonzero return values indicate abnormal termina-
tion. Some programmers use (and some older compilers may require) a return statement
return 0; as the last statement in the program.

Execution of this program will begin with the first statement enclosed between the curly
braces ({ and }) in this main function and proceed through the statements that follow it.
Note that each statement must end with a semicolon.

In the program in Example 2.1, the << operator in the first statement will output a mes-
sage to the screen (cout) that prompts the user to enter her or his first name:

cout << "What is your first name? ";

The next statement

string firstName;

1 In 1997, the C++ ANSI standard gave new names to the standard libraries (e.g., iostream in place of iostream.h) and
stored these names and others in containers called namespaces. The ANSI standard identifiers are stored in the namespace
std. With non-ANSI-compliant compilers, it may be necessary to use the older library names (e.g., iostream.h
instead of iostream, and math.h instead of cmath) and remove the using namespace std; line.

K11207.indb 23 6/15/12 10:06 AM

24    ◾    Programming in C++ for Engineering and Science

declares that the variable firstName will store a character string; and the statement

cin >> firstName;

uses the >> operator to read the character string entered by the user from the keyboard
(cin) and stores it in variable firstName. The next statement

cout << "\nWelcome to CS 104, " << firstName << "!\n";

then displays on the screen a personalized greeting consisting of

 1. a special character (\n) that causes an advance to a new line followed by the string

 Welcome to CS 104,

 2. the character string that is stored in firstName

 3. the character ! followed by the new-line character

2.2 PRoGRAMMInG AnD PRoBLEM SoLVInG—An oVERVIEw
A computer program is a sequence of instructions that must be followed to solve some
problem, and the main reason that people learn programming is so that they can use the
computer as a problem-solving tool. At least four steps or stages can be identified in the
program-development process:

 1. Design: Analyze the problem and design a solution, which results in an algorithm to
solve the problem. This is usually the most difficult part of the development process
because it basically requires that the programmer knows how to go about solving
the problem.

 2. Coding: Translate the design plan into the syntax of a high-level language such as
C++ to produce a program.

 3. Testing, Execution, and Debugging: Repeatedly test the program, removing errors
(called bugs) until one is confident that it solves the problem.

 4. Maintenance: Over time, the program is updated and modified, as necessary, to meet
the changing needs of its users.

In this section these steps are illustrated with an example that is quite simple so that the
main ideas are emphasized at each stage without getting lost in a maze of details.

2.2.1 Problem: Temperature Conversion

A marine biologist is conducting research on microorganisms in the Great Lakes. One
part of this study involves the effect of sudden changes in water temperature. The reading
she just recorded was 17.35°C, but some of the formulas she uses to analyze data require

K11207.indb 24 6/15/12 10:06 AM

Programming and Problem Solving—Software Engineering    ◾    25  

that the temperatures be in Fahrenheit. She would like a program she can use to convert a
Celsius temperature to Fahrenheit.

2.2.2 Program Design

Problems to be solved are usually expressed in a natural language such as English and
often are stated imprecisely, making it necessary to analyze the problem and formulate it
more precisely. For the preceding problem, this is quite easy:

Given a temperature reading in Celsius, compute the equivalent Fahrenheit temperature.

For many problems, however, this may be considerably more difficult, because the initial
descriptions may be quite vague and imprecise, perhaps because the people who pose the
problems do not understand them well nor how to solve them nor what the computer’s
capabilities and limitations are.

We will call the approach used in this text to design software solutions to problems object-
centered design (OCD) because it focuses on objects that are given in the problem (the
input); objects that make up the solution of the problem (the output); and other objects that
may be needed to obtain the solution.2 In its simplest form, it consists of the following stages:

 1. Behavior: Describe how you want the program to behave.

 2. Objects: Identify the real-world objects in this description and categorize them.

 3. Operations: Identify the operations needed to solve the problem.

 4. algorithm: Arrange these objects and operations in an order that solves the problem.

2.2.2.1 Behavior
We begin by writing out what we want our program to do (i.e., how we want it to behave).
Because the remainder of our design depends on this step, we try to make it as precise as
possible:

Behavior: The program should display a prompt for the Celsius temperature on the
screen and should then read this Celsius temperature from the keyboard. It should
then compute the corresponding Fahrenheit temperature and display it on the screen.

Note that we have generalized the problem to convert an arbitrary Celsius temperature
and not just 17.35°C. Such generalization is an important aspect of analyzing a prob-
lem because programs should be sufficiently flexible to solve not only the given specific
problem, but also any related problem of the same kind with little, if any, modification
required.

2 This is not the same as object-oriented design, which has a specific meaning in computing and will be described in the
last chapters of this text. To avoid confusion, we will refer to objects (i.e., things) in a problem’s description as real-world
objects or as problem objects and use the term software objects for those things used to represent real-world objects in a
programming language. The C++ standard uses the term entities for these software objects.

K11207.indb 25 6/15/12 10:06 AM

www.allitebooks.com

http://www.allitebooks.org

26    ◾    Programming in C++ for Engineering and Science

2.2.2.2 Objects
Once we have decided exactly what the program should do, we are ready for the next step
of identifying the objects in the problem. One simple approach is to identify the noun
phrases in our behavioral description, ignoring nouns like user and program:

Behavior: The program should display a prompt for the Celsius temperature on the
screen and should then read this Celsius temperature from the keyboard. It should
then compute the corresponding Fahrenheit temperature and display it on the screen.

This gives us the following list of objects:

Problem’s Objects:
prompt for the Celsius temperature
screen
Celsius temperature
keyboard
Fahrenheit temperature

They must be represented in a programming language by software objects, which in most
programming languages must have a specified type that tells what kind of values they can
have. Some of them will have values that vary from one execution of the program to the
next and/or during execution; they are called variables and must have names. Those whose
values remain constant may or may not be named. In our example, we can classify our
objects as follows:

We will not name the first software object in our problem, the prompt, because its value
does not change during execution of the program and is unlikely to change in the future.
In a C++ program, such text string constants are enclosed within double quotes.

The predefined name cout in C++ refers to the output screen (or window). Because the
contents of the screen will change during program execution, it is considered to be a variable.

We have chosen the name celsius for the third software object, the Celsius tempera-
ture. Its value will vary from one execution to the next because the user enters that value
from the keyboard. Numeric objects that can store real values (i.e., numbers with decimal
points) are represented by the type double (or float) in C++.

Problem Objects

Software Objects

Type Kind Name

prompt for Celsius temperature text string constant none
screen output device variable cout

Celsius temperature real number variable celsius
keyboard input device variable cin

Fahrenheit temperature real number variable fahrenheit

K11207.indb 26 6/15/12 10:06 AM

Programming and Problem Solving—Software Engineering    ◾    27  

The predefined name cin in C++ refers to the keyboard. Because values will be entered
from it during program execution, it too is considered to be a variable.

Finally, we have chosen the name fahrenheit for our last software object, the
Fahrenheit temperature. It is a variable, because its value will be computed using the
value of celsius.

2.2.2.3 Operations
Now that we have identified and classified the objects in our program, we can proceed
to the next step, which is to identify the operations needed to solve the problem. For the
objects we identified the nouns in our behavioral description; for the operations we can
begin by identifying the verbs that describe actions of the program:

Behavior: The program should display a prompt for the Celsius temperature on the
screen and should then read this Celsius temperature from the keyboard. It should
then compute the corresponding Fahrenheit temperature and display it on the screen.

Using the objects we identified earlier, we can describe these operations as follows:

Problem’s Operations:
Output a prompt for the Celsius temperature to cout
Input a real value from cin and store it in celsius
Compute fahrenheit
Output the value of fahrenheit to cout

C++ provides the operator << that we can use to output the prompt for the Celsius tem-
perature and the value of fahrenheit to cout (i.e, the screen). Similarly, we can use C++’s
operator >> to input a real value from cin (i.e., the keyboard) and store it in celsius.

Computing the value of fahrenheit requires some additional work. Using the formula

 fahrenheit = 1.8 × celsius + 32.0

means that we need to expand our list of operations:

Problem’s Operations:
Output a prompt for the Celsius temperature to cout
Input a real value from cin and store it in celsius
Compute fahrenheit:

Multiply real values: 1.8 and celsius
Add real values: the preceding product and 32.0

Output the value of fahrenheit to cout

In most languages, including C++, real values can be multiplied using the * operator
and can be added using the + operator. Thus, C++ provides all of the operations needed

K11207.indb 27 6/15/12 10:06 AM

28    ◾    Programming in C++ for Engineering and Science

to solve our problem. However, our formula for converting Celsius to Fahrenheit adds two
new objects to our list.

2.2.2.4 Algorithm
Once all of the objects and operations have been identified, we are ready to arrange
them into an algorithm. If the preceding steps have been done correctly, this is usually
straightforward:

algorithm:

 1. Output a prompt for the Celsius temperature to cout.

 2. Input a real value from cin and store it in celsius.

 3. Compute fahrenheit = 1.8 * celsius + 32.0.

 4. Output fahrenheit to cout.

The language used in this algorithm is sometimes called pseudocode, because it isn’t
written in any particular programming language, but it does bear some similarity to
a program’s code. The algorithm serves as a kind of blueprint for the program that
comes next.

2.2.3 Coding in C++

Once we have designed an algorithm for our problem, we are ready to translate it into a
high-level language such as C++. Beginning programmers may find it easiest to do this a
step at a time:

•	 First create a program stub that contains

•	 Opening documentation

•	 Compiler directives that add items in libraries needed for some of the objects and
operations

•	 An empty main function

Problem Objects

Software Objects

Type Kind Name

prompt for Celsius temperature text string constant none
screen output device variable cout

Celsius temperature real number variable celsius
keyboard input device variable cin

Fahrenheit temperature real number variable fahrenheit
1.8 real number constant none
32.0 real number constant none

K11207.indb 28 6/15/12 10:06 AM

Programming and Problem Solving—Software Engineering    ◾    29  

•	 Convert each step of the algorithm into code. If it uses a software object that hasn’t
already been declared, add a declaration statement that specifies the object’s type
and name.

For our example, we might begin as follows:

 /* This program converts a Celsius temperature to Fahrenheit.

 Written by John Doe for CS 104 -- Project #1 -- Feb. 3, 2012

 Input: the Celsius temperature
 Output: the corresponding Fahrenheit temperature

 --*/

 #include <iostream> // cin, cout, <<, >>
 using namespace std;

 int main()
 {
 }

The program begins with opening documentation, as described in the preceding sec-
tion. This is followed by a #include directive for the iostream library that provides the
objects (cin and cout) and operations (<< and >>) listed in the comment that follows this
directive. The C++ statements that implement our algorithm will be placed between the
curly braces ({ and }) that follow int main(). Because this program stub is a complete
program, we could compile it to see that the syntax is correct. We could even execute it if
we want to, although nothing will be produced.

Now we move on to converting the steps of the algorithm into code. If you are new to
programming, you may find it helpful to actually include the steps of the algorithm (or
summaries of them) between the curly braces { and } of main() as comments:

. . .
int main()
{
 // 1. Output a prompt for the Celsius temperature to cout.
 // 2. Input a real value from cin and store it in celsius.
 // 3. Compute fahrenheit = 1.8 * celsius + 32.
 // 4. Output fahrenheit to cout.
}

The double slashes (//) inform the compiler that what follows on this line is a comment.
Now we translate each step of the algorithm into C++ code, a line at a time. Teaching

you the features of the C++ that enable you to do this will be the purpose of the chapters
that follow; for now, we will just demonstrate this translation with our example.

K11207.indb 29 6/15/12 10:06 AM

30    ◾    Programming in C++ for Engineering and Science

The first line of the algorithm can be translated into the C++ statement

cout << "Enter the Celsius temperature: ";

and added to the main function:

. . .
int main()
{
 // 1. Output a prompt for the Celsius temperature to cout.
 cout << "Enter the Celsius temperature: ";

 // 2. Input a real value from cin and store it in celsius.
 // 3. Compute fahrenheit = 1.8 * celsius + 32.
 // 4. Output fahrenheit to cout.
}

We might now compile this program to see if there are any syntax errors, and if not, exe-
cute it to see how our prompt appears on the screen:

Enter the Celsius temperature:

The cursor on the screen will be positioned at the end of this line and is where the tem-
perature value will be entered. If the program hadn’t compiled—for example, if we forgot
one of the double quotes (") or the semicolon at the end of the statement—we would make
the correction and recompile and re-execute the corrected program. Similarly, if we don’t
really like the output produced—for example, if we decide we’d prefer the prompt Please
enter the temperature in Celsius:—we could make the change, recompile,
and re-execute.

Once we have an acceptable first statement, we can go on to the next step of the algo-
rithm and write C++ statements for it:

. . .
int main()
{
 // 1. Output a prompt for the Celsius temperature to cout.
 cout << "Enter the Celsius temperature: ";

 // 2. Input a real value from cin and store it in celsius.
 double celsius;
 cin >> celsius

 // 3. Compute fahrenheit = 1.8 * celsius + 32.
 // 4. Output fahrenheit to cout.
}

Again, we can compile and execute this new version of the program.

K11207.indb 30 6/15/12 10:06 AM

Programming and Problem Solving—Software Engineering    ◾    31  

Eventually, we will arrive at a complete program like that shown in Example 2.2:

Example 2.2 Temperature Converter

/* This program converts a Celsius temperature to Fahrenheit.

 Written by John Doe for CS 104 -- Project #1 -- Feb. 3, 2012

 Input: the Celsius temperature
 Output: the corresponding Fahrenheit temperature
--*/

#include <iostream> // cin, cout, <<, >>
using namespace std;

int main()
{
 // 1. Output a prompt for the Celsius temperature to cout.
 cout << "Enter the Celsius temperature: ";

 // 2. Input a real value from cin and store it in celsius.
 double celsius;
 cin >> celsius;

 // 3. Compute fahrenheit = 1.8 * celsius + 32.
 double fahrenheit = 1.8 * celsius + 32;

 // 4. Output fahrenheit to cout.
 cout << celsius << " degrees Celsius is equivalent to "
 << fahrenheit << " degrees Fahrenheit.\n";
}

A software program called a text editor can be used to enter this program into a com-
puter’s memory, and later to correct any errors that are found. This text editor is commonly
built into such programming environments such as Visual C++, but it may also be a stand-
alone editor such as emacs in Unix systems.

2.2.4 Testing, Execution, and Debugging

There are a number of errors can be introduced into a program, including

•	 syntax errors that arise when some grammar rule of the programming language
is violated;

•	 run-time errors that occur during program execution; and

•	 logic errors in the design of the algorithm on which the program is based.

K11207.indb 31 6/15/12 10:06 AM

32    ◾    Programming in C++ for Engineering and Science

Finding and fixing such errors is known as debugging the program.
The compiler will locate syntax errors when it attempts to translate the C++ program into

the machine language of a given computer and will generate error messages that explain the
(apparent) problem. For example, if we forgot to type the semicolon at the end of the line

double celsius;

in the program in Example 2.2, and entered

double celsius

instead, the compiler might display an error message like the following:

(19) error: missing ';' before identifier 'cin'

A different compiler might display a less precise diagnostic for the same error, such as

In function 'int main()':
(19) error: expected initializer before 'cin'

The compiler displays the number of the line it was processing when it detected that some-
thing was wrong, which is the line following the line containing the error. Learning to
understand error messages that your compiler generates is an important skill.

The second kind of errors, called run-time errors, cannot be detected until the program
is executed. They include such things as dividing by zero in an arithmetic expression, com-
puting the square root of a negative number, and generating some value outside a given
range. Once the cause of the error is determined, the offending statements or expressions
must be replaced with correct ones, and the modified program must be recompiled and re-
executed. For example, the program in Example 2.2 contains the statement

double fahrenheit = 1.8 * celsius + 32.0;

But suppose we misread the formula for the temperature conversion and typed a + in place
of the first * operator:

double fahrenheit = 1.8 + celsius + 32.0;

Because this is a valid C++ statement, the compiler will not detect the error. The pro-
gram will compile and execute, but it will produce incorrect values because the formula
used to compute the Fahrenheit temperature is not correct.

To check for logic errors, a program must be run using sample data and the output
checked for correctness. This testing of a program should be done several times using a
variety of inputs that test the various parts of the program. If any combination of inputs
produces incorrect output, the program contains a logic error.

K11207.indb 32 6/15/12 10:06 AM

Programming and Problem Solving—Software Engineering    ◾    33  

Once this has been determined, finding the error is one of the more difficult aspects of
programming. It may be necessary to trace the execution step by step until the point at which
a computed value differs from an expected value is located. To simplify this tracing, most
implementations of C++ provide an integrated debugger that allows a programmer to actu-
ally execute a program one line at a time, observing the effect(s) of each line’s execution on
the values produced. Once the error has been located, the text editor can be used to correct it.

A program should be tested with several different kinds of data (positive values, negative
values, small values, large values, etc.) until one is reasonably confident of its correctness.
However, it is almost never possible to test a program with every possible set of test data, so
errors may turn up months—even years—later. As programs grow in size and complexity, the
difficulty of testing them increases. No matter how much testing is done, more could always
be done. It is never finished but only stopped, and there is no guarantee that all the errors in a
program have been found and corrected. Testing can only show the presence of errors, not their
absence. it cannot prove that a program is correct; it can only show that it is incorrect.

The effect of errors in a program written for a programming assignment is usually not
serious. Perhaps the student loses a few points on that assignment or may be lucky and the
grader doesn’t even notice the error. For real-world problems, however, instead of a course
grade, much more may be at stake: money, jobs, and even lives. Here are a few examples
selected from a plethora of software horror stories:

•	 In September, 1999, the Mars Climate Orbiter crashed into the planet instead of
reaching a safe orbit. A report by a NASA investigation board stated that the main
reason for the loss of the spacecraft was a failure to convert measurements of rocket
thrusts from English units to metric units in a section of ground-based navigation-
related mission software.

•	 In June, 1996, an unmanned Ariane 5 rocket, developed by the European Space
Agency at a cost of $7 billion, exploded 37 seconds after liftoff on its maiden flight.
A report by a board of inquiry identified the cause of the failure as a complete loss
of guidance and attitude information due to specification and design errors in the
inertial reference system software. More specifically, a run-time error occurred when
a 64-bit floating-point number was converted to a 16-bit integer.

•	 In March of 1991, DSC Communications shipped a software upgrade to its Bell
customers for a product used in high-capacity telephone call routing and switch-
ing systems. During the summer, major telephone outages occurred in these sys-
tems in California, the District of Columbia, Maryland, Virginia, West Virginia, and
Pennsylvania. These were caused by an error introduced into the signaling software
when three lines of code in the several million lines of code were changed and the
company felt it was unnecessary to retest the program.

•	 On February 25, 1991, during the Gulf War, a Patriot missile defense system at Dharan,
Saudi Arabia, failed to track and intercept an incoming Scud missile. This missile hit
an American Army barracks, killing 28 soldiers and injuring 98 others. An error in

K11207.indb 33 6/15/12 10:06 AM

34    ◾    Programming in C++ for Engineering and Science

the guidance software produced an inaccurate calculation of the time since system
start-up due to accumulated roundoff errors that result from inexact binary represen-
tations of real numbers. And this time calculation was a key factor in determining
the exact location of the incoming missile. The sad epilogue is that corrected software
arrived in Dharan on February 26, the next day.

These are but a few examples of program errors that are more than just a nuisance and
can lead to very serious and even tragic results. In such cases, careful software design, cod-
ing, and extensive and thorough testing are mandatory. In safety-critical situations where
errors cannot be tolerated, relying on the results of test runs may not be sufficient because
testing can show only the presence of errors, not their absence. It may be necessary to give
a deductive proof that the program is correct and that it will always produce the correct
results (assuming no system malfunction).

2.2.5 Maintenance

In contrast to student programs that are often run once or twice and then discarded, real-
world programs may represent a significant investment of a company’s resources and be
used for many years, during which time new features or enhancements may be added to
upgrade the program. To illustrate, users of the program in Example 2.2 might find it more
useful to be able to choose between Celsius-to-Fahrenheit and Fahrenheit-to-Celsius con-
versions and perhaps to add the Kelvin scale also. Because a program that offers these alter-
natives uses more advanced programming features, we will defer it until the next chapter.

ChAPTER SUMMARY

Key Terms

#include

algorithm

behavior

C++

cin

class

coding

comment (/*, */, //)

compiler

compiler directive

cout

curly braces ({ and })

debugger

debugging

design

generalization

input (>>)

library

logic error

main function

maintenance

namespace

object-centered design (OCD)

object-oriented design

K11207.indb 34 6/15/12 10:06 AM

Programming and Problem Solving—Software Engineering    ◾    35  

TEST YoURSELF

 1. In a C++ program, anything contained between /* and */ is a .

 2. Execution of a C++ program begins with the first s tatement enclosed
between in the function.

 3. Name the four stages of the software life cycle.

 4. List the four steps in object-centered design.

 5. The in a problem can be identified by finding the nouns in the behav-
ioral description of the problem.

 6. The in a problem can be identified by finding the verbs in the behavioral
description of the problem.

 7. Objects whose values will change are called .

 8. The screen has the predefined name in C++.

 9. The keyboard has the predefined name in C++.

 10. is the output operator in C++ and is the input operator.

 11. Finding the errors in a program is called .

 12. What are three types of errors that can occur in developing a program?

ExERCISES
For each of the following problems, give a precise description of how a program to solve
that problem must behave. Then describe the objects and operations needed to solve the
problem and design an algorithm for it.

 1. Calculate and display the perimeter and the area of a square with a given side. (The
perimeter of a square where the length of each side is s is 4s and the area is s2.)

 2. Calculate and display the diameter, circumference, and the area of a circle with a given
radius. (The diameter is twice the radius. For radius r, the circumference is 2πr and the
area is πr2 where π is the mathematical constant pi whose value is approximately 3.14159.)

objects

opening documentation

operations

output (<<)

program

software engineering

std

syntax error

testing

K11207.indb 35 6/15/12 10:06 AM

www.allitebooks.com

http://www.allitebooks.org

36    ◾    Programming in C++ for Engineering and Science

 3. Three resistors are arranged in parallel in the following circuit:

 For given values of r1, r2, and r3, calculate and display the combined resistance

1
1 1 1

1 2R R R
+ +

3

 4. The half-life of polonium is 140 days, which means that because of radioactive decay,
the amount of polonium that remains after 140 days is one-half of the original
amount. For a given initial amount of polonium and number of days, calculate the
amount remaining after that many days.

PRoGRAMMInG PRoBLEMS

 1. Enter and execute the following C++ program on your computer system:
 /* This program adds the values of variables x and y.

 Output: The value x + y
 --*/

 #include <iostream>
 using namespace std;

 int main()
 {
 int x = 214, // the first value
 y = 2057, // the second value
 sum = x + y;
 // output the resulting value
 cout << "\nThe sum of " << x << " and " << y
 << " is " << sum << endl;
 }

 2. Make the following changes in the program in Problem 1 and execute the modified
program:

 a. Change 214 to 1723 in the statement that gives x a value.

 b. Change the variable names x and y to alpha and beta throughout.

V

I
+

–

R1 R2 R3

K11207.indb 36 6/15/12 10:06 AM

Programming and Problem Solving—Software Engineering    ◾    37  

 c. Add the comment

 // find their sum

 following the declaration of sum.

 d. Change the variable declarations to

 int alpha = 214, // the first value
 beta = 2057, // the second value
 difference = alpha - beta, // find their difference
 sum = alpha + beta; // find their sum

 and add the following statement before the output statement:

 cout << "\nThe difference of " << alpha << " and "
 << beta << " is " << difference << endl;

 3. Using the program in this chapter as a guide, write a C++ program to solve the
problem in Exercise 1.

 4. Using the program in this chapter as a guide, write a C++ program to solve the prob-
lem in Exercise 2.

 5. Using the program in this chapter as a guide, write a C++ program to solve the
problem in Exercise 3.

K11207.indb 37 6/15/12 10:06 AM

This page intentionally left blankThis page intentionally left blank

39

C h a p t e r 3

Types in C++

There are three types of people in this world: Those who can count, and those who
can’t.

SEEN ON A BUMPER STICKER

Kindly enter them in your notebook.
And, in order to refer to them conveniently, let’s call them A, B, and Z.

LEWIS CARROLL, “WHAT THE TORTOISE SAID TO ACHILLES”

For, contrary to the unreasoned opinion of the ignorant, the choice of a system of
numeration is a mere matter of convention.

BLAISE PASCAL

In this chapter, we look at some of the data types that are provided in C++, focusing
on the simplest ones, called fundamental types. We also show how values of these types

are represented in such a way that they can be stored in memory.

ConTEnTS
3.1 Introductory Example: Radioactive Decay 40
3.2 Types, Literals, Variables, and Constants 42
3.3 Data Representation 51
Chapter Summary 55
Test Yourself 58
Exercises 60
Programming Problems 61

40    ◾    Programming in C++ for Engineering and Science

3.1 InTRoDUCToRY ExAMPLE: RADIoACTIVE DECAY

3.1.1 Problem

A scientist at Uranium University is conducting research with the radioactive element
polonium. The half-life of polonium is 140 days, which means that because of radioactive
decay, the amount that remains after 140 days is one-half of the original amount. He would
like to know how much polonium will remain after running the experiment for 180 days if
10 milligrams are present initially.

3.1.2 object-Centered Design
3.1.2.1 Behavior
The program should output to the screen a prompt for the name of the radioactive element,
its half-life, the initial amount, and a time period. It will then read these values from the
keyboard. The program should then compute the amount remaining after the specified
time period and output the input values along with this value to the screen.

3.1.2.2 Objects
From our behavioral description, we can identify the following objects:

Problem Objects

Software Objects

Type Kind Name

screen output device variable cout

prompt text string constant none
name of element text string variable element
half-life real number variable halflife
initial amount real number variable initialamount
time period real number variable time
keyboard input device variable cin

amount remaining real number variable amountremaining

3.1.2.3 Operations
Again, from our behavioral description, we have the following operations:

 i. Output a string (the prompts, descriptive labels, element’s name).

 ii. Read a string (element).

 iii. Read numeric values (halflife, initialamount, time).

 iv. Compute amountremaining = initialamount × (0.5)time/halflife.

 v. Output numeric values.

C++ provides operations for each of these operations.

3.1.2.4 Algorithm
Next, we organize these objects and operations into an algorithm:

K11207.indb 40 6/15/12 10:06 AM

Types in C++    ◾    41  

 1. Output a prompt for the element’s name and it’s half-life to cout.

 2. Read a string from cin to store in element and a real value to store in halflife.

 3. Output a prompt for the initial amount and the time period.

 4. Read real values from cin to store in initialamount and time.

 5. Compute amountremaining = initialamount × (0.5)time/halflife.

 6. Output element, halflife, initialamount, time, and amountremaining with appropri-
ate labels to cout.

3.1.2.5 Coding, Execution, and Testing
In the preceding chapter we outlined a procedure for translating the algorithm into code:

 1. Create a program stub that contains opening documentation, compiler directives
that add items in libraries needed for some of the objects and operations, and a main
function that contains only the steps of the algorithm as comments.

 2. Convert each step of the algorithm into code, adding a declaration statement to specify
an object’s type and name for any software object not already declared.

Space restrictions prevent doing this for each example in this text, but you may find that
this procedure helps with developing programs like that in Example 3.1, which shows the
finished product and a sample run to find how much of 10 mg of polonium with a half-life
of 140 days will remain after 180 days. You are encouraged to enter this program in the
version of C++ that you are using, compile and execute it, and experiment with it, making
various changes and seeing what happens.

Example 3.1 Radioactive Decay

/* This program computes the amount of a radioactive substance
remaining after an initial amount decays for some time period.

 Written by John Doe for CS 104 -- Project #1 -- Feb. 5, 2012

 Input: element's name, its half-life, the initial amount,
and a time period

 Output: the input items and the amount of the substance
remaining at the end of the time period

 --*/
#include <iostream> // cin, cout, <<, >>
#include <string> // string
#include <cmath> // pow()
using namespace std;

K11207.indb 41 6/15/12 10:06 AM

42    ◾    Programming in C++ for Engineering and Science

int main()
{
 cout << "Enter the name of your radioactive substance: ";
 string element;
 cin >> element;
 cout << "and its half-life (days): ";
 double halfLife;
 cin >> halfLife;
 cout << "Enter the initial amount (mg) and a time period (days): ";
 double initialAmount, time;
 cin >> initialAmount >> time;

 double amountRemaining = initialAmount * pow(0.5, time / halfLife);

 cout << "\nFor " << element
 << " with half-life " << halfLife << " days\n"
 << initialAmount << " mg" << " will be reduced to "
 << amountRemaining << " mg after " << time << " days\n";
}

SAMPLE RUN:
Enter the name of your radioactive substance: polonium
and its half-life (days): 140
Enter the initial amount (mg) and a time period (days): 10 180

For polonium with half-life 140 days
10 mg will be reduced to 4.10168 mg after 180 days

This program uses two different C++ types, string for the name of the radioactive
substance and double for its half-life, initial amount, a time period, and amount remain-
ing after that time. In the remainder of this chapter we will study these and other types
provided in C++ and how they can be used to represent a problem’s objects.

3.2 TYPES, LITERALS, VARIABLES, AnD ConSTAnTS
Each data item (i.e., object) in a problem has an associated type; for example, it may be a
number, a string of characters, an individual character, a logical value, or perhaps some-
thing more complex. Software objects used to represent such problem objects must also
have specified types so the compiler knows how much memory needs to be allocated for
them and what kinds of operations are permitted on them. For this reason, most pro-
gramming languages, including C++, require that these types be specified before those
objects are used. In this section, we will focus on C++’s fundamental types—also known
as primitive or intrinsic types—and in Section 3.3 we will see how data values of these
types are stored in memory.

K11207.indb 42 6/15/12 10:06 AM

Types in C++    ◾    43  

3.2.1 Fundamental Types

The most important fundamental data types provided in C++ are the following:1

•	 integers: whole numbers and their negatives: of type int

•	 integer variations: types short, long, and unsigned

•	 reals: fractional numbers: of type float, double, or long double

•	 characters: letters, digits, symbols, and punctuation: of type char

•	 booleans: logical values true and false: of type bool

A value of one of these types is called a literal.2 For example, 123, 0, and -15 are integer
literals; -45.678 and 3.14159 are real literals; 'A', 'a', '0', and '$' are character literals;
and true and false are boolean literals. We will now examine these types in more detail.

3.2.1.1 Integers
Integer literals are strings of digits that may be preceded by a – sign or a + sign. They are
interpreted as

•	 octal (base-eight) integers if they begin with 0 and all digits are octal digits 0, 1, . . . , 7;

•	 hexadecimal (base-sixteen) integers if they begin with 0x — the hexadecimal digits
for ten, eleven, . . . , fifteen are A, B, . . . , F or their lowercase equivalents a, b, . . . , f;

•	 decimal (base-ten) integers otherwise.

For example, the literal 345 has the decimal value 34510 = 3 × 102 + 4 × 101 + 5 × 100.
However, the literal 0345 has the octal value 3458 = 3 × 82 + 4 × 81 + 5 × 80 = 22910, and
0x345 has the hexadecimal value 34516 = 3 × 162 + 4 × 161 + 5 × 160 = 83710. (See the text’s
website described in the preface for additional details about binary, octal, and hexadeci-
mal number systems.)

Typically, int values are stored in 32 bits (= 4 bytes) and can range from –231

(= –2147483648) through 231 – 1 (= 2147483647). C++ also allows int declarations to be
modified with one of the key words short or long:

•	 short int (or just short) values usually are usually stored in 16 bits (2 bytes) and
can range from –215 (= –32768) through 215 – 1 (= 32767).

•	 long int (or just long) values are the same as int values in some versions of C++,
while in others they are 64-bit values, ranging from –263 to 263 – 1.

1 Other types are the signed char and unsigned char integer types, which are stored in one byte and thus can range
from –27 (= –128) through 27 – 1 (= 127); the wide character type wchar_t for storing Unicode characters; complex
for complex values; and the void type for an empty set of values.

2 The word literal in computing refers to any value entered by a programmer that does not change during program
execution—the string of characters you type is (literally) the value you get.

K11207.indb 43 6/15/12 10:06 AM

44    ◾    Programming in C++ for Engineering and Science

In this text, int will be used in most of the examples.
The internal representation of an integer typically uses one bit as a sign bit, so that the

largest positive value of a 32-bit integer is 231 – 1 and not 232 – 1. (See the next section for
a more detailed explanation.) However, some integer-valued objects never have negative
values, and to avoid wasting the sign bit for such integer values, C++ provides the modifier
unsigned:

•	 An unsigned int (or just unsigned) is a nonnegative integer whose size usually
is the word size of the particular machine being used, typically 0 through 232 – 1
(= 4294967295).

•	 An unsigned short is usually a 16-bit value, ranging from 0 through 216 – 1
(= 65535).

•	 An unsigned long is usually a 32-bit or 64-bit value, ranging from 0 through
232– 1 or 0 through 264– 1.3

3.2.1.2 Reals
A value of type float is usually a 32-bit real value; a double is usually a 64-bit real value;
and a long double is typically a 96-bit or a 128-bit real value. However, the range of val-
ues and the precision of each of these types is implementation dependent and is defined in
one of the standard libraries cfloat or climits (described later in this section) that C++
implementations provide.

Like most programming languages, C++ provides two ways to represent real values,
fixed-point notation and floating-point notation. A fixed-point real literal has the form
m.n, where either the integer part m or the decimal part n (but not both) can be omitted.
For example, 5.0, 0.5, 5., and .5 are all valid fixed-point real literals.

Real numbers are also sometimes expressed in floating point notation (also known as
exponential or scientific notation). For example, 23 trillion (= 23,000,000,000,000) might
be written more compactly as 2.3 × 1013. In C++, a floating-point real literal has one of
the forms xEn or xen, where x is an integer or fixed-point real literal and n is an integer
exponent (positive or negative). For example, 23 trillion = 2.3 × 1013 can be written in a
variety of forms such as 2.3E13, 0.23E14, 23.e12, and 23E12.

By default, C++ compilers treat all real literals as being of type double.4 This means
that if we compute a real value and assign it to a float variable, then the value stored
in the variable will not have the precision of the computed value. For this reason, we
will follow the practice of many programmers and always use the type double for real
values.

3 By default, whole numbers (e.g., -20, 0, 1, 13, 345) are treated as int values by the C++ compiler. To instruct it to store
a literal value as an unsigned instead of int, append the letter U or u (e.g., 0U, 1U, 13U, 345U). Appending the letter
L or l (e.g., -20L, 0L, 1L, 13L, 345L) will cause the value to be stored as a long instead of as an int. Appending both
L (or l) and U (or u) in either order causes it to be treated as unsigned long.

4 To instruct the compiler to process a real literal as a float, an F or f can be appended to it (e.g., 1.0F, 3.1416F,
2.998e8F). Similarly, appending an L or l to a real literal instructs the compiler to treat it as a long double (e.g., 1.0L,
0.1E1L).

K11207.indb 44 6/15/12 10:06 AM

Types in C++    ◾    45  

3.2.1.3 Characters
We can use the char type for individual characters in the C++ character set, which is
commonly the ASCII (American Standard Code for Information Interchange) character
set (see Appendix A). It includes the uppercase and lowercase letters, common punctuation
symbols such as the semicolon (;), comma (,), and period (.), and other special symbols
such as +, =, and >.

Characters are represented in memory by numeric codes, and in C++, values of type
char are stored using these integer codes (as described in more detail in the next sec-
tion). Character literals are single characters enclosed in single quotes (or apostrophes);
for example, 'A', 'z', '#', '8', and '/'.5 The C++ compiler stores these values using their
numeric codes, which in ASCII are 65, 122, 35, 56, and 47, respectively.

Using single quotes to enclose character literals, however, raises the question of how to
represent a character literal that is a single quote (apostrophe). Similarly, how do we repre-
sent characters such as tabs and an advance to a new line? For such special characters, C++
provides character literals that consist of a backslash character (\) followed by a symbol;
for example, '\'' for an apostrophe, '\t' for a tab, and '\n' for an advance to a new line.
These “double characters” are called escape sequences because the backslash indicates that
the character following it is to “escape” from its usual meaning. Table 3.1 lists the escape
sequences provided in C++.

3.2.1.4 Other Types
The program in Example 3.1 contains compiler directives of the form #include
<something> before the main part of the program. One of these is

5 Character literals of the form L'x' where x consists of one or more characters are wide-character literals and are used
for alternate character sets such as Unicode. They are of type wchar_t.

TABLE 3.1 C++ Character Escape Sequences

Character C++ Escape Sequence

Newline (NL or LF) \n

Horizontal tab (HT) \t

Vertical tab (VT) \v

Backspace (BS) \b

Carriage return (CR) \r

Form feed (FF) \f

Alert (BEL) \a

Backslash (\) \\

Question mark (?) \?

Apostrophe (single quote, ') \'

Double quote (") \"

With numeric octal code ooo \ooo

With numeric hexadecimal code hhh \xhhh

K11207.indb 45 6/15/12 10:06 AM

www.allitebooks.com

http://www.allitebooks.org

46    ◾    Programming in C++ for Engineering and Science

#include <string>

Why is this? It is because the type string, like several others that we will study later in
Chapter 7, is not one of the fundamental types built into C++ but is a class that is defined
in the string library. The #include directive makes this type available to the program.

Somewhat similar to character literals, a string literal consists of a sequence of characters
enclosed in double quotes.6 For example,

"Ohm's Law"
"Enter project id on one line\n\tand its name on the next.\n"
"\nThe project cost = $"
"Einstein said, \"God is subtle but he is not malicious\""

are all string literals. As the last three examples illustrate, escape sequences can be used
within string literals. Note also that string literals containing a single character are not
char literals; for example, "X" is a string literal, but 'X' is a char literal. They may not
be used interchangeably.

If two string literals are consecutive or are separated only by white space (spaces, tabs,
and end-of-lines) they will be concatenated to form a single literal. For example, for

"square " "feet"

or

"square "
"feet"

the two string literals will be combined to form

"square feet"

Readability of output is often improved by double spacing the lines. Using two newline
characters can be used to accomplish this. For example, if we output the string literal

"First row\n\nSecond row"

the first newline (shown as ↵ in the following output) will end the line on which First
row appears and the second newline makes the next line a blank line, after which Second
row appears:

First row↵
↵
Second row

6 String literals of the form L"..." are wide string literals; they may contain wide characters.

K11207.indb 46 6/15/12 10:06 AM

Types in C++    ◾    47  

3.2.2 Identifiers

The program in Example 3.1 uses names for some of the software objects: element
for the radioactive element, halfLife for its half-life, time for a time period, and
initialAmount and amountRemaining for amounts of that element. Such names
are known as identifiers. They should begin with a letter, which may be followed by any
number of letters, digits, or underscores.7 They may not be C++ keywords (e.g., int,
const, double, etc.), which are reserved for special objects. A complete list of the C++
keywords is given in Appendix B.

it is good programming practice to use meaningful identifiers that suggest what they
represent, because such names make programs easier to read and understand. They serve,
therefore, as part of the program’s documentation and facilitate program maintenance. For
example, the identifier feetPerSecond is more meaningful than any of the shortened
identifiers, f, ft, or fPS, which could represent anything else that contains these letters.
You should resist the temptation to use a short identifier just to save a few keystrokes.
Complete words are preferable to abbreviations.

It is important to remember that C++ is case sensitive—that is, it distinguishes between
uppercase and lowercase. For example, length and Length are different identifiers.
Similarly, the name of the main function must be main, not Main.

Naming conventions vary among programmers, but one of the most common is the
following:

Variables: Use lowercase names, but with the first letter capitalized for each individ-
ual component word after the first.8 Some examples are length, halfLife, and
feetPerSecond.

Constants: Use names with all uppercase characters and with individual component
words separated by underscore (_) characters. Some examples are PI, TWO_PI, and
SPEED_OF_LIGHT.

Before an identifier can be used in a program, it must be declared to inform the compiler of
its meaning. We now look first at declarations of variables and then declarations of constants.

3.2.3 Variables

When analyzing a problem, we often discover that there are relationships between the
objects in the problem that can be expressed by formulas. For example, the formula for
the law of radioactive decay used in the program in Example 3.1 might be expressed as
follows:

 a = a0 × 0.5–t/h

7 Identifiers that begin with an underscore (_) followed by an uppercase letter or that contain two consecutive underscores
(_ _) are reserved for special use and should be avoided.

8 This is sometimes referred to as camel-case notation because of the uppercase “bumps” that are in the middle of the
name.

K11207.indb 47 6/15/12 10:06 AM

48    ◾    Programming in C++ for Engineering and Science

In this formula, a, a0, t, and h are variables for which values can be substituted to calculate
the value of a.

In computing, the word variable refers to a memory location in which values can be
stored and later retrieved. One of the tasks of a compiler is to associate such a memory
location with each identifier in a program that names a variable. To do this, it must know
the name of the variable and the type of values it may have so that it can allocate a memory
location of the appropriate size and form. This is the purpose of variable declarations,
which have the following form:

The declarations

string element;
double halfLife;
double initialAmount, time;

from the program in Example 3.1 illustrate the first form of variable declaration. The val-
ues of these variables are said to be undefined because the contents of the memory locations
associated with them are not known. If we wanted them to have specific initial values, we
could use the second form of a declaration, for example,

string element = " ";
double halfLife = 0;
double initialAmount = 0, time = 0;

specify that the initial value of element is a string containing a blank, and the initial
values of halfLife, initialAmount, and time are all 0. For variables such as ele-
ment that are of type string, remember that we must #include the string library
as in Example 3.1.

Variable Declaration
Forms:

 type variable_name;
 type variable_name = initializer_expression;

where type is one of the fundamental data types (or one of the data types discussed later),
and variable_name is a valid C++ identifier.

purpose:

Instructs the C++ compiler to reserve memory for a value of the specified type and asso-
ciates it with the name variable_name. In the second form, the value of initial-
izer_expression will be stored in this memory location; for the first form, the value of
variable_name is undefined (or indeterminate).

K11207.indb 48 6/15/12 10:06 AM

Types in C++    ◾    49  

A memory location of appropriate size will be associated with each of these variables.
For example, for the double variable time, a memory location of appropriate size for
doubles (typically 8 bytes) will be allocated. We might picture this as follows:

time ?

Here, the question mark indicates that this variable is undefined. Although some
versions of C++ will initialize numeric variables to 0, others will simply let their ini-
tial values be a garbage value—whatever value corresponds to the string of bits in that
memory location allocated for it. You should not assume that uninitialized variables will
have a specific value.

If the declaration of time were changed to

double time = 0;

0 would be used as the initial value:

time 0

For either of the preceding declarations of time, if the value 180 were later input as the
value for time, the value stored in this memory location would change to 180.0:

time 180.0

Similarly, the declaration

string element = "polonium";

would use “polonium” as the initial value for element:

element polonium

Where variable declarations are placed is largely a matter of programming style, because
C++ allows them to be placed (almost) anywhere before their first use. In this text, vari-
ables will usually be declared just prior to their first use because this makes it easier to
ensure that the variable is used in a manner consistent with its type.

3.2.4 Constants

In addition to variables, we may also use names for constants. This is especially useful
when a program uses universal constants, such as the geometric constant π or the speed
of light,

const double PI = 3.14159265359,
 SPEED_OF_LIGHT = 2.997925e8; // meters/sec

K11207.indb 49 6/15/12 10:06 AM

50    ◾    Programming in C++ for Engineering and Science

but it can also be used to associate names with other constants to be used in a program:

const int UPPER_LIMIT = 1000;
const char

 PERCENT_SIGN = '%', // using a normal character
 SPACE = ' ', // using a white space char
 TAB = '\t', // using an escape sequence
 BELL = '\007'; // using an octal (ASCII) code

In general, a constant declaration has the following form:

There are two main reasons for using names for constants. One is to make it easier to
understand. To illustrate, consider the following statement:

populationChange = (0.1853 - 0.1175) * population;

0.1853 and 0.1175 are “magic numbers” because they seem to magically appear without any
explanation. However, if we define the constants BIRTH_RATE and DEATH_RATE by

const double
 BIRTH_RATE = 0.1853, // rate at which people are born
 DEATH_RATE = 0.1175; // rate at which people die

we can rewrite the statement in the more understandable form

populationChange = (BIRTH_RATE - DEATH_RATE) * population;

A second benefit of using constants is to make a program easier to modify. To illustrate,
suppose that we used the value 3.1416 for π at several places in a program, and we find
that this value doesn’t yield the precision we need. To correct the program, we would have

constant Declaration
Form:

 const type CONSTANT_NAME = constant-expression;

where const is a C++ keyword; type is one of the fundamental data types (or one of
the data types discussed later); CONSTANT_NAME is a valid C++ identifier; and constant-
expression is any valid expression (as described in later sections) whose value is a constant
of type type.

purpose:

Associates a name with a constant. Any attempt to change this value within a program is an
error.

K11207.indb 50 6/15/12 10:06 AM

Types in C++    ◾    51  

to find all occurrences of the old value and replace it. But if we had instead declared the
constant PI and used it throughout the program, we would need to make only one change:

const double PI = 3.14159265359;

Changing the value of PI in this declaration will change its value throughout the program
without any further effort on our part.

It is considered good programming practice to place all declarations of constants at the
beginning of main() (or other function in which they are used). This makes it easy to
locate these declarations when it is necessary to modify the values.

C++ provides several predefined constants in its various libraries. For example, the
library climits contains

SHRT_MIN, SHRT_MAX short int minimum, maximum values
INT_MIN, INT_MAX int minimum, maximum values
UINT_MIN, UINT_MAX unsigned int minimum, maximum values
LONG_MIN, LONG_MAX long int minimum, maximum values

and the library cfloat contains

FLT_MIN, FLT_MAX float minimum, maximum values
DBL_MIN, DBL_MAX double minimum, maximum values
LDBL_MIN, LDBL_MAX long double minimum, maximum values

In addition to the minimum and maximum of each of the real types, cfloat contains
constants for the precision of each real type, the minimum and maximum exponent per-
mitted in scientific notation, and so on. See Appendix D for descriptions of these and other
libraries.

3.3 DATA REPRESEnTATIon
In Chapter 1 we noted that information is represented in a computer by a binary scheme
having only the two binary digits 0 and 1. We also showed how instructions can be repre-
sented in base-two and stored in memory. We now look at how literals of the various data
types can be represented and stored in binary.

3.3.1 Integers

For integer values, the binary representation is typically stored in one word of memory.
To illustrate, suppose that a computer’s word size is 32 and that the integer value 180 is
to be stored. The base-two representation of 180 is 101101002. If 180 is being used as an
unsigned literal, its binary digits are stored in the rightmost bits of the memory word
and the remaining bits are filled with zeros:

0 1 0 1 1 0 1 0 0 0

K11207.indb 51 6/15/12 10:06 AM

52    ◾    Programming in C++ for Engineering and Science

Unlike unsigned values, int values may be negative and so must be stored in a
binary form in which the sign of the integer is part of the representation. The most com-
mon method is to use two’s complement representation. In this scheme, positive integers
are represented in binary form, as just described, with the leftmost bit set to 0 to indicate
that the value is positive. Thus, if 180 is being used as an int literal, 31 bits are used for the
binary digits of the value and one bit for the sign:

For a negative integer, first find the binary representation of its absolute value, comple-
ment it (i.e., change each 0 to 1 and each 1 to 0), and then add 1 to the result. For example,
to find the two’s complement representation of –180 using a string of 32 bits,

 1. Represent 180 by a 32-bit binary numeral:

 00000000000000000000000010110100

 2. Complement this bit string:

 11111111111111111111111101001011

 3. Add 1:

 11111111111111111111111101001100

This string of bits is then stored in memory.

Note that the sign bit in this two’s complement representation of a negative integer is 1,
indicating that the number is negative.

The range of integers that can be stored in memory is determined by the number of bits
used to represent them. For example, with 32-bit representations, the largest unsigned
value that can be stored is

 111111111111111111111111111111112 = 232 = 4294967296

The range of int value that can be represented using 32 bits is

 100000000000000000000000000000002 = –231 = –2147483648

Sign

0 1 0 1 1 0 1 0 0

Sign

1 0 1 0 0 1 1 0 0

K11207.indb 52 6/15/12 10:06 AM

Types in C++    ◾    53  

through

 011111111111111111111111111111112 = 231 – 1 = 2147483647

Attempting to use an integer outside this range results in a phenomenon known as overflow.
Although using more bits to store integers would enlarge this range, it would not solve the
problem of overflow; the range of integers is still finite.

3.3.2 Reals

In the binary representation of a real number, digits to the left of the decimal point are
coefficients of non-negative powers of two, while those to the right are coefficients of nega-
tive powers of two. For example, the expanded form of 11010.0112 is

 (1 × 24) + (1 × 23) + (0 × 22) + (1 × 21) + (0 × 20)

 + (0 × 2–1) + (1 × 2–2) + (1 × 2–3)

which is equal to

 16 + 8 + 0 + 2 + 0 + 0 + 1
4

 + 1
8

 = 26.375

The IEEE Floating Point Format scheme for representing real numbers in computer
memory standardized in 1985 by the Institute for Electrical and Electronic Engineers
(IEEE) has become almost universal. It specifies how reals can be represented in two for-
mats: single precision, using 32 bits, and double precision, using 64 bits. Here, only single
precision is described; double precision is simply a wider version of it. We begin by repre-
senting the number in binary floating-point form, which is much like the familiar scien-
tific notation except that the base is two rather than ten:

 b1.b2b3 ··· × 2k

where each bi is a binary digit, but b1 must be 1 (unless the number is 0). b1.b2b3 ··· is
called the mantissa (or fractional part or significand) and the exponent k is sometimes
called the characteristic. For example, we have seen that 26.375 can be written in binary as
11010.0112, which can be easily rewritten in floating-point form as 1.10100112 × 24, because
multiplying (dividing) by 2 is the same as moving the binary point to the right (left). In this
floating-point representation, 1.1010011 is the mantissa and 4 is the exponent.

In the IEEE format for single precision values,

•	 The leftmost bit stores the sign of the mantissa, 0 for positive, 1 for negative.

•	 The next 8 bits store the binary representation of the exponent + 127; 127 is called
a bias.

K11207.indb 53 6/15/12 10:06 AM

54    ◾    Programming in C++ for Engineering and Science

•	 The rightmost 23 bits store the bits to the right of the binary point in the mantissa (the
bit to the left need not be stored because it is always 1).

For 26.375, the stored exponent would be 4 + 127 = 100000112 and the stored mantissa
would be 010101100000000000000002:

For double precision, an 11-bit exponent with a bias of 1023 and 53 bits for the signed man-
tissa are used.

Because the binary representation of the exponent may require more than the available
number of bits, we see that the overflow problem discussed in connection with integers also
occurs in storing a real number whose exponent is too large. An 8-bit exponent restricts the
range of real values to approximately –1038 to 1038, and overflow occurs for values outside
this range. A negative exponent that is too small to be stored causes an underflow. Real
values represented using an 8-bit exponent must be greater than approximately 10–38 or less
than –10–38, and underflow occurs between these values:

Also, obviously some real numbers have mantissas with more than the allotted number
of bits, which means that some of these bits will be lost when these numbers are stored. In
fact, most real numbers do not have finite binary representations and thus cannot be stored
exactly in any computer. For example, the binary representation of the real number 0.7 is

 (0.101100110011001100110011001100110 . . .)2

where the block 0110 is repeated indefinitely. This means that the stored representation will
not be exact (e.g., 0.6999999284744263). The error in this representation, known as round-
off error, means that the precision of real values is limited—approximately 7 significant
decimal digits for single precision and 14 for double precision.

3.3.3 Characters and Strings

The schemes used to represent character data assign a numeric code to each of the characters
in the character set. One common coding scheme is ASCII (American Standard Code for
Information Interchange).9 Characters are represented internally using these numeric codes.

9 See Appendix A for a table of ASCII codes for all characters.

Exponent

0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mantissa

Sign

Underflow

0
–10–38 10–38

1038–1038

OverflowOverflow

K11207.indb 54 6/15/12 10:06 AM

Types in C++    ◾    55  

For example, the ASCII code of c is 99 = 011000112, which can be stored in one 8-bit byte. For
a string of characters such as code, individual characters can be stored in consecutive bytes:

For languages of the world that have many additional characters, the coding scheme
Unicode was developed and provides codes for more than 65,000 characters. To accom-
plish this it uses 16-bit codes. For example, the code for c (99—same as in ASCII) would
be stored in two bytes

as would the code 960 for the non-ASCII character π (Greek pi):

3.3.4 Booleans

There are only two boolean values: false and true. If false is encoded as 0 and true
as 1, then a single bit is all that is needed to store a boolean value. However, it is com-
mon to use an entire word or a byte with all bits set to 0 for false and any other bit string
representing true.

ChAPTER SUMMARY

Key Terms

ASCII

bias

bool

char

character literal

characteristic

const modifier

constant declaration

decimal

declaration statement

floating-point

fractional part

fundamental type

garbage value

hexadecimal

identifier

IEEE Floating Point Format

int

keyword

literal

0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 1

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

c

0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1

K11207.indb 55 6/15/12 10:06 AM

www.allitebooks.com

http://www.allitebooks.org

56    ◾    Programming in C++ for Engineering and Science

declare

double

escape sequence

false

fixed-point

float

precedence, priority

roundoff error

short int

sign bit

significand

string

true

long double

long int

mantissa

OCD (object-centered design)

octal

overflow

two’s complement

type

underflow

Unicode

unsigned

variable

variable declaration

noTES
•	 In a C++ program, types of objects must be declared before those objects are used.

•	 The fundamental types in C++ include short, int, and long for integers;
unsigned for non-negative integers; float and double for real values; boolean
for logical values; and char for individual characters.

•	 C++ compilers treat all real literals as being of type double. Thus, most program-
mers use double for real objects and seldom use float.

•	 The char type is used to represent single characters; char literals must be enclosed
in single quotes.

•	 Escape sequences such as \n (newline) and \t (tab) are used for characters that have
a special purpose.

•	 The string type is provided for processing strings of characters. The <string>
library must be included before string objects can be declared.

•	 An identifier may begin with a letter or _ (underscore), which may be followed by any
number of these characters or digits; it may not be a C++ keyword.

•	 Using meaningful identifiers that suggest what they represent makes programs easier
to read and understand.

•	 C++ is case sensitive.

K11207.indb 56 6/15/12 10:06 AM

Types in C++    ◾    57  

•	 Any name in a program that is not a C++ keyword is an identifier and must be
declared before it can be used.

•	 The const modifier is used to declare constants, which are values that cannot be
changed during program execution.

•	 Using named constants instead of the literals they represent improves code readabil-
ity and facilitates program maintenance.

•	 Placing constant declarations at the beginning of main() in a program makes them
easy to locate when modifications are necessary.

•	 If no initial value is specified in a variable declaration, its value is undefined (or
indeterminate).

Style and Design Tips

 1. In the examples in this text, certain stylistic guidelines for C++ programs are adopted,
and you should write your program in a similar style. In this text the following guide-
lines are used; others are described in later chapters.

•	 Put each statement of the program on a separate line.

•	 use uppercase and lowercase letters in a way that contributes to program readability.

•	 indent and align statements within a block enclosed with curly braces { and }.

•	 When a statement is continued from one line to another, indent the continued
line(s).

•	 insert blank lines between declarations and statements and between blocks of state-
ments to make clear the structure of the program.

•	 separate the operators and operands in an expression with spaces to make the
expression easy to read.

 2. Declare constants at the beginning of a program and declare variables near their first use.
This makes it easy to find constants when they must be modified.

 3. Programs cannot be considered to be correct if they have not been tested.

 4. Programs should be readable and understandable.

•	 use meaningful identifiers.

•	 use comments to describe the purpose of a program or other key program
segments.

 5. Programs should be general and flexible—able to solve a class of problems.

 6. identify any preconditions a program has.

K11207.indb 57 6/15/12 10:06 AM

58    ◾    Programming in C++ for Engineering and Science

warnings

 1. Character constants must be enclosed in single quotes. in particular, string literals
cannot be assigned to variables of type char.

 2. Values of type char are stored as their (integer) numeric codes. Assigning an integer
to a char variable may produce an unexpected symbol.

 3. string constants must be enclosed within double quotes.

 4. Comments are enclosed within /* and */ or between // and the end of the line. Be sure
that:

•	 Each beginning delimiter /* has a matching end delimiter */. Failure to use these
in pairs can produce strange results.

•	 There is no space between the / and the * or between the two slashes.

 5. Every { must be matched by a }.

 6. all identifiers must be declared. Attempting to use an identifier that has not been
declared will produce a compilation error. Also, remember that C++ distinguishes
between uppercase and lowercase letters.

 7. using a variable that has not been assigned a value may produce “garbage.”

 8. Keywords, identifiers, and constants may not be broken at the end of a line, nor may
they contain blanks (except, of course, a string constant may contain blanks).

TEST YoURSELF
 1. List the fundamental data types provided in C++.

 2. List the three integer type variations.

 3. List the three real types.

 4. A constant of a particular type is called a(n) .

 5. (True or false) 0123 and 123 represent the same integer value.

 6. (True or false) 0xA and 10 represent the same integer value.

 7. (True or false) All real literals are treated as being of type double.

 8. Character literals must be enclosed in .

 9. (True or false) '1/n' is a valid character literal.

 10. (True or false) '\n' is a valid character literal.

 11. '\n' is an example of a(n) sequence.

K11207.indb 58 6/15/12 10:06 AM

Types in C++    ◾    59  

 12. String constants must be enclosed in .

For Questions 13–20, tell whether each is a legal identifier. If is it not legal, indicate the
reason.

13. calorie

14. W_D_4_0

15. 70mph

16. milesPerHour

17. miles per hour

18. miles_per_hour

19. ps.175

20. type-A

For Questions 21–40, tell whether each is an integer literal, a real literal, a character literal,
or a string literal. If it is none of these, indicate the reason.

 21. 1234 31. '12+34'

 22. 1,234 32. 'one'

 23. 1.234 33. one

 24. -1. 34. "Ohm's law"

 25. 123e4 35. "1234"

 26. 123-4 36. 01234

 27. 0.123E-4 37. 0x1234

 28. +1235 38. E4

 29. 12+34 39. '#1'

 30. $12.34 40. '\32'

 41. Write a declaration for a variable count of type int.

 42. Write declarations for variables time of type unsigned, temperature of type
float, and scale of type char.

 43. Repeat Question 41, but initialize count to zero.

 44. Repeat Question 42, but initialize time to 9999, temperature to zero, and scale
to a blank.

 45. Write constant declarations to associate CELSIUS_FREEZE with the integer 0 and
CELSIUS_BOIL with the integer 100.

 46. Write constant declarations to associate EARTH with 1.5E10 and MARS with
1.2E12.

K11207.indb 59 6/15/12 10:06 AM

60    ◾    Programming in C++ for Engineering and Science

ExERCISES
For Exercises 1–20, determine if each is a valid C++ identifier. If it is not, give a reason.

 1. x Axis 11. PS.175

 2. x-Axis 12. x

 3. x_Axis 13. 4

 4. xAxis 14. n/4

 5. carbon14 15. $M

 6. 3M 16. zzzzzz

 7. PDQ123 17. z_z_z_z_z_z

 8. angle 18. A+

 9. angel 19. R2-D2

 10. anlge 20. R2_D2

For Exercises 21–40, classify each as an integer literal, a real literal, or neither. If it is nei-
ther, give a reason.

 21. 5,280 31. 52E80

 22. 5280 32. E5280

 23. "5280" 33. eighty

 24. 528.0 34. 0.528E0

 25. 5280e0 35. .00005280

 26. -5280 36. 5.2e-80

 27. --5280 37. +52E+80

 28. +5280 38. -(-1)

 29. 52+80 39. -0

 30. $52.80 40. -1/2

For Exercises 41–52, determine if each is a valid string literal. If it is not, give a reason.

 41. "X" 45. "Print \"MPH\""

 42. "123" 46. "isn't"

 43. INCH" 47. "constant"

 44. "square feet" 48. "$1.98"

K11207.indb 60 6/15/12 10:06 AM

Types in C++    ◾    61  

 49. "DON\'T" 51. "\'twas"

 50. "12 + 34 52. "\"A\"\"B\"\"C\""

For Exercises 53–56, write constant declarations to associate each name with the specified
constant.

 53. 40.0 with the name REGULAR_HOURS and 1.5 with the name OVERTIME_FACTOR

 54. Planck’s constant 6.6256 × 10–34 with the name PLANCK

 55. FAHRENHEIT_FREEZE with the integer 32 and FAHRENHEIT_BOIL with the
integer 212

 56. 0 with ZERO, * with ASTERISK, and an apostrophe with APOSTROPHE

For Exercises 57–60, write declarations for each variable.

 57. length and momentOfIntertia of type double

 58. population and year of type unsigned

 59. mileage of type double, cost and distance of type unsigned

 60. alpha and beta of type long, code of type char, and root of type double

For Exercises 61–62, write declarations to declare each variable to have the specified type
and initial value.

 61. numberOfDeposits and numberOfChecks to be of type int, each with an
initial value of 0; totalDeposits and totalChecks to be of type double, each
with an initial value of 0.0; and serviceCharge to be of type double with an
initial value of 0.25

 62. symbol_1 and symbol_2 to be of type char and with a blank character and a
semicolon for initial value, respectively; and debug to be of type char with an ini-
tial value of T.

 63. Write constant declarations that associate the current year with the name YEAR and
99999.99 with MAXIMUM_SALARY and variable declarations that declare number
and prime to be of type int and scale to be of type char.

PRoGRAMMInG PRoBLEMS

 1. Write a program to convert a measurement given in feet to the equivalent number
of (a) yards, (b) inches, (c) centimeters, and (d) meters (1 ft = 12 in, 1 yd = 3 ft, 1 in
= 2.54 cm, 1 m = 100 cm).

K11207.indb 61 6/15/12 10:06 AM

62    ◾    Programming in C++ for Engineering and Science

 2. Write a program to convert a weight given in ounces to the equivalent number of
(a) pounds, (b) tons, (c) grams, and (d) kilograms (1 lb = 16 oz, 1 ton = 2000 lb, 1 oz
= 28.349523 g, 1 kg = 1000 g).

 3. For three resistors connected in series, the total resistance is the sum of the individual
resistances and by Ohm’s law, the current in the circuit is given by amps = voltage /
total_resistance. Write a program that inputs the voltage and three resistances and
then calculates and displays the current.

 4. Proceed as in Problem 3, but for resistors connected in parallel for which the total
resistance is computed using the formula

total_resistance

resistor resistor re

= 1
1

1
+ 1

2
+ 1

ssistor3

K11207.indb 62 6/15/12 10:06 AM

63

C h a p t e r 4

Getting Started with Expressions

<>!*''#
^"`$$-
!*=@$_
%*<>~#4
&[]../
|{,,SYSTEM HALTED

"THE WAKAWAKA POEM" BY FRED BREMMER AND STEVE KROEZE
(WHILE STUDENTS AT CALVIN COLLEGE)1

1 Several years ago, a magazine poll established “waka” as the proper pronunciation for the angle-bracket characters < and >.
Here is a phonetic version of this poem:

 Waka waka bang splat tick tick hash,
 Caret quote back-tick dollar dollar dash,
 Bang splat equal at dollar underscore,
 Percent splat waka waka tilde number four,
 ampersand bracket bracket dot dot slash,
 Vertical-bar curly-bracket comma comma Crash.

ConTEnTS
4.1 Introductory Example: Einstein’s Equation 64
4.2 Numeric Expressions 67
4.3 Assignment Expressions 71
4.4 Input/Output Expressions 80
4.5 Basic C++ Functions and Libraries 88
Chapter Summary 91
Test Yourself 94
Exercises 97
Programming Problems 104

64    ◾    Programming in C++ for Engineering and Science

Arithmetic is being able to count up to twenty without taking off your shoes.

MICKEY MOUSE

A little inaccuracy sometimes saves tons of explanation.

SAKI (H. H. MUNROE)

In the preceding chapter we looked at how to represent a problem’s objects as software
objects (also called program entities) using C++ type statements. This chapter focuses on

the operations provided in C++ that may be used to solve a problem and how they are used
to form expressions of various kinds.

4.1 InTRoDUCToRY ExAMPLE: EInSTEIn’S EQUATIon
4.1.1 Problem

Suppose that the professor for your physics course has assigned a large problem set that is
due by the next class meeting and that many of the problems require using Einstein’s equa-
tion to calculate the amount of energy released by a quantity of matter for a given mass.
Because of the time pressure, mistakes will likely be made if all of the calculations are done
by hand. It would be nice to have a program that could be used to check answers.

4.1.2 object-Centered Design
4.1.2.1 Behavior
The program should display on the screen a prompt for the quantity of matter (i.e., its mass).
It will then read this value from the keyboard. The program should then use Einstein’s
equation to compute the energy that can be produced by that quantity of matter and dis-
play this value to the screen along with a descriptive label.

4.1.2.2 Objects
From our behavioral description, we can identify the following objects:

Problem Objects

Software Objects

Type Kind Name

screen output device variable cout

prompt text string constant none
quantity of matter double variable mass
keyboard input device variable cin

quantity of energy double variable energy
descriptive label string constant none

4.1.2.3 Operations
Again, from our behavioral description, we have the following operations:

 i. Output a string (prompt, descriptive label).

 ii. Read a nonnegative numeric value (mass) from the keyboard.

K11207.indb 64 6/15/12 10:06 AM

Getting Started with Expressions    ◾    65  

 iii. Compute energy from mass.

 iv. Output a numeric value (energy) and a string (descriptive label) on the screen.

C++ provides operations for each of these operations except for the third one. For this we
must use Einstein’s familiar equation

e = m × c2

where m is the mass, c is the speed-of-light constant, and e is the energy produced.
Performing this operation thus requires the following operations:

Exponentiation (c2)

Multiplication of reals (m × c2)

Storage of a real (e = m × c2)

This refinement adds two additional objects to our object list:

Problem Objects

Software Objects

Type Kind Type

screen output device variable cout

prompt text string constant none
quantity of matter double variable mass
keyboard input device variable cin

quantity of energy double variable energy
descriptive label string constant none
speed of light double constant sPEED_OF_liGhT
2 int constant none

4.1.2.4 Algorithm
Next, we organize these objects and operations into an algorithm:

 1. Define the constant sPEED_OF_liGhT.

 2. Display to cout a prompt for the mass.

 3. Read a non-negative real number from cin into mass.

 4. Compute energy = mass × sPEED_OF_liGhT 2.

 5. Output to cout a descriptive label and energy.

4.1.2.5 Coding, Execution, and Testing
The program in Example 4.1 implements the preceding algorithm. Two of the sample runs
use test data for which the output can be easily checked and the third uses “real” data.

K11207.indb 65 6/15/12 10:06 AM

66    ◾    Programming in C++ for Engineering and Science

Example 4.1 Mass-to-Energy Conversion

/* This program computes energy from a given mass using Einstein's
mass-to-energy conversion equation.

Input: the mass (in kilograms) being converted to energy
Output: the amount of energy (in kilojoules) corresponding to mass

---*/

#include <iostream> // cin, cout, <<, >>
#include <cmath> // pow()
using namespace std;

int main()
{
 const double SPEED_OF_LIGHT = 2.997925e8; // meters/sec

 double mass;
 cout << "To find the amount of energy obtained from a given mass,\n"
 "enter a mass (in kilograms): ";
 cin >> mass; // get mass

 // compute energy
 double energy = mass * pow(SPEED_OF_LIGHT, 2);

 // display energy
 cout << mass << " kilograms of matter will release\n"
 << energy << " kilojoules of energy.\n";
}

SAMPLE RUNS:
To find the amount of energy obtained from a given mass,
enter a mass (in kilograms): 1
1 kilograms of matter will release
8.98755e+16 kilojoules of energy.

To find the amount of energy obtained from a given mass,
enter a mass (in kilograms): .5
0.5 kilograms of matter will release
4.49378e+16 kilojoules of energy.

To find the amount of energy obtained from a given mass,
enter a mass (in kilograms): 155.5
155.5 kilograms of matter will release
1.39756e+19 kilojoules of energy.

K11207.indb 66 6/15/12 10:06 AM

Getting Started with Expressions    ◾    67  

This program uses several different C++ expressions. In the rest of this chapter, we will
explore some of the rich variety of expressions available in C++.

4.2 nUMERIC ExPRESSIonS
A C++ expression consists of one or more data values called operands and zero or more
operators that combine these data values to produce a result. For example,

100

is an expression that consists of one integer value (100) and no operators; it produces the
integer value 100. Similarly,

1.2 + 3.4

is an expression that consists of two operands, the real values 1.2 and 3.4, one operator
(+), and produces the real value 4.6. Expressions that produce an int value are called int
expressions; those that produce a double value are called double expressions; and so
on. In this section, we will examine the arithmetic operators and functions provided in
C++ and how they are used to form numeric expressions.

4.2.1 operators

In C++, the usual plus (+) and minus (–) signs are used for addition and subtraction.
Multiplication is denoted by an asterisk (*), which must be used for every multiplication.
For example, to multiply x by 10, we can write 10*x or x*10 but not 10x. A slash (/) is
used for both real and integer division. Another operation related to integer division is the
modulus or remainder operation, denoted by percent (%), which gives the remainder in an
integer division. The following table summarizes these operators.

Operator Operation
+ addition, unary plus
– subtraction, unary minus
* multiplication
/ real and integer division
% modulus (remainder in integer division)

For the operators +, –, *, and /, the operands may be of either integer or real type.
If both are integer, the result is integer, but if either is real, the result is real. For example,

3 + 4 → 7 3 + 4.0 → 7.0
3.0 + 4 → 7.0 3.0 + 4.0 → 7.0
9 / 4 → 2 9 / 4.0 → 2.25
9.0 / 4 → 2.25 9.0 / 4.0 → 2.25

Note the difference between integer and real division. In the expression 9 / 4 where both
operands are integers, integer division is performed, producing the integer quotient 2.

K11207.indb 67 6/15/12 10:06 AM

68    ◾    Programming in C++ for Engineering and Science

Any fractional parts are dropped and the resulting integer is the result; no rounding
occurs. In the other expressions involving division, at least one of the operands is real,
so real division is performed, producing the real result 2.25. A common difficulty for
beginning programmers is to remember that the value of m/n is 0 if m and n are integers
with |m| < |n|; for example, each of 1/2, 1/3, 9/10, –99/100 produces the value 0.

In the case of integer division, C++ provides one operator (/) that gives the integer
quotient and another operator (%) that gives the remainder from an integer division.2 The
following are some examples:

6 / 4 → 1 6 % 4 → 2
83 / 10 → 8 83 % 10 → 3
148 / 10 → 14 148 % 10 → 8

For real values, / performs real division and produces a real quotient whose precision is
machine dependent. The % operator cannot be used with real values.

4.2.1.1 Operator Priority
The order in which operators in an expression are applied is determined by a characteristic
known as operator priority (or precedence). For the arithmetic operators, *, /, and % have
higher priority than + and –.

Operators with higher priority are applied before those with lower priority. For example,
in the expression 3 + 4 * 5, the multiplication is performed before the addition because
* has higher priority than +, so the value of this expression is 23. Appendix C gives the
precedence levels for all of the C++ operators.

4.2.1.2 Operator Associativity
The operators +, –, *, /, and % are all said to be left-associative, which means that in an
expression having two operators with the same priority, the left operator is applied first. Thus,

9 – 4 – 3

is evaluated as

(9 – 4) – 3 → 5 – 3 → 2

In a later section, we will see that some C++ operators are right-associative.
Associativity is also used in more complex expressions containing different operators of

the same priority. For example, consider

9 * 10 – 8 % 3 * 4 + 5

2 Neither i / j nor i % j is defined if j is zero. A run-time error will occur if such an expression is encountered.

K11207.indb 68 6/15/12 10:06 AM

Getting Started with Expressions    ◾    69  

There are three high-priority operations, *, %, and *, and so the leftmost multiplication is
performed first, giving the intermediate result

90 – 8 % 3 * 4 + 5

Because of left-associativity, % is performed next, giving

90 – 2 * 4 + 5

followed by the second multiplication:

90 – 8 + 5

Because the two remaining operations – and +, have equal priority, left associativity causes
the subtraction to be performed first, giving

82 + 5

and then the addition is carried out, giving the final result

87

4.2.1.3 Using Parentheses
The order in which operations in an expression are performed can be changed by using
parentheses, which have highest priority; that is, parenthesized subexpressions are evalu-
ated first in the standard manner. If they are “nested”—that is, if one set of parentheses is
contained within another—computations in the innermost parentheses will be performed
first.

To illustrate, consider the expression

(6 * (12 – 4) % 7) / 4 + 9

The subexpression (12 – 4) is evaluated first, producing

(6 * 8 % 7) / 4 + 9

Next, the subexpression (6 * 8 % 7) is evaluated left to right, with * giving

(48 % 7) / 4 + 9

followed by (48 % 7), which yields

6 / 4 + 9

K11207.indb 69 6/15/12 10:06 AM

70    ◾    Programming in C++ for Engineering and Science

Now the division is performed, giving

1 + 9

and the addition produces the final result

10

Even though parentheses may not be required, they should be used freely in expressions
containing several operations to make the intended order of evaluation clear and to write
complicated expressions in terms of simpler expressions. Be sure, however, that the paren-
theses balance—each left parenthesis has a matching right parenthesis later in the expres-
sion—or a compilation error will result.

4.2.1.4 Unary Operators
When + and – are used as unary operators (i.e., applied to a single operand) as in
–x + 5 and –2 * x, they have higher priority than the corresponding binary operations.
Thus, if the value of x is –1, the values of these expressions will be 6 and 2, respectively.

4.2.1.5 Summary
The following rules summarize the evaluation of arithmetic expressions.

4.2.1.6 Bitwise Operators
C++ also provides operations that can be used to manipulate the individual bits in the
stored binary representations of integers: ~ (negation), & (bitwise and), | (bitwise or),
^ (bitwise exclusive or), << (bitshift left), and >> (bitshift right). They are sometimes used
in low-level graphics or operating system programs that must check memory or interact
directly with a computer’s hardware. More information about these operations can be
found on the text’s website described in the Preface.

operator priorities
Higher: unary +, unary -

 *, –, /

lower: binary +, binary -

 1. higher-priority operations are performed before lower-priority ones.
 2. operators with the same priority are applied left to right if they are left-associative and

right to left if they are right-associative.
 3. If an expression contains parenthesized subexpressions, they are evaluated first, using

the order specified in rules 1 and 2. For nested parentheses, the innermost subexpres-
sions are evaluated first.

K11207.indb 70 6/15/12 10:06 AM

Getting Started with Expressions    ◾    71  

4.2.2 Type Coercion

As noted earlier, in the mixed-type expression 6.0 / 4 that involves both integer and real
operands, C++ performs real division and produces the real value 1.5. This is because
the compiler automatically converts the integer value 4 to a real value 4.0, and then
performs the real division operation 6.0 / 4.0. This automatic type conversion by the
compiler is known as type coercion. It also occurs in mixed-type expressions involving
characters and integers or reals; the character values are automatically replaced by their
numeric codes (see Section 3.3). For example, if characters are represented in ASCII, the
value of the expression 'a' + 3 is 99 because 'a' is replaced by 96, its numeric code.

In general, these type conversions take place automatically in any mixed-type expres-
sion with “narrow” values—those stored in a smaller number of bits—being converted to
“wider” values that occupy a larger number of bits. This automatic widening of a narrower
value to the size of a wider value in an expression is known as promotion of the narrower
value. It is what permits character, integer, and real values to be freely intermixed in C++
expressions. Two values are said to be compatible if (i) they have the same type, (ii) one
can be promoted to the type of the other, or (iii) both can be promoted to the same type.
For example, int and double are compatible, because int can be promoted to double.

4.2.2.1 Explicit Type Conversions
In addition to automatic type conversions, explicit conversions are also possible. For
example, if intVal is an integer value, then either of the expressions double(intVal)
or (double)intVal produces the double value equivalent to intVal. Similarly,
if doubleVal is of type double, either of int(doubleVal) or (int)doubleVal
will truncate the fractional part of doubleVal and produce its integer part.

In general, an expression of the form

type(expression)

or

(type)expression

where type is a valid C++ type can be used to convert the type of expression to type
(if possible). The first form is sometimes referred to as functional notation and the last
form as (C-style) cast notation.

4.3 ASSIGnMEnT ExPRESSIonS
An assignment expression uses the assignment operator (=) to assign a value to a variable.

assignment expression
Form:

 variable = expression

K11207.indb 71 6/15/12 10:06 AM

72    ◾    Programming in C++ for Engineering and Science

For example, suppose that length and width are real variables, low and high are inte-
ger variables, code is a character variable, and isValid is a boolean variable, declared
as follows:

double width, length;
int low, high;
char code;
boolean isValid;

The compiler will associate memory locations with the six variables as described in
Section 3.3. We might picture them as follows, with question marks indicating unspecified
contents:

width ?
length ?

low ?
high ?
code ?

isValid ?

Now consider the following assignment statements:

width = 5.0;
length = 2 * width + 3;
low = 20;
code = 'X';
isValid = true;

The first statement assigns the real constant 5.0 to the real variable width, and the sec-
ond assigns the real constant 13.0 to the real variable length. The next assignment
statements assign the integer constant 20 to the integer variable low, the character X
to the character variable code, and the boolean constant true to the boolean variable
isValid. More precisely, when these assignment statements are executed, the values 5.0,
13.0, and 20, the numeric code for X (88 in ASCII), and the integer 1 or some other non-
zero integer (representing true) are stored in the memory locations associated with the

where:
 variable is the name of a variable;
 expression is a valid expression (a constant, another variable to which a value has pre-
viously been assigned, or a formula to be evaluated).

Behavior:

 1. expression is evaluated and, if necessary and possible, its value is converted to the
type of variable;

 2. The value of variable is changed to this value; and
 3. This value is the value of the entire assignment expression.

K11207.indb 72 6/15/12 10:06 AM

Getting Started with Expressions    ◾    73  

variables width, length, low, code, and isValid, respectively. The variable high is
still undefined.

width 5.0
length 13.0

low 20
high ?
code X (88)

isValid 1

These values are substituted for these variables in any expression containing these vari-
ables occurring later in the program. Thus, when the assignment statement

high = 6 * low + 5;

is executed, the value 20 stored in low’s memory location is retrieved and used in evaluat-
ing the expression

6 * low + 5

The resulting value 125 is then assigned to the integer variable high; the value of low
remains unchanged.

width 5.0
length 13.0

low 20
high 125
code X (88)

isValid 1

Now consider the assignment statement

width = width + 2.1;

in which the variable width appears on both sides of the assignment operator (=). In this
case, the current value 5.0 for width is used in evaluating the expression width + 2.1
on the right, yielding the value 7.1, and this value is then assigned to width, replacing
the old value 5.0:

width 7.1
length 13.0

low 20
high 125
code 88

isValid 1

In assignment statements, the variable to be assigned a value must appear on the left of the
assignment operator and a valid expression on the right.

K11207.indb 73 6/15/12 10:06 AM

74    ◾    Programming in C++ for Engineering and Science

In assigning values to variables, some mixing of numeric types is permitted. For exam-
ple, the assignment statement

width = 5;

could have been used to assign a value to width; the compiler would have automatically
converted the integer 5 to the real value 5.0 and assigned this value to width. However,
such mixed-type assignments should be used with caution because significant information
can be lost. To demonstrate this, consider the assignment statement

low = 3 / width;

Here, the expression 3 / width will be evaluated and because width is of type double,
the result will be the real value 0.6. However, assigning a real value to an integer variable
truncates the real value’s fractional part. In this example, therefore, the fractional part .6 is
truncated and only the integer portion 0 is assigned to low.

As we have noted, characters are stored as integers; for example, the assignment statement

code = 'X';

stored the numeric representation of the character X (e.g., 88 in ASCII) in code’s memory
location. This allows us to use assignments like

code = 88 + 1;

or

high = 'A' + 'B';

If characters are represented in ASCII, the first statement will assign the value 'Y'
(89 in ASCII) to code and the second will assign the value 131 (65 + 66) to high. Such
mixed-type assignments can easily lead to obscure errors and should normally be avoided.

It is important to remember that an assignment statement is a replacement statement. It
is easy for beginning programmers to forget this and write an assignment statement

a = b;

when

b = a;

was intended. These statements produce very different results: The first assigns the value of
b to a, leaving b unchanged, and the second assigns the value of a to b, leaving a unchanged.

K11207.indb 74 6/15/12 10:06 AM

Getting Started with Expressions    ◾    75  

To illustrate further the replacement property of an assignment, suppose that count
and number are integer variables whose values are 123 and 99, respectively, and that we
wish to interchange these values. To do this, we need an extra integer variable to store the
old value of one of the variables before we change them. Suppose we call it temp and use
it to store the value of count before we assign count the value of number; then we can
assign this stored value to number.

temp = count;
count = number;
number = temp;

4.3.1 Assignment as an operation

We have seen that for an assignment

variable = expression

three actions result:

 1. expression is evaluated, producing some value v.

 2. The value of variable is changed to v.

 3. The value v is produced by the = operator.

Up to now, we have focused on the first two actions, but we now consider the third one.
Just as the arithmetic expression

1 + 2

produces the value 3, the assignment

number = 99

is an expression that produces the value 99; = is a binary operator whose result is the value
assigned to the left operand. For example, in the expression

1.0

1.0

a

b

b = a;

1.0

7.89

a

b

a

b

a

b

7.89

7.89

a = b;

1.0

7.89

123
99

count

temp = count;

?

number

temp

count

number

temp

count

number

temp

count

number

temp

99
123

count = number;

123

99
99

number = temp;

123
123
99

123

K11207.indb 75 6/15/12 10:06 AM

76    ◾    Programming in C++ for Engineering and Science

number = number + 1

+ is applied first because the = operator has lower priority than almost all other C++
operators,

number = (number + 1)

producing the result 100. That value is then assigned to number,

number = 100

which changes the value of number to 100, after which the = operator produces the result
100.

This value-producing property of = means that it can be used inside other arithmetic
expressions. For example, the statement

temp = 2 * (number = 100) + 1;

performs two assignments: first, 100 is assigned to number and the value of the parenthe-
sized expression is 100; then, the resulting expression 2 * 100 + 1 is evaluated and its
value 201 assigned to temp. Such statements that use assignment expressions inside other
arithmetic expressions, however, are not commonly used and their use is discouraged.

The more common way to use this property of = is to chain several assignment opera-
tors together in a single statement such as

temp = count = number = 0;

Because the assignment operator =, unlike the arithmetic operators we have seen thus far,
is right-associative, this means that in this statement, the assignments are made from right
to left:

temp = (count = (number = 0));

First, number is set to 0; and because this = operator produces the value assigned to num-
ber (i.e., 0), the statement becomes

temp = (count = 0);

This assigns 0 to count, producing 0 as its result, and the statement becomes

temp = 0;

Now, temp is assigned 0, which is returned as the result, and the statement becomes

0;

K11207.indb 76 6/15/12 10:06 AM

Getting Started with Expressions    ◾    77  

which, although a valid C++ statement, does nothing and is discarded. The “side effect”
is what is important: All of the variables number, count, and temp have been set to 0.

4.3.2 Assignment Shortcuts

One common form of assignment is one in which the value of a variable is changed by
performing some operation on it; for example,

Add value to sum

Double number

These can be written as assignment statements,

sum = sum + value;
number = number * 2;

but such operations occur so frequently that special shortcut operations are provided for
them. Instead of writing the assignment as shown, we can use the shorter forms

sum += value;
number *= 2;

Each of the arithmetic operators can be used in this way. Any statement of the form

variable = variable ∆ expr;

where ∆ is any of the operators +, –, *, /, or %, can be written

variable ∆= expr;

Each of the following is therefore an acceptable variation of the assignment operator:

+=, –=, *=, /=, %=

These operations are all right-associative and produce the value assigned as their result.
This means that they could be chained together; however, this is not good programming
practice because it can be difficult to follow how the resulting expressions are evaluated.
For example, if width has the value 3.0 and length the value 5.7, then the statement

length *= width += 0.2;

is executed as follows:

 1. Assign width the value 3.0 + 0.2 = 3.2, and then

 2. Assign length the value 5.7 * 3.2 = 18.24.

K11207.indb 77 6/15/12 10:06 AM

78    ◾    Programming in C++ for Engineering and Science

Chaining operators together in this manner decreases a program’s readability and should
usually be avoided because such programs are difficult (and perhaps costly) to maintain.

4.3.3 The Increment and Decrement operations

Algorithms often contain instructions of the form

“Increment count by 1.”

that can be encoded as

count = count + 1;

or, with the preceding shortcut assignment forms, as

count += 1;

However, this kind of assignment that increments an integer variable by 1 occurs so often
that a special unary increment operator ++ is provided for this operation.3 It can be used
as a postfix operator,

variable++

or as a prefix operator,

++variable

where variable is an integer variable whose value is to be incremented by 1. Thus, the
assignment statement

count = count + 1; // or count += 1;

can also be written

count++;

or

++count;

When ++ is used as a stand-alone operation as in the preceding statements, it makes no
difference whether the postfix form or the prefix form is used. There is a subtle difference,
however, when they are combined with other operations. To understand this difference,

3 The name C++ stems from this increment operator—C++ is C that has been incrementally improved.

K11207.indb 78 6/15/12 10:06 AM

Getting Started with Expressions    ◾    79  

we must remember that these increment expressions are assignment expressions and thus
produce values. They both increment a variable, but the value produced by the postfix form
is the original (nonincremented) value of the variable, whereas that produced by the prefix
form is the incremented value.

To illustrate this, consider the following program segments where, as before, count
and number are integer variables:

//POSTFIX: Use first, then increment Output
count = 10;
cout << "count =" << count << endl; count = 10

number = count++;
cout << "number =" << number << endl; number = 10
cout << "count =" << count << endl; count = 11

and

//PREFIX: Increment first, then use Output
count = 10;
cout << "count =" << count << endl; count = 10

number = ++count;
cout << "number =" << number << endl; number = 11
cout << "count =" << count << endl; count = 11

Note that both sets of statements increment the value of count from 10 to 11. However,
in the first set of assignments, number is assigned the value 10, but in the second set,
number is assigned the value 11.

Just as an integer variable’s value can be incremented with the ++ operator, it can be dec-
remented (i.e., 1 is subtracted from it) by using the decrement operator (––). For example,
the assignment statement

count = count – 1;

can be written more compactly as

count––;

or

--count;

The differences between the prefix and postfix versions are similar to those for the increment
operator.

K11207.indb 79 6/15/12 10:06 AM

80    ◾    Programming in C++ for Engineering and Science

4.4 InPUT/oUTPUT ExPRESSIonS
In some programming languages, input and output statements contain some special
reserved word such as read, Print, or Write to indicate the operation to be performed. In
C++, however, input and output are carried out using special input and output operators.
Thus, like assignment, we write input expressions to perform input and output expressions
to perform output. In this section we take a first look at the basic features of input/output.
Other features will follow in later chapters.

4.4.1 I/o Streams

C++ avoids the nitty-gritty details about how I/O is carried out—how characters actually
get from the keyboard into a program or how values computed in a program get to the
screen—by using streams, which connect executing programs with input/output devices.
Characters generated by the keyboard enter an input stream called an istream that trans-
mits them to a program. Similarly, characters that are output by a program enter an output
stream called an ostream that transmits them to the screen.

These input and output streams—istreams and ostreams—are provided by a special
C++ library named iostream that defines three important data objects:

•	 An istream object named cin that is associated with the keyboard

•	 An ostream object named cout that is associated with the screen

•	 An ostream object named cerr that is associated with the screen and is intended
for displaying error messages4

As you might guess, input and output are the basic operations on these streams.

4.4.2 Input Expressions

The program in Example 4.1 contains the input statement

cin >> mass;

where mass is a real variable. Like arithmetic expressions such as count + 1 and assign-
ment expressions such as number = 100 that we have considered,

cin >> mass

4 A main difference between cout and cerr is that cout is buffered but cerr is not. Whereas output to cerr goes
directly to the screen, output to cout goes into a section of memory called an output buffer and appears on the screen
only when this buffer is emptied, for example, by endl.

ostream istreamExecuting
Program

K11207.indb 80 6/15/12 10:06 AM

Getting Started with Expressions    ◾    81  

is an input expression in which the input (or extraction) operator >> is applied to the two
operands cin and mass. That is, >> is a binary operator that acts as follows:

Because the input operator >> is left-associative, input expressions can be chained
together. For example, if x and y are variables declared by

int x;
double y;

the statement

cin >> x >> y;

will be evaluated as

(cin >> x) >> y;

in the following manner:

 1. If the next value in cin is an integer, it will be removed from cin and assigned to x, and
the >> operator produces the value cin, giving the following modified input statement

cin >> y;

 2. If the next value in this modified cin is an integer or a real number, it will be removed
from cin and assigned to y, and the >> operator produces the value cin, giving the
following statement

cin;

input expression
Form:

input_stream >> variable

where:
 input_stream is the name of a C++ input stream; and
 variable is a C++ variable for which the input operator >> is defined.

Behavior:

 1. A value whose type is compatible with that of variable must be the next item in
input_stream. (If there is none, execution is either suspended or terminated, as
described later.)

 2. That value is removed from input_stream and assigned to variable.
 3. The >> operator produces the modified input_stream as its result.

K11207.indb 81 6/15/12 10:06 AM

82    ◾    Programming in C++ for Engineering and Science

 3. This last statement contains no operators, only cin, which will be discarded, and
execution of this input statement is complete.

What happens if either of the necessary inputs in (1) and (2) is not present in cin will be
described later.

We can describe a typical C++ (interactive) input statement as follows:

Note that the user must enter a value (of the appropriate type) for each variable in the
statement before execution of the program will resume. Thus, when the following input
statement is executed and if side1, side2, and side3 are declared as shown,

double side1, side2, side3;
cin >> side1 >> side2 >> side3;

program execution will be suspended until the user enters values for all three variables. If
fewer than three values are entered, for example,

2.2 3.3

execution will not resume until the user enters a third value, say

4

The first two values 2.2 and 3.3 will be removed from cin and assigned to side1 and
side2, respectively; the third value 4 will be removed from cin, converted to a real value
4.0, and assigned to side3. Program execution then resumes.

c++ interactiVe input statement
Form:

cin >> variable1 >> variable2 >> ... >> variablen;

where:
cin is the istream and >> is the input operator provided in the iostream library and
each variablei is a variable for which >> is defined.

PurPose:

This input statement attempts to read a sequence of n values from the input device with
which cin is associated, storing them in variable1, variable2, . . ., variablen, and
removing them from the istream cin.

K11207.indb 82 6/15/12 10:06 AM

Getting Started with Expressions    ◾    83  

The input values can be separated by any white space (spaces, tabs, or newlines). For
example, if the values are entered on separate lines,

2.2
3.3
4

they are separated by newlines and the same assignments occur as before.
Because input requires that the correct number and types of values be entered, it is good

practice to provide an informative prompt to the user whenever it is necessary to enter data
values. This is accomplished by preceding input statements with output statements, for
example,

cout << "Enter the lengths of the triangle's three sides: ";

We turn now to a study of output statements.

4.4.3 output Expressions

C++’s input and output statements are quite similar. To illustrate this, consider the
input statement

cin >> mass;

from Example 4.1 and a shortened version of the output prompt:

cout << "Enter a mass (in kilograms): ";

cin is the name of an istream object and cout is the name of an ostream object, both
of which are defined in the iostream library. The istream input (or extraction) opera-
tor is >> and << is the ostream output (or insertion) operator. And very similar to how
the expression

cin >> mass

performs an input operation (>>) on two operands (cin and mass), the expression

cout << "Enter a mass (in kilograms): "

performs an output operation (<<) on two operands (cout and "Enter a mass (in
kilograms): ").

K11207.indb 83 6/15/12 10:06 AM

84    ◾    Programming in C++ for Engineering and Science

We can describe a typical C++ output expression as follows:

Like >>, the << operator is left-associative, which makes it possible to chain output expres-
sions together. To illustrate, consider the following modification of the output statement in
Example 4.1:

cout << energy << "kilojoules released." << endl;

It would be evaluated as follows:

 1. The first output expression cout << energy inserts the value of energy into
cout and the << operator produces the value cout, giving

cout << "kilojoules released." < endl;

 2. The next output expression cout << "kilojoules released." inserts the
string "kilojoules released." into cout and the << operator produces the
value cout, giving

cout << endl;

 3. The expression endl is evaluated, which inserts a newline character ('\n') into
cout and then flushes it, causing output to appear on the screen. The << operator
produces the value cout, giving

cout;

 4. This last statement contains no operators, only cout, which will be discarded and
execution of this output statement is complete.

c++ output expression
Form:

output_stream << expression

where:
output_stream is the name of a C++ output stream and expression is any C++
expression for which the output operator << is defined.

Behavior:

 1. expression is evaluated.
 2. That value is inserted into output_stream.
 3. The << operator produces the modified output_stream as its result.

K11207.indb 84 6/15/12 10:06 AM

Getting Started with Expressions    ◾    85  

We can thus describe a typical C++ (interactive) output statement as follows:

Note that << only inserts what is being output into cout, character by character with no
formatting. In particular, it does not insert any space or newlines between output items
unless the items themselves contain them. For example, if the last output statement in
Example 4.1 were written as

cout << mass << "kilograms of matter will release"
<< energy << "kilojoules of energy.";

the output when 1 is entered for mass would be

1kilograms of matter will release 8.98755e+16kilojoules of energy.

whereas the output statement in Example 4.1,

cout << mass << " kilograms of matter will release\n"
<< energy << " kilojoules of energy.\n";

adds a space before the words “kilograms” and “kilojoules” and an advance to a new line
after the word “release” to make the output more readable:

1 kilograms of matter will release
8.98755e+16 kilojoules of energy.

Note the \n after the last word “energy.” It is there so that any subsequent output will
begin on a new line and not be attached at the end of this word. One or more new line escape
sequences '\n' or the keyword endl must be used to cause output to advance to a newline.5
For example,

cout << "3\n4\n\nShut the door!" << endl;

5 As noted in an earlier footnote, endl, like '\n', produces an advance to a new line but it also flushes the buffer associated
with cout so that the output it contains appears immediately on the screen.

c++ interactiVe output expression
Form:

cout << expr1 << expr2 << ... << exprn;

where:
cout is the ostream and << the output operator provided in the iostream library and
each expri is a C++ expression for which << is defined.

PurPose:

Execution of an output statement inserts the values of expr1, expr2, . . ., exprn into the
ostream cout so they will be displayed on the output device (e.g., the screen) associated with
cout.

K11207.indb 85 6/15/12 10:06 AM

86    ◾    Programming in C++ for Engineering and Science

will display the output

3
4

Shut the door!

4.4.4 output Formatting

There are times when we may want to improve the default output format we have been
using up to now. For example, if we are outputting monetary values we might like them
rounded to two decimal places and displayed in nicely aligned columns. To accomplish
this, C++ provides format manipulators, of which the more useful ones are given here;
some others are described in later chapters.

To illustrate the use of format manipulators, suppose that the truck drivers for a recy-
cling company record the miles traveled, gallons of fuel used, cost of the fuel, and other
miscellaneous operating costs for each of their pick-up routes. The program in Example 4.2
inputs these amounts for a route and then calculates miles per gallon, total trip cost, and
the cost per mile. It uses two output manipulators from iostream: fixed so that all
values are displayed in fixed-point form and showpoint so that decimal points and
trailing zeros are displayed; and it uses two from iomanip: setprecision() to round
output values to two decimal places and setw()to right-align the values in seven-space
zones.

Format manipulators

Manipulators Description

From iostream:
showpoint Display a decimal point and trailing zeros for real values
noshowpoint For whole real values, hide the decimal point and trailing zeros

(default)
fixed Output real values in fixed-point notation
scientific Output real values in scientific notation
boolalpha Output boolean values as strings “true” and “false”
left Left justify values within output fields
right Right justify values within output fields (default)

From iomanip:
setw(w) Output the next value in a field of size w (default 1)
setprecision(p) Output p fractional digits for all subsequent real values

(common default is 6)

PurPose:

Format manipulators specify how subsequent items in an output list should appear. Except
for setw(), they apply to all subsequent items in the current and following output statements
unless modified by other format manipulators; setw()applies to only the next output item.

K11207.indb 86 6/15/12 10:06 AM

Getting Started with Expressions    ◾    87  

Example 4.2 Recycling Costs

/* This program calculates miles per gallon, fuel cost per mile, and
total cost for a truck on a recycling pick-up route.

Input: a route number, total miles traveled, total fuel consumed,
unit cost of the fuel, and other operating costs

Output: the miles per gallon, total cost for traveling the route,
and the cost per mile

--*/

#include <iostream> // cin, cout, <<, >>, fixed, showpoint
#include <iomanip> // setprecision(), setw()
using namespace std;

int main()
{
 int route; // route number
 cout << "Enter your route number: ";
 cin >> route;

 double miles, // miles traveled
gallonsOfFuel, // gallons used
unitFuelCost, // fuel cost per gallon
otherOperatingCost; // other operating costs

 cout << "Enter:\n\ttotal miles traveled,"
<< "\n\tgallons of fuel used,"
<< "\n\tfuel cost per gallon, and"
<< "\n\tother operating costs (total):"
<< "\n\t---> ";

 cin >> miles >> gallonsOfFuel
>> unitFuelCost >> otherOperatingCost;

 double milesPerGallon = miles / gallonsOfFuel,
fuelCost = unitFuelCost * gallonsOfFuel,
totalTripCost = fuelCost + otherOperatingCost,
costPerMile = totalTripCost / miles;

 cout << showpoint << fixed << setprecision(2)
<< "For Route #" << route << ":\n"
<< "\n\tMiles per gallon: " << setw(8) << milesPerGallon
<< "\n\tTotal cost: $" << setw(8) << totalTripCost
<< "\n\tCost per mile: $" << setw(8) << costPerMile
<< endl;

}

SAMPLE RUNS:

Enter your route number: 17
Enter:

K11207.indb 87 6/15/12 10:06 AM

88    ◾    Programming in C++ for Engineering and Science

total miles traveled,
gallons of fuel used,
fuel cost per gallon, and
other operating costs (total):
---> 100 20 3 1

For Route #17:

Miles per gallon: 5.00
Total cost: $ 61.00
Cost per mile: $ 0.61

Enter your route number: 24
Enter:

total miles traveled,
gallons of fuel used,
fuel cost per gallon, and
other operating costs (total):
---> 111.5 24.5 3.25 33.95

For Route #24:

Miles per gallon: 4.55
Total cost: $ 113.58
Cost per mile: $ 1.02

4.5 BASIC C++ FUnCTIonS AnD LIBRARIES
The program in Example 4.1 contains the statement

energy = mass * pow(SPEED_OF_LIGHT, 2);

to compute the energy released from matter with a given mass, using Einstein’s equation
e = mc2. Here we see that in addition to simple objects like literals, constants, and variables,
an expression’s operand may be a value returned by a function. In this example, the stan-
dard math library function pow() performs the exponentiation operation.6

4.5.1 Libraries

Because of the difficulty of computing exponentials, square roots, logarithms, and other
complex operations by hand, many calculators and application software such as Excel pro-
vide these as built-in operations. For the same reason, C++ and many other programming
languages provide a collection of predefined functions to implement complex operations.
For C++, however, this collection is large, and including it in a rather small program like
that in Example 4.1 could result in a very large file. For this reason, C++ stores smaller
collections of related functions in separate libraries so that a program need only include
those that are needed.

6 We will use notation of the form functionName() for function names, with the parentheses used to distinguish them
from identifiers that do not represent functions.

K11207.indb 88 6/15/12 10:06 AM

Getting Started with Expressions    ◾    89  

As the name suggests, a library is a place where functions (and other things such as
constant declarations) can be stored, so that a program can “borrow” them. For example,
the iostream library stores declarations of the streams cin and cout and functions
to implement input (>>) and output (<<) operations. To use the contents of a library, a
#include directive is added to a program to inform the compiler that the contents of
that library must be added to the program. Thus, because the program in Example 4.1
reads numeric values from the keyboard via cin,

cin >> mass;

and outputs values to the screen via cout as in the statement

cout << mass << " kilograms of matter will release "
<< energy << " kilojoules of energy.\n";

the program must contain the directive

#include <iostream> // cin, cout, <<, >>

because the objects cin and cout and the >> and << operations are stored in the
iostream library. The program also contains the directive

#include <cmath> // pow()

to make the contents of the math library available to the program because the pow()
function that it uses is in that library. The comments attached to these directives are not
mandatory, but it is good programming practice to follow #include directives with
comments like those shown that list the items from the libraries that are being used.

When the C++ compiler processes a #include directive, the contents of that file are
added to the program. The angle brackets (< and >) around the name of the library together
with the line following the #include directives,

using namespace std;

provide information to the compiler about where to find these libraries.

4.5.2 numeric Functions

As noted in Chapter 1, C++ was developed by Bjarne Stroustrup, who extended the C
language with object-oriented features. However, many powerful features of C have been
retained in C++, and this includes the C libraries such as cmath.7 In addition to pow(),
the C math library cmath stores sqrt(), exp(), and other math-related functions. The
C standard library cstdlib contains many other commonly used functions such as the
absolute value function abs() for integers and exit(), which can be used to terminate
program execution if an error occurs. Becoming familiar with the functions available in

7 C++ libraries whose names begin with “c” such as cmath are C libraries.

K11207.indb 89 6/15/12 10:06 AM

90    ◾    Programming in C++ for Engineering and Science

these libraries is an important part of learning to program in C++, because they provide
many useful operations. We will describe several of these functions throughout the text;
others are described in Appendix B.

To use a function to compute a value, referred to as calling the function, we simply
give the function name followed by parentheses that enclose its arguments—constants,
variables, or expressions to which the function is to be applied. For example, the program
in Example 4.1 uses

pow(SPEED_OF_LIGHT, 2)

to call the function pow(), sending it SPEED_OF_LIGHT and 2. Computing xn requires
two operands, x and n, so the pow() function requires two arguments. By contrast, if we
wanted to find the absolute value of an integer value, we could use the standard library
function abs(), which takes a single argument,

positiveValue = abs(intValue);

but to do so, we must first have included the standard C library cstdlib: 8

#include <cstdlib>

Table 4.1 lists most of the mathematical functions provided by cmath; others are
described in Appendix B. Each of these functions takes one or more arguments whose
type is double (or can be promoted to double) and returns a value of type double. For
example, to calculate the square root of 3, we can write sqrt(3.0) or sqrt(3).

8 Some versions of C++ include cstlib automatically.

TABLE 4.1 cmath Library Functions

Function Description
fabs(x) Absolute value of real value x
pow(x, y) x raised to power y
sqrt(x) Square root of x
ceil(x) Least integer greater than or equal to x
floor(x) Greatest integer less than or equal to x
exp(x) Exponential function ex
log(x) Natural logarithm of x
log10(x) Base-10 logarithm of x
sin(x) Sine of x (in radians)
cos(x) Cosine of x (in radians)
tan(x) Tangent of x (in radians)
asin(x) Inverse sine of x
acos(x) Inverse cosine of x
atan(x) Inverse tangent of x
sinh(x) Hyperbolic sine of x
cosh(x) Hyperbolic cosine of x
tanh(x) Hyperbolic tangent of x

K11207.indb 90 6/15/12 10:06 AM

Getting Started with Expressions    ◾    91  

Some expressions that are more complicated may require more than one function call.
For example, if we are solving quadratic equations, we might want to calculate the dis-

criminant b ac2 4− . We can express this in C++ as

sqrt(pow(b, 2) – 4.0 * a * c)

Note that if the value of the expression

pow(b, 2) – 4.0 * a * c

is negative, an error will result because the square root of a negative number is not a real
number.

The C library cstdlib contains several other general-purpose functions. Table 4.2 lists
some of the more useful ones; others are described in Appendix B.

ChAPTER SUMMARY

Key Terms

#include directive division operator (/)

addition operator escape sequence

assignment operator (=) expression

C math library (cmath) fixed-point

C standard library (cstdlib) floating-point

cerr format manipulator

cin increment operator (++)

compatible input operator (>>)

cout iostream library

decrement operator (––) istream

TABLE 4.2 cstdlib Library Functions

Function Description
abs(i) Returns the absolute value of integer i
rand() Returns a pseudorandom integer in the range 0 to RAND_MAX,

which is an integer constant (≥ 32767) also defined in cstdlib
srand(seed) Uses the integer seed to initialize the sequence of

pseudorandom integers returned by rand()
exit(status) Terminates program execution and returns control to the

operating system; status = 0 signals successful termination
and any nonzero value signals unsuccessful termination

K11207.indb 91 6/15/12 10:06 AM

92    ◾    Programming in C++ for Engineering and Science

left-associative output operator (<<)

library promotion

mixed-type expression remainder

modulus operator (%) right-associative

multiplicative operator (*) short-cut assignment operations

operand stream

operator subtraction operator (-)

operator precedence type conversion

operator priority unary operator

ostream white space

noTES
•	 It is important to understand the difference between integer and real division. If
a and b are both integers with b ≠ 0, a / b gives the integer quotient when a is
divided by b, and a % b gives the remainder. If a or b is real, real division is used for
a / b and a % b results in an error.

•	 Promotion is the automatic widening of a narrower value to the size of a wider value.
It is used in mixed-type expressions to convert a narrower value to the type of a wider
value in the expression.

•	 Two values are compatible if one of the following is true:

•	 They are both of the same type.

•	 The type of one value can be promoted to the type of the other value.

•	 The types of both can be promoted to the same type.

•	 In an expression, unary operators + and – have higher priority than *, /, and %,
which in turn have higher priority than + (addition) and – (subtraction).

•	 Associativity determines whether equal-priority operators are applied from left to
right or from right to left.

•	 Parentheses can be used to change the usual order of evaluation in an expression.

•	 A directive of the form #include <lib> must be used to insert the contents of a
C/C++ library before the functions in that library can be used.

•	 Expressions of the form type(expr) or (type)expr can be used to convert the
value of expr to the specified type.

K11207.indb 92 6/15/12 10:06 AM

Getting Started with Expressions    ◾    93  

•	 An assignment statement is a replacement statement: a = b; replaces the value of a
with the value of b.

•	 Assignment is a value-producing operator that returns the value being assigned. This
together with right-associativity makes it possible to chain assignments; for example,
a = b = c = d;.

•	 An assignment statement of the form alpha = alpha ∆ beta; can be written
more compactly as alpha ∆= beta;.

•	 The increment (++) and decrement (--) operations are useful for incrementing/
decrementing an integer variable by 1.

•	 I/O is carried out in C++ by operators acting on streams (istreams for input and
ostreams for output), which connect an executing program with an input/output device.

•	 Input statements of the form

an_istream >> variable1 >> variable2 >> ... >> variablen;

 are used to input values for variables; cin is the istream associated with the key-
board. White space (spaces, tabs, or newlines) is used to separate input values. Leading
white space will be ignored when reading a value for a variable.

•	 It is good practice to prompt the user with an informative message when data values
are to be entered.

•	 Output statements of the form

an_ostream << expr1 << expr2 << ... << exprn;

 are used to output values of expressions; cout and cerr are ostreams associated
with the screen.

•	 The format of output is controlled by inserting format manipulators into output lists.

Style and Design Tips

In the examples in this text, we adopt certain stylistic guidelines for C++ programs, and
you should write your program in a similar style. Those at the end of Chapter 3 are impor-
tant ones and you should review them.

warnings

 1. The type of value stored in a variable should be the same as or promotable to the type
of that variable.

 2. if an integer value is to be stored in a real variable, the integer will be promoted to a real
type. By contrast, if a real value is to be stored in an integer variable, then the real value
is truncated, possibly resulting in the loss of information.

K11207.indb 93 6/15/12 10:06 AM

94    ◾    Programming in C++ for Engineering and Science

 3. Parentheses in expressions must be paired. That is, for each left parenthesis, there must
be exactly one matching right parenthesis that occurs later in the expression.

 4. Both real and integer division are denoted by /; which operation is performed is deter-
mined by the type of the operands.

 5. all multiplications must be indicated by *; for example, 2*n is valid, but 2n is not.

 6. a semicolon must appear at the end of each expression (assignments, input, output,
etc.) that is meant to be a programming statement.

 7. There are many operators in C++—we’ve barely scratched the surface—and remem-
bering their priorities will be increasingly difficult. For this reason, it is wise to use
parentheses in complex expressions to clearly specify the order in which the operators
are to be applied.

TEST YoURSELF

Section 4.2

Find the value of each of the expressions in Questions 1–8, or explain why it is not a valid
expression.

 1. 3 – 2 – 1 5. 7 + 6 % 5

 2. 2.0 + 3.0 / 5.0 6. (7 + 6) % 5

 3. 2 + 3 / 5 7. (2 + 3 * 4) / (8 – 2 + 1)

 4. 5 / 2 + 3 8. 12.0 / 1.0 * 3.0

Questions 9–18 assume that two, three, and four are reals with values 2.0, 3.0, and 4.0,
respectively; intEight and intFive are integers with values 8 and 5, respectively; and
ASCII representation is used for characters (see Appendix A). Find the value of each expression.

 9. two + three * three 14. intFive * 2 / two * 2

 10. intFive / 3 15. 'c' – 1

 11. (three + two / four) * 2 16.'b' + 'c' – 'a'

 12. intEight / intFive * 5.1 17. int(two * three / four)

 13. four * 2 / two * 2 18. (int)(two * three / four)

Section 4.3

Questions 1–17 assume that the following declarations have been made:

int m, n;
double pi;
char c;

K11207.indb 94 6/15/12 10:06 AM

Getting Started with Expressions    ◾    95  

Tell whether each is a valid C++ statement. If it is not valid, explain why it is not.

 1. pi = 3.0;

 2. 0 = n;

 3. n = n + n;

 4. n + n = n;

 5. m = 1;

 6. m = "1";

 7. m = n = 1;

 8. c = '65';

 9. c = 65;

 10. c = '1';

 11. c = "1";

 12. m = m;

 13. pi = m;

 14. m = pi;

 15. m++;

 16. m + n;

 17. ++pi;

For Questions 18–23, assume that the following declarations have been made:

int intEight = 8, intFive1 = 5, intFive2 = 5, jobId;
double two = 2.0, three = 3.0, four = 4.0, xValue;

Find the value assigned to the given variable or indicate why the statement is not valid.

 18. xValue = three + two / four;

 19. xValue = intEight / intFive1 + 5.1;

 20. jobId = intEight / intFive1 + 5.1;

 21. jobId = intFive1++;

 22. jobId = ++intFive2;

 23. intEight *= 8;

For each of Questions 24–26, write a C++ assignment statement that calculates the given
expression and assigns the result to the specified variable.

 24. rate times time to distance

 25. a b2 2+ to c

 26. Assuming that x is an integer variable, write four different statements that increment
x by 1.

Section 4.4

 1. In C++, input and output are carried out using , which connect an exe-
cuting program with an input/output device.

K11207.indb 95 6/15/12 10:06 AM

96    ◾    Programming in C++ for Engineering and Science

 2. (True or False) C++ has no input or output facilities built into the language.

 3. is the stream object associated with the keyboard; its type is .

 4. and are stream objects associated with the screen; their
type is .

 5. The input operator is .

 6. The output operator is .

 7. The value produced by the input expression cin >> x is .

 8. The value produced by the output expression cout << x is .

 9. The input and output operators are (left or right) associative.

 10. can be inserted into an output list to format the output of items.

Questions 11–13 assume the declarations

int number = 123;
double rate = 23.45678;

For each, show precisely the output that the set of statements produces, indicating blanks
with ⎵, or explain why an error occurs.

 11. cout << number << rate << end1;

 12. cout << '\n' << setw(5) << number << number + 1
<< setw(5) << number + 2
<< setw(1) << number + 4 << end1;

 13. cout << showpoint << fixed
<< setw(8) << setprecision(0) << rate << endl
<< setw(8) << setprecision(1) << rate << endl
<< setw(8) << setprecision(2) << rate << endl
<< setw(8) << rate << endl
<< setprecision(1) << rate << endl;

Questions 14–17 assume the declarations

int number1, number2, number3;
double real1, real2, real3;

For each, tell what value, if any, will be assigned to each variable, or explain why an error
occurs, when the statement is executed with the given input data:

 14. cin >> number1 >> number2 >> number3; Input: 11 22
 33 44

K11207.indb 96 6/15/12 10:06 AM

Getting Started with Expressions    ◾    97  

 15. cin >> real1 >> real2 >> real3; Input: 1.1 2 3.3 4

 16. cin >> number1 >> number2 >> number3; Input: 1.1 2 3.3 4

 17. cin >> number1 >> real1 >> number2; Input: 1.1 2
 >> real2 >> number3 >> real3; 3.3 4
 5.5 6

Section 4.5

Questions 1–15 assume that r2, r3, and r4 are reals with values 2.0, 3.0, and 4.0, respec-
tively, and i3 and i4 are integers with values 3 and 4, respectively. Find the value of each
expression or explain why it is not valid.

 1. sqrt(6.0 + 3.0)

 2. pow(2.0, 3)

 3. floor(2.34)

 4. ceil(2.34)

 5. sqrt(r2 + r3 + r4)

 6. pow(r2, i4)

 7. sqrt(pow(4.0, 2))

 8. sqrt(pow(–4.0, 2))

 9. pow(sqrt(–4.0), 2)

 10. ceil(8.0 / 5.0)

 11. floor(8.0 / 5.0)

 12. pow(r2, i4) / pow(r4, i3)

 13. pow(i3, pow(r2, 2))

 14. sqrt(i4 * pow(r4, 3))

 15. floor(sqrt(i4 – r3))

For Questions 16–19, wr ite C++ expressions that will compute the given expression.

 16. The square root of the average of x and y

 17. | a / (b + c) | (where |x| denotes the absolute value of x)

 18. ax, computed as ex ln a (where ln is the natural logarithm function)

 19. The real quantity amount rounded to the nearest hundredth

ExERCISES

Section 4.2

Find the value of each of the expressions in Exercises 1–19, or explain why it is not a
valid expression.

 1. 9 – 5 – 3

 2. 2 / 3 + 3 / 5

 3. 9.0 / 2 / 5

 4. 9 / 2 / 5

 5. 2.0 / 4

 6. (2 + 3) % 2

K11207.indb 97 6/15/12 10:06 AM

98    ◾    Programming in C++ for Engineering and Science

 7. 7 % 5 % 3

 8. (7 % 5) % 3

 9. 7 % (5 % 3)

 10. (7 % 5 % 3)

 11. 25 * 1 / 2

 12. 25 * 1.0 / 2

 13. 25 * (1 / 2)

 14. –3.0 * 5.0

 15. 5.0 * –3.0

 16. 12 / 2 * 3

 17. ((12 + 3) / 2) / (8 – (5 + 1))

 18. ((12 + 3) / 2) / (8 – 5 + 1)

 19. (12 + 3 / 2) / (8 – 5 + 1)

Exercises 20–24 assume that r1 and r2 are reals with values 2.0 and 3.0, respectively; i1,
i2, and i3 are integers with values 4, 5, and 8, respectively; and ASCII representation is
used for characters (see Appendix A). Find the value of each expression.

 20. r1 + r2 * r2 23. (r2 + r1) * i1

 21. i3 / 3 24. i3 / i2 * 5.1

 22. i3 / 3.0

Write C++ expressions to compute each of the quantities in Exercises 25–28.

 25. 10 + 5B – 4aC

 26. The average of m and n (their sum divided by two)

 27. Three times the difference 4 – n divided by twice the quantity m2 + n2

 28. Using the given values of cost, verify that the statement

cost = double(int(cost*100.0 + 0.5)) / 100.0;

 can be used to convert each of these real values of cost to dollars, rounded to the
nearest cent.

 a) 12.342 d) 12.340

 b) 12.348 e) 13.0

 c) 12.345

 29. Write an expression similar to that in Exercise 28 that rounds a real amount x to the
nearest tenth.

 30. Write an expression similar to that in Exercise 28 that rounds a real amount x to the
nearest thousand.

K11207.indb 98 6/15/12 10:06 AM

Getting Started with Expressions    ◾    99  

Section 4.3

Exercises 1–16 assume that number is an integer variable, xValue and yValue are real
variables, and grade is a character variable. Tell whether each is a valid C++ statement. If
it is not valid, explain why it is not.

 1. xValue = 2.71828;

 2. 3 = number;

 3. grade = 'B+';

 4. number = number + number;

 5. xValue = 1;

 6. grade = A;

 7. number + 1 = number;

 8. xValue = '1';

 9. xValue = yValue = 3.2;

 10. yValue = yValue;

 11. xValue = 'A';

 12. grade = grade + 10;

 13. xValue /= yValue;

 14. xValue = number;

 15. number = yValue;

 16. xValue = yValue++;

For Exercises 17–29, assume that the following declarations have been made:

int int16 = 16, int10 = 10, number;
double real4 = 4.0, real6 = 6.0, real8 = 8.0, xCoord;
char numeral = '2', symbol;

Find the value assigned to the given variable or indicate why the statement is not valid.

 17. xCoord = (real4 + real6) * real6;

 18. xCoord = (real6 + real4 / real8) * 2;

 19. xCoord = int16 / int10 + 5;

 20. number = int16 / int10 + 5;

K11207.indb 99 6/15/12 10:06 AM

100    ◾    Programming in C++ for Engineering and Science

 21. symbol = 4;

 22. symbol = numeral;

 23. symbol = '4';

 24. symbol = real8;

 25. real4 = 2;

 26. real4 = '2';

 27. real4 = numeral;

 28. int16 = int16 + 2;

 29. number = 1 + numeral;

For each of Exercises 30–34, write an assignment statement that changes the value of the
integer variable number by the specified amount.

 30. Increment number by 77.

 31. Decrement number by 3.

 32. Increment number by twice its value.

 33. Add the rightmost digit of number to number.

 34. Decrement number by the integer part of the real value xCoord.

For each of Exercises 35–40, write a C++ assignment statement that calculates the given
expression and assigns the result to the specified variable. Assume that all variables are of
type double.

 35. rate times time to distance

 36. xCoord incremented by an amount deltaX to xCoord

 37. 1
1

1
1

2
1

3res res res
+ +

 to resistance

 38. 5/9 of the difference fahrenheit – 32 to celsius

 39. Area of a triangle with a given base and height (one-half base times height) to area

 40. amount rounded to the nearest integer to amount

For each of Exercises 41–43, give values for the integer variables a, b, and c for which the
two given expressions have different values:

K11207.indb 100 6/15/12 10:06 AM

Getting Started with Expressions    ◾    101  

 41. a * (b / c) and a * b / c

 42. a / b and a * (1 / b)

 43. (a + b) / c and a / c + b / c

Section 4.4

Exercises 1–8 assume the declarations

double alpha = –567.392, beta = 0.0004;
int rho = 436;

For each, show precisely the output that each of the statements produces, indicating blanks
with ⎵, or explain why an error occurs.

 1. cout << rho << rho + 1 << rho + 2;

 2. cout << "alpha ="
 << setw(9) << setprecision(3) << alpha << endl
 << setw(10) << setprecision(5) << beta << endl
 << setw(7) << setprecision(4) << beta << endl;

 3. cout << setprecision(1) << setw(8) << alpha << endl
 << setw(5) << rho << endl
 << "Tolerance:"
 << setw(8) << setprecision(5) << beta << endl;

 4. cout << "alpha =" << setw(12) << setprecision(5)
 << alpha << endl
 << "beta =" << setw(6) << setprecision(2) << beta << endl
 << "rho =" << setw(6) << rho << endl << setw(15)

<< setprecision(3)
 << alpha + 4.0 + rho << endl;

 5. cout << "Tolerance =" << setw(5)
 << setprecision(3) << beta;
 cout << setw(2) << rho << setw(4) << alpha;

 6. cout << setw(8) << setprecision(1) << 10 * alpha
 << setw(8) << ceil(10 * alpha);
 cout << setprecision(3) << setw(5) << pow(rho / 100, 2.0)
 << setw(5) << sqrt(rho / 100);

K11207.indb 101 6/15/12 10:06 AM

102    ◾    Programming in C++ for Engineering and Science

 7. cout << "rho =" << setw(8) << setprecision(2) << rho
 << "*****";

 8. cout << setw(10) << alpha << setw(10) << beta;

For Exercises 9 and 10, assume the declarations

int i = 15, j = 8;
char c = 'c', d = '–';
double x = 2559.50, y = 8.015;

Show precisely the output that each of the statements produces; indicate blanks with ⎵, or
explain why an error occurs.

 9. cout << setw(j) << setprecision(2) << "new balance ="
 << x << ' ' << setw(i % 10) << c
 << setw(j) << setprecision(j – 6) << y;

 10. cout << "i =" << setw(i) << i
 << "j =" << setw(j) << setprecision(j) << j << endl
 << setw(j) << i << ' '
 << setw(i) << j;

For Exercises 11–14, assume the declarations

int n1 = 39, n2 = –5117;
char c = 'F';
double r1 = 56.7173, r2 = –0.00247;

For each exercise, write output statements that use these variables to produce the given
output. (The underlining dashes are shown here only to help you determine the spacing.)

11. 56.7173 F 39

–5117PDQ–0.00247

12. 56.717 –0.0025***39 F

13. Roots are 56.717 and –0.00247

56.72 39–5117

K11207.indb 102 6/15/12 10:06 AM

Getting Started with Expressions    ◾    103  

14. Approximate angles: 56.7 and –0.0

Magnitudes are 39 and 5117

For Exercises 15–21, assume that a, b, and c are integer variables and x, y, and z are real
variables. Tell what value, if any, will be assigned to each of these variables, or explain why
an error occurs, when the input statements are executed with the given input data:

 15. cin >> a >> b >> c Input: 1 2 3
 >> x >> y >> z; 4 5.5 6.6

 16. cin >> a >> b >> c; Input: 1
 cin >> x >> y >> z; 2
 3
 4
 5
 6

 17. cin >> a >> x; Input: 1 2.2
 cin >> b >> y; 3 4.4
 cin >> c >> z; 5 6.6

 18. cin >> a >> b >> c; Input: 1 2.2
 cin >> x >> y >> z; 3 4.4
 5 6.6

 19. cin >> a; Input: 1 2 3
 cin >> b >> c; 4 5.5 6.6
 cin >> x >> y;
 cin >> z;

 20. cin >> a Input: 1 2 3
 >> b >> c 4 5.5 6.6
 >> x >> y
 >> z;

 21. cin >> a >> b; Input: 1 2 3
 cin >> c >> x >> y >> z; 4 5.5 6.6
 7 8.8 9.9
 10 11.11 12.12
 13 14.14 15.15

Section 4.5

For Exercises 1–11, assume that r1 and r2 are reals with values 2.0 and 3.0, respectively,
and i1, i2, and i3 are integers with values 4, 5, and 8, respectively. Find the value of the
expression or explain why it is not valid.

K11207.indb 103 6/15/12 10:06 AM

104    ◾    Programming in C++ for Engineering and Science

For Exercises 9–12, assume that the following declarations have been made:

int int1 = 10, int2 = 16, number;
double rVal = 5, xCoord;

Find the value assigned to the given variable or indicate why the statement is not valid.

 9. xCoord = pow(int1,2) / sqrt(int2);

 10. number = pow(int1,3) / pow(int1,2);

 11. number = ceil(pow(int2 % int1, 2) / rVal);

 12. number = floor(pow(int2 % int1, 2) / rVal);

For Exercises 13–17, write an expression to compute the given quantity.

 13. The square root of the average of m and n

 14. | A / (m + n) | (where | x | denotes the absolute value of x)

 15. ax, computed as ex ln a (where ln is the natural logarithm function)

 16. The real quantity amount rounded to the nearest hundredth

 17. v a a

g

2 sin cos2

PRoGRAMMInG PRoBLEMS

 1. Write a program to read the lengths of the two legs of a right triangle, and to calculate
and display the area of the triangle (one-half the product of the legs) and the length
of the hypotenuse (square root of the sum of the squares of the legs).

 2. Write a program to read values for the coefficients a, b, and c of the quadratic equa-
tion ax2 + bx + c = 0, and then find the two roots of this equation by using the qua-
dratic formula

b b ac

a

4

2

2− ± −

 Execute the program with several values of a, b, and c for which the quantity b2 – 4ac
is nonnegative, including a = 4, b = 0, c = –36; a = 1, b = 5, c = –36; and a = 2, b = 7.5,
c = 6.25.

 1. sqrt(pow(4.0,2))

 2. sqrt(pow(-4.0,2))

 3. pow(sqrt(-4.0),2)

 4. ceil(8.0 / 5.0)

 5. floor(8.0 / 5.0)

 6. pow(i1,2) / pow(r1,2)

 7. pow(i2,2) / pow(r1,2)

 8. sqrt(r1 + r2 + i1)

K11207.indb 104 6/15/12 10:06 AM

Getting Started with Expressions    ◾    105  

 3. Write a program to convert a measurement given in feet to the equivalent number of
(a) yards, (b) inches, (c) centimeters, and (d) meters (1 foot = 12 inches, 1 yard = 3 feet,
1 inch = 2.54 centimeters, 1 meter = 100 centimeters). Read the number of feet and
display, with appropriate labels, the number of feet and the corresponding number of
yards, inches, centimeters, and meters.

 4. The horizontal displacement x and the vertical displacement y (in feet) of a rocket at
t seconds after firing are given by

x v t

y v t t

cos

sin 16

0

0
2

= θ

= θ −

 where v0 is the initial velocity (ft/sec) and θ is the angle (in radians) at which the
rocket is fired. Write a program that reads values for v0, θ, and t; calculates x and y
using these formulas; and displays these values.

 5. The current in an alternating current circuit that contains resistance, capacitance,
and inductance in series is given by

I
E

R fL fC(2 1/(2))2 2
=

+ π − π

 where i = current (amperes), E = voltage (volts), r = resistance (ohms), l = inductance
(henrys), C = capacitance (farads), and f = frequency (hertz). Write a program that
reads values for the voltage, resistance, capacitance, and frequency and then calcu-
lates and displays the current.

 6. Angles are often measured in degrees (°), minutes ('), and seconds ("). There are 360
degrees in a circle, 60 minutes in one degree, and 60 seconds in one minute. Write a
program that reads two angular measurements given in degrees, minutes, and sec-
onds, and then calculates and displays their sum. Use the program to verify each of
the following:

 74°29'13" + 105°8'16" = 179°37'29"

 7°14'55" + 5°24'55" = 12°39'50"

 20°31'19" + 0°31'30" = 21°2'49"

 7. In order for a shaft with an allowable shear strength of s lb/in2 to transmit a torque of

T in-lbs, it must have a diameter of at least D
T

S

16
3= inches. If P horsepower is applied

to the shaft at a rotational speed of n rpm, the torque is computed by T
P

N
= 63000 .

Write a program that reads values for P, n, and s and then calculates and displays

K11207.indb 105 6/15/12 10:06 AM

106    ◾    Programming in C++ for Engineering and Science

the torque developed and the required diameter to transmit that torque. Execute the
program with the following inputs:

P (HP) N (rpm) S (psi)

20 1500 5000
20 50 5000

270 40 6500

 8. The period of a pendulum is given by the formula

P
L

g
2 1

1

4
sin

2
2= π + α

 where g = 980 cm/sec2, l = pendulum length (cm), and α = angle of displacement.
Write a program to read values for l and α for a pendulum and then calculate and
display its period. Execute your program with the following inputs:

L (cm) α (degrees)

120 15
90 20
60 405

74.6 10
83.6 12

 9. Write a program that reads the amount of a purchase, the amount received in pay-
ment (both amounts in cents), and then computes and displays the change in dollars,
half-dollars, quarters, dimes, nickels, and pennies.

K11207.indb 106 6/15/12 10:06 AM

107

C h a p t e r 5

Control Structures

When you get to the fork in the road, take it.

YOGI BERRA

But what has been said once can always be repeated.

ZENO OF ELEA

Progress might be a circle, rather than a straight line.

EBERHARD ZEIDLER

It’s déjà vu all over again.

YOGI BERRA

In all of the example programs in the preceding chapters, the flow of execution has
been sequential—the first statement of main() is executed, then the second state-

ment, and so on until the last statement has been executed and the closing curly brace }
reached. The following flow diagram shows this straight-line pattern of execution that

ConTEnTS
5.1 Introductory Example: Air Quality Index (AQI) 108
5.2 Boolean Expressions 111
5.3 Example: Digital Circuits—A Binary Half-Adder 118
5.4 Selection: The if Statement 121
5.5 Repetition: The for and while Statements 127
Chapter Summary 134
Test Yourself 136
Exercises 139
Programming Problems 143

108    ◾    Programming in C++ for Engineering and Science

characterizes sequential execution and indicates clearly that the statements are executed in
the order in which they are given with each statement being executed exactly once.

Although sequence is a fundamental control structure, it is not powerful enough to
solve all problems. Some problems require selecting one of several alternative actions,
which means that programs for solving them will need a selection structure. In this chap-
ter we will consider one selection structure that C++ provides: the if statement. Another,
the switch statement, is described in Chapter 8.

For some problems, however, another control structure besides sequence and selection
is needed, one that makes it possible to execute one or more statements repeatedly—a
repetition structure. We will consider two such repetition structures provided in C++,
the for and while statements, in the last part of this chapter.

Sequence, selection, and repetition are the only control structures needed. A fundamen-
tal result of theoretical computer science states that any problem solvable by a computer pro-
gram can be solved by one that is made up of sequence, selection, and repetition structures.1

5.1 InTRoDUCToRY ExAMPLE: AIR QUALITY InDEx (AQI)

5.1.2 Problem

Pollution levels are measured at three locations in a city and the Air Quality Index (AQI),
also known as the Air-Pollution Index (API), is the integer average of these three readings.
An index of less than 50 parts per million indicates a safe condition, whereas indexes of
50 parts per million or greater indicate a hazardous condition.2 The city’s environmental

1 This theorem is usually credited to a 1966 paper by Corrado Böhm and Giuseppe Jacopini.
2 Here we are considering a simplified AQI that has only two categories, but in practice, there are usually more than two.

For example, as we will see in Chapter 8 where we consider selection structures with more than two alternatives, there
are 6 categories for the United States AQI.

statement1

statement2

statementn

K11207.indb 108 6/15/12 10:06 AM

Control Structures    ◾    109  

statistician would like a program that calculates these air quality indexes and determines
the appropriate pollution condition, safe or hazardous.

5.1.3 object-Centered Design
5.1.3.1 Behavior
The program should display on the screen a prompt for three pollution readings (parts
per million). It will then read these values from the keyboard and calculate the air quality
index, which is the average of the readings rounded to the nearest integer. The program
should display the air quality index to the screen, compare it with the cutoff value that
separates hazardous and safe conditions, and display the corresponding condition.

5.1.3.2 Objects
From our behavioral description, we can identify the following objects:

Problem Objects
Software Objects

Type Kind Name
screen output device variable cout

prompt text string constant none
keyboard input device variable cin

pollution levels double variables level1, level2, level3
air quality index int variable index
cutoff value int constant CuTOFF

5.1.3.3 Operations
Again, from our behavioral description, we have the following operations:

 i. Output a string (prompt, descriptive label)

 ii. Read real values (level1, level2, level3) from the keyboard

 iii. Compute index from level1, level2, level3: add the levels, divide by 3, and round by
adding 0.5

 iv. Output a numeric value (index) and a string (pollution condition) on the screen

5.1.3.4 Algorithm
The next step is to organize these objects and operations into an algorithm:

 1. Define the constant CuTOFF.

 2. Display to cout a prompt for the three pollution levels.

 3. Read three real values from cin into level1, level2, level3.

 4. Compute index = (level1 + level2 + level3) / 3 + 0.5.3

3 A real number can be rounded to the nearest integer by adding 0.5 and truncating the decimal part. In general, to round
to the nearest nth decimal place, multiply by 10n, add 0.5, truncate the decimal part, and divide by 10n.

K11207.indb 109 6/15/12 10:06 AM

110    ◾    Programming in C++ for Engineering and Science

 5. Output to cout a descriptive label and index.

 6. Output to cout “Safe” if index < CuTOFF and “Hazardous” otherwise.

5.1.3.5 Coding, Execution, and Testing
The program in Example 5.1 implements the preceding algorithm. Note the rounding of
the average pollution reading in the computation of index.

Example 5.1 Air Quality Indexes—Version 1

/* This program reads three pollution levels, calculates an air
quality index (AQI) as their integer average, and then displays
an appropriate air-quality message.

 Input: the three pollution levels
 Constant: the cutoff value (parts per million)
 Output: the air quality index and a "safe condition" message if

this index is less than the cutoff value, otherwise a
"hazardous condition" message

 --*/

#include <iostream> // cin, cout, <<, >>
using namespace std;

int main()
{
 const int CUTOFF = 50; // safe pollution level cutoff

 double level1, level2, level3;
 cout << "Enter 3 pollution readings (parts per million): ";
 cin >> level1 >> level2 >> level3; // get pollution levels

 // compute AQI
 int index = (level1 + level2 + level3) / 3 + 0.5;
 // display AQI
 cout << "AQI: " << index << " -- ";
 // display condition
 if (index < CUTOFF)
 cout << "Safe condition\n";
 else
 cout << "Hazardous condition\n";
}

SAMPLE RUNS:
Enter 3 pollution readings (parts per million): 30 40 50
AQI: 40 -- Safe condition

Enter 3 pollution readings (parts per million): 40 50 60
AQI: 50 -- Hazardous condition

K11207.indb 110 6/15/12 10:06 AM

Control Structures    ◾    111  

Enter 3 pollution readings (parts per million): 44.5 53.8 61
AQI: 53 -- Hazardous condition

Enter 3 pollution readings (parts per million): 39.2 52 54.5
AQI: 49 -- Safe condition

The expression index < CUTOFF used in the if statement of the preceding program to
determine which pollution condition to display is known as a boolean expression. Because
they form such an essential part of selection and repetition structures, we will look next at
boolean expressions in detail.

5.2 BooLEAn ExPRESSIonS
In the mid-1800s, George Boole, a British mathematician and philosopher, developed a
system of algebraic logic, which has since come to be known as boolean logic and is the
basis for modern digital computer logic. The logical expressions in this system, which have
either the value true or the value false, have thus come to be known as boolean expressions.
In computing, they are also often called conditions.

All modern programming languages provide boolean expressions, and in this sec-
tion we consider them in C++. We will consider simple boolean expressions first and then
compound expressions constructed by applying logical operators to modify or to combine
other boolean expressions.

5.2.1 Simple Boolean Expressions

The bool type has two literals, false and true, and boolean expressions have these as
their values.4 The simplest boolean expressions test some relationship between two values
such as whether one of them is less than the other. For example, the program in Example 5.1
contains the boolean expression

index < CUTOFF

which compares the operands index and CUTOFF using the less-than relationship, and
produces the value true if the value of index is less than CUTOFF and the value false
otherwise. Similarly, the boolean expression

count == 5

tests the equality relationship between the (variable) operand count and the (literal)
 operand 5, producing the value true if the value of count is 5 and the value false if it
is not. note: Be sure to use the == operator for equality comparisons and not = (assignment)
because an error will almost surely result otherwise.5

4 For upward compatibility with C, integers may also be used as boolean values: 0 in place of false and any nonzero
value for true, with 1 being the most common.

5 For example, in an if statement of the form if (x = 1) something, the “condition” x = 1 is actually an assignment
expression and thus has the value 1, which represents true. Consequently, something will always be executed.

K11207.indb 111 6/15/12 10:06 AM

112    ◾    Programming in C++ for Engineering and Science

The operators given in the following table are called relational operators because they
test a relationship between two operands:

Relational Operator Relation Tested
< Is less than
> Is greater than
== Is equal to
!= Is not equal to
<= Is less than or equal to
>= Is greater than or equal to

They are used in boolean expressions of the form

 expression1 relational_operator expression2

where expression1 and expression2 have compatible types. For example, if root,
a, b, and c are of type double, count is int, and answer is of type char, then the
following are valid boolean expressions formed using these relational operators:

 root < 1
 b * b >= 4.0 * a * c
 count == 100
 answer != 'T'

If root has the value 0.7, then the expression

root < 1

has the value true. Similarly, if count has the value 99, then the expression

count == 100

produces the value false.
 As illustrated by the expression answer != 'T', char values may also be compared

using relational operators. As we saw in Chapter 3, characters are represented in memory
by numeric codes, commonly ASCII (see Appendix A), and when two characters are com-
pared, it is their numeric codes that are compared. For example, if char1 and char2 are
character variables initialized by

char char1 = 'A', char2 = 'B';

the boolean expression

char1 < char2

K11207.indb 112 6/15/12 10:06 AM

Control Structures    ◾    113  

will be true because the code of A (65) is less than the code of B (66). Similarly, this expres-
sion would be true if char1 and char2 were assigned the corresponding lower case letters,

char1 = 'a';
char2 = 'b'

because the code of a (97) is less than the code of b (98). However, if char2 were assigned
the value 'A' instead,

char1 = 'a';
char2 = 'A';

the boolean expression char1 < char2 would be false, because the code of a (97) is not
less than the code of A (65).

5.2.2 Compound Boolean Expressions

Some relationships are too complex to be expressed in C++ using only the relational opera-
tors. For example, if a temperature is restricted to the range 0 through 100,

0 ≤ temperature ≤ 100

this cannot be correctly represented in C++ by

0 <= temperature <= 100

even though this is a valid C++ expression. Suppose, for example that temperature has
the value 105, which is not in the range 0 through 100, so we might expect this expression
to be false. However, because relational operators are left-associative, this expression will
be processed as

(0 <= 105) <= 100

with the subexpression 0 <= 105 evaluated first. This has the value true, which is repre-
sented in C++ as the integer 1. Thus, the preceding expression becomes

(1 <= 100)

which, of course, is true; however, the corresponding mathematical inequality

0 ≤ 105 ≤ 100

is false.

K11207.indb 113 6/15/12 10:06 AM

114    ◾    Programming in C++ for Engineering and Science

To avoid this difficulty, we must rewrite the original inequality 0 ≤ temperature ≤ 100 as

(0 ≤ temperature) and (temperature ≤ 100)

which can be coded correctly in C++ using the logical operators given in the following
table that combine boolean expressions to form compound boolean expressions.

Logical Operator Logical Expression Name of Operation Description
! !p not (negation) !p is false if p is true; !p

is true if p is false.
&& p && q and (Conjunction) p && q is true if both p

and q are true; it is false
otherwise.

|| p || q Or (Disjunction) p || q is true if either p
or q or both are true; it
is false otherwise

The following truth tables summarize these definitions by displaying the values of each
logical expression for all possible values of p and q:6

p q p && q p || q
p !p true true true true
true false true false false true
false true false true false true

false false false false

We can thus use the && operator to represent the mathematical expression

0 ≤ temperature ≤ 100

by the compound boolean expression

(0 <= temperature) && (temperature <= 100)

This expression will correctly test the condition that temperature be in the range 0
through 100 for all possible values of temperature.

5.2.3 operator Precedence

Boolean expressions that contain an assortment of arithmetic operators, boolean opera-
tors, and relational operators are evaluated using the following priority (or precedence)
and associativity rules:

6 note: Be sure to use the && and || operators for logical operations, and not & and | (bitwise operators) because an error
will almost surely result otherwise.

K11207.indb 114 6/15/12 10:06 AM

Control Structures    ◾    115  

Operator Priority Associativity
!, ~ highest Right
/, *, % Left
+, – Left
<, >, <=, >= Left
==, != Left
& Left
^ Left
| Left
&& Left
|| Left
=, +=, *=, . . . lowest Right

Operators with higher priority are applied before those with lower priorities. To illustrate,
consider the boolean expression for a condition that ax2 + bx + c = 0 be a quadratic equa-
tion with a real solution:

a != 0 && b*b >= 4*a*c

The multiplication operator * has highest priority so it is applied first, producing some real
values r1 for b*b and r2 for 4*a*c and the expression becomes

a != 0 && r1 >= r2

In this expression, >= has the highest priority so it is applied next, producing some inter-
mediate boolean value b1 and the expression

a != 0 && b1

Now, != has higher priority than && so it is applied next, producing an intermediate bool-
ean value b2 and the expression

b2 && b1

Finally, the && operator is applied to the two boolean values b1 and b2 to produce the
expression’s value.

Because of the difficulty in remembering so many priority levels—and there are quite a
lot more (see Appendix C)—it is helpful to remember the following:

•	 Unary operators (–, +, !) have the highest priority.

•	 Arithmetic operators are next with *, /, % higher than + and –.

•	 Relational operators have lower priority than the preceding operators.

•	 Logical operators are next with && higher than ||.

•	 Assignments have lowest priority.

•	 When in doubt, use parentheses to clarify the order in which the operators are to be applied.

K11207.indb 115 6/15/12 10:06 AM

116    ◾    Programming in C++ for Engineering and Science

5.2.4 Short-Circuit Evaluation

Sometimes it is possible to determine the truth or falsity of a logical expression without eval-
uating it in its entirety. For example, if p is false, then regardless of the value of q, p && q
will be false so it is not necessary to evaluate q. Similarly, if p is true, then regardless of the
value of q, the condition p || q will be true so it need not be evaluated. This is referred to as
short-circuit evaluation and has two important consequences:

 1. One boolean expression can guard another that is potentially unsafe.

 2. Time can be saved in evaluating complex expressions.

To illustrate the first benefit, consider the following compound boolean expression:

(a != 0) && (a + 1/a < 100)

No division-by-zero error can occur in the second part of this expression because if a is 0,
then the first expression (a != 0) is false and the second expression (a + 1/a < 100) is
not evaluated. Similarly, no division-by-zero error will occur in evaluating the condition

(a == 0) || (a + 1/a < 100)

because if a is 0, the first expression (a == 0) is true and the second expression is not
evaluated.

5.2.5 Preconditions and the assert() Mechanism

In many problems, it may be necessary to impose preconditions on values to guard against
incorrect or irrelevant results. For example, in the air quality index problem we considered
in Section 5.1, we might impose the following precondition:

level1, level2, and level3 must all be nonnegative.

This precondition should be true before program execution is allowed to continue.
We can construct boolean expressions that represent such preconditions. For example,

the preceding precondition can be represented by

level1 >= 0 && level2 >= 0 && level3 >= 0

and C++ provides the assert() mechanism (defined in the C library cassert) as a
convenient way to check a precondition. For example, Example 5.2 is a modification of
the program in Example 5.1 that checks for nonnegative inputs by inserting an assertion
immediately after the input statement.

assert(level1 >= 0 && level2 >= 0 && level3 >= 0);

K11207.indb 116 6/15/12 10:06 AM

Control Structures    ◾    117  

When this statement is executed, if the precondition is true, execution proceeds normally;
but if it is false, execution of the program will be terminated and a diagnostic message such
as the following will be displayed:

failed assertion: level1 >= 0 && level2 >= 0 && level3 >= 0

Example 5.2 Air Quality Indexes—Version 1

/* This program reads three pollution levels and checks that they are
all nonnegative. If not, it terminates execution and displays an
error message. Otherwise, it calculates an air quality index (AQI)
as the integer average of the levels and then displays an
 appropriate air-quality message.

Input: the three pollution levels
Constant: the cutoff value (parts per million)
Output: an error message if any pollution level is negative; for

nonnegative levels: the air quality index and a "safe
condition" message if this index is less than the cutoff
value, otherwise a "hazardous condition" message

--*/

#include <iostream> // cin, cout, <<, >>
#include <cassert> // assert()
using namespace std;

int main()
{
 const int CUTOFF = 50; // safe pollution level cutoff

 double level1, level2, level3;
 cout << "Enter 3 pollution readings (parts per million): ";
 cin >> level1 >> level2 >> level3; // get pollution levels
 assert(level1 >= 0 && level2 >= 0 && level3 >= 0);
 // compute AQI
 int index = (level1 + level2 + level3) / 3 + 0.5;
 // display AQI
 cout << "AQI: " << index << " -- ";
 // display condition
 if (index < CUTOFF)
 cout << "Safe condition\n";
 else
 cout << "Hazardous condition\n";
}

K11207.indb 117 6/15/12 10:06 AM

118    ◾    Programming in C++ for Engineering and Science

In general, the assert() mechanism can be described as follows:

5.2.6 Boolean Character Functions

The C library cctype provides a number of boolean-valued functions for perform-
ing useful checks on character values. Some of the more useful of these are shown in
Table 5.1. Also included at the end of the table are two functions for changing the case of
a character.

5.3 ExAMPLE: DIGITAL CIRCUITS—A BInARY hALF-ADDER
As noted earlier, George Boole laid the foundations of circuit design in the mid-1800s.
Boole formalized several axioms of logic and developed an algebra for writing logical
expressions.7 In the late 1930s as mathematicians, engineers, and physicists worked at

7 More information about boolean algebras can be found on the text’s website (see the Preface).

tHe assert() mecHanism
Form:

 assert(boolean_expression);

where:
 boolean_expression is any valid expression evaluating to true or false.

PurPose:

Checks whether boolean_expression is true. If it is, execution proceeds normally. If it is
false, execution is terminated and a diagnostic message is displayed.

TABLE 5.1 Character Operations in cctype

Operation Description
isalnum(ch) true if ch is a letter or a digit, false otherwise
isalpha(ch) true if ch is a letter, false otherwise
iscntrl(ch) true if ch is a control character, false otherwise
isdigit(ch) true if ch is a decimal digit, false otherwise
isgraph(ch) true if ch is a printing character except space, false otherwise
islower(ch) true if ch is lower case, false otherwise
isprint(ch) true if ch is a printing character, including space, false otherwise
ispunct(ch) true if ch is a punctuation character (not a space, an alphabetic

character, or a digit), false otherwise
isspace(ch) true if ch is a white space character (space, '\f', '\n', '\r',

'\t', or '\v'), false otherwise
isupper(ch) true if ch is upper case, false otherwise
isxdigit(ch) true if ch is a hexadecimal digit, false otherwise
toupper(ch) returns the uppercase equivalent of ch (if ch is lower case)
tolower(ch) returns the lowercase equivalent of ch (if ch is upper case)

K11207.indb 118 6/15/12 10:06 AM

Control Structures    ◾    119  

building the arithmetic and logic circuitry of the early computers, the axioms and theo-
rems of Boole’s algebra became extremely important.

These circuits utilize three basic electronic components: the anD gate, the Or gate, and
the nOT gate or inverter, whose symbols are as follows:

Inputs to these gates (pictured as short line segments on their left) are electrical voltages
and are interpreted as 1 (true) when they exceed a certain threshold value or 0 (false) if they
drop below that threshold. The outputs from these gates (pictured as short line segments
on their right) are similarly interpreted in binary (0 or 1). For an AND gate, 1 is produced
only when both inputs are 1. An OR gate produces a 1 when at least one of the inputs is a
1. The output of a NOT gate is the opposite of its input. These three basic components thus
behave in the same manner as the AND, OR, and NOT operators from logic, which means
that we can use boolean expressions to design and analyze circuits.

To illustrate, consider how we would design a circuit that carries out binary addition:

+ 0 1
0 0 1
1 1 10

We see that the inputs for our circuit will be the two binary digits being added and there will
be two binary outputs: a sum bit, which is the rightmost bit of the entries in the table, and
a carry bit that will be 1 for the sum 1 + 1 and 0 otherwise. If we denote the inputs by
digit1 and digit2 and the outputs by sum and carry, we obtain the following version
of the preceding table known as a truth table:

digit1 digit2 carry sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Note the patterns in the last two columns. The carry output is 1 (true) only when
digit1 and digit2 are both 1 (true), so we can use an AND gate for it. The sum out-
put is 1 (true) only when exactly one of digit1 and digit2 is 1 (true); that is, digit1
or digit2 is 1 (true) but not both. We can express these properties using the following
 boolean expressions,

bool carry = digit1 && digit2,
sum = (digit1 || digit2) && !(digit1 && digit2);

AND gate OR gate Inverter

K11207.indb 119 6/15/12 10:06 AM

120    ◾    Programming in C++ for Engineering and Science

and design the following circuit, called a binary half-adder, that adds two binary digits:

Simulating the operation of such a circuit with a program is straightforward because we
need only code the boolean expressions that model the circuit and then execute the pro-
gram with the various combinations of inputs for the circuit. For example, the program in
Example 5.3 simulates the action of a binary half-adder. The sample runs that are shown
read a binary digit (0 or 1) for each of digit1 and digit2 and output the resulting value
for sum and carry for each of the four different combinations of inputs for digit1 and
digit2. Once we have studied the repetition structures later in this chapter, we will be
able to do this without having to repeatedly re-execute the program.

Example 5.3 A Binary Half-Adder

/* This program calculates the outputs from boolean expressions that
represent the logical circuit for a binary half-adder.

 Input: two binary digits
 Output: two binary values representing the sum and carry that

result when the input values are added
--*/

#include <iostream> // cout, cin, <<, >>
using namespace std;

int main()
{
 cout << "Enter two binary inputs: ";
 short digit1, digit2; // the two binary inputs
 cin >> digit1 >> digit2;

 // the two circuit outputs
 bool sum = (digit1 || digit2) && !(digit1 && digit2),
 carry = (digit1 && digit2);
 cout << "Carry = " << carry << " Sum = " << sum << "\n\n";
}

SAMPLE RUNS:
Enter two binary inputs: 0 0
Carry = 0 Sum = 0

carry

sum

digit1

digit2

K11207.indb 120 6/15/12 10:06 AM

Control Structures    ◾    121  

Enter two binary inputs: 0 1
Carry = 0 Sum = 1

Enter two binary inputs: 1 0
Carry = 0 Sum = 1

Enter two binary inputs: 1 1
Carry = 1 Sum = 0

5.4 SELECTIon: ThE IF STATEMEnT
As noted at the beginning of this chapter, some problems require a structure that selects
one of several alternative actions. In the simplest case of two alternatives, the selection
is based on a boolean expression with one alternative selected when its value is true and
the other when it is false. In a flow diagram this is commonly pictured as a diamond-
shaped box that contains the boolean expression with one corner labeled true and one
labeled false:

As this diagram clearly indicates, execution will pass through statement1 or through
statement2, but not both, before proceeding to the next statement. Which route it takes
will be determined by the truth or falsity of the boolean expression.

This selection structure can be implemented with a C++ if statement of the form

if (boolean_expression)
statement1

else
statement2

If the boolean expression is true, then the first statement is executed and the trailing else
and its statement are skipped, but if the boolean expression is false, the first statement is
skipped and the statement in the else part is executed. This statement does, therefore,
implement the two-alternative selection structure pictured earlier.

statement1 statement2

true false
expression
boolean

K11207.indb 121 6/15/12 10:06 AM

122    ◾    Programming in C++ for Engineering and Science

The if statement in our opening example of this chapter (Example 5.1) has this form:

if (index < CUTOFF)
cout << "Safe condition\n";

else
cout << "Hazardous condition\n";

Indenting the two alternatives as shown here to set them off is a good programming prac-
tice and one that we will follow in this text.

As another example, consider the problem of finding the larger of two real values. This
can be easily done using an if statement as the following code segment demonstrates.

double maximum;
if (value1 > value2)

maximum = value1;
else

maximum = value2;

Sometimes the second alternative in a selection structure is empty as in the following
diagram where a specified statement is either executed or bypassed:

In this case, the else clause in the if statement may be omitted:

if (boolean_expression)
statement

or it may be an empty statement consisting only of a semicolon,

if (boolean_expression)
statement

else;

statement

true

false

expression
boolean

K11207.indb 122 6/15/12 10:06 AM

Control Structures    ◾    123  

For example, the following is an alternative way of finding the maximum of two
values:

double maximum = value1;
if (value1 < value2)

maximum = value2;

In some problems, one or both of the statements in an if statement may themselves
be other if statements. To illustrate, suppose that in the problem in Section 5.1, there
are three different pollution conditions—good, fair, poor—as determined by two different
cutoff values; for example,

const int CUTOFF1 = 40, // cutoff for good condition
 CUTOFF2 = 70; // cutoff for fair condition

We could use the following “nested if” statement to determine the condition that corre-
sponds to a pollution level:

if (index < CUTOFF1)
cout << "Good condition\n";

else
if (index < CUTOFF2)

cout << "Fair condition\n";
else

cout << "Bad condition\n";

It is more common, however, to reformat this as follows to more clearly display the three
different alternatives:

if (index < CUTOFF1)
cout << "Good condition\n";

else if (index < CUTOFF2)
cout << “Fair condition\n”;

else
cout << "Bad condition\n";

In general, the form of an if statement can be summarized as follows:

if statement
if Form (no else):

 if (boolean_expression)

 statement

K11207.indb 123 6/15/12 10:06 AM

124    ◾    Programming in C++ for Engineering and Science

5.4.1 Blocks

When a group of statements must be selected for execution, we enclose them between
curly braces { and } to form a single statement. This is called a block or a compound
statement:

if-else Form:

 if (boolean_expression)

 statement1
 else

 statement2

if-else if Form:

if (boolean_expression1)

statement1
else if (boolean_expression2)

statement2
 .

 .

 .

else if (boolean_expressionn)

statementn
else

statementn+1

where
if and else are keywords;
statement1, statement2, . . . are C++ statements (and may be compound, as described
next).

PurPose:

In the first form, if the boolean_expression is true, then statement will be executed;
otherwise it will be bypassed.

In the second form, if the boolean_expression is true, statement1 will be executed
and statement2 bypassed; otherwise, statement1 will be bypassed and statement2
executed.

In the last form, if boolean_expressioni is the first of the boolean expressions
that is true, statementi will be executed and all of the others bypassed. If none of the
 boolean_ expressioni is true, statementn+1 (if present) will be executed.

block (compounD statement)
Forms:

{

statement1

K11207.indb 124 6/15/12 10:06 AM

Control Structures    ◾    125  

Note that the block does not require a semicolon after the final curly brace; it is a complete
statement by itself.

When one of the alternatives in an if statement consists of more than one statement, a
block must be used. The quadratic equation solver in the following example illustrates this.

5.4.2 Example: Quadratic Equation Solver

A quadratic equation has the form ax2 + bx + c = 0 where the coefficients a, b, and c are real
numbers with a ≠ 0 and can be solved using the quadratic formula, which states that the
roots are given by

b b ac

a

4

2

2− ± −

provided that the discriminant b2 – 4ac is nonnegative. The program in Example 5.4 solves
a quadratic equation using this method.

Example 5.4 Quadratic Equation Solver
/* This program solves quadratic equations using the quadratic

formula.

Input: the three coefficients of a quadratic equation
Output: the roots of the equation or a message that there are

no real roots
--*/

#include <iostream> // cout, cin, <<, >>
#includ <cassert> // assert()
#include <cmath> // sqrt()
using namespace std;

statement2
.

.

.

statementn
}

where
each statementi is a C++ statement (and may itself be compound).

PurPose:

The sequence of statements is treated as a single statement in which statement1,
 statement2, . . ., statementn are executed in order.

K11207.indb 125 6/15/12 10:06 AM

126    ◾    Programming in C++ for Engineering and Science

int main()
{

double a, b, c;
 cout << "Enter the coefficients of a quadratic equation: ";
cin >> a >> b >> c;
assert (a != 0);

double discriminant = b*b - 4*a*c,
root1, root2;

if (discriminant >= 0)
{
root1 = (-b + sqrt(discriminant)) / (2*a);
root2 = (-b - sqrt(discriminant)) / (2*a);
cout << "Roots are " << root1 << " and " << root2 << endl;

}
else
cout << "There are no real roots, only complex ones" << endl;

}

SAMPLE RUNS:

Enter the coefficients of a quadratic equation: 1 4 3
Roots are –1 and –3

Enter the coefficients of a quadratic equation: 2 –8 8
Roots are 2 and 2

Enter the coefficients of a quadratic equation: 1 2 3
There are no real roots, only complex ones

5.4.3 Style

There is no one universal style used by programmers in writing if statements, but that
used in this text is a common one and is intended to promote readability:

 1. Align the if and the else.

 2. Use white space and indentation to clearly identify the alternatives in the if
statement.

When an alternative is a single statement, we will usually indent it on the line below the if
or the else; for example,

if (index < CUTOFF)
 cout << "Safe condition\n";
else
 cout << "Hazardous condition\n";

K11207.indb 126 6/15/12 10:06 AM

Control Structures    ◾    127  

For an alternative that consists of a block of statements, the curly braces will be placed
on separate lines, aligned with the if and else, and the statements they enclose will be
indented; for example,

if (discriminant >= 0)
{
 root1 = (–b + sqrt(discriminant)) / (2*a);
 root2 = (–b – sqrt(discriminant)) / (2*a);
 cout << "Roots are " << root1 << " and " << root2 << endl;
}
else
 cout << "There are no real roots, only complex ones" << endl;

In another frequently used style, opening curly braces are placed on the same line as the
if (or else) keyword and the closing curly brace is aligned with that keyword instead of
with the opening curly brace:8

if (discriminant >= 0) {
 root1 = (–b + sqrt(discriminant)) / (2*a);
 root2 = (–b – sqrt(discriminant)) / (2*a);
 cout << "Roots are " << root1 << " and " << root2 << endl;
}
else
 cout << "There are no real roots, only complex ones" << endl;

For if-else-if statements (the third form), each else and the following if will be
placed on the same line, thus forming else if, and the statements in each part indented;
for example,

if (index < CUTOFF1)
 cout << "Good condition\n";
else if (index < CUTOFF2)
 cout << "Fair condition\n";
else
 cout << "Bad condition\n";

5.5 REPETITIon: ThE FOR AnD WHILE STATEMEnTS
In earlier preceding chapters and at the beginning of this chapter, our programs required
only sequential processing of instructions, but in the preceding section, we saw examples of

8 This is known as the One True Brace (OTB) style. A variation of it puts the keyword else on the same line as the closing
curly brace:
if (condition) {
 statements
} else {
 statements
}

K11207.indb 127 6/15/12 10:06 AM

128    ◾    Programming in C++ for Engineering and Science

problems whose solutions require selection. In this section we introduce the third control
structure, repetition.

5.5.1 Example: Computing Factorials

The factorial of a nonnegative integer n, denoted by n!, is defined by

n
n

n n
!

1 if 0

1 2 if 0
=

=

× × ⋅⋅⋅× >

To calculate n! by hand, we would probably begin with 1, multiply it by 2, multiply that product
by 3, and so on, until we multiply by n. For example, to find 5!, we might do the following com-
putation in which we keep a running product and increment a count from one step to the next:

 1 initial running product
 × 2 initial count

 2 new running product
 × 3 new count

 6 new running product
 × 4 new count

 24 new running product
 × 5 new count

 120 new running product

If we analyze this computation of 5!, we see three parts in this repetition mechanism
(also called a loop):

 1. initialization: Assign starting values to the running product and count.

 2. repeated execution: Repeatedly multiply the product by the count and increment the
count.

 3. Termination: Stop when the count reaches our final value 5.

We can describe the computation in general as follows:

Algorithm for Factorial Computation

 1. Initialize product to 1.

 2. Repeat the following for each value of count in the range 2 to n

Multiply product by count.

K11207.indb 128 6/15/12 10:06 AM

Control Structures    ◾    129  

One of the statements provided in C++ for executing a statement more than once is the
for statement.9 Here is an example of how it can be used to compute n!:

int product = 1;
for (int count = 2; count <= n; count++)
 product *= count;

It executes a statement repeatedly, once for each number in the range 2 through n. The fol-
lowing flow diagram shows its behavior more precisely:

When execution reaches the loop, the variable count is created and initialized to 2. The
value of count is then tested against n. If count exceeds n, repetition ceases and execu-
tion continues with the statement that follows the for statement. However, if count is
less than or equal to n, then the *= statement controlled by the loop is executed, so prod-
uct is multiplied by count. The value of count is then incremented by the expression
count++, after which execution returns to the top of the loop where the boolean expres-
sion count <= n is re-evaluated and the cycle starts again. This cyclic behavior continues
so long as the boolean expression evaluates to true.

Another way to understand the execution of such a loop is with a trace table, which
traces the execution of the loop’s statements, one at a time. The following is a trace table
for n = 5:

Time Statement Executed Product Count Comment
0 int count = 2; 1 2 loop initialization
1 count <= n 1 2 true, loop executes
2 product *= count; 2 2 product updated
3 count++; 2 3 count incremented
4 count <= n 2 3 true, loop executes
5 product *= count; 6 3 product updated

9 Other forms of the for statement as well as other repetition statements will be studied in Chapter 9.

true false
count <= n

product *= count;

count++;

int count = 2;

K11207.indb 129 6/15/12 10:06 AM

130    ◾    Programming in C++ for Engineering and Science

6 count++; 6 4 count incremented
7 count <= n 6 4 true, loop executes
8 product *= count; 24 4 product updated
9 count++; 24 5 count incremented
10 count <= n 24 5 true, loop executes
11 product *= count; 120 5 product updated
12 count++; 120 6 count incremented
13 count <= n 120 6 false, repetition ceases

The usual form of a for statement is the following:

The small number of restrictions on the parts of a for statement gives it considerable
flexibility. For example, we can count down from larger numbers to smaller as in the fol-
lowing factorial calculation:

int product = 1;
for (int count = n; count > 1; count--)
 product *= count;

We can also use real numbers for the initial value, final value, and step size as in

for (double x = 0.0; x <= 2.0; x += 0.5)
 cout << x*sqrt(x) – 1 << " " ;

for statement
Form:

for (init_declaration; loop_condition; step_expression)

 statement

where
for is a C++ keyword;
init_declaration declares and initializes a variable that controls the repetitions;
loop_condition is a boolean expression that determines whether repetition is to
continue;
step_expression specifies how the value of the control variable is to change; and
statement, called the loop body, is a C++ statement (simple or compound).

Behavior:

 1. init_declaration initializes the value of the control variable.
 2. If loop_condition is true, the following occur:

a. statement is executed.
b. step_expression is evaluated.
c. Control returns to step 2.

otherwise execution continues with statements that follow the for statement.

K11207.indb 130 6/15/12 10:06 AM

Control Structures    ◾    131  

which will produce output like the following:

–1 –0.646447 0 0.837117 1.82843

5.5.2 Processing Several Input Values

The program in Example 5.4 for solving quadratic equations suffers from one major
drawback: It solves only one equation. To solve other equations, the program must be re-
executed, which may involve retyping its name, re-clicking on its icon, or whatever is nec-
essary for a particular system.

A more user-friendly program would permit the user to process any number of equa-
tions before it terminated. One way to do this is to have the user specify in advance how
many values are to be processed and then wrap the body of the program in a for loop that
counts from 1 to that number:

// ...
int main()
{
 cout << "How many quadratic equations do you wish to solve? ";
 int numEquations;
 cin >> numEquations;

 for (int i = 1; i <= numEquations; i++)
 {
 cout << "\nEnter the coefficients of a quadratic equation: ";
 double a, b, c;
 cin >> a >> b >> c;
 assert (a != 0);

 double discriminant = b*b – 4*a*c,
 root1, root2;

 if (discriminant >= 0)
 {
 root1 = (–b + sqrt(discriminant)) / (2*a);
 root2 = (–b – sqrt(discriminant)) / (2*a);
 cout << "Roots are " << root1 << " and " << root2 << endl;
 }
 else
 cout << "There are no real roots, only complex ones" << endl;
 }
}

A sample run might appear as follows:

How many quadratic equations do you wish to solve? 3

Enter the coefficients of a quadratic equation: 1 4 3
Roots are –1 and –3

K11207.indb 131 6/15/12 10:06 AM

132    ◾    Programming in C++ for Engineering and Science

Enter the coefficients of a quadratic equation: 2 –8 8
Roots are 2 and 2

Enter the coefficients of a quadratic equation: 1 2 3
There are no real roots, only complex ones

By enclosing the critical portion of a driver program within a loop, we can process several
input data values without having to re-execute the program.

One problem with this approach is that it requires knowing how many input values
there will be. When the set of input values is very large, counting the values may be incon-
venient or even impractical. A common alternative that does not require this is to use a
while loop, which we only introduce briefly here. This repetition structure, along with
other kinds of loops, is studied in more detail in Chapter 9.

5.5.3 Repeated Execution: The while Statement

While loops are implemented in C++ using a while statement of the following form:

Example 5.5 illustrates how a while loop can be used to repeatedly solve quadratic
equations, stopping when the user enters the “stop indicator” 0 for the coefficient of x2.

while statement
Form:

 while (loop_condition)

 statement

where
 while is a C++ keyword;
 loop_condition is a boolean expression;
 statement, called the loop body, is usually a compound statement

Behavior:

when execution reaches a while statement:

 1. loop_condition is evaluated.
 2. If loop_condition is true:

a. The loop’s body statement is executed.
b. Control returns to step 1.

otherwise execution continues with statements that follow the while statement.

K11207.indb 132 6/15/12 10:06 AM

Control Structures    ◾    133  

Example 5.5 Quadratic Equation Solver—Revised

/* This program solves quadratic equations using the quadratic formula.

 Input: the three coefficients of a quadratic equation
 Output: the roots of the equation or a message that there are no

real roots
--*/

#include <iostream> // cout, cin, <<, >>
#include <cmath> // sqrt()
using namespace std;

int main()
{
 double a, b, c;
 cout << "Enter coefficients of quadratic equation (0's to stop): ";
 cin >> a >> b >> c;

 while (a != 0)
 {
 double discriminant = b*b – 4*a*c,
 root1, root2;

 if (discriminant >= 0)
 {
 root1 = (–b + sqrt(discriminant)) / (2*a);
 root2 = (–b – sqrt(discriminant)) / (2*a);
 cout << "Roots are " << root1 << " and " << root2 << endl;
 }
 else
 cout << "There are no real roots, only complex ones" << endl;

 cout << "Enter coefficients of quadratic equation (0's to stop): ";
 cin >> a >> b >> c;
 }
}

SAMPLE RUNS:

Enter coefficients of quadratic equation (0's to stop): 1 0 –2
Roots are 1.41421 and –1.41421

Enter coefficients of quadratic equation (0's to stop): 2 10 8
Roots are –1 and –4

Enter coefficients of quadratic equation (0's to stop): 1 1 1
There are no real roots, only complex ones

Enter coefficients of quadratic equation (0's to stop): 0 0 0

K11207.indb 133 6/15/12 10:06 AM

134    ◾    Programming in C++ for Engineering and Science

ChAPTER SUMMARY

Key Terms

assert()

binary half-adder

block

boolean expression

cctype library

compound boolean expression

compound statement

condition

control structure

flow diagram

for statement

if statement

logical operator

loop

loop body

nested if statements

operator precedence

precondition

relational operator

repetition structure

selection structure

separate compilation

sequential execution

short-circuit evaluation

termination (or exit) condition

trace table

while loop

while statement

noTES
•	 Be sure to use the == operator for equality comparisons, not = (assignment).

•	 Be sure to use the && and || operators for logical operations, not & and | (bitwise
operators).

•	 Some problems require control mechanisms that are more powerful than sequential
execution, namely, selection and repetition. These three control structures are suf-
ficient for any program.

•	 sequential execution refers to execution of a sequence of statements in the order in
which they appear, so that each statement is executed exactly once.

•	 A block (or compound statement) groups a sequence of statements into a single state-
ment by enclosing them in curly braces ({ and }).

•	 selective execution refers to selecting and executing exactly one of a collection of
alternative actions.

•	 The assert() mechanism evaluates a boolean expression and terminates the pro-
gram if it is false. It is useful for checking a condition that must be true at a given
point in a program.

K11207.indb 134 6/15/12 10:06 AM

Control Structures    ◾    135  

•	 The if statement is the most common selection structure for selecting between two
or more alternatives.

•	 When one of the alternatives in an if statement contains another if statement, the
second if statement is said to be nested in the first. In this case, an else clause is
matched with the nearest preceding unmatched if.

•	 There are three parts to a repetition mechanism (also called a loop): initialization,
repeated execution, and termination.

•	 A for loop is one of the structures provided in C++ for loops in which the number of
repetitions can be determined in advance.

•	 A while loop is commonly used to implement input loops.

Style and Design Tips

•	 indent and align the statements within a block (compound statement).

•	 identify any preconditions a program has, and check them using the assert() mech-
anism (or an if statement). Preconditions are assumptions made in a program, often
one or more restrictions on what comprises a valid input value.

•	 if a problem requires the selection of one or more operations, use a selection statement
like the if statement.

•	 align the ifs and elses in an if statement. also, use white space and indentation to
set off the various alternatives.

•	 if a problem requires the repetition of one or more operations, and the number of repeti-
tions can be computed in advance, a for statement is appropriate.

•	 if a problem involves a set of data values whose size is not known in advance, a while
statement can be used to read and process the values.

warnings

 1. When real quantities that are algebraically equal are compared with ==, the result may
be false because most real numbers are not stored exactly. For example, x * (1/x) and
1.0 are algebraically equal, but the boolean expression x * (1/x) == 1.0 may be
false for some real numbers x.

 2. it is easy to forget that in C++, = is the assignment operator, and to incorrectly encode
an instruction of the form

 if variable is equal to value, then
 statement

 as

 if (variable = value)
 statement

K11207.indb 135 6/15/12 10:06 AM

136    ◾    Programming in C++ for Engineering and Science

 Instead of testing whether variable is equal to value, the condition in this if
statement assigns value to variable. If value happens to be zero, which C++
interprets as false, the statement will not be executed, regardless of the value of
variable. If value is nonzero, which C++ interprets as true, statement will be
executed, regardless of the value of variable.

 3. Be careful in writing compound boolean expressions to use the logical operators &&
and == and not the bitwise operators & and |.

 4. Each { must have a matching }. To make it easier to find matching braces, we align
each { with its corresponding }.

 5. in a nested if statement, each else clause is matched with the nearest preceding
unmatched if. use indentation and alignment to show such associations.

 6. When using repetition, care must be taken to avoid infinite looping; be sure that the
boolean expression controlling repetition eventually becomes false for for and while
statements.

 7. in a for loop, neither the control variable nor any variable involved in the loop con-
dition should be modified within the body of the for loop, since it is intended to run
through a specified range of consecutive values. strange or undesirable results may be
produced otherwise.

TEST YoURSELF

Section 5.2

 1. What are the three basic control structures?

 2. The two bool literals are and .

 3. List the six relational operators.

 4. List the three logical operators.

For Questions 5–9 assume that p, q, and r are boolean expressions with the values true,
true, and false, respectively. Find the value of each boolean expression.

 5. p && !q 7. p && !(q || r) 9. p || q && r

 6. p && q || !r 8. !p && q

For Questions 10–14, assume that number, count, and sum are integer variables with
values 3, 4, and 5, respectively. Find the value of each boolean expression, or indicate why
it is not valid.

 10. sum – number <= 4

 11. number*number + count*count == sum*sum

K11207.indb 136 6/15/12 10:06 AM

Control Structures    ◾    137  

 12. number < count | | count < sum

 13. 0 <= count <= 2

 14. (number + 1 < sum) && !(count + 1 < sum)

 15. Write a boolean expression to express that x is nonzero.

 16. Write a boolean expression to express that x is strictly between –10 and 10.

 17. Write a boolean expression to express that both x and y are positive or both x and y
are negative.

Section 5.4

Questions 1–3 refer to the following if statement. For each, describe the output produced
for the given values of x and y.

if (x >= y)
cout << x;

else
cout << y;

 1. x is 6 and y is 5.

 2. x is 5 and y is 5.

 3. x is 5 and y is 6.

Questions 4–6 refer to the following if statement. For each, describe the output produced
for the given values of x and y.

if (x >= 0)
 if (y >= 0)

 cout << x + y;
 else

 cout << x – y;
else

cout << y – x;

 4. x is 5 and y is 5.

 5. x is 5 and y is –5.

 6. x is –5 and y is 5.

Questions 7–11 refer to the following if statement. For each, describe the output produced
for the given values of n.

K11207.indb 137 6/15/12 10:06 AM

138    ◾    Programming in C++ for Engineering and Science

if (n >= 90)
cout << "excellent\n";

else if (n >= 80)
cout << "good\n";

else if (n >= 70)
cout << "fair\n";

else
cout << "bad\n";

 7. n is 100.

 8. n is 90.

 9. n is 89.

 10. n is 70.

 11. n is 0.

 12. Write a statement that displays "Out of range" if number is negative or is greater
than 100.

 13. Write an efficient if statement to assign n the value 1 if x ≤ 1.5, 2 if 1.5 < x < 2.5,
and 3 otherwise.

Section 5.5

For Questions 1–10, describe the output produced.

 1. for (int i = 0; i <= 5; i++)
cout << "Hello\n";

 2. for (int i = 1; i < 4; i++)
cout << "Hello";

 3. for (int i = 1; i <= 5; i += 2)
cout << "Hello\n";

 4. for (int i = 6; i > 0; i––)
cout << i*i << endl;

 5. for (int i = 6; i <= 6; i++)
cout << "Hello\n";

 6. for (int i = 6; i <= 5; i++)
cout << "Hello\n";

 7. for (int i = 1; i <= 10; i++)
{
cout << i << endl;
i++;

}

K11207.indb 138 6/15/12 10:06 AM

Control Structures    ◾    139  

 8. int i = 4;
while (i >= 0)
{
i--;
cout << i << endl;

}
cout << "\n*****\n";

 9. int i = 1;
while (i < 100)
{
cout << i << endl;
i = 2*i;

}

 10. int i = 0;
while (i < 10)
{
cout << i;
if (i % 2 == 0)
cout << " E";

else
cout << " O";

++i;
}
cout << endl;

 11. How many lines of output are produced by the following?

 for (int i = 1; i <= 50; i += 2)
{
cout << i << " ";
if (i % 5 == 0)
cout << endl;

}

ExERCISES

Section 5.2

For Exercises 1–10, assume that m and n are integer variables with the values –5 and 8,
respectively, and that x, y, and z are real variables with the values –3.56, 0.0, and 44.7,
respectively. Find the value of the boolean expression.

 1. m <= n

 2. 2 * abs(m) <= 8

K11207.indb 139 6/15/12 10:06 AM

140    ◾    Programming in C++ for Engineering and Science

 3. x * x < sqrt(z)

 4. int(z) == (6 * n - 4)

 5. (x <= y) && (y <= z)

 6. !(x < y)

 7. !((m <= n) && (x + z > y))

 8. !(m <= n) | | !(x + z > y)

 9. !((m <= n) | | (x + z > y))

 10. !((m > n) && !(x < z))

For Exercises 11–16, use truth tables to display the values of the boolean expression for all
possible (boolean) values of a, b, and c:

 11. a | | !b

 12. !(a && b)

 13. !a | | !b

 14. (a && b) | | c

 15. a && (b | | c)

 16. (a && b) | | (a && c)

For Exercises 17–25, write C++ boolean expressions to express the condition:

 17. x is greater than 3.

 18. y is strictly between 2 and 5.

 19. r is negative and z is positive.

 20. Both alpha and beta are positive.

 21. alpha and beta have the same sign (both are negative or both are positive).

 22. –5 < x < 5.

 23. a is less than 6 or is greater than 10.

 24. p is equal to q, which is equal to r.

 25. x is less than 3, or y is less than 3, but not both.

Exercises 26–28 assume that a, b, and c are boolean values.

 26. Write a C++ boolean expression that is true if and only if a and b are true and c is false.

 27. Write a C++ boolean expression that is true if and only if a is true and at least one of
b or c is true.

K11207.indb 140 6/15/12 10:06 AM

Control Structures    ◾    141  

 28. Write a C++ boolean expression that is true if and only if exactly one of a and b
is true.

Section 5.4

Exercises 1–4 refer to the following if statement:

if (x * y >= 0)
 cout << "yes\n";
else
 cout << "no\n";

 1. Describe the output produced if x is 5 and y is 6.

 2. Describe the output produced if x is 5 and y is –6.

 3. Describe the output produced if x is –5 and y is 6.

 4. Describe the output produced if x is –5 and y is –6.

Exercises 5–7 refer to the following if statement. Describe the output produced for the
given value of n.

if (abs(n) <= 4)
 if (n > 0)
 cout << 2*n + 1;
 else
 cout << 2*n;
else
 cout << n << " out of range";

 5. n is 2.

 6. n is –7.

 7. n is 0.

For Exercises 8–12, write if statements that will do what is required.

 8. If taxCode is 'T', increase price by adding taxRate percentage of price to it.

 9. If code is 1, input values for x and y and calculate and display the sum of x and y.

 10. If a is strictly between 0 and 5, set b equal to 1/a2; otherwise set b equal to a2.

 11. Given a distance, compute a cost, according to the following table:

Distance Cost
0 through 100 $5.00
More than 100 but not more than 500 $8.00
More than 500 but less than 1000 $10.00
1000 or more $12.00

K11207.indb 141 6/15/12 10:06 AM

142    ◾    Programming in C++ for Engineering and Science

 12. Given a wind chill, display its classification according to the following table:

Wind Chill Classification
10°F or above Not dangerous or unpleasant
–10°F or higher but less than 10°F Unpleasant
–30°F or above but less than –10°F Possible frostbite
–70°F or higher but below –30°F Dangerous, frostbite likely
Less than –70°F Flesh may freeze in half a minute

Section 5.5

For Exercises 1–6, describe the output produced.

 1. for (int i = 0; i <= 3; i++)
 cout << i << " squared = " << i*i << endl;

 2. for (int i = 5; i > 0; i--)
 cout << i << " squared = " << i*i << endl;

 3. int k = 5;
 for (int i = k; i <= 5; i++)
 {
 cout << i + k << endl;
 k = 1;
 }

 4. int s = 5;
 for (int i = s; i < 5; i++)
 cout << i + s << endl;
 cout << "***\n";

 5. int s = 1;
 while (s <= 10)
 {
 cout << 2*s << endl;
 s *= 2;
 }

 6. int s = 20;
 while (s/2 < 10)
 {
 cout << 2*s << endl;
 s /= 2;
 }

For Exercises 7–14, write C++ statements to do what is asked for.

K11207.indb 142 6/15/12 10:06 AM

Control Structures    ◾    143  

 7. For a positive integer n, find the sum 1 + 2 ... + n and output this sum.

 8. For two integers m and n with m ≤ n, find the sum m + m + 1 + ... + n and output this
sum.

 9. Display the squares of the first 100 positive integers in increasing order.

 10. Display the cubes of the first 50 positive integers in decreasing order.

 11. Display the square roots of the first 25 odd positive integers.

 12. Display a list of points (x, y) on the graph of y = x3 – 3x + 1 for x ranging from –2 to 2
in steps of 0.1.

 13. Display the value of x, starting at 10.0, and decrease x by 0.5 as long as x is positive.

 14. Calculate and display the squares of consecutive positive integers until the difference
between a square and the preceding one is greater than 50.

PRoGRAMMInG PRoBLEMS

Sections 5.2–5.3

 1. In a certain region, pesticides can be sprayed from an airplane only if the tempera-
ture is at least 70°, the relative humidity is between 15% and 35%, and the wind
speed is at most 10 miles per hour. Write a program that accepts three numbers
representing temperature, relative humidity, and wind speed; assigns the value true
or false to the boolean variable okToSpray according to these criteria; and displays
this value.

 2. Write a program that reads three real numbers, assigns the appropriate boolean value
to the following boolean variables, and displays these values.

triangle: true if the real numbers can represent lengths of the sides of a trian-
gle (the sum of any two of the numbers must be greater than the third); false
otherwise.

equilateral: true if triangle is true and the triangle is equilateral (the three
sides are equal); false otherwise.

isosceles: true if triangle is true and the triangle is isosceles (at least two sides
are equal); false otherwise.

scalene: true if triangle is true and the triangle is scalene (no two sides are
equal); false otherwise.

 3. A binary full-adder has three inputs: the two bits a and b being added, and a “carry-
in” bit cIn (representing the carry bit that results from adding the bits to the right of
a and b in two binary numbers). It can be constructed from two binary half-adders
and an OR gate:

K11207.indb 143 6/15/12 10:06 AM

144    ◾    Programming in C++ for Engineering and Science

 a) Write boolean expressions for

 i) sum1 and carry1 in terms of a and b

 ii) sum and carry in terms of cIn, sum1, and carry1

 b) Write a program to implement this binary full-adder, and use it to verify the results
shown in the following table:

a b cIn sum carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

 4. An adder to calculate binary sums of two-bit numbers

 a2 a1
 + b2 b1
 cOut s2 s1

where s1 and s2 are the sum bits and cOut is the carry-out bit, can be constructed
from a binary half-adder and a binary full-adder:

carry

sum

carry1 sum1 cIn

a b

HALF-ADDER

HALF-ADDER

FULL-ADDER

b2

cOut

cOut1

a2 b1 a1

s2 s1

HALF-ADDER

K11207.indb 144 6/15/12 10:06 AM

Control Structures    ◾    145  

 a) Write boolean expressions for

 i) s1 and cOut1 in terms of a1 and b1

 ii) s2 and cOut in terms of a2, b2, and cOut1

 b) Write a program to implement this adder and use it to demonstrate that 00 + 00 =
000, 01 + 00 = 001, 01 + 01 = 010, 10 + 01 = 011, 10 + 10 = 100, 11 + 10 = 101, and
11 + 11 = 110.

Section 5.4

 1. Write a driver program to test your distance-cost calculator from Exercise 11.

 2. Write a driver program to test your wind-chill classifier from Exercise 12.

 3. Modify the program in Example 5.4 for solving quadratic equations so that if the
discriminant is negative, the complex roots of the equation are displayed. If the dis-
criminant D is negative, these roots are given by

b D i

a2

− ± −

 where i2 = –1. (This does not require using C++’s complex type provided in its com-
plex library, but you may use it if you prefer.)

 4. Write a program that reads values for the coefficients a, B, C, D, E, and F of the equations

ax + By = C

Dx + Ey = F

 of two straight lines. Then determine whether the lines are parallel (their slopes are
equal) or they intersect. If they intersect, determine whether the lines are perpen-
dicular (the product of their slopes is equal to –1).

 5. Suppose the following formulas give the safe loading l in pounds per square inch for
a column with slimness ratio s:

L
S S

S
S

16500 .475 if 100

17900

1 (/17900)
if 100

2

2

=
− <

+
≥

 Write a program that reads a slimness ratio and then calculates and displays the safe
loading.

K11207.indb 145 6/15/12 10:06 AM

146    ◾    Programming in C++ for Engineering and Science

 6. Suppose that a gas company bases its charges on consumption according to the
following table:

Gas Used Rate
First 70 cubic meters $5.00 minimum cost
Next 100 cubic meters 5¢ per cubic meter
Next 230 cubic meters 2.5¢ per cubic meter
Over 400 cubic meters 1.5¢ per cubic meter

 Meter readings are four-digit numbers that represent cubic meters. Write a program
in which the meter reading for the previous month and the current meter reading are
entered and then the amount of the bill is calculated. note: The current reading may
be less than the previous one; for example, one month’s reading might be 9897 and
the next month’s reading 0103.

Section 5.5

 1. Write a driver program to test your summation code from Exercise 7.

 2. Write a driver program to test your summation code from Exercise 8.

 3. The sequence of Fibonacci numbers begins with the integers 1, 1, 2, 3, 5, 8, 13, 21, . . .
where each number after the first two is the sum of the two preceding numbers. Write
a program that reads a positive integer n and uses a for loop to generate and display
the first n Fibonacci numbers.

 4. Ratios of consecutive Fibonacci numbers 1/1, 1/2, 2/3, 3/5, . . . approach the golden
ratio. Modify the program in Problem 3 so that it also displays the decimal values of
the ratios of consecutive Fibonacci numbers.

 5. A certain product is to sell for unitPrice dollars. Write a program that reads val-
ues for unitPrice and totalNumber and then produces a table showing the total
price of from 1 through totalNumber units. The table should have a format like the
following:

Number of Units Total Price
=============== ===========
 1 $1.50
 2 $3.00
 3 $4.50
 4 $6.00
 5 $7.50

 6. Write a program to read a set of numbers and calculate and display the mean, vari-
ance, and standard deviation of the set of numbers. The mean and variance of num-
bers x1, x2, . . . , xn can be calculated using the formulas

n
xmean

1
i

i

n

1

∑=
= ,

n
x

n
xvariance

1 1
i

i

n

i

i

n

2

1

2

1

2

∑ ∑= −

= =

K11207.indb 146 6/15/12 10:06 AM

Control Structures    ◾    147  

 The standard deviation is the square root of the variance.

 7. Two measures of central tendency other than the (arithmetic) mean (defined in
Problem 6) are the geometric mean and the harmonic mean defined for a list of posi-
tive numbers x1, x2, . . . , xn as

geometric mean = x x xn
n

1 2⋅ ⋅⋅⋅

 = the nth root of the product of the numbers

harmonic mean =

n

x x x

1 1 1

n1 2

+ + ⋅⋅⋅

 Write a program that reads a list of numbers and calculates their arithmetic mean,
geometric mean, and harmonic mean. These values should be displayed with appro-
priate labels.

 8. Suppose that at a given time, genotypes AA, AB, and BB appear in the proportions
x, y, and z, respectively, where x = 0.25, y = 0.5, and z = 0.25. If individuals of type
AA cannot reproduce, the probability that one parent will donate gene A to an
offspring is

p

y

y z

1

2
=

+

 because y/(y + z) is the probability that the parent is of type AB and 1/2 is the prob-
ability that such a parent will donate gene A. Then the proportions x′, y′, and z′ of AA,
AB, and BB, respectively, in each succeeding generation are given by

 x p' 2= , y p p' ()= −2 1 , z p' (1)2= −

 and the new probability is given by

p

y

y z
'

1

2

'

' '
=

+

 Write a program to calculate and display the generation number and the proportions
of AA, AB, and BB under appropriate headings for 30 generations. (Note that the pro-
portions of AA and AB should approach 0, because gene A will gradually disappear.)

K11207.indb 147 6/15/12 10:07 AM

148    ◾    Programming in C++ for Engineering and Science

 9. Write a program that uses an input loop to read data values as shown in the following
table, calculates the miles per gallon in each case, and displays the values with appro-
priate labels:

Miles Traveled Gallons of Gasoline Used
231 14.8
248 15.1
302 12.8
147 9.25
88 7

265 13.3

 10. Write a program that uses an input loop to read several values representing miles,
converts miles to kilometers (1 mile = 1.60935 kilometers), and displays all values
with appropriate labels.

 11. Suppose that two hallways, one 8 feet wide and the other 10 feet wide, meet at a right
angle and that a ladder is to be carried around the corner from one hallway into the
other. Using the similar triangles in the following diagram, we see that

L x

x

x

10

642
= +

−

 Write a program that initializes x to 8.1 and then increments it by 0.1 to find to the
nearest 0.1 foot the length of the longest ladder that can be carried around the corner.
(note: This length is the same as the minimum value of the distance l.)

8 feet

10 feet

x

L – x

K11207.indb 148 6/15/12 10:07 AM

149

C h a p t e r 6

Functions and Libraries

Home computers are being called upon to perform many new functions, including
the consumption of homework formerly eaten by the dog.

DOUG LARSON

The function of education is to teach one to think intensively and to think critically
. . . . Intelligence plus character—that is the goal of true education.

MARTIN LUTHER KING, JR.

Doing research on the Web is like using a library assembled piecemeal by pack rats
and vandalized nightly.

ROGER EBERT

ConTEnTS
6.1 Introductory Example: Temperature Conversion with Expressions 150
6.2 Introductory Example: Temperature Conversion with a Function 153
6.3 Programmer-Defined Functions 155
6.4 An Introduction to Libraries 168
6.5 Introduction to Numerical Methods 177
Chapter Summary 186
Test Yourself 190
Exercises 192
Programming Problems 194

6/15/12 10:07 AM

150    ◾    Programming in C++ for Engineering and Science

I never met a library I didn’t like.

UNKNOWN

A major theme of this chapter is writing code that is reusable. As we show first,
reusability may be on a “local” level in which code segments are encapsulated in a

function that is a separate part of a program but can be used anywhere else in the program.
Also, because it is a separate piece of code, it can be used in other programs by copying
and pasting this code into them. For reusability on a larger scale, functions (and other pro-
gram components such as constant declarations) can be stored in a library from which any
program can retrieve and use them, just as the programs in Examples 5.4 and 5.5 used the
function sqrt() from the cmath library.

A second theme of this chapter is information hiding, also known as abstraction, which
refers to separating unnecessary details about a computation from what others need to know
in order to use it. Here again we will see that this separation can be done on a local scale for
functions that are part of a program, and that libraries make true information hiding possible.

Also, functions make it possible to modularize programs, which facilitates solving complex
problems. We divide a problem into a number of simpler problems, develop functions to solve
these simpler problems, and then combine them with a main “driver” program to produce a
complete program that solves the original problem. In this chapter, however, we will look only
at fairly simple functions in detail and give several examples, because understanding how to
construct and use functions is fundamental to writing reusable code. We will also see how
libraries are constructed. It must be realized, however, that this first look at functions and
libraries is only an introduction. Many more features and uses will be given in later chapters.

6.1 InTRoDUCToRY ExAMPLE: TEMPERATURE
ConVERSIon wITh ExPRESSIonS

Many problems involve the use of formulas in their solutions. For example, in Section 4.1,
we used Einstein’s formula e = m × c2 to compute the energy released by a quantity of mat-
ter and found that converting this formula into a C++ expression was quite straightfor-
ward. In this chapter we begin with a temperature-conversion problem that is also easy to
solve in C++, but our first version of a program to perform these conversions will undergo
a series of modifications with a view to increasing reusability.

6.1.1 Problem: Temperature Conversion

Fahrenheit and Celsius are two scales used to measure temperature. We will develop a
program to convert temperatures in Celsius to the equivalent Fahrenheit temperatures.

6.1.2 object-Centered Design
6.1.2.1 Behavior
Our program will repeatedly display on the screen a prompt for a Celsius temperature.
Each time, the user will enter a numeric value (the Celsius temperature) from the keyboard
that the program will read. It will then compute the Fahrenheit temperature equivalent of

K11207.indb 150 6/15/12 10:07 AM

Functions and Libraries    ◾    151  

that Celsius temperature and display this Fahrenheit temperature on the screen along with
appropriate descriptive text.

6.1.2.2 Objects
From the statement of the desired behavior, we can identify the following objects:

Problem Objects

Software Objects

Type Kind Name

screen output device variable cout

prompt text string constant none
Celsius temperature double variable tempCelsius
keyboard input device variable cin

Fahrenheit temperature double variable tempFahrenheit
descriptive text text string constant none

6.1.2.3 Operations
The formula for converting temperature measured in Fahrenheit to Celsius is

F = 1.8 × C + 32

where C is the Celsius temperature and F is the corresponding Fahrenheit temperature.
We now have two additional data objects—the numeric values 1.8 and 32. However, we
won’t usually include constant values such as these in an object list because they are always
provided in C++.

From our statement of how our program is to behave and this formula, we can identify
the following operations:

 i. Display a string on the screen.

 ii. Read a number from the keyboard.

 iii. Compute the Fahrenheit equivalent of a Celsius temperature using multiplication
and addition of reals.

 iv. Display a string and a number on the screen.

6.1.2.4 Algorithm
Because each of these operations is provided in C++, we can proceed to organize them and
the objects into an algorithm:

Repeat the following:

 1. Display a prompt for a Celsius temperature to cout.

 2. Input tempCelsius from cin.

 3. Calculate tempFahrenheit = 1.8 * tempCelsius + 32.

 4. Output tempFahrenheit with appropriate descriptive text to cout.

K11207.indb 151 6/15/12 10:07 AM

152    ◾    Programming in C++ for Engineering and Science

6.1.2.5 Coding and Testing
The program in Example 6.1 implements this algorithm. It uses a while loop to control
the repetition with the user entering any value less than the smallest possible temperature
−273.15 degrees Celsius to stop.

Example 6.1 Converting Temperatures—Version 1

/* This program converts temperatures from Celsius to Fahrenheit,
using the standard Celsius-to-Fahrenheit conversion formula.
Entering any value less than –273.15 Celsius (approx. absolute
zero) terminates the program.

Input: tempCelsius
Output: tempFahrenheit

--*/

#include <iostream>
using namespace std;

int main()
{
cout << "Program to convert Celsius temperatures to Fahrenheit.\n";

double tempCelsius, // Celsius temperature
tempFahrenheit; // Fahrenheit temperature

cout <<"\nEnter a Celsius temperature (< -273.15 to stop): ";
cin >> tempCelsius;
while (tempCelsius >= -273.15)
{

tempFahrenheit = 1.8 * tempCelsius + 32;

cout << tempCelsius << " degrees Celsius is equivalent to "
<< tempFahrenheit << " degrees Fahrenheit\n";

cout <<"\nEnter a Celsius temperature (< -273.15 to stop): ";
cin >> tempCelsius;

}
}

SAMPLE RUN:
Program to convert Celsius temperatures to Fahrenheit.

Enter a Celsius temperature (–273.15 or less to stop): 100
100 degrees Celsius is equivalent to 212 degrees Fahrenheit

Enter a Celsius temperature (–273.15 or less to stop): 0
0 degrees Celsius is equivalent to 32 degrees Fahrenheit

K11207.indb 152 6/15/12 10:07 AM

Functions and Libraries    ◾    153  

Enter a Celsius temperature (–273.15 or less to stop): –72.3
-72.3 degrees Celsius is equivalent to -98.14 degrees Fahrenheit

Enter a Celsius temperature (–273.15 or less to stop): –333

6.2 InTRoDUCToRY ExAMPLE: TEMPERATURE
ConVERSIon wITh A FUnCTIon

To incorporate code from a program like that in Example 6.1 for converting Celsius tem-
peratures to Fahrenheit into another program, one would have to first search through the
program to find it and then copy and paste it into one’s program. In some cases, this code
may be somewhat scattered and it would require some effort to find all of it. It would cer-
tainly be more convenient if we could construct a function that encapsulates that code,
and that could be attached to another program where it could be called where needed, as
illustrated in Example 6.2.

Example 6.2 Converting Temperatures—Version 2

/* This program converts temperatures from Celsius to Fahrenheit,
using the standard Celsius-to-Fahrenheit conversion formula.
Entering any value less than -273.15 Celsius (approx. absolute
zero) terminates the program.

Input: tempCelsius
Output: tempFahrenheit

--*/

#include <iostream>
using namespace std;

double celsiusToFahrenheit(double tempCels); // function prototype

int main()
{
cout << "Program to convert Celsius temperatures to Fahrenheit.\n";

double tempCelsius, // Celsius temperature
tempFahrenheit; // Fahrenheit temperature

cout <<"\nEnter a Celsius temperature (< -273.15 to stop): ";
cin >> tempCelsius;
while (tempCelsius >= -273.15)
{

tempFahrenheit = celsiusToFahrenheit(tempCelsius);

K11207.indb 153 6/15/12 10:07 AM

154    ◾    Programming in C++ for Engineering and Science

cout << tempCelsius << " degrees Celsius is equivalent to "
 << tempFahrenheit << " degrees Fahrenheit\n";
cout <<"\nEnter a Celsius temperature (< -273.15 to stop): ";
cin >> tempCelsius;

}
}

double celsiusToFahrenheit(double tempCels) // function definition
{
return 1.8 * tempCels + 32;

}

The program in Example 6.2 produces exactly the same output as that in Example 6.1,
but the flow of execution is very different. Here the Celsius-to-Fahrenheit conversion is
performed using a function that is defined following the main function. The following
diagram illustrates the flow of control in this new program.

Execution of the program starts at the beginning of main() and proceeds in the usual man-
ner (1), until it reaches the call to function celsiusToFahrenheit() (2).1 At that time,
the function’s argument tempCelsius is evaluated (3) and copied into the parameter
tempCels in the function celsiusToFahrenheit() (4). Control is transferred from
the main function to the function celsiusToFahrenheit(), which begins executing (5).
The expression

1.8 * tempCels + 32.0

1 See the text’s website (given in the Preface) about why we speak of function “calls” and “libraries.”

int main()

{

}

double celsiusToFahrenheit(double tempCels)

return 1.8 * tempCels + 32;

1

2

6 5

4

7

3

8

{

}

double tempFahrenheit = celsiusToFahrenheit(tempCelsius);

K11207.indb 154 6/15/12 10:07 AM

Functions and Libraries    ◾    155  

is evaluated, and because tempCels contains a copy of the value of tempCelsius, the
resulting value is the Fahrenheit equivalent of the value of tempCelsius. The return
statement makes this value the return value of celsiusToFahrenheit() and
transfers execution back to the main function (6). There, the return value of celsius-
ToFahrenheit() is assigned to tempFahrenheit (7), and execution proceeds
 normally through the rest of the main function (8).

In the next section we will describe how such C++ functions are constructed, using the
program in Example 6.2 to illustrate the discussion.

6.3 PRoGRAMMER-DEFInED FUnCTIonS
In earlier chapters we saw examples of functions provided in C++; for example, pow()
and sqrt() from C++’s cmath library and assert() from its cassert library. In the
preceding section we saw an example of how programmers can add their own functions
such as celsiusToFahrenheit() to a program by including its prototype before the
main function and its definition after it. In this section we will look at such programmer-
defined functions in more detail.

The definition of a function can be described in general as follows:

Thus, in the program in Example 6.2, the lines

 double celsiusToFahrenheit(double tempCels)
 {
 return 1.8 * tempCels + 32;

 }

c++ Function DeFinition
Form:

return_type function_name(parameter-declaration_list)
{

statement_list
}

where:
return_type is the type of value the function returns or the keyword void if the function
does not return a value;
function_name is an identifier that names the function;
parameter-declaration_list is a list, possibly empty, of comma-separated declara-
tions of the function's parameters;
 statement_list describes the behavior of the function.

PurPose:

A call to the function causes the statements in it to be executed. After this, execution returns
to the calling program unit when a return statement is executed or the end of the function’s
statement list is reached.

K11207.indb 155 6/15/12 10:07 AM

156    ◾    Programming in C++ for Engineering and Science

constitute the definition of the function celsiusToFahrenheit(). The first occurrence
of the keyword double specifies the return type of the function; the identifier celsius-
ToFahrenheit names the function; and inside the parentheses that follow, the param-
eter declaration list consists of one parameter of type double whose name is tempCels.
The curly braces enclose the body of the function, which in this example consists of only a
return statement. Its general form is

return expression;

where the type of expression matches the function’s return type.

6.3.1 Function Design

The steps we’ve used to design programs can also be used for functions—one of the reasons
they are often called subprograms:

 1. Describe its behavior.

 2. Identify its objects.

 3. Identify its operations.

 4. Formulate an algorithm.

 5. Code the algorithm.

 6. Execute, test, and debug it.

6.3.1.1 Behavior
The key behavior of a function consists of receiving values from some other func-
tion such as main() and returning a value to the function that called it (or for void
functions, simply returning control to that function but no value).2 For example,
 celsiusToFahrenheit() receives a Celsius temperature and returns to its caller
the equivalent Fahrenheit temperature. But before we can write code for a function, we
must describe this receive and return information more precisely, just as we have done
with a program’s objects up to now. This description is often referred to as the function’s
specification.

6.3.1.2 A Function’s Specification
The objects received and returned by a function have the same properties as other pro-
gramming objects we have been considering. But they also have an additional character-
istic: received values flow from the caller into the function, and returned values flow from
the function out to the caller. We will call this characteristic the movement of the objects,
and add it as a property in our object lists for functions as illustrated in the following speci-
fication for our celsiusToFahrenheit() function:

2 As described in Chapter 10, a function may also call itself, a property known as recursion.

K11207.indb 156 6/15/12 10:07 AM

Functions and Libraries    ◾    157  

Problem Objects

Software Objects

Type Kind Movement Name

a Celsius temperature double varying received (in) tempCels

the equivalent Fahrenheit temperature double varying returned (out) none

Thus, in addition to a name, most functions also have the following:

•	 parameters: variables declared within the function heading’s parentheses to hold
the values received by the function; if no values are received, the parentheses are left
empty;3

•	 a return type: the type of the value returned by the function or the keyword void,
indicating the absence of type, if the function does not return a value.

A function’s specification provides this information. For our celsiusToFahrenheit()
example, it tells us that

•	 it has one parameter of type double, and

•	 its return type is double.

Once we have this information, we can begin coding the function. We select a meaning-
ful name such as tempCels for its parameter and write a function stub, consisting of a
heading with an empty function body:

double celsiusToFahrenheit(double tempCels)
{
}

Now, all that remains is to design an algorithm that solves the problem, and then encode
that algorithm within the body of this function stub.

6.3.1.3 A Function's Algorithm
Designing the algorithm for a function is almost the same as designing the algorithm for
a program. The differences are:

•	 In a program, inputting data values needed in solving a problem is an early step in the
algorithm; but in a function, the parameters already contain these values.

•	 In a program, data values computed as part of the solution are usually output; but in
a function, they are returned to the calling function.

3 For example, the random-number generator function rand() from the cstlib library has no parameters as do most
functions that simply display some instructions to the user.

K11207.indb 157 6/15/12 10:07 AM

158    ◾    Programming in C++ for Engineering and Science

Thus, when the function celsiusToFahrenheit() begins execution, we can assume
that parameter tempCels already contains the Celsius temperature to be converted. This
leaves the following operations to be performed:

Real multiplication and addition (1.8 * tempCels + 32)

Return a real value

They can be combined as in the following very simple algorithm for function
fahrToCelsius():

Algorithm for Celsius-to-Fahrenheit Conversion Function

Return 1.8 × tempCels + 32

6.3.1.4 Coding a Function
Once we have a function stub and an algorithm, we obtain a function definition by insert-
ing C++ statements into the stub that implement the algorithm. In our example, it is
straightforward to convert our one-step algorithm into a return statement:

double celsiusToFahrenheit(double tempCels)
{
return 1.8 * tempCels + 32;

}

As this example demonstrates,

•	 the specification of a function determines the form of a function’s heading;

•	 its algorithm determines the content of the function’s body.

For a simple function like celsiusToFahrenheit(), formulating the specification and
designing the algorithm may seem like unnecessary busy work, but they are essential for
more complicated problems. Constructing a function heading from a well-defined speci-
fication is almost mechanical, as is coding the body of the function from a well-defined
algorithm.

6.3.1.5 Testing, Execution, and Debugging
Like programs, a function should be rigorously tested to ensure its correctness. This is
especially true for real-world software projects that are often large and complex, and must
be thoroughly checked for logical errors before they are incorporated into the project.

A function is tested by writing a program that calls the function with a collection of test
values and displays the values returned by the function. Such a program is called a driver
program because it “test drives” the function. Example 6.3 shows a simple driver program

K11207.indb 158 6/15/12 10:07 AM

Functions and Libraries    ◾    159  

for celsiusToFahrenheit(). The sample run shows that celsiusToFahrenheit()
is performing correctly for the test values we chose.

Example 6.3 A Sample Driver Program

#include <iostream> // cin, cout, <<, >>
using namespace std;

double celsiusToFahrenheit(double tempCels); // function prototype

int main()
{
cout << "100C => " << celsiusToFahrenheit(100) << "F\n"

<< "0C => " << celsiusToFahrenheit(0) << "F\n"
<< "10C => " << celsiusToFahrenheit(10) << "F\n";

}

double celsiusToFahrenheit(double tempCels)
{
return 1.8 * tempCels + 32;

}

SAMPLE RUN:
100C => 212F
0C => 32F
10C => 50F

6.3.2 Function Prototypes

A general rule in C++ is that things must be declared before they are used so that the
compiler can check whether each is being used in a manner consistent with its type. This
principle applies to functions also; the compiler must be able to check whether they are
being called correctly. This is the purpose of the line

double celsiusToFahrenheit(double tempCels);

before the main function. It is called a function prototype and plays the same role as a
declaration of a variable or constant in that it provides information that the compiler needs
so that it can check that the function is being used correctly:

•	 its return type

•	 its name

•	 the number of parameters it has

•	 the type of each parameter

K11207.indb 159 6/15/12 10:07 AM

160    ◾    Programming in C++ for Engineering and Science

The (simplified) syntax of a function prototype is as follows:

We see, therefore, that for a function’s prototype, we can simply use the heading of the
function’s definition and append a semicolon. This is what we did in our example program,
using

double celsiusToFahrenheit(double tempCels);

to prototype celsiusToFahrenheit(), informing the compiler that its return type is
double, its name is celsiusToFahrenheit, and it has one parameter and its type is
double. Thus, if we were to call the function incorrectly as in

tempFahrenheit = celsiusToFahrenheit(tempCelsius, 0);

the compiler can generate an error message that the function may not be called with two
arguments. In this text we will place function prototypes before main() in the program
because this is consistent with the use of libraries (see Section 6.4) and makes clear that such
functions have been declared before they are called—in main() or in some other function.4

6.3.3 Calling a Function

A function call like those we have been considering returns a value, which means that it is a
kind of expression and thus can be used anywhere that an expression whose type matches
that function’s return type can be used. For example, the return type of celsius-
ToFahrenheit() is double, which means that a call to celsiusToFahrenheit()

4 C++ does permit function prototypes to be placed inside a calling function, but this tends to clutter and obscure the
structure of these functions. Placing them before main() and other function definitions avoids this.

c++ Function prototype
Form:

return_type function_name(parameter-declaration_list);

where
return_type, function_name, and parameter-declaration_list play the
same roles as in a function definition. one difference is that parameter names are
optional—only their types are required—but it is good practice to include them to indi-
cate what the parameters represent.

PurPose:

Declares a function, providing the information that the compiler needs to check the correct-
ness of function calls—the number and types of the parameters and the return type. note
that like other declarations, a semicolon is placed at the end of a function prototype to make
it a statement.

K11207.indb 160 6/15/12 10:07 AM

Functions and Libraries    ◾    161  

can be used to give a value to a variable of type double such as tempFahrenheit in
the program in Example 6.2:

double tempFahrenheit = celsiusToFahrenheit(tempCelsius);

Similarly, the output statement

cout << "100C => " << celsiusToFahrenheit(100) << "C\n"
<< "0C => " << celsiusToFahrenheit(0) << "C\n"
<< "10C => " << celsiusToFahrenheit(10) << "C\n";

in the driver program in Example 6.3 has three calls to celsiusToFahrenheit() and
is a valid statement because the << operator can be used to output double values.

6.3.4 Local Variables

The function celsiusToFahrenheit() is a very simple function; its body consists of
a single statement, and uses only one variable—the parameter tempCelsius—and two
constants. Many functions, however, are more complex, having more statements and using
several variables and/or constants to compute their return values.

For example, suppose we wish to construct a function to compute wind chill indexes.
The formula for the wind chill index used by the National Weather Service is

wind chill = 35.74 + 0.6215 × t − 35.75 × v0.16 + 0.4275 × t × v0.16

which contains five different constants and two variables: t, the temperature in degrees
Fahrenheit, and v, the wind speed in miles per hour. The function windChill() in
Example 6.4, accordingly, has two parameters: tempFahr, representing t in the formula,
and windSpeed, representing v. It uses the preceding formula to compute the wind chill
index, but for efficiency, breaks it up into two steps so that v0.16 is computed only once:

•	 Compute multiplier = –35.75 × 0.4275 × t

•	 Compute wind chill = 35.74 + 0.6215 × t + multiplier × v0.16

The variable multiplier is used to store the result computed in the first step. Example 6.4
also shows a simple driver program to test windChill().

Example 6.4 Computing Wind Chill

/* This is a driver program to test the windChill() function.
--*/

#include <iostream> // cin, cout, <<, >>
using namespace std;

K11207.indb 161 6/15/12 10:07 AM

162    ◾    Programming in C++ for Engineering and Science

double windChill(double tempFahr, double windSpeed); // prototype

int main()
{

double temp, // Fahrenheit temperature
wind; // wind speed (mph)

cout << "Enter Fahrenheit temperature and wind speed (mph): ";
cin >> temp >> wind;
cout << "Wind chill index is " << windChill(temp, wind) << endl;

}

/* windChill computes wind chill.

Receive: tempFahr, a Fahrenheit temperature, and windSpeed,
in miles per hour

Return: the wind chill
--*/

#include <cmath> // pow()
using namespace std;

double windChill(double tempFahr, double windSpeed) // definition
{
double multiplier = –35.75 + 0.4275 * tempFahr;
return 35.74 + 0.6215 * tempFahr + multiplier * pow(windSpeed, 0.16);

}

SAMPLE RUNS:
Enter Fahrenheit temperature and wind speed (mph): 10 5
Wind chill index is 1.23564

Enter Fahrenheit temperature and wind speed (mph): 0 20
Wind chill index is –21.9952

Enter Fahrenheit temperature and wind speed (mph): –10 45
Wind chill index is –44.0695

Variables such as multiplier along with parameters such as tempFahr and
 windSpeed and constants declared within a function are said to be local to that function
because they are defined only while the function is executing and are undefined both before
and after its execution.5 This means that they can be accessed only within the function; an

5 These are also called automatic objects—their existence automatically begins when the function begins executing and
automatically ends when it is finished. If we prepend the keyword static to the declaration of a local object, it becomes
a static object that will retain its value from one function call to the next.

K11207.indb 162 6/15/12 10:07 AM

Functions and Libraries    ◾    163  

error results if an attempt is made to use them outside the function. One consequence of
this is that an identifier outside the function may have the same name as a parameter or a
local variable or constant inside the function.

6.3.5 Control Structures in Functions

Thus far, sequence has been the only control structure used in our examples of functions.
However, selection and repetition structures may also be used. The program in Example 6.5
illustrates this by encapsulating in a function the code in Section 5.5 that used a for loop to
calculate factorials.

Example 6.5 Computing Factorials

/* This is a driver program to test the factorial() function.
--*/

#include <iostream> // cin, cout, <<, >>
using namespace std;

unsigned factorial(unsigned n); // prototype

int main()
{
 unsigned number; // integer whose factorial is computed

 cout << "Enter a nonnegative integer: ";
 cin >> number;
 cout << number <<"! = " << factorial(number) << endl;

}

/* factorial computes the factorial of a nonnegative integer

Receive: n, a nonnegative integer
Return: n!

--*/

unsigned factorial(unsigned n) // definition
{

unsigned nfact = 1;
for (unsigned i = 1; i <= n; i++)

nfact *= i;

return nfact;
}

SAMPLE RUNS:
Enter a nonnegative integer: 0
0! = 1

K11207.indb 163 6/15/12 10:07 AM

164    ◾    Programming in C++ for Engineering and Science

Enter a nonnegative integer: 4
4! = 24

Enter a nonnegative integer: 10
10! = 3628800

6.3.6 Functions That Return nothing

Suppose that a problem involves monetary calculations and we need to display an amount
in the form $dd.cc. We could just use an output statement containing several format
manipulators:

int main()
{

// ...
cout << fixed << showpoint

<< right << setprecision(2)
<< '$' << dollarAmount;

}

but putting such details in a main function can make a program messy and cluttered,
especially when they are needed at several different places. It would be preferable to use a
simpler statement such as

int main()
{

// ...
printAsMoney(dollarAmount);

}

where printAsMoney() would act like a function with a parameter that receives the
value of dollarAmount and outputs it in the required format, but doesn’t return a
value.

In some programming languages we could do this with subprograms called procedures
or subroutines, which are different from functions. However, in C++, the only subprograms
are functions. This means that we will have to write a function named printAsMoney().
In place of the usual “Receive–Return” specification, we might use

Receive: a real value dollars

Output: the value of dollars, appropriately formatted as a monetary value

From this specification, we see that printAsMoney() will have a double (or float)
parameter named dollars, but what do we use as the return type for a function that
returns nothing?

K11207.indb 164 6/15/12 10:07 AM

Functions and Libraries    ◾    165  

For these special kinds of functions that return nothing to the caller, C++ provides the
keyword void to denote the absence of any type. So we simply use it as the return type for
printAsMoney():

void printAsMoney(double dollars);

Void functions in C++ are therefore the counterparts of procedures and subroutines in
other programming languages.

Because void functions do not return values, they cannot be used in expressions like
functions we have considered up to now. For example, if we wrote

cout << "Amount due: "
<< printAsMoney(dollarAmount) // ERROR!
<< endl;

an error would result because printAsMoney(dollarAmount) returns no value.
Instead, void functions are called with statements that have the form

function_Name(argument_list);

Thus, in place of the preceding output statement, we could write

cout << "Amount due: ";
printAsMoney(dollarAmount);
cout << endl;

Example 6.6 gives the complete definition of printAsMoney(). It also shows a pro-
gram that inputs the amount of a purchase and the amount received, and uses printAs-
Money() to display the amount returned to the customer.

Example 6.6 Monetary Transactions
/* Program to compute the amount to be returned for a purchase.

 Input: purchase, payment
 Output: amount returned to customer (via printAsMoney())
--*/

#include <iostream> // cin, cout, <<, >>, ...
#include <iomanip> // setprecision, ...
using namespace std;

void printAsMoney(double dollars); // prototype

int main()

K11207.indb 165 6/15/12 10:07 AM

166    ◾    Programming in C++ for Engineering and Science

{
double purchase, // amount of purchase

payment; // amount paid

cout << "Enter amount of purchase: ";
cin >> purchase;
cout << "Enter amount paid (>= purchase): ";
cin >> payment;
if (payment >= purchase)
{

cout << "Amount to return is: ";
printAsMoney(payment – purchase);
cout << endl;

}
else

cout << "Inadequate payment!";
cout << endl;

}

/* printAsMoney displays an amount in monetary format.

Receive: dollars, the double value to be displayed
Output: dollars in monetary format

---*/

void printAsMoney(double dollars)
{

cout << fixed << showpoint
<< setprecision(2)
<< '$' << dollars;

}

SAMPLE RUNS:
Enter amount of purchase: 4.01
Enter amount paid (>= purchase): 5.00
Amount to return is: $0.99

Enter amount of purchase: 9.00
Enter amount paid (>= purchase): 20.00
Amount to return is: $11.00

Note how hiding the money-format details in a void function printAsMoney()
makes the main function easier to read. As noted in the introduction to this chapter, such
a view of something that is simplified by hiding some of its details is referred to as abstrac-
tion or information hiding. Our printAsMoney() function “hides” the details of how the
display-a-monetary-value operation is accomplished (at least as far as readers of the main
function are concerned).

K11207.indb 166 6/15/12 10:07 AM

Functions and Libraries    ◾    167  

6.3.7 Summary

Because functions are so fundamental in C++ programming, we will summarize some of
the important ideas about them that we have seen:

•	 For each value to be received from a caller, a function must declare a variable, called
a parameter, within the parentheses of the function heading to hold that value. For
example, in the definition of the function celsiusToFahrenheit(),

double celsiusToFahrenheit(double tempCels)
{
return (tempFahr – 32) / 1.8;

}

 the variable tempCels is a parameter of celsiusToFahrenheit().

•	 An argument is a value supplied to a function when it is called. For example, in
the statement

tempFahrenheit = celsiusToFahrenheit(tempCelsius);

 tempCelsius is an argument to the function celsiusToFahrenheit(). During
execution, the value of the argument tempCelsius will be passed (i.e., copied) to
the parameter tempCels.6

•	 If one function f() calls another function g(), execution is transferred from f()
to g() and then back to f(). To illustrate, consider again the main function’s call of
function celsiusToFahrenheit() in Example 6.2:

//...
int main()
{
//...
tempFahrenheit = celsiusToFahrenheit(tempCelsius);
//...

}

 When the call to celsiusToFahrenheit() is encountered, execution proceeds as
follows:

 1. The value of the argument tempCelsius is passed from the main function to
celsiusToFahrenheit() and copied into the parameter tempCels.

6 Chapter 10 will describe a different kind of parameter called a reference parameter that shares the same memory location
as its corresponding argument. This means that the value of the argument is not copied to the parameter because they
share the same memory location and thus have the same value. It also means that modifying the parameter in the func-
tion will also modify the corresponding argument.

K11207.indb 167 6/15/12 10:07 AM

168    ◾    Programming in C++ for Engineering and Science

 2. Control then transfers from the line containing the function call (in main()) to
the first statement of celsiusToFahrenheit(), which begins execution using
the value of its parameter.

 3. When a return statement (or the final statement of the function) is executed, con-
trol transfers back to the caller (i.e., the main function), where execution resumes.

•	 local variables, constants, and parameters of a function are defined only while that func-
tion is executing. They can be accessed only within the function—not from outside.

•	 The keyword void is used to specify the return type of a function that does
not return any values. Such functions are called with statements of the form
function_ Name(argument_list);

The ability to define functions is a powerful tool in programming. If some problem requires
that an operation not provided in C++ be applied to some item in that problem, we can simply

 1. define a function to perform that operation, and

 2. apply that function to the item

as we did with the temperature-conversion operation celsiusToFahrenheit(). Also,
as we will see in the next section, such functions can then be stored in a library, from which
they can be retrieved when needed.

6.4 An InTRoDUCTIon To LIBRARIES
We have seen that if a problem requires some new operation, we can define a function to
perform it and then call it just as if were provided in C++. in essence, we are extending C++’s
collection of operations. However, although such programmer-defined functions provide
a significant improvement over using only expressions, they do not in themselves make
it easy to reuse our work. For example, to use the celsiusToFahrenheit() function
from Example 6.2 in another program, we would have to copy its prototype and its defini-
tion from that program and insert them at the appropriate places in the new program. We
might use the copy-and-paste capabilities of a text editor or word processor to do this or
we might simply make a copy of the program in Example 6.2, delete everything between
the prototype and definition of celsiusToFahrenheit(), and then write the new pro-
gram between this prototype and definition.

To facilitate reusability, C++’s parent language C provides several standard libraries,
which are simply files containing items that can be shared by different programs and by
other libraries. For example, we have used the function pow() from C’s standard library
cmath to compute powers, and in the preceding chapter we used the assert() func-
tion from C’s cassert library to check whether certain conditions are true. To use one
of these functions, for example, pow(), we need only include the library in the program:

#include <cmath>

K11207.indb 168 6/15/12 10:07 AM

Functions and Libraries    ◾    169  

C’s libraries along with those added in C++, several of which are described in Appendix D,
are one feature that have made these programming languages so powerful, because they
make it possible to share commonly used functions between different programs. This sec-
tion gives a brief description of how such libraries are constructed and how we can build
our own libraries.

6.4.1 Constructing a Library

If we examine the standard libraries, we see that the contents of each are related in some
way. Having an organizing principle, therefore, is a first step in constructing a library
so that we know what kind of things it should have. For example, the cmath library
contains useful mathematical functions, and the iostream library contains items that
are related to input and output streams. Thus, if we intend to store the temperature-
conversion function celsiusToFahrenheit() in a library, we might decide that it
should contain items that are in some way related to heat and temperature, and call the
library Heat.

Once we have an organizing principle, we must decide what items to put in our library.
For example, if our Heat library is to contain our celsiusToFahrenheit() function,
then it should also include the inverse operation for Fahrenheit-to-Celsius conversions.
We might also include functions to convert temperatures from each scale to Kelvin and
back. With careful planning and anticipating what items might be most useful, we hope to
develop a library that is useful in the long term rather than short.

Although our examples have only been functions, libraries may also include other
items. For example, we might also want to include important heat-related constants in
our library such as absolute zero (0K on the Kelvin scale), the heat of fusion of water
(79.71 calories/gram), and the heat of vaporization of water (539.55 calories/gram). The
important things to remember are that items should be consistent with the library’s
organizing principle and that they should be useful to users (and thus avoid having to
“reinvent the wheel”).

Once the contents of the library have been determined, we are ready to begin building
it. A library is a collection of files:

•	 A header file that contains the declarations and prototypes of the items in the library
and is inserted into a program (or another library) using a #include directive. It
serves as an interface between the library and a program that uses it, and is thus
sometimes called the library’s interface file.

•	 An implementation file that contains the definitions of items not defined in the
header file. It must be separately compiled and then linked to a program needing to
access its contents (as described later in this section).

•	 A documentation file that contains documentation for the items in the library.7

7 An alternative is to document each item in the header file. However, this does tend to clutter the header file and reduce
its overall readability, so we will put this documentation in a separate file.

K11207.indb 169 6/15/12 10:07 AM

170    ◾    Programming in C++ for Engineering and Science

6.4.1.1 Building the Header File
A header file contains declarations of the items in the library. It is so named because a func-
tion is usually declared by giving its heading, i.e., its prototype. Thus, just as iostream
contains declarations of items for input and output, our header file will contain declara-
tions of items needed to process heat-related values. A first version is shown in Example 6.7.
Note that its name, Heat.h, contains the extension .h to indicate that it is a header file.

Example 6.7 Header File for Library Heat

/* Heat.h provides an interface for a library of heat-related
 constants and functions.

Created by: Jane Doe, January, 2012, at Dooflingy Engineering.
Modification History: Kelvin items added February, 2012 -- JD.

--*/

const double KELVIN_ABSOLUTE_ZERO = 0; // absolute 0 Kelvin

const double HEAT_OF_FUSION = 79.71; // calories per gram

const double HEAT_OF_VAPORIZATION = 539.55; // calories per gram

double celsiusToFahrenheit(double tempCels); // Celsius -> Fahrenheit

double fahrenheitToCelsius(double tempFahr); // Fahrenheit -> Celsius

double fahrenheitToKelvin(double tempFahr); // Fahrenheit -> Kelvin

double kelvinToFahrenheit(double tempKelv); // Kelvin -> Fahrenheit

double celsiusToKelvin(double tempCels); // Celsius -> Kelvin

double kelvinToCelsius(double tempKelv); // Kelvin -> Celsius

Including this header file using the directive #include "Heat.h" before a program’s
main function inserts the declarations of the library’s constants and function prototypes,
so these items can be used subsequently in the program. When the program is compiled,
these declarations will be inserted into the program at that point and will be compiled
along with the rest of the program.

6.4.1.2 Building the Implementation File
A library’s implementation file stores the definitions of the functions declared in the header
file.8 This file is so named because these definitions implement those functions. Part of the
implementation file for our library Heat is given in Example 6.8.

8 To improve on the execution time of programs that use a library, functions that are sufficiently simple (e.g., whose bod-
ies consist of 3–5 operations) are sometimes defined in the header file, provided that the inline modifier precedes the
heading of the function. These are explained in more detail in Chapter 10.

K11207.indb 170 6/15/12 10:07 AM

Functions and Libraries    ◾    171  

Example 6.8 Implementation File for Library Heat

/* Heat.cpp provides the function implementations for Heat, a
library of heat-related constants and functions.

 Created by: Jane Doe, January, 2012, at Dooflingy Engineering.
 Modification History: Kelvin items added February, 2012 -- JD.
--*/

#include "Heat.h"

double celsiusToFahrenheit(double tempCels)
{
return 1.8 * tempCels + 32;

}

double fahrenheitToCelsius(double tempFahr)

{
return (tempFahr - 32) / 1.8;

}

 // . . . Definitions of other functions omitted to save space . . .

It is important to note that, unlike the header file, a library’s implementation file must
be compiled and thus its name, Heat.cpp, has the same extension .cpp as the source
files we’ve been considering in earlier chapters. Notice also that this implementation file
contains the line

#include "Heat.h"

in addition to the definitions of the various temperature-related functions. Before it com-
piles the code in the implementation file, the compiler will insert the function prototypes
from the header file at the beginning of the implementation file. This enables it to check
that the function prototypes and definitions are consistent. If inconsistencies are detected,
error messages will be displayed to alert us to the problem.

It is important to note that:

•	 Items in the implementation file that define items declared in the header file can be
accessed in any program that (i) uses the #include directive to insert the header
file, and (ii) is linked to the implementation file.

•	 In addition to definitions of the functions declared in the header file, an implementa-
tion file may use other items—constants, variables, functions—that are not declared
in the header. Such items cannot be accessed outside of the implementation file, even
by a program that includes the header file.

K11207.indb 171 6/15/12 10:07 AM

172    ◾    Programming in C++ for Engineering and Science

Stated simply, items declared in the header file can be thought of as public information,
whereas those declared in the implementation file are private within the library.

6.4.1.3 Building the Documentation File
As the name suggests, the documentation file provides information to the user of the
library about the items in it. In this text we will construct it as a copy of the header file, but
annotate it with documentation that describes each object and provides the specification
for each function prototype. Example 6.9 shows part of this documentation file for library
Heat. We have named it Heat.txt because it is a text document, but other extensions
such as .doc would also be appropriate.

Example 6.9 Documentation File for Library Heat

/* Heat.txt provides the documentation for Heat, a library of
heat-related constants and functions.

Created by: Jane Doe, January, 2012, at Dooflingy Engineering.
Modification History: Kelvin items added February, 2012 -- JD.

--*/

// Absolute zero on the Kelvin scale
const double KELVIN_ABSOLUTE_ZERO = 0; // absolute 0 Kelvin

// The amount of heat needed to change water from liquid to solid
const double HEAT_OF_FUSION = 79.71; // calories per gram

// The amount of heat needed to change water from liquid to gas
const double HEAT_OF_VAPORIZATION = 539.55; // calories per gram

/* celsiusToFahrenheit converts a temperature from Celsius
to Fahrenheit.

Receive: A Celsius temperature
Return: The equivalent Fahrenheit temperature

--*/
double celsiusToFahrenheit(double tempCels);

/* fahrenheitToCelsiusconverts a temperature from Fahrenheit
to Celsius.

Receive: A Fahrenheit temperature
Return: The equivalent Celsius temperature

--*/
double fahrenheitToCelsius(double tempFahr)

// . . . Other functions omitted to save space . . .

K11207.indb 172 6/15/12 10:07 AM

Functions and Libraries    ◾    173  

Such a documentation file serves a secondary purpose as an annotated copy of the header
file in that it serves as a backup for the header file.

6.4.2 Using a Library in a Program

Once our library Heat has been constructed, we can use it in a program like that in
Example 6.10 for solving a temperature-conversion problem.

Example 6.10 Converting a Temperature Using a Library
/* This program converts temperatures from Celsius to Fahrenheit, using

function fahrenheitToCelsius() that is stored in library Heat.

Input: tempFahrenheit
Output: tempCelsius

--*/

#include <iostream> //cin, cout, <<, >>
using namespace std;
#include "Heat.h" // our library's header file

int main()
{
cout << "Program to convert Celsius temperatures to Fahrenheit.\n";

double tempCelsius, // Celsius temperature
tempFahrenheit; // Fahrenheit temperature

cout << "\nEnter a Celsius temperature (< –273.15 to stop): ";
cin >> tempCelsius;
while (tempCelsius >= –273.15)
{

tempFahrenheit = 1.8 * tempCelsius + 32;

cout << tempCelsius << " degrees Celsius is equivalent to "
<< tempFahrenheit << " degrees Fahrenheit\n";

cout << " \nEnter a Celsius temperature (< –273.15 to stop): ";
cin >> tempCelsius;

}
}

Execution of this program is identical to that in Example 6.2. In this program, however,
the prototype of celsiusToFahrenheit() before the main function has been replaced
by the line

#include "Heat.h"

K11207.indb 173 6/15/12 10:07 AM

174    ◾    Programming in C++ for Engineering and Science

and the definition of celsiusToFahrenheit() is no longer present. The prototype and
the definition of celsiusToFahrenheit() are not given in this file, because the prototype
is in the header file of library Heat and the definition is in the library’s implementation file.

It is important to note and understand the difference between the #include directive
for one of the C++ standard libraries such as

#include <iostream>

and that used to include a programmer-defined library such as

#include "Heat.h"

In the first case where the name of the library is surrounded by angle brackets (< and >),
the C++ compiler will search for it in the special system include directories. By contrast,
if the name of a library’s header file is enclosed in double quotes, the C++ compiler will
search for it in the directory that contains the source file being compiled.9

6.4.3 Translating a Library

Translation of a program consists of two separate steps:

 1. Compilation: translating a source program into an equivalent machine-language pro-
gram called an object program that is stored in an object file. If the program uses a
programmer-defined library, it too must be compiled and stored in a separate object file.

 2. Linking: calls to library functions from a program are linked to the function defini-
tions in the library, creating an executable program.

The following diagram illustrates this process:

9 C++ also permits the programmer to store a library in a different directory (e.g., a library directory) and then instruct
the compiler to search that directory when looking for files named by #include directives. The details of how to do this
vary from one system to another.

Program
source

file

Library
implementation

file

C++
Compiler

Linker
Program

object
file

Library
object

file

Program
executable

file
C++

Compiler

K11207.indb 174 6/15/12 10:07 AM

Functions and Libraries    ◾    175  

Compiling libraries separately significantly reduces the time to translate a source program
that includes a library because the library needs no recompilation, only linking to the
program’s object file. Also, any errors detected in the translation are most likely in the
source program (because the library has already been compiled).

How this translation is carried out varies from one system to another, but there are two
basic approaches. In integrated development environments such as Visual C++, translation
is coordinated by creating a project and then adding source files and library files to it. Menu
selections can then be used to carry out the compiling and linking to produce a binary
executable and then execute it. In command-line environments, a user interacts with the
computer by typing commands. For example, with GNU C++ on a Unix/Linux system,
compiling and linking the source code in Example 6.10 and Heat.cpp requires several
commands. We begin by entering commands to separately compile the source file and the
library’s implementation file:

g++ –c example6–10.cpp
g++ –c Heat.cpp

creating object files example6-10.o and Heat.o. Then we link these two object files
together to produce a binary executable file named example6-10.exe with the command

g++ example6-10.o Heat.o -o example6-10.exe

To execute the file that results, we simply type its name as a command:

example6-10.exe

6.4.4 object-Centered Design: Incorporating Functions and Libraries

Until now, we have designed software solutions to problems using object-centered design
(OCD), which consists of the following: (1) describe the program’s behavior; (2) identify the
problem’s objects; (3) identify the operations needed; and (4) arrange them in a way that
solves the problem. Now we consider how to incorporate functions and libraries into OCD.

Because functions can be viewed as operations added to those provided in C++, they fit
naturally into that part of OCD:

Identify the operations needed to solve the problem.

If an operation is not provided in C++, write a function to implement it; and if it seems
it might be reusable in other problems, store it in a library.

6.4.5 Benefits of Using Libraries

We end our discussion of libraries by describing some of their main properties and benefits
that make them so important in the object-oriented approach to programming.

6.4.5.1 Libraries Hide Implementation Details
In our programs, we can use the items in a library without being concerned at all with
how they are defined in its implementation file. All that is needed is the information in the

K11207.indb 175 6/15/12 10:07 AM

176    ◾    Programming in C++ for Engineering and Science

header and documentation files, and access to an object file generated by compiling the
implementation file so that its contents can be linked to our programs. The details in the
implementation file can remain “hidden,” allowing us to use a library without being con-
cerned about these details. For example, we have used input/output operations provided
in the iostream library in every one of our programs without being concerned with the
details of how they are implemented.

6.4.5.2 Libraries Facilitate Program Maintenance
Separate compilation of programs and libraries makes it possible to change the imple-
mentation file of a library and recompile it only without having to change or recompile
programs or other libraries that use the library. For example, if function celsiusTo-
Fahrenheit() in the implementation file of the library Heat is changed, then only
the implementation file needs to be recompiled. A program that uses this function does
not need recompiling, because the prototype of celsiusToFahrenheit() has not
changed, only its definition. All that is needed is to relink the program to the new object
file of library Heat.

By contrast, if the interface in the header file is altered, then both the library’s implemen-
tation file and all programs and other libraries that name that header file in a #include
directive must be recompiled and relinked.

6.4.5.3 Libraries Support Independent Coding
Libraries enable modularity in software design by allowing related items to be grouped
together into independent units, which is especially useful in large software projects. Once
the objects and operations required in the project are identified and categorized, libraries
can be designed to house the items for the various kinds of objects and header files for these
libraries constructed.

After this, work on the project can be divided up among different groups of program-
mers assigned to construct the implementation files of the various libraries and other
groups working on programs that will use the libraries in the software project. Such parti-
tioning of the work into manageable “chunks” that can be coded in parallel can speed up
completion of the entire project. Also, because the work in one part of the project proceeds
independently of the work in another, there is less likelihood of errors.

6.4.5.4 Libraries Simplify Testing
Separate libraries can be developed and tested independently (using driver programs) by
different teams of programmers. This means that each library can be tested more thor-
oughly (and rapidly) than can a single, very large program.

6.4.5.5 Libraries Extend a Programming Language
Libraries provide items—functions, constants, and so on—available to any program
(or other library). A programmer does not have to “reinvent the wheel” each time these
items are needed.

K11207.indb 176 6/15/12 10:07 AM

Functions and Libraries    ◾    177  

6.5 InTRoDUCTIon To nUMERICAL METhoDS
Problems and mathematical models in science and engineering, plus a wide variety of
other areas, involve solving ordinary algebraic equations, differential equations, systems
of equations, and so on. In many cases, numerical methods that can be implemented by
computer programs are used to find solutions. Here are some of the major types of prob-
lems in which numerical methods are routinely used:

 1. For a few algebraic equations, a formula (e.g., the quadratic formula for quadratic
equations) gives the exact roots, but for most equations, a numerical method is used
to find approximate roots.

 2. The solution of many problems such as finding the area under a curve, calculat-
ing probabilities of certain events, and calculating work done by a force, require the
evaluation of an integral. For some, the methods of integral calculus can be used, but
for others a numerical technique is used to find approximate values.

 3. Differential equations play an important role in many applications, and a variety of
effective and efficient numerical methods have been developed to obtain solutions.

 4. Curve fitting refers to analyzing pairs of data values to determine whether the items
in these pairs are related by some algebraic equation. For example, the least-squares
method described in Programming Problem 10 of Section 9.4 is a method for fitting
a line to a set of points.

 5. Numerical methods are commonly used to find a collection of values that satisfies
a collection of linear equations with several unknowns simultaneously. Such linear
systems will be described later when we consider matrices.

In this section, a few of the numerical methods in the first three categories are described.

6.5.1 Solving Equations—The Bisection Method

In many applications it is necessary to find a zero or root of a function, that is, to solve an
equation of the form f(x) = 0. For some functions it may be very difficult or even impossible
to find this solution exactly. Examples include the function

= ⋅ − + −−f v e v() 50 10 (1) 20v9 40

which may arise in a problem of determining the d-c operating point in an electrical cir-
cuit, or a function of the form

= −f x x x a() tan

for which a zero must be found to solve some heat conduction problem.

K11207.indb 177 6/15/12 10:07 AM

178    ◾    Programming in C++ for Engineering and Science

One simple numerical method for finding an approximate solution of an equation f(x) = 0
is the bisection method. (The programming problems describe another commonly used
method known as the newton-raphson method.) In the bisection method, we begin with an
interval [a, b] where the function values f(a) and f(b) at the endpoints have opposite signs.
If f is continuous in this interval—that is, there is no break in the graph of y = f(x) in this
interval—then the graph of f must cross the x-axis at least once between x = a and x = b, and
thus there must be at least one solution of the equation f(x) = 0 between a and b. To locate
one of these solutions, we first bisect the interval [a, b] and determine in which half f changes
sign, thereby locating a smaller subinterval containing a solution of the equation. We bisect
this subinterval and determine in which half of it f changes sign; this gives a still smaller
subinterval containing a solution.

Repeating this process gives a sequence of subintervals, each of which contains a solution
of the equation and has a length one-half that of the preceding interval. Note that at each
step, the midpoint of a subinterval of length l is within l / 2 of the exact solution:

The program in Example 6.11 uses the bisection method to find an approximate
solution of

f(x) = x3 + x – 5 = 0

It generates successive approximations to a solution, terminating when an interval is
obtained whose length guarantees a specified accuracy entered by the user.

x
ba

y = f (x)

First subinterval

Second subinterval

y

L

K11207.indb 178 6/15/12 10:07 AM

Functions and Libraries    ◾    179  

Example 6.11 Bisection Method

/* Program finds an approximate solution of the equation f(x) = 0
in a given interval, using the bisection method.

Input: desired accuracy of approximation, endpoints of an interval
containing a solution

Output: prompts to the user and the approximate solution
--*/

#include <iostream>
using namespace std;

double f(double x);

int main()
{
cout << "\nThis program uses the bisection method to find an\n"

<< "approximate solution to the equation f(x) = 0.\n";

double desiredAccuracy; // the accuracy desired

cout << "\nEnter the accuracy desired (e.g. .001): ";
cin >> desiredAccuracy;

double left, right; // get interval containing a solution

do
{

cout << "Enter endpoints of an interval containing a solution: ";
cin >> left >> right;

}
while (f(left) * f(right) >= 0.0);

double width = right – left, // the interval width
 midPt, // the midpoint of the interval
 fMid; // value of f() at midpoint

while (width/2.0 > desiredAccuracy)
{

midPt = (left + right) / 2.0;
fMid = f(midPt);

if (f(left) * fMid < 0.0) // solution is in left half
right = midPt;

else // solution is in right half
left = midPt;

width /= 2.0; // split the interval
}

K11207.indb 179 6/15/12 10:07 AM

180    ◾    Programming in C++ for Engineering and Science

cout << " \n-->" << midPt << " is an approximate solution of "
<< " f(x) = 0, to within " << desiredAccuracy << endl;

}

// Function for which a root is being found
double f(double x)
{

return x*x*x + x - 5;
}

SAMPLE RUN:
This program uses the bisection method to find an
approximate solution to the equation f(x) = 0.

Enter the accuracy desired (e.g. .001): 1e-4
Enter endpoints of an interval containing a solution: 0 1
Enter endpoints of an interval containing a solution: 0 2

-->1.51599 is an approximate solution of f(x) = 0, to within 0.0001

6.5.2 numerical Integration—Approximating Areas of Regions

One important problem in calculus is finding the area of a region bounded below by the
x-axis, above by the graph of a function y = f(x), on the left by a vertical line x = a, and on
the right by a vertical line x = b:

More generally, the problem is to approximate the integral

f x dx
a

b

()∫
One common method is to divide the interval [a, b] into n subintervals, each of width ∆x

= (b – a)/n using n – 1 equally spaced points x1, x2, ..., xn–1. Locating the corresponding points
on the curve and connecting consecutive points using line segments forms n trapezoids:

a b
x

y

y = f (x)

K11207.indb 180 6/15/12 10:07 AM

Functions and Libraries    ◾    181  

The sum of the areas of these trapezoids is approximately the area under the graph of
f; thus, this method is known as the trapezoidal method for approximating integrals.
(The programming problems describe simpson’s method, which uses parabolas instead of
trapezoids.) The formula for the area of a trapezoid gives

∆ +−x y y
1

2
()i i1

for the area of the ith trapezoid, where yi – 1 and yi are the values of the function f at xi – 1 and
xi , respectively. Summing these and combining terms gives the formula

∆ + + + + ⋅⋅⋅

−x

y y
y y y

2
n

n
0

1 2 1

or, written more concisely using summation (Σ) notation,

∆x y y yn
i

i

n
0

1

1

2
+ +

=

−

∑

The program in Example 6.12 implements the trapezoidal method.

Example 6.12 Trapezoidal Approximation of an Integral

/* This program approximates the area under the graph of a function
f() over an interval [a, b] using the trapezoidal rule -- and
thus approximates the definite integral of f() from a to b.

Input: the endpoints a and b of the interval, and the number of
subintervals to use

Output: approximation to the integral of f() on [a, b]
--*/

y

x

y = f (x)

x1 x2 x3 x4 xn–1 ba

K11207.indb 181 6/15/12 10:07 AM

182    ◾    Programming in C++ for Engineering and Science

#include <iostream> // cin, cout, <<, >>
using namespace std;

double f(double x); // function to be integrated

int main()
{
cout << "Trapezoidal approximation of an integral:\n";

int n; // number of subintervals
double a, b, // endpoints of interval

deltaX, // length of subintervals
x, y, // point on graph of f()
sum; // sum of areas of trapezoids

cout << "Enter interval endpoints and the # of subintervals: ";
cin >> a >> b >> n;

deltaX = (b - a) / n;
sum = 0;
x = a;

for (int i = 1; i <= n - 1; i++)
{

x += deltaX;
y = f(x);
sum += y;

}
sum = deltaX * ((f(a) + f(b))/2 + sum);

cout << "Approximate value using " << n << " subintervals: "
<< sum << endl;

}

// Function being integrated
double f(double x)
{ return x*x + .1; }

SAMPLE RUNS:
Trapezoidal approximation of an integral:
Enter interval endpoints and the # of subintervals: 0 1 10
Approximate value using 10 subintervals: 1.335

Trapezoidal approximation of an integral:
Enter interval endpoints and the # of subintervals: 0 1 50
Approximate value using 50 subintervals: 1.3334

Trapezoidal approximation of an integral:

K11207.indb 182 6/15/12 10:07 AM

Functions and Libraries    ◾    183  

Enter interval endpoints and the # of subintervals: 0 1 100
Approximate value using 100 subintervals: 1.33335

6.5.2.1 Application: Road Construction
There are many problems where it is necessary to compute the area under a curve (or the
more general problem of calculating an integral). One such problem is the following road
construction problem. A construction company has contracted to build a highway for the
state highway commission. Several sections of this highway must pass through hills from
which large amounts of dirt must be excavated to provide a flat and level roadbed.

To estimate the construction costs, the company needs to know the volume of dirt that
must be excavated from the hill.

To estimate the volume of dirt to be removed, we can assume that the height of the hill
does not vary from one side of the road to the other. The volume can then be calculated as

(volume = cross-sectional area of the hill) × (width of the road)

The cross-sectional area of the hill can be computed using the trapezoidal method. (A program
that solves this problem is included on the website for this text.)

6.5.3 numerical Solutions of Differential Equations

Equations that involve derivatives or differentials are called differential equations. They arise
in a large number of problems in science and engineering. It is very difficult or even impos-
sible to solve many differential equations exactly, but it may be possible to find an approxi-
mate solution using a numerical method. There are many such methods, and we describe
one of the simpler ones, Euler’s method, here. (Another popular method and one of the most
accurate, the Runge-Kutta method, is described in the programming problems.)

We are given a first-order differential equation:

y' = f(x, y)

1000 ft

75 ft

1000 ft

K11207.indb 183 6/15/12 10:07 AM

184    ◾    Programming in C++ for Engineering and Science

that satisfies a given initial condition:

y(x0) = y

Euler’s method for obtaining an approximate solution over some interval [a, b], where
a = x0, is as follows:

 1. Select an x-increment Δx.

 2. For n = 0, 1, 2, . . ., do the following:

 a. Set xn + 1 = xn + Δx.

 b. Find the point Pn + 1(xn + 1, yn + 1) on the line through Pn(xn, yn) with slope f(xn, yn).

 c. Output yn + 1, which is the approximate value of y at xn + 1.

The following diagram illustrates Euler’s method:

The program in Example 6.13 uses Euler’s method to find an approximate solution for

 y' = 2xy

 y(0) = 1

Sample runs with a = 0, b = 1, Δx = 0.2 and a = 0, b = 0.5, Δx = 0.05 are shown.

Example 6.13 Euler’s Method for Solving a Differential Equation

/* This program uses Euler's method to obtain an approximate solution
to a first-order differential equation of the form y' = f(x, y)

Input: initial values for x and y, an increment deltaX, and
number of iterations

P0(x0,y0)

x0 x1
∆x ∆x ∆x

x2 x3

P1(x1,y1)

P2(x2,y2)
P3(x3,y3)

Exact solution

y

x

K11207.indb 184 6/15/12 10:07 AM

Functions and Libraries    ◾    185  

Output: a sequence of points (x, y) that approximate the solution
curve

--*/

#include <iostream> // cin, cout, <<, >>
#include <iomanip> // output formatters
using namespace std;

double f(double x, double y);

int main()
{
cout << " Euler's method for solving a differential equation:\n";

double x, y, // current x value, y value
xNext, yNext, // next x value, y value
deltaX; // x-increment used

int numIterations; // number of iterations.

cout << "Enter x0 and y0, x-increment to use, and "
<< "number of values to calculate:\n";

cin >> x >> y >> deltaX >> numIterations;

cout << " X Y\n"
<< "=====================\n"
<< fixed << setprecision(5) << showpoint
<< setw(10) << x << setw(10) << y << endl;

// Iterate with Euler's method

for (int n = 1; n <= numIterations; n++)
{

xNext = x + deltaX;
y = y + f(x, y) * deltaX;
x = xNext;
cout << setw(10) << x << setw(10) << y << endl;

}
}

double f(double x, double y)
{ return 2.0 * x * y; }

SAMPLE RUNS:
Euler's method for solving a differential equation:
Enter x0 and y0, x-increment to use, and number of values to calculate:
0 1 0.2 5

K11207.indb 185 6/15/12 10:07 AM

186    ◾    Programming in C++ for Engineering and Science

 X Y

====================
 0.00000 1.00000
 0.20000 1.00000
 0.40000 1.08000
 0.60000 1.25280
 0.80000 1.55347
 1.00000 2.05058

Euler's method for solving a differential equation:
Enter x0 and y0, x-increment to use, and number of values to calculate:
0 1 .05 10

 X Y
====================
 0.00000 1.00000
 0.05000 1.00000
 0.10000 1.00500
 0.15000 1.01505
 0.20000 1.03028
 0.25000 1.05088
 0.30000 1.07715
 0.35000 1.10947
 0.40000 1.14830
 0.45000 1.19423
 0.50000 1.24797

ChAPTER SUMMARY

Key Terms

#include directive

abstraction

argument

body of a function

call to a function

compilation

documentation file

driver program

encapsulation

executable program

executable file

function

function declaration

function definition

function heading

function prototype

function stub

header file

implementation file

information hiding

interface file

library

K11207.indb 186 6/15/12 10:07 AM

Functions and Libraries    ◾    187  

linking

local variable

object file

object program

parameter

private

public

received value

return statement

return value

separate compilation

specification

subprogram

void keyword

noTES
•	 A function provides a way to encapsulate code so that it can be reused.

•	 Like variables and constants, a function must be declared before it can be used. The
declaration of a function is also called a prototype and has the form

 returnType functionName(parameter_declaration_list);

•	 The general form of a function definition is

 function heading
 function body

 where the heading has the general form

 returnType functionName(parameter_declaration_list)

 and the body is a sequence of statements enclosed in curly braces ({ and }):

 {
 statements
 }

•	 When a function is called, the arguments are associated with the parameters from
left to right—the first argument with the first parameter, the second argument with
the next parameter, and so on, until the matching is complete. There should be the
same number of arguments as parameters, and each argument’s type must be com-
patible with the type of the corresponding parameter.

•	 Execution transfers from a function back to the caller when a return statement is
encountered or the end of the function is reached.

•	 No return statement is required for functions whose return type is void, but it
may be used in the form return; to return before the end of the function is reached.

•	 Like programs, functions should be tested to ensure correctness.

K11207.indb 187 6/15/12 10:07 AM

188    ◾    Programming in C++ for Engineering and Science

•	 A function’s documentation should include its specification—descriptions of its
parameters and their types, values input to the function, what it returns, values it
outputs, preconditions, and postconditions.

•	 Local variables, constants, and parameters exist only while a function is executing
and thus can be accessed only within the function. This means that other functions
may reuse the name of a local item for some other purpose without causing a conflict.

•	 A library is a collection of files:

•	 A header file that contains declarations and prototypes of a library’s items that is
also called the interface file because it acts as an interface between the library and
client programs. It is inserted into a program (or another library) using a directive
of the form #include "Library.h".

•	 An implementation file that contains definitions of items not defined in the
header file. It must be separately compiled and then linked to a client program.
Items defined in it that are declared in the header file can be accessed in any pro-
gram that #includes the header file and links to this implementation file. Items
defined here but not declared in the header file cannot be accessed outside of this
implementation file, even by a program that #includes the header file.

•	 A documentation file that contains documentation for the library’s items.

Style and Design Tips

•	 Functions should be documented in the same way as programs. The documentation
should include the following:

•	 A statement of what it does

•	 Its specification, which consists of those of the following that apply:

 − what it receives (i.e., its parameters);

 − what is input to the function;

 − preconditions—restrictions or limitations on the parameters’ values in order
for the function to work properly;

 − what it returns;

 − what it outputs;

 − postconditions—effects produced by the function.

 In this text, to avoid cluttering the header and implementation files, we place the
documentation for functions stored in a library in a separate documentation file.

•	 Functions are separate program components, and the white space in a program should
reflect this. In this text, we

K11207.indb 188 6/15/12 10:07 AM

Functions and Libraries    ◾    189  

•	 Insert appropriate documentation before each function defined in the main func-
tion’s file, to separate it from other program components;

•	 Indent the declarations and statements within each function.

•	 all guidelines for programming style apply to functions.

•	 Once a problem has been analyzed to identify the problem’s objects and the operations
needed to solve it, an algorithm should be constructed that specifies the order in which
the operations are applied to the objects.

•	 Operations that are not predefined (or are nontrivial) in C++ should be encoded as
functions, separate from the main function.

•	 a function that encodes an operation should be designed in the same manner as the
main function.

•	 a function that returns no values should have its return type declared as void.

•	 a function that receives no values should have no parameters within the parentheses of
the function heading.

•	 if a function is sufficiently general that it might someday prove useful in solving a differ-
ent problem, a library should be constructed to store that function, rather than declar-
ing and defining it in the program’s source file.

•	 a library’s files should be documented in much the same way as programs. For each
library, provide a special documentation file that describes clearly, precisely, and com-
pletely the contents of the library and how to use items in it, any special algorithms it
implements, and other useful information such as the author, a modification history,
and so on. This documentation file should be kept in the same place as the other files
of a library, so that users can refer to that file in order to understand and use the
objects and functions stored in the library.

•	 When the header file of a less commonly used library is inserted in a program (using
#include), a comment should be used to explain its purpose, for example, what is
being used from it in the program.

•	 libraries provide the following benefits:

•	 a library extends the language, because its objects can be made available to any
program or to another library.

•	 The items in a library’s interface can be used without being concerned about the
details of their implementation.

•	 Programs and libraries can be compiled separately. Changing the implementation
file of a library requires recompilation of only that implementation file.

•	 libraries provide another level of modularity in software design; related functions and
other objects can be grouped together in independent libraries.

K11207.indb 189 6/15/12 10:07 AM

190    ◾    Programming in C++ for Engineering and Science

warnings

 1. When a function is called, the list of arguments is matched against the list of parameters
from left to right, with the leftmost argument associated with the leftmost parameter, the
next argument associated with the next parameter, and so on. The number of arguments
must be the same as the number of parameters (for exceptions see the description of
default arguments on the text’s website) and the type of each argument must be compat-
ible with the type of the corresponding parameter.

 2. identifiers defined within a function (e.g., parameters, local variables, and local con-
stants) are defined only during the execution of that function; they are undefined both
before and after its execution. Any attempt to use such identifiers outside the function
(without redeclaring them) is an error.

 3. if a function changes the value of a parameter, the value of the corresponding argument
is not altered. A parameter is a completely separate variable into which the argument
value is copied. Any change to the parameter changes the copy, not the correspond-
ing argument.10

 4. a function must be declared before it is called.

 5. if a function needs things from a library, the header file of that library must be inserted
(using #include) before the definition of that function.

 6. The implementation file of a library should always insert the header file of that library
(using #include) so that the compiler can verify that each function’s prototype is
consistent with its definition. Failure to follow this rule is a common source of linking
errors.

 7. a function that is defined in the implementation file of a library but not declared in
that library’s header file cannot be called outside the library (but it can be called inside
the library).

TEST YoURSELF

Section 6.3

 1. In addition to input and output objects, what two other kinds of objects are usually
included in the description of a function’s behavior?

 2. In the function heading double sum(int a, char b), a and b are called .

 3. For a function whose heading is double sum(int a, char b), the type of the
value returned by the function is .

 4. The keyword is used to indicate the return type of a function that returns
no value.

10 Except as noted in Footnote 5.

K11207.indb 190 6/15/12 10:07 AM

Functions and Libraries    ◾    191  

 5. A function stub is a function definition in which the function’s body contains .

Questions 6–10 deal with the following function definition:

 int what(int n)
 {

 return (n * (n + 1)) / 2;
 }

 6. If the statement number1 = what(number2); appears in the main function,
number2 is called a(n) in this function call.

 7. If the statement int number = what(3); appears in the main function, the value
assigned to number will be .

 8. (True or false) The value assigned to number by the statement int number =
what(2+3); in the main function will be 15.

 9. (True or false) The value assigned to number by the statement int number =
what(1, 5); in the main function will be 3.

 10. Write a prototype for function what().

 11. Write a function definition that calculates values of +x x2 .

 12. Write a function definition that calculates the integer average of two integers.

 13. Write a function definition that displays three integers on three lines separated by
two blank lines.

Section 6.4

 1. (True or false) Libraries were first provided in the language C++.

 2. What are the three types of files included in a library?

 3. What are the main benefits of using libraries?

 4. A library’s file contains the declarations and prototypes of the items in the
library.

 5. A library’s file contains the definitions of the functions in the library.

 6. A library’s file is sometimes called its interface file.

 7. The items in a library’s header file contain information, whereas the items
in its implementation file contain information (public or private).

 8. If a program contains #include , the compiler will search for the file lib
in a special system include directory.

 9. If a program contains #include , the compiler will search for the file lib
in the directory that contains the program being compiled.

K11207.indb 191 6/15/12 10:07 AM

192    ◾    Programming in C++ for Engineering and Science

 10. What two steps are required to translate a program that uses libraries?

 11. (True or false) A library’s header file is usually compiled separately from a program
that uses the library.

 12. (True or false) If a library’s header file is modified then all programs that use the
library must be recompiled.

 13. makes it possible to use a library without knowing all the details of how it
is implemented.

ExERCISES

Section 6.3

For Exercises 1–13, you are to write functions to compute and return various quantities. To test
these functions, you should write driver programs as instructed in the Programming Problems.

 1. Find the circumference of a circle with a given radius. (C = 2πr).

 2. Find the area of a circle with a given radius. (a = πr2).

 3. Find the perimeter of a rectangle, given the lengths of the sides. (P = 2l + 2w).

 4. Find the area of a square, given the lengths of the sides. (a = s2).

 5. Find the perimeter of a triangle, given the lengths of the three sides. (P = s1 + s2 + s3).

 6. Find the area of a triangle, given the lengths of the three sides. (The area of a triangle
can be found by using hero’s formula, = − − −area s s a s b s c()()() where a, b, and c
are the lengths of the sides and s is one half of the perimeter.)

 7. Find the sum 1 + 2 ... + n for a given positive integer n.

 8. Find the sum m + m + 1 + ... + n for two given integers m and n with m ≤ n.

 9. U.S. dollars are typically converted to another country’s currency by multiplying the
U.S. dollars by an exchange rate, which varies over time. For example, if on a given
day, the U.S.-to-Canada exchange rate is 1.22, then $10.00 in U.S. currency can be
exchanged for $12.20 in Canadian currency. Write a function US_to_Canadian()
that, given a dollar amount in U.S. currency and the exchange rate, returns the equiv-
alent number of dollars in Canadian currency.

 10. Proceed as in Exercise 9, but write a function Canadian_to_US() that, given a
dollar amount in Canadian currency and the exchange rate, returns the equivalent
number of dollars in U.S. currency.

 11. The number of bacteria in a culture can be estimated by n · ekt, where n is the initial
population, k is a rate constant, and t is time. Write a function to calculate the num-
ber of bacteria present for given initial population, rate, and time.

K11207.indb 192 6/15/12 10:07 AM

Functions and Libraries    ◾    193  

 12. The wind chill index, described in the text, was developed in 1941, with the latest
revision of the formula for it published in 2001. It is a measure of discomfort due to
the combined cold and wind, and is based on the rate of heat loss due to various com-
binations of temperature and wind. The heat index, developed in 1979, is a measure
of discomfort due to the combination of heat and high humidity, and is based on
studies of evaporative skin cooling for combinations of temperature and humidity. It
is computed using the following formula:

heat index 42.379 2.04901523= × +− + t 10 1433312. 77

0 22475541

×

− × ×

r

t r . −− ×(.6 83783 2E – 3)

t

−− × + × ×(5.48171E – 2) 1.22874E – 3r t r2 2()

 8.5282E – 4 1+ × × −() (t r 2 ..99E – 6) × ×t r2 2

 where t is the temperature in degrees Fahrenheit and r is the relative humidity. Write
a function to compute the heat index for given temperature and relative humidity.

 13. Write a function that for a given distance, returns a cost, according to the following table:

Distance Cost

0 through 100 $5.00
More than 100 but not more than 500 $8.00
More than 500 but less than 1000 $10.00
1000 or more $12.00

 14. A quadratic equation of the form ax2 + bx + c = 0 has real roots if the discriminant
b2 – 4ac is non-negative. Write a function that receives the coefficients a, b, and c of a
quadratic equation, and returns true if the equation has real roots and false otherwise.

 15. A prime number is an integer n > 1 whose only positive divisors are 1 and n itself. Write
a boolean-valued function that determines whether an integer is a prime number.

 16. The greatest common divisor (GCD) of two integers a and b, not both of which are zero,
is the largest positive integer d that divides both a and b. The Euclidean algorithm for
finding this greatest common divisor of a and b, GCD(a, b), is as follows: If b = 0,
GCD(a, b) is a. Otherwise divide a by b to obtain quotient q and remainder r, so that
a = bq + r. Then GCD(a, b) = GCD(b, r). Replace a by b and b by r and repeat this
procedure. Because the remainders are decreasing, a remainder of 0 will eventually
result. The last nonzero remainder is then GCD(a, b). For example,

 1260 = 198 · 6 + 72 GCD(1260, 198) = GCD(198, 72)
 198 = 72 · 1 + 54 = GCD(72, 54)
 72 = 54 · 1 + 18 = GCD(54, 18)
 54 = 18 · 3 + 0 = 18

K11207.indb 193 6/15/12 10:07 AM

194    ◾    Programming in C++ for Engineering and Science

 note: If either a or b is negative, replace it with its absolute value.

 Write a function to calculate the GCD of two integers.

 17. Write a function that, given a positive integer n, displays the squares, cubes, and
square roots of the first n positive integers.

 18. Write a function that, given real numbers a, b, and deltaX, displays a list of points
(x, y) on the graph of y = x3 – 3x + 1 for x ranging from a to b in increments of deltaX.

 19. A certain city classifies a pollution index less than 35 as “pleasant,” 35 through 60 as
“unpleasant,” and above 60 as “hazardous.” Write a function that displays the appro-
priate classification for a pollution index.

 20. A wind chill of 10°F or above is not considered dangerous or unpleasant; a wind chill
of –10°F or higher but less than 10°F is considered unpleasant; if it is –30°F or above but
less than –10°F, frostbite is possible; if it is –70°F or higher but below –30°F, frostbite
is likely and outdoor activity becomes dangerous; if the wind chill is less than –70°F,
exposed flesh will usually freeze within half a minute. Write a function that displays
the appropriate weather condition for a wind chill index.

PRoGRAMMInG PRoBLEMS

Section 6.3

For Problems 1–20, write a driver program to test the function.

 1. Exercise 1: circumference of a circle

 2. Exercise 2: area of a circle

 3. Exercise 3: perimeter of a rectangle

 4. Exercise 4: area of a rectangle

 5. Exercise 5: perimeter of a triangle

 6. Exercise 6: area of a triangle

 7. Exercise 7: sum of first n positive integers

 8. Exercise 8: sum of consecutive integers

 9. Exercise 9: convert U.S. to Canadian currency

 10. Exercise 10: convert Canadian to U.S. currency

 11. Exercise 11: number of bacteria in a culture

 12. Exercise 12: heat index

 13. Exercise 13: cost for a given distance

K11207.indb 194 6/15/12 10:07 AM

Functions and Libraries    ◾    195  

 14. Exercise 14: quadratic equation checker. Test it with the following values for a, b, and c:
1, 25, 6; 1, 22, 1; 1, 0, 4; 1, 1, 1; 2, 1, 2

 15. Exercise 15: check if a number is a prime

 16. Exercise 16: find the greatest common divisor of two integers

 17. Exercise 17: display squares, cubes, square roots of consecutive positive integers

 18. Exercise 18: display list of points on a graph

 19. Exercise 19: display classification of a pollution index. Test it with the following data:
20, 45, 75, 35, 60.

 20. Exercise 20: display weather condition for a wind chill index. Test it with the follow-
ing data: –80, 10, 0, –70, –10, –5, 10, –20, –40.

 21. Write a modification of the quadratic-equation function of Exercise 14 that returns 0 if
the quadratic equation has no real roots (discriminant is negative), 1 if it has a repeated
real root (discriminant is 0), and 2 if it has two distinct real roots (discriminant is
positive). Add this quadratic-checker function to a driver program and test it using the
values in Exercise 14 for a, b, and c.

Section 6.4

 1. Construct a library Exchange that contains the monetary-conversion functions
from Exercises 9 and 10 in Section 6.3. Write a driver program to test your library.

 2. Construct a library Time that contains time-conversion functions that convert sec-
onds to minutes, minutes to hours, hours to days. Write a driver program to test your
library.

 3. Construct a library Geometry that contains the functions from Exercises 1–6 in
Section 6.3. Write a driver program to test your library.

 4. Write a program to read one of the codes C for circle, R for rectangle, or T for triangle,
followed by the radius of the circle, the sides of the rectangle, or the sides of the
 triangle, respectively. Using the functions in the library Geometry of Problem 3,
the program should then calculate and display with appropriate labels the perimeter
and the area of that geometric figure.

 5. Construct a library Cylinder containing functions to compute the total surface
area, lateral surface area, and volume of a right-circular cylinder. For a cylinder of
radius r and height h, these can be calculated using:

 Total Surface Area = 2πr(r + h)
 Lateral Surface Area = 2πrh
 Volume = πr2h

 Write a driver program to test your library.

K11207.indb 195 6/15/12 10:07 AM

196    ◾    Programming in C++ for Engineering and Science

 6. Construct a library Metric that contains functions to convert English-system mea-
surements into their metric-system counterparts. Your library should provide the
following conversions:

•	 Inches to centimeters (1 in. = 2.54 cm)

•	 Feet to centimeters (1 ft. = 12 in.)

•	 Feet to meters (1 meter = 100 cm)

•	 Yards to meters

 Write a driver program to test your library.

 7. Extend the metric library in Problem 6 to include (at least) the following conversions
and extend your driver program to test them:

•	 Feet to decimeters (1 meter = 10 decimeters)

•	 Inches to millimeters (1 centimeter = 10 millimeters)

•	 Miles to kilometers (1 mile = 1,760 yards, 1 kilometer = 100 meters)

Section 6.5
Root Finding

 1. The steady state of a certain circuit with a coil wound around an iron core is obtained
by solving the equation f(Φ) = 0 for the flux Φ, where Φ = − Φ − Φf () 20 2.5 0.015 3 . It
is easy to check that the function f changes sign in the interval [6, 7]. Use the bisection
method to find a solution to the equation in this interval.

 2. The state of an imperfect gas is given by van der Waal’s equation

()+ α

 − β =p

v
v RT2

 where p = pressure (atm), v = molar volume (l/mole), T = absolute temperature (°K),
and r = gas constant (0.0820541 atm/mole °K). For carbon dioxide, α = 3.592 and
β = 0.04627. Assume that p = 0.9 atm and T = 300°K. Use the bisection method to
solve the following equivalent cubic equation for v: pv p RT v v3 2 0− + + − =() .β α αβ

 3. The Cawker City Construction Company can purchase a new piece of equipment for
$4,440 or by paying $141.19 per month for the next 36 months. You are to determine
what annual interest rate is being charged in the monthly payment plan. The equation
that governs this calculation is the annuity formula

= ⋅ + −

+

A P
R

R R

(1) 1

(1)

N

N

K11207.indb 196 6/15/12 10:07 AM

Functions and Libraries    ◾    197  

 where a is the amount borrowed, P is the monthly payment, r is the monthly interest
rate (annual rate/12), and n is the number of payments. Use the bisection method to
solve this equation for r.

 4. In level flight, the total drag on the Cawker City Construction Company jet is equal
to the sum of parasite drag (DP) and the drag due to lift (DL), which are given by

= σ

D
f V

391
P

2

 and

=

σ

D

e

W

b V

1245 1
L

2

2

 where V is velocity (mph), W is weight (15,000 lb), b is the span (40 ft), e is the wing
efficiency rating (0.800), f = parasite drag area (4 ft2), and σ = (air density at altitude)/
(air density at sea level) = 0.533 at 20,000 ft (for standard atmosphere). Use the bisec-
tion method to find the constant velocity V needed to fly at minimum drag (level
flight), which occurs when DP = DL.

 5. The following figure shows a mass M attached to a slender steel rod of mass m:

 The frequency equation for the free undamped longitudinal vibration is

β β = m

M
tan

 where

β = ωl

c

 Here,

 c = E

ρ
,

 l = length of the rod (115 in), E = Young’s modulus (= 3 × 107 psi), ρ = mass per unit
volume (= 7.2 × 10–4 lb × sec2/in4). Use the bisection method to find the smallest root
of the frequency equation if m/M = 0.40.

M

l

K11207.indb 197 6/15/12 10:07 AM

198    ◾    Programming in C++ for Engineering and Science

 6. Flexible cables have many applications in engineering, such as suspension bridges
and transmission lines. Cables used as transmission lines carry their own uniformly
distributed weight and assume the shape of a catenary shown in the following
figure.

 These curves have equations of the form

=

y a

x

a
cosh

 Assume that the cable has a span of 100 m and maximum deflection of 20 m, and that
the weight of the cable per unit length is w = 50 N/m. The minimum and maximum
tensions occur in the middle (when y = a) and at the ends (when y = a + 20) and can
be computed as Tmin = w × a and Tmax = w × (a + 20). Find the extreme tension values
by using the bisection method to solve the equation

+ =

a a

a
20 cosh

50

 to find the value of a and then substituting this value into the equations for
Tmin and Tmax.

 7. The cross section of a trough with length l is a semicircle with radius r = 1 m. Assume
that the trough is filled with water to within a distance h from the top. The volume V
of the water is given by

= π −

 − −

V h L r r
h

r
h r h()

1

2
arcsin2 2 2 2

 where the three terms represent the area of the semicircle and areas 2a1 and 2a2.

a

a

K11207.indb 198 6/15/12 10:07 AM

Functions and Libraries    ◾    199  

 Assume that l = 10 m and V = 10 m3. Find the depth of the water (which is r – h =
1 – h). Note that V(0) = πl/2 ≈ 15.7, that V(r) = 0, and that V decreases as h increases;
thus, there is a unique solution for h. Use the bisection method to find this solution.

 8–14. The newton-raphson method is another commonly used method for finding an
approximate solution of an equation f(x) = 0. It consists of taking an initial approxi-
mation x1 to the root and constructing the tangent line to the graph of f() at point
 P1(x1, f(x1)). The point x2 at which this tangent line crosses the x-axis is the second
approximation to the root. Another tangent line may be constructed at point P2(x2,
f(x2)), and the point x3 at which this tangent line crosses the x-axis is the third approx-
imation. For many functions, the sequence of approximations x1, x2, x3, . . . converges
to the root, provided that the first approximation is sufficiently close. The following
diagram illustrates the Newton-Raphson method:

 If xn is an approximation to the zero of f(), then the formula for obtaining the next
approximation xn + 1 is

= −+x x

f x

f x

()

'()
n n

n

n
1

 where f′() is the derivative of f(). Proceed as in Problems 1–7, but use the Newton-
Raphson method in place of the bisection method.

hr

A2A2

A1A1

x1x2

P2(x2,y2)

P1(x1,y1)

y = f (x)

x3c
x

y

K11207.indb 199 6/15/12 10:07 AM

200    ◾    Programming in C++ for Engineering and Science

Numerical Integration
For Problems 15–21, use the trapezoidal method to find the approximate values of the
integrals.

 15. The current i passing through a capacitor is given by

=

π

i t

t
() 10sin2

 amps, where t denotes the time in seconds. Assume that the capacitance C is 5 F (far-
ads). The voltage across the capacitor is given by

 ∫=v T
C

i t dt()
1

()
T

0

 volts. Find the value of v(T) for T = 1, 2, 3, 4, and 5 seconds.

 16. The circumference C of an ellipse with major axis 2a and minor axis 2b is given by

∫= − −

Φ Φ
π

C a
a b

a
d4 1 sin

2 2

2
2

0

/2

 Assume that a room has the shape of an ellipse with a = 20 m, b = 10 m, and height
h = 5 m. Find the total area a = hC of the wall.

 17. The fraction f of certain fission neutrons having energies above a certain threshold
energy E* can be determined by the formula

 ∫= − −f e h E dE1 0.484 sin(2)E
E

0

*

 Find the value of f for E* = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0.

 18. A particle with mass m = 10 kg is moving through a fluid and is subjected to a viscous
resistance = −R v v() 3/2 , where v is its velocity. The relation between time t, velocity v,
and resistance r is given by

∫=t

m

R v
dv

()v

v t()

0

 seconds, where v0 is the initial velocity. Assuming that v0 = 15 m/sec, find the time T
required for the particle to slow down to v(T) = 7.5 m/sec.

K11207.indb 200 6/15/12 10:07 AM

Functions and Libraries    ◾    201  

 19. Suppose that a spring has been compressed a distance xc:

 If F(x) is the external force, then the absorbed energy can be expressed as

 ∫=E F x dx()
x

0

c

 Assume that

 =F x e x()
1

2
sin (3)x 2 22

 newtons and xc = 1 cm. Compute the absorbed energy.

 20. The work done (in joules) by a force (in newtons) that is applied at angle θ as it moves
an object from x = a to x = b on the x-axis (with meters as units) is given by

W F x x dx

a

b

= ∫ ()cos(())θ

 where F(x) is the force applied at point x at angle θ(x) (radians). Compute the work
done for a = 20.0 m, b = 50.0 m, and the following pairs of values for F(x) and θ(x):

F(x) θ(x)
0.0 0.60
4.3 0.87
7.8 1.02
9.9 0.99

12.5 1.20
16.3 0.98
18.4 0.86
21.7 0.43
25.4 0.23
22.3 0.14
20.9 0.15
18.7 0.08

F

xc

K11207.indb 201 6/15/12 10:07 AM

202    ◾    Programming in C++ for Engineering and Science

 21. Write a program that uses the trapezoidal method to find the cross-sectional area of
the hill in the road-construction problem where the height of the hill has been measured
in increments of 100 feet and tabulated as follows:

Distance Height
0 0

100 6
200 10
300 13
400 17
500 22
600 25
700 20
800 13
900 5

1000 0

 Then use this value to find the volume of dirt to be removed.

22.–28. Another method of numerical integration that generally produces better approxi-
mations than the trapezoidal method is based on the use of parabolas and is known
as simpson’s rule. In this method, the interval [a, b] is divided into an even number n
of subintervals, each of length Δx, and the sum

∆x y y y y y y y yn n n3
4 2 4 2 2 40 1 2 3 4 2 1()+ + + + +⋅⋅⋅+ + +− −

 is used to find the area under the graph of f over the interval [a, b]. Write a program
to implement Simpson’s method and use it to solve Problems 15–21.

Differential Equations
For Problems 29–33, write a program that uses Euler’s method with the specified step size
to obtain approximate solutions.

 29. The linear-lag behavior of the components of control systems usually is modeled by
the differential equation

+

τ
=

τ
y y

Au t
'

1 ()

 where

 y = time-dependent output of the component

 a = gain factor

K11207.indb 202 6/15/12 10:07 AM

Functions and Libraries    ◾    203  

 u = time-dependent input of the component

 τ = time constant.

 Select τ = 1, a = 8, and assume that y(0) = 0 and that the input is given by =u t e t() sint /2 .
Find an approximate solution to this initial-value problem for y(t) in the interval [0, 1].

 30. Consider a spherical water tank with radius r drained through a circular orifice with
radius r at the bottom of the tank:

 Because there is an air hole at the top of the tank, an atmospheric pressure can be
found in the empty portion of the tank. In order to determine the time when the tank
should be drained from any level to any other level, the water height h as a function
of time should be determined. For any height, the volume of the tank is known to be

= π −V h R h

1

3
(3)2

 If the area of the orifice is a and the velocity of the water flowing through the orifice
is V, then

= −πdV

dt
r gh22

 where g = 115.8 ft/min2 is the gravitation constant. Differentiation of the equation for
V gives

dV

dt
hR h

dh

dt
= −() ,2 2π π

 so

=

−
−

dh

dt

r gh

hR h

2

2

2

2

hR

2r

K11207.indb 203 6/15/12 10:07 AM

204    ◾    Programming in C++ for Engineering and Science

 Assume that r = 15 ft and r = 0.2 ft and that the initial condition is h(0) = 28 ft. Solve
this initial-value problem for h, using a step size of Δt = 1 min and continuing the
calculations until the water height becomes less than 0.2 ft.

 31. A new gas well is estimated to contain 9000 tons of natural gas at a pressure of
p0 = 900 psia. The distribution system is connected to the well at the discharge pressure
p* = 400 psia. The discharge Q in tons per day through the outlet pipe from the well is
approximated by the equation = α − βQ p p(*)2 2 , where α = 1.115 × 10–4, β = 0.8, and
p = initial pressure of gas in the well in psia. It is also assumed that the gas pressure is
directly proportional to the discharge Q, which is modeled by the differential equation

= −dp

dt
kQ

 with

= =k

900 psia

9000 tons
0.1

psia

tons

 Combining the two equations leads to the initial-value problem

= − α −

=

βdp

dt
k p p

p p

(*)

(0)

2 2

0

 Solve this initial-value problem using a step size of Δt = 0.01 and performing 10 steps.

 32. The following figure shows a circuit consisting of a coil wound around an iron core,
a resistance, a switch, and a voltage source:

 The magnetization curve is given by the equation

= Φ + ΦNi

1

2

3

1000
3

 where n = number of turns of coil, i = current (amperes), and Φ = flux in core
(kilolines). Kirchoff’s law gives the differential equation

R
E

Iron core

K11207.indb 204 6/15/12 10:07 AM

Functions and Libraries    ◾    205  

= + = + Φ−E Ri L

di

dt
Ri

d

dt
10 5

 where l = self-inductance (henrys), r = resistance (ohms), and t = time (sec). Assume
n = 100 and r = 500. Then

Φ = − Φ − Φ Φ =d

dt
E 2.5 0.015 , (0) 03

 where t is now measured in milliseconds. For E = 20 V, solve this initial-value prob-
lem in the interval [0, 2] using a step size Δt = 0.01.

 33. The number of individuals in a population is measured each year. Let P(t) denote the
population at year t. Let α denote the birthrate, and assume that the death rate β is pro-
portional to the size of the population, that is, β = γP(t), where γ is a constant. Hence, the
growth rate of the population is given by the logistic equation = α − γP t P t P t'() () [()]2 .
Assume that P(0) = 50,000, α = 3 × 10–2, and γ = 1.5 × 10–7. Solve this initial-value prob-
lem with step size Δt = 0.01 to find the population after 5 years.

 34.–38. The runge-Kutta method is a popular and one of the most accurate numerical
methods for solving a first-order differential equation y′ = f(x, y) with initial condition
y(x0) = y0:

 1. Select an x-increment ∆x.

 2. The approximate solution yn + 1 at xn + 1 = x0 + (n + 1)∆x for n = 0, 1, 2, . . . is given by

()= + + + ++y y K K K K

1

6
2 2n n1 1 2 3 4

where

 K x f x yn n1 = ⋅∆ (,)

K x f x x y K

n n2
1

2 2
= ⋅ + +∆ ∆(,)

K x f x x y K

n n3
2

2 2
= ⋅ + +∆ ∆(,)

 K x f x x y Kn n4 3= ⋅ + +∆ ∆(,)

 Write a program to implement the Runge-Kutta method and use it to solve Problems
29–33.

K11207.indb 205 6/15/12 10:07 AM

This page intentionally left blankThis page intentionally left blank

207

C h a p t e r 7

Using Classes

There are three social classes in America: upper middle class, middle class, and
lower middle class.

JUDITH MARTIN ("MISS MANNERS")

A program is a spell cast over a computer, turning input into error messages.

ANONYMOUS

For every complex problem there is an answer that is clear, simple, and wrong.

H. L. MENCKEN

Carry out a random act of kindness, with no expectation of reward, safe in the
knowledge that one day someone might do the same for you.

DIANA, PRINCESS OF WALES

ConTEnTS
7.1 Introductory Example: Internet Addresses 208
7.2 Introduction to Classes 211
7.3 The istream and ostream Classes 218
7.4 The string Class 228
7.5 The C++ complex Type 233
7.6 Simulation with Random Numbers: Shielding a Nuclear Reactor 240
Chapter Summary 245
Test Yourself 248
Exercises 251
Programming Problems 256

208    ◾    Programming in C++ for Engineering and Science

The word class is often used to describe a group or category of objects that have a
set of attributes in common. For example, the high school sports teams in one state

are described as class a, class aa, class aaa, or class aaaa, depending on the number
of students in the school. The usual classifications of secondary and college students are
freshman, sophomore, junior, and senior. Metals, ceramics, polymers, semiconductors, and
composites are classes of engineering materials, based on their chemical composition. The
U.S. Navy uses skipjack class, Thresher class, and sturgeon class to characterize different
kinds of submarines. Economists describe families as lower class, middle class, or upper
class, based on their annual income. In these examples, class is used as a synonym for type
because it provides a name for a group of related objects.

In Chapter 3, we studied the fundamental types provided in C++ to model basic objects
such as numbers and characters: int, unsigned, double, char, bool, and variations
of these such as short, long, and float. These types, however, cannot model more
complex objects such as names of chemical elements, units of measurement, names and
addresses of persons, and so on. None of the fundamental types, char type in particular,
can adequately model these names because they consist of several characters and char
values can only be single characters.

For situations like this, C++ provides libraries of standard classes to represent more
complex objects. Also, programmers can build their own classes, thereby extending the
C++ language. In this chapter, we will examine four standard C++ classes:

•	 the istream class to model input from a keyboard;

•	 the ostream class for modeling output to a screen;

•	 the string class for modeling sequences of characters;

•	 the complex class template to model complex numbers.

In the last section we will use

•	 a programmer-defined RandomInt class to generate random integers in a simula-
tion program.

In Chapter 14 we will see how we can create our own classes.

7.1 InTRoDUCToRY ExAMPLE: InTERnET ADDRESSES
IP (Internet Protocol) addresses are used to uniquely identify computers in the Internet;
for example, titan.ksc.nasa.gov is the symbolic IP address of a site at the NASA
Kennedy Space Center. Such an address is made up of four fields that represent specific
parts of the Internet,

host.subdomain.subdomain.rootdomain

and is translated into a unique numeric IP address. This address is a 32-bit value, but it is
usually represented in a dotted-decimal notation by separating the 32 bits into four 8-bit

K11207.indb 208 6/15/12 10:07 AM

Using Classes    ◾    209  

fields, expressing each field as a decimal integer, and separating the fields with a period;
for example, at the time of this writing, 163.205.10.1 was the IP address for the above site
at the NASA Kennedy Space Center. Each of the four parts is an 8-bit integer, so the entire
address can be stored in 32 bits.

7.1.1 Problem

A gateway is a device used to interconnect two different computer networks. Suppose that
a gateway connects an engineering firm to the Internet and that the company’s network
administrator needs to monitor connections through this gateway. Each time a connection
is made, the IP address of the employee’s computer is transmitted to the network adminis-
trator, who analyzes the components that make up the address and records them.

7.1.2 object-Centered Design
7.1.2.1 Behavior
The program will display on the screen a prompt for an IP address. The user will enter a
string of characters from the keyboard, which the program will read. The program will
then compute and output its four network/host information blocks on the screen along
with descriptive text, or display an error message if the user did not enter a valid address.

7.1.2.2 Objects
From the statement of the desired behavior, we can identify the following objects:

Problem Objects

Software Objects

Type Kind Name

screen output device variable cout

prompt text string constant none
IP address text string variable address
keyboard input device variable cin

network/host information blocks text string variable block1, block2, block3, block4
descriptive text error message text string constant none

7.1.2.3 Operations
Again, from the statement of the desired behavior, we can identify the following operations:

 i. Display a string on the screen.

 ii. Read a string from the keyboard.

 iii. Find each network/host information block and extract it from the string.

 iv. Display each information block on the screen.

7.1.2.4 Algorithm
We now organize these operations into the following algorithm, which also shows how
operation (iii) requires some refinement into simpler operations that are provided in C++.

K11207.indb 209 6/15/12 10:07 AM

210    ◾    Programming in C++ for Engineering and Science

 1. Output a prompt for an IP address to cout.

 2. Input address from cin.

 3. Fill block1 with appropriate substring of address or halt if it can’t be found.

 4. Fill block2 with appropriate substring of address or halt if it can’t be found.

 5. Fill block3 with appropriate substring of address or halt if it can’t be found.

 6. Fill block4 with appropriate substring of address or halt if it can’t be found.

 7. Output block1, block2, block3, and block4 to cout.

7.1.2.5 Coding and Testing
The program in Example 7.1 implements this algorithm. It uses the C++ string type,
which is a class for processing strings of characters.

Example 7.1 Processing IP Addresses

/* This program finds the four network/host information blocks in an
IP address.

 Input: an IP address
 Output: four network/host information blocks, or an error message
--*/

#include <iostream> // cin, cout
#include <string> // string class
#include <cassert> // assert()
using namespace std;

int main()
{
 string address, block1, block2, block3, block4;

 cout << "Enter an IP address: ";
 cin >> address;

 // Search address to find first period -- start at position 0
 int dot1 = address.find(".", 0);
 assert(dot1 != string::npos);
 // Period found; set block1 = substring preceding it
 block1 = address.substr(0, dot1);

 // Search address for second period -- start at position dot1 + 1
 int dot2 = address.find(".", dot1 + 1);

K11207.indb 210 6/15/12 10:07 AM

Using Classes    ◾    211  

 assert(dot2 != string::npos);
 // 2nd period found; set block2 = substring between 1st and 2nd
 block2 = address.substr(dot1 + 1, dot2 – dot1 – 1);

 // Search address for third period –– start at position dot2 + 1
 int dot3 = address.find(".", dot2 + 1);
 assert(dot3 != string::npos);
 // 3rd period found; set block3 = substring between 2nd and 3rd
 block3 = address.substr(dot2 + 1, dot3 – dot2 – 1);

 // Check for more periods
 assert(address.find(".", dot3 + 1) == string::npos);
 // No more periods; set block4 = rest of address after 3rd one
 block4 = address.substr(dot3 + 1, address.size() – dot3 – 1);

 cout << "The network/host blocks are:\n"
 << block1 << endl << block2 << endl
 << block3 << endl << block4 << endl;
}

SAMPLE RUNS:
Enter an IP address: titan.ksc.nasa.gov
The network/host blocks are:
titan
ksc
nasa
gov

Enter an IP address: 163.205.10.1
The network/host blocks are:
163
205
10
1

7.2 InTRoDUCTIon To CLASSES
In Chapter 2, we saw how items in a computation can be modeled by variables and con-
stants whose types are the fundamental C++ types—int, double, bool, char, and
their variations. For example, we used

double celsius;
double fahrenheit = 1.8 * celsius + 32;

to declare double variables celsius and fahrenheit that modeled temperature
readings. In Chapter 6, we saw how we can use functions to effectively create new opera-
tions, such as the temperature-conversion function celsiusToFahrenheit():

double celsiusToFahrenheit(double tempCels);

K11207.indb 211 6/15/12 10:07 AM

212    ◾    Programming in C++ for Engineering and Science

These C++ features have, thus far, been adequate for programming tasks in which the
items and operations being modeled are sufficiently simple.

The problem, however, is that most real-world objects are not this simple. For example,
suppose that the network administrator in the preceding section must also create login
accounts for the employees at the engineering firm. Each account will contain information
about that employee such as the following:

 1. Name

 2. User ID

 3. Password

 4. Employee ID number

 5. Limit on minutes of access

 6. Current minutes used
.
.
.

Suppose, for simplicity, that we use only the six items of information listed. One way to
proceed would be to declare a separate variable for each one:

string name,
userId,
password,

int idNumber,
accessLimit;

double timeUsed;

Although this approach will work, it can be quite clumsy. For example, suppose we need a
function to display the computer information about an employee:

 void printUserInfo(string name, string userId, string password,
int idNumber, int accessLimit, double timeUsed)

 {
 cout << name << endl
 << "User Id: " << userId << endl
 << "Password: " << password<< endl
 << "Id Number: " << idNumber<< endl
 << "Access Limit: " << accessLimit<< endl
 << "Time Used: " << timeUsed<< endl
 }

K11207.indb 212 6/15/12 10:07 AM

Using Classes    ◾    213  

Given such a function and the variables defined earlier, we can call it with a statement like

printUserInfo(userName, userId, userPassword,
 empNumber, resourceLimit, resourcesUsed);

A function to input information about an employee’s computer usage would be similar and
would be called in much the same way:

readUserInfo(userName, userId, userPassword,
 empNumber, resourceLimit, resourcesUsed);

The major problem with this approach is that every function we define for processing
information about computer users will need a separate parameter for each item of infor-
mation and calls to these functions must pass each argument to the correct parameter.
With only six parameters, as in our example, this may not seem problematic, but for more
complex objects, more information must be passed and this approach becomes more cum-
bersome and prone to error. Just imagine having to enter the source code for a program
that had 50 function calls, each having 100 or more arguments!

The basic difficulty with this approach is that there is one kind of object (a computer
user) that we want to model, and yet we must pass more than one piece of information to
the operations. To alleviate this problem, C++ provides the struct construct (from C) and
its extension to a class. When programmers create a struct or class, they create a new type,
with space for the characteristics of objects of that type. For example, the type string
used in Example 7.1 is actually a class that was created by some programmer.

In the discussion that follows, we will only describe the major features of structs and
classes, leaving most of the details to a later chapter. However, by the end of this section,
you should know what they are and how to use them.

7.2.1 Data Encapsulation

Structs and classes provide a way to encapsulate an object’s characteristics—both attri-
butes and behavior—within a single “wrapper.” For example, to create a new type named
ComputerUser to model computer users described earlier, we could use either of the
following:

struct ComputerUser class ComputerUser
{ {
 string name, public:
 userId, string name,
 password; userId,
 int idNumber, password;
 accessLimit; int idnumber,
 double timeUsed; accessLimit;
 // ... double timeUsed;
}; // ...
 };

K11207.indb 213 6/15/12 10:07 AM

214    ◾    Programming in C++ for Engineering and Science

The identifiers name, userId, password, idNumber, accessLimit, and timeUsed
are called the data members (or instance variables or attribute variables) of the struct
and class.

The name ComputerUser is treated by C++ as the name of a new type, and can there-
fore be used to declare objects:

ComputerUser design17,
 management8;

These declarations create distinct ComputerUser objects, each of which can store its
own characteristics:

design17 management8

? name ? name

? userId ? userId

? password ? password

? idNumber ? idNumber

? accessLimit ? accessLimit

? timeUsed ? timeUsed

This encapsulation is important, because a single object like design17 now stores all of its
own data and solves our earlier problem, because it allows us to pass a complicated object
to a function by using just one argument (and declaring just one parameter); for example,

void printUserInfo(ComputerUser aUser)
{
 cout << aUser.name << endl
 << "User Id: " << aUser.userId << endl
 << "Password: " << aUser.password << endl
 << "Id Number: " << aUser.idNumber << endl
 << "Access Limit: " << aUser.accessLimit << endl
 << "Time Used: " << aUser.timeUsed << endl;
 // ... and possibly more ...
}

Note that the members of a ComputerUser object are accessed using dot notation.
The expression

aUser.name

will access the name member of the ComputerUser object associated with parameter
aUser. If we call this function with

printUserInfo(design17);

the values of the data members of design17 will be displayed, producing something like

K11207.indb 214 6/15/12 10:07 AM

Using Classes    ◾    215  

Joe Blow
User Id: joey00
Password: windbag
Id Number: 1238
Access Limit: 200
Time Used: 68.5

If we call the same function with a different argument,

printUserInfo(management8);

the values of management8’s data members will be displayed; for example,

Betty Boss
User Id: daBoss
Password: denied
Id Number: 1
Access Limit: 10000
Time Used: 0

For a complicated object, structs and classes thus provide a convenient way to package the
data items needed to describe that object in one container. This is what is meant by data
encapsulation.

7.2.2 Encapsulating operations

The major addition when C++ was developed from C was the addition of classes that can
have not only data members but also member functions (also called methods).1 The data
members are placed in a private section of the class, and member functions are placed
in a public section. This means that the member functions can be accessed from outside
using dot notation, but the data members cannot unless a member function is provided
to do this.

For example, to declare member functions read() to perform input and display()
for output in our ComputerUser class, we could modify it by adding prototypes for these
functions as follows:

class ComputerUser
 {
 public:
 void read();
 void display();
 // ... function prototypes for other operations
 private:
 string name,
 userId,
 password;

1 In C++, structs may also have member functions, but classes are preferred for encapsulating both data and operations.

K11207.indb 215 6/15/12 10:07 AM

216    ◾    Programming in C++ for Engineering and Science

 int idNumber,
 accessLimit;
 double timeUsed;
 // ... declarations of other data members

};

The corresponding function definitions, which are usually outside of the class declaration,
are modified to indicate where their prototypes can be found. For example, display()
could be defined by

void ComputerUser::display(ComputerUser aUser)
{
 cout << name << endl
 << "User Id: " << userID << endl
 << "Password: " << password << endl
 << "Id Number: " << idNumber << endl
 << "Access Limit: " << accessLimit << endl
 << "Time Used: " << timeUsed << endl;
 // ... and possibly more ...
}

Attaching ComputerUser:: to the function name indicates that this is a member func-
tion of the ComputerUser class and thus can access the (private) data members.

The data members in our ComputerUser class are designated as private to prevent
unauthorized operations on the data such as assigning a negative value to a data member
that should always be nonnegative. All access to the data is controlled by the member
functions, of which there would usually be a fairly large collection. However, because this
is only an introduction to classes, we will keep our example simple and use only the two
member functions read() and display().

When class objects are declared, as in

ComputerUser design17,
 management8;

each has its own data and member functions. When we wish to access one of the member
functions, we send a message to an object via the dot operator. That object responds by
executing the corresponding member function, which can access the data members. For
example, to display the information stored in design17, we can send it a display()
message:

design17.display();

and to display the information stored in management8, we would send it a display()
message:

management8.display();

K11207.indb 216 6/15/12 10:07 AM

Using Classes    ◾    217  

We can use the statement

management8.read();

to send management8 a read()message, which fills the data members in management8
with values extracted from cin; for example,

management8
Betty Boss name
daBoss userId
denied password
1 idNumber
10000 accessLimit
0 timeUsed

Similarly, the statement

design17.read();

sends design17 a read() message to fill its data members with input values such as

design17

Joe Blow name

joey00 userId

windbag password

1238 idNumber

200 accessLimit

68.5 timeUsed

A member function is thus what gets executed when we send an object a message.
Classes also make it possible to redefine C++ operators. For example, the string class

redefines + so that when it is given two strings, it concatenates those strings. For example,
the declaration

string name = "Popeye" + " the " + "Sailor";

initializes the object name with the string value "Popeye the Sailor". We can also
redefine operators for classes we build. For example, we could redefine the input and output
operators for our ComputerUser class, which would enable us to write statements like

cout << "Enter computer usage for " << management8 << \n";
cin >> management8;

Redefining a function with a new definition is called overloading that function, a topic
discussed in Chapter 10.

K11207.indb 217 6/15/12 10:07 AM

218    ◾    Programming in C++ for Engineering and Science

Once a class has been built, it is usually stored in a library, with its declaration stored in
the library’s header file and the definitions of its nontrivial member functions in an imple-
mentation file. To use the class, a program must include the library’s header file.

This brief introduction to classes should indicate their importance in C++. Classes are
the single biggest difference between C++ and its parent language C. In fact, prior to 1983,
the C++ language was called “C with Classes.” An important part of learning to program
in C++ is learning how to use the standard classes that are part of the language, to avoid
reinventing the wheel. In the sections that follow, we will examine four of these classes:
istream, ostream, string, and complex.

In summary, C++ provides the class mechanism for building types to represent com-
plicated objects. This mechanism allows us to create a single structure that encapsulates
(i) data members defining the characteristics of the object and (ii) member functions defin-
ing the operations on the object. Class members that are designated public within the class
can be accessed using dot notation.

7.3 ThE istream AnD ostream CLASSES
When C++ was first developed in the early 1980s by Bjarne Stroustrup, it used the I/O system
of its parent language C. Later in that decade, Jerry Schwarz, one of the early users of C++ at
AT&T, used classes to develop a better I/O system. After revisions and improvements over
the years, this set of classes became today’s iostream library. In this section we will con-
sider two of these classes: the istream class for input and the ostream class for output.2

7.3.1 The istream Class

One problem in designing a general purpose model for input is how information entered
from a keyboard or other input device gets from there to the computer. The keyboard may
actually be a part of the computer as in a laptop or a smart phone, or the information may
have to travel from it to an entirely different computer across a network.

Because programmers should not have to concern themselves with the messy details
of how data actually gets from the keyboard to the program, an abstraction for input is
preferred that hides these details—a model that can capture the basic idea of every input
system, regardless of the low-level details.

7.3.1.1 Streams
Dennis Ritchie, creator of the C programming language, and Ken Thompson were key
members of a team of AT&T employees at Bell Labs who developed the Unix operating sys-
tem. The I/O system they developed for Unix was based on such a model called a stream.
They envisioned streams of characters flowing from an input device to a program and from
a program to an output device, like a stream of water flowing from one place to another.
Schwarz used this idea to develop the iostream library, which contains the istream
and ostream classes for carrying out I/O in C++.

2 istream and ostream are really specializations of class templates basic_istream and basic_ostream to type
char, which are derived from the basic_ios class that handles the low-level details of formatting, buffers, and so on.
Using wchar_t instead of char produces wide-character streams wistream and wostream.

K11207.indb 218 6/15/12 10:07 AM

Using Classes    ◾    219  

The istream class represents a flow of characters from an arbitrary input device to an
executing program.

Schwarz then defined an istream object named cin in the iostream library, so that
any C++ program that included the library’s header file would automatically have access to
the input stream flowing from the keyboard to the program.

7.3.1.2 The >> Operator
Schwarz also defined a binary input operator >> whose first operand is an istream object
such as cin and whose second operand is a variable:

istream_object >> variable

When this input expression is executed in a program, the >> operator tries to extract a sequence
of characters corresponding to a value of the type of variable from istream_object.
If there are no characters, it blocks execution until characters are entered.

To illustrate, suppose execution of a program has just begun so that cin is empty. When
the following statements are executed,

int minutes;
cin >> minutes;

and the >> operator attempts to read an integer value for minutes but finds that cin
is empty, execution cannot proceed. If the user now enters 40 from the keyboard, the
characters 4 and 0 enter into cin:

Executing
program

an

Executing
program

Executing
program

K11207.indb 219 6/15/12 10:07 AM

220    ◾    Programming in C++ for Engineering and Science

Because cin is no longer empty, execution resumes and >> extracts the characters
4 and 0, converts them to the integer 40, and stores this value into its right operand
minutes. Because >> extracts values from an istream, it is often referred to as the
extraction operator.

7.3.1.3 Status Indicators
So far we have assumed that the user enters appropriate values. Suppose, however, that in the
preceding example, 40 was mistyped as f0, causing cin to contain the characters f and 0:

What happens now when >> tries to extract an integer and encounters the letter f?
The condition of an istream is known as its state and there are three possible states:

•	 good state: all is well with the stream.

•	 bad state: something has gone wrong with the stream.

•	 fail state: the last operation on the stream did not succeed.

The istream class maintains a flag for each of these states, each of which is essentially a
boolean variable with the good flag initialized to true and the bad and fail flags initialized
to false. In our scenario, if the >> operator encounters the letter f while trying to read an
integer, it will set the stream’s good flag to false, and its bad and fail flags to true.

For each of these flags, the istream class provides a boolean member function having
the same name as its flag, that reports on the value of that flag.3

Message Returns True If and Only If
cin.good() all is well in the istream
cin.bad() something is wrong with the istream
cin.fail() the last operation could not be completed

We can use good() to check that an input step has succeeded:

assert(cin.good());

or, alternatively, we might use one of the other status indicators; for example,

assert(!cin.fail());

3 There is a fourth end-of-file state that occurs when the last input operation encounters an end-of-file mark before finding
any data. This state can be checked by sending an istream the eof() message. It is described in more detail in Chapter 11.

Executing
program

K11207.indb 220 6/15/12 10:07 AM

Using Classes    ◾    221  

Combined with the assert() mechanism, these status indicators provide an easy way to
guard against data-entry errors.

7.3.1.4 The clear() and ignore() Member Functions
Once the good flag of an istream has been set to false, all subsequent input operations
on that stream are blocked until its state is cleared. This is accomplished by using the
clear() member function,

cin.clear();

which resets the good flag to true and the other flags to false.
Resetting the status flags, however, does not remove the offending input from the

istream. For this, we can use ignore(),

cin.ignore();

which, as its name implies, skips the next character in cin. More generally, ignore()
can be called with arguments to skip more than one character:

cin.ignore(skip, stop_char);

where skip is an integer expression and stop_char is a character. This statement will
skip the next skip characters in cin, unless stop_char is encountered. The default
value of skip is 1, and the default value of stop_char is the end-of-file mark. For
 example, the message

cin.ignore(100, ' ');

will skip all characters up to the next space (assuming it is within the next 100 characters), and

cin.ignore(100, '\n');

will skip all characters remaining on a given line of input (assuming that the end of the line
is within 100 characters). This clear() and ignore() combination is useful for detect-
ing bad input characters and removing them from the input stream, as in the following
program segment:

cin >> minutes;
if (cin.fail()) // e.g., invalid input character
{
 cin.ignore(100, '\n');
 cin.clear();
}

K11207.indb 221 6/15/12 10:07 AM

222    ◾    Programming in C++ for Engineering and Science

7.3.1.5 White Space
One of the nice features of the >> operator is that, by default, it skips leading white
space—spaces, tabs, and returns. To illustrate, suppose that in response to the statements

double length, weight;
cout << "Enter the length (inches) and weight (pounds): ";
cin >> length >> weight;

the user enters 70.5 and 180. Then cin contains the characters pictured, where ⎵ repre-
sents a space and ↵ represents the return character:

When the input statement

cin >> height >> weight;

 is executed, the first >> reads 70.5 and stores it in length, leaving the space (⎵) unread:

The second >> begins reading where the previous one left off and skips the space:

It then reads 180 and stores it in weight:

Executing
program

Executing
program

the next read begins here

cin
70.5 180

Executing
program

after white space is skipped

cin
70.5 180

Executing
program

the next read begins here

cin
70.5 180

K11207.indb 222 6/15/12 10:07 AM

Using Classes    ◾    223  

The return character remains in the stream, but because it is a white-space character, >>
will skip it in any subsequent input expression.

White space will also be skipped even when reading a single character, as in

char ch;
cin >> ch;

The input statement will skip all leading white-space characters and read the first non-
white-space character from cin into ch.

Suppose, however, that we want to read all characters, including white-space characters,
as, for example, spaces within names of persons, chemical compounds, pieces of equip-
ment, and so on. One way to do this is with an input manipulator, which is a keyword in
an input statement that changes some property of the istream. For example, if we use the
noskipws manipulator,

cin >> ... >> noskipws ...

then in all subsequent input, white-space characters will not be skipped. The skipws
manipulator can be used to reactivate white-space skipping.

Alternatively, the istream class has a member function named get() that reads a single
character without skipping white space. For example, if ch is of type char, the statement

cin.get(ch);

will read the next character from cin into ch, even if it is a white-space character.

7.3.2 The ostream Class

In the same way that the iostream library provides an istream class for processing
streams of characters from an input device to a program, it provides an ostream class to
represent the “flow” of characters from an executing program to an output device, thereby
hiding the low-level details from the user:

Any C++ program that includes the iostream library will automatically have access to
three output streams from the program to whatever device the user is using for output:

cout: the standard buffered output stream for displaying normal output

an

Executing
program

K11207.indb 223 6/15/12 10:07 AM

224    ◾    Programming in C++ for Engineering and Science

cerr and clog: standard output streams intended for displaying error or diagnostic
messages (clog is buffered; cerr is not)

The assert() function typically writes its diagnostic messages to cerr.

7.3.2.1 The << Operator
The << operator is applied to an ostream object and an expression,

ostream_object << expression

The expression will be evaluated, its value converted into the corresponding sequence of
characters, and those characters inserted into the output stream. Thus, if the constant PI
is defined by

const double PI = 3.1416;

and we output it with

cout << PI;

the << operator will convert the real number 3.1416 into the sequence of characters 3, ., 1,
4, 1, and 6, and insert them into cout:

Because cout and clog, unlike cerr, are buffered, characters actually remain in them
until they are flushed to empty their contents onto the screen. This can sometimes be con-
fusing because we know that an output statement has been executed but its output doesn’t
appear on the screen. One common way to flush an ostream is to use an identifier called
an output manipulator that causes something to happen on the ostream immediately
when it is encountered in an output statement. The most commonly used manipulator to
flush an output stream is endl. It inserts a newline character ('\n') into the ostream
and then flushes it, thus ending a line of output.4

4 A less commonly used alternative is flush, which simply flushes the ostream without inserting anything, which
means that subsequent output will appear on the same line.

cout

cerr

clog

Executing
program

cout
3 . 1 4 1 6

Executing
program

K11207.indb 224 6/15/12 10:07 AM

Using Classes    ◾    225  

Whenever >> is used to input a value from cin, cout is automatically flushed. Thus,
when the statements

double radius;
cout << "Enter radius: ";
cin >> radius;

are executed, << inserts the prompt "Enter radius: " into cout:

but it is the >> operator in the next statement that moves the prompt "Enter radius: "
out of the ostream and onto the screen:

7.3.3 Format Control

Various features of the form in which a value is displayed or is entered can be specified
by using format manipulators. For example, in the program in Example 4.2, we used the
statement

cout << showpoint << fixed << setprecision(2)
 << "For Route #" << route << ":\n"
 << "\n\tMiles per gallon: " << setw(8) << milesPerGallon
 << "\n\tTotal cost: $" << setw(8) << totalTripCost
 << "\n\tCost per mile: $" << setw(8) << costPerMile
 << endl;

Here, fixed is a format manipulator that causes real values to be displayed in fixed-point
notation instead of in scientific notation; showpoint ensures that the decimal point will
be displayed; and setprecision(2) sets the number of decimal places of precision to 2.
The first two manipulators are provided by the iostream library and setprecision()
by the iomanip library.

As another example of how format manipulators affect a stream, consider the following
code:

int i = 26;

cout
Enter radius:

Executing
program

Enter
radius:

Executing
Programcout

K11207.indb 225 6/15/12 10:07 AM

226    ◾    Programming in C++ for Engineering and Science

cout << showbase
 << oct << i << endl
 << dec << i << endl
 << hex << i << endl;

The output

032
26
0x1A

will be produced by these statements because 328 = 2610 = 1A16.
The following table lists the format manipulators provided by iostream. They and

other manipulators are described in more detail in Chapter 11.

Format Manipulator Description
fixed Use fixed-point notation for real values
scientific Use scientific notation for real values
showpoint Show decimal point and trailing zeros for whole real numbers
noshowpoint Hide decimal point and trailing zeros for whole real numbers
dec Use base-10 notation for integer input or output
hex Use base-16 (hexadecimal) notation for integer input or output
oct Use base-8 (octal) notation for integer input or output
showbase Display integer values indicating their base (e.g., 0x for hex)
noshowbase Display integer values without indicating their base
showpos Display + sign for positive values
noshowpos Do not display + sign for positive values
boolalpha Read or display bool values as true or false
noboolalpha Do not read or display bool values as true or false
uppercase In scientific, use E; in hexadecimal, use symbols A–F
nouppercase In scientific, use e; in hexadecimal, use symbols a–f
flush Write contents of stream to screen (or file)
endl Insert newline character into output stream and flush the stream
left Left-justify displayed values, pad with fill character on right
right Right-justify displayed values, pad with fill character on left
internal Pad with fill character between sign or base and value
skipws Skip white space on input
noskipws Do not skip white space on input

Some format manipulators require arguments, and to use them, the iomanip library
must be included. For example, in the program in Example 4.2 we wanted to specify the
number of decimal places, or precision, to use in displaying real values so we used the
setprecision(n) manipulator provided in iomanip with n = 2 to set the number of
decimal places of precision in subsequent reals to 2.

K11207.indb 226 6/15/12 10:07 AM

Using Classes    ◾    227  

Another kind of format has to do with the space or field in which a data value is dis-
played. The default width of an output field is 0 and automatically grows to accommo-
date the value being displayed, which is usually what the programmer wants. In situations
where a wider field is needed, we can use the setw(n) manipulator, which sets the width
of the next field to n. However, the field width for subsequent outputs is automatically set
back to zero, and so setw() must be used for each value for which we want to override the
default output format.

To illustrate the use of setw(), suppose we are creating a report of expenditures for
items used in constructing a piece of equipment. If we use output statements like the
following

cout << showpoint << fixed
 << "Electrical: $" << elecCost<< endl
 << "Sheet metal: $" << metalCost << endl
 << "Wages: $" << wages << endl
 << "Miscellaneous: $" << miscCost << endl;;

the output produced might be

Electrical: $ 1013.
Sheet metal: $ 549.2297
Wages: $ 728.5
Miscellaneous: $ 25.

This would look much better if the amounts were rounded to two decimal points and were
right-aligned. One way to do this is to use the setprecision(), setw(), and right
manipulators as in the following:

cout << showpoint << fixed
 << setprecision(2) << right
 << "Electrical: $" << setw(7) << elecCost<< endl
 << "Sheet metal: $" << setw(7) << metalCost << endl
 << "Wages: $" << setw(7) << wages << endl
 << "Miscellaneous: $" << setw(7) << miscCost << endl;

which would generate output with the following format:

Electrical: $ 1013.00
Sheet metal: $ 549.23
Wages: $ 728.50
Miscellaneous: $ 25.00

The character used to fill the empty part of a field is called the fill character. As the pre-
ceding example illustrates, it is a space by default, but we can change it to another character
ch by using the setfill(ch) manipulator. For example, if we change the preceding
output statement to

K11207.indb 227 6/15/12 10:07 AM

228    ◾    Programming in C++ for Engineering and Science

cout << showpoint << fixed
 << setprecision(2) << right
 << setfill('*')
 << "Electrical: $" << setw(7) << elecCost<< endl
 << "Sheet metal: $" << setw(7) << metalCost << endl
 << "Wages: $" << setw(7) << wages << endl
 << "Miscellaneous: $" << setw(7) << miscCost << endl;

the resulting output will be

Electrical: $ 1013.00
Sheet metal: $ *549.23
Wages: $ *728.50
Miscellaneous: $ **25.00

7.4 ThE string CLASS
The introductory example in Section 7.1 used C++’s string class to process IP addresses.
In this section we will describe some of the other features of this class.

7.4.1 Declaring string objects

As we saw in Section 7.1, the string class is declared in the string library, which must
be included in each program that uses it:

#include <string> // string class

Because string is the name of a class and the name of a class is a type, string objects
can be declared and initialized in the same manner as other objects we have studied. For
example, the declaration

string address, block1, block2, block3, block4;

in Example 7.1 creates five string objects named address, block1, block2,
block3, and block4 and initializes each of them to an empty string, which contains
no characters. A literal for the empty string can be written as two consecutive double
quotes ("").

A declaration of a string object can also initialize that object by providing a string
expression for its initial value. For example, the declarations

string address = "aaa.bbb.ccc.ddd",
 block1 = block2 = block3 = block4 = "";

create the string object address, initializing it to contain 15 characters,

aaddress a a . b b b . c c c . d d d

K11207.indb 228 6/15/12 10:07 AM

Using Classes    ◾    229  

and the string objects block1, block2, block3, and block4, initializing each of
them to be empty strings.

These string objects are variables, and they can be assigned new values. For example,
the first sample run in Example 7.1 would replace the 15-character string used to initialize
address with an 18-character string.

Constant string objects are defined by preceding a normal string declaration with the
keyword const; for example,

const string UNITS = "centimeters";

As with other constants, the string value of such objects cannot be changed later in the
program.

7.4.2 String operations
7.4.2.1 Input, Output, and Assignment
The string class has extended <<, >>, and = to perform these basic I/O and assignment
operations on string objects. For example, we have used the output operator << to dis-
play string literals as input prompts in most of our programs, as in Example 7.1:

cout << "Enter an IP address: ";

In that same program we used << to display the values of string variables:

cout << "The network/host blocks are:\n"
 << block1 << endl << block2 << endl
 << block3 << endl << block4 << endl;

The assignment operator = was used to assign values to the four string variables block1,
block2, block3, and block4.

Also, when the statements

cout << "Enter an IP address: ";
cin >> address;

were executed and the user entered titan.ksc.nasa.gov,

Enter an IP : titan.ksc.nasa.gov

the string titan.ksc.nasa.gov was assigned to address. If, however, the user entered
some spaces between some of the blocks,

Enter an IP address: titan. ksc. nasa.gov

taddress i t a n . k s c . n a s a . g o v

K11207.indb 229 6/15/12 10:07 AM

230    ◾    Programming in C++ for Engineering and Science

the string titan. would be assigned to address, but what happens to the remainder of
the input?

Input of strings proceeds in the same way as we have described for other types: >>
skips leading white space and stops at the next white-space character, which we might
describe as getting the next “word” from the input stream. Thus, in the preceding example,
the unread characters ksc. nasa.gov (including the space before ksc) remain in the
istream and will be read in subsequent input statements if there are any. For the program
in Example 7.1, however, execution will terminate with an error message something like
the following:

Enter an IP address: titan. ksc. nasa.gov
Assertion failed: (dot2 != string::npos), function main, file fig7-1.cpp,
line 28.

We will explain the reason for this later in this section.
The string library does provide a function getline() that can be used to read an

entire line of text into a string variable including white-space characters. For example,
if we rewrite the earlier code segment as

cout << "Enter an IP address: ";
getline(cin, address);

and enter titan. ksc. nasa.gov as input, the function getline() will read the
entire line as input and assign it to the variable address sent to it. The output produced
by the program will be

titan
 ksc
 nasa
gov

Note the leading spaces before ksc and nasa. They were read as part of the string that
was entered and were assigned to block2 and block3. In general and more precisely,
getline() extracts characters from an istream (e.g., cin) and transfers them into
a string variable until a newline character is encountered, which is removed from the
istream but is not stored in the string variable.

In summary, to read an entire line of input, the getline() function should be used. To
skip leading white space and then read all characters up to the next white-space character,
the input operator >> should be used. But one must be careful when using both >> and
getline() because a newline character that terminates input of characters via >> will
be left in the istream, and if the next input statement uses getline(), it will not read
any characters because encountering this newline character will cause it to terminate
immediately.

K11207.indb 230 6/15/12 10:07 AM

Using Classes    ◾    231  

7.4.2.2 The Subscript and size() Operations
Associated with each character in a string is an integer called an index that is 0 for the first
character, 1 for the second, and so on. For example, for a string units declared by

string units = "Foot Lbs";

a sequential container in memory will be associated with units with the elements num-
bered 0, 1, 2, . . ., and the individual characters that make up the string, F, o, o, t, a space,
L, b, and s, will be stored in these elements:

The subscript operator [] can be used to access individual characters of a string.
In our example, units[0] is a variable of type char whose value is 'F', units[1]
is a variable of type char whose value is 'o', and so on; in general, an expression of
the form string_object[index] accesses the character at the specified index of
string_object. For example, the four assignment statements

units[0] = 'I';
units[1] = 'n';
units[2] = 'c';
units[3] = 'h';

would change the value of units to "Inch Lbs". If we wish to output these first four
characters, we can use a for loop that varies the index over the element positions:

for (int i = 0; i < 4; i++)
 cout << units[i] << endl;

The size of a string can be found by sending it the size() message, which returns the
number of characters in that string. For example, units.size() will return the value 7.
Note that the index of the last character in a string is always size() – 1 because indices
start at zero. Thus, if we want to process the characters in reverse order, we must start at
this index as in the following example:

for (int i = units.size() – 1; i >= 0; i––)
 cout << units[i] << end;;

7.4.2.3 Relational Operators
The relational operators <, >, ==, <=, >=, and != have all been defined for the string
class and can be used to compare string objects. For each operation, the elements of the
string operands are compared character by character until a mismatch occurs or the end
of one (or both) of the strings is reached.

F

0

units o

1

o

2

t

3 4

L

5

b

6

s

7

K11207.indb 231 6/15/12 10:07 AM

232    ◾    Programming in C++ for Engineering and Science

To illustrate, consider the declarations

string units1 = "Milligrams",
 units2 = "Millimeters";

The boolean expression units1 < units2 is true because the first element where these
two strings differ is in position 5 and 'g' < 'm' is true. For the same reason, units1
<= units2 and units1 != units2 are true, whereas units1 > units2, units1
>= units2 and units1 == units2 are false.

If units2 were changed to

units2 = "MILLIMETERS";

however, units1 < units2 would be false because the first element where these two
strings differ is in position 1 and 'i' < 'I' is false (because the numeric code for 'i' is 105
and that for 'I' is 73). This would also be the case if units2 were changed to

units2 = "Mill Output";

because the first element where units1 and units2 differ is in position 4 and 'i' < ' '
is false (because the numeric code for 'i' is 105 and that for a space is 32).

7.4.2.4 Other String Operations
The string class provides several other operations. For example, the program in Example
7.1 used find() to locate the periods in an address and substr() to extract substrings
that were the blocks in the address. These and several other commonly used string opera-
tions are described in the following table. In this table, s, s1, and s2 are of type string;
pos and n are nonnegative integers. Several variations of these operations as well as others
are described in Appendix D.

SoME USEFUL STRInG FEATURES

Output: << out << s outputs the characters of s to ostream out

Input: >>, getline() in >> s inputs characters from istream in into s until a
whitespace character is encountered
getline(in, s) inputs an entire line from istream in
into s

Assignment: = s = s1 assigns the string expression s1 to s

Relational Operators: <, >, ==,
<=, >=, !=

s1 < s2, s1 > s2, s1 == s2, s1 <= s2,
 s1 >= s2, and s1 != s2 compare strings

Subscript: [] s[i] is the character in position i of s

+ s1 + s2 is the string obtained by concatenating s1 with s2
by appending s2 to s1

string::npos some integer that is either negative or greater than the
maximum length of strings—used to signal unsuccessful
string operations (e.g., see find())

K11207.indb 232 6/15/12 10:07 AM

Using Classes    ◾    233  

append() s1.append(s2) appends s2 onto s1 as in s1 + s2
empty() s.empty() is true if s contains no characters and is false

otherwise

erase() s.erase(pos, n) erases n characters from s, starting at
position pos; if n is too large or is omitted, characters are
erased to the end of s

find() s.find(s1, pos) returns the first position pos at which
s1 occurs in s or string::npos if s1 is not found

find_first_of() s.find_first_of(s1, pos) returns the first position
≥ pos of a character in s1 that matches any character in s
or string::npos if none is found

insert() s.insert(pos, s1)) inserts the string s1 into s at
position pos

length(), size() s.length() and s.size() return the number of
characters in s

replace() s.replace(pos, n, s1) replaces the substring of s of
length n, starting at position pos, with s1; if n is too large,
all the characters to the end of s are replaced

substr() s.substr(pos, n) returns a copy of the substring
consisting of n characters from s, starting at position pos; if
n is too large or is omitted, characters are copied only to the
end of s

7.5 ThE C++ complex TYPE
Although the complex number system has many important applications, it is perhaps not
as familiar as the real number system. Thus, in this section, we review the basic properties
of and operations on complex numbers and describe how they are represented and used in
C++ programs.

7.5.1 Representation of Complex numbers

Because complex numbers have two parts, a real part and an imaginary part, they can be
plotted in a coordinatized plane by taking the horizontal axis to be the real axis and the
vertical axis to be the imaginary axis, so that the complex number a + bi can be represented
as the point P(a, b) or, alternatively, as the vector OP

→
 from the origin to the point P(a, b):

Im
ag

in
ar

y A
xi

s

b

a

P(a, b)

O
Real Axis

K11207.indb 233 6/15/12 10:07 AM

234    ◾    Programming in C++ for Engineering and Science

In C++, the type of a complex object is complex<T>, where T is one of the real
types float, double, or long double. Each of the types complex<float>,
complex<double>, and complex<long double> is a class defined in the complex
library that must be included in any program that uses one of these types.5 A complex lit-
eral has the form complex<T>(a, b), where a and b are of type T or can be promoted to
that type and represent the real part and the imaginary part of the complex number. The
following are some examples:

C++ Representation Mathematical Representation
complex<double>(-6.283, 17.1) –6.283 + 17.1i
complex<double>(1, 1) 1 + i
complex(<double>(0, 1) i

7.5.2 operations on Complex numbers

The sum, difference, and product of two complex numbers z = a + bi and w = c + di are
defined by:

 z + w = (a + c) + (b + d)i

 z – w = (a – c) + (b – d)i

 z · w = (ac – bd) + (ad + bc)i

 z / w = +
+

+ −
+

ac bd

c d

bc ad

c d
i2 2 2 2 (provided c2 + d2 ≠ 0)

The sum and difference correspond to the sum and difference of the vector representations
of z and w.

5 The complex library actually contains a class template complex<T>, which is a pattern for a class for complex num-
bers. When T is replaced by one of float, double, or long double, a class for complex numbers whose real and
imaginary parts have that type is created.

x

z
z + ww

y

w
z

z – w

y

x

K11207.indb 234 6/15/12 10:07 AM

Using Classes    ◾    235  

The product can be represented by a vector whose length is the product of the lengths of
the vectors representing z and w and whose angle from the positive x-axis is the sum of the
angles for z and w.

To see why this geometric representation of the product of two complex numbers is cor-
rect, it is helpful to consider the polar representation of complex numbers. To describe
this representation, consider a vector OP

→
 from the origin to point P, and suppose that r is

the length of OP
→

 and that θ is the angle from the positive x-axis to OP
→

, so that the polar
coordinates of point P are (r, θ):

It is clear from this diagram that the relation between the rectangular coordinates (a, b) of
point P and its polar coordinates (r, θ) is

 a = r cos θ

 b = r sin θ

It follows that the complex number represented by OP
→

 can be written in the polar form as

 r cos θ + ir sin θ = r(cos θ + i sin θ)

Real Axis

Im
ag

in
ar

y A
xi

s

b

a

P(r, θ)

O

r

θ

w
z ·

 w

x

y

z

θ1 + θ2

θ1

θ2

K11207.indb 235 6/15/12 10:07 AM

236    ◾    Programming in C++ for Engineering and Science

A basic property of complex numbers is that

 eiθ = cos θ + i sin θ

and thus an alternative form of the polar representation of a complex number is

 reiθ

Now consider two complex numbers

 z = r1eiθ1

 w = r2eiθ2

The familiar properties of exponents then give

 z · w = (r1eiθ1)(r2eiθ2) = r1r2ei(θ1+ θ2)

which agrees with the geometric representation of the product of two complex num-
bers shown earlier. In the same manner, we can use polar representation and proper-
ties of exponents to show that the quotient of two complex numbers corresponds to a
vector whose magnitude is the quotient of the magnitudes of the vectors representing
the numbers and whose angle of inclination is the difference of the vectors’ angles of
inclination:

 z / w = (r1eiθ1) / (r2eiθ2) = (r1 / r2)ei(θ1– θ2)

These basic arithmetic operations for complex numbers are defined in C++’s complex
number classes and are denoted by the usual arithmetic operators +, -, *, and /; + and –
may also be used as unary operators. Also defined are the assignment operator = along
with assignment shortcuts +=, -=, *=, and /= and the logical operations == and!=.6

The input and output operators << and >> have also been overloaded for the three com-
plex types. Complex values are output in the form (a, b), where a is the real part and b is
the imaginary part. They can be input in the form a or (a) if the imaginary part is 0 and
(a, b) otherwise.

In addition to these operations, C++ defines several functions for its complex classes.
The following table describes some of the more useful ones. In the descriptions, z is a com-
plex number a + bi.

complex Functions

Real part of z real(z) returns the real part of z
z.real(a) assigns a to the real part of z

Imaginary part of z imag(z) returns the imaginary part of z
z.imag(b) assigns b to the imaginary part of z

6 <, >, ≤, and ≥ are not defined for complex numbers.

K11207.indb 236 6/15/12 10:07 AM

Using Classes    ◾    237  

Phase angle of z: θ arg(z)

Norm of z: a2 + b2 norm(z)

Absolute value (or magnitude) of z :

|z| = a b2 2+

abs(z)

Conjugate of z: ̅z = a – bi conj(z)

Power: zr, where r is a real value pow(z, r)

Square root sqrt(z)

Trig Functions cos(z), sin(z), tan(z),
Hyperbolic Functions cosh(z), sinh(z), tanh(z),
Exponential Function: ez exp(z)

Logarithms—natural, base-10 log(z), log10(z)

7.5.3 Example: Solving Quadratic Equations

In Section 5.4 we considered the problem of solving quadratic equations, using the if
statement to check if there were real roots and if not, display a message. The program in
Example 7.2 is a variation of the program in Example 5.4 that finds the roots—possibly
complex—of any quadratic equation.

Example 7.2 Quadratic Equation Solver—Complex Roots

/* This program solves quadratic equations using the quadratic formula.

 Input: the three coefficients of a quadratic equation
 Output: the complex roots of the equation
--*/

#include <iostream> // cout, cin, <<, >>
#include <complex> // complex types
using namespace std;

int main()
{
 complex<double> a, b, c;
 cout << "Enter the coefficients of a quadratic equation: ";
 cin >> a >> b >> c;

 complex<double> discriminant = b*b – 4.0*a*c,
 root1, root2;
 root1 = (–b + sqrt(discriminant)) / (2.0*a);
 root2 = (–b – sqrt(discriminant)) / (2.0*a);
 cout << "Roots are " << root1 << " and " << root2 << endl;
}

SAMPLE RUNS:
Enter the coefficients of a quadratic equation: 1 4 3
Roots are (–1,0) and (–3,0)

K11207.indb 237 6/15/12 10:07 AM

238    ◾    Programming in C++ for Engineering and Science

Enter the coefficients of a quadratic equation: 2 0 –8
Roots are (2,0) and (–2,0)

Enter the coefficients of a quadratic equation: 2 0 8
Roots are (0,2) and (–0,–2)

Enter the coefficients of a quadratic equation: 1 2 3
Roots are (–1,1.41421) and (–1,–1.41421)

Enter the coefficients of a quadratic equation: (1,2) (3,4), (5,6)
Roots are (–0.22822,0.63589) and (–1.97178,–0.23589)

7.5.4 Application: A-C Circuits

The following a-c circuit contains a capacitor, an inductor, and a resistor in series:

The impedance Zr for a resistor is simply the resistance r (in ohms), but for inductors and
capacitors, it is a function of the frequency. The impedance Zl of an inductor is the complex
value given by

Zl = ωli

where ω is the frequency (in radians per second) of the a-c source, and l is the self-
inductance (in henrys). For a capacitor, the impedance is

ZC = −
ω

i

C

where C is the capacitance (in farads). The total impedance Z is then given by

Z = Zr + Zl + ZC

and the current i (in amperes) by

i = V

Z

C

R

L

K11207.indb 238 6/15/12 10:07 AM

Using Classes    ◾    239  

The program in Example 7.3 inputs the resistance, inductance, capacitance, the fre-
quency of the a-c source, and the voltage, and then uses the preceding equations to calculate
the current and output it.

Example 7.3 Current in an A-C Circuit

/* This program computes the current in an a-c circuit containing a
capacitor, an inductor, and a resistor in series.

 Input: resistance, inductance, capacitance, frequency, voltage
 Output: current
--*/

#include <iostream> // cin, cout, <<, >>
#include <complex> // complex<double> type
#include <iomanip> // format output
using namespace std;

int main()
{
 const complex<double> i = complex<double>(0, 1);

 double R, // resistance (ohms)
 L, // inductance (henrys)
 C, // capacitance (farads)
 omega; // frequency (radians per second)
 complex<double> V, // voltage (volts)
 Z, // total impedance
 I; // current (amperes)

 cout << "\nEnter resistance (ohms), inductance (henrys),\n"
 << "and capacitance (farads): ";
 cin >> R >> L >> C;

 cout << "\nEnter frequency (radians/second): ";
 cin >> omega;

 cout << "\nEnter voltage as a complex number in the form (x, y): ";
 cin >> V;

 // Calculate resistance using complex arithmetic
 Z = R + omega * L * i – i / (omega * C);

 // Calculate and display current using complex arithmetic
 I = V / Z;
 cout << fixed << setprecision(2)
 << "\nCurrent = " << real(I) << " + " << imag(I) << "I"
 << "\nwith magnitude = " << abs(I) << endl;
}

K11207.indb 239 6/15/12 10:07 AM

240    ◾    Programming in C++ for Engineering and Science

SAMPLE RUN:
Enter resistance (ohms), inductance (henrys),
and capacitance (farads): 5000 .03 .02

Enter frequency (radians/second): 377

Enter voltage as a complex number in the form (x, y): (60000, 134)

Current = 12.00 + –0.00I
with magnitude = 12.00

7.6 SIMULATIon wITh RAnDoM nUMBERS:
ShIELDInG A nUCLEAR REACToR

The term simulation refers to modeling a dynamic process and using this model to study
the behavior of the process. The behavior of some deterministic processes can be mod-
eled with an equation or a set of equations. For example, processes that involve exponen-
tial growth or decay are commonly modeled with an equation of the form a(t) = a0ekt,
where a(t) is the amount of some substance a present at time t, a0 is the initial amount
of the substance, and k is a rate constant. In many problems, however, the process being
studied can be modeled using randomness; for example, Brownian motion, the arrival of
airplanes at an airport, the number of defective parts manufactured by a machine, and so
on. Computer programs that simulate such processes use random number generators to
introduce randomness into the values produced during execution.

7.6.1 Random number Generators—The Randomint Class

A random number generator is a function that produces a number selected at random from
some fixed range in such a way that a sequence of these numbers tends to be uniformly distrib-
uted over the given range. Although it is not possible to develop an algorithm that produces
truly random numbers, there are some methods that produce sequences of pseudorandom
numbers that are adequate for most purposes. Most of these algorithms have two properties:

 1. Some initial value called a seed is required to begin the process of generating random
numbers. Different seeds will produce different sequences of random numbers.

 2. Each random number produced is used in the computation of the next random
number.

Although C++ does not provide a random number generator, its parent language C
does. This can be used to construct a class RandomInt for data objects whose values are
pseudorandom integers. (See the text’s website for more information about this class.)7

7 This RandomInt class was developed by Professor Joel Adams of Calvin College who was a coauthor of the text C++:
an introducton to Computing, 3/e, Pearson Education Inc., 2003.

K11207.indb 240 6/15/12 10:07 AM

Using Classes    ◾    241  

Two basic operations on a RandomInt object are provided that correspond directly to
the properties of a (pseudo-)random number generator given above:

 1. Construction (i.e., declaration), which initializes the object to a random number

 2. Generation, which provides the object with a new random number

Additional operations, such as assignment (=) and output (<<) are also provided. The class is
also designed so that any of the operations (numeric, relational, etc.) that can be applied to inte-
gers can be applied to class objects, although the result is an int, as opposed to a RandomInt.

7.6.1.1 Construction
A RandomInt object can be constructed by writing a declaration of the form:

RandomInt object_name(lower_bound, upper_bound);

Such a declaration constructs a RandomInt object named object_name whose value is
a random number in the range lower_bound to upper_bound. If lower_bound and
upper_bound are omitted, a random number is generated in the range 0 to some (large)
upper limit defined in the RandomInt class.

7.6.1.2 Generation
The second operation is to generate a new random number. Given a RandomInt object
constructed as just described, this can be done by sending it the generate() message:

object_name.generate();

When this statement is executed, the value of object_name is changed to another random
integer from the range specified when object_name was constructed.8 In addition to
changing the value of object_name , generate() returns the randomly generated value.

7.6.2 Problem

When the enriched uranium fuel of a nuclear reactor is burned, high-energy neutrons
are produced. Some of these are retained in the reactor core, but most of them escape.
Because this radiation is dangerous, the reactor must be shielded. We wish to develop
a program that simulates neutrons entering the shield and determines what percentage
of them get through it.

In our model of the shielding, we will make the simplifying assumption that neutrons
entering the shield follow random paths by moving forward, backward, left, or right with
equal likelihood, in jumps of one unit. We will also assume that losses of energy occur only
when there is a collision that causes a change of direction, and that after a certain number

8 Optional arguments lower_bound and upper_bound can be used with generate() to alter the range of the ran-
dom numbers to be generated.

K11207.indb 241 6/15/12 10:07 AM

242    ◾    Programming in C++ for Engineering and Science

of such collisions, the neutron’s energy is dissipated and it dies within the shield, provided
that it has not already passed back inside the reactor core or outside through the shield.

7.6.3 Solution9

The program in Example 7.4 inputs the thickness of the shield, the limit on the number of
collisions before energy is dissipated, and the number of neutrons simulated. To simulate
the path a neutron takes, it repeatedly generates random integers 1, 2, 3, or 4, correspond-
ing to movement forward, backward, to the left, or to the right, respectively. It continues to
do this until the net movement in the forward direction equals the shield thickness, indi-
cating that the neutron escapes; or it becomes 0, indicating that it returns back inside the
reactor; or the number of collisions reaches the specified limit, indicating that the neutron
dies within the shield. This is repeated for each neutron simulated, and the percentage of
neutrons that escape is calculated and displayed.

Example 7.4 Simulate Shielding of a Nuclear Reactor

/* This program simulates particles entering the shield described in
the text and determines what percentage of them reaches the
outside.

 Input: thickness of the shield, limit on the number of direction
changes, number of neutrons, current direction a neutron
traveled

 Output: the percentage of neutrons reaching the outside
--*/

#include <iostream> // cin, cout, <<, >>
#include "RandomInt.h" // random integer generator
using namespace std;

int main()
{
 int thickness,
 collisionLimit,
 neutrons;

9 See the website for a solution that doesn’t make use of the RandomInt class but uses C++’s random number generator
rand().

Outside

Inside

K11207.indb 242 6/15/12 10:07 AM

Using Classes    ◾    243  

 cout << "\nEnter the thickness of the shield, the limit on the \n"
 << "number of collisions, and the number of neutrons:\n";
 cin >> thickness >> collisionLimit >> neutrons;

 RandomInt direction(1,4);

 int forward,
 collisions,
 oldDirection,
 escaped = 0;

 for (int i = 1; i <= neutrons; i++)
 {
 // Next neutron
 forward = oldDirection = collisions = 0;

 while (forward < thickness && forward >= 0 &&
 collisions < collisionLimit)

{
direction.generate();

if (direction != oldDirection)
collisions++;

oldDirection = direction;

if (direction == 1)
forward++;

else if (direction == 2)
forward––;

}
if (forward >= thickness)

escaped++;
 }

 cout << '\n' << 100 * double(escaped) / double(neutrons)
 << "% of the particles escaped.\n";
 }

SAMPLE RUNS:
Enter the thickness of the shield, the limit on the
number of collisions, and the number of neutrons:
1 1 100

26% of the particles escaped

Enter the thickness of the shield, the limit on the
number of collisions, and the number of neutrons:
100 5 1000

K11207.indb 243 6/15/12 10:07 AM

244    ◾    Programming in C++ for Engineering and Science

0% of the particles escaped

Enter the thickness of the shield, the limit on the
number of collisions, and the number of neutrons:
4 5 100

3% of the particles escaped

Enter the thickness of the shield, the limit on the
number of collisions, and the number of neutrons:
8 10 500

0.2% of the particles escaped

In the four sample runs of the program, the first two are test cases. In the first test case,
the neutron will move only once because each first move is interpreted as a collision and
the limit on the number of collisions is 1. Because each of the four possible moves is equally
likely, we would expect 25 percent of the neutrons to escape on the average, and the result
produced by the program is consistent with this value. In the second test case, the shielding
is 100 units thick and the limit on the number of collisions is small, so we expect almost
none of the neutrons to escape through the shield.

7.6.4 normal Distributions

Most random number generators generate random numbers having a uniform distribution,
but they can also be used to generate random numbers having other distributions. The
normal distribution is especially important because it models many physical processes.
For example, the heights and weights of people, the lifetime of lightbulbs, the tensile
strength of steel produced by a machine, and, in general, the variations in parts produced
in almost any manufacturing process, have normal distributions. The normal distribution
has the familiar bell-shaped curve,

where μ is the mean of the distribution, σ is the standard deviation, and approximately
two-thirds of the area under the curve lies between μ – σ and μ + σ.

A normal distribution having μ = 0 and σ = 1 is called a standard normal distribution,
and random numbers having approximately this distribution can be generated quite easily
from a uniform distribution with the following algorithm:

µ – σ µ + σµ

K11207.indb 244 6/15/12 10:07 AM

Using Classes    ◾    245  

Algorithm for the Standard Normal Distribution

 1. Set sum equal to 0.

 2. Do the following 12 times:

 a. Generate a random number x from a uniform distribution.

 b. Add x to sum.

 3. Calculate z = sum – 6.

The numbers z generated by this algorithm have an approximate standard normal distri-
bution. To generate random numbers y having a normal distribution with mean μ and
standard deviation σ, we simply add the following step to the algorithm:

 4. Calculate y = μ + σ × z.

Implementing this algorithm as a program is left as an exercise.

ChAPTER SUMMARY

Key Terms

<< operator

>> operator

Bjarne Stroustrup

class

complex

data encapsulation

data members

dot notation

empty string

endl manipulator

extraction operator

fill character

format manipulator

fundamental types

getline()

index

input manipulator

insertion operator

istream

Jerry Schwarz

member functions

normal distribution

ostream

output manipulator

overloading

polar representation

precision

random number generator

randomness

simulation

state

stream

K11207.indb 245 6/15/12 10:07 AM

246    ◾    Programming in C++ for Engineering and Science

string

struct

subscript operator ([])

uniform distribution

white space

noTES
•	 Classes provide a way to encapsulate the characteristics of an object. This makes it

possible for a single object to contain all of its own information, which in turn makes
it possible to pass a complicated object to a function by using just one argument.

•	 Public members of a class object can be accessed using dot notation.

•	 Data members are designated private to prevent unauthorized operations from being
performed on them.

•	 Member functions get executed when messages are sent to objects.

•	 The state of an istream (good, bad, fail) can be checked by sending a message (good(),
bad(), fail()) to the istream object (e.g., cin). The clear() message can be used
to reset states and the ignore() message to skip characters in the stream.

•	 The input operator >> skips leading white space (space, tab, or newline). The noskipws
and skipws manipulators can be used to turn this feature off or on. The get() method
provides a useful alternative for reading any character, whether white space or not.

•	 The endl manipulator inserts a newline character ('\n') into an ostream to end a
line of output and then flushes it. The ostream cout is flushed automatically when-
ever the istream cin is used.

•	 The format of output is controlled by inserting format manipulators into output lists.
Except for setw(), which affects only the next output value, these manipulators con-
trol the format of all subsequent output in the program unless changed by some other
manipulator.

•	 When the input operator >> is applied to a string object, it extracts characters from
an istream and transfers them into a string object until a white-space character
is encountered.

•	 The getline() function stops extracting and transferring characters when a new-
line character is encountered. In can thus be used to read an entire line of input.
To read characters only up to the next white-space character, the input operator >>
should be used.

•	 The characters in a string object are indexed, beginning with 0. An expres-
sion of the form string_object[index] accesses the element at the speci-
fied index of string_object. The index of the last character is always
string_object. size() – 1.

K11207.indb 246 6/15/12 10:07 AM

Using Classes    ◾    247  

•	 The complex library provides data types complex<T>, where T is float, double,
or long double and is the type of the real and imaginary parts of complex values;
it also provides the customary complex operations and functions.

•	 Random numbers generators are used in simulations to model processes that
involve randomness.

Style and Design Tips

•	 if any of the objects needed to solve a problem have been identified but cannot be
defined using the fundamental types, examine the predefined classes of C++ to see if
any of them is appropriate for representing such objects.

•	 if any of the operations needed to solve a problem involve a class object, study the available
documentation for that class to see if any of its methods perform that operation. In the
worst case, this may involve looking at the header file for that class and experimenting
with the methods.

warnings

 1. When a value is read for a char variable using >>, white-space characters are skipped,
and the first nonwhite-space character is removed from the istream and assigned. For
other types, characters are read and removed until white space or some other character
that cannot belong to a value of that type is encountered and is left in the stream for the
next input operation. The characters that were read are then converted to the type of
the variable and assigned.

 2. in the preceding warning, if no character in an istream is found that can belong to a
value of the required type, the input operation is said to fail. No characters will be read
and removed and the value of the variable remains unchanged.

 3. The first character in a string object has index 0.

 4. Be careful when using both >> and getline() for input. A newline character that
terminates input via >> will be left in the istream and a subsequent attempt to read
a string using getline() will not read any characters because it terminates as soon
as this newline is encountered. An infinite loop may result.

 5. The string subscript operation uses square brackets containing an index,

 stringVariable[index]

 whereas the string substring operation uses parentheses containing an index and a size:

 string_object.substr(index, num_chars)

 6. run-time bounds checking is performed on most string functions that use an index
and causes an out-of-bounds exception if the index is negative or greater than the size
of the string, which terminates program execution.

K11207.indb 247 6/15/12 10:07 AM

248    ◾    Programming in C++ for Engineering and Science

 7. run-time bounds checking is not performed on the subscript operation. Special care
must be taken when accessing the characters of a string with the subscript operator,
to ensure that all accesses fall within the boundaries of the string.

 8. To fill a string object with a word from an istream, use the input operator >>:

 cin >> someString;

 to fill a string object with a line from an istream, use the getline() function:

 getline(cin, someString);

TEST YoURSELF

Section 7.2

 1. Packaging data items that are needed to describe an object in one container is known
as data .

 2. Classes have two kinds of members: members and members.

 3. Redefining a function with a new definition is called that function.

 4. Public members of a class can be accessed using notation.

Questions 5–7 assume the following declarations:

 class Date

 {

 public:

 void display();

 private:

 string month;

 int day;

 int year;

 };

 Date launch;

 5. List the data members of Date.

 6. List the function members of Date.

 7. Write a statement to call the display() function in launch.

Section 7.3

 1. Who designed the C++ language?

 2. Who developed the classes that constitute the iostream library?

 3. What are two of the main classes in the iostream library?

K11207.indb 248 6/15/12 10:07 AM

Using Classes    ◾    249  

 4. A is an abstraction that models how input gets from the keyboard to a
 program, or from a program to the screen.

 5. is a class for inputting characters from an arbitrary input device to an
executing program.

 6. is an istream object defined in the iostream library, which is a stream
from the keyboard to a program.

 7. Three states of an istream are , , and .

 8. The statement assert(cin.); will stop program execution if there is a
data-entry error.

 9. The method in the istream class is used to reset the states of an input
stream.

 10. The method in the istream class is used to skip characters in an input
stream.

 11. (True or false) By default, >> skips white space in an input stream.

 12. (True or false) The method get() skips white space in an input stream.

 13. is a class for outputting characters from an executing program to an arbi-
trary output device.

 14. and are ostream objects defined in the iostream library,
which are streams from a program to an output device.

 15. Two manipulators that can be used to flush an output stream are and .

 16. (True or false) When the statement

cout << setw(10) << 1.234 << 5.678 << endl;

 is executed, the real numbers 1.234 and 5.678 will be displayed in 10-space fields.

 17. (True or false) When the statement

cout << setprecision(1) << 1.234 << 5.678 << endl;

 is executed, the real numbers 1.2 and 5.7 will be displayed.

Section 7.4

 1. A string that contains no characters is called a(n) string.

 2. Write a declaration that initializes a string variable label to an empty string.

 3. Write a declaration that initializes a string constant UNITS to “meters.”

K11207.indb 249 6/15/12 10:07 AM

250    ◾    Programming in C++ for Engineering and Science

 4. If the input for the statement cin >> s1 >> s2;, where s1 and s2 are string
variables, is

 ABC
 DEF GHI

 then s1 will be assigned the value and s2 the value .

Questions 5–22 assume the following declarations:

 string s1 = "shell",
 s2 = "seashore",
 s3 = "She sells seashells by the seashore.",
 s4;

For Questions 5–19 find the value of the expression, and for Questions 20–22 give the new
value of the variable (s1, s2, or s3).

 5. s1[2]

 6. s2.size()

 7. s4.size()

 8. s3.empty()

 9. s4.empty()

 10. s1 > s2

 11. s1 < s3

 12. s2 + s1

 13. s1.substr(0, 3)

14. s3.find("sea", 0)

15. s3.rfind("sea", 35)

16. s3.find_first_of("abc",0)

17. s3.find_last_of("abc",35)

18. s3.find_first_not_of("abc",0)

19. s3.find_last_not_of("abc",35)

20. s1.replace(0, 2, 'b');

21. s2.insert(3, "l on the ");

22. s3.erase(9, 13);

Section 7.5

For Questions 1–6, calculate the given expression given that z = 8 + 3i and w = 7 + 2i.

 1. z + w 4. z / w

 2. z – w 5. z2

 3. z · w 6. |z|

Questions 7–11 assume that the following declarations have been executed:

 double r1 = 1.5, r2 = 2.1, r3;
 complex<double> c1 = complex<double>(1, 3),
 c2 = complex<double>(2, 1),
 c3;

K11207.indb 250 6/15/12 10:07 AM

Using Classes    ◾    251  

What value, if any, will be assigned to the given variable in each of the assignment statements?

 7. c3 = c1 * c2; 10. r3 = real(c2) + imag(c2);

 8. c3 = conj(c2); 11. c3 = r1;

 9. c3 = complex<double>(r1, r2);

 12. For the variable c3 declared in Questions 7–11, how should the data be entered so
that the value assigned to c3 by the input statement cin >> c3 is the complex con-
stant 1.5 + 2.5i?

ExERCISES

Section 7.3

For Exercises 1–11, assume that i1, i2, and i3 are int variables, r1, r2, and r3 are
double variables, and c1, c2, and c3 are char variables. Tell what value, if any, will be
assigned to each of these variables or explain why an error occurs, when the input state-
ments are executed with the given input data.

 1. cin >> i1 >> i2 >> i3 Input: 1 2 3
 >> r1 >> r2 >> r3; 4 5.5 6.6

 2. cin >> i1 >> i2 >> i3; Input: 1
cin >> r1 >> r2 >> r3; 2
 3
 4
 5
 6

 3. cin >> i1 >> r1; Input: 1 2.2
 cin >> i2 >> r2; 3 4.4
 cin >> i3 >> r3; 5 6.6

 4. cin >> i1 >> i2 >> i3 Input: 1 2.2
 >> r1 >> r2 >> r3; 3 4.4
 5 6.6

 5. cin >> i1 >> c1 >> r1 Input: 1 2.2
 >> i2 >> c2 >> r2 3 4.4
 >> i3 >> c3 >> r3; 5 6.6

 6. cin >> noskipws
 >> i1 >> c1 >> r1 Input: 1 2.2
 >> i2 >> c2 >> r2 3 4.4
 >> i3 >> c3 >> r3; 5 6.6

K11207.indb 251 6/15/12 10:07 AM

252    ◾    Programming in C++ for Engineering and Science

 7. cin >> i1 >> c1 >> i2 Input: 1A 2B 3C
 >> c2 >> i3 >> c3;

 8. cin >> i1 >> i2 >> i3; Input: 012 345 678

 9. cin >> dec >> i1 >> i2 >> i3; Input: 012 345 678

 10. cin >> oct >> i1 >> i2 >> i3; Input: 012 345 678

 11. cin >> hex >> i1 >> i2 >> i3; Input: 12 3A BC

For Exercises 12–20, assume that alpha and beta are real variables with values 2567.392
and 0.004, respectively, and that num1 and num2 are integer variables with values 12 and
436, respectively. Show precisely the output that each of the sets of statements produces, or
explain why an error occurs.

 12. cout << num2 << num2 + 1 << num2 + 2;

 13. cout << num2 << setw(4) << num2 + 1 << num2 + 2;

 14. cout << num1 << num1 + 1 << num1 + 2;

 15. cout << oct << num1 << num1 + 1 << num1 + 2;

 16. cout << showbase << oct << num1 << num1 + 1 << num1 + 2;

 17. cout << hex << num1 << num1 + 1 << num1 + 2;

 18. cout << showbase << hex << num1 << num1 + 1 << num1 + 2;

 19. cout << fixed << showpoint << right
 << setw(9) << setprecision(3) << alpha << endl
 << setw(10) << setprecision(5) << beta << endl
 << setw(7) << setprecision(4) << beta << endl;

 20. cout << scientific << showpoint << left
 << setprecision(1) << setw(10) << alpha << endl
 << setw(5) << beta << endl
 << "Tolerance:"
 << setw(12) << setprecision(3) << beta << endl;

For Exercises 21 and 22, assume that i and j are integer variables with values 15 and 8,
respectively; that ch is a character variable whose value is 'c'; and that x and y are real
variables with values 2559.50 and 8.015, respectively. Show precisely the output produced,
or explain why an error occurs.

 21. cout << setw(j) << setprecision(2)
 << fixed << showpoint << right

K11207.indb 252 6/15/12 10:07 AM

Using Classes    ◾    253  

 << "New balance =" << x << ' ' << setw(i % 10) << ch
 << setw(j) << setprecision(j–6) << y << endl;

 22. cout << "i =" << setw(i) << i
 << fixed << showpoint << right
 << "j =" << setw(j) << setprecision(j) << j << endl
 << setw(j) << i << ' '
 << setw(i) << j << endl;

For Exercises 23–26, assume that n1 and n2 are integer variables with values 987 and
–6789, respectively; that r1 and r2 are real variables with values 12.3456 and –0.00246,
respectively; and that ch is a character variable with the value 'T'. For each, write
an output statement that uses these variables and format manipulators to produce the
given output. (The underlining dashes are shown here only to help you determine the
spacing.)

23. 12.3 T 987

24. 12.35 –0.0025

25. Values: 12.34560 and –0.00246

26. Observations: 12.3 and –0.0

Locations: 987 and 6789

12.345600T***987

–6789TTT–0.00246

Section 7.4

Exercises 1–26 assume the following declarations:

 string s1,
 s2 = "row, row, row your boat",
 s3 = "row",
 s4 = "boat.";

For Exercises 1–21 find the value of the expression or explain why an error occurs.

K11207.indb 253 6/15/12 10:07 AM

254    ◾    Programming in C++ for Engineering and Science

 1. s2[3]

 2. s1.size() + s4.size()

 3. s3 < s4

 4. s3 <= s2

 5. s3 + s4

 6. "fl" + s4.substr(1,3) + " a " + s4

 7. s2.substr(1,3)

 8. s3.substr(1,3)

 9. s2.find("ow", 1)

 10. s2.find("ow", 2)

 11. s2.find("ow", 12)

 12. s2.rfind("ow", 12)

 13. s2.rfind("ow", 11)

 14. s2.rfind("ow", 1)

 15. s2.find_first_of(s4,0)

 16. s2.find_first_of(s4,2)

 17. s2.find_first_not_of(s4,0)

 18. s2.find_first_not_of(s4,1)

 19. s2.find_last_of(s3, 22)

 20. s2.find_last_of(s3, 19)

 21. s2.find_last_not_of(s3, s2.size() – 1)

For Exercises 22–26, give the output produced, or explain why an error occurs.

 22. int i = s2.find_last_of(s3, s2.size() – 1);
 cout << s2.substr(i, s2.size() – i) << endl;

 23. s1 = s3 + s4;
 s1[0] = 'g';
 s1.replace(2, 2, " fl");
 cout << s1 << endl;

 24. s1 = s2;
 s1.erase(3, 10);
 s1.insert(0, "Bor");
 cout << s1 + "?\n";

 25. s1 = s2;
 s1[s1.find("b", 0)] = 'g';
 for (int i = 0; i <= 10; i += 5)
 s1[i] = 'm';
 cout << s1 << endl;

 26. s1 = s2;
 int i;
 i = s1.find_first_of("aeiou", 0);
 while (i != string::npos)
 {
 s1.replace(i, 1, "xx");
 i = s1.find_first_of("aeiou", i + 1);

K11207.indb 254 6/15/12 10:07 AM

Using Classes    ◾    255  

 }
 cout << s1 << endl;

 27. Given that string variable last_first has the value "Smith, Bill",
write statements to extract the first and last names from last_first and
then combine them so that "Bill Smith" is assigned to the string variable
first_last.

 28. Write a function that accepts a single string object consisting of a first name, a
middle name or initial, and a last name, and returns a single string object consist-
ing of the last name, followed by a comma, and then the first name and the middle
initial. For example, for "John Quincy Doe", the function should return the string
"Doe, John Q.".

 29. Write a function that accepts the number of a month and returns the name of the
month.

 30. Write a function that accepts the name of a month and returns the number of the
month.

 31. Write a function that, given a string of lowercase and uppercase letters, returns a
copy of the string in all lowercase letters; and another function that, given a string of
lowercase and uppercase letters, returns a copy of the string in all uppercase letters.
(Hint: Use a for loop and the functions provided in cctype.)

 32. A string is said to be a palindrome if it does not change when the order of its char-
acters is reversed. For example:

 madam

 463364

 ABLE WAS I ERE I SAW ELBA

 are palindromes. Write a function that, given a string, returns true if that string is a
palindrome and returns false otherwise.

Section 7.5

For Exercises 1–12, calculate each expression, given that z = 1 + 2i and w = 3 – 4i.

 1. z + w

 2. z – w

 3. z · w

 4. z / w

 5. z2

 6. z–

 7. w

 8. +z z

2

 9. −z z

2

K11207.indb 255 6/15/12 10:07 AM

256    ◾    Programming in C++ for Engineering and Science

 10. ⋅z z

 11.
z

1
 12. +

−
z w

z w

 13.–24. Repeat Exercises 1–12 for z = 6 – 5i and w = 5 + 12i.

 25.–36. Repeat Exercises 1–12 for z = 1 + i and w = 1 – i.

For Questions 37–41, assume that the following declarations have been executed:

 double r1 = 2.5, r2 = 6.0, r3;

 complex<double> c1 = complex<double>(1, –1),

c2 = complex<double>(–3, 4),

c3;

What value, if any, will be assigned to the given variable in each of the assignment statements?

 37. c3 = c1 * c2;

 38. c3 = conj(c2);

 39. c3 = complex<double>(r1, r2);

 40. r3 = real(c2) + imag(c2);

 41. c3 = r1;

PRoGRAMMInG PRoBLEMS

Sections 7.2–7.4

 1. Write a driver program to test the name-conversion function of Exercise 27.

 2. Write a driver program to test the name-conversion function of Exercise 28.

 3. Write a program to print personalized contest letters like those frequently received in
the mail. They might have a format like that of the following sample. The user should
enter the three strings in the first three lines, and the program then prints the letter
with the underlined locations filled in.

 Mr. John Q. Doe
 123 SomeStreet
 AnyTown, AnyState 12345

 Dear Mr. Doe:

 How would you like to see a brand new BMW parked in front
of 123 SomeStreet in AnyTown, AnyState? Impossible, you say?
No, it isn't, Mr. Doe. Simply keep the enclosed raffle ticket
and validate it by sending a $100.00 tax-deductible political
contribution and 10 from Shyster & Sons chewing tobacco. Not
only will you become eligible for the drawing to be conducted

K11207.indb 256 6/15/12 10:07 AM

Using Classes    ◾    257  

on February 29 by the independent firm of G. Y. P. Shyster, but
you will also be helping to reelect Sam Shyster. That's all
there is to it, John. You may be a winner!!!

 4. Write a driver program to test the name-of-a-month function of Exercise 29.

 5. Write a driver program to test the number-of-a-month function of Exercise 30.

 6. Write a driver program to test the case-conversion functions of Exercise 31.

 7. Write a driver program to test the palindrome-checker function of Exercise 33.

 8. There are 3 teaspoons in a tablespoon, 4 tablespoons in a quarter of a cup, 2 cups in
a pint, and 2 pints in a quart. Write a program to convert units in cooking. The pro-
gram should call for the input of the amount, the units, and the new units desired.

 9. Write a function to count occurrences of a string in another string. Then write a
driver program to input a string and then input several lines of text, using the func-
tion to count occurrences of the string in the lines of text.

 10. Reverend Zeller developed a formula for computing the day of the week on which
a given date fell or will fall. Suppose that we let a, b, c, and d be integers defined as
follows:

a = the number of a month of the year, with March = 1, April = 2, and so on, with
January and February being counted as months 11 and 12 of the preceding year

b = the day of the month

c = the year of the century

d = the century

 For example, July 31, 1929, gives a = 5, b = 31, c = 29, d = 19; January 3, 1988, gives
a = 11, b = 3, c = 87, d = 19. Now calculate the following integer quantities:

w = the integer quotient (13a – 1)/5

x = the integer quotient c/4

y = the integer quotient d/4

z = w + x + y + b + c – 2d

r = z reduced modulo 7; that is, r is the remainder of z divided by 7: r = 0 repre-
sents Sunday; r = 1 represents Monday, and so on.

 Write a function day_of_the_Week() that receives the name of a month, the day of
the month, and a year, and returns the name of the day of the week on which that date
fell or will fall. Write a program that inputs several strings representing dates, calls the
function day_of_the_Week(), and displays the day returned by the function.

K11207.indb 257 6/15/12 10:07 AM

258    ◾    Programming in C++ for Engineering and Science

 a. Verify that December 12, 1960, fell on a Monday, and that January 1, 1991, fell on
a Tuesday.

 b. On what day of the week did January 25, 1963, fall?

 c. On what day of the week did June 2, 1964, fall?

 d. On what day of the week did July 4, 1776, fall?

 e. On what day of the week were you born?

Section 7.5

 1. Write a program that reads three complex numbers and then determines whether the
triangle whose vertices are the points in the plane that represent those three numbers
is (a) equilateral, (b) isosceles, (c) a right triangle.

 2. Write a program that inputs complex numbers, converts them to their polar repre-
sentation, and displays each number in both forms.

 3. Extend the program in Problem 2 to input a positive integer n and then compute and
display the nth roots of each complex number. The nth roots of z = reiθ are given by

 = θ + π

 + θ + π

z r
k

n
i

k

n
cos

2
sin

2n n1/ 1/ , for k = 0, 1, . . . , n – 1

 4. In a circuit containing a resistor and an inductor in series, the voltage is given by
= + ωV R i L I() , where V is the voltage (in volts), r is the resistance (in ohms), l is the

inductance (in henrys), and ω is the angular velocity (in radians per second). Write a
program that can be used to compute the voltage (complex) given the current (com-
plex), or to find the current given the voltage. Execute the program with r = 1.3ω,
l = 0.55 mH, and ω = 365.0 rad/sec.

Section 7.6

 1. A coin is tossed repeatedly, and a payoff of 2n dollars is made, where n is the number
of the toss on which the first head appears. For example, TTH pays $8, TH pays $4,
and H pays $2. Write a program to simulate playing the game several times and to
print the average payoff for these games.

 2. Suppose that a gambler places a wager of $5 on the following game: a pair of dice is
tossed, and if the result is odd, the gambler loses his wager. If the result is even, a card is
drawn from a standard deck of 52 playing cards. If the card drawn is an ace, 3, 5, 7, or 9,
the gambler wins the value of the card (with aces counting as 1, Jacks as 11, Queens as 12,
and Kings as 13); otherwise, he loses. What will be the average winnings for this game?
Write a program to simulate the game.

 3. Johann VanDerDoe, centerfielder for the Klavin Klodhoppers, has the following life-
time hitting percentages:

K11207.indb 258 6/15/12 10:07 AM

Using Classes    ◾    259  

Out 63.4%

Walk 10.3%

Single 19.0%

Double 4.9%

Triple 1.1%

Home run 1.3%

 Write a program to simulate a large number of times at bat, for example, 1000, for
Johann, counting the number of outs, walks, singles, and so on, calculating his

batting average =

number of hits

number of tiimes atbat– number of walks

 4. Consider a quarter circle inscribed in a square whose sides have length 1:

 Imagine throwing q darts at this square and counting the total number p that hit
within the quarter circle. For a large number of throws, we would expect

p
q

≈ area of quarter circle
area of square

=
4
π

 Write a program to approximate π using this method. To simulate throwing the
darts, generate two random numbers x and y and consider point (x, y) as being where
the dart hits.

 5. The simulation in Problem 4 can be generalized to find the area under the graph of
any function and is known as a Monte Carlo method of approximating integrals. To
illustrate it, consider a rectangle that has base [a, b] and height m, where m ≥ f(x) for
all x in [a, b]:

1

1

y = f(x)

D

A B

m

b

C

K11207.indb 259 6/15/12 10:07 AM

260    ◾    Programming in C++ for Engineering and Science

 Imagine throwing q darts at rectangle aBCD and counting the total number p that
hit the shaded region. For a large number of throws, we would expect

P
q A

≈ area of shaded region
area of rectangle BBCD

 Write a program to calculate areas using this Monte Carlo method. To simulate
throwing the darts, generate two random numbers x from [a, b] and y from [0, m], and
consider the point (x, y) as being where the dart hits. Use your program to compute
the current passing through a capacitor with capacitance C = 5 farads for 6 seconds,
which can be calculated as 1/C times the area under the curve

=

π

f t

t
() 10sin2

 from t = 0 to t = 6.

 6. The famous Buffon Needle problem is as follows: A board is ruled with equidis-
tant parallel lines, and a needle of length equal to the distance between these lines
is dropped at random on the board. Write a program to simulate this experiment
and estimate the probability p that the needle crosses one of these lines. Display the
values of p and 2/p. (The value of 2/p should be approximately equal to a well-known
constant. What constant is it?)

 7. The tensile strength of a certain metal component has an approximate normal dis-
tribution with a mean of 10,000 pounds per square inch and a standard deviation of
100 pounds per square inch. Specifications require that all components have a tensile
strength greater than 9800; all others must be scrapped. Write a program that uses
the algorithm described in this section to generate 1000 normally distributed ran-
dom numbers representing the tensile strength of these components, and determine
how many must be rejected.

K11207.indb 260 6/15/12 10:07 AM

261

C h a p t e r 8

More Selection
Control Structures

If you don’t know where you’re going, you’ll wind up somewhere else.

YOGI BERRA

‘Would you tell me, please, which way I ought to go from here?’
‘That depends a good deal on where you want to get to’, said the Cat.

LEWIS CARROLL, ALICE'S ADVENTURES IN WONDERLAND

We are all special cases.

ALBERT CAMUS

ConTEnTS
8.1 Introductory Example: Air Quality Indexes Revisited 262
8.2 More About the if Statement 264
8.3 The switch Statement 269
8.4 Conditional Expressions 278
Chapter Summary 281
Test Yourself 284
Exercises 285
Programming Problems 290

262    ◾    Programming in C++ for Engineering and Science

In Chapter 5, we saw that the logical flow of execution in a function or program is
governed by three basic control mechanisms: sequence, selection, and repetition.

We looked at examples where an if statement was used to perform selective execution
and for and while statements to perform repetitive execution. Our introductions to
these statements were quite brief, however, so we will take a closer look at them in
this chapter and the next. We will begin by looking at the if statement in more detail
and then introduce the switch statement that sometimes provides a more efficient
way to perform selection. In Chapter 9, we will reexamine the for statement and see
some of the other ways it can be used to control repetition. We will also introduce the
do-while statement, and we will compare it with the while statement we studied in
Chapter 5.

8.1 InTRoDUCToRY ExAMPLE: AIR QUALITY InDExES REVISITED
The Air Quality Index (AQI) in the introductory example in Chapter 5 involved only two
categories: safe and hazardous. In reality, however, there are usually several more. For
example, the United States AQI has six categories and a color for each:

AQI Level of Health Concern Color

0 to 50 Good Green
51 to 100 Moderate Yellow
101 to 150 Unhealthy for sensitive groups Orange
151 to 200 Unhealthy Red
201 to 300 Very unhealthy Purple
301 and above Hazardous Maroon

The program in Example 8.1 is a modification of that in Example 5.1 that classifies the
index using these six categories. It uses the if–else if construct that we introduced in
Chapter 5 and will consider in more detail in the next section.

Example 8.1 Air Quality Indexes
/* This program reads thee pollution levels, calculates an air

quality index (AQI) as their integer average, and then displays
an appropriate air-quality message.

Input: the three pollution levels
Constant: the cutoff values (parts per million)
Output: the air quality index, the corresponding level of health

concern using the six U.S. categories, and its color
--*/

#include <iostream> // cin, cout, <<, >>
using namespace std;

K11207.indb 262 6/15/12 10:07 AM

More Selection Control Structures    ◾    263  

int main()
{
const int CUTOFF1 = 50,

 CUTOFF2 = 100,
 CUTOFF3 = 150,
 CUTOFF4 = 200,
 CUTOFF5 = 300;

int level1, level2, level3;
cout << "Enter 3 pollution readings (parts per million): ";
cin >> level1 >> level2 >> level3; // get pollution levels

 // compute AQI
int index = (level1 + level2 + level3) / 3;

 // display AQI
cout << "AQI: " << index << " –– ";

 // display condition
if (index < CUTOFF1)
cout << "Good –– Green\n";

else if (index < CUTOFF2)
cout << "Moderate –– Yellow\n";

else if (index < CUTOFF3)
cout << "Unhealthy for Sensitive Groups -- Orange\n";

else if (index < CUTOFF4)
cout << "Unhealthy –– Red\n";

else if (index < CUTOFF5)
cout << "Very Unhealthy –– Purple\n";

else
cout << "Hazardous –– Maroon\n";

}

SAMPLE RUNS:
Enter 3 pollution readings (parts per million): 30 40 50
AQI: 40 –– Good –– Green

Enter 3 pollution readings (parts per million): 40 50 60
AQI: 50 –– Moderate –– Yellow

Enter 3 pollution readings (parts per million): 95 111 98
AQI: 101 –– Unhealthy for Sensitive Groups –– Orange

Enter 3 pollution readings (parts per million): 144 159 148
AQI: 150 –– Unhealthy –– Red

Enter 3 pollution readings (parts per million): 299 298 311
AQI: 302 –– Hazardous –– Maroon

K11207.indb 263 6/15/12 10:07 AM

264    ◾    Programming in C++ for Engineering and Science

8.2 MoRE ABoUT ThE if STATEMEnT
In Section 5.4 we saw three different forms of the if statement:

The single-branch or simple if form:

if (condition)
statement

The dual-branch or if-else form:

if (condition)
statement1

else
statement2

The multibranch or if-else-if form:

if (condition1)
statement1

else if (condition2)
statement2

...
else if (conditionn)

statementn
else

statementn+1

where each condition is a boolean expression.
Although these may look like three distinct statements, the first and last are actually

special forms of the second if statement. The first form is a simpler way of writing an if
statement in which the else part is empty:

if (condition)
statement1

else;

The multibranch form is simply a series of nested if statements written as one. To illus-
trate this, if we were to write a 5-branch if-else-if and we were to start each new
if statement on a new line with each else aligned with its corresponding if, our code
would appear as follows:

if (condition1)
statement1

else
if (condition2)
statement2

else

K11207.indb 264 6/15/12 10:07 AM

More Selection Control Structures    ◾    265  

if (condition3)
statement3

else
if (condition4)
statement4

else
statement5

However, the free-form nature of C++ allows us to begin each nested if on the same line
as the preceding else and align the else-if combinations:

if (condition1)
statement1

else if (condition2)
statement2

else if (condition3)
statement3

else if (condition4)
statement4

else
statement5

This latter style reflects more clearly the multibranch nature and is therefore more read-
able. It is important, however, to understand that each else is really a continuation of the
nearest preceding if:

8.2.1 Pitfall: The Dangling-Else Problem

Each statementi in an if statement can be any C++ statement and, in particular, may
be another if statement; for example,

if (x > 0)
 if (y > 0)
 z = sqrt(x) + sqrt(y);

When such nested if statements are followed by an else, it is not evident with which if
the else corresponds. Does the else match the outer if?

K11207.indb 265 6/15/12 10:07 AM

266    ◾    Programming in C++ for Engineering and Science

Or does it match the inner if?

This ambiguity is known as the dangling else problem, and C++ resolves it by stipulating
that

In a nested if statement, an else is matched with the nearest preceding unmatched if.

Thus, for the preceding if statement, the second matching is used; that is, the else is
associated with the inner if (whose condition is y > 0). Consequently, the output state-
ment is executed only in the case that x is positive and y is nonpositive. If we wish to asso-
ciate this else with the outer if, we can force the association by enclosing the inner if
in curly braces as follows:

if (x > 0)
{
 if (y > 0)
 z = sqrt(x) + sqrt(y);
}
else
 cerr < "*** Unable to compute z!" << endl;

Putting the inner if inside a block makes it a complete statement, so that the else must
associate with the outer if. Thus, the output statement is executed whenever x is nonpositive.

8.2.2 Pitfall: Confusing = and ==

We turn now to what is one of the most common errors made by beginning C++ program-
mers in constructing boolean expressions, and, as a consequence, in writing if statements.
We begin by looking at two features of C++ that are relevant to this problem.

 1. True and false in C++. To maintain compatibility with its parent language C, in any
boolean context, C++ interprets the value 0 as equivalent to the boolean value false
and any nonzero value as equivalent to the boolean value true.1 Thus, the statement

if (0)
cout << "T\n";

1 C has no bool type. In its place, C uses the zero/nonzero mechanism described here.

if (x > 0)
 if (y > 0)

else
z = sqrt(x) + sqrt(y);

cerr << "\n*** Unable to compute z!" << endl;

if (x > 0)
 if (y > 0)
 z = sqrt(x) + sqrt(y);
else
 cerr << "\n*** Unable to compute z!" << endl;

K11207.indb 266 6/15/12 10:07 AM

More Selection Control Structures    ◾    267  

else
cout << "F\n";

 will always display F because the condition controlling the selection is zero, which
C++ treats as false. Similarly, the statement

if (23)
cout << "T\n";

else
cout << "F\n";

 will always display the value T because the condition controlling the selection is non-
zero, which is interpreted as true in C++.

 2. Assignments are expressions. We saw in Chapter 3 that in C++, assignment (=) is an
operator that, in addition to assigning a value to a variable, returns the value being
assigned as its result. For example, the assignment expression

x = 23

 does two things: It assigns x the value 23 and it produces the value 23 as its result.
Similarly,

x = 0

 both assigns x the value 0 and produces the value 0 as its result.
By themselves, neither of these C++ features is particularly troublesome, but when cou-

pled with the similarity of the assignment and equality operators, they make it easy to
write if statements that contain logical errors. To illustrate, suppose that a programmer
encodes the instruction

if x is equal to zero, then
Display the character string “Zero”

Otherwise
Display the character string “nonzero”

as

if (x = 0)
cout << "Zero\n";

else
cout << "Nonzero\n";

Because the assignment operator

x = 0

K11207.indb 267 6/15/12 10:07 AM

268    ◾    Programming in C++ for Engineering and Science

is used instead of an equality comparison

x == 0

and the value returned by the assignment operator is the value that was assigned, this state-
ment is equivalent to

if (0)
cout << "Zero\n";

else
cout << "Nonzero\n";

Because 0 is treated as false, the statement to output Nonzero will always be selected,
regardless of the value of x.

Similarly, if a programmer writes

cout << MENU; // display menu of choices: A, B, C
cin >> choice;
if (choice = 'A')
statement1 // do something when choice is A

else if (choice = 'B')
statement2 // do something else when choice is B

else if (choice = 'C')
statement3 // do something else when choice is C

else
cout << choice << " must be A, B, or C.\n";

then the statement associated with choice A will always be selected, regardless of the value
entered by the user. The reason is that instead of the first condition testing whether choice
is equal to A,

choice == 'A'

it assigns choice the numeric code of A (65 in ASCII):

choice = 'A'

The result produced by the assignment operator is the value assigned (65), and so this
if-else-if form is equivalent to

cout << MENU; // display menu of choices: A, B, C
cin >> choice;
if (65)
statement1 // do something when choice is A

else if (choice = 'B')
statement2 // do something else when choice is B

else if (choice = 'C')

K11207.indb 268 6/15/12 10:07 AM

More Selection Control Structures    ◾    269  

statement3 // do something else when choice is C
else
cout << ch oice << " must be A, B, or C.\n";

Because nonzero values are treated as true, the value 65 is treated as true, so statement1
will be executed, and statement2, statement3, and the output statement will be
bypassed, regardless of the value of choice.

This kind of mistake is easy to make in constructing boolean expressions. Unfortunately,
these errors can be fiendishly difficult to find, because the equality operator (==) and the
assignment operator (=) are similar in appearance. any time an algorithm calls for an
equality comparison, the code that implements the algorithm should be carefully checked to
ensure that an assignment operator has not been inadvertently used instead of the equality
operator.

8.3 ThE switch STATEMEnT
An if statement can be used to implement a multialternative selection statement in which
exactly one of several alternative actions is selected and performed. In the if-else-if
form described in the preceding section, a selection is made by evaluating one or more
boolean expressions. Because selection conditions can usually be formulated as boolean
expressions, an if-else-if form can be used to implement virtually any multialterna-
tive selection.

In this section, another multialternative selection statement called the switch state-
ment is described. Although it is not as general as the if statement, it is more efficient for
implementing certain forms of selection. As usual, we begin with an example that illus-
trates the use of the statement.

8.3.1 Example: Temperature Conversions

In the early sections of Chapter 6, we considered the problem of converting temperatures
from the Fahrenheit scale to the Celsius scale. In Section 6.2 we constructed a function to
do this conversion, and in Section 6.4 we showed how a library Heat could be created to
store various functions for converting temperatures between the Fahrenheit, Celsius, and
Kelvin scales.

Now that we know about selective execution, we can consider a more general version
of the problem—writing a program that allows the user to choose which conversion to be
performed: Fahrenheit to Celsius (or vice versa), Fahrenheit to Kelvin (or vice versa), or
Celsius to Kelvin (or vice versa).

8.3.1.1 Behavior
Our program should display on the screen a menu of the six possible conversion options
and then read the desired conversion from the keyboard. Next, it should display on the
screen a prompt for a temperature, which it should read from the keyboard. The program
should then display the result of converting the input temperature, as determined by the
specified conversion.

K11207.indb 269 6/15/12 10:07 AM

270    ◾    Programming in C++ for Engineering and Science

8.3.1.2 Objects
From our behavioral description, we have the following objects in this problem:2

Problem Objects

Software Objects

Type Kind Name

menu string constant MEnu
conversion char variable conversion
temperature double variable temperature
result double variable result

We can thus specify the problem as follows:

Input: temperature, a double; and conversion, a char
Precondition: conversion is in the range A–F (or a–f)
Output: MEnu, prompts for input, and the result of converting the temperature

8.3.1.3 Operations
Our behavioral description leads to the following list of operations:

 i. Display prompts and MEnu (strings) on the screen.

 ii. Read temperature (a double) from the keyboard.

 iii. Read conversion (a char) from the keyboard.

 iv. Select the conversion function corresponding to conversion and apply it to temperature.

All of these are provided in C++. For operation (iv), we must compare conversion to each
of the valid menu choices, and based on that comparison, select an appropriate conversion
function.

8.3.1.4 Algorithm
The following algorithm applies this strategy.

Algorithm to Convert Arbitrary Temperatures

 1. Display MEnu via cout.

 2. Read conversion from cin.

 3. Display a prompt for a temperature via cout.

 4. Read temperature from cin.

2 Because almost every problem uses the screen, keyboard, and prompt objects, we will omit them from our lists of objects
and simply assume that they are needed. This will save space and will also allow us to focus our attention on user-defined
objects.

K11207.indb 270 6/15/12 10:07 AM

More Selection Control Structures    ◾    271  

 5. If conversion is ‘A’ or ‘a’

 Convert temperature from Fahrenheit to Celsius and store in result.

 Otherwise, if conversion is ‘B’ or ‘b’

 Convert temperature from Celsius to Fahrenheit and store in result.

 Otherwise, if conversion is ‘C’ or ‘c’

 Convert temperature from Celsius to Kelvin and store in result.

 Otherwise, if conversion is ‘D’ or ‘d’

 Convert temperature from Kelvin to Celsius and store in result.

 Otherwise, if conversion is ‘E’ or ‘e’

 Convert temperature from Fahrenheit to Kelvin and store in result.

 Otherwise, if conversion is ‘F’ or ‘f ’

 Convert temperature from Kelvin to Fahrenheit and store in result.

 Otherwise

 Display an error message.

8.3.1.5 Coding and Testing
We could implement the algorithm using an if-else-if construct:

if (conversion == 'A' || conversion == 'a')
result = fahrToCelsius(temperature)

else if (conversion == 'B' || conversion == 'b')
result = celsiusToFahr(temperature);

 ...
else
{

cerr << "\n*** Invalid conversion: " << conversion << endl;
result = 0.0;

}

The C++ switch statement, however, provides a more convenient way to do this, as shown
in the program in Example 8.2.

Example 8.2 Arbitrary Temperature Conversions

/* This program converts temperatures from one scale to another.

Input: menu choices, temperatures
Output: menu, temperatures on other scale

--*/

K11207.indb 271 6/15/12 10:07 AM

272    ◾    Programming in C++ for Engineering and Science

#include <iostream> // cin, cout, <<, >>
#include <string> // string class
using namespace std;
#include "Heat.h" // fahrToCelsius(), celsiusToFahr(), ...

int main()
{
const string MENU = "To convert arbitrary temperatures, enter:\n"

 " A - to convert Fahrenheit to Celsius;\n"
 " B - to convert Celsius to Fahrenheit;\n"
 " C - to convert Celsius to Kelvin;\n"
 " D - to convert Kelvin to Celsius;\n"
 " E - to convert Fahrenheit to Kelvin; or\n"
 " F - to convert Kelvin to Fahrenheit.\n"
 " --> ";

cout << MENU;
char conversion;
cin >> conversion;

cout << "\nEnter the temperature to be converted: ";
double temperature;
cin >> temperature;
double result;
switch (conversion)
{

case 'A': case 'a':
result = fahrToCelsius(temperature);
break;

case 'B': case 'b':
result = celsiusToFahr(temperature);
break;

case 'C': case 'c':
result = celsiusToKelvin(temperature);
break;

case 'D': case 'd':
result = kelvinToCelsius(temperature);
break;

case 'E': case 'e':
result = fahrToKelvin(temperature);
break;

case 'F': case 'f':
result = kelvinToFahr(temperature);
break;

default:
cerr << "\n*** Invalid conversion: "

<< conversion << endl;
result = 0.0;

}
cout << "The converted temperature is " << result << endl;

}

K11207.indb 272 6/15/12 10:07 AM

More Selection Control Structures    ◾    273  

SAMPLE RUN:

To convert arbitrary temperatures, enter:
 A - to convert Fahrenheit to Celsius;
 B - to convert Celsius to Fahrenheit;
 C - to convert Celsius to Kelvin;
 D - to convert Kelvin to Celsius;
 E - to convert Fahrenheit to Kelvin; or
 F - to convert Kelvin to Fahrenheit.
--> B

Enter the temperature to be converted: 100
The converted temperature is 212

Note the convenience of the switch statement: by allowing us to specify any number
of cases for a given alternative, we can test the value of conversion quite conveniently,
regardless of whether it is uppercase or lowercase:

switch (conversion)
{
case 'A': case 'a':

result = fahrToCelsius(temperature);
break;

. . .
}

The equivalent if-else-if version seems clumsy by comparison, and many people find
it to be more work and less readable. In addition, using a switch statement to select from
among several alternatives is typically more time-efficient than using an if statement, as
discussed at the end of this section.

8.3.2 Form of the switch Statement
The C++ switch statement has the following general form:

tHe switch statement

Form:

switch (expression)

{

case_list1 :

statement_list1;

case_list2 :

statement_list2;

.

.

.

K11207.indb 273 6/15/12 10:07 AM

274    ◾    Programming in C++ for Engineering and Science

8.3.3 The break Statement

As illustrated in the program in Example 8.2, each of the statement lists in a switch state-
ment usually ends with a break statement of the form

break;

When it is executed, this statement transfers control to the first statement following the
switch statement. As we will see in the next chapter, the break statement can also be used
to terminate repetition of a loop. In both situations break has the same behavior: execution
jumps to the first statement following the switch statement or loop in which it appears.

8.3.4 Drop-Through Behavior

An important feature to remember when using the switch statement is its drop-through
behavior. To illustrate it, suppose we had written the switch statement in Example 8.2
without the break statements:

case_listn :

statement_listn
default :

statement_listn+1
};

where
switch and default are C++ keywords;
expression is an integer (or integer-compatible) expression
each case_listi is a sequence of cases of the form

case constant_value :

the default clause is optional; and
each statement_listi is a sequence of statements.

PurPose:

when the switch statement is executed, expression is evaluated. If the value of
expression is in case_listi, then execution begins in statement_listi and continues
until one of the following is reached:

A break statement
A return statement
The end of the switch statement

If the value of expression is not in any case_listi, then statement_listn+1 in the
default clause is executed. If the default clause is omitted and the value of expression is
not in any case_listi, then execution “falls through” the switch statement.

note that expression must be an integer-compatible expression (in particular, it may not
evaluate to a real or a string value).

K11207.indb 274 6/15/12 10:07 AM

More Selection Control Structures    ◾    275  

switch (conversion)
{

case 'A': case 'a':
result = fahrToCelsius(temperature);

case 'B': case 'b':
result = celsiusToFahr(temperature);

case 'C': case 'c':
result = celsiusToKelvin(temperature);

case 'D': case 'd':
result = kelvinToCelsius(temperature);

case 'E': case 'e':
result = fahrToKelvin(temperature);

case 'F': case 'f':
result = kelvinToFahr(temperature);

default:
cerr << "\n*** Invalid conversion: "

 << conversion << endl;
result = 0.0;

}

The output produced when this modified version is run may be rather unexpected. Here is
one example:

To convert arbitrary temperatures, enter:
 A – to convert Fahrenheit to Celsius;
 B – to convert Celsius to Fahrenheit;
 C – to convert Celsius to Kelvin;
 D – to convert Kelvin to Celsius;
 E – to convert Fahrenheit to Kelvin; or
 F – to convert Kelvin to Fahrenheit.
--> B

Enter the temperature to be converted: 100
*** Invalid conversion: B
The converted temperature is 0

As in the sample run in Example 8.2, the value of conversion is B, so control is trans-
ferred to the statement:

result = celsiusToFahr(temperature);

However, there is no break following this statement to transfer control past the other state-
ments, and so execution drops through to the statement in the next case, which resets result:

result = celsiusToKelvin(temperature);

Again, there is no break statement, so execution drops through to the statement in the
next case, which resets result again:

result = kelvinToCelsius(temperature);

K11207.indb 275 6/15/12 10:07 AM

276    ◾    Programming in C++ for Engineering and Science

This drop-through behavior continues until a break, a return, or the end of the switch
statement is reached. Because there are no break or return statements here, execution
proceeds through the next two cases and reaches the default case, which displays

*** Invalid conversion: B

and sets result to zero. The output statement following the switch then displays

The converted temperature is 0

To avoid this behavior, we must remember to end each statement list in a switch state-
ment with a break (or return statement), except for the final statement list, where it is
not necessary.

The program in Example 8.2 uses the switch statement in a main function, but it
is perhaps more commonly used to control selection in functions other than main. In
this case, the function is probably using the switch to select its return value, and so a
return statement can be used instead of a break statement. The following example
illustrates this.

8.3.5 Example: Converting Engineering Program Codes to names

Numeric or letter codes are commonly used to represent information about someone or
something; for example, a student’s class level at a university, an employee’s salary bracket
at a company, the stage in some manufacturing processes, a student’s major program, and
so on. Here we will use the last example and develop a function that accepts the code for
an engineering student’s program and returns the name of the program: C for civil, E for
electrical, I for industrial, M for mechanical, and U for undecided.

Suppose we start with the following stub for our function:

/*--
 This function returns the name of an engineering program
 corresponding to a given program code.

 Receive: a character
 Return: the appropriate (string) name of an engineering program

(Civil, Electrical, Industrial, Mechanical, Undecided)
or an empty string for a nonvalid code

 Output: An error message in case of a nonvalid code
--*/
string engrProgram(int progCode)
{
}

Here, the key word in the function’s documentation is corresponding. Because we must return
the name of the program corresponding to progCode, we must compare progCode to
each of the possible codes, and then select an appropriate return statement.

The following algorithm applies this strategy.

K11207.indb 276 6/15/12 10:07 AM

More Selection Control Structures    ◾    277  

If progCode is 'C'
Return “Civil”.

Otherwise, if progCode is 'E'
Return “Electrical”.

Otherwise, if progCode is 'I':
Return “Industrial”.

Otherwise, if progCode is 'M'
Return “Mechanical”.

Otherwise, if progCode is 'U'
Return “Undecided”.

Otherwise
Display an error message.
Return the empty string.

Although we clearly could implement this algorithm using an if statement, the func-
tion in Example 8.3 solves this problem using a switch statement. Note that no break
statements are required in the cases of this switch. The function uses the switch to
select a return statement, and a return statement causes execution of the function to
terminate.

Example 8.3 Converting Engineering Program Codes to Names

/* This is a driver program to test the function engrProgram.

Input: a character
Output: names of programs (Civil, Electrical, ...)

--*/

#include <iostream> // cin, cout, <<, >>
#include <string> // string
using namespace std;

string engrProgram(char progCode);

int main()
{
 char code;
 cout << "Enter the code of an engineering program: ";
 cin >> code;
 cout << engrProgram(code) << endl;
}

/*--
 This function returns the name of an engineering program
 corresponding to a given program code.

 Receive: a character

K11207.indb 277 6/15/12 10:07 AM

278    ◾    Programming in C++ for Engineering and Science

 Return: the appropriate (string) name of an engineering program
(Civil, Electrical, Industrial, Mechanical, Undecided)
or an empty string for a nonvalid code

 Output: An error message in case of a nonvalid code
--*/

string engrProgram(char progCode)
{
switch (progCode)
{

case 'C': return "Civil";
case 'E': return "Electrical";
case 'I': return "Industrial";
case 'M': return "Mechanical";
case 'U': return "Undecided";
default: cerr << "*** code error: " << progCode << " ***\n";

return "";
 }
}

SAMPLE RUNS:

Enter the code of an engineering program: C
Civil

Enter the code of an engineering program: E
Electrical

Enter the code of an engineering program: I
Industrial

Enter the code of an engineering program: M
Mechanical

Enter the code of an engineering program: U
Undecided

Enter the code of an engineering program: a
*** code error: a ***

8.4 ConDITIonAL ExPRESSIonS
The selection statements (if and switch) we have considered thus far are similar to state-
ments provided by other languages. However, C++ has inherited a third selection mecha-
nism from its parent language C, an expression that produces either of two values, based
on the value of a boolean expression (also called a condition).

To illustrate it, consider the simplified form of the Air Quality Index computation
problem from Chapter 5 in which we wish to determine whether the air quality is safe

K11207.indb 278 6/15/12 10:07 AM

More Selection Control Structures    ◾    279  

or hazardous, based on the value of index, the Air Quality Index. There we used the
following if statement:

if (index < CUTOFF)
cout << "Safe condition\n";

else
cout << "Hazardous condition\n";

An alternative is to use the following output statement

cout << ((index < CUTOFF) ? "Safe" : "Hazardous")
<< " condition\n";

which, like the preceding if statement, will display Safe condition if the condition
index < CUTOFF is true, but it will display Hazardous condition if it is false.

Because the value produced by such expressions depends on the value of their condition,
they are called conditional expressions,3 and have the following general form:

Note that in a conditional expression, only one of expression1 and expression2 is
evaluated. Thus, an assignment such as

reciprocal = ((x == 0) ? 0 : 1 / x);

is safe because if the value of x is zero, the expression 1 / x will not be evaluated, and so
no division-by-zero error results. A conditional expression can thus sometimes be used in

3 A conditional expression has the form C ? A : B and is actually a ternary (three-operand) operation, in which C, A, and
B are the three operands and ? : is the operator.

tHe conDitional expression

Form:

condition ? expression1 : expression2

where
condition is a boolean expression; and
expression1 and expression2 are type-compatible expressions.

Behavior:

 condition is evaluated.
 If the value of condition is true (i.e., nonzero), the value of expression1 is returned
as the result.
 If the value of condition is false (i.e., zero), the value of expression2 is returned as
the result.

K11207.indb 279 6/15/12 10:07 AM

280    ◾    Programming in C++ for Engineering and Science

place of an if statement to guard a potentially unsafe operation. When it is used as a sub-
expression in another expression, the conditional expression should be enclosed in paren-
theses, because its precedence is lower than most of the other operators (see Appendix C).

This mechanism has many different uses, because it can be used anywhere that an
expression can appear. In fact, the conditional expression can be used in place of most if-
else statements. To illustrate, suppose that we wanted to write a function largerOf()
to find the maximum of two int values. Although we could do this with an if statement,

int largerOf(int value1, int value2)
{
if (value1 > value2)

return value1;
else

return value2;
}

a conditional expression provides a simpler alternative:

int largerOf(int value1, int value2)
{

return ((value1 > value2) ? value1 : value2);
}

Using such a function, we can write

max = largerOf(x, y);

and max will be assigned the larger of the two values x and y.
As a final example, suppose that numCourses is an int variable containing the num-

ber of courses a student is taking in the current semester. Then the output statement

cout << "\nYou are taking " << numCourses << " course"
 << ((numCourses == 1) ? "" : "s")
 << " this semester.\n";

will display the singular message

You are taking 1 course this semester.

if numCourses is equal to 1, and will display a plural message if numCourses has a
value other than 1:

You are taking 3 courses this semester.

K11207.indb 280 6/15/12 10:07 AM

More Selection Control Structures    ◾    281  

ChAPTER SUMMARY

Key Terms

block dual-branch if or if-else form

break statement multialternative selection

condition multibranch if or if-else-if form

conditional expression single-branch or simple if form

dangling else problem switch statement

drop-through behavior ternary operation

noTES

•	 The multibranch if is a series of nested if statements written as one.

•	 In a nested if, each else is matched with the nearest preceding unmatched if.

•	 Be sure to use the == operator for equality comparisons, and not = (assignment).
Any time an algorithm calls for an equality comparison, the code that implements
the algorithm should be carefully checked to ensure that = (assignment) has not been
inadvertently used instead of the == (equality operator).

•	 Remember that the type of the expression of a switch statement and the constants
in its case lists must be integer-compatible. Note that they may not be real or string
expressions.

•	 To prevent drop-through behavior in a switch statement, remember to end the
statement list in each case with a break or return statement (except for the final
statement list, where it is not needed).

•	 In deciding which statement to use to implement a selection, use a switch if all of
the following hold and an if otherwise:

 1. An equality (==) comparison is being performed.

 2. The same expression is being compared in each condition.

 3. The expression being compared is integer-compatible.

•	 Conditional expressions can be used in place of many if-else statements and
sometimes provide a simpler alternative.

Style and Design Tips

In this text, we use the following conventions for formatting the selection statements con-
sidered in this chapter.

K11207.indb 281 6/15/12 10:07 AM

282    ◾    Programming in C++ for Engineering and Science

•	 For an if statement, if (boolean_expression) is on one line, with its state-
ment indented on the next line. if there is an else clause, else is on a separate line,
aligned with if, and its statement is indented on the next line. if the statements are
compound, the curly braces are aligned with the if and else and the statements
inside the block are indented.

if (boolean_expression)
statement1

else
statement2

if (boolean_expression)
{
statement1

...
statementk

}
else
{
statementk+1

...
statementn

}

 an exception is made when the if-else-if form is used to implement a multialter-
native selection structure. in this case the format used is

if (boolean_expression1)
statement1

else if (boolean_expression2)
statement2

...
else if (boolean_expressionn)
statementn

else
statementn+1

•	 For a switch statement, switch (expression) is on one line, with its curly
braces aligned and on separate lines; each case list is indented within the curly braces,
and each statement list and break or return statement is indented past its particu-
lar case list.

switch (expression)
{
case_list1:

statement_list1;
break; // or return

K11207.indb 282 6/15/12 10:07 AM

More Selection Control Structures    ◾    283  

case_list2:
statement_list2;
break; // or return

...
case_listn:

statement_listn;
break; // or return

default:
statement_listn+1

}

 Alternatively, each statement _ listi may begin on the same line as case_listi.

•	 Program defensively by using the if statement to test for illegal values. This provides
an alternative to the assert() mechanism that does not terminate the program on
a failed precondition.

•	 Multialternative selection constructs can be implemented more efficiently with an if-
else-if construct than with a sequence of separate if statements.

• Multialternative selection statements of the form

if (variable == constant1)
statement1

else if (variable == constant2)
statement2
...

else if (variable == constantn)
statementn

else
statementn+1

 where variable and each constanti are int-compatible, are usually implemented
more efficiently using a switch statement. a second advantage of the switch state-
ment is that a problem solution implemented with a switch is often more readable
than an equivalent solution implemented using an if statement.

warnings

 1. One of the most common errors in an if statement is using an assignment operator
(=) when an equality operator (==) is intended.

 2. When real quantities that are algebraically equal are compared with ==, the result may
be a false boolean expression, because most real numbers are not stored exactly.

 3. in a nested if statement, each else clause is matched with the nearest preceding
unmatched if. indentation and alignment of each else with its corresponding if
should be used to make these associations clear.

K11207.indb 283 6/15/12 10:07 AM

284    ◾    Programming in C++ for Engineering and Science

 4. Each switch statement and block must contain matching curly braces. a missing
} can be difficult to locate. in certain situations, the compiler may not find that a {
is unmatched until it reaches the end of the file. in such cases, an error message such
as

Error...: Compound statement missing } in function ...

 will be generated.

 5. The selector in a switch statement must be integer-compatible. in particular, the
values of the selector in case lists

•	 may not be real constants, and

•	 may not be string constants.

 6. a switch statement has drop-through behavior. Execution of the statement list in a
particular case will continue on into subsequent cases until a break, a return, or
the end of the switch statement is reached. To avoid this behavior, you must remem-
ber to end each statement list in a switch statement with a break or return state-
ment (except for the final statement list, where it is not necessary).

TEST YoURSELF

Section 8.3

For the following questions, assume that number is an int variable, code is a char
variable, and x is a double variable.

 1. If number has the value 99, tell what output is produced by the following switch
statement, or indicate why an error occurs:

switch(number)
{

case 99:
cout << number + 99 << endl;
break;

case –1:
cout << number – 1 << endl;
break;

default:
cout << "default\n";

}

 2. Proceed as in Question 1, but suppose the break statements are omitted.

 3. Proceed as in Question 1, but suppose number has the value 50.

 4. Proceed as in Question 2, but suppose number has the value 50.

 5. Proceed as in Question 1, but suppose number has the value –1.

K11207.indb 284 6/15/12 10:07 AM

More Selection Control Structures    ◾    285  

 6. Proceed as in Question 2, but suppose number has the value –1.

 7. If the value of code is the letter B, tell what output is produced by the following
switch statement, or indicate why an error occurs:

switch (code)
{

case 'A': case 'B':
cout << 123 << endl;
break;

case 'P': case 'R': case 'X':
cout << 456 << endl;
break;

}

 8. Proceed as in Question 7, but suppose the value of code is the letter X.

 9. Proceed as in Question 7, but suppose the value of code is the letter M.

 10. If the value of x is 2.0, tell what output is produced by the following switch statement,
or indicate why an error occurs:

switch (x)
{

case 1.0:
cout << x + 1.0 << endl;
break;

case 2.0:
cout << x + 2.0 << endl;
break;

}

ExERCISES

Section 8.2

 1. Describe the output produced by the following poorly indented program segment:

 int number = 4;
 double alpha = –1.0;
 if (number > 0)
 if (alpha > 0)
 cout << "first\n";
 else
 cout << "second\n";
 cout << "third\n";

 Exercises 2 and 3 refer to the following if statement, where honors, awards, and
goodStudent are of type bool:

K11207.indb 285 6/15/12 10:07 AM

286    ◾    Programming in C++ for Engineering and Science

 if (honors)
 if (awards)
 goodStudent = true;
 else
 goodStudent = false;
 else if (!honors)
 goodStudent = false;

 2. Write a simpler if statement that is equivalent to this one.

 3. Write a single assignment statement that is equivalent to this if statement.

 4. What output (if any) will be produced by the statements

 int x = 0,
 y;
 if ((x = 15) > y)
 cout << "Yes\n"
 else
 cout << "No\n";

 if y has the value (a) 10? (b) 20?

For Exercises 5–12, you are asked to write functions. To test these functions, you should
write driver programs as instructed in Programming Problems 1–8 for Section 8.2 at the
end of this chapter.

 5. In a certain region, pesticides can be sprayed from an airplane only if the tempera-
ture is at least 70°, the relative humidity is between 15 and 35 percent, and the wind
speed is at most 10 miles per hour. Write a boolean-valued function okToSpray()
that receives three numbers representing temperature, relative humidity, and wind
speed, and returns true if the conditions allow spraying and false otherwise.

 6. A certain credit company will approve a loan application if the applicant’s income
is at least $25,000 or the applicant’s assets are at least $100,000; in addition, the
applicant’s total liabilities must be less than $50,000. Write a boolean-valued func-
tion creditApproved() that receives three numbers representing income, assets,
and liabilities, and returns true if the criteria for loan approval are satisfied and false
otherwise.

 7. Write a function that returns true if the value of an int parameter year is the num-
ber of a leap year and return false otherwise. (A leap year is a multiple of 4; and if it is
a multiple of 100, it must also be a multiple of 400.)

 8. Write a function that returns the number of days in a given int parameter month
(1, 2, . . . , 12) of a given parameter year. Use Exercise 7 to determine the number of
days if the value of month is 2.

 9. Proceed as in Exercise 8, but assume that month is a string variable whose value
is the name of a month.

K11207.indb 286 6/15/12 10:07 AM

More Selection Control Structures    ◾    287  

 10. Write a function that checks if t is in the range shown in the graph

 and if so, returns the value of the rectified half-wave function i(t); the curve is a sine
function for half the cycle and zero for the other half. (Maximum current is 5 amps.)

 11. Proceed as in Exercise 10, but for a sawtooth graph

 consisting of two straight lines. The maximum voltage of 100 V occurs at the middle
of the cycle.

 12. Proceed as in Exercise 10, but for a piecewise graph

 of the excess pressure p(t) in a sound wave.

5

1/120 1/60

I(t)

t

1/120 1/60

100
V(t)

t

1

–1

–1
220

–1
330

–1
660

 1
660

 1
330

 1
220

p(t)

t

K11207.indb 287 6/15/12 10:07 AM

288    ◾    Programming in C++ for Engineering and Science

Section 8.3

 1. Write a switch statement that increases balance by adding amount to it if the
value of the character variable transCode is 'D'; decreases balance by sub-
tracting amount from it if transCode is 'W'; displays the value of balance if
transCode is 'P'; and displays an illegal-transaction message otherwise.

 2. Write a switch statement that, for two given integers a and b, and a given char-
acter operation, computes and displays a + b, a - b, a * b, or a / b according
to whether the operation is '+', '–', '*', or '/', and displays an illegal-operator
message if it is not one of these.

For Exercises 3–6, write functions that use switch statements to compute what is required.
To test these functions, you should write driver programs as instructed in Programming
Problems 1–4 for Section 8.3 at the end of this chapter.

 3. Given a distance less than 1000, return a shipping cost as determined by the following
table:

Distance Cost

0 through 99 $5.00
At least 100 but less than 300 $8.00
At least 300 but less than 600 $10.00
At least 600 but less than 1000 $12.00

 4. Given a number representing a TV channel, return the call letters of the station that
corresponds to that number, or some message indicating that the channel is not used.
Use the following channel numbers and call letters (or use those that are available in
your locale):

 2: WCBS

 4: WNBC

 5: WNEW

 7: WABC

 9: WOR

 11: WPIX

 13: WNET

 5. Given the number of a month, return the name of the month (or an error message
indicating an illegal month number).

 6. Proceed as in Exercise 5, but return the number of days in the month. (A leap year is
a multiple of 4; but if it is a multiple of 100, it must also be a multiple of 400.)

K11207.indb 288 6/15/12 10:07 AM

More Selection Control Structures    ◾    289  

Section 8.4

 1. Describe the operation that the following function performs:

 int doSomething1(int value)
 {

return ((value >= 0) ? value : –value);
 }

 2. Describe the operation that the following function performs:

 char doSomething2(char ch)
 {

return ((('A' <= ch) && (ch <= 'Z')) ? ch+32 : ch);
 }

 3. Write conditional expressions that can replace the blanks in the output statement:

 cout << ____ << month << '/'
 << ____ << day << '/'
 << ____ << year % 100<< endl;

 so that the output produced will be as follows:

month day year Output
12 25 1999 12/25/99
10 1 1980 10/01/80
7 4 1976 07/04/76
2 2 2002 02/02/02

 4. Write a conditional expression that can replace the blank in the output statement

 cout << ____ << number<< endl;

 so that the output produced will be as follows:

number Output
123 123
23 023
3 003

 5. Write a function smallerOf() that returns the smaller of two given integer values.

 6. Using nested conditional expressions, write a function:

 a. largestOf() that, given three int values, returns the largest of the three.

 b. smallestOf() that, given three int values, returns the smallest of the three.

K11207.indb 289 6/15/12 10:07 AM

290    ◾    Programming in C++ for Engineering and Science

 7. The mathematician Carl Friedrich Gauss discovered that the sum of the integers from
1 through n is given by the form

n n()+1

2

 Using a conditional expression, construct a function sum() that returns the value
according to Gauss’s formula if the value of its parameter is positive and zero otherwise.

PRoGRAMMInG PRoBLEMS

Section 8.2

 1. Write a driver program to test the function okToSpray() of Exercise 5.

 2. Write a driver program to test the function creditApproved() of Exercise 6.

 3. Write a driver program to test the leap-year function of Exercise 7.

 4. Write a driver program to test the days-in-a-month function of Exercise 8.

 5. Write a driver program to test the days-in-a-month function of Exercise 9.

 6. Write a driver program to test the rectified half-wave function of Exercise 10.

 7. Write a driver program to test the sawtooth function of Exercise 11.

 8. Write a driver program to test the piecewise pressure function of Exercise 12.

 9. Suppose the following formulas give the safe loading l in pounds per square inch for
a column with slimness ratio s:

L
S S

S

=
− <

+ +

16500 475 100
17900

2 17900

2

2

.

()

if

if S ≥

100

 Write a program that reads a slimness ratio and then calculates the safe loading.

 10. Suppose that charges by a gas company are based on consumption according to the
following table:

Gas Used Rate

First 70 cubic meters $5.00 minimum cost
Next 100 cubic meters 5.0¢ per cubic meter
Next 230 cubic meters 2.5¢ per cubic meter
Over 400 cubic meters 1.5¢ per cubic meter

 Write a function that computes the charges for a given amount of gas usage. Use this
function in a program in which the meter reading for the previous month and the cur-
rent meter reading are entered, each a four-digit number and each representing cubic
meters, and that then calculates and displays the amount of the bill. Note: Because of

K11207.indb 290 6/15/12 10:07 AM

More Selection Control Structures    ◾    291  

rollover, the current reading may be less than the previous one; for example, the previ-
ous reading may be 9897, and the current one may be 0103. Execute the program with
the following meter readings: 3450, 3495; 8810, 8900; 9950, 0190; 1275, 1982; 9872, 0444.

 11. Write a program that reads values for the coefficients a, B, C, D, E, and F of the
equations

 ax +By = C

 Dx + Ey = F

 of two straight lines, and then determine whether the lines are parallel (their slopes
are equal) or the lines intersect. If they intersect, determine whether the lines are
perpendicular (the product of their slopes is equal to –1).

 12. Write a program that reads the coordinates of three points and then determines
whether they are collinear.

Section 8.3

 1. Write a driver program to test the distance-cost function of Exercise 3.

 2. Write a driver program to test the TV-channel function of Exercise 4.

 3. Write a driver program to test the month-name function of Exercise 5.

 4. Write a driver program to test the days-in-month function of Exercise 6.

 5. Modify the program in Example 8.3 to allow codes CH for chemical, CI for civil, CO for
computer, EL for electrical, EN for environmental, I for industrial, and M for mechani-
cal. Use a nested switch statement to process codes that begin with the same letter.

 6. Locating avenues’ addresses in mid-Manhattan is not easy; for example, the nearest
cross street to 866 Third Avenue is 53rd Street, whereas the nearest cross street to
866 Second Avenue is 46th Street. To locate approximately the nearest numbered
cross street for a given avenue address, the following algorithm can be used:

Cancel the last digit of the address, divide by 2, and add or subtract the number given
in the following abbreviated table:

1st Ave. Add 3
2nd Ave. Add 3
3rd Ave. Add 10
4th Ave. Add 8
5th Ave. up to 200 Add 13
5th Ave. up to 400 Add 16
6th Ave. (Ave. of the Americas) Subtract 12
7th Ave. Add 12
8th Ave. Add 10
10th Ave. Add 14

K11207.indb 291 6/15/12 10:07 AM

292    ◾    Programming in C++ for Engineering and Science

 Write a function that uses a switch statement to determine the number of the near-
est cross street for a given address and avenue number according to the preceding
algorithm. Then write a program to test your function.

 7. A wholesale lab equipment company discounts the price of each of its products
depending on the number of units bought and the price per unit. The discount
increases as the numbers of units bought and/or the unit price increases. These dis-
counts are given in the following table:

Number
Bought

Unit Price (dollars)

0–10.00 10.01–100.00 100.01+

1–9 0% 2% 5%
10–19 5% 7% 9%
20–49 9% 15% 21%
50–99 14% 23% 32%
100+ 21% 32% 43%

 Write a function that calculates the percentage discount for a specified number of
units and unit price. Use this function in a program that reads the number of units
bought and the unit price, and then calculates and prints the total full cost, the total
amount of the discount, and the total discounted cost.

 8. An airline vice president in charge of operations needs to determine whether the cur-
rent estimates of flight times are accurate. Because there is a larger possibility of vari-
ations due to weather and air traffic in the longer flights, he allows a larger error in the
time estimates for them. He compares an actual flight time with the estimated flight
time and considers the estimate to be too large, acceptable, or too small, depending
on the following table of acceptable error margins:

Estimated Flight Time in Minutes Acceptable Error Margin in Minutes
0–29 1
30–59 2
60–89 3
90–119 4
120–179 6
180–239 8
240–359 13
360 or more 17

 For example, if an estimated flight time is 106 minutes, the acceptable error margin
is 4 minutes. Thus, the estimated flight time is too large if the actual flight time is less
than 102 minutes, or the estimated flight time is too small if the actual flight time is
greater than 110 minutes; otherwise, the estimate is acceptable. Write a function that
uses a switch statement to determine the acceptable error for a given estimated
flight time, according to this table. Use your function in a program that reads an
estimated flight time and an actual flight time, and then determines whether the

K11207.indb 292 6/15/12 10:07 AM

More Selection Control Structures    ◾    293  

estimated time is too large, acceptable, or too small. If the estimated flight time is too
large or too small, the program should also print the amount of the overestimate or
underestimate.

 9. Write a function convertLength() that receives a real value and two strings
inUnits and outUnits, then converts the value given in inUnits to the equivalent
metric value in outUnits and displays this value. The function should carry out the
following conversions:

inUnits outUnits
I C (inches to centimeters; 1 in = 2.54001 cm)
F C (feet to centimeters; 1 ft = 30.4801 cm)
F M (feet to meters; 1 ft = 0.304801 m)
Y M (yards to meters; 1 yd = 0.914402 m)
M K (miles to kilometers; 1 mi = 1.60935 km)

 Also, write a driver program to test your function. What happens if you enter units
other than those listed?

 10. Proceed as in Problem 9, but write a function convertWeight() that carries out
the following conversions:

inUnits outUnits
O G (ounces to grams; 1 oz = 28.349527 g)
P K (pounds to kilograms; 1 lb = 0.453592 kg)

 11. Proceed as in Problem 9, but write a function convertVolume() that carries out
the following conversions:

inUnits outUnits
P L (pints to liters; 1 pt = 0.473167 L)
Q L (quarts to liters; 1 qt = 0.94633 L)
G L (gallons to liters; 1 gal = 3.78541 L)

 12. Write a menu-driven program to test the three functions convertLength(),
convertWeight(), and convertVolume() of Problems 9–11. It should allow the
user to select one of three options according to whether lengths, weights, or volumes
are to be converted; read the value to be converted and the units; and then call the
appropriate function to carry out the conversion.

K11207.indb 293 6/15/12 10:07 AM

This page intentionally left blankThis page intentionally left blank

295

C h a p t e r 9

More Repetition
Control Structures

We are what we repeatedly do. Excellence then, is not an act, but a habit.

ARISTOTLE

Reader, suppose you were an idiot. And suppose you were a member of Congress.
But I repeat myself.

MARK TWAIN

It’s déjà vu all over again.

YOGI BERRA

A rose is a rose is a rose.

GERTRUDE STEIN

ConTEnTS
9.1 Two Introductory Examples: Summation and Calculating Depreciation 296
9.2 The for Loop 302
9.3 The while Loop 312
9.4 The do Statement 315
9.5 Input Loops 319
9.6 Choosing the Right Loop 329
Chapter Summary 332
Test Yourself 336
Exercises 338
Programming Problems 343

296    ◾    Programming in C++ for Engineering and Science

As we saw in Chapter 5, the three basic control behaviors used in programming are
sequence, selection, and repetition. We have now considered all of the C++ selection

structures, but we have only introduced the two basic types of repetition:

 1. repetition controlled by a counter, in which the body of the loop is executed once for
each value of some control variable in a specified range of values.

 2. repetition controlled by a logical expression, in which the decision to continue or to
terminate repetition is determined by the value of some logical expression.

In Chapter 5, we introduced C++’s for loop, which implements repetition of the first kind,
and the while loop, which is one of C++’s implementations of repetition of the second
kind. In this chapter we will take a closer look at these repetition structures and also intro-
duce some others.

9.1 Two InTRoDUCToRY ExAMPLES: SUMMATIon
AnD CALCULATInG DEPRECIATIon

In Section 5.5 we introduced the basic for loop with the example of calculating factorials.
In this section, we begin with a similar example of a function to calculate sums of integers,
and then use this function in a program that calculates and displays depreciation tables.

9.1.1 Example 1: Gauss’s Punishment—Calculating Sums

We begin with an incident in the life of Carl Friedrich Gauss, one of the greatest mathema-
ticians of all time. When Gauss was young, he attended a school in Brunswick, Germany,
and one day when the students were being particularly mischievous, the teacher asked
them to sum the integers from 1 to 100, expecting that this would keep them busy for a
while. (As described later, Gauss discovered a very easy way to do this.)

Although calculating the sum of the integers from 1 to 100 is not a particularly impor-
tant computation, a function that computes and returns the sum 1 + 2 + … + n for any
positive integer n is useful. The program in Example 9.1 shows a function that uses a for
loop to calculate this sum.

Example 9.1 Summation Problem

/* This is a driver program to test function sum().

 Input: an integer n
 Output: the sum of the integers from 1 through n
--*/

#include <iostream> // cout, cin, <<, >>
using namespace std;

int sum(int n); // prototype for sum()

K11207.indb 296 6/15/12 10:07 AM

More Repetition Control Structures    ◾    297  

int main()
{
 cout << "This program computes the sum 1 + 2 + ... + n.\n";
 cout << "Enter a value for n: ";
 int n;
 cin >> n;
 cout << "--> 1 + ... + " << n << " = " << sum(n) << endl;
}

/* Function to compute the sum of the integers from 1 to n.

 Receive: n, an integer
 Return: the sum 1 + 2 + ... + n
--*/

int sum(int n)
{
 int runningTotal = 0;
 for (int count = 1; count <= n; count++)
 runningTotal += count;
 return runningTotal;
}

SAMPLE RUNS:

This program computes the sum 1 + 2 + ... + n.
Enter a value for n: 5
--> 1 + ... + 5 = 15

This program computes the sum 1 + 2 + ... + n.
Enter a value for n: 100
--> 1 + ... + 100 = 5050

We noted earlier that Gauss’s teacher expected that computing the sum 1 + 2 + … + 100
would keep the students busy for some time. However, Gauss responded with the correct
answer (5050) almost immediately, using a particularly clever approach. The simplicity and
efficiency of his algorithm compared to the repetitive algorithm we used is an indication
of his genius.

To compute the sum of the integers from 1 through 100, Gauss perhaps observed that
writing the sum forward,

 sum = 1 + 2 + 3 + …+ 98 + 99 + 100

and then backward,

 sum = 100 + 99 + 98 + …+ 3 + 2 + 1

and then adding corresponding terms in these two equations gives

K11207.indb 297 6/15/12 10:07 AM

298    ◾    Programming in C++ for Engineering and Science

 2 × sum = 101 + 101 + …101 + 101

 = 100 × 101

Thus, the sum is equal to

 sum
100 101

2
5050= × =

Applying his algorithm to the more general summation problem, we begin with the sum

 sum = 1 + 2 + 3 + …+ (n – 2) + (n – 1) + n

reverse it,

 sum = n + (n – 1) + (n – 2) + …+ 3 + 2 + 1

and then add these two equations to get

 2 × sum = (n + 1) + (n + 1) + … + (n + 1) + (n + 1)

 = n × (n + 1)

Dividing by 2 gives

 sum
n n(1)

2
= × −

This formula, known as Gauss’s formula, implies that function sum() can be written
without using a loop at all, as shown in Example 9.2.

Example 9.2 Function sum()—No-Loop Version

/* Function to compute the sum of the integers from 1 to n.

 Receive: n, an integer
 Return: the sum 1 + 2 + ... + n (0 if n < 0)
--*/

int sum (int n)
{
 return n*(n + 1) / 2;
}

This solution obviously is better than one that uses a loop, because it solves the same
problem in less time. For example, to compute the sum of the integers from 1 through 1000,

K11207.indb 298 6/15/12 10:07 AM

More Repetition Control Structures    ◾    299  

the first version of sum() must perform 1000 additions of count to runningTotal,
1000 assignments of that result to runningTotal, 1000 increments of count, and 1000
comparisons of count to n, for a total of 4000 operations. For an arbitrary value of n,
each of these operations would be performed n times for a total of 4n operations. We say
that the number of operations performed by the loop version of sum() grows linearly
with the value of its parameter n.

By contrast, the no-loop version of sum() always does 1 addition, 1 multiplication, and
1 division, for a total of 3 operations, regardless of the value of n. Thus, the time taken by
the last version of sum() is constant, no matter what the value of its parameter n.

This is a simple example from an area of computer science called analysis of algorithms.
If there are several algorithms that solve the same problem, we analyze the number of
operations required by each. The algorithm using Gauss’s formula solves the summation
problem in constant time, while the algorithm using a loop solves the problem in time
proportional to n; consequently, Gauss’s algorithm is to be preferred.

9.1.2 Example 2: Calculating Depreciation

Depreciation is a decrease in the value over time of some asset due to wear and tear, decay,
declining price, and so on. For example, suppose that a company purchases a new robot
for $200,000 that will serve its needs for 5 years. After that time, called the useful life of
the robot, it can be sold at an estimated price of $50,000, which is the robot’s salvage value.
Thus, the value of the robot will have depreciated $150,000 over the 5-year period. The
calculation of the value lost in each of several years is an important accounting problem,
and there are several ways of calculating this quantity. We want to write functions that use
some of these methods to calculate depreciation for each year of an item’s useful life and
display tables that show these annual depreciations. Each function will receive the amount
to be depreciated and the number of years in an item’s useful life, and then output to the
screen a depreciation table that displays the depreciation for each year.

There are several different methods of calculating depreciation. One standard method
is the straight-line method, in which the amount to be depreciated is divided evenly over
the specified number of years. For example, straight-line depreciation of $150,000 over a
5-year period gives an annual depreciation of $150,000/5 = $30,000:

Year Depreciation
1 $30,000
2 $30,000
3 $30,000
4 $30,000
5 $30,000

With this method, the value of an asset decreases a fixed amount each year.
Another common method of calculating depreciation is called the sum-of-the-years’-

digits method. To illustrate it, consider again depreciating $150,000 over a 5-year period.
We first calculate the “sum of the years’ digits,” 1 + 2 + 3 + 4 + 5 = 15. In the first year,

K11207.indb 299 6/15/12 10:07 AM

300    ◾    Programming in C++ for Engineering and Science

5/15 of $150,000 ($50,000) is depreciated; in the second year, 4/15 of $150,000 ($40,000) is
depreciated; and so on, giving the following depreciation table:

Year Depreciation
1 $50,000
2 $40,000
3 $30,000
4 $20,000
5 $10,000

The program in Example 9.3 outputs depreciation tables using these two methods of
 depreciation. It uses the function sum() from Example 9.2 to calculate the “sum of the years’
digits.”

Example 9.3 Calculating Depreciation

/* This program computes depreciation tables using straight-line and
sum-of-the-years'-digits methods.

 Input: purchase price, salvage value, and useful life of an item
 Output: depreciation tables
--*/

#include <iostream> // <<, >>, cout, cin
#include <iomanip> // output formatters
using namespace std;

int sum(int n);
void straightLine(double amount, int numYears);
void sumOfYears(double amount, int numYears);

int main()
{
 cout << "This program computes depreciation tables using\n"
 << " straight–line and sum-of-the-years'-digits methods.\n\n";

 double purchasePrice, // item's purchase price,
 salvageValue, // salvage value,
 amount; // amount to depreciate, and
 int usefulLife; // useful life in years

 cout << "What is the item's purchase price? ";
 cin >> purchasePrice;
 cout << " salvage value? ";
 cin >> salvageValue;
 cout << " useful life? ";
 cin >> usefulLife;
 amount = purchasePrice - salvageValue;

K11207.indb 300 6/15/12 10:07 AM

More Repetition Control Structures    ◾    301  

 straightLine(amount, usefulLife);

 sumOfYears(amount, usefulLife);
}

/* Function to compute the sum of the integers from 1 to n.

 Receive: n, an integer
 Return: the sum 1 + 2 + ... + n (0 if n < 0)
--*/

int sum(int n)
{
 return n*(n + 1) / 2;
}

/* Function to output a straight-line depreciation table.

 Receive: amount to depreciate and number of years
 Output: depreciation table
--*/

void straightLine(double amount, int numYears)
{
 double depreciation = amount / numYears;

 cout << "\nYear - Depreciation"
 << "\n--------------------\n";

 cout << fixed << showpoint << right // set up format for $$
 << setprecision(2);

 for (int year = 1; year <= numYears; year++)
 cout << setw(3) << year
 << setw(13) << depreciation << endl;
}

/* Function to output a sum-of-the-years'-digits depreciation table.

 Receive: amount to depreciate and number of years
 Return: depreciation table
--*/

void sumOfYears(double amount, int numYears)
{
 cout << "\nYear - Depreciation"
 << "\n--------------------\n";

 double yearSum = sum(numYears);
 double depreciation;

 cout << fixed << showpoint << right // set up format for $$
 << setprecision(2);

K11207.indb 301 6/15/12 10:07 AM

302    ◾    Programming in C++ for Engineering and Science

 for (int year = 1; year <= numYears; year++)
 {
 depreciation = (numYears - year + 1) * amount / yearSum;
 cout << setw(3) << year
 << setw(13) << depreciation << endl;
 }
}

SAMPLE RUN:

This program computes depreciation tables using
straight-line and sum-of-the-years'-digits methods.

What is the item's purchase price? 200000
 salvage value? 50000
 useful life? 5

Year - Depreciation

 1 30000.00
 2 30000.00
 3 30000.00
 4 30000.00
 5 30000.00

Year - Depreciation

 1 50000.00
 2 40000.00
 3 30000.00
 4 20000.00
 5 10000.00

9.2 ThE for LooP
Counting loops, or counter-controlled loops, are loops in which a set of statements is
executed once for each value in a specified range:

for each value of a counter_variable in a specified range:

 statement

For example, our solution to the summation problem of the preceding section used a
counting loop to execute the statement

runningTotal += count;

once for each value of count in the range 1 through n.

K11207.indb 302 6/15/12 10:07 AM

More Repetition Control Structures    ◾    303  

Because counting loops are used so often, nearly all programming languages provide a
special statement to implement them. In C++ this is the for statement or for loop. The
four components of a counting for loop were introduced in Section 5.5:

As noted in Chapter 5, a trace table is a useful tool to trace the action of a loop (especially
in debugging). For example, in the first sample run of Example 9.1 where the value 5 is entered
for n, the loop counts through the values 1 through 5, so that the body of the for loop is
executed five times. The following table shows the value of the various variables and loop
condition as the function sum() executes:

count n count <= n Action runningTotal

1 5 true Execute loop body 1
2 5 true Execute loop body 3
3 5 true Execute loop body 6
4 5 true Execute loop body 10
5 5 true Execute loop body 15
6 5 false Terminate repetition 15

A similar trace table for the second sample run where n has the value 100 would show
that the loop counts through the values 1 through 100, so that the loop body is executed
100 times.

There are two forms of the for statement that are commonly used to implement count-
ing loops: an ascending form, in which the loop control variable is incremented,

for (int control_variable = initial_value;
 control_variable <= limit_value;
 increment_expression)
 statement

and a descending form, in which the loop control variable is decremented:

for (int control_variable = initial_value;
 control_variable >= limit_value;
 decrement_expression)
 statement

Initialization
Expression:
Initialize the loop’s
control variable

Loop Condition:
Compare the loop’s
control variable
against a limit value

Step Expression:
Change the value
of the loop’s
control variable

Loop Body:
Either a single
or a compound
C++ statement

for (int count = 1; count <= n; count++)
 runningTotal += count;

K11207.indb 303 6/15/12 10:07 AM

304    ◾    Programming in C++ for Engineering and Science

The first form counts through an ascending range, and the second counts through a
descending range.

To illustrate the first form, consider the following for statement:

for (int number = 1; number <= 10; number++)
 cout << number << '\t' << number * number << endl;

Here, number is the control variable, the initial value is 1, the limit value is 10, and the
increment expression is number++. This for loop will execute the statement

cout << number << '\t' << number * number << endl;

once for each value of number in the ascending range 1 through 10. On the first pass
through the loop, number will have the value 1; on the second pass it will have the value 2;
and so on until the final pass when number will have the value 10. Thus, the output pro-
duced will be

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

By using an appropriate increment expression, a for statement can be used to step
through a range of values in increments of size other than 1. For example, the for statement

for (int number = 0; number <= 100; number += 20)
 cout << number << '\t' << number * number << endl;

uses the expression

number += 20

to count upwards in increments of 20, producing the output

0 0
20 400
40 1600
60 3600
80 6400
100 10000

K11207.indb 304 6/15/12 10:07 AM

More Repetition Control Structures    ◾    305  

The second form of a for loop performs a decrement operation following each execu-
tion of the loop body. For example, the following loop

for (int number = 10; number >= 6; number--)
 cout << number << '\t' << number * number << endl;

will count downward from 10 to 6, producing the output

10 100
9 81
8 64
7 49
6 36

Note that whereas the ascending form continues the repetition as long as the control vari-
able is less than or equal to the limit value, the descending form is counting downward,
and so must continue the repetition as long as the control variable is greater than or equal
to the limit value.

Although the preceding examples used int variables to control the repetition, this is
not a requirement. For example, the following for statement

for (double x = 0; x <= 1; x += 0.1)
 cout << x << '\t' << exp(x) * sin(x) << endl;

will display a table of points on the graph of y e xsinx= for x ranging from 0 to 1 in incre-
ments of 0.1:

0 0
0.1 0.110333
0.2 0.242655
0.3 0.398911
0.4 0.580944
0.5 0.790439
0.6 1.02885
0.7 1.2973
0.8 1.59651
0.9 1.92667
1 2.28736

The loop conditions in the preceding examples of for loops have used <= or >= to test
if the value of the control variable has reached its limit value. In some problems, however, it
may be more natural to use < instead of <= or > instead of >=. For example, in a loop that
counts through the (integer) number of degrees in a circle, it seems more intuitive to write

for (int degrees = 0; degrees < 360; degrees++)

than to use degrees <= 359 for the loop condition.

K11207.indb 305 6/15/12 10:07 AM

306    ◾    Programming in C++ for Engineering and Science

In fact, in some problems, we may not even know the limiting value of the control variable.
For example, to calculate and print all sums of consecutive integers, 1, 1 + 2, 1 + 2 + 3, . . .,
until this sum exceeds 1000, we could use the following for loop:

int sum = 0;
for (int count = 1; sum <= 1000; count++)
{
 sum += count;
 cout << sum << endl;
}

9.2.1 nested for Loops

The statement that appears within a for statement may itself be a for statement; that is,
one for loop may be nested within another for loop. When this happens, the two loops
behave something like the hands of a clock:

for (int hours = 1; hours <= 12; hours++)
 for (int minutes = 0; minutes < 60; minutes++)
 cout << hours << ':'
 << setw(2) << setfill('0') << minutes << endl;

The inner “minutes” loop executes sixty times for each execution of the outer “hours” loop:

1:00
1:01
1:02
 .
 .
 .
1:59
2:00
2:01
2:02
 .
 .
 .
2:59
3:00
 .
 .
 .
12:59

The inner loop thus acts like a clock’s minutes hand, and the outer loop acts like the clock’s
hours hand.

To see how nested loops can be useful, consider the problem of printing a multiplication
table by calculating and displaying products of the form x * y for each x in the range 1
through lastX and each y in the range 1 through lastY (where lastX and lastY are

K11207.indb 306 6/15/12 10:07 AM

More Repetition Control Structures    ◾    307  

arbitrary integers). Such a multiplication table can be easily generated using nested for
statements as shown in Example 9.4.

Example 9.4 Multiplication Tables

/* This program calculates and displays a multiplication table.

 Input: lastX and lastY, the largest numbers to be multiplied
 Output: a list of products: 1*1 ... lastX * lastY
--*/

#include <iostream> // cout, cin, <<, >>
#include <iomanip> // right, setw()
using namespace std;

int main()
{
 cout << "This program constructs a multiplication table\n"

"for the values 1*1 through lastX*lastY.\n\n";

 int lastX, // the largest numbers being multiplied
 lastY,
 product; // the product of the two numbers

 cout << "Enter two integer limit values (lastX and lastY): ";
 cin >> lastX >> lastY;

 cout << "|";
 for (int y = 1; y <= lastY; y++)
 cout << right << setw(5) << y;
 cout << "\n---|";
 for (int y = 1; y <= lastY; y++)
 cout << "-----";
 cout << endl;

 for (int x = 1; x <= lastX; x++)
 {
 cout << setw(3) << x << "|";
 for (int y = 1; y <= lastY; y++)
 {
 product = x * y;
 cout << setw(5) << product;
 }
 cout << "\n";
 if (x < lastX) cout << " |\n";
 }
}

K11207.indb 307 6/15/12 10:07 AM

308    ◾    Programming in C++ for Engineering and Science

SAMPLE RUN:
This program constructs a multiplication table
for the values 1*1 through lastX*lastY.

Enter two integer limit values (lastX and lastY): 4 6

 | 1 2 3 4 5 6
---|-------------------------------------
 1| 1 2 3 4 5 6
 |
 2| 2 4 6 8 10 12
 |
 3| 3 6 9 12 15 18
 |
 4| 4 8 12 16 20 24

In the sample run, lastX is given the value 4 and lastY the value 6. The first for
loop displays the y values as a heading for the table and the next for loop displays some
underlining dashes. Control then goes on to the nested for loops, where the control vari-
able x of the outer loop is assigned its initial value 1. The statement it controls first displays
the value of x as a label for that row, and the inner loop is then executed, which counts
through the values 1 through 6 for y and thus calculates and displays the first six products:
1 * 1, 1 * 2, ... , 1 * 6. Control then passes from the inner loop to the increment expression
of the outer loop, where the value of x is incremented to 2. It is displayed as a label for that
row and inner loop is then executed again. It again counts through the values 1 through
6 for y, but because the value of x is now 2, this pass calculates and displays the next four
products: 2 * 1, 2 * 2, ... , 2 * 6. This continues until the control variable x increments to
5, making the loop condition x <= lastX false, so that repetition stops. The compound
statement

{
 product = x * y;
 cout << setw(5) << product;
}

was executed a total of 24 times, because the inner loop was executed 6 times for each of
the 4 executions of the outer loop.

9.2.2 words of warning

a for loop must be constructed carefully to ensure that its initialization expression, loop
condition, and increment expression will eventually cause the loop condition to become false
so that repetition terminates. To illustrate this, suppose the for loop in our earlier example
to compute values of y e xsinx= were changed to

K11207.indb 308 6/15/12 10:07 AM

More Repetition Control Structures    ◾    309  

for (double x = 0; x != 1; x += 0.1)
 cout << x << '\t' << exp(x) * sin(x) << endl;

with the termination condition x <= 1 changed to x != 1. In the following execution of
this statement, the for loop never terminated:

0 0
0.1 0.110333
0.2 0.242655
0.3 0.398911
0.4 0.580944
0.5 0.790439
0.6 1.02885
0.7 1.2973
0.8 1.59651
0.9 1.92667
1 2.28736
1.1 2.67733
1.2 3.09448
1.3 3.53558
1.4 3.9962
 .
 .
 .
709.6 -5.83067e+307
709.7 -4.88986e+307
709.8 -inf
709.9 -inf
 .
 .
 .

The reason for this is that, as we saw in Section 3.3, most real values cannot be stored
exactly. In particular, 0.1 is such a real number, and the value stored for it in memory is not
exactly 0.1. Consequently, when this value was used repeatedly to increment x, the value of
x was no longer exact and did not ever equal the termination value 1, which can be stored
exactly.

9.2.3 The Forever Loop

The for statement is used primarily to implement counting loops where the number of rep-
etitions is known (or can be computed) in advance. However, as we noted earlier, there are
many problems in which it isn’t possible to determine how many repetitions will be needed.
What is needed for these situations is a statement that provides for indefinite repetition, that
is, one that allows for any number of repetitions without specifying this in advance.

Although some programming languages provide a separate statement for indefinite
loops, C++ does not, but instead allows the programmer to construct such loops from other

K11207.indb 309 6/15/12 10:07 AM

310    ◾    Programming in C++ for Engineering and Science

loops. One way this can be done is by removing the initialization expression, the loop condi-
tion, and the step expression from a for loop, as illustrated in the following general form:1

We will call such a loop a forever loop because it contains no built-in loop condition that
specifies when repetition should terminate. It is an indefinite loop that executes the state-
ments in its body until one of them causes it to stop.2

To illustrate, consider the following :

for (; ;) // forever loop
 cout << "Help ! I'm stuck in a loop!\n";

This statement will produce the output

Help ! I'm stuck in a loop!

Help ! I'm stuck in a loop!

Help ! I'm stuck in a loop!

Help ! I'm stuck in a loop!
 .
 .
 .

an unlimited number of times, unless the user interrupts execution (usually by pressing the
Control and C keys).

To prevent such infinite looping, the body of a forever loop is usually a compound state-
ment that contains, in addition to the usual kinds of statements we’ve been using that are

1 Alternatively, we can achieve the same effect with either of these forms:
 while (true) statement or do statement while (true);
2 This will still be an indefinite loop if the initialization expression and the step expression are retained. Sometimes it is

convenient to use one or both of them.

tHe ForeVer loop

Form:

 for (; ;) // forever loop

 statement

where
 statement is usually a compound statement.

Behavior:

The specified statement will be executed an unspecified number of times until it is terminated,
usually by an if-break or if-return combination that it contains (or by user intervention).

If a break statement is encountered, execution of the loop will terminate and will continue
with the statement following the loop.

If a return statement is encountered, the loop and the function containing it will terminate
and control returns to the calling function.

K11207.indb 310 6/15/12 10:07 AM

More Repetition Control Structures    ◾    311  

executed repeatedly, a statement that will terminate execution of the loop when some con-
dition is satisfied. This terminating statement is usually an if-break combination—an
if statement containing a break statement,

if (condition) break;

When condition becomes true, the break statement causes repetition to stop and control
is transferred to the statement following the loop. To distinguish this condition from the loop
conditions of the other loops we will call it a termination condition instead of a loop condition.

Most forever loops, therefore, have the following form:

for (;;) // loop:
{
 statement_list1
 if (termination_condition) break;
 statement_list2
} // end loop

where either statement_list1 or statement_list2 can be empty.
To illustrate forever loops, here is a useful utility function called getMenuChoice()

that receives a menu and the characters that denote the first and last choices on the menu.
(A precondition of this function is that the menu choices are a closed range such as A–D.)
It repeatedly displays the menu and reads the user’s choice until that choice is in the range
of valid choices:

char getMenuChoice(string MENU,
 char firstChoice, char lastChoice)
{
 char choice; // what the user enters
 for (;;) // loop:
 {
 cout << MENU; // statement_list1
 cin >> choice;
 // if break combination
 if ((choice >= firstChoice) && (choice <= lastChoice))
 break;
 // statement_list2
 cerr << "\nI'm sorry, but " << choice

 << " is not a valid menu choice.\n";
 } // end loop
 return choice;
}

The effect here is to “lock” the user inside the forever loop until a valid menu choice is
entered. For each invalid menu choice, the termination condition is false, so the break
statement is bypassed, the output statement displays an error message, and control returns
to the beginning of the loop for the next repetition and gives the user another chance.

K11207.indb 311 6/15/12 10:07 AM

312    ◾    Programming in C++ for Engineering and Science

When a valid choice is entered, the termination condition becomes true, so the break
statement is executed and transfers control to the return statement following the loop.

A statement related to break that is sometimes useful for modifying (but not termi-
nating) execution of a loop is a continue statement. When it is executed, the current
iteration is terminated and a new one begins. The continue statement is useful when one
wants to skip to the bottom part of a loop if a certain condition is true:

for (...)
{
 ...
 if (condition) continue;
 //— Skip from here to end of loop body if
 //— condition is true and begin a new iteration
}

9.2.3.1 Returning From a Loop
An alternative and somewhat clearer termination condition for the forever loop in get-
MenuChoice() is to have the function return immediately when the condition is true
instead of breaking out of the loop to a return statement:

char getMenuChoice(string MENU,
 char firstChoice, char lastChoice)
{
 char choice; // what the user enters
 for (;;) // loop:
 {
 cout << MENU; // statement_list1
 cin >> choice;
 // if break combination
 if ((choice >= firstChoice) && (choice <= lastChoice))
 return choice;
 // statement_list2
 cerr << "\nI'm sorry, but " << choice
 << " is not a valid menu choice.\n";
 } // end loop
}

As before, an invalid choice produces an error message and the body of the loop is repeated.
A valid choice causes the return statement to be executed, terminating not only the loop
but also the function.

9.3 ThE while LooP
A loop of the form

loop
 if (termination_condition) exit the loop.
 other statements
end loop

K11207.indb 312 6/15/12 10:07 AM

More Repetition Control Structures    ◾    313  

in which the termination test occurs before the loop’s statements are executed is called a
pretest or test-at-the-top loop. Although such loops can be implemented in C++ using a
forever loop,

for (;;) // loop:
{
 if (termination_condition) break;
 statement_list
} // end loop

the while loop that we introduced briefly in Section 5.5 provides a simpler alternative. We
will use a while loop to solve the following problem.

9.3.1 Example: Follow the Bouncing Ball

Suppose that when a ball is dropped and bounces from the pavement, it reaches a height
one-half of its previous height. The program in Example 9.5 simulates the behavior of the
ball when it is dropped from a given height that is input to the program. It displays the
number of each bounce and the height of that bounce, repeating this until the height is less
than a constant SMALL_NUMBER set to 1 millimeter.3

Example 9.5 Bouncing Ball

/* This program calculates and displays the rebound heights of a
dropped ball.

 Input: a height in meters from which a ball is dropped.
 Output: for each rebound of the ball from the pavement below:

 the number and the height of that rebound
 assuming that the height of each rebound is
 one-half the previous height
--*/

#include <iostream> // <<, >>, cout, cin
using namespace std;

int main()
{
 const double SMALL_NUMBER = 1.0e-3; // 1 millimeter

3 A for loop could also be used:
 for (int bounce = 0; height >= SMALL_NUMBER; bounce++)
 {
 height /= 2;
 cout << "Rebound # " << bounce << ": "
 << height << " meters" << endl;
 }

K11207.indb 313 6/15/12 10:07 AM

314    ◾    Programming in C++ for Engineering and Science

cout << "This program computes the number and height\n"
 << "of the rebounds of a dropped ball.\n";

cout << "\nEnter the starting height (in meters): "; double height;
cin >> height;
cout << "\nStarting height: " << height << " meters\n";

int bounce = 0;
while (height >= SMALL_NUMBER)
{

 height /= 2.0;
 bounce++;
 cout << "Rebound # " << bounce << ": "
 << height << " meters" << endl;

}
}

SAMPLE RUN:
This program computes the number and height
of the rebounds of a dropped ball.

Enter the starting height (in meters): 15

Starting height: 15 meters
Rebound # 1: 7.5 meters
Rebound # 2: 3.75 meters
Rebound # 3: 1.875 meters
Rebound # 4: 0.9375 meters
Rebound # 5: 0.46875 meters
Rebound # 6: 0.234375 meters
Rebound # 7: 0.117188 meters
Rebound # 8: 0.0585938 meters
Rebound # 9: 0.0292969 meters
Rebound # 10: 0.0146484 meters
Rebound # 11: 0.00732422 meters
Rebound # 12: 0.00366211 meters
Rebound # 13: 0.00183105 meters
Rebound # 14: 0.000915527 meters

9.3.2 The while Statement

While loops are implemented in C++ using a while statement of the following form:

tHe while statement
Form:

 while (loop_condition)

 statement

K11207.indb 314 6/15/12 10:07 AM

More Repetition Control Structures    ◾    315  

As in a for loop, the loop condition in a while loop is placed before the body of the
loop, which means that a while loop is a pretest loop:

As this diagram indicates, this condition is evaluated before the body of the loop is executed,
and execution of the specified statement is repeated as long as the loop condition remains true
and terminates when it becomes false. It also indicates that if this condition is initially false,
the body of the loop will not be executed. This is sometimes given the name zero-trip behavior
because the body of a pretest loop will be executed zero or more times. Thus, in the program in
Example 9.5, if we input a value for height that is less than SMALL_NUMBER, the loop con-
dition height >= SMALL_NUMBER will be false the first time it is evaluated, and the state-
ments in the while loop will not be executed. It is important to keep this zero-trip behavior in
mind when trying to decide which loop to use in designing a solution for a problem.

9.4 ThE do STATEMEnT
In the last section, we considered pretest (or test-at-the-top) loops of the form

loop
 if (termination_condition) exit the loop.
 other statements
end loop

where
 while is a C++ keyword;
 loop_condition is a boolean expression; and
 statement is a simple or a compound statement.

Behavior:

when execution reaches a while statement:

 1. loop_condition is evaluated.
 2. If loop_condition is true:
 a. The specified statement, called the body of the loop, is executed.
 b. Control returns to Step 1.

 otherwise
 Control is transferred to the statement following the while statement.

statement

false

true

loop_condition

K11207.indb 315 6/15/12 10:07 AM

316    ◾    Programming in C++ for Engineering and Science

and saw that while loops have this structure. Such loops are said to have zero-trip behav-
ior because they will make zero “trips” through the loop if the termination condition is
false initially.

There are some problems, however, for which zero-trip behavior is not appropriate and
at least one pass through the loop is mandatory. For such problems, we need a posttest loop
of the form

loop
 other statements
 if (termination_condition) exit the loop.
end loop

and in this section we will look at C++’s implementation of posttest loops.

9.4.1 Example: how Many Digits?

It is easy for us to determine the number of digits in an integer, whether it is 214 or
2147483647, simply by scanning it and counting. But how do we construct a program that
can “scan and count” the digits?

Our approach will be to repeatedly divide the number by 10, counting how many times
it takes to produce 0. For example, 214 has three digits, and three integer divisions by 10
are required to reach 0:

The int value
Operation I
Divide by 10

Operation II
Add 1 to Digit Count

214 214/10 = 21 0 + 1 = 1
21 21/10 = 2 1 + 1 = 2
2 2/10 = 0 2 +1 = 3

The key observation in the preceding computation is that we must perform the two
operations at least once because every integer has at least one digit. Thus, the loop that
we use must make at least one pass through its body—one-trip behavior. Putting the loop
condition at the “bottom” of the loop, as in the following algorithm, will accomplish
this.

Algorithm to Count Digits

 1. Initialize digitCount to 0.

 2. Loop:

 a. Increment digitCount.

 b. Divide intValue by 10, storing the result in intValue.

 c. If intValue is 0, terminate the repetition.

End loop

K11207.indb 316 6/15/12 10:07 AM

More Repetition Control Structures    ◾    317  

 3. Return numDigits.

The loop in this algorithm can be implemented with a forever loop:

for (;;)
{
 numDigits++;
 intValue /= 10;
 if (intValue == 0) break;
}

But as with the test-at-the-top loops in the preceding section, C++ provides a clearer alter-
native—the do statement. Example 9.6 illustrates its use.

Example 9.6 Digit Counter

/* This program uses the function digitsIn() to find the number of
digits in an integer value.

 Input: an integer
 Output: the number of digits in the integer
--*/

#include <iostream> // <<, >>, cout, cin
using namespace std;

int digitsIn(int intValue);

int main()
{
 int theValue;

 cout << "Enter an integer value: ";
 cin >> theValue;
 cout << theValue << " contains "
 << digitsIn(theValue) << " digit(s).\n";
}

/* Function to count the digits in an integer value.

 Receive: intValue, an integer value
 Return: intDigits, the number of digits in intValue
--*/

int digitsIn(int intValue)
{
 int numDigits = 0;

K11207.indb 317 6/15/12 10:07 AM

318    ◾    Programming in C++ for Engineering and Science

 do
 {
 numDigits++;
 intValue /= 10;
 }
 while (intValue != 0);

 return numDigits;
}

SAMPLE RUNS:
Enter an integer value: 5
5 contains 1 digit(s).

Enter an integer value: 12345678
12345678 contains 8 digit(s).

9.4.2 A Posttest Loop

The function in Example 9.6 uses a new C++ repetition statement, the do statement,
which has the following form:

Note that the loop condition in a do statement appears after the body of the loop, as
 pictured in the following diagram:

tHe do statement
Form:

 do

 statement

 while (loop_condition);

where
 do and while are C++ keywords;
 loop_condition is a boolean expression;
 statement is a simple or a compound statement; and
 a semicolon must follow the expression at the end of the statement.

Behavior:

when execution reaches a do loop:

 1. statement is executed.
 2. loop_condition is evaluated.
 3. If loop_condition is true, then

Control returns to Step 1.
otherwise

Control is transferred to the statement following the do loop.

K11207.indb 318 6/15/12 10:07 AM

More Repetition Control Structures    ◾    319  

This means that a do loop is a posttest or test-at-the-bottom loop and has one-trip behavior;
that is, the body of the loop will be executed at least once.

9.5 InPUT LooPS
One important use of loops is to input a collection of values into a program. Because the
number of data values may not be known before repetition begins, we need some method
to signal that the end of the data has been reached. In this section, we look at three different
approaches: counting, sentinels, and queries. To illustrate how these three techniques are
used, we will use each of them in solving the problem of calculating the average of a set of
failure times.

9.5.1 Running Example: Mean Time to Failure

One important statistic that is used in measuring the reliability of a component in a cir-
cuit is the mean time to failure, which can be used to predict the circuit’s lifetime. This is
especially important in situations in which repair is difficult or even impractical, such as
a computer circuit in a satellite. Suppose that an engineering laboratory has been awarded
a contract by NASA to evaluate the reliability of a particular component for a space probe
to Mars. As part of this evaluation, several of these circuits have been tested, and the times
at which each failed have been recorded. We are to develop a program to process this data
and determine the mean time to failure.

We will solve this problem in three different ways to illustrate the three kinds of
input loops—a counting approach, a query-based approach, and a sentinel-based
approach. Each will involve performing the following tasks (but not necessarily in the
order listed):

•	 Determine the number of components (numComponents)

•	 Repeatedly input a failure time (failureTime)

•	 Find their sum (failureTimesum)

•	 If numComponents is not zero, divide the sum by numComponents to find the
mean failure time (meanFailureTime); otherwise, display an appropriate “No Data”
message.

false

true
loop_condition

statement

K11207.indb 319 6/15/12 10:07 AM

320    ◾    Programming in C++ for Engineering and Science

9.5.2 Input Loops: The Counting Approach

Probably the easiest way to process a set of input values is to first input the number of val-
ues in the data set and then use a counting loop to read and process that many values. The
program in Example 9.7 uses this approach.

Example 9.7 The Counting Approach

/* This program uses a counting loop to process a collection of
failure times and find the mean time to failure.

 Input: the number of component failure times and the collection
of failure times

 Output: prompts and the average of the failure times
--*/

#include <iostream> // <<, >>, cout, cin
using namespace std;

int main()
{
 cout << "Computing Component Mean Time to Failure\n\n";

 int numComponents;
 double failureTime,
 failureTimeSum = 0.0;

 cout << "How many failure times will be entered? ";
 cin >> numComponents;

 for (int count = 1; count <= numComponents; count++)
 {
 cout << "Enter failure time #" << count << ": ";
 cin >> failureTime;
 failureTimeSum += failureTime;
 }

 if (numComponents > 0)
 cout << "\nThe mean failure time of the "

 << numComponents << " components is "
 << failureTimeSum / numComponents << endl;

 else
 cerr << "\nNo failure times to process!\n";
}

SAMPLE RUN:
Computing Component Mean Time to Failure

How many failure times will be entered? 5
Enter failure time #1: 2.3

K11207.indb 320 6/15/12 10:07 AM

More Repetition Control Structures    ◾    321  

Enter failure time #2: 2.5
Enter failure time #3: 2.4
Enter failure time #4: 2.6
Enter failure time #5: 2.1

The mean failure time of the 5 components is 2.38

Conceptually, this approach is quite simple. We ask the user how many values are to be
entered and then use a for loop to read and process that many values. The general pattern
is as follows:

The main disadvantage of this approach is that it requires knowing in advance how
many values will be entered. This may be difficult and even impractical to determine for
large data sets. The two other types of input loops circumvent this difficulty by having the
computer, rather than the user, do the counting.

9.5.3 Input Loops: The Sentinel Approach

The second approach is the sentinel approach introduced in Section 5.5. It uses a special value
called an end-of-data flag or sentinel to signal the end of the data values to be processed.

9.5.3.1 Forever Loops and Sentinels
The program in Example 9.8 uses a forever loop to implement the sentinel approach.

Example 9.8 The Sentinel Approach in a Forever Loop

/* This failure-time program uses a forever loop and a sentinel to
process a collection of failure times and find the mean time to
failure.

 Input: a collection of component failure times
 Precondition: failure times >= 0
 Output: prompts and the average of the failure times
--*/

pattern For counting input loop

Display a prompt for the number of values to be processed.
Read numberOfValues to be processed.
for (int var = 1; var <= numberOfValues; var++)
{

 Display a prompt for a data value.

 Read theValue to be processed.

 Process theValue.

}

K11207.indb 321 6/15/12 10:07 AM

322    ◾    Programming in C++ for Engineering and Science

#include <iostream> // <<, >>, cout, cin
using namespace std;

int main()
{
 cout << "Computing Component Mean Time to Failure\n\n";
 int numComponents = 0;
 double failureTime,
 failureTimeSum = 0;
 for (;;) // or while (true)
 {
 cout << "Enter a failure time (–1 to quit): ";
 cin >> failureTime;

 if (failureTime < 0) break;

 failureTimeSum += failureTime;
 numComponents++;
 }

 if (numComponents != 0)
 cout << "\nThe mean failure time of the "
 << numComponents << " components is "
 << failureTimeSum / numComponents << endl;
 else
 cerr << "\nNo failure times to process!\n";
}

SAMPLE RUN:
Computing Component Mean Time to Failure

Enter a failure time (–1 to quit): 2.3
Enter a failure time (–1 to quit): 2.4
Enter a failure time (–1 to quit): 2.5
Enter a failure time (–1 to quit): 2.6
Enter a failure time (–1 to quit): 2.1
Enter a failure time (–1 to quit): –1

The mean failure time of the 5 components is 2.38

As the comment at the beginning of the forever loop indicates, a while statement could
also be used to implement the input loop:

while(true)
{
 cout << "Enter a failure time (–1 to quit): ";
 cin >> failureTime;

 if (failureTime < 0) break;

K11207.indb 322 6/15/12 10:07 AM

More Repetition Control Structures    ◾    323  

 failureTimeSum += failureTime;
 numComponents++;
}

If we examine this and earlier examples for similarities, we see the following pattern:

This pattern provides a succinct and intuitive way to input any data set for which a sentinel
value exists.

9.5.3.2 While Loops and Sentinels
Some programmers prefer not to use forever loops and choose instead “standard”
while loops as described in Section 9.3. We gave an example of using a while loop to
input coefficients of a quadratic equation and output the solution (or an error message if
there was none) in Section 5.5. The general pattern for such while-based input as follows:

For example, a while loop version of the sentinel loop used in the mean-time-to-failure
program in Example 9.8 would be written as follows:

cout << "Enter a failure time (–1 to quit): ";
cin >> failureTime;
while (failureTime >= 0)
{
 failureTimeSum += failureTime;
 numComponents++;

pattern For sentinel input loop (ForeVer loop Version)

for (;;) // or while(true)

{

 Display a prompt (for a data value).

 Read theValue to be processed.

 If (theValue is the sentinel) terminate the repetition.

 Process theValue.

}

pattern For sentinel input loop (wHile loop Version)

Display a prompt (for a data value).
Read theValue to be processed.
while (theValue is not the sentinel)
{

 Process theValue.

 Display a prompt (for a data value).

 Read theValue to be processed.

}

K11207.indb 323 6/15/12 10:07 AM

324    ◾    Programming in C++ for Engineering and Science

 cout << "Enter a failure time (-1 to quit): ";
 cin >> failureTime;
}

Note the two input steps, one before the loop and one at the bottom of the loop. The input
statement before the loop is needed because the while loop is a pretest loop that tests its
condition upon entry into the loop. The input statement at the bottom of the loop is needed
to input a new value that can be compared with the sentinel when execution returns to the
beginning of the loop.

9.5.3.3 End-of-File as a Sentinel Value
For some problems there may not be a suitable sentinel value because all values are valid
inputs. In such cases, one could use the query approach described next. But there is an
alternative. In Chapter 7, some of the status flags for istream objects were described such
as cin that monitor the state of a stream. In addition to those, there is an eof flag that is set
when a special character called the end-of-file (or eof) mark is read and a function named
eof() that monitors this flag, returning true if the eof flag is set and false otherwise.4

This function can be used like a sentinel test to check whether the eof mark was entered
as in Example 9.9, signaling the end of input. For the particular (Unix) system used in the
sample run, the eof mark is Control-d, so entering it sets the eof flag in cin, causing the
function member cin.eof() to return true, which terminates the repetition. (For input
from files as described in Chapter 11, the end-of-file mark is placed automatically at the end
of the file when it is created.)

Example 9.9 Using End-of-File as a Sentinel

/* This failure-time program uses a forever loop and the eof
 character as a sentinel to process a collection of failure
times and find the mean time to failure.

 Input: a collection of component failure times
 Output: prompts and the average of the failure times
--*/

#include <iostream> // <<, >>, cout, cin, eof()
using namespace std;

int main()
{
 cout << "Computing Component Mean Time to Failure\n\n";
 int numComponents = 0;
 double failureTime,
 failureTimeSum = 0;

4 In the Windows environment, the eof mark can be entered by typing Control-z followed by the Enter key. In the
Unix and Macintosh environments, Control-d is used.

K11207.indb 324 6/15/12 10:07 AM

More Repetition Control Structures    ◾    325  

 for (;;) // or while (true)
 {
 cout << "Enter a failure time (eof char to quit): ";
 cin >> failureTime;

 if (cin.eof()) break;

 failureTimeSum += failureTime;
 numComponents++;
 }

 if (numComponents != 0)
 cout << "\nThe mean failure time of the "
 << numComponents << " components is "
 << failureTimeSum / numComponents << endl;
 else
 cerr << "\nNo failure times to process!\n";
}

SAMPLE RUN:
Computing Component Mean Time to Failure

Enter a failure time (eof char to quit): 2.3
Enter a failure time (eof char to quit): 2.4
Enter a failure time (eof char to quit): 2.5
Enter a failure time (eof char to quit): 2.6
Enter a failure time (eof char to quit): 2.1
Enter a failure time (eof char to quit): ^d
The mean failure time of the 5 components is 2.38

There are two drawbacks to using the eof mark as a sentinel. The first is that it is platform
dependent, that is, it depends on the particular operating system being used. The second is
that, as discussed in Section 7.3, if we wish to read any values after the eof mark has been
read, the istream function member clear() must be called to reset the status flags.

9.5.4 Input Loops: The Query Approach

Each of the preceding kinds of input loops has its disadvantages. The counting loop
approach requires knowing in advance the number of values to be entered. The sentinel
approach can only be used in problems where there is a suitable value to use as the sentinel.
The eof mark is platform dependent. The final approach we consider is to query the user
at the end of each repetition to determine whether there is more data to process. Although
not without its disadvantages, this approach is the most broadly applicable.

The program in Example 9.10 is a modification of the previous mean-time-to-failure pro-
grams that use this query approach. After a data value is entered by the user, the program asks

Do you have more data to enter (y or n)?

K11207.indb 325 6/15/12 10:07 AM

326    ◾    Programming in C++ for Engineering and Science

and then reads the user’s response from the keyboard. If it is y or Y, another data value is read.
This continues until the user answers something other than y or Y, and the loop condition

response == 'y' || response == 'Y'

then terminates the repetition.

Example 9.10 The Query Approach

/* This program uses a query-controlled loop to process a collection
of failure times and find the mean time to failure.

 Input: a collection of component failure times and user's
response to "more data?" query

 Output: prompts and the average of the failure times
--*/

#include <iostream> // <<, >>, cout, cin
using namespace std;

int main()
{
 cout << "Computing Component Mean Time to Failure\n\n";

 int numComponents;
 double failureTime,
 failureTimeSum = 0.0;

 char response;
 do
 {
 cout << "\nEnter a failure time: ";
 cin >> failureTime;

 failureTimeSum += failureTime;
 numComponents++;

 cout << "Do you have more data to enter (y or n)? ";
 cin >> response;
 }
 while (response == 'y' || response == 'Y');

 cout << "\nThe mean failure time of the "
 << numComponents << " components is "
 << failureTimeSum / numComponents << endl;
}

SAMPLE RUN:

Computing Component Mean Time to Failure

K11207.indb 326 6/15/12 10:07 AM

More Repetition Control Structures    ◾    327  

Enter a failure time: 2.3
Do you have more data to enter (y or n)? y

Enter a failure time: 2.4
Do you have more data to enter (y or n)? y

Enter a failure time: 2.5
Do you have more data to enter (y or n)? y

Enter a failure time: 2.6
Do you have more data to enter (y or n)? y

Enter a failure time: 2.1
Do you have more data to enter (y or n)? n

The mean failure time of the 5 components is 2.38

In problems where it is reasonable to assume that there is at least one data value to be
entered and processed, the query and the corresponding loop condition are placed at the
bottom of the loop, making it a posttest loop.5 This suggests the following pattern for a
query-controlled input loop:

5 To allow no values to be entered and processed, a forever loop can be used:
for (;;)
{
 cout << "\nDo you wish to continue (y or n)? ";
 char response;
 cin >> response;
 if (response == 'n' || response == 'N') break;
 cout << "\nEnter a value: ";
 double value;
 cin >> value;
 // process value
}

pattern For Query-controlleD input loop
char response;

do

{

 Display a prompt for a data value.

 Read theValue to be processed.

 Process theValue.

 Display a query that asks if there is more data.

 Input the user's response (y or n)

}

while ((response != 'n' && (response != 'N'));

K11207.indb 327 6/15/12 10:07 AM

328    ◾    Programming in C++ for Engineering and Science

9.5.4.1 Query Functions
The code to perform a query tends to clutter a loop, which may obscure the program’s
structure, especially if the query is lengthy, perhaps due to special instructions to the user.
One way to avoid this is to use a query function like the following to perform the query,
read the user’s response, and return true or false based on the response, thus hiding the
actual code that does the querying:

bool moreData()
{

 char answer;

 cout << "Do you have more values to enter (y or n)? ";

 cin >> answer;

 return (answer == 'y') || (answer == 'Y');
}

Because it returns a boolean value, a call to such a query function can be used as a loop
condition. For example, we could modify the mean-time-to-failure program of Example
9.10 to use the query function moreData() to control the input loop:

int main()

{

 .

 .

 .

 do

 {

 cout << "\nEnter a failure time: ";

 cin >> failureTime;

 failureTimeSum += failureTime;

 numComponents++;

 }

 while (moreData());

 .

 .

 .

}

Each time execution reaches the loop condition, the function moreData() is called. It
queries the user, reads the response, and returns true if the response was either y or Y and
returns false otherwise. If moreData() returns true, the body of the do loop is repeated,
but if it returns false, repetition is terminated.

K11207.indb 328 6/15/12 10:07 AM

More Repetition Control Structures    ◾    329  

The general pattern of a loop controlled by a query function is as follows:

9.5.4.2 The Disadvantage of the Query Approach
The counting and sentinel approaches require one interaction by the user to enter each
data value, but the query approach requires two—one for the data value, and one for the
response to the query. This doubling of user effort may make the query approach too cum-
bersome for large data sets.

9.6 ChooSInG ThE RIGhT LooP
With several different kinds of loops, it can be somewhat difficult to decide which to use.
Asking the following questions as the problem is analyzed and a design plan developed
may help.

The first question is

Does the algorithm require counting through some fixed range of values?

If the answer is yes, then a counting loop is needed, and a for loop is the appropriate choice.
Otherwise, one of the more general loops—while, do, or forever—is a better choice.

In the second case, the next question is:

Which of the general loops should i use?

If the answer isn’t apparent, you might begin in the algorithm with a generic loop of the form

Loop
 body-of-the-loop

End loop

As you continue developing the algorithm, add any necessary initialization statements
before the loop and the statements that make up the body of the loop:

pattern For input loop controlleD by a Query Function
bool queryFunction();

 .

 .

 .

do

{

 Display a prompt for a data value.

 Read theValue to be processed.

 Process theValue.

}

while (queryFunction());

K11207.indb 329 6/15/12 10:07 AM

330    ◾    Programming in C++ for Engineering and Science

initialization statements
Loop

 statement1

 .
 .
 .

 statementn

End loop

Finally, formulate an appropriate termination condition. Then, determining where it
should be placed in the loop will lead to which kind of loop to use:

If the termination condition appears

•	 at the beginning of the loop, it’s a pretest loop; choose a while loop;

•	 at the bottom of the loop, it’s a posttest loop; choose a do loop;

•	 within the list of statements, it’s a test-in-the-middle loop; choose a forever loop with
an if-break (or if-return) combination.

To demonstrate this procedure, let’s look again at the bouncing-ball problem in Section
9.3. Using a generic loop, we might use the following as a first version of the algorithm:

 1. Initialize bounce to 0.

 2. Enter a value for height and display it.

 3. Loop

 a. Replace height with height divided by 2.

 b. Increment bounce by 1.

 c. Display bounce and height.

 End loop

As a termination condition for the loop, we can use

height < sMall_nuMBEr

because repetition is to stop when height is less than some sMall_nuMBEr. However,
the user could have entered zero or a negative value for height, in which case the body
of the loop should not be executed. Thus, we should evaluate this condition immediately
upon entering the loop:

 1. Initialize bounce to 0.

 2. Enter a value for height.

K11207.indb 330 6/15/12 10:07 AM

More Repetition Control Structures    ◾    331  

 3. Display original height value with appropriate label.

 4. Loop

 a. If height < sMall_nuMBEr, terminate the repetition.

 b. Replace height with height divided by 2.

 c. Add 1 to bounce.

 d. Display bounce and height.

 End loop

This is a pretest loop, and we should therefore use a while loop to implement it.
By contrast, if we reconsider the sentinel approach to reading a collection of values, we

begin by constructing the generic loop

Loop

Display a prompt for input.

Input theValue.

Process theValue.

End loop

Because we are using the sentinel approach, an appropriate termination condition is

theValue is the sentinel

Before this termination condition can be evaluated, theValue must have been read, which
means that the termination condition must appear after the input statement. Also, a sen-
tinel value must not be processed, which means that the termination condition should be
placed before the processing statements:

Loop

a. Display a prompt for input.

b. Input theValue.

c. If theValue is the sentinel, terminate repetition.

d. Process theValue.

End loop

This is a test-in-the-middle loop, and we can use a forever loop to implement it.

K11207.indb 331 6/15/12 10:07 AM

332    ◾    Programming in C++ for Engineering and Science

ChAPTER SUMMARY

Key Terms

analysis of algorithms

break statement

continue statement

counting (or counter-controlled) loops

do loop

do statement

end-of-data flag

end-of-file mark

for loop

forever loop

grows linearly

if-break combination

indefinite loop

initialization list

nested loops

one-trip behavior

posttest loop

pretest loop

query-controlled loop

query function

sentinel

test-at-the-bottom loop

termination condition

trace table

while loop

zero-trip behavior

noTES
•	 A trace table is a useful tool (especially in debugging) to trace the action of a loop.

•	 A for statement can be used to step through a range of values with any increment by
using an appropriate increment expression.

•	 An indefinite loop can be implemented in C++ with a for statement with no loop
 condition—for(;;){ ... }—or a while statement of the form while(true){ ... }
can be used.

•	 A forever loop continues repetition when its termination condition is false and termi-
nates repetition when that condition is true.

•	 A break statement can be used to terminate execution of an enclosing loop. It ter-
minates the innermost enclosing loop.

•	 In some cases, a return statement is a useful alternative to break for terminating
execution of a function and returning to the calling function.

•	 A continue statement is useful for skipping the rest of the current iteration and
beginning a new one.

K11207.indb 332 6/15/12 10:07 AM

More Repetition Control Structures    ◾    333  

•	 A while loop is a pretest (or test-at-the-top) loop. It continues repetition so long as its
condition is true, and terminates repetition when that condition is false. A while loop
has zero-trip behavior.

•	 A do loop is a posttest (or test-at-the-bottom) loop. Because its loop body will always
be executed at least once before the loop condition is tested, it is said to have one-trip
behavior.

•	 Three common kinds of input loops are:

•	 counting loops in which the number of input items is known in advance;

•	 sentinel-controlled loops in which an end-of-data flag (or sentinel) signals the end
of data;

•	 query-controlled loops in which the user is asked whether there is more data.

•	 The following guidelines may help with deciding which kind of loop to use:

 1. If the algorithm requires counting through some fixed range of values, use a count-
ing loop.

 2. If a general loop is required, use a generic indefinite loop to formulate the algo-
rithm. Then determine where the termination condition should go. If at the begin-
ning, use a while loop; if at the end, use a do loop; if somewhere else, use a forever
loop with an if-break or if-return.

Style and Design Tips

In this text, we use the following conventions for formatting the repetition statements con-
sidered in this chapter.

•	 The statement in a for, while, do, and forever loop is indented. if the statement is
compound, the curly braces are aligned with the for, while, or do, and the statements
inside the block are indented. in a do loop, do is aligned with its corresponding while.

 for (...) for (...)
 statement {
 statement1
 ...
 statementn
 }

 while(loop_condition) while(loop_condition)
 statement {
 statement1
 ...
 statementn
 }

K11207.indb 333 6/15/12 10:07 AM

334    ◾    Programming in C++ for Engineering and Science

 do do
 statement {
 while (loop_condition); statement1
 ...
 statementn
 }
 while (loop_condition);

warnings

 1. Care must be taken to avoid infinite looping.

•	 The loop condition of a for loop must eventually become false; the body of a while
loop or a do loop must contain statements that eventually cause its loop condition
to become false. For example, the code fragment

 x = 0.0;
 do
 {
 cout << x << endl;
 x += 0.3;
 }
 while (x != 1.0);

produces an infinite loop because the value of x is never equal to 1.0:

 0.0
 0.3
 0.6
 0.9
 1.2
 1.5
 1.8
 .
 .
 .

•	 The body of a forever loop should always contain an if-break or if-return
combination and statements that ensure that the termination condition of the loop
will eventually become true.

 2. The body of a while loop will not be executed if the loop condition is false initially, but
the statements in a do loop will always be executed at least once.

 3. Be sure to enclose multiple statements in the body of a for, while, do, or forever loop
within curly braces because these loops control only a single statement. For example,
the output statement in the following segment is outside the body of the loop

 for (int i = 1; i <= 10; i++)
 j = i*i;
 cout << j << endl;

K11207.indb 334 6/15/12 10:07 AM

More Repetition Control Structures    ◾    335  

 and thus will display only a single value,

 100

 Likewise, the statement that increments count in the following is outside the body
of the loop:

 int count = 1;
 while (count <= 10)
 cout << count << " " << count*count << endl;
 count++;

 and an infinite loop results:

 1 1
 1 1
 1 1
 .
 .
 .

 4. in a do loop, the closing while (loop_condition) must be followed by a semicolon.

 5. in a for loop, the control variable as well as variables in the loop condition should not
usually be modified within the body of the loop, because it is intended to run through a
specified range of consecutive values. strange and undesirable results may be produced
otherwise.

 6. Each use of the equality operator in a loop condition should be double-checked to make
certain that the assignment operator is not being used. Using = instead of == is one of
the easiest errors to make. This error is illustrated by the following:

 do
 {
 // ... do some processing ...

 cout << "Do you wish to continue (y or n)? ";
 cin >> answer;
 }
 while (answer = 'y');

 This loop will be executed infinitely many times, regardless of what the user enters,
because

 a. The loop condition is an assignment that sets answer to y (it is not a comparison);

 b. The assignment operator (=) produces the value that was assigned as its result;

 c. This assignment thus produces the value 121 (the ASCII value of character y); and

 d. C++ treats any nonzero value as true.

K11207.indb 335 6/15/12 10:07 AM

336    ◾    Programming in C++ for Engineering and Science

 Similarly, the forever loop
 for
 {
 cout << "\nPlease enter an integer value (0 to quit): ";
 cin >> value;

 if (value = 0) break;

 // ... do something with value ...
 }

 is an infinite loop, because its termination condition is an assignment, not a compari-
son. Because the result of that assignment is zero, which represents the value false in
C++, this termination condition will always be false, and so the break statement
will never be executed.

TEST YoURSELF

Section 9.4

 1. loops execute a set of statements once for each value in a specified range
and they are implemented in C++ by a statement.

 2. What are the four components of a counting for loop?

 3. The terminating statement in a forever loop is usually a(n) combination.

Answer Questions 4–7 using “pretest” or “posttest.”

 4. A while loop is a loop.

 5. A do loop is a loop.

 6. The body of a loop is always executed at least once.

 7. A loop has zero-trip behavior.

For Questions 8–15, describe the output produced. For Exercises 11–15, assume that i, j,
and k are of type int.

 8. for (int i = 0; i < 10; i++)
 cout << "2*" << i << " = " << 2*i << endl;

 9. for (int i = 0; i <= 5; i++)
 cout << 2*i + 1 << " ";
 cout << endl;

 10. for (int i = 1; i < 4; i++
 {

 cout << i;

K11207.indb 336 6/15/12 10:07 AM

More Repetition Control Structures    ◾    337  

 for (int j = i; j >= 1; j--)
 cout << j << endl;
 }

 11. i = 0;
 j = 0;
 for (;;)
 {
 k = 2 * i * j;
 if (k > 10) break;
 cout << i << j << k << endl;
 i++;
 j++;
 }
 cout << k << endl;

 12. k = 5;
 i = -2;
 while (i <= k)
 {
 i += 2;
 k––;
 cout << i + k << endl;
 }

 13. i = 4;
 while (i >= 0)
 {
 i––;
 cout << i << endl;
 }
 cout << "\n*****\n";

 14. i = 0;
 do
 {
 k = i * i + 1;
 cout << i << ' ' << k << endl;
 i++;
 }
 while (k <= 10);

K11207.indb 337 6/15/12 10:07 AM

338    ◾    Programming in C++ for Engineering and Science

 15. i = 4;
 do
 {
 k = i * i - 4;
 cout << i << ' ' << k << endl;
 i--;
 }
 while (k >= 0);

Section 9.6

 1. Name the three kinds of input loops.

 2. A special value used to signal the end of data is called a(n) or .

 3. (True or false) A disadvantage of using a while loop instead of a forever loop for
sentinel-based input is that duplicate input steps are required.

 4. The eof flag is set when a special character called the mark is read.

 5. The method from class istream is used to check the eof flag.

 6. (True or false) One advantage of using the eof mark is that it is platform independent.

 7. (True or false) The counting method of input is one of the most flexible methods.

 8. A is a question asked of the user to determine whether there are more data
values.

ExERCISES

Section 9.4

For Exercises 1–14, describe the output produced. For Exercises 7–14, assume that i, j, and
k are of type int.

 1. for (int i = 10; i > 0; i--)
 cout << i << " cubed = " << i*i*i << endl;

 2. for (int i = 10; i > 0; i -= 2)
 cout << i << " squared = " << i*i << endl;

 3. for (int i = 1; i <= 5; i++)
 {
 cout << i << endl;
 for (int j = i; j >= 1; j -= 2)
 cout << j << endl;
 }

K11207.indb 338 6/15/12 10:07 AM

More Repetition Control Structures    ◾    339  

 4. int k = 5;
 for (int i = -2; i < 5; i += 2)
 {
 cout << i + k << endl;
 k = 1;
 }

 5. for (int i = 3; i > 0; i––)
 for (int j = 1; j <= i; j++)
 for (int k = i; k >= j; k––)
 cout << i << j << k << endl;

 6. for (int i = 1; i <= 3; i++)
 for (int j = 1; j <= 3; j++)
 {
 for (int k = i; k <= j; k++)
 cout << i << j << k << endl; cout << endl;
 }

 7. i = 5;
 j = 1;
 for (;;)
 {
 k = 2 * i – j;
 if (k < 0) break;
 cout << i << j << k << endl;
 j++;
 i––;
 }
 cout << i << j << k << endl;

 8. i = 0;
 j = 10;
 for (;;)
 {
 k = 2 * i + j;
 if (k > 15) break;
 cout << i << j << k << endl;
 if (i + j < 10) break;
 i++;
 j––;
 }
 cout << i << j << k << endl;

K11207.indb 339 6/15/12 10:07 AM

340    ◾    Programming in C++ for Engineering and Science

 9. i = 0;
 j = 10;
 for (;;)
 {
 k = 2 * i + j;
 if (k > 20) break;
 cout << i << j << k << endl;
 if (i + j < 10) break;
 i++;
 j--;
 }
 cout << i << j << k << endl;

 10. i = 5;
 for (;;)
 {
 cout << i;
 i -= 2;
 if (i < 1) break;
 j = 0;
 for (;;)
 {
 j++;
 cout << j;
 if (j >= i) break;
 }
 cout << "###\n"
 }
 cout << "***\n";

 11. k = 5;
 i = 32;
 while (i > 0)
 {
 cout << "base-2 log of " << i << " = " << k << endl;
 i /= 2;
 k--;
 }

 12. i = 1;
 while (i*i < 10)
 {
 j = i;

K11207.indb 340 6/15/12 10:07 AM

More Repetition Control Structures    ◾    341  

 while (j*j < 100)
 {
 cout << i + j << endl;
 j *= 2;
 }
 i++;
 }
 cout << "\n*** **\n";

 13. i = 0;
 do
 {
 k = i * i * i - 3 * i + 1;
 cout << i << k << endl;
 i++;
 }
 while (k <= 2);

 14. i = 0;
 do
 {
 j = i * i * i;
 cout << i;
 do
 {
 k = i + 2 * j;
 cout << j << k;
 j += 2;
 }
 while (k <= 10);
 cout << endl;
 i++;
 }
 while (j <= 5);

Each of the loops in the following program segment is intended to find the smallest value
of number for which the product 1 × 2 × ··· × number is greater than limit. For each of
Exercises 15–17, make three trace tables, one for each loop, that display the values of num-
ber and product for the given value of limit. Assume that number, product, and
limit have been declared to be of type int.

 /* A. Using a while loop */
 number = 0;
 product = 1;

K11207.indb 341 6/15/12 10:07 AM

342    ◾    Programming in C++ for Engineering and Science

 while (product <= limit)
 {
 number++;
 product *= number;
 }

 /* B. Using a do loop */
 number = 0;
 product = 1;
 do
 {
 number++;
 product *= number;
 }
 while (product <= limit);

 /* C. Using a test-in-the middle loop */
 number = 0;
 product = 1;
 for (;;)
 {
 number++;
 if (product > limit) break;
 product *= number;
 }

 15. limit = 20

 16. limit = 1

 17. limit = 0

For Exercises 18–22, write a loop to do what is required.

 18. Display the value of x and decrease x by 0.5 as long as x is positive.

 19. Display the squares of the first 50 positive even integers in increasing order.

 20. Display the square roots of the real numbers 1.0, 1.25, 1.5, 1.75, 2.0, . . . , 5.0.

 21. The sequence of Fibonacci numbers begins with the integers 1, 1, 2, 3, 5, 8, 13, 21, . . .
where each number after the first two is the sum of the two preceding numbers. Display
the Fibonacci numbers less than 500.

 22. Repeatedly prompt for and read a real number until the user enters a positive number.

For Exercises 23–27, write functions to do what is required. (You should also write driver
programs to test your functions.)

 23. Given a real number x and a nonnegative integer n, use a loop to calculate xn, and
return this value.

 24. Proceed as in Exercise 23, but allow n to be negative. (If n < 0, x-n is defined to be
1/xn, provided x ≠ 0.)

K11207.indb 342 6/15/12 10:07 AM

More Repetition Control Structures    ◾    343  

 25. Given a positive integer n, return the sum of the proper divisors of n, that is, the sum
of the divisors that are less than n. For example, for n = 10, the function should return
1 + 2 + 5 = 8.

 26. Given an integer n, return true if n is prime and false otherwise. (A prime number is
an integer n > 1 whose only divisors are 1 and n.)

 27. Given a positive integer n, return the least nonnegative integer k for which 2k ≥ n.

PRoGRAMMInG PRoBLEMS

Section 9.4

 1. Write a program that displays the following multiplication table:

 1 2 3 4 5 6 7 8 9
 1 1
 2 2 4
 3 3 6 9
 4 4 8 12 16
 5 5 10 15 20 25
 6 6 12 18 24 30 36
 7 7 14 21 28 35 42 49
 8 8 16 24 32 40 45 56 64
 9 9 18 27 36 45 54 63 72 81

 2. A ship with a total displacement of M metric tons starts from rest in still water under
a constant propeller thrust of T kilonewtons. The ship develops a total resistance to
motion through water that is given by R V4.50 2= , where r is in kilonewtons and
V is in meters per second. The acceleration of the ship is a = (T – r)/M. From these
equations, an equation for the ship’s velocity can be derived,

V

T
e

4.50
(1)S M9.00 /= − −

 where s is the distance in meters. Write a program that will read values for M, T, and
s and will display a table of values of V in knots for s ranging from 0 to 20 nautical
miles in steps of 0.5 nautical miles (1 nautical mile = 1.852 km, 1 knot = 1 nautical
mile per hour). Deduce from your table the maximum possible speed for the ship.

 3. During operation, a rod in a machine will oscillate according to θ θ= π0 2sin(/)t τ ,
where θ is measured in radians from the vertical position of the rod, θ0 is the maxi-
mum angular displacement, τ is the period of motion, t is time in seconds measured
from t = 0 when the rod is vertical. If l is the length of the rod, the magnitude of the
acceleration of the end of the rod is given by

a

l t t4
cos

2
sin

22
0

2 0
2 4 2= π θ

τ
θ π

τ

 + π

τ

K11207.indb 343 6/15/12 10:07 AM

344    ◾    Programming in C++ for Engineering and Science

 Write a program that will read values for θ0, l, and τ and that will then calculate a
table of values of t, θ, and |a| for t = 0.0 to 0.5 in steps of 0.05 (in seconds). Execute the
program with τ = 2 sec, θ0 = π/2, and l = 0.1 m.

 4. A positive integer is said to be a deficient, perfect, or abundant number if the sum of its
proper divisor is less than, equal to, or greater than the number, respectively. For exam-
ple, 8 is deficient because its proper divisors are 1, 2, and 4, and 1 + 2 + 4 < 8; 6 is perfect
because 1 + 2 + 3 = 6; 12 is abundant, because 1 + 2 + 3 + 4 + 6 > 12. Write a program that
classifies n as being deficient, perfect, or abundant for n = 20 to 30, then for n = 490 to
500, and finally for n = 8120 to 8130. It should use the function from Exercise 25 to
find the sum of the proper divisors. Extra: Find the smallest odd abundant number.
Warning: An attempt to find an odd perfect number will probably fail because none
has yet been found, although it has not been proven that such numbers do not exist.

 5. Dispatch Die-Casting currently produces 200 castings per month and realizes a profit
of $300 per casting. The company now spends $20,000 per month on research and
 development and has fixed operating costs of $1000 per month that do not depend on the
volume of production. If the company doubles the amount spent on research and devel-
opment, it is estimated that production will increase by 20 percent. Write a program that
displays under appropriate headings the amount spent on research and development,
the number of castings produced, and the total profit realized. Begin with the company’s
current status and successively double the amount spent on research and development
until total profit “goes over the hump,” that is, begins to decline. The output should
include the amounts up through the first time that total profit begins to decline.

 6. The divide-and-average algorithm for approximating the square root of any positive
number a is as follows: take any initial approximation x that is positive, and then find a
new approximation by calculating the average of x and a/x, that is, (x + a/x)/2. Repeat this
procedure with x replaced by this new approximation, stopping when x and a/x differ in
absolute value by some specified error allowance, such as 0.00001. Write a program that
reads values for x, a, and the small error allowance, and then uses this divide-and-average
algorithm to find the approximate square root of x. Have the program display each of
the successive approximations. Execute the program with a = 3 and error allowance
= 0.00001, and use the following initial approximations: 1, 10, 0.01, and 100. Also execute
the program with a = 4, error allowance = 0.00001, and initial approximations 1 and 2.

 7. Write a program that accepts a positive integer and gives its prime factorization,
that is, expresses the integer as a product of primes or indicates that it is a prime.
(See Exercise 26 for the definition of a prime number.)

 8. Consider a cylindrical reservoir with a radius of 30.0 feet and a height of 30.0 feet that
is filled and emptied by a 12-inch diameter pipe. The pipe has a 1000.0-foot-long run
and discharges at an elevation 20.0 feet lower than the bottom of the reservoir. The
pipe has been tested and has a roughness factor of 0.0130.

K11207.indb 344 6/15/12 10:07 AM

More Repetition Control Structures    ◾    345  

 Several formulas have been developed experimentally to determine the velocity at
which fluids flow through such pipes. One of these, the Manning formula, is

 V
N

R S
1.486 2/3 1/2=

 where

 V = velocity in feet per second

 n = roughness coefficient

 r = hydraulic radius = cross-sectional area

wetted perimeter

 s = slope of the energy gradient (
d 20

1000
= +

 for this problem)

 The rate of fluid flow is equal to the cross-sectional area of the pipe multiplied by
the velocity.

 Write a program that inputs the reservoir’s height, roughness coefficient, hydraulic
radius, and pipe radius, and computes the time required to empty the reservoir. Do
this by assuming a constant flow rate for 5-minute segments.

 9. A 100.0-pound sign is hung from the end of a horizontal pole of negligible mass. The
pole is attached to a building by a pin and is supported by a cable, as shown. The pole
and cable are each 6.0 feet long.

d

20 ft

1000 ft

Signx

Cable

K11207.indb 345 6/15/12 10:07 AM

346    ◾    Programming in C++ for Engineering and Science

 Write a program to find the appropriate place (indicated by x in the diagram) to
attach the cable to the pole so that the tension in the cable will be minimized. The
equation governing static equilibrium tells us the

 x x
tension

100 6 6

36 2
= ⋅ ⋅

−

 Calculate the tension for x starting at 1.0 feet and incrementing it by 0.1 feet until the
approximate minimum value is located.

 10. Whenever the relation between two quantities x and y appears to be roughly linear, that is,
when a set of points (x, y) tends to fall along a straight line, one can ask for the equation y =
mx + b of a best-fitting line for these points. This equation (called a regression equation)
can then be used to predict the value of y by evaluating the equation for a given value of x.

 a. Plot the data in the following table collected in an experiment to measure the effect
of temperature on resistance using a horizontal temperature axis and a vertical
resistance axis. Note that the points seem to lie along a line. Write an equation of a
line that approximates this data.

Temperature (°C) Resistance (ohms)
20.0 761
31.5 847
50.0 874
71.8 917
91.3 1018

 b. A standard method of finding the regression coefficients m and b is the method
of least squares, so named because it produces the line for which the sum of the
squares of the deviations of the observed y-values from the predicted y-values
(using the equation) is as small as possible; that is, the sum

 y mx b()i i
i

n 2

1
[]− +∑

=

 is minimized. The slope m and the y-intercept b can be calculated by

 slope = m
xy x y

x x x2()
() ()

()
=

∑ − ∑

∑ − ∑

 y-intercept = b y mx= −

 where Σx is the sum of the x-values, Σx2 is the sum of the squares of the x-values,
Σxy is the sum of the products xy of corresponding x- and y-values, x and y are

K11207.indb 346 6/15/12 10:07 AM

More Repetition Control Structures    ◾    347  

the means of the x- and y-values, respectively. Write a program to input the x and
y values and compute the equation of the least-squares line.

 11. The density ρ (g/mL) of water is given in the following table for various temperatures
T°C:

T(°C) ρ(T) (g/mL)

0 0.99987
10 0.99973
20 0.99823
30 0.99568
40 0.99225
50 0.98807
60 0.98324

 Using a program like that in Problem 10, find the least-squares line for this data, and
use it to estimate the density at 5°C, 15°C, 25°C, 35°C, 45°C, and 55°C. Compare the
computed values with the actual values given in the following table:

T(°C) ρ(T) (g/mL)

5 0.99999
15 0.99913
25 0.99707
35 0.99406
45 0.99024
55 0.98573

 12. An oxyacetlyene torch was used to cut a 1-inch piece of metal. The relationship
between the metal thickness and cutting time is shown in the following table:

Thickness
(in)

Cutting Time
(min)

0.25 0.036
0.375 0.037

0.5 0.039
0.75 0.042
1.0 0.046

1.25 0.050
1.5 0.053
2.0 0.058
2.5 0.065
3.0 0.073
3.5 0.078
4.0 0.085
4.5 0.093
5.0 0.102

K11207.indb 347 6/15/12 10:07 AM

348    ◾    Programming in C++ for Engineering and Science

 Using a program like that in Problem 10, find the least-squares line for this data, and use
it to estimate the cutting time for thicknesses of 1.75 inches, 3.25 inches, and 4.75 inches.

 13. In some situations, an exponential function

 y = aebx

 gives a better fit to a set of data points than does a straight line. One common method
to determine the constants a and b is to take logarithms

 ln y = ln a + bx

 and then use the least-squares method of Problem 10 to find values of the constants
b and ln a. Write a program that uses this method to fit an exponential curve to a set
of data points. Run it for the values in the following table, which gives the barometric
pressure readings, in millimeters of mercury, at various altitudes.

Altitude
(meters)

x

Barometric Pressure
(millimeters)

y

0 760
500 714

1000 673
1500 631
2000 594
2500 563

 14. Related to the least-squares method (see Problem 10) is the problem of determining
whether there is a linear relationship between two quantities x and y. One statistical mea-
sure used in this connection is the correlation coefficient. It is equal to 1 if there is a perfect
positive linear relationship between x and y, that is, if y increases linearly as x increases.
If there is a perfect negative linear relationship between x and y, that is, if y decreases lin-
early as x increases, then the correlation coefficient has the value –1. A value of 0 for the
correlation coefficient indicates that there is no linear relationship between x and y, and
nonzero values between –1 and 1 indicate a partial linear relationship between the two
quantities. The correlation coefficient for a set of n pairs of x- and y-values is calculated by

n xy x y

n x x n y y2
2

2
2

∑ ∑ ∑
∑∑ ∑∑

() ()()
() ()

−

−

−

 where

 ∑x is the sum of the x-values

 ∑y is the sum of the y-values

K11207.indb 348 6/15/12 10:07 AM

More Repetition Control Structures    ◾    349  

 ∑x2 is the sum of squares of the x-values

 ∑y2 is the sum of squares of the y-values

 ∑xy is the sum of products xy of corresponding x- and y-values

 Write a program to calculate the correlation coefficient of a set of data points. Execute
it for the data in Problem 10 and for several data sets of your own.

Section 9.5–9.6

 1. Write a program to read a set of numbers, count them, and find and print the largest
and smallest numbers in the list and their positions in the list.

 2. Write a program that reads an exchange rate for converting English currency to
U.S. currency and then reads several values in English currency and converts each
amount to the equivalent U.S. currency. Display all amounts with appropriate
labels. Use sentinel-controlled or end-of-file–controlled while loops for the input.

 3. Proceed as in Problem 3, but convert several values from U.S. currency to English currency.

 4. One method for finding the base-b representation of a positive integer given in base-
10 notation is to divide the integer repeatedly by b until a quotient of zero results. The
successive remainders are the digits from right to left of the base-b representation. For
example, the binary representation of 26 is 110102, as the following computation shows:

)
)
)
)
)

0 R 1

R 1

R 0

R 1

R 0

2 1

2 3

2 6

2 13

2 26

 Write a program to accept various integers and bases and display the digits of the
base-b representation (in reverse order) for each integer. You may assume that each
base is in the range 2 through 10.

 5. Proceed as in Problem 4, but convert integers from base 10 to hexadecimal (base 16).
Use a switch statement to display the symbols A, B, C, D, E, and F for 10, 11, 12, 13,
14, and 15, respectively.

 6. A car manufacturer wants to determine average noise levels for the 10 different mod-
els of cars the company produces. Each can be purchased with one of five different
engines. Write a program to enter the noise levels (in decibels) that were recorded

K11207.indb 349 6/15/12 10:07 AM

350    ◾    Programming in C++ for Engineering and Science

for each possible model and engine configuration, and calculate the average noise
level for each model as well as the average noise level over all models and engines.

 7. Write a program that reads the amount of a loan, the annual interest rate, and a
monthly payment, and then displays the payment number, the interest for that
month, the balance remaining after that payment, and the total interest paid to date
in a table with appropriate headings. (The monthly interest is r/12 percent of the
unpaid balance after the payment is subtracted, where r is the annual interest rate.)
Use a function to display these tables. Design the program so it can process several
different loan amounts, interest rates, and monthly payments, including at least the
following triples of values: $100, 18 percent, $10, and $500, 12 percent, $25. (note: In
general, the last payment will not be the same as the monthly payment; the program
should show the exact amount of the last payment due.)

 8. Proceed as in Problem 7 but with the following modifications: During program
 execution, have the user enter a payment amount and a day of the month on which
this payment was made. The monthly interest is to be calculated on the average daily
balance for that month. (Assume, for simplicity, that the billing date is the first of the
month.) For example, if the balance on June 1 is $500 and a payment of $20 is received
on June 12, the interest will be computed on (500 * 11 + 480 * 19)/30 dollars, which
represents the average daily balance for that month.

 9. Suppose that on January 1, April 1, July 1, and October 1 of each year, some fixed
amount is invested and earns interest at some annual interest rate r compounded
quarterly (that is, r/4 percent is added at the end of each quarter). Write a program that
reads a number of years and that calculates and displays a table showing the year, the
yearly dividend (total interest earned for that year), and the total savings accumulated
through that year. Design the program to process several different inputs and to call
a function to display the table for each input.

 10. a possible modification/addition to your program: Instead of investing amount dollars
each quarter, invest amount/3 dollars on the first of each month. Then in each quarter,
the first payment earns interest for three months (r/4 percent), the second for two
months (r/6 percent), and the third for one month (r/12 percent).

K11207.indb 350 6/15/12 10:07 AM

351

C h a p t e r 10

Functions in Depth

On two occasions I have been asked [by members of Parliament], “Pray, Mr. Babbage, if
you put into the machine wrong figures, will the right answers come out?” I am not able
rightly to apprehend the kind of confusion of ideas that could provoke such a question.

CHARLES BABBAGE

Fudd’s Law states, “What goes in must come out.” Aside from being patently untrue,
Fudd’s Law neglects to mention that what comes out need not bear any resemblance
to what went in.

UNKNOWN

So, naturalists observe, a flea
Hath smaller fleas that on him prey;
And these have smaller fleas to bite ’em
and so proceed ad infinitum.

JONATHAN SWIFT, "ON POETRY: A RHAPSODY"

ConTEnTS
10.1 Two Introductory Examples: Displaying Angles in Degrees and Converting

Coordinates 352
10.2 Parameters in Depth 357
10.3 Examples of Parameter Usage 365
10.4 Scope Rules 373
10.5 An Introduction to Recursion 379
10.6 Inlining, Overloading, and Templates 388
Chapter Summary 395
Test Yourself 398
Exercises 401
Programming Problems 405

352    ◾    Programming in C++ for Engineering and Science

In order to understand recursion, one must first understand recursion.

UNKNOWN

We have seen that designing a solution to a problem involves identifying the
objects needed to solve the problem as well as the operations that must be applied

to those objects. Thus far, the problems we have examined have required operations that
were either provided in C++ or were such that functions could easily be constructed to
perform them. Functions are thus one mechanism to implement operations that C++ does
not provide.

Some programming languages provide other subprograms (e.g., Fortran’s subroutines)
in addition to functions that can also receive values and process them, but then return
no values or return several values. C++ can also do this by means of void functions and
 reference parameters, a mechanism for passing values to and from functions. In this
 chapter, we look at several examples that use reference parameters and then consider other
properties of C++ functions and introduce recursion.

10.1 Two InTRoDUCToRY ExAMPLES: DISPLAYInG AnGLES
In DEGREES AnD ConVERTInG CooRDInATES

Nearly all the functions we have considered thus far are designed to return a single value to
the function—main() or some other function—that called them. In Chapter 6, however,
we saw an example of a function that returned no value but simply performed a special
kind of output. Here, our first example will review this kind of function. Our second exam-
ple is of a function that returns more than one value.

10.1.1 Example 1: Displaying an Angle in Degrees

As a simple illustration of the first kind of function, suppose we wish to develop one that
accepts from the main program an angular measurement in radians and displays this
information, as well as the equivalent number of degrees. For example, the value 1.5 is to
be displayed as

1.5 radians is equivalent to
85 degrees, 56 minutes, 37 seconds

Our function will have one real parameter representing the radian measure of an angle.
Its return type will be void, indicating that it returns no value, but simply performs some
task and then returns control to main(). The program in Example 10.1 shows this func-
tion and a driver program that tests it. The main program inputs values for numRadians,
which is passed to the parameter radians of the void function printDegrees(). This
function displays the angle in both radian and degrees-minutes-seconds format, and when
execution reaches the end of printDegrees(), control returns to main(), which inputs
additional angle measurements and converts them using the function until the user indi-
cates there are no more.

K11207.indb 352 6/15/12 10:07 AM

Functions in Depth    ◾    353  

Example 10.1 Displaying an Angle in Degrees
/* Program demonstrating the use of a void function printDegrees() to

display an angle in degrees.

 Input: the radian measure of an angle and a user response to
whether more angles are to be input

 Output: the angle measurement (displayed by printDegrees())
--*/

#include <iostream> // cout, cin, <<, >>
using namespace std;

void printDegrees(double radians); // prototype for printDegrees()

int main()
{
 cout << "This program converts radian measure of angles to\n"

"degrees-minutes-seconds units.\n\n";
 char response;

 do
 {
 cout << "Enter the radian measure of an angle: ";
 double numRadians;
 cin >> numRadians;

 printDegrees(numRadians);

 cout << "\nMore angles (Y or N)? ";
 cin >> response;
 }
 while (response == 'y' || response == 'Y');
}

/* Function to convert radian measure of an angle to
degrees-minutes-seconds format and output it.

 Receive: radians
 Output: radians and equivalent degrees, minutes, seconds
--*/

void printDegrees(double radians)
{
 const double PI = 3.14159;
 double degreeMeasure = (180.0 / PI) * radians;

 int degrees = int(degreeMeasure);
 degreeMeasure -= degrees;
 degrees %= 360;
 degreeMeasure *= 60.0;

K11207.indb 353 6/15/12 10:07 AM

354    ◾    Programming in C++ for Engineering and Science

 int minutes = int(degreeMeasure);
 degreeMeasure -= minutes;
 degreeMeasure *= 60.0;
 int seconds = int(degreeMeasure);

 cout << radians << " radians is equivalent to\n"
 << degrees << " degrees, " << minutes << " minutes, "
 << seconds << " seconds" << endl;
}

SAMPLE RUN:
This program converts radian measure of angles to the
degrees-minutes-seconds units.

Enter the radian measure of an angle: 0
0 radians is equivalent to
0 degrees, 0 minutes, 0 seconds

More angles (Y or N)? Y
Enter the radian measure of an angle: 3.14159
3.14159 radians is equivalent to
180 degrees, 0 minutes, 0 seconds

More angles (Y or N)? Y
Enter the radian measure of an angle: 1
1 radians is equivalent to
57 degrees, 17 minutes, 44 seconds

More angles (Y or N)? N

10.1.2 Example 2: Converting Coordinates

The function in the preceding example receives a value, but unlike most of the functions
in earlier chapters, returns no value. In this example, our function will receive two values
which are the polar coordinates (r, θ) of a point P in the plane but must also return two
values, which are the rectangular coordinates (x, y) of that point.

The first polar coordinate r is the distance from the origin to P, and the second polar
coordinate θ is the angle from the positive x-axis to the ray joining the origin with P.

The formulas that relate polar coordinates to the rectangular coordinates of a point are

x r

y r

cos

sin

= θ

= θ

P(x, y)

O

r

x-axis
θ

K11207.indb 354 6/15/12 10:07 AM

Functions in Depth    ◾    355  

Technically, a C++ function cannot return two values because execution of a return
statement immediately terminates execution of the function. Thus, it will not work to write

double polarToRectangular(double r, double theta)
{
 return r * cos(theta);
 return r * sin(theta); // Execution won't get here!
}

because the first return statement will cause execution of the function to terminate,
so the second return statement will never be reached. Moreover, a function’s return
 statement has the form

return expression;

and so only a single value can be returned to the caller using a return statement.
Because we cannot return multiple values, we might try to communicate back to the

caller through some additional parameters. For example, we might try writing

double polarToRectangular(double r, double theta, double x, double y)
{
 x = r * cos(theta);
 y = r * sin(theta);
}

and then call the function as follows:

double xCoord = 0,
 yCoord = 0;

polarToRectangular(1.5, 0.7854, xCoord, yCoord);

This is a good idea, but unfortunately, it will not work because C++ parameters are by
default copies of their corresponding arguments. That is, the parameter x contains a copy
of its argument xCoord, and the parameter y contains a copy of its argument yCoord.
When it executes, polarToRectangular() modifies these copies, leaving the argu-
ments xCoord and yCoord unchanged.

What we need is a way to “turn off” this mechanism that causes parameters to be copies
of their arguments. For this purpose, C++ provides reference parameters that, instead of
being copies of their parameters, refer all accesses directly back to their arguments. This is
done by inserting an ampersand (&) between the parameter’s name and its type.1 Thus, the
heading of our function becomes

 void polarToRectangular(double r, double theta, double & x, double & y)

1 Some programmers prefer to attach the ampersand to the type name as in double& x, and others prefer attaching it to
the parameter’s name—double &x. In this text we will simply place it between the type name and the parameter’s name.

K11207.indb 355 6/15/12 10:07 AM

356    ◾    Programming in C++ for Engineering and Science

Ordinary parameters (like r and theta) are copies of their arguments, and so only
move values into a function; reference parameters (like x and y) refer back to their argu-
ments, and so move values both into and out of a function. Note that because values are
communicated back to the caller only via reference parameters, void is used to indicate
that the function returns no values (via a return statement). Example 10.2 shows the
complete function along with a driver program that tests it.

Example 10.2 Converting Coordinates
/* This program computes the rectangular coordinates of points with

given polar coordinates.

 Input: polar coordinates of points in the plane
 Output: the corresponding rectangular coordinates

--*/

#include <iostream> // <<, >>, cout, cin
#include <iomanip> // fixed, showpoint, setprecision()
#include <cmath> // cos(), sin()
using namespace std;

void polarToRectangular(double r, double theta, double & x, double & y);

int main()
{
 cout << "This program converts polar coordinates to rectangular\n"

 "coordinates using the void function polarToRectangular()\n\n";

 char response;
 do
 {
 cout << "Enter the polar coordinates of a point: ";
 double rCoord, tCoord, // polar coordinates
 xCoord, yCoord; // rectangular coordinates
 cin >> rCoord >> tCoord;

 polarToRectangular(rCoord, tCoord, xCoord, yCoord);
 cout << fixed << showpoint << setprecision(2)
 << "Rectangular coordinates are: "
 << xCoord << " " << yCoord << endl;

 cout << "\nMore conversions (Y or N)? ";
 cin >> response;
 }
 while (response == 'y' || response == 'Y');
}

K11207.indb 356 6/15/12 10:07 AM

Functions in Depth    ◾    357  

/* Function to convert polar coordinates to rectangular coordinates.

 Receive: polar coordinates r and theta
 Pass back: rectangular coordinates x and y
--*/

void polarToRectangular(double r, double theta, double & x, double & y)
{
 x = r * cos(theta);
 y = r * sin(theta);
}

SAMPLE RUN:
This program converts polar coordinates to rectangular
coordinates using the void function polarToRectangular()

Enter the polar coordinates of a point: 1.414 0.783
Rectangular coordinates are: 1.00 1.00

More conversions (Y or N)? Y
Enter the polar coordinates of a point: 2.0 3.14159
Rectangular coordinates are: –2.00 –0.00

More conversions (Y or N)? Y
Enter the polar coordinates of a point: 1.23 4.56
Rectangular coordinates are: –0.19 -1.22

More conversions (Y or N)? N

10.2 PARAMETERS In DEPTh
The rule that governs the relationship between an argument (the value supplied when a
function is called) and its corresponding parameter (the variable in the function’s heading
for storing the argument) is called a parameter-passing mechanism. In this section, we
examine the various mechanisms available in C++ for passing parameters.

10.2.1 Value Parameters

The simplest parameter-passing mechanism is the one that occurs by default. It is named
call-by-value, and parameters whose values are passed using this mechanism are called
value parameters. The rule governing them is:

K11207.indb 357 6/15/12 10:07 AM

358    ◾    Programming in C++ for Engineering and Science

Value parameter

Form:
 type parameter_name

DescriPtion:

A value parameter is a distinct variable containing a copy of its argument. Therefore, any
modification of a value parameter within the body of a function has no effect on the value of
its corresponding argument.

All of the parameters that we have seen in earlier chapters have been value parameters.
For example, in the temperature-conversion function in Example 6.2,

double celsiusToFahrenheit(double tempCels)
{
 return 1.8 * tempCels + 32;
}

the variable tempCels is a value parameter. If currentTemp is a double variable
whose value is 20.0 and we call the function with it as the argument,

tempFahr = celsiusToFahrenheit(currentTemp);

a variable is allocated for parameter tempCels and the value of currentTemp is copied
into it. The function then executes using this value.

Because a value parameter is a distinct variable containing a copy of its argument, any
changes a function makes to a value parameter have no effect on the corresponding argu-
ment. Thus, we could have written the factorial function from Example 6.5 as follows

unsigned factorial(unsigned n)
{
 unsigned nfact = 1;
 while (n > 1)
 {
 nfact *= n;
 n--;
 }
 return nfact;
}

Because parameter n is a distinct variable containing a copy of whatever argument is
passed, function factorial() can freely change the value of n without changing the
value of the corresponding argument.

K11207.indb 358 6/15/12 10:07 AM

Functions in Depth    ◾    359  

10.2.2 Reference Parameters

If we examine the function polarToRectangular() in Example 10.2,

void polarToRectangular(double r, double theta, double & x, double & y)
{
 x = r * cos(theta);
 y = r * sin(theta);
}

we see that the parameters r and theta are value parameters. However, the parame-
ters x and y have an ampersand (&) between their type and their name, which indicates
that values should be passed to the parameter using the call-by-reference mechanism.
Such parameters are thus called reference parameters. The rule governing them is as follows:

To illustrate, suppose rCoord is 2.0 and tCoord is 3.14159 in the function call

polarToRectangular(rCoord, tCoord, xCoord, yCoord);

The value parameters r and theta are distinct variables into which the values of the argu-
ments rCoord and tCoord are copied:

By contrast, x and y are reference parameters, and so they become aliases, or alternative
names, for their arguments xCoord and yCoord:

reFerence parameter

Form:
 type & parameter_name

DescriPtion:

Reference parameters are aliases of (alternate names for) their corresponding arguments.
Therefore, any change to the value of a reference parameter within the body of a function
changes the value of its corresponding argument.

2.0rCoord

3.14159tCoord

r

theta

2.0

3.14159

2.0rCoord

3.14159tCoord

r

theta

2.0

3.14159

xCoord

yCoord

x

y

K11207.indb 359 6/15/12 10:07 AM

360    ◾    Programming in C++ for Engineering and Science

This means that when function polarToRectangular() assigns a value to its refer-
ence parameter x, the value of the corresponding argument xCoord is changed,

and when polarToRectangular() assigns a value to its reference parameter y, the
value of the corresponding argument yCoord is changed:

Thus, to design a function like polarToRectangular() that sends back more than
one value to its caller, we can proceed as follows:

 1. Declare a reference parameter for each value to be communicated back to the caller:

 void polarToRectangular(double r, double theta,
 double & x, double & y);

 2. Assign to the reference parameters the values that must be communicated back:

 x = r * cos(theta);
 y = r * sin(theta);

 3. Call the function with a variable argument for each reference parameter:

 polarToRectangular(rCoord, tCoord, xCoord, yCoord);

When the function terminates, the values of the argument variables will be changed to the
values the function assigned to its reference parameters.

10.2.2.1 Common Errors
Although arguments corresponding to value parameters can be constants, literals, variables,
or expressions, arguments corresponding to reference parameters must be variables because

2.0rCoord

3.14159tCoord

r

theta

2.0

3.14159

xCoord

yCoord

x

y

–2.0

2.0rCoord

3.14159tCoord

r

theta

2.0

3.14159

0

xCoord

yCoord

x

y

–2.0

K11207.indb 360 6/15/12 10:07 AM

Functions in Depth    ◾    361  

reference parameters can change the values of the corresponding arguments. For example,
the function call

polarToRectangular(2.0, 3.14159, 0, 1);

will cause a compilation error because 0 and 1 are not variables, but if xCoord and
 yCoord are the double variables defined earlier, the call

polarToRectangular(2.0, 3.14159, xCoord, yCoord);

is valid, and following the call, the value of xCoord will be –2.0 and the value of yCoord
will be 0.

For the same reason, the types of arguments and the types of corresponding reference
parameters must be the same. Thus, if xInt and yInt are int variables and we call
polarToRectangular() with them as arguments,

polarToRectangular(2.0, 3.14159, xInt, yInt);

a compilation error will result because their types do not match those of their correspond-
ing parameters.

10.2.3 Const Reference Parameters

From the preceding discussion, it may seem that when an object’s movement is out of (and
perhaps also into) a function, it should be passed using the call-by-reference mechanism,
and when movement is only into a function, it should be passed using the call-by-value
mechanism. However, there is an alternative to the call-by-value mechanism that is some-
times preferred.

10.2.3.1 A Problem with Value Parameters
As we have seen, a call-by-reference parameter is an alias of its argument, but a call-
by-value parameter is a distinct variable into which the argument’s value is copied.
When the type of a value parameter is one of the fundamental types (e.g., int, char,
double, . . .) the time needed to do this copying is usually negligible, but it may not be
when the argument being passed is a class object (e.g., a string, an ostream, or an
istream).

To illustrate, suppose that we modify the temperature conversion function in Example 6.2
so that it can convert Celsius temperatures into either Fahrenheit or Kelvin as specified by a
value parameter toScale whose type is string:

double celsConverter(double degrees, string toScale)
{
 if (toScale == "Fahrenheit")
 return 1.8 * degrees + 32;
 else if (toScale == "Kelvin")
 return degrees + 273.15;

K11207.indb 361 6/15/12 10:07 AM

362    ◾    Programming in C++ for Engineering and Science

 else
 {
 cout << "Illegal scale: " << toScale << " -- returning 0\n")
 return 0;
 }
}

Suppose that celsConverter() is called with scale as an argument,

cout << celsConverter(100.0, scale) << endl;

where scale is a string variable whose value is "Kelvin". Before celsConverter()
can begin execution, two actions must occur:

 1. Sufficient space must be allocated for the parameter toScale to hold its argument:

 2. The argument must be copied into this space:

In this example, six characters must be copied into the parameter’s space and if the argu-
ment’s value were "Fahrenheit", ten characters would need to be copied. Such copying
takes time, increasing the execution time of the function. In general, if a parameter whose
type is a class is a value parameter, then the members of the corresponding class argument
must be copied, which can be time-inefficient.

10.2.3.2 A Danger with Reference Parameters
Call by reference does not suffer this time-inefficiency because a reference parameter is an
alias for its argument—no copying is required. To avoid the time-consuming copying of
values required by call-by-value, many programmers in languages other than C++ always
pass large arguments by reference, regardless of whether their movement is into or out of
the function. To illustrate, suppose we make toScale a reference parameter in the func-
tion celsConverter():

double celsConverter(double degrees, string & toScale)

Kscale e l v i n

toScale

Kscale e l v i n

K e l v i ntoScale

K11207.indb 362 6/15/12 10:07 AM

Functions in Depth    ◾    363  

{
 .
 .
 .
}

Then, in a call like the following,

cout << celsConverter(100.0, scale) << endl;

the parameter toScale simply becomes an alias for its argument scale:

No copying occurs, avoiding the time-inefficiency of the call-by-value mechanism.
There is a danger with this approach, however. Suppose that in the definition of

 celsConverter(), the common error of using assignment (=) instead of comparison
(==) in the if statement is made:

double celsConverter(double degrees, string & toScale)
{
 if (toScale = "Fahrenheit")
 return 1.8 * degrees + 32;
 .
 .
 .
}

As explained in Section 8.2, toScale will be assigned the string "Fahrenheit". The
result of this assignment is this string, and because it is nonzero, it will be treated as
true in this context, causing the expression 1.8 * degrees + 32 to be used to convert
degrees, regardless of the original value of toScale. This is obviously an error. But a
much more serious and much less obvious error occurs when this function is called as in

cout << celsConverter(100.0, scale) << endl;

where scale has the value "Kelvin". Because toScale is a reference parameter, it is an
alias for its argument scale, and so the change in the value of toScale also changes the
value of scale from "Kelvin" to "Fahrenheit", which compounds the error!

This is the danger with reference parameters: if a function mistakenly changes the value
of a reference parameter, the value of the corresponding argument is also changed, and the
compiler cannot detect such mistakes. Thus, for safety reasons, reference parameters should

Kscale e l v i n toScale

Fscale a h r e n toScaleh e i t

K11207.indb 363 6/15/12 10:07 AM

364    ◾    Programming in C++ for Engineering and Science

not be used simply to avoid the inefficiency of the call-by-value mechanism (unless they
are declared to be const as shown next). Also, for functions that pass back a single value,
a return statement should be used and not a reference parameter. Safety is increased
and, in addition, such functions (unlike void functions) can be called from within an
expression.

10.2.3.3 The Alternative: Const Reference Parameters
A third parameter-passing mechanism is the const reference mechanism. For values whose
movement is only into the function, it avoids both the time-inefficiency of call-by-value
and the potential for error of call-by-reference. To illustrate, the parameter toScale in
 celsConverter can be defined as a const reference parameter as follows:

double celsConverter(double degrees, const string & toScale)
{
 if (toScale == "Fahrenheit")
 return 1.8 * degrees + 32;
 .
 .
 .
}

This has the following effects:

 1. As with reference parameters, a const reference parameter is an alias of its corre-
sponding argument, and so no time is wasted copying the argument.

 2. Unlike reference parameters, a const reference parameter is a read-only variable,
which means that if the function tries to change the value of the parameter, the
compiler will generate an error message, alerting the programmer to the mistake.

 double celsConverter(double degrees, const string & toScale)
 {
 if (toScale = "Fahrenheit")
 // COMPILATION ERROR (Good!)
 return 1.8 * degrees + 32;
 .
 .
 .
 }

For these reasons, the const reference mechanism is the preferred way to define param-
eters whose types are classes (or other large objects) and whose movement is into but not
out of a function.

10.2.4 Using Parameters

Because of the different kinds of parameters, we need to expand our way of thinking about
how to construct a function to include the movement of values into and out of the func-
tion. Jumping in and writing a function without having a clear specification that includes

K11207.indb 364 6/15/12 10:07 AM

Functions in Depth    ◾    365  

a description of what values are received by the function (in values) and what values are
returned to the caller (out values) often leads to wasted work.

Once the movement of a function’s objects is known, the following guidelines can be
used to decide what kind of parameters are needed.

 P1. If a value is only received by a function from its caller and its type is a fundamental
type, define a value parameter to receive it. This is also the case if the function needs
to make a copy of a received value so that this copy can be changed.

 P2. If a value is only received by a function from its caller and its type is a class (or it is
some other large object), define a const reference parameter to receive that value.

 P3. If only one value must be communicated back to its caller, then have the function
return that value as its result via a return statement.

 P4. If more than one value must be communicated back to its caller, use reference
parameters for those values to change argument variables in the caller.

The examples in the next section illustrate how these rules can be applied.

10.3 ExAMPLES oF PARAMETER USAGE
There are many problems that require passing more than one value back to the function’s
caller. In this section we consider three such problems: designing a change dispenser, decom-
posing an IP (Internet Protocol) address, and interchanging the values of two variables.

10.3.1 Example 1: Designing a Change Dispenser

An automated cash register has two inputs: the amount of a purchase and the amount
given as payment. It computes the number of dollars, quarters, dimes, nickels, and pennies
to be given in change and automatically dispenses these to the customer.2 Our problem is
to write a function that models this dispenser.

Our function must receive the amount of a purchase and the amount given as payment.
Because these are numeric values and are only sent to the function, they can be value
 parameters by Rule P1. Our function must compute and send back the number of coins
(or bills) of each denomination to be returned to the customer; by Rule P4, we make each
of these a reference parameter. Thus, our function’s heading can be written as

void makeChange(double purchaseAmount, // amount of purchase
 double payment, // amount of payment
 int & dollars, // dollars of change
 int & quarters, // quarters of change
 int & dimes, // dimes of change
 int & nickels, // nickels of change
 int & pennies); // pennies of change

2 Perhaps with the dollars returned by the cashier and only the coins by a dispenser.

K11207.indb 365 6/15/12 10:07 AM

366    ◾    Programming in C++ for Engineering and Science

To determine the sequence of operations needed in our function to make change, we
will work through a specific example. Suppose the amount of a purchase is $7.49 and we
pay with a $10 bill. We clearly must begin by subtracting the purchase amount from the
payment to get the amount of change. Also, at some point we must convert this real value
to an integer value. One approach would be to store the total amount of change (2.51) as a
real value and perform a separate conversion as each return value is computed. However,
this requires doing the same thing six times—an indication that there is probably a better
way. Also, real values are not stored exactly (e.g., 2.51 might be stored as 2.50993 . . .) and
thus it is better to round them to the nearest cent (2.51) and then convert this real amount
into an integer value (251) at the outset, ensuring that no significant digits are lost. This can
be done by multiplying the real amount of change by 100, adding 0.5, and then truncating
the fractional part of the result. The following examples illustrate this computation:

The result of this computation is the change in cents, and we will store this value in a local
integer variable change.

Once change has been computed as the amount of change in cents, the number of dollars
of change can be computed using integer division, dividing the value of change by 100:

dollars = change / 100; // for change = 251, dollars equals 2

The remaining change is the remainder that results from this division:

change %= 100; // for change = 251, change becomes 51

The number of quarters remaining in change can then be computed in a similar manner
by dividing change by 25,

quarters = change / 25;

The remainder of this division is then the amount of change remaining to be dispensed as
dimes, nickels, and pennies:

change %= 25;

Similar calculations are used to determine the number of dimes, nickels, and pennies.
The complete function along with a driver program that tests it is shown in Example 10.3.

The program reads two amounts (itemCost and amountPaid), calls makeChange()
to calculate the change that must be given, and then displays the amounts passed back by
makeChange().

* 1002.50993 + 0.5 truncate250.993 251.493 251

* 1002.51002 + 0.5 truncate251.002 251.502 251

K11207.indb 366 6/15/12 10:07 AM

Functions in Depth    ◾    367  

Example 10.3 A Change Dispenser
/* This driver program tests function makeChange().

 Input: the cost of an item, and the amount paid
 Output: the change in terms of numbers of dollars, quarters,

dimes, nickels, and pennies
--*/

#include <iostream> // cout, cin, <<, >>
#include <string> // string
using namespace std;

void makeChange(double purchaseAmount, double payment,
 int & dollars, int & quarters, int & dimes,
 int & nickels, int & pennies);

int main()
{
 cout << "This program tests a change-making function...\n\n";

 double itemCost, // a purchase
 amountPaid; // what was paid
 int numDollars, // variables for
 numQuarters, // the values
 numDimes, // to be output
 numNickels,
 numPennies;

 for (;;)
 {
 cout << "Enter item cost (negative to quit) and amount paid: ";
 cin >> itemCost;
 if (itemCost < 0) break;
 cin >> amountPaid;

makeChange(itemCost, amountPaid, numDollars,
numQuarters,numDimes, numNickels, numPennies);

 cout << "The change from this purchase is:\n"
 << numDollars << " dollars,\n"
 << numQuarters << " quarters,\n"
 << numDimes << " dimes,\n"
 << numNickels << " nickels, and\n"
 << numPennies << " pennies\n\n";
 }
}

K11207.indb 367 6/15/12 10:07 AM

368    ◾    Programming in C++ for Engineering and Science

/* Function to compute the dollars, quarters, dimes, nickels, and pennies
in change given the amount of a purchase and the amount paid.

 Receive: purchaseAmount, the (real) amount of the purchase,
payment, the (real) amount of the payment

 Precondition: purchaseAmount <= payment.
 Pass back: dollars, the (integer) number of dollars,

quarters, the (integer) number of quarters,
dimes, the (integer) number of dimes,
nickels, the (integer) number of nickels, and
pennies, the (integer) number of pennies in change

--*/

void makeChange(double purchaseAmount, // amount of purchase
 double payment, // amount of payment
 int & dollars, // dollars of change
 int & quarters, // quarters of change
 int & dimes, // dimes of change
 int & nickels, // nickels of change
 int & pennies) // pennies of change
{
 int change = int(100.0 * (payment - purchaseAmount) + 0.5);
 if (change > 0)
 {
 dollars = change / 100; // 100 pennies per dollar
 change %= 100; // compute remaining change

 quarters = change / 25; // 25 pennies per quarter
 change %= 25; // compute remaining change

 dimes = change / 10; // 10 pennies per dime
 change %= 10; // compute remaining change

 nickels = change / 5; // 5 pennies per nickel
 pennies = change % 5; // pennies are all that's left
 }
 else
 {
 cerr << "*** Purchase amount: " << purchaseAmount
 << " exceeds payment: " << payment << endl;
 dollars = quarters = dimes = nickels = pennies = 0;
 }
}

SAMPLE RUN:
This program tests a change-making function...

Enter item cost (negative to quit) and amount paid: 1.01 2.00
The change from this purchase is:

K11207.indb 368 6/15/12 10:07 AM

Functions in Depth    ◾    369  

0 dollars,
3 quarters,
2 dimes,
0 nickels, and
4 pennies

Enter item cost (negative to quit) and amount paid: 1.34 5.00
The change from this purchase is:
3 dollars,
2 quarters,
1 dimes,
1 nickels, and
1 pennies

Enter item cost (negative to quit) and amount paid: 1.05 1.00
*** Purchase amount: 1.05 exceeds payment: 1
The change from this purchase is:
0 dollars,
0 quarters,
0 dimes,
0 nickels, and
0 pennies

Enter item cost (negative to quit) and amount paid: –1 –1

10.3.2 Example 2: Interchanging the Values of Two Variables

There are some problems in which it is necessary to interchange the values of two variables.
Here we will illustrate how this can be done by constructing a function swap() to do this
so that a function call

swap(var1, var2);

will exchange the values of variables var1 and var2.
Our function will have two parameters that we will name first and second. Because

the value of first must be changed to the value of second, second must be received
by the function and first must be passed back, and because the value of second must
be changed to the value of first, first must be received and second passed back.
Thus, both parameters have in-out movement, and Rule P4 can be applied with first and
 second as reference parameters because they are passed back as well as received.

The following shows a pattern for such a function.

/* Function to interchange the values of two variables.

 Receive: values of variables first and second
 Pass back: first, containing the value of second, and second,

containing the value of first
--*/

K11207.indb 369 6/15/12 10:07 AM

370    ◾    Programming in C++ for Engineering and Science

void swap(____ & first, ____ & second)
{
 ____ temporary = first;
 first = second;
 second = temporary;
}

Replacing the blank with the type of the variables to be swapped will produce a C++
function that can be incorporated into a program where this interchange of values
is needed. The simple program in Example 10.4 illustrates this for int variables. (In
Section 10.5 we will see how we can have the compiler perform this “blank-filling”
automatically.)

Example 10.4 Interchanging the Values of Two int Variables
/* Test driver for the swap() function

 Input: two integer values stored in intVar1 and intVar2
 Output: the values of intVar1 and intVar2 after swapping
--*/

#include <iostream>
using namespace std;

void swap(int & first, int & second);

int main()
{
 int intVar1, intVar2;

 cout << "Enter two integers: ";
 cin >> intVar1 >> intVar2;

 swap(intVar1, intVar2);

 cout << "After using swap(), values are "
 << intVar1 << " and " << intVar2 << endl;
}

/* Function to interchange the values of two variables.

 Receive: values of int variables first and second
 Pass back: first, containing the value of second, and second,

containing the value of first
--*/

void swap(int & first, int & second)
{
 int temporary = first;

K11207.indb 370 6/15/12 10:07 AM

Functions in Depth    ◾    371  

 first = second;
 second = temporary;
}

SAMPLE RUN:
Enter two integers: 123 456789
After using swap(), values are 456789 and 123

10.3.3 Example 3: Processing IP Addresses

In Section 7.1, we considered IP addresses, which are used to uniquely identify devices con-
nected to the Internet. Each such address is made up of four fields that represent specific
parts of the Internet

host.subdomain.subdomain.rootdomain

which a computer will translate into a unique numeric address. We developed a program (see
Example 7.1) to split up an IP address into its four component blocks. We can easily make it
reusable in other programs by packaging it in a function like that shown in Example 10.5.

Example 10.5 Processing IP Addresses
/* This program uses a function to find the four network/host infor-

mation blocks in an IP address.

 Input: IP addresses
 Output: four network/host information blocks, or an error message
--*/

#include <iostream> // cin, cout
#include <string> // string class
#include <cassert> // assert()
using namespace std;

void chopIPAddress(const string & address, string & block1, string &
block2, string & block3, string & block4);

int main()
{
 string address, block1, block2, block3, block4;

 for(;;)
 {
 cout << "\nEnter an IP address (STOP to quit): ";
 cin >> address;

K11207.indb 371 6/15/12 10:07 AM

372    ◾    Programming in C++ for Engineering and Science

 if (address == "STOP") break;

 chopIPAddress(address, block1, block2, block3, block4);

 cout << "The network/host blocks are:\n"
 << block1 << endl << block2 << endl
 << block3 << endl << block4 << endl;
 }
}

 /* Function to find the four network/hostinformation blocks in a
TCP/IP address.

 Receive: TCP/IP address
 Pass back: four network/host information blocks
 Output: an error message if address is malformed
--*/

void chopIPAddress(const string & address, string & block1,
string & block2, string & block3, string & block4)

{
 int dot1 = address.find(".", 0);
 assert(dot1 != string::npos);
 block1 = address.substr(0, dot1);

 int dot2 = address.find(".", dot1 + 1);
 assert(dot2 != string::npos);
 block2 = address.substr(dot1 + 1, dot2 – dot1 – 1);

 int dot3 = address.find(".", dot2 + 1);
 assert(dot3 != string::npos);
 lock3 = address.substr(dot2 + 1, dot3 – dot2 – 1);

 assert(address.find(".", dot3 + 1) == string::npos);
 block4 = address.substr(dot3 + 1, address.size() – dot3 – 1);
}

SAMPLE RUNS:
Enter an IP address (STOP to quit): titan.ksc.nasa.gov
The network/host blocks are:
titan
ksc
nasa
gov

Enter an IP address (STOP to quit): 163.205.10.1
The network/host blocks are:
163
205
10
1

Enter an IP address (STOP to quit): STOP

K11207.indb 372 6/15/12 10:07 AM

Functions in Depth    ◾    373  

10.4 SCoPE RULES
As we have seen, identifiers are used to name the objects and functions in a program. For
example, a library might contain two summation functions, one to calculate sums of the
form m + (m + 1) + (m + 2) + . . . + (n – 1) + n, and another to calculate sums of the form
1 + 2 + . . . + n. Although we might use different names for the functions, this is not neces-
sary. We can name them both sum():

int sum(int n)
{
 return n * (n + 1) / 2;
}

int sum(int m, int n)
{
 assert(m <= n);
 return (n - m + 1) * (n + m) / 2;
}

As these definitions indicate

 1. The same identifier can be used in different functions without conflict (e.g., parameter n).

 2. Two functions can have the same name.

However, if we try to use the same identifier to define two different objects in the same
function as in

void f()
{
 int value;
 ...
 char value; // ERROR!
 ...
}

a compilation error results.
These examples raise an important question:

What rules govern the use of and/or access to an identifier?

As we shall see, some rules govern access to identifiers in general and other rules govern
access to identifiers that are names of functions. In this section we describe these rules.

10.4.1 Scope: Identifier Accessibility

The scope of an identifier is that portion of a program where that identifier is the name of
a constant, variable, or function that can be accessed. For example, consider again the defi-
nitions of the two summation functions. The identifier n is used in both definitions, but it

K11207.indb 373 6/15/12 10:07 AM

374    ◾    Programming in C++ for Engineering and Science

has two distinct scopes. In the first function, n is the name of the first parameter, and any
uses of n in the body of that function refer to that parameter:

int sum (int n)
{
 return n * (n + 1) / 2;
}

int sum(int m, int n)
{
 assert(m <= n);
 return (n - m + 1) * (n + m) / 2;
}

In the second function, the identifier n is the name of the second parameter, and so any use
of n in that function refers to it (and any use of parameter m in the function refers to itself).

any attempt to access an identifier outside its scope produces a compilation error. For
example, if we tried to use the value of the parameter n outside of these functions, an error
message like

Identifier 'n' is undeclared

would be generated unless n is declared somewhere else and its scope includes this use of it.
Understanding scope is important for understanding certain compilation errors.

Stated simply, the scope of an identifier depends on where the identifier is declared. The
scopes of the identifiers we have seen thus far have been determined by four simple rules:

 S1. If an identifier is declared within a block, then its scope runs from its declaration to
the end of the block.

 S2. If an identifier is a parameter of a function, then its scope is the body of the function.

 S3. If an identifier is declared in the initialization expression of a for loop, then its scope
runs from its declaration to the end of the loop.

 S4. If an identifier is a declared outside all blocks and is not a parameter, then its scope
runs from its declaration to the end of the file.

Note that an identifier’s scope always begins at its declaration. One basic rule that follows
from this is that an identifier must be declared before it can be used.

10.4.1.1 An Example
To illustrate how the compiler uses these scope rules, suppose that we were to rewrite the
function getMenuChoice() from Section 9.2 as follows:

char getMenuChoice(const string & MENU, char firstChoice, char lastChoice)
{
 for (;;)
 {
 cout << MENU;

K11207.indb 374 6/15/12 10:07 AM

Functions in Depth    ◾    375  

 char choice;
 cin >> choice;

 if (choice >= firstChoice && choice <= lastChoice)
 break;

 cerr << "\nI'm sorry, but " << choice
 << " is not a valid menu choice.\n";
 }

 return choice; // ERROR!
}

When this function is compiled, the return statement generates an error message like

Identifier 'choice' is undeclared

(Before continuing, try to find the cause of the error using the scope rules.)
The problem is that by Scope Rule S1, the scope of choice only runs through the last

statement of the block that is the body of the loop. Because the return statement appears
after the block, it lies outside the scope of choice, and so the compiler generates an error
when it attempts to access choice. The problem can be avoided by moving the declaration
of choice to the outermost block of the function, thus ensuring that all statements that
refer to choice lie within its scope:

char getMenuChoice(const string& MENU, char firstChoice, char lastChoice)
{

 char choice;
 for (;;)
 {
 cout << MENU;
 cin >> choice;

 if (choice >= firstChoice && choice <= lastChoice)
 break;

 cerr << "\nI'm sorry, but " << choice
 << " is not a valid menu choice.\n";
 }

return choice; // OK!

}

10.4.1.2 Objects Declared Outside All Blocks
Although we have not put any declarations of variables or constants outside all blocks, we
have done so with prototypes of functions and with libraries that are included in a pro-
gram. For example, in Example 10.5, the prototype of the function chopIPaddress()
precedes the main function, so that the identifier chopIPaddress is declared outside all
blocks. By Scope Rule S4, its scope thus extends from its declaration to the end of the file.

K11207.indb 375 6/15/12 10:07 AM

376    ◾    Programming in C++ for Engineering and Science

This is the reason why a function prototype must precede calls to that function. Because a
prototype is a declaration of the function, it begins the scope of the function. Calls to that
function later in the program thus lie within its scope.

Identifiers that are declared in a library’s header file, such as cin, cout, cerr, and
clog in iostream and the class string in the string library, are also governed by
Scope Rule S4. When the compiler processes a #include directive outside all blocks as in

#include <iostream>
using namespace std;

int main()
{
 ...
}

all objects in that file are inserted outside all blocks and thus fall under Scope Rule S4. The
scope of such declarations thus extends from their declarations (i.e., from the #include
directive) to the end of the file.

10.4.1.3 Scopes of for-Loop Control Variables
Scope Rule S3 governs the scope of an identifier declared in the initialization expression of
a for loop. To illustrate it, suppose that a program contains the statements

for (int i = 1; i <= someLimit; i++)
{
 ...
}

cout << "i = " << i << endl; // ERROR

When the program is compiled, an error message like

Identifier 'i' is undeclared

results because Scope Rule S3 asserts that the scope of i ends at the bottom of the loop, so
the output statement lies outside the scope of i. But this also means that i could be rede-
clared and used after the loop has ended. For example, it could be used in a later for loop,

for (int i = 1; i <= 100; i++)
{
 ...
}

...

for (int i = 50; i > 0; i--)
{
 ...
}

K11207.indb 376 6/15/12 10:07 AM

Functions in Depth    ◾    377  

because the second loop lies outside the scope of the first i. Alternatively, we could move
the declaration of i before the first loop so that it is governed by Scope Rule S1 instead of
S3, and both loops fall within its scope:

 int i;
 for (i = 1; i <= 100; i++)
 {
 ...
 }
 ...
 for (i = 50; i > 0; i--)
 {
 ...
 }
...

10.4.2 name Conflicts

Our discussion of scope would not be complete without mentioning the rule:

Within the scope of an identifier, no redeclaration of that identifier that results in an
ambiguity for the compiler is permitted.

As a simple illustration, suppose that we write

int main()
{

 int value = 1;
 ...
 double value = 2.0; // ERROR!
 ...
 cout << value << endl;

}

The redeclaration of value creates an ambiguity for the compiler, because in the output
statement, it is unclear which value is to be displayed. From the standpoint of the com-
piler, value is declared as the name of an int object, starting the scope of the identifier
value. When the compiler encounters a second declaration of the same name that it can-
not distinguish from the first declaration, a name conflict arises,

int main()
{

 int value = 1;

 double value = 2.0;

 cout << value << endl;

 // ERROR!

}

K11207.indb 377 6/15/12 10:07 AM

378    ◾    Programming in C++ for Engineering and Science

and so the compiler generates an error. By contrast, there is no name conflict in the follow-
ing, because the scopes of the two versions of value do not overlap:

int main()
{
 ...
 if (x > 0)
 {

 int value = 1;
 cout << value << end1;

 }
 else
 {

 double value = 2.0;
 cout << value << end1;

 }
}

The compiler will eliminate ambiguity between names whenever it can. To illustrate,
consider the following example:

int main()
{

 int value = 1;
 {
 double value = 2.3;
 cout << value << end1;
 }
 cout << value << end1;

}

The effect here is that the outer (int) version of value will be hidden from the statements
within the scope of the nested version of value. Because value is redeclared in its own
nested block, the compiler will assume that accesses within the scope of the nested declara-
tion are to the local (double) version of value, and accesses outside of its scope are to
the outer (int) version of value, and so the compiler will proceed to translate the code.
The output produced will be

2.3
1

Because the outer variable value is accessible before and after this nested scope, but
is not accessible within it, the nested variable value is sometimes described as creating a
hole in the scope of the outer value. Some compilers may generate a warning message like

Warning: redeclaration of 'value' hides previous declaration

to alert us to this hole.

K11207.indb 378 6/15/12 10:07 AM

Functions in Depth    ◾    379  

10.4.3 namespaces

If name is declared or defined in a namespace declaration of the form

namespace Something
{
 // declaration or definition of name
 // other declarations and definitions
}

then the scope of name is this namespace block. It can be accessed outside of the namespace
only in the following ways:

 1. By its fully qualified name Something::name;3

 2. By its unqualified name name, if a using declaration of the form

 using namespace Something::name;

 or a using directive of the form

 using namespace Something;

 has already been given, provided that no other item has the same name (in which case
qualification is required as described in 1).

A using directive makes all names in the namespace available. This is why we add the
directive using namespace std; after #includes of standard I/O libraries—so that
the names declared and defined in them can be used without qualification.

10.5 An InTRoDUCTIon To RECURSIon
All the examples of function calls considered thus far have involved one function f() call-
ing a different function g() (with the calling function f() often being the main function).
However, a function f() may also call itself, a phenomenon known as recursion, and in this
section, we show how recursion is implemented in C++. Many examples of recursion could be
given, but we will consider only two of the classic ones: calculating factorials and analyzing a
street network. Others are given in the exercises and in Chapter 16 where we revisit recursion.

10.5.1 Example 1: The Factorial Problem Revisited

To illustrate the basic idea of recursion, we look again at the problem of calculating the
factorial function that we introduced in Section 6.3 and revisited in Section 10.2. Although
the first definition of the factorial n! of an integer n that one usually learns (and the one we
used earlier) is

n

n

n n
!

1 if 0

1 2 ... if 0
=

=

× × >

3 This is the reason for using string::npos in Chapter 7 to access the constant named npos in the string class.

K11207.indb 379 6/15/12 10:07 AM

380    ◾    Programming in C++ for Engineering and Science

it would be foolish to use it to calculate a sequence of consecutive factorials, that is, to mul-
tiply together the numbers from 1 through n each time:

 0! = 1

 1! = 1

 2! = 1 × 2 = 2

 3! = 1 × 2 × 3 = 6

 4! = 1 × 2 × 3 × 4 = 24

 5! = 1 × 2 × 3 × 4 × 5 = 120

A great deal of the effort would be redundant, because it is clear that once a factorial has
been calculated, it can be used to calculate the next factorial. For example, given the value
of 4!, we can then compute 5! simply by multiplying the value of 4! by 5:

 5! = 5 × 4! = 5 × 24 = 120

This value of 5! can in turn be used to calculate 6!,

 6! = 6 × 5! = 6 × 120 = 720

and so on. Indeed, to calculate n! for any positive integer n, we need only know the value of
0!, and the fundamental relation between one factorial and the next:

 n! = n × (n – 1)!

In general, a function is said to be defined recursively if its definition consists of two parts:

 1. An anchor or base case, in which the value of the function is specified for one or
more values of the parameter(s).

 2. An inductive or recursive step, in which the function’s value for the current value
of the parameter(s) is defined in terms of previously defined function values and/or
parameter values.

For the factorial function we have:

 0! = 1 (the anchor or base case)

 For n > 0, n! = n × (n – 1)! (the inductive or recursive step)

The first statement specifies a particular value of the function, and the second statement
defines its value for n in terms of its value for n – 1.

K11207.indb 380 6/15/12 10:07 AM

Functions in Depth    ◾    381  

This recursive definition can be used as an algorithm for calculating factorials. To see
how it works, consider using it to calculate 5!. We must first calculate 4! because 5! is defined
as the product of 5 and 4!. But to calculate 4! we must calculate 3! because 4! is defined as
4 × 3!. And to calculate 3!, we must apply the inductive step of the definition again, 3! = 3
× 2!, then again to find 2!, which is defined as 2! = 2 × 1!, and once again to find 1! = 1 × 0!.
Now we have finally reached the anchor case and because the value of 0! is given, we can
backtrack to find the value of 1!,

then again to find the value of 2!,

and so on, until we eventually obtain the value 120 for 5!:

5! = 5 × 4!

4! = 4 × 3!

3! = 3 × 2!

2! = 2 × 1!

1! = 1 × 0! = 1 × 1 = 1

0! = 1

5! = 5 × 4!

4! = 4 × 3!

3! = 3 × 2!

1! = 1 × 0! = 1 × 1 = 1

0! = 1

2! = 2 × 1! = 2 × 1 = 2

5! = 5 × 4! = 5 × 24 = 120

4! = 4 × 3! = 4 × 6 = 24

3! = 3 × 2! = 3 × 2 = 6

1! = 1 × 0! = 1 × 1 = 1

0! = 1

2! = 2 × 1! = 2 × 1 = 2

K11207.indb 381 6/15/12 10:07 AM

382    ◾    Programming in C++ for Engineering and Science

As this example demonstrates, a recursive definition may require considerable book-
keeping to record information at the various levels of the recursion, because information
from the anchor case is used to backtrack from one level to the preceding one. Fortunately,
most modern high-level languages (including C++) support recursion by automatically
performing all of the necessary bookkeeping and backtracking.

Example 10.6 shows a definition of factorial() that implements this algorithm.

Example 10.6 Computing n! Recursively
/* factorial computes n! recursively.

 Receive: n, a nonnegative integer
 Precondition: n >= 0
 Return: n!
--*/

int factorial(int n)
{
 assert(n >= 0);
 if (n == 0)
 return 1; // anchor case
 else
 return n * factorial(n-1); // inductive step

}

When this function is called with an argument greater than zero, the inductive step

else
 return n * factorial(n-1);

causes the function to call itself repeatedly, each time with a smaller parameter, until the
anchor case

if (n == 0)
 return 1;

is reached. To illustrate, consider the statement

int fact = factorial(4);

which calls the function factorial() to calculate 4!. Because the value of n (4) is not 0,
the inductive step executes

return n * factorial(n-1);

K11207.indb 382 6/15/12 10:07 AM

Functions in Depth    ◾    383  

which calls factorial(3). Before control is transferred to factorial(3), the current
value (4) of the parameter n is saved so that the value of n can be restored when control
returns. This might be pictured as follows:

Because the value of n (3) in this function call is not 0, the inductive step in this second call
to factorial() generates another call factorial(n-1) passing it the argument 2.
Once again, the value of n (3) is saved so that it can be restored later:

Because the value of n (2) in this function call is not 0, the inductive step in this third call to
factorial() generates another call factorial(n-1) passing it the argument 1. Once
again, the value of n (2) is saved so that it can be restored later. The call factorial(1) in
turn generates another call, factorial(0):

Because the anchor condition

if (n == 0)

 return 1;

is now satisfied in this last function call, no additional recursive calls are generated. Instead,
the value 1 is returned as the value for factorial(0):

n: 4

factorial(4)

return:
n *
factorial(n–1)

n: 3

factorial(3)

return:
n *
factorial(n–1)

n: 4

factorial(4)

return:
n *
factorial(n–1)

n: 3

factorial(3)

return:
n *
factorial(n–1)

n: 2

factorial(2)

return:
n *
factorial(n–1)

n: 4

factorial(4)

return:
n *
factorial(n–1)

n: 3

factorial(3)

return:
n *
factorial(n–1)

n: 2

factorial(2)

return:
n *
factorial(n–1)

n: 1

factorial(1)

return:
n *
factorial(n–1)

n: 0

factorial(0)

return: 1

K11207.indb 383 6/15/12 10:07 AM

384    ◾    Programming in C++ for Engineering and Science

Now that factorial(0) has completed its computation, execution resumes in
 factorial(1) where this returned value can now be used to complete the evaluation of

n * factorial(n – 1) = 1 * factorial(0) = 1 * 1 = 1

giving 1 as the return value for factorial(1):

Once factorial(1) has completed its computation, execution resumes in factorial(2)
where the return value of factorial(1) can now be used to complete the evaluation of

n * factorial(n - 1) = 2 * factorial(1) = 2 * 1 = 2

giving 2 as the return value for factorial(2):

Because factorial(2) has completed its computation, execution resumes in facto-
rial(3) where the return value of factorial(2) is used to complete the evaluation of

n * factorial(n - 1) = 3 * factorial(2) = 3 * 2 = 6

giving 6 as the return value for factorial(3):

n: 4

factorial(4)

return:
n *
factorial(n–1)

n: 3

factorial(3)

return:
n *
factorial(n–1)

n: 2

factorial(2)

return:
n *
factorial(n–1)

n: 1

factorial(1)

return:
n *
factorial(n–1)

n: 0

factorial(0)

return: 1

n: 4

factorial(4)

return:
n *
factorial(n–1)

n: 3

factorial(3)

return:
n *
factorial(n–1)

n: 2

factorial(2)

return:
n *
factorial(n–1)

n: 1

factorial(1)

return:
1 * 1
 = 1

n: 4

factorial(4)

return:
n *
factorial(n–1)

n: 3

factorial(3)

return:
n *
factorial(n–1)

n: 2

factorial(2)

return:
2 * 1
 = 2

n: 4

factorial(4)

return:
n *
factorial(n–1)

n: 3

factorial(3)

return:
3 * 2
 = 6

K11207.indb 384 6/15/12 10:07 AM

Functions in Depth    ◾    385  

This completes the function call to factorial(3), so execution resumes in the call to
factorial(4), which computes and returns the value

n * factorial(n - 1) = 4 * factorial(3) = 4 * 6 = 24

giving 24 as the return value for factorial(4):

Note that in the definition of factorial() we used assert() to test that the
parameter n is not negative. To see the reason for this, consider what would happen
if we had not tested this precondition and the function were called with a negative
integer, as in

int fact = factorial(–1);

Because –1 is not equal to 0, the inductive step

else
 return n * factorial(n – 1);

would be performed, recursively calling factorial(-2). Execution of this call would
begin, and since –2 is not equal to 0, the inductive step

else
 return n * factorial(n – 1);

would be performed, recursively calling factorial(-3). This behavior would continue
until memory was exhausted, at which point the program would terminate abnormally,
possibly producing an error message like

Stack overruns Heap.

Such behavior is described as infinite recursion and is obviously undesirable. To avoid
it we programmed defensively by including the parameter-validity check.

n: 4

factorial(4)

24

return:
4 * 6
 = 24

K11207.indb 385 6/15/12 10:07 AM

386    ◾    Programming in C++ for Engineering and Science

10.5.2 Example 2: Street network

Consider a network of streets laid out in a rectangular grid, for example,

In a northeast path from one point in the grid to another, one may go only to the north
(up) and to the east (right). For example, there are four northeast paths from A to B in the
preceding grid:

To count the paths, we might proceed (recursively) as follows: To get from A to B, there
are two ways to begin:

Case 1: Go one block north (up); call this point A1

Case 2: Go one block east (right); call this point A2

In either case, we must count paths on a smaller grid. In the first case, there are the same
number of columns separating A1 and B, but there is one less row. In the second case, there
are the same number of rows separating A2 and B, but there is one less column. This sug-
gests the following inductive step in a recursive solution to the problem:

 Number of paths from A to B

 = (Number of paths from A1 to B) + (Number of paths from A2 to B)

The function numberOfPaths() in Example 10.7 uses this recursive approach to
count the number of northeast paths from one point to another in a rectangular grid. The
anchor case is that in which points A and B coincide.

Example 10.7 Counting Paths in a Street Network
/* Program to count "northeasterly" paths from a given starting

point in a network of streets to a specified ending point.

 Input: coordinates of starting and ending points

 Output: number of paths from start to end
--*/

A

B

B B B B

A A A A

K11207.indb 386 6/15/12 10:07 AM

Functions in Depth    ◾    387  

#include <iostream>
using namespace std;

int numberOfPaths(int numRows, int numColumns);
int main()
{
 int startRow, startColumn, endRow, endColumn;

 cout << "Enter starting coordinates (row then column): ";
 cin >> startRow >> startColumn;
 cout << "Enter ending coordinates (row then column): ";
 cin >> endRow >> endColumn;

 cout << "\nThere are "
 << numberOfPaths(endRow – startRow, endColumn – startColumn)
 << " paths\n";
}

int numberOfPaths(int numRows, int numColumns)
{
 if (numRows == 0 || numColumns == 0)
 return 1;
 else
 return numberOfPaths(numRows – 1, numColumns)
 + numberOfPaths(numRows, numColumns – 1);
}

SAMPLE RUNS:

Enter starting coordinates (row then column): 0 1
Enter ending coordinates (row then column): 3 2

Number of paths from start to end: 4

Enter starting coordinates (row then column): 1 1
Enter ending coordinates (row then column): 1 1

Number of paths from start to end: 1

Enter starting coordinates (row then column): 0 1
Enter ending coordinates (row then column): 7 4

Number of paths from start to end: 120

Enter starting coordinates (row then column): 0 0
Enter ending coordinates (row then column): 7 4

Number of paths from start to end: 330

K11207.indb 387 6/15/12 10:07 AM

388    ◾    Programming in C++ for Engineering and Science

10.6 InLInInG, oVERLoADInG, AnD TEMPLATES
In this section we will consider three additional properties of functions:

 1. Inlining: In applications where function calls and returns are too time-consuming,
inlining can be used to improve speed of execution.

 2. Overloading: Functions may have the same name, provided the compiler is able to
distinguish between them; this is known as overloading the functions.

 3. Templates: A function template is a pattern for a function that can be used to generate
a collection of functions that have the same name but process different kinds of data.

10.6.1 Inline Functions

We have seen that when one function f() calls another function g(), execution is trans-
ferred from f() to g(). When g() terminates, a second transfer of control is necessary to
return execution back to f(). Each function call significantly increases the amount of time
required for a program to execute—a considerable amount of time in fact, compared to the
speed at which a computer normally operates. In many situations, the overhead associated
with function calls is acceptable, but there are other occasions in which execution time is
so important that this overhead cannot be tolerated. For these problems, C++ provides
inlining of functions.

One of the details we have omitted (for simplicity) in the discussion of functions is that
a definition can be preceded by a function specifier, which provides the compiler with spe-
cial instructions about the function:

specifier return_type function_name(parameter_declaration_list)
{
 statement_list
}

One such specifier is the inline specifier that instructs the compiler to use the C++
inline mechanism to avoid the overhead of normal function calls.

To illustrate, suppose we want to inline the temperature-conversion function cel-
siusToFahrenheit() from Section 6.2. We can do so by preceding its prototype and
its definition with the inline specifier:

inline double celsiusToFahrenheit(double tempCelsius);
 .
 .
 .
inline double celsiusToFahrenheit(double tempCelsius)
{
 return 1.8 * tempCelsius + 32;
}

K11207.indb 388 6/15/12 10:07 AM

Functions in Depth    ◾    389  

When the function prototype and definition occur in the same file, both must be labeled
as inline. Otherwise, there will be a mismatch between the function’s prototype and its
definition, and a compiler error results.

The inline specifier suggests to the C++ compiler that it replace each call to this func-
tion with the body of the function, with the arguments for that function call substituted for
the function’s parameters.4 For example, the compiler is being asked to effectively replace
the function call in the statement

tempFahr = celsiusToFahrenheit(currentTemp);

with the body of the function, but with the argument currentTemp substituted for the
parameter tempCelsius:

tempFahr = 1.8 * currentTemp + 32.0;

Thus, the effect of the inline specifier is to ask the compiler to take additional compile
time to perform this substitution for each call to the function. This saves run time, because
the elimination of each function call means that no transfers of execution need to be per-
formed, eliminating the overhead incurred by those function calls.

10.6.1.1 Inline Functions and Libraries
The normal procedure for a function stored in a library is to put its prototype in the library’s
header file and its definition in the implementation file. This separation is not allowed,
however, if we want to inline a function. An inline library function must be defined in the
header file.

To illustrate, suppose that a library MyMath contains, among other mathemati-
cal functions, the function sum() from Example 9.2, with the prototype of sum() in
MyMath.h and its definition in MyMath.cpp. To designate sum() as an inline function,
we would remove its definition from the implementation file and replace its prototype in
the header file with this definition, preceding it with the inline specifier, as shown in
Example 10.8.

Example 10.8 Inlined Library Functions
/* This header file provides an interface for library MyMath.
 It contains prototypes and inline definitions of non-predefined math

functions.
 ... remaining opening documentation omitted ...
--*/

int factorial(int n);

4 This suggestion may be ignored by the compiler if it judges that the function definition is too complicated to be inlined
efficiently.

K11207.indb 389 6/15/12 10:07 AM

390    ◾    Programming in C++ for Engineering and Science

inline int sum(int n)
{
 return n * (n + 1) / 2;
}

// ... other function prototypes and/or inline definitions

These steps are necessary because the only part of the library that the compiler sees
when it compiles a program is the header file, which is inserted when it processes the
#include directive. If the compiler (and not the linker) is to replace calls to a function
with the function’s definition, that function’s entire definition must be visible to the com-
piler, which means that it must be moved from the implementation file to the header file.

10.6.1.2 To Inline or Not to Inline: A Space-Time Trade-Off
Because inlined functions eliminate the overhead of function calls and make programs
run faster, it may be tempting to make all functions inline. There is, however, a space-time
trade-off: a program that uses inlined functions may indeed run faster than its noninlined
equivalent, but it may also be much larger and thus require more memory.

To see why this happens, we must realize that, unlike the simple examples we have been
using, functions written for real-world software projects typically (1) contain many state-
ments, and (2) may be called at many different places in a program. When such functions are
inlined, each substitution of a function’s body for its call replaces a single statement (the call)
with many statements (the body), which increases the overall size of the program. Thus, if the
definition of a function consists of a large number of statements and is called many times,
then substituting the body of the function definition at each call will significantly increase
the overall size of the program, a phenomenon known as code bloat.

To avoid code bloat, inline should be used with restraint. If a function uses just a few
operations (such as the celsiusToFahrenheit() and sum() functions), then it may be
designated as inline to eliminate the overhead associated with calling the function. But if a
function uses many operations (e.g., more than five or six), it should probably not be inlined.

10.6.2 overloading Functions

Earlier in this section, we considered two summation functions from a MyMath library
both named sum(). It would seem that using the same name for two different functions in
the same file should generate an error. However, no name conflict occurs when these defi-
nitions are compiled, even though there are two definitions for the same identifier! As we
shall see, this is consistent with what we stated earlier:

Within the scope of an identifier, no redeclaration of that identifier that results in an
ambiguity for the compiler is permitted.

The key here is the phrase an ambiguity for the compiler. What is necessary for the C++
compiler to be able to distinguish functions having the same name from one another with-
out ambiguity will now be described.

K11207.indb 390 6/15/12 10:07 AM

Functions in Depth    ◾    391  

10.6.2.1 Signatures
The signature of a function is a list of the types of its parameters, including any const
and reference parameter indicators (&). For example, the signature of the polarToRect-
angular() function in Example 10.2 is

(double, double, double &, double &)

and the signature of the makeChange() function in Example 10.3 is

(double, double, int &, int &, int &, int &, int &)

while the signature of the chopIPAddress function in Example 10.5 is

(const string &, string &, string &, string &, string &)

Signatures are important, because the compiler essentially considers a function’s signature
to be part of its name.

10.6.2.2 Function Overloading
If two different functions have the same name, that name is said to be overloaded. For
example, when we use the same name for both of the summation functions,

int sum(int n)
{
 return n * (n + 1) / 2;
}

int sum(int m, int n)

{
 assert(m < n);
 return (n – m + 1) * (n + m) / 2;
}

we are overloading the name sum with two different definitions. The compiler is able to dis-
tinguish them from one another, because they have different signatures. If we call sum() with

cout << sum(100) << endl;

the call has one int argument, and so the compiler associates this call with the first defini-
tion of sum() whose signature has one int type. However, if we write

cout << sum(20, 40) << endl;

the function call has two int arguments, and so the compiler associates this call with the
second definition of sum() whose signature has two int types.

Signatures thus allow the C++ compiler to distinguish calls to different functions with
the same name. As a result, we have the following rule governing overloading: The name of
a function can be overloaded, provided no two versions of the function have the same signature.
Note that the return type of a function is not a part of its signature. Thus, two functions
with identical signatures but with different return types cannot have the same name.

K11207.indb 391 6/15/12 10:07 AM

392    ◾    Programming in C++ for Engineering and Science

Names should be overloaded only when it is appropriate. Otherwise the code you write
may be difficult to read and understand. Different functions that perform the same opera-
tion (e.g., summation, finding the minimum operation, finding the maximum) on different
data types are prime candidates for overloading. But giving the same name to operations
that have nothing to do with each other simply because the language allows you to do so is
an abuse of the overloading mechanism and is not good programming style.

It should be evident that overloading has been used since Chapter 3. For example, the
operators +, -, *, and / are all overloaded so that they can be applied to any of the numeric
types. In the expression

 2.0 / 5.0

the C++ compiler uses the real division operation (which produces the value 0.4), but in
the integer expression

 2 / 5

it uses the integer division operation (which produces the value 0). Many of the other
operators, including <<, >>, =, +=, -=, *=, /=, <, >, ==, <=, >=, and !=, have also been
 overloaded with multiple definitions. For an expression of the form

operand1 operator operand2

the compiler simply matches the types of operand1 and operand2 against the signatures
of the available definitions of operator to determine which definition to apply.

10.6.3 Function Templates

In Section 10.3, we considered a pattern for a function to interchange the values of two variables:

void swap(____ & first, ____ & second)
{
 ____ temporary = first;
 first = second;
 second = temporary;
}

We saw with an example how we could replace the blanks with the type char to obtain an
actual function that could be incorporated into a program that processes individual char-
acters. But the swap operation is needed in many other problems such as sorting a list of
strings, interchanging the smaller and larger of two integers, and interchanging two rows
in a table of doubles.

One possibility would be to make a library of overloaded swap() functions, one for
each type of values we may ever want to interchange, that we could #include in any
program where one of these functions is needed. However, each definition of swap() in
this library would be doing exactly the same thing (on a different type of data). This should
raise red flags for us, because we have said before that any time we find ourselves repeating
the same work, there is probably a better way.

K11207.indb 392 6/15/12 10:07 AM

Functions in Depth    ◾    393  

10.6.3.1 Parameters for Types
Here, the better way is to recognize that the only differences in any of these definitions are
the three places where a type is specified. It would be nice if we could define the function
and leave these types “blank” as in our earlier pattern and somehow pass the type to the
function when we call it. Then we could replace all of these definitions with one.

This is effectively what C++ allows us to do, as shown in Example 10.9.

Example 10.9 The swap() Template

/* This header file provides a template that generates functions
 for interchanging the values of two variables.
 ... remaining opening documentation omitted ...
--*/

template<typename Item>
inline void swap(Item & first, Item & second)
{
 Item temporary = first;
 first = second;
 second = temporary;
}

Rather than specify that the function is to exchange two values of a particular type such as
char, int, and so on, this definition uses the identifier Item as a placeholder for the type
of the value to be exchanged. More precisely, the line informs the compiler of two things:

 1. This definition is a template: a pattern from which the compiler can create a function.

 2. The identifier Item is the name of a type parameter for this definition that will be
given a value when the function is called.5

The rest of the definition simply specifies the behavior of the function, using the type
parameter Item in place of any specific type.

Using this version of the swap library, we can now write

#include "swap.h"
#include <iostream>
#include <string>
using namespace std;

int main()
{
 int i1 = 11,
 i2 = 22;

5 C++ also allows the keyword class to be used to specify a type parameter.

K11207.indb 393 6/15/12 10:07 AM

394    ◾    Programming in C++ for Engineering and Science

 swap(i1, i2);
 cout << i1 << ' ' << i2 << endl;

 double d1 = 33.3,
 d2 = 44.4;
 swap(d1, d2);
 cout << d1 << ' ' << d2 << endl;

 string s1 = "Hi",
 s2 = "Ho";
 swap(s1, s2);
 cout << s1 << ' ' << s2 << endl;
}

When the compiler encounters the first call to swap(),

swap(i1, i2);

in which the two arguments i1 and i2 are of type int, it uses the pattern given by our template
to generate a new definition of swap() in which the type parameter Item is replaced by int:

inline void swap(int & first, int & second)
{
 int temporary = first;
 first = second;
 second = temporary;
}

When it reaches the second call,

swap(d1, d2);

where the two arguments d1 and d2 are of type double, the compiler will use the same
pattern to generate a second definition of swap() in which the type parameter Item is
replaced by double:

inline void swap(double & first, double & second)
{
 double temporary = first;
 first = second;
 second = temporary;
}

When the compiler reaches the final call,

swap(s1, s2);

K11207.indb 394 6/15/12 10:07 AM

Functions in Depth    ◾    395  

in which the two arguments s1 and s2 are of type string, it will use the same pattern
to generate a third definition of swap() in which the type parameter Item is replaced by
string:

inline void swap(string & first, string & second)
{
 string temporary = first;
 first = second;
 second = temporary;
}

We are spared from all of the redundant coding of the earlier approach because the com-
piler is providing multiple versions of the swap operation as they are needed.

10.6.3.2 Templates vs. Overloading
If there are several versions of the same operation to be encoded as functions, it may not be
clear whether one should write several functions that overload the same name or write one
function template. The following guideline helps with making this decision:

If each version of the operation behaves in exactly the same way,

regardless of the type of data being used,

then define a function template to perform the operation.

Otherwise, define a separate function for each operation

and use overloading to give them the same name.

Thus, because each version of swap() uses the three-way swap and behaves in exactly the same
manner regardless of the type of values being interchanged, a function template is appropriate.

By contrast, the two summation functions we considered earlier use different formulas,
and thus behave differently. These operations are therefore best performed by two separate
functions that overload the name sum().

The reasoning behind this guideline should be clear. When the compiler creates a func-
tion definition from a template, it blindly replaces each occurrence of the type param-
eter with the type of the arguments. As a result, each definition created from a template
must behave in exactly the same way, except for the type of data being operated upon.
Overloading has no such restriction and so can be used for a wider variety of operations.

ChAPTER SUMMARY

Key Terms

alias call by reference

anchor call by value

argument code bloat

base case const reference parameter

K11207.indb 395 6/15/12 10:07 AM

396    ◾    Programming in C++ for Engineering and Science

hole in the scope recursive definition of a function

inductive step reference parameter

inline specifier scope

namespace signature

overload template

parameter type parameter

parameter-passing mechanism using directive

recursion value parameter

noTES
•	 By default, parameters are value parameters; their values are copies of the corre-

sponding arguments. Thus, changing the value of a value parameter has no effect on
the value of the corresponding argument.

•	 Reference parameters are aliases for their corresponding arguments; they refer to
the same memory locations. Thus, changing the value of a reference parameter also
changes the value of the corresponding argument, which must be a variable. To spec-
ify that a parameter is a reference parameter, insert an ampersand (&) between its
type and its name in the function heading.

•	 A const reference parameter, specified by inserting the keyword const before a
reference parameter’s type, is a preferred alternative to a value parameter whose type
is a class (or that is some other large object) because it does not require copying the
value of the corresponding argument.

•	 Use a return statement to send back a single value from a function; use reference
parameters to send back multiple values.

•	 An identifier’s scope is the portion of a program where the object or function that it
names can be accessed. Basic scope rules for an identifier are:

•	 Declared in a block: from declaration to end of block

•	 Parameter: body of the function

•	 in initialization of for loop: from declaration to end of loop body

•	 Declared outside all blocks: from declaration to end of file

•	 A using clause makes names in a namespace available without qualification.

•	 A recursive function must have an anchor that will eventually be executed and cause
a return from the function and an inductive step that specifies the current action of
the function in terms of previously defined actions.

K11207.indb 396 6/15/12 10:07 AM

Functions in Depth    ◾    397  

•	 A simple function can be inlined to avoid the overhead of calling that function and
thereby reduce execution time. Prepend the keyword inline to the function head-
ing to do this.

•	 The signature of a function is the list of its parameter types. A function may overload
another function (i.e., have the same name) provided they have different signatures.

•	 Preceding the prototype and the definition of a function with a template clause of
the form template<typename T> converts the function into a function template,
which is a type-independent pattern for a function. When the function is called, the
compiler will use the type of the arguments to determine what type to substitute for
T and generate a type-specific function.

Style and Design Tips

•	 Functions should be documented in the same way that programs are. The documenta-
tion should include specifications and descriptions of:

•	 The purpose of the function

•	 Any items that must be received by the function from its caller

•	 Any items that must be input to the function

•	 Any items that are returned or passed back by the function to its caller

•	 Any items that are output by the function

•	 Follow the same stylistic standards for functions that are used for main programs.

•	 Declaring variable objects as close as possible to their first use increases the readability
of a program and also aids with debugging.

•	 Value parameters receive copies of the corresponding arguments and are used for
 simple/small arguments. For arguments such as classes (and arrays studied in the next
chapter) that are stored in large amounts of memory, use const reference parameters.

•	 use a return statement to return a single value from a function; use reference param-
eters when several values are to be returned.

•	 all variables used within a function should be defined within that function, either as
parameters or as local variables. This keeps functions self-contained and increases
their generality and reusability.

•	 recursive functions should be clearly marked as such. For clarity and readability, the
anchor case and inductive steps of a recursive function should be marked with comments.

•	 Only simple functions should be specified as being inline functions. Substitution of an
inline function’s body for each of its calls can increase a program’s size considerably
if the function is nontrivial and/or it is called at several places in the program.

K11207.indb 397 6/15/12 10:07 AM

398    ◾    Programming in C++ for Engineering and Science

warnings

 1. When a function is called, the number of arguments should be the same as the number
of parameters in the function heading.6

 2. The type of an argument corresponding to a value parameter should be compatible with
the type of that parameter.

 3. an argument that corresponds to a reference parameter must be a variable whose type
matches the type of that parameter; it may not be a constant or an expression.

 4. Check carefully the prototype of each function that is used to see if it has any reference
parameters; changes in their values may lead to unexpected or unintended changes in
the values of arguments.

 5. any attempt to use a function’s parameters outside the function will generate an error
because they are allocated memory only during execution of that function; there is no
memory associated with them either before or after execution of that function.

 6. an identifier must be declared before it can be used. For example, if a function f() calls a
function g(), then a prototype (or definition) of g() must precede the definition of f().

 7. inlined functions cannot be split with prototypes in a header (.h) file and definitions in
an implementation (.cpp) file.

 8. use restraint with inlining functions, because code bloat may result otherwise.

TEST YoURSELF

Section 10.3

 1. The parameter-passing mechanism that occurs by default is call-by- .

 2. A parameter contains a copy of the corresponding argument.

 3. If a parameter is changed in the body of the function, then the value of
the corresponding argument is not changed.

 4. If a parameter is changed in the body of the function, then the value of
the corresponding argument is also changed.

 5. Placing a(n) between a parameter’s type and its name indicates that the
parameter is a reference parameter.

6 An exception is when one or more parameters at the end of the parameter list have default arguments; for example,

void f(int x, int y = 0, double z = 3.5);

 As the following examples show, this function may be called with 1, 2, or 3 arguments:
 f(1, 2, 4.9); Within f, x will have the value 1, y the value 2, and z the value 4.9
 f(1, 2); Within f, x will have the value 1, y the value 2, and z the value 3.5
 f(1); Within f, x will have the value 1, y the value 0, and z the value 3.5

K11207.indb 398 6/15/12 10:07 AM

Functions in Depth    ◾    399  

Questions 6–11 assume the following function definition

void f(int x, int & y, int & z)
{
 z = y = x * x + 1;
}

and the following declarations in the calling function:

int a = 0, b = 1, c = 2, d = 3;
const int E = 4;

 6. (True or false) After d = f(a, b, c); is executed, d will have the value 1.

 7. (True or false) After f(a, b, c); is executed, b and c will both have the value 1.

 8. (True or false) After f(c, d, E); is executed, d will have the value 5.

 9. (True or false) After f(c+1, c-1, d); is executed, d will have the value 10.

 10. (True or false) The function call f(c, d, E); makes z a const reference parameter.

 11. Rewrite the definition of f() so that x is a const reference parameter.

 12. Given the function definition

 void change(int number, string & a, string & b, string & c)
 {
 const string BAT = "bat";

 if (number < 3)
 {
 a = BAT;
 b = BAT;
 }
 else
 c = BAT;
 }

 what output will the following program segment produce?

 string str1 = "cat", str2 = "dog", str3 = "elk";
 change(2, str1, str2, str3);
 cout << "String = " << str1 << str2 < str3 << endl;

Section 10.4

 1. The part of a program where an identifier refers to a particular object or function is
called the of that identifier.

 2. (True or false). A compilation error results if an identifier is accessed within its scope.

K11207.indb 399 6/15/12 10:07 AM

400    ◾    Programming in C++ for Engineering and Science

 3. The scope of an identifier declared within a block runs from its declaration to
the .

 4. The scope of a parameter is the .

 5. What will the following statements produce?

 for (int i = 0; i < 3; i++)
 cout << i << endl;
 cout << "i is now " << i << endl;

Section 10.5

 1. is the phenomenon of a function referencing itself.

 2. Name and describe the two parts of a recursive definition of a function.

 3. (True or false) A nonrecursive function for computing some value may execute more
rapidly than a recursive function that computes the same value.

 4. For the following recursive function, find f(5).

 int f(int n)
 {
 if (n == 0)
 return 0;
 else
 return n + f(n - 1);
 }

 5. For the function in Question 4, find f(0).

 6. For the function in Question 4, suppose + is changed to * in the inductive step. Find f(5).

 7. For the function in Question 4, what happens with the function call f(-1)?

Section 10.6

 1. A function’s is a list of the types of its parameters.

 2. Two functions are said to be overloaded if they have the same .

 3. A function’s name can be overloaded provided no two definitions of the function
have the same .

 4. A is a pattern from which a function can be constructed.

 5. Templates may have parameters, but ordinary functions may not.

 6. Given the template definition

 template<typename something>
 void print(something x)
 { cout << "***" << x << "***\n"; }

K11207.indb 400 6/15/12 10:07 AM

Functions in Depth    ◾    401  

 describe what the compiler will do when it encounters the statements

 int number = 123;
 print(number);

ExERCISES

Section 10.3

Exercises 1–11 assume the following program skeleton:

#include <cmath>
using namespace std;

void calculate(double a, double & b,
int m, int & k, int & n, char & c);

int main()
{
 const double PI = 3.14159;
 const int TWO = 2;
 const char INITIAL = 'N';

 int month, day, year, p, q;
 double hours, rate, amount, u, v;
 char code, dept;
}

Determine whether the given statement can be used to call the function calculate(). If
it cannot be used, explain why.

 1. calculate(u, v, TWO, p, q, code);

 2. calculate(PI, u, TWO, p, v, dept);

 3. calculate(hours, PI, TWO, day, year, dept);

 4. calculate(13, hours, PI, 13, year, dept);

 5. calculate(PI * hours, PI, TWO, day, year, dept);

 6. calculate(PI, PI * hours, TWO, day, year, dept);

 7. while (u > 0)
 calculate(u, v, TWO, p, q, code);

 8. calculate(0, hours, (p + 1) / 2, day, year, code)

 9. calculate(sqrt(amount), rate, 7, p, q, INITIAL);

 10. while (amount > 0)
 calculate(TWO, amount, day, p + q, day, dept);

 11. cout << calculate(u, v, TWO, p, q, code);

K11207.indb 401 6/15/12 10:07 AM

402    ◾    Programming in C++ for Engineering and Science

The following exercises ask you to write functions to compute various quantities. To test these
functions, you should write driver programs as instructed in Programming Problems 1–4.

 12. The change-dispenser function in Example 1 rounds a real amount to the nearest
hundredth before converting it to cents. Write a function that receives a real value
and a nonnegative integer, and returns the real value rounded to the number of deci-
mal places specified by that integer—the nearest integer if the integer received is 0,
the nearest tenth if it is 1, the nearest hundredth if it is 2, and so on.

 13. Write a function that receives a weight in pounds and ounces and returns the cor-
responding weight in grams. (1 oz = 28.349527 g)

 14. Write a function that receives a weight in grams and returns the corresponding
weight in pounds and ounces.

 15. Write a function that receives a length in yards, feet, and inches and returns the cor-
responding measurement in centimeters. (1 in = 2.54001 cm)

 16. Write a function that receives a length in centimeters and returns the corresponding
measurement in yards, feet, and inches.

 17. Write a function that receives a time in the usual representation of hours, minutes,
and a character value that indicates whether this is A.M. (“A”) or P.M. (“P”) and
returns the corresponding military time.

 18. Write a function that receives a time in military format and returns the correspond-
ing time in the usual representation in hours, minutes, and A.M./P.M. For example,
a time of 0100 should be returned as 1 hour, 0 minutes, and “A” to indicate A.M.; and
a time of 1545 should be returned as 3 hours, 45 minutes, and “P” to indicate P.M.

Section 10.5

Exercises 1–12 assume the following function f():

void f(int num)
{
 if ((1 <= num) && (num <= 8))
 {
 f(num - 1);
 cout << num;
 }
 else
 cout << endl;
}

For Exercises 1–3, tell what output is produced by the function call.

 1. f(3);

 2. f(7);

K11207.indb 402 6/15/12 10:07 AM

Functions in Depth    ◾    403  

 3. f(10);

 4–6. Tell what output is produced by the function calls in Exercises 1–3 if num – 1 is
replaced by num + 1 in the function definition.

 7–9. Tell what output is produced by the function calls in Exercises 1–3 if the cout <<
num; statement and the recursive call to f() are interchanged.

 10–12. Tell what output is produced by the function calls in Exercises 1–3 if a copy of
the statement cout << num; is inserted before the recursive call to f().

 13. Given the following function f(), use the method illustrated in this section to trace
the sequence of function calls and returns in evaluating f(1, 5).

 int f(int num1, int num2)
 {
 if (num1 > num2)
 return 0;
 else if (num2 == num1 + 1)
 return 1;
 else

 return f(num1 + 1, num2 – 1) + 2;
 }

 14. Proceed as in Exercise 13, but for f(8, 3).

Exercises 15–17 assume the following function g():

 void g(int num1, int num2)
 {
 if (num2 <= 0)
 cout << endl;
 else
 {

 g(num1 – 1, num2 – 1);
 cout << num1;
 g(num1 + 1, num2 – 1);
 }
 }

 15. What output is produced by the function call g(14, 4)? (hint: First try g(14, 2),
then g(14, 3)).

 16. How many numbers are output by the call g(14, 10)?

 17. If the cout << num1; statement is moved before the first recursive call to g(), what
output will be produced by g(14, 4)?

For Exercises 18–22, determine what is calculated by the given recursive function.

K11207.indb 403 6/15/12 10:07 AM

404    ◾    Programming in C++ for Engineering and Science

 18. void f(unsigned n)
 {

 if (n == 0)
 return 0;
 else
 return n * f(n - 1);
 }

 19. double f(double x, unsigned n)
 {
 if (n == 0)
 return 0;
 else
 return x + f(x, n - 1);
 }

 20. double f(double x, unsigned n)
 {
 if (n == 0)
 return 1;
 else
 return x * f(x, n – 1);
 }

 21. unsigned f(unsigned n)
 {
 if (n < 2)
 return 0;
 else
 return 1 + f(n / 2);
 }

 22. unsigned f(unsigned n)
 {
 if (n == 0)
 return 0;
 else
 return f(n / 10) + n % 10;
 }

The following exercises ask you to write functions to compute various quantities. To test these
functions, you should write driver programs as instructed in Programming Problems 8–11.

 23. Write a recursive power function that calculates xn, where x is a real value and n is a
nonnegative integer.

K11207.indb 404 6/15/12 10:07 AM

Functions in Depth    ◾    405  

 24. Write a recursive function that returns the number of digits in a nonnegative integer.

 25. Write a recursive function printReverse() that displays an integer’s digits in
reverse order.

 26. Modify the recursive power function in Exercise 23 so that it also works for negative
exponents. One approach is to modify the recursive definition of xn so that for nega-
tive values of n, division is used instead of multiplication and n is incremented rather
than decremented:

x x x

x x

n

n

1

*

/

if is 0

if is greater than 0

otherwise

n n

n

1

1

=

−

+

PRoGRAMMInG PRoBLEMS

Section 10.3

 1. Write a driver program to test the rounding function of Exercise 12.

 2. Write a driver program to test the weight-conversion functions of Exercise 13 and 14.

 3. Write a driver program to test the length-conversion functions of Exercises 15 and 16.

 4. Write a driver program to test the time-conversion functions of Exercises 17 and 18.

 5. Write a program that reads a positive integer and then calls a function that displays
its prime factorization, that is, a function that expresses the positive integer as a prod-
uct of primes or indicates that the number is a prime.

 6. The greatest common divisor of two integers a and b, GCD(a, b), not both of which
are zero, is the largest positive integer that divides both a and b. The Euclidean
algorithm for finding this greatest common divisor of a and b was described in
Exercise 15 of Section 6.3. The least common multiple of a and b, LCM(a, b), is the
smallest nonnegative integer that is a multiple of both a and b, and can be calcu-
lated using

 LCM(a, b) = a b

a bGCD(,)

×

 Write a program that reads two integers and then calls a function that calculates and
passes back the greatest common divisor and the least common multiple of the inte-
gers. The program should then display the two integers together with their greatest
common divisor and their least common multiple.

K11207.indb 405 6/15/12 10:07 AM

406    ◾    Programming in C++ for Engineering and Science

 7. Consider a simply supported beam to which a single concentrated load is applied:

 For a ≥ b, the maximum deflection is given by

 max_deflection = Pa L a

EIL

()

9 3

2 2 3/2− −

 the deflection at the load by

 deflection_at_load = Pa b

EIL3

2 2−

 and the deflection at the center of the beam by

 deflection_at_center = Pa L a

EI

(3 4)

48

2 2− −

 where P is the load, E is the modulus of elasticity, i is the moment of inertia, a is the
distance from the left end of the beam to the load, and b = l – a is the distance from
the right end of the beam. For a ≤ b, simply replace a with b and b with a in the pre-
ceding equations.

 Write a main program that inputs values for l, P, E, i, and an increment by which
to move the load, and then outputs a table of values for the load position, max_deflec-
tion, deflection_at_load, and deflection_at_center as the load position moves along the
beam from the left end to the right end in the specified increment. The main program
must call a single function that receives l, P, E, i, and the current load position (from
the left end), and that calculates and passes back the three deflections to main(), which
outputs these to the table. Execute your program with the following values: l = 360
inches, P = 24,000 pounds, E = 30 x 106 psi, i = 795.5 in4, 6 in. increment. Use I/O-
manipulators to produce nice even columns in the table. Your table should also have
column headings to label the output.

 8. The graph of a person’s emotional cycle y = f(x) is a sine curve having an amplitude of
1 and a period of 28 days. On a given day, the person’s emotional index is f(age), where
age is his or her age in days. Similarly, the physical and intellectual cycles are sine
curves having an amplitude of 1 and periods of 23 and 33 days, respectively. Write a
function that receives a person’s age and returns his or her physical, intellectual, and
emotional indices for the current day. Write another function to compute a person’s
biorhythm index, which is the sum of the physical, intellectual, and emotional cycles.
Write a driver program to test your functions.

a b
PL

K11207.indb 406 6/15/12 10:07 AM

Functions in Depth    ◾    407  

Section 10.5

 1. Write a driver program to test the power function of Exercise 23.

 2. Write a driver program to test the digit-counting function of Exercise 24.

 3. Write a driver program to test the reverse-printing function of Exercise 25.

 4. Write a driver program to test the modified power function of Exercise 26.

 5. Write a test driver for one of the functions in Exercises 18–22. Add output statements
to the function to trace its actions as it executes. For example, the trace displayed for
f(21) for the function f in Exercise 21 should have a form like

 f(21) = 1 + f(10)
 f(10) = 1 + f(5)
 f(5) = 1 + f(2)
 f(2) = 1 + f(1)
 f(1) returns 0
 f(2) returns 1
 f(5) returns 2
 f(10) returns 3
 f(21) returns 4

 where the indentation level reflects the depth of the recursion. (hint: This can be accom-
plished by declaring a variable level outside all blocks, initially zero, that is incre-
mented when the function is entered and decremented just before exiting the function.)

 6. Write a recursive function that prints a nonnegative integer with commas in the cor-
rect locations. For example, it should print 20131 as 20,131. Write a driver program to
test your function.

 7. The sequence of Fibonacci numbers, 1, 1, 2, 3, 5, 8, 13, 21, . . . (see Exercise 21 in
Section 9.4) can be defined recursively by:

 f1 = f2 = 1 (anchor)

 For n ≥ 3, fi = fi – 1 + fi – 2 (inductive step)

 A recursive function seems like a natural way to calculate these numbers. Write such
a function and then write a driver program to test your function. (note: You will
probably find that this function is very inefficient. See if you can figure out why by
tracing some function calls as was done in the text.)

K11207.indb 407 6/15/12 10:07 AM

This page intentionally left blankThis page intentionally left blank

409

C h a p t e r 11

Files and Streams

I can only assume that a “Do Not File” document is filed in a “Do Not File” file.

SENATOR FRANK CHURCH

The Internet has no such organization—files are made available at random locations.
To search through this chaos, we need smart tools, programs that find resources
for us.

CLIFFORD STOLL

. . . it became increasingly apparent to me that, over the years, Federal agencies
have amassed vast amounts of information about virtually every American citizen.
This fact, coupled with technological advances in data collection and dissemination,
raised the possibility that information about individuals conceivably could be used
for other than legitimate purposes and without the prior knowledge or consent of
the individuals involved.

PRESIDENT GERALD R. FORD

Many computer users have had the unfortunate experience of an unexpected hard-
ware failure (e.g., an interruption of power) or a software “crash” before they have

ConTEnTS
11.1 Introductory Example: Environmental Data Analysis 410
11.2 The ifstream and ofstream Classes 417
11.3 Additional Stream Features 426
Chapter Summary 439
Test Yourself 442
Exercises 443
Programming Problems 445
Descriptions of Data Files 448

410    ◾    Programming in C++ for Engineering and Science

saved a document they are preparing or editing. This happens because while the informa-
tion is being entered or edited, it is stored in the computer’s main memory and when this
failure occurs, this memory is deallocated and its contents are lost. Most users soon learn
to follow the “save often” advice.

 Saving a document stores it in a stable location in secondary memory (e.g., hard drives
and CDs) so that information is not lost, unless, of course, that device fails. Such informa-
tion must be stored in such a way that:

•	 it is kept separate from other documents, programs, etc., that are saved; and

•	 it can be retrieved when needed.

Organizing secondary memory into files that store separate items of information accom-
plishes the first requirement. When information is saved to secondary memory, it is written
to a file. When it must be retrieved so that it can be edited, compiled, or processed in some
other way, it is read from that file and loaded from secondary memory to main memory.

In computing, files are usually either text files or binary files, depending on how infor-
mation is stored in them. A text file stores information using a standard coding scheme
such as ASCII (American Standard Code for Information Interchange) or Unicode, which
makes it possible to view and process it as regular text by a text editor, for example. Binary
files may contain any kind of data encoded in binary form such as images, sound, and
object code generated by a compiler.

In this chapter we will focus our attention on those C++ features that enable us to input
data from or write data to text files. When there is a large set of data values that need to be
processed, they can be stored in a file and a program can read these values directly from
that file and process them. Similarly, if a program produces a large amount of output, we
may want to have it written to disk for later printing or for processing in some other way.
We begin with a simple example that illustrates reading environmental data from a file that
is then processed and the results written to another file.

11.1 InTRoDUCToRY ExAMPLE: EnVIRonMEnTAL DATA AnALYSIS
In our programs up to now, the user has entered data directly from the keyboard in
response to prompts displayed on the screen. There are many problems, however, in which
the sheer volume of data to be processed makes it impractical to enter it from the keyboard.
For such problems, the data can be stored in a file and the program designed to read data
values from that file. In this section we look at one such problem.

11.1.1 Problem: Processing a File of Environmental Data

A team of environmental scientists has been collecting various kinds of data for several
months. This data includes atmospheric pressure readings that were recorded at the same
time each day and saved in a file. One part of the analysis of this data is to calculate the
average of the readings and also the maximum and minimum readings along with the

K11207.indb 410 6/15/12 10:07 AM

Files and Streams    ◾    411  

days on which they occurred. A program is needed that will read this data, calculate these
statistics, and write the results to an output file that can be accessed by the team personnel.

11.1.2 object-Centered Design
11.1.2.1 Behavior
For maximum flexibility, our program should display on the screen a prompt for the name
of the input file containing the pressure readings to be processed and then read this file
name from the keyboard. It should then read an arbitrary number of values from that file
and compute the average along with the minimum and maximum of those values and
when they occurred. The program should display on the screen a prompt for the name of
the output file, which is entered from the keyboard. It must then write the computed values
to that output file.

11.1.2.2 Objects
In addition to the objects identified in the preceding behavior, the program must maintain
a count of how many values have been read and their sum, because these values are needed
to compute the average of a collection of values. This gives the following list of objects
needed to solve the problem:

Software Objects

Problem Objects Type Kind Name

The name of the file in which the
pressure readings are stored

string variable inputFilename

A pressure reading double variable reading
The number of readings int variable count
The sum of the readings double variable sum
The average reading double variable none (sum/count)
The minimum reading double variable minimum
When it occurred int variable minDay
The maximum reading double variable maximum
When it occurred int variable maxDay
The name of the file to which the
results are to be written

string variable outputFilename

From this list we can specify the input and output of our program as follows:

Input(keyboard): inputFilename, a string naming an input file
 outputFilename, a string naming an output file

Input(inputFilename): a sequence of pressure readings

Output(outputFilename): the average of the input values
 the maximum and minimum values and when they

occurred

K11207.indb 411 6/15/12 10:07 AM

412    ◾    Programming in C++ for Engineering and Science

11.1.2.3 Operations
From our behavioral description, we need the following operations:

 i. Read a string (inputFilename and outputFilename) from the keyboard.

 ii. Initialize count, sum, minimum, maximum, minDay, and maxDay to specific values.

 iii. Read a real value (reading) stored in a file.

 iv. Increment an integer variable (count) by 1.

 v. Add a real value (reading) to a real value (sum).

 vi. Update minimum with reading and minDay with count, if necessary.

 vii. Update maximum with reading and maxDay with count, if necessary.

 viii. Repeat operations (iii–vii) until the end of the file is reached.

 ix. Write results (sum/count, minimum, minDay, maximum, maxDay) to an output file.

The only operations that have not been discussed in earlier chapters are those that involve
files (iii, viii, and ix). In this chapter we will be looking at the basic file-processing features
of C++.

Up to now, all input and output for our programs has been accomplished using cin and
cout, which are automatically connected to the necessary input and output devices—the
keyboard and the screen. For file I/O, however, we must include instructions in our pro-
gram to establish these connections:

•	 A special object called an ifstream must be opened to connect an input file to
our program.

•	 A special object called an ofstream must be opened to connect an output file to
our program.

•	 These ifstream or ofstream connections must be closed when execution
terminates.

This adds two more objects to our list of objects,

Software Objects

Problem Objects Type Kind Name
Stream from program to input file ifstream variable instream
Stream from program to output file ofstream variable outstream

and two more operations to our list of operations:

 x. Open a stream to a file.

 xi. Close a stream to a file.

K11207.indb 412 6/15/12 10:07 AM

Files and Streams    ◾    413  

11.1.2.4 Algorithm
The preceding operations can be organized into the following algorithm:

 1. Read the name of the input file into inputFilename.

 2. Open an ifstream named instream to the file whose name is in inputFilename.
(If this fails, display an error message and terminate execution.)

 3. Initialize count, minDay, maxDay and sum to 0; maximum to the smallest possible
(real) value; and minimum to the largest possible (real) value. (These initializations
for maximum and minimum ensure that they will be updated to the first reading in
4e and 4f.)

 4. Loop:

 a. Read a value for reading from instream.

 b. If the end-of-file mark was read, exit the loop.

 c. Increment count.

 d. Add reading to sum.

 e. If reading is less than minimum

 Set minimum to reading and minDay to count.

 f. If reading is greater than maximum

 Set maximum to reading and maxDay to count.

 End loop

 5. Close instream.

 6. Prompt for and read the name of the output file into outputFilename.

 7. Open an ofstream named outstream to the file whose name is in outputFilename.
(If this fails, display an error message and terminate the algorithm.)

 8. Write count to outstream.

 9. If count is greater than zero

 Write sum/count, minimum, minDay, maximum, and maxDay to outstream.

 10. Close outstream.

11.1.2.5 Coding
The program in Example 11.1 encodes the preceding algorithm. The file-processing features
that it uses will be described in the following sections.

K11207.indb 413 6/15/12 10:07 AM

414    ◾    Programming in C++ for Engineering and Science

Example 11.1 Processing Environmental Data

/* This program reads environmental data (pressure readings)
stored in a file, computes the average, minimum, and maximum of
the readings, the days on which the maximum and minimum occurred,
and writes these statistics to an output file.

 Input(keyboard): names of the input and output files
 Input(file): a sequence of atmospheric pressure readings
 Output(screen): prompts
 Output(file): the average reading, the minimum and maximum

reading, and the days on which these occurred
--*/

#include <iostream> // cin, cout
#include <fstream> // ifstream, ofstream
#include <string> // string, getline()
#include <cassert> // assert()
#include <cfloat> // DBL_MIN and DBL_MAX
using namespace std;

int main()
{
 cout << "This program reads a list of numbers (pressure readings)\n"
 " from an input file, computes their average, minimum, and\n"
 " maximum and the days on which the min. and max. occurred\n"
 "and writes these results to another file.\n\n";

 // ----------- Input Section -------------------------------------
 cout << "Enter the name of the input file: ";
 string inputFileName;
 getline(cin, inputFileName); // get name of input file
 // open an input stream
 ifstream inStream; // to the input file,
 inStream.open(inputFileName.data()); // establish connection,
 assert(inStream.is_open()); // and check for success

 int count = 0, // number of values
 minDay, // day min. reading occurred
 maxDay; // day max. reading occurred
 double reading, // value being processed
 minimum = DBL_MAX, // smallest seen so far
 maximum = DBL_MIN, // largest seen so far
 sum = 0.0; // running total
 for (;;) // loop:
 {
 inStream >> reading; // read a value
 if (inStream.eof()) break; // if eof, quit

K11207.indb 414 6/15/12 10:07 AM

Files and Streams    ◾    415  

 count++; // update: count,
 sum += reading; // sum,
 if (reading < minimum)
 {
 minimum = reading; // minimum,
 minDay = count; // minDay,
 }
 if (reading > maximum)
 {
 maximum = reading; // maximum,
 maxDay = count; // maxDay
 }
 } // end loop
 inStream.close(); // close the connection

 // ------------ Output Section ---------------------------------
 cout << “Enter the name of the output file: “;
 string outputFileName;
 getline(cin, outputFileName); // get name of input file
 // open an output stream
 ofstream outStream; // to the output file,
 outStream.open(outputFileName.data()); // establish connection,
 assert(outStream.is_open()); // and check for success

 // write results to file
 if (count == 0)
 outStream << “No values were read\n”;
 else
 outStream << “Average pressure reading: “ << sum / count << endl
 << “Minimum pressure reading: “ << minimum
 << “ on day “ << minDay << endl
 << “Maximum pressure reading: “ << maximum
 << “ on day “ << maxDay << endl;
 outStream.close(); // close the stream

 cout << “Processing complete.\n”;
}

Notice that instead of “hardwiring” the name of the input file into the program, it asks
the user to enter it, which makes it easy to use any input file. It also simplifies testing our
program before executing it with the “real” data so that we can check its correctness. The
getline() function from the string library is used to read the file’s name so it can
 process multiword file names; using >> instead would require single-word names.

11.1.2.6 Testing
To test correctness, we can build our own small test files with the data in various configu-
rations and for which we can easily check the results by hand. For example, we might place
an ascending sequence of numbers

K11207.indb 415 6/15/12 10:07 AM

416    ◾    Programming in C++ for Engineering and Science

11.1 22.2 33.3 44.4
55.5 66.6 77.7
88.8 99.9

in a file test1.txt, a descending sequence

99 98 97 96 95 94 93 92 91

in another file test2.txt, and a set of numbers with some repetitions and some empty lines

44 55.5 55.5
11.1 22 33

55 11.1
11

in yet another file test3.txt, and so on. The intent is to exercise the program, seeing if
we can make it fail. Example 11.2 shows sample runs of the program using these three files.
Once the program has been thoroughly tested, it can be used with the original data file
with confidence.

Example 11.2 Program Testing

Execution #1:

This program reads a list of numbers (pressure readings)
from an input file, computes their average, minimum, and
maximum and the days on which the min. and max. occurred
and writes these results to another file.

Enter the name of the input file: test1.txt
Enter the name of the output file: out1.txt
Processing complete.

Listing of out1.txt:

Average pressure reading: 55.5
Minimum pressure reading: 11.1 on day 1
Maximum pressure reading: 99.9 on day 9

Execution #2:

This program reads a list of numbers (pressure readings)
from an input file, computes their average, minimum, and
maximum and the days on which the min. and max. occurred
and writes these results to another file.

Enter the name of the input file: test2.txt
Enter the name of the output file: out2.txt
Processing complete.

K11207.indb 416 6/15/12 10:07 AM

Files and Streams    ◾    417  

Listing of out2.txt:

Average pressure reading: 95
Minimum pressure reading: 91 on day 9
Maximum pressure reading: 99 on day 1
Execution #3:

This program reads a list of numbers (pressure readings)
from an input file, computes their average, minimum, and
maximum and the days on which the min. and max. occurred
and writes these results to another file.

Enter the name of the input file: test3.txt
Enter the name of the output file: out3.txt
Processing complete.

Listing of out3.txt:

Average pressure reading: 33.1333
Minimum pressure reading: 11 on day 9
Maximum pressure reading: 55.5 on day 2

11.2 ThE ifstream AnD ofstream CLASSES
In this section, we take a closer look at the types and operations for performing file l/o that
are provided by the fstream library.

11.2.1 Declaring File Streams

The iostream library we have used up to now for interactive I/O establishes connections
between programs executing in main memory and I/O devices:

•	 The istream object cin connects a program with the keyboard.

•	 The ostream object cout (cerr and clog also) connects a program with the screen.

These stream connections are made automatically for interactive programs, but as illus-
trated by the program in Example 11.1, a program that is to perform input from and/or
output to a file must first construct its own streams. This operation of creating a connection
between an executing program (in main memory) and a file (stored on some secondary
memory device such as a disk drive) is known as opening a stream.

K11207.indb 417 6/15/12 10:07 AM

418    ◾    Programming in C++ for Engineering and Science

The program in Example 11.1 illustrates this. It first opens an ifstream named
inStream to a file and then reads data from that file via this stream. When the end of
this file is reached, it opens an ofstream named outStream to which it outputs the
results.1 These classes are declared in the fstream library, so we must have the #include
<fstream> directive in any program where we wish to use them.

To begin, we must first construct an ifstream object to use as a connection from the
input file to the program with a declaration of the form

ifstream input_stream_name;

Similarly, before a program can write values to a file, it must construct an ofstream
object to act as a connection from the program to that file with a declaration of the form

ofstream output_stream_name;

For example, the program in Example 11.1 uses the declaration

ifstream inStream;

to construct an input stream named inStream and later,

ofstream outStream;

to construct an output stream named outStream.

11.2.2 The Basic File Stream operations

The classes ifstream and ofstream are derived from the classes istream and
ostream, respectively, which means that these classes have been constructed as exten-
sions of those classes.2 As a result, all of the operations on istream objects can also be
performed on ifstream objects, and all operations on ostream objects can also be
performed on ofstream objects. These include the following commonly used ones:

1 There are also fstream objects that can be used both for input and output, but we will not use them here.
2 In the language of object-oriented programming, ifstream, ofstream, and fstream are subclasses of istream,
ostream, and iostream, respectively, and inherit their operations.

Executing
program

ifstreamInput
file

K11207.indb 418 6/15/12 10:08 AM

Files and Streams    ◾    419  

>> Inputs a value from a file that has been opened for input
getline() Reads a line of text from a file opened for input into a string

object
eof() Returns true if the last input operation read the end-of-file mark

and returns false otherwise
<< Outputs a value to a file that has been opened for output

There also are several new operations that are limited to file streams, including the
following:

open() Establishes a connection between a program and a file
is_open() Returns true if a file was opened successfully and returns false otherwise
close() Terminates a connection between a program and a file

We now examine these operations in more detail.

11.2.2.1 Opening a File Stream
The declarations

ifstream inStream;
ofstream outStream;

used in Example 11.1 declare that inStream is a file stream that can be connected to a
file to be used for input and that outStream is a file stream that can be connected to a
file to be used for output. But these are only potential connections. They become actual
connections when we send them an open() message. For example, we could have used
the statement

inStream.open("test1.txt");

in the program in Example 11.1 to open inStream as a connection between the program
and the file named test1.txt. However, such “hardwiring” of a file name into a program
means that it cannot be used with other files without modifying the program and recompil-
ing it each time. For more flexibility, a string variable inFileName was declared and
the actual name of the data file read and stored in it. In this case, however, the operating
system needs the actual name of that file, not a string object that contains that name as
a data member. So a data() message is sent to the string variable inputFileName to
extract the string of characters stored in that string object:3

inStream.open(inputFileName.data());

3 The c_str() message can also be used to extract this file name; it appends a terminating null character whereas
data() does not.

K11207.indb 419 6/15/12 10:08 AM

420    ◾    Programming in C++ for Engineering and Science

For example, in the first sample execution with test data in Example 11.2, inputFileName
contained the string "test1.txt" and the program was connected to the file test1.txt
via the file stream inStream:

It is important to realize that a text file such as test1.txt,

11.1 22.2 33.3 44.4

55.5 66.6 77.7

88.8 99.9

is simply a sequence of characters. If we use the symbol ⎵ to represent a blank, the
symbol ↵ to represent a new line, and the symbol ◊ to represent a special end-of-file
mark automatically placed at the end of the file by the operating system, then after the
statement

inStream.open(inputFileName.data());

has been executed, inStream may be visualized as

where the down-arrow () indicates the read position at which the next character will be
read.

The open() message can also be used to open ofstream objects as connections to
output files. For example, the program in Example 11.1 has the declaration

ofstream outStream;

and opens it with the statement

outStream.open(outFileName.data());

This connects our output stream outStream to a file whose name is the string stored in
outFileName. If this file does not exist, it will be created, and if there is a file already
with this name, its contents will be destroyed. The resulting file will contain only an end-
of-file character as does the stream outStream that connects the program to the file:

inStream Executing
program

test1
.txt

11.1 22.2 33.3 44.4 55.5 66.6 77.7 88.8 99.9

K11207.indb 420 6/15/12 10:08 AM

Files and Streams    ◾    421  

The down-arrow () in this diagram represents the write position—where the next output
will be placed in the stream.

In general, the open() message has the (simplified) form

stream_name.open(file_name);

where stream_name is the name of a file stream and file_name is the name of a data
file. It initializes stream_name as a connection between the program in which this state-
ment occurs and a file named file_name.

By default, opening an ofstream to a file is destructive. That is, if a file named out-
file.txt exists and the statement

outStream.open("outfile.txt");

is executed, any old contents of outfile.txt will be destroyed. This can be avoided by
using open() with one of the following as a second mode argument:4

Mode Description
ios::in The default mode for ifstream objects. Open a file for input,

nondestructively, with the read position at the file’s beginning.
ios::trunc Open a file and delete any contents it contains (i.e., truncate it).
ios::out The default mode for ofstream objects. Open a file for output,

using ios::trunc.
ios::app Open a file for output, but nondestructively, with the write position

at the file’s end (i.e., for appending).
ios::ate Open an existing file with the read position (ifstream objects)

or write position (ofstream objects) at the end of the file.

For example, to open an ofstream named outStream to a file outfile.txt so that
we can add data at the end of it, we can use

outStream.open("outfile.txt", ios::app);

This second argument makes the open() message nondestructive so that the old con-
tents of outfile.txt are preserved and any additional values written to the file will be
appended to it.5

4 ios::binary can also be used to open a file in binary mode.
5 The file modes can be combined using the bitwise-or (|) operator. For example,

fstream inoutStream;
inoutStream.open("ReadWriteFile", ios::in | ios::out);

 opens ReadWriteFile for both input and output.

outStream

K11207.indb 421 6/15/12 10:08 AM

422    ◾    Programming in C++ for Engineering and Science

In our examples thus far, we declared a file stream and then sent it the open() message
to connect it to a file, for example,

ofStream outStream;
outStream.open(outFileName.data());

We can combine these steps and initialize an ofstream object in its declaration:

ofStream outStream(outFileName.data());

This statement both declares outStream as an ofstream and opens it as a connection
to the file whose name is stored in outputFileName.

11.2.2.2 Programming Defensively—The is _ open() Message
An attempt to open a stream to a file can fail for a variety of reasons. One obvious one is
that the file cannot be found, perhaps because it doesn’t exist or we didn’t use the correct
name or the correct path to the directory where it is located. Obviously, if this happens, any
subsequent attempts to read from that file will also fail. One rule when using files for I/O is

always test whether an attempt to open a file was successful before proceeding with
any additional operations on the file.

This testing is easily done using the boolean message is_open() whose form is as follows.

stream_name.isopen()

which will return true if stream _name was successfully opened and false otherwise.
In the program in Example 11.1, we used the assert() mechanism to check the value

returned by the is_open() message:

assert(inStream.is_open());

and

assert(outStream.is_open());

This provides a succinct way to test each file stream and terminate the program if it failed to
open, but it does abort the program when this happens. An alternate and more user-friendly
approach is to use an if statement inside a loop as in the following function, which might
be paired with a similar one for output files and stored in a library for use in other programs:

void getInputFile(ifstream & inStream)
{
 char response;
 do
 {

K11207.indb 422 6/15/12 10:08 AM

Files and Streams    ◾    423  

 cout << "Enter the name of the input file: ";
 string inputFileName;
 getline(cin, inputFileName);

 inStream.open(inputFileName.data());

 if (inStream.is_open()) break;

 cerr << "\n***Unable to open << inputFileName
 << "\nTry again (Y or N)? ";
 cin >> response;
 }
 while (response != 'N' && response != 'n');
}

This function gives the user more than one chance to enter a correct file name and is consis-
tent with a design strategy practiced by many programmers: recover from errors whenever
possible and exit gracefully when it isn’t.

11.2.2.3 The Input and Output Operators
One of the attractive features of C++ is its consistency—its use of the same operators to per-
form tasks that are functionally similar. For example, input from a file can be performed
in the same manner as input from the keyboard using >> and performs in the same way in
both cases—skip leading white space; stop reading characters when a character is encoun-
tered that cannot belong to a value of the type being read; convert a string of characters to
a number; use of eof() to check for end of input; and so on.

This same consistency is also true of output. Once an ofstream object is connected to
a file it is used in the same way as output to the screen—the output operator << and format
manipulators such as endl, showpoint, setprecision(), and setw()can be used
to perform output (see Section 7.3).6

11.2.2.4 Closing a File Stream
We have seen that initializing a file stream object via the open() function or in its decla-
ration establishes it as a connection between a program and a file. At some point, this file
stream must be disconnected so that the file itself can be accessed and used with operating
system commands—for example, to print the contents of the file to a printer. Because a file
stream object is a variable, this will happen automatically when execution leaves its scope
just as is does for any other variable. In particular, a file stream declared within a function
will be disconnected when execution leaves that function (if not before).

6 This consistency in the I/O libraries is an example of the power of class inheritance; ifstream is derived from
istream and ofstream is derived from ostream. (Actually, all are derived from the ios class.) Operations and
functions such as eof() defined in a class are automatically inherited by these derived classes.

K11207.indb 423 6/15/12 10:08 AM

424    ◾    Programming in C++ for Engineering and Science

A file stream can be disconnected explicitly by sending it the close() message of the form

stream_name.close();

where stream_name is the name of a file stream of either type. For example, the statement

inStream.close();

in the program in Example 11.1 severs the connection between the program and the input
file and the istream variable inStream becomes undefined so that any subsequent
attempt to read from it before reconnecting it to a file is an error.

For an output stream, the close() message performs a bit differently. To see this
difference, consider the statement

outStream.close();

in Example 11.1. Before the connection between the program and the output file is severed,
any contents of outStream are first copied to the output file. After that, the connection is
broken and the ostream variable outStream becomes undefined. To illustrate, for the
first execution in Example 11.2, the contents of outStream

are written to the output file out1.txt, which we might visualize as follows:

Although a file stream is automatically disconnected when it reaches the end of its scope,
there are times when it is necessary to disconnect it earlier. For example, our program may
write values to a file and then we want to open that file and read from it. In this case, the
output stream to that file must first be disconnected by using close() and then it can be
reopened. However, even if this is not the case, it is considered good programming practice
to use close() to disconnect every file stream when it is no longer needed.

One situation where this is important is in programs that use many different files,
because an operating system may place a limit on the number of files a program may have
open simultaneously. This means that if a program tries to open more files than allowed,
the operating system will terminate the program abnormally. This problem can be avoided
by always using the close() message to sever the connection between a program and a
file when the program is done using it. This keeps the number of open files associated with
the program from growing beyond the limit allowed by the operating system.

outStream

K11207.indb 424 6/15/12 10:08 AM

Files and Streams    ◾    425  

11.2.2.5 File Streams as Parameters
An example of a function that allowed a user to enter the name of an input file repeatedly
until it was located and could be opened was given earlier in this section:

void getInputFile(ifstream & inStream)
{
 char response;
 do
 {
 cout << "Enter the name of the input file: ";
 string inputFileName;
 getline(cin, inputFileName);

 inStream.open(inputFileName.data());

 if (inStream.is_open()) break;

 cerr << "\n***Unable to open << inputFileName
 << "\nTry again (Y or N)? ";
 cin >> response;
 }
 while (response != 'N' && response != 'n');
}

Note that the parameter inStream is of type ifstream and is a reference parameter,
which must always be the case; parameters corresponding to file stream arguments must be
reference parameters because

•	 Reading from an ifstream object alters its read position; and

•	 Writing to an ofstream object alters its write position.

If the file stream parameters were not reference parameters, these changes would not have
been propagated back to main() or another function that calls this function.

11.2.3 Summary

The following points summarize some of the important points regarding file I/O in C++.

•	 A text file stores characters on a secondary memory device.

•	 Input from or output to a file from a program can only be done indirectly through a
file stream—an abstract conduit between the program and the file.

•	 A file stream can be connected to a file by using open() or the initialization-
at-declaration mechanism.

K11207.indb 425 6/15/12 10:08 AM

426    ◾    Programming in C++ for Engineering and Science

•	 Opening an ifstream to a file initializes the file stream with the contents of that
file and the read position at the first character in the file stream.

•	 Opening an ofstream to a file initializes the file stream as empty (containing only
the end-of-file mark) with the write position at the end-of-file mark. Any previous
contents of the file are destroyed.

•	 If an ofstream to a file is opened using ios::app, the stream is initialized with the
contents of that file with the write position at the end of the file.

•	 After skipping leading white space characters, the input operator (>>) will extract
the first value following the read position in an ifstream and advance the read
position to the first character after the input value. Numeric values are delimited by
nonnumeric characters.

•	 The getline() function extracts the line of input beginning at the read position in
an ifstream and stores the extracted characters in a string variable, stopping
when it reaches a newline character. It leaves the read position at the first character
beyond that newline. Intermixing calls to getline() and the input operator must
be done with caution.

•	 The output operator (<<) inserts a value into an ofstream at the current write posi-
tion and advances it to the point immediately following the value.

•	 A file stream should be disconnected from a file by a call to close() when input/
output is finished.

11.3 ADDITIonAL STREAM FEATURES
We have looked at the basic file-stream operations of open(), is_open(), <<, >>, get-
line(), eof(), and close(), but there are many others. Of these, we discussed in earlier
chapters: get() to read a character from a stream without skipping white space; good(),
bad(), and fail() to check a stream’s status; clear() to reset a stream’s status bits;
ignore() to skip characters; and the various stream manipulators. The following table
lists some of the stream messages that can be sent to both istream and ifstream
objects, or to both ostream and ofstream objects. But this is not an exhaustive list; the
iostream and fstream libraries are extensive and this table indicates only a small part
of their capabilities.

Function Member Description
good() true if the good bit is set (1) else false
fail() true if the fail bit is set (1) else false
bad() true if the bad bit is set (1) else false
eof() true if the eof bit is set (1) else false
clear() Reset the good bit to 1, all other status bits to 0
setstate(sBit) Set the status bit sBit to 1, where sBit is one or more of

ios::badbit, ios::failbit, ios::eofbit
get(ch) Read the next character (including white space) into ch

K11207.indb 426 6/15/12 10:08 AM

Files and Streams    ◾    427  

seekg(offset, base) Move the read position offset bytes from base, where
base is one of ios::beg, ios::cur, or ios::end

seekp(offset, base) Same as seekg() but for the write position
tellg() Return the offset of the read position within the stream
tellp() Same as tellg() but for the write position
peek() Return the next character in the stream, but leave it unread
putback(ch) Modify the stream so that ch will be the next character read
ignore(n, stopChar) Skip n characters, or until stopChar is encountered;

n defaults to 1 and stopChar to eof

In addition to stream function members, there are a variety of manipulators that can
be used to affect the formatting of an ostream or an ofstream. In this section, we will
discuss some of the stream operations and manipulators that we have not seen before.

11.3.1 The seekg(), tellg(), seekp(), and tellp() Methods

The file-processing programs we have considered thus far have used sequential access,
which means that items in the file are accessed and processed sequentially, from beginning
to end. This obviously means that it takes longer to access an item near the end of the file
than one near the beginning. This is in contrast to direct or random access where an item
can be accessed directly by specifying its position in the file.

11.3.1.1 Example: Two-Pass File Processing
Consider the problem of calculating the average of the numbers in the file and then dis-
playing the difference between each number and this average. Two passes must be made
through the file. The first pass counts the numbers and calculates their sum. Their average
can then be calculated:

if (count > 0) average = sum / count;

A second pass must now be made to calculate and display the difference between each
number and this average. The problem is how to reset the read position back to the begin-
ning of the file for this second pass.

For such situations, the iostream library provides the methods seekg(), tellg(),
seekp(), and tellp(), which make it possible to manipulate a stream’s read and write
position directly rather than sequentially. The program in Example 11.3 uses the seekg()
method to solve our problem. As we saw in Section 7.3, clear() must be used to clear the
eof status bit between the two passes because no more input operations on that stream will
succeed until this bit is cleared.

Example 11.3 A Two-Pass File-Processing Program

/* This program illustrates making two passes through a file:
 one pass to find the average of the numbers in the file, and a

second pass to find the difference between each number and the
average.

K11207.indb 427 6/15/12 10:08 AM

428    ◾    Programming in C++ for Engineering and Science

 Input: a series of values from a file
 Output: each value and its difference from the average value
--*/

#include <iostream> // cout, <<, >>
#include <fstream> // ifstream, is_open(), eof(), clear(), seekg()
#include <iomanip>
#include <string>
#include <cassert> // assert
using namespace std;

int main()
{
 string inputFileName;
 cout << "Name of data file? ";
 cin >> inputFileName;
 ifstream inStream(inputFileName.data());
 assert(inStream.is_open());

 double newValue, sum = 0.0, average = 0.0;
 int count = 0;

 for (;;)
 {
 inStream >> newValue;
 if (inStream.eof()) break;
 sum += newValue;
 count++;
 }

 if (count > 0) average = sum / count;

 inStream.clear(); // clear eof bit
 inStream.seekg(0, ios::beg); // reset read position

 cout << endl;

 for (;;)
 {
 inStream >> newValue;
 if (inStream.eof()) break;
 cout << setw(10) << newValue << " : "
 << setw(10) << newValue – average << endl;
 }
 inStream.close();
}

SAMPLE RUN:
Name of data file? test1.txt

 11.1 : –44.4
 22.2 : –33.3

K11207.indb 428 6/15/12 10:08 AM

Files and Streams    ◾    429  

 33.3 : –22.2
 44.4 : –11.1
 55.5 : 0
 66.6 : 11.1
 77.7 : 22.2
 88.8 : 33.3
 99.9 : 44.4

11.3.1.2 seekg()
A message of the form

inStream.seekg(offset, base);

changes the read position within an ifstream named inStream.7 Here base is one of
the following:

• ios::beg move read position offset characters from the beginning of the
stream

• ios::cur move read position offset characters from its current position

•	 ios::end move read position offset characters from the end of the stream

For example, the statement

inStream.seekg(0, ios::beg)

in Example 11.3 moves the read position back to the beginning of the file. If we wanted to
move it to the end of the file, we could use

inStream.seekg(0, ios::end);

If the input file has a field containing 10 characters at the beginning of each line
that we needed to skip over to get to a numeric value, we could replace each input state-
ment with

inStream.seekg(10, ios::cur);

inStream >> newValue;

The seekg() function is especially useful when all the lines in an input file have the
same length, say

7 The 'g' in seekg() and tellg() refers to getting values from the stream being manipulated (i.e., that it is an input
stream).

K11207.indb 429 6/15/12 10:08 AM

430    ◾    Programming in C++ for Engineering and Science

const int LINE_LENGTH = 60;

If we wanted to move the read position to the beginning of the line numbered lineNum,
we could use

inStream.seekg((lineNum – 1) * LINE_LENGTH, ios::beg);

This provides direct access to that line in the file in place of sequentially processing all of
the data items in the file that precede the one we need.

If it happens that the arguments to seekg() specify moving the read position before
the beginning of the file (e.g., using a negative offset from ios::beg) or past the end of the
file (e.g., using a positive offset from ios::end) the operation fails and the stream status
fail bit is set. This disables all subsequent operations on that stream until the status bits
have been reset using the clear() function.

11.3.1.3 tellg()
It is sometimes convenient to think of a stream as a list of characters, in which each posi-
tion has its own number or index, similar to a string object:

The tellg() function can be used to find the index of the read position. For example,
the statements

inStream.seekg(0, ios::end);
unsigned lastPosition = inStream.tellg();

will (1) move the read position to the end-of-file mark

and (2) store the index (99) of the end-of-file mark in lastPosition. Note that because
the index of the first character is always zero, the index of the end-of-file mark is always
the number of characters in the file (not counting the end-of-file mark). A text-processing
program could use this fact to determine how many characters are in a file, rather than
counting them one at a time.

1 . 1

0 1 2 3 4
inStream

5 6

B 3

... 99

1 . 1

0 1 2 3 4
inStream

5 6

B 3 . . .

... 99

K11207.indb 430 6/15/12 10:08 AM

Files and Streams    ◾    431  

As with seekg(), tellg() is especially useful for files that are organized into lines
or records of fixed lengths. To illustrate, suppose we need to process such an input file but
not all of the data in each line. If each line is made of LINE_LENGTH characters as in our
earlier example, we can use

unsigned charsLeft = inStream.tellg() % LINE_LENGTH;
inStream.seekg(LINE_LENGTH – charsLeft, ios::curr);

to move the read position forward to the beginning of the next line.

11.3.1.4 seekp() and tellp()
Because seekg() and tellg() only manipulate the read position within a stream,
they can only be used with input streams. The write position within an output stream
can be manipulated by using the functions seekp() and tellp(), which behave in
the same manner as seekg() and tellg(), respectively, but must be used with output
streams.8

11.3.2 The peek() and putback() Methods

Two other functions allow a programmer to do some useful, if unusual, operations on an
input stream. The names of these functions, peek() and putback(), describe the opera-
tions they perform.

11.3.2.1 peek()
The peek() function allows the programmer to look ahead in an input stream and see
what the next character is. Thus, it is similar to get(), but peek() does not advance the
read position.

To illustrate, consider what a C++ compiler must do when reading a C++ program from
a file that a programmer has created. One of its tasks is to break the source program into a
sequence of meaningful groups of characters called tokens. For each identifier, each key-
word, each operator, and each punctuation mark, there is a distinct token. For example,
the compiler might refer to the + operator as PLUS, the ++ operator as INCREMENT,
and the += operator as PLUS_ASSIGN. This task of identifying tokens in a program is
accomplished by a lexical analyzer, which the compiler contacts whenever it needs the
next token.

As an example of the problem of identifying tokens, suppose the compiler has just encoun-
tered a + character in its input stream inStream. We might picture this as follows, where
the down arrow, as before, denotes the position from which the next character will be read:

8 The 'p' in seekp() and tellp() refers to putting values into the stream being manipulated (i.e., that it is an output
stream).

... x+...

inStream

K11207.indb 431 6/15/12 10:08 AM

432    ◾    Programming in C++ for Engineering and Science

The compiler calls for the next token from its lexical analyzer, which retrieves the next
character '+' and advances the read position:

The lexical analyzer needs more information in order to determine which operation the
programmer specified: if the next character is an equal sign (=), then the operator is +=; if
the next character is another +, the operator is the increment operator ++; and if the next
character is a white-space character, a letter, a digit, a single quote, or a double quote, then
the operator is simply the plus operator +. The peek() function makes it possible to look
ahead at the next character without actually moving the read position.9

nextCh = inStream.peek(); // look ahead at next char
if (nextCh == '=') // if it's an =
{
 inStream.get(nextCh); // get the char
 return PLUS_EQUALS_TOKEN; // and return +=
}
else if (nextCh == '+') // else if it's another +
{
 inStream.get(nextCh); // get the char
 return INCREMENT_TOKEN; // and return ++
}
else if (isspace(nextCh) // else if it's whitespace
 || isalnum(nextCh) // a letter or a digit,
 || nextCh == '\'' // a single quote, or
 || nextCh == '"') // a double quote,
 return PLUS_TOKEN; // return +
else // else
// ... generate error message // illegal token

Thus, if

inStream.peek()

returns the character y, then the lexical analyzer can infer that inStream contains

9 The cctype library function isalnum(ch) returns true if and only if its argument ch is an alphanumeric character.
Similarly, isspace(ch) returns true if and only if its argument ch is a white-space character.

... x+...

inStream

... x+y...

inStream

K11207.indb 432 6/15/12 10:08 AM

Files and Streams    ◾    433  

indicating that the plus operator + was specified, and not ++ or +=. The y is left in the
stream where it can be subsequently processed in the normal fashion the next time the
compiler asks the lexical analyzer for a token.

11.3.2.2 putback()
An alternative to peek() is to use get() to retrieve the next character,

inStream.get(nextCh);

and then use putback() to return it to inStream, if necessary:

if (nextCh == '=') // if it's an =
{
 inStream.get(nextCh); // get the char
 return PLUS_EQUALS_TOKEN; // and return +=
}
else if (nextCh == '+') // else if it's another +
{
 inStream.get(nextCh); // get the char
 return INCREMENT_TOKEN; // and return ++
}
else if (isspace(nextCh) // else if it's whitespace
 || isalnum(nextCh) // a letter or a digit,
 || nextCh == '\'' // a single quote, or
 || nextCh == '"') // a double quote
{
 inStream.putback(nextCh); // put it back for now
 return PLUS_TOKEN; // return +
}
else // else
// ... generate error message // illegal token

Thus, if the value of nextCh were 'y', putback(nextCh) would return that character
to the stream so that it will be accessed the next time the compiler asks the lexical analyzer
for a token.

11.3.3 The setstate() Method

We’ve seen how the clear() function can be used to reset the status bits of a stream to
their default values. Sometimes, however, it is useful to be able to set them to specified
values, and this can be done using the setstate() function.

To illustrate, suppose that we have a problem involving five types of beam design: I-beam,
C-channel, flitch, cantilever, and hip, and we want to write a readBeam() function to
input a beam design, similar to the getline() function provided by the string library.
Our function will read a word from a stream into a string variable, which it then passes
back to the caller via a reference parameter.

K11207.indb 433 6/15/12 10:08 AM

434    ◾    Programming in C++ for Engineering and Science

But what do we do if the user enters an invalid value, a word that is not one of the five
beam designs? To handle this situation in a way that is consistent with the iostream
library, our function should set the fail status bit for that input stream. Example 11.4 shows
how the stream function member setstate() can be used to do this.

Example 11.4 Setting Stream-Status Flags

void readBeam(istream & theStream, string & beam)
{
 string beamType;
 theStream >> beamType;

 if (beamType == "I-beam" || beamType == "C–channel" ||
 beamType == "flitch" || beamType == "cantilever" ||
 beamType == "hip")
 beam= beamType;
 else
 {
 theStream.seekg(-beam.size(), ios::cur); // unread the word
 theStream.setstate(ios::failbit); // indicate failure
 }
}

By setting the fail status bit in the stream, this function leaves the handling of the
error up to its caller. For example, a programmer wishing to treat this as a fatal error
can write

string aBeamType;
readBeam(cin, aBeamType);
assert(cin.good());

and if the user enters any word other than one of the five beam designs, the call to
assert() will terminate the program. By contrast, a programmer who wishes to treat
this occurrence as a nonfatal error and have the user try again, can write

string aBeamType;
for (;;)
{
 readBeam(cin, aBeamType);
 if (cin.good()) break;
 cout << "Try again: ";
 cin.clear();
 cin.ignore(80, '\n');
}

K11207.indb 434 6/15/12 10:08 AM

Files and Streams    ◾    435  

and the user will be given more chances to enter a valid value. Such flexibility is a trade-
mark of good design, because it leaves the decision of how to handle the problem up to
users of the function, allowing them to choose the approach they prefer.

The setstate() function can be used to set the status bits in a stream, which are
referred to by the following names:

Status Bit Description
ios::badbit The bad bit: 1 if an unrecoverable error occurred, 0 otherwise.
ios::failbit The fail bit: 1 if a recoverable error occurred, 0 otherwise.
ios::eofbit The eof bit: 1 if the end-of-file mark was read, 0 otherwise.

In practice, setstate() is rarely passed ios::eofbit, because that is set by the input
operations.

11.3.3.1 The Formatting Manipulators
As we saw in Chapter 7, the iostream and iomanip libraries provide manipulators for
controlling the format of output streams. Manipulators can be divided into two categories:
those without arguments and those that require arguments.

Format manipulators that do not require arguments are available in the iostream
library. Some of the basic ones are given in the following table:

Manipulator Description
boolalpha Use strings false and true for I/O of boolean values
noboolalpha Use integers 0 and 1 for I/O of boolean values
scientific Use floating-point (scientific) notation
fixed Use fixed-point notation
showpoint Show decimal point and trailing zeros for whole real numbers
noshowpoint Hide decimal point and trailing zeros for whole real numbers
showpos Display positive values with a + sign
noshowpos Display positive values without a + sign
dec Display integer values in base 10
oct Display integer values in base 8
hex Display integer values in base 16
showbase Display integer values indicating their base (e.g., 0x for hex)
noshowbase Display integer values without indicating their base
uppercase In hexadecimal, use symbols A–F; in scientific, use E
nouppercase In hexadecimal, use symbols a–f; in scientific, use e
skipws Skip white space on input
noskipws Don’t skip white space on input
flush Write contents of stream to screen (or file)
endl Insert newline character and flush the stream
left Left-justify displayed values, pad with fill character on right
right Right-justify displayed values (except strings), pad with fill

character on left
internal Pad with fill character between sign or base and value

K11207.indb 435 6/15/12 10:08 AM

436    ◾    Programming in C++ for Engineering and Science

As we saw in Chapter 7, manipulators are inserted into the stream, but instead of
appending values to the stream (except for endl), they affect the format of values inserted
subsequently into the stream. For example, if we were to write

int i = 17;

cout << showbase
 << oct << i << endl
 << dec << i << endl
 << hex << i << endl;

then the following values would be displayed

021

17
0x11

To use the manipulators that require arguments, the iomanip library must be included.
The table below gives some of these manipulators.

Manipulator Description
setprecision(num) Set the number of decimal digits to be displayed to num
setw(num) Display the next value in a field whose width is num
setfill(ch) Set the fill character to ch (blank is the default)

When a real number is inserted into a stream, the number of digits that are displayed to
the right of the decimal point is called the precision of the number. As we have seen before,
this characteristic can be controlled with the setprecision() manipulator.

We have also seen that when a number is inserted into a stream, it is first placed into
a field, which is then inserted into the stream. The size of this field is controlled by the
setw() manipulator. If the size of the field is less than the size of the value being displayed,
the field is automatically expanded to the same size as the value. If the size of the field
exceeds the size of the value being displayed, then the empty positions in the field
are filled with the fill character (by default, a blank), whose value is set by the setfill()
manipulator.

Here is a simple code fragment that illustrates the use of these manipulators:

cout << fixed << showpoint // show decimal pt, sign
 << setprecision(2) // 2 decimal places
 << setfill('*') << left // pad with *, left justify
 << setw(6) << 1.0/3.0 << endl // print value
 << setfill('$') << right // pad with $, right justify
 << setw(6) << 1.0/3.0 << endl; // print value

K11207.indb 436 6/15/12 10:08 AM

Files and Streams    ◾    437  

When executed, this statement produces the following output:

0.33**

$$0.33

Note that unlike setprecision(), setw() affects only the next value inserted into the
stream, so setw() must precede each insertion of a value whose field width we wish to specify.

To display a column of figures with their decimal points aligned, the right manipula-
tor can be used with setprecision() and setw(). For example, to display a table of
square roots to seven decimal places, we could write this code segment:

cout << fixed << showpoint << right
 << setprecision(7);
 for (int i = 1; i <= 10; i++)
 cout << setfill(' ') << setw(2) << i
 << setfill('.') << setw(12) << sqrt(i) << endl;

Executing these statements produces the output

 1...1.0000000
 2...1.4142136
 3...1.7320508
 4...2.0000000
 5...2.2360680
 6...2.4494897
 7...2.6457513
 8...2.8284271
 9...3.0000000
 10...3.1622777

11.3.4 String Streams

C++ also permits us to read input from a string or to write output to a string. This is
made possible by means of string streams defined in the sstream library:10

istringstream For input from a string
ostringstream For output to a string
stringstream For input from and output to a string

The str()function can be used to convert a string stream to a string, and vice versa:

strstream.str(s); Set string stream strstream to a copy of string s
str(strstream) Returns a string that is a copy of the string in strstream

10 The corresponding types for wide characters (of type wchar_t) are wistringstream, wostringstream, and
wstringstream.

K11207.indb 437 6/15/12 10:08 AM

438    ◾    Programming in C++ for Engineering and Science

The program in Example 11.5 illustrates the use of string streams. It constructs
an istringstream from the string date, uses the input operator >> to read the
individual words and integers, and displays them. It then outputs strings and inte-
gers to the ostringstream ostr, uses str() to extract the string from ostr, and
 displays it.

Example 11.5 String Streams

/* Program to illustrate the use of string streams.

 Input (istringstream istr): word1, word2, month, day, comma, year
 Output (istringstream ostr): these words separated by ***
 Output (ostream cout): the string stored in ostr
--*/

#include <iostream>
#include <iomanip>
#include <sstream>
using namespace std;

int main()
{
 string date = "Independence Day (U.S.): July 4, 1776";
 istringstream istr(date);
 string word1, word2, word3, month;
 int day, year;
 char comma;

 istr >> word1 >> word2 >> word3 >> month >> day >> comma >> year;
 cout << "Contents of string stream istr:\n"
 << word1 << "***" << word2 << "***" << word3 << "****" << month
 << "***" << day << "***" << comma << "***" << year << endl;
 ostringstream ostr;
 ostr << '\n' << word3.substr(1, 4) << " Bicentennial: "
 << month << setw(2) << day << ", "<< year + 200;
 cout << ostr.str() << endl;
}

SAMPLE RUN:
Contents of string stream istr:
Independence***Day***(U.S.):****July***4***,***1776

U.S. Bicentennial: July 4, 1976

K11207.indb 438 6/15/12 10:08 AM

Files and Streams    ◾    439  

ChAPTER SUMMARY

Key Terms

binary file mode argument

close() function ofstream

closing a stream open() function

direct access opening a stream

end-of-file mark ostringstream

end-of-line mark output operator (<<)

eof() function precision

field random access

file read position

fill character sequential access

format manipulators sstream library

fstream library stream

getline() function stringstream

ifstream test file

input operator (>>) text file

is_open() function write position

istringstream

noTES
•	 Text files are simply sequences of characters, some of which may be special characters

that, for example, mark the end of a line or the end of the file.

•	 Before performing input from/output to a file, open the file by using open() or the
initialization-at-declaration mechanism to connect a file stream to it by. If the file’s
name is stored in a string variable, use data() or c_str() to extract the char-
acter string from the variable.

•	 Test each attempt to open a file to see if it was successful (e.g., with the is_open()
function) before proceeding with other operations on the file.

•	 Use ifstream objects for file input, ofstream objects for file output.

•	 The file stream classes ifstream, ofstream, and fstream are derived from the
istream, ostream, and iostream classes, respectively, which means that all of

K11207.indb 439 6/15/12 10:08 AM

440    ◾    Programming in C++ for Engineering and Science

the operations from these latter classes can also be performed on the corresponding
file stream objects.

•	 By default, opening an ifstream to a file initializes the file stream with the con-
tents of that file with the read position at the first character in the stream. Opening
an ofstream initializes the file stream as empty (containing only the end-of-file
mark) with the write position at the end-of-file mark. Any previous contents of the
file are destroyed. If the mode ios::app is used, then the file must exist and the
stream is initialized with the contents of that file, with the write position at the end
of the file.

•	 Applying the input operator (>>) to an ifstream will extract the first value fol-
lowing the read position in the stream, skipping initial white space characters, and
advance the read position to the first character past the input value.

•	 The getline() function can be used to extract the line of input beginning at the
current read position in an ifstream and store the characters in a string variable,
leaving the read position at the first character beyond the first newline character
encountered. Care must be taken when intermixing calls to getline() and the
input operator because >> leaves the newline character in the file.

•	 The output operator (<<) can be used to insert a value into an ofstream at the write
position, advancing it to the point immediately following the value.

•	 It is considered good programming practice to disconnect a file stream from a file
using the close() message when that file is no longer needed.

•	 Parameters corresponding to file stream arguments must be reference parameters so
that changes to the stream are passed back to the calling function.

Style and Design Tips
•	 To read data from a file, establish an ifstream connection between the pro-

gram and the file. To write data to a file, establish an ofstream connection
between the program and the file. The three basic steps for file-processing programs
are thus:

•	 Declare and open an ifstream object for each input file and an ofstream
object for each output file to establish connections between the program and
the files.

•	 Perform the desired processing with the file via the file streams.

•	 Close each file stream, severing the connection with the file.

•	 a forever loop controlled by the ifstream function member eof() can be used to
read data from a file via an ifstream:

K11207.indb 440 6/15/12 10:08 AM

Files and Streams    ◾    441  

ifstream theStream("SomeFile");

for (;;)
{
 // read a value from theStream
 if (theStream.eof()) break;
 // process the value
}

Some programmers prefer the while loop version:

// read a value from theStream
while (!theStream.eof())
{
 // process the value
 // read a value from theStream
}

warnings

 1. Before a file stream can be used, it must be opened as a connection to a particular file.
The simplest way is to initialize the stream with the name of the file in the stream’s
declaration:

 ofstream outStream("OutputFile.TXT");

 Alternatively, the stream can be declared and opened separately, using open():

 ofstream outStream;
 outStream.open("OutputFile.TXT");

 2. When opening a stream to a file, the name of the file must be given as a character string.
For example, to open an ifstream named inStream to a file named Text, we can
write

 ifstream inStream("Text");

 or

 ifstream inStream(filename.data());

 where the string variable filename stores the file name and data() or c_str()
extracts the character string from it.

 3. Be sure that operations performed on a file stream are consistent with the mode by
which it was initialized. Applying >> to an ofstream or << to an ifstream will
generate a compilation error.

 4. When inputting values, the extraction operator >> skips over any leading white-space
characters (blanks, tabs, and newlines); the functions get() and getline() do not.

K11207.indb 441 6/15/12 10:08 AM

442    ◾    Programming in C++ for Engineering and Science

TEST YoURSELF

Section 11.2

 1. The iostream library establishes a(n) object named that connects a
program and the keyboard.

 2. The iostream library establishes a(n) object named that connects a
program and the screen.

 3. In order for a program to read data from a file, a(n) object must connect the
program to that file.

 4. In order for a program to write output to a file, a(n) object must connect the
program to that file.

 5. The types of streams needed to connect a program and a file are declared in the ____
library.

 6. (True or false) Almost none of the operations on iostreams can be performed on
file streams.

 7. Write a statement to declare a file stream named inputStream that will be used
for input from a file and another statement that uses the open() function to connect
this stream to a file named EmployeeInfo.

 8. Repeat Question 7 but use the initialization-at-declaration mechanism.

 9. Repeat Question 7 but for a file stream named outputStream that will be used for
output to a file named EmployeeReport.

 10. Repeat Question 9 but use the initialization-at-declaration mechanism.

 11. Modify your answers to Questions 7 and 8 so that the user inputs the name of the file
into a string variable inputFileName.

 12. (True or false) The declaration ifstream inStream("Info"); will destroy the
contents of the file named Info.

 13. (True or false) The declaration ofstream outStream("Info"); will destroy the
contents of the file named Info.

 14. Write a statement that will stop program execution if an attempt to open the
ifstream inputStream fails.

 15. Write a statement that will extract an entire line from the ifstream in Question 14.

 16. Write a statement that will display the message "End of file" for the ifstream
in Question 14 when the end-of-file mark is reached.

 17. Write a statement to disconnect the ifstream in Question 14.

K11207.indb 442 6/15/12 10:08 AM

Files and Streams    ◾    443  

Section 11.3
 1. (True or false) Sequential access refers to being able to access an item in a file directly

by specifying its sequential position in the file.

 2. (True or false) Direct access refers to being able to access an item in a file directly by
specifying its offset from the beginning of the file.

 3. Another name for direct access is access.

 4. The function can be used to find the location of the read position in an istream
and the function can be used to move to that position.

 5. Write a statement that moves the read position in the ifstream inputStream to
the third character from the beginning of the stream.

 6. Proceed as in Question 5 but move the read position to the third character past the
current position.

 7. Proceed as in Question 5 but move the read position to the last character in the
stream.

 8. Write statements to display the next character in the file stream of Question 5 and
remove it from the fstream.

 9. Write statements to display the next character in the file stream of Question 5 without
removing it from the file stream. Do this in two different ways.

 10. can be used to control the format of ofstream objects.

ExERCISES

Section 11.2

 1. Using both the (a) open() function and (b) the initialization-at-declaration mecha-
nism, write statements to declare and open a file stream named inputStream as a
connection to an input file named InData.

 2. Proceed as in Exercise 1 but open a file stream named outputStream as a connection
to an output file named OutData.

 3. Proceed as in Exercise 1 but first declare a string variable inputFileName and
read the name of the input file into it.

 4. Proceed as in Exercise 2 but first declare a string variable outputFileName and
read the name of the output file into it.

For Exercises 5–7, assume that num1, num2, num3, and num4 are integer variables, and
that inStream is an ifstream connected to a file containing the following data:

K11207.indb 443 6/15/12 10:08 AM

444    ◾    Programming in C++ for Engineering and Science

1 –2 2↲ ––––––––
4 –5 6↲

 –––––––
7 –8 9↲

 ––––––––––––––––––

Tell what values will be assigned to these variables when the statements are executed.

 5. inStream >> num1 >> num2 >> num3 >> num4;

 6. inStream >> num1 >> num2;
 inStream >> num3;
 inStream >> num4;

 7. inStream >> num1 >> num2;
 inStream >> num3 >> num4;

For Exercises 8–12, assume that inStream has been opened as a connection to an input
file that contains the following data

123 45.6↲
 –––––––––

X78 -909.8 7↲
 –––––––––––––

-65 $ 432.10↲
 –––––––––––––

and that the following declarations are in effect:

int n1, n2, n3;
double r1, r2, r3;
char c1, c2, c3, c4;

List the values that are assigned to each of the variables in the input list, or explain why an
error occurs:

 8. inStream >> n1 >> r1 >> c1 >> n2 >> r2
 >> c2 >> n3 >> c3 >> c4 >> r3;

 9. inStream >> n1 >> c1 >> n2 >> r1 >> c2
 >> r2 >> c3 >> n3;

 10. inStream >> n1 >> r1 >> c1 >> c2 >> c3
 >> n2 >> r2 >> n3 >> r3 >> c4;

 11. inStream >> c1 >> n1 >> r1 >> c2
 >> n2 >> c3 >> c4 >> r3;

 12. inStream >> n1 >> r1 >> c1 >> c2
 >> c3 >> n2 >> c4;

K11207.indb 444 6/15/12 10:08 AM

Files and Streams    ◾    445  

For Exercises 13–17, assume that inStream has been opened as a connection to an input
file that contains the following data:

and that the following declarations are in effect:

int n1, n2, n3, n4;
double r1, r2, r3;
char c1, c2, c3, c4;

List the values that are assigned to each of the variables in the input list, or explain why an error
occurs. Also, show the location of the read position after each of the statements is executed.

 13. inStream >> n1 >> r1 >> r2 >> c1 >> n2 >> n3;

 14. inStream >> n1 >> r1 >> r2 >> c1 >> c2 >> n2 >> n3;

 15. inStream >> n1 >> n2 >> c1 >> c2 >> c3
 >> r1 >> c4 >> n2 >> r2;

 16. inStream >> r1 >> r2 >> r3 >> c1 >> n1 >> n2;

 17. inStream >> n1 >> n2 >> c1 >> n3 >> c2
 >> r1 >> c3 >> n4 >> r2;

PRoGRAMMInG PRoBLEMS

Sections 11.1–11.2

 1. Write a program to concatenate two files, that is, to append one file to the end of the
other.

 2. Write a program that reads a text file and counts the occurrences in the file of a speci-
fied string entered during execution of the program.

 3. Write a program that reads a text file and counts the characters in each line. The pro-
gram should display the line number and the length of the shortest and longest lines
in the file, as well as the average number of characters per line.

 4. Write a program to copy one text file into another text file in which the lines are num-
bered 1, 2, 3, . . . with a number at the left of each line.

 5. Write a file pagination program that reads a text file and prints it in blocks of 20 lines.
If after printing a block of lines, there still are lines in the file, the program should

K11207.indb 445 6/15/12 10:08 AM

446    ◾    Programming in C++ for Engineering and Science

allow the user to indicate whether more output is desired; if so, the next block should
be printed; otherwise, execution of the program should terminate.

 6. People from three different income levels, A, B, and C, rated each of two different
products with a number from 0 through 10. Construct a file in which each line con-
tains the income level and product rankings for one respondent. Then write a pro-
gram that reads this information and calculates

 a. For each income bracket, the average rating for product 1.

 b. The number of persons in income bracket B who rated both products with a score
of 5 or higher.

 c. The average rating for product 2 by persons who rated product 1 lower than 3.

 Label all output and design the program so that it automatically counts the
respondents.

 7. Write a program to search the file Users (see description following this problem set)
to find and display the resources used to date for specified users whose identification
numbers are entered during execution of the program.

 8. Write a program to search the file Inventory (see description following this prob-
lem set) to find an item with a specified item number. If a match is found, display the
item number and the number currently in stock; otherwise, display a message indi-
cating that it was not found.

 9. At the end of each month, a report is produced that shows the status of each user’s
account in Users (see description following this problem set). Write a program to
accept the current date and produce a report of the following form:

USER ACCOUNTS--mm/dd/yy
USER ID RESOURCE RESOURCES
 LIMIT USED
-------- ---------- -------------
10101 $750 $381
10102 $650 $599***
 . . .
 . . .
 . . .

 where mm/dd/yy is the current date and the three asterisks (***) indicate that the
user has already used 90 percent or more of the resources available to him or her.

 10. Angles are commonly measured in degrees, minutes (’), and seconds (”). There are
360 degrees in one complete revolution, 60 minutes in 1 degree, and 60 seconds in

K11207.indb 446 6/15/12 10:08 AM

Files and Streams    ◾    447  

1 minute. Suppose that each line of a file contains two angular measurements, each
in the form dddDmm'ss", where ddd, mm, and ss denote the number of degrees,
minutes, and seconds, respectively, and the first four lines are:

 174D29’13” 105D8’16”
 7D14’55” 5D24’144”
 20D31’19” 0D31’30”
 122D17’48” 237D42’12”

 Prepare a text file that contains these four lines and several more. Write a program
that reads the angular measurements from the file and outputs them and their sum
as angles in a format like the following:

174D29’13” + 105D8’16” = 279D37’29”
 7D14’55” + 5D24’55” = 12D39’50”
 20D31’19” + 0D31’30” = 21D2’49”
 122D17’48” + 237D42’12” = 0D0’0”

Section 11.3

 1. Modify the program in Example 11.3 so that instead of calculating and displaying the
difference between each number and the average, it calculates and outputs the vari-
ance and standard deviation of the numbers in the file in addition to their average. If
x denotes the average of x1, . . . , xn, the variance is the average of the squares of the
deviations of the numbers from the average:

 variance = 1 2

1
n

x xi

i

n

()−
=

∑
 and the standard deviation is the square root of the variance.

 2. Letter grades are sometimes assigned to numeric scores by using the grading scheme
commonly called grading on the curve. In this scheme, a letter grade is assigned to a
numeric score, according to the following table:

x = Numeric Score Letter Grade

x m< − 3

2
σ F

m x m− ≤ < −3

2

1

2
σ σ D

m x m− ≤ < +1

2

1

2
σ σ C

m x m+ ≤ < +1

2

3

2
σ σ B

m x+ ≤3

2
σ A

K11207.indb 447 6/15/12 10:08 AM

448    ◾    Programming in C++ for Engineering and Science

 where m is the average score and σ is the standard deviation (see Problem 1). Suppose
that a file contains, on each line, a student’s last name and exam store. Write a pro-
gram to read this information, calculate the average and standard deviation of the
scores, and produce another file containing each student’s name, exam score, and the
letter grade corresponding to that score.

 3. Information about computer terminals in a computer network is maintained in a
file. The terminals are numbered 1 through 100, and information about the nth ter-
minal is stored in the nth line of the file. This information consists of a terminal type
(string), the building in which it is located (string), the transmission rate (integer),
an access code (character), and the date of last service (month, day, year) with each
of these items separated by one or more spaces. Write a program to read terminal
numbers from the keyboard and directly access the line in the file for each terminal
by moving the read position directly to that line. The program should retrieve and
display the information about that terminal.

DESCRIPTIonS oF DATA FILES
The following describe the contents of data files used in exercises in the text. Listings of
them are available on the book’s website given in the Preface.

Inventory.txt: Each line contains the following items, sepa-
rated by one or more spaces:

Item number: an integer

Number currently in stock: an integer (in the range 0 through 999)

Unit price: a real value

Minimum inventory level: an integer (in the range 0 through 999)

Item name: a character string

These items are sorted so that item numbers are in increasing order.

InventoryUpdate.txt: Each line contains the following items, sepa-
rated by one or more spaces:

An order number: string (three letters followed by four digits)

Item number: same as those in Inventory.txt

Transaction code: a single character (S = sold, R = returned)

Number of items sold or returned: an integer

File is sorted so that item numbers are in increasing order. Some items in Inventory.txt
may not have update records; others may have more than one.

K11207.indb 448 6/15/12 10:08 AM

Files and Streams    ◾    449  

Users:

This is a file of computer system records organized as follows. They are arranged so that
identification numbers are in increasing order.

Identification number: an integer

User’s name: two strings of the form last-name, first-name

Password: a string

Resource limit (in dollars): an integer

Resources used to date: a real value

Points:

This is a text file in which each line contains a pair of real numbers representing the x
coordinate and the y coordinate of a point.

K11207.indb 449 6/15/12 10:08 AM

This page intentionally left blankThis page intentionally left blank

451

C h a p t e r 12

Arrays and the vector
Class Template

I’ve got a little list, I’ve got a little list.

GILBERT AND SULLIVAN, ThE MiKaDO

Stupidity, outrage, vanity, cruelty, iniquity, bad faith, falsehood—we fail to see the
whole array when it is facing in the same direction as we.

JEAN ROSTAND

One can think of a secretary actively operating a filing system, of a librarian actively
cataloguing books, of a computer actively sorting out information. The mind how-
ever does not actively sort out information. The information sorts itself out and
organises itself into patterns.

EDWARD DE BONO

ConTEnTS
12.1 Introductory Example: Quality Control 452
12.2 C-Style Arrays 457
12.3 Sorting 466
12.4 Searching 468
12.5 Example: Searching a Chemistry Database 471
12.6 The vector<T> Class Template 475
12.7 An Overview of the Standard Template Library 483
Chapter Summary 486
Test Yourself 489
Exercises 492
Programming Problems 498

452    ◾    Programming in C++ for Engineering and Science

In this chapter, we revisit the concept of indexed variables introduced in Chapter 7
where we studied the string class. A string object aString provides access to

individual characters with the subscript operator []; aString[i] is the ith character of
the string stored in aString. As we will see in this chapter, this approach can be extended
to sequences of noncharacter data, thus providing a powerful mechanism for solving prob-
lems that involve sequences of other types of data. An entire sequence can be stored in an
indexed variable so that the value stored in any location i can be accessed directly by using
an expression of the form variable[i].

An array is such a variable. It is more general than a string object, because it is not lim-
ited to char values. An array can be declared to store values of any type: char, int, and
double values, as well as class objects such as string objects. In short, an array can be
defined to store values of any type that has been declared prior to the declaration of the array.

In the first two sections of this chapter, we introduce C-style arrays that C++ inherits
from its parent language C. For these arrays, the programmer must specify the size of the
array in its declaration, and once the program is compiled, this size cannot be changed
without modifying the array declaration and recompiling the program. Consequently,
such arrays are called fixed-size arrays. In later sections, we will introduce vector<T>,
a C++ standard class template that eliminates many of the limitations of C-style arrays.

12.1 InTRoDUCToRY ExAMPLE: QUALITY ConTRoL
We begin with a problem that we will solve using C-style arrays.

12.1.1 Problem: Mean Time to Failure

An electronics company uses a robot to manufacture circuit boards that have several dif-
ferent components. A quality control engineer monitors the robot by checking each circuit
board and recording in a file the number of defective components on that board:

0 1 0 0 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0 0 0 0 3 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 2 0 0 0 1 0 0 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 2
0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0

To analyze the overall performance of the robot, a program that generates a frequency
distribution is needed. It should show the number of boards in which there were no defec-
tive components, one defective component, two defective components, three defective
components, four defective components, and five defective components:

Out of 120 circuit boards:
98 had 0 failed components (81.7%)
16 had 1 failed components (13.3%)
3 had 2 failed components (2.5%)
2 had 3 failed components (1.7%)
1 had 4 failed components (0.8%)
0 had 5 failed components (0.0%)

K11207.indb 452 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    453  

Such an analysis may help a company decide whether to upgrade its equipment. Weighing
the cost of a new robot (that presumably makes fewer mistakes) against the cost of repairing
or discarding 18.3 percent of the circuit boards helps in making an informed decision.

12.1.2 object-Centered Design
12.1.2.1 Behavior
The program should display on the screen a prompt for the name of the input file, read this
name from the keyboard, and then open an ifstream to that file. It should then read via
the ifstream the number of component failures for each circuit board tested, counting
the occurrences of each 0, 1, 2, 3, 4, and 5, and then display the number and percentages of
times each occurred.

12.1.2.2 Objects
The objects in this problem are as follows:

Software Objects

Problem Objects Type Kind Name

Name of input file string variable inputFilename
Stream to input file ifstream variable instream
Number of circuit boards int variable numCircuitBoards
One data value int variable numFailures
Number of 0s int variable count[0]
Number of 1s int variable count[1]
Number of 2s int variable count[2]
Number of 3s int variable count[3]
Number of 4s int variable count[4]
Number of 5s int variable count[5]

12.1.2.3 Operations
The operations needed to solve this problem are:

 i. Read the name of the input file from the keyboard and open a stream to it.

 ii. Read failure counts from the stream, counting occurrences of 0, 1, 2, 3, 4, and 5.

 iii. Display the number and percentage of occurrences of 0, 1, 2, 3, 4, and 5.

Each of these is either provided in C++ or is easily implemented using only a few statements.

12.1.2.4 Algorithm
The program must read from the data file and count the number of occurrences of each num-
ber in the file. One approach would be to declare six different counter variables, count0, . . . ,
count5, and use a switch statement to select the appropriate one to increment:

inStream >> numFailures;
if (inStream.eof()) break;

K11207.indb 453 6/15/12 10:08 AM

454    ◾    Programming in C++ for Engineering and Science

switch(numFailures)
{

case 0: count0++;
break;

case 1: count1++;
break;

case 2: count2++;
break;

case 3: count3++;
break;

case 4: count4++;
break;

case 5: count5++;
}

However, such a solution is clumsy, because it requires that we declare and manage six dif-
ferent counters. Moreover, it is not scalable; if the company creates a new product with 10
components or 100 components, then the program must be modified extensively.

A C-style array provides a better solution. We define a single array object with space for
six different integer values:

const int SIZE = 6;
int count[SIZE] = {0};

This definition creates an indexed variable named count that can store six integers.
Each of these integers has a different index in the range 0 to 5. That is, the first integer in
count has index 0, the second has index 1, . . . , and the last integer in count has the
index 5. The definition also initializes each of these integers to 0. We can visualize such
an object as follows:

Because count has index values ranging from 0 to 5 and these values coincide with the
number of components on the circuit board, we can use this one array to count occur-
rences of each of the values 0 through 5, using statements like the following

instream >> numFailures;
if (instream.eof()) break;
count[numFailures]++;

to add 1 to the integer in count whose index is numFailures. For example, if num-
Failures is 2, then execution of

count[numFailures]++;

count 0 0 0 0 0 0

[0] [1] [2] [3] [4] [5]

K11207.indb 454 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    455  

will increment the integer in count whose index is 2:

The following algorithm for solving the quality-control problem uses this approach.

Algorithm for Quality Control Analysis

 1. Prompt for and read the name of the input file into inputFilename.

 2. Open an ifstream named instream to the file whose name is in inputFilename.
(If this fails, display an error message and stop execution.)

 3. Initialize numCircuitBoards to 0.

 4. Initialize each integer in the array count to 0.

 5. Loop:

 a. Read an integer numFailures from instream.

 b. If the end-of-file mark was read, exit the loop.

 c. Increment the element of count indexed by numFailures.

 d. Increment numCircuitBoards.

 End loop

 6. Close instream.

 7. For each index in the range 0 through 5:

 Display index and count[index] with appropriate labels.

12.1.2.5 Coding
The program in Example 12.1 implements this algorithm.

Example 12.1 Quality Control Failure Frequency Distribution

/* This program shows a distribution of component failure rates that
are stored in an input file.

 Input(file): a sequence of failure rates
 Output(screen): the number and percentage of occurrences of each

failure rate
--*/

#include <iostream> // cout, <<, fixed, showpoint

count 0 0 1 0 0 0

[0] [1] [2] [3] [4] [5]

K11207.indb 455 6/15/12 10:08 AM

456    ◾    Programming in C++ for Engineering and Science

#include <fstream> // ifstream, >>, eof(), close()
#include <iomanip> // setprecision()
#include <string> // string, getline()
#include <cassert> // assert()
using namespace std;

const int CAPACITY = 6; // # of array elements
int main()
{

cout << "Quality Control: "
"Component Failure Frequency Distribution.\n\n";

ifstream inStream;
string inFileName;
cout << "Name of input file? ";
getline(cin, inFileName);
inStream.open(inFileName.data());
assert(inStream.is_open());

int count[CAPACITY] = {0}, // array of counters
numFailures, // input variable
numCircuitBoards = 0; // # of input values

for (;;) // loop:
{
inStream >> numFailures; // read input value
if (inStream.eof()) break; // if done, stop reading
count[numFailures]++; // increment its counter
numCircuitBoards++; // one more input value

} // end loop
inStream.close(); // close the stream

cout << "\nOut of " << numCircuitBoards << " circuit boards:\n"
<< setprecision(1) << fixed << showpoint;

for (int i = 0; i < CAPACITY; i++) // output counters
 cout << count[i] << " had " << i

 << " failed components (" // and percentages
 << double(count[i]) / numCircuitBoards * 100
 << "%)" << endl;

}

SAMPLE RUN:
Quality Control: Component Failure Frequency Distribution.

Enter the name of the input file: failureData.txt

Out of 120 circuit boards:
98 had 0 failed components (81.7%)

K11207.indb 456 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    457  

16 had 1 failed components (13.3%)
3 had 2 failed components (2.5%)
2 had 3 failed components (1.7%)
1 had 4 failed components (0.8%)
0 had 5 failed components (0.0%)

12.2 C-STYLE ARRAYS
The program in Example 12.1 uses the declarations

const int CAPACITY = 6; // # of array elements
.
.
.

int count[CAPACITY] = {0}; // array of counters
.
.
.

to construct count as an array of six integers, with each integer initialized to 0. The first
part of the declaration

int count[CAPACITY] = {0}; // array of counters

instructs the compiler to reserve a block of memory large enough to hold six integer values
and associates the name count with this block. Because count has room for six integers,
its capacity is said to be 6. The integer-sized spaces in count are called elements and are
indexed from 0 through 5:

Unlike some languages, C++ arrays are zero-based; that is, the index of the first element
of any C++ array is always zero.

The second part of the declaration,

int count[CAPACITY] = {0}; // array of counters

initializes the first element of count to zero, and as described later, the remaining ele-
ments are initialized to zero by default:

[0] [1] [2] [3] [4] [5]

count

count 0 0 0 0 0 0

[0] [1] [2] [3] [4] [5]

K11207.indb 457 6/15/12 10:08 AM

458    ◾    Programming in C++ for Engineering and Science

Whereas the capacity of an array is the number of values that it can store, its size is the
number of values it actually contains. Both the capacity and the size of count are 6.

In this example, count is an array of integers, but the elements of an array may be of
any type. For example, the declarations

const int NUM_ELEMENTS = 4;
char charArray[NUM_ELEMENTS]; // array of 4 char elements
double realArray[NUM_ELEMENTS]; // array of 4 double elements
string stringArray[NUM_ELEMENTS]; // array of 4 string elements

construct three arrays, each having four elements (i.e., having capacity 4), but each con-
taining no values (i.e., each having size 0); charArray has space for four characters (each
stored in 1 byte),

realArray has space for four double values (each typically stored in 4 bytes),

and stringArray has space for four string objects, for which the storage require-
ments vary according to the lengths of the string values being stored.

These declarations are examples of the following (simplified) form of an array
declaration:

To understand the implications of an array declaration, it is useful to contrast a char
array and a string object:

array Declaration (simpliFieD)

Form:

 type array_name[CAPACITY];

where:
 type is any defined type (predefined or programmer defined);
 array_name is the name of the array object being declared; and
 CAPACITY is the number of values the object can contain.

PurPose:

Instructs the compiler to reserve sufficient storage to hold CAPACITY objects of type type,
and associates the name array_name with that storage.

[0]

charArray

[1] [2] [3]

[0]

realArray

[1] [2] [3]

K11207.indb 458 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    459  

const int CAPACITY = 16;
char charArray[CAPACITY];
string aString;

The capacity of charArray is fixed at 16 bytes and cannot change during program execu-
tion. By contrast, the object aString is a container with a varying capacity (initially of
capacity zero); it will automatically grow as needed, according to the number of characters
stored in it.

It is important to remember this property of C-style arrays: Unlike a string object,
the capacity of a C-style array is fixed when the program is compiled. If we try to enter the
capacity at run time as in

cout << "Enter the number of components: ";
int arrayCapacity;
cin >> arrayCapacity;
int count[arrayCapacity]; // ERROR!

a compilation error will result. The reason is that the memory for a C-style array is allocated by
the compiler, and so the capacity of the array must be available when its definition is compiled.

It is good programming practice to use integer constants to specify the capacity of arrays
as in

const int CAPACITY = 5;
double count[CAPACITY];

.

.

.
for (int i = 0; i < CAPACITY; i++)

cout << count[i] << endl;

rather than using integer literals:

double count[5];
.
.
.

for (int i = 0; i < 5; i++)
cout << count[i] << endl;

This makes the program more flexible. It is sometimes necessary to adjust the capacity of
an array several times before the final version of a program is completed or to modify the
capacity after the program has been in use for some time. If literals are used, making these
modifications requires finding and changing each literal throughout the entire program:

double count[100];
.
.
.

K11207.indb 459 6/15/12 10:08 AM

460    ◾    Programming in C++ for Engineering and Science

for (int i = 0; i < 100; i++)
cout << count[i] << endl;

But if a named constant (such as CAPACITY) is used throughout the program, then modi-
fying the capacity of the array requires only a single modification—change the declaration
of the named constant:

const int CAPACITY = 100;
double count[CAPACITY];

.

.

.
for (int i = 0; i < CAPACITY; i++)

cout << count[i] << endl;

When the program is recompiled, the compiler will update all uses of CAPACITY with the
new value, saving time and ensuring consistent capacities in all array accesses.

12.2.1 Array Initialization

As noted, simple array declarations of the form

type array_name[CAPACITY];

specify no initialization for the array. Because no initial values are supplied, such arrays
will usually contain whatever “garbage” values remain from prior use of the memory block
allocated to the array.

Because an array can store different values in its elements, it cannot be initialized with
a single value:

int intArray[CAPACITY] = 0; // ERROR!

Instead, an array literal can be used; this is a sequence of initializing values listed between
curly braces, { and }, and separated by commas; for example,

const int CAPACITY = 10;
int intArray[CAPACITY] = {9,8,7,6,5,4,3,2,1,0};

The first value in the list is stored in the first array element, the second value in the second
element, and so on, resulting in an object that can be pictured as follows:

if the number of initial values listed is less than the capacity of the array, then those elements
for which no initial values were provided are each set to zero. For example, the declarations

9

[0]

intArray 8

[1]

7

[2]

6

[3]

5

[4]

4

[5]

3

[6]

2

[7]

1

[8]

0

[9]

K11207.indb 460 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    461  

const int CAPACITY = 10;
double intArray[CAPACITY] = {9,8,7,6,5,4}; // Okay!

will construct intArray as follows:

The program in Example 12.1 used this feature to initialize the array of counters:

int count[CAPACITY] = {0};

This declaration explicitly initializes the first element to 0 and implicitly initializes the
remaining elements to the zero default value. This sort of initialization is needed for an
array of counters, because if no initialization is supplied in an array definition, then the
values in the array will be undefined and will likely contain “garbage” values.

Initializing a char array in this way by listing all the individual characters with each
enclosed within single quotes is rather tedious; for example,

char units[CAPACITY] = {'s', 'q', '.', ' ', 'f', 'e', 'e', 't'};

But for convenience, we can use a character string instead of the list of characters:

char units[CAPACITY] = "sq. feet";

In either case, the unfilled positions are filled with a control character '\0' known as the
null character that serves as an end-of-string mark:

To provide room for the null character, the capacity of a character array must always be at
least one more than the size of the largest string to be stored in the array. Failing to provide
this space can lead to errors that are difficult to find. Because C++ provides a string
class that eliminates such problems, it seems wise to use it instead.

12.2.2 The Subscript operation

In Chapter 7, we saw that the individual characters in a string object can be accessed
using the subscript operator and an index. More precisely, the character at index i
within a string object aString can be accessed by using aString[i]. In the same
way, the value at index i in an array named array_name can be accessed using
array_name[i].

9

[0]

intArray 8

[1]

7

[2]

6

[3]

5

[4]

4

[5]

0

[6]

0

[7]

0

[8]

0

[9]

s

[0]

units q

[1]

.

[2]

f

[3] [4]

e

[5]

e

[6]

t

[7]

\0

[8]

\0

[9]

K11207.indb 461 6/15/12 10:08 AM

462    ◾    Programming in C++ for Engineering and Science

inStream >> numFailures;
if (inStream.eof()) break;
count[numFailures]++;

The program in Example 12.1 gives examples of this subscript operation. The statements
inside the input loop, read a value from inStream into numFailures and (after testing
for the end-of-file condition) increment the element of count whose index is equal to the
value of numFailures. Because there are 98 zeros in the data file, count[0] is incre-
mented 98 times; because there are 16 ones in the file, count[1] is incremented 16 times;
and so on. After input is complete, count contains the following values:

The for loop that generates the program’s output also uses the subscript operator:

for (int i = 0; i < CAPACITY; i++) // output counters
cout << count[i] << " had " << i

<< " failed components (" // and percentages
<< double(count[i]) / numCircuitBoards * 100
<< "%)" << endl;

In the first pass through the loop, i is 0, so count[i] accesses the value 98, producing
the output

98 had 0 failed components (81.7%)

In the second pass, i is 1, so count[i] accesses the value 16, producing the output

16 had 1 failed components (13.3%)

The remaining lines of output are generated in a similar way.

12.2.3 Array-Processing Functions

Functions can be written that accept arrays via parameters and then operate on the arrays
by operating on individual array elements. For example, to find the average of the first n
elements in an array of double values, we could use:

double arrayAverage(const double anArray[], int n)
{

double sum = 0.0;
for (int i = 0; i < n; i++)
sum += anArray[i];

return sum / n;
}

98

[0]

count 16

[1]

3

[2]

2

[3]

1

[4]

0

[5]

K11207.indb 462 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    463  

As this example illustrates, placing a pair of brackets ([]) after the name of a parameter
indicates that the parameter is an array and that it is not necessary to specify its capacity.
In this case, there is no restriction on the capacity of the array that is passed to the function.

It is also important to remember that array parameters are automatically reference param-
eters—no ampersand (&) is used to indicate this. This means that if the function modifies
the array, then the corresponding argument in the calling function will also be modified.
This can be prevented by declaring the array as a const parameter as in this example.

12.2.4 typedef

C++ inherits another mechanism from C that can be used to increase the readability of a pro-
gram and to make some types easier to use—the typedef declaration. A simple form of it is

typedef ExistingTypeName NewTypeName;

which makes the name NewTypeName a synonym for ExistingTypeName. This can
be used to write functions with generic types for their return value and/or its parameters
or local variables:

ItemType someFunction(... ItemType param, ...)
{ . . . }

To use this function with double values we need only precede the function with

typedef double ItemType;

If sometime later we wanted to use it with float values, we could change this to

typedef float ItemType;

A modified form is used for arrays:

typedef element_type NewTypeName[CAPACITY];

This declaration associates the name NewTypeName with arrays whose capacity is
CAPACITY and whose elements are of type element_type. For example,

typedef double DoubleArray[100];

specifies that the identifier DoubleArray can be used as the name of a type for an array
of 100 double elements.1

12.2.5 warnings/Limitations of Arrays

Arrays have provided a basic and important tool for structuring data for more than a half-
century, but it is important to note that they do not have some of the safeguards that we might

1 Arrays can also be indexed using enumerated types. These are described on the website for this text described in the
Preface.

K11207.indb 463 6/15/12 10:08 AM

464    ◾    Programming in C++ for Engineering and Science

expect today. One that must be kept in mind is that no checking is done to ensure that indexes
stay within the range determined by an array’s declaration and that strange results may be
obtained when an index is allowed to get out of bounds. This is illustrated by the program in
Example 12.2.

Example 12.2 Out-of-Range Errors
/* Program to demonstrate aberrant behavior

resulting from out-of-range errors.
--*/

#include <iostream> // cout, <<
#include <iomanip> // setw()
using namespace std;

const int CAPACITY = 4;
typedef int IntArray[CAPACITY];

void printArray(char name, IntArray x, int numElements);

int main()
{
IntArray a = {0, 1, 2, 3},

b = {4, 5, 6, 7},
c = {8, 9, 10, 11};

int below = -3,
above = 6;

printArray('a', a, 4);
printArray('b', b, 4);
printArray('c', c, 4);

b[below] = -999;
b[above] = 999;

cout << endl;
printArray('a', a, 4);
printArray('b', b, 4);
printArray('c', c, 4);

}

/* printArray() displays an int array.

Receives: name of an array, the array, and its size
Output: name of array, and 4 values stored in it

--*/
void printArray(char name, IntArray x, int numElements)
{

K11207.indb 464 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    465  

cout << name << " = " ;
for (int i = 0; i < numElements; i++)

cout << setw(5) << x[i];
cout << endl;

}

SAMPLE RUN:
a = 0 1 2 3
b = 4 5 6 7
c = 8 9 10 11

a = 0 1 999 3
b = 4 5 6 7
c = 8 -999 10 11

Even though there are no assignments of the form a[i] = value or c[i] = value
to change values stored in a and c, the third element of a was changed to 999 and the sec-
ond element of c was changed to –999.2 This happened because the memory location being
accessed was determined by counting forward or backward from the base address of the
array—the address of the first element in the array. Thus, the illegal array references b[-3]
and b[6] accessed the memory locations associated with c[2] and a[1].

This change is obviously undesirable! An array reference such as b[500] that is very much
out of range will likely cause the program to “crash.” As this example demonstrates, it is
important to check that the array indexes are in range.

A related limitation on arrays is that the capacity of a C-style array cannot change dur-
ing program execution. If an array becomes full, we cannot enlarge it during execution to
hold more values. And as the preceding example shows, if we exceed an array’s capacity, we
may well write over values of other variables.

2 This output was produced in GNU C++. In other versions of C++, one may find that different elements are changed.

Memory
.
.
.

.

.

.

c[3]
c[2]
c[1]
c[0]
b[3]
b[2]
b[1]
b[0]
a[3]
a[2]
a[1]
a[0]

b[6]

b[-3]

K11207.indb 465 6/15/12 10:08 AM

466    ◾    Programming in C++ for Engineering and Science

Another limitation is that although there are operations and libraries for processing
arrays of characters, there are virtually no similar operations or libraries of functions for
numeric (or other type) arrays. We must implement all such operations ourselves.

12.2.6 Modern Alternatives: valarray<T> and vector<T>

We saw in Chapter 7 how C++’s class mechanism makes it possible to encapsulate data
elements and functions to process those elements in a single container. This means that
we can store an array, its capacity, and its current size within a class structure and provide
functions that ensure that the array is being used correctly—for example, by checking that
an array index does not get out of range. This is the approach used in the C++ containers
valarray<T> and vector<T>.3

One important use of arrays is in vector processing and other numeric computation in sci-
ence and engineering. In mathematics the term vector refers to a sequence (one-dimensional
array) of real values on which various arithmetic operations are performed; for example, +, –,
scalar multiplication, and dot product. Because much numeric work relies on the use of such
vectors, highly efficient libraries are essential in many fields. For this reason, C++ provides the
standard library valarray, which is designed to carry out vector operations very efficiently.

For a numeric type T, valarray<T> is basically a class that contains a C-style array
whose elements are of type T and that has several built-in operations that are important in
numeric computations. The following are two declarations of valarrays:

valarray<double> v0;
valarray<int> v1(100);

The first creates v0 as an empty valarray of doubles and the second creates v1 as
a valarray containing 100 int values, initially 0. Both of these valarrays can be
resized later, if necessary.

A vector<T> is similar to a valarray<T> in that it contains a C-style array whose
elements are of type T and it has several built-in operations. The fundamental difference,
however, is that the type T need not be numeric—it can be any type—and the operations
are more general-purpose operations.

Because valarrays are limited to numeric problems, whereas vectors can be used
in a much wider range of problems, we will focus on vectors in this chapter.4 We will
consider them in more detail in Section 12.6.

12.3 SoRTInG
A common programming problem is sorting, that is, arranging the items in a list so that
they are in either ascending or descending order. There are many sorting methods, most of
which assume that the items to be sorted are stored in an array. In this section we describe
one of the simplest methods, simple selection sort.

3 Each of these containers is actually a class template. See Section 12.6 for more information about templates.
4 More information about valarrays and vectors can be found on the book’s website described in the Preface, and

in aDTs, Data structures, and Problem solving with C++, Second Edition, by Larry Nyhoff (Upper Saddle River, NJ;
Prentice Hall, Inc., 2005).

K11207.indb 466 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    467  

12.3.1 Simple Selection Sort

The basic idea of a selection sort of a list is to make a number of passes through the list or
a part of the list, and on each pass select one item to be correctly positioned. For example,
on each pass through a sublist, the smallest item in the sublist might be found and moved
to its proper position.

As an illustration, suppose that the list 67, 33, 21, 84, 49, 50, 75 is to be sorted into
ascending order:

 We locate the smallest item and find it in the third position:

 We interchange this item with the first item and thus properly position the smallest
item at the beginning of the list:

 We now consider the sublist consisting of the items from position 2 on,

 to find the smallest item and exchange it with the second item (itself in this case) and
thus properly position the next-to-smallest item in position 2:

 We continue in this manner, locating the smallest item in the sublist of items from
position 3 on and interchanging it with the third item, then properly positioning the
smallest item in the sublist of items from position 4 on, and so on until we eventually
do this for the sublist consisting of the last two items:

67 , 33 , 21 , 84 , 49 , 50 , 75

21 , 33 , 67 , 84 , 49 , 50 , 75

21 , 33 , 67 , 84 , 49 , 50 , 75

21 , 33 , 67 , 84 , 49 , 50 , 75

21 , 33 , 49 , 84 , 67 , 50 , 75

21 , 33 , 49 , 50 , 67 , 84 , 75

21 , 33 , 49 , 50 , 67 , 84 , 75

21 , 33 , 49 , 50 , 67 , 75 , 84

K11207.indb 467 6/15/12 10:08 AM

468    ◾    Programming in C++ for Engineering and Science

Positioning the smallest item in this last sublist also positions the last item, and thus com-
pletes the sort.

Writing statements to implement simple selection sort is straightforward. The following
statements sort a list of n doubles stored in an array x into ascending order:

for (int i = 0; i < n - 1; i++)
{

// Find smallest element in sublist x[i],...,x[n-1]
double smallest = x[i];
int smallPos = i;
for (int j = i + 1; j <= n - 1; j++)
if (x[j] < smallest) // smaller item found
{

smallest = x[j];
smallPos = j;

}

// Swap smallest item with item at front of sublist
x[smallPos] = x[i];
x[i] = smallest;

}

The primary virtue of simple selection sort is its simplicity. It is too inefficient, however, for
use as a general sorting scheme, especially for large lists. One of the reasons for this is that
it does not take advantage of the fact that in many lists, some of the elements are already
in order. In particular, it takes just as long for it to sort a list that is already in order as one
that is in reverse order.

12.3.2 other Sorts

linear insertion sort is another common sorting method that, unlike simple selection sort,
takes advantage of any partial ordering of the elements that already exist. Quicksort is one of
the fastest methods of sorting and is most often implemented by a recursive algorithm. The
basic idea of quicksort is to choose some element called a pivot and then to perform a sequence
of exchanges so that all elements that are less than this pivot are to its left and all elements
that are greater than the pivot are to its right. This correctly positions the pivot and divides
the (sub)list into two smaller sublists, each of which may then be sorted independently in the
same way. This divide-and-conquer strategy leads naturally to a recursive sorting algorithm.

More information about these sorting methods and other sorting schemes can be found in
the exercises and on the text’s website described in the Preface. (See also the earlier reference
in Footnote 4.)

12.4 SEARChInG
Another important problem is searching a collection of data for a specified item and retriev-
ing some information associated with that item. For example, one searches a telephone
directory for a specific name in order to retrieve the phone number listed with that name.
We consider two kinds of searches, linear search and binary search.

K11207.indb 468 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    469  

12.4.1 Linear Search

A linear search searches consecutive elements in the list, beginning with the first element
and continuing until either the desired item is found or the end of the list is reached. To
illustrate, suppose that we have the following array x of values,

x [0] [1] [2] [3] [4] [5] [6]

33 55 11 77 66 22 44

and that we search the list for 66. Using linear search, we start at the beginning and com-
pare each value in the sequence against 66. After five comparisons we successfully locate
the desired element. If we were searching for 60 instead of 66, then after seven compari-
sons—the number of values in the container—and not finding it, we could conclude that
60 is not present. In general, linear search requires n comparisons to determine that a
sequence with n elements does not contain a specific value.

The following algorithm uses this method for searching a list of n elements stored in an
array, x[0], x[1], . . . , x[n – 1], for itemsought. It returns the location of itemsought if the
search is successful, or the value n otherwise.

Linear Search Algorithm

 1. Initialize location to 0 and found to false.

 2. While location < n and not found, do the following:

 If itemsought is equal to x[location], then

 Set found to true.

 Otherwise

 Increment location by 1.

12.4.2 Binary Search

If a list has been sorted, we can use a different method called binary search. To illustrate
it, suppose that the preceding array x has been sorted,

x [0] [1] [2] [3] [4] [5] [6]

11 22 33 44 55 66 77

and we search the list for 66.

x [0] [1] [2] [3] [4] [5] [6] searchVal

11 22 33 44 55 66 77 66

We begin by examining the middle element in the sequence (44 in this case):

x [0] [1] [2] [3] [4] [5] [6] searchVal

11 22 33 44 55 66 77 66

K11207.indb 469 6/15/12 10:08 AM

470    ◾    Programming in C++ for Engineering and Science

Because 66 (the value we are seeking) is greater than 44, we ignore the middle value and all
values to its left, and repeat the process by comparing 66 to the middle value in the remain-
der of the list (66 in this case), and we successfully locate the desired element. Note that
in contrast to the five comparisons required by linear search to locate this value, binary
search required only two comparisons.

If we had been searching for 60 instead of 66, then in the preceding step, because 60 is
less than 66, we would ignore the middle value and all values to its right, and repeat the
process by comparing 60 to the middle value in the remainder of the list (55 in this case):

x [0] [1] [2] [3] [4] [5] [6] searchVal

11 22 33 44 55 66 77 60

Because there is just one value remaining and it is not equal to the value we are seeking
(60), we conclude that 60 is not present. Determining this required just three comparisons,
in contrast to the seven comparisons required by linear search.

In general, linear search may require n comparisons to locate a particular item, but
binary search will require at most log2n comparisons. For example, for a list of 1024 (= 210)
items, binary search will locate an item using at most 10 comparisons, whereas linear search
may require 1024 comparisons.

The following algorithm uses binary search to search a list of n elements stored in an
array, x[0], x[1],..., x[n – 1], that has been ordered so the elements are in ascending order. If
itemsought is found, its location in the array is returned; otherwise, the value n is returned.

Binary Search Algorithm

 1. Initialize first to 0 and last to n – 1. These values represent the positions of the first
and last items of the list or sublist being searched.

 2. Initialize the logical variable found to false.

 3. While first ≤ last and not found, do the following:

 a. Find the middle position in the sublist by setting middle equal to the integer
quotient (first + last)/2.

 b. Compare itemsought being searched for with x[middle]. There are three
possibilities:

 i. itemsought < x[middle]: itemsought is in the first half of the sublist; set
last equal to middle – 1.

 ii. itemsought > x[middle]: itemsought is in the second half of the sublist; set
first equal to middle + 1.

 iii. itemsought == x[middle]: itemsought has been found; set location equal to
middle and found to true.

 4. If found, return middle; otherwise return n.

K11207.indb 470 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    471  

12.5 ExAMPLE: SEARChInG A ChEMISTRY DATABASE

12.5.1 Problem

A data file contains information about inorganic compounds on pairs of consecutive
lines—its name on one line and on the next line, its formula and specific heat (the ratio of
the amount of heat required to raise the temperature of a body 1°C to that required to raise
an equal mass of water 1°C). A table-lookup program is to be developed that will allow the
user to enter a formula and that will then search the list of formulas and display the name
and specific heat corresponding to that formula.

12.5.2 Solution
12.5.2.1 Preliminary Analysis
One way to proceed would be to use the file-processing features from the previous chap-
ter—open the file, read lines until we find the one containing the desired formula, display
that line on the screen, and close the file. This would be acceptable if we were only going
to be searching for one or perhaps a few formulas. However, retrieving information from
a file in secondary memory is much slower than processing data in main memory, so that
having to repeatedly open and close the file and search it from the beginning might be too
time-consuming for a large number of searches, especially if the file is large.

The obvious solution is to make one pass through the file and copy the items into sepa-
rate arrays in main memory where we can process them rapidly. However, what capacity
should we give the arrays? If we make them too small, we can’t store all of the data. But
if we make them huge, we waste too much memory. What is needed is an array that can
grow as we add items to it, and as we will see in the next section, this is what a vector<T>
object can do. Thus, we will use the following objects to store the data from the file:

formula: vector<string> object to store the chemical formulas

name: vector<string> object to store their names

specificHeat: vector<float> object to store their specific heats

The program in Example 12.3 show the usefulness of such vector<T> objects. It
implements the following algorithm:

 1. Open the file and read the formulas, names, and specific heats and store them in for-
mula, name, and specificheat, respectively.

 2. Repeat the following until user enters “QUIT” for aFormula:

 a. Enter aFormula.

 b. If aFormula == “QUIT” terminate repetition; otherwise continue with the
following:

 c. Search to find the location of aFormula in formula or determine that it is not
present.

K11207.indb 471 6/15/12 10:08 AM

472    ◾    Programming in C++ for Engineering and Science

 d. If aFormula is found,

 Display the location-th elements of name and specificheat.

Else

 Display a “Not Found” message.

Example 12.3 Searching a Chemistry Database

/* Program to read a file containing the name, formula, and specific
heat for various inorganic compounds and store these in vector<T>
objects. The user then enters various formulas; the list of
formulas is searched for each; if found, its name and specific
heat are displayed.

Input(keyboard): name of data file and formulas (or "QUIT")
Input(file): chemical formulas, names, and specific heats
Output(screen): Prompts for formulas; if found, name and specific

heat displayed; otherwise, a "not found" message
--*/

#include <iostream> // cin, cout, >>, <<
#include <fstream> // ifstream
#include <cassert> // assert()
#include <string> // string, getline()
#include <vector> // vector<T>
using namespace std;

int main()
{

cout << " Program reads chemical formulas until user enters QUIT.\n"
" For each formula, it searches a list of formulas, and if\n"
" the formula is found, the name and specific heat of that\n"
" inorganic compound is displayed; otherwise,'Not Found' "
"is displayed.\n\n";

// Open an input stream to the file
cout << "Enter the name of the input file: ";
string inputFileName;
getline(cin, inputFileName);
ifstream inStream;
inStream.open(inputFileName.data());
assert(inStream.is_open());

// Copy contents of file into 3 vector<T>s
string aFormula, name1, name2;
float aSpecificHeat;
vector<string> formula, name;
vector<float> specificHeat;

K11207.indb 472 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    473  

for (;;)
{
inStream >> name1 >> name2;
inStream >> aFormula >> aSpecificHeat;
if (inStream.eof()) break;
name.push_back(name1 + " " + name2);
formula.push_back(aFormula);
specificHeat.push_back(aSpecificHeat);

}
inStream.close();

// Retrieve information about formulas for user
for(;;)
{
cout << "\nEnter a formula (QUIT to stop): ";
cin >> aFormula;
if (aFormula == "QUIT" || aFormula == "quit") break;

int location = 0;
bool found = false;
while (location < formula.size() && formula[location] != aFormula)

location++;
found = (location < formula.size());

if (found)
cout << "Name: " << name[location]

 << " Spec. Heat: " << specificHeat[location] << endl;
else
{
cout << aFormula << " == not found\n";
cout << "Would you like a list of formulas (Y or N)? ";
char response;
cin >> response;
if (response == 'Y' || response == 'y')
for (int i = 0; i < formula.size(); i++)
 cout << formula[i] << endl;

}
}

}

LISTING OF chemfile.txt:

Silver Chloride
AGCL 0.0804
Aluminum Chloride
ALCL3 0.188
Gold Iodide
AUI 0.0404
Barium Carbonate
BACO3 0.0999
Calcium Carbonate

K11207.indb 473 6/15/12 10:08 AM

474    ◾    Programming in C++ for Engineering and Science

CACO3 0.203
Calcium Chloride
CACL2 0.1604
Ferric Oxide
FE2O3 0.182
Hydrogen Peroxide
H2O2 0.471
Potassium Chloride
KCL 0.162
Lithium Flouride
LIF 0.373
Sodium Bromide
NABR 0.118
Sodium Chloride
NACL 0.204
Lead Bromide
PBBR2 0.0502
Silicon Carbite
SIC 0.143
Stannous Chloride
SNCL2 0.162
Zinc Sulfate
ZNSO4 0.174

SAM PLE RUN:
Program reads chemical formulas until user enters QUIT.
For each formula, it searches a list of formulas, and if
the formula is found, the name and specific heat of that
inorganic compound is displayed; otherwise, 'Not Found' is displayed.

Enter the name of the input file: chemFile.txt

Enter a formula (QUIT to stop): NACL
Name: Sodium Chloride Spec. Heat: 0.204

Enter a formula (QUIT to stop): PBR
PBR == not found
Would you like a list of formulas (Y or N)? Y
AGCL
ALCL3
AUI
BACO3
CACO3
CACL2
FE2O3
H2O2
KCL
LIF
NABR

K11207.indb 474 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    475  

NACL
PBBR2
SIC
SNCL2
ZNSO4

Enter a formula (QUIT to stop): PBBR2
Name: Lead Bromide Spec. Heat : 0.0502

Enter a formula (QUIT to stop): QUIT

In the next section, we will examine the vector<T> class template in detail.

12.6 ThE vector<T> CLASS TEMPLATE

12.6.1 A Quick Review of Function Templates

In Section 10.6 we introduced function templates, which are patterns for functions from
which the compiler can create actual function definitions. A template typically has a type
parameter that is used as a place holder for a type that will be supplied when the function
is called. For example, we considered the following function template:

template <typename Item>
void swap(Item & first, Item & second)
{

Item temporary = first;
first = second;
second = temporary;

}

When swap() is called with

swap(int1, int2);

the compiler creates an instance of swap() in which the type parameter Item is replaced
by int—the type of the variables int1 and int2. But when swap() is called with char
values ch1 and ch2,

swap(ch1, ch2);

the compiler creates an instance of swap() in which Item is replaced by char. Function
templates thus allow a programmer to create generic functions—functions that are type
independent.

12.6.2 The vector<T> Class Template

In addition to function templates, C++ also allows class templates, which are type-
independent patterns from which actual classes can be defined. These are useful for

K11207.indb 475 6/15/12 10:08 AM

476    ◾    Programming in C++ for Engineering and Science

building generic container classes—objects that store other objects. In the early 1990s,
Alex Stepanov and Meng Lee of Hewlett Packard Laboratories extended C++ with a library
of useful class and function templates that has come to be known as the Standard Template
Library (STL) and is one of the standard C++ libraries.

One of the simplest containers in STL but one that is very useful is the vector<T>
class template, which can be thought of as a type-independent pattern for a self-contained
array class whose capacity may change. Declarations of vector<T> objects can have the
following forms:

Declaration Description
vector<type> v; Construct v with capacity 0 and whose elements will be of the

specified type
vector<type> v(n); Construct v with capacity n and whose elements will be of the

specified type
vector<type> v(n, initVal); Construct v as a vector<type> with capacity n and whose

elements will be of the specified type and initialized to
initVal

For example, for the declarations

vector<string> formula, name;
vector<float> specificHeat;

in the program of Example 12.3, vector<string> and vector<float> are
classes formed from the vector<T> template. These declarations create two
vector<string> objects named formula and name and a vector<float> object
named specificHeat, meaning that formula and name can store string values
and specificHeat can store float values. Initially, these objects all have capacity
and size that are both zero. If we wish to begin with objects having a nonzero capacity,
we can attach constants to the names; for example,

vector<float> specificHeat(10);

creates the vector<float> object specificHeat, but its internal array has been
preallocated with a capacity of 10. And if we wish to have these array elements filled with
some initial value, we can add a second value in this declaration; for example,

vector<float> specificHeat(10, 0);

will initialize each of the array elements of specificHeat to 0. Here, we will restrict our
attention to the simpler form because, as the program in Example 12.3 demonstrates, starting
with capacity 0 is not usually a problem because unlike a C-style array whose capacity
must be known at compile-time, the space for a vector<T> object is allocated during
program execution and can expand when necessary.

K11207.indb 476 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    477  

12.6.2.1 vector<T> Function Members
The following table lists some of the most useful function members provided for
vector<T> objects:

Function Member Description
v.capacity() Return the number of values v can store before it expands
v.size() Return the number of values v currently contains
v.empty() Return true if and only if v contains no values (i.e., v’s

size is 0)
v.reserve(n); Grow v so that its capacity is n (does not affect v’s size)
v.push_back(value); Append value at v’s end and increase v’s size by 1
v.pop_back(); Erase v’s last element and decrease v’s size by 1
v.front() Return a reference to v’s first element
v.back() Return a reference to v’s last element

To illustrate some of these, suppose we write

vector<int> intVector;
cout << "Capacity Size" << endl;
cout << " " << intVector.capacity()

<< "\t\t" << intVector.size() << endl;
for (int i = 1; i <= 65; i++)
{
intVector.push_back(i);
cout << " " << intVector.capacity()

<< "\t\t" << intVector.size() << endl;
}

Execution of these statements on one machine produced

Capacity Size
 0 0
 1 1
 2 2
 4 3
 4 4
 8 5
 8 6
 8 7
 8 8
 16 9
 .
 .
 .
 16 16
 32 17
 32 18

K11207.indb 477 6/15/12 10:08 AM

478    ◾    Programming in C++ for Engineering and Science

 .
 .
 .
 32 32
 64 33
 .
 .
 .
 64 64
 128 65

We see that in this version of C++ (GNU C++), the capacity of intVector increased to
1 when the first value was added to it and then doubled each time more space was needed.
(In some other versions, the capacity may increase by a factor other than 2.)

When the declaration of intVector was changed to

vector<int> intVector(3, 0);

execution of the statements produced

Capacity Size
 3 3
 6 4
 6 5
 6 6
 12 7
 12 8
 12 9
 12 10
 12 11
 12 12
 24 13
 .
 .
 .
 24 24
 48 25
 48 26
 .
 .
 .
 48 48
 96 49
 96 50
 .
 .
 .
 96 67
 96 68

K11207.indb 478 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    479  

Here, we see that the capacity is initially 3, as expected, but when a fourth value is appended
to the full intVector, its capacity doubles from 3 to 6. Similarly, when the capacity of
intVector is 6 and we add a seventh value, its capacity doubles again (to 12), and so on.
If we want to override this default doubling of a vector<T>’s capacity, we can use the
reserve() function member; for example,

if (intVector.capacity() == intVector.size())
 intVector.reserve(1.5 * intVector.capacity());

Our example demonstrates how push_back() can be used to add elements at the end
of a vector<T> object. It is the function member most commonly used to store input
values in vector<T> objects. To illustrate it, consider the following code:

vector<double> realVector;
double value;
cout << "Enter real values to add to vector (–999 to stop):\n"
for(;;)
{

cout << "Enter next value: ";
cin >> value;
if (value == -999) break;
realVector.push_back(value);

}

If we input the values 4.3, 7.2, 5.9, 9.1, 8.8, –999 and the capacity of a vector<T> doubles
when more space is needed as in our earlier example, realVector’s capacity will be 8
and its size 5:

If we wish to remove the last element, we can use realVector.pop_back(). It will
decrease the size of vector<T> by 1, but it does not change its capacity.

12.6.2.2 Other vector<T> Operations
There are four basic operators defined for vector<T> objects:

Operation Description
v[i] Access the element of v whose index is i
v1 = v2 Assign a copy of v2 to v1
v1 == v2 Return true if and only if v1 has the same

values as v2 in the same order
v1 < v2 Return true if and only if v1 is

lexicographically less than v2

4.3

[0]

realVector 7.2

[1]

5.9

[2]

9.1

[3]

8.8

[4] [5] [6] [7]

4.3

[0]

realVector 7.2

[1]

5.9

[2]

9.1

[3] [4] [5] [6] [7]

K11207.indb 479 6/15/12 10:08 AM

480    ◾    Programming in C++ for Engineering and Science

The first is the familiar subscript operator that provides access to the element with a given
index. As noted, the index of the first element of a vector<T> object is 0, and the expres-
sion vectorName.size() – 1 is always the index of the final value in vectorName. This
allows all of the values stored in a vector<T> object to be processed using a for loop and
the subscript operator. For example, to output the elements of realVector we could use

for (int i = 0; i < realVector.size(); i++) // display
cout << realVector[i] << endl; // vector

Although the vector<T> subscript operation is similar to that of string objects and
C-style arrays, there is one important difference. To illustrate it, suppose we wrote the fol-
lowing function to read values into a vector<T> object:

template <typename T>
void read(istream & in, vector<T> & theVector)
{

int count = 0;

for (;;)
{
in >> theVector[count]; // ERROR:
if (in.eof()) break; // size & capacity not updated!
count++;

}
}

This does not work correctly because if the subscript operator is used to append values to
a vector<T> object, neither its size nor its capacity is modified; push_back() should
always be used to append values to a vector<T> object because it updates the vector’s
size (and if necessary, its capacity). Example 12.4 shows one way to write a correct, generic
vector<T> input function that uses the end-of-file mark as a sentinel value and a generic
output function.

Example 12.4 vector<T> I/O

/* read() fills a vector<T> with input from a stream.

Receives: type parameter T, for which >> is defined
an istream and a vector<T>

Input: a sequence of T values
Passes back: the modified istream and vector<T>

--*/

template <typename T>
void read(istream & in, vector<T> & theVector)
{

K11207.indb 480 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    481  

T inputValue;

for (;;)
{
in >> inputValue;
if (in.eof()) break;
theVector.push_back(inputValue);

}
}

/* display() outputs a vector<T> to a stream.

Receives: type parameter T, for which << is defined
 an ostream and a vector<T>
Output: each T value stored in theVector to ostream out
Passes back: the modified ostream

--*/

template <typename T>
void display(ostream & out, const vector<T> & theVector)
{
 for (int i = 0; i < theVector.size(); i++)

out << theVector[i] << ' ';
}

Because an ifstream is a specialized form of istream, function template read()
can be used to fill a vector<T> from a file by passing it an open ifstream to that file
as an argument:

ifstream fin("data.txt");
read(fin, realVector);

Similarly, because an ofstream is a specialized form of ostream, function template
display() can be used to output a vector<T> to a file by passing it an open ofstream
to that file as an argument:

ofstream fout("output.txt");
display(fout, realVector);

The assignment operator (=) is straightforward, behaving exactly as one would expect;
that is, if v1 and v2 are vector<T> objects for the same type T, the statement

v1 = v2;

will change v1 to a copy of v2.
The equality operator (==) is also straightforward;

v1 == v2

K11207.indb 481 6/15/12 10:08 AM

482    ◾    Programming in C++ for Engineering and Science

will compare v1 and v2, element by element, and will have the value true if and only if
they are identical; that is, their sizes match and their values match. Similarly,

v1 < v2

will perform an element-by-element comparison until a mismatch (if any) occurs. If the
mismatched element in v1 is less than the corresponding element in v2, the value of this
expression will be true; otherwise it will be false. It will also be false if all the ele-
ments of v1 and v2 are compared and no mismatch is found.

12.6.2.3 vector<T> Function Members Involving Iterators

As we have seen, the elements of a vector<T> object can be accessed using an index
and the subscript operator. However, some of the operations (and those for other STL
containers as described in the next section) require a different method of access using
objects called iterators. Basically, an iterator is a special kind of object that can “point
at” an element of a container such as vector<T> by storing its memory address and
has built-in operations that can access the value stored there and can move from one
element to another.

Each STL container provides its own group of iterator types and (at least) two methods
that return iterators:

•	 begin(): returns an iterator positioned at the first element in the container

•	 end(): returns an iterator positioned immediately after the last value in the
container

The following table includes the vector<T> versions of these methods and other impor-
tant operations that use iterators:

Function Member Description
v.begin()
v.end()

Return an iterator positioned at v’s first value
Return an iterator positioned immediately after v’s
last value

v.rbegin()
v.rend()

Return a reverse iterator positioned at v’s last value
Return a reverse iterator positioned one element
before v’s first value

v.insert(pos, value);
v.insert(pos, n, value);

Insert value into v at iterator position pos
Insert n copies of value into v at iterator position
pos

v.erase(pos);
v.erase(pos1, pos2);

Erase the value in v at iterator position pos
Erase the values in v from iterator positions pos1 to
pos2

For vector<T>, an iterator declaration has the form

vector<T>::iterator it = initial-value;

K11207.indb 482 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    483  

where the initialization is optional. Three of the important operators on such iterators are:

it++ Moves it forward to the next element of a vector

it++ Moves it backward to the preceding element of a vector

*it Accesses the value at the position pointed to by it

The following statements show how iterators could be used in a loop to output a
vector<double> v:

for (vector<double>::iterator it = v.begin(); it != v.end(); it++)
cout << *it << " ";

cout << endl;

More details about the use of iterators can be found on the book’s website described in the
Preface.

12.7 An oVERVIEw oF ThE STAnDARD TEMPLATE LIBRARY
In addition to the built-in operations on vector<T> objects that we have described, there
are several other operations that can be performed on vector<T>s (and other containers).
However, to understand them, we need to know more about the C++ Standard Template
Library (STL).

12.7.1 The organization of STL

As noted earlier, the Standard Template Library is a library of C++ class and function tem-
plates developed by Alex Stepanov and Meng Lee of Hewlett Packard Laboratories in the
early 1990s. When the C++ standard was finalized, this library was included as one of the
standard C++ libraries.
 STL has several different kinds of components, including

 1. Containers: A group of class templates that provide standardized, generic, off-the-
shelf structures for storing data:

vector

list

deque

stack

queue

priority _ gueue

map and multimap

set and multiset

K11207.indb 483 6/15/12 10:08 AM

484    ◾    Programming in C++ for Engineering and Science

 2. Iterators: A generic means of accessing, finding the successor of, and finding the
predecessor of a container element

 3. Algorithms: A group of function templates that provide standardized, generic, off-
the-shelf functions for performing many of the most common operations on con-
tainer objects.

The algorithms in STL are designed to be generic so they can operate on various con-
tainers. To make this possible, each container provides iterators that serve as the interface
used by the algorithms to operate on that container.

For example, if we wanted to sort the chemical formulas stored in the vector<string>
object name in Example 12.3 we could use

sort(name.begin(), name.end());

Here, sort() is an STL algorithm that requires two iterators: one to the first element
in the sequence (name.begin() in our example) and one to the end of the sequence
(name.end() in our example). More information about iterators is given on the book’s
website described in the Preface.

STL provides over 80 algorithm templates. An in-depth examination of these algorithms
is beyond the scope of this text and is left for other texts (see Footnote 3).

Like sort(), most of the algorithms are function templates designed to operate on a
sequence of elements, rather than on a specific container. The STL way of designating a
sequence for an algorithm is by using two iterators:

•	 An iterator positioned at the first element in the sequence

•	 An iterator positioned after the last element in the sequence

In the discussion that follows, we will refer to these two iterators as begin and end, respec-
tively. The table that follows provides a brief introduction to what is available. all of these
algorithms are in the <algorithm> library except for accumulate(), which was moved
to the <numeric> library in the final C++ standard.

accumulate(begin, end, init) Return the sum of the values in the sequence; init is the
initial value for the sum (e.g., 0 for integers, 0.0 for reals)

binary_search(begin, end, value) Return true if value is in the sorted sequence; if not
present, return false

Container Classes Algorithms

Iterators

K11207.indb 484 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    485  

find(begin, end, value) A search intended for unsorted sequences; return an
iterator to value in the sequence; if not present, return
end

count(begin, end, value) Return how many times value occurs in the sequence
fill(begin, end, value); Assign value to every element in the sequence
for_each(begin, end, f); Apply function f to every element in the sequence
lower_bound(begin, end, value); Return an iterator to the first position at which value can

be inserted and the sequence remain sorted
upper_bound(begin, end, value); Like lower_bound() but returns iterator to last

position
max_element(begin, end) Return an iterator to the maximum sequence value
min_element(begin, end) Return an iterator to the minimum sequence value
next_permutation(begin, end); Rearrange the sequence to its next permutation; return

true if there is one, else return false
prev_permutation(begin, end); Like next_permutation() but rearrange sequence to

its previous permutation; return iterator to last position
random_shuffle(begin, end); Shuffle the values in the sequence randomly
replace(begin, end, old, new); In the sequence, replace each value old with new
reverse(begin, end); Reverse the order of the values in the sequence
sort(begin, end); Sort the sequence into ascending order
unique(begin, end); In the sequence, replace any consecutive occurrences of

the same value with one instance of that value

Familiarity with the standard algorithms in C++ can save considerable time and effort
and allow us to write functions that are more streamlined and efficient. The function in
Example 12.5 and the example following it illustrate this. The function finds the mean
of the values in a vector<double> using the accumulate() algorithm from the
<numeric> library to sum the values in the vector instead of writing a loop to do this.

Example 12.5 Finding the Mean of a vector<double>

/* Function to find the mean value in a vector<double>.

Receive: vec, a nonempty vector<double>
Return: the mean of the values in vec
Note: Must #include <numeric> to use accumulate()

--*/

double mean(const vector<double> & vec)
{
if (vec.empty())
{

cerr << "\n***mean(vector): vector is empty!" << endl;
return 0.0;

}
else

K11207.indb 485 6/15/12 10:08 AM

486    ◾    Programming in C++ for Engineering and Science

return accumulate(vec.begin(), vec.end(), 0.0) / vec.size();
}

Now suppose the following vector<double> named ratings contains a sequence
of ratings on a scale from 0 to 10 of a new product by a group of testers:

To reduce the effect of bias, the high score (9.9) and the low score (4.5) are to be thrown out
and the mean of the remaining scores computed.

Eliminating the low score can be done in one step using STL’s min_element() algo-
rithm to position an iterator at the 4.5 rating and then pass this iterator to the vector<T>
function member erase(),

ratings.erase(min_element(ratings.begin(), ratings.end()));

The maximum score can be erased using the same approach with the max_element()
algorithm:

ratings.erase(max_element(ratings.begin(), ratings.end()));

The result is that the low and high ratings are erased from ratings, the remaining values
are shifted to the left to fill their spaces, and ratings.size() and ratings.end() are
appropriately updated:

The resulting vector can then be passed to the function mean() in Example 12.5 to com-
pute the average rating.

ChAPTER SUMMARY

Key Terms

algorithm array components

array array elements

array capacity array literal

9.1

[0]

ratings 8.8

[1]

9.2

[2]

7.8

[3]

4.5

[4]

8.1

[5]

8.6

[6]

9.9

[7]

7.6

[8]

7.8

[9]

ratings.begin()

. . .

ratings.end()

9.1

[0]

ratings 8.8

[1]

9.2

[2]

7.8

[3] [4]

8.1

[5]

8.6

[6] [7]

7.6

[8]

7.8

[9]

ratings.begin()

. . .

ratings.end()

K11207.indb 486 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    487  

array size or length length attribute

base address linear insertion sort

binary search linear search

class template null (NUL) character

container searching

divide-and-conquer sorting

end-of-string mark Standard Template Library (STL)

frequency distribution subscript operation

function template subscripted variable

generic container classes type parameter

generic function typedef declaration

index valarray<T>

indexed variable vector<T>

initialization-at-declaration zero-based

iterator

noTES
•	 A simple form of an array declaration is Type[CAPACITY] name;, where Type

is the type of elements in the array, CAPACITY is the number of elements the array
can store, and name is the name of the array. The values in the array name will be
undefined and will likely be “garbage” values. The capacity cannot be changed during
program execution.

•	 An array can be initialized with an array literal: Type[CAPACITY] name = {list};,
where list is a list of Type values that will be stored in name[0], name[1], If
list has fewer than CAPACITY values, the remaining components of name will be
filled with zeroes. If CAPACITY is omitted, the capacity of name will be the number
of values in list.

•	 It is good programming practice to use an integer constant rather than an integer
literal to specify the capacity of the array in an array declaration.

•	 C++ arrays are zero based; that is, the index of the first element is zero.

•	 The value at index i in an array named name can be accessed using the subscript
operator in an expression of the form name[i]. A for loop whose loop-control vari-
able is an array index is useful for implementing array operations, because it can vary
this index in an indexed variable.

K11207.indb 487 6/15/12 10:08 AM

488    ◾    Programming in C++ for Engineering and Science

•	 For the standard C string-processing functions to work correctly with a char array,
the capacity of the array should always be at least one more than the size of the largest
string to be stored in the array so there is room for the null character that is used as
an end-of-string mark.

•	 Arrays may be passed to functions via parameters and may also be returned by func-
tions. They are always passed as reference parameters.

•	 Simple selection sort repeatedly selects one element of a list (e.g., the smallest) and
correctly positions it. Linear insertion sort inserts list elements into an already-sorted
sublist. Quicksort uses a divide-and-conquer approach to sort a list recursively and is
one of the fastest sorting methods for large lists.

•	 Linear search can be used with any list. Binary search is faster than linear search, but
can only be used with ordered lists.

•	 The vector<T> class template is an array-based container whose capacity can
increase to accommodate new elements.

•	 The index of the first value of a vector<T> object v is 0; the index of the last value
is v.size() – 1. The subscript operator [] can be used to access any of the elements
in this range, but it should not be used to append values because it will not update the
size of the vector<T> or cause the capacity to increase if the vector<T> is full.
The push_back() method should always be used instead.

Style and Design Tips

•	 C-style arrays, valarrays, and vector<T>s can be used to store sequences of values
because the elements of an array, valarray, or vector<T> all have the same type.

•	 if a problem involves a sequence of unknown or varying length or requires the use of
an operation that is predefined for a vector<T>, store the sequence in a vector<T>
instead of in a C-style array or a valarray. The vector<T> class template provides
a standardized, variable-capacity, self-contained object for storing sequences of val-
ues, and STL provides many predefined vector<T> operations.

•	 Do not reinvent the wheel. When a problem requires an operation on a vector<T>,
review the vector<T> function members and STL algorithms to see if the oper-
ation is already defined or if there are other operations that make yours easier to
implement.

•	 When using C-style arrays, always define their capacity using a constant, not a literal.
Such a constant can be used to control for loops, be passed to functions, and so on,
which simplifies program maintenance if the array must be resized.

warnings

 1. in C++, the subscript operator is a pair of square brackets, not a pair of parentheses.
An attempt to access element i of an array A by using A(i) will be interpreted by the

K11207.indb 488 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    489  

C++ compiler as a call to a function named A, passing it the argument i; a compile-
time error will usually result.

 2. The first element of a C++ array, valarray, or vector<T> has the index value
 0—not 1, as in some other programming languages. Forgetting this can produce puz-
zling results.

 3. a character string literal is invisibly terminated with the nul character '\0', and a
character array must leave room for this character. Most of the standard operations
for processing character arrays use the NUL character as an end-of-string mark. If a
program mistakenly constructs a character array containing no terminating charac-
ter or somehow overwrites the terminating character of a string with some nonnull
value, the results are unpredictable, but can easily produce a run-time error.

 4. no checking is performed to ensure that array, valarray, or vector<T> indices
stay within the range of valid indices. As the program in Example 12.2 demonstrates,
out-of-range indices can produce obscure errors whose source can be difficult to find.

 5. array arguments are automatically passed by reference; thus, if a function changes an
array parameter, the corresponding array argument will also be changed. A function
having an array parameter through which a value is being passed back to its caller
should not declare the array as a reference parameter. If it has an array parameter that
is being received but not returned, it should be declared as a const parameter.

 6. always append new values to a vector<T> using push_back(). The size, capac-
ity, and iterators of a vector<T> are all correctly updated by push_back(). None
of these are updated by the subscript operator, however, so it should not be used to
append values to (or insert values beyond the size of) a vector<T>.

 7. When nesting sTl templates, leave a space between the two > symbols. A common
mistake is to forget this and write

vector<vector<int>> myGrid;

 to define myGrid as a vector of vectors. The compiler will read the >> as the output
operator, and because this makes no sense in this context, a compilation error will
result. The proper approach is to leave a space:

vector< vector<int> > myGrid;

TEST YoURSELF

Section 12.2

Questions 1–16 assume the following definitions:

double a[5],
b[5] = {0},
c[5] = {1},

K11207.indb 489 6/15/12 10:08 AM

490    ◾    Programming in C++ for Engineering and Science

d[5] = {0,0,0,0,0},
e[5] = {1,2,3,4,5};

char f[5] = {'a', 'b'},
g[5] = "abcde";

typedef int alpha[5];
alpha beta;

 1. (True or false) a is an array indexed 0, 1, 2, 3, 4, 5.

 2. (True or false) All elements of a are initialized to 0.

 3. (True or false) All elements of b are initialized to 0.

 4. (True or false) All elements of c are initialized to 1.

 5. (True or false) The definition of d could be shortened to double d[5] = {0};.

 6. (True or false) The definition of b could be shortened to double b[5] = 0;.

 7. (True or false) e[3] == 3.

 8. The capacity of a is .

 9. (True or false) f[2] is the NUL character.

 10. (True or false) The definition of f could also be written char f[5] = "ab";.

 11. (True or false) g[5] contains an end-of-string mark.

 12. (True or false) alpha is an array indexed 0, 1, 2, 3, 4.

 13. (True or false) beta is an array indexed 0, 1, 2, 3, 4.

 14. The address of a[0] is called the address of a.

 15. (True or false) The output produced by cout << e << endl; will be 12345.

 16. (True or false) The output produced by cout << f << endl; will be ab.

 17. (True or false) C-style arrays are self-contained.

 18. Arrays are passed as parameters.

For Questions 19–22, assume the following declarations:

 int number[5] = {1};
typedef double Dubber[5];
Dubber xValue;

Tell what values will be assigned to the array elements.

 19. for (int i = 0; i <= 4; i++)
xValue[i] = double(i) / 2.0;

K11207.indb 490 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    491  

 20. for (int i = 0; i < 5; i++)
if (i % 2 == 0)

number[i] = 2 * i;
else

number[i] = 2 * i + 1;

 21. for (int i = 1; i < 5; i++)
number[i] = 2 * number[i – 1];

 22. for (int i = 3; i >= 0; i--)
number[i] = 2 * number[i + 1];

Section 12.6

Questions 1–15 assume that the following statements have been executed:

vector<int> a, b(5), c(5, 1), d(5);
d.push_back(77);
d.push_back(88);

 1. The type of values stored in a is .

 2. The capacity of a is and its size is .

 3. The capacity of b is and its size is .

 4. The capacity of c is and its size is .

 5. The capacity of d is and its size is .

 6. What output is produced by

cout << c.front() << ' ' << c.back() << endl;

 7. What output is produced by

cout << d.front() << ' ' << d.back() << endl;

 8. (True or false) a.empty().

 9. (True or false) c < d.

 10. (True or false) c[1] == 1.

 11. What output is produced by

for (int i = 0; i < c.size(); i++)
cout << c[i] << ' ';

K11207.indb 491 6/15/12 10:08 AM

492    ◾    Programming in C++ for Engineering and Science

 12. What output is produced by

d.pop_back();
for (int i = 0; i < d.size(); i++)
cout << d[i] << ' ';

 13. d.begin() returns an iterator positioned at in d.

 14. d.end() returns an iterator positioned at .

 15. (True or false) vector<T> objects are self-contained.

For Questions 16–19, assume the declarations

 vector<double> xValue(5, 0);
 vector<int> number(5, 1);

Describe the contents of the vector<T> after the statements are executed.

 16. for (int i = 0; i <= 4; i++)
 xValue.push_back(double(i) / 2.0);

 17. for (int i = 0; i < 5; i++)
 if (i % 2 == 0)
 number.push_back(2 * i);
 else
 number.push_back(2 * i + 1);

 18. for (int i = 1; i < 5; i++)
 number.push_back(2 * number[i – 1]);

 19. for (int i = 1; i <= 3; i++)
 number.pop_back();
 for (int i = 1; i <= 3; i++)
 number.push_back(2);

 20. When, where, and by whom was the Standard Template Library (STL) developed?

ExERCISES

Section 12.2

For Exercises 1–8, assume that the following declarations have been made:

const int LITTLE = 6,
MEDIUM = 10,
BIG = 128;

int i, j, n = 10,
temp,
number[MEDIUM] = {99, 33, 44, 88, 22, 11, 55, 111, 66, 77};

char ch,
letterCount[BIG];

K11207.indb 492 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    493  

typedef double LittleDouble[LITTLE];
LittleDouble value;

Tell what value (if any) will be assigned to each array element, or explain why an error occurs:

 1. for (i = 0; i < MEDIUM; i++)
number[i] = i / 2;

 2. for (i = 0; i < LITTLE; i++)
number[i] = i * i;

for (i = LITTLE; i < MEDIUM; i++)
number[i] = number[i – 5];

 3. for (i = 0; i < 3; i++)
value[i] = 0;

for (i = 3; i < LITTLE; i++)
value[i] = 1;

 4. for (i = 1; i < LITTLE; i += 2)
{
value[i – 1] = double(i) / 2.0;
value[i] = 10.0 * value[i – 1];

}

 5. i = 0;
while (i != 10)
{
if (i % 3 == 0)

number[i] = 0;
else

number[i] = i;
i++;

}

 6. number[1] = 1;
i = 2;
do
{

number[i] = 2 * number[i – 1];
i++;

}
while (i < MEDIUM);

K11207.indb 493 6/15/12 10:08 AM

494    ◾    Programming in C++ for Engineering and Science

 7. for (ch = 'A'; ch <= 'F'; ch++)
 if (ch == 'A')
 letterCount[ch] = 1;

 else
 letterCount[ch] = letterCount[ch - 1] + 1;

 8. for (i = 0; i < n - 1; i++)
for (j = 0; j < n - i - 1; j++)
if (number[j] > number[j + 1])
{

temp = number[j];
number[j] = number[j + 1];
number[j + 1] = temp;

}

For Exercises 9–14, write definitions of the given arrays in two ways: (a) without using
typedef and (b) using typedef.

 9. An array with capacity 10 in which each element is an integer.

 10. An array whose indices are integers from 0 through 10 and in which each element is
a real value.

 11. An array with capacity 10 in which each element is an integer, all of which are initially 0.

 12. An array that can store five strings.

 13. An array that can store five characters and is initialized with the vowels a, e, i, o, and u.

 14. An array that can store 100 values, each of which is either true or false.

For Exercises 15–18, write definitions and statements to construct the given array.

 15. An array whose indices are the integers from 0 through 99 and in which the value
stored in each element is the same as the index.

 16. An array whose indices are the integers from 0 through 99 and in which the values
stored in the elements are the indices in reverse order.

 17. An array of capacity 50 in which the value stored in an element is true if the corre-
sponding index is even and false otherwise.

 18. An array whose indices are the decimal ASCII values (0-127), such that the value
stored in an element is true if the index is that of a vowel, and false otherwise.

Exercises 19–24 ask you to write functions to do various things. Also, include any typedef
declarations that are needed. To test these functions, you should write driver programs as
instructed in Programming Problems 1–6 at the end of this chapter.

K11207.indb 494 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    495  

 19. Return the smallest value stored in an array of integers.

 20. Return the largest value stored in an array of integers.

 21. Return the range of values stored in an array of integers, that is, the difference between
the largest value and the smallest value.

 22. Return true if the values stored in an array are in ascending order and false
otherwise.

 23. Insert a value into an array of integers at a specified position in the array.

 24. Remove a value from an array of integers at a specified position in the array.

Section 12.3

For each of the arrays x in Exercises 1–4, show x after each of the first four passes of simple
selection sort.

 1. i 0 1 2 3 4 5 6 7

x [i] 30 50 80 10 60 20 70 40

 2. i 0 1 2 3 4 5 6 7

x [i] 20 40 70 60 80 50 30 10

 3. i 0 1 2 3 4 5 6 7
x [i] 80 70 60 50 40 30 20 10

 4. i 0 1 2 3 4 5 6 7

x [i] 10 20 30 40 50 60 70 80

 5. One variation of simple selection sort for a list stored in an array x[0],..., x[n–1] is to
locate both the smallest and the largest elements while scanning the list and to posi-
tion them at the beginning and the end of the list, respectively. On the next scan, this
process is repeated for the sublist x[1],..., x[n–2], and so on. Write an algorithm to
implement this double-ended selection sort.

 6.–9. For the arrays x in Exercises 1–4 show x after each pass of the double-ended selection
sort described in Exercise 5.

Section 12.6

For Exercises 1–10, assume that the following declarations have been made,

vector<int> number,
v(10,20),
w(10);

int num;

K11207.indb 495 6/15/12 10:08 AM

496    ◾    Programming in C++ for Engineering and Science

and that for exercises that involve input, the following values are entered:

99 33 44 88 22 11 55 66 77 –1

Describe the contents of the given vector<T> after the statements are executed.

 1. for (int i = 0; i < 10; i++)
number.push_back(i / 2);

 2. for (int i = 0; i < 6; i++)
w.push_back(i / 2);

 3. for (;;)
{
cin >> num;
if (num < 0) break;
number.push_back(num);

}

 4. for (int i = 0; i <= 5; i++)
number.push_back(i);

for (int i = 0; i < 2; i++)
number.pop_back();

for (int i = 0; i <= 5; i++)
number.push_back(i);

For Exercises 5–10 assume that the loop in Exercise 3 has been executed.

 5. for (int i = 0; i < number.size() – 1; i += 2)
number[i] = number[i + 1];

 6. number.pop _ back();
number.push_back(number.front());

 7. int temp = number.front();
number.front() = number.back();
number.back() = temp;

 8. sort(number.begin(), number.end());

 9. for (int i = 0; i < number.size(); i++)
w.push_back(number[i] + v[i]);

K11207.indb 496 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    497  

 10. while (v < number)
{

 v.erase(v.begin());
 number.erase(number.begin());
 }

For Exercises 11–15 write a declaration for a vector<T> having the given properties.

 11. Can store long int values.

 12. Capacity 10 and each element is a long int.

 13. Capacity 10 and each element is a long int, all of which are initially 0.

 14. Capacity 5, size 5, and each element contains a string, initially "xxx".

 15. Capacity 100 and each element is either true or false.

For Exercises 16–18, write definitions and statements to construct a vector<T> with the
required properties.

 16. Stores the sequence of integers from 0 through 99.

 17. Stores the sequence of integers from 0 through 99 in reverse order.

 18. Has capacity 50, and the value stored in an element is true if the corresponding index
is even and is false otherwise.

Exercises 19–25 ask you to write functions to do various things. To test these func-
tions, you should write driver programs as instructed in Programming Problems 1–3 of
Section 12.6.

 19. Returns true if the values stored in a vector<double> are in ascending order
and false otherwise.

 20. Finds the range of values stored in a vector<double>, that is, the difference
between the largest value and the smallest value.

Exercises 21–25 deal with operations on n-dimensional vectors, which are sequences of
n real numbers and which are studied and used in many areas of mathematics and sci-
ence. They can obviously be modeled in C++ by vector<double>s of capacity n. In the
description of each operation, a and B are assumed to be n-dimensional vectors:

a = (a1, a2, . . ., an)

B = (b1, b2, . . ., bn)

K11207.indb 497 6/15/12 10:08 AM

498    ◾    Programming in C++ for Engineering and Science

 21. Compute and return the sum of two n-dimensional vectors:

a + B = (a1 + b1, a2 + b2, . . ., an + bn)

 22. Compute and return the difference of two n-dimensional vectors:

 a – B = (a1 – b1, a2 – b2, . . ., an – bn)

 23. Compute and return the product of a scalar (real number) and an n-dimensional
vector:

ca= (ca1, ca2, . . ., can)

 24. Compute and return the magnitude of an n-dimensional vector:

A n= + +a a a1
2

2
2+ ... 2

 25. Compute and return the inner (or dot) product of two n-dimensional vectors (which
is a scalar):

A B a b a b a b an n i i

i

n

⋅ = × + + × = ×()
=

∑1 1 2 2

1

× ... b

PRoGRAMMInG PRoBLEMS

Sections 12.2

 1. Write a driver program to test the smallest-element function of Exercise 19.

 2. Write a driver program to test the largest-element function of Exercise 20.

 3. Write a driver program to test the range function of Exercise 21.

 4. Write a driver program to test the ascending-order function of Exercise 22.

 5. Write a driver program to test the insert function of Exercise 23.

 6. Write a driver program to test the remove function of Exercise 24.

 7. The Rinky Dooflingy Company records the number of cases of dooflingies produced
each day over a four-week period. Write a program that reads these production num-
bers and stores them in an array. The program should then accept from the user a
week number and a day number, and should display the production level for that day.
Assume that each week consists of five workdays.

 8. The Rinky Dooflingy Company maintains two warehouses, one in Chicago and one
in Detroit, each of which stocks at most 25 different items. Write a program that first

K11207.indb 498 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    499  

reads the product numbers of items stored in the Chicago warehouse and stores them
in an array chicago, and then repeats this for the items stored in the Detroit ware-
house, storing these product numbers in an array detroit. The program should
then find and display the intersection of these two lists of numbers, that is, the collec-
tion of product numbers common to both sequences. The lists should not be assumed
to have the same number of elements.

 9. Repeat Problem 8 but find and display the union of the two lists, that is, the col-
lection of product numbers that are elements of at least one of the sequences of
numbers.

 10. Suppose that a row of mailboxes are numbered 1 through 150 and that, begin-
ning with mailbox 2, we open the doors of all the even-numbered mailboxes. Next,
beginning with mailbox 3, we go to every third mailbox, opening its door if it is
closed and closing it if it is open. We repeat this procedure with every fourth mail-
box, then every fifth mailbox, and so on. Using an array to model the mailboxes,
write a program to determine which mailboxes will be closed when this procedure
is completed.

 11. If x denotes the mean of a sequence of numbers x1, x2, . . . , xn, the variance is the
average of the squares of the deviations of the numbers from the mean,

variance =
n

x x
1

()i

i

n

2

1

∑ −
=

 and the standard deviation is the square root of the variance. Write functions to cal-
culate the mean, variance, and standard deviation of the values stored in an array,
and a driver program to test your functions.

 12. Write a program that reads a list of real numbers representing numeric scores, stores
them in an array, calls the functions from Problem 11 to calculate their mean and
standard deviation, and then calls another function to display the letter grade cor-
responding to each numeric score as determined using the grading-on-the-curve
method described in Problem 2 of Section 11.3 at the end of Chapter 11.

 13. A prime number is an integer greater than 1 whose only positive divisors are 1 and
the integer itself. The Greek mathematician Eratosthenes developed an algorithm,
known as the sieve of Eratosthenes, for finding all prime numbers less than or
equal to a given number n, that is, all primes in the range 2 through n. Consider
the list of numbers from 2 through n. Two is the first prime number, but the mul-
tiples of 2 (4, 6, 8, . . .) are not, and so they are crossed out in the list. The first num-
ber after 2 that was not crossed out is 3, the next prime. We then cross out from
the list all higher multiples of 3 (6, 9, 12, . . .). The next number not crossed out is
5, the next prime, and so we cross out all higher multiples of 5 (10, 15, 20, . . .). We
repeat this procedure until we reach the first number in the list that has not been

K11207.indb 499 6/15/12 10:08 AM

500    ◾    Programming in C++ for Engineering and Science

crossed out and whose square is greater than n. All the numbers that remain in the
list are the primes from 2 through n. Write a program that uses this sieve method
and an array to find all the prime numbers from 2 through n. Run it for n = 550
and for n = 5500.

Section 12.3

 1. Write and test a function for simple selection sort.

 2. Write and test a function for double-ended selection sort described in Exercise 5.

 3. linear insertion sort is based on the idea of repeatedly inserting a new element into
a list of already-sorted elements so that the resulting list is still sorted. The following
sequence of diagrams demonstrates this method for the list 67, 33, 21, 84, 49, 50, 75.
The sorted sublist produced at each stage is highlighted.

 Write and test a function for linear insertion sort.

 4. The investment company of Pickum & Loozem has been recording the trading price
of a particular stock over a 15-day period. Write a program that reads these prices
and sorts them into increasing order, using one of the sort methods in Problems 1–3.
The program should display the trading range, that is, the lowest and the highest
prices recorded and the median price—the middle price in the sorted list if there are
an odd number of prices, otherwise the average of the two middle prices.

Section 12.5

 1. Write and test a function for linear search.

 2. Write and test a function for binary search.

 3. The Rinky Dooflingy Company manufactures different kinds of dooflingies, each
identified by a product number. Write a program that reads product numbers and
prices, and stores these values in two arrays, number and price; number[0] and
price[0] are the product number and unit price for the first item, number[1]
and price[1] are the product number and unit price for the second item, and so
on. The program should then allow the user to select one of the following options:

67 7533 21 84 49 50, , , , , ,

33 7567 21 84 49 50, , , , , ,

21 7533 67 84 49 50, , , , , ,

21 7533 67 84 49 50, , , , , ,

21 7533 49 67 84 50, , , , , ,

21 7533 49 50 67 84, , , , , ,

21 8433 49 50 67 75, , , , , ,

Initial sorted sublist of 1 element

Insert 33 to get 2-element sorted sublist

Insert 21 to get 3-element sorted sublist

Insert 84 to get 4-element sorted sublist

Insert 49 to get 5-element sorted sublist

Insert 50 to get 6-element sorted sublist

Insert 75 to get 7-element sorted sublist

K11207.indb 500 6/15/12 10:08 AM

Arrays and the vector Class Template    ◾    501  

 a. Retrieve and display the price of a product whose number is entered by the user.
(Use the linear search procedure developed in Problem 1 to determine the index
of the specified item in the array number.)

 b. Print a table displaying the product number and the price of each item.

Section 12.6

 1. Write a driver program to test the ascending-order function of Exercise 19.

 2. Write a driver program to test the range function of Exercise 20.

 3. Write a menu-driven calculator program that allows a user to repeatedly select and
perform one of the operations on n-dimensional vectors in Exercises 21–25.

 4.–10. Proceed as in Problems 7–13 of Section 12.2, respectively, but use vector<T>s
instead of arrays.

 11. Proceed as in Problem 4 of Section 12.3 for finding the range of stock prices, but store
the prices in a vector<T> and use STL’s sort algorithm to sort the prices.

 12. Proceed as in Problem 3 of Section 12.5 for processing product numbers and prices,
but use vector<T>s instead of arrays.

 13. Write a function to evaluate a polynomial a0 + a1x + a2x2 + . . . anxn for any degree n,
coefficients a0, a1, a2, ... , an, and values of x supplied to it as arguments. Then write a
program that reads a polynomial’s coefficients and various values of x and uses the
function to evaluate the polynomial at these values.

 14. A more efficient way of evaluating polynomials is horner’s method (also known as
nested multiplication), in which a polynomial a0 + a1x + a2x2 + … anxn is rewritten as

 a0 + (a1 + (a2 + . . . (an – 1 + anx)x) . . . x)x

 For example:

 7 + 6x + 5x2 + 4x3 + 3x3 = 7 + (6 + (5 + (4 + 3x)x)x)x

 Proceed as in Problem 13, but use Horner’s method to evaluate the polynomial.

 15. Write a function to perform addition of large integers, for which there is no limit on
the number of digits. (suggestion: Treat each number as a sequence, each of whose
elements is a block of digits of the number. For example, the integer 179,534,672,198
might be stored with block[0] = 198, block[1] = 672, block[2] = 534, and
block[3] = 179. Then add the integers [lists] element by element, carrying from
one element to the next when necessary.) Write a driver program to test your
function.

 16. Proceed as in Problem 15, but for subtraction of large integers.

K11207.indb 501 6/15/12 10:08 AM

502    ◾    Programming in C++ for Engineering and Science

 17. Proceed as in Problem 15, but for multiplication of large integers.

 18. Proceed as in Problem 15, but for division of large integers.

 19. Write a big-integer calculator program that allows the user to enter two large integers
and the operation to be performed, and which calls the appropriate function from
Problems 15–18 to carry out that operation.

K11207.indb 502 6/15/12 10:08 AM

503

C h a p t e r 13

Multidimensional
Arrays and Vectors

We must assume behind this force the existence of a conscious and intelligent Mind.
This Mind is the matrix of all matter.

MAX PLANCK

Painting does what we cannot do—it brings a three-dimensional world into a two-
dimensional plane.

CHUCK JONES

We are columns left alone of a temple once complete.

CHRISTOPHER CRANCH

Everyone knows how laborious the usual Method is of attaining to Arts and Sciences;
whereas by his Contrivance, the most ignorant Person at a reasonable Charge, and

ConTEnTS
13.1 Introductory Example: A Mileage Chart 504
13.2 Multidimensional Arrays 507
13.3 Application: Oceanographic Data Analysis 515
13.4 Matrix Processing 519
13.5 Linear Systems and Electrical Networks 523
13.6 Multidimensional vector<T> Objects 527
Chapter Summary 532
Test Yourself 535
Exercises 537
Programming Problems 539

504    ◾    Programming in C++ for Engineering and Science

with a little bodily Labour, may write Books . . . He then led me to the Frame, about
the Sides whereof all his Pupils stood in Ranks. It was Twenty Foot square . . . linked
by slender Wires. These Bits . . . were covered on every Square with Paper pasted
upon them; and on These Papers were written all the Words of their Language . . .

JONATHAN SWIFT, GulliVEr’s TraVEls

In the previous chapter we introduced C-style arrays and vector<T> class templates
and used them to store sequences of values. Each of the containers considered in that

chapter had one dimension: its length, which is the number of values in the sequence.
C++ also allows arrays and vectors of more than one dimension. As we shall see, a two-

dimensional array or vector can be used to store a data set whose values are arranged in
rows and columns. Similarly, a three-dimensional array or vector is an appropriate storage
structure when the data can be arranged in rows, columns, and ranks. When there are sev-
eral characteristics associated with the data, still higher dimensions may be useful, with
each dimension corresponding to one of these characteristics. In this chapter we show how
to use such multidimensional arrays in C++ programs.

13.1 InTRoDUCToRY ExAMPLE: A MILEAGE ChART

13.1.1 Problem

A medical supply company services hospitals, laboratories, and other medical research
facilities over a large area. To aid with route-planning and estimating travel time and costs,
we need to develop an online program/application that looks up and displays the mileage
between any two cities where these facilities are located.

The basic idea is to create a software representation of a mileage chart, and then use it to
look up the distance between any two of the cities. For this example, we will consider only
six cities, but the program can be easily modified for a larger number. The mileage chart we
will use is the following:

13.1.2 object-Centered Design
13.1.2.1 Behavior
For simplicity, our program will begin by displaying on the screen a numbered menu of the
cities. It should then read the numbers of two cities from the keyboard. Next, it should look
up the mileage between those cities in a software mileage chart. Finally, it should display
that mileage.

268
90
97

0

130
262

337
74

0
97

128
144

354
0

74
90

201
174

0
354
337
268

269
475

475
174
144
262

238
0

269
201
128
130

0
238

Astroburg
Bedrock

Dogpatch
Gotham City

Metropolis
Mudville

Astr
oburg

Bed
rock

Dogp
atc

h

Gotham
 City

Metr
opolis

Mudvil
le

K11207.indb 504 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    505  

From the behavior, we identify the following objects in this problem:

As we will see, the type int[][] refers to a two-dimensional array of integers, which pro-
vides a convenient way to represent the mileage chart.

13.1.2.2 Operations
Our behavioral description gives the following set of operations:

 i. Declare a two-dimensional array with initial values.

 ii. Display a string on the screen.

 iii. Read two integers from the keyboard.

 iv. Look up an entry in a two-dimensional array.

 v. Output an integer.

13.1.2.3 Algorithm
These operations are easily organized into the following algorithm:

 1. Declare mileageChart, a two-dimensional array of city mileages.

 2. Via cout, display a menu of the cities.

 3. From cin, read two integers into city1 and city2.

 4. Compute mileage, by looking up mileageChart[city1][city2].

 5. Via cout, display mileage.

13.1.2.4 Coding
The preceding algorithm is easily encoded in C++, as shown in Example 13.1.

Example 13.1 A Mileage Calculator
 /* This program computes the mileage between two cities.

 Input: city1 and city2, two integers in the range 0..n–1 that
represent cities

Problem Objects

Software Objects

Type Kind Name

A menu of cities string constant none
The numbers of two cities int variable city1, city2
A mileage chart int[][] constant mileageChart
The mileage int variable mileage

K11207.indb 505 6/15/12 10:08 AM

506    ◾    Programming in C++ for Engineering and Science

 Output: the mileage between city1 and city2
--*/

#include <iostream> // cin, cout, >>, <<
#include <cassert> // assert()
using namespace std;

int main()
{
 const int NUMBER_OF_CITIES = 6;
 int mileageChart[NUMBER_OF_CITIES][NUMBER_OF_CITIES]

= { { 0, 97, 90, 268, 262, 130 }, // Astroburg
 { 97, 0, 74, 337, 144, 128 }, // Bedrock
 { 90, 74, 0, 354, 174, 201 }, // Dogpatch
 { 268, 337, 354, 0, 475, 269 }, // Gotham City
 { 262, 144, 174, 475, 0, 238 }, // Metropolis
 { 130, 128, 201, 269, 238, 0 } }; // Mudville

 cout << "To determine the mileage between two cities,\n"
" enter the numbers of 2 cities from this menu:\n\n"
"0 for Astroburg, 1 for Bedrock\n"
"2 for Dogpatch, 3 for Gotham City\n"
"4 for Metropolis, 5 for Mudville\n\n"
"--> ";

 int city1, city2;
 cin >> city1 >> city2;

 int mileage = mileageChart[city1][city2];

 cout << "\nThe mileage between those 2 cities is "
 << mileage << " miles.\n";
}

SAMPLE RUN:
To determine the mileage between two cities,
please enter the numbers of 2 cities from this menu:

0 for Astroburg, 1 for Bedrock
2 for Dogpatch, 3 for Gotham City
4 for Metropolis, 5 for Mudville

-->2 5

The mileage between those 2 cities is 201 miles.

K11207.indb 506 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    507  

13.2 MULTIDIMEnSIonAL ARRAYS
There are many problems, such as the mileage problem in the preceding section, in which
the data being processed can be naturally organized as a table. For these problems, two-
dimensional arrays provide a way to build a software model of a table.

The program in Example 13.1 illustrates how a two-dimensional array can be declared
and initialized. The statements

const int NUMBER_OF_CITIES = 6;
int mileageChart[NUMBER_OF_CITIES][NUMBER_OF_CITIES]

= { { 0, 97, 90, 268, 262, 130 }, // Astroburg
{ 97, 0, 74, 337, 144, 128 }, // Bedrock
{ 90, 74, 0, 354, 174, 201 }, // Dogpatch
{ 268, 337, 354, 0, 475, 269 }, // Gotham City
{ 262, 144, 174, 475, 0, 238 }, // Metropolis
{ 130, 128, 201, 269, 238, 0 } }; // Mudville

declare the object mileageChart as a two-dimensional array of integers with six rows
and six columns, which we might visualize as follows:

Although there are several pairs of curly braces in the list of values used to initialize this
array, only the outermost pair is required. We didn’t have to enclose the values for each
row in their own pair of curly braces, but this is often done to make the declaration more
readable by delimiting the values of each row.

As with one-dimensional arrays, each dimension of a two-dimensional array is indexed
starting with zero, so the six rows in our example are indexed from zero to five as are the six
columns. Also, the subscript operation used to access the elements of a one-dimensional
array is once again the central predefined operation for two-dimensional arrays. The dif-
ference is that where one-dimensional arrays use a single subscript operator to access an
element, two-dimensional arrays like mileageChart are two-dimensional objects and
require two subscript operators, one for each dimension. The element in row 0, column 0,
of mileageChart can be accessed using

mileageChart[0][0]

The element of mileageChart in the second column of the first row can be accessed using

mileageChart[0][1]

K11207.indb 507 6/15/12 10:08 AM

508    ◾    Programming in C++ for Engineering and Science

the first element of the third row using

mileageChart[2][0]

and the element at row 4, column 3 using

mileageChart[4][3]

and so on. In general, the notation

mileageChart[r][c]

can be used to access the value at row r and column c. The program in Example 13.1
looked up the mileage between city1 and city2 by accessing the element at row city1
and column city2:

int mileage = mileageChart[city1][city2];

Two-dimensional arrays like mileageChart that have the same number of rows as
columns are called square arrays. But nonsquare arrays are needed for some problems. For
example, suppose that four times a day, water temperatures are recorded at each of three
discharge outlets of the cooling system of a nuclear power plant. These temperature read-
ings can be arranged in a table having four rows and three columns:

In this table, the three temperature readings at 12 A.M. are in the first row, the three tem-
peratures at 6 A.M. are in the second row, and so on. We can model such a table with a
two-dimensional array having four rows and three columns:

const int NUM_TIMES = 4, NUM_OUTLETS = 3;
double temperatureGrid[NUM_TIMES][NUM_OUTLETS];

The C++ compiler reserves 12 memory locations for this array, which we might picture as
follows:

Outlet-A Outlet-B Outlet-C
65.5
68.8
70.4
68.5

68.7
68.9
69.4
69.1

62.0
64.5
66.3
65.8

Time
12 A.M.

6 A.M.
12 P.M.

6 P.M.

Location

[0] [1] [2]temperatureGrid:

[0]

[1]

[2]

[3]

K11207.indb 508 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    509  

The arrays milageChart and temperatureGrid have numeric elements—integers
and reals. But this is not a requirement; the elements of an array can be of any type. For exam-
ple, consider a window on a computer screen containing 24 lines with 80 characters per line:

If we number the rows from 0 through 23 and the columns from 0 through 79 with the
position of row 0 and column 0 in the upper left corner of the screen as illustrated, we can
model such a window using a two-dimensional array of characters, declared as follows:

const int ROWS = 24, COLUMNS = 80;
char window[ROWS][COLUMNS];

The typedef mechanism introduced in Chapter 12 to define an identifier as a
 synonym for a one-dimensional array type can also be used for multidimensional arrays.
For example, to declare the identifier MileageArray as a synonym for an array of double
values representing mileages, we would write

const int NUMBER_OF_CITIES = 6;
typedef double MileageArray[NUM_CITIES][NUM_CITIES];

We can then use this new type to declare the two-dimensional array mileageChart:

 MileageArray mileageChart
= { { 0, 97, 90, 268, 262, 130 }, // Astroburg

 { 97, 0, 74, 337, 144, 128 }, // Bedrock
 { 90, 74, 0, 354, 174, 201 }, // Dogpatch
 { 268, 337, 354, 0, 475, 269 }, // Gotham City
 { 262, 144, 174, 475, 0, 238 }, // Metropolis
 { 130, 128, 201, 269, 238, 0 } }; // Mudville

Similarly, we might define the type ComputerWindow by

const int ROWS = 24, COLUMNS = 80;
typedef char ComputerWindow[ROWS][COLUMNS];

0
1
2
3
4
5
6
7

.

.

.

23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 79...

K11207.indb 509 6/15/12 10:08 AM

510    ◾    Programming in C++ for Engineering and Science

and then use this new type to declare the variable window by

ComputerWindow window;

13.2.1 Defining Two-Dimensional Array operations

For operations other than subscript on a two-dimensional array, we must write functions
to perform them. Operations on one-dimensional arrays typically use a for loop to count
through the index values:

for (int i = 0; i < numberOfValues; i++)
// ... do something with oneDimensionalArray[i]

Operations that access the values stored in a two-dimensional array use two nested for
loops: an outer loop counting through the rows, and an inner loop counting through the
columns:1

for (int row = 0; row < numberOfRows; row++)
 for (int col = 0; col < numberOfColumns; col++)
 // ... do something with twoDimensionalArray[row][col]

For example, to clear the object window, we can use a function like the following:

void clearWindow(ComputerWindow theWindow, int numRows, int numColumns)
{
 for (int row = 0; row < numRows; row++)
 for (int col = 0; col < numColumns; col++)
 theWindow[row][col] = ' ';
}

To output window via cout, we could use

// Need <iomanip> for setw()
void display(ComputerWindow theWindow, int numRows, int numColumns)
{
 for (int row = 0; row < numRows; row++)
 {
 for (int col = 0; col < numColumns; col++)
 cout << setw(6) << theWindow[row][col];
 cout << endl;
 }
}

Each pass through the inner loop displays all the characters in one row of theWindow
and then moves to a new line before displaying the characters in the next row.

1 In some problems, columnwise-processing in which the outer loop counts through the columns and the inner loop
through the rows may be used.

K11207.indb 510 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    511  

13.2.2 higher-Dimensional Arrays

To illustrate the use of an array with more than two dimensions, consider again the collec-
tion of water temperatures recorded four times a day at each of three discharge outlets of
the cooling system of a nuclear power plant.

Suppose now that these temperatures are recorded for 1 week, so that seven such tables
are collected:

The collection of these tables can be modeled with a three-dimensional array object,
declared by

const int NUM_DAYS = 7, NUM_TIMES = 4, NUM_OUTLETS = 3;

typedef double
 ThreeDimTemperatureArray[NUM_DAYS][NUM_TIMES][NUM_OUTLETS];

ThreeDimTemperatureArray temperature;

The object temperature can then be used to store these 84 temperature readings.
A single subscript is used to access elements in a one-dimensional array and two sub-

scripts are used to access elements in a two-dimensional array, so it seems reasonable that
three subscripts are needed to access an element in a three-dimensional array. The first

Outlet-A Outlet-B Outlet-C
65.5
68.8
70.4
68.5

68.7
68.9
69.4
69.1

62.0
64.5
66.3
65.8

Time
12 A.M.

6 A.M.
12 P.M.

6 P.M.

Location

Outlet-A Outlet-B Outlet-C
66.5
68.4
70.1
69.5

69.4
71.2
71.9
70.0

68.4
69.3
70.2
69.4

Time
12 A.M.

6 A.M.
12 P.M.
6 P.M.

Saturday

Location

Outlet-A Outlet-B Outlet-C
63.7
64.0

66.2
66.8

64.3
64.9
66.3
65.8

Time
12 A.M.

6 A.M. Monday

Location

Outlet-A Outlet-B Outlet-C
65.5
68.8
70.4
68.5

68.7
68.9
69.4
69.1

62.0
64.5
66.3
65.8

Time
12 A.M.

6 A.M.
12 P.M.

6 P.M.

Sunday

Location

…

K11207.indb 511 6/15/12 10:08 AM

512    ◾    Programming in C++ for Engineering and Science

subscript is the day (0, 1, . . ., 6), the second subscript is the time (0, 1, 2, 3), and the third is
the location (0, 1, 2); for example,

temperature[6][3][1]

is the temperature recorded on Saturday at 6 P.M. at Outlet-B.
Three nested loops are needed to run through the elements of a three-dimensional array.

For example, if a file contains a week’s 84 temperature readings, the following function can
be used to read the values from that file into temperature:

void read(ifstream & in, ThreeDimTemperatureArray temperature,
 int numDays, int numTimes, int numOutlets)
{
 for (int day = 0; day < numDays; day++)
 for (int time = 0; time < numTimes; time++)
 for (int outlet = 0; outlet < numOutlets; outlet++)
 in >> temperature[day][time][outlet];
}

In general, n-dimensional arrays can be defined and subscript operators can be used to
access the array elements. C++ places no limit on the number of dimensions of an array,
but the number of values in each dimension must be specified. The general form of an array
declaration is as follows:

13.2.2.1 Array of Arrays Declarations
One way to view a multidimensional array is as an array of arrays, that is, an array whose
elements are other arrays. For example, consider the two-dimensional mileage chart
described earlier:

double mileageChart[NUM_CITIES][NUM_CITIES];

Because NUM_CITIES is 6, this table can be thought of as a one-dimensional array, whose
six elements are its rows:

array Declaration

Form:

ElementType arrayName[DIM1][DIM2] . . . [DIM n];

where:

 ElementType is any known type;
 arrayName is the name of the array being declared; and
 each DIMi must be a nonnegative integer (constant) value.

PurPose:

Defines an n-dimensional object whose elements are of type ElementType, in which DIM1,
DIM2, . . . , DIMn are the number of elements in each dimension.

K11207.indb 512 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    513  

Of course, each row in mileageChart is itself a one-dimensional array of six real values:

A table can thus be viewed as a one-dimensional array whose components are also one-
dimensional arrays.

C++ allows array declarations to be given in a form that reflects this perspective. To
illustrate this, consider again our table of temperature readings. Suppose we first declare a
type identifier TemperatureList to represent one set of readings at the three cooling
plant outlets at a particular time:

const int NUM_OUTLETS = 3;
typedef double TemperatureList[NUM_OUTLETS];

We can then use this new type to declare a second type TemperatureTable as an array
whose elements are TemperatureList objects:

const int NUM_TIMES = 4;
typedef TemperatureList TemperatureTable[NUM_TIMES];

[0]

[1]

[2]

[3]

mileageChart:

[4]

[5]

mileageChart:
[0]

[1]

[2]

[3]

[4]

[5]

[0] [1] [2] [3] [4] [5]

[0] [1] [2] [3] [4] [5]

[0] [1] [2] [3] [4] [5]

[0] [1] [2] [3] [4] [5]

[0] [1] [2] [3] [4] [5]

[0] [1] [2] [3] [4] [5]

K11207.indb 513 6/15/12 10:08 AM

514    ◾    Programming in C++ for Engineering and Science

This declares the name TemperatureTable as a new type, whose objects are two-
dimensional arrays of double values.

The resulting type can then be used to define a two-dimensional array object tem-
peratureGrid, as before:

TemperatureTable temperatureGrid;

Regardless of which approach is used, the notation temperatureGrid[i] refers to the
temperatures in row i of the table and temperatureGrid[i][j] refers to the tempera-
ture in this row that is in column j.

This idea can be extended to higher-dimensional arrays. For example, the three-dimensional
array of temperatures considered earlier can also be thought of as an array of arrays. In par-
ticular, because one temperature table was recorded for each day, the entire three-dimensional
array can be viewed as an array of temperature tables, meaning a one-dimensional array whose
components are two-dimensional arrays. If we adopt this point of view, we might declare the
three-dimensional array type ThreeDimTemperatureArray by adding the following
declarations to the earlier ones:

const int NUM_DAYS = 7;
typedef TemperatureTable ThreeDimTemperatureArray[NUM_DAYS];

This may make it clearer that the notation

temperature[6]

refers to the entire temperature table that was recorded on Saturday; that is,
 temperature[6] is the two-dimensional array corresponding to the following tempera-
ture table:

As we noted earlier, each such table can be viewed as a one-dimensional array of the tem-
perature arrays. Thus, the doubly indexed expression

temperature[6][3]

refers to the bottom row in this temperature table,

Outlet-A Outlet-B Outlet-C
66.5
68.4
70.1
69.5

69.4
71.2
71.9
70.0

68.4
69.3
70.2
69.4

Time
12 A.M.

6 A.M.
12 P.M.

6 P.M.

Location

69.5 70.0 69.4

K11207.indb 514 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    515  

and the triply indexed expression

temperature[6][3][2]

accesses the last temperature in this row:

13.3 APPLICATIon: oCEAnoGRAPhIC DATA AnALYSIS
A petroleum exploration company has collected some depth readings for a rather shallow
square section of the ocean. The diagonal of this square (from the upper left corner to the
lower right corner) is parallel to the equator. The company has divided the square into a grid
with each intersection point (node) of the grid separated by five miles. The entire square is 50
miles on each side. Two separate crews did exploratory drilling in this area, one in the north-
ern half (above the diagonal) and the other in the southern half. A program is to be written to
find the approximate average ocean depth for each crew and the overall average for the entire
square. The following depth data (in meters) was collected by the crews:

The structure of the program in Example 13.2 that solves this problem is as follows:

 1. Read this table of depths from a file and store it in a LENGTH × WIDTH two-dimensional
array depth, where for this problem, both constants are set to 11.

69.4

K11207.indb 515 6/15/12 10:08 AM

516    ◾    Programming in C++ for Engineering and Science

 2. Calculate:

 northSum = the sum of the entries above the diagonal,

 southSum = the sum of the entries below the diagonal, and

 diagonalSum = the sum of the entries on the diagonal.

 3. Calculate overallSum = northSum + southSum + diagonalSum.

 4. Calculate readingsPerHalf = (total # of readings – # of readings on diagonal)/2.

 5. Calculate the north, south, and overall averages:

 northAverage = northSum
readingsPerHalf

 southAverage = southSum
readingsPerHalf

 overallAverage = overallSum
readingsPerHalf2

 6. Output the averages.

In addition to calculating and displaying the three averages, it also displays the grid of
depth readings so that the input data is echoed and can be used to check the results.

Example 13.2 Oceanographic Data Analysis

/* This program finds the average ocean depth in each half (sepa-
rated by the diagonal) of a square section of the ocean and the
overall average depth.

 Input (keyboard): the file name
 Input (file): the elements of array depth
 Output (screen): the array depth in table format, northAverage,

southAverage, and overallAverage
--*/

#include <iostream> // ifstream, cin, cout, >>, <<
#include <iomanip> // setw()
#include <fstream> // istream
#include <cassert> // cassert()
#include <string> // string
using namespace std;

int main()

K11207.indb 516 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    517  

{
 const int LENGTH = 11,
 WIDTH = 11,
 TOTAL_READINGS = LENGTH * WIDTH;
 double depth[LENGTH][WIDTH]; // depth array
 string fileName; // file of depth readings

 cout << "Enter name of file containing depth readings: ";
 cin >> fileName;
 ifstream fin(fileName.data());
 assert(fin.is_open());

 for(int i = 0; i < LENGTH; i++)
 for (int j = 0; j < WIDTH; j++)
 fin >> depth[i][j];

// Calculate the north, south, diagonal, and overall sums
// Note: It is assumed that the elements on the diagonal are
// included in the overall average but not in either half.

 double overallSum = 0,
northSum = 0,
southSum = 0,
diagonalsum = 0;

 for (int i = 0; i < LENGTH; i++)
 {
 for (int j = 1; j < WIDTH; j++)
 {
 // Add entries below diagonal to southSum
 if (i > 0 && j < i)
 southSum += depth[i][j];

 // Add entries above diagonal to northSum
 if (i < LENGTH – 1 && j > i)
 northSum += depth[i][j];
 }
 // Add entries on diagonal to diagonalSum
 diagonalsum += depth[i][i];
 }
 overallSum = northSum + southSum + diagonalsum;

 // Calculate the north, south, and overall average depths
 int readingsPerHalf = (TOTAL_READINGS – LENGTH) / 2;
 double northAverage = northSum / readingsPerHalf,
 southAverage = southSum / readingsPerHalf,
 overallAverage = overallSum / (TOTAL_READINGS) ;

K11207.indb 517 6/15/12 10:08 AM

518    ◾    Programming in C++ for Engineering and Science

 // Display the depth array and the average depths
 cout << "\n\t\t\t\tOCEAN DEPTHS"
 << "\n\t\t\t\t============\n"
 << setprecision(1) << fixed << showpoint;

 for (int i = 0; i < LENGTH; i++)
 {
 for (int j = 0; j < WIDTH; j++)
 cout << setw(6) << depth[i][j];
 cout << "\n\n";
 }
 cout << "Northern half average depth: "
 << northAverage << " meters\n\n"
 << "Southern half average depth: "
 << southAverage << " meters\n\n"
 << "Overall average depth: "
 << overallAverage << " meters\n";
}

SAMPLE RUN:

Enter name of file containing depth readings: data-13-2.txt

OCEAN DEPTHS
============

301.3 304.5 312.6 312.0 325.6 302.0 299.8 297.6 304.6 314.7 326.8

287.6 294.5 302.4 315.6 320.9 315.7 300.2 312.7 308.7 324.5 322.8

320.8 342.5 342.5 323.5 333.7 341.6 350.5 367.7 354.2 342.8 330.9

312.6 312.0 325.6 301.3 304.5 302.0 314.7 326.8 299.8 297.6 304.6

302.4 308.7 324.5 315.6 287.6 294.5 320.9 315.7 300.2 312.7 322.8

320.8 333.7 341.6 350.5 367.7 354.2 342.8 342.5 342.5 323.5 330.9

312.0 325.6 326.8 302.0 299.8 297.6 304.6 314.7 301.3 304.5 312.6

294.5 302.4 315.6 320.9 315.7 300.2 312.7 308.7 324.5 287.6 322.8

320.8 342.5 323.5 335.7 341.6 350.5 367.7 342.5 354.2 342.8 330.9

320.8 342.5 323.5 333.7 341.6 350.5 367.7 342.5 354.2 342.8 330.9

312.7 308.7 324.5 322.8 287.6 294.5 302.4 315.6 320.9 315.7 300.2

Northern half average depth: 318.9 meters

Southern half average depth: 267.2 meters

Overall average depth: 295.3 meters

K11207.indb 518 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    519  

13.4 MATRIx PRoCESSInG
A two-dimensional numeric array having m rows and n columns is called an m × n matrix.
Matrices arise naturally in many problems in engineering and applied mathematics.
In this section we describe some of the basic matrix operations that are useful in these
applications.

13.4.1 Matrix operations

Several matrix operations such as addition and subtraction are defined elementwise; that
is, two matrices of the same shape are added by adding corresponding elements and are
subtracted by subtracting corresponding elements. More precisely, the sum of two matri-
ces that have the same number of rows and the same number of columns is defined as fol-
lows: If aij and Bij are the entries in the ith row and jth column of m × n matrices a and B,
respectively, then aij + Bij is the entry in the ith row and jth column of the sum a + B, which
will also be an m × n matrix. Similarly, the difference a – B is the m × n matrix in which
aij – Bij is the entry in the ith row and jth column. For example, if

=

−

A

1 3 2

1 4 5

and

=

B

3 0 1

7 1 3
,

then

+ =

A B

4 3 3

6 5 8

 and

− = −

−

A B

2 3 1

8 3 2

Similarly, a matrix is multiplied by a scalar (number) elementwise. For example,

=

−

A2

2 6 4

2 8 10

One important matrix operation that is not defined elementwise is matrix multiplica-
tion. Suppose that a is an m × n matrix and B is an n × p matrix. The product AB is the
m × p matrix for which

 The entry in row i and column j

 = the sum of the products of the entries in row i of a with the entries in
column j of B

K11207.indb 519 6/15/12 10:08 AM

520    ◾    Programming in C++ for Engineering and Science

 = ai1B1j + ai2B2j + . . . + ainBnj

 = ∑
=

A Bik kj

k

n

1

Note that the number of columns (n) in a is equal to the number of rows in B, which must
be the case for the product of a with B to be defined.

For example, suppose that a is the 2 × 3 matrix

=

−

A

1 3 2

1 4 5

and B is the 3 × 4 matrix

= −

B
4 2 5 0

0 4 1 3

6 0 0 2

Because the number of columns (3) in a equals the number of rows in B, the product matrix
aB is defined. The entry in the first row and first column is obtained by multiplying the
first row of a with the first column of B, element by element, and adding these products:

−

1 3 2

1 4 5
−

4 2 5 0

0 4 1 3

6 0 0 2

 1 × 4 + 3 × 0 + 2 × 6 = 16

Similarly, the entry in the first row and second column is

−

1 3 2

1 4 5
−

4 2 5 0

0 4 1 3

6 0 0 2

 1 × 2 + 3 × (–4) + 2 × 0 = –10

The complete product matrix is the 2 × 4 matrix given by

= −

− −

AB

16 10 8 13

26 18 1 22

K11207.indb 520 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    521  

13.4.2 Example: Production Costs

Suppose that a company produces three different items. They are processed through four
different departments A, B, C, and D. The following table gives the number of hours that
each department spends on each item:

Department

Item A B C D

1 20 10 15 13
2 18 11 11 10
3 28 0 16 17

The cost per hour of operation in each of the departments is as follows:

Department A B C D

Cost per hour $140 $295 $225 $95

We wish to determine the total cost of each item.
The problem can be solved using matrices. Suppose we let hours be the 3 × 4 array

=

hours
20 10 15 13

18 11 11 10

28 0 16 17

and hourlyCost be the 4 × 1 array

=

hourlyCost

140

295

225

95

then the product hours × hourlyCost will be a 3 × 1 array whose elements are the total costs
of producing each of the three items

=

totalCostPerItem

$10,360

$9,190

$9,135

The program in Example 13.3 inputs the matrices hours and hourlyCost. It then
uses matrix multiplication to find the matrix totalCostPerItem and outputs it.

K11207.indb 521 6/15/12 10:08 AM

522    ◾    Programming in C++ for Engineering and Science

Example 13.3 Production Costs
/* This program calculates production costs using matrix

multiplication.

 Input (keyboard): hours table and cost-per-hour table
 Output (screen): total-cost-per-item table
--*/

#include <iostream> // cin, cout, >>, <<
using namespace std;

int main()
{
 const int ITEMS = 3,
 DEPTS = 4;
 int hours[ITEMS][DEPTS], // hours required for items by
 // dept.
 hourlyCost[DEPTS][1], // hourly operating cost by
 // dept.
 totalCostPerItem[ITEMS][1]; // total cost for items by
 // dept.

 cout << "Enter the hours table in rowwise order:\n";
 for (int i = 0; i < ITEMS; i++)
 for (int j = 0; j < DEPTS; j++)
 cin >> hours[i][j];

 cout << "\nEnter the " << DEPTS << " hourly costs:\n";
 for (int j = 0; j < DEPTS; j++)
 cin >> hourlyCost[0][j];

 // Multiply matrices hours * hourlyCost to get totalCostPerItem
 for (int i = 0; i < ITEMS; i++)
 {
 totalCostPerItem[i][0] = 0;
 for (int j = 0; j < DEPTS; j++)
 totalCostPerItem[i][0] += hours[i][j] * hourlyCost[0][j];
 }

 cout << "\nTotal Cost for:\n";
 for (int i = 0; i < ITEMS; i++)
 cout << "\tItem " << i + 1 << ": $"
 << totalCostPerItem[i][0] << endl;
}

SAMPLE RUN:
Enter the hours table in rowwise order:
20 10 15 13

K11207.indb 522 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    523  

18 11 11 10
28 0 16 17

Enter the 4 hourly costs:
140 295 225 95

Total Cost for:
 Item 1: $10360
 Item 2: $9190
 Item 3: $9135

13.5 LInEAR SYSTEMS AnD ELECTRICAL nETwoRKS
A linear system is a set of linear equations, each of which involves several unknowns;
for example,

 5x1 – 1x2 – 2x3 = 11

 –1x1 + 15x2 – 2x3 = 0

 –2x1 – 2x2 + 7x3 = 0

is a linear system of three equations involving the three unknowns x1, x2, and x3.
Linear systems arise in many areas of mathematics, science, and engineering, such
as solving differential equations, electrical circuit problems, and static and dynamic
systems.

This linear system can also be written as a single matrix equation:

 a * x = b

where a is the 3 × 3 coefficient matrix, b is the 3 × 1 constant vector, and x is the 3 × 1
vector of unknowns:

a =
− −

− −
− −

5 1 2

2 5 2

2 2 7

, x =

x

x

x

1

2

3

, b =

11
0

0

A solution of such a system is a collection of values for these unknowns that satisfies all
of the equations simultaneously. Several methods for solving them have been developed,
including the method called Gaussian Elimination. We will describe it in connection with
the following example.

K11207.indb 523 6/15/12 10:08 AM

524    ◾    Programming in C++ for Engineering and Science

13.5.1 Problem: Finding Currents in an Electrical network

Consider the following electrical network containing six resistors and a battery:

We wish to find the currents i1, i2, and i3 in the three loops (where current is considered
positive when the flow is in the direction indicated by the arrow).

13.5.2 Solution

The input information for this problem is the circuit pictured in the diagram; in particular,
the six resistances r1, r2, . . ., r6 will be needed to solve the problem. The output consists of
the currents i1, i2, and i3 in the three loops.

13.5.2.1 Kirchhoff’s Laws—Linear Systems
The current through resistor r1 is i3, the current through resistor r2 is i2 – i3, and so on.
Ohm’s law states that the voltage drop across a resistor is r × i, where r is the resistance in
ohms and i is the current in amperes. One of Kirchhoff’s laws states that the algebraic sum
of the voltage drops around any loop is equal to the applied voltage. This law gives rise to
the following system of linear equations for the loop currents i1, i2, and i3:

 2i1 + 1(i1 – i2) + 2(i1 – i3) = 11

 2i1 + 2(i2 – i3) + 1(i2 – i1) = 0

 3i1 + 2(i3 – i1) + 2(i3 – i2) = 0

Collecting terms gives the following simplified system, which is the same as that consid-
ered at the beginning of this section:

11 V
+

R1

R2 2Ω

R4

I2

3Ω 2Ω

R3 R5

2Ω 1Ω

R6

2Ω

I3

I1

K11207.indb 524 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    525  

 5i1 – 1i2 – 2i3 = 11

 –1i1 + 5i2 – 2i3 = 0

 –2i1 – 2i2 + 7i3 = 0

To find the loop currents, we must solve this linear system; that is, we must find the values
for i1, i2, and i3 that satisfy these equations simultaneously.

To use Gaussian Elimination to solve the preceding system, we first eliminate i1 from the
second equation by adding 1/5 times the first equation to the second equation. Similarly,
we eliminate i1 from the third equation by adding 2/5 times the first equation to the third
equation. This yields the linear system

5i1 – 1i2 – 2i3 = 11

 4.8i2 – 2.4i3 = 2.2

 –2.4i2 + 6.2i3 = 4.4

which is equivalent to the original system in that the two systems have the same solution.
We then eliminate i2 from the third equation by adding 2.4/4.8 = 1/2 times the second
equation to the third, yielding the new equivalent linear system

5i1 – 1i2 – 2i3 = 11

 4.8i2 – 2.4i3 = 2.2

5i3 = 5.5

Once the original system has been reduced to such a triangular form, it is easy to find the
solution. It is clear from the last equation that the value of i3 is

= =I

5.5

5
1.1003

Substituting this value for i3 in the second equation and solving for i2 gives

= + =I

2.2 2.4(1.1)

4.8
1.0082

and substituting these values for i2 and i3 in the first equation and solving for i1 gives

= + + =I

11 1.008 2(1.100)

5
2.8421

K11207.indb 525 6/15/12 10:08 AM

526    ◾    Programming in C++ for Engineering and Science

13.5.2.2 Refining the Method
The computations required to solve a linear system can be carried out more conveniently if
the coefficients and constants of the linear system are stored in a matrix. For the preceding
linear system, this gives the following 3 × 4 matrix:

 linsys =
− −

− −
− −

5 1 2 11

1 5 2 0

2 2 7 0

The first step in the reduction process was to eliminate i1 from the second and third
equations by adding multiples of the first equation to them. This corresponds to adding
multiples of the first row of the matrix linsys to the second and third rows so that all entries
in the first column except linsys[0][0] are zero. Thus, we add –linsys[1][0]/linsys[0][0] = 1/5
times the first row of linsys to the second row, and –linsys[2][0]/linsys[0][0] = 2/5 times the
first row of linsys to the third row to obtain the new matrix:

 linsys =
− −

−
−

5 1 2 11

0 4.8 2.4 2.2

0 2.4 6.2 4.4

The variable i2 was then eliminated from the third equation, which corresponds to the
matrix operation of adding –linsys[2][1]/linsys[1][1] = 1/2 times the second row to the third
row. The resulting matrix, which corresponds to the final triangular system, thus is

 linsys =
− −

−

5 1 2 11

0 4.8 2.4 2.2

0 0 5 5.5

From this example, we see that the basic row operation performed at the ith step of the
reduction process for i = 0, 1, . . . , n – 1, is:

 For j = i + 1, i + 2, . . . n – 1

 Replace rowj by rowj –
linsys j i

linsys i i
i

× row

Clearly, for this to be possible, the element linsys[i][i], called the pivot element, must be
nonzero. If it is not, we must interchange the ith row with a later row to produce a nonzero
pivot. In fact, to minimize the effect of roundoff error in the computation, it is best to rear-
range the rows to obtain a pivot element that is largest in absolute value.

The following algorithm, which summarizes this method for solving a linear system,
uses this pivoting strategy. Note that if it is not possible to find a nonzero pivot element at
some stage, the linear system is said to be a singular system and does not have a unique
solution. Coding this algorithm as a C++ program is left as an exercise.

K11207.indb 526 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    527  

13.5.3 Gaussian Elimination Algorithm

This algorithm is used to solve a linear system of n equations with n unknowns using
Gaussian Elimination; linsys is the n × (n + 1) matrix that stores the coefficients and con-
stants of the linear system.

 1. Enter the coefficients and constants of the linear system and store them in the matrix
linsys.

 2. For i ranging from 0 to n – 1, do the following:

 a. Find the entry linsys[k][i], k = i, i + 1, . . . , n – 1 that has the largest absolute value
to use as a pivot.

 b. If the pivot is zero, display a message that the system is singular and terminate the
algorithm. Otherwise, proceed.

 c. If k ≠ i, interchange row i and row k.

 d. For j ranging from i + 1 to n – 1, do the following:

 Add [][]
[][]

−linsys j i

linsys i i
 times the ith row of linsys to the jth row of linsys to

 eliminate x[i] from the jth equation.

 3. Set x[n – 1] equal to
[][]

[][]
−

− −
linsys n n

linsys n n

1

1 1

 4. For j ranging from n – 2 to 0 in steps of –1, do the following

 Substitute the values of x[j + 1], . . ., x[n – 1] in the jth equation and solve for
x[j].

13.6 MULTIDIMEnSIonAL vector<T> oBjECTS
In the preceding chapter, we noted some of the drawbacks associated with C-style arrays
and indicated how we could get around them by “wrapping” an array inside a class. This is
in fact the approach used in vector<T> (except that it uses run-time allocated arrays as
described in Section 15.2). In this section we will explore how we can use vector<T>s to
create self-contained higher-dimensional objects. Using the operations already provided in
vector<T> and applying the Standard Template Library (STL) algorithms to vector<T>
objects will save us work. Applying them to higher-dimensional objects requires some
care, however, because this is not as straightforward as using them with one-dimensional
objects.

In the preceding chapter we considered only one form of a vector<T> declaration that
created an empty object, for example,

vector<double> aVector;

K11207.indb 527 6/15/12 10:08 AM

528    ◾    Programming in C++ for Engineering and Science

declares that aVector can store double values, but is initially empty. The following are
examples of alternative forms that a declaration can take:

const int INITIAL_CAPACITY = 10;
vector<double> bVector(INITIAL_CAPACITY);
vector<double> cVector(INITIAL_CAPACITY, 1.0);

The first declares bVector as a vector of 10 (undefined) doubles, and the second declares
cVector to be a vector of 10 doubles, all initialized to 1.0:

13.6.1 Two-Dimensional vector<T> objects
13.6.1.1 A Two-Step Approach
Suppose that we want to build a two-dimensional object named table consisting of three
rows and four columns. Following our description of a two-dimensional array as an array
of one-dimensional arrays, we might begin by defining a one-dimensional vector<T>
object named initialRow whose capacity is the desired number of columns (4), and fill
it with some initial value:

const int COLUMNS = 4;
vector<double> initialRow(COLUMNS, 0.0);

This builds a one-dimensional vector named initialRow, whose size and capacity are
each 4:

In the same way that a two-dimensional C-style array can be viewed as an array of arrays,
a vector of vectors is a two-dimensional object. We can thus define the two-dimensional
object table as a vector of vectors, using the desired number of rows (3) as its capacity, and
with the object initialRow as its initial value:

const int ROWS = 3;
vector< vector<double> > table(ROWS, initialRow);

Note the space separating double> and >. It is important to remember the space between
the angle brackets (> >), because if we write

?bVector

aVector

? ? ? ? ? ? ? ? ?

1.0cVector 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.0initialRow:

[0] [1] [2] [3]

0.0 0.0 0.0

K11207.indb 528 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    529  

vector<vector<double>> table(ROWS, initialRow); // ERROR!

the compiler will mistake >> for the input (or right-shift) operator, which will result in a
compilation error.

Because each element of table is a vector<initialRow>, and initialRow is
a vector<double>, the compiler will use initialRow to initialize each element of
table. The result is that table is constructed as a 3 × 4 vector of vectors, in which each
of the three rows is a copy of initialRow:

A single-subscript expression such as

table[0]

refers to the first row of table:

and a double-subscript expression such as

table[0][2]

refers to an element within the specified row of table:

In general, the expression

table[r][c]

can be used to access the value stored in column c of row r.

13.6.1.2 A One-Step Approach
We can define the same vector of vectors in one step by using a more concise form that
avoids the need to define the object initialRow:

typedef vector<double> TableRow;

0.0[0]

[0] [1] [2] [3]

0.0 0.0 0.0

0.0[1] 0.0 0.0 0.0

0.0[2] 0.0 0.0 0.0

table:

0.0[0]

[0] [1] [2] [3]

0.0 0.0 0.0

table:

0.0[0]

[0] [1] [2] [3]

0.0 0.0 0.0

table:

K11207.indb 529 6/15/12 10:08 AM

530    ◾    Programming in C++ for Engineering and Science

typedef vector<TableRow> Table;

Table aTable;

The first typedef declares the name TableRow as a type that is a synonym for a one-
dimensional vector of doubles. The second typedef then declares the name Table as
a synonym for a one-dimensional vector of TableRow values; that is, a vector of vectors
of doubles. The last declaration

Table aTable;

then declares aTable to be an empty two-dimensional Table. To define a nonempty
Table, we can use

const int ROWS = 3,
 COLUMNS = 4;
Table theTable(ROWS, TableRow(COLUMNS, 0.0));

The result is a definition that is more readable than that given earlier and that eliminates
the error described there caused by forgetting a space between two > symbols.

13.6.2 Two-Dimensional vector<T> operations

We have already seen that double-subscript expressions of the form theTable[r][c] can
be used to access the element at row r and column c in theTable. In addition to the sub-
script operator, other vector<T> operations can be used with two-dimensional vectors.
We will look briefly at two of them.

13.6.2.1 The size() Method
If theTable is the 3 × 4 two-dimensional vector described earlier, then the expression

theTable.size()

returns 3, the number of rows in theTable. The expression

theTable[r].size()

can be used to find the number of columns in row r, because theTable[r] is the vector
of double values in theTable whose index is r, and applying size() to that vector
returns the number of values in it. If theTable is rectangular so that each row has the
same number of elements, we can apply size() to any row to get the number of col-
umns in theTable. If theTable is a jagged table—different rows have different sizes—
size() must be applied to each row separately.

K11207.indb 530 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    531  

13.6.2.2 The push_back() Method
Suppose we need to add a new (fourth) row to theTable. This can be done by using the
vector<T> method push_back():

theTable.push_back(TableRow(COLUMNS, 0.0));

Because TableRow has been declared as a synonym for vector<double>, the
expression

TableRow(COLUMNS, 0.0)

builds a nameless vector of zeros, and push_back() then appends this vector to the
existing rows in theTable:

To add a fifth column to theTable, we can use push_back() to append a double value
to each row of theTable, because each row in theTable is itself a vector of double
values:

for (int row = 0; row < theTable.size(); row++)
 theTable[row].push_back(0.0);

13.6.3 vector<T>-Based Matrices

In Sections 13.4 and 13.5 we considered matrices and linear systems and used two-
dimensional arrays to implement them. If we used the following declarations

typedef vector<double> MatrixRow;
typedef vector<MatrixRow> Matrix;

0.0[0]

[0] [1] [2] [3]

0.0 0.0 0.0

0.0[1] 0.0 0.0 0.0

0.0[2] 0.0 0.0 0.0

0.0[3] 0.0 0.0 0.0

theTable:

0.0[0]

[0] [1] [2] [3]

0.0 0.0 0.0

0.0[1] 0.0 0.0 0.0

0.0[2] 0.0 0.0 0.0

0.0[3] 0.0 0.0 0.0

[4]

0.0

0.0

0.0

0.0

theTable:

K11207.indb 531 6/15/12 10:08 AM

532    ◾    Programming in C++ for Engineering and Science

we could implement all of the matrix operations and their use in solving linear systems
using two-dimensional vector<doubles> objects. Making this conversion is left as a
straightforward exercise.

ChAPTER SUMMARY

Key Terms

array of arrays

column

jagged tables (arrays)

linear system

m × n matrix

matrix addition

matrix multiplication

matrix subtraction

member initialization list

multidimensional array

multidimensional vector

rank

row

square array

subscript operator

three-dimensional array

two-dimensional array

typedef mechanism

vector of vectors

noTES
•	 Two-dimensional arrays or vectors are useful for storing a data set whose values are

arranged in rows and columns. Three-dimensional arrays or vectors are useful when
the data set values are arranged in rows, columns, and ranks.

•	 As with one-dimensional arrays, each dimension of a multidimensional array is
indexed starting with zero.

•	 A two-dimensional array can be viewed as a one-dimensional array whose compo-
nents are also one-dimensional arrays. A three-dimensional array can be viewed as
a one-dimensional array whose components are two-dimensional arrays. In general,
an n-dimensional can be viewed as a one-dimensional array whose components are
(n – 1)-dimensional arrays.

•	 The main drawback of C-style arrays is that they are not self-contained objects. In a
function to implement an array operation, we must pass not only the array, but also
the bound on each of its dimensions. One solution is to wrap an array in a class that
contains operations for it.

•	 Multidimensional vectors are constructed as vectors of vectors and are self-contained
objects, having all the built-in operations of vector<T>s.

K11207.indb 532 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    533  

Style and Design Tips
•	 use of a multidimensional array or vector is appropriate when a table of data values, a

list of tables, and so on must be stored in main memory for processing. Using a multi-
dimensional array or vector when it is not necessary, however, can tie up a large block
of memory locations. The amount of memory required to store a multidimensional
array/vector can be quite large, even though each index is restricted to a small range
of values. For example, the three-dimensional array threeD declared by

 typedef int ThreeDimArray[20][20][20];
 ThreeDimArray threeD;

 requires 20 × 20 × 20 = 8000 memory locations.

•	 if a function must receive an array or a vector or a class object that contains an array
or a vector, then the parameter to hold that object should be declared as a reference (or
const reference) parameter. Passing it as a value parameter can greatly slow the execu-
tion of a function because of the time and memory required to copy it.

•	 Do not reinvent the wheel. When a problem requires an operation on a multidimen-
sional vector, review the vector<T> function members and STL algorithms to see if
the operation is already defined or there are other operations that make yours easier
to implement.

•	 Two-dimensional arrays or vector<T>s can be used to implement matrices and for
solving systems of linear equations.

warnings
 1. in C++, multiple indices are each enclosed in brackets ([and]) and attached to the

array/vector object. In some languages, a single pair of brackets (or parentheses) is
used to enclose a list of indices. However, attempting to access the value in row i and
column j of a two-dimensional array A in C++ by using A[i,j] will cause a compile-
time error.

 2. The first element of a C++ array or vector has the index 0, not 1, as in many program-
ming languages.

 3. no checking is performed to ensure that array or vector indices stay within the range of
valid indices.

 4. although the assignment operator may be used with vectors, assignment of one array to
another is not permitted.

 5. arrays and vectors cannot be input/output by simply including the array name in an
input/output list.

 6. array arguments are automatically passed by reference.

K11207.indb 533 6/15/12 10:08 AM

534    ◾    Programming in C++ for Engineering and Science

 7. When using vectors of vectors, leave a space between the two > symbols. A common
mistake is to forget this and to declare a vector of vectors with a statement like

 vector<vector<int>> myGrid;

 The compiler will read the >> as the input (or right-shift) operator, and because this
makes no sense in this context, a compilation error will result. The correct approach
is to leave a space:

 vector<vector<int> > myGrid;

 8. When processing the elements of a multidimensional array/vector using nested loops,
the loops must be arranged so that the indices vary in the appropriate order. To illus-
trate, suppose that the two-dimensional array table is declared by

 typedef int Array3x4[3][4];
 Array3x4 table;

 and the following data values are to be read into the array:

 11 22 27 35 39 40 48 51 57 66 67 92

 If these values are to be read and assigned in a row-wise manner so that the value is
the matrix

 11 22 27 35
 39 40 48 51
 57 66 67 92

 then the following nested for loops are appropriate:

 for (int row = 0; row < 3; row++)
 for (int col = 0; col < 4; col++)
 cin >> table[row][cowl];

 If the order of these loops is reversed,

 for (int col = 0; col < 4; col++)
 for (int row = 0; row < 3; row++)
 cin >> table[row][col];

 then table will be loaded column-by-column, instead of row-by-row,

 11 35 48 66
 22 39 51 67
 27 40 57 92

 and operations applied to table will produce incorrect results.

K11207.indb 534 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    535  

TEST YoURSELF

Section 13.2

 1. A(n) array is useful for storing data arranged in rows and columns.

 2. A(n) array is useful for storing data arranged in rows, columns, and
ranks.

 3. Arrays with the same number of rows as columns are said to be arrays.

Questions 4–14 refer to the following two-dimensional array:

Find the value of each expression in Questions 4–9.

 4. mat[2][3]

 5. mat[4][1]

 6. mat[1][1]

 7. mat[0][0] + mat[0][1]

 8. mat[0][0] + mat[1][0]

 9. mat[3]

Find the value of x in each of Questions 10–14.

 10. int x = 0;
 for (int i = 0; i <= 4; i++)
 x += mat[i][1];

 11. int x = 0;
 for (int j = 0; j < 4; j++)
 x += mat[1][j];

 12. int x = 0;
 for (int k = 0; k <= 3; k++)
 x += mat[k][k];

mat:

[0]

[0]

11

[1] [2] [3]

[1]

[2]

[3]

[4]

22 0 43

1 –1 0 999

–5 39 15 82

1 2 3 4

44 33 22 11

K11207.indb 535 6/15/12 10:08 AM

536    ◾    Programming in C++ for Engineering and Science

 13. int x = 0;
 for (int i = 0; i < 5; i++);
 for (int j = 0; j < 4; j++)
 x += mat[i][j];

 14. int x = 0;
 for (int j = 0; j < 4; j++)
 for (int i = 0; i < 5; i++)
 x += mat[i][j];

Section 13.4

 1. A two-dimensional numeric array having m rows and n columns is called
a(n) .

 Questions 2–8 refer to the following matrices:

 a =

1 0 2

3 0 4
, B = −

1 0

2 1
1 3

, C =
− −

3 2

1 0

1 2

 2. a * B will be a(n) × matrix.

 3. Calculate A * B.

 4. Calculate B * A or explain why it is not defined.

 5. Calculate B * C or explain why it is not defined.

 6. Calculate C * B or explain why it is not defined.

 7. Calculate B + C or explain why it is not defined.

 8. Calculate B – C or explain why it is not defined.

Section 13.6

 1. (True or false) A vector of vectors is a two-dimensional object.

 2. (True or false) The declaration

 vector<vector<int>> intTable(3, vector<int>(4, 0));

 will cause a compile-time error.

 Questions 3–8 assume the following declarations:

 typedef vector<double> TableRow;
 typedef vector<TableRow> Table;
 Table grid(5, TableRow(4, 0.0));

 3. grid will have rows and columns.

K11207.indb 536 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    537  

 4. Write an expression to change the element in the second row and third column of
grid to 1.1.

 5. What is the value of grid.size()?

 6. What is the value of grid[0].size()?

 7. Write a statement to append the value 99.9 at the end of the second row of grid.

 8. Write statements to append a row containing 4 zeros at the bottom of grid.

ExERCISES

Section 13.2

Exercises 1–6 assume that the following declarations have been made:

const int NUM_SIZES = 6;
typedef bool BitArray[2][2][2][2];
typedef int Device[NUM_SIZES][10][20];
typedef Thingamajig Device[5];

How many elements can be stored in an array of each type?

 1. int[50][100]

 2. char[26][26]

 3. bool[2][2][2]

 4. BitArray

 5. Device

 6. Thingamajig

Exercises 7–10 assume that the following declarations have been made:

typedef int Array3x3[3][3];
Array3X3 mat;

Tell what value (if any) is assigned to each array element, or explain why an error occurs.

 7. for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 mat[i][j] = i + j;

 8. for (int i = 0; i < 3; i++)
 for (int j = 2; j >= 0; j--)
 if (i == j)
 mat[i][j] = 0;

K11207.indb 537 6/15/12 10:08 AM

538    ◾    Programming in C++ for Engineering and Science

 else
 mat[i][j] = 1;

 9. for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 if (i < j)
 mat[i][j] = –1
 else if (i == j)
 mat[i][j] = 0;
 else
 mat[i][j] = 1;

 10. for (int i = 0; i < 3; i++)
 {
 for (int j = 0; j < i; j++)
 mat[i][j] = 0;
 for (j = i; j < 3; j++)
 mat[i][j] = 2
 }

Exercises 11–14 assume that the following declaration has been made:

char logo[2][10] = {"Nuts", "and Bolts"};

Tell what output will be produced or explain why an error occurs.

 11. for (int i = 0, i < 2; i++)
 {
 for (int j = 0; j < 9; j++)
 cout << logo[i][j];
 cout << endl;
 }

 12. for (int j = 0; j < 9; j++)
 {
 for (int i = 0; i < 2; i++)
 cout << logo[i][j];
 cout << endl;
 }

 13. for (int i = 0; i < 2; i++)
 {
 for (int j = 0; j < 9; j++)
 cout << logo[j][i];
 cout << endl;
 }

K11207.indb 538 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    539  

 14. for (int i = 0; i < 2; i++)
 {
 for (int j = 8; j >= 0; j--)
 cout << logo[i][j];
 cout << endl;
 }

 15. Write a function that, given a TableOfTemperatures (as declared in this section),
will calculate and return the average temperature at each of the three locations.

 16. Like one-dimensional arrays, multidimensional arrays are stored in a block of con-
secutive memory locations, and address translation formulas are used to determine the
location in memory of each array element. To illustrate, consider a 3 × 4 array a of inte-
gers, and assume that an integer can be stored in one memory word. If a is allocated
memory in a row-wise manner and b is its base address, then the first row of a—a[0]
[0], a[0][1], a[0][2], a[0][3]—is stored in words b, b + 1, b + 2, b + 3; the second row
in words b + 4 through b + 7; and the third row in words b + 8 through b + 11.

 In general, a[i][j] is stored in word b + 4i + j.

 a. Give a similar diagram and formula if a is a 3 × 3 array of integer values.

 b. Give a similar diagram and formula if a is a 3 × 4 array of double values, where
double values require two words for storage.

PRoGRAMMInG PRoBLEMS

Sections 13.1–13.2

 1. Write a program to calculate and display the first ten rows of Pascal’s triangle. The
first part of the triangle has the form

Memory Array ElementAddress

b
b + 1
b + 2
b + 3
b + 4
b + 5
b + 6
b + 7
b + 8
b + 9

b + 10
b + 11

K11207.indb 539 6/15/12 10:08 AM

540    ◾    Programming in C++ for Engineering and Science

 1
 1 1

 1 2 1

 1 3 3 1
 1 4 6 4 1

 in which each row begins and ends with 1, and each of the other entries in a row is the
sum of the two entries just above it. If this form for the output seems too challenging,
you might display the triangle as

 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1

 2. A demographic study of the metropolitan area around Dogpatch divided it into three
regions: urban, suburban, and exurban, and published the following table showing the
annual migration from one region to another (the numbers represent percentages):

⤶ Urban Suburban Exurban

Urban 1.1 0.3 0.7
Suburban 0.1 1.2 0.3
Exurban 0.2 0.6 1.3

 For example, 0.3 percent of the urbanites (0.003 times the current population) move
to the suburbs each year. The diagonal entries represent internal growth rates. Using
a two-dimensional array to store this table, write a program to determine the pop-
ulation of each region after 10, 20, 30, 40, and 50 years. Assume that the current
populations of the urban, suburban, and exurban regions are 2.1, 1.4, and 0.9 million,
respectively.

 3. The famous mathematician G. H. Hardy once mentioned to the brilliant young
Indian mathematician Ramanujan that he had just ridden in a taxi whose number
he considered to be very dull. Ramanujan promptly replied that, on the contrary, the
number was very interesting because it was the smallest positive integer that could
be written as the sum of two cubes (that is, written in the form x3 + y3, with x and y
integers) in two different ways. Write a program to find the number of Hardy’s taxi.

 4. An engineer has a file containing a table of ratings for various products being tested,
where the first line of the file contains the number of products and the number of times
each was tested; each row of the table represents the ratings for a given product and each
column represents the rating on a given test run. The maximum possible rating was 100
points. Write a program that, given the name of such a file, generates a report summariz-
ing the overall average rating for each product and the average rating on each test run.

K11207.indb 540 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    541  

 5. The group CAN (Citizens Against Noise) has collected some data on the noise level
(measured in decibels) produced at seven different speeds by six different models of
cars. This data is summarized in the following table:

Speed (MPH)

Car 20 30 40 50 60 70 80
0 88 90 94 102 111 122 134
1 75 77 80 86 94 103 113
2 80 83 85 94 100 111 121
3 68 71 76 85 96 110 125
4 77 84 91 98 105 112 119
5 81 85 90 96 102 109 120

 Write a program that will display this table in an easy-to-read format, and that will
calculate and display the average noise level for each car model, the average noise
level at each speed, and the overall average noise level.

 6. In a certain city, the air pollution is measured at two-hour intervals, beginning at
midnight. These measurements are recorded for a one-week period:

Day 1 30.0 30.1 30.7 32.1 35.5 40.1 43.0 44.4 47.2 45.8 40.3 38.3
Day 2 33.0 32.5 30.5 34.6 40.6 48.3 46.7 49.5 53.1 49.6 45.0 40.1
Day 3 38.1 35.5 34.7 37.4 44.1 50.3 50.7 54.2 60.8 58.5 51.6 49.3
Day 4 49.9 48.8 47.7 53.5 60.1 70.2 73.3 75.8 80.0 75.3 73.1 60.5
Day 5 55.5 54.1 53.9 65.4 70.7 80.4 90.1 93.9 95.5 94.6 88.1 62.7
Day 6 73.0 90.8 65.0 66.0 71.6 78.3 74.5 78.0 83.7 75.6 66.9 58.1
Day 7 50.8 47.9 43.1 35.5 33.4 33.6 37.5 43.0 45.1 52.8 39.9 31.8

 Write a program to produce a weekly report that displays the pollution levels in a
table of the form

 TIME
Day: 1 2 3 4 5 6 7 8 9 10 11 12
--
 1 : 30.0 30.1 30.7 32.1 35.5 40.1 43.0 44.4 47.2 45.8 40.3 38.3
 2 : 33.0 32.5 30.5 34.6 40.6 48.3 46.7 49.5 53.1 49.6 45.0 40.1
 3 : 38.1 35.5 34.7 37.4 44.1 50.3 50.7 54.2 60.8 58.5 51.6 49.3
 4 : 49.9 48.8 47.7 53.5 60.1 70.2 73.3 75.8 80.0 75.3 73.1 60.5
 5 : 55.5 54.1 53.9 65.4 70.7 80.4 90.1 93.9 95.5 94.6 88.1 62.7
 6 : 73.0 90.8 65.0 66.0 71.6 78.3 74.5 78.0 83.7 75.6 66.9 58.1
 7 : 50.8 47.9 43.1 35.5 33.4 33.6 37.5 43.0 45.1 52.8 39.9 31.8

 and that also displays the average pollution level for each day and the average pollu-
tion level for each sampling time.

 7. Suppose that a certain automobile dealership sells 10 different models of automobiles
and employs 8 salespersons. A record of sales for each month can be represented

K11207.indb 541 6/15/12 10:08 AM

542    ◾    Programming in C++ for Engineering and Science

by a table in which each row contains the number of sales of each model by a given
salesperson, and each column contains the number of sales by each salesperson of
a given model. For example, suppose that the sales table for a certain month is as
follows:

 0 0 2 0 5 6 3 0
 5 1 9 0 0 2 3 2
 0 0 0 1 0 0 0 0
 1 1 1 0 2 2 2 1
 5 3 2 0 0 2 5 5
 2 2 1 0 1 1 0 0
 3 2 5 0 1 2 0 4
 3 0 7 1 3 5 2 4
 0 2 6 1 0 5 2 1
 4 0 2 0 3 2 1 0

 Write a program to produce a monthly sales report, displaying the monthly sales
table in the form:

 Salesperson
 Model : 1 2 3 4 5 6 7 8 : Totals
 --
 1 : 0 0 2 0 5 6 3 0 : 16
 2 : 5 1 9 0 0 2 3 2 : 22
 3 : 0 0 0 1 0 0 0 0 : 1
 4 : 1 1 1 0 2 2 2 1 : 10
 5 : 5 3 2 0 0 2 5 5 : 22
 6 : 2 2 1 0 1 1 0 0 : 7
 7 : 3 2 5 0 1 2 0 4 : 17
 8 : 3 0 7 1 3 5 2 4 : 25

 9 : 0 2 6 1 0 5 2 1 : 17
 10 : 4 0 2 0 3 2 1 0 : 12
 --
 Totals : 23 11 35 3 15 27 18 17

 8. Suppose that the prices for the ten automobile models in Problem 7 are as follows:

Model # Model Price

0 $17,450
1 $19,995
2 $26,500
3 $25,999
4 $10,400
5 $18,885
6 $11,700
7 $14,440
8 $17,900
9 $19,550

K11207.indb 542 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    543  

 Write a program to read this list of prices and the sales table given in Problem 7, and
calculate the total dollar sales for each salesperson and the total dollar sales for all
salespersons.

9. A certain company has a product line that includes five items that sell for $100, $75,
$120, $150, and $35. There are four salespersons working for this company, and the
following table gives the sales report for a typical week:

Salesperson Number

Item Number

1 2 3 4 5

1 10 4 5 6 7
2 7 0 12 1 3
3 4 9 5 0 8
4 3 2 1 5 6

 Write a program to

 a. Compute the total dollar sales for each salesperson.

 b. Compute the total commission for each salesperson if the commission rate is
10 percent.

 c. Find the total income for each salesperson for the week if each salesperson receives
a fixed salary of $500 per week in addition to commission payment.

 10. A certain company manufactures four electronic devices using five different compo-
nents that cost $10.95, $6.30, $14.75, $11.25, and $5.00, respectively. The number of
components used in each device is given in the following table:

Device Number

Component

1 2 3 4 5

1 10 4 5 6 7
2 7 0 12 1 3
3 4 9 5 0 8
4 3 2 1 5 6

 Write a program to calculate:

 a. The total cost of each device.

 b. The total cost of producing each device if the estimated labor cost for each device is
10 percent of the cost in part (a).

 11. A number of students from several different engineering sections performed the same
experiment to determine the tensile strength of sheets made from two different alloys.
Each of these strength measurements is a real number in the range 0 through 10.

K11207.indb 543 6/15/12 10:08 AM

544    ◾    Programming in C++ for Engineering and Science

Write a program to read several lines of data, each consisting of a section number and
the tensile strength of the two types of sheets recorded by a student in that section,
and store these values in a two-dimensional array. Then calculate

 a. For each section, the average of the tensile strengths for each type of alloy.

 b. The number of persons in a given section who recorded strength measures of 5 or
higher.

 c. The average of the tensile strengths recorded for alloy 2 by students who recorded
a tensile strength lower than 3 for alloy 1.

 12. A magic square is an n × n table in which each of the integers 1, 2, 3, . . . , n2 appears
exactly once and all column sums, row sums, and diagonal sums are equal. For exam-
ple, the following is a 5 × 5 magic square in which all the rows, columns, and diago-
nals add up to 65:

 The following is a procedure for constructing an n × n magic square for any odd inte-
ger n. Place 1 in the middle of the top row. Then after integer k has been placed, move
up one row and one column to the right to place the next integer k + 1, unless one of
the following occurs:

 a. If a move takes you above the top row in the jth column, move to the bottom of the
jth column and place the integer k + 1 there.

 b. If a move takes you outside to the right of the square in the ith row, place k + 1 in
the ith row at the left side.

 c. If a move takes you to an already-filled square or if you move out of the square at
the upper right-hand corner, place k + 1 immediately below k.

 Write a program to construct an n × n magic square for any odd value of n.

 13. Consider a square grid, with some cells empty and others containing an asterisk.
Define two asterisks to be contiguous if they are adjacent to each other in the same
row or in the same column. Now suppose we define a blob as follows:

 a. A blob contains at least one asterisk.

 b. If an asterisk is in a blob, then so is any asterisk that is contiguous to it.

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

K11207.indb 544 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    545  

 c. If a blob has more than two asterisks, then each asterisk in it is contiguous to at
least one other asterisk in the blob.

 For example, there are four blobs in the partial grid

 seven blobs in

 and only one in

 Write a program that uses a recursive function to count the number of blobs in a
square grid. Input to the program should consist of the locations of the asterisks in
the grid, and the program should display the grid and the blob count.

 14. The game of life, invented by the mathematician John H. Conway, is intended to
model life in a society of organisms. Consider a rectangular array of cells, each of
which may contain an organism. If the array is assumed to extend indefinitely in both
directions, each cell will have eight neighbors, the eight cells surrounding it. Births
and deaths occur according to the following rules:

 a. An organism is born in an empty cell that has exactly three neighbors.

 b. An organism will die from isolation if it has fewer than two neighbors.

 c. An organism will die from overcrowding if it has more than three neighbors.

 The following display shows the first five generations of a particular configuration of
organisms:

* * * * * *
* * *

* * * * * *
* *

* *

* * * * * *
* * *
* * *

K11207.indb 545 6/15/12 10:08 AM

546    ◾    Programming in C++ for Engineering and Science

 Write a program to play the game of life and investigate the patterns produced by
various initial configurations. Some configurations die off rather quickly; others
repeat after a certain number of generations; others change shape and size and may
move across the array; and still others may produce “gliders” that detach themselves
from the society and sail off into space.

 15. Write a program that allows the user to play tic-tac-toe against the computer.

Section 13.4

 1. A company produces three different products. They are processed through four dif-
ferent departments, A, B, C, and D, and the following table gives the number of hours
that each department spends on each product:

Product A B C D

1 20 10 15 13
2 18 11 11 10
3 28 0 16 17

 The cost per hour of operation in each of the departments is as follows:

Department A B C D

Cost per Hour $140 $295 $225 $95

 Write a program that uses matrix multiplication to find the total cost of each of the
products.

 2. The vector-matrix equation

N
E
D

=
−

cos sin
sin cos

α α
α α

0
0

0 0 1

 −

cos sin

sin cos
c

β β

β β

0
0 0 0

0

1 0 0
0 oos sin

sin cos
γ γ
γ γ

−

0

I
J
K

 is used to transform local coordinates (i, J, K) for a space vehicle to inertial coordi-
nates (n, E, D). Write a program that reads values for α, β, and γ and a set of local
coordinates (i, J, K) and then uses matrix multiplication to determine the corre-
sponding inertial coordinates.

 3. A Markov chain is a system that moves through a discrete set of states in such a way
that when the system is in state i there is probability Pij that it will next move to state
j. These probabilities are given by a transition matrix P, whose (i, j) entry is Pij. It is
easy to show that the (i, j) entry of Pn then gives the probability of starting in state i
and ending in state j after n steps.

K11207.indb 546 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    547  

 To illustrate, suppose there are two containers A and B containing a given number
of objects. At each instant, an object is chosen at random and is transferred to the
other container. This is a Markov chain if we take as a state the number of objects in
container A and let Pij be the probability that a ball is transferred from A to B if there
are i balls in container A. For example, for four objects, the transition matrix P is
given by

0 1 0 0 0

1/ 4 0 3 / 4 0 0

0 1/ 2 0 1/ 2 0

0 0 3 / 4 0 1/ 4

0 0 0 1 0

 Write a program that reads a transition matrix P for such a Markov chain and calcu-
lates and displays the value of n and Pn for several values of n.

 4. A directed graph, or digraph, consists of a set of vertices and a set of directed arcs join-
ing certain of these vertices. For example, the following diagram pictures a directed
graph having five vertices numbered 1, 2, 3, 4, and 5, and seven directed arcs joining
vertices 1 to 2, 1 to 4, 1 to 5, 3 to 1, 3 to itself, 4 to 3, and 5 to 1:

 A directed graph having n vertices can be represented by its adjacency matrix, which
is an n × n matrix, with the entry in the ith row and jth column 1 if vertex i is joined
to vertex j, and 0 otherwise. The adjacency matrix for this graph is

0 1 0 1 1

0 0 0 0 0

1 0 1 0 0

0 0 1 0 0

1 0 0 0 0

 If a is the adjacency matrix for a directed graph, the entry in the ith row and
jth column of ak gives the number of ways that vertex j can be reached from the
vertex i by following k edges. Write a program to read the number of vertices in a

1 2

3

4

5

K11207.indb 547 6/15/12 10:08 AM

548    ◾    Programming in C++ for Engineering and Science

directed graph and a collection of ordered pairs of vertices representing directed
arcs, construct the adjacency matrix, and then find the number of ways that each
vertex can be reached from every other vertex by following k edges for some value
of k.

Section 13.5

 1. Write the system of linear equations for the loop currents i1, i2, and i3 in the follow-
ing simple resistor and battery circuit. Then use Gaussian Elimination to find these
currents.

 2. Consider the following electrical network:

 If the voltages at the endpoints are Va = VB = VC = VD = 1V, then applying Kirchhoff’s
law of currents at nodes 1, 2, and 3 yields (after some simplification) the following
system of linear equations for the voltages V1, V2, and V3 at these nodes

− − =

− + − =

− − + =

V V V

V V V

V V V

5

2

1

2
1

1

2

3

2

1

2

1

2

1

2
3

3

2

1 2 3

1 2 3

1 2 3

2 V
+

R1

I1

1Ω

R2

1Ω

R31Ω

2Ω

R6

2 V
+

I3I2

R4

2Ω

1Ω

R5

R4

3

1Ω

R6

2Ω

R1

1Ω
R3 1Ω 2Ω R5

1 2
CA

R7

2Ω

R2

1Ω
DB

K11207.indb 548 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    549  

 Use Gaussian Elimination to find these voltages.

 3. Consider the following material-balance problem: A solution that is 80 percent oil, 15
percent usable byproducts, and 5 percent impurities enters a refinery. One output is

92 percent oil and 6 percent usable byproducts. The other output is 60 percent oil and
flows at the rate of 1000 liters per hour (L/h).

 We thus have the following system of material-balance equations:

Total:

Oil:

Usable byproducts:

Impuriities

Also:

Y X

Y X

Y

= +
= +
=

1000

08 092 600

015 006

. .

. . XX V

Y X W

V W

+
= +

+ =

1000

005 002 10000

04

. .

.

 Use Gaussian Elimination to solve this linear system. Check that your solution also
satisfies the last equation.

 4. Consider the following statical system:

 Because the sum of all forces acting horizontally or vertically at each pin is zero,
the following system of linear equations can be used to obtain the tensions F1,
F2, . . ., F9:

X L/h

1000 L/h
600 L/h OIL

1000V L/h UBP
1000W L/h IMP

V + W = 0.4

0.92X L/h OIL
0.06X L/h UBP
0.02X L/h IMPY L/h

0.8Y L/h OIL
0.15Y L/h UBP
0.05Y L/h IMP

Assume
no oil

accumulates

1200 N

30° 45°45°

600 N

F9

F8F6

F4

F2

F5
F3 F7

F1

600 N

K11207.indb 549 6/15/12 10:08 AM

550    ◾    Programming in C++ for Engineering and Science

− −

−
−

−
−

− −

=

−

−

F
F
F

F
F
F
F
F
F

2 / 2 0 0 1 3 / 2 0 0 0 0

2 / 2 0 1 0 1/ 2 0 0 0 0
0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 2 / 2
0 0 0 1 0 0 0 0 2 / 2
0 0 0 0 3/ 2 1 0 1 0
0 0 0 0 1/ 2 0 1 0 0
0 0 0 0 0 0 0 1 2 / 2

0
1200

0
0

600
0
0

600
0

1

2

3

4

5

6

7

8

9

 Use Gaussian Elimination to solve this linear system

 5. The population of a country (or a region) is divided into age groups. If n is the num-
ber of age groups and Pi(t) is the number of individuals in age group i at time t, the
dynamic model describing the populations of the different age groups is given by

 P1(t + 1) = b1P1(t) + b2P2(t) + . . . + bnPn(t) + c1

 Pi + 1(t + 1) = aiPi(t) + ci , for i = 1, . . . , n – 1

 Here, each ai is the percentage of persons in age group i who move into age group i + 1
at the next time period; each bi is the birthrate for age group i; and each ci is the num-
ber of persons belonging to age group i that move into the region.

 If this dynamic system reaches equilibrium at a certain time period t so that for each
age group i, Pi(t) = Pi(t + 1) = Pi(t + 2) = . . . = some constant value pi, then the preced-
ing equations can be rewritten as the following steady-state equations:

 p1 = b1p1 + b2p2 + . . . + bnpn + c1

 p2 = a1p1 + c2

 p3 = a2p2 + c3

 .

 .

 .

 pn = an –1pn –1 + cn

K11207.indb 550 6/15/12 10:08 AM

Multidimensional Arrays and Vectors    ◾    551  

 Use Gaussian Elimination to solve this linear system for n = 4, a1 = 0.8, a2 = 0.7,
a3 = 0.6, b1 = 0, b2 = 0.05, b3 = 0.15, b4 = 0.1, and each ci = 100.

 6. Programming Problem 10 of Section 9.4 in Chapter 9 described the method of least
squares for finding the equation of a line that best fits a set of data points. This method
can also be used to find best-fitting curves of higher degree. For example, to find the
equation of the parabola

 y = a + Bx + Cx2

 that best fits a set of n data points, the values of a, B, and C must be determined for
which the sum of the squares of the deviations of the observed y-values from the pre-
dicted y-values (using the equation) is as small as possible. These values are found by
solving the linear system

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

() ()

() () ()

() () ()

+ + =

+ + =

+ + =

nA x B x C y

x A x B x C xy

x A x B x C x y

2

2 3

2 3 4 2

 Find the equation of the least-squares parabola for the following set of data points:

x y

0.05 0.957
0.12 0.851
0.15 0.832
0.30 0.720
0.45 0.583
0.70 0.378
0.84 0.295
1.05 0.156

 7. Linear systems similar to those in Problem 6 must be solved to find least-squares
curves of higher degrees. For example, for a least-squares cubic,

 y = a + Bx + Cx2 + Dx3

K11207.indb 551 6/15/12 10:08 AM

552    ◾    Programming in C++ for Engineering and Science

 the coefficients a, B, C, and D can be found by solving the following system of
equations:

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

() () ()

() () () ()

() () () ()

() () () ()

+ + + =

+ + + =

+ + + =

+ + + =

nA x B x C x D y

x A x B x C x D xy

x A x B x C x D x y

x A x B x C x D x y

2 3

2 3 4

2 3 4 5 2

3 4 5 6 3

 Find the equation of the least-squares cubic for the set of data points in Problem 6.

K11207.indb 552 6/15/12 10:08 AM

553

C h a p t e r 14

Building Classes

Inanimate objects are classified scientifically into three major categories—those
that don’t work, those that break down, and those that get lost.

RUSSELL BAKER

Mathematics classes became sheer terror and torture to me. I was so intimidated by
my incomprehension that I did not dare to ask any questions.

CARL JUNG

A committee can make a decision that is dumber than any of its members.

DAVID COBLITZ

It is common sense to take a method and try it. If it fails, admit it frankly and try
another. But above all, try something.

FRANKLIN D. ROOSEVELT

ConTEnTS
14.1 Introductory Example: Modeling Temperatures 554
14.2 Designing a Class 557
14.3 Implementing a Class 559
14.4 Other Class Features 583
Chapter Summary 586
Test Yourself 589
Exercises 590
Programming Problems 592

554    ◾    Programming in C++ for Engineering and Science

We have seen that designing a C++ program involves identifying the objects in a
problem and then using types to create software representations of those objects.

Once these objects are created, programming consists of applying to those objects the
operations needed to solve the problem.

We have also seen that when there is no predefined type that suffices to model an object,
the C++ class can be used to create a new type to represent the object. Classes thus provide
a way to extend the C++ language, allowing it to represent an ever-increasing number of
objects.

Until now, we have for the most part used classes that someone else built. In this
chapter, we learn how to build them ourselves and study the ideas of encapsulation and
 information-hiding that underlie class design.

14.1 InTRoDUCToRY ExAMPLE: MoDELInG TEMPERATURES
In Chapter 6 we developed a program to convert Celsius temperatures to the corresponding
Fahrenheit temperatures. We modeled each temperature reading with a double variable:

double tempCelsius,
 tempFahrenheit;

Now, suppose that we wish to extend this to a program that, given a temperature in Fahrenheit,
Celsius, or Kelvin, will display the equivalent temperature in each of the scales. Unlike the
problem in Chapter 6 where each temperature value could be modeled by a double variable
because we needed to store only the degrees, the problem here is to model temperatures hav-
ing two attributes—their number of degrees and their scale (Fahrenheit, Celsius, or Kelvin).

Of course, we could just use two variables:

double degrees = 0.0;
char scale = 'F';

But this requires two data items (myDegrees and myScale) to model a single object
(a temperature). To apply some function f() to a temperature, we would have to pass it
each of the data items used in our model,

f(degrees, scale);

instead of being able to pass a single object:

f(theTemp);

Similarly, displaying a temperature would require an output statement like

cout << degrees << scale;

K11207.indb 554 6/15/12 10:08 AM

Building Classes    ◾    555  

instead of simply

cout << theTemp;

This approach is not really inconvenient for objects that can be described with two attri-
butes, but it quickly becomes unmanageable as the complexity of the object being modeled
increases. Just think how many data items would be needed to represent a tax form like
that shown in Figure 14.1.

14.1.1 Creating new Types

In Chapter 6 we extended object-centered design to situations where some operation needed
to solve a problem is not provided in C++ by creating our own function to perform that opera-
tion. In this temperature problem, however, the object (a Temperature) has a type that is
not predefined. In Chapter 7 we suggested that for such objects with multiple attributes, a C++
class can be used to create a new type that has those attributes. For the temperature problem,
therefore, we should create a Temperature class containing both the degrees and the scale
of an arbitrary temperature and function members to perform temperature conversions.

Copy C For EMPLOYEE'S RECORDS
(See Notice on back.)
a Control number

b Employer's ID number

c Employer's name, address, and ZIP code

d Employee's social security number

e Employee's name, address, and ZIP code

7 Social security tips 8 Allocated tips 9 Advance EIC payment

10 Dependent care benefits

13 See instrs. for box 13

16 State Employer's state I.D. # 17 State wages, tips, etc.

15 Statutory
employee

Deceased Pension
plan

Legal
rep.

Hshld.
emp.

Subtotal Deferred
compensation

14 Other

11 Nonqualified plans 12 Benefits included in box 1

1 Wages, tips, other comp. 2 Federal income tax withheld

3 Social security wages 4 Social security tax withheld

5 Medicare wages and tips 6 Medicare tax withheld

Form No.
1234-56789999 BC

ABC-123

123456789

987-65-4321

123456789 1111.11

18 State income tax
19 Locality name

Form W-2 Wage and Tax Statement

20 Local wages, tips, etc. 21 Local income tax

.00

1111.11Bedrock .00

PR

Dinoville Rock Quarry
1212 T-Rex Ave.
Bedrock, Prehistoria 00001

Fred Flintstone
123 Cave A
Bedrock, Prehistoria 00002

1111.11 .00

11.22

22.11

FIGURE 14.1 An income tax form.

K11207.indb 555 6/15/12 10:08 AM

556    ◾    Programming in C++ for Engineering and Science

14.1.1.1 Algorithm
If we have such a class, then solving the problem is straightforward:

 1. Via cout, display a prompt for a temperature.

 2. From cin, read a temperature into theTemp.

 3. Via cout, display:

 a. the Fahrenheit equivalent of theTemp

 b. the Celsius equivalent of theTemp

 c. the Kelvin equivalent of theTemp

14.1.1.2 Coding
Given a Temperature library that provides a Temperature class and input, output,
and conversion operations, we can encode this algorithm in C++ as shown in Example 14.1.

Example 14.1 A Temperature Conversion Program

/* tempConversion.cpp displays a temperature in Fahrenheit, Celsius,
and Kelvin, using class Temperature.

 Input: an arbitrary Temperature
 Output: its Fahrenheit, Celsius and Kelvin equivalents
--*/

#include <iostream> // >>, <<, cin, cout
using namespace std;
#include "Temperature.h" // Temperature

int main()
{
 cout << " This program shows the Fahrenheit, Celsius, and\n"

"Kelvin equivalents of a temperature.\n\n";
 char response;
 Temperature theTemp; // construction
 do
 { // input a temperature
 cout << "Enter a temperature (e.g., 98.6 F): ";
 cin >> theTemp;

 cout << "––> " // output the equivalent:
 << theTemp.toFahrenheit() // Fahrenheit temp.
 << " == "
 << theTemp.toCelsius() // Celsius temp.
 << " == "
 << theTemp.toKelvin() // Kelvin temp.
 << endl;

K11207.indb 556 6/15/12 10:08 AM

Building Classes    ◾    557  

 cout << "\nDo you have more temperatures to convert? ";
 cin >> response;
 }
 while (response == 'Y' || response == 'y');
}

SAMPLE RUNS:

This program shows the Fahrenheit, Celsius, and
Kelvin equivalents of a temperature.
Enter a temperature (e.g., 98.6 F): 212 F
––> 212 F == 100 C == 373.15 K

Do you have more temperatures to convert? Y
Enter a temperature (e.g., 98.6 F): 0 C
––> 32 F == 0 C == 273.15 K

Do you have more temperatures to convert? Y

Enter a temperature (e.g., 98.6 F): 100 K
––> –279.67 F == –173.15 C == 100 K

Do you have more temperatures to convert? N

We will illustrate the principles of class design by designing and implementing the
Temperature class in the following sections.

14.2 DESIGnInG A CLASS
As with programs, creating a class consists of two phases:

 1. A design phase in which we plan the class

 2. An implementation phase in which we encode this design in C++

This section explores the first phase. Section 14.3 will examine the implementation phase.
Designing a class consists of identifying two things:

 1. The operations that can be applied to a class object

 2. The data that must be stored to characterize a class object

The operations are usually identified first because it is often not obvious what data must be
stored, and identifying the operations can sometimes clarify them. Also, identifying the
operations first means that they can be described without having to worry about how the
data will be stored. This independence from implementation details is important in good
class design.

K11207.indb 557 6/15/12 10:08 AM

558    ◾    Programming in C++ for Engineering and Science

14.2.1 The External and Internal Perspectives

Up to now, our approach to programming has mostly been looking from outside the pro-
gram into its details. Because we reside outside the program, this is a natural way to begin,
and as long as we are merely using predefined classes, this external perspective is adequate.

One of the basic ideas in class design is object autonomy, which we will refer to more
simply as the I-can-do-it-myself principle, meaning that an object has within itself the
ability to perform its operations where this is possible. That is, rather than viewing a class
operation as manipulation of an object by a program, we view a class operation as an
object taking an action. To incorporate this I-can-do-it-myself principle into the design of
a class, we will shift our perspective from that of an external observer to that of the object
being designed. That is, we will think through our design using an internal perspective as
though we are the object and will thus use first person terminology. To illustrate, instead of
referring to the Temperature data members as its degrees and its scale (which imply we
are outside, looking in), we will refer to them as my degrees and my scale (indicating that
we are the object, looking out).

In the sections that follow, we will use both perspectives. When working on a program
and using a class, we will use the external perspective. When working inside a class or
building its function members, we will use the internal perspective.

14.2.2 Temperature Class’s operations

From an internal perspective, a Temperature object must provide the following opera-
tions if the program in Example 14.1 is to work:

 i. Construct myself implicitly by initializing my degrees and scale with default values.

 ii. Read a temperature from an istream and store it in my data members.

 iii. Compute the Fahrenheit temperature equivalent to me.

 iv. Compute the Celsius temperature equivalent to me.

 v. Compute the Kelvin temperature equivalent to me.

 vi. Display my degrees and scale using an ostream.

K11207.indb 558 6/15/12 10:08 AM

Building Classes    ◾    559  

Although these operations suffice to solve the problem at hand, designing a reusable and
useful class involves identifying other operations that a user of the class is likely to need.
To that end, we might extend our list with the following operations:

 vii. Construct myself explicitly by initializing my degrees and scale members with speci-
fied values.

 viii. Report my number of degrees.

 ix. Report my scale.

 x. Compute my temperature raised by a given number of degrees.

 xi. Compute my temperature lowered by a given number of degrees.

 xii. Compare myself to another Temperature object using any of the six relational
operators (==, !=, <, >, <=, >=).

 xiii. Assign another Temperature value to me using the assignment operator (=).

This is not an exhaustive list, but it is a good start and will serve to introduce the details of
class implementation. Other operations can be added later.

The last operation, assignment, is already provided. For any class we define, the C++
compiler creates a default assignment operation that is adequate for our purposes. Thus, a
statement like

temp2 = temp1;

can be used to copy the data members of temp1 into temp2. We must implement the
other operations ourselves as described in the next section.

14.2.3 Temperature Class’s Data

To identify what data will be needed for a class, it is a good idea to begin by going through
the list of operations and identifying what information each of them requires. For our
Temperature class, operations (i) and (vi–xi) indicate that, from an internal perspective,
the following are needed:

 1. My degrees, and

 2. My scale

In fact, these are the only data items that are needed for our Temperature class. For
other classes, however, a complete list may not be evident at the outset and others will have
to be added later when the implementation of an operation requires them.

14.3 IMPLEMEnTInG A CLASS
Once we have a design for a class, we can use it as a blueprint for implementing the class.
Because we want the class to be reusable, it is declared in a library’s header file (e.g.,

K11207.indb 559 6/15/12 10:08 AM

560    ◾    Programming in C++ for Engineering and Science

Temperature.h) and the nontrivial operations are usually defined in a separately
 compiled implementation file (e.g., Temperature.cpp). As described in Chapter 6,
the documentation for the class and its operations are commonly put in a separate docu-
mentation file (e.g., Temperature.txt).

14.3.1 The Class Data Members

The first task is to implement the data items. For our Temperature class, we can store
the number of degrees in a real variable and the scale in a character variable. Thus, in
Temperature.h, we write:

/* Temperature.h is the header file for class Temperature.
 ...
--*/

double myDegrees;
char myScale; // 'F', 'C', or 'K'

These will become the data members—also known as instance variables—of our
Temperature class. Note that their names begin with the prefix my to reflect our
 internal perspective. And as with all identifiers, the name of a data member should be
 self-documenting, describing what it stores.

We could have used string to define myScale if we wanted to store the entire name of
the scale, but we chose char instead because temperatures are usually written using a single
character for the scale (e.g., 98.6 F, 100 C, 273 K). The best choice in some situations may
not be clear, but a decision must be made before we can proceed. Such implementation
decisions can always be revised later if they prove unwise.

14.3.1.1 Encapsulation
Once we have declared variables for the data members of our class, we can actually create
the class by wrapping a class declaration around these objects (again, in Temperature.h):

class Temperature
{
 public:
 // to be filled in later
 private:
 double myDegrees;
 char myScale;
};

Don’t forget the semicolon after the closing curly brace. Like all declarations, a class declara-
tion must be terminated by a semicolon.

Wrapping the data members in a class declaration and then using the class as a type
to declare an object makes it possible for an object to store values of different types. We
call this encapsulation. The Temperature class encapsulates the double data member
myDegrees and the char data member myScale.

K11207.indb 560 6/15/12 10:08 AM

Building Classes    ◾    561  

This declaration creates a new type named Temperature. If we use this type to declare
objects as in

#include "Temperature.h"

Temperature temp1,
 temp2;

then temp1 and temp2 are two distinct Temperature objects, each containing two
data members: a double named myDegrees and a char named myScale. We might
picture these objects as follows:

14.3.1.2 Information Hiding
Notice that our declaration of the Temperature class is divided into two sections: a
public section indicated by the keyword public and a private section labeled private.
Items in the public section are accessible to users of the class, but those in the private
section are not. This aspect of class design is called information-hiding. By preventing a
program from directly accessing the data members of a class, we hide that information, thus
removing the temptation to access those variables directly. In our example, placing the data
members myDegrees and myScale in the private section prevents a user of the class
from modifying them as with the statements

temp1.myScale = 'K';
temp1.myDegrees = –50;

creating an impossible temperature value.
Another reason for keeping the data members private has to do with class maintenance.

Over time, we may wish to enhance the class by adding operations to the public section,
but if at all possible, we keep declarations of existing operations unchanged so that pro-
grams that use the class won’t fail. However, we may want to modify the data members in
the private section or add to them. For example, we might decide in the future to change
the type of myScale to string so it can store the name of a temperature scale instead of
only its first letter. Or we may find that adding some new data members will improve the
performance of some of the class’s operations.

14.3.1.3 Class Invariants
Once we have the data members encapsulated and hidden, we are almost ready to begin
implementing the class’s operations. Before doing this, however, we should identify any
restrictions there may be on the values of the data members of our class. For example,
we might stipulate that the only valid values for the data member myScale will be the

temp1
myDegrees

myScale

temp2
myDegrees

myScale

K11207.indb 561 6/15/12 10:08 AM

562    ◾    Programming in C++ for Engineering and Science

characters F, C, or K. For the data member myDegrees, we know of no bound on how high
a temperature can go, but we will use absolute zero (0°K, which is equivalent to –273.15°C
and –459.67°F) for a lower bound. Our restrictions thus are

myScale will be one of the characters 'F', 'C', or 'K'

for 'K': myDegrees ≥ 0

for 'C': myDegrees ≥ –273.15

for 'F': myDegrees ≥ –459.67

If we identify and specify such restrictions at the outset, then we can implement the vari-
ous class operations in a way that ensures they are observed.

Because this set of conditions will be true throughout the class, it is called a class invari-
ant. When such an invariant can be defined, it should be included in the documentation
for the class so that users will know they are restrictions on objects of type Temperature.

14.3.2 The Class operations—Function Members

Once we have decided on the data members of our class and have declared them in the
private section, we are ready to begin implementing the class operations. This is done by
adding function members, also known as methods. We will begin our study of them by
looking at a simple example: an output method that displays a Temperature object via
an ostream (operation (vi) in our list).

14.3.2.1 Temperature Output
As we will see later in this section, we can extend the output operator << so that it can be
used to output Temperature objects, but we cannot simply add it as a function member
of a class. However, it is useful to have an output operation early because it can help with
testing the correctness of the other operations.

From an external perspective, the purpose of an output function is to display the con-
tents of an object’s data members (but perhaps not all of them). In our case, if we name the
function member display(), a programmer should be able to write

temp1.display(cout);

to display the degrees and scale in a Temperature object temp1 to cout, and write

temp2.display(cerr);

to display the degrees and scale of temp2 to cerr. Thus, from an internal perspec-
tive, a call to display() can be viewed as a message the program is sending to you (a
Temperature object), with cout (or cerr) as an argument—like someone telling you

“hey you! Print yourself using cout.”

K11207.indb 562 6/15/12 10:08 AM

Building Classes    ◾    563  

The definition of display() must therefore provide the instructions that I (a
Temperature object) apply to my data members to perform the operation.

This perspective leads to the following specification for the operation’s behavior:

Receive: out, an ostream to which information is to be written

Output: myDegrees followed by a space and then myScale

Send back: out, with myDegrees, a space, and myScale inserted into it

Example 14.2 shows a definition of this method. Because of its simplicity, we define it using
the inline specifier, in the header file Temperature.h, following the class declaration.1

Example 14.2 Displaying a Temperature
// ... #includes and class declaration go here

// -------- Output method --------------------------------
inline void Temperature::display(ostream & out) const
{
 out << myDegrees << ' ' << myScale;
}

From an external perspective, sending this message to a Temperature object will
display the values stored in the data members myDegrees and myScale of that object,
so the statement

temp1.display(cout);

will display the data members of temp1 via cout, while

temp2.display(cerr);

will display the data members of temp2 via cerr. At the end of this section we will see
how to overload the output operator (<<) to display a Temperature value in the usual
manner.

Note that as one of Temperature’s function members, display() must be invoked
using dot notation. Put differently, display() must be sent as a message to a Temperature
object. If we attempt to call display() without using dot notation,

display(cout); // ERROR!

the compiler will generate an error, because we have not specified a Temperature object
to receive the message.

1 Inlining a function (see Section 10.6) allows the compiler to replace a call to that function with the code from its defini-
tion. Putting this definition in the header file makes this code available to the compiler.

K11207.indb 563 6/15/12 10:08 AM

564    ◾    Programming in C++ for Engineering and Science

In this first look at the definition of a function member, we introduced a number of new
features, and we will now look at each of them in more detail.

14.3.2.2 Full Names
The first new feature is in the function heading:

inline void Temperature::display(ostream & out) const

The name of the class is attached to the name of the method with the scope operator (::)
to inform the compiler of the class to which it belongs. The resulting name is called the full
name (or fully qualified name) of the function member.

It is important to use the full name in the definition of function members, because they
can access the private members of their class, but normal functions cannot. If the full name
is not used in a method’s definition, as in

inline void display(ostream & out) const // Not a function member
{
 out << myDegrees << ' ' << myScale; // ERROR!
}

the compiler views this as a normal (nonmember) function, and errors like

Identifier 'myDegrees' is not defined
Identifier 'myScale' is not defined

will result because the private data members of a class are invisible to ordinary nonmember
functions.

Full names are also important because they make it possible for different classes
to have function members with the same name and signature. By using the full name
to define each display() method, the compiler can distinguish one definition from
another.

14.3.2.3 Constant Methods
The next new feature is the keyword const at the end of the function heading:

inline void Temperature::display(ostream & out) const

This informs the compiler that display() is a constant method, which means that it
may not change any data member of the Temperature class. Any attempt to do so will
be caught by the compiler as an error. it is good programming practice to declare all function
members that do not alter the data members of the class as const methods.

For a method’s definition to compile correctly, its prototype must be stored inside the
public section of the class declaration. Also, because display()’s prototype refers to the
type ostream, we must include the iostream library before the class declaration:

K11207.indb 564 6/15/12 10:08 AM

Building Classes    ◾    565  

#include <iostream> // ostream, ...
using namespace std;

class Temperature
{
 public:
 void display(ostream & out) const;

 private:
 double myDegrees;
 char myScale;
};

Note that for a constant method, the const specifier must also be used in its prototype.
Also note that it is not necessary to specify inline or the full name of the function mem-
ber within the class itself. Keeping these prototypes simple reduces clutter within the class
declaration and thus increases readability. For the same reason, the methods of a class
should be documented in a separate file Temperature.txt.

Of course, before the display() method is of any practical use, the data members
myDegrees and myScale must contain values. We therefore turn our attention to oper-
ations that can be used to initialize these data members.

14.3.2.4 Constructors
As we have seen, a Temperature definition

Temperature temp1,
 temp2;

defines temp1 and temp2 as objects that might be pictured as follows:

The question marks indicate that the data members in these objects are undefined. Some
versions of C++ may initialize myDegrees to 0 and myScale to the null character '\0'.
In other versions, their initial values may be whatever “garbage values” correspond to the
strings of bits in the memory locations allocated to them; for example, one version initial-
ized myDegrees to –9.3E61 and myScale to a nonexistent character whose numeric
code was –52. Because garbage values such as these do not represent valid temperatures, we
would certainly prefer that the preceding definitions define temp1 and temp2 with some
default initial value of our choosing (e.g., 0 degrees Celsius):

temp1
myDegrees

myScale

temp2
myDegrees

myScale

? ?

??

temp1
myDegrees

myScale C

0.0
temp2

myDegrees

myScale C

0.0

K11207.indb 565 6/15/12 10:08 AM

566    ◾    Programming in C++ for Engineering and Science

C++ allows such initialization behavior to be performed by class operations called con-
structors.

The name of a constructor is always the same as the name of the class and there are two
kinds of constructors: default-value constructors that are used to initialize data members
with default values when none are specified in the declaration of an object, and explicit-
value constructors that initialize them with values provided in the declaration.

To illustrate, suppose that for declarations of Temperature objects like those given
earlier,

Temperature temp1,
 temp2;

we want temp1 and temp2 to be automatically initialized to 0 degrees Celsius. This gives
the following specification for the behavior of the default-value constructor:

Postcondition: myDegrees == 0.0 && myScale == 'C'

Because a constructor (unlike other functions) cannot return anything to its caller, we
specify its behavior using a postcondition, a boolean expression that must be true when
the operation terminates.

Example 14.3 shows the definition of this default-value constructor. Because of its sim-
plicity, we define it as inline and place its definition in Temperature.h, after the dec-
laration of class Temperature.

Example 14.3 The Temperature Default-Value Constructor
// -------- Default-value constructor --------------

inline Temperature::Temperature()
{
 myDegrees = 0.0;
 myScale = 'C';
}

Here again, we see some new features. The first is that there is no return type between
inline and the method’s full name because constructors have no return type, not even
void. As an initialization operation, a constructor never returns anything to its caller. Its
sole purpose is to initialize the data members of a class.

Next comes the full name of the operation, in which the first Temperature is the
name of the class of which the operation is a member, :: is the scope operator, and then
follows the name of the operation, which also is Temperature because the name of a
constructor is always the same as the name of its class:

inline Temperature::Temperature()

K11207.indb 566 6/15/12 10:08 AM

Building Classes    ◾    567  

Note that there is no const at the end of the constructor’s heading. A constructor is not a
constant operation because it does modify the data members of the class (by initializing them).

We must also store a prototype of this operation in the public section of the class
declaration:

class Temperature
{
 public:
 Temperature();
 void display(ostream & out) const;

 private:
 double myDegrees;
 char myScale;
};

As before, we omit the inline and use the normal name of the operation instead of its
full name. We also add its documentation to Temperature.txt.

Given this much, a programmer can now write a short program to test the class declara-
tion and method definitions:

#include <iostream>
using namespace std;
#include "Temperature.h"

int main()
{
 Temperature temp1; // the compiler sends temp1 the
 // "initialize yourself" message
 temp1.display(cout);
}

When this program is executed, it will output

0 C

This output is produced because whenever the C++ compiler processes the definition of a
class object it automatically searches the class for a constructor it can use to initialize that
object. For this reason, we should always provide one or more constructors when building a
class.

The default-value constructor only allows us to initialize a Temperature object to the
value 0 degrees Celsius. It would certainly be useful, however, if we could also specify other
initial values in a Temperature object’s declaration. This can be accomplished by defin-
ing another constructor known as an explicit-value constructor.

Unlike the default-value constructor, an explicit-value constructor receives its initializa-
tion values via parameters. Because there is the possibility that these initial values could
produce an invalid temperature object, such constructors must check their validity.

K11207.indb 567 6/15/12 10:08 AM

568    ◾    Programming in C++ for Engineering and Science

From the internal perspective, we have the following specification for this constructor’s
behavior. Note that, for user convenience, we are allowing the scale to be in either upper
or lower case.

Receive: initDegrees, a double

 initscale, a char

Precondition: initscale is one of {‘f ’, ‘c’, ‘k’, ‘F’, ‘C’, ‘K’} and

 initDegrees is valid for initscale

Postcondition: myDegrees == initDegrees && myScale == initscale in uppercase

Example 14.4 presents a definition of this operation. Because of its complexity, it
should not be designated inline. Instead, its definition should be stored in the class
implementation file Temperature.cpp so that it can be compiled separately. Note that
although the full name of this constructor is exactly the same as the full name of the
default-value constructor in Example 14.3, its signature (i.e., list of parameter types) is
different, as required by overloaded functions. Also, we will define the three constants
MIN_FAHRENHEIT, MIN_CELSIUS, and MIN_KELVIN used for checking valid-
ity rather than the “magic” numbers –459.67, –273.15, and 0.0 in the class header file
Temperature.h to make them accessible to users of the class because they seem likely
to be generally useful.

Example 14.4 The Temperature Explicit-Value Constructor

/* Temperature.cpp defines the nontrivial Temperature operations. */

#include "Temperature.h" // class Temperature
#include <cctype> // islower(), toupper()
#include <cstdlib> // exit()
using namespace std;

// -------- Explicit-value constructor --------------------------
Temperature::Temperature(double initDegrees, char initScale)
{
 if (islower(initScale)) // if the scale is lowercase
 initScale = toupper(initScale); // convert it to uppercase

K11207.indb 568 6/15/12 10:08 AM

Building Classes    ◾    569  

 //----- Check the class invariant -----
 if (initScale == 'F' && initDegrees >= MIN_FAHRENHEIT
 || initScale == 'C' && initDegrees >= MIN_CELSIUS
 || initScale == 'K' && initDegrees >= MIN_KELVIN)
 {
 myDegrees = initDegrees; // proceed with
 myScale = initScale; // initialization
 } // otherwise,
 else // error message
 {
 cerr << "\n*** Temperature constructor received invalid params "
 << initDegrees << ' ' << initScale << endl;
 exit(1);
 }
}

To use this operation, we must place its prototype in the public portion of class
Temperature, and the definitions of the three constants outside the class declaration:

//----- Temperature.h -----

#include <iostream> // ostream
using namespace std;
const double MIN_FAHRENHEIT = –459.67,
 MIN_CELSIUS = –273.15,
 MIN_KELVIN = 0.0;

class Temperature
{
 public:
 Temperature();
 Temperature(double initDegrees, char initScale);

 void display(ostream & out) const;

 private:
 double myDegrees;
 char myScale;
};

As with other methods, we would put its documentation in Temperature.txt.
Given this prototype, a programmer can now write

#include <iostream>
#include "Temperature.h"
using namespace std;
int main()
{
 Temperature temp1(98.6, 'F'),
 temp2;

K11207.indb 569 6/15/12 10:08 AM

570    ◾    Programming in C++ for Engineering and Science

 temp1.display(cout); cout << endl;
 temp2.display(cout); cout << endl;
}

Executing the object file produced by compiling and linking this program along with
Temperature.cpp produces the output

98.6 F
0 C

In the declarations

Temperature temp1(98.6, 'F'),
 temp2;

the object temp1 is constructed using the explicit-value constructor, and temp2 is con-
structed using the default-value constructor. These objects are thus initialized as follows:

14.3.2.5 Object Initialization
As noted earlier, when the compiler processes the declaration of a class object, it searches
the class for a constructor it can use to initialize the object. For example, when it encoun-
ters a class object declaration (without arguments) such as

Temperature temp2;

the compiler searches the class for a constructor with no parameters and uses it to perform
the initialization. When it encounters a class object declaration such as

Temperature temp1(98.6, 'F');

in which arguments are specified, it searches the class for a constructor whose signature
matches the types of those arguments. If it finds such a constructor, the compiler inserts a
call to that constructor to perform the initialization.

This syntax for declarations of variables should not seem completely unfamiliar. In
Chapter 11, we saw that an ifstream object can be initialized with the name of a file, for
example,

ifstream inStream("weather.dat");

Such a statement is using an ifstream explicit-value constructor to open the stream to
the file whose name it is passed as an argument.

According to the C++ standard, any variable can be initialized in this way. Instead of
writing

temp1
myDegrees

myScale F

98.6
temp2

myDegrees

myScale C

0.0

K11207.indb 570 6/15/12 10:08 AM

Building Classes    ◾    571  

double sum = 0.0;
char middleInitial = 'C';

for example, we could write

double sum(0.0);
char middleInitial('C');

The syntax using = is simply provided as a convenient shorthand to this approach.2

14.3.2.6 Accessor Methods
Now that we have constructors, we turn to implementing other operations of class
Temperature, starting with some of the simplest ones. An accessor method retrieves the
value of a data member of the class but may not modify it.3 For example, sending the message

temp1.getDegrees()

to Temperature object temp1 will retrieve the number of degrees in temp1, and the
message

temp1.getScale()

will retrieve its scale.
Specifications for these function members are straightforward:

Return: myDegrees

for getDegrees() and

Return: myScale

for getScale().

Example 14.5 shows their definitions. Because they are simple, we inline them and
store their definitions in the class header file Temperature.h, and because they read but
do not modify the data members, they are designated as const methods.

Example 14.5 Temperature Accessors

// -------- Degrees extractor -------------------------------------
inline double Temperature::getDegrees() const
{
 return myDegrees;
}

// -------- Scale extractor ---------------------------------------

2 The C++ standard actually suggests that the latter approach is the preferred way to initialize an object.
3 Accessor methods are sometimes called “getters.” Accordingly, function members that can modify data members are called

“setters.”

K11207.indb 571 6/15/12 10:08 AM

572    ◾    Programming in C++ for Engineering and Science

inline char Temperature::getScale() const
{
 return myScale;
}

Because prototypes of function members must be stored in the class declaration, we add
the prototypes of these accessors to our class Temperature:

class Temperature
{
 public:
 Temperature();
 Temperature(double initDegrees, char initScale);

 double getDegrees() const;
 char getScale() const;

 void display(ostream & out) const;

 private:
 double myDegrees;
 char myScale;
};

As is common practice, we have grouped these prototypes according to purpose with
blank lines separating each group as the preceding listing illustrates. For example,
 constructors, accessors, and I/O methods all have distinct purposes, so we group their
prototypes accordingly.

14.3.2.7 Temperature Input
Next, we add a counterpart to the output function member display()—an input method
to read a Temperature value from an istream. A statement such as

temp2.read(cin);

should read a number and a character from cin and store them in temp2.myDegrees
and temp2.myScale, respectively.

Proceeding from an internal perspective as with the output operation yields the follow-
ing specification:

Receive: in, an istream containing a double and a char

Input: inDegrees, the double value, and inscale, the char value

Precondition: inscale is one of {‘f ’, ‘c’, ‘k’, ‘F’, ‘C’, ‘K’} and inDegrees is valid for inscale.

Send back: in, with inDegrees and inscale extracted from it

Postcondition: myDegrees == inDegrees && myScale == inscale

K11207.indb 572 6/15/12 10:08 AM

Building Classes    ◾    573  

For user convenience, we will accept the scale in either upper- or lowercase and convert
lowercase entries to uppercase. To guard against invalid input values, we must check that
the degrees and scale entered satisfy the precondition before modifying the data members.
If they do not, we will terminate execution of the program.4

Due to its complexity, we do not define this function member as inline, and so
its definition should be stored in Temperature.cpp, and because it modifies the
Temperature data members, it is not defined as a const method. Example 14.6 pre-
sents one implementation of this operation.

Example 14.6 Temperature Input

// -------- Temperature Input -------------------------------------
void Temperature::read(istream & in)
{
 double inDegrees; // temporary variables to
 char inScale; // store the input value

 in >> inDegrees >> inScale; // read values from in
 if (islower(inScale)) // if scale is lowercase
 inScale = toupper(inScale); // convert it to uppercase

 //----- Check the class invariant -----
 if (inScale == 'F' && inDegrees >= MIN_FAHRENHEIT
 || inScale == 'C' && inDegrees >= MIN_CELSIUS
 || inScale == 'K' && inDegrees >= MIN_KELVIN)
 {
 myScale = inScale; // assign input values
 myDegrees = inDegrees; // to data members
 }
 else // otherwise issue error message
 { // & stop execution
 cerr << "\n*** Invalid temperature *** "
 << initDegrees << ' ' << initScale << endl;
 exit(1);
 }
}

As a function member, a prototype of read() must be added to the class declaration:

class Temperature
{
 public:
 Temperature();
 Temperature(double initDegrees, char initScale);

4 An alternative is to use the setstate() function to set ios::failbit to signal an input failure as described in
Section 11.3. A program using the Temperature class can then detect this failure with the failure() function and
recover from it.

K11207.indb 573 6/15/12 10:08 AM

574    ◾    Programming in C++ for Engineering and Science

 double getDegrees() const;
 char getScale() const;

 void display(ostream & out) const;
 void read(istream & in);

 private:
 double myDegrees;
 char myScale;
};

As before, documentation for it must also be added to the documentation file.
A program can now use read() to input temperatures from an istream or from

an ifstream.

Temperature temp1;
 ...
temp1.read(cin);
 ...

Later in this section we will see how the input operator (>>) can be overloaded to input
Temperature values in the usual manner.

14.3.2.8 Conversion Methods
Next, we examine methods that convert temperatures to different scales. We begin with a
function member toFahrenheit(). Its specification is straightforward:

Return: The Fahrenheit temperature equivalent of myself

Example 14.7 gives an implementation of this method. It is sufficiently complex that it is
not defined as inline. Note the use of a switch statement to select the appropriate con-
version formula to use with the current value of myScale.

Example 14.7 The tofahrenheit() Method

// -------- Fahrenheit conversion method -----------------

Temperature Temperature::toFahrenheit() const
{
 switch (myScale)
 {
 case 'F': case 'f':
 return Temperature(myDegrees, 'F');
 case 'C': case 'c':
 return Temperature(myDegrees * 1.8 + 32.0, 'F');
 case 'K': case 'k':
 return Temperature((myDegrees – 273.15) * 1.8 + 32.0, 'F');
 }
}

K11207.indb 574 6/15/12 10:08 AM

Building Classes    ◾    575  

It is important to note how this function uses the explicit-value Temperature con-
structor to build the Temperature value to be returned. For example, in the first case
of the switch statement, it uses the values of myDegrees and 'F' passed to it to
build a Temperature object, which toFahrenheit() then uses as its return value
for this case.

As always, we must place a prototype of the conversion methods in the class declaration:

class Temperature
{
 public:
 Temperature();
 Temperature(double initDegrees, char initScale);

 double getDegrees() const;
 char getScale() const;

 Temperature toFahrenheit() const;
 Temperature toCelsius() const;
 Temperature toKelvin() const;

 void read(istream & in);
 void display(ostream & out) const;

 private:
 double myDegrees;
 char myScale;
};

Definitions of toCelsius() and toKelvin() are similar to that of toFahrenheit()
and are left as exercises.

Given these methods, our Temperature class provides the minimal functionality
necessary for a modified version of the program in Example 14.1 in which input and out-
put are carried out using read() and display() as shown in Example 14.8.

Example 14.8 A Modified Version of Example 14.1

/* This program displays a temperature in Fahrenheit,
 Celsius, and Kelvin, using class Temperature.

 Input: an arbitrary Temperature
 Output: its Fahrenheit, Celsius and Kelvin equivalents
--*/

#include <iostream> // >>, <<, cin, cout
using namespace std;
#include "Temperature.h" // Temperature

K11207.indb 575 6/15/12 10:08 AM

576    ◾    Programming in C++ for Engineering and Science

int main()
{

 cout << "This program shows the Fahrenheit, Celsius, and\n"
 "Kelvin equivalents of a temperature.\n\n";
 char response;
 Temperature theTemp; // construction
 do
 { // input a temperature
 cout << "Enter a temperature (e.g., 32 F): ";
 theTemp.read(cin);
 cout << "--> "; // output its conversions
 theTemp.toFahrenheit().display(cout);
 cout << " == ";
 theTemp.toCelsius().display(cout);
 cout << " == ";
 theTemp.toKelvin().display(cout);
 cout << endl;

 cout << "\nDo you have more temperatures to convert? ";
 cin >> response;
 }
 while (response == 'Y' || response == 'y');

}

Note the chaining of messages as in the statement

theTemperature.toFahrenheit().display(cout);

The chained messages are processed from left to right. First, the toFahrenheit() mes-
sage is sent to theTemperature, which returns a (temporary) Temperature object.
The display() message is then sent to this (temporary) Temperature object.

14.3.3 overloading operators

Each of the preceding operations has been implemented as a “normal” function in that its
name was an identifier. For some operations (arithmetic operations such as addition and
subtraction, relational comparisons such as < and >, and I/O), it is often more convenient
to define an operator to perform them. Just as normal functions and methods can be over-
loaded, C++ allows operator overloading for classes.

14.3.3.1 The Relational Operators
As noted earlier, it would be useful if we could compare two Temperature objects using
relational operators. This would allow a computerized thermometer to be programmed
with statements like

if (yourTemperature > Temperature(98.6, 'F'))
 cout << "You have a fever!\n";

or a computer-controlled thermostat to be programmed with statements like

K11207.indb 576 6/15/12 10:08 AM

Building Classes    ◾    577  

while (houseTemperature < Temperature(20, 'C'))
 runFurnace();

To permit such operations, we must overload the relational operators for class
Temperature. We will do this for two of them, the less-than operator (<) and the equal-
ity operator (==). The others are similar and are left as exercises.

To overload the < operator we define a Temperature method with the name
 operator<. Similarly, to overload the == operator, we define a method with the name
operator==. In general, we can overload an arbitrary operator whose symbol is ∆ by
defining a method with the name operator∆, provided it has a signature distinct from
that of any existing definition of that operator.

If operator<() is defined as a Temperature method, an expression like

houseTemperature < Temperature(20, 'C')

is treated by the C++ compiler as the message

houseTemperature.operator<(Temperature(20, 'C'))

Intuitively, such a method call is sending the less-than message with a Temperature
argument (20 degrees Celsius in this case) to houseTemperature, which must return
true only if it is less than that Temperature argument, taking into account that our
scales may not be the same. Example 14.9 shows one way that the operand<() method
can be implemented:

Example 14.9 Overloading Operator <

// -------- less-than -------------------------------------

bool Temperature::operator<(const Temperature & rightOperand) const
{
 Temperature anotherTemp; // the equivalent of rightOperand,
 // but in my scale
 switch (myScale)
 {
 case 'C': anotherTemp = rightOperand.toCelsius();
 break;
 case 'F': anotherTemp = rightOperand.toFahrenheit();
 break;
 case 'K': anotherTemp = rightOperand.toKelvin();
 break;
 }

 return myDegrees < anotherTemp.getDegrees();
}

K11207.indb 577 6/15/12 10:08 AM

578    ◾    Programming in C++ for Engineering and Science

This implementation resolves the problem of mismatched scales by using a
local Temperature object anotherTemp, which it sets to the equivalent of
rightOperand in the same scale as the Temperature object receiving the mes-
sage. Once we have two temperatures in the same scale, we can simply compare their
myDegrees members.5

The equality (==) operator can be overloaded using a similar approach, as shown in
Example 14.10.

Example 14.10 Overloading Operator ==
// -------- equality -------------------------------------

bool Temperature::operator==(const Temperature & rightOperand) const
{
 Temperature anotherTemp; // the equivalent of rightOperand,
 // but in my scale
 switch (myScale)
 {
 case 'C': anotherTemp = rightOperand.toCelsius();
 break;
 case 'F': anotherTemp = rightOperand.toFahrenheit();
 break;
 case 'K': anotherTemp = rightOperand.toKelvin();
 break;
 }

 return myDegrees == anotherTemp.getDegrees();
}

Both of these methods are sufficiently complicated that they should be stored in
Temperature.cpp. Prototypes for these operations must be placed in the class declara-
tion as shown in Example 14.11 and documentation in Temperature.txt. The remain-
ing relational operators can be overloaded in a similar fashion and are left as exercises.
Other operations (+ and –) that might be added are described in the exercises.

Example 14.11 The Temperature Class Declaration

/* Temperature.h declares class Temperature and three
 constants representing minimum possible temperatures.
--*/

5 A class method can directly access the private data members in class objects it receives as parameters, but for readabilty
we use an object’s accessor methods instead.

K11207.indb 578 6/15/12 10:08 AM

Building Classes    ◾    579  

#ifndef TEMPERATURE
#define TEMPERATURE

#include <iostream> // istream, ostream
using namespace std;

const double MIN_FAHRENHEIT = –459.67,
 MIN_CELSIUS = –273.15,
 MIN_KELVIN = 0.0;

class Temperature
{
 public: // The class interface
 Temperature();
 Temperature(double initDegrees, char initScale);

 double getDegrees() const;
 char getScale() const;

 Temperature toFahrenheit() const;
 Temperature toCelsius() const;
 Temperature toKelvin() const;

 bool operator<(const Temperature & rightOperand) const;
 bool operator==(const Temperature & rightOperand) const;
 // ... other relational operators omitted

 void read(istream & in);
 void display(ostream & out) const;

 private:
 double myDegrees;
 char myScale;
};

// ... Definitions of inline operations go here ...

14.3.3.2 Overloading I/O Operators << and >>
We have already seen that methods like read() and display() provide a way to define
I/O operations for classes like Temperature. However, these methods do not coordinate
well with the normal iostream operators. It would be preferable if we could instead out-
put class values using the customary operators << for output and >> for input. We will now
overload operator<< using our display() method and overload operator>> using
read(). Doing so does not require much code, but to do so correctly requires that some
subtle issues be addressed.

K11207.indb 579 6/15/12 10:08 AM

580    ◾    Programming in C++ for Engineering and Science

The first issue is that unlike operator< and operator==, we cannot define
 operator<< as a method of a class. To see why, recall that if an operator whose symbol is
∆ is defined as a method of a class, and object is an object of that class, then the expression

object ∆ operand

is treated by the compiler as

object.operator∆(operand)

If this observation is applied to the output expression

cout << someTemperature

then we see that operator<< must be defined as a method of class ostream, not class
Temperature. But this would require modifying the standard C++ class ostream
by adding a new prototype for operator<< to output Temperature objects and any
other objects for classes we create, something that is not normally allowed (nor would this
be wise).

Fortunately, C++ provides a way around this problem. If the operator whose symbol is
∆ is defined as a normal function—one that acts upon its operands via parameters—and
not as a class method, then the expression

object ∆ operand

is treated by the compiler as the function call

operator∆(object, operand)

More precisely, if we wish to use

cout << theTemperature;

then we need to define a nonmember function operator<< that the compiler can call as

operator<<(cout, theTemperature);

We can thus define operator<<() as a normal function, using an external perspective,
giving the following specification of the function’s behavior:

Receive: out, the ostream to which values are being written; aTemp, the
Temperature object whose value is being written

Output: aTemp.myDegrees and aTemp.myScale

Send back: out, containing the inserted values

Return: out, for use by a subsequent output operation

K11207.indb 580 6/15/12 10:08 AM

Building Classes    ◾    581  

Example 14.12 presents the implementation of operator<<. Because most of
the required functionality is already available via the display() method of class
Temperature, our function merely sends its parameter aTemp the display() mes-
sage, and then returns its ostream parameter. The resulting function is simple enough to
define as inline, so we store it in the class header file Temperature.h. Because it is a
normal function (i.e., not a method), no prototype is placed within the class declaration.

Example 14.12 Overloading Operator << for Class Temperature

// -------- Temperature ostream output -------------------

inline ostream & operator<<(ostream & out,
 const Temperature & aTemp)
{
 aTemp.display(out); // tell aTemp to output itself
 return out;
}

This function is deceptively simple. It seemingly just receives an ostream and a class
operand and sends the display() message to the class operand with the ostream oper-
and as an argument. Because display() inserts values into its ostream operand out,
out is declared as a reference parameter.

However, the function also returns out and the return type is a reference ostream &,
something we have not seen before. These are the two subtlest parts of the function, and
we will deal with them separately.

The << operator returns out so that output operations can be chained. That is, when we
insert two Temperature objects temp1 and temp2 into cout,

cout << temp1 << temp2;

there are two different calls to operator<<(), and these are executed from left to right.
To distinguish them, suppose we number them as follows:

cout <<1 temp1 <<2 temp2;

In executing these functions from left to right, the compiler treats them as nested function
calls, with <<1 being performed first, as the “inner” call:

operator<<2(operator<<1(cout, temp1) , temp2);

The return-value from <<1 is thus used as the left argument to <<2,

operator<<2 (operator<<1's return_value, temp2);

K11207.indb 581 6/15/12 10:08 AM

582    ◾    Programming in C++ for Engineering and Science

which means that <<2 will try to insert temp2 into whatever value <<1 returns.
From this, it should be apparent that <<1 must return an ostream. Moreover, it should

be the same ostream into which <<1 inserted its value, and so it should return its param-
eter out.

The other subtle point has to do with the return type of operator<<. Why did we
define its return type as ostream &? The reason is that when a C++ function returns a
value in the usual fashion, it actually returns a copy of the value to the caller of the func-
tion, which means that for the output statement

cout << temp1 << temp2;

temp1 would be inserted into cout, but temp2 would be inserted into a copy of cout,
the result of which is unpredictable.

To avoid such copying, C++ allows a function to have a reference return type, which in
effect “turns off” the copying mechanism and returns the actual object. Thus, when we write

inline ostream & operator<<(ostream & out, const Temperature & theTemp)
{
 theTemp.display(out);
 return out;
}

we are telling the compiler, “Don’t return a copy of out, but instead return the actual
ostream for which it is an alias.”

Overloading the input operator >> is similar to that for <<. Example 14.13 gives the
definition of operator>>().

Example 14.13 Overloading Operator >> for Class Temperature

// -------- Temperature istream input ---------------------------

inline istream & operator>>(istream & in, Temperature & aTemp)
{
 aTemp.read(in);
 return in;
}

Note that unlike the output operator, the input operator does modify its Temperature
parameter, so it is declared as a reference parameter and not a constant reference parameter.

With these new I/O operations for Temperature objects added to our temperature
library, the temperature-conversion program of Example 14.1 will now compile and exe-
cute. And although there certainly are other operations we would add, we will consider
this library complete for our purposes.

K11207.indb 582 6/15/12 10:08 AM

Building Classes    ◾    583  

14.4 oThER CLASS FEATURES
In this chapter we have looked at the major features of designing and implementing classes.
There is much more that could be said, however, and in this section we will look at two
others. One is an alternative way to provide access to the data members of a class, which
we will illustrate by implementing the input and output operations without using methods
like read() and display(). The other is a “class wrapper” that should be added to make
our classes suitable for use in large projects that may utilize many different classes.

14.4.1 Friend Functions

Although most operations on a class object can be implemented as function members,
there are some occasions when this is not possible. For example, we saw that the output and
input operators << and >> cannot be defined as Temperature methods because their left
operands are an ostream and an istream, respectively, not a Temperature:

cout << "Enter a temperature (e.g., 98.6 F): ";
cin >> theTemperature;

cout << "The temperature is " << theTemperature << endl;

Our solution was to define “normal” functions for operator<< and operator>> that
used Temperature’s display() and read() methods:

inline ostream & operator<<(ostream & out, const Temperature & aTemp)
{
 aTemp.display(out);
 return out;
}

inline istream & operator>>(istream & in, Temperature & aTemp)
{
 aTemp.read(in);
 return in;
}

Now, suppose we want to define operator<< without calling display()—for
example, suppose our Temperature class has no display() method. If operator<<
attempts to access the data members of its parameter aTemp directly,

inline ostream & operator<<(ostream & out,const Temperature & aTemp)
{
 out << theTemp.myDegrees << ' ' // ERROR!
 << theTemp.myScale; // ERROR!
 return out;
}

the compiler will generate error messages like

Member 'myDegrees' is private in class 'Temperature'

K11207.indb 583 6/15/12 10:08 AM

584    ◾    Programming in C++ for Engineering and Science

The compiler is enforcing the information-hiding mechanism by not allowing the function
to access the private data members of our class.

But suppose that the only reasonable way to implement some operation is with a func-
tion that must be able to access the private data members of a class. In such rare situations,
C++ allows a class to grant this special access privilege to the function by specifying that
it is a friend.

To illustrate, suppose we delete the display() method from class Temperature.
Then we can define operator<< as

inline ostream & operator<<(ostream & out, const Temperature & aTemp)
{
 out << theTemp.myDegrees << ' '
 << theTemp.myScale;
 return out;
}

provided we place a prototype of operator<<() within the class, preceded by the key-
word friend:

class Temperature
{
 public: // The class interface
 .
 .
 .
 friend ostream & operator<<(ostream& out, const Temperature & aTemp);
 .
 .
 .
 private: // The hidden details
 double myDegrees;
 char myScale;
};

The same definition that previously produced compilation errors will now compile cor-
rectly, because by naming the function as a friend, the class is granting this function
access to its private section. Note also that operator<<() is not designated as a const
function. This is because const can only be applied to function members and opera-
tor<<() is not a function member.

In a similar way, we can also replace the read() method with a friend version of oper-
ator>>(). In this case, the reference parameter aTemp would not be a const reference
parameter, only a reference parameter, because input modifies it.

14.4.1.1 Use of friend
The friend mechanism is rarely needed to implement class operations. As we saw with
the Temperature class, most operations on a class object can be defined as function
members, so the friend mechanism is not needed for them.

K11207.indb 584 6/15/12 10:08 AM

Building Classes    ◾    585  

When the left operand of an operation is of a type different from the class being built,
then a method cannot be used and a normal function must be defined. But even in such
infrequent cases, a public intermediary function (like display or read()) can be defined
for that function to call. The only circumstances where the friend mechanism is an abso-
lute necessity are when the left operand of the operation is of some type different from the
class being built and the operation must directly access the data members of the class.

Because it embodies the external approach to defining class operations (in which a
function manipulates an object from outside) instead of the i-can-do-it-myself principle of
the object-oriented approach, the friend mechanism should be used only in those rare
circumstances where it is a necessity.

14.4.2 Conditional Compilation and a Class “wrapper”

Whenever a program stored in a file is compiled, it is first examined by a special program
called the preprocessor that scans through the file doing some preliminary analysis before
the file is passed on to the compiler itself. For example, the preprocessor strips all com-
ments from the program so that the compiler need not spend time finding them only to
ignore them. Another task of the preprocessor is to process all preprocessor directives,
which are lines that begin with a # character such as

#include FileName

When it encounters this directive, the preprocessor finds the file named FileName and
inserts it at that point in the program.

For large projects consisting of many library files, it is customary for each file to include
whatever class declarations it needs. This means that the same class could be declared in
several different places in a project, and this results in an error because C++ does not per-
mit a class to be declared more than once.

However, no error results if the header file <iostream> is included more than once.
Why? Because the contents of <iostream> are wrapped in directives that basically tell
the preprocessor, “if this is the first time you have seen this class, go ahead and process the
declaration. if you have seen it before, skip the declaration.”

We can surround our class Temperature with directives that tell the preprocessor to
do the same for class Temperature:

#ifndef TEMPERATURE
#define TEMPERATURE
class Temperature
{
 public:
 // function members

 private:
 // data members
};
#endif

K11207.indb 585 6/15/12 10:08 AM

586    ◾    Programming in C++ for Engineering and Science

These are called conditional-compilation directives because of what they do. The directive

#ifndef TEMPERATURE

instructs the preprocessor, “If TEMPERATURE is not defined, then continue processing
as usual. Otherwise, skip everything between here and the first #endif directive you
encounter.”6 Because TEMPERATURE is undefined the first time the preprocessor exam-
ines the file, it proceeds on to the next line. Here it encounters the directive

#define TEMPERATURE

which defines the identifier TEMPERATURE. The preprocessor then continues and pro-
cesses the class declaration and passes it on to the compiler.

If the preprocessor should encounter Temperature.h a second time, the first thing it
sees is the directive

#ifndef TEMPERATURE

This time, however, TEMPERATURE is defined, and so the preprocessor skips everything
between that point and the #endif directive.

The result is that the class declaration is only processed once, regardless of how many differ-
ent files include Temperature.h. A class should be wrapped in these directives to prevent
redeclaration errors if the header file is included more than once in a project. Customarily,
the identifier used with the #ifndef and #define directives (TEMPERATURE in this
case) is the name of the class in all-uppercase letters.

ChAPTER SUMMARY

Key Terms

6 The compiler will also stop skipping text if it encounters a #else or #elif directive, which behave like the else or the
else if in an if statement.

attribute

class

class declaration

class invariant

class method

constant method

constructor

data member

default-value constructor

dot notation

encapsulation

explicit-value constructor

external perspective

friend function

function member

I-can-do-it-myself principle

information hiding

instance variable

K11207.indb 586 6/15/12 10:08 AM

Building Classes    ◾    587  

noTES
•	 Independence from implementation details is important in good class design.

•	 When working in a program and using a class, use an external perspective of an
observer/user of the class. When working inside a class or building its function mem-
bers, use an internal perspective of the object being designed.

•	 Like other declarations, a class declaration must be terminated by a semicolon.

•	 Two basic principles of class design:

•	 Encapsulation—a single object can store values of different types by wrapping
them in a class declaration.

•	 information-hiding—prevent direct access to data members by making them pri-
vate in the class declaration.

•	 A class invariant that specifies restrictions on the values a class’s data members can
have should be formulated and checked whenever the data members are modified.

•	 A class can be wrapped in conditional-compilation directives to prevent redeclara-
tion errors if the header file is included more than once in a project.

•	 Methods that do not alter the data members of the class should be declared as const
methods.

•	 Constructors are used to initialize the data members of a class. The name of a con-
structor is always the same as the name of the class.

•	 An operator ∆ can be overloaded by defining a function with the name operator∆,
provided it has a signature distinct from that of any existing definition of operator∆.

•	 Designing a good class interface—which consists of its public operations—requires time
and thought and should be done with care. If it is stable, then programs that use the
class solely through the interface will not break even if the private portion of the class is
modified. Changing it frequently causes programs that use the class to be revised often.

•	 A class can name a function as a friend, thereby granting it access to its private
section.

interface

internal perspective

method

object autonomy

object-centered design

operator overloading

postcondition

preprocessor

private

public

reference return type

scope operator

K11207.indb 587 6/15/12 10:08 AM

588    ◾    Programming in C++ for Engineering and Science

Style and Design Tips

• When an object in a program cannot be represented directly using predefined types,
define a class to represent such objects. One purpose of a class is to permit different
data types to be encapsulated in a single object.

• use indentation to reflect the structure of your class, because this increases its readability.

• use descriptive identifiers for the data members to reinforce the i-can-do-it-myself
principle. For example, begin each name with the prefix my.

• Keep all data members of a class private and provide accessor functions to retrieve the
values of those members. This is part of hiding implementation details and simplifies
program maintenance.

• Methods that do not modify the data members of a class should be declared and defined
as constant methods by appending the keyword const to their headings. Doing so
lets the compiler help you find logic errors if such methods inadvertently change the
value of a data member (or call a function that might do so).

• Put inlined definitions of simple methods after the class declaration in the header file
for that class. C++ does allow simple methods to be defined inside the class declara-
tion, but doing so clutters the declaration, reducing its readability, so this practice
should be avoided.

• Define more complicated methods in a separately compiled implementation file. If a
definition is stored in the header file, it will be recompiled every time a program that
includes that definition is compiled, which wastes time. Storing a function in a sepa-
rately compiled implementation file eliminates this extra work.

• Only overload an operator to perform an operation that is consistent with its symbol.
Avoid being cute and abusing the overloading mechanism by giving operators coun-
terintuitive definitions because this reduces the readability of the code.

warnings

 1. Members of a class that are declared following the keyword private: are not acces-
sible outside of the class. Private members can only be accessed by methods and friend
functions.

 2. in definitions of the methods of a class, the method’s name must be qualified with the
name of the class and the scope operator (::).

 3. The name of the constructor is the same as the name of the class, and the constructor
has no return type.

 4. Errors that result from inadvertent modification of the values of data members in a
class can be difficult to find. To avoid such errors, methods that access data members
but do not modify them should be constant methods. This is accomplished by placing
the keyword const after the closing parentheses that follows their parameter lists.

K11207.indb 588 6/15/12 10:08 AM

Building Classes    ◾    589  

 5. a file containing a class declaration that may be #included in multiple files should
enclose the class declaration in conditional compilation preprocessor directives to avoid
errors:

 #ifndef Something
 #define Something
 ...
 Class Declaration
 ...
 #endif

 6. a friend function must be named as such by the class of which it is a friend by preceding
its declaration with the keyword friend in the class declaration.

TEST YoURSELF

Section 14.2

 1. For an object that cannot be directly represented with existing types, we design and
build a to represent it and store it in a .

 2. There are two phases in creating a class: a phase and a phase.

 3. What two things must be identified in designing a class?

 4. Which of these is usually identified first?

 5. Object autonomy is embodied in the principle.

Section 14.3

 1. Data items are stored in a class’s members, and are also known
as variables.

 2. allows a single object to store values of different types.

 3. What is information-hiding and what is its purpose?

 4. Data members are hidden by declaring them to be .

 5. A set of conditions on the data members that must be true is called a class .

 6. Class operations are implemented using members, also known
as .

 7. In the definition of a function member, its name is preceded by the and
the operator.

 8. A function member that does not alter the data members of the class should be
declared as a method by attaching the keyword at the end
of its heading.

 9. A constructor in a class Fraction will be named .

K11207.indb 589 6/15/12 10:08 AM

590    ◾    Programming in C++ for Engineering and Science

 10. Name and describe two kinds of constructors.

 11. (True or false) The return type of a constructor is bool.

 12. The (public or private) portion of a class acts as an interface between the
class and programs that use it.

 13. A boolean expression that must be true when an operation terminates is known as
a -condition.

 14. An object’s function member is invoked by using notation and is referred
to as sending a to that object.

 15. Function members that retrieve values in data members are called methods.

 16. An addition operation, +, can be added to a class by using a function member
named .

 17. Write a declaration for a class Component that has two data members, myID of type
int, and myName of type string, an output method, and an input method.

Section 14.4

 1. A class can allow a function to access its data members by specifying that it is
a .

 2. Before a program is compiled it is first examined by the .

 3. All lines that begin with a character are preprocessor directives.

 4. Directives of the form

 #ifndef name
 #define name
 ...
 #endif

 are called directives.

 5. What is the purpose of directives like the preceding?

ExERCISES

Section 14.3

For Exercises 1–3, add function members to class Temperature to implement the
 specified operation. You should test these with driver programs as Programming Problems
1 and 2 ask you to do.

 1. Convert a Temperature value to (a) Celsius (b) Kelvin.

 2. Overload operator+ for class Temperature so that expressions like temp + 3.6
can be used to increase a Temperature value by a double number of degrees in the
same scale.

K11207.indb 590 6/15/12 10:08 AM

Building Classes    ◾    591  

 3. Overload operator– for class Temperature so that expressions like temp - 3.6
can be used to increase a Temperature value by a double number of degrees in
the same scale.

For Exercises 4–12, define a class to model the given item. It should have appropriate con-
structors, accessors, mutators to change data members, input and output operations, and
additional operations given in the problem.

 4. A line in the plane specified by a point on it in Cartesian coordinates (x, y) and its slope;
additional operations: (a) determine if a given point is on the line; (b) find its equa-
tion—the point-slope equation of a line having slope m and passing through point P
with coordinates (x1, y1) is y – y1 = m(x – x1); (c) find its x- and y-intercepts if they exist.

 5. A line segment in the plane specified by its endpoints in Cartesian coordinates (x, y);
additional operations: (a) find its length; (b) find its midpoint; (c) find its equation;
(d) find the equation of its perpendicular bisector.

 6. A circle specified by its center and its radius; additional operations: (a) find its area;
(b) find its circumference.

 7. A triangle specified by its three vertices; additional operations: (a) determine if it is
(i) a right triangle, (ii) isosceles, (iii) equilateral; (b) find its perimeter; (c) find its area.
(For the area, you can use hero’s formula:

 area s s –a s –b s c= ⋅ ⋅ ⋅() () (–),

 where a, b, and c are its sides and s is one-half of its perimeter.)

 8. Time specified by hours, minutes, seconds, and an AM/PM indicator; additional
operations: (a) change to/from daylight savings time; (b) difference between two
times; (c) the equivalent military time.

 9. A date consisting of a month name, day number, and year; additional operations:
(a) difference between two dates; (b) determine if year is a leap year; (c) find number
of days in the month.

 10. A telephone number as area code, local exchange, number, and name of person hav-
ing that number.

 11. Weather statistics: date; city and state, province, or country; time of day; temperature;
barometric pressure; weather conditions (clear skies, partly cloudy, cloudy, stormy).

 12. Information about a person: name, birthday, age, gender, social security number,
height, weight, hair color, eye color, and marital status.

For Exercises 13 and 14, write appropriate class declarations to describe the information in
the specified file. See the end of Chapter 11 for descriptions of these files.

K11207.indb 591 6/15/12 10:08 AM

592    ◾    Programming in C++ for Engineering and Science

 13. Inventory

 14. Users

PRoGRAMMInG PRoBLEMS

Sections 14.3

 1. Write a driver program to test the temperature converter methods of Exercise 1.

 2. Write a driver program to test the methods operator+() and operator–() of
Exercises 2 and 3.

 3. Write a driver program to test the line class of Exercise 4.

 4. Write a driver program to test the line segment class of Exercise 5.

 5. Write a driver program to test the circle class of Exercise 6.

 6. Write a driver program to test the triangle class of Exercise 7.

 7. Write a driver program to test the time class of Exercise 8.

 8. Write a driver program to test the date class of Exercise 9.

 9. Write a driver program to test the telephone-number class of Exercise 10.

 10. Write a driver program to test the weather-statistics class of Exercise 11.

 11. Write a driver program to test the personal-information class of Exercise 12.

 12. A rational number is of the form a/b, where a and b are integers with b ≠ 0. Write a pro-
gram to do rational number arithmetic, representing each rational number as a class that
has numerator and denominator data members. The program should read and display
all rational numbers in the format a/b, or simply a if the denominator is 1. The following
examples illustrate the menu of commands that the user should be allowed to enter:

Input Output Comments

3/8 + 1/6 13/24 a/b + c/d = (ad + bc)/bd reduced to lowest terms
3/8 – 1/6 5/24 a/b – c/d = (ad – bc)/bd reduced to lowest terms
3/8 * 1/6 1/16 a/b * c/d = ac/bd reduced to lowest terms
3/8 / 1/6 9/4 a/b / c/d = ad/bc reduced to lowest terms
3/8 I 8/3 Invert a/b
8/3 M 2 + 2/3 Write a/b as a mixed fraction
6/8 R 3/4 Reduce a/b to lowest terms
6/8 G 2 Greatest common divisor of numerator and denominator
1/6 L 3/8 24 Lowest common denominator of a/b and c/d
1/6 < 3/8 true a/b < c/d?
1/6 <= 3/8 true a/b ≤ c/d?
1/6 > 3/8 false a/b > c/d?
1/6 >= 3/8 false a/b ≥ c/d?
3/8 == 9/24 true a/b = c/d?
2/3 X + 2 = 4/5 X = –9/5 Solution of linear equation (a/b)X + c/d = e/f

K11207.indb 592 6/15/12 10:08 AM

593

C h a p t e r 15

Pointers and Linked Structures

[Pointers] are like jumps, leaping wildly from one part of a data structure to another.
Their introduction into high-level languages has been a step backward from which
we may never recover.

C. A. R. HOARE

He’s making a list,
And checking it twice;
Gonna’ find out who’s naughty or nice.

"SANTA CLAUS IS COMING TO TOWN"

It is a mistake to try to look too far ahead. The chain of destiny can only be grasped
one link at a time.

SIR WINSTON CHURCHILL

. . . is the sort of person who keeps a list of all of his lists.

ANONYMOUS

ConTEnTS
15.1 Pointers and Indirection 594
15.2 Run-Time Arrays 605
15.3 Introduction to Linked Lists 610
15.4 The STL list<T> Class Template 613
15.5 Pointers and Command-Line Arguments 620
Chapter Summary 625
Test Yourself 628
Exercises 630
Programming Problems 634

594    ◾    Programming in C++ for Engineering and Science

In Chapter 12, we saw two different data structures that C++ provides for storing sequences
of values: arrays and vector<T>s. One significant difference between these two kinds

of objects is the way in which they are defined. For the kind of arrays we considered, their
capacities must be specified at compile time as in the following declaration of anArray:

const int CAPACITY = 50;
int anArray[CAPACITY];

While a vector<T> object can be defined in a similar way,

const int CAPACITY = 50;
vector<int> aVector(CAPACITY);

its capacity can also be specified at run time

cout << "Enter the number of values to be stored: ";
int capacity;
cin >> capacity;
vector<int> aVector(capacity);

This is a basic difference between the two kinds of objects: an array’s storage is deter-
mined (and is fixed) when the program is compiled, but the storage of a vector<T> object
is determined (and can change) while the program executes. The string class is similar
to vector<T> in that a string object’s storage automatically adjusts to the number of
characters being stored.

To build arrays whose capacities can be specified at run time and other structures whose
storage can grow (and shrink) during execution, C++ provides a way to request and return
memory during program execution. To understand this feature and how to use it, we must
first study pointers and indirection.

15.1 PoInTERS AnD InDIRECTIon
As usual, we begin with a program—the program in Example 15.1—to introduce the basics
of pointers and indirection. It is not intended to show how pointers are typically used in
programs.1

Example 15.1 Using Indirection
/* indirection.cpp illustrates indirection and pointer variables.

 Output: addresses of memory locations and the integers stored there
--*/

#include <iostream>
using namespace std;

1 For some versions of C++, it may be necessary to use (void*)pointerVariable in an output statement for addresses
to display correctly.

K11207.indb 594 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    595  

int main()
{
int i = 11,

j = 22,
k = 33;

int * iPtr = &i;
int * jPtr = &j;
int * kPtr = &k;
cout << "\nAt address " << iPtr

<< ", the value " << *iPtr << " is stored.\n"
<< "\nAt address " << jPtr
<< ", the value " << *jPtr << " is stored.\n"
<< "\nAt address " << kPtr
<< ", the value " << *kPtr << " is stored.\n";

}

SAMPLE RUN:
At address 0xbffff970, the value 11 is stored.

At address 0xbffff96c, the value 22 is stored.

At address 0xbffff968, the value 33 is stored.

15.1.1 Declaring and Initializing Pointers

We begin with the second set of declarations in the program in Example 15.1:

int * iPtr = &i;
int * jPtr = &j;
int * kPtr = &k;

There are two new items in these statements:

 1. an asterisk (*) following the type name in a declaration of the form

Type * variableName;

 declares that variableName can store the address of a memory location where a
value of the specified Type is stored.2 Such variables are often called pointer vari-
ables, or simply pointers. Thus, the declarations

int * iPtr;
int * jPtr;
int * kPtr;

2 Some programmers prefer attaching the asterisk to the type identifier or to the variable name; for example,
 Type* variableName; or Type *variableName.

K11207.indb 595 6/15/12 10:08 AM

596    ◾    Programming in C++ for Engineering and Science

 declare that iPtr, jPtr, and kPtr are pointer variables, each of which can store
the address of a memory location where an int is stored. The type of each of these
variables is int *.

 2. The ampersand operator (&) can be used as a unary prefix operator on a variable name,

&variableName

 that returns the address with which variableName is associated, so & is called the
address-of operator. Thus, the expressions &i, &j, and &k return the addresses (or
references3) associated with variables i, j, and k, respectively.

Combining these two pieces of information, we see that the declarations

int * iPtr = &i;
int * jPtr = &j;
int * kPtr = &k;

declare iPtr, jPtr, and kPtr as pointer variables, each of which can store the address of
a memory location containing an int, and they initialize iPtr to the address of variable
i, jPtr to the address of variable j, and kPtr to the address of variable k. In the sam-
ple run in Example 15.1, the address associated with variable i is the hexadecimal value
0xbffff970, the address of j is 0xbffff96c, and the address of k is 0xbffff968. We
can visualize the layout of the program’s data in memory as follows:4

It is important to remember that in a declaration, an asterisk operator * must precede
each identifier that is to serve as a pointer. Thus,

double * ptr1,
* ptr2;

is a correct declaration of ptr1 and ptr2 as pointers to doubles. Had we written

double * ptr1,
ptr2;

3 The word reference is used as a synonym for address. In fact, this is the origin of the phrase reference parameter—the
value of a reference parameter is actually the address of its argument, rather than a copy of the argument.

4 Note that (using hexadecimal arithmetic)
 0xbffff970 – 0xbffff96c = 4

 and
 0xbffff96c – 0xbffff968 = 4

 which indicates that the size of an int on this particular machine is 4 bytes (32 bits).

kPtr

jPtr

iPtr

k

j

i

33

22

11

0xbffff968

0xbffff96c

0xbffff970

0xbffff968

0xbffff96c

0xbffff970

K11207.indb 596 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    597  

however, only ptr1 would be a pointer variable; ptr2 would be an ordinary double
variable. To avoid making this mistake, we will normally use a separate declaration for
each pointer variable:

double * ptr1;
double * ptr2;

15.1.1.1 Using typedef for Readability
An alternative notation that does not require the repeated use of the asterisk in pointer
declarations is to use typedef to rename a type. For example, we could first declare

typedef int * IntPointer;

in Example 15.1 and then use IntPointer to declare the pointers:

IntPointer iPtr = &i,
jPtr = &j,
kPtr = &k;

Such declarations improve the readability of pointer declarations, especially when pointer
parameters are being declared.

15.1.2 Basic Pointer operations

C++ supports a variety of operations on pointers, including initialization, dereferencing,
I/O, assignments, comparisons, and arithmetic. We examine each of these in turn.

15.1.2.1 Initialization
When a pointer variable is initialized to an address, as in

int * iPtr = &i;

that address must be the address of an object whose type is the same as the type to
which the pointer points. The pointer is said to be bound to that type. For example, the
declarations

double doubleVar;
int * iPtr = &doubleVar; // ERROR

will cause a compiler error, because an integer pointer can only store addresses of integer
objects.

One important exception is that 0 can be assigned to any pointer variable. The value that
results is called the null pointer value for that type and 0 is often called the null address.
Thus, the declarations

char * cPtr = 0;
int * iPtr = 0;
double * dPtr = 0;

K11207.indb 597 6/15/12 10:08 AM

598    ◾    Programming in C++ for Engineering and Science

are all valid initializations using the null address.
The null address can also be used in a boolean expression to indicate whether or not a

pointer is pointing to anything:

if (dPtr == 0)
// dPtr is not currently pointing to anything

else
// dPtr is pointing to a memory location

As we will see, such comparisons are especially important when pointers are used to store
the addresses of blocks of memory allocated during execution.

15.1.2.2 Indirection and Dereferencing
Pointer variables not only store addresses but also provide access to the values stored at
those addresses. An expression of the form

*pointerVariable

can be used to access the value at the address stored in pointerVariable. It can be
thought of as going to the reference (address) stored in pointerVariable and accessing
the value stored at that address. To illustrate, in the sample run of Example 15.1, the value
of the expression

iPtr

is 0xbffff970, and the value of the expression

*iPtr

is 11, because 11 is the value stored at address 0xbffff970:

For the same reason, the values of the expressions *jPtr and *kPtr are 22 and 33,
respectively. Thus, the value of variable i can be accessed via the expression *iPtr, the
value of j via *jPtr, and the value of k via *kPtr. In general, the value of a variable v
can be accessed indirectly by applying the * operator to a pointer variable vPtr whose
value is the address of v. For this reason, the * operator is called the indirection operator.
Because reference is another term for address and applying the indirection operator to a
pointer variable accesses the value at the address stored in that pointer variable, applying
the indirection operator to a pointer variable is called dereferencing that pointer variable.

We have already used this indirect access technique in earlier chapters. For example,
in our study of vector<T> objects in Section 12.6, we saw that dereferencing an iterator

0xbffff970 11 i

iPtr

*iPtr

0xbffff970

K11207.indb 598 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    599  

provides access to the value stored at the position in a vector<T> object to which the
iterator points. Also, although we didn’t discuss it in our study of classes in the preceding
chapter, each class object contains a pointer variable this whose value is the address of
the object that contains it, and dereferencing this provides a way to (indirectly) access
that object. We might picture this as follows:

The indirection operator can be applied more than once to produce additional levels of
indirection. For example, the declarations

typedef int * IntPointer; // or without using typedef:
IntPointer * ptr; // int ** ptr;

declare ptr to be a pointer to a memory location that contains a pointer to another memory
location where an int can be stored.

The indirection operator can be used on either side of an assignment statement. If
the statement

i = *jPtr;

were added to the program in Example 15.1, the value of i would be changed from 11 to
22, because dereferencing jPtr produces the value 22 stored at address 0xbffff96c and
this value would be assigned to i. The statement

*iPtr = j;

would produce the same result. *iPtr refers to the memory location with address
0xbffff970 and the assignment operator copies the value of j (22) into this memory
location. Because this address is associated with the variable i, the effect is to change the
value of i.

As noted earlier, the purpose of the program in Example 15.1 was to introduce the
basics of pointers and indirection. Pointers are not often used to store addresses that are

*this

this

Methods
Class Object

data members

11

ptr

*ptr

**ptr

K11207.indb 599 6/15/12 10:08 AM

600    ◾    Programming in C++ for Engineering and Science

associated with names. Instead, as we will see, pointers are used to store and retrieve values
in memory locations with which no name has been associated.

15.1.2.3 Pointers to Class Objects
Although the program in Example 15.1 does not do so, we can also declare pointers to class
objects and use them to store the addresses of objects. For example, in the preceding chap-
ter, we built a Temperature class that we used to define Temperature objects such as

Temperature temp1(98.6, 'F');

Given such an object, we could declare a pointer to a Temperature and use it to store the
address of that object,

Temperature * tempPtr = &temp1;

which can be pictured as follows:

The members of temp1 can be accessed (indirectly) via tempPtr. For example, temp1
has a scale() method that returns the value ('F') of its myScale data member. The
scale() message can be sent to temp1 via tempPtr, and this can be done in two ways.
One way is to combine the indirection operator with the dot operator and write

(*tempPtr).scale()

In this expression, the pointer tempPtr is first dereferenced to access the object to which
it points (i.e., temp1), and the dot operator is then used to send that object the scale()
message.

This notation is rather cumbersome because it involves two operators and the indirec-
tion operation must be parenthesized because it has lower priority than the dot opera-
tor. C++ provides a more convenient notation that accomplishes the same thing in one
operation:

tempPtr->scale()

Here -> is the class pointer selector operator whose left operand is a pointer to a class
object and whose right operand is a member of the class object. This operator provides a
convenient way to access that object’s members, and the “arrow” notation clearly indicates
that the member is being accessed through a pointer.

temp1tempPtr

F

98.6

K11207.indb 600 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    601  

15.1.2.4 I/O
In the program in Example 15.1, we displayed the addresses associated with i, j, and k by
displaying the values of iPtr, jPtr, and kPtr, which stored these addresses.5 In a similar
manner, to find the addresses associated with iPtr, jPtr, and kPtr, we could write

cout << "\n iPtr is stored at address " << &iPtr
<< ",\n jPtr is stored at address " << &jPtr
<< ", and\n kPtr is stored at address " << &kPtr << endl;

The address-of operator allows us to determine the exact memory address at which some-
thing is stored, whereas pointer variables allow us to store these addresses.

Just as the value of a pointer can be output using <<, an address could be input and
stored in a pointer variable using >>. However, this is rarely done, because we usually
are not interested in the address of the memory location storing a value, only in the
value itself. In fact, it is dangerous to input address values because an attempt to access a
memory address outside the space allocated to an executing program will result in a fatal
run-time error.

15.1.2.5 Assignment
Although the program in Example 15.1 does not illustrate it, pointer variables can be
assigned the values of other pointer variables that are bound to the same type. For example,
if we were to add the statement

jPtr = iPtr;

to the program, then the value of iPtr would be copied to jPtr so that both have the
same memory address as their value; that is, both point to the same memory location, as
the following diagrams illustrate:

Before the assignment:

After the assignment jPtr = iPtr;:

5 See Footnote 1 about displaying pointer values.

0xbffff970

0xbffff96c
11

22

0xbffff970

0xbffff96c

i

j

iPtr

jPtr

*iPtr

*jPtr

0xbffff970

0xbffff96C
11

22

0xbffff970

0xbffff970

i

j

iPtr

jPtr

*iPtr

*jPtr

K11207.indb 601 6/15/12 10:08 AM

602    ◾    Programming in C++ for Engineering and Science

After the assignment statement is executed, jPtr no longer points to j, but now points to
i. Thus, applying the indirection operator to jPtr will access the memory location associ-
ated with i. For example, an output statement

cout << *jPtr;

will display the value 11 instead of 22, and the statement

*jPtr = 44;

will change the value at address 0xbffff90 (i.e., the value of i) from 11 to 44:

This example was included to show that pointers are a very powerful (and dangerous)
feature of programming languages. Statements that change the value of a variable in a state-
ment in which that variable is not named are generally considered to be poor programming
practice, because they make programs difficult to debug by hiding such changes. In the
preceding example, the expressions *iPtr and *jPtr are alternate names for variable i
and are sometimes called aliases for i. A function that changes a variable’s value through
an alias for that variable is said to exhibit the aliasing problem.

15.1.2.6 Comparison
The relational operators can be used to compare two pointers that are bound to the same
type. The most common operation is to use == and != to determine if two pointer variables
both point to the same memory location. For example, the boolean expression

iPtr == jPtr

is valid and returns true if and only if the address in iPtr is the same as the address in
jPtr. However, if pointers nPtr and dPtr are declared by

int * nPtr;
double * dPtr;

the comparison

nPtr == dPtr // ERROR!

will result in a compilation error, because nPtr and dPtr are bound to different types.

0xbffff970

0xbffff96C
44

22

0xbffff970

0xbffff970

i

j

iPtr

jPtr

*iPtr

*jPtr

K11207.indb 602 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    603  

The null address may be compared with any pointer variable. For example, the conditions

nPtr != 0 and dPtr == 0

are both valid boolean expressions.

15.1.2.7 Pointer Arithmetic
To explain arithmetic operations on pointers, it is helpful to make use of a C++ operator
that we have not used up to now. This is the sizeof operator, which may be applied to
either objects or types,

sizeof(type-specifier)
sizeof expression

and returns the number of bytes required to store a value of the specified type or the value
of the expression. Note that in the first case, the type specifier must be enclosed within
parentheses.

To illustrate, the value of sizeof(char) is the number of bytes (usually 1) allocated to
values of type char, and if longVar is of type long int, the value of sizeof longVar
is the number of bytes (typically 4) allocated to values of type long int objects.

Understanding the sizeof operator makes it easier to understand pointer arithmetic.
We consider the increment and decrement operations first because they are probably the
most commonly used arithmetic operations on pointer variables. For a pointer variable
ptr declared by

Type * ptr;

the increment statement

ptr++;

adds the value sizeof(Type) to the address in ptr. Similarly, a decrement statement

ptr––;

subtracts the value sizeof(Type) from the address in ptr. If intExpr is an integer
expression, a statement of the form

ptr += intExp;

adds the value intExp * sizeof(Type) to ptr, and

ptr –= intExp;

subtracts the value intExp * sizeof(Type) from ptr.
To illustrate how these operations are used, suppose that ptr is a pointer whose value is

the address of the first element of an array of double elements:

double dArray[10]; // array of 10 doubles
double * ptr = &(dArray[0]); // pointer to first element of dArray

K11207.indb 603 6/15/12 10:08 AM

604    ◾    Programming in C++ for Engineering and Science

The last declaration could also be written

double * ptr = dArray; // pointer to first element of dArray

Now consider the following loop:

for (int i = 0; i < 10; i++)
{
*ptr = 0;
ptr++;

}

On the first pass through the loop, ptr is dereferenced and the value 0 is assigned to the
memory location at that address. ptr is then incremented, which adds sizeof(double)
to its value, effectively making ptr point to the second element of the array:

The next pass again dereferences ptr, sets that memory location to zero, and increments ptr:

This continues with each subsequent iteration. On the final pass, the last element of the
array is set to zero. Then after ptr is incremented, it points to the first address past the end
of the array:

ptr

dArray

[0] [1] [2] [3] ... [9]

ptr

0dArray

[0] [1][2] [3] ... [9]

ptr

0 0dArray

[0] [1][2] [3] ... [9]

ptr

0 0 0 0 0 0 0 0 0 0dArray

[0] [1][2] [3] ... [9]

K11207.indb 604 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    605  

A pointer can thus be used to move through consecutive blocks of memory, accessing them
in whatever way a particular problem requires.

From these examples, it should be apparent that pointers are the basis for iterators,
which, as we saw in Section 12.7, are provided by Standard Template Library (STL) con-
tainers for accessing the values they store. Iterators are in fact implemented using pointers,
and behave in much the same way, with ++ being used to move the iterator to the next
value in the container, –– to move the iterator to the previous value in the container, and
* to dereference the iterator and access the value to which it “points.”

15.1.2.8 Pointers as Arguments and Parameters
Pointers may also be passed as arguments to functions. The parameters corresponding to
such arguments may be either value or reference parameters, but the pointer argument and
the corresponding parameter must be bound to the same type. The return type of a function
may also be a pointer.

15.2 RUn-TIME ARRAYS
In the first part of Chapter 12, we saw that the definition of a C-style array

const int CAPACITY = 10;
double arrayName[CAPACITY];

causes the compiler to allocate a block of memory large enough to hold ten double values
and associate the starting address of that block with the name arrayName. Such fixed-
size arrays have two drawbacks:

•	 If the size of the array exceeds the number of values to be stored in it, then memory
is wasted by the unused elements.

•	 If the size of the array is smaller than the number of values to be stored in it, then the
problem of array overflow may occur.

At the root of these problems is the fact that the capacity of a C-style array is fixed when
the program is compiled. In our example, the size of the block of memory allocated for
arrayName cannot be changed, except by editing the declaration of CAPACITY and then
recompiling the program.

What is needed are arrays whose capacities are specified during execution. Such run-
time arrays can be constructed using the mechanism C++ provides for run-time memory
allocation. At its simplest, such a mechanism requires two operations:

 1. Acquire additional memory locations as they are needed.

 2. Release memory locations when they are no longer needed.

C++ provides the predefined operations new and delete to perform these two operations
of memory allocation and deallocation during program execution.

K11207.indb 605 6/15/12 10:08 AM

606    ◾    Programming in C++ for Engineering and Science

15.2.1 The new operation

The new operation is used to request additional memory from the operating system during
program execution. The general form of such a request is:

Because the new operation returns an address and addresses can be stored in pointer vari-
ables, this operation is almost always used in conjunction with a pointer. For example,
when the statements

int * intPtr;
intPtr = new int;

are executed, the expression new int issues a request to the operating system for a mem-
ory block large enough to store an int value (that is, for sizeof(int) bytes of memory).
If the operating system is able to grant the request, intPtr will be assigned the address of
this memory block. Otherwise, if all available memory has been exhausted, intPtr will
be assigned the null address 0. Because of this possibility, the value returned by new should
always be tested before it is used; for example,

assert(intPtr != 0);

If intPtr is assigned a nonzero value, the newly allocated memory location is an anon-
ymous variable; that is, it is an allocated memory location that has no name associated
with it. For example, suppose new returns the address 0x020:

Because there is no name associated with this newly allocated memory, it cannot be accessed
directly in the same way other variables are accessed. However, its address is stored in
intPtr, so this anonymous variable can be accessed indirectly by dereferencing intPtr:

tHe new operation

Form:

new Type

PurPose:

Issue a run-time request for a block of memory that is large enough to hold a value of the
specified Type. If the request can be granted, new returns the address of the block of mem-
ory; otherwise, it returns the null address.

0x0200x020

intPtr

*intPtr

0x0200x020

intPtr

K11207.indb 606 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    607  

Statements such as the following can be used to operate on this anonymous variable:

cin >> *intPtr; // store input value in the new integer
if (*intPtr < 100) // apply relational ops to new integer
(*intPtr)++; // apply arithmetic ops to new integer

else
*intPtr = 100; // assign values to the new integer

In short, anything that can be done with an “ordinary” integer variable can be done with
this anonymous integer variable by accessing it indirectly via intPtr.

15.2.1.1 Allocating Arrays with new
In practice, new is rarely used to allocate space for scalar values like integers. Instead, it
is used to allocate space for either arrays or for anonymous class objects. To illustrate the
former, consider an integer array object anArray declared by

int anArray[10];

The value associated with the name anArray is the base address of the array, that is, the
address of the first element of the array.6 The type of object anArray is int[10].

A type such as int[10] can be used with new to allocate the memory for an array at
run time. For example, the statements

int * arrayPtr;
arrayPtr = new int[10];

allocate space for an array of 10 integers. Until the second statement is executed, array-
Ptr is simply a pointer variable whose value is undefined. After it is executed (assuming
that sufficient memory is available), arrayPtr contains the base address of the newly
allocated array. If that address is 0x032, we might picture the situation as follows:

But we have seen previously that the value associated with the name of a compile-time
allocated array is its base address. This means that:

if the base address of a run-time allocated array is stored in a pointer variable, then
the elements of that array can be accessed via the pointer in exactly the same way that
the elements of a compile-time allocated array are accessed via its name, by using the
subscript operator ([]).

6 This is one reason that the assignment operator cannot be used to copy a “normal” array—the statement
 alpha = beta;
 would attempt to copy the starting address of beta into alpha, as opposed to copying the elements of beta.

0x032

0x032

arrayPtr

K11207.indb 607 6/15/12 10:08 AM

608    ◾    Programming in C++ for Engineering and Science

That is, the first element of the new array can be accessed using the notation arrayPtr[0],
the second element using arrayPtr[1], the third element using arrayPtr[2], and so on:

The value of the pointer variable arrayPtr is the base address of the array, and for a given
index i, the subscript operator

arrayPtr[i]

simply accesses the memory location arrayPtr + i.
The advantage of run-time allocation is that it is not necessary to know the capacity of

the array at compile time. For example, we can write:

cout << "How many entries? "; // find out how big the
cin >> numEntries; // array should be

double *dPtr = // allocate an array
new double[numEntries]; // with that capacity

assert(dPtr != 0) // check for success
cout << "Enter your values.\n"; // fill it with values

for (int i = 0; i < numEntries; i++)
 cin >> dPtr[i];

Unlike arrays whose memory is allocated at compile time, arrays whose memory is allo-
cated at run time can be tailored to the exact size of the list to be stored in them. The wasted
memory problem is solved because the array will not be too large. The overflow problem is
solved because the array will not be too small.

This is precisely the approach used by the vector<T> class template, whose structure
might be something like the following:

template<typename T>
class vector
{
 public:
 vector();
 vector(int n);
 private:
 T * tPtr;
 int myCap; // my capacity
};

arrayPtr

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

0x032

0x032

K11207.indb 608 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    609  

Note the data member that is a pointer to a value of type T. The default vector<T> con-
structor simply initializes this pointer to the null address to signify an empty vector:

tPtr = 0;
myCap = 0;

But the explicit-value constructor uses new to dynamically allocate an array with a speci-
fied capacity:

tPtr = new T[n];
if (tptr != 0)

myCap = n;

15.2.2 The delete operation

When execution of a program begins, the program has available to it a “pool” of unallo-
cated memory locations, called the free store or heap. The effect of the new operation is to
request the operating system to remove a block of memory from the free store and allocate
it to the executing program. The program can use this block if it stores its address (the
value produced by the new operation) in a pointer variable. However, the size of the free
store is limited, and each execution of new causes the pool of available memory to shrink.
If a call to new requests more memory than is available in the free store, then the operating
system is unable to fill the request and new returns the null address 0.

Memory that is no longer needed can be returned to the free store by using the delete
operation.

Just as new is a request by the executing program for memory from the free store, the
delete operation is a request to return memory to the free store. Such memory can then be
reused by the memory manager. The new and delete operations are thus complementary.

If memory is dynamically allocated to an object during program execution but is not
deallocated via delete when that object’s lifetime is over, a memory leak is said to occur.
Objects such as vector<T>s whose constructors use new to allocate memory for data
members will also have a destructor method to deallocate memory via delete when that

tHe delete operation

Form:
delete pointerVariable

or
delete arrayPointerVariable[]

PurPose:

The first form frees the run-time allocated object whose address is stored in pointer-
Variable. The second form frees the run-time allocated array whose address is stored in
arrayPointerVariable.

K11207.indb 609 6/15/12 10:08 AM

610    ◾    Programming in C++ for Engineering and Science

object’s lifetime is over. It’s name will have the form ~name where name is the default
constructor; for example, vector<T>’s destructor is named ~vector().

15.3 InTRoDUCTIon To LInKED LISTS
Although arrays and vector<T>s are easy to use to store sequences of values, they do
have limitations. One limitation is that values can be efficiently added to the sequence or
removed from it only at its back. If a problem requires that values be inserted or removed
anywhere else, much shifting of elements is required.

To illustrate, consider the array (or vector<T>) shown below and suppose we want to
add 99 at the front of the list. To make room for this new value, all of the elements of the
array must be shifted one position to the right. This is very inefficient for large arrays and
large elements, because they must all be copied from one location to another.

The same problem occurs when any element other than the one at the end of the sequence
must be removed. All of the elements that follow it must be shifted one position to the left
to close the gap. The following diagram illustrates this when the first element is removed:

For problems where many such within-the-sequence insertions and deletions are
required, a linked list should be used. It allows values to be inserted or removed anywhere
in a sequence without any of this copying.

15.3.1 what Are They?

A linked list is a series of nodes linked together by pointers. In addition to space for the
data being stored, each node has a pointer to the node containing the next value in the list.
A pointer to the node storing the first list element must also be maintained. This will be the
null value if the list is empty.

44

[4]

33

[5]

22

[6]

11

[7]

Before

Shift each value
right one element

88

[0]

77

[1]

66

[2]

55

[3]

44

[4]

33

[5]

22

[6]

11

[7] [8]

88

[0]

88 77

[1]

66

[2]

55

[3]

44

[4]

33

[5]

22

[6]

11

[7] [8]

88

[0]

99 77

[1]

66

[2]

55

[3]

Overwrite first
value with 99

55

[4]

44

[5]

33

[6]

22

[7]

Before

Shift each value
left one element

99

[0]

88

[1]

77

[2]

66

[3]

33

[4]

22

[5]

11

[6]

11

[7]

[8]

77

[0]

88 66

[1]

55

[2]

44

[3]

11

[8]

K11207.indb 610 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    611  

To illustrate, a linked list storing the integers 9, 17, 22, 26, 34 might be pictured as follows:

In this diagram, arrows represent links, and first points to the first node in the list. The
data part of each node stores one of the elements of the list, and each arrow from a next part
represents a pointer. The symbol in the last node (a version of the ground symbol used in elec-
trical engineering) represents a null link and indicates that this list element has no successor.

15.3.1.1 Insert Operation
To see how linked lists make it possible to avoid the data-shifting problem of arrays and
vector<T>, suppose we wish to insert 20 after 17 in the preceding linked list, and that
predptr points to the node containing 17. We first obtain a new node (via the new operator)
temporarily pointed to by newptr and store 20 in its data part:

We insert it into the list by first setting its next part equal to the link in the node pointed to
by predptr so that it points to its successor:

Now reset the link in the predecessor node to point to this new node:

9 17 22 26 34

data

next

first

9

20

26 3417 22

newptr

predptr

first

9

20

26 3417 22

newptr

predptr

first

9

20

26 3417 22

newptr

predptr

first

K11207.indb 611 6/15/12 10:08 AM

612    ◾    Programming in C++ for Engineering and Science

This same procedure also works for inserting a value at the end of the list. Check this for
yourself by following the steps to append 55 to the list.

Inserting at the beginning of list, however, requires a modification of the last two steps,
because there is no predecessor to which we can attach the node:

•	 Set the next part of the new node equal to first, which makes it point to the first
node in the list.

•	 Then change first to point to the new node.

Work through this procedure yourself to insert 5 at the beginning of the list.
Note that only three instructions are needed to insert a value at any point in the list. no

shifting of list elements is required!

15.3.1.2 Delete Operation
Deleting elements from a linked list can also be done very efficiently, as the following dia-
gram demonstrates:

Here ptr points to the node to be deleted and predptr to its predecessor. We need
only perform a bypass operation by setting the link in the predecessor to point to ptr’s
successor. To avoid a memory leak, the deleted node should be returned to the free store
(via delete).

Once again, this same procedure also works at the end of the list. Convince yourself of
this by deleting 55. Also, a modification is needed when deleting the first node because
there is no predecessor. It consists of simply resetting first to point to the second node in
the list and then returning the old first node to the storage pool of available nodes. Check
this for yourself by seeing how 5 would be deleted from the above list.

Like insertion, this is a very efficient operation—only two instructions are needed to
delete any value in the list. no shifting of list elements is required!

15.3.2 A Linked List Class

As we will see in the next section, the Standard Template Library has a list<T> class template
that stores list elements in a linked list (but which have a more complex structure than what
we have been considering). Like most of the other STL containers, list<T> provides many
list operations, because it is intended for use in a wide variety of list-processing problems. As
noted before, there are times when one doesn’t need or want all of the operations, and a “lean
and mean” linked-list class that contains the basic list operations would be more suitable. Such
an implementation can be found on the website for this textbook described in the Preface.

predptr ptr

17 20 26 3422 555 9
first

K11207.indb 612 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    613  

15.4 ThE STL LIST<T> CLASS TEMPLATE
In our description of the C++ Standard Template Library in Section 12.7, we saw that it
provides a variety of other storage containers besides vector<T> and that one of these
containers is named list<T>. Now that we have seen anonymous variables and how C++
pointers provide indirect access to them, and have studied simple linked lists, we are ready
to examine the list<T> class template and its implementation.

To see how list<T> stores a sequence of values, suppose that aList is defined by
list<int> aList;

and consider the following sequence of insert operations:
aList.push_back(77);
aList.push_back(66);
aList.push_front(88);

A simplified picture of the resulting object aList is

The values 77, 66, and 88 are stored in a variation of the linked lists studied in the pre-
ceding section called a circular doubly linked list with a head node. It is doubly linked
because each node has two pointers, prev to its predecessor and next to its successor. It
is circular because the next pointer in the last node is not null, but rather points to the
“empty” (leftmost) node, which is the head node, and similarly, the prev pointer in the
first node points to the head node instead of being null. Note that the data member node
(which we called first in the linked list examples of the preceding section) points to this
head node rather than to the first node that stores a data value.

15.4.1 Some list<T> operations

In the remainder of this section, we examine a collection of the most useful list<T>
operations. For some of these, we look at how they are implemented. More details about
these are given on the text’s website described in the Preface.

15.4.1.1 The list<T> Default-Value Constructor
Perhaps the most basic list<T> operation is the default-value constructor. When a pro-
grammer writes

list<int> aList;

667788

aList

nodelength

3

next

data

prev

K11207.indb 613 6/15/12 10:08 AM

614    ◾    Programming in C++ for Engineering and Science

the default-value constructor builds an empty linked list aList, for which a (simplified)
picture is

As shown in the diagram, the default class constructor allocates an empty node, which
is the head node, and stores the address of this node in its data member node. In the
STL list<T> class template, this head node plays a central role: Its next member always
points to the node containing the first value in the sequence (or to the head node, if the list
is empty), and its prev member always points to the node containing the last value in the
sequence (or to the head node, if the list is empty). The main advantages of this organiza-
tion is that there is always at least one node in the list (i.e., the head node) and every node
has a predecessor and a successor. These properties simplify several of the list operations.
In particular, the insert and delete operations we considered in the preceding section do
not have to consider two cases of whether there is a predecessor or not.

15.4.1.2 The size() and empty() Operations
Two of the simplest list<T> operations are size() and empty(). The size() method
is a simple accessor for the length data member; it returns the number of values cur-
rently stored in the list. The empty() method is nearly as simple, returning true if there
are no values in the list (length == 0) and false otherwise.

15.4.1.3 The begin() and end() Iterators
As with vector<T>, the list<T> class template provides two methods, begin() and
end(), that return iterators to the front and past the end of the list, respectively. The
begin() method returns a pointer to the first node, by returning the address stored in the
next member of the head node. By contrast, the end() function returns a pointer point-
ing beyond the last node containing a data value by returning the address of the head node:

aList

nodelength

0

aList.end()

887766

aList

nodelength

3

aList.begin()

K11207.indb 614 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    615  

From our discussion of iterators in Chapter 12 and our discussion of pointers in this chap-
ter, it should be evident that an iterator is an abstraction of a pointer, hiding some of its
details and eliminating some of its hazards.

15.4.1.4 The insert(), push_front(), and push_back() Operations
The list<T> class template provides several operations to insert a new data value,
including:

• aList.push_back(newValue); which appends newValue to aList

• aList.push_front(newValue); which prepends newValue to aList

• aList.insert(anIterator, newValue); which inserts newValue into aList
ahead of the value pointed to by anIterator

Of these three, insert() is the most general; push_back() and push_front() sim-
ply invoke insert(), passing aList.begin() and aList.end() to anIterator,
respectively.

15.4.1.5 The pop_back(), pop_front(), erase(), and remove() Operations
There also are several different operations provided by list<T> to remove a value from
a sequence:

• aList.pop_back(); removes the last value from aList

• aList.pop_front(); removes the first value from aList

• aList.erase(anIterator); removes the value pointed to by anIterator from
aList

• aList.remove(aValue); removes all occurrences of aValue from aList

15.4.2 An Application: Internet Gateways

As we saw in the opening example of Chapter 7, IP (Internet Protocol) addresses are used
to uniquely identify computers in the Internet. Each address is made up of four fields that
represent specific parts of the Internet,

host.subdomain.subdomain.rootdomain

which the computer will translate into a unique 32-bit numeric address. For example,
www.calvin.edu is the IP address of one of the computers at Calvin College for which
the corresponding numeric address is, at the time of this writing, 153.106.4.1.

15.4.2.1 Problem
A gateway is a device used to interconnect two different computer networks. Suppose
that a gateway connects a university to the Internet and that the university’s network

K11207.indb 615 6/15/12 10:08 AM

616    ◾    Programming in C++ for Engineering and Science

administrator needs to monitor connections through this gateway. Each time a connection
is made (for example, a student using the World Wide Web), the IP address of the student’s
computer is stored in a data file. The administrator wants to check periodically who has
used the gateway and how many times they have used it.

15.4.2.2 Solution
The IP addresses will be read from the file and stored in a linked list of nodes that will store
an address and the number of times that address appeared in the data file. As each address
is read, we check if it is already in the list. If it is, we increment its count by 1; otherwise, we
simply insert it at the end of the list. After all the addresses in the file have been read, the
distinct addresses and their counts are displayed.

The program in Example 15.2 uses this approach to solve the problem. The addresses
are stored in a list<AddressCounter> object named addrCntList, where
AddressCounter is a small class containing two data members (address and count),
function members for input and output operations, and tally() to increment the count. Also,
operator==() is overloaded so that STL’s find() algorithm can be used to search the list.

Example 15.2 Monitoring Internet Connections
/* Program to read IP addresses from a file and produce a list of

distinct addresses and a count of how many times each appeared in
the file. The addresses and counts are stored in a linked list.

Input (keyboard): name of file containing addresses
Input (file): addresses

Output: a list of distinct addresses and their counts
--*/

#include <cassert> // assert()
#include <string> // string
#include <iostream> // cin, cout, >>, <<
#include <iomanip> // setw()
#include <fstream> // ifstream, is_open()
#include <list> // list<T>
#include <algorithm> // find()
using namespace std;

//--------------- Begin class AddressItem -------------------------
class AddressCounter
{
public:

void read(istream & in) { in >> address; count = 1; }

void print(ostream & out) const
{ out << setw(15) << left << address

<< " occurs " << count << " times\n"; }

K11207.indb 616 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    617  

void tally() { count++; }

bool operator==(const AddressCounter & addr2)
{ return address == addr2.address; }

string getAddress() const
{ return address; }

private:
string address;
int count;

};
//----------------- End class AddressCounter --------------------

typedef list<AddressCounter> IP_List;

int main()
{
string fileName; // file of IP addresses
IP_List addrCountList; // list of addresses

ifstream inStream; // open file of addresses
cout << "Enter name of file containing IP addresses: ";
cin >> fileName;
inStream.open(fileName.data());
assert(inStream.is_open());

AddressCounter item; // one address & its count
for (;;) // input loop:
{

item.read(inStream); // read an address
if (inStream.eof()) break; // if eof, quit

IP_List::iterator it = // is item in list?
find(addrCountList.begin(), addrCountList.end(), item);

if (it != addrCountList.end()) // if so:
(*it).tally(); // ++ its count

else // otherwise
addrCountList.push_back(item); // add it to the list

} // end loop

cout << "\nAddresses and Counts:\n\n"; // output the list
for (IP_List::iterator it = addrCountList.begin();

it != addrCountList.end(); it++)
(*it).print(cout);

}

LISTING OF FILE ipAddresses.txt USED IN SAMPLE RUN:
128.159.4.20

K11207.indb 617 6/15/12 10:08 AM

618    ◾    Programming in C++ for Engineering and Science

123.111.222.333
100.1.4.31
34.56.78.90
120.120.120.120
128.159.4.20
123.111.222.333
123.111.222.333
77.66.55.44
100.1.4.31
123.111.222.333
128.159.4.20

SAMPLE RUN:
Enter name of file containing IP addresses: ipAddresses.txt

Addresses and Counts:

128.159.4.20 occurs 3 times
123.111.222.333 occurs 4 times
100.1.4.31 occurs 2 times
34.56.78.90 occurs 1 times
120.120.120.120 occurs 1 times
77.66.55.44 occurs 1 times

15.4.3 Algorithm Efficiency

When we study the time-efficiency of algorithms in computer science, we do not con-
cern ourselves with real (wall-clock) time, because that varies with the language in which
the algorithm is encoded, the quality of the code, the quality of the compiler, the speed
of the computer on which the code is executed, and various other factors. Instead, we
study the number of steps an algorithm takes as a function of the size of the problem it
solves. For example, the following function for the summation problem uses a for loop
that iterates n times:

long summation(long n)
{
long result = 0;
for (long count = 1; count <= n; count++)

result += count;
return result;

}

Because its for loop executes n times, we say that this version requires linear time, or time
proportional to n, written O(n), to compute the sum of the first n positive integers.

By contrast, here is another version that computes 1 + 2 + … + n using the formula cred-
ited to Carl Friedrich Gauss, one of the greatest mathematicians of all time (see Section 9.1):

K11207.indb 618 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    619  

long summation(long n)
{
return n * (n + 1) / 2;

}

Because this second version computes the sum in 3 steps (1 addition, 1 multiplication, and
1 division) regardless of the value of n, we say that it does so in constant time, or time
proportional to 1, expressed as O(1). Because it solves the same problem more quickly, this
second method is more time-efficient than the first.

Time-efficiency is a major consideration in deciding between a vector<T> and a list<T>
to store a sequence in solving a given problem because different containers have different
time-efficiencies for the same operation. For example, appending a value to the end of either
kind of container takes negligible time. This means that if a problem involves the manipula-
tion of a sequence, but appending (or removing from the end) is the only sequence operation
needed to solve the problem, then it makes no difference whether you store the sequence in a
vector<T> or a list<T>. The push _ back() method of each requires O(1) time.

By contrast, it is far more time-consuming to access the middle value in a list<T>
than in a vector<T> or array. For arrays and vector<T>s, the operation v[i] can
access the value at index i in constant (i.e., O(1)) time because it is located (i × the size
of one element) past the beginning of the array or vector. For a list<T>, there is no sub-
script operation, so finding the value at index i requires a list traversal, beginning at the
head node and following i successive links to reach the appropriate node. If every index i
is equally likely to be accessed, we will on average have to follow n/2 links, making this a
linear (i.e., O(n)) time operation. This implies that if a problem involves the manipulation
of a sequence and involves a large number of accesses to values other than the first or last
value in the sequence, then an array or a vector<T> is probably the best choice to store
the sequence because those accesses will be much faster than those for a list<T>.

However, it is far more time-consuming to insert values into an array or a vector<T>
than into a list<T>. As we saw earlier, inserting into a list<T> is a constant time (O(1))
operation, requiring the execution of only a handful of statements. By contrast, insert-
ing into an array or a vector<T> is a linear time (O(n)) operation, because it requires
extensive copying to make room for the new value. This implies that if a problem involves
many insertions (or deletions) from anywhere other than the end of the sequence, then the
list<T> should be used to store the sequence, because insertions (or deletions) will be
much more time-efficient than those for a vector<T>.

In summary, if a problem involves many accesses (but not insertions) to the interior of
a sequence, then the sequence should be stored in an array or a vector<T>. If a problem
involves many insertions or deletions in a sequence from anywhere other than its end, then
the sequence should be stored in a linked list such as list<T>. If neither of these is the
case, then a different container might be better (e.g., a binary tree, a hash table, a deque).
Descriptions of these and many other containers can be found in data structures texts, one
of which is described in Footnote 4 of Chapter 12.

The following table summarizes common container operations, and compares their
times for a vector<T> with those of a list<T>.

K11207.indb 619 6/15/12 10:08 AM

620    ◾    Programming in C++ for Engineering and Science

15.5 PoInTERS AnD CoMMAnD-LInE ARGUMEnTS
As we know by now, every C++ program has a function whose name is main. The main
function differs from other programmer-defined functions in a number of ways. One of
the differences is that arguments are passed to the main function, using an array of point-
ers. How this is done is the topic of this section.

The main function cannot be called directly. Instead, we can think of it as being called
when a program is executed. In command-line environments such as the Unix operating
system, a program is executed by entering its name following the operating system prompt.
For example, on a Unix system, the operating system prompt is often the $ symbol, so to
invoke the text editor emacs on a computer running Unix, we might enter the command

$ emacs

and the program will begin executing. In any command-line environment, entering the
name of a C++ program on the command line can be thought of as issuing a call to the
main function of that program.

To edit a C++ file in the Unix environment, we can enter a command of the form

$ emacs FileName

When invoked in this way, the program (emacs) begins execution, searches for the file
named FileName, and (assuming that it is found) opens it for editing. In this example, the
file that we wish to edit (FileName) is an example of a command-line argument. Just as
entering the name of the program (emacs) is like calling the main function of a program,
entering the name of the program followed by FileName is like calling the main function
of a program and passing it FileName as an argument.

Command-line arguments are used with many of the system commands in command-
line environments such as Unix. For example, the command mkdir projects is used

Description
array/vector<T>

Efficiency
list<T>
Efficiency

Append a value O(1) O(1)
Insert a value at position i O(n) O(1)†

Remove all values O(n) O(n)
Check if a value is present O(n) O(n)
Compare two containers O(n) O(n)
Find value at index i O(1) O(n)
Find index of first occurrence of a value O(n) O(n)
Check if the container is empty O(1) O(1)
Find index of last occurrence of a value O(n) O(n)
Remove value at index i O(n) O(1)†

Remove the first occurrence of a value O(n) O(1)†

Replace object at index i with a value O(1) O(n)
Return number of values in the container O(1) O(1)

† These, of course, require that an iterator be positioned first, which is an O(n) operation.

K11207.indb 620 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    621  

in Unix to create a new subdirectory named projects. Similarly, the command cd
projects will change location in the directory structure to the subdirectory projects.
In each case a program is being executed (one named mkdir, and the other named cd),
and the name projects is passed to that program as an argument. In this section we
examine the mechanism by which a main function can receive and process command-line
arguments. The techniques discussed can be used in any C++ command-line environment.

15.5.1 Parameters of the Main Function

The general form of the main function is

int main(parameterList)
{
statementList

}

In all of our programs up to this point, the parameterList has been empty, but this
need not be the case. A main function can be declared with a parameter list consisting of
two predefined parameters:

•	 argc (the argument count), an integer; and

•	 argv (the argument vector), an array of pointers to characters.

As a legacy from C, the standard way to declare these parameters in a main function is:7

int main(int argc, char * argv[])
{
// ... body of the main function ...

}

When a C++ program with the parameters argc and argv declared in the parameter list
of its main function is executed from the command line, two things occur automatically:

 1. If n character strings were entered on the command line, the value of argc is set to n.

 2. The value of argv[0] is the address of the first character string of the command line.

 The value of argv[1] is the address of the second character string of the com-
mand line.

 .

 .

 .

7 C has no classes, and thus has no string class. Instead, C permits character strings to be stored in character arrays
(char []) and passed to functions via character pointer (char *) parameters, with the value of a character string literal
being the address of its first character. Hence, the close relationship between character strings, arrays, and pointers in C.

K11207.indb 621 6/15/12 10:08 AM

622    ◾    Programming in C++ for Engineering and Science

 The value of argv[n-1] is the address of the nth character string of the command
line.

To illustrate, consider the simple C++ program in Example 15.3.

Example 15.3 Introducing argc and argv

/* Program to introduce the predefined parameters argc and argv.

Output: The value of argc, followed by each string in argv.
--*/

#include <iostream>
using namespace std;

int main(int argc, char * argv[])
{
cout << "\nThere are " << argc

<< " strings on the command line:\n";

for (int i = 0; i < argc; i++)
cout << '\t' << "argv[" << i << "] contains: "

<< argv[i] << endl;
}

In this program the parameter list of the main function contains declarations of argc and
argv. If the compiled version of this program is stored in a file named commandLine,
then commandLine can be executed by entering the command

$ commandLine

which produces the output

There are 1 strings on the command line:
argv[0] contains: commandLine

Thus, within commandline, argc has the value 1, and argv[0] refers to the character
string commandline. If we execute commandline by entering the command

$ commandLine I want an argument

then the output will be

There are 5 strings on the command line:
argv[0] contains: commandLine
argv[1] contains: I

K11207.indb 622 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    623  

argv[2] contains: want
argv[3] contains: an
argv[4] contains: argument

From these examples it should be evident that the values of argc and argv depend on
what the user enters on the command line when invoking the program. If the user enters
the name of the program followed by i arguments, then the value of argc will be i + 1,
the number of character strings entered on the command line; argv[0] will refer to the
name of the program; and argv[1] through argv[i] will refer to the i arguments that
were entered.

15.5.2 Example: A Square Root Calculator

As a simple illustration of the use of argv and argc, consider the problem of designing
a square root calculator that allows the user to enter the value(s) to be processed on the
command line and that then calculates and displays the square roots of each value. For
example, if the command

$ sroot 4 9 16 25

is entered, the values 2, 3, 4, and 5 are to be displayed.
Because the program must process command-line arguments, it receives the arguments

through the parameters of the main function (i.e., argc and argv). Here are some pos-
sibilities of what the user might enter:

$ sroot // error—no data to process (argc is 1)

$ sroot A // error—nonnumeric data (argc is 2, argv[1] is "A")

$ sroot -1 // error—negative data (argc is 2, argv[1] is "-1")

$ sroot 9 // one value (argc is 2, argv[1] is "9")

$ sroot 4 9 // two values (argc is 3, argv[1] is "4", argv[2] is "9")

From the first example, we see that valid input requires argc > 1. Also, each argv[i]
refers to a character string, and we must take the square root of a value of type double.
This means that the character string stored in argv[i] must be converted to the corre-
sponding double value. Fortunately, C++ provides the strtod() function in cstdlib
that performs this operation. That function can also be used to make our program more
foolproof by checking its return value—strtod() returns 0 if it is unable to convert the
string to a numeric value, which is the case in the second and third examples. Once we
have converted the character string to the corresponding double value, all that remains
is to find its square root, which is easy, using the sqrt() function declared in cmath. We
then simply display the value and its square root.

We can thus construct the following algorithm, which checks that at least one command-
line argument has been given, and if so, uses a loop to process each argument.

K11207.indb 623 6/15/12 10:08 AM

624    ◾    Programming in C++ for Engineering and Science

Algorithm for sroot

 1. If argc is less than 2, display an “incorrect usage” error message and quit.

 2. For each integer i in the range 1 through argc – 1:

 a. Get inValue, the double equivalent to argument i.

 b. If inValue > 0

 Display inValue and its square root.

 Else

 Display an “invalid data” error message.

Encoding this algorithm in C++ is straightforward, as shown in Example 15.4.

Example 15.4 Encoding sroot
/* Program to display the square roots of a sequence of values,

 specified by the user on the command line.

Receive: One or more numeric (double) values
Output: The square roots of the input values

--*/

#include <iostream> // cin, cout, <<, >>
#include <cmath> // sqrt()
#include <cstdlib> // strtod()
using namespace std;

int main(int argc, char * argv[])
{
if (argc < 2)
{

cout << "\n*** Usage: sroot List-of-Positive-Numbers \n\n";
exit(1);

}

double inValue; // double equivalent of an
argument

for (int i = 1; i < argc; i++)
{

inValue = strtod(argv[i], 0);
cout <<"\n--> The square root of " << inValue
 << "is" << sqrt(inValue) << end1;

 }
}

SAMPLE RUN:
./sqrt 1 2 3 4 5 6
--> The square root of 1 is 1

K11207.indb 624 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    625  

--> The square root of 2 is 1.41421
--> The square root of 3 is 1.73205
--> The square root of 4 is 2
--> The square root of 5 is 2.23607
--> The square root of 6 is 2.44949

ChAPTER SUMMARY

Key Terms

noTES
•	 In a declaration, an asterisk operator * must precede each identifier that is to serve

as a pointer.

•	 0 can be assigned to any pointer variable; it is called the null pointer and also the
null address.

•	 A value assigned to a pointer variable must be the address of an object whose type is
the same as the type to which the pointer is bound in its declaration.

address-of operator (&)

anonymous variable

assignment operator

base address

circular linked list

class pointer selector operator (->)

command-line environment

compile-time allocation

constant time

delete operation

doubly linked list

gateway

head node

indirection operator(*)

Internet Protocol (IP)

IP address

iterator

linear time

linked list

memory leak

new operation

node

null address

null pointer value

O(1)

O(n)

pointer

pointer variable

reference

run-time allocation

singly linked list

sizeof operator

time-efficiency

K11207.indb 625 6/15/12 10:08 AM

626    ◾    Programming in C++ for Engineering and Science

•	 The term reference is another term for address, so applying the indirection operator
(*) to a pointer variable is called dereferencing that pointer.

•	 The value of a pointer variable ptr is simply the address stored within ptr; *ptr
uses this address to access (indirectly) the contents of the memory location at that
address.

•	 Pointers can be assigned the values of other pointers that are bound to the same type.

•	 The relational operators == and != can be used to compare two pointers that are
bound to the same type. The null address may be compared with any pointer.

•	 An expression of the form new Type requests a block of memory large enough to
store an object of the specified Type. If the request can be granted, new returns the
address of the block of memory; otherwise, it returns the null address (0).

•	 An anonymous variable can be accessed indirectly by dereferencing a pointer to it.

•	 Unlike arrays whose memory is allocated at compile time, arrays whose memory is
allocated at run time can be tailored to the size of the sequence to be stored in them.

•	 If ptr points to the base address of an array, then ptr[i] can be used to access the
element at location i, and is equivalent to writing *(ptr + i).

•	 Singly linked lists consist of a series of nodes, each of which has a data part and a
pointer to the next node. A node in a doubly linked list also has a pointer to the pre-
ceding node.

•	 Items can be inserted in and removed from linked lists more efficiently than for
arrays and vectors.

•	 Values can be passed to the main() function in a program via the argc (argument
count) and argv (argument vector) parameters.

Style Tips

Pointers permit the implementation of flexible data structures like vector<T> and
list<T> from the Standard Template Library. When using such objects, we must select
the data structure that best fits the problem to be solved. More precisely, if we are storing a
sequence of values and the problem requires access to arbitrary values within the sequence,
then a vector<T> is an appropriate container for storing the sequence. However, if we
are storing a sequence and the problem requires many insertions and deletions anywhere
except at the end of the sequence, then a list<T> provides an efficient means of storing
and manipulating such a sequence.

The pointers used to implement list<T> and vector<T> have memory addresses
as values. Consequently, the manner in which pointer variables are used is quite different
from that for other kinds of variables, and this can cause special difficulties for both begin-
ning and experienced programmers. Pointers are used to store the addresses of objects
whose memory is allocated at run time. Consequently, operations that

K11207.indb 626 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    627  

•	 create an object require that its memory be explicitly allocated using new;

•	 destroy an object require that its memory be explicitly deallocated using delete;

•	 modify the size of an object require that its old memory be deallocated and then new
memory of the correct size be reallocated.

warnings

The operations used to process pointers are quite different from those used to process
objects whose memory is allocated at compile time. Some of the main features to remem-
ber when using pointer variables and run-time allocation in C++ programs are

 1. use the typedef mechanism and descriptive identifiers to declare pointer types. This
increases program readability and thereby reduces the likelihood of errors and makes
them easier to find when they do occur.

 2. Each pointer variable is bound to a fixed type; a pointer is the address of a memory
location in which only a value of that type can be stored.

 3. Care must be used when operating on pointers because they have memory addresses as
values. In particular:

•	 a pointer ptr can be assigned a value in the following ways:

 − ptr = &obj; (where obj is an object of the type to which ptr points)

 − ptr = 0; (the null address)

 − ptr = anotherPtr; (where anotherPtr is a pointer bound to the same
type as ptr)

 − ptr = new Type; (where Type is the type to which ptr points).

•	 arithmetic operations on pointers are restricted. For example, pointer values (mem-
ory addresses) cannot be added, subtracted, multiplied, or divided. However, an
integer value i can be added to or subtracted from the value of a pointer variable,
which changes the address in the pointer by i * sizeof(Type), where Type is
the type to which the pointer is bound.

•	 Two pointers can be compared using relational operators, but they must be bound to
the same type or one or both may be the null address.

•	 Pointers may be used as parameters, but corresponding parameters and arguments
must be bound to the same type. A function may also return a pointer as its return
value, but the type to which that pointer is bound must be the same as the type to
which the function is declared to point.

 4. Do not confuse memory locations with the contents of memory locations. If ptr is a
pointer, its value is the address of a memory location; *ptr refers to the contents
of that location. Both ptr++ and (*ptr)++ are valid (if ptr is bound to a type for

K11207.indb 627 6/15/12 10:08 AM

628    ◾    Programming in C++ for Engineering and Science

which ++ is defined), but the first increments the address in ptr, while the second
increments the contents of the memory location at that address.

 5. The null address ≠ undefined. A pointer becomes defined when it is assigned the
address of a memory location or the null address. Assigning a pointer the null address
is analogous to initializing a numeric variable to zero.

 6. attempting to dereference ptr that is undefined or the null address is an error and
may produce cryptic run-time error messages.

 7. When memory is allocated at run time with the new operation, the value returned by
new should be tested before proceeding, to ensure that the operation was successful. For
example,

ptr = new SomeType;
assert(ptr != 0);

 8. Memory locations that were once associated with a pointer variable and that are no
longer needed should be returned to the free store by using the delete function.

TEST YoURSELF

Section 15.1

 1. A pointer variable stores a(n) .

 2. is the address-of operator.

 3. is used to dereference a pointer.

Questions 4–16 assume the following declarations:

double * x,
y = 1.1;

and that double values are stored in 8 bytes of memory. Answer each of Questions 4–16
with (a) address or (b) double value.

 4. The value of x will be a(n) .

 5. The value of y will be a(n) .

 6. The value of &y will be a(n) .

 7. The value of &x will be a(n) .

 8. The value of *x will be a(n) .

 9. The value of (*x) * y will be a(n) .

 10. The word “reference” is a synonym for a(n) .

K11207.indb 628 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    629  

 11. In the assignment x = 0; , 0 is called the address.

 12. The output produced by the statements x = &y; cout << *x; is .

 13. The output produced by the statements x = &y; *x = 3.3; cout << y;
is .

 14. (True or false) sizeof(double) == sizeof y.

 15. (True or false) sizeof(double) == sizeof(*x).

 16. If the output produced by cout << x; is 0x12a30, the value of x+4 is .

Section 15.2

 1. (Run or compile) Memory for a C-style array is allocated at time; mem-
ory for a vector<T> object is allocated at time.

 2. The operation is used to request memory during program execution.
If not enough memory is available, it returns ; otherwise, it returns
the of a block of memory. The newly allocated memory location is
a(n) variable.

 3. The operation is used to release memory during program execution.

 4. The base address of a run-time allocated array is stored in a .

 5. Given the declarations

int a[] = {44, 22, 66, 11, 77, 33};
int * p = a;

 what is the value of p[2]?

Section 15.3

 1. (True or false) Values can be inserted at the end of a vector<T> more efficiently
than at its front.

 2. In a linked list, values are stored in that are linked together
by .

 3. The two parts of a node are a(n) part and a(n) part.

 4. If a node has no successor, its link is set to a special value.

 5. (True or false) One of the strengths of arrays is that an item can be inserted at any
point without moving any array elements.

 6. (True or false) One of the strengths of a linked list is that an item can be deleted at any
point without moving any list elements.

K11207.indb 629 6/15/12 10:08 AM

630    ◾    Programming in C++ for Engineering and Science

ExERCISES

Section 15.1

Exercises 1–9 assume the following declarations:

int i1 = 11,
i2 = 22;
double d1 = 3.45,
 d2 = 6.78;
class Point
{
 public:
 double x() { return xCoord; }
 double y() { return yCoord; }
 private:
 double xCoord, yCoord;
};

 1. Write declarations for variables p1 and p2 whose values will be addresses of memory
locations in which a double can be stored.

 2. Write a statement to assign the address of d1 to the variable p1 in Exercise 1, or
explain why this is not possible.

 3. Write a statement to assign the address of i2 to the variable p2 in Exercise 1, or
explain why this is not possible.

 4. Write declarations for a variable q whose value will be a memory location in which a
Point object can be stored.

 5. Write declarations that initialize variables ptr1 and ptr2 with the addresses of i1
and i2, respectively.

 6. Write a statement that will make variables p1 and p2 of Exercise 1 point to the same
memory location.

 7. Write a statement that will copy the value stored in the memory location pointed to
by ptr2 into the memory location pointed to by ptr1, for ptr1 and ptr2 as in
Exercise 5.

 8. Write a statement to output the x coordinate and the y coordinate of the point in the
memory location pointed to by the variable q of Exercise 4.

 9. Write statements that use the variables p1 and p2 of Exercise 2 but not the variables
d1 and d2 to interchange the values of d1 and d2.

 For Exercises 10–16, use the sizeof operator to find how many bytes your C++
compiler allocates for the given data type:

 10. int

K11207.indb 630 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    631  

 11. float

 12. double

 13. short int

 14. A string whose value is "Bye!"

 15. A string whose value is "Auf Wiedersehen!"

 16. Pointers to the types in Exercises 10–15.

 17. Using the address-of operator, find the starting addresses your C++ compiler associ-
ates with the constant SIZE and each of the variables in the following declarations:

const int SIZE = 10;
char charArray[SIZE];
int intArray[SIZE];
double doubleArray[SIZE];
char charVar;

 18. Use the sizeof operator to find the number of bytes allocated by your C++ compiler
to SIZE and each of the variables in Exercise 17.

 19. Using typedef, create a type CharPointer that is a synonym for pointers to type
char.

Exercises 20–22 assume an array declaration like the following:

double anArray[10];

 20. Use the address-of operator to find the address of the first element of anArray.

 21. Find the value associated with the name anArray.

 22. What can you conclude from the results of Exercises 20 and 21?

Section 15.2

For Exercises 1–10, write C++ statements to do what is asked.

 1. Declare a char pointer variable named charPtr.

 2. Allocate an anonymous char variable, storing its address in charPtr.

 3. Input a character value and store it in the anonymous variable of Exercise 2.

 4. Display the value of the anonymous variable of Exercise 2.

 5. Convert the case of the value of the anonymous variable of Exercise 2 using character-
processing functions such as isupper() and tolower() from cctype.

 6. Declare a double pointer variable named doublePtr.

K11207.indb 631 6/15/12 10:08 AM

632    ◾    Programming in C++ for Engineering and Science

 7. Allow the user to enter n, the number of values to be processed, then allocate an
anonymous array of n double values, storing its address in doublePtr.

 8. Fill the anonymous array of Exercise 7 with n input values, entered from the keyboard.

 9. Compute and display the average of the values in the anonymous array of Exercise 7.

 10. Deallocate the storage of the anonymous array of Exercise 7.

 11. Find the base address of the anonymous array allocated in Exercise 7 and draw a
memory map showing the addresses of its first few elements.

 12. Describe the output produced by the following statements:

int * foo, * goo;
foo = new int;
*foo = 1;
cout << (*foo) << endl;
goo = new int;
*goo = 3;
cout << (*foo) << (*goo) << endl;
*foo = *goo + 3;
cout << (*foo) << (*goo) << endl;
foo = goo;
*goo = 5;
cout << (*foo) << (*goo) << endl;
*foo = 7;
cout << (*foo) << (*goo) << endl;
goo = foo;
*foo = 9;
cout << (*foo) << (*goo) << endl;

Section 15.3

In the following exercises you may assume that operations as described in the text can be
used to obtain a new node from the storage pool and to return nodes to the storage pool,
and that there is a special null value.

Exercises 1–7 assume that p1, p2, and p3 are pointers to Nodes and that the following
statements have been executed:

p1 = new Node;
p2 = new Node;
p3 = new Node;

Tell what will be displayed by each of the code segments or explain why an error occurs.

 1. p1->data = 123;
 p2->data = 456;
 p1->next = p2;
 p2->next = 0;
 cout << p1->data << " " << p1->next->data << endl;

K11207.indb 632 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    633  

 2. p1->data = 12;
 p2->data = 34;
 p1 = p2;
 cout << p1->data << " " << p2->data << endl;

 3. p1->data = 12;
 p2->data = 34;
 *p1 = *p2;
 cout << p1->data << " " << p2->data << endl;

 4. p1->data = 123;
 p2->data = 456;
 p1->next = p2;
 p2->next = 0;
 cout << p2->data << " " << p2->next->data << endl;

 5. p1->data = 12;
 p2->data = 34;
 p3->data = 34;
 p1->next = p2;
 p2->next = p3;
 p3->next = 0;
 cout << p1->data << " " << p1->next->data << endl;
 cout << p2->data << " " << p2->next->data << endl;
 cout << p1->next->next->data << endl;

 6. p1->data = 111;
 p2->data = 222;
 p1->next = p2;
 p2->next = p1;
 cout << p1->data << " " << p2->data << endl;
 cout << p1->next->data << endl;
 cout << p1->next->next->data << endl;

 7. p1->data = 12;
 p2->data = 34;
 p1 = p2;
 p2->next = p1;
 cout << p1->data << " " << p2->data << endl;
 cout << p1->next->data << " " << p2->next->data << endl;

 8. Write an algorithm to count the nodes in a linked list with first node pointed to by
first.

 9. Write an algorithm to determine the average of a linked list of real numbers with first
node pointed to by first.

K11207.indb 633 6/15/12 10:08 AM

634    ◾    Programming in C++ for Engineering and Science

 10. Write an algorithm to append a node at the end of a linked list with first node pointed
to by first.

 11. Write an algorithm to determine whether the data items in a linked list with first
node pointed to by first are in ascending order.

 12. Write an algorithm to search a linked list with first node pointed to by first for a given
item, and if it is found, return a pointer to the predecessor of the node containing that
item.

 13. Write an algorithm to insert a new node into a linked list with first node pointed to
by first after the nth node in this list for a given integer n.

 14. Write an algorithm to delete the nth node in a linked list with first node pointed to by
first, where n is a given integer.

 15. Suppose the items stored in two linked lists are in ascending order. Write an algo-
rithm to merge these two lists to produce a list with the items in ascending order.

 16. Write an algorithm to reverse a linked list with first node pointed to by first. Do not
copy the list elements; rather, reset links and pointers so that first points to the last
node and all links between nodes are reversed.

PRoGRAMMInG PRoBLEMS

Sections 15.3 and 15.4

 1. A limited number of complimentary copies of new CAD/CAM software will be
released tomorrow. Requests are to be filled in the order in which they are received.
Write a program that reads the names and addresses of the persons requesting this
software, together with the number of copies requested, and stores these in a linked
list. The program should then produce a sequence of mailing labels (names, addresses,
and number of copies) for requests that can be filled.

 2. Modify the program in Problem 1 so that multiple requests from the same person are
not allowed.

 3. A polynomial of degree n has the form

a0 + a1x + a2x2 + ... + anxn

 where a0, a1, . . . , an are numeric constants called the coefficients of the polynomial
and an ≠ 0. For example,

 1 + 3x – 7x3 + 5x4

 is a polynomial of degree 4 with integer coefficients 1, 3, 0, –7, and 5.

 a. Develop a linked list that can represent any such polynomial. Let each node store
a nonzero coefficient and the corresponding exponent, with the exponents in
increasing order.

K11207.indb 634 6/15/12 10:08 AM

Pointers and Linked Structures    ◾    635  

 b. Write a program to implement an input operation that reads a polynomial’s non-
zero coefficients and exponents and constructs the linked representation of the
polynomial and an output operator that displays polynomials in the usual math-
ematical format with xn written as x n or x ^ n. Your program should then read
values for x and evaluate the polynomial for each of them.

 4. Extend the class Polynomial in Problem 3 to add two polynomials.

 5. Extend the class Polynomial in Problems 3 and 4 to multiply two polynomials.

 6. The Cawker City Construction Company maintains two warehouses, one in Chicago
and another in Detroit, each of which stocks a large number of different items. Write
a program that first reads the product numbers of items in the Chicago warehouse
and stores them in a linked list Chicago, and then repeats this for the items in the
Detroit warehouse, storing these product numbers in a linked list Detroit. The
program should then find and display the intersection of these two lists of numbers,
that is, the collection of product numbers common to both lists. Do not assume that
the lists have the same number of elements.

 7. Repeat Problem 6, but find and display the union of the two lists, that is, the collection
of product numbers that are elements of at least one of the lists.

 8. Write a “quiz-tutor” program, perhaps on a topic from one of the early chapters, or
some other topic about which you are knowledgeable. The program should read a
question and its answer from a file, display the question, and accept an answer from
the user. If the answer is correct, the program should go on to the next question. If it
is not correct, store the question in a list. When the file of questions is exhausted, the
questions that were missed should be displayed again (in their original order). Keep
a count of the correct answers and display the final count. Also, display the correct
answer when necessary in the second round of questioning.

 9. Suppose that jobs entering a computer system are assigned a job number and a prior-
ity from 0 through 9. The numbers of jobs awaiting execution by the system are kept
in a priority queue. A job entered into this queue is placed ahead of all jobs of lower
priority but after all those of equal or higher priority. Write a program to read one of
the letters R (remove), A (add), or L (list). For R, read a job number and remove it from
the priority queue; for A, read a job number and priority and then add it to the priority
queue in the manner just described; and for L, list all the job numbers in the queue.

 10. Write a program to read records from the file Users (see the file descriptions at
the end of Chapter 11) and construct nine linked lists of records containing a user’s
identification number, resource limit, and resources used to date, one list for each
of the leading digits (1, 2, ..., 9) of the identification number. Store these records in
a vector of list<T>s. After the lists have been constructed, sort each list so the
resource limits are in ascending order and then print each of them with appropri-
ate headings. note: If aList is a list<T> object, then alist.sort(); will sort

K11207.indb 635 6/15/12 10:08 AM

636    ◾    Programming in C++ for Engineering and Science

aList provided < is defined for type T objects. In this exercise, you must overload
operator<() to define what it means for one user record to be less than another.

 11. Design and implement a class BigInt whose values are large integers with perhaps
hundreds of digits. Overload the addition operator to add two large integers. Treat
each number as a list, each of whose elements is a block of digits of the number. Add
the integers (lists) element by element, carrying from one element to the next when
necessary.

 12. Proceed as in Problem 11, but add a subtraction operator. Write a two-function
BigInt calculator program to test your class.

 13. Extend class BigInt from Problem 11 by overloading the multiplication operator.

 14. Extend class BigInt from Problem 11 by overloading the division operator (more
challenging).

Section 15.5

 1. Write a program binary so that the command

binary DecimalValue

 will calculate and display the binary representation of DecimalValue.

 2. The median of a list of n numbers is a value such that n/2 of the values are greater
than that value, and n/2 of the values are less than that value. The usual procedure
to find the median is to sort the list and then pick the middle number as the median
if the list has an odd number of elements, or the average of the two middle numbers
if the number of elements is even. Write a program to find the median of a list, so
that the command

median FileName

 will calculate and display the median of the values in file FileName, but the
command

median

 will calculate and display the median of a list of numbers entered from the keyboard.

 3. Write a program so that the following command will make a copy of File1 with the
name File2:

copy File1 File2

 4. Write a program so that the following command will display the specified file on the
screen, one page (23 lines) at a time, waiting between pages until the user presses
some key:

page File

K11207.indb 636 6/15/12 10:08 AM

637

C h a p t e r 16

Data Structures

An Englishman, even if he is alone, forms an orderly queue of one.

GEORGE MIKES

If Edison had a needle to find in a haystack, he would proceed at once with the
diligence of the bee to examine straw after straw until he found the object of his
search . . .

NIKOLA TESLA

I think that I shall never see,
A poem lovely as a tree.

JOYCE KILMER, “TREES”

Woodman, spare that tree!

GEORGE POPE MORRIS, “WOODMAN, SPARE THAT TREE!”

ConTEnTS
16.1 Introductory Example: The Binary Representation of Integers—Stacks 638
16.2 Recursion Revisited 646
16.3 Queues, Deques, and Priority Queues 650
16.4 An Introduction to Trees 655
Chapter Summary 666
Test Yourself 668
Exercises 671
Programming Problems 674

638    ◾    Programming in C++ for Engineering and Science

In previous chapters, we saw that C++ provides several mechanisms for storing col-
lections of values. These include

•	 C-style arrays (have a fixed capacity);

•	 vector<T>s (can grow and are best used for insertions and deletions at the end of
the sequence);

•	 Linked lists (can grow or shrink; insertions and deletions may occur anywhere).

In this chapter, we look at some of the other structures that C++ provides for storing col-
lections of data. They are known as containers or data structures.

16.1 InTRoDUCToRY ExAMPLE: ThE BInARY
REPRESEnTATIon oF InTEGERS—STACKS

In this section, we will begin with a problem and then show how it can be conveniently
solved using a specialized structure called a stack.

16.1.1 Problem: Displaying a number’s Binary Representation

Data is stored in computer memory using a binary representation. In particular, positive
integers are commonly stored using the base-2 representation described in Chapter 3. This
means that the base-10 representation of an integer used in a program or as input data
must be converted to binary.

One algorithm for carrying out this conversion uses repeated division by 2 and the
remainders are the binary digits in the base-2 representation from right to left. For example,
the following diagram (in which the repeated divisions by 2 are read from the bottom up)
shows that the base-2 representation of 26 is 11010:

This approach can be used to find the base-b representation for any value of b between
2 and 36 inclusive, simply by dividing by b instead of 2, and using the symbols a, b, ..., z
as base-b digits (in addition to 0–9) when b > 10. For example, the base-8 representation
of 95 is 1378 and the base-16 representation of 95 is 5f16, which we can compute as follows

1

Base-ten
26

1
0
1
0

Base-two
1 1 0 1 0

)
 0
 2 1 R
 2 3 R
 2 6 R
2 13 R
2 26 R

)
)

)
)

Base-ten
95

1
3
7

Base-eight
1 3 7

 0
 8 1 R
8 11 R
8 95 R

)
)
)

K11207.indb 638 6/15/12 10:08 AM

Data Structures    ◾    639  

(The base-16 digits for ten, eleven, twelve, thirteen, fourteen, and fifteen are a, b, c, d, e,
and f, respectively.) Our problem is to develop a function that will accept a nonnegative
base-ten integer and a base b and will output the base-b representation of the integer.

One of the difficulties in this problem is that the order in which remainders are gener-
ated is the opposite of the order in which they must be output. For example, in determining
the binary representation of 26, the first remainder,

 26 % 2 = 0

is the last binary digit that we must display. Similarly, the second remainder we compute,

 13 % 2 = 1

produces the next-to-the-last binary digit that we must display. This pattern continues
until we generate the final remainder,

 1 % 2 = 1

which produces the first binary digit that we must display.

16.1.2 The stack Container

The preceding diagrams suggest one approach to solving this problem; what is needed is a
special kind of list to store the remainders so that we can print them in the opposite order
in which they are generated—a container where the delete operation will remove the value
that was most recently added to the list. The values in such a list must, therefore, be main-
tained in Last-In-First-Out (LIFO) order; that is, the last item inserted is the first item to
be removed. Such a list is called a stack (or a push-down stack) because it functions in the
same manner as a spring-loaded stack of plates or trays used in a cafeteria:

Plates are added to the stack by pushing them onto the top of the stack. When a plate is
removed from the top of the stack, the spring causes the next plate to pop up. For this
reason, the operations to insert a value into and delete a value from a stack are commonly
called push and pop, respectively.1 The most recently added value is called the top value.

1 This is the source of the names push_back() and pop_back() in vector<T> and list<T>.

K11207.indb 639 6/15/12 10:09 AM

640    ◾    Programming in C++ for Engineering and Science

If the stack contains no values, it is described as empty. These properties of a stack in a
cafeteria illustrate the four standard stack operations:

 1. empty(): returns true if there are no values in the stack and false otherwise.

 2. top(): returns a copy of the value at the top of the stack.

 3. push(v): adds a value v at the top of the stack.

 4. pop(): removes and returns the value at the top of the stack.

A stack is the container we need to solve the base-conversion problem. To display the
base-b representation of an integer in the usual left-to-right sequence, we must “stack up”
the remainders generated during the repeated division by b by pushing them onto a stack.
When division is finished, we can retrieve the remainders from this stack in the required
“last-in-first-out” order by popping them from the stack.

If we have a stack type available, we can use the following algorithm to convert from
base-10 to base-b and display the result:

Base-Conversion Algorithm

/* This algorithm displays the representation of a base-10 number in any base from 2
through 36.

 Receives: number, an int;

 base, the base to which we want to convert number.

 Precondition: number > 0 and 2 ≤ base ≤ 36.

 Returns: the base-base representation of number, as a string.

*/

 1. Create an empty stack to store the remainders.

 2. While number ≠ 0 do the following:

 a. Calculate the remainder that results when number is divided by base.

 b. Push remainder onto the stack of remainders.

 c. Replace number by the integer quotient of number divided by base.

 3. Declare result as an empty string.

 4. While the stack of remainders is not empty do the following:

 a. Remove the remainder from the top of the stack of remainders.

 b. Find the character that represents remainder in the given base.

K11207.indb 640 6/15/12 10:09 AM

Data Structures    ◾    641  

 c. Append this base-base representation of remainder to result.

 5. Return result.

The diagram in Figure 16.1 traces this algorithm for the integer 26 and base 2. Example 16.1
presents a program containing a convertDecimal() function that implements the
algorithm.

Computation

0

Stack of
Remainders

0

1

1
0

0

0
1

1

1

1
0

1

1
1

0

0

0
1
0

1
0
1
0

0
1
0

1
0

0

1

0

1

01011

1

11

011

1

Output

13 R
2 26

6 R
2 13

 2 6
3 R

 2 3
1 R

 2 1
0 R

)

)

)

)

)

FIGURE 16.1 Using a stack in base-2 conversion.

K11207.indb 641 6/15/12 10:09 AM

642    ◾    Programming in C++ for Engineering and Science

Example 16.1 Converting Decimal Integers

/* Program to convert an int value to other bases.

 Input: number, a positive decimal integer base, the base to
which it is to be converted

 Output: the base representation of number
--*/

#include <string>
#include <iostream>
#include <stack>
using namespace std;

string convert(int number, int base);
char baseDigit(int value);

int main()
{
 for(;;)
 {
 cout << "\nEnter an integer (–1 to stop): ";
 int number;
 cin >> number;
 if (number < 0) break;
 cout << " and the base to which it is to be converted: ";
 int base;
 cin >> base;
 cout << '\n' << convert(number, base) << " is the base–" << base

<< " representation of " << number << endl;
 }
}

/* convert() converts a decimal value to its base representation
 Receive: integers number and base
 Precondition: number>= 0 and base is in the range 2 – 35
 Return: number converted to the specified base
--*/
string convert(int number, int base)
{
 stack<int> digitStack;
 int remainder;
 do
 {
 remainder = number % base;
 digitStack.push(remainder);
 number /= base;
 }
 while (number != 0);

K11207.indb 642 6/15/12 10:09 AM

Data Structures    ◾    643  

 string resultString = "";
 char otherBaseDigit;
 while (!digitStack.empty())
 {
 remainder = digitStack.top();
 digitStack.pop();
 otherBaseDigit = baseDigit(remainder);
 resultString += otherBaseDigit;
 }
 return resultString;
}

/* baseDigit() finds a char representing a digit in another base.
 Receive: value, an int.
 Precondition: 0 <= value && value <= 35.
 Return: the character representation of value.
--*/
char baseDigit(int value)
{
 const int NUM_DIGITS = 36; // number of digits in other base
 const string digits = "0123456789abcdefghijklmnopqrstuvwxyz";
 if (0 <= value && value < NUM_DIGITS)
 return digits[value];
 else
 {
 cerr << "\n** baseDigit(value): " << value
 << " outside of range 0.." << NUM_DIGITS – 1 << endl;
 return '*';
 }
}

SAMPLE RUN:

Enter an integer (–1 to stop): 1024
and the base to which it is to be converted: 2

10000000000 is the base–2 representation of 1024

Enter an integer (–1 to stop): 1024
and the base to which it is to be converted: 8

2000 is the base–8 representation of 1024

Enter an integer (–1 to stop): 255
and the base to which it is to be converted: 16

ff is the base–16 representation of 255

K11207.indb 643 6/15/12 10:09 AM

644    ◾    Programming in C++ for Engineering and Science

Enter an integer (–1 to stop): 123456789
and the base to which it is to be converted: 26

aa44a1 is the base–26 representation of 123456789

Enter an integer (–1 to stop): –1

The convert() function in this program relies heavily on the C++ Standard Template
Library’s stack<T> container. We will now take a look at this container.

16.1.3 The stack<T> Adapter

We have already seen that the Standard Template Library provides containers such as
vector<T> and list<T> for storing sequences. The designers of STL recognized that
they could reuse the work they had invested in building these sequential containers to
implement other containers and they did this by means of adapters that act as “wrappers”
around other components, giving them new interfaces. In particular, a stack<T> con-
tainer could be built as an adapter of vector<T>, list<T>, or deque<T> (described in
the next section).

To illustrate, we will use the declaration of digitStack in Example 16.1:

stack<int> digitStack;

This declaration uses the default constructor in stack<T> to create digitStack and
STL’s default stack<T> implementation as an adapter of a deque<T>.2 But if we prefer a
stack<T> built using one of the other two containers, we can specify this in the declara-
tion. For example,

stack<int, list<int> > intListStack;

builds intListStack using list<T>; and the declaration

stack<int, vector<int> > intVectorStack;

builds intVectorStack using vector<T>.
Each of these constructors builds a stack, but the underlying implementations are dif-

ferent. The object intListStack will be implemented using STL’s linked list (and thus
use memory fairly efficiently but provide slightly slower versions of push() and pop()):

2 The default stack<T> constructor builds the stack using the deque<T> template so this declaration could also be
written stack< deque<T> >.

K11207.indb 644 6/15/12 10:09 AM

Data Structures    ◾    645  

The object intVectorStack will be implemented using STL’s vector (and thus on aver-
age probably provide the fastest versions of push() and pop(), while possibly using more
memory than necessary):

And the object digitStack will be implemented using STL’s default implementation
as an adapter of deque<T>, which will be described in more detail in the next section.
Which of these to use depends on the problem:

•	 If speed is the primary concern and there are no memory constraints, using STL’s
default stack<T> implementation or as an adapter of vector<T> template is prob-
ably the best choice.

•	 If conserving memory is more important than blazing speed, using stack<T> to
provide an alternative interface to the list<T> template is probably the best choice.

16.1.4 The stack<T> Methods

The program in Example 16.1 illustrates several of the messages that can be sent to a
stack<T>, regardless of its underlying implementation details. They include:3

•	 void push(T aValue)—add aValue to the top of the stack

•	 void pop()—remove the top value of the stack

•	 T top()—retrieve (but do not remove) the T value that is on top of the stack

•	 bool empty()—return true if and only if the stack contains no values

Thus, in the program in Example 16.1, we “stacked up” the remainders by writing (within
a loop)

digitStack.push(remainder);

3 STL also defines a size() method that returns the number of values in the stack, and the == and < operators for
stack<T>. Stacks s1 and s2 will be compared element by element from bottom to top to determine if they are the same
(s1 == s2 will be true) or whether the first element where they differ is less than the corresponding element in the other
stack (s1 < s2 will be true).

intListStack

myContainer ...
...

intVectorStack

myContainer ...

K11207.indb 645 6/15/12 10:09 AM

646    ◾    Programming in C++ for Engineering and Science

Likewise, to remove the remainders in LIFO order, we wrote (within a loop)

remainder = digitStack.top();
digitStack.pop();

And to control the repetition of these statements, we wrote

while (!digitStack.empty())
{
 // ...
}

16.2 RECURSIon REVISITED
In Section 10.5 we saw that C++ permits a function definition to call itself, a technique
called recursion. This was illustrated by looking at how the factorial function can be
computed recursively. In this section we will use our knowledge of stacks to see how
recursion works.

We begin with another classic example of a function that can be calculated recursively—
the power function that calculates xn, where x is a real value and n is a non-negative integer.
The first definition of xn that one learns is usually an iterative (nonrecursive) one:

 xn = x × x × … × x

 n x’s

and later one learns that x0 is defined to be 1. (For convenience, we assume here that xn is
1 also when x is 0, although in this case, it is usually left undefined.) A specification of the
function is straightforward,

Receive: x, a real value;
 n, an integer

Return: xn, a real value

and suggests the following function stub:

double power(double x, int n)
{
}

To solve a problem recursively, we must identify the anchor and inductive cases. Here,
the anchor step is clear: x0 = 1. For the inductive case, we look at an example:

 5.04 = 5.0 × 5.0 × 5.0 × 5.0 = (5.0 × 5.0 × 5.0) × 5.0 = 5.03 × 5.0

⏟

K11207.indb 646 6/15/12 10:09 AM

Data Structures    ◾    647  

In general,

 xn = xn–1 × x

Combining our anchor and inductive steps gives the following recursive definition of xn:

x
n

x x n

n

n
=

×−

1 if is 0 the anchor case

if is

()

1 greater than 0 the inductive case()

This leads to the recursive C++ function in Example 16.2.

Example 16.2 Performing Exponentiation Recursively

/* power() recursively computes x raised to the power n.

 Receive: x, a real value, and
 n, an integer
 Return: x raised to the power n
--*/

double power(double x, int n)
{
 if (n == 0) // anchor case
 return 1.0;
 else if (n > 0) // inductive step (n > 0)
 return power(x, n – 1) * x;
 else // invalid parameter n
 {
 cerr << "*** power(x,n): n is negative.\n";
 return –1.0;
 }
}

When it processes a function definition (recursive or not), the C++ compiler creates a
special structure called an activation record. This record contains space for that function’s
parameters, local variables, return value, caller, and other information that can vary from
call to call. During execution, each program has a special data structure called its run-
time stack, which is a stack of these activation records. Whenever a function is called, an
activation record is pushed onto the run-time stack, and whenever a function terminates,
the run-time stack is popped, and control returns to the function whose activation record
is uncovered. The effect, therefore, is that the top of the run-time stack always stores an
activation record for whatever function is currently executing.

K11207.indb 647 6/15/12 10:09 AM

648    ◾    Programming in C++ for Engineering and Science

To illustrate, consider what happens when the function call power(3.0, 4) occurs. An
activation record for power() is pushed onto the run-time stack, in which x is 3.0 and n is 4:

runTimeStack.top()

x 3.0
n 4

return ?

The function begins executing, and because n is 4, the expression power(3.0, 3) * 4
must be evaluated to get the return value, and this expression has a new call to the function
power(). This causes a new activation record to be pushed onto the run-time stack:4

runTimeStack.top()

x 3.0 x 3.0
n 4 n 3

return ? return ?

This function begins executing again, and because n is 3, it encounters the expression
power(3.0, 2) * 3.0, which involves a new invocation of power(). This causes a new
activation record to be pushed onto the run-time stack:

runTimeStack.top()

x 3.0 x 3.0 x 3.0

n 4 n 3 n 2

return ? return ? return ?

Execution of the function begins again, and because n is 2, it encounters the expression
power(3.0, 1) * 3.0, producing another new invocation of power(), and causing
another activation record to be pushed onto the run-time stack:

runTimeStack.top()

x 3.0 x 3.0 x 3.0 x 3.0

n 4 n 3 n 2 n 1

return ? return ? return ? return ?

Once again, the function begins executing with 1 as the value of n, so when it encounters
the expression power(3.0, 0) * 3.0, another new call to power() is produced and
another new activation record is pushed onto the run-time stack:

runTimeStack.top()

x 3.0 x 3.0 x 3.0 x 3.0 x 3.0

n 4 n 3 n 2 n 1 n 0

return ? return ? return ? return ? return 1.0

4 To save space, the stack is drawn horizontally here with the top at the right.

K11207.indb 648 6/15/12 10:09 AM

Data Structures    ◾    649  

However, because n is 0, execution of the function reaches the anchor case, stopping the
recursion, and the function returns the value 1. The sequence of recursive calls from an
initial call to the anchor case is sometimes referred to as the winding phase of the recursion,
because it is like winding the spring of a wind-up clock until it is fully wound.

Once the anchor case has been reached, backtracking that actually performs the com-
putation begins. The run-time stack is popped, and control returns to the function call
whose activation record is now on top (i.e., power(3.0, 1)) where it finishes evaluating
the expression power(3.0, 0) * 3.0, producing 1.0 * 3.0:

runTimeStack.top()

x 3.0 x 3.0 x 3.0 x 3.0

n 4 n 3 n 2 n 1

return ? return ? return ? return 3.0

Because that marks the end of that function execution, the run-time stack is popped, and
control returns to the function call whose activation record is exposed (i.e., power(3.0, 2))
where the expression power(3.0, 1) * 3.0 can now be evaluated to 3.0 * 3.0:

runTimeStack.top()

x 3.0 x 3.0 x 3.0

n 4 n 3 n 2

return ? return ? return 9.0

That function call is complete, so the run-time stack is again popped, and control returns
to the function whose activation record is exposed (i.e., power(3.0, 3)) and resumes
evaluation of the expression power(3.0, 2) * 3.0, giving 9.0 * 3.0:

runTimeStack.top()

x 3.0 x 3.0

n 4 n 3

return ? return 27.0

Because execution has reached the end of that function call, the run-time stack is popped,
control returns to the function whose activation record is uncovered (i.e., power(3.0, 4)),
and the expression power(3.0, 3) * 3.0 evaluates to 27 * 3.0:

runTimeStack.top()

x 3.0

n 4

return 81.0

The result (81.0) is the return value of the original function call power(3.0, 4).
This phase in which values are returned from the anchor case back through each of the

previous calls is sometimes referred to as the unwinding phase of the recursion, because
like a wind-up clock performing its task as its spring unwinds, a recursive function per-
forms its task by unwinding the recursive calls stacked up in its winding phase.

K11207.indb 649 6/15/12 10:09 AM

650    ◾    Programming in C++ for Engineering and Science

The run-time stack thus plays a pivotal role in managing a sequence of function calls
such as the one generated by recursion. Whenever a function calls itself or another function,
an activation record is pushed onto the run-time stack and this continues until one of the
function calls (the anchor case, in recursion) is completed and returns a value. During the
unwinding phase, activation records are popped from the run-time stack, until control
returns to the original caller.

16.3 QUEUES, DEQUES, AnD PRIoRITY QUEUES
In the preceding sections, we examined the stack—a special kind of container in which
values are always inserted and removed from the same end. In this section, we examine
some other special-purpose containers. We begin with queues and look later at deques and
priority queues.

16.3.1 Applications of Queues

A queue is a container in which values are always added at one end, called the rear or tail,
and removed from the opposite end, called the front or head. Queues abound in everyday
life, because they provide a fair way to schedule things that are waiting for some kind of
service. For example,

•	 A line of persons waiting to check out at a supermarket,

•	 A line of persons waiting to purchase tickets at a theater,

•	 A line of planes waiting to take off at an airport, and

•	 A line of vehicles at a toll booth

are all examples of queues. Arriving customers, planes, vehicles, and the like enter the
line at the rear and are removed from the line and served when they reach the front of
the line, so that the first one to enter the queue is the first one served. Thus, whereas a
stack exhibits last-in-first-out (LIFO) behavior, a queue exhibits first-in-first-out (FIFO)
behavior.

In addition to lines of people, vehicles, and planes waiting for service, queues are also
commonly used to model waiting lines that arise in the operation of computer systems.
These queues are formed whenever a particular resource such as a printer, a disk drive, and
the central processing unit must be shared by more than one process. As these processes
request a particular resource, they are placed in a queue to wait for service.

K11207.indb 650 6/15/12 10:09 AM

Data Structures    ◾    651  

As one example, several personal computers may be sharing the same printer, and a
queue—sometimes called a spool queue—is used to schedule output requests in a first-
come-first-served manner. If a print job is requested and the printer is free, it is imme-
diately assigned to this job. While this output is being printed, other jobs may need the
printer, and so they are placed in the spool queue to wait their turns. When the output
from the current job terminates, the printer is released from that job and is assigned to the
first job in the queue.

Another important use of queues in computing systems is input/output buffering. I/O
buffering is important because disk operations (e.g., reading from or writing to a file) take
much longer than CPU operations. Consequently, if the processing of a program must
be suspended while the disk is accessed, program execution is slowed dramatically. One
common solution to this problem uses sections of main memory known as buffers and
transfers data between the program and these buffers rather than directly between the
program and the disk.

C++ ifstream and ofstream objects automatically buffer file I/O. In the declaration

ifStream fin("inputFile.txt");

inputFile.txt is opened and some of its data is transferred from the disk to an input
buffer in main memory while the central processing unit (CPU) is processing the next
statement(s). When the program attempts to read from fin,

fin >> aValue;

the next value stored in this buffer is retrieved. While this value is being processed, addi-
tional data values can be transferred from the disk file to the buffer in the background.
Clearly, the buffer must be organized as a first-in-first-out structure, that is, as a queue. A
queue-empty condition indicates that the input buffer is empty, and program execution is
suspended while the operating system attempts to load more data into the buffer or signals
the end of file.

16.3.2 The queue<T> Adapter

Like STL’s stack<T> container, queue<T> is an adapter that, by default, wraps a
deque<T>, described later in this section. Thus, the declaration

queue<string> stringQueue;

declares stringQueue to be a queue in which strings can be stored in a deque<T>. The
container that stores a queue’s elements can also be a list<T>. For example, the declaration

queue<string, list<string> > stringListQueue;

declares a queue stringListQueue in which the strings are stored in a list<string>.
However, queue<T> cannot wrap a vector<T>, for reasons we will see shortly.

K11207.indb 651 6/15/12 10:09 AM

652    ◾    Programming in C++ for Engineering and Science

The operations provided for queue<T> are similar to those for stack<T>:

•	 bool empty()—returns true if and only if there are no values in the queue.

•	 void push(T aValue)—append aValue to the end of the queue.

•	 void pop()—remove the value at the front of the queue.

•	 T front()—retrieve (but do not remove) the T value that is at the front of the queue.

•	 T back()—retrieve (but do not remove) the T value that is at the end of the queue.

Implementations of most of these are similar to those for stack<T> and are essen-
tially just renamings of the container being adapted. Here, for example, is a definition of
push():

template<class T, class Container>
inline void queue<T, Container>::push(T aValue)
{
 myContainer.push_back(aValue);
}

As with a stack<T>, when we send the push() message to a queue<T>, the value being
added is appended to the back of the queue’s container using push_back(). However, for
the pop() operation, the value is removed from the front of the container:

template<class T, class Container>
inline void queue<T, Container>::pop()
{
 myContainer.pop_front();
}

This is why a queue<T> cannot adapt a vector<T>. Inserting and/or deleting at the
front of an array or vector<T> requires extensive copying that is very inefficient. To
discourage programmers from writing inefficient code, vector<T> does not provide
pop_front() or push_front() methods. Because we cannot send the pop_front()
message to a vector<T>, we cannot use a vector<T> as the underlying container for a
queue<T>.

Fortunately, this is not much of a hardship. The reason is that the default implemen-
tations of both stack<T> and queue<T> use a container called a deque, which we
discuss next.

16.3.3 The deque<T> Container

The word deque stands for double-ended queue. It is a good container to use for any prob-
lem that requires the storage of a sequence of values and manipulation of the values at
either end of that sequence.

K11207.indb 652 6/15/12 10:09 AM

Data Structures    ◾    653  

The Standard Template Library’s deque<T> is a container that supports these opera-
tions (among many others):

•	 void push_back(T aValue)—insert aValue at the end of the deque.

•	 void pop_back()—remove the value at the back of the deque.

•	 void push_front(T aValue)—insert aValue at the front of the deque.

•	 void pop_front()—remove the value at the front of the deque.

•	 T front()—retrieve (but do not remove) the T value that is at the front of the deque.

•	 T back()—retrieve (but do not remove) the T value that is at the back of the deque.

•	 bool empty()—return true if and only if there are no values in the deque.

•	 int size()—return the number of values in the deque.

From this list, a deque<T> might seem to resemble a list<T>; however, the subscript oper-
ator (and indeed almost all other vector<T> operations) can be used with a deque<T>.

So what are the differences between deque<T>, vector<T>, and list<T>? The fol-
lowing table summarizes the major ones:

vector<T> list<T> deque<T>

push_back() O(1) O(1) O(1)
push_front() none O(1) O(1)
pop_back() O(1) O(1) O(1)
pop_front() none O(1) O(1)
operator[] O(1) none O(1)
insert() O(n) O(1) O(n)
delete() O(n) O(1) O(n)

Thus, for the most part, a deque<T> mirrors the behavior of a vector<T>, except that
adding and removing an element at its front can be performed in O(1) time, whereas these
operations for a vector<T> would require O(n) time.

It is because of this efficient implementation of these end-of-sequence operations that
deque<T> is used as the default container for the stack<T> and queue<T> adapters.

16.3.4 The priority_queue<T> Adapter

There is a special kind of queue in which the order of the values in the queue need not
be first-in-first-out. It is known as a priority queue because how its elements are ordered
depends on their priorities or values relative to one another. For example, a multitasking
operating system often uses a priority queue to decide which task or process to run next,
with tasks that must meet real-time requirements (e.g., video or audio streaming) receiving
the highest priority, tasks owned by the operating system receiving the next highest prior-
ity, tasks owned by a user receiving the next highest priority, and so on.

K11207.indb 653 6/15/12 10:09 AM

654    ◾    Programming in C++ for Engineering and Science

The Standard Template Library provides a priority_queue<T> container (defined
in the queue header file). By default, it organizes its values so that the “highest” value is at
its front, followed by the “next-highest” value, and so on, with the “lowest” value at its back.

The program in Example 16.3 illustrates the difference between a queue<T> and a
priority_queue<T>.

Example 16.3 Comparing the queue<T> and priority_queue<T> Containers

// priorityQueueTest.cpp

#include <queue> // priority_queue
#include <iostream> // cout
#include <string>
using namespace std;

int main()
{
 string name = "JoeSmith";
 priority_queue<char> pQ;
 queue<char> q;

 for (int i = 0; i < name.size(); i++)
 {
 pQ.push(name[i]);
 q.push(name[i]);
 }

 while (! q.empty()) // display q's contents
 {
 cout << q.front();
 q.pop();
 }
 cout << endl;

 while (!pQ.empty()) // display pQ's contents
 {
 cout << pQ.top();
 pQ.pop();
 }
 cout << endl;
}

SAMPLE RUN:
JoeSmith
tomiheSJ

K11207.indb 654 6/15/12 10:09 AM

Data Structures    ◾    655  

As we would expect, the values in q are output in FIFO order—the order in which they
were inserted. However, the values in pQ are output in priority order, according to their
ASCII (American Standard Code for Information Interchange) values. Thus, 't' is at the
front of pQ and because of all of the letters we inserted, it has the highest ASCII value
(116); 'J' is at the back of pQ, because it has the lowest ASCII value (75) in this particular
sequence. Also, note that instead of a front() method, the priority_queue<T> con-
tainer has a top() method to reflect that the value being retrieved has the highest priority
of any of its items.

The priority_queue<T> container uses advanced techniques to guarantee that its
push() and pop() routines take at most O(log2(n)) time. This is much faster than O(n)
and ensures that these operations require a minimal amount of time.

Like stack<T> and queue<T>, STL’s priority_queue<T> is an adapter. Because
of its special internal structure, it can be used with a vector<T> or a deque<T> as its
internal container, but not a list<T>. The default container is a vector<T>.

A priority_queue<T> is thus a useful container for any situation in which we wish
to treat a sequence’s values in some prioritized order. Because it effectively sorts its values,
the < and == operations must be defined for the objects placed in it.

16.4 An InTRoDUCTIon To TREES
In the preceding chapter we saw how a linked list can be implemented by linking together
structures called nodes. We also saw that their main advantage over arrays and vectors is that
values can be inserted anywhere in a linked list without having to move values to make room
for the new ones, and they can be deleted without having to move values to close the gaps. The
primary weakness of linked lists is that the only elements that can be accessed directly are
those at the ends of the list. This limits the kinds of algorithms that can be applied to linked
lists because some that work well for arrays and vectors do not perform well for linked lists.

To demonstrate the problem, we consider the search algorithms considered in Section
12.4. With linear search, we examine consecutive elements in the list, beginning with the
first one in the list and continuing until either the desired item is found or the end of the
list is reached. For example, consider the following vector v, and suppose we search it to
find out whether or not the value 60 is present:

v [0] [1] [2] [3] [4] [5] [6]

11 22 33 44 55 66 77

With linear search, we start at the beginning and compare each value in the sequence
against 60. After seven comparisons—the number of values in the container—we deter-
mine that 60 is not present. In general, linear search requires O(n) time to determine that
a sequence with n elements does not contain a specific value.5

5 If our linear search algorithm assumes the sequence is sorted, then it may be able to stop a bit earlier; on average,
 however, the number of comparisons will still be proportional to the length of the sequence, or O(n).

K11207.indb 655 6/15/12 10:09 AM

656    ◾    Programming in C++ for Engineering and Science

The other search algorithm we considered was binary search, which requires that the
sequence be sorted. We begin by examining the middle element in the sequence (44 in
this case):

v [0] [1] [2] [3] [4] [5] [6] searchVal

11 22 33 44 55 66 77 60

Because 60 (the value we are seeking) is greater than 44, we ignore the middle value and all
values to its left, and repeat the process by comparing 60 to the middle value in the remain-
der of the list (66 in this case):

x [0] [1] [2] [3] [4] [5] [6] searchVal

11 22 33 44 55 66 77 60

Now, because 60 is less than 66, we ignore the middle value and all values to its right, and repeat
the process by comparing 60 to the middle value in the remainder of the list (55 in this case):

x [0] [1] [2] [3] [4] [5] [6] searchVal

11 22 33 44 55 66 77 60

But now there is just one value remaining and it is not equal to the value we are seeking
(60), so we conclude that 60 is not present. Only three comparisons were needed to deter-
mine this, and in general, binary search can determine whether or not any value is in a
sorted container with n elements in O(log2n) time.

In addition to assuming that the sequence is sorted, the efficiency of binary search
depends on being able to directly access any value in the container, because any of them may
be the middle element in a sublist to be searched. Because of this, binary search performs
no better than linear search for a linked list because the values in such a container cannot
be accessed directly. Accessing the middle element of a linked list, as required by binary
search, requires going through all the nodes that precede it.

This raises an interesting question: Is it possible to link the nodes together in some other
way so that they can be searched more quickly than is possible in a linearly linked struc-
ture? To see what would be needed to make it possible to search a list in a binary-search–like
manner, consider the ordered list of integers again:

11, 22, 33, 44, 55, 66, 77

The first step in a binary search is to examine the middle element in the list. Direct
access to this element is possible if we maintain a link to the node storing it:

11 22 33 44 55 66 77

K11207.indb 656 6/15/12 10:09 AM

Data Structures    ◾    657  

For the next step, one of the two sublists, the left half or the right half, must be searched and
both must therefore be accessible from this node. This is possible if we maintain two links,
one to each of these sublists. Because these sublists are searched in the same manner, these
links should refer to nodes containing the middle elements in these sublists:

By the same reasoning, in the next step, links from each of these “second-level” nodes are
needed to access the middle elements in their sublists:

The resulting structure is easier to visualize if we “stretch it out” into two dimensions so
that it has a treelike shape:

This structure is called a binary search tree and is a special kind of binary tree, which is a
special instance of a more general structure called a tree.

16.4.1 Tree Terminology and Examples

A tree consists of a finite collection of nodes linked together in such a way that if the tree
is not empty, then one of the nodes, called the root, has no incoming links, but every other
node in the tree can be reached from the root by following a unique sequence of consecu-
tive links.

Trees derive their names from the treelike diagrams that are used to picture them. For
example, the diagram on the next page shows a tree having nine vertices in which the node
labeled 1 is the root. As this diagram indicates, trees are usually drawn upside down, with
the root at the top and the leaves—nodes with no outgoing links—at the bottom. Nodes
that are directly accessible from a given node (by using only one link) are called the chil-
dren of that node, and a node is said to be the parent of its children. For example, in the
following tree, node 3 is the parent of nodes 5, 6, and 7, and these nodes are the children of
node 3 and are called siblings.

11 22 33 44 55 66 77

11 22 33 44 55 66 70

11 22

44

55 77

6633

K11207.indb 657 6/15/12 10:09 AM

658    ◾    Programming in C++ for Engineering and Science

Applications of trees are many and varied. For example, a genealogical tree such as the
following is a convenient way to picture a person’s descendants:

Game trees are used to analyze games and puzzles. Parse trees are used to check a pro-
gram’s syntax. For example, the following is a parse tree for the expression 2 * (3 + 4):

John Smith I

John
Smith II

Henry
Smith

Jane
Doe

Mary
Smith

Joe
Doe

Joan
Brown

John
Brown

Peter
Smith

Sue
Jones

Expression

Term

* Factor

+

(Expression

Factor

2)

Term Term

Factor Factor

3 4

8 9

5 6 7

3

4

2

1 Root

Children of this parent
siblings of each other

Leaves

K11207.indb 658 6/15/12 10:09 AM

Data Structures    ◾    659  

16.4.2 Examples of Binary Trees

Binary trees are trees in which each node has at most two children. They are especially
useful in modeling processes in which some experiment or test with two possible outcomes
(for example, off or on, 0 or 1, false or true, down or up, yes or no) is performed repeatedly.
For example, the following binary tree might be used to represent the possible outcomes of
flipping a coin three times:

Each path from the root to one of the leaf nodes corresponds to a particular outcome, such
as HTH (a head followed by a tail followed by another head), as highlighted in the diagram.

Similarly, a binary tree can be used in coding problems such as encoding and decod-
ing messages transmitted in Morse code, a scheme in which characters are represented as
sequences of dots and dashes, as shown in the following table:

A •	— J •	—	—	— S •	•	•	 2 •	•	—	—	—
B —	•	•	• K —	•	— T — 3 •	•	•	—	—
C —	•	—	• L •	—	•	•	 U •	•	— 4 •	•	•	•	—
D —	•	•	 M — — V •	•	•	— 5 •	•	•	•	•
E •	 N —	•	 W •	—	— 6 —	•	•	•	•
F •	•	—	•	 O — — — X —	•	•	— 7 —	—	•	•	•
G —	—	•	 P •	—	—	•	 Y —	•	—	— 8 —	—	—	•	•
H •	•	•	•	 Q —	—	•	— Z —	—	•	•	 9 —	—	—	—	•
I •	•	 R •	—	• 1 •	—	—	—	—	 0 — — — — —

In this case, the nodes represent the characters and each link from a node to its children is
labeled with a dot or a dash, according to whether it leads to a left child or to a right child,
respectively. Thus, part of the tree for Morse code is

The sequence of dots and dashes labeling a path from the root to a particular node corresponds
to the Morse code for that character; for example, •	•	is the code for I, and —	•	is the code for N.

H T

H

H T

TH

H T

T

H T

TH

I A N M

TE

—

——

K11207.indb 659 6/15/12 10:09 AM

660    ◾    Programming in C++ for Engineering and Science

Decision-making processes can be modeled as a series of “yes-or-no” questions, and a
binary tree can thus be used to model that process. Each nonleaf node is used to store a ques-
tion, and if an affirmative answer to a question leads to another question, then the two nodes
are connected with a link labeled “yes.” Similarly, if a negative answer to a question leads to
another question, then the two nodes are connected with a link labeled “no.” Because there
are only two choices for each question, the resulting structure is a binary tree with decisions
at its leaf nodes. The problem of choosing a single choice from among many choices is solved
simply by descending through the tree until a leaf node (i.e., a decision) is reached.

For problems in some areas, solutions can be obtained by designing decision trees that
mimic the choices experts would make in solving these problems. For example, programs
to control a robot that welds automobile components on an assembly line are based on
the knowledge of an expert welder. Programs to help a person prepare their income tax
returns have some of the expertise of a tax accountant encoded within them. Similarly,
programs that lead a person through the steps of writing a will have some of the expertise
of an estate lawyer encoded within them. In general, programs that exhibit expertise in
some area through the use of a knowledge base are called expert systems, and the study of
such systems is one of the branches of artificial intelligence. A simple example of an expert
system is given on the text’s website.

16.4.3 Implementing Binary Trees

A binary tree can be represented by a multiply linked structure in which each node has
two links, one connecting it to its left child and the other connecting it to its right child, or
which are null if the node does not have a left or right child:

A leaf node is thus characterized by myLeft and myRight both being null:

If we represent such nodes by a class named Node that has three public data members,6

template <typename DataType>
class Node

6 A struct in C, and thus also provided in C++, is a class whose data and function members are public.

myValue

myRightmyLeft

value

left child right child

myValue

myRightmyLeft

value

0 0

K11207.indb 660 6/15/12 10:09 AM

Data Structures    ◾    661  

{
 public:
 //... Node function members go here
 DataType myValue;
 Node * myLeft;
 Node * myRight;
};

we can then use it in a BinaryTree class template:

template <typename DataType>
class BinaryTree
{
 public:
 // ... Binary tree function members go here

 private:
 // ... Declaration of class Node goes here
 Node * myRoot;
 int mySize;
};

The data member myRoot is a pointer to the node that is the root of the tree, and mySize
is used for convenience to keep track of the number of nodes in the tree. Given such a class,
the binary tree

can be represented as the following linked structure:

6317

46

252 97

46

6

myRootmySize

aBinaryTree

63

25

0 0

2

0 0

17

97

0 0

0

K11207.indb 661 6/15/12 10:09 AM

662    ◾    Programming in C++ for Engineering and Science

16.4.4 Binary Search Trees

In the preceding binary tree, the value in each node is greater than all values in its left
subtree (if there are any) and less than all values in its right subtree (if there are any). A
binary tree having this property is called a binary search tree (BST) because, as noted at
the beginning of this section, it can be searched using an algorithm much like the binary
search algorithm for lists:

Search Algorithm for a BST

 1. Initialize a pointer ptr to the node containing the root and found to false.

 2. While ptr is not null and found is false, do the following:

 If the item being sought is:

 Less than the value in the node pointed to by ptr

 Set ptr equal to its left link;

 Greater than the value in the node pointed to by ptr

 Set ptr equal to its right link;

 Else

 Set found to true.

To illustrate, suppose we wish to search the preceding BST for 25. We begin at the root, and
because 25 is less than the value 46 in this root, we know that the desired value is located
to the left of the root; that is, it must be in the left subtree, whose root is 17:

Now we continue the search by comparing 25 with the value in the root of this subtree.
Because 25 > 17, we know that the right subtree should be searched:

Examining the value in the root of this one-node subtree locates the value 25.
Similarly, to search for the value 55, after comparing 55 with the value in the root, we

are led to search its right subtree:

2 25

17

25

63

97

K11207.indb 662 6/15/12 10:09 AM

Data Structures    ◾    663  

Now, because 55 < 63, if the desired value is in the tree, it will be in the left subtree. However,
because this left subtree is empty, we conclude that the value 55 is not in the tree.

Because the BST search algorithm effectively eliminates one subtree (i.e., approximately
half of the remaining nodes) from consideration on each pass through the while loop,
it will, except for “lopsided” BSTs, determine whether or not an item is in the BST in
O(log2n) comparisons, where n is the number of values in the BST.

16.4.5 Tree Traversals

Another important operation is traversal, that is, moving through a binary tree, visiting
each node exactly once. And suppose for now that the order in which the nodes are visited
is not relevant. What is important is that we visit each node, not missing any, and that the
information in each node is processed exactly once.

One simple recursive scheme is to traverse the binary tree as follows:

 1. Visit the root and process its contents.

 2. Traverse the left subtree.

 3. Traverse the right subtree.

To illustrate this algorithm, let us consider the following binary tree:

If we simply display a node’s contents when we visit it, we begin by displaying the value 32
in the root of the binary tree. Next, we must traverse the left subtree; after this traversal is
finished, we then must traverse the right subtree; and when this traversal is completed, we
will have traversed the entire binary tree.

Thus, the problem has been reduced to the traversal of two smaller binary trees. We consider
the left subtree and visit its root. Next, we must traverse its left subtree and then its right subtree.

13

32

95 16

4279

13

79

95 16

42

32

32
Output

(I)

K11207.indb 663 6/15/12 10:09 AM

664    ◾    Programming in C++ for Engineering and Science

The left subtree is empty, and we need do nothing. So we turn to traversing the right subtree.
We visit its root and then must traverse its left subtree followed by its right subtree:

As both subtrees are empty, no action is required to traverse them. Consequently, traversal
of the binary tree in diagram III is complete, and because this was the right subtree of the
tree in diagram II, traversal of this tree is also complete.

This means that we have finished traversing the left subtree of the root in the original
binary tree in diagram I, and we finally are ready to begin traversing the right subtree. This
traversal proceeds in a similar manner. We first visit its root, displaying the value 42 stored
in it, then traverse its left subtree, and then its right subtree:

The left subtree consists of a single node with empty left and right subtrees and is tra-
versed as described earlier for a one-node binary tree:

The right subtree is traversed in the same way:

13

79 32 , 79
Output

(II)

13 32 , 79 , 13
Output

(III)

1695

42 32 , 79 , 13 , 42
Output

(IV)

95 32 , 79 , 13 , 42 , 95
Output

(V)

16 32 , 79 , 13 , 42 , 95 , 16
Output

(VI)

K11207.indb 664 6/15/12 10:09 AM

Data Structures    ◾    665  

This completes the traversal of the binary tree in diagram IV and thus completes the tra-
versal of the original tree in diagram I.

As this example demonstrates, traversing a binary tree recursively requires three basic
steps, which we shall denote N, L, and R:

N: Visit a node.

L: Traverse the left subtree of a node.

R: Traverse the right subtree of a node.

We performed these steps in the order listed here, but in fact, there are six different orders
in which they can be carried out: LNR, NLR, LRN, NRL, RNL, and RLN.

The first three orders, in which the left subtree is traversed before the right, are the most
important of the six traversals and are commonly called by other names:

LNR ↔ Inorder

NLR ↔ Preorder

LRN ↔ Postorder

It should be noted that an inorder traversal visits the nodes in a BsT in ascending order
because for each node, all of the values in the left subtree are smaller than the value in this
node, which is less than all values in its right subtree.

These names are also appropriate for expression trees, which represent arithmetic
expressions graphically by picturing each operand as a child of a parent node representing
the corresponding operator. For example, we can represent

 a – B * C + D

as the following binary tree:

An inorder traversal of this expression tree produces the infix expression

 a – B * C + D

A preorder traversal gives the prefix expression, in which an operator precedes its operands:

 + – a * B C D

A *

+

D–

B C

K11207.indb 665 6/15/12 10:09 AM

666    ◾    Programming in C++ for Engineering and Science

And a postorder traversal yields the postfix expression—also called reverse polish nota-
tion (RPN)—in which an operator follows its operands:

 a B C * – D +

16.4.6 Constructing BSTs

A binary search tree can be built by repeatedly inserting elements into a BST that is ini-
tially empty. Finding where an element is to be inserted is similar to that used to search
the tree for that element. The following sequence of diagrams illustrates how 35 would be
inserted into the binary search tree given earlier:

This completes our introduction to trees. The text’s website (see the Preface) provides a
BST class that implements the preceding (and other) operations.

16.4.7 Trees in STL

The Standard Template Library does not provide any templates with “tree” in their
name. However, some of its containers—set<T>, map<T1, T2>, multiset<T>, and
multimap<T1, T2>—are generally built using a special kind of self-balancing binary
search tree called a red-black tree. A self-balancing BST ensures that the tree is always
as balanced as possible, so that searches take O(log2n) time. The study of these trees is
beyond the level of this text and is left to data structures courses and texts (see Footnote
4 in Chapter 12).

ChAPTER SUMMARY

Key Terms

activation record

adapter

artificial intelligence

back of a queue

backtrack

binary search

46

6017

2 23 97

46

6017

2 23 97

46

6017

2 23 97

46

6017

2 23

35

97

K11207.indb 666 6/15/12 10:09 AM

Data Structures    ◾    667  

binary search tree (BST)

binary tree

buffer

children

decision tree

deque

deque<T>

expert system

expression tree

First-In-First-Out (FIFO)

infix

inorder

Last-In-First-Out (LIFO)

leaf node

linear search

linked list

list<T>

node

parent node

pop

postfix

postorder

prefix

preorder

push

queue

queue<T>

recursion

Reverse Polish Notation

root

run-time stack

siblings

singly linked list

spool queue

stack

stack<T>

traversal

tree

vector<T>

noTES
•	 Containers (or data structures) are structures that store groups of values.

•	 A stack has LIFO (Last-In-First-Out) behavior. A queue has FIFO (First-In-First-Out)
behavior.

•	 The STL containers stack<T>, queue<T>, and priority_queue<T> are adapt-
ers that wrap some other container to give it a new interface. The internal container may
be a vector<T>, list<T>, or deque<T> for stack<T>; a list<T> or deque<T>
for queue<T>; and a vector<T> or deque<T> for priority_queue<T>.

•	 Whenever a function is called, an activation record is pushed onto a run-time stack.
Whenever a function terminates, the run-time stack is popped and control returns to
the function whose activation record is uncovered.

K11207.indb 667 6/15/12 10:09 AM

668    ◾    Programming in C++ for Engineering and Science

•	 A tree consists of a finite collection of nodes linked together in such a way that if
the tree is not empty, then one of the nodes, called the root, has no incoming links,
but every other node in the tree can be reached from the root by following a unique
sequence of consecutive links.

•	 A binary tree is a tree in which each node has at most two children.

•	 In a binary search tree, for each node, all of the values in its left subtree are smaller
than the value in this node, which is less than all values in its right subtree.

•	 Inorder traversal visits the nodes in a BST in ascending order.

Style Tips

• if a problem solution requires that values stored more recently will be needed before
the values stored less recently, then a stack is the appropriate structure for storing these
values. Stacks are LIFO (Last-In-First-Out) lists, because the operation to remove a
value will always retrieve the value that was inserted most recently.

• if a problem solution requires that values will be needed in the order in which they
were stored, then a queue is the appropriate structure for storing these values. Queues
are FIFO (First-In-First-Out) lists, because the operation to remove a value from the
queue will always retrieve the value that was inserted least recently.

• if a problem solution requires access, insertion, and deletion only at the ends of a list, a deque
is an appropriate structure for storing these values. Deques are double-ended queues.

• if a problem solution requires fast access to arbitrary elements but also requires that the
collection be allowed to grow and shrink due to frequent insertions and deletions, then
a binary search tree (BsT) may be the appropriate structure to use. BSTs are linked
structures and thus can grow and shrink without excessive memory waste. And they
can be searched in a binary-search manner, which (except when the tree becomes
lopsided) is more efficient (O(log2n)) than a linear search (O(n)).

warnings

 1. sTl’s queue<T> container may wrap a deque<T> or a list<T> but not a
vector<T>. Removing an element at the front of a vector<T> is too inefficient.

 2. sTl’s priority_queue<T> container may wrap a deque<T> or a vector<T>
but not a list<T>. It needs direct access to its elements.

TEST YoURSELF

Section 16.1

 1. Convert 1234 to a base-2 number.

 2. Convert 1234 to a base-8 number.

 3. Convert 1234 to a base-16 number.

K11207.indb 668 6/15/12 10:09 AM

Data Structures    ◾    669  

 4. The last element added to a stack is the one removed. This behavior is
known as maintaining the list in order.

 5. What are the four standard stack operations?

 6. A container that “wraps” another container, giving it a new interface, is called
a(n) .

Questions 7–9 assume the declaration stack<int> s;. List the elements from bottom to
top that s will contain after the code segment is executed, or indicate why an error occurs.

 7. s.push(123);
 s.push(456);
 s.pop();
 s.push(789);
 s.pop();

 8. s.push(111);
 int i = s.top();
 s.push(222);
 s.pop()
 s.push(i);

 9. for (int i = 0; i < 5; i++)
 s.push(2*i);
 s.pop();
 s.pop();

Section 16.3

 1. Explain how a queue differs from a stack.

 2. The last element added to a queue is the (first or last) one removed.

 3. A stack exhibits LIFO behavior; a queue exhibits behavior.

 4. A(n) queue is used to schedule output requests.

 5. Queues are used to organize sections of main memory called used to hold
input/output data being transferred between a program and disk.

 6. A(n) is a double-ended queue.

Questions 7–9 assume the declaration queue<int> q;. List the elements from front to
back that q will contain after the code segment is executed, or indicate why an error occurs.

 7. q.push(123);
 q.push(456);

K11207.indb 669 6/15/12 10:09 AM

670    ◾    Programming in C++ for Engineering and Science

 q.pop();
 q.push(789);
 q.pop();

 8. q.push(111);
 int i = q.front();
 q.push(222);
 q.pop();
 q.push(i);

 9. for (int i = 0; i < 5; i++)
 q.push(2*i);
 q.pop();
 q.pop();

Section 16.4

 1. A node that has no incoming links but from which every other node in the tree
can be reached by following a unique sequence of consecutive links is called
a(n) .

 2. Nodes with no outgoing links are called .

 3. Nodes that are directly accessible from a given node (by using only one link) are
called the of that node, which is said to be the of these nodes.

 4. Binary trees are trees in which each node has .

Questions 5–7 refer to the following binary search tree:

 5. Which node is the root?

 6. List all the leaves.

 7. Draw the BST that results if 45, 55, and 65 are inserted.

For Questions 8–10, draw the BST that results when the C++ keywords are inserted in the
order given, starting with an empty BST.

6030

50

4020

10

70

K11207.indb 670 6/15/12 10:09 AM

Data Structures    ◾    671  

 8. if, do, for, case, switch, while, else

 9. do, case, else, if, switch, while, for

 10. while, switch, for, else, if, do, case

Questions 11–13 refer to the following binary search tree:

 11. Perform an inorder traversal of this BST.

 12. Perform a preorder traversal of this BST.

 13. Perform a postorder traversal of this BST.

ExERCISES

Section 16.1

 1. Convert 2748 to a base-2 number.

 2. Convert 2748 to a base-8 number.

 3. Convert 2748 to a base-16 number.

Exercises 4–7 assume the declaration stack<int> s;. List the elements from bottom to
top that s will contain after the code segment is executed, or indicate why an error occurs.

 4. s.push(10);
 s.push(22);
 s.push(37);
 s.pop();
 s.pop();

 5. s.push(10);
 s.push(9);
 s.push(8);
 while (!s.empty())
 s.pop();
 s.push(7);

9030

80

6020

10

100

50

40

70

K11207.indb 671 6/15/12 10:09 AM

672    ◾    Programming in C++ for Engineering and Science

 6. for (int i = 0; i <= 5; i++)
 s.push(10*i);

 7. s.push(11);
 s.push(s.top());
 s.pop()

Section 16.3

Exercises 1–3 assume the declaration queue<int> q;. List the elements from front to
back that q will contain after the code segment is executed, or indicate why an error occurs.

 1. for (int k = 1; k <= 5; k++)
 q.push(10*k);

 2. q.push(11);
 q.push(22);
 q.push(q.front());
 q.pop();
 q.push(33);
 q.push(q.back());
 q.pop();
 q.push(44);

 3. q.push(10);
 q.push(9);
 q.pop();
 q.pop();
 q.pop();
 q.push(8);

Exercises 4–6 assume the declaration deque<int> q;. List the elements from front to
back that q will contain after the code segment is executed, or indicate why an error occurs.

 4. q.push_front(11);
 q.push_front(22);
 q.push_back(33);
 q.pop_front();
 q.push_back(44);
 q.push_front(55);
 q.pop_back();
 q.push_back(66);

K11207.indb 672 6/15/12 10:09 AM

Data Structures    ◾    673  

 5. for (int k = 1; k <= 5; k++)
 if (k % 2 == 0)

 q.push_front(10*k);
 else
 q.push_back(10*k);

 6. q.push_back(10);
 q.push_back(9);
 q.pop_front();
 q.pop_front();
 q.pop_back();
 q.push_front(8);

For Exercises 7–10, tell what output will be produced by the program in Example 16.3 for
the given input.

 7. stack

 8. computer

 9. Recursion

 10. STLisgreat

Section 16.4

For each of the lists of letters in Exercises 1–5, draw the BST that results when the letters
are inserted in the order given, starting with an empty BST.

 1. A, C, R, E, S

 2. R, A, C, E, S

 3. C, A, R, E, S

 4. S, C, A, R, E

 5. C, O, R, N, F, L, A, K, E, S

For each of the lists of C++ keywords in Exercises 6–10, draw the binary search tree that is
constructed when the words are inserted in the order given, starting with an empty BST.

 6. new, float, short, if, main, break, for

 7. break, long, return, char, else, switch, float

K11207.indb 673 6/15/12 10:09 AM

674    ◾    Programming in C++ for Engineering and Science

 8. double, float, long, class, public, int, new

 9. while, static, public, private, else, case

 10. break, long, if, short, else, case, void, do, return, while, for, switch,
double, true

 11–15. Perform inorder, preorder, and postorder traversals of the trees in Exercises 6–10
and show the sequence of words that results in each case.

PRoGRAMMInG PRoBLEMS

Section 16.1

 1. Write a program that reads a string, one character at a time, and determines whether
the string contains balanced parentheses, that is, for each left parenthesis (if there are
any) there is exactly one matching right parenthesis later in the string. (hint: Store
the left parentheses in a stack.)

 2. The problem in Problem 1 can be solved without using a stack; in fact, a simple inte-
ger variable can be used. Describe how and write a program that uses your method to
solve the problem.

 3. For a given integer n > 1, the smallest integer d > 1 that divides n is a prime factor. We
can find the prime factorization of n if we find d and then replace n by the quotient
of n divided by d, repeating this until n becomes 1. Write a program that determines
the prime factorization of n in this manner but that displays the prime factors in
descending order. For example, for n = 3960, your program should produce

11*5*3*3*2*2*2

 4. A program is to be written to find a path from one point in a maze to another.

 a. Describe how a two-dimensional array could be used to model the maze.

 b. Describe how a stack could be used in an algorithm for finding a path.

 c. Write the program.

Section 16.3

 1. Write a program that generates a random sequence of letters and/or digits, displays
them to the user one at a time for a second or so, and then asks the user to reproduce
the sequence. Use a queue to store the sequence of characters.

 2. Write a “quiz-tutor” program, perhaps on a topic from one of the earlier chapters,
or some other topic about which you are knowledgeable. The program should read a
question and its answer from a file, display the question, and accept an answer from
the user. If the answer is correct, the program should go on to the next question. If it
is not correct, store the question in a queue. When the file of questions is exhausted,

K11207.indb 674 6/15/12 10:09 AM

Data Structures    ◾    675  

the questions that were missed should be displayed again (in their original order).
Keep a count of the correct answers and display the final count. Also, display the cor-
rect answer when necessary in the second round of questioning.

 3. Write a program that reads a string of characters, pushing each character onto a stack
as it is read and simultaneously adding it to a queue. When the end of the string is
encountered, the program should use the basic stack and queue operations to deter-
mine if the string is a palindrome (a string that reads the same from left to right as
from right to left).

 4. Proceed as in Problem 3, but use a single deque to store the characters instead of a
stack and a queue.

 5. In text-editing and word-processing applications, one formatting convention some-
times used to indicate that a piece of text is a footnote or an endnote is to mark it
with some special delimiters such as { and }. When the text is formatted for output,
these notes are not printed as normal text but are stored in a queue for later output.
Write a program that reads a document containing endnotes indicated in this man-
ner, collects them in a queue, and displays them at the end of the document. Number
the endnotes and in the text where the endnote occurred, put its number enclosed in
brackets [].

 6. Suppose that jobs entering a computer system are assigned a job number and a prior-
ity from 0 through 9. The numbers of jobs awaiting execution by the system are kept
in a priority queue. Write a program that reads one of the letters R (remove), A (add),
or L (list). For R, remove a job from the priority queue and display the job number; for
A, read a job number and priority and then add it to the priority queue in the manner
just described; and for L, list all the job numbers in the queue.

 7. (Project) Suppose that a certain airport has one runway, that each airplane takes
landingTime minutes to land and takeOffTime minutes to take off, and that
on the average, takeOffRate planes take off and landingRate planes land each
hour. Assume that the planes arrive at random instants of time. (Delays make the
assumption of randomness quite reasonable.) There are two types of queues: a queue
of airplanes waiting to land and a queue of airplanes waiting to take off. Because it is
more expensive to keep a plane airborne than to have one waiting on the ground, we
assume that the airplanes in the landing queue have priority over those in the takeoff
queue.

 Write a program to simulate this airport’s operation. You might assume a simulated
clock that advances in one-minute intervals. For each minute, generate two random
numbers: If the first is less than landingRate / 60, a “landing arrival” has occurred
and is added to the landing queue, and if the second is less than takeOffRate /
60, a “takeoff arrival” has occurred and is added to the takeoff queue. Next, check
whether the runway is free. If it is, first check whether the landing queue is nonempty,
and if so, allow the first airplane to land; otherwise, consider the takeoff queue. Have

K11207.indb 675 6/15/12 10:09 AM

676    ◾    Programming in C++ for Engineering and Science

the program calculate the average queue length and the average time that an airplane
spends in a queue. You might also investigate the effect of varying arrival and depar-
ture rates to simulate the prime and slack times of day, or what happens if the amount
of time to land or take off is increased or decreased.

Section 16.4

 1. Write a spell checker, that is, a program that reads the words in a piece of text and
looks up each of them in a dictionary to check its spelling. Use a BST to store this dic-
tionary, reading the list of words from a file. While checking the spelling of words in a
piece of text, the program should print a list of all words not found in the dictionary.

 2. Write a program to construct a text concordance, which is an alphabetical listing of
all the distinct words in a piece of text. It should read a piece of text; construct a con-
cordance that contains the distinct words that appear in the text and for each word,
the line (or page) number of its first occurrence; and then allow the user to search this
concordance. Use an array or vector of 26 BSTs, one for each letter of the alphabet, to
store the concordance.

 3. Extend the program in Problem 2, so that a (linked) list of all occurrences of each word
is stored. When the concordance is searched for a particular word, the program should
display the line (or page) numbers of all occurrences of this word. The data structure
used for the concordance is thus an array or vector of binary search trees, each of whose
nodes stores an object containing a string and an ordered linked list of integers. Extend
the program in Problem 3, so that a (linked) list of all occurrences of each word is
stored. When the concordance is searched for a particular word, the program should
display the line (or page) numbers of all occurrences of this word. The data structure
used for the concordance is thus an array or vector of binary search trees, each of whose
nodes stores an object containing a string and an ordered linked list of integers.

K11207.indb 676 6/15/12 10:09 AM

677

Answers to Test
Yourself Questions

ChAPTER 2
 1. comment

 2. curly braces, main

 3. Design
 Coding
 Testing, execution, and debugging
 Maintenance

 4. State program’s behavior
 Identify the objects
 Identify the operations
 Arrange operations in an algorithm

 5. objects

 6. operations

 7. variables

 8. cout

 9. cin

 10. <<, >>

 11. debugging

 12. syntax errors and logic errors

ChAPTER 3
 1. integers, integer variations, reals,

characters, booleans

 2. short, int, unsigned

 3. float, double, long double

 4. literal

 5. false

 6. true

 7. true

 8. single quotes (or apostrophes)

 9. false

 10. true

 11. escape

 12. double quotes

 13. legal

 14. legal

 15. not legal—must begin with a letter

 16. legal

678    ◾    Answers to Test Yourself Questions

 17. not legal—identifiers may contain only
letters, digits, and underscores

 18. legal

 19. not legal—same reason as 17

 20. not legal—same reason as 17

 21. integer

 22. neither

 23. real

 24. real

 25. real

 26. neither

 27. real

 28. integer

 29. neither

 30. neither

 31. neither

 32. neither

 33. neither

 34. string

 35. string

 36. integer

 37. integer

 38. neither

 39. neither

 40. character

 41. int count;

 42. unsigned time;
 float temperature;
 char scale;

 43. unsigned time = 0;
 float temperature;
 char scale;

 44. unsigned time = 9999;
 float temperature = 0;
 char scale = ' ';

 45. const int
 CELSIUS_FREEZE = 0,
 CELSIUS BOIL = 100;

 46. const double EARTH = 1.5E10,
 MARS = 1.2E12;

ChAPTER 4

Section 4.2

 1. 0

 2. 2.6

 3. 2

 4. 5

 5. 8

 6. 3

 7. 2

 8. 36.0

 9. 11.0

 10. 1

 11. 7.0

 12. 5.1

 13. 8.0

 14. 10.0

 15. 'b' (or 98)

 16. 'd' (or 100)

 17. 2

 18. 2

K11207.indb 678 6/15/12 10:09 AM

Answers to Test Yourself Questions    ◾    679

Section 4.3

 1. valid

 2. not valid—variable must be to left of
assignment operator

 3. valid

 4. not valid—variable must be to left of
assignment operator

 5. valid

 6. not valid—can’t assign a string to an
integer variable

 7. valid

 8. not valid—'65' is not a legal character
constant

 9. valid

 10. valid

 11. valid

 12. valid

 13. valid

 14. valid

 15. valid

 16. not valid—a variable must be to left of
assignment operator

 17. not valid—++ can only be used with
integer variables

 18. xValue: 3.5

 19. xValue: 6.1

 20. jobId: 6

 21. jobId: 5
 intFive1: 6

 22. jobId: 6
 intFive2: 6

 23. intEight: 64

 24. distance = rate * time;

 25. c = sqrt(a*a + b*b);

 26. ++x;
x++;
x += 1;
x = x + 1;

Section 4.4

 1. streams

 2. true

 3. cin, istream

 4. cout, cerr, ostream

 5. >>

 6. <<

 7. cin

 8. cout

 9. right

 10. format manipulators

 11. 12323.4568

 12. blank line
 ⊔⊔123124⊔⊔125127

 13. ⊔⊔⊔⊔⊔23.
 ⊔⊔⊔⊔23.5
 ⊔⊔⊔23.46
 ⊔⊔⊔23.46
 23.5

 14. number1: 11
 number2: 22
 number3: 33

 15. real1: 1.1
 real2: 2.0
 real3: 33

K11207.indb 679 6/15/12 10:09 AM

680    ◾    Answers to Test Yourself Questions

 16. number1: 1
 Input error: attempting to read a

period for integer variable

 17. number1: 1
 real1: .1
 number2: 2
 real2: 3.3
 number3: 4
 real3: 5.5

Section 4.5

 1. 3.0

 2. 8.0

 3. 2.0

 4. 3.0

 5. 3.0

 6. 32.0

 7. 4.0

 8. 4.0

 9. not valid; sqrt() only defined for
nonnegative values

 10. 2

 11. 1

 12. 0.25

 13. 81.0

 14. 16.0

 15. 1.0

 16. sqrt((x + y) / 2)

 17. abs(a / (b + c))

 18. pow(e, x * log(a))

 19. int(100 * amount + 0.5) / 100

ChAPTER 5

Section 5.2

 1. Sequence, selection, repetition

 2. false, true

 3. <, >, ==, <=, >=, !=

 4. !, &&, ||

 5. false

 6. true

 7. false

 8. false

 9. true

 10. true

 11. true

 12. true

 13. true (but probably should be written 0 <= count && count <= 2, which
would be false)

 14. x != 0

 15. –10 < x && x < 10

 16. (x > 0 && y > 0) || (x < 0 && y < 0) or more simply, x * y > 0

K11207.indb 680 6/15/12 10:09 AM

Answers to Test Yourself Questions    ◾    681

Section 5.4

 1. 6

 2. 5

 3. 6

 4. 10

 5. 10

 6. 10

 7. excellent

 8. excellent

 9. good

 10. fair

 11. bad

 12. if (number < 0 || number > 100)
 cout << "Out of range\n";

 13. if (x <= 1.5)
 n = 1;
 else if (x <= 2.5)
 n = 2;
 else
 n = 3;

Section 5.5

 1. Hello
 Hello
 Hello
 Hello
 Hello

 2. HelloHelloHello

 3. Hello
 Hello
 Hello

 4. 36
 25
 16
 9
 4
 1

 5. Hello

 6. No output produced

 7. 1
 3
 5
 7
 9

 8. 3
 2
 1
 0
 –1

 9. 1
 2
 4
 16
 32
 64

 10. 0E 1O 2E 3O 4E 5O 6E 7O 8E 9O

 11. 6

ChAPTER 6

Section 6.3

 1. objects received from the calling function
objects returned to the calling function

 2. parameters

 3. double

K11207.indb 681 6/15/12 10:09 AM

682    ◾    Answers to Test Yourself Questions

 4. void

 5. no statements

 6. argument

 7. 6

 8. true

 9. false

 10. int what(int n);

 11. double func(double x)
 {
 return x*x + sqrt(x);
 }

 12. int average(int num1, int num2)
 {
 return (num1 + num2) / 2;
 }

 13. void display(int num1, int num2, int num3)
 {
 cout << num1 << "\n\n"
 << num2 << "\n\n"
 << num1 << endl;
 }

Section 6.4

 1. False

 2. header (or interface), implementation, and documentation

 3. 1. Functions in a library are reusable.
 2. They hide implementation details.
 3. They make programs easier to maintain.
 4. They provide separate compilation.
 5. The support independent coding.
 6. They simplify testing.

 4. header

 5. implementation

 6. header

 7. public, private

 8. <lib>

 9. "lib"

 10. compilation and linking

 11. false

 12. true

 13. Information hiding

ChAPTER 7

Section 7.2

 1. encapsulation

 2. data, function

 3. overloading

 4. dot

K11207.indb 682 6/15/12 10:09 AM

Answers to Test Yourself Questions    ◾    683

 5. month, day, year

 6. display()

 7. birth.display();

Section 7.3

 1. Bjarne Stroustrup

 2. Jerry Schwarz

 3. istream and ostream

 4. stream

 5. istream

 6. cin

 7. good, bad, and fail

 8. good()

 9. clear()

 10. ignore()

 11. true

 12. false

 13. ostream

 14. cout

 15. endl, flush

 16. true

 17. false

Section 7.4

 1. empty

 2. string label;

 3. const string UNITS = "meters";

 4. "ABC", "DEF"

 5. 'e'

 6. 8

 7. 0

 8. false

 9. true

 10. true

 11. false

 12. seashoreshell

 13. "she"

 14. 10

 15. 27

 16. 12

 17. 29

 18. 0

 19. 35

 20. "bell"

 21. "seal on the shore"

 22. "She sells the seashore."

Section 7.5

 1. 15 + 5i

 2. 50 + 37i

 3. 55 + 48i

 4. 1 + i

 5. (62/53) + (5/53)i ≈ 1.1698 + .09434i

 6. 73 ≈ 8.544

K11207.indb 683 6/15/12 10:09 AM

684    ◾    Answers to Test Yourself Questions

 7. (–1,7)

 8. (2,–1)

 9. (1.5,2.1)

 10. 3

 11. (1.5,0)

 12. (1.5, 2.5)

ChAPTER 8

Section 8.2

 1. 198
 197
 default

 2. 198

 3. default

 4. default

 5. –2
 default

 6. –2

 7. 123

 8. 456

 9. no output produced

 10. error—x must be integer (or integer
compatible)

ChAPTER 9

Section 9.4

 1. counting (or counter-controlled) loops, for

 2. initialization expression, loop condition, step expression, loop body

 3. if-break (or if-return)

 4. pretest

 5. posttest

 6. posttest

 7. pretest

 8. 2*0 = 0
 2*1 = 2
 2*2 = 4
 2*3 = 6
 2*4 = 8
 2*5 = 10
 2*6 = 12
 2*7 = 14
 2*8 = 16
 2*9 = 18

 9. 1 3 5 7 9 11

 10. 11
 22
 1
 33
 2
 1

 11. 000
 112
 228
 18

 12. 4
 5
 228
 18

K11207.indb 684 6/15/12 10:09 AM

Answers to Test Yourself Questions    ◾    685

 13. 3
 2
 1
 0
 –1

 14. 0 1
 1 2
 2 5

 14.(continued)
 3 10
 4 17

 15. 4 12
 3 5
 2 0
 1 –3

Section 9.6

 1. sentinel, counting, query-controlled

 2. end-of-data flag, sentinel

 3. true

 4. end-of-file (or eof)

 5. eof()

 6. false

 7. false

 8. query

ChAPTER 10

Section 10.3

 1. value

 2. value

 3. value

 4. reference

 5. ampersand (&)

 6. false

 7. true

 8. false

 9. false

 10. false

 11. void f(const int & x, int & y, int & z)
 {
 z = y = x * x + 1;
 }

 12. String = batbatelk

Section 10.5

 1. scope 6. signature

 2. false 7. name

 3. end of the block 8. signature

 4. the body of the function 9. template

 5. scope error message (perhaps a warning) 10. type

K11207.indb 685 6/15/12 10:09 AM

686    ◾    Answers to Test Yourself Questions

 11. Generate a function print() with type parameter something replaced every-
where by int.

ChAPTER 11

Section 11.2

 1. istream, cin

 2. ostream, cout (or cerr)

 3. istream

 4. ostream

 5. fstream

 6. false

 7. ifstream inputStream;
 inputStream.open("EmployeeInfo");

 8. ifstream inputStream("EmployeeInfo");

 9. ofstream outputStream;
 outputStream.open("EmployeeReport");

 10. ofstream outputStream("EmployeeReport");

 11. string inFileName, outFileName;
 cout << "Name of input file? ";
 cin >> inFileName;
 ifstream inputStream;
 inputStream.open(inFileName.data());

 or replace the last two lines with:
 ifstream inputStream(inFileName.data());

 12. false

 13. true

 14. assert(inputStream.is_open());

 15. get_line(inputStream, str); where str is of type string

 16. if (inputSteam.eof())
 cout << "End of file\n";

 17. inputStream.close();

Section 11.3

 1. false

 2. true

 3. random

 4. tellg(), seekg()

 5. inputStream.seekg(3, ios::beg());

K11207.indb 686 6/15/12 10:09 AM

Answers to Test Yourself Questions    ◾    687

 6. inputStream.seekg(3, ios::cur());

 7. inputStream.seekg(0, ios::end());

 8. char ch;
 inputStream.get(ch);
 cout << ch;

 9. char ch;
 inputStream.peek(ch); or inputStream.get(ch);
 cout << ch; cout << ch;
 inputStream.putback(ch);

 10. formatting manipulators

ChAPTER 12

Section 12.2

 1. false

 2. false (not necessarily)

 3. true

 4. false

 5. true

 6. false

 7. false

 8. 5

 9. true

 10. true

 11. true

 12. false

 13. true

 14. base

 15. false

 16. true

 17. false

 18. reference

 19. xValue[0]: 0.0
 xValue[1]: 0.5
 xValue[2]: 1.0
 xValue[3]: 1.5
 xValue[4]: 2.0

 20. number[0]: 0
 number[1]: 3
 number[2]: 4
 number[3]: 7
 number[4]: 8

 21. number[0]: 1
 number[1]: 2
 number[2]: 4
 number[3]: 8
 number[4]: 16

 22. number[0]: 0
 number[1]: 0
 number[2]: 0
 number[3]: 0
 number[4]: 0

Section 12.6

 1. int

 2. 0, 0

 3. 5, 5

 4. 5, 5

K11207.indb 687 6/15/12 10:09 AM

688    ◾    Answers to Test Yourself Questions

 5. 10, 7

 6. 1 1

 7. 0 88

 8. true

 9. false

 10. true

 11. 1 1 1 1 1

 12. 0 0 0 0 0 77

 13. 0

 14. 88

 15. true

 16. 0, 0, 0, 0, 0, 0, 0.5, 1.0, 1.5, 2.0

 17. 1, 1, 1, 1, 1, 0, 3, 4, 7, 8

 18. 1, 1, 1, 1, 1, 2, 2, 2, 2, 0

 19. 1, 1, 2, 2, 2, 0

 20. In the early 1900s at Hewlett Packard Laboratories by Alex Stepanov and Meng Lee

ChAPTER 13

Section 13.2

 1. two-dimensional

 2. three-dimensional

 3. square

 4. 82

 5. 33

 6. –1

 7. 33

 8. 12

 9. 1, 2, 3, 4

 10. 52

 11. 76

 12. 29

 13. 1322

 14. 1322

Section 13.4

 1. m × n matrix 4. 1 2 0

1 3 3

10 5 9

 2. 2, 2

 3. 5 2
8 8

 5. Not defined—number of columns in B ≠ number of rows in C

 6. Not defined—number of columns in C ≠ number of rows in B

7.

4 2

3 1

9 1

−

8.

− −

−

2 2

1 1

2 5

K11207.indb 688 6/15/12 10:09 AM

Answers to Test Yourself Questions    ◾    689

Section 13.6

 1. true 5. 5

 2. true 6. 4

 3. 5, 4 7. qqTab[1].push_back(99.9);

 4. qqTab[1][3] = 1.1; 8. TableRow bottom(4, 0.0);
 qqTab.push_back(bottom);

ChAPTER 14

Section 14.2

 1. class, class library

 2. design, implementation

 3. Its behavior and its attributes

 4. behavior

 5. I-can-do-it-myself

Section 14.3

 1. data, instance

 2. Encapsulation

 3. Items in the public section are accessible to users of the class, but those in the private
section are not. By preventing a program from directly accessing the data members
of a class, we hide that information, thus removing the temptation to access those
variables directly.

 4. private

 5. invariant

 6. function, methods

 7. name of the class, scope (::)

 8. constant, const

 9. Fraction

 10. Default-value constructors: used to initialize data members with default values when
none are specified in the declaration of an object; explicit-value constructors initial-
ize them with values provided in the declaration.

 11. False—constructors have no return type

 12. public

K11207.indb 689 6/15/12 10:09 AM

690    ◾    Answers to Test Yourself Questions

 13. postcondition

 14. dot, message

 15. accessor

 16. operator+

 17. class Component
 {
 public:
 void display(ostream & out);
 void read(istream & in);
 private:
 int myID;
 string myName;
 };

Section 14.6

 1. friend

 2. preprocessor

 3. #

 4. conditional-compilation

 5. The declaration of the class with the specified name will only be processed once,
regardless of how many different files include it.

ChAPTER 15

Section 15.1

 1. address

 2. &

 3. *

 4. address

 5. double value

 6. address

 7. address

 8. double value

 9. double value

 10. address

 11. null

 12. 1.1

 13. 3.3

 14. true

 15. true

 16. 012a50

Section 15.2

 1. compile, run 4. pointer variable

 2. new, null address, address, anonymous 5. 66

 3. delete

K11207.indb 690 6/15/12 10:09 AM

Answers to Test Yourself Questions    ◾    691

Section 15.3

 1. true

 2. nodes, pointers

 3. data, next

 4. null

 5. false

 6. true

ChAPTER 16

Section 16.1

 1. 10011010010

 2. 2322

 3. 4D2

 4. first, LIFO (last in, first out)

 5. empty, push, top, pop

 6. adapter

 7. 123

 8. 111, 111

 9. 0, 2, 4

Section 16.3

 1. For a queue, elements are added at one end and removed at the other. For a stack,
elements are added and removed at the same end.

 2. last

 3. FIFO

 4. spool

 5. buffers

 6. deque

 7. 456

 8. 222, 111

 9. 4, 6, 8

Section 16.4

 1. root

 2. leaves

 3. children, parent

 4. at most two children

 5. 50

 6. 10, 40, 70

 7.

6030

50

4020

10

70

45

55

65

K11207.indb 691 6/15/12 10:09 AM

692    ◾    Answers to Test Yourself Questions

 8.

 9.

 10.

 11. 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

 12. 90, 30, 20, 10, 60, 50, 40, 70, 90, 100

 13. 10, 20, 40, 50, 70, 60, 30, 100, 90, 80

if

do

forcase

switch

while

else

if

do

for

case

switch

while

else

if

do

for

case

switch

while

else

K11207.indb 692 6/15/12 10:09 AM

693

Appendix A: ASCII
Character Codes

ASCII CoDES oF ChARACTERS

Decimal Octal Character

0 000 NUL (Null)
1 001 SOH (Start of heading)
2 002 STX (Start of text)
3 003 ETX (End of text)
4 004 EOT (End of transmission)
5 005 ENQ (Enquiry)
6 006 ACK (Acknowledge)
7 007 BEL (Ring bell)
8 010 BS (Backspace)
9 011 HT (Horizontal tab)

10 012 LF (Line feed)
11 013 VT (Vertical tab)
12 014 FF (Form feed)
13 015 CR (Carriage return)
14 016 SO (Shift out)
15 017 SI (Shift in)
16 020 DLE (Date link escape)
17 021 DC1 (Device control 1)
18 022 DC2 (Device control 2)
19 023 DC3 (Device control 3)
20 024 DC4 (Device control 4)
21 025 NAK (Negative ACK)
22 026 SYN (Synchronous)
23 027 ETB (EOT block)
24 030 CAN (Cancel)
25 031 EM (End of medium)

(continued)

694    ◾    Appendix A: ASCII Character Codes

(continued)

Decimal Octal Character

26 032 SUB (Substitute)
27 033 ESC (Escape)
28 034 FS (File separator)
29 035 GS (Group separator)
30 036 RS (Record separator)
31 037 US (Unit separator)
32 040 SP (Space)
33 041 !

34 042 "

35 043 #

36 044 $

37 045 %

38 046 &

39 047 ' (Single quote)
40 050 (

41 051)

42 052 *

43 053 +

44 054 , (Comma)
45 055 - (Hyphen)
46 056 . (Period)
47 057 /

48 060 0

49 061 1

50 062 2

51 063 3

52 064 4

53 065 5

54 066 6

55 067 7

56 070 8

57 071 9

58 072 :

59 073 ;

60 074 <

61 075 =

62 076 >

63 077 ?

64 100 @

65 101 A

66 102 B

67 103 C

68 104 D

69 105 E

70 106 F

K11207.indb 694 6/15/12 10:09 AM

Appendix A: ASCII Character Codes    ◾    695

71 107 G

72 110 H

73 111 I

74 112 J

75 113 K

76 114 L

77 115 M

78 116 N

79 117 O

80 120 P

81 121 Q

82 122 R

83 123 S

84 124 T

85 125 U

86 126 V

87 127 W

88 130 X

89 131 Y

90 132 Z

91 133 [

92 134 \

93 135]

94 136 ^

95 137 _ (Underscore)
96 140 `

97 141 a

98 142 b

99 143 c

100 144 d

101 145 e

102 146 f

103 147 g

104 150 h

105 151 i

106 152 j

107 153 k

108 154 l

109 155 m

110 156 n

111 157 o

112 160 p

113 161 q

114 162 r

115 163 s

116 164 t

(continued)

K11207.indb 695 6/15/12 10:09 AM

696    ◾    Appendix A: ASCII Character Codes

(continued)
Decimal Octal Character

117 165 u

118 166 v

119 167 w

120 170 x

121 171 y

122 172 z

123 173 {

124 174 |

125 175 }

126 176 ~

127 177 DEL

K11207.indb 696 6/15/12 10:09 AM

697

Appendix B: C++ Keywords

The following table lists the keywords in C++, together with a brief description of the con-
text in which they usually appear.

Keyword Contextual Description
asm Used to declare that information is to be passed directly to the assembler
auto Used to declare objects whose lifetime is the duration of control within their block
bool Used to declare objects whose values are true or false
break Used to terminate processing of a switch statement or loop
case Used in a switch statement to specify a match for the statement’s expression
catch Used to specify the actions to be taken when an exception occurs (see throw, try)
char Used to declare objects whose values are characters
class Used to construct new types encapsulating data and operations (default private)
const Used to declare objects whose values should not change during execution
const_cast Used to add or remove the const or volatile property of a type
continue Used in a loop statement to transfer control to the beginning of the loop
default Used in a switch statement to handle expression values not specified using case
delete Used to deallocate memory allocated at run time, returning it to the free store
do Used to mark the beginning of a do-while statement, providing repetitive control
double Used to declare objects whose values are (double precision) real numbers
dynamic_cast Used to cast pointer or reference types in a class hierarchy
else Used in an if statement to mark the section to be executed if the condition is false
enum Used to declare a type whose values are programmer-specified identifiers
explicit Used to prevent constructors from being called implicitly for conversion purposes
extern Used to declare objects whose definitions are external to the local block
false A bool value
float Used to declare objects whose values are (single precision) real numbers
for Used to mark the beginning of a for statement, providing repetitive control
friend Used to declare class operations that are not member functions
goto Used to transfer control to a label
if Used to mark the beginning of an if statement, providing selective control
inline Used to declare a function whose text is to be substituted for its call
int Used to declare objects whose values are integer numbers

(continued)

698    ◾    Appendix B: C++ Keywords

(continued)

Keyword Contextual Description
long Used to declare long integers (typically 32-bit), or extended double precision real

numbers
mutable Used to declare class data member as modifiable even in a const object
namespace Used to a control the scope of global names (to avoid name conflicts)
new Used to request memory allocation at run time
operator Used to overload an operator with a new declaration
private Used to declare class members that are inaccessible from outside of the class
protected Used to declare class members that are private, except to derived classes
public Used to declare class members that can be accessed outside of the class
register Used to declare objects whose values are to be kept in registers
reinterpret_cast Used to perform type conversions on unrelated types
return Used to terminate a function, usually returning the value of some expression
short Used to declare short integers (typically 16-bit) numbers
signed Used to declare an object in which the value’s sign is stored in the high order bit
sizeof Used to find the size (in bytes) of an object, or of the representation of a type
static Used to declare objects whose lifetime is the duration of the program
static_cast Used to convert one type to another type
struct Used to construct new types encapsulating data and operations (default public)
switch Used to mark the beginning of a switch statement, providing selective control
template Used to declare type-independent classes or functions
this Used within a class member to unambigously access other members of the class
throw Used to generate an exception (see catch, try)
true A bool value
try Used to mark the beginning of a block containing exception handlers (see catch)
typedef Used to declare a name as a synonym for an existing type
typeid Used to obtain type information during run time
typename Can be used instead of class in template parameter lists and to identify qualified

names as types
union Used to declare a structure, such that different objects can have different members
unsigned Used to declare an object in which the high-order bit is used for data (see signed)
using Used to access members of a namespace
virtual Used to declare a base-class function, that will be defined by a derived class
void Used to indicate the absence of any type
volatile Used to declare objects whose values may be modified by means undetectable to

the compiler (such as shared-memory objects of concurrent processes)
while Used to mark the beginning of a while statement, as well as the end of a

do-while statement, each of which provides repetitive control

K11207.indb 698 6/15/12 10:09 AM

699

Appendix C: C++ Operators

The following table lists all of the operators available in C++, ordered by their precedence lev-
els, from highest to lowest—higher-precedence operators are applied before lower-precedence
operators. Operators in the same horizontal band of the table have equal precedence. The table
also gives each operator’s associativity—in an expression containing operators of equal prece-
dence, associativity determines which is applied first—whether they can be overloaded, their
arity (number of operands), and a brief description.

Operator Associativity Overloadable Arity Description
:: right no unary global scope
:: left no binary class scope
. left no binary direct member selection
-> left yes binary indirect member selection
[] left yes binary subscript (array index)
() left yes n/a function call
() left yes n/a type construction
sizeof right n/a unary size (in bytes) of an object or type
++ right yes unary increment
-- right yes unary decrement
~ right yes unary bitwise NOT
! right yes unary logical NOT
+ right yes unary plus (sign)
- right yes unary minus (sign)
* right yes unary pointer dereferencing
& right yes unary get address of an object
new right yes unary memory allocation
delete right yes unary memory deallocation
() right yes binary type conversion (cast)
. left no binary direct member pointer selection
-> left yes binary indirect member pointer selection
* left yes binary multiplication
/ left yes binary division
% left yes binary modulus (remainder)

(continued)

700    ◾    Appendix C: C++ operators

Operator Associativity Overloadable Arity Description
+ left yes binary addition
– left yes binary subtraction
<< left yes binary bit-shift left
>> left yes binary bit-shift right
< left yes binary less-than
<= left yes binary less-than-or-equal
> left yes binary greater-than
>= left yes binary greater-than-or-equal
== left yes binary equality
!= left yes binary inequality
& left yes binary bitwise AND
^ left yes binary bitwise XOR
| left yes binary bitwise OR
&& left yes binary logical AND
|| left yes binary logical OR
? : left no ternary conditional expression
= right yes binary assignment
+= right yes binary addition-assignment shortcut
-= right yes binary subtraction-assignment shortcut
*= right yes binary multiplication-assignment shortcut
/= right yes binary division-assignment shortcut
%= right yes binary modulus-assignment shortcut
&= right yes binary bitwise-AND-assignment shortcut
|= right yes binary bitwise-OR-assignment shortcut
^= right yes binary bitwise-XOR-assignment shortcut
<<= right yes binary bitshift-left-assignment shortcut
>>= right yes binary bitshift-right-assignment shortcut
throw right yes unary throw an exception
, left yes binary expression separation

K11207.indb 700 6/15/12 10:09 AM

701

Appendix D: Other
C++ Features

C LIBRARIES
Many of the C++ libraries were originally C libraries. The following describes some of the
most useful items in the more commonly used libraries.

cassert (Formerly assert.h)

void assert(bool expr) Tests the boolean expression expr and if it is true,
allows execution to proceed. If it is false, execution is
terminated and an error message is displayed.

cctype (Formerly ctype.h)

int isalnum(int c) Returns true if c is a letter or a digit, false otherwise

int isalpha(int c) Returns true if c is a letter, false otherwise

int iscntrl(int c) Returns true if c is a control character, false
otherwise

int isdigit(int c) Returns true if c is a decimal digit, false otherwise

int isgraph(int c) Returns true if c is a printing character except space,
false otherwise

int islower(int c) Returns true if c is lowercase, false otherwise

int isprint(int c) Returns true if c is a printing character including
space, false otherwise

int ispunct(int c) Returns true if c is a punctuation character (not a space,
an alphabetic character, or a digit), false otherwise

702    ◾    Appendix D: other C++ Features

int isspace(int c) Returns true if c is a white space character (space,
'\f', '\n', '\r', '\t', or '\v'), false otherwise

int isupper(int c) Returns true if c is uppercase, false otherwise

int isxdigit(int c) Returns true if c is a hexadecimal digit, false
otherwise

int tolower(int c) Returns lowercase equivalent of c (if c is uppercase)

int toupper(int c) Returns the uppercase equivalent of c (if c is lowercase)

cfloat (Formerly float.h)

The following constants specify the minimum value in the specified floating-point type.

FLT_MIN (≤ –1E+37) float

DBL_MIN (≤ –1E+37) double

LDBL_MIN (≤ –1E+37) long double

The following constants specify the maximum value in the specified floating-point type.

FLT_MAX (≥ 1E+37) float

DBL_MAX (≥ 1E+37) double

LDBL_MAX (≥ 1E+37) long double

The following constants specify the smallest positive value representable in the specified
floating-point type.

FLT_EPSILON (≤ 1E–37) float

DBL_EPSILON (≤ 1E–37) double

LDBL_EPSILON (≤ 1E–37) long double

climits (Formerly limits.h)

The following constants specify the minimum and maximum values for the specified type.

SCHAR_MIN (≤ –127) signed char

SCHAR_MAX (≥ 127) signed char

UCHAR_MAX (≥ 255) unsigned char

CHAR _ MIN (0 or SCHAR_MIN) char

K11207.indb 702 6/15/12 10:09 AM

Appendix D: other C++ Features    ◾    703

CHAR_MAX (SCHAR_MAX or USHRT_MAX) char

SHRT_MIN (≤ –32767) short int

SHRT_MAX (≥ 32767) short int

USHRT_MAX (≥ 65535) unsigned short int

INT_MIN (≤ –32767) int

INT_MAX (≥ 32767) int

UINT_MAX (≥ 65535) unsigned int

LONG_MIN (≤ –2147483647) long int

LONG_MAX (≥ 2147483647) long int

ULONG_MAX (≥ 4294967295) unsigned long int

cmath (Formerly math.h)

double acos(double x) Returns the angle in [0, π] (in radians) whose
cosine is x

double asin(double x) Returns the angle in [–π/2, π/2] (in radians)
whose sine is x

double atan(double x) Returns the angle in (–π/2, π/2) (in radians)
whose tangent is x

double atan2(double y) Returns the angle in (–π, π) (in radians) whose
tangent is y/x

double ceil(double x) Returns the least integer ≥ x

double cos(double x) Returns the cosine of x (radians)

double cosh(double x) Returns the hyperbolic cosine of x

double exp(double x) Returns ex

double fabs(double x) Returns the absolute value of x

double floor(double x) Returns the greatest integer ≤ x

double fmod(double x, Returns the integer remainder of
double y) x / y

double frexp(double x, Returns value v in [1/2, 1] and
int & ex) passes back ex such that x = v * 2ex

double ldexp(double x, Returns x * 2ex
int ex)

K11207.indb 703 6/15/12 10:09 AM

704    ◾    Appendix D: other C++ Features

double log(double x) Returns natural logarithm of x

double log10(double x) Returns base-ten logarithm of x

double modf(double x, Returns fractional part of x and
double & ip) passes back ip = the integer part of x

double pow(double x, Returns xy

double y)

double sin(double x) Returns the sine of x (radians)

double sinh(double x) Returns the hyperbolic sine of x

double sqrt(double x) Returns the square root of x (provided x ≥ 0)

double tan(double x) Returns the tangent of x (radians)

double tanh(double x) Returns the hyperbolic tangent of x

cstdlib (Formerly stdlib.h)

int abs(int i) abs(i) and labs(li) return the int and long int
long abs(long li) absolute value of i and li, respectively

double atof(char s[]) atof(s), atoi(s), and atol(s) return the value
int atoi(char s[]) obtained by converting the character string s to double,
long atol(char s[]) int, and long int, respectively

void exit(int status) Terminates program execution and returns control to
the operating system; status = 0 signals successful
termination and any nonzero value signals unsuccess-
ful termination

int rand() Returns a pseudorandom integer in the range 0 to
RAND_MAX

RAND_MAX An integer constant (≥ 32767) which is the maximum
value returned by rand()

void srand(int seed) Uses seed to initialize the sequence of pseudorandom
numbers returned by rand()

int system(char s[]) Passes the string s to the operating system to be exe-
cuted as a command and returns an implementation-
dependent value.

K11207.indb 704 6/15/12 10:09 AM

Appendix D: other C++ Features    ◾    705

ThE string CLASS
The string class, which was described in Chapter 7, is defined by

typedef basic_string<char> string;

The unsigned integer type size_type is defined in this class as is an integer constant
npos, which is some integer that is either negative or greater than the number of char-
acters in a string. The following is a list of the major operations defined on a string
object s; pos, pos1, pos2, n, n1, and n2 are of type size_type; str, str1, and str2
are of type string; charArray is a character array; ch and delim are of type char;
istr is an istream; ostr is an ostream; it1 and it2 are iterators; and inpIt1 and
inpIt2 are input iterators. All of these operations except >>, <<, +, the relational operators,
 getline(), and the second version of swap() are function members.

Constructors:

string s; This declaration invokes the default constructor
to construct s as an empty string

string s(charArray); This declaration initializes s to contain a copy
of charArray

string s(charArray, n); This declaration initializes s to contain a copy
of the first n characters in charArray

string s(str); This declaration initializes s to contain a copy
of string str

string s(str, pos, n); This declaration initializes s to contain a copy
of the n characters in string str, starting at
position pos; if n is too large, characters are
copied only to the end of str

string s(n, ch); This declaration initializes s to contain n cop-
ies of the character ch

string s(inpIt1, inpIt2) This declaration initializes s to contain the
characters in the range [inpIt1, inpIt2)

getline(istr, s, delim) Extracts characters from istr and stores them
in s until s.max_size() characters have been
extracted, the end of file occurs, or delim is
encountered, in which case delim is extracted
from istr but is not stored in s

getline(istr, s) Inputs a string value for s as in the preceding
function with delim = '\n'

K11207.indb 705 6/15/12 10:09 AM

706    ◾    Appendix D: other C++ Features

istr >> s Extracts characters from istr and stores
them in s until s.max_size() characters
have been extracted, the end of file occurs, or a
 white-space character is encountered, in which
case the white-space character is not removed
from istr; returns istr

ostr << s Inserts characters of s into ostr; returns
ostr

s = val Assigns a copy of val to s; val may be a
string, a character array, or a character

s += val Appends a copy of val to s; val may be a
string, a character array, or a character

s[pos] Returns a reference to the character stored in s
at position pos, provided pos < s.length()

s + t Returns the result of concatenating s and t; t
t + s may be a string, a character array, or a character

s < t, t < s Returns true or false as determined by the
s > t, t > s relational operator; t may be a string or a
s <= t, t <= s character array
s >= t, t >= s
s == t, t == s
s != t, t != s

s.append(str) Appends string str at the end of s; returns s

s.append(str, pos, n) Appends at the end of s a copy of the n charac-
ters in str, starting at position pos; if n is too
large, characters are copied only until the end of
str is reached; returns s

s.append(charArray) Appends charArray at the end of s; returns s

s.append(charArray, n) Appends the first n characters in charArray
at the end of s; returns s

s.append(n, ch) Appends n copies of ch at the end of s;
returns s

s.append(inpIt1, inpIt2) Appends copies of the characters in the range
[inpIt1, inpIt2) to s; returns s

s.assign(str) Assigns a copy of str to s; returns s

K11207.indb 706 6/15/12 10:09 AM

Appendix D: other C++ Features    ◾    707

s.assign(str, pos, n) Assigns to s a copy of the n characters in str,
starting at position pos; if n is too large, char-
acters are copied only until the end of str is
reached; returns s

s.assign(charArray) Assigns to s a copy of charArray; returns s

s.assign(charArray, n) Assigns to s a string consisting of the first n
characters in charArray; returns s

s.assign(n, ch) Assigns to s a string consisting of n copies of
ch; returns s

s.assign(inpIt1, inpIt2) Assigns to s a string consisting of the charac-
ters in the range [inpIt1, inpIt2); returns s

s.at(pos) Returns s[pos]

s.begin() Returns an iterator positioned at the first char-
acter in s

s.c_str() Returns (the base address of) a char array con-
taining the characters stored in s, terminated
by a null character

s.capacity() Returns the size (of type size_type) of the
storage allocated in s

s.clear() Removes all the characters in s; return type is
void

s.compare(str) Returns a negative value, 0, or a positive value
according as s is less than, equal to, or greater
than str

s.compare(charArray) Compares s and charArray as in the preced-
ing method

s.compare(pos, n, str) Compares strings s and str as before, but
starts at position pos in s and compares only
the next n characters

s.compare(pos, n, charArray) Compares string s and charArray as in the
preceding method

s.compare(pos1, n1, str, Compares s and str as before, but
pos2, n2) starts at position pos1 in s, position pos2 in

str, and compares only the next n1 characters
in s and the next n2 characters in str

K11207.indb 707 6/15/12 10:09 AM

708    ◾    Appendix D: other C++ Features

s.compare(pos1, n1, Compares strings s and charArray as before,
charArray, n2) but using only the first n2 characters in

charArray

s.copy(charArray, pos, n) Replaces the string in s with n characters in
charArray, starting at position pos or at
position 0, if pos is omitted; if n is too large,
characters are copied only until the end of
charArray is reached; returns the number (of
type size_type) of characters copied

s.data() Returns a char array containing the characters
stored in s.

s.empty() Returns true if s contains no characters,
false otherwise

s.end() Returns an iterator positioned immediately
after the last character in s

s.erase(pos, n) Removes n characters from s, beginning at posi-
tion pos (default value 0); if n is too large or is
omitted, characters are erased only to the end of
s; returns s

s.erase(it) Removes the character at the position specified
by it; returns an iterator positioned immedi-
ately after the erased character

s.find(str, pos) Returns the first position ≥ pos such that the
next str.size() characters of s match those
in str; returns npos if there is no such posi-
tion; 0 is the default value for pos

s.find(ch, pos) Searches s as in the preceding method, but for ch

s.find(charArray, pos) Searches s as in the preceding method, but for
the characters in charArray

s.find(charArray, pos, n) Searches s as in the preceding method, but for
the first n characters in charArray; the value
pos must be given

s.find_first_not_of(str, pos) Returns the first position ≥ pos of a character
in s that does not match any of the characters in
str; returns npos if there is no such position;
0 is the default value for pos

K11207.indb 708 6/15/12 10:09 AM

Appendix D: other C++ Features    ◾    709

s.find_first_not_of
(ch, pos)

Searches s as in the preceding method, but for
ch

s.find_first_not_of
(charArray, pos)

Searches s as in the preceding method, but for
the characters in charArray

s.find_first_not_of
(charArray, pos, n)

Searches s as in the preceding method, but
using the first n characters in charArray; the
value pos must be given

s.find_first_of(str, pos) Returns the first position ≥ pos of a character
in s that matches any character in str; returns
npos if there is no such position; 0 is the default
value for pos

s.find_first_of(ch, pos) Searches s as in the preceding method, but for
ch

s.find_first_of
(charArray, pos)

Searches s as in the preceding method, but for
the characters in charArray

s.find_first_of
(charArray, pos, n)

Searches s as in the preceding method, but
using the first n characters in charArray; the
value pos must be given

s.find_last_not_of
(str, pos)

Returns the highest position ≤ pos of a char-
acter in s that does not match any character in
str; returns npos if there is no such position;
npos is the default value for pos

s.find_last_not_of(ch, pos) Searches s as in the preceding method, but for ch

s.find_last_not_of
(charArray, pos)

Searches s as in the preceding method, but
using the characters in charArray

s.find_last_not_of
(charArray, pos, n)

Searches s as in the preceding method, but
using the first n characters in charArray; the
value pos must be given

s.find_last_of(str, pos) Returns the highest position ≤ pos of a char-
acter in s that matches any character in str;
returns npos if there is no such position; npos
is the default value for pos

s.find_last_of(ch, pos) Searches s as in the preceding method, but for ch

s.find_last_of
(charArray, pos)

Searches s as in the preceding method, but
using the characters in charArray

K11207.indb 709 6/15/12 10:09 AM

710    ◾    Appendix D: other C++ Features

s.find_last_of
(charArray, pos, n)

Searches s as in the preceding method, but
using the first n characters in charArray; the
value pos must be given

s.insert(pos, str) Inserts a copy of str into s at position pos;
returns s

s.insert(pos1, str, pos2, n) Inserts a copy of n characters of str starting at
position pos2 into s at position pos; if n is too
large, characters are copied only until the end of
str is reached; returns s

s.insert(pos, charArray, n) Inserts a copy of the first n characters of
charArray into s at position pos; inserts all
of its characters if n is omitted; returns s

s.insert(pos, n, ch) Inserts n copies of the character ch into s at
position pos; returns s

s.insert(it, ch) Inserts a copy of the character ch into s at the
position specified by it and returns an iterator
positioned at this copy

s.insert(it, n, ch) Inserts n copies of the character ch into s at the
position specified by it; return type is void

s.insert(it, inpIt1, inpIt2) Inserts copies of the characters in the range
[inpIt1, inpIt2) into s at the position speci-
fied by it; return type is void

s.length() Returns the length (of type size_type) of s

s.max_size() Returns the maximum length (of type
size_ type) of s

s.rbegin() Returns a reverse iterator positioned at the last
character in s

s.rend() Returns a reverse iterator positioned immedi-
ately before the first character in s

s.replace(pos1, n1, str) Replaces the substring of s of length n1 beginning
at position pos1 with str; if n1 is too large, all
characters to the end of s are replaced; returns s

s.replace(it1, it2, str) Same as the preceding, but for the substring of
s consisting of the characters in the range [it1,
it2); returns s

K11207.indb 710 6/15/12 10:09 AM

Appendix D: other C++ Features    ◾    711

s.replace(pos1, n1, str,
pos2, n2)

Replaces a substring of s as in the preceding
reference but using n2 characters in str,
beginning at position pos2; if n2 is too
large, characters to the end of str are used;
returns s

s.replace(pos1, n1, charArray,
n2)

Replaces a substring of s as before but with the
first n2 characters in charArray; if n2 is too
large, characters to the end of charArray are
used; if n2 is omitted, all of charArray is
used; returns s

s.replace(it1, it2, charArray,
n2)

Same as the preceding, but for the substring of
s consisting of the characters in the range [it1,
it2); returns s

s.replace(pos1, n1, n2, ch) Replaces a substring of s as before, but with n2
copies of ch

s.replace(it1, it2, n2, ch) Same as the preceding but for the substring
of s consisting of the characters in the range
[it1, it2); returns s

s.replace(it1, it2, inpIt1,
inpIt2)

Same as the preceding, but replaces with cop-
ies of the characters in the range [inpIt1,
inpIt2); returns s

s.reserve(n) Changes the storage allocation for s so that
s.capacity() ≥ n, 0 if n is omitted; return
type is void

s.resize(n, ch) If n ≤ s.size(), truncates rightmost characters
in s to make it of size n; otherwise, adds copies
of character ch to end of s to increase its size
to n, or adds a default character value (usually a
blank) if ch is omitted; return type is void

s.rfind(str, pos) Returns the highest position ≤ pos such that
the next str.size() characters of s match
those in str; returns npos if there is no such
position; npos is the default value for pos

s.rfind(ch, pos) Searches s as in the preceding method, but
for ch

s.rfind(charArray, pos) Searches s as in the preceding method, but for
the characters in charArray

K11207.indb 711 6/15/12 10:09 AM

712    ◾    Appendix D: other C++ Features

s.rfind(charArray, pos, n) Searches s as in the preceding method, but for
the first n characters in charArray; the value
pos must be given

s.size() Returns the length (of type size_type) of s

s.substr(pos, n) Returns a copy of the substring consisting of n
characters from s, beginning at position pos
(default value 0); if n is too large or is omitted,
characters are copied only until the end of s is
reached

s.swap(str) Swaps the contents of s and str; return type is
void

swap(str1, str2) Swaps the contents of str1 and str2; return
type is void

ThE list<T> CLASS TEMPLATE
The list<T> class template is provided in the Standard Template Library. The following is
a list of the operations defined on list<T> objects; n is of type size_type; l, l1, and l2
are of type list<T>; val, val1, and val2 are of type T; ptr1 and ptr2 are pointers to
values of type T; it1 and it2 are iterators; and inpIt1, and inpIt2 are input iterators.

Constructors:

list<T> l; This declaration invokes the default constructor
to construct l as an empty list

list<T> l(n); This declaration initializes l to contain n default
values of type T

list<T> l(n, val); This declaration initializes l to contain n copies
of val

list<T> l(ptr1, ptr2); This declaration initializes s to contain the
copies of all the T values in the range [ptr1,
ptr2)

list<T> l(l1); This declaration initializes l to contain a copy
of l1

l = l1 Assigns a copy of l1 to l

l1 == l2 Returns true if l1 and l2 contain the same
 values, and false otherwise

K11207.indb 712 6/15/12 10:09 AM

Appendix D: other C++ Features    ◾    713

l1 < l2 Returns true if l1 is lexicographically less than
l2—l1.size() is less than l2.size() and all
the elements of l1 match the first elements of l2;
or if val1 and val2 are the first elements of l1
and l2, respectively, that are different, val1 is
less than val2—and it returns false otherwise

l.assign(n, val) Erases l and then inserts n copies of val (default
T value if omitted)

l.assign(inpIt1, inpIt2) Erases l and then inserts copies of the T values in
the range [inpIt1, inpIt2)

l.back() Returns a reference to the last element of l

l.begin() Returns an iterator positioned at the first element
of l

l.empty() Returns true if l contains no elements, false
otherwise

l.end() Returns an iterator positioned immediately after
the last element of l

l.erase(it) Removes from l the element at the position spec-
ified by it; return type is void

l.erase(it1, it2) Removes from l the elements in the range [it1,
it2); return type is void

l.front() Returns a reference to the first element of l

l.insert(it, val) Inserts a copy of val (default T value if omitted)
into l at the position specified by it and returns
an iterator positioned at this copy

l.insert(it, n, val) Inserts n copies of val into l at the position
specified by it; return type is void

l.insert(it, inpIt1, inpIt2) Inserts copies of the T values in the range
[inpIt1, inpIt2) into l at the position speci-
fied by it; return type is void

l.insert(ptr1, ptr2) Inserts copies of all the T values in the range
[ptr1, ptr2) at the position specified by it;
return type is void

l.max_size() Returns the maximum number (of type
size_ type) of values that l can contain

K11207.indb 713 6/15/12 10:09 AM

714    ◾    Appendix D: other C++ Features

l.merge(l1) Merges the elements of l1 into l so that the result-
ing list is sorted; both l and l1 must have been
already sorted (using <); return type is void

l.push_back(val) Adds a copy of val at the end of l; return type is
void

l.push_front(val) Adds a copy of val at the front of l; return type is
void

l.pop_back() Removes the last element of l; return type is void

l.pop_front() Removes the first element of l; return type is void

l.rbegin() Returns a reverse iterator positioned at the last
element of l

l.remove(val) Removes all occurrences of val from l, using ==
to compare elements; return type is void

l.rend() Returns a reverse iterator positioned immediately
before the first element of l

l.resize(n, val) Sets the size of l to n; if n > l.size(), copies of
val (default T value if omitted) are appended to
l; if n < l.size(), the appropriate number of ele-
ments is removed from the end of l

l.reverse() Reverses the order of the elements of l; return type
is void

l.size() Returns the number (of type size_type) of ele-
ments l contains

l.sort() Sorts the elements of l using <; return type is void

l.splice(it, l1) Removes the elements of l1 and inserts them into l
at the position specified by it; return type is void

l.splice(it, l1, it1) Removes the element of l1 at the position specified
by it1 and inserts it into l at the position specified
by it; return type is void

l.splice(it, l1, it1, it2) Removes the elements of l1 in the range [it1, it2)
and inserts them into l at the position specified by
it; return type is void

l.swap(l1) Swaps the contents of l and l1; return type is void

l.unique() Replaces all repeating sequences of an element of
l with a single occurrence of that element; return
type is void

K11207.indb 714 6/15/12 10:09 AM

K11207

Programming

 in

for Engineering
and Science

C++

Larry Nyhoff

N
y

h
o

ff
P

ro
g

ra
m

m
in

g
 in

 C
+

+

fo
r E

n
g

in
e
e
rin

g
 a

n
d

 S
c
ie

n
c
e

Programming in C++

for Engineering and Science

Developed from the author’s many years of teaching computing courses, Programming in C++
for Engineering and Science guides readers in designing programs to solve real problems
encountered in engineering and scientific applications. These problems include radioactive
decay, pollution indexes, digital circuits, differential equations, Internet addresses, data analysis,
simulation, quality control, electrical networks, data encryption, beam deflection, and many other
areas.

To make it easier for novices to develop programs, the author uses an object-centered design
approach that helps readers identify the objects in a problem and the operations needed; develop
an algorithm for processing; implement the objects, operations, and algorithm in a program;
and test, correct, and revise the program. He also revisits topics in greater detail as the text
progresses. By the end of the book, readers will have a solid understanding of how C++ can be
used to process complex objects, including how classes can be built to model objects.

Features
•	 Uses standard C++ throughout
•	 Explains key concepts, such as functions and classes, through a “use it first, build it later”

approach
•	 Shows how to develop programs to solve real problems, emphasizing the proper techniques

of design and style
•	 Introduces the very powerful and useful Standard Template Library along with important

class and function templates
•	 Develops numeric techniques and programs for some engineering and science example

problems
•	 Highlights key terms, important points, design and style suggestions, and common

programming pitfalls in the chapter summaries
•	 Includes self-study questions and programming projects in each chapter
•	 Provides ancillary materials on the book’s website

Computer Science

K11207_Cover.indd 1 6/19/12 9:01 AM

	Front Cover
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1: Introduction to Computing
	Chapter 2: Programming and Problem Solving— Software Engineering
	Chapter 3: Types in C++
	Chapter 4: Getting Started with Expressions
	Chapter 5: Control Structures
	Chapter 6: Functions and Libraries
	Chapter 7: Using Classes
	Chapter 8: More Selection Control Structures
	Chapter 9: More Repetition Control Structures
	Chapter 10: Functions in Depth
	Chapter 11: Files and Streams
	Chapter 12: Arrays and the vector Class Template
	Chapter 13: Multidimensional Arrays and Vectors
	Chapter 14: Building Classes
	Chapter 15: Pointers and Linked Structures
	Chapter 16: Data Structures
	Answers to Test Yourself Questions
	Appendix A: ASCII Character Codes
	Appendix B: C++ Keywords
	Appendix C: C++ Operators
	Appendix D: Other C++ Features

