
www.allitebooks.com

http://
http://www.allitebooks.org

www.allitebooks.com

http://
http://www.allitebooks.org

Programming the Mobile Web

Maximiliano Firtman

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://
http://www.allitebooks.org

Programming the Mobile Web
by Maximiliano Firtman

Copyright © 2010 Maximiliano Firtman. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Loranah Dimant
Copyeditor: Rachel Head
Proofreader: Jennifer Knight
Production Services: Newgen, Inc.

Indexer: Jay Marchand
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
July 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming the Mobile Web, the image of a jerboa, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-80778-8

[M]

1279131278

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://
http://www.allitebooks.org

For my parents, Stella Maris and Edgardo, my
brother, Sebastián, and my lovely wife, Ani, who

have supported me during all of my projects

www.allitebooks.com

http://
http://www.allitebooks.org

www.allitebooks.com

http://
http://www.allitebooks.org

Table of Contents

Preface . xiii

1. The Mobile Jungle . 1
Myths of the Mobile Web 1

It’s Not the Mobile Web; It’s Just the Web! 1
You Don’t Need to Do Anything Special About Your Desktop Website 2
One Website Should Work for All Devices (Desktop, Mobile, TV, etc.) 2
Mobile Web Is Really Easy; Just Create a WML File 2
Just Create an HTML File with a Width of 240 Pixels, and You Have a
Mobile Website 3
Native Mobile Applications Will Kill the Mobile Web 3
People Are Not Using Their Mobile Browsers 3

The Mobile Ecosystem 4
What Is a Mobile Device? 4
Mobile Device Categories 6

Mobile Knowledge 11
Display 11

Brands, Models, and Platforms 16
Apple 16
Nokia 18
BlackBerry 22
Samsung 23
Sony Ericsson 24
Motorola 24
LG Mobile 25
HTC 26
Android 26
Windows Mobile 27
Palm 28
Symbian Foundation 30
Other Platforms 31

Technical Information 31

v

www.allitebooks.com

http://
http://www.allitebooks.org

Market Statistics 32

2. Mobile Browsing . 39
The Mobile Browsing Experience 39

Browsing Types 40
Zoom Experience 41
Reflow Engines 42
Direct Versus Proxied Browsers 43
Multipage Experience 43
The WebKit Engine 44
Preinstalled Browsers 45
User-Installable Browsers 51
Browser Overview 53

Mobile Web Eras 54
WAP 1 54
WAP 2.0 56
Mobile Web 2.0 59

3. Architecture and Design . 61
Website Architecture 61

Navigation 61
Context 62
Progressive Enhancement 63
Different Version Approach 64

Design and Usability 65
Touch Design Patterns 70
Official UI Guidelines 73

4. Setting Up Your Environment . 75
Setting Up a Development Environment 75

Working with Code 75
Emulators and Simulators 75

Production Environment 92
Web Hosting 93
Domain 93
Error Management 93
Statistics 94

5. Markups and Standards . 95
First, the Old Ones 95

WML 96
Current Standards 102

Politics of the Mobile Web 102

vi | Table of Contents

www.allitebooks.com

http://
http://www.allitebooks.org

Delivering Markup 104
XHTML Mobile Profile and Basic 109

Available Tags 109
Official Noncompatible Features 111
Creating Our First Compatible Template 111
Markup Additions 112

CSS for Mobile 114
WCSS Extensions 114

Confusion 119

6. Coding Markup . 121
Heading Structure 121

Icons for the Mobile Web 122
Hey! I’m Mobile Friendly 124

The Document Body 128
Main Structure 129
Images 131
Lists 138
Links 138
Forms 152
Tables 166
Frames 169

Plug-ins and Extensions 170
Adobe Flash 171
Microsoft Silverlight 174
SVG 174
Canvas 178

7. CSS for Mobile Browsers . 179
Where to Insert the CSS 179

Media Filtering 180
Selectors 183
CSS Techniques 185

Reset CSS Files 185
Box Model 187
Text Format 187

Common Patterns 197
Display Properties 197

CSS Sprites 205
Samples and Compatibility 206
CSS Sprites Alternatives 210

WebKit Extensions 211
Text Stroke and Fill 211

Table of Contents | vii

www.allitebooks.com

http://
http://www.allitebooks.org

Border Image 212
Safari-Only Extensions 217

8. JavaScript Mobile . 219
Supported Technologies 220

Document Object Model 220
Ajax 221
JSON 221
HTML 5 APIs 221
Platform Extensions 222

Coding JavaScript for Mobile Browsers 222
Code Execution 223
JavaScript Mobile Compatibility 225
DOM 241
Scripting Styles 246
Event Handling 247
Touch Gestures 259

9. Ajax, RIA, and HTML 5 . 267
Ajax Support 267

XML Parsing 268
JSON Parsing 269
JSONP and Lazy Loading 270
Comet Techniques 271

JavaScript Libraries 272
Mobile Libraries 273

WebKit CSS Extensions 275
WebKit Functions 275
Gradients 276
Reflection Effects 277
Masked Images 278
Transitions 279
Animations 281
Transformations 284

Mobile Rich Internet Applications 288
JavaScript UI Libraries 289
JavaScript Mobile UI Patterns 295

HTML 5 301
The Standard 301
Editable Content 303
New Input Types 303
Data Lists 304
The canvas Element 304

viii | Table of Contents

www.allitebooks.com

http://
http://www.allitebooks.org

Offline Operation 308
Client Storage 311

10. Server-Side Browser Detection and Content Delivery . 317
Mobile Detection 317

HTTP 318
Detecting the Context 323
Transcoders 326
Device Libraries 330

Content Delivery 343
Defining MIME Types 343
File Delivery 346
Application and Games Delivery 351
Java ME 353
Flash Lite Content 356
iPhone Applications 357

Multimedia and Streaming 357
Delivering Multimedia Content 358
Embedding Audio and Video 358
Streaming 359

Content Adaptation 361
Adaptation Frameworks 362
Microsoft ASP.NET Mobile Controls 364
mobileOK Pythia 365
Yahoo! Blueprint 365

Mobilizing WordPress and Other CMSs 366
WordPress 367

11. Geolocation and Maps . 369
Location Techniques 369

Accuracy 369
Indoor Location 369
Client Techniques 370
Server Techniques 371
Asking the User 373

Detecting the Location 375
W3C Geolocation API 375
Google Gears 379
BlackBerry Location API 382
Widget APIs 383
GSMA OneAPI 383
Multiplatform Geolocation API 384
IP Geolocation 386

Table of Contents | ix

http://

Showing a Map 387
Google Maps API v3 388
Google Maps Static API 390
Following LBS 391

12. Widgets and Offline Webapps . 393
Mobile Widget Platforms 394

Pros and Cons 394
Architecture 395

Standards 398
Packaging and Configuration Standards 398
Platform Access 399

Platforms 403
Symbian/Nokia 403
iPhone, iPod, and iPad 413
webOS 418
Android 420
Windows Mobile 422
BlackBerry 424
LG Mobile 426
Samsung Mobile 427
JIL 429
Opera Widgets 430
Operator-Based Widget Platforms 431

Widget Design Patterns 431
Multiple Views 432
Layout 432
Input Method 432
One-View Widget 432
Dynamic Application Engine 433
Multiplatform Widgets 433

13. Testing, Debugging, and Performance . 435
Testing and Debugging 435

Remote Labs 436
Server-Side Debugging 443
Markup Debugging 445
Client-Side Debugging 448

Performance Optimization 451
Measurement 452
Best Practices 453

x | Table of Contents

http://

14. Distribution and Social Web 2.0 . 457
Mobile SEO 457

Spiders and Discoverability 458
How Users Find You 459
User Fidelizing 464

Mobile Web Statistics 466
Google Analytics for Mobile 467
Yahoo! Web Analytics 467
Mobilytics 467
Motally Web Analytics 467
Pion for Mobile Web 468

Mobile Web Advertising 468
Monetizing Your Website 468
AdMob 469
Other Companies 469

Mobile Web Social Features 469
Facebook 469
Share Content 470

Appendix: MIME Types for Mobile Content . 473

Index . 477

Table of Contents | xi

http://

http://

Preface

In your pocket is a device that has changed the lives of billions of people all over the
world. The third personal screen (after the TV and the computer) is the most personal
one, and bringing our services to it is one of the key business priorities of this decade.

Mobile development, however, is a more challenging activity than desktop develop-
ment. Platforms are severely fragmented, and developers have to work with minimal
resources. Fortunately, the mobile web makes it easier to deal with this fragmentation,
allowing developers to create applications that run on many more platforms than native
(or installable) applications. As we will see later, the mobile web and installable appli-
cations are not enemies. In fact, they work together very well.

All of that sounds great: billions of devices, web technologies, multiplatform solu-
tions…where’s the problem? More than half of your desktop web skills and the tips,
hacks, and best practices you already know simply do not apply on the mobile web.
The mobile web demands new usability patterns, new programming best practices, and
new knowledge and abilities.

At the time of this writing there are almost no books, websites, or training courses
focused on concrete mobile web programming. We don’t need vague information like
“this may not work on some phones”; we need real, fresh, and working data. On which
devices does a solution not work? Why? Is there another solution? That is why I’ve
written this book: to help developers in programming mobile websites.

You may feel that you are advanced enough to go directly to the code, but I encourage
you to start from the beginning of the book if you are new to the mobile world. This is
another universe, and every universe has its own rules.

Who This Book Is For
This book is for experienced web developers who want to learn what’s different about
designing for the mobile web. We will talk about HTML, CSS, JavaScript, Ajax, and
server-side code as if you have experience with all those technologies. If you are a web
designer with some basic programming skills, you will also find this book useful.

xiii

http://

We will cover HTML 5 features, but don’t worry if you don’t have any experience with
this new upcoming version yet; we will cover it from the ground up, and your HTML
4 and XHTML 1.0 knowledge will be enough.

If you are an individual freelancer, if you work for a company in the areas of program-
ming or web development, or if you work in a web design studio, this book is for you.
Perhaps you need to create a mobile application or client for a current desktop service,
you want to add new services to your portfolio, or you need to migrate an old WAP
site to newer devices.

Or perhaps you are a widget developer or a Rich Internet Application programmer,
using desktop offline technologies like Google Gears or Adobe AIR. This book will
teach you how to use your current skills to create offline mobile applications and
browser-based solutions.

You may also be a Web 2.0 entrepreneur with—or looking for—a great idea for mobile
devices, and you want to analyze what you can do with current mobile browsers. This
book investigates compatibility device by device and discusses advanced features you
can implement.

The book will also be useful if you are wondering how to identify devices and deliver
proper and compatible content for ad campaigns, to sell content or to deliver free con-
tent to mobile users.

Who This Book Is Not For
We don’t really want to cut anyone out of the possibility of reading this book, but there
are a lot of people who aren’t likely to enjoy it. If you are a graphic designer, you will
not find detailed tips and practices in this book, and you are likely to only enjoy the
first three chapters.

If you are a web designer without programming skills, Chapters 1 through 7 are the
ones you should read line by line; the rest will be useful to review so you know the
capabilities you can request from a developer.

If you are a native mobile developer (iPhone, Android, Symbian, Java ME, Windows
Mobile), some web knowledge will be required in order to understand and follow all
the samples in this book.

This is also not a book for learning basic HTML, CSS, or JavaScript. You will not find
detailed samples or step-by-step instructions on how to implement every task. It is
assumed that you are experienced enough to create code on your own or, at least know
how to find out by searching on the Web.

If you are a manager, a CTO, a project leader, or an entrepreneur without any web
knowledge, you will find the first four chapters useful: they describe the state of the art
in this market and should help you decide how to organize your team.

xiv | Preface

http://

What You’ll Learn
This book is an advanced reference for the mobile web today, and it is the most complete
reference available at this time. This may seem an ambitious claim, but it is the truth.
This book draws upon a mix of experience and very detailed research and testing not
available in other books, websites, or research papers about the mobile web.

Programming the Mobile Web will teach you how to create effective and rich experiences
for mobile web browsers, and also how to create offline applications or widgets that
will be installed in the devices’ applications menu.

We will not talk only about the star devices, like the iPhone and Android devices; we
will also cover mass-market platforms from Nokia, Sony Ericsson, Motorola, Black-
Berry, Palm, Windows Mobile, and Symbian.

Chapter 1, The Mobile Jungle, and Chapter 2, Mobile Browsing, introduce the mobile
world: they will help you understand who is who in this market, what platforms you
should care about, how to know your users, and how mobile browsing works (covering
all the mobile browsers currently available in the market). We will also cover the history
of the mobile web, including WAP and Mobile Web 2.0.

Chapter 3, Architecture and Design, focuses on architecture, design, and usability, pre-
senting a quick review of the tips, differences, and best practices for defining the nav-
igation structure; the design template; and the differences for touch devices.

We will install our development and production environment in Chapter 4, Setting Up
Your Environment, which covers all the emulators, tools, and IDEs we will need to use
for our work and what is required on the server side.

Chapter 5, Markups and Standards, and Chapter 6, Coding Markup, focus on markup
coding; we will review every standard (mobile and not) that we can use, with a full
compatibility table presented for each one. We will cover what happens with standard
code (including links, images, frames, and tables) and how to deal with mobile-specific
markup, like call-to actions and viewport management for zooming purposes. Every
feature will be tested for almost every important browser today, so we know what we
can use on every platform. We will also cover how SVG and Adobe Flash work on the
mobile web.

In Chapter 7, CSS for Mobile Browsers, we will start our journey in CSS Mobile and
look at how to deal with standards and differences in attribute support. We will see
how CSS 2.1 and CSS 3 work on mobile browsers and what advanced extensions we
can use on some devices. Chapter 8, JavaScript Mobile, deals with JavaScript, starting
with how standard dialogs and pop-ups work and passing through DOM compatibility
and touch event support.

We will continue adding best practices for mobile web development in Chapter 9, Ajax,
RIA, and HTML 5, covering Rich Internet Application technologies including Ajax

Preface | xv

http://

support, Dynamic HTML, and new features of HTML 5, such as offline support, da-
tabase storage, and form enhancements.

We start our work on device detection, discoverability, and content delivery in Chap-
ter 10, Server-Side Browser Detection and Content Delivery, working on the server side.
We will explore solutions for all server platforms and look at some samples in PHP to
detect devices, transform output, and deliver content.

Location-Based Services (LBS) will be covered in Chapter 11, Geolocation and Maps,
along with geolocation and maps support for mobile devices. We will talk about
standard and nonstandard APIs, server-side solutions, and best practices to locate the
user and to show map information.

Chapter 12, Widgets and Offline Webapps, will be the gem for everyone looking to
bypass the browser barrier and create offline applications with icons in the user’s home
or applications menu using strictly web technologies. We will cover web apps for
iPhone and Android devices, hybrid application development, and the widget platforms
available today in other platforms, including JavaScript API extensions. Store distri-
bution (free or premium) will be also covered in this chapter.

Chapter 13, Testing, Debugging, and Performance, illustrates how we can test and debug
mobile web applications and how to measure and enhance our mobile web perform-
ance. Finally, in Chapter 14, Distribution and Social Web 2.0, we will talk about dis-
tribution and social networks in a Web 2.0 environment, covering mobile search engine
optimization (SEO), mobile advertisement, distribution techniques including QR
codes, and mobile social network integration, with Facebook and Twitter as samples.

Other Options
There aren’t many resources available today for multiplatform mobile web develop-
ment. You will find specific information and books for the iPhone and maybe for An-
droid, but that’s about it. Other available books (at present, not more than three) are
outdated or do not contain much real information, having plenty of “maybes,” “per-
hapses,” and “be carefuls.”

If you need to learn web technologies, there are plenty of books and resources available.
Take a look at http://www.oreilly.com/css-html and http://www.oreilly.com/javascript
for some lists.

If you want to get information on the mobile web for specific platforms, here are some
resources you can explore:

• Building iPhone Apps with HTML, CSS, and JavaScript by Jonathan Stark (O’Reilly)

• Palm webOS by Mitch Allen (O’Reilly)

• BlackBerry Development Fundamentals (Addison-Wesley Professional)

• Practical Palm Pre webOS Projects (Apress)

xvi | Preface

http://www.oreilly.com/css-html
http://www.oreilly.com/javascript
http://oreilly.com/catalog/9780596805791/
http://oreilly.com/catalog/9780596155261/
http://

• Developing Hybrid Applications for the iPhone (Addison-Wesley Professional)

• Safari and WebKit development for iPhone OS 3.0 (Wrox)

• AdvancED Flash on Devices (Friends of Ed)

If you want a complement to this book in the areas of design, performance, and ad-
vanced programming, I recommend the following books:

• Mobile Design and Development by Brian Fling (O’Reilly)

• Programming the iPhone User Experience by Toby Boudreaux (O’Reilly)

• JavaScript: The Good Parts by Douglas Crockford (O’Reilly)

• High Performance JavaScript by Nicholas Zakas (O’Reilly)

• High Performance Websites by Steve Souders (O’Reilly)

• Even Faster Web Sites by Steve Souders (O’Reilly)

• Website Optimization Andrew B. King (O’Reilly)

You may also want to begin in the native mobile development world. For that, you
should explore some of these books:

• Learning iPhone Programming by Alasdair Allan (O’Reilly)

• Head First iPhone Development by Dan Pilone and Tracey Pilone (O’Reilly)

• Android Application Development by Rick Rogers et al. (O’Reilly)

• Beginning iPhone 3 Development (Apress)

• Beginning Java ME Platform (Apress)

• Qt for Symbian (John Wiley & Sons)

• Professional Microsoft Smartphone Programming (Microsoft Press)

If You Like (or Don’t Like) This Book
If you like—or don’t like—this book, by all means, please let people know. Amazon
reviews are one popular way to share your happiness (or lack of happiness), and you
can leave reviews on this book’s website:

http://www.oreilly.com/catalog/9780596807788/

There’s also a link to errata there, which readers can use to let us know about typos,
errors, and other problems with the book. Reported errors will be visible on the page
immediately, and we’ll confirm them after checking them out. O’Reilly can also fix
errata in future printings of the book and on Safari, making for a better reader experi-
ence pretty quickly.

We hope to keep this book updated for future mobile platforms, and will also incor-
porate suggestions and complaints into future editions.

Preface | xvii

http://oreilly.com/catalog/9780596155452/
http://oreilly.com/catalog/9780596155476/
http://oreilly.com/catalog/9780596517748/
http://oreilly.com/catalog/9780596802806/
http://oreilly.com/catalog/9780596529307/
http://oreilly.com/catalog/9780596522315/
http://oreilly.com/catalog/9780596515089/
http://oreilly.com/catalog/9780596806446/
http://oreilly.com/catalog/9780596803551/
http://oreilly.com/catalog/9780596521509/
http://www.oreilly.com/catalog/9780596807788/
http://

Conventions Used in This Book
The following font conventions are used in this book:

Italic
Indicates pathnames, filenames, and program names; Internet addresses, such as
domain names and URLs; and new items where they are defined.

Constant width

Indicates command lines and options that should be typed verbatim; names and
keywords in programs, including method names, variable names, and class names;
and HTML/XHTML element tags.

Constant width bold
Used for emphasis in program code lines.

Constant width italic

Indicates text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming the Mobile Web by Maxi-
miliano Firtman. Copyright 2010 Maximiliano Firtman, 978-0-596-80778-8.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

xviii | Preface

www.allitebooks.com

mailto:permissions@oreilly.com
http://
http://www.allitebooks.org

How to Contact Us
We have tested and verified the information in this book to the best of our ability, but
you may find that features have changed (or even that we have made a few mistakes!).

The author has created a blog to maintain updated information and links for this book;
it is available at http://www.mobilexweb.com.

Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596807788/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Preface | xix

http://www.mobilexweb.com
http://www.oreilly.com/catalog/9780596807788/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://

Acknowledgments
I want to thank first all the members of my family, including my parents, Stella Maris
and Edgardo, my brother, Sebastián, and my lovely wife, Ani, who have supported me
during the writing of this book and all of my projects.

Second, thanks to the many anonymous people who have helped with samples, tuto-
rials, testing, and documentation during the last 10 years. Without them, I could not
have learned as much as I have and gained experience in this minefield.

I want to thank my technical reviewers, who helped find some bugs and fill in some
information gaps: Fantayeneh Asres Gizaw, Gabor Torok, Amit Kankani, Chris Abbott,
and Kyle Barrow. A special thanks to Luca Passani, CEO of WURFL-Pro, whose tech-
nical review was great work and helped me understand the transcoding background.

Some opinions were collected from sources at many important companies, like Cathy
Rohrl from Weather.com. Thanks to all of you for taking time to answer my questions.

Some of the real testing for this book was done thanks to the DeviceAnywhere.com
service. I want to thank Maria Belen del Pino, Ryan Peterson, and Josh Galde from
DeviceAnywhere; your support was definitely helpful in making this book.

A special mention to Rachel Head, copyeditor of this book, who did a really great job
making this book a perfect read even with my not-so-perfect English.

Finally, to Simon St.Laurent at O’Reilly Media, thanks for all your help and for trusting
me when I presented this risky project.

Creating a book about the mobile web was really a challenge, but it was worth it. Enjoy!

xx | Preface

http://

CHAPTER 1

The Mobile Jungle

Isn’t the mobile web the same web as the desktop one? It does use the same basic
architecture and many of the same technologies, though mobile device screens are
smaller and bandwidth and processing resources are more constrained. There’s a lot
more to it than that, though, with twists and turns that can trip up even the most
experienced desktop web developer.

Myths of the Mobile Web
As the Web has moved onto mobile devices, developers have told themselves a lot of
stories about what this means for their work. While some of those stories are true,
others are misleading, confusing, or even dangerous.

It’s Not the Mobile Web; It’s Just the Web!
I’ve heard this quote many times in the last few years, and it’s true. It’s really the same
Web. Think about your life. You don’t have another email account just for your mobile.
(OK, I know some guys that do, but I believe that’s not typical!)

You read about the last NBA game on your favorite site, like ESPN; you don’t have a
desktop news source and a different mobile news source. You really don’t want another
social network for your mobile; you want to use the same Facebook or Twitter account
as the one you used on your desktop. It was painful enough creating your friends list
on your desktop, you’ve already ignored many people…you don’t want to have to do
all that work again on your mobile.

For all of these purposes, the mobile web uses the same network protocols as the whole
Internet: HTTP, HTTPS, POP3, Wireless LAN, and even TCP/IP. OK, you can say that
GSM, CDMA, and UMTS are not protocols used in the desktop web environment, but
they are communication protocols operating at lower layers. From our point of view,
from a web application approach, we are using the same protocols.

1

http://

So, yes…it’s the same Web. However, when developing for the mobile web we are
targeting very, very different devices. The most obvious difference is the screen size,
and yes, that will be our first problem. But there are many other not-so-obvious dif-
ferences. One issue is that the contexts in which we use our mobile devices are often
extremely different from where and how we use our comfortable desktops or even our
laptops and netbooks.

Don’t get me wrong—this doesn’t mean that, as developers, we need to create two,
three, or dozens of versions duplicating our work. In this book, we are going to analyze
all the techniques available for this new world. Our objective will be to make only one
product, and we’ll analyze the best way to do it.

You Don’t Need to Do Anything Special About Your Desktop Website
Almost every smartphone on the market today—for example, the iPhone and Android-
based devices—can read and display full desktop websites. Yes, this is true. Users want
the same experience on the mobile web as they have on their desktops. Yes, this is also
true. Some statistics even indicate that users tend to choose web versions over mobile
versions when using a smartphone.

However, is this because we really love zooming in and out, scrolling and crawling for
the information we want, or is it because the mobile versions are really awful and don’t
offer the right user experience? I’ve seen a lot of mobile sites consisting of nothing but
a logo and a couple of text links. My smartphone wants more!

One Website Should Work for All Devices (Desktop, Mobile, TV, etc.)
As we will see, there are techniques that allow us to create only one file but still provide
different experiences on a variety of devices, including desktops, mobiles, TVs, and
game consoles. This vision is called “One Web.” This is to an extent possible today,
but the vision won’t fully be realized for years to come. Today, there are a lot of mobile
devices with very low connection speeds and limited resources—non-smartphones—
that, in theory, can read and parse any file, but will not provide the best user experience
and will have compatibility and performance problems if we deliver the same document
as for desktop. Therefore, One Web remains a goal for the future. A little additional
work is still required to provide the right user experience for each mobile device, but
there are techniques that can be applied to reduce the work required and avoid code
and data duplication.

Mobile Web Is Really Easy; Just Create a WML File
I’m really surprised how many mobile websites are still developed using a technology
deprecated many years ago: WML (Wireless Markup Language). Even in emerging
markets, there are almost no WML-only web-capable devices on the market today. The
worst part of this story is that these developers think that this is the markup language

2 | Chapter 1: The Mobile Jungle

http://

for the mobile web. Wrong! WML development was called mobile web (or WAP) de-
velopment a couple of years ago, when the first attempt at building a mobile web was
made. (We will talk more about history in the “Mobile Web Eras” on page 54 section
of Chapter 2.) There are still a small proportion of WML-only devices available in some
markets, but WML is definitely not the mobile web today.

Just Create an HTML File with a Width of 240 Pixels, and You Have a Mobile
Website
This is the other fast-food way to think about the mobile web. Today, there are more
than 3,000 mobile devices on the market, with almost 30 different browsers (actually,
more than 300 different browsers if we separate them by version number). Creating
one HTML file as your mobile website will be a very unsuccessful project. In addition,
doing so contributes to the belief that mobile web browsing is not useful.

Native Mobile Applications Will Kill the Mobile Web
Every solution has advantages and disadvantages. The mobile web has much to offer
native applications, as Chapter 12 of this book will demonstrate. The mobile web (and
the new concept of mobile widgets) offers us a great multi-device application platform,
including local applications that don’t require an always-connected Web with URLs
and browsers.

People Are Not Using Their Mobile Browsers
How many Internet connections are there in the world?

1,802,330,457 (26% of the world’s population) at the beginning of 2010 (http://
www.internetworldstats.com)

How many people have mobile devices?

4,600,000,000 (68% of the population) at the beginning of 2010 (U.N. Telecom-
munications Agency, http://www.itu.int)

So, one of the reasons why people are not using their mobile browsers may be because
of us, the web producers. We are not offering them what they need. There are other
factors, but let’s talk about what we can do from our point of view.

Opera Mini is a mobile browser for low- and mid-range devices. It is free and it has had
more than 50 million downloads to date. This tells us that 50 million users wanted to
have a better mobile web experience, so they went out and got Opera Mini. Do all the
4 billion plus worldwide mobile device users know about Opera Mini? Perhaps not, so
it’s difficult to know how many would be interested in trying this different mobile web
experience. However, 50 million downloads for one only browser that the user had to
install actively is a big number for me. When Opera Mini appeared in Apple Inc.’s App

Myths of the Mobile Web | 3

http://www.internetworldstats.com
http://www.internetworldstats.com
http://www.itu.int
http://

Store, from which users can download and install applications for the iPhone, iPod,
and iPad, 1 million users downloaded the browser on the first day. This is quite
impressive.

Today, less than 4% of total web browsing is done from mobile devices. This percentage
is increasing month by month. Mobile browsing may never become as popular as
desktop browsing, but it will increase a lot in the following years.

In addition, user browsing on mobile devices will likely have a higher conversion rate.
How many tabs do you usually have open at once in Internet Explorer or Firefox on
your desktop or laptop? On a mobile device, when you browse you are more specific
and more likely to act on what you find.

The Mobile Ecosystem
If you are coming from the desktop web world, you are probably not aware of the
complete mobile ecosystem. Let’s review the current state of affairs, so we can be sure
we have all the knowledge we need to create the best solutions.

What Is a Mobile Device?
It’s really difficult to categorize every mobile device. Is it a smartphone? Is it a handheld?
Is it a netbook? Is it a music player?

First, when is a device considered a mobile one?

For the purposes of this book, a mobile device has the following features:

• It’s portable.

• It’s personal.

• It’s with you almost all the time.

• It’s easy and fast to use.

• It has some kind of network connection.

Portable

A mobile device has to be portable, meaning that we can carry it without any special
considerations. We can take it to the gym, to the university, to work; we can carry it
with us everywhere, all the time.

Personal

We’ve all heard it: “Don’t touch my phone!” A mobile device is absolutely personal.
My mobile is mine; it’s not property of the family, nor is it managed by the company
who manufactured it. I choose the ringtone, the visual theme, the games and applica-
tions installed, and which calls I should accept. My wife has her own mobile device,

4 | Chapter 1: The Mobile Jungle

http://

and so do my kids. This personal feature will be very important in our projects. You
can browse a desktop website from any computer—your familiar home PC, your com-
puter at work, or even a desktop at a hotel or Internet café—and numerous people may
have access to those machines. However, you will almost always browse a mobile web-
site from the same device, and you are likely to be the only person who uses that device.

Do a test: go now and ask some friends or colleagues to allow you to
view your email or your Facebook account using their mobile devices.
Pay attention to their faces. They don’t want to! You will log them out
from their accounts, you will use their phone lines, and you will touch
their devices. It’s like a privacy violation.

Companion

Your mobile device can be with you anytime! Even in the bathroom, you probably have
your mobile phone with you. You may forget to take lots of things with you from your
home in the morning, but you won’t forget your wallet, your keys, and your mobile
device. The opportunity to be with the user all the time, everywhere, is really amazing.

Easy usage

A notebook (or even a netbook) is portable; it can be with you at any time and it has a
network connection, but if you want to use it, you need to sit down and perhaps find
a table. Therefore, it’s not a mobile device for the purposes of this book.

A mobile device needs to be easy and quick to use. I don’t want to wait two minutes
for Windows to start; I don’t want to sit down. If I’m walking downtown, I want to be
able to find out when the next train will be departing without having to stop.

Connected device

A mobile device should be able to connect to the Internet when you need it to. This
can be a little difficult sometimes, so we will differentiate between fully connected de-
vices that can connect any time in a couple of seconds and limited connected devices
that usually can connect to the network but sometimes cannot.

A classic iPod (non-Touch) doesn’t have a network connection, so it’s out of our list
too, like the notebooks.

Where do tablets, like the iPad, fit in? They are not so personal (will you
have one tablet per member of the family?), and they may not be so
portable. But, as they generally use mobile instead of desktop operating
systems, they are more mobile than notebooks or netbooks. So, I don’t
have the answer. They are in the middle.

The Mobile Ecosystem | 5

http://

Mobile Device Categories
When thinking about mobile devices, we need to take the “phone” concept out of our
minds. We are not talking about simply a phone for making calls. A voice call is just
one possible feature of a mobile device.

With this in mind, we can try to categorize mobile devices.

Mobile phones

OK, we still have mobile phones in some markets. These are phones with call and SMS
support. They don’t have web browsers or connectivity, and they don’t have any in-
stallation possibilities. These phones don’t really interest us; we can’t do anything for
them.

In a couple of years, because of device recycling, such phones will probably not be on
the market anymore. The Nokia 1100 (see Figure 1-1) is currently the most widely
distributed device in the world, with over 200 million sold since its launch in 2003. In
terms of features, it offers nothing but an inbuilt flashlight. The problem is that we
can’t create web content for it. Some companies may continue to make very low-end
entry devices in the future, but hopefully Nokia and most other vendors will stop cre-
ating this kind of device. Even newer, cheaper mobile devices now have inbuilt browser
support. This is because the mobile ecosystem (vendors, carriers, integrators, and
developers) wants to offer services to users, and a browser is the entry point.

For example, through its OVI Services Nokia offers OVI Mail, an email service for non-
Internet users in emerging markets. Thanks to this service, many, many people who
have never before had access to email can gain that access, with a mobile device costing
less than $40. This widespread solution meets a real need for many people in emerging
markets, like some countries in Africa and Latin America.

Low-end mobile devices

Low-end mobile devices have a great advantage: they have web support. They typically
have only a very basic browser, but this is the gross market. People who buy these kinds
of devices don’t tend to be heavy Internet users, but this may change quickly with the
advent of social networks and Web 2.0 services. If your friends can post pictures from
their mobile devices, you’ll probably want to do the same, so you may upgrade your
phone whenever you can.

Nokia, Motorola, Kyocera, LG, Samsung, and Sony Ericsson have devices for this mar-
ket. They do not have touch support, have limited memory, and include only a very
basic camera and a basic music player. We can find phones in this category from $40
on sale all over the world.

6 | Chapter 1: The Mobile Jungle

http://

Mid-end mobile devices

This is the mass-market option for a good mobile web experience. Mid-end devices
maintain the balance between a good user experience and moderate cost. From $150,
we can find a lot of devices in this market sector. In this category, devices typically offer
a medium-sized screen, basic HTML-browser support, sometimes 3G, a decent camera,
a music player, games, and application support.

One of the key features of mid-end devices is the operating system (OS). They don’t
have a well-known OS; they have a proprietary one without any portability across
vendors. Native applications generally aren’t available publicly and some runtime, like
Java ME, is the preferred way to develop installed applications.

The same vendors develop these devices as the low-end devices.

High-end mobile devices

Originally the same category as smartphones, high-end devices are generally non-
multitouch but have advanced features (like an accelerometer, a good camera, and
Bluetooth) and good web support (but not the best in the market). They are better than
mid-end devices but not on a par with smartphones. The enhanced user experience on
smartphones is one of the key differences. The other difference is that high-end devices

Figure 1-1. 200 million devices worldwide sounds very attractive but this device (Nokia 1100) is out
of our scope because it doesn’t have a web browser.

The Mobile Ecosystem | 7

http://

generally are not sold with flat Internet rates. The user can get a flat-rate plan, but he’ll
have to go out and find it himself.

You will find different mobile categories defined in different sources.
There isn’t only one de facto categorization. The one used here is based
on mobile web compatibility.

Smartphones

This is the most difficult category to define. Why aren’t some mid-end and high-end
devices considered “smart” enough to be in this category? The definition of smart
evolves every year. Even the simplest mobile device on the market today would have
been considered very smart 10 years ago.

A device in this category can cost upwards of $400. You can probably get one at half
that price from a carrier; the devices are often subsidized because when you buy them
you sign up for a one- or two-year contract with a flat-rate data plan (hopefully). This
is great for us as users, because we don’t care too much about the cost of bytes trans-
ferred via the Web.

A smartphone, as defined today, has a multitasking operating system, a full desktop
browser, Wireless LAN (WLAN, also known as WiFi) and 3G connections, a music
player, and several of the following features:

• GPS (Global Positioning System) or A-GPS (Assisted Global Positioning System)

• Digital compass

• Video-capable camera

• TV out

• Bluetooth

• Touch support

• 3D video acceleration

• Accelerometer

Currently, this category includes the Apple iPhone, some Symbian devices like the
Nokia N97 (some consider this device only high-end because of its browser), Nokia
MeeGo devices like the N900, every Android device (including the HTC Magic and
Nexus One), and the Palm Pre.

8 | Chapter 1: The Mobile Jungle

www.allitebooks.com

http://
http://www.allitebooks.org

Google bills its own device, the Nexus One (launched in partnership
with HTC), not as a smartphone but rather a “superphone,” because of
its 1-Ghz processor. The fact is, any “superphone” is super only for a
couple of months before it is knocked from the podium by some other
device, so this is not really a valid category.

Some other companies, like Nokia, call their phones “mobile
computers.”

If you are still confused about the models, brands, and operating systems, don’t worry,
it will become clearer. Some confusion is normal, and I will help you to understand the
mobile web ecosystem in the following pages.

Non-phone devices

This may sound a bit strange. Non-phone mobile devices? Indeed, there are some mo-
bile devices that have all the features we’ve mentioned, but without voice support using
the normal carrier services.

For example, Apple’s iPod Touch and iPad are devices in this category. They aren’t
phones, but they can be personal, are portable and easy to use, can be kept with you
most of the time, and have WLAN connections, so they fall into the category of limited
connected devices. They both also have a great mobile browser—the same one as the
iPhone—so they will be in our list of devices to be considered for development.

We can also consider some of the new ebook readers. I have a Sony ebook reader, and
it’s really great. My reader (a Sony PRS-700) isn’t a mobile device because it isn’t con-
nected, but there are other versions (like the Amazon Kindle, shown in Figure 1-2, the
Barnes & Noble Nook, and some newer Sony devices) with data connection support.
The Kindle can display very basic web pages on its included browser, and a Kindle SDK
has been announced for Java native development on this platform. Ebook readers aren’t
phones, but they conform to all our other guidelines for mobile devices (with perhaps
one difference: they are more likely to stay at home than to travel everywhere with us).

Small Personal Object Technology (SPOTs)

This may sound like a sci-fi category, but every year sci-fi gets nearer to us. The only
difference between SPOTs and the other devices we’ve considered is their size: a SPOT
may be a watch, or even a pair of glasses. The LG GD910 in Figure 1-3 is a watch with
3G support. It’s on the market now, so it’s not sci-fi.

“OK,” you may be thinking, “but are we really going to create a website for a one-inch
screen?” Maybe not. But we can create small widgets to update information presented
to the users, and this falls under the category of mobile web work.

The Mobile Ecosystem | 9

http://

Tablets, netbooks, and notebooks

I have to be honest: I love the tablet concept. For three years I had a Tablet PC from
HP, and I always loved the idea of it. A small notebook with touch support was a really
great device. However, when I bought it (back in 2005), the concept didn’t work. Why?
I don’t know. However, the concept is back again, and we now have light netbooks,
tablet PCs, the Apple iPad, and a variety of mobile-OS tablets on the market.

These devices have at minimum a nine-inch display, and they are more like desktops
than mobile devices. Some have desktop operating systems and desktop browsers,
while others, such as the iPad, have mobile software.

Figure 1-2. The Amazon Kindle can be considered a mobile device because of its network connection
and (limited) web browser.

10 | Chapter 1: The Mobile Jungle

http://

If a device has a full operating system, you will need to install antivirus protection and
a firewall on it, so it won’t meet the easy usage criterion for a mobile device. Also
remember that you can’t use a netbook while walking.

Still, this concept is growing up. Nokia, a well-know mobile device manufacturer, is
now creating a netbook line: its Booklet 3G has 3G and WLAN support and runs
Windows. Apple, with the iPad, has also entered this market with a hybrid half–ebook
reader, half-iPhone.

Mobile Knowledge
If you are not (up to now) a part of the mobile world, we need to discuss some things
before we start analyzing the devices and before we do any coding. I know you want
to start coding right now, but believe me that your project will be more successful if
you know the environment.

Display
I know what you’re thinking: “you’re going to talk me about the small screen prob-
lems.” Yes, I was going to start with that. A mobile device has a very small screen
compared with a desktop. While in desktop development we talk about 17-, 19-, and
21-inch screen sizes (diagonally), in mobile development we talk about 1.5, 2.3, or 3
inches. It’s really a big difference. Similarly, while in desktop development we talk about

Figure 1-3. The LG GD910 (the “watchphone”) is the first of a new generation of mobile devices that
will have web support through widgets with updatable information in the near future.

Mobile Knowledge | 11

http://

1024×768 pixel resolution, in mobile development we talk about a quarter or half of
that.

Resolution

Resolution is the primary concern in mobile design. How many pixels (width and
height) are available on a given device? This was the only portability problem for many
years in the area of mobile development.

Portability refers to the ability of a mobile application to be used on
multiple devices with different hardware, software, and platforms.

There are no mobile device standards regarding screen resolution. One device may have
a resolution of 128×128 pixels, and another 800×600. But if we talk about devices sold
from 2007, we can separate most of them into four basic groups:

• Low-end devices: 128×160 or 128×128 pixels

• Mid-end devices (group #1): 176×220 or 176×208 pixels

• Mid-end devices (group #2) and high-end devices: 240×320 pixels

• Touch-enabled high-end devices and smartphones: 240×480, 320×480, 360×480,
480×800, 480×854, or 640×960 pixels

Touch devices typically have a higher resolution than devices with a
keyboard because no space needs to be reserved for the keypad.

Today, the most widely available screen resolution is 240×320 pixels. This is also
known as QVGA (Quarter VGA), because the 1990s VGA standard was 640×480 pixels.
An iPhone 3GS, for example, has a resolution of 320×480 pixels; this is known as HVGA
(Half VGA).

There are also still a lot of devices with custom resolutions. Web technologies will
simplify this problem for us, as we’ll see later in this book.

Physical dimensions

The resolution isn’t the only thing we can talk about with regard to a mobile device’s
screen. One feature as important as the resolution is the physical dimensions of the
screen (in inches or centimeters, diagonally or measured as width/height), or the rela-
tion between this measure and the resolution, which is known as the PPI (pixels per
inch) or DPI (dots per inch). This is very important, because while our first thought

12 | Chapter 1: The Mobile Jungle

http://

may be that a screen with a resolution of 128×160 is “smaller” than a screen with a
resolution of 240×320, that may be a false conclusion.

One of the phones I owned back in 2006, thanks to a gift from Nokia, was an N90. The
device was like a brick, but the great (or not so great, as it turned out) feature was its
resolution: 352×416. The problem was that the screen size was very similar to those of
other devices on the market at the time that used resolutions like 176×208. Therefore,
I couldn’t use any game or application on the device, or browse the Web; I needed a
magnifier to see the normal font size. Every programmer thought that more available
pixels meant a bigger screen, so why bother increasing the font? “Let’s use the extra
space to fit more elements,” everyone thought. Wrong.

In June 2010, Apple presented iPhone 4, the first device with a “retina
display,” that is a display with 326 pixels per inch (ppi). The human
retina has a limit of 300 ppi at a certain distance, so this device with
960×640 in landscape mode has more pixels per inch that the ones we
can really see. This is perfect for images and zoom-out viewing, but
remember that we need to zoom in or have large fonts to perfectly read
text.

The Nokia N90 has a display size of 1.36″ × 1.6″ (3.45 cm × 4.07 cm) = 259 PPI (or
0.0979 mm dot pitch), in comparison with other devices with a similar screen size,
which have between 130 and 180 PPI.

You can find an online PPI and DPI calculator at http://members.ping
.de/~sven/dpi.html.

Aspect ratio

A device’s aspect ratio refers to the ratio between its longer and shorter dimensions.
There are vertical (or portrait) devices whose displays are taller than they are wide,
there are horizontal (or landscape) devices whose displays are wider than they are tall,
and there are also some square screens, as shown in Figure 1-4. To complicate our lives
as programmers even more, today there are also many devices with rotation capabilities.
Such a device can be either 320×240 or 240×320, depending on the orientation. Our
websites need to be aware of this and offer a good experience in both orientations.

Mobile Knowledge | 13

http://members.ping.de/~sven/dpi.html
http://members.ping.de/~sven/dpi.html
http://

Input methods

Today, there are many different input methods for mobile devices. One device may
support only one input method or many of them. Possibilities include:

• Numeric keypad

• Alphanumeric keypad (ABC or QWERTY)

• Virtual keypad on screen

• Touch

• Multitouch

• External keypad (wireless or not)

• Handwriting recognition

• Voice recognition

And of course any possible combination of these, like a touch device with an optional
onscreen keyboard and also a full QWERTY physical keyboard (see Figure 1-5).

If you are thinking that QWERTY sounds like a Star Trek Klingon’s word, go now to
your keyboard and look at the first line of letters below the numbers. That’s the reason
for the name; it’s a keyboard layout organized for the smoothest typing in the English
language that was created in 1874. This layout is preserved in many onscreen keyboards
(see Figure 1-6).

Figure 1-4. Mobile devices may have horizontal screens, vertical screens, or even square screens.

14 | Chapter 1: The Mobile Jungle

http://

Other features

We could talk for hours about mobile device features, but we’ll focus on the ones that
are useful for us as mobile web programmers. Key features include:

Geolocation
Many devices can detect the geographical location of the users using one or many
technologies, like GPS, A-GPS, WPS (WiFi Positioning System), or cell-based lo-
cation tracking.

Phone calls
Yes, mobile devices also make phone calls!

SMS (Short Message Service)
Most devices allow you to create text messages to send to other devices or to a
server, with a length of up to 160 7-bit ASCII characters (or 140 8-bit ASCII char-
acters, or 70 Unicode chars), or to concatenate many messages for a larger text.

MMS (Multimedia Message Service)
Mobile devices often allow users to create messages with text and attachments,
such as images, videos, or documents.

Application installations
Many devices allow the user to download and install an application using OTA
(Over-The-Air). This means that we can serve applications to a device from our
websites.

Figure 1-5. The Nokia N97 mini has a full slider QWERTY keyboard and, when closed, an onscreen
touch keyboard.

Mobile Knowledge | 15

http://

Brands, Models, and Platforms
Now that we have established a set of categories in the mobile world, let’s talk about
the difficult part: the brands and models on the market. We are not going to talk about
every model available, and we don’t need to know about all of them. We only need to
be aware of some information that will be useful for making decisions in the future.

Writing a book about brands and models is very difficult. The market changes a lot
every year. In fact, during the months while I was writing this book, I had to update
the information several times. That is why I will be general and aim to show you how
to understand any new device that could appear on the market.

Apple
We are going to start with Apple, not because its devices are the best or because it has
the greatest market share, but because Apple has caused a revolution in the market. It
changed the way mobile devices are seen by users, and it is the reason why many de-
velopers (web or not) have turned their attention to the mobile world.

Figure 1-6. The iPhone and iPod Touch use an onscreen virtual keyboard when the user needs to type
something on a website.

16 | Chapter 1: The Mobile Jungle

http://

Apple, a well-known desktop computer company, entered the mobile world with a
revolutionary device: the iPhone. Luckily for us, all of Apple’s devices are quite similar.
They have a multitouch screen, a 3.5″ screen size, WLAN connections, and Safari on
iOS (formerly Mobile Safari) as the browser.

Apple’s devices have a great feature: an operating system called iOS (formerly iPhone
OS) that is based on Mac OS X (a Unix-based desktop OS). Up to this writing, even
the first version of the iPhone can be upgraded to the latest operating system version.
By default, the iPhone and iPod Touch are charged using USB; when you charge your
device, iTunes (the Apple software for managing your device’s content and music) will
detect automatically if an OS update is available for your device, and you can install
the update in minutes without any technical skill needed.

That is why today, for a mobile web developer, it’s more important to know what OS
version an Apple device has installed than which device it is. For those of us whose aim
is to create great web experiences for the iPhone, it doesn’t matter if the device is an
iPhone (the basic phone), an iPhone 3GS (S for speed, a device with more power and
speed), an iPhone 4 or an iPod Touch (like the iPhone without the phone). Even within
each device type, we have many generations.

The Apple iPad is a 9.7″ multitouch tablet running iOS 3.2 or greater.
It includes the same functionality and browser as the iPhone, with minor
differences because of the larger screen, which has a 768×1024
resolution.

The important thing is to know which OS version a device that accesses your website
is running. It may be iOS 1.0, 2.0, 2.2, 3.0, 3.2, 4.0, or newer (although versions 1.0
and 2.0 are rarely seen on devices in use today, so we can safely work with versions 2.2
and beyond). Up to version 4.0, iOS was called iPhone OS. Every version has upgrades
in the browser and is backward compatible. For example, the Gmail version for the
iPhone is different if you have an iPhone running OS 1.0, 2.2, or 3.0. You can see sample
screens in Figure 1-7.

Today, we can develop applications for iOS devices on only two platforms: using
mobile web techniques, and using the native Cocoa Touch framework built on
Objective-C.

Later in this book, we are going to talk about how to detect the OS and
use all the features available only in Safari on iOS. We will also talk
about the App Store and how to distribute our mobile web applications
via this store.

Brands, Models, and Platforms | 17

http://

Nokia
Nokia has the largest market share in mobile devices and smartphones worldwide (but
not necessarily in specific markets, like the U.S.). Nokia has devices in all the mobile
categories, from very low-end devices to very high-end smartphones.

I’ve been working in the mobile development world since 2000 and I have to admit that
Nokia has the best support for developers, compared to all the other companies. Hun-
dreds of documents and a huge amount of sample code, ideas, and best practices for
many technologies, including technologies used for mobile web development are avail-
able on its website for developers, Forum Nokia.

I’ve been one of the Forum Nokia Champions (a worldwide recognition program for
top mobile developers) since 2006, and I know that Nokia really cares about the de-
veloper community.

The bad news for developers is that hundreds of different Nokia devices are available
today. The good news is that they are very well organized by platform into different
series, making it easier for us to develop, test, and port our web applications to most
of them.

Figure 1-7. This is the same Gmail account accessed from an iPhone running OS 2.0 and one running
3.0. The latter provides a more rich and contextual experience for the user.

18 | Chapter 1: The Mobile Jungle

www.allitebooks.com

http://www.forum.nokia.com
http://
http://www.allitebooks.org

Series 40

Nokia’s Series 40 consists of low- and mid-end devices using a proprietary Nokia OS
focused on the mass market. The devices in this series first appeared in 2003, and today
they are separated into different editions and even small update packages (called Fea-
ture Packs) that will help us to understand the abilities of each mobile device in this
series.

The series, the edition, and even the Feature Pack cannot be updated.
So, there are no operating system changes in Series 40.

At the time of writing, Series 40 includes the following divisions:

Series 40 1st edition
Series 40 2nd edition
Series 40 3rd edition
Series 40 3rd edition Feature Pack 1
Series 40 3rd edition Feature Pack 2
Series 40 3rd edition Feature Pack 3
Series 40 5th edition
Series 40 5th edition Feature Pack 1
Series 40 5th edition Feature Pack 1 Lite
Series 40 6th edition

Every edition has between 5 and 40 devices on the market today. The best part is that
Nokia guarantees us that development for each device in one series is the same.

You may have noticed that there isn’t a 4th edition in Nokia’s Series 40.
Why is this? Nokia has a lot of market share in Asia, and in China, 4 is
considered a bad-luck number (like the number 13 in the Western
world) because it is pronounced “si,” similar to “death” in Chinese.

All the Series 40 devices have a mobile browser and Java ME (Micro Edition)—formerly
known as J2ME (Java 2 Micro Edition)—support. From the 3rd edition, they also sup-
port different versions of Adobe Flash Lite.

Java ME is today the most widespread mobile platform, apart from mo-
bile web. It was developed by Sun (now Oracle) in 1998, and the goal
was to create a multiplatform programming language. Sun has said that
Java ME will be retired in 2015.

Brands, Models, and Platforms | 19

http://

Almost all the Series 40 devices have a numeric keypad and a medium-sized screen.
Today, all have a camera and an MP3 player, and many of them have an FM receiver.

It’s interesting to see how the mobile world is changing other business
markets. Today, the worldwide leading company in the MP3 player
market is Nokia.

Some Nokia Series 40 devices that are well distributed in the market include:

Nokia 6500
Nokia 6120 Classic
Nokia 6600 Fold
Nokia 6600 Slide
Nokia 6131
Nokia 5310
Nokia 5200
Nokia 3220
Nokia 2610

S60

Series 60 began as the smartphone line from Nokia. Today these devices are closer to
the high-end category, but the limit is not clear. All S60 devices use the Symbian op-
erating system. The Symbian company was formed by a group of manufacturers in-
cluding Nokia, Ericsson, and Motorola. Later, Samsung and Sony Ericsson were added
to the member list. For many years Nokia has been the leading company using the
Symbian platform, but there are some Samsung, Sony Ericsson, and Motorola Symbian-
based devices on the market. Some of them use the same user interface layer and plat-
form, so there are many non-Nokia S60 devices on the market today. Motorola and
Sony Ericsson developed their own UI layers for Symbian, called UIQ, and DoCoMo
in the Japanese market created MOAPS.

This is history, though. In 2008, after the launching of Android as an open source
operating system, Nokia made a decision: it bought 100% of Symbian, Ltd. from all
the other manufacturers and created the Symbian Foundation to migrate the Symbian
operating system to open source.

Today, there are some Nokia, Sony Ericsson, and Samsung devices based on the Sym-
bian Foundation’s OS and the ex-S60 user interface layer. UIQ has been deprecated.

20 | Chapter 1: The Mobile Jungle

http://

Talking about only Nokia devices, the S60 platform is divided into the following
versions:

S60
S60 2nd edition
S60 2nd edition Feature Pack 1
S60 2nd edition Feature Pack 2
S60 3rd edition Feature Pack 1
S60 3rd edition Feature Pack 2
S60 5th edition

After S60 5th edition, the platform was renamed to Symbian platform.
All new devices coming from Nokia and other manufactures will not
use the S60 brand.

All the S60 devices are based on Symbian and include a camera, a mobile browser,
multitasking support, and a numeric or QWERTY keyboard. The 5th edition has touch
support.

Apart from the technical series divisions, Nokia has divided its Symbian-based devices
into commercial series based on the user groups for whom they were designed since
the 3rd edition.

The n-series is intended for all type of users, including high-tech users, gamers, and
Internet users. This series includes the N97, N95, N85, N78, etc. Some of these devices
have hardware-accelerated video cards for 3D gaming.

The e-series is aimed at enterprise users wanting access to email, web browsing, and
corporate applications. They include a corporate email application, and many of them
have a QWERTY keyboard for easy typing. This series includes the E52, E65, E71, etc.

The x-series (formerly known as XpressMusic) is designed for the music user. These
devices have multimedia keys for easy music player manipulation and provide access
to the Nokia Music Store so users can buy songs legally. The last devices from this series
are touch-based. This series includes the 5800 XpressMusic (see Figure 1-8) and the X6.

Brands, Models, and Platforms | 21

http://

Figure 1-8. The 5th edition Nokia 5800 XpressMusic was the first touch-enabled S60 device.

Every S60 device has a WebKit-based browser that allows the devices to browse almost
any website on the Internet, including Flash-based sites like YouTube. The S60 WebKit
browser is an open source browser developed by Nokia (now managed by the Symbian
Foundation) based on WebKit, an open source browser originally developed by Apple
Inc. Before this browser was developed, S60 devices included a proprietary Nokia
browser or preinstalled some other browser, like Opera Mobile.

Maemo/MeeGo

Nokia has recently created a new platform, called Maemo. It’s a Linux-based operating
system designed for small netbooks or devices with full web browsing support. The
first devices to use Maemo weren’t phones, but today there are devices like the Nokia
N900 with 3G support, competing directly with Symbian devices.

Future smartphone devices from Nokia will be Maemo-based. Maemo was the first
mobile platform to support the popular Firefox browser and Google Chrome.

In 2010, Nokia’s Maemo merged with Intel’s Moblin OS, creating the MeeGo OS. At
the time of this writing, it is not yet clear whether Maemo will continue as a branding
name or if MeeGo will replace it.

BlackBerry
Research in Motion (RIM) is the Canadian manufacturer of the BlackBerry devices,
mobile devices focused on being “always connected” with push technologies that are
primarily used by corporate users who need to remain connected to intranets and cor-
porate networks. RIM calls all its devices “smartphones.”

22 | Chapter 1: The Mobile Jungle

http://

In following chapters, we will cover all the tools, SDKs, and emulators
available from each manufacturer to make our lives as web developers
easier.

RIM has few devices aimed at the mass market, so most of them have QWERTY key-
boards and aren’t designed for gaming. Many of them have proprietary input devices,
like a scroll wheel or a touchpad; some touch-enabled devices have also been launched
in the last few years. All BlackBerrys have the RIM OS, a proprietary operating system
compatible with Java ME with extensions, and, of course, a mobile browser. We can
categorize the devices by operating system version.

BlackBerry has become very popular in the corporate market because of its integration
with Exchange and other corporate servers. A BlackBerry user can browse the Internet
via the corporate Internet connection though a proxy, and many other manufacturers,
such as Nokia, LG, HTC, and Sony Ericsson, support the BlackBerry email client.

Samsung
Samsung has many devices on the market, most of which are divided into three different
series: native devices, Symbian devices, and Windows devices. At the end of 2009,
Samsung surprised the market with a new platform for the devices launching from
2010: Bada.

Samsung’s native devices are low- and mid-end mobile devices with a proprietary OS
including a browser and Java ME support, and typically a camera and a music player.

Prior to 2010, the smartphones and high-end devices were divided into two categories
by operating system—Symbian and Windows Mobile—each having its own set of fea-
tures. The latest devices on the market have touch support, with a UI layer installed
over the operating system.

For newer devices, there is one feature that is available on all the three platforms: Sam-
sung Widgets. These are small applications created using mobile web technologies that
can operate on all the operating systems Samsung uses.

In Chapter 12, we will cover Mobile Widgets and offline applications.
We will talk about the widget platform for Samsung there.

Starting in 2010, Samsung will also be delivering mobile devices with Bada, Android,
and Windows Phone.

Brands, Models, and Platforms | 23

http://

Sony Ericsson
Ericsson built many mobile phones in the 1990s, and in 2001 it merged with Sony and
created the Sony Ericsson company. Today, Sony Ericsson produces a range of low-
and mid-end devices and a couple of smartphones.

Sony Ericsson, like Samsung, has decided to offer devices with different operating sys-
tems. It offers low- and mid-end devices using a proprietary Sony Ericsson operating
system, as well as Windows Mobile devices, Android devices, and Symbian devices.
Before 2009, the Symbian devices used UIQ as the UI layer for the operating system.
Since 2009, there are Symbian Foundation devices using the same UI layer as Nokia’s
and Samsung’s devices. So, in terms of developing web applications for them, they are
very similar.

The proprietary OS devices support Java ME and Flash Lite development (and also
both at the same time, thanks to a project called Capuchin), and they are divided in
series according to the Java ME APIs they support. So, today we have Sony Ericsson
devices from Java Platform 1 (JP-1) to Java Platform 8 (JP-8), with each category dif-
fering in terms of the API support and the screen resolution.

All the devices have a camera, a music player and, of course, a web browser built in.
The Symbian Foundation–based devices are touch-enabled.

Motorola
For many years, Motorola has been a leading manufacturer of low- and mid-end devi-
ces. Motorola’s devices were the first mobile devices on the market, and the company
pioneered the clamshell design with the classic Motorola StarTac. Motorola’s mobile
devices have traditionally used either a proprietary operating system (like the well-
known Motorola v3), Symbian UIQ, Windows Mobile, or a Linux-based operating
system the company created for its devices. On the proprietary OS–based devices, Java
ME and the browser were the only supported development platforms. The Linux-based
OS supports Java ME, web, and native development.

This situation created a very fragmented market for developers. Today, Motorola has
changed its vision and has focused on a single solution: Android. All new mid-end
devices and smartphones, like the one shown in Figure 1-9, are Android-based, and it
appears that Motorola will no longer create new Windows Mobile or Symbian devices.
I won’t make any bets about this, because anything could happen in the future of the
mobile world; however, as of today, Motorola is an Android-based company.

24 | Chapter 1: The Mobile Jungle

http://

Figure 1-9. The Motorola CLIQ was the first Android-based device from this company. It includes
MOTOBLUR, a push service connecting your home screen with social networks and news sites.

The Windows-based Motorola devices, like the Motorola Q, which has a QWERTY
keyboard, are intended for the corporate market. The company also has some touch
devices on the market, all with a built-in camera and music player, and some mobile
devices for the two-way radio market, like the Nextel network. These devices have a
proprietary OS and the model names usually start with an “i.”

There are no series divisions in Motorola, unlike in the Nokia and Sony Ericsson lines,
so we will need to use other information (such as the browser used in each device) to
test and make decisions about the devices.

LG Mobile
LG Mobile has many low- and mid-end devices on the market today. Most are based
on a proprietary OS with Java ME, Flash, and web support. Some of the new ones
support web widgets based on WebKit.

LG is currently working with Android and Windows Mobile/Windows Phone to create
some new smartphones (the company has not previously produced any devices in this
category). LG participated in the creation of the Symbian Foundation and has two
Symbian devices based on the S60 platform, but as it has now decided to support
Android, we should see a lot of Android-based LG devices in the future.

Brands, Models, and Platforms | 25

http://

HTC
HTC has become very popular in the mobile market since it created the first and second
Android devices in the world and the first Google phone, the Nexus One. But HTC
doesn’t only create Android devices; it also produces a lot of Windows Mobile ones.
Many HTC devices have touch support, and a key feature is that HTC tries to emulate
the same user experience on all its devices. We can think of HTC devices as either
Android devices or Windows devices; that’s the only distinction that’s needed.

This simplicity is reflected in the HTC website for developers: it only contains kernel
files for Android devices and links to the Android and Windows Mobile generic
websites.

Android
This is the first platform we are covering that isn’t a manufacturer. Therefore, it may
not seem to fit in this list. It does, though—if we are developing a website for an Android
device, we don’t need to bother too much about who the manufacturer is. This is
because the Android platform is powerful enough to leave the brand and model in a
second place when we are talking about developer features.

Android is an open source, Linux-based operating system created and maintained by
a group of software and hardware companies and operators called the Open Handset
Alliance. Google mainly maintains it, so it is sometimes known as the “Google Mobile
Operating System.” As with any open source software, any manufacturer could theo-
retically remove all the Google-specific stuff from the operating system before installing
it on their devices. However, as of this writing no vendor has done this, which is why
every Android device is very “Google friendly.”

Android is a software stack including a Linux-core, multitasking operating system
based on the concept of a virtual machine that executes bytecode, similar to .NET or
JVM (Java Virtual Machine). Google chose Java as the main language to compile (not
compatible with Java ME) with Web 2.0 users in mind. Android includes a full HTML
browser based on WebKit and, in fact, is very similar to the iPhone Safari browser, and
all Android devices to date ship with Google Maps, Google Calendar, and an email
client and provide connections to many free Google web services. It’s not an obligation,
but as of today every Android device is touch-based, and many of them have a
QWERTY physical keyboard, GPS, a digital compass, and an accelerometer.

Today, HTC, Motorola, Samsung, LG, and Sony Ericsson make Android devices. Many
other vendors have announced the release of Android devices in the future, including
Kyocera and Dell. There are also some non-phone devices, such as tablets, that use
Android.

As of the writing of this book, the Android OS comes in versions 1.0, 1.5, 1.6 with
update features, and a major 2.0 release with a 2.1 and a 2.2 update. Knowing the OS

26 | Chapter 1: The Mobile Jungle

http://

version will be very useful to determine what browser features are available. Unfortu-
nately, the documentation about the Android browser features is not complete.

Windows Mobile
One of the older mobile operating systems on the market is Windows Mobile (formerly
Windows CE for PocketPC and Smartphones). For many years, its market included the
well-known PocketPCs as Personal Digital Assistants (PDAs) without phone features.
The “mobile revolution” pushed Microsoft to create a smartphone version of its mobile
operating system, now called Windows Mobile, which is available in two flavors: the
Professional (formerly Pocket PC) and Smartphone editions.

Today Windows Mobile doesn’t have too much market share, but it is still well received
in the corporate world. Microsoft has begun gaining ground in the end-user market
since the release of the Windows Mobile 6.5 operating system, which supports a very
intuitive touch UI.

Almost every mobile device with Windows Mobile that has launched since 2003
has .NET Compact Framework support. This means you can develop native applica-
tions using C# or Visual Basic with a reduced .NET Framework. All of them come with
the web browser Internet Explorer Mobile (formerly known as Pocket Internet Ex-
plorer) and with Office Mobile (formerly known as Pocket Word, Pocket Excel, and so
on).

The browser version will depend on the operating system version, from Windows CE
2002 and 2003 to Windows Mobile 5.0, 6.0, 6.5, or newer.

In 2010 Microsoft rebranded the operating system as Windows Phone, starting with
version 7. Windows Phone was presented as a new operating system, with a new UI
and services and a new developer platform not compatible with the previous one, using
Silverlight and XNA instead of the .NET Compact Framework.

Microsoft, like Google, has entered the hardware mobile market. With
Sharp as a manufacturing partner it has begun creating its own mobile
phones, starting with the Kin devices, designed with social networking
and teen users in mind. The Kin One and Kin Two have a custom op-
erating system based on Windows CE and cloud services; as of this
writing they are not Windows Phone devices.

Windows Mobile has its own unique features, like Android, and as developers we can
consider it as a platform without regard to who the device manufacturer is. Windows
Mobile devices are produced by HP, Toshiba, Motorola, Sony Ericsson, Samsung
(shown in Figure 1-10), and Palm, with the Treo W series.

Brands, Models, and Platforms | 27

http://

Figure 1-10. The Samsung Omnia is a Windows Mobile 6.5 device. The operating system is very
friendly for desktop Windows users, featuring the Start menu and a very similar user interface.

Palm
My first mobile was a Palm III, back in 1998. At that time, it was a great device for me.
It was touch-enabled (used with a stylus), black and white, and very small. It was a
revolution for me: I could install applications, read newspapers, and even program
directly on the device with a Pascal for Palm interpreter. OK, the programming wasn’t
the best experience, but the concept was really powerful.

USRobotics bought Palm Computing Inc. in 1995. At the time, it was the pioneer
launching PDA devices. USRobotics later merged with 3Com, and as 3Com was dedi-
cated to network cards and accessories, Palm Inc was created as a subsidiary. Palm Inc.
was very successful, and other manufacturers (including IBM) created other devices
licensing its Palm OS. In 1998, a couple of Palm’s directors left to create another com-
pany, HandSpring, which releases the Treo devices to the market. Half PDA and half
mobile phone, they can be considered the first smartphones on the market.

A few years later, Palm decided to divide the company into a hardware manufacturer,
palmOne, and an operating system developer, PalmSource. This idea didn’t work out:
customers didn’t accept the palmOne trademark, so the company again acquired the

28 | Chapter 1: The Mobile Jungle

www.allitebooks.com

http://
http://www.allitebooks.org

Palm trademark and the operating system became the Garnet OS. In the meantime,
Palm acquired HandSpring, so now we have Palm Treo devices.

In 2005, ACCESS (who also had other mobile technologies) acquired PalmSource and
the operating system. Suddenly, the new-old Palm company made a difficult decision:
it started to manufacture Treo devices with Windows Mobile, killing all hopes for the
future of the Garnet OS (formerly Palm OS).

The Treo series was the only type of Palm device that survived in the mobile world, and
BlackBerrys, the Nokia E Series, and other devices soon pushed Palm to the bottom of
the market. In response, Palm created another operating system for mobile devices,
aimed at being a web-oriented platform for iPhone-killer devices. webOS came to the
market in 2009 with the first device, the Palm Pre. Other devices, such as the Palm Pixi,
followed. Figure 1-11 shows the progression.

The company didn’t go so-well in the market, so in 2010, Palm was acquired by HP,
who promised evolution of webOS, so we should expect HP netbooks, tablets and more
mobile phones with this operating system in the following years.

Figure 1-11. Palm has a really interesting history. Pictured here are the original USRobotics PalmPilot,
the Handspring Treo, and the new webOS-based Palm Pre.

Palm’s new webOS devices are touch and multitouch devices with a very smooth user
interface, excellent web support, and all the functions of a modern mobile device. The
operating system and all the device applications are web-based. That’s because any
“native” application developed for webOS is created using web technologies. We will
talk about this platform in Chapter 12. You can learn more about webOS development
by reading Mitch Allen’s Palm webOS, also from O’Reilly.

Brands, Models, and Platforms | 29

http://oreilly.com/catalog/9780596155261/
http://

It’s not widely known today that Apple, creator of the iPod and iPhone,
was really one of the pioneers in the mobile device market. The Apple
Newton was on the market from 1990 to 1998.

Symbian Foundation
We talked earlier about the history of the Symbian Foundation and Nokia’s relationship
to the new Symbian Foundation operating system. Today there are many Symbian
Foundation–based devices on the market (from Nokia, Sony Ericsson, and Samsung),
all with similar operating system features. Figure 1-12 shows one such device.

Figure 1-12. The Sony Ericsson Satio is a Symbian-based device (S60 5th edition), so it’s very similar
to the Nokia 5800 XpressMusic.

The Symbian Foundation’s OS allows us to develop applications using the native
C++ framework, Java ME, Adobe Flash, web applications, widgets using web tech-
nologies, Python, and Qt, a free C-based framework owned by Nokia (Qt is the current
recommended platform for creating native applications for Symbian and MeeGo).

The open source OS is versioned as Symbian^1, Symbian^2, Symbian^3, etc. As with
Android and Windows Mobile devices, if we are talking about a Symbian device we
know that it will be very similar to all other Symbian devices, no matter which manu-
facturer created it.

30 | Chapter 1: The Mobile Jungle

http://

Other Platforms
We’ve already covered almost 98% of the market. There are many other manufacturers,
like Sanyo, Alcatel, Kyocera, ZTE, but they don’t have visible market share, and many
of them produce devices based on platforms we’ve already discussed, like Windows
Mobile. With the information I’ve shared with you in the last pages, I think you will
be capable of understanding any new platform you can find on the market.

Technical Information
After reading the previous section, you may be wondering where you will find infor-
mation about all the individual devices on the market. What operating system does the
Nokia N81 use? Does the BlackBerry Pearl use the first- or second-generation browser?
Which Motorola devices use Windows Mobile?

To get you closer to these answers, Table 1-1 lists the developer sites of all the major
device manufacturers and platforms. Everyone has one, and almost all of them list the
technical specifications of each of their devices. You can usually filter the devices by
any characteristic, such as screen size, platform, operating system, or browser version.
Sony Ericsson’s developer site is shown in Figure 1-13.

Figure 1-13. Almost every manufacturer website for developers allows you to filter the devices by
features, such as the browser used. This is the Sony Ericsson Phone Gallery.

Technical Information | 31

http://

Table 1-1. Mobile manufacturer and platform developer website URLs

Manufacturer/platform Developer site URL

Apple http://developer.apple.com/iphone

Nokia http://forum.nokia.com

Symbian Foundation http://developer.symbian.org

Palm webOS http://developer.palm.com

BlackBerry http://www.blackberry.com/developers

Sony Ericsson http://developer.sonyericsson.com

Windows Mobile http://msdn.microsoft.com/windowsmobile

Motorola http://developer.motorola.com

Opera Mobile/Mini http://dev.opera.com

LG http://developer.lgmobile.com

Samsung http://innovator.samsungmobile.com

Android http://developer.android.com

HTC http://developer.htc.com

Bada (from Samsung) http://developer.bada.com

If you are new to the mobile development ecosystem, it’s a good idea to
register on all the developer websites—even operators’ ones, if they have
one. You will receive updates about tools, documentation, and news.
You will also have access to download tools and emulators.

Market Statistics
At this point, you may be tempted to close this book and leave the mobile jungle via a
shortcut. However, believe me, the path through the jungle is clearer than you probably
think right now.

Let’s analyze some market share information. This will help us to make some decisions
about how our work will be done.

Sometimes it’s difficult to decide what to target. Should we develop for all devices, or
only for the iPhone and Android devices? How can we decide how many versions to
create?

The mobile world is very different from the desktop world. If we are developing for
desktops, we can assume that the market share of the available browsers will be similar
worldwide. In the mobile world, this is not the case. Because of commercial agreements
and cultural differences, we find very diverse market shares in different regions of the
world (U.S. & Canada, Latin America, Europe, Asia, Oceania). For example, Nokia
has a huge market share in Europe and Asia, but not in the United States. That’s why

32 | Chapter 1: The Mobile Jungle

http://developer.apple.com/iphone
http://forum.nokia.com
http://developer.symbian.org
http://developer.palm.com
http://www.blackberry.com/developers
http://developer.sonyericsson.com
http://msdn.microsoft.com/windowsmobile
http://developer.motorola.com
http://dev.opera.com
http://developer.lgmobile.com
http://innovator.samsungmobile.com
http://developer.android.com
http://developer.htc.com
http://developer.bada.com
http://

we need to define who our targets are. Worldwide users? U.S. users? What about gender
and age? Depending on the target demographic, we can define our porting strategy.

Overall mobile device sales statistics aren’t the only ones we need to analyze. The mar-
ket shares are very different if we look only at people using their mobile devices to
browse the Web. A device with a very low total worldwide market share, such as the
iPhone, can prove to have a big market share if we only analyze devices with high web
consumption. Figures 1-14 through 1-16 show a few different counts with varying
results.

Figure 1-14. Gartner offers frequently updated statistics about mobile terminal (all devices) and
smartphone sales. Nokia is the global leader in both segments.

Some statistics services use JavaScript code or some other technique that
is not available for microbrowsers or low-end devices, so they are gen-
erally left out of the list of devices visiting your website. You need to be
very careful about interpreting statistics.

GetJar.com is an application store for freeware and shareware applications, mainly
developed in Java ME but with other platforms supported, too. The site offers public
statistics about the market share of its visitors, as shown in Table 1-2. This information
is very useful, because the visitors are active—they are browsing a website looking for
applications to download—so we can consider them active mobile Internet users in the
Java ME–compatible market.

Market Statistics | 33

http://

Table 1-2. Global GetJar market share statistics by manufacturer (September 2009)

Manufacturer Market share

Nokia 47.8%

Sony Ericsson 16.6%

Samsung 7.8%

LG 3.2%

BlackBerry 3%

Motorola 2.29%

While GetJar statistics are very useful, we need to understand that the
market share of iPhone, Android, Windows Mobile, and webOS devices
are not represented accurately because their users don’t typically use
GetJar.

Figure 1-15. At http://gs.statcounter.com we can find mobile browser statistics (global and by region)
collected from websites using the StatCounter tool. The iPod Touch is registered as iTouch, so iPhone
OS devices are leading here.

34 | Chapter 1: The Mobile Jungle

http://gs.statcounter.com
http://

The well-known research firm Gartner predicts the 2012 smartphone market share as
shown in Table 1-3 and Figure 1-17, with Symbian still at the head, followed by Android
and iPhone. The prediction indicates a small reduction for Symbian but a positive future
for Android and Windows Mobile, with both increasing their market share.

Table 1-3. Gartner’s prediction for 2012 smartphone market share

Smartphone platform/manufacturer 2012 predicted market share

Symbian 39%

Android 14.5%

iPhone 13.7%

Windows Mobile 12.8%

BlackBerry 12.5%

Linux 5.4%

webOS 2.1%

Figure 1-16. AdMob is an advertisement network for mobile websites and applications. It offers public
statistics at http://metrics.admob.com.

Market Statistics | 35

http://metrics.admob.com
http://

Figure 1-17. Gartner predicts that in 2012 Android will have more market share than iPhone,
BlackBerry, and Windows Mobile. Symbian will continue its worldwide leadership.

Smartphones Versus Non-Smartphones
Phone-by-phone statistics are helpful, but a broader categorization can show a bigger
picture. Luke Wroblewski (http://www.lukew.com) created a very extensive blog post
about smartphone versus feature phone statistics found in different sources. The article
can be found at http://www.mobilexweb.com/go/lukestats.

Here are some of the key points:

• The average smartphone user generates 10 times the amount of traffic generated
by the average non-smartphone user.

• iPhones, in particular, can generate as much traffic as 30 basic feature phones.

• 35% of smartphone owners browse the mobile Internet at least daily, versus only
4% of feature phone owners.

• 80% of smartphone users have accessed mobile media on their mobile devices,
versus 26% of non-smartphone users.

36 | Chapter 1: The Mobile Jungle

http://www.lukew.com
http://www.mobilexweb.com/go/lukestats
http://

• 65% of smartphone users have accessed news/information sites on their mobile
devices, vs. 14% of non-smartphone users.

• Data traffic for an iPhone operator is almost 14 times that of a non-iPhone operator.

Figure 1-18 shows another way of exploring localized device statistics. Remember that
these statistics depend on the source and can change a lot over time.

Figure 1-18. A nice updated mobile browser market share graphic based on StatCounter data is
available at http://www.icrossing.co.uk.

You can find a list of updated mobile browser and device market share
statistics in the statistics section of this book’s blog, at http://www.mo
bilexweb.com/go/stats.

Market Statistics | 37

http://www.icrossing.co.uk
http://www.mobilexweb.com/go/stats
http://www.mobilexweb.com/go/stats
http://

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2

Mobile Browsing

Understanding the big picture about platforms, operating systems, brands, and models
is important for getting started in the mobile market, but the most important informa-
tion for us will be which mobile browser is used. Browsers will guide the rest of this
book and most of our work as mobile web developers.

Many web developers curse desktop browsers and compatibility issues between them.
Maybe you are one of them. But compared with the mobile world, in the desktop world
the browser war is really simple: we have Internet Explorer (6, 7, 8, or newer), Firefox,
Safari, Opera, and Chrome. And that’s about it. In the mobile world, there are more
than 5,000 devices on the market. The good news (compared with this number) is that
there are fewer than 25 mobile browsers in common usage—every smartphone OS has
its own mobile browser, but the proprietary operating systems for the low- and mid-
end devices mostly use similar browsers. Still, the situation is far more complex than
in the desktop world!

All mobile devices come with one preinstalled mobile browser, and very few of them
can be upgraded or uninstalled. There are some exceptions: the browsers included with
iOS, webOS, and Android are automatically upgraded when you update the operating
system firmware. This can also be done in other operating systems, like Symbian or
Windows Mobile, but up to now it’s not an operation that users do frequently.

To complicate the situation, almost every device on the market allows users to add an
alternative web browser, and some carriers, like Vodafone in Europe, include a copy
of an alternative web browser customized for that operator, such as Opera Mini or
Mobile, along with the factory-installed browser.

The Mobile Browsing Experience
The mobile browsing experience varies among different devices, and even among dif-
ferent browsers running on the same device. The user interfaces work very differently.

39

http://

Browsing Types
A mobile website can be navigated using different techniques. Every mobile browser
uses one or many of these modes of navigation. The modes are:

• Focus navigation

• Cursor navigation

• Touch navigation

• Multitouch navigation

Focus navigation, illustrated in Figure 2-1, is the most frequent mechanism used for
browsing websites on low- and mid-end devices. (Smartphones that have hardware
cursor keys, a touchpad, or a scroll wheel sometimes use focus navigation as an alter-
native.) With this mode, a border or a background color is used to show the user where
the focus is. In general it is used in non-touch devices, so the user uses the cursor keypad
to navigate between links and scroll the website. Pressing the down key makes the
browser change the focus to the next focusable object (e.g., a link, a text field, or a
button), or scroll a couple of lines in the content if there is no other focusable object
nearby.

Figure 2-1. Focus navigation on a low-end device.

Cursor navigation, illustrated in Figure 2-2, emulates a mouse cursor over the screen
that can be moved using the arrow keys. A mouse click is emulated with the Fire or

40 | Chapter 2: Mobile Browsing

http://

Enter key. For a better experience, many browsers jump the cursor to a nearby focusable
object to reduce the distance the user has to move the pointer to use a link or a button.

Touch navigation may seem obvious, but we need to be aware of one thing: the user
may navigate using a finger or a stylus. The differences in design can be huge; precision
is much lower if fingers are used. Touch devices allow the user to use detectable gestures
to easily perform some actions. We will cover gesture detection in later chapters.

Some devices are also multitouch, allowing the users to select many objects at the same
time and incrementing the number of gestures that can be detected.

Zoom Experience
Analyzing how browsers manage zoom options reveals two different types of browser.
The first type offers basic zoom capabilities: the web page is always rendered at 1:1 scale
to the original design, and the user can only change the font size. If the design doesn’t
fit on the screen, the scrollbar comes in to solve the problem.

The second type offers smart zoom capabilities: the web page can be viewed at any
zoom scale the user wants, and the zooming action affects the font size, images, and
the web page as a whole. Based on a user gesture or menu option, we can switch from
a full-page view to a paragraph view, as shown in Figure 2-3.

Figure 2-2. Cursor navigation on non-touch devices shows a typical mouse pointer that allows
mouseover events and mouse effects in a website.

The Mobile Browsing Experience | 41

http://

Some browsers use smart zooming like on a desktop: if a paragraph extends beyond
the page width, when you zoom in you need to scroll horizontally (Safari on iOS is one
example). Some others reflow the text when zoomed in to fit the page width (the An-
droid browser does this), and still others (such as Opera Mini) reflow the page even
when zoomed out.

Reflow Engines
Some mobile browsers aim to offer a better experience to mobile users browsing web-
sites that were not designed for mobile devices by reflowing the pages to a one-column
design. The smart zoom option has started to replace this technique, but there are still
some browsers that use a reflow algorithm. For example, the result of using Opera
Mini’s “Mobile View” on the page displayed on the left in Figure 2-3 is shown in
Figure 2-4.

Figure 2-3. The webOS browser offers smart zooming. The entire website layout is rendered first, and
when the user double-taps on part of the page the smart zoom focuses in on that area.

42 | Chapter 2: Mobile Browsing

http://

Direct Versus Proxied Browsers
Another difference we will find is between direct browsers, which get content directly
from the website server, and proxied browsers, which go through a proxy server. The
proxy server usually does many of the following actions on the fly:

• Reduces the content, eliminating features that are not mobile-compatible

• Compresses the content (images included)

• Pre-renders the content, so it can be displayed in the browser faster

• Converts the content, so we can see Flash Video in devices with no Flash support

• Encrypts the content

• Caches the content for quick access to frequently visited sites

Multipage Experience
There are very different approaches to multipage browsing (i.e., opening more than
one web page at the same time). This can be initiated by the user, or by the developer
opening a pop-up window or a link in a new window. Different browsers take different
approaches:

Figure 2-4. The same website as in Figure 2-3 viewed with Opera Mini “Mobile View,” a reflow engine
that autodetects navigation bars, content zones, and footers and shows us a one-column view of the
site.

The Mobile Browsing Experience | 43

http://

• Only one page support

• Multiple windows (shown in Figure 2-5)

• Windows stacks (shown in Figure 2-6)

• Tab navigation

Figure 2-5. The iPhone browser has multiwindow support that allows the user to maintain up to eight
different websites open at the same time. Android and webOS have similar features.

The WebKit Engine
WebKit is an open source layout engine for web browsers. It renders HTML and CSS
websites and can execute JavaScript. It was created by Apple to be used in its Safari
web browser for Mac OS X, and later Windows and iOS. As an open source project,
there are many ports of the rendering engine, and today we can find many applications
using it—for example, Google Chrome and Adobe AIR.

The great thing about WebKit is that almost everyone in the mobile world is using it
(or wants to use it in the future). This means that even on very different mobile devices
we can expect very similar web rendering with simple markup and styles, which is good
news for developers. However, it isn’t heaven—as we’ll see in later chapters, many
differences do exist between WebKit implementations.

44 | Chapter 2: Mobile Browsing

http://

Preinstalled Browsers
Practically every phone has a preinstalled browser. Fortunately, there are fewer browser
varieties than phone varieties.

NetFront

NetFront is a mobile browser created by the Japanese company ACCESS, targeting
low- and mid-end devices. It is licensed by the manufacturer, and that’s why we can
find devices of many different brands using the same browser engine. NetFront is in-
stalled on thousands of Sony Ericsson, LG, Samsung, and ZTE devices, as well as on
Amazon Kindle ebook readers. It was also included with the old Palm OS.

It has many different versions and it uses its own rendering engine. From NetFront 3.5,
it supports cursor navigation and a feature called Smart-Fit that reorganizes websites
to fit into a single column without horizontal scrolling.

Myriad

The Openwave browser was for many years one of the preferred mobile browsers to
be preinstalled on low-end devices. In conjunction with NetFront, it is used for the
majority of low- and mid-end browsing. Openwave was acquired by Myriad in 2008,
and since that time it has been known as the Myriad browser. Like NetFront, it is used

Figure 2-6. The Symbian browser maintains an opened window stack (accessed via “Switch win.”)
when a website opens pop-ups or new windows. On most devices, the user cannot create new windows
or tabs himself.

The Mobile Browsing Experience | 45

http://

by many vendors, including Motorola, LG, Sharp, and Kyocera. Up to version 7 it used
its own rendering engine, but the company has announced that the next version will
use WebKit.

Internet Explorer

Microsoft has its own mobile browser, called Internet Explorer Mobile. Formerly
known as Pocket Internet Explorer (PIE), it can be considered one of the fist mobile
browsers on the market. The first version was released in 1996, for Windows CE 1.0.
Up to version 6.5, it had its own rendering engine (based on IE4). Windows Mobile
6.5 was based on Internet Explorer 6 (it even identified itself as IE6). This version (see
Figure 2-7) uses a desktop IE-derived engine and provides a better browsing experience
with smart zoom capabilities.

Figure 2-7. Starting from version 6.5, IE Mobile has smart zoom features and a desktop-derived
rendering engine.

Before Windows Mobile 6.5, the browser accepted focus navigation for
smartphones and stylus touch navigation for Pocket PCs. Now, it sup-
ports both focus and touch for the latest devices on the market.

The new operating system, Windows Phone 7, is based on Silverlight and has an entirely
multitouch UI. It comes with a new version of Internet Explorer Mobile, based on the

46 | Chapter 2: Mobile Browsing

http://

IE7 engine with some IE8 features mixed in (some have called it an IE 7.5 engine). It is
likely to offer similar behavior to Internet Explorer 7, and multitouch support.

Safari on iOS

Safari is a WebKit-based browser bundled with iOS (formerly known as iPhone OS)
that offers a great browsing experience and smart zoom options. It is updated with
every operating system change to include new features that allow us to create better
user experiences.

Safari on iOS is currently the only mobile browser to support a range of new features,
including those that allow us to create animations, transitions, 3D, and Flash-like ex-
periences using HTML, JavaScript, and CSS, but without Flash. We will cover this topic
in Chapter 7 and Chapter 12.

This browser is designed only for touch and multitouch navigation. It doesn’t support
focus or cursor navigation because of the lack of a keyboard in the devices on which
iOS is installed.

The official documentation for mobile Safari can be found at http://www.mobilexweb
.com/go/safaridocs.

The only well-known big problem of the mobile Safari browser is its
poor support for caching web content before iOS 4.0.

Nokia Series 40 browser

Every Nokia Series 40 device comes with a built-in web browser created by Nokia. Up
to Series 40 5th edition, it was a simple browser without smart zoom capabilities, de-
signed with low- and mid-end devices in mind. It was basically a focus navigation
browser, based on Nokia’s own rendering engine.

Beginning in Series 40 6th edition, the browser is WebKit-based (similar to Nokia’s S60
browser), creating a new browsing experience for low- and mid-end devices. The main
problem with this browser is that the low- and mid-end devices are not created with
high-quality hardware, which can lead to some performance problems.

In 2010, Nokia acquired a browser company called Novarra that offers proxy-based
web support. It is possible that new Series 40 devices created after this writing will come
with a proxy-based browser based on Novarra’s solutions to offer a better and faster
browsing experience in these kinds of devices.

Sony Ericsson browsers

If we analyze Sony Ericsson’s non-smartphone devices—that is, those not based on an
operating system like Symbian or Windows Mobile—we can find three primary brows-
ers in use, depending on the device’s release date:

The Mobile Browsing Experience | 47

http://www.mobilexweb.com/go/safaridocs
http://www.mobilexweb.com/go/safaridocs
http://

• Sony Ericsson WAP browser before 2004

• Sony Ericsson web browser from 2004 to 2006

• NetFront browser (version 3.3, 3.4, or 3.5) from 2006

Other browsers, such as Opera and even Openwave, were also preinstalled in some
devices.

Devices that shipped with NetFront 3.4 or 3.5 support cursor navigation. In this book,
we will focus on NetFront for Sony Ericsson devices.

Obigo browser

The Obigo mobile browser from Obigo/Teleca claimed 14% browser market share in
2007 (before the smartphone revolution). It can be found in Samsung, LG, Motorola,
and Sony Ericsson devices and in many CDMA devices from some operators, like Ver-
izon. Obigo also offers a widget solution implemented by LG Mobile.

The Obigo Q7 supports major web standards plus smart zooming, multiple windows,
and RSS. It can run in several operating systems, including Symbian, Windows Mobile,
Linux, and various native platforms.

Motorola Mobile Internet Browser (MIB)

Motorola devices based on the Motorola proprietary OS (excluding the company’s
Linux, Windows Mobile, Android, and Symbian devices) come with a simple propri-
etary browser that allows focus navigation and page scrolling. The last version was 2.2.
As an indication of its limits, it can only render documents up to 10 KB.

Some other older devices came with the Openwave, Obigo, or Opera browser prein-
stalled. The same device model shipped at different dates and in different markets did
not necessarily come with the same browser.

Symbian browser

In 2005, Nokia created an open source WebKit-based mobile browser for the S60 plat-
form using Symbian (also known as the S60 OSS Browser). It supports smart zoom
features (called Mini Map Browser) and has been installed on every S60 device since
that year. Depending on the device, it supports focus, cursor, and touch navigation.
Many devices support more than one navigation type; for instance, the Nokia N97
supports touch (finger and stylus) navigation, and cursor navigation when the keyboard
is opened.

The Symbian WebKit browser is the browser with the highest install
base in the market. However, this doesn’t mean it’s the most-used
browser.

48 | Chapter 2: Mobile Browsing

www.allitebooks.com

http://
http://www.allitebooks.org

Some older devices that use an older Nokia proprietary browser without modern fea-
tures are still on the market.

Android browser

The Android OS comes with its own browser, based on WebKit. It is called the Android
browser (not Chrome, differentiating it from Google’s desktop WebKit-based browser)
and is a very powerful browser with touch support. It is often compared in terms of its
standards and extension support to Safari on iOS.

The Android browser supports multiple windows, smart zooming, and many other
advanced features.

webOS browser

The new Palm operating system comes with a WebKit-based browser that supports the
latest web technologies. It supports touch navigation and a card concept that allows
the user to open many websites at the same time and flip between them using a finger.
Starting with OS 1.4, the webOS browser is based on a different version of the WebKit
engine, so there may be differences before and after 1.4.

Older Palm devices using Garnet OS (Palm OS) 3.1 and later shipped
with the browser Blazer.

BlackBerry browser

Every RIM device comes with a mobile web browser with focus navigation and, more
recently, touch navigation support. Many versions of the browser are available, de-
pending on the device. There are devices with trackball and cursor navigation, older
devices with focus navigation, and newer smartphones with touch support.

The first generation of the BlackBerry browser was included with Device Software ver-
sion 4.5 and earlier. The second generation, available from version 4.6, had a com-
pletely redesigned rendering engine. There are still a lot of first-generation browsers in
devices on the market today, so we will need to target them if we are targeting Black-
Berry users.

BlackBerry devices running OS 6.0 will have a WebKit-based browser more similar to
other smartphone browsers. BlackBerry recently acquired Torch Mobile, creators of
the Iris browser, which in the future will be available only for BlackBerry devices.

A BlackBerry can be connected to the Internet in different ways, depending on the
device and the operator’s plan:

The Mobile Browsing Experience | 49

http://

BlackBerry browser
You access the Internet using your company’s corporate intranet proxy. The docu-
ments are transcoded, compressed, and encrypted by the BlackBerry Enterprise
Server, using your company’s security policies.

Internet browser
You access the Internet directly using the BlackBerry Internet Solution as a com-
pressor proxy.

WAP browser
You access the Internet directly using your operator’s WAP gateway (1.0 or 2.0).

WiFi browser
You access the Internet directly using a Wireless LAN connection.

Newer BlackBerry devices support many browsers. The available browsers depend on
whether you are a private customer with or without a BlackBerry server account or a
corporate customer; there is no simple rule. The different browsers appear on the device
as different applications, but they are mainly the same rendering engine connecting
through different networks.

Samsung WebKit browser

The Samsung WebKit browser is installed with the new Bada OS. At the time of this
writing there aren’t yet any Bada devices on the market, and no information is available
about the browser. The demo shows a modern web browser with smart zoom features.

MicroB (Maemo browser)

MicroB, the browser installed in Maemo (now MeeGo) devices (Linux-based Nokia
devices), uses Mozilla’s Gecko rendering engine, the same one used in Firefox. That is
why MicroB is very similar to Firefox and understands some of the unique features of
that browser.

MicroB was developed by Nokia and supports plug-ins, similar to Firefox. However,
due to the lack of some XUL features, Firefox plug-ins must be rewritten to work on
MicroB. Available plug-ins include Adobe Flash Player, Greasemonkey, Adblock,
Gears, and Windows Media Player. The website for the MicroB can be found at http:
//browser.garage.maemo.org.

Japanese Mobile Web
In the mobile web world, the Japanese market is quite an exception. The three main
carriers in Japan (DoCoMo, Softbank, and AU, with approximately 100 million sub-
scribers) each have their own mobile web standards regarding markup, Emoji, geolo-
cation, etc. that browsers preinstalled on their devices must support. They don’t
actually make their own browsers.

50 | Chapter 2: Mobile Browsing

http://browser.garage.maemo.org
http://browser.garage.maemo.org
http://

ACCESS’s i-mode browser is the most common on DoCoMo devices, while Openwave
is more common on Softbank and AU devices. Of course, there are also iPhones and
other major brands on the market, using their own browsers and operating systems.

User-Installable Browsers
The market complicates the situation further: we also need to think about
user-installable browsers. These are free and commercial web browsers that you can
install after you buy a device. Sometimes they are included on the device by the vendor
or the operator in a particular country or region.

Opera Mobile

I was an addict of Opera for the desktop for many, many years. Opera has lost the
desktop browser war, but it took its experience in browser creation and entered the
mobile world in 2000. Opera Mobile has been installed on 125 million smartphones
since 2004.

Opera Mobile is a full browser with tab and cursor navigation that comes factory-
preinstalled on some devices and is sometimes preinstalled by the carrier using an OEM
license, replacing the default device browser.

Opera Mobile is also a product available to be downloaded by the end user for Windows
Mobile and Symbian devices.

The latest versions support smart zooming, widgets, Opera DragonFly (a toolkit for
developers), and Opera Turbo, a service that compresses web pages on Opera’s servers,
reducing traffic by up to 80%.

Opera Mini

My Opera addiction continues: Opera Mini is one of the best Java ME applications
ever produced. It is a free browser that works on almost any device, including Android
and iOS devices (iPhone, iPod, iPad). It supports “the full web” as a proxied browser.
This means that if you browse using Opera Mini, you won’t be accessing websites
directly. Instead, the application will contact an Opera Mini server that will compress
and pre-render the websites. This allows very quick full web navigation for every device,
whether low-end or smartphone.

From version 4, it supports video playback, Ajax, offline reading, and smart zooming,
even in low-end devices (see Figure 2-8). From version 5, it also supports tabbed
browsing, a password manager, and touch navigation in devices with touch support.

The Mobile Browsing Experience | 51

http://

You can download Opera Mini for free by browsing to http://m.opera
.com from your mobile device. The application has over 50 million
downloads to date, and I know many Opera Mini fanatics in my social
network that never use the preinstalled device browsers. For Android
and iOS devices, you can find Opera Mini in the Android Market and
the App Store.

Firefox for mobile

The Mozilla Foundation arrived a bit late to the mobile browser world. At the time of
this writing, Mozilla offers a downloadable Firefox version for Maemo devices (the
Nokia N900, for example), and a version for Android has been announced. Updated
information is available at http://www.mozilla.com/mobile.

You can download the mobile version of Firefox from http://m.firefox.com. It uses the
same Gecko engine as the Firefox 3.6 desktop browser.

For alpha releases, you can find information using the code name Fennec, at http://www
.mozilla.org/projects/fennec.

UC Browser

The UC Browser (formerly known as UCWEB) is the #1 browser in the Chinese market
and is now available in English for other markets. It is a proxy-based browser supporting

Figure 2-8. Opera Mini is an excellent option for low- and mid-end devices, offering a proxied browser
with smart zooming for almost any mobile phone with Java ME support.

52 | Chapter 2: Mobile Browsing

http://m.opera.com
http://m.opera.com
http://www.mozilla.com/mobile
http://m.firefox.com
http://www.mozilla.org/projects/fennec
http://www.mozilla.org/projects/fennec
http://

full HTML and JavaScript, multiple windows, and many advanced features. Free
downloads are available for Java ME, Windows Mobile, Symbian, and even iPhone
devices (only those with jailbreak). Android and BlackBerry versions have been an-
nounced, too.

You can download the browser from http://www.uc.cn/English.

SkyFire

SkyFire is a free proxied browser for Windows Mobile, BlackBerry, and S60 with full
web support and support for Flash and video streaming. Websites are pre-rendered on
the SkyFire server, using the Gecko rendering engine (the same as Firefox/Fennec). You
can download it from http://www.skyfire.com.

Bolt

Bolt is another free proxied browser that allows the user to see full websites, including
video and audio content. It is based on Java ME, like Opera Mini, and it’s also com-
patible with BlackBerry devices. A Bolt Lite version without multimedia support is
available for low-end devices. You can download Bolt from http://www.boltbrowser
.com.

Other browsers not covered here include Blaze for Garnet OS (formerly
Palm OS); ibisBrowser, a Japanese Java ME–based browser; Konqueror
Embedded for Linux devices; Steel, a free Android alternative browser;
Phantom browser for new LG devices; and ThunderHack for Windows
Mobile, Symbian, and Java ME devices.

Chromium

Chromium is the name of the open source project for the Google Chrome desktop
browser. As it’s an open source project, anyone can create a port for different mobile
devices. At the time of this writing, there are non-official compilations for Maemo
(N900), but Google has not officially ported the browser to any mobile devices.

Browser Overview
That list of browsers is a lot to digest. Table 2-1 compares key features of the most
commonly used browsers on the market.

Table 2-1. Mobile browser features

Browser/platform WebKit engine Smart zoom Proxied Navigation

Safari Yes Yes No Multitouch

Android browser Yes Yes No Multiplea

Symbian/S60 Yes Yes No Cursora

The Mobile Browsing Experience | 53

http://www.uc.cn/English
http://www.skyfire.com
http://www.boltbrowser.com
http://www.boltbrowser.com
http://

Browser/platform WebKit engine Smart zoom Proxied Navigation
Toucha

Nokia Series 40 No <= 5th ed.

Yes >= 6th ed.

No No (expected in the future) Focus

WebOS Yes Yes No Touch

BlackBerry No <= 5.0

Yes >= 6.0

Yesa Yes/Nob Cursor

Toucha

NetFront No No No Focusa

Cursora

Openwave (Myriad) No (yes in the future) No No Focus

Internet Explorer No No < 6.5

Yes >= 6.5

No Focus

Toucha

Obigo/Teleca No Yes >= Q7 No Multiplea

Motorola Internet Browser No No No Focus

Opera Mobile No Yes Yes/Noc Focus

Opera Mini No Yes Yes Cursor

Toucha

Bada browser Yes Yes No Touch

MicroB for Maemo No (Gecko) Yes No Multiple

Firefox No (Gecko) Yes No Multiple

UC browser No Yes Yes Multiple
a Depending on the device.
b Depending on the connection method.
c Depending on the usage of Opera Turbo as a proxy.

Mobile Web Eras
Don’t panic; this isn’t a history class. However, it is useful to be aware of the history
of the mobile web. This is recent history: the first mobile web platform was developed
less than 15 years ago. Analyzing this history can help us to understand the technologies
behind the mobile web, and compatibility issues.

WAP 1
The mobile Internet appeared at the end of the last millennium. I remember all the
advertising on the streets and in TV commercials. A wide range of operators started to
offer mobile web browsing, with one or two devices with Wireless Application Protocol
(WAP) browsers.

54 | Chapter 2: Mobile Browsing

http://

What Is WAP?
The Wireless Application Protocol is a standard for application-layer network com-
munication in the mobile world. With the exception of the i-mode protocol used in
Japan and briefly in other countries, WAP is the primary protocol used by operators
worldwide.

The WAP standard describes a protocol suite that allows the transportation of infor-
mation between a device and the Internet (via a WAP gateway), and list of standard
recommendations for the content to be transmitted. It was created by the WAP Forum
(converted in 2002 to the Open Mobile Alliance, or OMA).

For many years the term “WAP” was used incorrectly, to refer to a document type (“a
WAP file”) or a website as a whole (“I’ve developed a WAP”).

WAP has two main versions: 1.1, released in 1998, and 2.0, released in 2002 (this is
the actual standard). Many users are not even aware of the existence of the newer
version.

I can remember traveling by train in my home city in 2000, using the first device with
a WAP browser (my Nokia 7110, famous because of its similarity to Neo’s phone in
the film The Matrix). My operator had an excellent promotion: free browsing for two
months. I was browsing a website with an ICQ client, and nobody in my buddy list
could believe that I was chatting from my mobile phone. The free browsing promotion
wasn’t very popular, because at the time few people understood what the mobile In-
ternet was. When I received a $300 bill for “voice calls” I realized that I was probably
the only one using that promotion (of course, I didn’t pay the bill, because it was
supposed to be free!).

Some WAP 1.X browsers were so simple that they didn’t even have a
Back feature—the developer was responsible for providing a link back
to the previous page.

At that time, mobile devices connected to the Internet using a voice call as a modem
communication. So, every minute you were connected was charged as a voice call mi-
nute. The devices with browsers had black and white screens without image support
(or very basic support) and could display only three or four lines of text on the screen.
This early version of the mobile Internet was a failure. It was expensive and did not
offer any useful services. The overall user experience was very poor.

A few years later, 2.5G technologies such as the General Packet Radio Service (GPRS)
appeared on the market. These technologies allowed us to browse the Internet (even
WAP 1 sites) and be charged according to the number of kilobytes transferred, no
matter how many minutes we were connected to the Internet.

Mobile Web Eras | 55

http://

This first mobile web was defined by the WAP 1.0 standard (which, in practice, never
existed on the market, having quickly been replaced by WAP 1.1). That standard sug-
gested Wireless Markup Language (WML)—an XML version designed for mobile de-
vices that was not compatible with the HTML standards—as the document type for
the web content. The devices communicated with the operators’ WAP gateways using
WAP protocols, and the gateways translated the communications to HTTP and passed
them on to the destination web servers. WAP 1.X is not recommended today, as it has
been replaced by new technologies.

The HTML 3.2 subset in the Japanese i-mode service was one of the first
languages that shifted the mobile web away from the old HDML (Hand-
held Device Markup Language) and WML and pushed it toward HTML
and, eventually, XHTML.

Mobile browsers in this era were called “WAP browsers,” and websites using this
standard were called “WAP sites”—“WAP” was used instead of “web.” This created
a perceived distinction between the two (WAP appeared to be different from the Web).

At this time, the de facto standard for publishing WAP sites on the Internet was the use
of the wap subdomain. So, for example, we could access Yahoo!’s WAP site using the
URL http://wap.yahoo.com. Even today, it is not uncommon to find this domain pattern
in use for mobile websites.

Most low- and mid-end devices on the market today still support WAP
1.0 content, but the browsers on newer smartphones (like the iPhone,
Android, and webOS devices) don’t support WML content anymore.

WAP 2.0
The last OMA standard, WAP 2.0, was released in 2002. The first WAP 2.0 devices
appeared in 2002, and almost every device on the market today is WAP 2.0 compatible
(with some exceptions in the last few years). This standard is nearer to the web
standards than the previous version and allows HTTP communication between the
device and the server. The WAP gateway acts only as a proxy in the operator network.

WAP 2.0 deprecated WML and created XHTML MP (Mobile Profile), along with other
companion standards that we will analyze in detail in Chapter 5. Surprisingly, after this
new standard was released the word “WAP” dropped out of usage and “mobile web”
started to be used. So, if we talk about a “WAP site” today, it will be understood that
we are referring to a WAP 1.1 website.

Many sites continued to use the wap subdomain for mobile websites, while others
started using the other de facto standard for publishing mobile websites, the m sub-
domain (“m” for mobile). For example, today we can access the Google Mobile website

56 | Chapter 2: Mobile Browsing

http://wap.yahoo.com
http://

using http://m.google.com, or the popular Facebook social networking site using http:
//m.facebook.com.

Even now, nearly 10 years after WAP 2.0 was released, it is still normal to find WAP
1.1 sites using WML on the Web. The only well-known desktop browser that can
render WML pages without a plug-in is Opera.

WAP Push
WAP Push is a standard available since WAP 1.2 that allows content to be pushed to
a mobile device at any time. A WAP Push is generally an SMS (Short Message Service)
message to a special port with a URL to content or a website. When a device receives
a WAP Push, it asks the user if he wants to go to that URL. This method is used by
content portals to push games, ringtones, and other premium content when you ask
for that content using SMS. There are also some silent pushes from the operator that
the user doesn’t receive any feedback about.

WAP Link is a similar solution, but it sends an SMS to the user’s inbox. The message
contains a URL. Modern devices autodetect URLs inside the text messages and convert
them into links that the user can click on.

The dotMobi era

dotMobi (.mobi) is a top-level domain (TLD) approved by the Internet Corporation for
Assigned Names and Numbers (ICANN) in 2005 and made available to the public at
the end of 2006. It was approved to be used as the main domain for the mobile Internet
and it had the support for many software companies, Internet companies, manufac-
turers, and operators. So, if you have the domain yourcompany.com, you should use
yourcompany.mobi for your mobile website. The idea was original and some big com-
panies have gotten on board (for example, Nokia uses nokia.mobi), but it’s not as well
supported as everyone wanted. For example, there is no browser with a shortcut
to .mobi when you are typing in a URL address (there are shortcuts for .com, .net,
and .org).

The TLD is managed by mTLD, an organization with many services and web portals
centered around the mobile web. Any .mobi site should be WAP 2.0 compatible, but
there is no technical obligation for this. You can buy a dotMobi domain from any
registrar and host it anywhere, without any limitation.

The main criticism of dotMobi is that it created two Internets, a desktop Web
(.com, .net, etc.) and a mobile Web (.mobi), rather than promoting a single Web that
can be browsed from different devices.

Mobile Web Eras | 57

http://m.google.com
http://m.facebook.com
http://m.facebook.com
http://

On-Device Portals and rich clients

As WAP 2.0 had limited multimedia features and there were porting problems between
platforms, many medium and large websites started to create applications to be instal-
led on mobile devices that would allow mobile users to browse their content and
services. Yahoo! was one of the first big portals to create an On-Device Portal (ODP),
called Yahoo! Go. It offered a better experience for mobile users to access Yahoo!’s web
services, with options not available for a web browser. The other great advantage is
that an icon for the website appears in the user’s applications menu or even on the
home screen. It was discontinued in 2010 and replaced with a new mobile website.

In Chapter 12 we will analyze mobile widgets and offline web applica-
tions that can be compared to the On Device Portal solution, but use
the same multiplatform web technologies described in this book.

The disadvantage, of course, is that a different version of the ODP must be created for
every platform: Java ME (and many portings), BlackBerry, Windows Mobile, Symbian,
iPhone, and so on.

There are also many companies offering ODP solutions to distribute web content via
operators or websites. These solutions are also known as rich clients. For example,
Google Maps offers the interface in Figure 2-9, and Facebook has a mobile website and
a rich client for some devices, such as Symbian and iOS devices, shown in Figure 2-10.

Figure 2-9. Google Maps offers a mobile web interface and, optionally, a free rich client (some kind
of On-Device Portal) with a richer UI.

58 | Chapter 2: Mobile Browsing

http://

Mobile Web 2.0
I could write a whole book about Web 2.0, but…what is Mobile Web 2.0? There isn’t
a single definition. Mobile Web 2.0 began in 2007, with the new smartphones that
appeared on the market (iPhone, Nokia N95, Android devices, etc.). These devices
introduced great changes for the mobile web: WiFi support, 3G, full desktop browsers
(not only WAP 2.0), Ajax or Flash support, and streaming video. At the same time,
thousands of social networks, blogs, and user-generated content portals appeared.

All these ingredients created Mobile Web 2.0, which to date has advanced more than
Web 2.0 itself. That’s why we can find HTML 5 mobile browsers, but a few HTML 5
desktop browsers on the market today. Clearly, the market really wanted to create
better mobile web experiences than the ones delivered only with WAP 2.0.

Mobile Web 2.0 sites typically have many of the following features:

• Ajax or Rich Internet Application experience

• Geolocation

• Offline working capability

• Social networking activities

Figure 2-10. Facebook is one of the Web 2.0 websites offering both a mobile browser version and a
rich client version. We can see both versions here on a Nokia X6 with Symbian.

Mobile Web Eras | 59

http://

• Contextual ads

• On-demand/live video streaming

• HTML 4/5, CSS 2/3, JavaScript

• Touch/multitouch support

As we can see from Figure 2-11 (and, no doubt, from personal experience), social net-
works are increasingly being accessed from mobile devices, and the predicted trend is
for continued growth.

Figure 2-11. The numbers of mobile Internet users and mobile social network users are expected to
grow rapidly over the next few years.

60 | Chapter 2: Mobile Browsing

http://

CHAPTER 3

Architecture and Design

While this is not a book about design, understanding some architectural and usability
concepts is critical to creating useful mobile services. Many common desktop web de-
sign patterns and usability concepts do not apply in a mobile environment.

Website Architecture
Yes, a mobile website is still a website. The details are very different, however.

Navigation
When creating your mobile web concept, before you do any coding you should define
what will be in the navigation tree for the user. To do that, you need to understand
what services and information will be available for the mobile user. Always remember
the 80/20 law: 80% of your desktop site will not be useful to mobile users. Therefore,
you need to research the 20% you should be focusing on.

You can decide that you won’t have a mobile website and just want to
allow access to your desktop site to full HTML smartphones. If you’re
sure you will have mobile users I don’t recommend you leave the desk-
top website as-is, but if you do decide not to create a separate mobile
site, you will see later in this book how to optimize your desktop website
for better visualization in smartphones.

Here are some tips you will need to follow:

• Define the use cases (for example, find a product price, find a store near you, call
us, or perform a search).

• Order the use cases by the most frequent for a mobile user. Use your best guess,
statistical information, and usability tests to keep this order updated.

61

http://

• Do your best to make every use case successful in no more than three clicks or at
a page depth of no more than three.

• Define approximately three main sections below the home page. If you need more,
you should separate your service into more mobile pages.

• Always offer a link to the desktop website.

• Determine whether locating the user is useful for your services.

• Reduce the form pages for user input to the minimum.

• Avoid startup or welcome screens.

• Do your best to predict users’ input based on the context and their browsing history
to reduce the number of selection pages and clicks required.

Context
Remember that a mobile user has a different context than a desktop user. You should
think about and define your users’ possible contexts:

• Where is the user?

• Why is the user accessing your mobile website?

• What is the user looking for?

• What can you offer from a mobile perspective to help solve the user’s problem?

• Where will the user be when accessing your website? Walking on the street, using
public transportation, at the office, traveling as a tourist?

The context will tell you many things about your navigation, use cases, and the usability
needs for your mobile site.

A Bad Example of Navigation
I have imprinted in my mind a bad example for navigation in a mobile website. In my
city, years ago (but still online right now), there was a free mobile web service to get
public bus time slots. It is a great service for mobile web users; you are on the move,
you need to take the bus, but you’re not sure when it will arrive. Should you go for a
coffee first?

When you first enter the site, you see a welcome page with a Begin link. After that, you
have to choose from a list which bus line you want to query. Then you see a list of final
stops for that line, to select your orientation. The first problem is whether you know
the name of the final stop in the direction you want to travel. After selecting your
orientation, you have to choose the stop or station where you want to get on the bus.
There is a list of around 50 addresses, ordered alphabetically. If you don’t know the
street name for the stop you want, you will need to make an average of 25 clicks to find
the right one.

Once you’ve found your stop, you need to select whether you want a normal bus or a
bus with accessibility support. Finally, the service informs you when the next two buses

62 | Chapter 3: Architecture and Design

http://

will be arriving. You have two navigate through six pages and choose from a 50-item
list to get the result.

In my city, on weekdays during the day buses have a very short delay time (between 5
and 8 minutes), so what will be the most common context for the service? Probably
night and weekend services. The first time I really needed the service was at 1 am,
coming back from an event. I completed the six-step query only to receive a “There is
no information” message. The service did not work at night!

What could be done to improve navigation? Avoid the welcome screen, the accessibility
support selection page, and maybe also the direction selection (we can usually guess it
from the stop, and even if the stop has service in two directions, information for both
can be shown). The stop selection could be improved with features such as a search
box, a list filtered by neighborhood, a list of nearby points of interest (museums, cin-
emas, etc.), a location query, a history of stops used before (perhaps using cookies),
and so on.

Progressive Enhancement
Progressive enhancement is a simple but very powerful technique used in web design
that defines layers of compatibility that allow any user to access the basic content,
services and functionality of a web and providing an enhanced experience for browser
with better support of standards.

The term was coined by Steven Champeon (http://www.hesketh.com) in 2003, and while
this approach wasn’t defined for the mobile web specifically, it is really perfect for
mobile web design. The concept subverts the typical web design strategy, known as
“graceful degradation,” where designers develop for the latest technologies and brows-
ers and their designs automatically work with the lesser functions available on older
browsers. This technique is not useful for mobile browsers because, as we will see, there
are serious compatibility issues in the mobile world. If we develop a website for the
latest device (for example, the iPhone), it may not automatically work on other, less
advanced devices.

Progressive enhancement has the following core principles:

• Basic content is accessible to all browsers.

• Basic functionality is accessible to all browsers.

• Semantic markup contains all content.

• Enhanced layout is provided by externally linked CSS.

• Enhanced behavior is provided by unobtrusive, externally linked JavaScript.

• End user browser preferences are respected.

We will add some other ingredients to this recipe when talking about mobile devices.
The objective is to have one only code that is compatible with all devices. And, as we
are going to discuss later, we must provide the right user experience on every device.

Website Architecture | 63

http://www.hesketh.com
http://

We shouldn’t create lowest common denominator websites just so that they will be
compatible with all devices, and we shouldn’t create overly complex mobile websites
that will only work on high-end smartphones.

In the mobile web, a progressive enhancement approach will also include some server-
side detection and adaptation that will be mandatory for some specific mobile markup
(sending an SMS, for example).

From my point of view, a mobile web design approach should have the following layers
that will be added using a progressive enhancement strategy:

1. Create valid and semantic markup containing only the content—no CSS, no frames
or iframes, no JavaScript, and no Ajax. All the content and services on the website
(with the exception of some nonstandard features, like geolocation) should work
with this simple version.

2. Insert in the document any special tags or classes required for device-specific func-
tionality, such as call-to links or a file upload form control.

3. Optionally, from the server, decide which MIME type you will be using (this will
be covered in Chapter 5 and Chapter 10) and recognize the device.

4. Optionally, from the server, replace the special tags inserted in step 2 with real
markup depending on the device capabilities.

5. Add one CSS layer for basic devices, one for high-end devices, and one for some
specific smartphones (Android and iPhone devices, for example). You can insert
all the markup at the same time using CSS media queries (to be covered in Chap-
ter 7), or use a server-side mechanism to decide which CSS file to apply.

6. Add an unobtrusive basic JavaScript layer for form validation and other basic
features.

7. Add an unobtrusive Ajax layer for content updating, capturing the onclick event
of every link.

8. Add an unobtrusive JavaScript layer and a CSS layer for advanced features (ani-
mations, effects, geolocation, offline storage, etc.).

9. Optionally add widget support using a new layer.

We will cover most of these technologies over the next few chapters. The most impor-
tant part to understand right now is that using this strategy all devices receive similar
markup (with minor changes if we use a server-side adaptation engine), and using CSS
and JavaScript we add layers of behavior and design adapted to each device.

Different Version Approach
A different approach is to create n different versions and redirect the user to the ap-
propriate one depending on the device detected. The main problem with this approach
is that we need to maintain n different versions of the same document.

64 | Chapter 3: Architecture and Design

http://

If this will be your strategy, expect to need a minimum of four versions for a successful
mobile website, with an optional fifth. If you create fewer versions, some users will
probably have a bad experience with your site.

Using a server-side adaptation mechanism, you can reduce the number of required
versions to two: one for low- and mid-end devices and one for high-end devices and
smartphones. In the high-end and smartphone world it will be better to use an adap-
tation strategy for the many features that are not compatible with all devices. Broadly,
here are the features you will need to consider for each device category:

Low-end devices
Basic XHTML markup, maximum screen width of 176 pixels, basic CSS support
(text color, background color, font size), no JavaScript

Mid-end devices
Basic XHTML markup, average screen width of 240 pixels, medium CSS support
(box model, images), basic JavaScript support (validation, redirection, dialog
windows)

High-end devices
XHTML or HTML 4 markup, average screen width of 240 pixels, advanced CSS
support (similar to desktops), Ajax and DOM support, optional touch support,
optional orientation change support (for an average screen width of 320 pixels)

Advanced smartphones
HTML 5, large screen size and high resolution, touch support, support for CSS
extensions (animations, effects) and Ajax, storage, geolocation

Old devices (optional)
WML (we will discuss this in Chapter 5)

I’ve seen a lot of browser grouping techniques to decide which versions
or features we can use in each browser group. The reality is that browsers
are so different that there is no way to group them that guarantees all
members will have the exact same features. In the next chapters, we will
analyze compatibility browser by browser and feature by feature. I sug-
gest you create your own groups based on your code features and the
website versions you will design.

Design and Usability
Designing a mobile website can be a challenge at the beginning. Unless you are working
on a website for only one device, forget about creating an exact pixel-by-pixel web
design. Your mobile website will look different on every device it’s viewed on; you need
to accept this and, keeping it in mind, create a strategy to create the best web design
you can.

Design and Usability | 65

http://

The best advice I can give you about mobile web design is: Keep It Sim-
ple! However, that doesn’t mean Keep It Ugly.

A mobile website ideally consists of vertically scrollable documents. The typical two-
or three-column design is not suitable for mobile web pages. Every mobile web docu-
ment has a few identified zones:

• Header

• Main navigation

• Content modules

• Second-level navigation

• Footer

These sections will be created one after the other in a vertical scope. Only for devices
with a landscape orientation and smartphones it is suitable to create an alternative
organization where you can move the main navigation section to a right-side column.

On high-end smartphones, your main navigation can become a top or
bottom tab bar, and the content modules can shrink with an accordion
or master-detail design.

When you are creating a mobile version of an existing desktop website, you need to
understand that you are mobilizing the website, not minimizing it. Minimizing (or
miniaturizing) a desktop website simply involves displaying the same content on a
smaller screen. Mobilizing is more than that; it requires understanding the context and
offering your services and content in a manner that is useful and allows for quick access
by the user.

If you are designing a mobile Rich Internet Application or a webapp
using Ajax, you should always insert in the UI a background operation
icon to alert the user when a background connection is in progress. An
offline button could be useful if the user is not on WiFi or is in roaming
mode and doesn’t want to get updates for a while.

Some best practices include:

• Avoid horizontal scrolling.

• Maintain visual consistency with your desktop site, if you have one.

• Reduce the amount of text.

• Use legible fonts on every screen; don’t rely on the resolution.

66 | Chapter 3: Architecture and Design

http://

• Use background colors to separate sections.

• Keep the main navigation to three or four links.

• Maintain the total link count at no more than 10 per page.

• For low- and mid-end devices, don’t insert more than one link per line.

• Use all the available width (i.e., not columns) for links, list elements, text inputs,
and all possible focusable elements.

• Provide a Go to Top link in the footer.

• Provide a Back button in the footer (some browsers don’t have a Back button visible
all the time).

• Provide the most-used features at the top.

• Group large lists by categories, each with no more than 10 items (for example,
country selection by selecting the continent first).

• Minimize the amount of user text input required.

• Save the user’s history and settings for future predictive usage.

• Split large text articles into pages (with page size depending on the richness of the
browser).

• Try your color palette in different environments. Users may be in a place with poor
lighting, on public transport, at the beach in bright sunlight, or in an office with
fluorescent lighting.

• Provide different styling for touch devices.

• Think about fluid (liquid) designs for best adaptation.

• Use lists rather than tables.

• Don’t use text images.

• For touch and cursor-based devices, use full-width links so that a link will activate
if the user clicks on any pixel in the line containing it. Make sure there is only one
link in each line.

• Use high-quality color images and fancier features stuff for smartphones (we will
discuss optimizing later).

• For cursor navigation, create medium-sized clickable zones for the cursor, moving
by 5 or 10 pixels every time. Do not make the user travel a lot using the cursor;
design all the clickable buttons near each other.

• If you are providing a shortcut, a widget, or an offline version of your mobile web-
site, create an alert at the top of the design (generally with yellow background)
alerting the user to download it. Don’t show that alert after many views or after
the user has entered the download area. We will cover these techniques in Chapters
12 and 14.

Design and Usability | 67

http://

Keep the text on your site to a minimum. Read every paragraph five
times, and you will always find some word you can remove or a shorter
way to say the same thing.

For low- and mid-end devices, it is preferred to use a table design instead of floating
divs, like in the first years of the desktop web. But keep in mind that using more than
one item, link, or idea per line isn’t a good practice on those devices.

I Didn’t Want to Buy It!
Many years ago, I was browsing my operator’s deck portal checking the games and
content available for my device. I remember accessing the details of one game and seeing
a screen that offered to let me buy it and have the charge added to my phone bill. I
didn’t want to buy the game.

The page asked me for permission to make the charge and offered two links, YES and
NO. Both links were in the same line, one after the other. The focus was in the YES
link (of course). What did I do? Unconsciously, I pressed the right key to shift focus to
the NO link.

What happened? The right key was a “go-to-link” action for my browser! I could only
change the link focus using the up and down keys (like a tab), no matter where the links
were located. So, because of a usability problem, I had to pay for content I didn’t want.

That is why we need to test our websites on a wide range of real devices, and why I
advise you to use only one link per line when targeting low- and mid-end devices.

If you want to get deeper into mobile web design, you can read Mobile Design and
Development, by Brian Fling (http://www.flingmedia.com), also published by O’Reilly.
Another excellent resource is Design4Mobile (http://patterns.design4mobile.com),
which provides a list of mobile web design patterns with explanations and examples.

Among the Design4Mobile patterns, I recommend that you read the following:

• Screen Design Basics—presents dozens of small tips for markup.

• Screen Design Patterns—provides a list of common solutions for designing but-
tons, list-based layouts, fisheye lists, zoom lists, search results, breadcrumbs, car-
ousels, and text input fields.

• Application Navigation—describes how to manage list navigation, autocomple-
tion, the back button, and other stuff.

If your navigation requires going back frequently, you should check
whether the browser maintains the scroll position after going back. If
not, you should probably create Back links with anchors to scroll to
directly where the user was.

68 | Chapter 3: Architecture and Design

http://oreilly.com/catalog/9780596155452/
http://oreilly.com/catalog/9780596155452/
http://www.flingmedia.com
http://patterns.design4mobile.com
http://

Glyphish (http://www.glyphish.com) is a free iPhone-styled gallery where you can find
icons to use for lists, tabs, and buttons. Figure 3-1 shows a sample of the available
designs.

Figure 3-1. Some of the free icons for touch devices available at Glyphish.

Some low- and mid-end devices have buggy CSS implementations, like
the 100% width bug that generates a minimal (and annoying) horizontal
scrolling action when this style is used on an element. You should test
your design and change your strategy when things like this happen.

Design and Usability | 69

http://www.glyphish.com
http://

Touch Design Patterns
Touch devices have unique features in terms of design and usability. With the same
amount of effort, the user can access every pixel on the screen; this encourages a dif-
ferent way of thinking about a design. Another difference is that the user will use her
finger for touch selection (unless it is a stylus-based device). A finger is big compared
to a mouse pointer, and the hit zone should reflect this.

The Touch Gesture Reference Guide is a great resource put together by
Luke Wroblewski (http://www.lukew.com) that contains an overview of
core gestures for most touch commands, how to utilize gestures, visual
representations of each one to use in documentation, and an outline of
popular software platforms supporting them. You can download it from
http://www.mobilexweb.com/go/touchguide.

Here are some useful design tips for touch devices:

• When the user touches the screen, parts of it will be obscured. Think about what
will be hidden, and if it is important. Consider both right- and left-handed users.

• Provide a reasonable amount of space (20 pixels or more) between clickable
elements.

• For frequently used buttons and links, provide a big clickable area (minimum 40
pixels width and height).

• For less frequently used buttons, you can use a smaller area (minimum 25 pixels).

• Provide quick feedback when a touch is accepted.

• Think about how scrolling will work.

• When using form input fields, try to insert the label above and hints below, not to
the right or left of the input field. Generally, touch devices with virtual keyboards
zoom in on the field when the user moves the focus to it, so the user will not see
what is at the right or left of the input field while typing.

Nokia has recently released Flowella, a free tool for creating design
prototypes for mobile applications by using mock-ups and defining
links between screens. It can export designs to Flash Lite or WRT
widgets for Symbian, and it is ideal for testing the look and feel of
an application. You can download it from http://www.mobilexweb
.com/go/flowella.

• Use finger gestures on compatible devices.

• Use infinite lists instead of pagination. An infinite list, like that shown in Fig-
ure 3-2, has a “More” final item that the user can click to dynamically add more
elements to the list (via Ajax or other techniques). For performance purposes, you
should reduce the number of pages shown at the same time. When adding new

70 | Chapter 3: Architecture and Design

http://www.lukew.com
http://www.mobilexweb.com/go/touchguide
http://www.mobilexweb.com/go/flowella
http://www.mobilexweb.com/go/flowella
http://

pages, the best way to approach this is to eliminate the first page from the DOM
and create a “Previous” first item when the count reaches n pages (for example, 5).
Doing this ensures that you will not have more than n pages shown at the same time.

• Use an auto-clear textbox feature for the most common text inputs. This is just an
X icon at the right of the text input box that the user can click to automatically
clear the input.

• Use the long-press design pattern (also known as “touch and hold”) for contextual
actions. This means that if the user presses a zone for 2 seconds or more, you can
show a pop-up menu with contextual options.

• Prefer bottom-fixed to top-fixed tab navigation. The bottom of the screen (or the
right, in landscape mode) is nearer the finger while browsing than the top zone.

• Analyze native touch applications for usability ideas.

Figure 3-2. An infinite list offers an option to load more items in the same list using Ajax.

Design and Usability | 71

http://

Panorama UI
A panoramic user interface, shown in Figure 3-3, is a great design pattern for touch-
enabled smartphones. It gives you the ability to create a big interface (normally hori-
zontally oriented) and treat the screen as just a window into that big panorama.

For example, for a screen width of 320 pixels, you can design a big UI—say, 1600 pixels
wide, with five different sections—and the user can flip from one screen to other using
a finger gesture, dragging the whole interface.

A great design tip (used in Windows Phone 7, for example) is to use the last 5–10% of
the pixels on the right side of the screen to show the first pixels at the left edge of the
next screen, even cropped. This pattern allows the user to understand that more in-
formation, menus, or actions are available off the right side of the screen, and that
dragging the whole screen will show that hidden information.

Remember, with a panoramic UI, you have to think of the viewport as just a window
into the whole user interface.

Figure 3-3. The panoramic UI design pattern shows a bit of the following content at the right, and
the user can scroll the whole screen using his fingers. Here is a Windows Phone 7 screen.

72 | Chapter 3: Architecture and Design

http://

Official UI Guidelines
Official user interface guidelines from the manufacturers, links to which you can find
at http://www.mobilexweb.com/go/uiguides, are another source of inspiration for mobile
web design. Here, you will find guidelines, samples, tips, and descriptions of common
mistakes. Many of the guidelines focus on native application development, but we can
apply most parts of them to mobile web design, too.

If you apply the long-press (touch and hold) design pattern, you should
be aware that browsers have their own long-press actions for clickable
elements, like links, images, or text for copying and pasting. In WebKit-
based browsers, you can disable text selection on text items using the
webkit-user-select:none style and then create your own menu.

The most important guides are:

• iPhone Human Interface Guidelines

• UI Guidelines for BlackBerry Smartphones

• Motorola’s Best Practices for UI

• Forum Nokia UI Visual Guidelines

• Sony Ericsson’s UI Style Guidelines

• UI Guidelines for Windows Mobile

• UI Guidelines for Android

A fragment of the iPhone Human Interface Guidelines is shown in Figure 3-4.

Design and Usability | 73

http://www.mobilexweb.com/go/uiguides
http://

Figure 3-4. Official UI guidelines provide information about how your design should follow the user’s
well-known interface.

74 | Chapter 3: Architecture and Design

http://

CHAPTER 4

Setting Up Your Environment

Unlike desktop web development, where you’re likely to create and test your work on
the same device, mobile development generally requires creating and managing several
development environments.

Setting Up a Development Environment
Before starting our mobile web markup work, let’s take a look at some of the best tools,
IDEs, and emulators available for our use. In Chapter 13, we’ll take a deeper look at
testing and debugging and cover advanced techniques and tools.

Working with Code
For coding our markup, JavaScript, and CSS, we can use almost any web tool available
in the market, including Adobe Dreamweaver, Microsoft Expression Web, Aptana
Studio, or even a text editor. Some tools, like Dreamweaver (since the CS4 version),
work better with mobile markup and allow us to validate against mobile web standards.
In this editor, when we create a new document we can choose XHTML Mobile as the
document type, as shown in Figure 4-1.

We will see in the following pages that it may be useful not to use too many of an
editor’s visual design features. In mobile web development, it is often easier and cleaner
to work directly with the code.

Emulators and Simulators
The most useful tools for our work will be emulators and simulators. Generally speak-
ing, an emulator is a piece of software that translates compiled code from an original
architecture to the platform where it is running. It allows us to run an operating system
and its native applications on another operating system. In the mobile development
world, an emulator is a desktop application that emulates mobile device hardware and
a mobile operating system, allowing us to test and debug our applications and see how

75

http://

they are working. The browser, and even the operating system, is not aware that it is
running on an emulator, so we can execute the same code that will execute on the real
device.

We should also add to our mobile development environments classic
tools for project and configuration management, like bug tracking, ver-
sion control, and project management tools.

Emulators are created by manufacturers and offered to developers for free, either
standalone or bundled with the Software Development Kit (SDK) for native
development.

There are also operating system emulators that don’t represent any real device hardware
but rather the operating system as a whole. These exist for Windows Mobile and
Android.

On the other hand, a simulator is a less complex application that simulates some of the
behavior of a device, but does not emulate hardware and does not work over the real
operating system. These tools are simpler and less useful than emulators. A simulator
may be created by the device manufacturer or by some other company offering a

Figure 4-1. Dreamweaver allows us to define new files as XHTML Mobile documents. It is better not
to use the layout templates.

76 | Chapter 4: Setting Up Your Environment

http://

simulation environment for developers. As the simulator does not simulate all the de-
vice features, we can also find tools that will not be helpful for mobile web development
but rather for other technologies, like Java ME. In mobile browsing, there are simulators
with pixel-level simulation, and others that neither create a skin over a typical desktop
browser (e.g., Firefox or Safari) with real typography nor simulate their rendering
engines.

For mobile web development, we will find emulators from Nokia, Symbian, BlackBerry,
Android, Palm Pre, and Windows Mobile and simulators from Apple for the iPhone
(though only for Mac OS X). A multiple mobile browser simulator is available from
Adobe, called Device Central, but we will not find any help from Sony Ericsson, LG,
Motorola, or Samsung with their proprietary OSs (used on their low- and mid-end
devices).

Some browser-based emulators, like the Opera Mini emulator, are also available.

An up-to-date list of emulator download URLs can be found at http://www.mobilexweb
.com/go/emulators.

As the emulators have the same operating system and applications as
the real devices, we will need to wait for the OS to load before opening
a web page.

Android emulator

The Android emulator, shown in Figure 4-2, is available in conjunction with the SDK
to create native Java applications for Android. You can download it for free from http:
//developer.android.com; the base SDK and the different Android OS versions are avail-
able separately. The Android emulator is available for Windows, Mac OS X, and Linux.
Once you’ve downloaded it, create a folder for the contents on your hard drive and
unzip the package.

In the folder where you extracted the package, there is an android terminal command
on Mac OS X/Linux and an SDK Setup.exe application for Windows that opens the
Android SDK and AVD Manager, where you can download and configure Android
platforms after installing the base SDK.

If you get errors while trying to retrieve “Available Packs” in the Android
SDK and AVD Manager, you can go to Settings, click the option “Force
https:// sources to be fetched using http://”, and then click Apply.

Opening the Android emulator can be a little tricky the first time. You can open it from
an IDE such as Eclipse, but first you need to install the Android plug-in and create a
native empty application. Alternatively, you can open the emulator from a console

Setting Up a Development Environment | 77

http://www.mobilexweb.com/go/emulators
http://www.mobilexweb.com/go/emulators
http://developer.android.com
http://developer.android.com
http://

window (Terminal or the command prompt, depending on the operating system) or
from the SDK and AVD Manager.

After you’ve had the Android SDK installed for a while, you may want
to update it and install a new package. If you receive an XML error while
doing this, you may have an outdated version of the AVD manager. Just
go to the website and download the SDK again.

Once you’ve installed a platform, you need to create a new Virtual Device using the
SDK and AVD Manager. Creating a new device involves selecting the target (of the
installed platforms), defining a name, and specifying the size of the SD card, the screen
size, and other optional hardware features, as you can see in Figure 4-3. One you’ve
created the device, you can go to Virtual Devices and click Launch to reach a result like
the one shown in Figure 4-4.

You can also install new tools from vendors, like the Droid device for Motorola. In the
Motorola case, you need to download the MotoDev Studio for Android, available for
free at http://developer.motorola.com.

Motorola will simplify the SDK install process and emulator launch if
you download MotoDev Studio for Android IDE first. It will ask you to
download and configure the SDK and platforms automatically.

Figure 4-2. After downloading the Android SDK, open the Manager and download the platforms you
want. The Google APIs are needed for native development using Google’s services.

78 | Chapter 4: Setting Up Your Environment

http://developer.motorola.com
http://

With the emulator opened, you can open a mobile website by finding the browser using
your mouse (remember that almost all Android devices are touch capable) and typing
the URL in its location bar. Up to Android 2.0, the emulator doesn’t support opening
local files, so you’ll need to set up a local web server (e.g., Apache) or upload your files
to a web server on the Internet.

Figure 4-3. After installing the SDK and the platform, you must create virtual devices for each platform
and screen combination you need.

Setting Up a Development Environment | 79

http://

If you want to load a local web server in the Android emulator, you can’t
use localhost or 127.0.0.1 because the browser will point the request to
Android itself. There is a special IP address available to point to the host
computer: 10.0.2.2.

Nokia emulators

Nokia has always had the better emulators, since the beginning of mobile web devel-
opment. Instead of one emulator per device, you’ll find one emulator for each version
of each platform. You can download emulators for Series 40 (mid- and low-end devices)
and for S60 (Symbian smartphones) at http://www.forum.nokia.com. In some cases
there are also specific model emulators with specific features, like for the Nokia N97
(an S60 5th edition device with home screen widgets, a feature we will cover in Chap-
ter 12).

Nokia also has a tool called the Nokia Mobile Browser Simulator, de-
veloped in 2003 to test mobile websites for old WAP 1.0 devices and
the first WAP 2.0 ones. Today, this tool is still available but deprecated;
we don’t need it.

Figure 4-4. At this point, you can open the browser as if you were on a touch-enabled Android device.
You can use the mouse over the emulator’s screen to emulate the user’s gestures.

80 | Chapter 4: Setting Up Your Environment

http://www.forum.nokia.com
http://

Unfortunately, Series 40 and S60 Nokia emulators, like that shown in Figure 4-5, are
available only for the Windows operating system, and some of the old ones have prob-
lems with Windows Vista and Windows 7. It is a good idea to install at least the last
three emulators for each platform; for example, Series 40 6th edition, Series 40 5th

edition FP1 (Feature Pack 1), and Series 40 3rd edition FP2.

Figure 4-5. Here is a focus-based navigator over a Nokia S40 emulator. If you use File→Open, you
must type http:// first.

If you need to emulate a Nokia device, first find the correct platform version for that
device at http://forum.nokia.com/devices and then download the emulator for that plat-
form. Nokia guarantees (and it works almost all the time) that every device based on
the same platform version has the same browser and rendering engine and even the
same hardware features.

Setting Up a Development Environment | 81

http://forum.nokia.com/devices
http://

There isn’t a Maemo or MeeGo emulator for testing mobile websites,
but you can download MeeGo for netbooks from http://www.meego
.com and run it on a virtual machine.

The Nokia emulators will add shortcut icons to your Start menu, so it will be easy to
find them. Once you’ve launched the emulator, you can open the browser and type in
the URL or use the shortcut File→Open, which allows you to type or paste a URL or
browse for a file in your local filesystem. The emulator will open the browser
automatically.

Some of the latest S40 emulators have predictive text input active by
default, and this will deactivate the usage of your desktop QWERTY
keyboard to type. Before using them, you’ll need to disable predictive
input.

Nokia S40 emulators support the use of localhost or 127.0.0.1 to connect with your
desktop host computer.

Running Mac OS X or Linux?
If you are taking seriously mobile web programming for multiple devices, it will be very
useful to have at least one development desktop with Windows XP, even if it is on a
virtual PC. Some emulators work only in Windows environments, and some have issues
with Vista and/or 7. Hopefully this will change with time; emulators for Mac OS X and
Linux are already available for some platforms.

iPhone simulator

Only available for Mac OS X, the iPhone Simulator, shown in Figure 4-6, offers a free
simulation environment including Safari. It is not an emulator, so it does not really
provide a hardware emulation experience and is not a true performance indicator.
However, it is perfectly suitable for seeing how your website is rendering and how your
code is working. It’s especially convenient for loading local or remote files by typing in
the URL field using your desktop keyboard.

The iPhone Simulator is included with the SDK for native development, available for
free at http://developer.apple.com/iphone. The SDK may take a while to download, be-
cause it’s more than 2 GB. You can download the latest version of the operating system,
in which case you can switch between versions using the Hardware→Version menu
option. With the Simulator, you can also select if you want to simulate an iPhone or
an iPad.

82 | Chapter 4: Setting Up Your Environment

http://www.meego.com
http://www.meego.com
http://developer.apple.com/iphone
http://

At the time of this writing, there is no way to emulate the real iPhone
browser on Windows or Linux machines. In Chapter 13 we will cover
alternatives to emulation that can help even on Windows machines.

Once the emulator is open, you can open the Safari application and type a URL in the
address bar. To open a local file, use the file:/// protocol in the address field (for example,
file:///Users/myUser/Desktop/test.html to open an HTML file on the desktop of the
myUser user).

The most accurate iPhone experience on Windows can be found using
the MobiOne emulator, which includes a Visual Designer. It is available
for free at http://www.genuitec.com/mobile and it includes a WebKit
browser emulating most of the iPhone extensions. It also supports a
Palm webOS skin.

Pasting a URL from the clipboard can be a little tricky from iOS 3.0. When you paste
text using the keyboard or the Edit menu, the text will be pasted into the iPhone’s
internal clipboard. You then need to paste it again using the iPhone’s gesture, tapping
once over the text input and selecting Paste from the contextual menu, as shown in
Figure 4-7.

Palm emulator

Palm has been in the emulator market for more than 10 years and has always had great
support for these tools. We have already talked about the history of Palm and Palm
OS; in this book we will cover only the new webOS, the operating system available
since Palm Pre. You can download the Palm Mojo SDK, which includes the Palm em-
ulator, from http://developer.palm.com. It is available for Windows, Mac OS X, and
Linux. To use it, you must have Sun VirtualBox, a free virtualization tool available from

Figure 4-6. The iPhone Simulator allows us to rotate the screen as in the real device.

Setting Up a Development Environment | 83

http://www.genuitec.com/mobile
http://developer.palm.com
http://

http://www.virtualbox.org, installed on your machine. If everything goes OK, you can
open the Palm emulator from the Start menu, the command line/Terminal, or your
applications list.

If you want to download and install old Palm OS (now Garnet OS) SDKs
and simulators, you can find them at http://www.accessdevnet.com. This
is the developer’s site for ACCESS, the current owner of Garnet OS and
the NetFront browser.

In the Palm emulator, you can open the applications menu with your mouse and choose
Web to type a URL. This emulator can be a little confusing at first because it doesn’t
support an onscreen keyboard (see Figure 4-8); we only see the screen of the device.

To help you get started, Table 4-1 lists some keyboard shortcuts that will be helpful
for using the emulator.

Table 4-1. Palm emulator keyboard shortcuts

Key Description

Alt (Windows, Linux), Option (Mac) Option key

End Opens (or closes) the launcher

Esc Back action (generally goes back to the previous card/window)

Home Minimizes (or maximizes) the current card (window)

Left and right arrow Switches between applications

If you have a MacBook laptop like me, you will not find the End or Home
keys on your keyboard. In the Palm emulator, you can use Function-
right arrow and Function-left arrow for the same functionality.

Figure 4-7. You can use your desktop keyboard, or Edit→Paste to paste text to the iPhone’s clipboard,
and then tap once on the text input and press Paste on the screen to paste it where you want it to go.

84 | Chapter 4: Setting Up Your Environment

http://www.virtualbox.org
http://www.accessdevnet.com
http://

The Palm emulator, like Android’s, doesn’t support simple local file opening. You’ll
need to use a local web server and use the internal VirtualBox IP address to access the
host server.

BlackBerry simulators

Research in Motion (RIM), vendor of the popular BlackBerrys, has done a great job
with emulators, with one only problem: it is very difficult to decide which one to
download and use. Dozens of different installers are available at http://www.blackberry
.com/developers; you can download the proxy server, plug-ins for Eclipse and Visual
Studio for web developers, and the simulators. All the tools are compatible only with
the Windows operating system.

The first requirement is to download the BlackBerry Email and MDS Services Simulator
Package. This proxy allows any simulator to access the network and emulates email
services and an enterprise server. Before opening a browser, you need to start this service
on your computer.

The BlackBerry Smartphone Simulators are available at http://na.blackberry.com/eng/
developers/resources/simulators.jsp. The first step is to select the smartphone you want

Figure 4-8. The webOS emulator doesn’t have an onscreen keyboard, so you need to learn the shortcuts
to emulate keypresses.

Setting Up a Development Environment | 85

http://www.blackberry.com/developers
http://www.blackberry.com/developers
http://na.blackberry.com/eng/developers/resources/simulators.jsp
http://na.blackberry.com/eng/developers/resources/simulators.jsp
http://

to emulate (for example, BlackBerry Tour 9630) and choose either the carrier you want
(or Generic), or the OS version.

You can also click the “view all BlackBerry Smartphone Simulator downloads” link and
select the appropriate version of the BlackBerry simulator from the list of more than 20
available choices, starting with version 3.6. Every version has a choice of simulators
available for many combinations of BlackBerry device and operator firmware. For ex-
ample, if you choose version 4.2, you can download a BlackBerry 8100 simulator with
one of the following operator options:

• Operator-less

• Cingular Wireless

• Vodafone

• TIM

• Telefonica

• Rogers Wireless

• T-Mobile USA

• Orange

• O2

In addition, there are different versions of the operating system available for the same
device and for the same operators. You can either select the operator-agnostic firmware
(Generic) or the firmware for a specific operator to download. One example of a Black-
Berry simulator is shown in Figure 4-9.

A list of the devices available per version is shown in Table 4-2.

Table 4-2. List of BlackBerry simulators and device models available for each version

Simulator version Some devices available (with many operators for each one)

5.0.0 Tour (9630), Curve (8530), Storm (9500, 9530), Storm 2 (9520, 9550), Bold (9700)

4.7.1 Tour (9630)

4.7.0 Storm (9500, 9530)

4.6.1 Curve (8350i, 8900, 8520, 8230), Bold (9000)

4.6.0 Pearl (8220, 8230), Bold (9000)

4.5.0 Pearl (8100, 8110, 8120, 8130), Curve (8300, 8310, 8330), 8800, 8820, 8830, 8880, 8700

4.3.0 Pearl (8110, 8120, 8130), Curve (8330)

4.2.2 8707, 8820, 8830, Curve (8300, 8310, 8320)

4.2.1 Pearl (8100), 7130, 8707, 8700, 8800

4.2 Pearl (8100)

4.1 8700, 8707, 7130, 8703, 8707, 7290, 7250, 7130, 7100

86 | Chapter 4: Setting Up Your Environment

http://

Once you’ve installed your emulator, remember to open the BlackBerry MDS Services
Simulator before using it. Launch the emulator, open the browser, and type the URL
you want to access, and you’ll see something like Figure 4-9. These emulators don’t
support local files or accessing them through localhost; you can use the local IP address
of your desktop if you’re on a network or the public IP address if you are connected
directly to the Internet.

Windows Mobile emulators

You can download Windows Mobile emulators along with Visual Studio 2008 or 2010,
or without the IDE in standalone mode. The emulator isn’t available with the free
Express versions of Visual Studio, and they work only on Windows-based computers.

You will need to download:

• The Microsoft Device Emulator

• Windows Mobile emulator images or images from manufacturers

• Virtual PC 2007 for Internet connectivity

• ActiveSync (only for Windows XP or 2003 Server) or Windows Mobile Device
Center (only for Windows 7, Vista, or 2008 Server)

All these packages are available for free at http://www.msdn.microsoft.com/windowsmo
bile.

Figure 4-9. This BlackBerry simulator is pointer-based, so you need to use the onscreen keys or the
arrow keys on your desktop keyboard to browse as a mobile user.

Setting Up a Development Environment | 87

http://www.msdn.microsoft.com/windowsmobile
http://www.msdn.microsoft.com/windowsmobile
http://

If you’re using a version prior to 6.0, shortcut icons will not automatically appear in
the Start menu after installation. You will need to locate the installation folder (e.g.,
c:\Program Files\Microsoft Device Emulator\1.0) and execute the Emulator Device
Manager (the file dvcemumanager.exe).

The Emulator Device Manager lists all the installed images; you can right-click on one
and select Connect from the context menu. However, your work is not finished yet.

One of the most common problems with Windows Mobile emulators is that the In-
ternet connection doesn’t work out of the box. You need to do some setup before
connecting to the network. To connect the emulator with the network, follow these
steps:

1. With the emulator opened, right-click it in the Device Manager and select Cradle.

2. In the Device Manager, choose File→Configure. On the Network tab, check “En-
able NE2000 PCMCIA network adapter and bind to.”

3. Press OK to save your changes and create a bridge between your real network and
a virtual network in the emulator.

4. In the emulator, go to the network settings. The location may change between
Windows Mobile versions, but it should be found near Start menu→Set-
tings→Connections. Choose Network Cards and select The Internet from the drop-
down list.

5. Repeat this process for each emulator.

6. Open a champagne bottle and enjoy.

If you have installed Visual Studio, you can create an empty Smart De-
vice solution (for Windows Mobile or PocketPC) and run it. The emu-
lator will open without any other issue.

Windows Phone emulator

Remember that starting in 2010, Microsoft will stop evolving the Windows Mobile
operating system and replace it with Windows Phone 7. The whole platform is new,
including the mobile browser. To install the Windows Phone emulator you should use
Visual Studio 2010 (you can use the free version, called Visual Studio 2010 Express for
Windows Phone). It includes the emulator, and you can also use Internet Explorer. To
install it, you will need Windows Vista or Windows 7. A multitouch screen is required
to emulate multitouch over the emulator.

You can download it for free from http://www.microsoft.com/express.

i-mode HTML simulator

If Japanese people are likely to use your website, you should consider testing it for NTT
DoCoMo i-mode devices. Fortunately for people like me, who do not read Japanese,

88 | Chapter 4: Setting Up Your Environment

http://www.microsoft.com/express
http://

the company has created an English version of its website containing almost all the
relevant development information. A simulator for its devices is also available for
Windows.

You can download the i-mode HTML Simulator and the i-mode HTML Simulator II
from http://www.nttdocomo.co.jp/english/service/imode/make/content/browser/html.
The first one is suitable for simulation of devices released prior to May 2009, and the
second one is for the second generation of devices, starting in May 2009.

The Fire Mobile Simulator (http://www.firemobilesimulator.org) is a
Firefox plug-in simulator for the three main operators in Japan, Do-
CoMo, Au, and Softbank. The page and plug-in are in Japanese, but an
online translator such as Google Translate (http://translate.google.com)
will give you all the information you need.

Opera Mobile emulator

In 2010, Opera released the first emulator for its Opera Mobile browser, available for
Mac OS X, Linux, and Windows. The emulator runs the exact same code as the mobile
version, so it is accurate. In addition to the browser, the package includes an Opera
Widgets Mobile Emulator, a desktop version of the widget engine available for Symbian
and Windows Mobile, discussed in Chapter 12. With this emulator you can also debug
your mobile web applications using Dragonfly, a debugging service for Opera that we
will cover in Chapter 13.

You can download the emulator for free at http://www.opera.com/developer/tools. You
can also download the Opera Debug Menu, a set of shortcuts to Opera’s developer-
focused features, from the same URL.

Openwave simulator

We have already talked about Openwave, a browser installed on many low- and mid-
end devices from a variety of vendors before 2008. The company has since been
acquired by Myriad Group, but we can still download different versions of the simulator
at http://developer.openwave.com.

If you are using Visual Studio Development Server you will not be able
to access your ASP.NET pages from a mobile emulator, for security rea-
sons. You will have to change your security permissions, or use IIS in-
stead.

Adobe Device Central

I really like Adobe and many of its products. I even manage an official Adobe User
Group. However, while Adobe Device Central (the tool that provides mobile emulation

Setting Up a Development Environment | 89

http://www.nttdocomo.co.jp/english/service/imode/make/content/browser/html
http://www.firemobilesimulator.org
http://translate.google.com
http://www.opera.com/developer/tools
http://developer.openwave.com
http://

for Flash and for mobile websites) is great for Flash Lite emulation, it’s not so good for
websites.

The tool is included with Adobe Dreamweaver, Adobe Flash Professional, and some
of the suites and has an updated list of devices, including their screen sizes and Flash
Lite capabilities. However, for browser emulation it is just a miniature WebKit browser
on the desktop. It doesn’t provide real (or almost similar) simulation in terms of ty-
pography, browser bars, and markup rendering.

To simulate a website as shown in Figure 4-10, open the HTML source in Dreamweaver
and select File→Preview→Device Central or, from version CS5, use File→Open.

Figure 4-10. Don’t rely on Adobe Device Central’s rendering engine for mobile devices. Its best feature
is its great library of mobile device capabilities.

Comparison

Table 4-3 shows how the different platform emulators and simulators allow us to access
files and the clipboard on our host machines.

90 | Chapter 4: Setting Up Your Environment

http://

Table 4-3. Comparison of available emulators and simulators

Platform Able to open local files Accesses host’s local server via Supports copy/paste from host

Android No 10.0.2.2 No

Nokia S40 and S60 Yes localhost Yes

iPhone Yes localhost Yes (two-phase for 3.0)

BlackBerry No Network IP address No

Palm webOS No Virtual Box IP address No

Windows Mobile No Virtual PC IP address No

For emulators without URL pasting abilities, you can generate a free
mobile-optimized short URL for easy typing on a mobile device or in an
emulator at http://www.mobiletinyurl.com.

Online simulators

Online simulators are another option for exploring the mobile web.

At http://www.opera.com/mini/demo, you can enjoy a full Opera
Mini simulation in a Java applet (see Figure 4-11). This URL is for the latest version of
the software (at the time of this writing, 5.0), but you can also find simulators for
previous versions, like 4.2 at http://www.opera.com/mini/demo/?ver=4.

Remember that Opera Mini and other user-installable browsers are
available as normal native or Java ME applications, so you can use any
emulator to download them. The Nokia, Windows Mobile, and Black-
Berry emulators are great for this purpose.

Opera also offers an emulator for Opera Mobile that works on Windows, Mac OS X,
and Linux and can be downloaded for free at http://www.opera.com/developer/tools.

The website http://ready.mobi has a great testing tool that we will cover later
in this book (see Chapter 13). It also has an online simulator for some older devices,
such as the following:

• Nokia N70

• Samsung Z105

• Sony Ericsson K850i

• Motorola v3i

• Sharp GX-10

Opera Mini Simulator.

ready.mobi.

Setting Up a Development Environment | 91

http://www.mobiletinyurl.com
http://www.opera.com/mini/demo
http://www.opera.com/mini/demo/?ver=4
http://www.opera.com/developer/tools
http://ready.mobi
http://

When using the Nokia, BlackBerry, Symbian, Windows Mobile, and
Android emulators, we can install over them browsers that are available
for free, such as Opera Mini, Bolt, Opera Mobile, and the UC Browser.

Some websites, such as http://www.testiphone.com and http://www
.iphonetester.com, try to simulate the iPhone browser, but the experience isn’t the real
thing; they are just iframes with the skin of the iPhone.

We will get deeper into the creation of a testing environment in Chap-
ter 13, moving beyond emulators and simulators.

Production Environment
The mobile production environment, surprisingly, doesn’t differ too much from a clas-
sic web environment. Although many web hosting companies used to offer a “premium
WAP hosting” option (obviously, more expensive than the non-mobile options), there
is no need for any such distinction.

iPhone web simulation.

Figure 4-11. The Opera Mini Simulator is an online free service running the same Java browser as
the one on real devices.

92 | Chapter 4: Setting Up Your Environment

http://www.testiphone.com
http://www.iphonetester.com
http://www.iphonetester.com
http://

Web Hosting
To get started, you will need a web server with your favorite platform installed. It should
support either static or dynamic files on all platforms you plan to work with (PHP,
ASP.NET, Java, Ruby, Python, etc.). Cloud hosting (via a service like Amazon EC2,
Google App Engine, Aptana Cloud, or Microsoft Azure) will work well, too.

You will need to have permissions to manage MIME types on the server. We will talk
about this in Chapters 5 and 10, but for now, just remember that it will allow you to
make compatible mobile websites more easily.

There is no special need to use HTTPS (secure connections) for mobile
devices. If you want to, just remember that the most widely accepted
certificates are from Thawte and VeriSign.

Domain
Which domain alternative should you use? I have no answer for this; you will have to
decide for yourself. You can create a subdomain of your desktop website (if you have
one), like m.mydomain.com, or you can use the main entry point (mydomain.com or
www.mydomain.com), or you can buy a .mobi domain from any registrar (fees start at
$10 per year). My only recommendation is that, whatever decision you make, you
should try to have the other options available and set up a 301 HTTP Redirect to the
domain you’ve chosen. I’ve tried myself many times to guess a mobile URL using
m.<anysite>.com or <anysite>.mobi, and you should support that user behavior.

No matter which mobile domain you will be using, remember to create
a 301 HTTP Redirect to the chosen one from all the possibilities
(m.yourdomain, wap.yourdomain, mobile.yourdomain, and, if possible,
yourdomain.mobi). You don’t want to lose visitors because they couldn’t
guess your mobile address.

Error Management
You’ll need to ensure that your error pages will be mobile compatible. You should be
able to configure the default error pages for most common HTTP error codes, like 404
(Page not Found) and 500 (Internal Server Error), on your server. These files must be
mobile compatible; we don’t want to waste traffic for the user on a server error or deliver
pages that aren’t compatible with low-end devices. If you’re not sure how to configure
the default error pages, ask your server provider.

If you are providing both the desktop and mobile versions of your website from the
same domain, you should create a dynamic code to detect whether the device accessing
your site is a mobile or not. In the case of a 500 error, deliver a very simple HTML page

Production Environment | 93

http://

for both desktop and mobile users; you won’t know whether the problem was in your
dynamic platform.

Facebook uses a main mobile site, http://m.facebook.com, but also de-
livers special URLs for some platforms (for example, http://touch.face
book.com for touch devices, http://iphone.facebook.com for iPhones, and
http://zero.facebook.com for basic phones). You should provide only one
URL and deliver appropriate content from that, as we will see in Chap-
ter 10.

Statistics
Statistics about mobile website usage are typically the same as those for desktop usage,
but a mobile-friendly tool will be very helpful in understanding mobile-specific features.
You can log requests on the server for later processing with a log analysis tool, or you
can use a third-party tool for help in your statistics management. We will cover mobile-
friendly statistical tools in Chapter 14.

94 | Chapter 4: Setting Up Your Environment

http://m.facebook.com
http://touch.facebook.com
http://touch.facebook.com
http://iphone.facebook.com
http://zero.facebook.com
http://

CHAPTER 5

Markups and Standards

Finally, we have arrived at the best part: coding! If you are reading this chapter but have
skipped the previous ones, I encourage you to read them. Mobile web development is
not just about coding; it is important to understand the full ecosystem, including what
types of devices and browsers are available, and to be aware of mobile design and
usability issues. That said, let’s take a look at the available markup languages and the
relevant standards.

First, the Old Ones
Although you’re unlikely to use them in mobile web projects today, some familiarity
with at least the basic concepts of the old markup languages can be useful. One day
you may need to migrate an old mobile website or to work with older devices, and I
wouldn’t be satisfied if I didn’t talk a little about them.

One of the first mobile web markup languages to be developed was HDML (Handheld
Device Markup Language). Similar to HTML, it was developed by a company called
Unwired Planet (the company that became Openwave and was later taken over by the
Myriad Group). This markup language was never released as a standard, but it helped
in the creation of WML.

Why Not HTML from the Beginning?
The first specialized language for the mobile web, HDML, appeared in 1996. Why not
use the well-known HTML from the beginning? There were a few main issues. For one
thing, mobile devices were so limited in terms of network access and CPU and memory
resources that it was necessary to create very small rendering solutions. A mobile
browser couldn’t process non-strict markup and decide what to do if the developer
forgot to close a tag, for example. The other issue was the need to create mobile-specific
functionality in the markup, like keyboard shortcuts.

95

http://

Over time, mobile devices evolved into what we know today; now some mobile devices
are even more mature than desktop ones, and mobile devices are already using HTML
5.0 (before desktops, and before the standard is finished).

WML
WML was incorporated into the WAP 1.1 standard and was the first standard of the
mobile web. It wasn’t standardized by the World Wide Web Consortium (W3C), but
rather by the WAP Forum (known today as the Open Mobile Alliance), an organization
made up of many players from the mobile industry working on standards in this market.

We have already agreed that WML is absolutely deprecated today. Any non-smart-
phone will still understand WML, but I want you to consider it a historic language, like
Latin, instead of a current standard. Depending on your target, you may still want to
create a basic WML version like that in Figure 5-1, but it is not the place to start.

Figure 5-1. A typical WML document contains just text, links, and maybe some little image. It is
always focus-based and optionally can execute WMLScript code, but that is very rarely used.

96 | Chapter 5: Markups and Standards

http://

In fact, some modern browsers based on WebKit (iPhone, Android, Palm) do not read
this format anymore, as shown in Figure 5-2. It was the markup for WAP 1.1, and the
first (and almost the last) version was created in 1998! Just think about what mobile
phones were like in that year. Still, if you search for “filetype:wml” in Google, you’ll
find more than 2 million results using this format. And Google did not index the ma-
jority of the WAP 1.1 mobile web!

Figure 5-2. Both the iPhone and Android browsers show the WML source code instead of rendering it.

I asked some big mobile portals about their WML usage. The Weather Channel (http:
//m.weather.com) was the first to give me a good answer (from Cathy Rohrl, Product
Manager – Mobile Web):

To have a WML-compliant site is not that big of an issue. It was easy to build and it’s
just out there. But the importance of having WML today is supporting the concept of
access to EVERYONE, everywhere. You start tempting people with older handsets, and
they’ll want more. Another year and we may completely mothball the site, but even then
I don’t think we’ll take it down. It will just become a site that is not actively maintained.

Internal nonaudited private reports of U.S. traffic on The Weather Channel’s mobile
site indicate that 5% of traffic in 2008 was WML-only, decreasing to 2% in 2009 and
even less in early 2010.

A WML file is an XML file, normally using the .wml extension. It is similar to HTML
in some ways and very different in others. Let’s take a look at a typical WML file:

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml" >
<wml>

First, the Old Ones | 97

http://m.weather.com
http://m.weather.com
http://

 <card id="home" title="Welcome to Old Mobile">
 <p mode="wrap">This is a typical paragraph in WML</p>
 <p mode="wrap">It can include images,
 External Links and
 Internal Links.
 </p>
 </card>
 <card id="two" title="Second screen">
 <p>This is like a second page in the same document</p>
 </card>
</wml>

We can recognize many tags found in HTML here, like p, b, and a, and they have the
same functionality. Other tags the two standards have in common include img, br, and
input.

Today it is common to use the self-closed tag
 in XHTML files
instead of the classic
 without a closing tag. WML, as one of the
first XML-based markup languages, was the pioneer in using the self-
closed tag.

WML Today
WML was replaced in the WAP standard in 2002, but it continues as the fallback
markup for older devices. Today, only sites that are linked in carrier decks are forced
to create WML versions for full compatibility with all devices on the market. Some
major websites are also available in WML versions, but to take two well-known ex-
amples, Twitter and Facebook don’t provide WML versions of their popular services.

In 2009 the percentage of WML-only traffic was below 2%, and it can now be estimated
as accounting for less than 1% of all traffic.

However, you’ll also notice some differences. Firstly, a WML file starts with a root
wml tag after the DOCTYPE declaration. A WML document is also called a deck. Every
deck can contain many cards. A card, identified by a tag with the same name, is one
visible page in a browser; it is like the contents of a body tag in HTML. So yes, a WML
file can contain many pages in the same document (see Figure 5-3). This was a great
feature for speeding up the performance of the mobile web in the early 2000s.

The Document Type Declaration (known as the DOCTYPE) is an in-
struction in a XML document (or an SGML document, e.g., HTML)
that allows the browser to match that document with a Document Type
Definition (DTD) so it can tell how to understand the document.

WML was conceived for mobile devices. Consequently, we will find tags and attributes
supporting mobile device functionality (e.g., voice calls, keyboard support, adding

98 | Chapter 5: Markups and Standards

http://

contacts to the phonebook, and accessing the SIM card) in the standard. The best part
is that we can use the well-known anchor tag to create an absolute link, a link to a
relative document, or a link to another card in the same document using the
#card_name URL.

The multiple cards design pattern in WML is very useful. We will use
it in our modern mobile websites using JavaScript, DOM, and even Ajax.
You’ll need to wait a few pages for that, though!

There is a lot to say about WML; in fact, I have a book on WML on my bookshelf that’s
more than 600 pages long. But to be honest, WAP 1.1 pages today are so simple that
this quick introduction should be enough for you to understand WML.

WML is not compatible with CSS, and its minimal design support in-
cludes the use of the tags big, small, b, and i using a “best effort” mech-
anism. Many old WML browsers had only one font and no bold or italic
support.

If you are still curious about WML, you can use Adobe Dreamweaver to create WML
files with code hinting support. When you select File→New, you will find WML in the

Figure 5-3. A WML document can have many cards (one, by default), and we can link to any card
using the format wml_document#card_name.

First, the Old Ones | 99

http://

“Other” section. Of course, you can also use any text editor and a WML-compatible
emulator. The best WML emulators today are the Nokia Series 40 emulators (only for
Windows), as they show real rendering and work well on modern desktops running
Windows Vista or 7.

WML was not alone

WML does not generally support GIF, JPG, or PNG images (although some browsers
did accept GIF and JPG images, starting with color screens). Images in WML files were
typically in WBMP (Wireless Bitmap) format. WML also supports scripting using a
language called WMLScript, loosely based on ECMAScript. They aren’t worth discus-
sing; just know that they existed and talk to your grandchildren about them. A WBMP
file is just a 1 bit per pixel bitmap file, in black and white.

Other common scenarios involved compiled WML and WMLScript files. These files
were compiled by the developer or by a proxy or WAP gateway between the user and
the web server. A free tool for compiling WMLScript files is the old Nokia Mobile
Internet Toolkit, still available for download.

Testing Suite from This Book
All the testing documents used in this book are available for free at http://www.mobi
lexweb.com/tests; you can test yourself with any mobile browser every feature tested
here. For less typing, you can use the Mobile Tiny URL, typing t.ad.ag in your
browser’s address bar (you will need to type 8123124 on almost every numeric keypad).
This is a valid URL on the Internet, and it uses only the first characters associated with
each numeric key to reduce keypresses. You can create your own URLs for easy mobile
typing by accessing http://www.mobiletinyurl.com from your desktop browser.

Every suite was tested on the latest versions of some of the platforms available at the
time of this writing, on all the major versions available on the market, and on older
versions of the same platforms. As mobile browsers are evolving quickly, new versions
could have different results. You can follow my blog at http://www.mobilexweb.com or
my Twitter account http://www.twitter.com/mobilexweb for updates. Because of space
limitations, we didn’t test every browser, like Bolt or Firefox for Nokia N900.

Newer versions are supposed to support all the features supported by the older versions.
You should also expect currently noncompatible browsers to start supporting new
technologies in the future (e.g., HTML 5).

Serving WML

To serve WML, you just need to configure your server (or your dynamic code) to deliver
the right MIME type. We will talk more about this in Chapter 10. The list of MIME
types for WAP 1.0–compatible markup is shown in Table 5-1, while Table 5-2 reports
on those files’ compatibility with current devices.

100 | Chapter 5: Markups and Standards

http://www.mobilexweb.com/tests
http://www.mobilexweb.com/tests
http://www.mobiletinyurl.com
http://www.mobilexweb.com
http://www.twitter.com/mobilexweb
http://

Table 5-1. WAP 1.0 MIME types and extensions

Format MIME type Common extension

Wireless Markup Language text/vnd.wap.wml .wml

Wireless Markup Language Script text/vnd.wap.wmlscript .wmls

Compiled Wireless Markup Language application/vnd.wap.wmlc .wmlc

Compiled Wireless Markup Language Script application/vnd.wap.wmlc .wmlsc

Wireless Bitmap image/vnd.wap.wbmp .wbmp

Table 5-2. WML support testing compatibility table

Browser/platform WML support What happens WBMP GIF in WML

Safari No Shows source code No No

Android browser No Shows source code No No

Symbian/S60 Yes/No >= 3rd ed.

Yes <= 2nd ed.

Images not rendered in 5th ed. devices

Document not compatible in some 3rd ed.

devices

No No

Nokia Series 40 Yes Renders OK Yes Yes

webOS No Nothing happens No No

BlackBerry Yes Renders OK Yes No

NetFront Yes Renders OK Yes Yes

Openwave (Myriad) Yes Renders OK Yes No

Internet Explorer No

Motorola Internet Browser Yes Renders OK Yes No

Opera Mobile Yes Multiple cards don’t work Yes Yes

Opera Mini Yes Multiple cards are rendered on the server Yes Yes

NTT DoCoMo (Japan) No No No

Today, you should not use WML for a normal mobile website. If you are working with
a carrier that requires it or providing a very popular service, though, you should con-
sider creating a very basic WML site for 100% compatibility.

Remember, there is poor or no support for WML in modern smartphones’ browsers
(the most-used mobile Internet devices), and the future is even darker. If you have a
WML-only site, you should consider migrating it quickly; you are losing valuable
customers.

First, the Old Ones | 101

http://

cHTML, the Forgotten Standard
At the same time that WML appeared on the market, in 1998, compact HTML
(cHTML) also appeared, mainly in the Japanese market. cHTML is a subset of HTML
with additions for mobile features, like support for access key shortcuts, pictorial char-
acters (emoticons), and Japanese characters. It was submitted as a standard to the W3C
but its adoption was mainly in Japan, with some implementations in the Netherlands,
Italy, France, Australia, and the United States. Early versions of cHTML lacked support
for JPEG, tables, backgrounds, frames, and stylesheets.

Current Standards
In terms of the mobile web today, our real work will be directly related to the following
standards and pseudo-standards:

• XHTML Mobile Profile 1.0, 1.1, and 1.2

• XHTML Basic 1.0 and 1.1

• XHTML 1.0 and 1.1

• HTML 3.2 and 4.0

• HTML 5.0 draft

• De facto standard (X)HTML extensions

• WAP CSS

• CSS Mobile Profile

• CSS 2.1

• CSS 3.0

• CSS custom extensions

This may seem overwhelming, but don’t panic: it isn’t really that complicated. We can
distinguish two types of standards: HTML-based and CSS-based.

This discussion will largely ignore the desktop web, but not because I
believe in two different webs. Desktop web development relies on tech-
niques designed for desktop browsers, like Internet Explorer or Firefox.
Many of the techniques used in mobile web development are different.

Politics of the Mobile Web
Why are there so many standards? The first answer is politics. Politics? Yes. Many actors
are involved in the mobile web, and everyone wants to be part of the decision-making
process. Are mobile web standards “mobile enough” to be managed by mobile
standards organizations, like the Open Mobile Alliance (OMA)? Are they “web

102 | Chapter 5: Markups and Standards

http://

enough” to be managed by web standards organizations, like the W3C? Do the man-
ufactures have enough power to decide on their own markup? Figure 5-4 shows the
mobile-specific and generic web standards that are available today and those that are
currently in the pipeline.

Those kinds of questions are responsible for the nightmares that can occur with
markup. Here’s another look at the list in Figure 5-4, but grouped by owners:

W3C mobile web standards:

• XHTML Basic 1.0 and 1.1

• CSS Mobile Profile (CSS MP)

OMA mobile web standards:

• XHTML Mobile Profile (MP) 1.0, 1.1, and 1.2

• Wireless CSS (WCSS) or WAP CSS

Non-mobile web standards adopted by manufacturers:

• XHTML 1.0

Figure 5-4. Today, many standards exist for mobile web markup.

Current Standards | 103

http://

• HTML 3.2 and 4.0

• CSS 2.1

Non-mobile future web standards adopted by manufacturers using the standard drafts:

• HTML 5.0

• CSS 3.0

Manufacturers’ extensions to the standards:

• De facto standard (X)HTML extensions

• CSS Custom Extensions

Managing multiple standards

The first bit of good news is that, with the exception of new features in HTML 5 and
CSS 3, all the standards are similar and compatible with each other. The second bit of
good news is that HTML-based browsers—that is, every mobile browser on the market
today—have a “good effort” mechanism to manage nonrecognized tags and attributes.
This is at the heart of HTML’s evolution.

I remember my first desktop HTML project in 1996, and the projects after that. The
list of compatible tags was different for each browser on the market (at that time, Mo-
saic, Netscape Navigator, the AOL Browser, and a bit later, Internet Explorer). How-
ever, it wasn’t a big problem. If the browser did not understand a tag or an attribute,
it just ignored it. The same is true of most mobile browsers. This will be very helpful
in enabling us to manage all standards at the same time (with some exceptions: basi-
cally, older devices).

As the mobile device manufacturers are nearer to OMA than the W3C, they officially
implement the WAP 2.0 standard using XHTML MP and WAP CSS. However, almost
all browsers also understand XHTML Basic and CSS MP, and most mid- and high-end
devices understand full desktop web standards (HTML and CSS).

Don’t rely on the standards. Even two devices supporting the same
standard may render different results for many tags, attributes, and
styles. We will analyze every usage, and I’ll recommend the best solu-
tion.

Delivering Markup
Before we talk about the individual standards and the differences between them, we
will analyze how to deliver each standard to a mobile device. Firstly, as in the desktop
web, all static document markups use the .html extension, and the style ones use
the .css extension. Of course, we can deliver XHTML MP or XHTML Basic using a
dynamic template, a .php or .aspx file, or servlet Java.

104 | Chapter 5: Markups and Standards

http://

So, how does the device know which standard we coded a website in? By reading the
MIME type and the DOCTYPE. The MIME type is a string sent by the server telling
the browser the format of the document, and the DOCTYPE is the first line in the
HTML file. If you omit the DOCTYPE it should still work in many browsers, but don’t
do this! The other thing to notice is that in HTML 3.2, 4.0, and 5.0 the opening tag
should be:

<html>

while for all the other XHTML subtypes it should be:

<html xmlns="http://www.w3.org/1999/xhtml">

All CSS standards use the same MIME type as in the desktop web (text/css), and there
is no format indicator inside the CSS. That is why for the style file, we will not need to
define which standard we are using. The selectors and attributes used will determine
compatibility. Figure 5-5 illustrates how MIME types and DOCTYPEs travel through
the network, one in the header and the other inside the document.

The preferred MIME types and DOCTYPEs are listed in Table 5-3.

Figure 5-5. The MIME type travels with the server’s response headers and the DOCTYPE is defined
inside the HTML document.

Current Standards | 105

http://

Table 5-3. MIME types and DOCTYPEs for today’s standards

Standard Preferred MIME type DOCTYPE

XHTML MP

1.0 (first

version)

application/

xhtml+xml

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
"http://www.wapforum.org/DTD/xhtml-mobile10.dtd">

XHTML Ba-

sic 1.1

application/

xhtml+xml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN"
"http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd">

XHTML MP

1.2 (last

version)

application/

vnd.wap.xhtml

+xml

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.2//EN"
"http://www.openmobilealliance.org/tech/DTD/xhtml-mobile12.dtd">

XHTML 1.0 application/

xhtml+xml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

HTML 4.0 text/html <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

HTML 5.0 text/html <!DOCTYPE html>

The iPhone browser will render a file differently if the markup is using the XHTML
Mobile Profile or XHTML Basic 1.0 DOCTYPE, as shown in Figure 5-6. The biggest
difference will be the viewport used. This will be covered in Chapter 6, but for now,
it’s good to know that a file in XHTML MP markup will not start zoomed out, like a
normal HTML file.

We should also include the meta tag to tell the browser the content-type of the file,
using the right MIME type or text/html (even if we are using XHTML or XHTML MP,
as the W3C recommends) and define the charset used (UTF-8 in almost all situations):

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

This is optional, but it may be useful if we don’t define the charset used in the HTTP
header and we don’t use the XML header. Using the header alternative is the preferred
and most compatible way to do it.

Figure 5-6. The same document, with the same MIME type, rendered in Safari on iOS. The version
on the left is using the XHTML Mobile Profile DOCTYPE and the version on the right a non-mobile
XHTML one.

106 | Chapter 5: Markups and Standards

http://

If we use a basic markup compatible with all standards, some low- and
mid-end devices will not understand the text/html MIME type, and
some smartphones will not understand the XHTML MP MIME type. In
a later chapter, we will learn how to change this attribute dynamically,
even when we deliver the same code.

XHTML MP can be delivered using the OMA MIME type (application/vnd.wap.xhtml
+xml), the XHTML type (application/xhtml+xml), or even the HTML type (text/
html), with the same result. The OMA recommends using the first one, but using the
XHTML type will work well in almost all situations. Some older and low-end devices
render the page differently depending on the MIME type used.

Table 5-4 shows the results of a test of the effects of using different MIME types and
DOCTYPEs, testing XHTML MP first with all the browsers listed and seeing if it is
displayed correctly or not (leading to the result shown in Figure 5-7). You can find this
test at http://www.mobilexweb.com/tests/ch6.

Table 5-4. HTML and XHTML testing compatibility table

Browser/platform

XHTML Mobile Profile

XHTML MP MIME XHTML MIME HTML MIME XHTML Basic XHTML HTML

Safari No Yes Yes Yes Yes Yes

Android browser Yes Yes Yes Yes Yes Yes

Symbian/S60 Yes Yes Yes Yes Yes Yes

Nokia Series 40 Yes Yes Yes Yes Yes Yes

webOS No Yes Yes Yes Yes Yes

BlackBerry Yes Yes Yes Yes Yes Yes

NetFront Yes Yes Yes Yes Yes Yes

Openwave (Myriad) Yes Yes Yes Yes Yes Yes

Internet Explorer Yes Yes Yes Yes Yes Yes

Motorola Internet Browser Yes Yes Yes Yes Yes Yes

Opera Mobile Yes Yes Yes Yes Yes Yes

Opera Mini Yes Yes Yes Yes Yes Yes

NTT DoCoMo (Japan) Yes Yes Yes Yes Yes Yes

Top mobile websites

Table 5-5 shows the top nine mobile websites visited in the UK (statistics by Opera
State of the Mobile Web) with a Nokia 5800 XpressMusic user agent and an iPhone
user agent and reports on how they delivered the documents.

Current Standards | 107

http://www.mobilexweb.com/tests/ch6
http://

Table 5-5. Top mobile websites’ DOCTYPEs and MIME types

Site URL Nokia DOCTYPE MIME type iPhone DOCTYPE

Facebook http://m.facebook.com XHTML MP 1.0 HTML No DOCTYPE

Google http://m.google.com XHTML 1.0 XHTML XHTML MP 1.0

BBC http://m.bbc.co.uk XHTML 1.0 HTML XHTML 1.0

Live/Bing http://m.bing.com XHTML MP 1.0 XHTML XHTML MP 1.0

Yahoo! http://m.yahoo.co.uk XHTML MP 1.2 HTML HTML 5

Wikipedia http://m.wikipedia.org XHTML 1.0 HTML XHTML 1.0

YouTube http://m.youtube.com XHTML MP 1.0 XHTML HTML 4

Bebo http://m.bebo.com XHTML MP 1.0 XHTML XHTML MP 1.0

eBay http://wap.ebay.co.uk XHTML MP 1.0 XHTML HTML 4

Charset encoding

For the best compatibility for Latin languages, we should deliver any XHTML with
UTF-8 defined in the XML header or in the Content-Type HTTP header. If we are deliv-
ering just HTML or content in other languages, we can use other encodings.

Conclusion about MIME types and DOCTYPEs

As we’ve seen, almost every browser actually understands the HTML MIME type and
DOCTYPE. However, the recommendation is to use the XHTML MP 1.0 DOCTYPE
and the XHTML MIME type. We will see how to detect this compatibility in Chap-
ter 10.

What is the advantage of using the mobile headers? There was some different behavior
on some devices (those using mobile Safari, for example), and it is the semantically
correct solution. This will be our flag saying “Hey, this is a mobile website, and it is

Figure 5-7. Safari on iOS doesn’t understand the XHTML MP MIME type, so documents for
smartphones using this browser need to be served using non-mobile MIME headers.

108 | Chapter 5: Markups and Standards

http://m.facebook.com
http://m.google.com
http://m.bbc.co.uk
http://m.bing.com
http://m.yahoo.co.uk
http://m.wikipedia.org
http://m.youtube.com
http://m.bebo.com
http://wap.ebay.co.uk
http://

not intended to be used from a desktop.” This metadata will be very helpful for search
engine robots to determine which pages are mobile-ready.

Only if we are going to use some HTML 5 features or non-mobile-compatible tags
should we consider using the HTML DOCTYPE, so we will still have valid markup.

XHTML Mobile Profile and Basic
XHTML MP is based on the W3C’s XHTML Basic, and they are almost the same. The
W3C has an online mobile validator at http://validator.w3.org/mobile; it accepts
XHTML Basic and MP as valid markup.

XHTML Mobile Profile is a subset of XHTML. It is XML-based, so we need to follow
the strict rules. If you have never worked with XHTML 1.0 or 1.1 for the Web, let’s
analyze the differences compared with working with HTML:

• The file must have a root element (html tag).

• Every tag name and tag attribute must be in lowercase.

• Every attribute value must be enclosed in quotes.

• Every tag must be closed. This may seem obvious, but it is not; tags like ,
<input>, and
 don’t need to be closed in HTML, but they do need to be closed
in XHTML. The general rule is to use self-closed tags, like
.

• The tags need to be closed in reverse order. If you open a paragraph and then a
link, you must close the link before closing the paragraph.

• XHTML entities must be well formed. A mandatory space should be and
an ampersand character should be &.

• All attributes must have a value. For example, <option selected> is invalid; you
must use <option selected="selected">.

• The DOCTYPE declaration is mandatory, and the XML opening tag is optional.
In fact, for mobile browsers we should not insert the XML opening tag.

This is not a book about XHTML, CSS, or even JavaScript. I assume
you have some basic experience with these markup and programming
languages; if not, you will find a lot of resources on the Web and excel-
lent books from O’Reilly Media to help you get started.

Available Tags
We have finally arrived at the level of code. XHTML MP, as a subset of XHTML derived
from HTML, will look familiar to most web developers.

XHTML Mobile Profile and Basic | 109

http://validator.w3.org/mobile
http://

The Space Before the Final Closing Slash
You may be familiar with the use of
 in recent years, whether in XHTML or in
HTML. Do you know why the space is included before the closing slash? In an XML
file, we can use
 without a space, and it’s valid. The space is for backward com-
patibility with non-XHTML browsers that don’t expect a final slash in the tag. Using
the space ensures that most older browsers will understand the tag as a line break.

The tags available in both XHTML Mobile Profile 1.2 and XHTML Basic 1.1 (the two
standards are almost at the same level) are listed in Table 5-6. Some features, like
scripting support, were added in XHTML MP 1.1 and others, like object support, in
the last standard (1.2).

Table 5-6. HTML tags available in XHTML MP 1.2 and Basic 1.1

Tag types Tags available

Structure body, head, html, title

Text abbr, acronym, address, blockquote, br, cite, code, dfn, div, em, h1, h2, h3, h4, h5, h6, kbd,

p, pre, q, samp, span, strong, var

Links a

Presentation b, big, hr, i, small

Stylesheet style

Lists dl, dt, dd, ol, ul, li

Forms form, input, label, select, option, textarea, fieldset, optgroup

Basic tables caption, table, td, th, tr

Other img, object, param, meta, link, base, script, noscript

If we compare previous versions of XHTML MP and Basic, the differences are bigger.
The last XHTML Basic standard (1.1) added almost every addition in XHTML MP 1.2,
and now the two are almost equal.

XHTML Mobile Profile 1.2 is the last standard from the OMA. The first
draft was presented in 2004 and the approved version was released in
2008. That is why there are still some low- and mid-end devices on the
market that don’t comply with this version. Remember that it takes
some time for browser developers to comply with new standards, and
more time for manufacturers to get devices using the new standards to
the market.

We can still use a tag that is not supported in our declared DOCTYPE. It will not
validate against the DTD, but most mobile browsers will simply ignore the tag without
any error visible to the user.

110 | Chapter 5: Markups and Standards

http://

Official Noncompatible Features
Every WAP 2.0 browser on the market today should understand and render the tags
listed in Table 5-6. However, in XHTML MP (and Basic), there are also several tags,
techniques, and technologies that are officially not supported. We will still test them
in every browser, though, because as we’ve seen there are many full HTML browsers
on the market, and others that will understand some noncompatible features. All of
the following are officially unsupported:

• Nested tables (table inside other tables)

• Full table tags: thead, tbody, rowspan, and colspan attributes

• Full form tags: input type=“image,” input type=“file”

• Editing: ins, del

• Image maps

• Frames

• Iframes

• Deprecated formatting tags: e.g., font, dir, menu, strike, u, and center

We will check all browsers for compatibility with those features, as well as the
following:

• Adobe Flash

• Microsoft Silverlight

• The XMLHttpRequest object (Ajax)

• SVG

• The canvas tag

• Other embedded objects: Windows Media, QuickTime, Java applets

• Multimedia tags: audio and video

• Opening links in new tabs or windows

We will also verify which URL schemas are available for each browser.

Creating Our First Compatible Template
Let’s create a very simple markup template that will be compatible with all devices. I
really recommend that you use the source code view if you are using a visual web tool,
like Adobe Dreamweaver or Microsoft Expression Web. You should feel comfortable
with nonintrusive, semantic HTML code for mobile web development.

Our template will look like this:

<?xml version="1.0" ?>
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.2//EN"
 "http://www.openmobilealliance.org/tech/DTD/xhtml-mobile12.dtd">

XHTML Mobile Profile and Basic | 111

http://

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>First Template</title>
</head>

<body>
 <h1>First Template</h1>
 <h2>Programming the Mobile Web</h2>
 <p>Welcome to the first template of this book</p>
 <p>It should work in every mobile browser in the market</p>

 Yahoo!
 Google
 Bing

 <p><img src="images/copyright.gif" width="150" height="50"
 alt="(C) mobilexweb.com" /></p>
</body>
</html>

Here are some comments on this code, which produces the results shown in Figure 5-8:

• We are using the XHTML MP DOCTYPE.

• We are using standard header tags for titles: h1 ... h6, not p or div tags.

• We are using the paragraph tag (p) to enclose text.

• We are using an ordered list to show a link menu. The option numbers match the
accesskey attributes of the anchor (a) tags.

• We provide a width, height, and alternate text for all images.

As these images prove, this code works on every platform. I know what you’re thinking:
“Hey, this is an awful experience for the iPhone.” If you’re tempted to throw away this
book right now, wait! Give me a chance. Using this exact code, we will create a great
iPhone (or other smartphone) experience in the following pages. Well, OK, there may
be some little changes to the code, but not so many. Our goal will be to keep our
document template as simple as this one, even for very complex HTML 5 web apps.

Markup Additions
WML, as a mobile-specific language, has many mobile-prepared tags and attributes.
This is not true of XHTML MP or Basic, and that’s why many developers were against
WAP 2.0 in the early 2000s. Some vendors, such as Nokia, even tried to create their
own markup supersets over XHTML with mobile-specific features.

The only mobile-specific addition is present in XHTML Basic 1.1, but even with the
XHTML MP DOCTYPE it will work if the browser understands that markup. The
addition is the attribute inputmode, available for the input and textarea tags; it allows
us to specify input mode tokens indicating the expected type of the input characters
(e.g., latin, thai, arabic) and modifier tokens for the text input (e.g., predictOff to

112 | Chapter 5: Markups and Standards

http://

deactivate predictive input). XHTML MP adds similar support with WAP CSS that we
will cover later.

WML had a format attribute for the input tag that was similar to input
mode. Some browsers, such as Openwave, still understand this attribute
in an XHTML file.

Figure 5-8. The same template without CSS in the webOS, Android, Safari, BlackBerry, Nokia S60,
Windows Mobile, Nokia S40 (low-end device), Motorola, and NetFront (Sony Ericsson device)
browsers.

XHTML Mobile Profile and Basic | 113

http://

CSS for Mobile
Web (and mobile) browsers have a great feature that makes our lives much easier. If
we use any selector or attribute that the browser doesn’t understand, the browser will
just ignore it. This will be very helpful in the following pages. Usage of CSS 2.1, CSS
3.0, CSS Mobile Profile, and WAP CSS is the same; we specify CSS selectors and at-
tributes for those selectors. The standards only tell us which selectors and attributes
are supported, and we will find browsers that do not properly render standard ones
and do properly render noncompatible tags.

If you are interested in having W3C-valid markup, remember that XHTML Basic 1.0
doesn’t support CSS, and 1.1 added support, but only for a style or link tag with
external styles. The W3C standard doesn’t support the inner styles defined in the
style attribute.

WCSS, or WAP CSS (the OMA standard that comes with XHTML MP), is a CSS 2.0
subset, like CSS MP (the W3C standard that comes with XHTML Basic). That’s why
we will focus here on CSS 2.0 features (and beyond). We’ll begin by talking generally
about “mobile CSS,” and later we will see how the different mobile browsers handle
each of those features.

WCSS Extensions
The Open Mobile Alliance standard added to CSS 2 some new attributes that we can
use in mobile browsers. As this is how CSS defines extensions, every new attribute has
a dash (-) as a prefix. We will see later that some mobile browsers also understand
some nonstandard extensions, like Mozilla’s. But again, don’t worry; we will look at
compatibility attribute by attribute so you understand how to manage incompatibilities
the best you can.

Access key

The first attribute is -wap-accesskey; it is the counterpart of the XHTML accesskey
attribute. It can be used with any interactive element (generally, the a, textarea, label,
input, and button tags). The possible values are the digits 0 through 9 and the special
values * and #. For some browsers on devices with numerical keypads, this attribute
can be used to create shortcuts to access those elements. Some browsers do nothing
with it, some browsers set the focus on that element when the user presses the key, and
other browsers directly fire the action associated with it (go to a link, submit a form,
etc.).

We should only use the standard keys 0–9, *, and # as access keys. We
cannot assign functions to soft keys or any other special keys in HTML.
WML allows us to assign links to soft keys, but this functionality has
no effect in modern browsers.

114 | Chapter 5: Markups and Standards

http://

We can only assign the same key to one element in the same page. That’s why the
-wap-accesskey attribute is useful only with ID selectors or with inline styles. You
shouldn’t use this attribute with element or class selectors.

The next three samples all have the same result:

Our website
<input type="submit" value="Send" accesskey="9" />

Our website
<input type="submit"" value="Send" style="-wap-accesskey: 9" />

<style type="text/css">
#linkWeb {
 -wap-accesskey: 0;
}
#btnSubmit {
 -wap-accesskey: 9;
}
</style>

Our website
<input type="submit"" value="Send" id="btnSubmit" />

Table 5-7 tests all the possibilities to determine which version it’s better to use, and in
which browsers we will have results.

Table 5-7. Access key testing compatibility table

Browser/platform

Behavior in links

Behavior in text inputsAs XHTML As inline CSS As CSS by ID

Safari No behavior

Android browser No behavior

Symbian/S60 No behavior

Nokia Series 40 No behavior

webOS No behavior

BlackBerry No behavior

NetFront If accesskey active in preferences, go to link If accesskey active, focus

Openwave (Myriad) Go to link Focus

Internet Explorer Go to link Focus

Motorola Internet Browser Go to link Focus and open edit window

Opera Mobile No behavior

Opera Mini No behavior

CSS for Mobile | 115

http://

As Table 5-7 reveals, access keys only work with a few browsers. This
is because many of them use the keypad for accelerators (shortcuts for
browser functions like scrolling, going back, or reloading). That is why
we can only use them if they are not the preferred or only way to access
functionality on the website.

Marquee

If you’ve been doing web development for a long time, like me, you probably hate the
nonstandard marquee element that many people used to insert in web pages. WAP CSS
revived this technique to create small animations without images that do not require
Flash. A marquee is generally a text that scrolls from one side of the screen to the other,
wrapping around continuously. In some mobile browsers it can contain any HTML
code, including images and even tables. However, don’t scroll too much heavy markup,
for the sake of your visitors and the performance of your website.

To create floating, scrolling text, use any paragraph element, like p or div, define the
display attribute as -wap-marquee, and assign values to some of the CSS attributes listed
in Table 5-8.

Table 5-8. Marquee WAP CSS attributes

Attribute Possible values Description

-wap-marquee-dir ltr or rtl Direction of the scrolling. Can be left to right (ltr) or right

to left (rtl).

-wap-marquee-loop Any number or infinite Animation count. The infinite value creates a never-

ending animation.

-wap-marquee-speed slow, normal, or fast Speed of the animation, without fine control.

-wap-marquee-style scroll, slide, or

alternate

Possible styles for the animation.

The following sample shows how to use a marquee to present an offer to the user:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Mobile Web Test</title>
<style type="text/css">
.offer {
 display: -wap-marquee;
 -wap-marquee-dir: rtl;
 -wap-marquee-speed: medium;
 -wap-marquee-loop: infinite;
 -wap-marquee-style: scroll;
}

.offer strong {

116 | Chapter 5: Markups and Standards

http://

 color: red;
}
</style>
</head>

<body>
<div class="offer">Fly to the Moon Special offers this month
starting at US$ 145.000. Apply now and see us from the sky.</div>
<h1>TravelWithUs.com</h1>
(...)
</body>
</html>

The result is shown in Figure 5-9.

Figure 5-9. A Nokia N95 showing a marquee animation in progress using standard WAP CSS.

Now let’s take a look at how browsers react to this tag. We may be tempted to use this
display type to show a large amount of text in a small space, but if the mobile browser
doesn’t understand the marquee display, all that text will appear on the page, pushing
down the important content! That is why we should consider alternative solutions for
noncompatible browsers, like hiding the content. For example:

.offer {
 display: none;
 display: -wap-marquee;
 -wap-marquee-dir: rtl;
 -wap-marquee-speed: medium;
 -wap-marquee-loop: infinite;
 -wap-marquee-style: scroll;
}

CSS for Mobile | 117

http://

In the preceding code, we first assign display: none to remove the text from the display.
Then we assign display: -wap-marquee. If the browser understands the WAP CSS mar-
quee styles, it will replace the none value. If not, it will just ignore the second setting
and the none will win. We can also apply this style to a marquee HTML element, so it
can work in all possible marquee-compatible browsers, as listed in Table 5-9. The
problem is that the code will not validate against standards (if we are interested in that).

Table 5-9. Marquee testing compatibility table

Browser/platform Supports -wap-marquee Supports marquee tag

Safari No Yes

Android browser No Yes

Symbian/S60 Yes Yes

Nokia Series 40 Yes Yes

webOS No Yes

BlackBerry Yes Yes

NetFront Yes Yes

Openwave (Myriad) Yes Yes

Internet Explorer Yes No

Motorola Internet Browser Yes Yes

Opera Mobile Yes Yes

Opera Mini Buggy No

Try to avoid marquees for important information. You may want to use them to reduce
the space taken up by information that is not directly relevant, or to have some kind of
animation free of plug-ins. Avoid the usage of links, images, or any other non-text
markup inside a marquee, and create an alternative CSS stylesheet for noncompatible
devices.

CSS form extensions

Another great enhancement in WAP CSS is the ability to define useful information for
form input. We will talk about this in depth later, but for now let’s see what extensions
are included in the standard. They are listed in Table 5-10.

118 | Chapter 5: Markups and Standards

http://

Table 5-10. WAP CSS form extension attributes

Attribute Possible values Description

-wap-input-

format

Complex pattern

(see Chapter 6)

Defines the pattern of the text. Can be applied to text fields, password fields,

and textareas.

-wap-input-

required

true or false If true, requires the user to provide some content before exiting the field. Can

be applied to text fields, password fields, and textareas.

This attribute has precedence over the format attribute in the input tag, if

both are defined.

Confusion
It’s OK to be a little confused after reading about all the incompatibilities. This is just
an introduction to general and mobile-specific standards—just theoretical information.
Actual concrete practice will make it much clearer.

Confusion | 119

http://

http://

CHAPTER 6

Coding Markup

The standards are sometimes utopias, while the real world is something different. Many
devices officially support standards, but in practice some feature is missing; many other
devices add support for more technologies besides what is covered by the standards.

The W3C maintains a list of Mobile Web Best Practices at http://w3.org/TR/mobile-bp;
dotMobi adds more advice in the Developer’s Guide at http://mobiforge.com/node/
197; and Luca Passani, an independent developer well known in the mobile web market
(you’ll see why in a few chapters), maintains an alternate set of guidelines, called Global
Authoring Practices for the Mobile Web, at http://passani.it/gap.

They are decent resources, and they have much good advice for multiplatform mobile
web development. We will take that and go further, testing every feature in the
standards (and some nonstandard ones) to draw real conclusions about their usage.

We will go through a typical document, from the heading to the body structure, looking
at the most common design patterns for document structure, including forms, frames,
tables, links, and images. We will test every possible solution for each topic in every
mobile platform so we can get some useful information about what we can and cannot
use.

Heading Structure
The <head> part of a mobile web document will be very similar to that in a desktop web
document, with the addition of some new <meta> tags useful only in mobile browsers.

First we’ll define a title, as for any other web page. The space available for the title in
a mobile browser is small compared with a desktop browser (Table 6-1 gives the average
lengths of the titles displayed on the different platforms). The page title is used as the
heading at the top of the screen on some devices; other devices also use the title as the
default text for bookmarks and the history list.

121

http://w3.org/TR/mobile-bp
http://mobiforge.com/node/197
http://mobiforge.com/node/197
http://passani.it/gap
http://

Table 6-1. Average characters used in titles compatibility table

Browser/platform Average number of chars used in titles

Safari 40 chars in portrait and 60 in landscape. Hidden after the user scrolls the page and in web apps.

Android browser 15 chars after the domain name in 1.0 and 1.5.

Titles are not displayed after 2.0.

Symbian/S60 5th edition: 35 chars in portrait, 20 in landscape.

Nokia Series 40 13 chars in 2nd edition.

20 chars in 3rd edition.

No usage in 5th and 6th edition.

webOS No usage up to webOS 1.3. In webOS 1.4, the title appears only if the user scrolls down from the top.

BlackBerry 15–30 chars, depending on screen width.

NetFront No usage.

Openwave (Myriad) 15 chars.

Internet Explorer No usage.

Motorola Internet Browser 15 chars.

Opera Mobile Depends on the screen, between 20 and 60 chars.

Opera Mini Depends on the screen, between 20 and 60 chars.

Every mobile title needs to be:

Meaningful
Avoid duplicate titles for every page of your mobile site using only your company
name. However, on your home or entry page, don’t use “Home Page,” use your
company or product name and keep it very short. This may be the most book-
marked page.

Short
Keep the title between four and eight words long. If mentioning the name of your
company, do that last (for example, “Big Mac - Meals in McDonald’s”). Use small
words first; some old devices truncate the title after 10 or 12 characters.

Concise
Don’t waste words. For example, avoid using “Mobile” in the title; the user knows
that she is using a mobile device.

Icons for the Mobile Web
In the early 2000s, everyone rushed to insert favicon.ico files in their websites’ root files
to see how the icons would be added to Internet Explorer’s address bar. Today, in the
desktop web those icons are more useful for tab iconography. But what about in mobile
browsers?

122 | Chapter 6: Coding Markup

http://

For performance purposes, mobile browsers don’t look for a favicon.ico file in the root
folder if we don’t explicitly specify an icon to be used. In valid XHTML, the way to add
an icon file is to use the following link tag:

<link rel="icon" type="image/png" href="favicon.png" />

Originally, the icons were in Windows ICO format (similar to BMP), but these files are
difficult to export from well-known graphic editors and are not optimized in size. To-
day, you can use GIF or PNG for mobile compatibility. Originally the icon size had to
be 16×16 pixels, but now they can be any square size and the browser will resize them.

Safari on iOS adds another type of icon (WebClip), which is available if the user adds
the website to the home screen. We will talk about this in Chapter 12, but for now just
know that Safari for iPhone and iPod requires a 57×57-pixel PNG file (with no trans-
parency preferred) and the following metatag, which can coexist with the other icon tag:

<link rel="apple-touch-icon" href="iphone_icon.png" />

Up to iOS 3.1 (known as iPhone OS at that time), 57×57 pixels was the
only available size for the WebClip. Starting with iOS 3.2 for iPad, 72×72
is the icon size we should use if we detect this device. For iOS 4.0 or
newer, devices with high DPIs (such as iPhone 4) need an icon size of
114×114 pixels. Otherwise, the device will resize the icon with quality
loss.

The icon will automatically be given rounded borders and a glossy effect, like that
shown in the middle of Figure 6-1. If you don’t want your icon to have that effect,
instead use the following meta tag:

<link rel="apple-touch-icon-precomposed" href="iphone_icon.png" />

Figure 6-1. The original 57×57-pixel iPhone icon file, the final appearance once the website has been
added to the home screen, and the icon using the precomposed meta tag.

If you don’t define the apple-touch-icon link, mobile Safari will look for
the existence of a file called apple-touch-icon.png in the root folder. If it
does not find this file, it will look for an apple-touch-icon-precom-
posed.png file (from iOS 2.0); no effect will be added to this icon.

Heading Structure | 123

http://

Android (since version 1.5) supports only the apple-touch-icon-precomposed metatag
for high-resolution icons.

Table 6-2 explores compatibility for this type of icon, including usage of both the fa-
vicon ICO files and PNG files, and the final display size.

Table 6-2. Icon display compatibility table

Browser/platform Usage PNG ICO Final size on screen (px)

Safari iPhone special icon used on the home

screen

Yes No 57×57, or 72×72 for iPad or

114×114 for high-DPI devices

Android browser In the title area and on the home screen Yes Yes 16×16, or 57×57 if iPhone precom-

posed icon defined

Symbian/S60 No

Nokia Series 40 No

webOS No

BlackBerry In the title area (some devices) Yes Yes 16×16

NetFront No

Openwave (Myriad) No

Internet Explorer No

Motorola Internet Browser No

Opera Mobile Title and bookmarks Yes Yes 16×16

Opera Mini Title and bookmarks Yes Yes 16×16

Generally speaking, you should create an icon in PNG format and use it as the icon for
your pages. Noncompatible browsers won’t use it, but for the ones that do, it will make
a difference. It is better to have a favicon.ico and an Apple touch icon, even if you don’t
want to use it: some browsers will make the HTTP request regardless of whether you
define the reference in the markup, and a 404 response is always worse than delivery
of a small file.

Hey! I’m Mobile Friendly
We talked about the MIME type and DOCTYPE in the last chapter. As you saw, these
are very helpful in telling browsers that documents are prepared for mobile delivery.
However, this is not enough for mobile browsers that can read any desktop website.
Those browsers treat the pages differently if they are for desktop users or are optimized
for mobile devices. The differences are the initial zoom scale and some possible changes
in the layout.

If you are creating a mobile-optimized version of your website, you need to tell the
browsers to be aware of this. They are not part of any standard, but there are some
different meta tags to define. You should implement all of them at the same time.

124 | Chapter 6: Coding Markup

http://

BlackBerry and some others use a meta tag for defining mobile-friendly documents:

<meta name="HandheldFriendly" content="True" />

Internet Explorer Mobile (formerly Pocket IE) has also created its own meta tag in
Windows Mobile 5:

<meta name="MobileOptimized" content="width" />

Mobile Internet Explorer allows us to activate ClearType technology for
smoothing fonts for easy reading using the tag <meta http-equiv="clear
type" content="on">.

A not-so-standard variation is to use the alternate link metatag. This is intended to
be used in the desktop document, defining the alternative URL for the same content
intended for viewing on different media (handheld, in this case):

<link rel="alternate" media="handheld" href="http://m.mysite.com" />

However, some mobile sites (like the Google mobile home page) use the same link tag
inserted in the mobile page, too, with an empty href like a flag saying that this is al-
ternative content for mobile devices and should not be considered as duplicated con-
tent:

<link rel="alternate" media="handheld" href="" />

I don’t have real evidence yet that this works in any mobile browsers or for SEO pur-
poses, but it won’t do any harm.

Defining mobile meta tags will be useful for transcoders, in determining
whether to show the mobile version as we’ve created it rather than
transcoding the content as a full website. We will talk about transcoders
in Chapter 10.

Defining the viewport

The viewport is the area in which the page fits. You can specify its width and height,
and it can be larger or smaller than the total visible area of the screen (see Figure 6-2).
This is where the scale and zoom features of the mobile browser come into play. If you
are creating a mobile-friendly website it shouldn’t need to be zoomed in or out, so you
can say to the browser that you want to start with a scale of 1:1 (viewport area:visible
area) and that you don’t want the user to change that scale (with gestures or buttons).

You define the viewport using the meta name="viewport" tag. The content of the tag can
be a comma-separated list of one or more of the attributes listed in Table 6-3.

Heading Structure | 125

http://

Table 6-3. Viewport metadata attributes

Attribute Possible values Description

width Integer value (in pixels) or constant device-

width

Defines the viewport width

height Integer value (in pixels) or constant device-

height

Defines the viewport height

initial-scale Floating value (0.1 to n); 1.0 is no scale Defines the initial zoom scale of the viewport

user-scalable no or yes Defines whether we will allow the user to zoom in

and out in the viewport

minimum-scale Floating value (0.1 to n). 1.0 is no scale Defines the minimum zoom scale of the viewport

maximum-scale Floating value (0.1 to n). 1.0 is no scale Defines the maximum zoom scale of the viewport

If you open a document without a mobile DOCTYPE on an iPhone, the
default viewport size will be 980 pixels wide. If you define only some of
the attributes of the viewport metatag, mobile Safari will infer the other
attributes for the best display.

Figure 6-2. Safari on iOS uses a 980-pixel-wide default viewport. If your desktop website is prepared
for a lower width, you should define it explicitly to avoid the right margin.

126 | Chapter 6: Coding Markup

http://

You can define a viewport with a fixed size (in case you are showing a desktop-friendly
website), or with a size relative to the visible area. The most common approach for our
mobile template (introduced in Chapter 5) is to define the width as device-width and
both the maximum-scale and the minimum-scale as 1.0:

<meta name="viewport" content="width=device-width,minimum-scale=1.0,maximum-scale=1.0"/>

or the width as device-width, the initial-scale as 1.0, and the user-scalable attribute
as no:

<meta name="viewport" content="width=device-width,initial-scale=1.0,user-scalable=no"/>

Figure 6-3 shows the effect that these settings can have on the user experience.

Figure 6-3. The same 300×300-pixel image viewed in the default Safari viewport, in a 1500-pixel
viewport, at a device-width scale of 1.0, and at a device-width scale of 2.0.

Table 6-4 shows what happens if you try the viewport metatag in
every browser to see which ones detect it and do something with it. Remember that we
can still add it in noncompatible browsers because the meta tag accepts any content.

Table 6-4. Viewport usage compatibility table

Browser/platform Usage

Safari Yes

Android browser Yes, but the initial automatic scale is always 1.0 before 2.2

Symbian/S60 No

Nokia Series 40 No

webOS Yes

BlackBerry No before 4.2.1

Yes from 4.2.1

NetFront No

Openwave (Myriad) No

Viewport compatibility.

Heading Structure | 127

http://

Browser/platform Usage

Internet Explorer No before IE 6

Motorola Internet Browser No

Opera Mobile No

Opera Mini No

Changing the navigation method

The Symbian browser (on 3rd edition and later devices) has two possible methods of
browsing, the standard and normal way (cursor-based) and a hidden focus-based
mechanism. A meta tag available for these devices allows us to change the default nav-
igation method and use a simple focus mechanism:

<meta name="navigation" content="tabbed" />

This should be used only if you have a vertical tabular design (for example, a list of
links using the whole width of the page). Using this tag will disallow the mouse events
and hover effects over the page. If your design supports only vertical navigation, focus-
based navigation will be faster for the user than the standard cursor navigation. How-
ever, when using a finger or a stylus on a touch-enabled 5th-edition device (like the N97
or 5800 XpressMusic), the user will not have access to focus-based navigation.

If you are creating a mobile-optimized site, insert the viewport metatag
in every document of your site, disallowing user scaling and starting at
a scale of 1.0.

If you are just configuring a desktop website to have a better display on
smartphone browsers, use the viewport metatag to tell the browser your
preferred width and initial scale.

The Document Body
The body is the most important section of the document, as it will define the content
that the user will see.

Key best practices include:

• Avoid formatting tags.

• Use semantically correct, clean XHTML; we will define styles later with CSS.

• Don’t create a document larger than 25 KB. Larger documents cause problems on
old browsers (and caching problems even on modern ones).

• If you have a lot of text to show, separate the content into many pages.

• Don’t use tables for layout.

128 | Chapter 6: Coding Markup

http://

The classic desktop web meta options, like refresh and cache-control,
work well on mobile browsers. Usage of the refresh metatag for au-
toupdating documents is not good practice for mobile devices, though:
it is difficult to scroll on some mobile browsers, and an unsolicited page
refresh can be unpleasant for the user. You can do an Ajax autoupdate
if it is really necessary to keep the document updated.

Almost every mobile browser supports caching, either in meta tags or
using HTTP headers. It is best practice to use the meta cache tag for
enhanced cache purposes. For example:

<meta http-equiv="expires" content="Mon, 5 Mar 2012 01:01:01 GMT">

Main Structure
A typical mobile document will be divided into four main sections:

1. Header

2. Main navigation

3. Content

4. Footer

The header should be as simple as possible, using an h1 title and/or a logo or company
banner. The main navigation should be no more than five main links, ordered by like-
lihood of use in a mobile context (most to least probable). The content is obvious; the
footer should include very brief copyright information, a home link, a back link, and
optionally other related links (such as “go to top”).

This is a simplification, I know, but most mobile pages should fit this structure. If your
structure is more complex, give some careful thought to whether that complexity is
necessary.

The Hell of Transcoders
Some carriers have decided to install and execute in their networks a transcoder that
proxies every mobile web request, even those made with nonproxied browsers, to create
a “better experience” for the user. This is a very bad practice from a developer’s per-
spective, for the following reasons:

• It compresses the content, the document, the CSS, the JavaScript, and the images
without our consent.

• It changes our layout and design.

• It can even change our markup language.

• It removes all the original HTTP headers from the browser, blinding us from
knowing which devices are accessing our websites.

The Document Body | 129

http://

Luca Passani, a mobile web developer well known in the community, created a mani-
festo in 2008 addressing content reformatting problems, available at http://wurfl.sour
ceforge.net/manifesto. The W3C is also taking part in this issue; it has issued a document
on the Content Transformation Landscape, available at http://www.w3.org/TR/ct-land
scape.

Chapter 10 will discuss the transcoder problem in greater depth.

The basic document structure should look like this. Separating every section with a
div tag is not necessary for the document definition, but it is useful later for CSS styling.
The main navigation can be an unordered list (ul) instead of a div:

<body>
 <div id="header">
 <h1>Mobile Web</h1>
 </div>
 <ul id="nav">
 Tests
 Blog
 Contact

 <div id="content">
 </div>
 <div id="footer">
 </div>
</body>

The main content div should have as children only the tags h2–h6, p, ul, and, if neces-
sary, another div. I know, this doesn’t seem so exciting. However, using CSS and maybe
JavaScript libraries prepared for smartphones, we can take this simple markup and
create great experiences for high-end devices. Using a simple document structure will
be one of our best practices in the mobile world, to avoid duplication.

Navigation Link Menus
XHTML MP 1.2 recommends the usage of linked resources for navigation purposes. A
navigation link menu is a series of link tags, generally defined in the head element, that
refers to the main index file (the Home) and optionally the next and previous pages in
a series of related documents. These links can be useful for indexing and search engine
optimization purposes. Here is an example of a navigation link menu for a photo gallery
showing photo #2:

<link rel="start" href="index.html" />
<link rel="next" href="photo3.html" />
<link rel="prev" href="photo1.html" />

Go to top

Some mobile browsers, like Safari, allow the user to tap with a finger in the top section
of the screen to scroll the page to the top. Other browsers have keyboard shortcuts for

130 | Chapter 6: Coding Markup

http://wurfl.sourceforge.net/manifesto
http://wurfl.sourceforge.net/manifesto
http://www.w3.org/TR/ct-landscape
http://www.w3.org/TR/ct-landscape
http://

that. And many others don’t have any such mechanism, or if they do, it’s so obscure
that most users probably don’t know what it is. So, it is a good mobile web practice to
insert an anchor at the top of the page (in the header) and a link to that anchor at the
bottom:

<body>
 <div id="header">

 <h1>Mobile Web</h1>
 </div>
 ...
 <div id="footer">

 Go to Top
 Go Home

 </div>
</body>

Images
It’s often said that a picture is worth a thousand words. This is true in the mobile web,
too. However, we need to find a balance with regard to the number of images in a
document. Every image adds to the network traffic, number of requests, and load time.
(Later chapters will discuss optimizing images.)

For now, we are talking about the img tag. This tag should be used only for:

• A company logo

• An article or product photo

• A map

Don’t use the image tag for:

• Buttons

• Icons for links or menus

• Backgrounds

• Visual separators

• Titles

This doesn’t mean that we won’t use images for any of those purposes—we just won’t
use the image tag. The image tag is semantically correct for images that the user un-
derstands as images in their own right, not for visual aids. An arrow icon for a link isn’t
considered as an image for a normal user. It is just a button, or a link. We will follow
the same rule.

The Document Body | 131

http://

Tag usage

The mandatory attributes for an img tag are src, width, height, and alt. It is very im-
portant to define the width and height of every image in a mobile document. This will
reduce the initial rendering time, because the mobile browser won’t need to wait for
the image to load to know how much space it will take up and how to draw the rest of
the content.

The alternative text (alt attribute) is also mandatory, because the user can disable
images or they can be very slow to load, and the document must work without them.
The alt text should provide enough information for the user to understand what is
missing.

Image maps should be avoided on the mobile web. Focus-navigation
devices don’t have image map support, and while cursor-navigation de-
vices may support them, usability is a problem for the users. Touch-
navigation devices can also be problematic because of the finger size.
Only use image maps when targeting compatible devices, and if those
devices support touch navigation, use large areas for every link.

Formats

There’s good news here. Almost every mobile browser understands normal web image
formats: GIF, JPEG, and PNG. The suggestion is to use PNG because, thanks to its
openness and because it is the mandatory format for Java ME, every phone with a
browser understands PNG. That said, there are some differences with regard to index
and alpha transparency.

For animation, the standard in mobile web development is Animated GIF. As Flash
isn’t included in many browsers (as you’ll see later in this chapter), and even when it
is included it can be slow, banners and animations will be most widely compatible using
this classic format.

Later in this book we will talk about SVG (Standard Vector Graphics)
and the HTML 5 canvas tag, which are great image replacements in
compatible browsers.

Inline images

Thanks to lack of support in Internet Explorer 7 and earlier, most web developers don’t
even know about this great feature of modern browsers. For a mobile website, this
technique is very useful.

A data URI is a mechanism for defining a URL with embedded content (e.g., an inline
image). For example, we can define an img tag with the image itself inside it, without
using an external file. This can be done using a base64 encoding of the image file—

132 | Chapter 6: Coding Markup

http://

basically, storing the binary file as a set of visible ASCII characters in a string. This is
great for small images, icons, backgrounds, separators, and anything else that doesn’t
merit a new request to the server. Where is the catch? Not every mobile browser is
compatible with this feature.

The size of an image (or any other binary file) will increase by about
30% when it’s converted to a base64 string for a data URI, but its size
will be reduced again if we are serving the document using GZIP from
the server. Therefore, at the end it will be the same size or even smaller,
and it won’t require a new request (with all the overhead that involves).

The best part about data URIs is that they can be used in a CSS file, with caching and
multipage support. We will cover that later in this book.

To convert an image file to a base64 string representation, we can use any online con-
verter or command-line utility. There are free and online alternatives at http://www
.webutils.pl/index.php?idx=base64 and http://www.motobit.com/util/base64-decoder-en
coder.asp.

PHP Base64 Conversion
Many web server platforms offer base64 conversion. For example, PHP offers a
base64_encode function to this purpose. To generate the code based on a real file on
your server, use something similar to base64_encode(file_get_contents($path)).
You’ll need to add error support and insert the result in an img tag.

The compact syntax is data:[MIME-Type][;base64],data. The data can contain spaces
and newlines for readability purposes.

For example, the O’Reilly logo (original PNG file 75 pixels wide) attached as a data
URI image looks like this:

<img width="100" height="17" alt="O'Reilly" src="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAEYAAAARBAMAAACSi8f4AAAAA3NCSVQICAjb4U/gAAAAGFBMVEX/
//////8AAACpqanMzMxmZmaHhoQ/Pz9kt3AEAAAACHRSTlMA/////////9XKVDIAAAAJcEhZcwAA
CxIAAAsSAdLdfvwAAAAcdEVYdFNvZnR3YXJlAEFkb2JlIEZpcmV3b3JrcyBDUzQGstOgAAAAFnRF
WHRDcmVhdGlvbiBUaW1lADEyLzExLzA5uegApgAAAQNJREFUKJGVkUFTwyAQhfMXXiH1LA3hDMTe
SVDPidW7WnMvkxn/vo+MsamX6s7wgOy3O29JgetR/I2Rdy8B8HIcAyhj8PLIr0dsuYlDF8i8KWWC
/BRKaVCUTaJmkhcDuNOHLVCaJg6VfJY6JivqGJHEjn00q3tpsGcfd0KuuGdx2+fsmSl3m2r2k2gG
g30i434xSMlmht0YbR+EflAU71dMW89zzWcy2W61eF6YssK5j3vlII81Lj0vzOKHaXCuSz8334yb
gC2bkdlUK6ZeMVvTdMM0M0IL3fmQskbD08LA8YHDzGDw9Nyn7Hziuv1hsH/PltCQi9770MmsXFaG
f/z3q/EFatlL/IFsBmgAAAAASUVORK5CYII=" />

I know what you’re thinking: “This is awful, didn’t you tell me to create clean
XHTML?” Maybe you’re right.

The Document Body | 133

http://www.webutils.pl/index.php?idx=base64
http://www.webutils.pl/index.php?idx=base64
http://www.motobit.com/util/base64-decoder-encoder.asp
http://www.motobit.com/util/base64-decoder-encoder.asp
http://

You should deliver data URI images only to known compatible brows-
ers. Later in this chapter we will talk about CSS Media Queries, and later
in the book we will talk about server device detection.

In CSS this image could be a background-image, like:

#logo {
 width: 70px; height: 17px;
 background-image: url('data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAEYAAAARBAMAAACSi8f4AAAAA3NCSVQICAjb4U/gAAAAGFBMVEX/
//////8AAACpqanMzMxmZmaHhoQ/Pz9kt3AEAAAACHRSTlMA/////////9XKVDIAAAAJcEhZcwAA
CxIAAAsSAdLdfvwAAAAcdEVYdFNvZnR3YXJlAEFkb2JlIEZpcmV3b3JrcyBDUzQGstOgAAAAFnRF
WHRDcmVhdGlvbiBUaW1lADEyLzExLzA5uegApgAAAQNJREFUKJGVkUFTwyAQhfMXXiH1LA3hDMTe
SVDPidW7WnMvkxn/vo+MsamX6s7wgOy3O29JgetR/I2Rdy8B8HIcAyhj8PLIr0dsuYlDF8i8KWWC
/BRKaVCUTaJmkhcDuNOHLVCaJg6VfJY6JivqGJHEjn00q3tpsGcfd0KuuGdx2+fsmSl3m2r2k2gG
g30i434xSMlmht0YbR+EflAU71dMW89zzWcy2W61eF6YssK5j3vlII81Lj0vzOKHaXCuSz8334yb
gC2bkdlUK6ZeMVvTdMM0M0IL3fmQskbD08LA8YHDzGDw9Nyn7Hziuv1hsH/PltCQi9770MmsXFaG
f/z3q/EFatlL/IFsBmgAAAAASUVORK5CYII=') top left no-repeat;
}

The best part of using data URI images in CSS is that we can use them in more than
one document without downloading the image content again (i.e., by caching the same
CSS), and we still have clean XHTML.

With HTML 5 features, you can save in a database or in a JSON object
a list of base64 image files that will be cached for the user on the device
for future usage in URLs. See Chapter 9 for more information.

Table 6-5 explores image features and the browsers that support them.

Table 6-5. Image format compatibility table

Browser/platform
PNG 8 bits index
transparency

PNG 8 bits alpha
transparency Animated GIF Data URI

Safari Yes Yes Yes Yes

Android browser Yes Yes No Yes

Symbian/S60 Yes Yes Yes (sometimes

stopped in 5th

edition)

Yes

Nokia Series 40 Yes Yes Yes No

webOS Yes Yes Yes from 1.4 Yes

BlackBerry Yes Yes Yes from 3.8 Yes, not valid in

CSS in older

devices

NetFront Yes Yes Yes Yes

Openwave (Myriad) Yes Yes Yes No

134 | Chapter 6: Coding Markup

http://

Browser/platform
PNG 8 bits index
transparency

PNG 8 bits alpha
transparency Animated GIF Data URI

Internet Explorer Yes Yes Yes No

Motorola Internet Browser No on old devices (v3 series)

Yes on newer devices

Yes No

Opera Mobile Yes Yes Yes Yes

Opera Mini Yes Yes No Yes

Local pictograms

The Japanese carriers have created a de facto standard for using small icons in HTML
without really using images and requests. The images (called Emoji, a Japanese word
combining picture and letter) are based on a list of dozens of icons available to use,
with the real rendering done by the browser. For example, say you would like to insert
a heart icon. Every compatible browser will display a heart icon, but you might not
know the exact image that the browser will use. Today, NTT i-mode services include
Basic Pictograms (176) compatible with all devices and Expansion Pictograms (76)
added in HTML 4.0. Other Japanese carriers (Au and Softbank) have their own picto-
grams (and their own usage mechanisms), so if you need to cover all Japanese carriers
there are a lot of conversion tables between codes.

To display these pictograms, you can just embed the binary code into your HTML
(saved as a Shift-JIS file, not UTF-8) or define them as Unicode standard characters
using 香, where 9999 should be replaced with the pictogram number. The list of
possible pictograms can be found at http://www.mobilexweb.com/go/pictograms.

This is a very underused feature in the occidental world. Even the iPhone supports these
icons (though not the Android browser, as shown in Figure 6-4), although I have not
seen too many websites using them. iOS has supported an Emoji keyboard since
version 2.2 (though only for devices sold in Japan), and the browser allows Emoji pic-
tograms for users worldwide. The list of iPhone Emoji is available at http://www.mobi
lexweb.com/go/emoji-iphone. The list is long—there are more than 450 Emoji—and the
icons have great designs. Moreover, remember, they are images that don’t use network
resources! For example, for the iPhone we can show a message with a smiley at the end
with the following code:

<p>Thanks for your message! </p>

There is also a Windows program (in Japanese, but understandable) that shows every
pictogram we can use. It is called iEmoji, and you can download it from http://www
.mobilexweb.com/go/iemoji.

The Document Body | 135

http://www.mobilexweb.com/go/pictograms
http://www.mobilexweb.com/go/emoji-iphone
http://www.mobilexweb.com/go/emoji-iphone
http://www.mobilexweb.com/go/iemoji
http://www.mobilexweb.com/go/iemoji
http://

Remember, iPhone Emoji work all over the world, not just in the Japa-
nese market. The only requirement is having iOS 2.2.1 or newer.

The OMA standardized pictograms in XHTML MP using an object tag:

<object data="pict:///core/arrow/right" />

The standards support alternative content. That is, if the pictogram is not available,
you can add a child to the object with an alternative. The alternative can be another
pictogram or a classic image:

<object data="pict:///time/season/summer">
 <object data="pict://weather/sunny">

 </object>
</object>

The pictogram sets are not standardized between browsers, and that’s why today they
are not widely used in mobile websites. Table 6-6 lists pictogram compatibility for the

Figure 6-4. Safari on iOS shows the Emoji icon, but Android shows only a rectangle indicating a
noncompatible character.

136 | Chapter 6: Coding Markup

http://

most common mobile browsers. A good resource for Emoji and pictograms is http://
sites.google.com/site/unicodesymbols/Home/emoji-symbols.

Table 6-6. Pictograms compatibility table

Browser/platform OMA pictograms Emoji pictograms

Safari No (shows page error alert) Yes

Android browser No (shows a big error message) No (shows nothing)

Symbian/S60 No (shows nothing) No (shows nothing)

Nokia Series 40 No (shows an X) No (shows a square)

webOS No (shows nothing) No (shows a square)

BlackBerry Yes before 4.6

No after 4.6

No (shows nothing or a square)

NetFront Yes No (shows nothing)

Openwave (Myriad) Yes No (shows nothing or a character)

Internet Explorer No (shows nothing) No (shows a square)

Motorola Internet Browser Yes No (shows a square)

Opera Mobile No (shows nothing) No (shows nothing)

Opera Mini No (shows nothing) No (shows nothing)

The Openwave browser (found on millions of low- and mid-end devices) also supports
its own icon mechanism. Icons can be included in the img tag with the localsrc
attribute, or with CSS using background-image or list-style-image. There are 562 dif-
ferent icons available; visit http://mobilexweb.com/go/openwaveimages to find the whole
list.

For example, to show a back arrow image, we can use the icon name or number:

Openwave also works with WAP standard pictograms using the object tag and a URL
like pict:///<image path>. For example:

<object data="pict:///core/action/stop" height="32" width="32"
 standby="Stop loading..." name="stop"/>

Using images effectively

Out of all of these complications and possibilities, some guidelines emerge:

• Use images in XHTML only for logos, photos, and maps.

• Compress the images with normal web image methods.

• Define the width, height, and alternative text for every image.

• Use data URIs for small images whenever possible.

The Document Body | 137

http://sites.google.com/site/unicodesymbols/Home/emoji-symbols
http://sites.google.com/site/unicodesymbols/Home/emoji-symbols
http://mobilexweb.com/go/openwaveimages
http://

• Leave icons, buttons, backgrounds, and visual alert images for CSS.

• Open your mind to the usage of Emoji and pictograms with known compatible
devices.

• Avoid the usage of image maps.

• Analyze the use of canvas or SVG for compatible devices and for some graphic
types. These technologies will be covered later in this book.

Once again, if you are thinking how messed up these things are in the
mobile web, you are probably right. Later in this book, we will talk about
frameworks and best practices to reduce the fragmentation problem
while coding markup.

Lists
Using standard lists will help us a lot in defining our designs later and for semantic
search engine optimization. For the mobile web, we should use the following list types:

Ordered lists (ol tag)
For navigation link menus

Unordered lists (ul tag)
To present lists of similar objects

Definition lists (dl tag)
To show key/value details

The last one is perhaps the lesser-known list tag in web development. For example, if
we are showing a product detail page, in many browsers it’s better to use a definition
list rather than a table for attributes:

<h2>iPhone 3GS</h2>
<dl>
 <dt>Price</dt>
 <dd>300 EUR</dd>
 <dt>Memory</dt>
 <dd>32Gb</dd>
 <dt>Network</dt>
 <dd>3G, Wifi, Bluetooth</dd>
</dl>

The dt tag is used for the key (definition term) and the dd tag for the value (definition
description). This is very useful, semantically correct, and clearer than using a table.
Later, with CSS, we can rearrange the elements.

Links
Hyperlinks are the heart of the Web, and this holds for the mobile web, too. You might
think there isn’t much to say about links, but that’s not the case.

138 | Chapter 6: Coding Markup

http://

Every link in a mobile website should have the well-known href attribute, set to the
URL of the desired resource, and the most important links on the page (up to 10) can
have an accesskey attribute assigned for easy access via keyboard shortcuts, on devices
that support access keys (see Chapter 5). The target attribute should be avoided, unless
you are developing for smartphones with tab or multipage support.

Some devices support the usage of tabindex for focusable elements
(links, form controls, etc.) to change the element order for browsers with
focus-based navigation. However, changing the natural order of tabbing
is discouraged, unless you have a difficult design and you want to im-
prove the user experience.

If you are making a link to the desktop version of your website (a must-have, as dis-
cussed earlier), use rel="alternate" to specify that the link is to the same page in an
alternative format.

In devices that support focus-based navigation (most low-end devices,
and even some touch devices with a touchpad or scroll wheel, like the
Nexus One and some BlackBerrys), it is important to define whole
clickable zones. For example, if you want to make a title and description
both clickable, use one link tag for both elements instead of two separate
links to the same page. A single focus border will appear around the
whole area you want to be clickable.

New windows

Some browsers accept the target="_blank" attribute (from the XHTML MP standard),
but depending on the browser the behavior is different, as shown in Table 6-7. Some
browsers simply open the URL in the same window, others create a new tab or window
(allowing the user to browse between them), and still others open the new URL as a
modal pop-up, in which case the user cannot go back to the first page until he closes
the new one.

Table 6-7. Opening links in new windows compatibility table

Browser/platform New window links

Safari Open in a new window (maximum of 8)

Android browser Open in a new window

Symbian/S60 Open in a new window (not easy for users to move between windows)

Nokia Series 40 Open in the same window before 5th edition

Open in a new window in 6th edition

webOS Open in a new card (OS window)

BlackBerry Open in the same window before OS 6.0

The Document Body | 139

http://

Browser/platform New window links

NetFront Open in the same window

Openwave (Myriad) Open in the same window

Internet Explorer Open in the same window

Motorola Internet Browser Open in the same window

Opera Mobile Open in the same window

Opera Mini Open in a new window from 5.0

Navigation lists

A navigation list is any list of links that are related in some manner and listed one after
the other. The recommended way to create such a list is with ol or ul tags (for non-
accesskey-compatible devices). With the ordered list, the number of the key to press
to access each option is printed for us for free, but we still need to add the accesskey
attributes to the a tags by hand:

Linking to phone features

There are some URL schemes that many mobile browsers understand to communicate
with some phone features.

One standard, the Wireless Telephony Application Interface (WTAI), is part of the
WAP 1.X standard (created in the last millennium). The WTAI libraries are preinstalled
on the phones and can be accessed by other applications, such as the browser. To use
these libraries (if available), use the syntax wtai://<library name>/<function

name>[(;parameter)*].

Remember: most mobile devices are also phones! So, why not create link-
to-call actions? If you’re creating a business guide, or even for your own unique pho-
nebook, most people will prefer to call a person instead of filling in a form on the device.
Figure 6-5 shows how link-to-call actions work on a few different devices.

Fortunately, there are some URLs that will help us. The first de facto standard (copied
from the Japanese i-Mode standards) is to use the tel:<phone number> scheme. This is
called the i-Mode format:

Call us free!

Some devices also allow sending DMTF tones after the call has been answered by the
destination. This is useful for accessing tone-controlled services, helpdesk systems, or
voicemail; you can say to the link, “call this phone number and, when the call is an-
swered, press 2, wait 2 seconds, and then press 913#”. You do this using the postd

Making a call.

140 | Chapter 6: Coding Markup

http://

parameter after the number: the syntax is ;postd=<numbers>. You can use numbers, *,
and # (using the URL-encoded %23 value), as well as p for a one-second pause and w for
a wait-for-tone pause:

Call us free!

This function doesn’t work on all mobile devices, but on devices that don’t understand
it, the primary telephone number should at least be called. The compatibility list for
this feature is complex, and I don’t recommend relying on it.

If the user activates a call link she will receive a confirmation alert asking whether to
place the call, showing the full number so she can decide (see Figure 6-6). This is to
avoid frauds tricking the user into calling another country or a premium number.

I recommend inserting the phone number in the international format:
the plus sign (+), the country code, the local area code, and the local
number. We do not really know where our visitors will be located. If
they are in the same country, or even in the same local area, the inter-
national format will still work.

Figure 6-5. Palm’s webOS and Android show the call window when we activate a tel: link.

The Document Body | 141

http://

Although Table 6-8 shows that it is not as well supported as tel:, the other way to
originate a call is using the WTAI standard, via the wp public library and the mc (make
call) function:

Call us free!

WTAI also accepts a link to be used while the call is in progress, but this is useful only
if the user is in hands-free mode or using a headset. This link can include tones to be
sent to the destination as if the user had pressed them on the keypad, specified using
the wp library’s sd (send DTMF tones) function.

The BlackBerry browser automatically detects phone numbers and
email addresses and converts them to links. If you don’t want this fea-
ture, you should use the meta tag <meta http-equiv="x-rim-auto-match"
content="none">. Safari also has its own metatag for the same action:
<meta name="format-detection" content="telephone=no">.

iDEN networks (like Nextel) use radio packets to make internal calls inside the net-
work. If you are working with customers of such a network—for example, for an in-
tranet—you can allow users to launch internal calls to other members of the team (or
external calls) using the Direct Connect URL scheme (dc:<number>). This is compatible
with BlackBerry iDEN devices:

Ping John

Some models present users with a submenu when they click a tel: link
so they can choose whether to place a voice-only or a video call (available
in 3G systems). Some Japanese phones also allow you to specify that a
link should initiate a video call, using the protocol tel-av:<phone num
ber>.

Figure 6-6. While Nokia and BlackBerry offer a confirmation alert for the call action, Sony Ericsson’s
NetFront browser presents the user with a menu proposing different actions to take.

142 | Chapter 6: Coding Markup

http://

Table 6-8 lists which voice call URI schemes work with which platforms.

Table 6-8. Call-to action compatibility table

Browser/platform tel: compatibility WTAI compatibility

Safari Yes No

Android browser Yes Yes

Symbian/S60 Yes Yes

Nokia Series 40 Yes Yes

webOS Yes No

BlackBerry Yes Yes

NetFront Yes, for call and add to

contact manager

Openwave (Myriad) Yes Yes

Internet Explorer Yes, for call, SMS, and add to

contact manager

Motorola Internet Browser Yes, for call, SMS, and add to

contact manager

Opera Mobile Yes Yes

Opera Mini Yes (unless Java MIDP 1.0 device) Yes (unless Java MIDP 1.0 device)

The iPod Touch, a non-phone mobile device, doesn’t allow voice calls.
Instead, it shows a prompt to add the phone number used in the tel:
link to the phonebook.

Some modern devices with browsers also have mail applications that can
react to the classic web mailto: protocol. The syntax is mailto:<email_destina
tion>[?parameters]. The detected parameters can change from device to device but
generally include cc, bcc, subject, and body. The parameters are defined in a URL format
(key=value&key=value), and the values must be URI-encoded.

Here are some samples:

Mail us
 Mail us

Mail us

Be aware that the mailto: mechanism doesn’t guarantee that the mes-
sage will be sent. It generally just opens the mail application, and the
user has to confirm the sending after making optional changes. If you
need to actually send the mail, use a server mechanism.

Sending email.

The Document Body | 143

http://

Generally, if we want to insert a newline in the body of the email we can use the Carriage
Return plus Line Feed characters (%0D%0A). This does not currently work with the Mail
application in iOS, but we can insert HTML tags inside the body, so we can use

 for the mobile Safari browser:

<a href="mailto:info@mobilexweb.com?subject=Contact&
body=This%20is%20the%20body%0D%0AThis%20is%20a%20new%20line">Mail us

<a href="mailto:info@mobilexweb.com?subject=Contact&
body=This%20is%20the%20body
This%20is%20a%20new%20line">Mail us from iPhone

We all like the Short Message Service; that’s why mobile browsers gen-
erally offer the ability to invoke the new SMS window from a link. To do this, we have
two possible URI schemes, sms:// and smsto://. Unfortunately, there is no standard
way to know for sure which one is compatible with a user’s browser.

We will see in Chapter 10 how to detect sms: and smsto: protocol com-
patibility from the server to select the right alternative.

The syntax is sms[to]://[<destination number>][?parameters]. As you can see, the
destination number is optional, so you can open the SMS composer from the device
without any parameters defined. The parameters usually define the body, but this
property is not compatible with all phones for security reasons (e.g., to avoid a website
sending premium SMS texts). As with sending an email, an SMS is not automatically
sent when the user presses the link. The link only opens the SMS Composer window;
the user must finish the process manually.

The destination number should either be an international number or, if it is a short
number code, we should guarantee that the user is in the right country and is connected
with one of the compatible carriers of that short code.

BlackBerry devices offer direct messaging between two BlackBerry de-
vices on the same network. For creating a direct message, you can use
the PIN:<number> URL scheme.

Here are some samples:

Send an SMS

Invite a friend by SMS<a>

Contact us by SMS

More info for producto AA2

Sending an SMS.

144 | Chapter 6: Coding Markup

http://

Working with MMS
The Multimedia Messaging Service (MMS) is the standard way to send messages with
multimedia content (images, video, or any attached content). It depends on the SMS
standards and a content file (the multimedia message) that the sender uploads to the
carrier and the recipient downloads from the carrier. Symbian devices allow us to define
the URI schemes mms:<url> to download an MMS file from the specified URL and
mmsto://<destination number> to open the Multimedia Message Composer.

Table 6-9 lists which messaging features work with which platforms.

Table 6-9. Messaging actions compatibility table

Browser/platform sms:/smsto: scheme mms:/mmsto: scheme mailto: scheme

Safari Only sms: and in iPhone (not iPad/

iPod). No body support.

No Yes

Android browser Yes, no number or body support Yes

Symbian/S60 Only sms: Only mmsto: Yes

Nokia Series 40 No (use mailto: instead) No Yes (it can also be used

for SMS and MMS)

webOS Only sms: No Yes

BlackBerry No No Yes

NetFront Yes Yes Yes

Openwave (Myriad) No No Yes

Internet Explorer Only sms: No Yes

Motorola Internet Browser No No Yes

Opera Mobile Yes Yes Yes

Opera Mini Depends on the device

If you are developing mobile widgets or offline JavaScript applications,
almost every platform provides a low-level API for sending messages
and even receiving them from your application. We will cover these web
technologies in Chapter 12.

It might be useful to invite users to add your company’s
contact information (only the phone number, or full details) to their phonebooks for
future communication. A WTAI function is available for this purpose for older and
WML-compatible devices, and there’s also a tricky way of doing it for modern (and
smarter?) devices.

Adding a contact to the phonebook.

The Document Body | 145

http://

The WTAI library is wp, as for making phone calls, and the function is ap (Add to
Phonebook). The parameters are the number and optionally a name to be assigned to
it, separated by a semicolon. For example:

 Add White House to contacts

For modern browsers (not supporting WTAI, as shown in Figure 6-7), the trick is to
create a vCard file (vCard is a standard file format for electronic business cards). If you
link to this file, most browsers will send the file to the device’s Phonebook application,
and the user will be invited to add the contact to the database.

Figure 6-7. We need to be careful about using URI schemes not compatible for a device. The user will
not understand the error messages.

A simple vCard 2.1 file (the most compatible version for mobile devices) will look like
this:

BEGIN:VCARD
VERSION:2.1
N:Maximiliano;Firtman
ORG:O'Reilly Media
TITLE:Author
TEL;CELL;VOICE:+133MFIRTMAN
TEL;WORK;VOICE:+541150320077
END:VCARD

For the device to detect this text file as a valid vCard, we must deliver it with the MIME
type text/x-vcard. The file, if static, is generally a .vcf file.

Bookmarker is an automatic vCard generator for mobile devices, avail-
able at http://bookmarker.mobi.

146 | Chapter 6: Coding Markup

http://bookmarker.mobi
http://

Unfortunately, many modern (again, smarter?) mobile browsers, like Safari, don’t un-
derstand vCards if you provide them as links in a document. However, they do under-
stand them if the user receives them by email! The solution, therefore, is to retrieve the
user’s email address and, from the server, send the vCard as an attachment.

Another excellent feature to provide to compatible devices is to automatically add to
the user’s calendar details about a meeting or appointment scheduled online, or a re-
minder about an event for which the user has bought tickets. If you’re selling tickets to
a concert or a theater show, this is a great way to ensure that the user won’t forget it.

There isn’t a WTAI way to do this—in fact, in 1998 mobile devices generally didn’t
have calendar programs. For compatible devices we can use the iCalendar format, based
on an older vCalendar standard similar to vCard. iCalendar files should be served with
the MIME type text/calendar. There are a lot of server libraries for creating this format,
although as Table 6-10 shows, it really only works with Symbian devices right now.

Table 6-10. Contacts and calendar integration compatibility table

Browser/platform WTAI ap vCard iCalendar

Safari No No (only as an email attachment) No

Android browser No No No

Symbian/S60 Yes Yes Yes

Nokia Series 40 Yes No No

webOS No No No

BlackBerry Yes No No

NetFront Yes, also for calls No No

Openwave (Myriad) No No No

Internet Explorer Yes No No

Motorola Internet Browser No No No

Opera Mobile Yes No No

Opera Mini Depends on

the device

Integrating with other applications

Some devices allow us to integrate our websites with other native installed applications.
This is dramatically nonstandard, though, and it depends very much on the device and
the applications.

Safari supports some standard URL schemes that will open other native
applications. For example, we can open the YouTube and Google Maps applications
simply by using the classic URLs for each service (youtube.com/…and maps.google.com/
…). Safari will automatically open the native application, showing the information we
want. This method also works for App Store and iTunes links.

iOS URL schemes.

The Document Body | 147

http://

Prior to iOS 4.0, when the user clicks a link that opens another application, the browser
closes. To get back to your website, the user must reopen the browser.

An updated list of URL schemes for iOS is maintained at http://wiki.akosma.com/IPhone
_URL_Schemes, and a list of applications, URL schemes, and optional parameters for
Safari can be found at http://www.handleopenurl.com.

For example, according to these sites we can open the Facebook iPhone native appli-
cation (if installed) showing the user’s list of friends using the URL fb://friends, and
if the user has installed Twitterrific (a Twitter client), we can directly post a message
using twitterrific://post?message=<msg>. Here’s a sample:

Tweet this on
Twitterrific

When passing parameters by URL, remember to properly encode spaces
and other characters (for example, using %20 for spaces).

Detecting Whether an Application Is Installed
When the user clicks a link in mobile Safari that is designed to open another application,
what happens if that application is not installed on the user’s device? In this case, the
browser shows an alert to the user and continues displaying the same page. We can
take advantage of this behavior to improve the user experience. Create a timer in Java-
Script that starts when the user clicks the link; if the timer is executed quickly, it means
that the application could not be opened because it is not installed.

We can’t avoid the Safari message, but we can show the user an error message indicating
that the application seems not to be installed and providing a link to the App Store so
the user can buy or download it.

Symbian devices also allow us to open applications using the
nonstandard localapp scheme. For example, for opening the Calendar, Contacts, or
Messages, we can use localapp:calendar, localapp:contacts, or localapp:messaging.

Android also has the ability to communicate with other applications, via
intents (abstract descriptions of actions to be performed). A native Android application
can register an intent as an explicit call (not available from web applications), from a
URL, or from a MIME type.

For example, we can open the default PDF viewer on the user’s device by delivering a
PDF file with the MIME type application/pdf. To open an application without sending
a file, we can use the URI schemes defined by the intent. For example, linking to a
YouTube video will fire the YouTube internal application (if the user has defined it as
the default player).

Symbian local applications.

Android intents.

148 | Chapter 6: Coding Markup

http://wiki.akosma.com/IPhone_URL_Schemes
http://wiki.akosma.com/IPhone_URL_Schemes
http://www.handleopenurl.com
http://

When the intention call is implicit (using a URL instead of a unique package name),
there may be more than one installed application that can respond to that URL. In this
case, the user will receive a pop-up asking her to select the application to use. The user
can also select a default application for future usages.

In Android, an intent can be registered as part of an HTTP URL or be
activated from a MIME type. For example, if we link to http://www.goo
gle.com/m/products/scan in the Android browser, it will try to open a
Barcode Scanner application.

Among the internal URLs that Android supports are those for Google Maps placemarks
using geo:<latitude>, <longitude>, Google Maps searches using geo:0,0?q=<search>,
and Google street views using google.streetview:cbll=<latitude>, <longi

tude>&cbp=1. More information is available at http://developer.android.com/guide/ap
pendix/g-app-intents.html.

Similarly, using market://search?q=<search> in Android will open Android Market (the
store for applications and games) with a query search.

In Android, when a URI scheme is not registered as an intent, that means
the application is not installed. The user will be taken to a new page
showing an error message, like when you link to a website that doesn’t
exist.

Unfortunately, at the time of this writing there are no websites that list all the possible
URI schemes to use on Android. Some individual applications do offer developer web-
sites to show this information, though. For example, Twidroid (a Twitter client) has
http://twidroid.com/plugins, where you can see documentation about using a URL to
show a nice Twitter pop-up over the page. The URL syntax is twitter://send?<mes
sage>. Therefore, the example we looked at earlier for Twitterrific can be converted to:

Tweet this on Twidroid

When developing widgets, as discussed in Chapter 12, we will have
nonstandard APIs to connect with other native applications from our
widgets.

Document download

Linking to a document that isn’t an (X)HTML file produces different results depending
on the device. Your first thought about this may be that it depends on the applications
installed on the device. This is true, in part. Some mobile browsers, like the iPhone’s,
don’t allow document downloading even if the user has installed a compatible reader

The Document Body | 149

http://www.google.com/m/products/scan
http://www.google.com/m/products/scan
http://developer.android.com/guide/appendix/g-app-intents.html
http://developer.android.com/guide/appendix/g-app-intents.html
http://twidroid.com/plugins
http://

for that document type, as shown in Figure 6-8. Others, like the Symbian browser
shown in Figure 6-9, let the user store the file.

Figure 6-8. Safari on iOS opens PDFs directly and doesn’t download noncompatible documents.

Table 6-11 reports the default reactions of the different browsers when we deliver a
nonstandard file format (e.g., an invented one) and the most common file types, Adobe
PDF and Microsoft Office (.doc, .xls, etc.).

Table 6-11. Document download compatibility table

Browser/platform Unknown file Adobe PDF Microsoft Office

Safari No Yes. The user can view the PDF but not

download it.

Yes. 2007 and 2010 (partial). Word,

Excel, PowerPoint Viewer.

Android browser Yes Yes, but the user needs to have a

compatible viewer or editor installed.

Symbian/S60 Yes Yes, but the user needs to have a

compatible viewer or editor installed.

Nokia Series 40 Yes Yes, but no reader available.

Only download.

150 | Chapter 6: Coding Markup

http://

Browser/platform Unknown file Adobe PDF Microsoft Office

webOS Yes Yes, but the user needs to have a

compatible viewer or editor installed.

BlackBerry Yes Yes Yes. Word, Excel, PowerPoint 2007.

NetFront Yes Only download.

Openwave (Myriad) No No No

Internet Explorer Yes Yes, but needs a viewer Yes

Motorola Internet

Browser

No No No

Opera Mobile Yes Download. Opening depends on device.

Opera Mini Yes if the de-

vice supports

the File API

from Java ME.

Download. Opening depends on device.

Chapter 10 will cover the delivery of multimedia content.

Figure 6-9. The Symbian browser has a download manager capable of downloading any file to the
internal or external memory.

The Document Body | 151

http://

Forms
Input forms are common features of web applications. In the mobile world, we should
keep forms and the amount of typing they require to the minimum. The input controls
should be inside the classic form tag, with method="GET" or "POST" and the action URL
as any web form.

Form design

Avoid using tables for form layout. The best solution is to use definition lists, labels,
and input controls. We will enhance this form design in the next chapter with JavaScript
for smartphones.

BlackBerry devices allow offline form submission. If the device is offline
when the user completes the form, it is placed in a queue and is auto-
matically submitted when the device goes back online. You can find
more information about this technique at http://www.mobilexweb.com/
go/offlineform.

A typical key/value form should look like this:

<form action="formAction" method="POST">
 <dl>
 <dt><label for="name">Name</label></dt>
 <dd><input type="text" name="name" /></dd>
 </dl>
</form>

The usage of the label tag is very important for mobile input controls, and especially
for touch devices. For example, if you insert a checkbox without a label tag, the user
will need to tap (click) over the tiny checkbox to select it. Using a label allows the user
to tap anywhere in the text assigned to the checkbox.

As discussed in Chapter 3, mobile forms should have a vertical design,
so it is better to put the label above each input field instead of to the
right or left. This is because touch devices zoom in on the field when
it’s in focus and do not show what is to the right or left of the control.
Tables don’t help in this design.

So, a form with a checkbox should look something like this:

<form action="formAction" method="POST">
 <input type="checkbox" name="accept" id="accept" value="yes" />
 <label for="accept">I accept terms and conditions</label>
</form>

152 | Chapter 6: Coding Markup

http://www.mobilexweb.com/go/offlineform
http://www.mobilexweb.com/go/offlineform
http://

Some mobile browsers have a lower limit for the URL length than desk-
top ones. That is why we should avoid long forms using the GET method.

We can also assign access keys to the form controls (using the accesskey attribute in
the input tags) and show which keys are assigned in the labels, with a CSS class. This
method is very useful in devices with QWERTY keyboards, where you can assign a
letter to each field instead of numeric values:

<form action="formAction" method="POST">
 <input type="checkbox" name="accept" id="accept" value="yes" accesskey="a" />
 <label for="accept">I Accept terms and
 conditions</label>
</form>

A typical form should include one or more fieldset tags, each with a legend inside.
The fieldset is just a container for form controls, and the legend is a child tag that
defines the title or legend for its parent:

<fieldset>
 <legend>Personal Information</legend>
 <!-- controls here -->
</fieldset>

Select lists

The select tag should be one of the most-used tags in a mobile form. Selection from a
list is the first option for reducing typing. In a mobile browser, when you click on a
select element, typically you will see a pop-up window (modal or not) showing all the
options. As shown in Figures 6-10 and 6-11, how select lists are rendered varies across
devices.

You can use the size property of the select tag to define a list with a predefined height,
and you can specify that the list accepts multiple selection using the multiple="multi
ple" property. The multiple-selection feature is more useful in mobile forms than desk-
top forms. In a desktop form, the user generally uses Shift or Control to select multiple
options. In a mobile form, we generally present a pop-up window with checkboxes for
the user to make his selections and a confirm action to go back to the main page.

The code for the select lists shown in the previous two figures looks like this:

<form action="formAction" method="post">
 <dl>
 <dt><label for="country">Country</label></dt>
 <dd>
 <select name="country">
 <option>Argelia</option>
 <option>Argentina</option>
 <option>Bolivia</option>
 <option>Brazil</option>
 </select>
 </dd>

The Document Body | 153

http://

 <dt><label for="filter">Looking for</label></dt>
 <dd>
 <select name="filter" multiple="multiple">
 <option>Flights</option>
 <option>Hotels</option>
 <option>Restaurants</option>
 <option>Car Rental</option>
 </select>
 </dd>
 </dl>
</form>

Mobile Safari uses a spinning wheel for selections in HTML, but the
native control also supports a multicolumn spinning wheel to select
multiple fields at the same time. This functionality is not provided in
HTML and can only be used natively in Objective-C. However, there is
a JavaScript library that emulates the multicolumn control available at
http://www.mobilexweb.com/go/wheel.

Figure 6-10. Safari on iOS uses a half-screen selection with tabular navigation between form controls
using Previous and Next buttons.

154 | Chapter 6: Coding Markup

http://www.mobilexweb.com/go/wheel
http://

Option groups are an underused feature of select lists, even in desktop
web development. Defining an optgroup allows you to provide a label for a set of chil-
dren, so you can group the available options by category. Here’s an example:

 <dl>
 <dt><label for="country">Country</label></dt>
 <dd>
 <select name="country">
 <optgroup label="America">
 <option value="ar">Argentina</option>
 <option value="bo">Bolivia</option>
 <option value="br">Brazil</option>
 </optgroup>
 <optgroup label="Europe">
 <option value="at">Austria</option>
 <option value="be">Belgium</option>
 <option value="bg">Bulgaria</option>
 </optgroup>
 </select>
 </dd>
 </dl>

The result is shown in Figure 6-12. Again, different devices may render option groups
differently!

Option groups.

Figure 6-11. Symbian select lists offer a search box for all the options, and Android shows a beautiful
modal pop-up.

The Document Body | 155

http://

Table 6-12 summarizes mobile browser support for select list
features.

Table 6-12. Select list compatibility table

Browser/platform select select w/size
select w/
multiple optgroup

Safari Half-height selection No difference Yes Yes

Android browser Modal pop-up No difference Yes Yes

Symbian/S60 Pop-up with search Yes Yes Yes

Nokia Series 40 Open in separate window No difference be-

fore 6th edition

Yes Yes, show options grou-

ped in folders

webOS Modal pop-up Yes Yes Yes

BlackBerry In-place drop-down Yes Yes Yes from 3.8

NetFront In-place drop-down Yes Yes Yes

Openwave (Myriad) In-place drop-down Yes Yes Only a separator without

label

Internet Explorer In-place drop-down Yes Yes No

Motorola Internet Browser Shows full list Yes Yes Yes

Opera Mobile In-place drop-down Yes Yes Yes

Opera Mini In-place drop-down Yes Yes No

Select list compatibility.

Figure 6-12. Option groups can be rendered strangely. Here, Android 2.1 shows buttons next to the
group labels “America” and “Europe,” even though they are not selectable options.

156 | Chapter 6: Coding Markup

http://

Radio buttons and checkboxes

The usage of radio buttons and checkboxes is the same on mobile devices as on desk-
tops. The only recommendation I can give you is to avoid the usage of these controls
if there are more than four options, using in that case a select with single or multiple
selection, as appropriate. A group of more than four radio buttons is likely to increase
the page height and may require scrolling, which can impact the usability of the form.

Buttons

(x)HTML has five types of buttons:

1. Image map buttons: <input type="image" />

2. Submit buttons: <input type="submit" />

3. Clear buttons: <input type="reset" />

4. Custom buttons: <input type="button" />

5. Submit buttons with HTML support: <button></button>

The image map button allows us to use an image as a button and receive on the server
the coordinates of the point inside the image where the user clicked. Of course, this
functionality is only possible on mobile devices supporting touch- or cursor-based
navigation. This type of button should be avoided if possible (this is the recommen-
dation of the W3C) and replaced with a classic submit button. We can later add an
image or icon using CSS.

The submit button is the most widely compatible, and for the lowest common denom-
inator devices it should work fine. I’ve always hated (yes, hated!) the clear button. How
many times have you clicked a clear button thinking it was the submit button? This
button should be avoided when developing for mobile devices: why add more scrolling
and take up more space for a function that few people use? If do you want to include
this functionality in your form, please be sure to use a different style for the clear button
(smaller, darker) than the style you use for the submit button.

The custom buttons should be avoided if you want full mobile compatibility, because
they only work with JavaScript. For compatible devices, you can still use submit buttons
and capture the submit action with JavaScript.

Finally, be aware that the button tag is not compatible with all devices. In fact, it was
only added to the latest versions of the standards, and I don’t know many HTML
designers and developers who use it.

Hidden fields

Hidden fields are fully compatible with mobile browsers.

The Document Body | 157

http://

File upload

The file upload control is not included in the mobile web standards, but many devices
still accept it (see Figure 6-13). When the user selects this control a modal pop-up
window appears, allowing the user to select a file from the public internal memory
folders or from the additional memory card. A simple upload form might look like this:

<dl>
 <dt><label for="file">Upload a photo</label></dt>
 <dl><input type="file" name="photo" /></dl>
</dl>

The usage is typical: the form tag must be defined with enctype="multipart/form
data". Selecting multiple files using a single selection dialog is not allowed, and dis-
playing the upload progress is not supported. In desktop websites this is typically done
using a Flash invisible movie, and at the time of this writing there are no devices that
are compatible with this feature. Beginning with Flash Player 10.1 in mobile browsers,
this is scheduled to change; however, this mechanism will not be compatible with all
devices because Flash Player will not be widely supported.

Figure 6-13. It is ironic that modern smartphone browsers such as Safari and the Android browser
don’t support file uploads, while the low-end Nokia S40 browser does.

The BlackBerry browser (since version 4.2) has a property called accept that you can
use to define a comma-separated list of MIME types that the server will accept. This
can reduce sending of noncompatible files. For example:

<dl>
 <dt><label for="file">Upload a photo</label></dt>
 <dl>

158 | Chapter 6: Coding Markup

http://

 <input type="file" name="photo" accept="image/jpeg,image/gif,image/png" />
 </dl>
</dl>

The iPhone Photo Picker (http://code.google.com/p/iphone-photo
-picker) is an open source solution for uploading photos to a server. You
can create your own version of this native application and make it avail-
able in the App Store. Then, when you need the user to upload a photo
or file, you call this URL from your website and the app will be opened.
After the upload, the app will close, taking the user back to your website.

Table 6-13 shows which browsers support file uploading.

Table 6-13. File upload compatibility table

Browser/platform File upload compatibility accept attribute

Safari No

Android browser No before 2.2. Yes from 2.2 (only images from gallery

or sounds)

No

Symbian/S60 Yes Yes; shows a warning if a file of an

incorrect type is selected

Nokia Series 40 Yes No

webOS No

BlackBerry Yes from 4.2

No before 4.2

NetFront Yes No

Openwave (Myriad) Yes No

Internet Explorer Yes No

Motorola Internet Browser No

Opera Mobile Yes No

Opera Mini Yes, if the device supports the File API in Java ME No

Text input

The text input is the form feature that requires the most attention. Typing on mobile
devices is not the best experience, and text input mechanisms vary widely between
touch devices, QWERTY devices, and phones with numeric keypads.

QWERTY devices are the only ones that don’t require a new window to insert the text:
when the text input has focus, the user can start typing. In all other device types, when
the field has focus the user can either click (or tap) in it or start typing to open a modal
pop-up window with all of the OS’s typical text typing features (e.g., predictive text,
onscreen keyboard, character recognition, dictionary, and symbol list). Some devices

The Document Body | 159

http://code.google.com/p/iphone-photo-picker
http://code.google.com/p/iphone-photo-picker
http://

show a full-screen text input window (hiding the entire web interface), and others show
a smaller window inside the browser window. In the first case, a descriptive label is
required so the user knows what to type.

Password or No Password
The usage of the password text input (<input type="password" />) on mobile devices
is a subject of much debate. The password text input (with the classic stars displayed
instead of the typed characters) was originally created because of the possibility of a
password or other sensitive data being stolen by someone standing behind the user
with a view of the screen.

In the mobile ecosystem, the situation is different. With the limited screen size and font
size, it is very difficult for another person to see what the user is typing on his mobile
phone. Furthermore, typing on non-QWERTY devices is difficult, and if we show a
star instead of the real character typed the user may be unsure that he’s entered the text
correctly (even if, as some devices do, the character is displayed for a second before it’s
changed to a star). If you still want to use the password input, I recommend forcing the
text input to be numeric.

Jakob Nielsen (http://useit.com), guru of web usability, agrees. In a 2009 Alertbox col-
umn, Nielsen wrote: “Usability suffers when users type in passwords and the only
feedback they get is a row of bullets. Typically, masking passwords doesn’t even in-
crease security, but it does cost you business due to login failures.”

Multiline text inputs (using the textarea tag) should be used very carefully. Generally
speaking, we don’t want the user to type too much text in a form. However, when more
space is required (like in a mail message body), we can use a textarea, and depending
on the device the experience should be the same as with a normal text input. Rich text
input controls are not very common in the mobile world, and it is really difficult to
implement because of the browser internals. The only solution is to capture keypresses
using JavaScript events and emulate your own text input control.

A placeholder is a hint that is shown inside the text box until the user inserts
text in that field. When the user starts typing, the placeholder is hidden, as shown in
Figure 6-14. This feature is very useful in mobile designs because of the lack of space.
Instead of using a label, as discussed earlier, we can use a placeholder, reducing the
amount of space required for the field.

The big problem with placeholders is that they are nonstandard. There are two possible
approaches for implementing them: using an HTML 5 attribute (placeholder), and
using JavaScript. The placeholder attribute is compatible with some modern browsers,
and for the others we can create a little script to give this functionality, even using the
standard label as the source. The JavaScript solution will be implemented later in this
book. For now, we will just use the HTML attribute:

<input type="text" name="zip" placeholder="Your ZIP Code" />

Placeholder.

160 | Chapter 6: Coding Markup

http://useit.com
http://

Figure 6-14. The placeholder is the gray descriptive text inside the text box that is automatically
deleted when the user begins typing a value in the box.

If we need only one text input from the user, a very good approach on
compatible devices is to use the standard JavaScript window.prompt func-
tion. It will reduce the work required for the user to type the input.

To reduce the client-side scripts and server-side trips for validation
and to improve the usability of our forms, we should provide as many input validation
properties as we can.

The first typical option is to define the maximum size accepted for the text input using
the maxlength property, expressed as a number of characters. Many platforms auto-
matically add a character counter while the user is typing.

Text input validation.

The Document Body | 161

http://

A JavaScript library can add support for placeholder and autofocus (an
HTML 5 attribute for input tags that indicates that this control has to
be focused on as soon as the page is loaded) even on devices with no
support for those attributes. You can download this library from http://
gist.github.com/330318.

As mentioned in Chapter 5, WAP CSS added the property -wap-input-format, which
allows us to define the type and number of characters that the user can input (known
as the input mask). Specifying an input mask will reduce the user’s error possibilities;
it can yield error messages like the one shown in Figure 6-15. We have also talked about
the -wap-input-required attribute, which prevents the user from moving the focus away
from a field until she has entered some text in it.

Figure 6-15. Browsers compatible with WAP CSS input constraints show some kind of error message
when the user enters text in an invalid format and then tries to move the focus away from that field.

The content of the -wap-input-format attribute is a string mask using the special char-
acters in Table 6-14.

Table 6-14. WAP CSS input format patterns

Pattern Usage

a Any character, letter, number, or symbol.

A Any uppercase alphanumeric character.

n Any numeric character or symbol.

N Any numeric character.

162 | Chapter 6: Coding Markup

http://gist.github.com/330318
http://gist.github.com/330318
http://

Pattern Usage

x Any lower case alphanumeric character or symbol.

X Any uppercase alphanumeric character or symbol.

m Any character, lowercase by default, but with uppercase possible.

M Any character, uppercase by default, but with lowercase possible.

{n}{pat

tern}

A fixed number of repeats (n) of the pattern defined. For example, 4N means four numeric-only characters.

*{pattern} Any number of repeats of the pattern defined. For example, *A means any number of uppercase

alphanumeric characters. It can be used only once per pattern.

{pattern}

{pattern}

Pattern combination. For example, A*a means one uppercase character and then any number of any other

character.

We can also escape other characters to create complex patterns, but this is not recom-
mended because the pattern matching engines are not the same on all platforms and
strange behavior can result.

Internet Explorer Mobile also accepts the Boolean attribute emptyok de-
fining whether a value is required (false) or not (true).

The next sample shows the standard way to define a required U.S. zip code text input,
an optional phone number text input, and a required password numeric field:

<dl>
 <dt><label for="zip">ZIP Code</label></dt>
 <dl><input type="text" name="zip" style="-wap-input-format: '5N';
 -wap-input-required: true" /></dl>
 <dt><label for="phone">Phone Number</label></dt>
 <dl><input type="text" name="phone" maxlength="15" style="-wap-input-format:
 '*n';" /></dl>
 <dt><label for="password">Password</label></dt>
 <dl><input type="password" maxlength="8" name="password"
 style="-wap-input-format: '8N'; -wap-input-required: true'" /></dl>
</dl>

Many older XHTML mobile browsers understand the nonstandard inputformat or
format attribute, imported from WML. The syntax is the same as for the WAP CSS
attribute. If we want to add the same feature for older Openwave-based devices, for
example, we can use the inputformat attribute. Internet Explorer uses the format at-
tribute with the same pattern inside:

<input type="text" name="zip" inputformat="5N" format="5N" maxchars="5" />

Table 6-15 lists which input formats are supported by which mobile browsers.

The Document Body | 163

http://

Table 6-15. Text input format compatibility table

Browser/platform -wap-required -wap-input-format
HTML
attribute placeholder

Safari No No No Yes

Android browser No No No Yes

Symbian/S60 Yes, type required to get out

the input. Error message

shown in 3rd edition

Yes, doesn’t allow invalid chars

and show and red style (5th edi-

tion) or an error message (3rd ed-

ition) if incorrect

No Yes in 5th

edition

No before 5th

edition

Nokia Series 40 Yes, type required Yes, doesn’t allow invalid chars or

shows a message error

No Yes in 6th

edition

No before 6th

edition

webOS No No No Yes

BlackBerry Show alert if missing input Filter characters No No

NetFront Show alert at form

submission

Filter characters and OK only ap-

pear when input is correct

No No

Openwave (Myriad) Error message No behavior in 6.x

Filter characters in 7.0

Input No

Internet Explorer Error alert at submit Error alert at submit No No

Motorola Internet

Browser

Error on submit Filter text input No No

Opera Mobile Error message in form sub-

mission

Error message in blur and in form

submission

No No

Opera Mini No No No No

Safari for iPhone and iPod Touch has different onscreen QWERTY
keyboards for different situations, with the keys rearranged or with special onscreen
keys added to improve usability. For example, there is an email-optimized keyboard
that includes the @ character, and a URL-optimized keyboard with a “.com” button.

XHTML MP 1.2 added support for the inputmode HTML attribute for
text inputs, password inputs, and textareas. It can receive dozens of
possible values, but the most important are digits for numeric input
and latin lowerCase for email addresses or other lowercase values.

If your site includes a search field, you can define it as a type="search" input; this
changes the default keyboard button from “Go” to “Search” (also in Android 2.2).

Safari extensions.

164 | Chapter 6: Coding Markup

http://

Before iOS 3.0, an undocumented feature allows us to force a numeric keyboard using
the name property of the text input. If the name of the input contains the string “zip”
or “phone,” the keyboard will change to numeric. However, using this feature is not
good practice, because it’s inconvenient in non-U.S. countries where the zip code can
contain letters (the United Kingdom and Argentina, for example).

Some of these Safari form extensions don’t work in the iPhone Simula-
tor, so you will need to test your form on real devices.

iOS 3.1 and later allow us to define new HTML 5 input types: email, tel, url, and
number (we’ll talk more about HTML 5 features in Chapter 9). If you specify one of
these values instead of text for the type attribute, the user will be presented with the
right keyboard for that type when the field has focus:

<input type="email" name="user_email" />
<input type="tel" name="user_phone" />
<input type="text" name="quantity" pattern="[0-9]*" />

The number value is not official, but it works. Officially, we should use a text field and
provide the HTML 5 attribute pattern with a regular expression inside. The regular
expressions accepted are quite small though (and undocumented).

One of the great things about these new controls is that if a browser doesn’t understand
the new input type values, it will render a text input by default.

Other extensions include autocorrect="on/off" and autocapitalize="on/off", to acti-
vate/deactivate automatic spelling correction (preferred for non-dictionary input fields)
and automatic capitalization for the input.

BlackBerry 4.7.1 and later also add partial support for new
HTML 5 form controls. At the time of this writing, the values accepted are number,
email, search, url, color, date, datetime, time, week, month, and range. We will cover
these new input types in Chapter 9.

From version 5.0, the browser also accepts the inputmode attribute with a comma-
separated list of tokens. The tokens can be script tokens (language charsets) or modifier
tokens. The available script tokens are:

• arabic

• bopomofo

• cyrillic

• georgian

• greek

• han

• hangul

BlackBerry extensions.

The Document Body | 165

http://

• hebrew

• hiragana

• kanji

• katakana

• latin

• simplifiedhanzi

• thai

• traditionalhanzi

• user

The possible modifiers are:

• lowerCase

• upperCase

• titleCase

• startUpper

• digits

• symbols

• predictOn

• predictOff

Many mobile browsers maintain a dictionary that is updated with non-
included words the user inserts in text inputs and offer the user an autocomplete feature
while he is typing or when he first clicks in the text input (suggesting the values recently
inserted in fields of the same type, such as last name or email address fields). We will
talk more about autocompletion in Chapter 9. For now, it is useful to know that if we
don’t want the browser to interfere with suggestions, we can tell it so using the auto
complete="off" HTML attribute (this attribute is nonstandard and does not work in all
browsers). For BlackBerry 5.0 devices, we should also add inputmode="predictOff".

Tables
Repeat after me: “I will not use tables for document layout.” Write it with a red marker
on your bedroom ceiling, if it will help you remember. Using tables for document layout
is bad in desktop web development. It is hell for the mobile web. Table support is
extremely limited in some mobile browsers and, even when devices have great support,
the screen size is not table-friendly.

Mobile browsing is more a one-column experience, even in landscape browsers. If you
do want or need to use a table, you should limit it to at most five columns of tabular
data (preferably with short column headings and data values). Nested table support is
even worse; there are no good examples of mobile web designs using nested tables, so

Autocomplete.

166 | Chapter 6: Coding Markup

http://

don’t even try it. You can do whatever you are thinking of using a nested table for using
CSS and clean markup.

XHTML 1.0 and 1.1 added a lot of tags for tables, not all compatible with mobile
browsers. We can define the table title (caption), the header (thead), the body (tbody),
the footer (tfoot), the columns (colgroup, col) and finally, the rows (tr), the header
cells (th), and the data cells (td). Cells can be merged using the rowspan and colspan
attributes, and the design should be defined in CSS.

As an exercise, let’s emulate the following table in XHTML and see how the different
mobile browsers render it (see Table 6-16).

Table 6-16. Sales of the Company in 1998

City

Sales

Half 1 Half 2 # Clients

New York 445,000 233,000 589

Paris No operations 0

Barcelona 233,400 344,000 422

Madrid 133,400 239,000

Total 811,800 816,000 1,011

The XHTML 1.1 code is:

<table>
 <caption>
 Sales of the Company in 1998
 </caption>
 <colgroup align="left" />
 <colgroup span="2" align="right" style="color: blue" />
 <thead>
 <tr>
 <th rowspan="2">City</th>
 <th colspan="2">Sales</th>
 <th rowspan="2"># Clients</th>
 </tr>
 <tr>
 <th>Half 1</th>
 <th>Half 2</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>New York</td>
 <td>445,000</td>
 <td>233,000</td>
 <td>589</td>
 </tr>
 <tr>
 <td>Paris</td>

The Document Body | 167

http://

 <td colspan="2">No operations</td>
 <td>0</td>
 </tr>
 <tr>
 <td>Barcelona</td>
 <td>233,400</td>
 <td>344,000</td>
 <td rowspan="2">422</td>
 </tr>
 <tr>
 <td>Madrid</td>
 <td>133,400</td>
 <td>239,000</td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <td>Total</td>
 <td>811,800</td>
 <td>816,000</td>
 <td>1,011</td>
 </tr>
 </tfoot>
</table>

Browser compatibility for the previous sample is shown in Table 6-17.

Table 6-17. Table display compatibility

Browser/platform Table compatibility

Safari Full

Android browser Full

Symbian/S60 Full

Nokia Series 40 Full

webOS Full

BlackBerry Full from 3.7

No table support before 3.7

NetFront Full

Openwave (Myriad) Full from 6.x

Internet Explorer Full

Motorola Internet Browser Full

Opera Mobile Full

Opera Mini Full

168 | Chapter 6: Coding Markup

http://

Frames
Frames are one of the “better if you avoid it” features in the mobile world. I remember
back in 1997 (the Microsoft FrontPage era) being happy with the frames technique,
creating fixed menu bars and dealing with links between frames. It was a happy time,
until search crawlers came into action and frames became the worst thing you could
ever do in a website. OK, background music can be even worse, but it is true that today
the usage of frames is suitable only for intranet sites and non-crawled applications.
Similar functionality can now be provided with the much more versatile Ajax.

The HTML frames mechanism allows the developer to split a document into n
subdocuments, vertically and/or horizontally. Every frame is a different document
(that’s the problem for search engine spiders), and every frame manages its own scroll-
ing (this is the problem for the mobile world).

We already know that in the mobile world, even though the viewport can be large, the
screen is small. Splitting this small screen into smaller windows as frames can be diffi-
cult. The only situation where it can be useful is to define fixed toolbars at the top or
bottom of a document. However, this will still cause problems with search engines,
and what’s more, there are plenty of mobile browsers that don’t work with frames.

The fixed toolbar can be replaced in some high-end browsers with float-
ing toolbars, as we’ll see in Chapter 9. The iOS browser has a two-finger
scrolling gesture to scroll inside a frame or iframe.

So, the final advice is: don’t use frames when developing for the mobile web. The inline
frame (or iframe) is a modern way to do frames (although it was introduced by Internet
Explorer in 1997). The iframe tag is not part of the XHTML standards, but in mobile
browsers it does produce better results than frames. Today, iframes are often used for
ad servers to serve advertisements from a third-party server. If you can, it’s still best to
avoid them; if you can’t, consult the list in Table 6-18 to see which browsers support
iframes.

Table 6-18. Frames compatibility table

Browser/platform Frames Iframes

Safari Yes Yes

Android browser Yes Yes

Symbian/S60 Yes Yes

Nokia Series 40 Yes in 6th edition

No, shows noframe before 6th edition

Yes on 240-width devices

No in Lite editions

webOS Yes Yes

BlackBerry Yes, but show one after the other vertically Yes from 4.0

The Document Body | 169

http://

Browser/platform Frames Iframes
No before 4.0

NetFront Yes from 3.4 Yes from 3.4 in some devices only

Openwave (Myriad) Show frames as links No

Internet Explorer Yes Yes

Motorola Internet Browser Shows noframe on v3 series and shows a frame below the

other in newer devices

No

Opera Mobile Yes Yes

Opera Mini Yes from 4.0 Yes

i-mode XHTML
Japanese devices from NTT DoCoMo use their own version of XHTML with extensions
for XHTML and CSS, based on the old cHTML. Serving i-mode XHTML files requires
using a new DOCTYPE and defining the charset UTF-8 or Shift-JIS for Japanese char-
acters. For example, for the latest version, the first two lines of the file might look like
this:

<?xml version="1.0" encoding="Shift_JIS"?>
<!DOCTYPE html PUBLIC "-//i-mode group (ja)//DTD XHTML i-XHTML(Locale/Ver.=ja/2.3)
1.0//EN" "i-xhtml_4ja_10.dtd">

The latest version of i-mode XHTML at the time of this writing is 2.3; there is also a
non-XML version, called i-mode HTML, which is currently at version 7.2. i-mode
Browser 2.0 is the browser delivered by devices manufactured after May 2009; it in-
cludes the latest versions of both i-mode HTML and XHTML.

There is an excellent portal of information in English for versions 1.0 and 2.0 of the
i-mode Browser at http://www.nttdocomo.co.jp/english/service/imode/make/content/
browser.

The good news is that the latest versions of i-mode HTML and i-mode XHTML support
almost every tag used in XHTML MP. The list of supported attributes differs, though,
and a lot of new attributes and values are available as i-mode extensions. For example,
an li element can have a type attribute with circle as the value, and a numeric text
input can be defined with type="text" and istyle="3".

Plug-ins and Extensions
By their very nature, you can’t count on plug-ins to work on every browser, but they
are even less likely to be reliably available on the mobile web.

170 | Chapter 6: Coding Markup

http://www.nttdocomo.co.jp/english/service/imode/make/content/browser
http://www.nttdocomo.co.jp/english/service/imode/make/content/browser
http://

Adobe Flash
The Flash Player is a de facto standard in desktop browsers: Flash Player 8 penetration
was at more than 99.5% as of September 2009.* However, the mobile world is a very
different jungle. Adobe is trying to bring the same experience to the mobile browser,
but it has found many stones in the road. That is why Adobe as yet has no official up-
to-date penetration percentages for the mobile world.

Adobe currently has two mobile lines: Flash Lite and the major Flash Player 10 for
mobile devices. The first one is intended for low- and mid-end devices (and high-end
devices shipped before 2010), and the major player will be available for Android, Sym-
bian, and Palm Pre (but not iPhone) devices starting in 2010. Table 6-19 shows the
ActionScript version and Flash Video support in the Flash versions available for mobile
browsers.

Table 6-19. Flash Mobile version comparison

Version ActionScript version Flash Video (FLV) support Desktop Flash Player similarity

Flash Lite 1.0/1.1 1.0 No Flash Player 4.0

Flash Lite 2.0/2.1 2.0 No Flash Player 7.0

Flash Lite 3.0/3.1 2.0 Yes Flash Player 8.0

Flash Lite 4.0 3.0 Yes Flash Player 9.0

Flash Player 10.1 3.0 Yes Same

Figure 6-16 shows what users with noncompatible devices will see if you embed Flash
content in your site.

The Flash Lite player can be used in menus, backgrounds, games/apps, and in the
browser. Having Flash Lite installed on the device doesn’t mean that the Flash player
can be used from the browser, though.

Apple Versus Adobe
Apple versus Adobe, Adobe versus Apple…this is one of the great fights in the mobile
web world today. When the iPhone SDK arrived in 2008, Adobe wanted to create a
Flash Player for it. Apple appeared to agree. A year later, Adobe accused Apple of not
providing any help, and months later Apple announced that the iPhone would not have
Flash support. The justification was the high battery consumption of Flash content in
the browser, and that it was not necessary because iPhone extensions to CSS and Java-
Script allow any developer to create Flashy content without Flash.

One of the off-the-record causes, though, is that if Apple enables Flash content in the
iPhone, it will lose political control over the content, games, and applications on the
device.

* http://www.adobe.com/products/player_census/flashplayer/version_penetration.html.

Plug-ins and Extensions | 171

http://www.adobe.com/products/player_census/flashplayer/version_penetration.html
http://

In early 2010, Adobe announced that starting with Adobe Flash CS5, the tool would
export SWF to native iPhone applications that could then be distributed in the App
Store. However, Apple counterattacked by changing the terms of the App Store and
saying that those applications will not be allowed. There is a big discussion in the web
world about HTML 5 versus Flash and the Apple–Adobe war, with fans on both sides.

Figure 6-16. As we can see, showing Flash content on noncompatible devices is a big mistake.

Even if Adobe does achieve decent penetration in the mobile world, the differences
between Flash Lite 1.0 and 4.0 are really huge. For example, Flash Lite 1.0 has no
support for arrays or functions as we know them in a programming language. That is
why the use of Flash in a mobile website should be considered only if you are working
with a controlled suite of devices and should be tested thoroughly. If you’re using Flash,
keep the following guidelines in mind:

1. Optimize the ActionScript as much as you can.

2. Avoid effects that demand complex mathematical processing.

3. Don’t use object-oriented programming.

172 | Chapter 6: Coding Markup

http://

4. Don’t rely on click events if you’re developing for non-touch devices.

5. Maximize usability using keyboard event listening.

6. Compress images and sounds to the maximum.

Flex for Mobile
Adobe Flex is an open source framework for ActionScript 3.0 for developing Rich In-
ternet Applications. Flex applications don’t run on mobile devices today, although they
will be compatible for Flash Player 10.1 devices beginning in 2010. The Flex 4 team is
also working on an upcoming release of Flex controls for enhanced performance on
mobile devices.

Table 6-20 shows which mobile platforms currently have Flash support.

Table 6-20. Adobe Flash compatibility table

Browser/platform Flash support

Safari No

Android browser No up to 2.1, Flash Player 10.1 from 2.2

Symbian/S60 Yes

Nokia Series 40 Yes in 6th edition

No before 6th edition

webOS No, Flash player 10.1 announced

BlackBerry No, Flash player 10.1 announced

NetFront Depends on the device (some Sony Ericsson devices have Flash support)

Openwave (Myriad) No

Internet Explorer No (optional)

Motorola Internet Browser No

Opera Mobile No

Opera Mini No

Flash on the iPhone? Yes, you can!

The out-of-the-box thinking some people exhibit really surprises me (in a good way!).
Tobias Schneider has developed an open source Flash runtime, totally created using
JavaScript and SVG, called Gordon. If you are wondering why the name, remember the
comic hero “Flash Gordon” and you will have the answer.

Gordon is a JavaScript library, compatible with SVG browsers, that renders an Adobe
Flash SWF file in the browser without using the Flash Player. Moreover, as you may
be wondering, it works great on iPhone devices. It is a heavy-JavaScript library, so don’t

Plug-ins and Extensions | 173

http://

abuse it; use it only for important animations. You can test some sample animations
at http://paulirish.com/work/gordon/demos.

At the time of this writing, the library is in its first version, and it supports only a subset
of the SWF format and no ActionScript 2 or 3. It is most suitable for animations and
simple buttons, and it is compatible with the SWF 1 format, with a pre-release version
supporting the SWF 4 format.

Usage is simple: you just need to download the library from http://github.com/tobeytai
lor/gordon and insert the gordon.js file and the src folder in your website. Your HTML
should look like this:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Gordon: An open source Flash" runtime written in pure JavaScript</title>
 <script type="text/javascript" src="gordon.js"></script>
 </head>
 <body onload="new Gordon.Movie('movie.swf', {id: 'stage', width: 500,
 height: 400})">
 <div id="stage"></div>
 </body>
</html>

As you can see from the code, the library replaces a div with the .swf defined in the
onload event.

Remember that Gordon isn’t a Flash Player for iPhone devices; it is just
a runtime. Users don’t need to install anything for it to work, but it won’t
make any website with Flash content work automatically. You need to
insert the library in your code, export your movie to SWF 1.0, and insert
the JavaScript code required for it to work if you detect that the browser
is Safari on iOS.

Microsoft Silverlight
Silverlight is a technology for Rich Internet Application development similar to Flash.
It is new in the desktop market and incipient in the mobile world. At the time of this
writing, there are betas available for Windows Mobile, Windows Phone, and Symbian
5th edition, so we should expect the Silverlight Player to be preinstalled on future
devices.

Today, Silverlight is not an option for mobile web development.

SVG
Standard Vector Graphics is an open XML specification describing 2D vector graphics.
An SVG document can be static (declared in an XML file or tag) or dynamically gen-
erated from a JavaScript file. As a vector-rendering engine, a great feature is the adap-
tation to different screen sizes without loss of quality.

174 | Chapter 6: Coding Markup

http://paulirish.com/work/gordon/demos
http://github.com/tobeytailor/gordon
http://github.com/tobeytailor/gordon
http://

SVG is a W3C standard for desktop platforms, with two subsets prepared for mobile
platforms: SVG Basic and SVG Tiny. Thanks to this standards fight (as with XHTML
mobile versions), we can use either SVG Basic or SVG Tiny with the same code and
results. However, the Tiny sub-version appears to have won the battle.

The latest version available is SVG Tiny 1.2, but the most compatible version of SVG
Tiny for mobile browsers is 1.1 (SVGT 1.1), which offers some support for animation.
This version has been adopted by OMA and the 3rd Generation Partnership Project
(3GPP). Opacity and gradients are not part of the mobile standard, but some devices
still render them. This addition is known in the market as SVGT 1.1+. One compati-
bility issue between SVGT devices is text support. Some devices allow us to use system
fonts to declare text in the SVG, but others do not, forcing us to convert text to curves
in a graphic design tool.

For better performance, some browsers understand SVGZ files, which
are just gzipped SVG files.

Table 6-21 shows the current state of SVG support on mobile web platforms.

Table 6-21. SVG compatibility table

Browser/platform SVG in browser SVG animation

Safari Yes, from 2.1, object and imga Yes

Android browser No No

Symbian/S60 Yes, from 3rd edition, object only Yes

Nokia Series 40 No No

webOS No No

BlackBerry No No

NetFront Yes Yes

Openwave (Myriad) No No

Internet Explorer No No

Motorola Internet Browser No No

Opera Mobile No No

Opera Mini Yes, object and img No
a See the upcoming section “Embedding the SVG” on page 177.

Tools for SVGT

Most vector graphic design software supports SVG as an export format. Adobe Illus-
trator, for example, can export to SVGT 1.1, SVGT 1.1+, and SVGT 1.2. Corel Draw
is another useful tool for SVG conversion. Sometimes the markup generated by Illus-

Plug-ins and Extensions | 175

http://

trator has more tags than you need, so you may want to open it with another tool and
export it again. The most useful tool for mobile SVG currently on the market is Ikivo
Animator. It is intended for mobile devices and can create animations using SVGT 1.1.
You can download a trial version from http://www.ikivo.com/animator.

In the open source world, Inkscape (http://inkscape.org) offers SVG support, and for
Windows only we can use SVGmaker Tiny (http://svgmaker.com), a printer driver that
converts any printed document into SVGT.

The recommendations for SVG Tiny document generation are:

• Keep the quantity and size of the objects used to the minimum.

• Avoid big gradient areas; they decrease performance.

• Reduce path points to the minimum.

• If the object is too complex, a raster PNG may be better.

• Use GZIP if compatible.

• Combine paths when possible.

• Maintain one copy of each object online.

• Export text as curves.

• For simple shapes, don’t use a graphic design tool.

SVG for beginners

SVG is beyond the scope of this book, but here is a very quick lesson on SVG Tiny.

An SVG document is an XML document with a root svg tag defining an original view-
port size (width and height), but remember that it is a vector image, so you can resize
it. Inside the image, we can draw the following kinds of shapes:

• Rectangles (rect)

• Circles (circle)

• Ellipse (ellipse)

• Line (line)

• Polyline (polyline)

• Polygon (polygon)

• Path (path)

The following is an SVG Tiny 1.1+ compatible document (it uses a LinearGradient,
which is not included in the SVGT 1.1 standard):

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1 Tiny//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-tiny.dtd">

<svg version="1.1" baseProfile="tiny" xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="200px"

176 | Chapter 6: Coding Markup

http://www.ikivo.com/animator
http://inkscape.org
http://svgmaker.com
http://

 height="200px">

<linearGradient id="grad1" gradientUnits="userSpaceOnUse" x1="54" y1="61"
 x2="147" y2="61">
 <stop offset="0" style="stop-color:#FFFFFF"/>
 <stop offset="1" style="stop-color:#000000"/>
</linearGradient>

<rect x="0" y="0" fill="url(#grad1)" stroke="#000000" width="193" height="84"/>

<ellipse fill="#FF0000" stroke="#000000" cx="30" cy="100" rx="25" ry="25"/>

</svg>

This document creates a 200×200-pixel SVG image with a rectangle (rect tag) and a
circle (ellipse tag with equal radius rx and ry centered at cx, cy). The circle is filled
with a plain red color and the rectangle is filled with a linear gradient defined with an
id of grad1. This gradient is not compatible with SVGT 1.1 (without the +).

Google Docs (http://docs.google.com) has an online free vector graphic
designer for diagrams and graphs. It has the option to export to SVG.

This document has a size of 670 bytes (0.6 KB) as an SVG file. A 24-bit PNG with the
same image has a size of 5.77 KB, and an 8-bit PNG with quality loss has a size of 1.31
KB. Clearly, SVG is better from a size (and network traffic) perspective. The bad thing
is that the browser has to render the image on the mobile device (although this is not
the case for proxied browsers, such as Opera Mini, or BlackBerry devices where the
SVG is pre-rendered on a server).

Embedding the SVG

To insert an SVG document inside an XHTML document we can use the object tag,
defining the data attribute with the URL of the SVG, the type as image/svg+xml, and
the width and height. As an SVG is a vector-based image, we can use percentages for
the size attributes to adapt the content to the viewport size. If SVG is not available, we
can use the fallback feature to create an alternative image in another format as a child
of the object tag:

<object data="logo.svg" type="image/svg+xml" width="100" height="30">

</object>

Some browsers (such as Safari on iOS) also use the classic img tag for SVG files:

Plug-ins and Extensions | 177

http://docs.google.com
http://

Canvas
HTML 5 incorporates a new tag, canvas, that allows the developer to create a dynamic
picture using graphic primitives in JavaScript. Compatibility and syntax will be covered
in Chapter 9. For now, just remember that there is a way to draw small images and
patterns without having to make any new requests to the server.

178 | Chapter 6: Coding Markup

http://

CHAPTER 7

CSS for Mobile Browsers

CSS is very forgiving. If the browser encounters a selector or attribute that it cannot
understand, it will just ignore that rule. This will be very helpful in the following pages.

The previous chapter discussed the many standards in the mobile CSS world and noted
the CSS extensions available in WAP CSS. Whether we decide to use CSS 2.1, CSS 3.0,
CSS Mobile Profile, WAP CSS, or WebKit extensions, it will be just the same; we’ll use
CSS selectors, and attributes for those selectors. The standards only tell us which ones
are supported. What’s more, we will find some browsers that do not render standard
styles but do render nonstandard ones.

If you’re interested in having W3C-valid markup, remember that XHTML Basic 1.0
doesn’t support CSS, and that version 1.1 added support, but only for a style or link
tag with external styles. The W3C standards don’t support the inner styles defined in
the style attribute. And to be perfectly honest, in the real world, we won’t worry too
much about standards in CSS; we will simply do whatever we need to do to create the
most compatible stylesheet, and this will by default include official standards and
extensions.

Remember, there is no special MIME type, file extension, or XHTML
tag for defining mobile CSS.

Where to Insert the CSS
The first question to answer is: where should we tell the browser what styles to apply?
We have many options:

• <style> tags inside the XHTML or HTML markup

• External stylesheets as .css files

• style attributes inside the tags

179

http://

The third option might seem like the most efficient approach, but it is not the best one.
That said, there are times when it is useful. For the CSS WAP extensions for form
controls described in Chapter 6, for instance, it is easiest to insert inline styles to avoid
defining IDs and ID selectors for each control:

<input type="text" name="name" style="-wap-input-format: A*a" />

On BlackBerry devices running Device Software 4.5 or earlier, style-
sheets can be disabled from the browser or from a corporate policy.

A fourth option (a new way of including an external stylesheet) is specified in the WAP
CSS standard, but it is not implemented and not recommended as it offers no advan-
tages. It looks like this:

<?xml-stylesheet href="style.css" media="handheld" type="text/css" ?>

If the website you are creating is a one-page document (a widget, an Ajax mobile ap-
plication, or just a simple mobile document), it will be faster to include the CSS in the
<style> XHTML tag to avoid a request and a rendering delay. The other ideal situation
for this technique is if your home page is very different from the other pages in your
site. Otherwise, odds are good that external stylesheets will help you manage your site
more efficiently.

Media Filtering
Is one CSS stylesheet adequate for all devices? Maybe. The first factor to consider is
whether we are working on a desktop XHTML site or a mobile-specific one.

Desktop websites

If we decide to use only one XHTML site for both desktop and mobile devices, our only
option for changing the design and layout is the CSS file. This situation is a good fit for
the media attribute.

The CSS standard allows us to define more than one stylesheet for the same document,
taking into account the possibility of a site being rendered on different types of media.
The most used values for the media attribute are screen (for desktops), print (to be
applied when the user prints the document), and handheld (for… yes, mobile devices).
There are also other values, like tv and braille, but no browsers currently support
these.

Great! We’ve found the solution. We can just define two stylesheets, one for screen
and one for handheld, and all our problems will be solved. The two stylesheets can
define different properties for the same elements, and we can even use display: none
to prevent some elements from being shown on mobile devices:

180 | Chapter 7: CSS for Mobile Browsers

http://

<link rel="stylesheet" type="text/css" media="screen" href="desktop.css" />
<link rel="stylesheet" type="text/css" media="handheld" href="mobile.css" />

However, this “ideal” situation becomes hell when we test it. Many modern mobile
browsers rely on screen stylesheets because they can render any desktop website. And
other browsers use screen when they think it is a desktop website and use handheld
when they think it is a mobile website, depending on the DOCTYPE, a meta tag, or the
user’s view preferences.

To further complicate the situation, some mobile browsers (such as
Mobile Internet Explorer) use media="handheld" if it is the only value
defined, but use media="screen" by default if both are defined. The hack
is to define media="Screen", with an uppercase S; this causes Mobile IE
to use the handheld option when both are defined.

Table 7-1 shows the media values selected by the different mobile browsers when both
screen and handheld options are defined in the document. Clearly, we can’t rely on the
media="handheld" attribute!

Table 7-1. CSS media compatibility table

Browser/platform Media used

Safari screen

Android browser screen

Symbian/S60 screen

Nokia Series 40 screen in 6th edition

Both (no media understanding) before 6th edition

webOS screen

BlackBerry screen (handheld if meta available)

NetFront handheld

Openwave (Myriad) handheld

Internet Explorer screen

Motorola Internet Browser handheld

Opera Mobile screen

Opera Mini screen

Media queries

CSS3 comes to our help with media queries. These complex media definitions include
conditions about the screen size and media values allowed.

For example, we can say: “Apply this stylesheet for devices supporting only screen and
with a maximum device width of 480.” This will apply to an iPhone, because in

Where to Insert the CSS | 181

http://

landscape mode it has a screen width of 480px and it doesn’t support print, hand
held, or any other media type. Here’s how to write this as a conditional media query:

<link type="text/css" rel="stylesheet" media="only screen and (max-device-width:
 480px)" href="iphone.css" />

We can then target non-iPhone desktop devices with a filter saying: “Apply this style-
sheet for browsers supporting at least screen and with a minimum device width of 481.”
This query is written as follows:

<link media="screen and (min-device-width: 481px)" href="notiphone.css"
 type="text/css" rel="stylesheet" />

Internet Explorer (through version 8) does not understand CSS media
queries, so it will apply the iPhone stylesheet by default. That is why we
need to add IE conditional comments:

<!--[if !IE]>-->
<link type="text/css" rel="stylesheet" media="only
 screen and (max-device-width: 480px)"
 href="iphone.css" />
<!--<![endif]-->

Some browsers also understand CSS media queries inside the same stylesheet file. For
example, the following code will change the background color displayed on an iPhone
(and other similar devices):

@media only screen and (max-device-width: 480px) {
 body {
 background-color: red;
 }
}

An extension for conditional media queries is the orientation media query, which
allows us to define different styles for different orientations. There are two possibilities:
orientation:portrait and orientation:landscape. For a device running iOS 3.2 or
later, you can use the orientation media query as follows:

<link rel="stylesheet" media="all and (orientation:landscape)" href="land.css" />
<link rel="stylesheet" media="all and (orientation:portrait)" href="port.css" />

iPhone 4 and Pixel-Ratio
iPhone 4 comes with a 326-DPI screen, twice the original iPhone screen. This means
that this new device has double width, double height in the same physical screen size.
That is why Apple decided to give its browser the same CSS, viewport, and JavaScript
dimensions as the low-DPI device, 320×480, and created a pixel-ratio of 2. This means
that for every pixel, four real pixels will be drawn (a 2× zoom). Therefore, your website
will render equally in iPhone 3GS or iPhone 4 beyond the clearer text. If you still want
to show something different for iPhone 4 (as a high-DPI image) you can use the new
media query condition -webkit-min-device-pixel-ratio:

182 | Chapter 7: CSS for Mobile Browsers

http://

<link media="all and (-webkit-min-device-pixel-ratio:2)"
href="iphone4.css" type="text/css" rel="stylesheet" />

The orientation query also works in Android from 2.0, in MicroB for MeeGo devices
like the Nokia N900, and in Firefox Mobile. Table 7-2 provides a more complete list
of browser compatibility for CSS media queries and the orientation extension.

Table 7-2. CSS3 conditional media queries compatibility table

Browser/platform Conditional media queries compatibility Orientation support

Safari Yes Yes, from OS 3.2

Android browser Yes Yes from 2.0

Symbian/S60 Yes from 5th edition

No before 5th edition

No

Nokia Series 40 Yes from 6th edition

No before 6th edition

No

webOS Yes No

BlackBerry No No

NetFront No No

Openwave (Myriad) No No

Internet Explorer No No

Motorola Internet Browser No No

Opera Mobile Yes No

Opera Mini Yes No

Selectors
The classic CSS 2.1 selectors are compatible with almost every device, and for the few
that don’t recognize them entirely, it may not be worth the effort to create alternatives.
The mobile CSS–compatible selectors we can trust for every device are:

1. Universal: * (compatible but not recommended)

2. Element: tagName

3. Class: .className

4. Unique ID: #elementId

5. Descendant: selectorselector

6. Child: selector > selector

7. Multiple: selector, selector

8. Pseudoclasses (link, visited, active, focus): selector:pseudoclass

Selectors | 183

http://

As we discussed previously, some mobile browsers also understand some additional
styles to CSS 2.1. A compressed list of other selectors to use for these mobile browsers
is:

1. Selector with attribute: selector[attribute]

2. Selector with attribute condition: selector[attribute<operator>value]

operator can be one of the following: equals (=), contains as one value
(~=), begins with (^=), ends with ($=), contains as a string (*=), or begins
with and followed by hyphen (|=).

3. Negation: selector:not(selector)

4. Immediately preceded by: selector + selector

5. Preceded by: selector ~ selector

6. Pseudoclasses (after, before, root, nth-child(n), first-child, last-child, empty,
and others): selector:pseudoclass

Some CSS3 selectors don’t work for mobile devices. How complex
should a mobile website be, though? If it has that much complexity,
perhaps we should consider simplifying.

CSS3 selectors should be used only for noncritical features for the basic behavior. For
example, we can use one style for input tags and, only if the device supports it, another
style for different input types. For very important features, we should consider using
class selectors instead.

Table 7-3 lists the browsers’ compatibility with CSS3 selectors, as well as their ACID
3 results (on a scale of 0 to 100, with 100 being a perfect score). The ACID test is a
well-known test from the Web Standards Project that evaluates how similar to the
standard the implementation is on each browser.

Table 7-3. CSS3 selectors compatibility table

Browser/platform CSS3 selectors compatibility ACID 3 results

Safari Yes 100

Android browser Yes 93

Symbian/S60 Partial on 5th edition: problems with attribute and child selectors

Poor support before 5th edition

47 (5th edition)

Nokia Series 40 None 40 (6th edition)

Complete fail before

webOS Partial 92 in webOS 1.4

184 | Chapter 7: CSS for Mobile Browsers

http://

Browser/platform CSS3 selectors compatibility ACID 3 results
Incompatible test until 1.2

BlackBerry None

NetFront None

Openwave (Myriad) None

Internet Explorer None

Motorola Internet Browser None

Opera Mobile Yes 99

Opera Mini Partial in 5.0 98

Firefox on Maemo Yes 94

If a browser has only partial support for some attribute or selector, that means the
behavior is not complete. For example, the browser may not accept all the possible
values, or it may render a selector properly in the original document but not apply the
style if we change the DOM dynamically. This stylesheet fragment illustrates a non-
critical use of CSS3 selectors:

input {
 background-color: yellow;
 border: 1px solid gray;
}
/* The next style will only work in CSS3-compatible browsers */
input[type=button] {
 background-color: silver;
}

CSS Techniques
In this section we are going to talk about some well-known CSS techniques (reset CSS
files, text formatting, and the box model) and see how the different browsers react to
these features.

Reset CSS Files
It is very common in desktop web design to create a CSS hack to reset all the default
margins and padding for common HTML elements. We can use this technique when
developing for the mobile web, with some considerations: we should only reset the
elements we are going to use, we should avoid the usage of the global selector (*) for
performance purposes, and if we are using an external reset CSS file we should consider
merging it with our local CSS file.

Some browsers always create a margin around the whole document that cannot be
deleted. And in the browsers that do allow you to delete the margin, remember that a
zero margin may not be a good design decision.

CSS Techniques | 185

http://

Nokia offers three markup and CSS templates for mobile web design for free through
its developer site at http://www.mobilexweb.com/go/nokiatemplates. Every template has
a reset CSS file. The following code is extracted from the mid-range device template,
and we can adapt it to our needs:

html, body, div, span, object, blockquote, pre,
abbr, acronym, address, big, cite, code,
del, dfn, em, font, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center, dl, dt, dd, fieldset, form, label, legend,
caption, tr, th, td {
 margin: 0;
 padding: 0;
 border: 0;
 font-size: 100%;
 font-weight: normal;
 vertical-align: baseline;
 background: transparent;
}

p {
 border: 0;
 font-size: 100%;
 font-weight: normal;
 vertical-align: baseline;
 background: transparent;
}
a {
 margin: 0;
 padding: 0;
 font-weight: normal;
}

h1, h2, h3, h4, h5, h6 {
 margin: 0;
 padding: 0;
 border: 0;
 vertical-align: baseline;
 background: transparent;
}

body {
 line-height: inherit;
}

body table {
 margin: 0;
 padding: 0;
 font-size: 100%;
 font-weight: normal;
 vertical-align: baseline;
 background: transparent;
}

/* remember to highlight insertions somehow! */

186 | Chapter 7: CSS for Mobile Browsers

http://www.mobilexweb.com/go/nokiatemplates
http://

ins {
 text-decoration: none;
}
del {
 text-decoration: line-through;
}

/* tables still need 'cellspacing="0"' in the markup */
body table {
 border-collapse: collapse;
 border-spacing: 0;
}

The Nokia Mobile Web Templates are a set of templates (including
XHTML and CSS files) for low-, mid-, and high-end devices that gen-
erate similar experiences across different devices, including hacks that
solve some bugs, like the 100% width bug. They have been optimized
for the Series 40 browser, S60 browser, Maemo browser, and Opera
Mini. You can download them for free at http://www.mobilexweb.com/
go/nokiatemplates.

Box Model
The box model, shown in Figure 7-1, is how the browser represents every context box.
Every block element (paragraph, image, title) has a content size, padding, borders, and
outer margins. The sum of all of these defines the final size of the whole box. Fortu-
nately, most mobile browsers have good compatibility with all of these features.

BlackBerry devices (up to Device Software 4.5) support only borders
and padding from the box model; any other properties are ignored.

I don’t recommend using common desktop techniques such as negative margins for
fully compatible mobile websites. These hacks can be used only in modern browsers,
and after testing.

CSS 2.1 adds the outline property, which provides a border with the
same color and size for each side that doesn’t take up space in the flow
of the document. It is not supported in low- and mid-end devices.

Text Format
Showing text is the most common situation in a mobile website, and styling it in a way
that maximizes compatibility can be a little tricky. Bold (font-weight: bold) and italics

CSS Techniques | 187

http://www.mobilexweb.com/go/nokiatemplates
http://www.mobilexweb.com/go/nokiatemplates
http://

(font-style: italic) are reliably compatible, but support for other text-formatting
features varies.

Font family

This will be our first problem in styling text for mobile browsers. There are no standards
in terms of fonts for mobile operating systems, and most platforms have only one system
font (generally a sans-serif one).

NTT DoCoMo markup (for the Japanese market) still uses the old
font tag for defining font properties like face, color, and size. Newer
devices also support CSS. Other WebKit-based mobile browsers also
support the font tag, but its use is not recommended. Use CSS instead.

We can provide specific font names (like Arial, Verdana, or Times New Roman) or generic
font types (like serif, sans-serif, monospace, cursive, or fantasy).

Opera Mini has two modes: desktop and mobile. The default mode
since version 4 is desktop, although the user (or carrier) can change this
default. In mobile mode, some CSS from your website will be ignored
and styling will be handled by the browser’s own styling engine.

For the best compatibility, you should use the default font and apply other attributes
(color, size, etc.). If you want to define a font name, you should consider providing a

Figure 7-1. The CSS box model is the same for mobile and classic web. Understanding this model will
save us some headaches.

188 | Chapter 7: CSS for Mobile Browsers

http://

list of alternatives. If the first font isn’t available, the browser will try the second, then
the third, and so on; if none of the listed fonts is available, it will use the default one.

Table 7-4 shows only the browsers with font support and lists the available choices for
each.

Table 7-4. Font support list for compatible browsers

Browser/platform Specific fonts available

Safari American Typewriter

American Typewriter Condensed

Arial

Arial Rounded MT Bold

Courier New

Georgia

Helvetica

Marker Felt

Times New Roman

Trebuchet MS

Verdana

Zapfino

Android browser Droid

Symbian/S60 S60 Sans

webOS Arial

Coconut

Verdana

If you thought defining a system font was a headache, using custom fonts
is even worse. No browsers support the CSS @font-face rule (with the exception of
Safari for iOS, which has very limited support for SVG fonts).

If you want to use your own font for text, you should think again. If it’s a matter of life
or death, you can consider using an image (again, not recommended) or a different
approach on compatible browsers: sIFR on Flash-enabled devices, or Cufón for HTML
5 devices. Compatibility is limited, though, and even if these solutions work, they can
be slow.

sIFR (Scalable Inman Flash Replacement) is a nonintrusive JavaScript and Flash tech-
nique that replaces normal HTML text with a Flash movie with the same text and an
embedded vector font. It can be downloaded from http://wiki.novemberborn.net/sifr.

Custom fonts.

CSS Techniques | 189

http://wiki.novemberborn.net/sifr
http://

Unobtrusive code does not change the way we create the document. We
just add a JavaScript line and, if the browser is compatible, it will acti-
vate. If not, the normal HTML document will be used.

Cufón intends to be the more standard replacement for sIFR: it is a free service that
allows us to upload a font to the website (http://cufon.shoqolate.com) and download a
“FontForge” script containing the embedded font in two formats: VML for Internet
Explorer and HTML 5 canvas for the other browsers.

If delivering a custom font, you need authorization to distribute it. The
font may be copyrighted, and you should make sure you have the right
to distribute it as a custom font for your website.

Table 7-5 lists browser compatibility for sIFR and Cufón.

Table 7-5. Custom font techniques compatibility table

Browser/platform sIFR Cufón

Safari No Yes

Android browser No Yes

Symbian/S60 Yes No

Nokia Series 40 No No

webOS No No

BlackBerry No No

NetFront Depends on the browser version No

Openwave (Myriad) No No

Internet Explorer No No

Motorola Internet Browser No No

Opera Mobile No No

Opera Mini No No

Font size

Which elements need a defined font size? For most cases, we should only define font
sizes for headers and for element selectors (h1, h2, p, div). If you are defining a font size
for a specific paragraph, it may be more appropriate to use a header tag.

We can use any measure for the font size, and almost every browser will understand
it. However, it may be not rendered any differently. Only smartphone browsers with
smart zoom support allow any font size to be rendered (like 13.5px in Safari on iOS).

190 | Chapter 7: CSS for Mobile Browsers

http://cufon.shoqolate.com
http://

For most of the mobile browsers, the best font size technique is to use relative constants
(xx-small, x-small, smaller, small, medium, large, larger, x-large, xx-large).

Operating systems have different font support. Some of them have only three possible
sizes for text, and if we use the typical pixel definitions, two different sizes (for example,
12px and 14px) may be rendered identically. If we use relative constants (e.g., large),
we have more probability of that text being rendered in a larger font. Another com-
patible way of specifying font sizes is to use em values. Using em values is perfect for
supporting different screen sizes and DPIs because this unit is relative and scalable to
the standard font in the device.

The default (medium) font size is generally the perfect size in the operating system for
normal paragraph text, and for normal text we should leave it that way.

Text alignment

We can align the text using text-align over a block element (like a p or h1) with a value
of right, left, center, or justify. As shown in Table 7-6, the justify value is the least
widely compatible for mobile devices; if not supported, it will render as left.

Table 7-6. Text alignment compatibility table

Browser/platform Center Justify

Safari Yes Yes

Android browser Yes Yes

Symbian/S60 Yes Yes

Nokia Series 40 Yes No

webOS Yes Yes

BlackBerry Yes No before 4.5

Yes from 4.5

NetFront Yes No

Openwave (Myriad) Yes No

Internet Explorer Yes No

Motorola Internet Browser Yes No

Opera Mobile Yes Yes

Opera Mini Yes Yes

Other standard text styles

Styles like text-decoration, text-transform, font-variant, letter-spacing, and word-
spacing should be used with care. It is best to assume that they will not work and to
create the standard functionality without them. If some browsers do render them, great;
however, don’t rely on them.

CSS Techniques | 191

http://

There are also some CSS3 and WebKit extensions for text styles that will be covered
later.

A good source to find more detail about mobile CSS compatibility is the
website http://www.quirksmode.org/m/css.html. It has many tests and
results for CSS selectors and properties on a range of devices.

Text shadows

Another non-mobile CSS 2.1 feature is text-shadow. It allows us to define the color,
x-offset, y-offset, and blur radius of a shadow to be applied to a text selector. For
example, we can produce a shadowed headline like that shown in Figure 7-2 with code
like this:

h1 {
 text-shadow: 0.1em 0.1em #AAA
}

Figure 7-2. Text Shadow should be used with care and only for titles or short texts

192 | Chapter 7: CSS for Mobile Browsers

http://www.quirksmode.org/m/css.html
http://

If you’re thinking about using this feature, remember that in the mobile world, the
clearer the text is the better for usability. Use text shadows with extreme care. Only a
few browsers support this feature anyway, as listed in Table 7-7.

Table 7-7. Text shadow compatibility table

Browser/platform Text shadow compatibility

Safari Yes

Android browser No

Symbian/S60 No

Nokia Series 40 No

webOS No

BlackBerry No

NetFront No

Openwave (Myriad) No

Internet Explorer No

Motorola Internet Browser No

Opera Mobile Yes

Opera Mini Yes from 5.0

Text overflow

CSS3 adds a very useful feature for mobile web designs: text overflow. This property,
available in some mobile browsers, allows us to specify that an ellipsis should appear
at the end of a piece of text if it doesn’t fit in its container in a single line, depending
on the font and space available. This is great for reducing the amount of space taken
up by links, and for previews or summaries that will be shown completely in a details
page after the user clicks on them.

For example, we can show a title, and a description with text-overflow set to ellip
sis. When the user clicks on the title, via JavaScript, we remove the text-overflow
property and the whole text is shown. This maximizes the amount of content we can
display on a page. This feature also works well on devices that support both landscape
and portrait orientations: with text overflow we can assure the usage of only one line
in both modes.

To use this feature, the paragraph (or other element containing the text) must have
overflow: hidden to avoid the continuing of the overflow text on the next line, white-
space: nowrap to avoid wrapping, and some value for text-overflow.

In mobile browsers, the possible values for text-overflow are clip and ellipsis. The
ellipsis value causes an ellipsis to appear after the last character that fits in the box
(as shown in Figures 7-3 and 7-4). clip is the default value, which truncates the text
without showing the ellipsis.

CSS Techniques | 193

http://

Here is a sample that produces the result shown in Figure 7-3:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Documento sin título</title>
<style type="text/css">

Figure 7-3. text-overflow: ellipsis is a great feature for displaying summaries in mobile designs.

Figure 7-4. Gmail for smartphones is an excellent example of text overflow usage. Here is the same
view in portrait and landscape modes. Note that the amount of text displayed is larger in the landscape
orientation.

194 | Chapter 7: CSS for Mobile Browsers

http://

ul p {
 text-overflow: ellipsis;
 overflow: hidden;
 white-space: nowrap;
}

</style>
</head>
<body>

<h1>Latest news</h1>

<ul id="news">

 Teletransporter discovered
 <p>Beam me up, Scotty! Finally scientists from London have discovered
 teletransportation</p>

 Teletransporter discovered
 <p>Beam me up, Scotty! Finally scientists from London have discovered
 teletransportation</p>

</body>
</html>

Table 7-8 lists browser compatibility for the text-overflow property.

Table 7-8. Text overflow compatibility table

Browser/platform Text overflow with ellipsis support

Safari Yes

Android browser Yes

Symbian/S60 No

Nokia Series 40 No

webOS Yes

BlackBerry No

NetFront No

Openwave (Myriad) No

Internet Explorer Yes

Motorola Internet Browser No

Opera Mobile No

Opera Mini No

There are more advanced styles under discussion for the next version of the standard,
but they are not yet compatible with mobile devices.

CSS Techniques | 195

http://

iPhone text adjustment

Safari on iOS supports a CSS style especially for controlling the size of text prepared
for the zooming action: -webkit-text-size-adjust. This style accepts values of auto
(the default), none, and a percentage (e.g., 200%). By default, iOS overwrites the site’s
font sizes to allow the text to be read without any problems when the user zooms over
a paragraph. We can override this behavior with this style, turning it off (none) or de-
fining a percentage zoom level to be applied on the default font defined for the desktop
website.

If we want to enhance a desktop website for iPhone browsing, we should leave this
style set to auto. However, if we are creating a mobile-only website, we will typically
want to define our own font sizes, so we should turn this feature off:

body {
 -webkit-text-size-adjust: none
}

As we can see in Figure 7-5, if a paragraph is prepared to be read in a desktop browser
with a large viewport width, we can change this behavior using the -webkit-text-size-
adjust attribute to enhance the iPhone reading experience without changing the desk-
top appearance.

Figure 7-5. This is the same text paragraph with text adjustment off and with 400% as the value. This
feature is useful only in non-mobile web designs.

196 | Chapter 7: CSS for Mobile Browsers

http://

Common Patterns
Even the most unique mobile web designs typically rely on a core set of common style
patterns.

Display Properties
The most standard display values (none, block, inline) are supported, but in a limited
way. If you change the value dynamically via JavaScript, many browsers will not render
the change.

There are also other table and column values that I do not recommend using in mobile
websites: inline-table, table-column, table-cell, and others. They are not common
in desktop websites either, because of Internet Explorer’s lack of compatibility.

And, to be perfectly honest, why should we need column or table layouts on the mobile
web? If we do want to show tabular data, we should create the tables in HTML, not
use the table layout CSS features.

Even when we’re designing for some new smartphones, like the Nokia
N900, which has a screen width of 800 pixels, we should avoid using
tables and column layouts with more than two columns. Even at 800
pixels, the screen is still small, and we need to remember that it is a
mobile device and think about the contexts in which it will be used.

The style display: none will be used a lot in JavaScript and Ajax development. In the
next chapter, we will test browser compatibility for this property dynamically.

Absolute and floating positions

The standard position (position: static) is the most widely compatible and is rec-
ommended for mobile websites. This means that each element will be rendered in its
normal position in the document.

Floating elements do work very well on most mobile devices, as you’ll see in Ta-
ble 7-9. However, even on devices with average-sized screens it’s best not to have more
than two floating elements in the same row. This can be approached using float:
left and float: right.

Relative positioning (position: relative) is trickier in mobile browsers. It defines
movement (using top, bottom, right, left) from the original position as a static element.

A clear element (clear: both, for example) can be used after floating elements to ensure
that no floating elements are allowed on the right, the left, or both sides of the element.

Common Patterns | 197

http://

There is a JavaScript solution for creating a floating footer called
iScroll. You can find it at http://www.mobilexweb.com/iscroll. The main
problem with using this kind of JavaScript solution is that it impacts the
performance of our websites.

Fixed positioning is not compatible with all mobile browsers (see Table 7-9) and is not
recommended. The problem is that in mobile browsers we are scrolling a window, not
the contents. Depending on the zoom and the viewport size, a fixed position can have
different meanings.

There is a campaign on the Web that aims to reduce this problem in the
future. You can read more about it at http://www.abettermobileweb
.com; this site explains the problem of fixed positioning and how to solve
it in the future.

Richard Herrera (http://www.doctyper.com) has also created some Java-
Script and CSS-based solutions for the iPhone and other WebKit-based
browsers to emulate some kind of fixed positioning.

Table 7-9. CSS position compatibility table

Browser/platform Float Float with clear Absolute

Safari Yes Yes Yes

Android browser Yes Yes Yes

Symbian/S60 Yes Yes Yes

Nokia Series 40 Yes No Yes in 6th edition

Buggy before 6th edition

webOS Yes Yes Yes

BlackBerry Yes No before 4.0 No before 4.0

NetFront No No No

Openwave (Myriad) No No No

Internet Explorer Yes Yes No

Motorola Internet Browser No No No

Opera Mobile Yes

Opera Mini Yes, if

mobile mode

off

Scrolling and focus navigation can give us problems with absolute positions. The z-
index can also give us problems on low- and mid-end devices.

198 | Chapter 7: CSS for Mobile Browsers

http://www.mobilexweb.com/iscroll
http://www.abettermobileweb.com
http://www.abettermobileweb.com
http://www.doctyper.com
http://

According to the WAP CSS standard, the position and z-index properties are optional,
so whether they are supported or not is up to each browser.

Rounded corners

Designers seem to love rounded corners (shown in Figure 7-6), and for years this was
the nightmare of every web developer who needed to lay out a box with this feature.
Table-based layouts for rounded corners are inappropriate for the mobile web, so we
can only rely on CSS solutions. If a device doesn’t render the style (see Table 7-10 for
a compatibility list), forget about rounded corners for that device.

Figure 7-6. The rounded corners feature allows us to round any defined border or background color
on compatible devices.

Table 7-10. Rounded corners compatibility table

Browser/platform Rounded corners compatibility

Safari Yes

Android browser Yes

Symbian/S60 Partial

Nokia Series 40 No

webOS Partial

BlackBerry No

NetFront No

Openwave (Myriad) No

Internet Explorer No

Motorola Internet Browser No

Opera Mobile No

Opera Mini No

Common Patterns | 199

http://

WebKit has an extension for rounded corners (-webkit-border-radius); Mozilla also
has one (-moz-border-radius), but with very low compatibility in mobile devices.

Another solution is the use of canvas for drawing a rounded rectangle;
more on this HTML 5 element in Chapter 9.

The -webkit-border-radius attribute can be defined as one value (like 5px or 10%), two
values (top-bottom and left-right), or four values giving the radius of each corner sep-
arately. These are samples of different styles:

.rounded {
 -webkit-border-radius: 10px;
}
.rounded2 {
 -webkit-border-radius: 10px 20px;
}
.rounded3 {
 -webkit-border-radius: 3em 2em 3em 2em;
}

Titles

A common approach for low- and mid-end devices is to rely on header tags and CSS
to provide a simple solution for title design. The best approach is to define a 100%
width, a background color (or image pattern), a top and bottom border, and the
padding:

h1 {
 width: 90%;
 text-align: center;
 background-color: red;
 color: white;
 border-top: 6px solid #500;
 border-bottom: 6px solid #500;
 padding: 8px 20px;
 clear: both;
 font-size: larger;
}

In Figure 7-7, we can see a very simple stylesheet applying some styles to titles without
image usage.

Pseudoclasses

The pseudoclasses link, active, focus, and visited are compatible with all XHTML
browsers and standards. The question is: when do the pseudoclasses work? Some sit-
uations are well known: for example, link is used for not-visited hyperlinks and
visited is used if the links are in the previous browsing history.

200 | Chapter 7: CSS for Mobile Browsers

http://

What about the focus and active pseudoclasses, though? The behavior can vary in
browsers with focus-based, cursor-based, and touch-based navigation.

The well-known hover pseudoclass is not available in the WAP CSS standard, but it is
compatible with most non-touch devices, assuming a similar behavior to focus. In
touch devices, there isn’t a mouseover event; the screen doesn’t detect the finger posi-
tion until the user taps it (or clicks it).

Some mobile UIs for touch devices implement a two-tap pattern; if we tap once over
an element, it will be like a hover effect, and if we tap again, it will be a click. This can
be done with JavaScript and event handling.

Remember that even if a browser supports a given pseudoclass, it may
not work in touch navigation mode.

Table 7-11 shows the compatibility for pseudoclasses.

Table 7-11. CSS pseudoclasses compatibility table

Browser/platform link visited focus active hover

Safari Yes Yes Partial Yes No

Android browser Yes No No No Yes (using keys)

Symbian/S60 Yes No No No Yes

Nokia Series 40 Yes Yes No No Yes from 6th edition

No before 6th edition

Figure 7-7. With simple CSS we can create nice designs without images (and network latency). We
can do more for smartphones, though, as we’ll see in later chapters.

Common Patterns | 201

http://

Browser/platform link visited focus active hover

webOS Yes No No No No

BlackBerry Yes No No No No

NetFront No No No Yes No

Openwave (Myriad) As visited No No No No

Internet Explorer Yes Yes Yes Yes No

Motorola Internet Browser Yes Yes No Yes No

Opera Mobile Yes Yes No No Yes

Opera Mini Yes Yes No No Yes

Backgrounds

Changing the background color was the first new feature in XHTML MP that every
WML developer used. It was heaven after the old black and white WML. Every mobile
browser understands the background property and its specific definitions, like back
ground-image and background-repeat. However, we need to remember that on mobile
devices, the context of the user can be very different from a desktop. It is not recom-
mended to use a complex background, and it’s best to use strongly contrasting fore-
ground and background colors.

In compatible browsers, it will be very helpful to use data URI patterns for backgrounds
to reduce network requests. One feature that can be buggy on mobile devices is the use
of background-attachment: fixed. This allows the background image to be fixed even
after scrolling.

Specifying multiple background images (separated by commas) is not good practice for
mobile browsers. Symbian S60 browsers appear to be among the few that support it.
Some WebKit-based browsers, like mobile Safari, also accept some CSS3 attributes as
extensions, like -webkit-background-origin and -webkit-background-size. The up-
coming Table 7-12 lists background compatibility.

Overflow

A common design pattern in desktop websites is to use a div (or other element) with a
fixed size, and content larger than that size. Using the overflow property, we can define
a value of scroll, auto, visible (the default), or hidden to indicate what to do with the
content that is outside the bounds of the element. If we use a value of scroll, the div
will have its own scrollbar on supporting devices.

The use of overflow is discouraged, like the iframe technique. Even with compatible
devices, there are usability problems; for one thing, it’s not easy for the user to tell if
she’s moving the main scrollbar or the inner scrollbar. And if it works, there are a lot
of bugs in mobile browsers, from touch devices with the scroll not working to devices

202 | Chapter 7: CSS for Mobile Browsers

http://

that hide the overflow content without providing scrollbars. Even less compatible are
the CSS3 overflow-x and overflow-y properties. Table 7-12 lists overflow compatibility.

Content

The content attribute allows us to use the after and before pseudoclasses to define an
image, some text, or an attribute value to be inserted after or before the selector. The
problem is that these pseudoclasses are not defined in the WAP CSS subset, so they
will work in some devices but not in others.

Some browsers allow us to apply the content property to any selector, but this is not
usually recommended because it will lead us to insert text and content in the CSS
instead of the (x)HTML document.

The following sample will add two stars after the link’s text and a bullet image before:

a:after {
 content: " ** "
}
a:before {
 content: url('bullet.gif');
}

Table 7-12 lists compatibility for the use of content.

Opacity

Alpha transparency of elements inside a mobile web page will not work in many low-
and mid-end devices, so we should use it with care and knowing that it may not have
a visible effect. The opacity CSS 2.1 property was not defined in the WAP CSS subset,
but we can still use it and compatible browsers will render it. Compatibility with this
and the other properties just discussed is illustrated in Table 7-12.

Table 7-12. Common CSS display properties compatibility table

Browser/platform
Fixed
background overflow

content w/before
& after

content in
any selector opacity

Safari No Yes, two fingers for

scrolling

Yes No Yes

Android browser No No scrolling Yes No Yes

Symbian/S60 Yes Yes Yes No No

Nokia Series 40 Yes Yes but difficult

from 6th edition

No before

Yes in 6th edition

No before 6th

edition

No

webOS No No scrolling Yes No No

BlackBerry No No No before 4.0 No No

NetFront Yes No No No No

Common Patterns | 203

http://

Browser/platform
Fixed
background overflow

content w/before
& after

content in
any selector opacity

Openwave (Myriad) No No No No No

Internet Explorer No No No No No

Motorola Internet

Browser

No background

image

No No No No

Opera Mobile No Yes, difficult to scroll Yes Yes Yes

Opera Mini No No Yes Yes Partial

List design

The last chapter used a lot of ordered and unordered lists. Now is the time to use CSS
to define our own design for each list. For doing this we have the typical list properties
in CSS—list-style-type, list-style-image, and list-style-position—and the com-
pressed list-style.

The compatibility for these styles in the mobile web is great, excepting some little dif-
ferences in the bullets; for example, some devices show a square for a bullet, even if it’s
defined as a circle.

The use of images as bullets can enhance our designs. On compatible devices remember
that we can use small data URI images, as we saw in the last chapter, eliminating the
need for new requests for the image.

Visibility

The visibility property allows us to hide and show an element dynamically. This
property is covered by all mobile standards and we are free to use it with the values
visible and hidden. The collapse value can be more problematic.

Cursor management

CSS allows any web designer to define which mouse cursor should be used in any
situation (generally, the body or a :hover selector). In the mobile world this is useful
only for devices supporting cursor-based navigation, though, because they are the only
browsers that show some kind of cursor over the screen.

The most useful cursors for mobile sites are default, pointer, and progress. The other
cursors available (resize and move) can be very difficult to use in any mobile situation.
We should use the pointer cursor for defining non-link clickable zones (using
a :hover selector), which may be handled by a JavaScript event function.

The progress cursor is often applied to the body dynamically with JavaScript to indicate
to the user that a current operation is working. In browsers supporting focus and touch
navigation, we should generate this pattern using a modal pop-up window with a
floating loading image.

204 | Chapter 7: CSS for Mobile Browsers

http://

Modal Pop-up Windows
A modal pop-up is a floating div that displays important information to the user, while
disabling and/or fading out the background content.

In the mobile world these are recommended only for smartphones and should be used
with extreme care. If we are displaying only simple text, it is better to use the standard
window.alert JavaScript function, as it will render properly on all devices.

Table 7-13 lists compatibility with the progress and pointer cursors for the various
browsers.

Table 7-13. Cursor compatibility table

Browser/platform pointer cursor progress cursor

Safari No cursor available, touch navigation

Android browser No cursor available, touch or focus navigation

Symbian/S60 Yes (using keys) No

Nokia Series 40 Yes in 6th edition No

Before 6th edition no cursor available, focus navigation

webOS No cursor available, touch navigation

BlackBerry No No

NetFront No No

Openwave (Myriad) No cursor available in focus navigation mode

Internet Explorer No No

Motorola Internet Browser No Yes

Opera Mobile No No

Opera Mini No No

CSS Sprites
CSS Sprites is a great modern web design technique for reducing the number of image
server requests on a web page. There are a lot of online resources and books available
on this technique. For now, suffice it to say that if you have many images in your site
(preferred logos, icons, background images, flags, etc.), you can reduce all of those to
one big image with all the originals inside and use a CSS mask to determine which
portion of it to show in each container.

This technique has a great impact on web performance, but for mobile applications,
we should think twice before using it and analyze the possible problems. First, we need
full background-position CSS property compatibility (the mobile standards include
this, so it’s not really an issue). The second consideration is that we will not be using

CSS Sprites | 205

http://

img tags. In their place, we will use any block element (div) or any block-converted
element using display: block, such as a span or a tag. This means that we cannot
provide alternative text for the images, and the browser won’t know how much space
to allocate for each image until it renders the CSS file.

Finally, in some browsers this technique can have an impact on rendering performance,
because the big image will be duplicated in memory for each usage. We need to balance
the performance gained through the reduction of requests with the performance lost
in the rendering engine in some browsers.

Samples and Compatibility
Let’s create a sample using two techniques: using an original block element (div) and
using an original inline element (a) converted to a block element.

The original document without CSS Sprites is the following country list:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Documento sin título</title>
<style type="text/css">

 ul {
 list-style: circle;
 }

 ul li {
 padding: 0px;
 margin-bottom: 5px;
 }

 ul li img {
 margin: 0px 10px 0px 0px;
 vertical-align: middle;
 border: 1px solid gray;
 }

</style>
</head>

<body>
<h1>The Best Seller</h1>
<h2>Select your nearest country</h2>

 Argentina

 Brazil

 Finland

206 | Chapter 7: CSS for Mobile Browsers

http://

 Japan

 Spain

 United States

</body>
</html>

The previous sample uses six images that can be converted into a single one (saving
five requests and the HTTP and PNG headers) with the following code:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Documento sin título</title>
<style type="text/css">

 ul {
 list-style: circle;
 }

 ul li {
 padding: 0px;
 margin-bottom: 5px;
 }

 ul li div {
 /* We define the large image to all divs that represent an image*/
 background:url(sprite.png);
 width: 30px;
 height: 19px;
 float: left;
 border: 1px solid gray;
 margin-right: 10px;
 }

</style>
</head>

<body>
<h1>The Best Seller</h1>
<h2>Select your nearest country</h2>

 <div style="background-position: 0px 0px;"></div>
 Argentina
 <div style="background-position: 0px −29px;"></div>
 Brazil
 <div style="background-position: 0px −58px;"></div>
 Finland
 <div style="background-position: 0px −87px;"></div>
 Japan
 <div style="background-position: 0px −116px;"></div>

CSS Sprites | 207

http://

 Spain
 <div style="background-position: 0px −145px;"></div>
 United States

</body>
</html>

This produces the result shown in Figure 7-8.

Figure 7-8. In compatible browsers, using CSS Sprites produces the same result using a single image
as using six separate images for the flags.

There are plenty of online CSS Sprites generators where you can upload
all your images and receive in seconds one big image and the CSS code
to replace each of the original img tags. Examples include http://spritegen
.website-performance.org and http://csssprites.com.

Now let’s look at applying the same technique to a non-original block element, such
as the a tag. The only problem will be the flag border: as we use the same a tag for the
image and the text, we cannot define a border. The code looks like this:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Documento sin título</title>

208 | Chapter 7: CSS for Mobile Browsers

http://spritegen.website-performance.org
http://spritegen.website-performance.org
http://csssprites.com
http://

<style type="text/css">

 ul {
 list-style: circle;
 }

 ul li {
 padding: 0px;
 margin-bottom: 5px;
 }

 ul li a {
 /* We define the large image to all divs that represent an image */
 background:url(sprite.png);
 /* We need to create block elements */
 display: block;
 /* We need the background to not be repeated */
 background-repeat: no-repeat;
 height: 19px;
 padding-left: 40px;
 }

</style>
</head>

<body>
<h1>The Best Seller</h1>
<h2>Select your nearest country</h2>

 Argentina

 Brazil

 Finland

 Japan

 Spain

 United States

</body>
</html>

Using CSS Sprites is not recommended for big files or photo images. If
you are using PNG images, the best way to approach it is to group icons
with a consistent color palette.

Table 7-14 lists CSS Sprites compatibility for the various platforms.

CSS Sprites | 209

http://

Table 7-14. CSS Sprites compatibility table

Browser/platform Sprites over div Sprites over anchors

Safari Yes Yes

Android browser Yes Yes

Symbian/S60 Yes Yes

Nokia Series 40 Yes in 6th edition

No before 6th edition

Yes, buggy on low-end devices

webOS Yes Yes

BlackBerry Yes from 4.0 Yes from 4.0

NetFront No Yes

Openwave (Myriad) No No

Internet Explorer No Yes

Motorola Internet Browser No No

Opera Mobile Yes Yes

Opera Mini Yes Yes

CSS Sprites Alternatives
The idea behind optimizing the number of requests to the server is very interesting,
even if you reject the usage of CSS Sprites. That is why we need to think about alter-
natives to this technique for some specific situations.

Image maps are the first technique that comes to mind as a CSS Sprites
alternative. However, they are not recommended for non-touch navi-
gation, because image maps in non-touch devices can have a negative
impact on usability.

Inline images

As we discussed in the last chapter, inline images are a great technique for compatible
browsers. When designing for browsers that understand them, we can copy the first
sample (the original document without CSS Sprites) and replace the URL of each image
with the data: representation.

Join images

If the images are near one another horizontally or vertically, as in our sample, we can
consider joining all the images into one. The concept is similar to CSS Sprites, but we
set up the image as a single-use background, adjusting the margins and padding so that
the elements are properly aligned with the different parts of the image. This technique
can have poor results on old devices with limited support for margins and padding.

210 | Chapter 7: CSS for Mobile Browsers

http://

If we use the original code but define a good cache policy on the server,
subsequent pages of the site will load faster than if we used CSS Sprites,
because no rendering work will be required. We will cover caching in
Chapter 10.

Box borders

If you were thinking of using CSS Sprites to define the borders of a rectangular area,
there is a WebKit extension that can help you. In the following section, we will get
deeper into this.

WebKit Extensions
The open source project WebKit added many extensions to CSS, and several of these
are under discussion for addition to CSS3. In the mobile world we have many WebKit
flavors (Safari, Android, webOS, Symbian, etc.), and the extensions compatibility isn’t
perfect across all of them.

Many of the WebKit extensions had counterparts for other desktop
browsers, like Mozilla Firefox (using the -moz- prefix) or Opera (using
the -o- prefix). In CSS3, many of these extensions are implemented
without any prefix.

The following is a list of the most common WebKit extensions, in compressed form:

• -webkit-border-radius defines a rounded-corner box. Modern mobile browsers
also understand it as border-radius.

• -webkit-box-shadow defines a shadow for a block element (similar to text-shadow).

• -webkit-columns specifies the width and count of columns.

• -webkit-border-image specifies an image to use as the border for a box

• -webkit-text-stroke defines a color to use for the stroke (outline) of the text.

• -webkit-text-fill-color defines a color to use for filling the text (inside the
stroke).

We’ll look at a few of them here in more detail.

Text Stroke and Fill
The stroke and fill properties are a handy way of creating fancy effects in titles (with
big fonts) without the use of images. For example:

<h1 style="-webkit-text-stroke: blue; -webkit-text-fill-color: yellow">
Great Title!
</h1>

WebKit Extensions | 211

http://

Table 7-15 shows which browsers render these two extensions.

Table 7-15. Text stroke and fill compatibility table

Browser/platform Text stroke and fill compatibility

Safari Yes

Android browser Yes

Symbian/S60 Only fill from 5th edition

No support before 5th edition

Nokia Series 40 No

webOS Only fill

BlackBerry No

NetFront No

Openwave (Myriad) No

Internet Explorer No

Motorola Internet Browser No

Opera Mobile No

Opera Mini No

Border Image
The border image extension is an excellent solution to the problem of creating a dy-
namically sized rectangle with custom borders. Its implementation is very similar to
CSS Sprites, and usage is simple. This technique is useful for buttons, titles, content
zones, and every area where we want a custom border design without using tables.

The attribute to use is -webkit-border-image, and the most common syntax is:

 -webkit-border-image: url top right bottom left x_repeat y_repeat;

The url is the image location (or inline image), and the four edge values (top, right,
bottom, left) are distance values to be used from the image’s sides. The center box
defined by the space not used by these four values will be used for the center pattern.
For example, if we define 5 as the top, the box to which we are applying this style will
have as the top border the top 5px of the border image.

The border image doesn’t define the box’s width and height or the bor-
der size; it is only used to define the contents of the border. If we need
to change the dimensions of the box, we need to add width and height
properties. We must also define the border property of the element,
setting it to the desired size. The border image will be resized to the
border size.

212 | Chapter 7: CSS for Mobile Browsers

http://

The x_repeat and y_repeat values are optional and can be defined as one of the fol-
lowing constants:

repeat

The portion of the image extracted using the top and bottom for y_repeat and using
the left and right for x_repeat is repeated until it fills the available width/height
of the box.

round

The image is repeated until it fills the available width/height of the box, but without
any partial tile at the end; it is stretched so that it fits in the available space a whole
number of times. This value has no effect in many mobile browsers.

stretch

The image is stretched to fill the entire width or height of the box without
repetition.

The border image is cut in nine pieces, as we can see in the Figure 7-9. Four are used
as corners and the others are used as background images for sides and center.

If you are applying a border image to a button, it will not have any
“pressed” effect. To create such an effect, you must change the active
and/or focus pseudoclass, specifying another border image. Problems
can occur when you try to change the way buttons are rendered dy-
namically, though, so for custom designs it is better to use links or re-
move the default button rendering with -webkit-appearance: none.

The simplest way to define the border image is with the four values equal, using:

-webkit-border-image: url distance;

This sample will produce the result shown in Figure 7-10:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Image Border</title>
<style type="text/css">
/* We should use input[type=button] too, but for testing purposes we will
not use CSS3 */
input.bordered {
 -webkit-border-radius: 10px;
 -webkit-border-image: url(border1.png) 6;
}

a.bordered {
 -webkit-border-image: url(border1.png) 6;
 color: white;
 text-decoration: none;
 padding: 3px;

WebKit Extensions | 213

http://

}

h1 {
 -webkit-border-image: url(border2.png) 50 50 50 50 repeat stretch;
 border: 20px;
}

/* The h2 will use the same image border but half size */
h2 {
 -webkit-border-image: url(border2.png) 50 50 50 50 round round;
 border: 10px;
}
</style>
</head>

<body>
 <h1>This is a title</h1>
 <h2>This is a subtitle</h2>
 <input type="button" class="bordered" value="Press Me" />
 <!-- Safari applies border image to inline elements too -->
 This is a link
</body>
</html>

Another sample is the implementation of the classic back button in iPhone user inter-
faces, using only left, right, and center zones (splitting the image into three parts). This
code produces the result shown in Figure 7-11:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Image Border</title>
<style type="text/css">
#back {
 -webkit-border-image: url(border1.png) 0 5 0 15;
}

</style>
</head>

<body>
 Home Page
</body>
</html>

214 | Chapter 7: CSS for Mobile Browsers

http://

Figure 7-9. The image is cut into nine pieces and each one is used as either a corner or a part of the
background.

As Table 7-16 shows, this extension works on about half of the major mobile web
platforms.

Table 7-16. Border image compatibility table

Browser/platform Block elements Inline elements

Safari Yes Yes

Android browser Yes (differences with content background) Yes

Symbian/S60 Partial in 5th edition

No before 5th edition

Yes

Nokia Series 40 Bad in 6th edition

No before 6th edition

Buggy in 6th edition

webOS Yes Yes

WebKit Extensions | 215

http://

Browser/platform Block elements Inline elements

BlackBerry No No

NetFront No No

Openwave (Myriad) No No

Internet Explorer No No

Motorola Internet Browser No No

Opera Mobile No No

Opera Mini No No

Figure 7-10. Using only two images, we can create these kinds of borders and backgrounds.

Some of the WebKit extensions will also work in Firefox Mobile and in
the MeeGo/Maemo browser, because both use Mozilla’s Gecko engine.
For these browsers, we should replace the prefix -webkit with -moz.

216 | Chapter 7: CSS for Mobile Browsers

http://

Figure 7-11. This kind of button can be designed very easily, with dynamic width using border image.

Safari-Only Extensions
Safari on iOS has added a lot of extensions to the CSS standards, and even to WebKit
(which is the engine behind it). These extensions work only in Safari for iPhone, iPad,
and iPod Touch (some of them also work in Safari for desktop, but we’re only concerned
with mobile browsers here). The Android and webOS browsers also understand some
of these extensions, depending on which WebKit version they are based on.

The CSS extensions can be grouped into categories as follows:

• Transitions

• Animations

• 2D and 3D transforms

• Miscellaneous (listed in Table 7-17)

The CSS extensions for iPhone are quite spectacular. They allow you to create Flash-
like experiences and 3D transformations using only CSS. This is great, though also

WebKit Extensions | 217

http://

sometimes painful because it all needs to be coded in CSS, a language not built for this
kind of interaction. We will cover most of these advanced iPhone extensions in Chap-
ters 9 and 12, as well as some open source JavaScript libraries that will help in our work.

Table 7-17. Common CSS extensions for Safari on iOS

Property Values Description

-webkit-text-security circle, disc, none, square Defines the character to display in password fields

for each character the user enters.

-webkit-text-size-adjust auto, none, percentage value Defines the font size adjustment for easy reading.

-webkit-appearance Partial list:

none, button, button-

bevel, checkbox,

default-button, list

box, listitem, media-

fullscreen-button,

media-mute-button,

media-play-button,

radio, searchfield,

searchfield-cancel-

button, slider-horizon

tal, slider-vertical,

square-button, tex

tarea, textfield

Changes the appearance of elements to render as

native controls of the OS. Available since iOS 2.0. A

value of none will allow us to define a custom de-

sign using CSS.

-webkit-user-select auto / none / text From iOS 3.0, defines whether or not the user can

select the text for copy/paste purposes.

-webkit-touch-callout none, inherit Removes the callout (hint window) that appears

when the user keeps his finger over a link for a few

seconds.

-webkit-tap-highlight-

color

Color value Defines a color to be used as the background when

the user taps a link or a clickable element.

218 | Chapter 7: CSS for Mobile Browsers

http://

CHAPTER 8

JavaScript Mobile

Designing for the Web is about more than content and presentation—users expect
websites to be interactive, responding to their choices. Fortunately, although it has
some limitations, the JavaScript you use in developing for the mobile web is similar to
that used in desktop web development.

We have already talked a bit about the WAP 1.1 standard scripting language,
WMLScript. We won’t go any deeper into this obsolete language, but it will not be
difficult to learn if you need to do a little scripting with it. The WAP 2.0 standard that
brought us XHTML MP and WAP CSS didn’t define any scripting support. This was
bad for the first few years, because we could create scripts in WAP 1.0 documents but
not in WAP 2.0 ones.

Thankfully, a couple of years after this standard was released, mobile browsers started
to add some support for JavaScript (or ECMAScript, to be totally correct). The
standards for mobile scripting are more difficult to define than the standards for CSS.
The great benefit is that, excepting some bugs, JavaScript can check at runtime whether
some feature, object, or API is available, so we can code for different “standards.”

The standard name for JavaScript is ECMAScript, because it is defined
by the ECMA (an international, private nonprofit standards organiza-
tion). There are three well-known dialects on the market: JavaScript
(trademark of Sun, licensed now to the Mozilla Foundation), Action-
Script (trademark of Adobe), and JScript (trademark of Microsoft). At
the base, they are the same language, and everyone adds new behavior.

The only mobile-specific standard is called ECMAScript Mobile Profile (ESMP). It was
defined by the Open Mobile Alliance (OMA), like XHTML MP and WAP CSS. In my
10 years in the mobile web world, I have never heard a developer or a company talking
about ESMP. It is a subset of the ECMAScript language and is really just JavaScript
with some features left out and some other features added in (imported from
WMLScript).

219

http://

The XHTML MP 1.2 OMA standard recommends using ESMP, but we will just use
standard JavaScript code, as clean as possible.

VBScript is a similar language (created by Microsoft, based on Visual
Basic), but it is compatible only with Internet Explorer for desktop.
VBScript is not compatible with Pocket IE (now known as Mobile In-
ternet Explorer).

There are many versions of JavaScript available (at the time of this writing, from 1.0 to
1.8). The most stable version for all browsers (from low-end devices to smartphones)
is 1.3, and this is the version we should care most about. For mid-end devices and
smartphones, 1.5 is the most stable. Newer versions only work in the latest editions of
Firefox and Safari (including Safari on iOS), and the additions aren’t worth the incom-
patibility. JavaScript developers often aren’t aware of different languages’ versions, so
we will talk about feature compatibility instead of comparing version numbers.

Java and JavaScript only have in common the first four letters of their
names.

OK, they both also have C syntax, both are object-oriented, and there
are some other similarities. However, they are really different languages.
Still, it’s incredible how many developers I hear talking about them as
if they were the same language.

Supported Technologies
We are going to test JavaScript compatibility in the following pages, but making Java-
Script work requires more than just support for the language. There are many tech-
nologies (or APIs) that are bundled with JavaScript, but they are optional and will not
work on all devices.

Document Object Model
DOM is a set of conventions for manipulating, browsing, and editing XML and HTML
documents using a set of API conventions that may be implemented in many languages.
In fact, although many developers think that DOM is a JavaScript thing, this is wrong.
There are DOM APIs for PHP, .NET, Java, and many other languages.

Even if you’ve never heard about DOM, odds are good that you’ve used it. If you’ve
used the well-known document.getElementById function, for example, you were using
DOM.

Today, DOM is a W3C specification. The most compatible versions for web use are
the DOM Level 2 Core specification (DOM2CORE) and the subspecification DOM
Level 2 HTML (DOM2HTML) for HTML and XHTML documents.

220 | Chapter 8: JavaScript Mobile

http://

With DOM, we can browse the XHTML document structure and make changes and
additions dynamically from JavaScript without refreshing the page.

A mobile browser can be JavaScript-compatible but without DOM functionality. There
are also some browsers that allow us to browse the document tree but not to modify it
on the fly.

Ajax
Ajax, originally an acronym of Asynchronous JavaScript and XML, is a technique that
involves making asynchronous server requests without refreshing the page, interrupt-
ing the user’s activity, changing the browser’s history, or losing global state variables.

Why did I say “originally an acronym”? Today the term Ajax is used in
a more general way to define interactive Web 2.0 applications that use
asynchronous requests to the server, but may or may not be written in
XML. I even hear a lot about Ajax in dynamic websites using the jQuery
UI, ExtJS, or other rich control libraries that don’t actually make back-
ground requests to the server.

The magic behind Ajax is called XMLHttpRequest; it is a native JavaScript object available
in compatible devices that was based on an ActiveX object created by Microsoft in
Internet Explorer 5.0.

JSON
JavaScript Object Notation (best known as JSON) is a lightweight data interchange
format known to be compatible with almost every language in common use. It is some-
times used in JavaScript as a replacement for other transport formats, like XML.

JSON can be used in Ajax requests. We will talk about differences in the mobile brows-
ers’ implementations in a while.

HTML 5 APIs
With the upcoming HTML 5 standard, JavaScript will support some new APIs for client
scripting and document work. Mobile browsers are already adopting some of these new
APIs, even though the standard is still in discussion.

Some of the APIs we are going to discuss in this chapter are those for:

• Offline applications

• Client storage

• Canvas drawing

• Workers

Supported Technologies | 221

http://

• Geolocation (available as another W3C standard)

Platform Extensions
There are other extensions available for web applications on some devices, and many
other JavaScript APIs are supported in installed applications (also called mobile widg-
ets, to be covered in Chapter 12). These JavaScript APIs can include support for:

• Messaging

• Address book management

• Geolocation

• Gallery

• Camera

• Calendar

• Device status information

• Native menus

Coding JavaScript for Mobile Browsers
First of all, let’s see what is happening with basic JavaScript compatibility (variables,
functions and basic alert functionality) with mobile browsers. Table 8-1 illustrates the
current levels of support on the different platforms.

Table 8-1. JavaScript support compatibility table

Browser/platform JavaScript support

Safari Yes

Android browser Yes

Symbian/S60 Yes

Nokia Series 40 Yes

webOS Yes

BlackBerry Yes from 3.8

Can be disabled by the user or the company; in that case, noscript is executed

NetFront Yes

Openwave (Myriad) Not available in Openwave; yes in Myriad Browser V7

Internet Explorer Yes

Motorola Internet Browser Yes

Opera Mobile Yes

Opera Mini Yes, but everything after the onload script will be executed on the server, generating a postback

222 | Chapter 8: JavaScript Mobile

http://

As Openwave does not support JavaScript and Myriad 7 is not com-
monly found on mobile devices today (making testing difficult), Open-
wave/Myriad will be left out of the following JavaScript-related tables.

We need to pay special attention to proxied browsers, like Opera Mini. Remember that
these browsers render our websites on their servers and send compressed and compiled
content to the clients. The clients aren’t really browsers capable of rendering an
XHTML file or JavaScript code.

For old non-JavaScript mobile browsers or for browsers with JavaScript
disabled, we can use the noscript tag. Only those browsers will display
its content.

When we talk about mobile JavaScript, we are talking about the same code you already
know: a script tag including some code or a script tag with an external source. Many
browsers accept the old way of defining the script language (language="javascript"),
and many of them also accept not defining the language at all (using script alone):

<script type="text/javascript">
// Code goes here
</script>

<script src="mysource.js" type="text/javascript">

ECMAScript Mobile Profile defines two new types for the script tag,
application/ecmascript and text/ecmascript, as the preferred types to
use for ESMP-compatible code. Beyond that, text/javascript is the
recommendation for XHTML MP documents and is the most compat-
ible type to use for non-MP browsers. My recommendation is to carry
on using the well-known text/javascript.

Code Execution
You can execute JavaScript code in four different ways:

• From a script tag

• From an event handler

• From a link using the javascript: URL protocol

• From a bookmarklet using the javascript: URL protocol

Coding JavaScript for Mobile Browsers | 223

http://

Bookmarklets
A bookmarklet is a bookmark in the browser containing some JavaScript code using a
javascript: protocol URL. When the user activates the bookmark, the JavaScript code
is executed over the current document. This allows us to execute a wide range of testing,
debugging, and other features over any web page.

There are bookmarklets on the Web that are large applications, encoded in a single line
of JavaScript. One of my favorites for desktop usage is Readability (http://lab.arc90
.com/experiments/readability).

The main problem with bookmarklets in mobile devices is how to add them. In the
desktop web, the main way is to drag a link with the JavaScript code to the bookmarks
area. This cannot be done in a mobile device, though, so bookmarklets are only useful
if you can manage or synchronize them from a desktop (e.g., via iTunes for iPhone).

There are a lot of bookmarklets for iPhone on the Web, including some that will show
the source code of the page inside the mobile browser. These are only really useful for
testing or debugging purposes, though, or for “only geek” features.

Table 8-2 shows which of these work with which browsers.

Table 8-2. Script execution compatibility table

Browser/platform Script Event handler URL

Safari Yes Yes Yes

Android browser Yes Yes Yes

Symbian/S60 Yes Yes Yes

Nokia Series 40 Yes No before 6th edition Yes

webOS Yes Yes Yes

BlackBerry Yes No before 4.6 Yes

NetFront Yes Yes Yes

Internet Explorer Yes Partial Yes

Motorola Internet Browser Yes No Yes

Opera Mobile Yes Yes Yes

Opera Mini Yes No No

If a device is not compatible with JavaScript (different from a device that
is compatible but has JavaScript disabled), it will show the JavaScript
code to the user as text. We can avoid this problem by inserting an
HTML comment just after the script tag:

<script type="text/javascript">
<!--
// JavaScript code here

224 | Chapter 8: JavaScript Mobile

http://lab.arc90.com/experiments/readability
http://lab.arc90.com/experiments/readability
http://

-->
</script>

JavaScript Mobile Compatibility
As you move into JavaScript on the mobile web, you’ll want to test compatibility and
use some old-fashioned features.

Feature detection

The simplest way to detect if a feature, API, function, or object is available to use is to
ask if it exists using a simple if statement:

if (object) {
 // Object available
}

For example:

if (document.getElementById) {
 // DOM function available
}

Even on JavaScript-compatible devices, a script might not work because
of the user’s (or company’s) profile. For example, BlackBerry devices
have the option to disallow JavaScript from the browser or from the
company policies. You should always present a non-JavaScript version
of your site’s functionality.

Standard dialogs

JavaScript supports a list of standard dialogs that are undervalued in modern desktop
websites, often being replaced by Dynamic HTML or UI libraries. They make great
standard dialogs for use in mobile websites, though, as shown in Figure 8-1.

The list of available dialogs is:

• alert, for showing a message

• confirm, for receiving a Boolean response from the user

• prompt, for receiving a string from the user

• print, for sending the web page to the printer

• find, for invoking the find feature of the browser

The find dialog isn’t really part of the standard, but it works in almost every non-IE
desktop web browser on the market. This dialog receives three optional parameters:
the text to find, a case-sensitive Boolean, and a backwards Boolean. In general, it should
be avoided in mobile browsers. Most of them don’t have a search feature.

The print dialog isn’t mobile compatible, for obvious reasons, but the alert, con
firm, and prompt dialogs are compatible with almost every JavaScript-enabled mobile

Coding JavaScript for Mobile Browsers | 225

http://

phone (as Table 8-3 shows). I encourage you to use them when needed. Using a
standard dialog will always be quicker, simpler, nicer, and more compatible than using
any other solution for the same task.

Table 8-3. Standard dialog support compatibility table

Browser/platform alert, confirm, prompt

Safari Yes

Android browser Yes

Symbian/S60 Yes

Nokia Series 40 Yes

webOS Yes

BlackBerry Yes

NetFront Yes

Internet Explorer Yes

Motorola Internet Browser Yes

Opera Mobile Yes

Opera Mini Yes, rendered on the server

Figure 8-1. Using standard JavaScript dialogs you will get free rich and multiplatform interfaces, using
UI controls from the operating system.

226 | Chapter 8: JavaScript Mobile

http://

Common problems with the alert dialog (and the others) are the usage of the carriage
return for multiline text, and how to display text that’s too big to fit in the available
space. For the first problem, it is common in desktop JavaScript to use the \n (newline)
escape special character. (There are other special escape characters, too, like \t for
tabulation.) Let’s see what happens with both problems in mobile browsers. Ta-
ble 8-4 reports on their support for newlines and large amounts of text in dialogs, and
Figure 8-2 shows the use of a scrolling area that supports long text.

Figure 8-2. On some browsers, big alerts have scrollbars (or can be scrolled with a finger, on touch
devices).

Table 8-4. Multiple lines and scrolling text in alerts compatibility table

Browser/platform \n in alerts Scrolling support for long text

Safari Yes Yes, change alert appearance with scroll support

Android browser Yes Scroll

Symbian/S60 Yes Scroll

Nokia Series 40 Yes Scroll

webOS No, shows one line No, text overflow screen without scroll

BlackBerry Yes Scroll

NetFront Yes Autoscroll

Internet Explorer Yes Scroll

Motorola Internet Browser Yes Scroll

Opera Mobile Yes Scroll

Opera Mini Yes Scroll

Coding JavaScript for Mobile Browsers | 227

http://

For usability reasons, if a device has a numeric keyboard it is best to use
a normal text input with numeric capabilities, rather than a selection
list. Remember that a numeric keyboard is useful for numeric entries.

Writing to the document

The document.write function allows us to dynamically write HTML code to a document
while it is rendering. This was a very common technique in the ’90s, but there are a lot
of reasons for not using it in modern websites. Today, the preferred technique is to
manipulate the document using DOM after the onload event.

If your script doesn’t use document.write, you should use the script at-
tribute defer="defer". This will tell compatible browsers that they
shouldn’t wait for the script to download and/or execute to continue
rendering the document.

That said, in the mobile space sometimes it is better not to deal with DOM (especially
in low-end devices), so performing document.write operations can avoid a lot of prob-
lems. As Table 8-5 shows, this technique still works on a lot of browsers.

Table 8-5. document.write compatibility table

Browser/platform document.write support

Safari Yes

Android browser Yes

Symbian/S60 Yes

Nokia Series 40 Before 6th edition, no after onload support

webOS Yes

BlackBerry Before 4.6, no after onload support

NetFront Yes

Internet Explorer Yes

Motorola Internet Browser Yes, no after onload support

Opera Mobile Yes

Opera Mini Server rendering

For example, you can create a year selection list dynamically to save bytes in the original
document. For rendering performance purposes, it is better to use document.write with
all the HTML at the same time (including the beginning, contents, and end of a tag)
rather than partially writing a tag with many lines. The following code demonstrates
this technique:

228 | Chapter 8: JavaScript Mobile

http://

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Document Write</title>
<script type="text/javascript">
function createNumericSelect(name, from, to) {
 var html = "<select name='" + name + "'>";
 for (var i=from; i<to; i++) {
 html += "<option>" + i + "</option>";
 }
 html += "</select>";
 document.write(html);
}
</script>

</head>

<body>
<form action="send">
 <script type="text/javascript">
 createNumericSelect('year', 1990, 2020);
 </script>
</form>
</body>
</html>

Remember that document.write should not be used in an event handler, like onload or
onclick, because it will have unpleasant results. If you need to dynamically generate
content on the page, it is better to use DOM than document.write.

Platform detection

JavaScript has a native navigator object representing the client browser on which the
code is running. We are going to take a look at server-side detection in the following
chapter, but for now, we can use this technique to detect what device our code is
running on and make a decision based upon that.

When using a for, remember to define the index variable as a local file
with var i=initial_value. If not, you’ll be using a global variable, which
can have some performance and bug issues.

The navigator object has many properties, but the most useful are appName (the
browser’s name), appVersion (the browser’s version), mimeTypes (an array of supported
MIME types), plugin (an array of supported plug-ins for object tag), platform (the
operating system), and userLanguage.

Coding JavaScript for Mobile Browsers | 229

http://

Generally, we will use the string’s indexOf function to verify whether some of these
attributes have the values we are looking for. For example:

// Detects if it is an Android device
var android = (navigator.platform.indexOf("android")>=0);
if (android) {
 // Do something
}

Table 8-6 shows what is returned from these properties for each browser. In this table,
assume that <User Agent> will be replaced with each device’s user agent ID.

Table 8-6. JavaScript navigator object properties compatibility table

Browser/ Platform appName appVersion mimeTypes platform

Safari Netscape 5.0 (<User Agent>) Array iPhone, iPod, or

iPad

Android browser Netscape 5.0 (<User Agent>) Array null

Symbian/S60 Netscape 5.0 (<User Agent>) Array S60

Nokia Series 40 before 6th ed-

ition

Nokia Empty string Undefined Undefined

Nokia Series 40 6th edition Netscape 2.0 Undefined Nokia_Series_40

webOS Netscape 5.0 (<User Agent>) Array webOS

BlackBerry Netscape <Platform version> Array BlackBerry

NetFront ACCESS Net

Front

<Browser version> Array Unknown

Internet Explorer Microsoft IE

Mobile

Empty string Undefined WinCE

Motorola Internet Browser Netscape 5.0 Array WiderWeb

Opera Mobile Opera <opera engine

version> (Symbian or

Windows)

Array Symbian or

Windows

Opera Mini Opera <opera engine

version>

Array Pike

Window size

JavaScript has two objects related to sizes: document.documentElement and screen. The
first is related to the size of the current document’s viewport, and the second to the
whole screen of the device. At the time of writing, there is no browser that allows
windows smaller than the whole screen. We can create web widgets for the home screen
on many devices, but this is another situation and it will be covered in Chapter 12.

230 | Chapter 8: JavaScript Mobile

http://

BlackBerry devices have a global variable, blackberry, that has two ob-
jects: location and network. location will be reviewed in Chapter 11;
the network property allows us to know whether the user is using WiFi,
GPRS, EDGE, CDMA, or some other network. Android Browser, from
2.2, also has a similar property: navigator.connection.type.

The screen object has four properties: width, height, availWidth, and availHeight. The
last two refer to the size available taking into account the space used by the operating
system toolbars. In the mobile space, they are generally the same as the width and
height values.

The most commonly used way to get the window size is via document.documentEle
ment.clientWidth and document.documentElement.clientHeight.

The only way for these values to change while the page is loaded is in response to an
orientation change, on compatible devices (landscape to portrait and vice versa). Ta-
ble 8-7 shows which browsers can access information about the screen and window
size and which support orientation changes.

Table 8-7. Screen properties and events compatibility table

Browser/platform Screen size Window size Orientation change

Safari Yes Yes onorientationchange and

onresize

Android browser Yes Yes onresize

Symbian/S60 Yes, different in full-screen

mode

Yes onresize

Nokia Series 40 No before 6th edition No before 6th edition No

webOS Yes Viewport size onresize

BlackBerry No before 4.6 No document.onresize in some

devices

NetFront Yes No No

Internet Explorer Yes No No

Motorola Internet Browser Yes Yes No

Opera Mobile Yes Yes No

Opera Mini Yes Yes No

History and URL management

JavaScript has a few standard mechanisms for browser history management: the loca
tion and history objects. The location object has several properties regarding the ad-
dress, like href for the whole URL and hash for the anchor part of the URL, if present
(the # and everything to the right of it). Changing the location.href property will re-
direct the browser to another page, on compatible devices. It has two useful methods:

Coding JavaScript for Mobile Browsers | 231

http://

reload(), which refreshes the same page, and replace(url), which sends the user to
another page without creating a new history entry.

Remember to use JavaScript as little as possible to reduce battery con-
sumption (one of the main problems today in the mobile environment).

The history object has a few not-very-useful properties and three methods: back(),
go(number), and forward(). The back method is the most commonly used, for emulating
a back button:

<!-- As a button -->
<input type="button" onclick="history.back()" value="Back" />
<!-- As a link -->
Back

Remember that we are designing for mobile browsers, and sometimes the users will be
browsing in full-screen mode without any browser buttons in sight. A link or button
for going back will be more useful here than in desktop websites.

Table 8-8 shows what happens when we try to manage the history and location using
JavaScript in mobile devices.

Table 8-8. Redirection compatibility table

Browser/platform href, replace, reload, and history.back support

Safari Yes

Android browser Yes

Symbian/S60 Yes

Nokia Series 40 Yes

webOS Yes

BlackBerry Yes

NetFront Yes

Internet Explorer Yes

Motorola Internet Browser Yes

Opera Mobile Yes

Opera Mini Yes, reload causes a new history entry

Manipulating windows

One of the most popular (and annoying) features of JavaScript is the usage of
window.open for opening the classic pop-up windows. For mobile browsers, the usage
of this technique is not ideal, for many reasons. Many browsers can’t open multiple
windows (although Figure 8-3 shows one that can in action), and we cannot define any
attributes for the pop-ups; they will just be full-sized, like the main window.

232 | Chapter 8: JavaScript Mobile

http://

Communication between the opener and the pop-up also often does not work well.
Finally, closing pop-ups can be problematic on browsers that treat the new window as
a normal page and not a pop-up, because window.close only works on pop-ups.

So, if you can, avoid using pop-ups. If you really need one for some reason, open the
window after an onclick event (avoid opening windows in the onload event or inside a
timer callback) and remember that some mid- and low-end devices will not show your
window.

A better alternative is to use a link with target="_blank". This will have
the same result in mobile devices as a window.open call, and it will work
on every browser. If the browser doesn’t support multiple windows, it
will just replace the current one.

Table 8-9 reports on how the different browsers handle window.open.

Figure 8-3. The Android browser is one of the few capable of opening pop-ups with a subwindow
design.

Coding JavaScript for Mobile Browsers | 233

http://

Table 8-9. window.open compatibility table

Browser/platform window.open behavior

Safari Same as _blank. window.close works, but the user will be redirected to the windows list

after, not back to the original window.

Android browser Yes, pop-up behavior and design. Your defined size will not be used.

Symbian/S60 Open in new window.

Nokia Series 40 Open in same window.

webOS Open a new card. window.close does not work.

BlackBerry Open in same window. Before 4.6, the user is asked if he wants to open it.

NetFront Open in same window. window.close does not work.

Internet Explorer Open in same window. window.close does not work.

Motorola Internet Browser Open in same window.

Opera Mobile Open in same window.

Opera Mini Open in same window.

Focus and scroll management

You can set the focus to a clickable element (e.g., a form input, link, or button) using
the focus function of every DOM element. The most helpful usage is for form input
controls. The behavior varies on different mobile browsers. On some touch devices,
focusing in a text box should automatically open the onscreen keyboard, and in some
cursor-based browsers it will position the cursor over the element.

If the document the user is browsing is form-based, like a search page
or a contact us page, it will be better for usability to automatically focus
on the first text input. This reduces the amount of navigation the user
has to do on the page.

On some devices, the global window object has a scrollTo function that takes two pa-
rameters, xPosition and yPosition, specifying the position at the top-left corner of the
screen to scroll to. On some devices (like the iPhone), using scrollTo emulates the
user’s scrolling and hides the browser’s toolbars, as if the user were scrolling with her
fingers. So, for iPhone browsers, it is common to use the following code, which auto-
matically hides the toolbars after the onload event:

window.scrollTo(0, 1);

This function can also be used to generate links to the top of the page, on compatible
devices:

Go to Top

This same behavior can also be applied without JavaScript, using anchors.

234 | Chapter 8: JavaScript Mobile

http://

Table 8-10 lists the different browsers’ compatibility with the focus and scrollTo
functions.

Table 8-10. Focus and scrolling compatibility table

Browser/platform focus scrollTo

Safari Yes Yes

Android browser Yes Yes

Symbian/S60 Yes Yes

Nokia Series 40 No No

webOS No No

BlackBerry No No

NetFront No Yes

Internet Explorer No Yes

Motorola Internet Browser No No

Opera Mobile Yes No

Opera Mini No No

Timers

JavaScript offers two kinds of timers: setTimeout and setInterval. The first one is exe-
cuted once and the second one is executed every n milliseconds until it is cancelled
using clearInterval.

You can use timers for updating information from the server using Ajax every n seconds,
for creating an animation, or for controlling the timeout of an operation.

In mobile browsers, you need to be especially careful about using timers
because of the battery consumption. If you need to use many high-fre-
quency timers at the same time, try to manage them using only one timer
that will launch different behaviors from the same process.

The first question we need to ask ourselves is, what happens when our web page goes
to the background because the user switches focus to another application (in multi-
tasking operating systems) or opens or browses to another tab or window? Another
problem is what happens when the phone goes to sleep (because of the user’s inactivity
while the script is executing). The behavior of timers can be a little tricky in these
situations.

Yet another problem is that timers execute on the same thread as the main script. If
our script is taking too much processor time (a normal situation with large scripts on
low- and mid-end devices), our timers will be delayed until some spare execution time
is found.

Coding JavaScript for Mobile Browsers | 235

http://

If we use a low frequency for the timer (for example, 10 milliseconds), the timer will
generally have problems meeting the timetable.

Remember that the JavaScript execution time depends a lot on the device hardware
and the browser’s engine. Even if they’re running the same operating system, like An-
droid, execution times can differ: for example, an HTC G1 will be much slower than
a Nexus One with a 1-Ghz processor.

Let’s look at a simple example and see what happens normally and when we send the
web page to the background:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Using Timers</title>
</head>

<body>

<script type="text/javascript">
var timer = setInterval(timerHit, 200);
var q = 0;
var lastTime = new Date().getTime();

function timerHit() {
 q++;
 var deltaTime = new Date().getTime() - lastTime;
 document.getElementById("content").innerHTML += q + ": " +
 deltaTime + "
";
 lastTime = new Date().getTime();

 // Generate some random delay
 var randomNumber = Math.floor(Math.random()*1000)+5000;
 for (var i=0; i<randomNumber; i++) {
 var a = new Array();
 }

 // We will run only 15 experiments
 if (q==15) {
 clearInterval(timer);
 }
}
</script>

<div id="content">
</div>

</body>
</html>

236 | Chapter 8: JavaScript Mobile

http://

As shown in Figure 8-4, the real times are very different on different devices. On low-
and mid-end devices, if they work at all, the result is far from our 200 ms intention—
some low-end devices don’t even accept timers with a frequency of less than 1 second.

Figure 8-4. Timers will not always have the frequency we want.

Table 8-11 shows which browsers support timers, and how they handle the timers when
the page is in the background.

Table 8-11. Timers support compatibility table

Browser/platform Timers available Timers in background

Safari Yes Stopped. From iOS 4.0: continue working while in other browser's window.

Android browser Yes Stopped.

Symbian/S60 Yes Stopped. From 2.2: continue working while in other browser's window.

Nokia Series 40 No

webOS Yes Continue working.

BlackBerry No

NetFront Yes No multitasking.

Coding JavaScript for Mobile Browsers | 237

http://

Browser/platform Timers available Timers in background

Internet Explorer Yes Stopped.

Motorola Internet Browser No

Opera Mobile Yes Continue working.

Opera Mini No

The Gmail for Mobile team discovered some issues with timer behavior
on mobile Safari and Android devices, and made the results public in
the team blog at http://www.mobilexweb.com/go/timers. The conclu-
sions are: for low-frequency timers (1 second or more), there are no
performance issues, and you can add as many as you want; for high-
frequency timers (for example, 100 ms), though, every new timer cre-
ated makes the UI more sluggish. The preferred solution is to use only
one high-frequency timer.

Waking up

As we discussed in the previous section, on most devices timers (and all JavaScript
execution) are paused when the web page is sent to the background. I have an iPod
Touch, and in Safari I always have my email open in one of the eight possible tabs (or
windows). When I want to browse to another website, I change to another tab but leave
that one open. That means my email can be frozen for several hours or even days, until
I go back to that tab. As developers, this raises an important issue: when our web pages
are put into the background, how can we detect when they should “wake up” again?

Neil Thomas, a software engineer from Google working in the Gmail for Mobile team,
has published a very simple and clever solution using a high-frequency timer and a
global variable for calculating the time elapsed between calls to that timer. Because the
time will not fire when the application is in the background, if we detect that the delta
time from the last execution is greater than a certain threshold value we can assume
that the timer firing again indicates that the application has just woken up from
hibernation.

Remember to use a large value for the threshold after deciding that the
page has gone to sleep. Otherwise, depending on the tasks being done,
the engine behind the browser, and the device hardware, it may take
longer for the JavaScript code that’s executing to complete than the time
defined for the timer.

This is Thomas’s public code (with a little variation from me). An explanation can be
found at http://www.mobilexweb.com/go/timers:

// The time, in ms, that must be "missed" before we
// assume the app has been put to sleep.

238 | Chapter 8: JavaScript Mobile

http://www.mobilexweb.com/go/timers
http://www.mobilexweb.com/go/timers
http://

var THRESHOLD = 10000;

var lastTick_;
var detectWakeFromSleep_ = function() {
 var now = new Date().getTime();
 var delta = now - this.lastTick_;
 if (delta > THRESHOLD) {
 // The app probably just woke up after being asleep.
 notifyWakeFromSleep(delta/1000);
 }
 lastTick_ = now;
};

In the notifyWakeFromSleep method, you can decide what to do based on the received
parameter telling you how many seconds have passed since the last active state. You
may want to do different things if the delta time is 10 seconds or 1 day (86,400 seconds).
For example, after a big delta you might want to show a warning or a loading animation
while new results are fetched using Ajax.

There is one situation where we won’t have the opportunity to wake up.
If the device is running out of memory and our page is in the back-
ground, it is possible that the browser will delete the page state to release
memory, and when the user comes back to it our page will be loaded by
URL as a new session.

Remember that after waking from sleep, the document and the script are in the same
state (including their HTML content and JavaScript variables) as they were before going
to sleep. iOS before 4.0 doesn’t support multitasking, but Safari stores the state of every
window even when it is closed.

Changing the title

In desktop web applications, it is common to change the title dynamically to alert the
users of a change in the page, when updates are made in an Ajax application, or simply
as an animation (please, don’t do this!).

In mobile browsers, this isn’t such a good idea, for the following reasons:

• Many browsers don’t even display the title.

• If the user is working with many tabs at the same time, dynamically changing the
title won’t be useful because your web page will be frozen when it is in the back-
ground.

• Animations in the title can be annoying in a mobile browser.

Regular expressions

Regular expressions are a great way to validate input and perform other tasks. They are
included in the JavaScript 1.5 standard, but some low- and mid-end devices may not

Coding JavaScript for Mobile Browsers | 239

http://

include regular expression algorithms. Still, Table 8-12 shows that this is a very com-
patible feature across browsers.

Table 8-12. Regular expression compatibility table

Browser/platform Regexps available

Safari Yes

Android browser Yes

Symbian/S60 Yes

Nokia Series 40 Yes

webOS Yes

BlackBerry Yes

NetFront Yes

Internet Explorer Yes

Motorola Internet Browser Yes

Opera Mobile Yes

Opera Mini Yes

Cookie management

Cookies are a great solution for the problem of statelessness in HTTP. As you’ll see in
Table 8-13, they work on practically all modern devices. This is good. The bad thing
is that the lifetime of a cookie can be shorter in the mobile ecosystem than in the desktop
world, especially in low- and mid-end devices, because of the lack of memory storage.

It is recommended to maintain cookies’ values at below 2 KB for the
best compatibility in mobile devices.

Cookies are normally stored and read by the server, but JavaScript also allows us to
read and write them as a client-side storage mechanism. As Table 8-13 shows, all the
major platforms support cookie management from script code.

Table 8-13. Client-side cookies compatibility table

Browser/platform Cookie management

Safari Yes

Android browser Yes

Symbian/S60 Yes

Nokia Series 40 Yes

webOS Yes

BlackBerry Yes

240 | Chapter 8: JavaScript Mobile

http://

Browser/platform Cookie management

NetFront Yes

Internet Explorer Yes

Motorola Internet Browser Yes

Opera Mobile Yes

Opera Mini Yes

DOM
The Document Object Model is an increasingly common part of mobile development.

Versions

Two main DOM versions are available for mobile browsers:

• DOM Level 1 HTML

• DOM Level 2 HTML & Core

DOM Level 1 has been deprecated as a standard, but it still works in desktop and some
mobile browsers. I remember using it in the ’90s, before it was replaced by DOM
Level 2.

DOM Level 1 allows a series of array collections as objects in the document for accessing
all the elements in the document. The collections are:

• images

• applets

• links

• forms

• anchors

It also defines the document.getElementById and document.getElementsByName methods.
In DOM Level 1, it is common to access a form’s input values using the syntax docu
ment.forms[0].input_name.value, supposing a unique form.

DOM Level 2 added some new methods, and it is the most commonly used version
today for mobile browsers. DOM Level 3 added events, validation, and XPath support,
but it’s not compatible with most mobile browsers.

Browsing

Table 8-14 shows compatibility for DOM browsing methods in the different mobile
browsers.

Coding JavaScript for Mobile Browsers | 241

http://

Table 8-14. DOM support compatibility table

Browser/ platform DOM HTML collecs. getElementById getElementsByTagName childNodes

Safari Yes Yes Yes Yes

Android browser Yes Yes Yes Yes

Symbian/ S60 Yes Yes Yes Yes

Nokia Series 40 before 6th edition No Yes No No

Nokia Series 40 after 6th edition No Yes Yes Yes

webOS Yes Yes Yes Yes

BlackBerry No Yes No before 4.6 Yes

NetFront No Yes Yes Yes

Internet Explorer Partial Yes Yes Yes

Motorola Internet Browser No Yes No Yes

Opera Mobile Yes Yes Yes Yes

Opera Mini Yes Yes Yes Yes

Query selectors

Query selectors are a way to use CSS selectors to retrieve an element result list from the
DOM. This mechanism is very popular when using the jQuery JavaScript library, and
it is included natively as an extension in some WebKit-based browsers and Firefox 3.5
for desktop. At the time of this writing query selectors are covered in a W3C draft
known as Selectors API Level 1.

A query is made using document.querySelector(selector) for unique results, or docu
ment.querySelectorAll(selector) for many possible return values. For example:

var items = document.querySelectorAll("ul.menu > li");
var option = document.querySelector('#form1 input[type="radio"]:checked');

Many browsers have moved ahead to support query selectors, as shown in Table 8-15.

Table 8-15. CSS-style query selector compatibility table

Browser/platform Query selector support

Safari Yes

Android browser Yes

Symbian/S60 No

Nokia Series 40 No

webOS Yes

BlackBerry No

NetFront No

Internet Explorer No

242 | Chapter 8: JavaScript Mobile

http://

Browser/platform Query selector support

Motorola Internet Browser No

Opera Mobile Yes

Opera Mini Yes

Changing properties

DOM for HTML defines an object representing each HTML tag with properties for
each HTML attribute. Many browsers support this, as you’ll see in Table 8-16. For
example, we can create an image gallery album by changing the src property of an
img tag every 2 seconds. When you change a property that defines a change in a resource,
the browser needs to get the new resource at that time. The following code demon-
strates:

<body>

<script type="text/javascript">
var timer = setInterval(changeImage, 2000);
var currentImage = 0;

function changeImage() {
 // We have 5 images, from 0 to 4
 currentImage = (currentImage + 1) % 5;
 document.getElementById("album").src = currentImage + ".png";
}
</script>

</body>

If the mobile browser supports CSS Sprites, we can make the same al-
bum by changing the style.backgroundPosition property to move the
window to a different part of the image.

Table 8-16 shows which browsers support changing properties dynamically.

Table 8-16. Changing properties dynamically compatibility table

Browser/platform Support for changing properties

Safari Yes

Android browser Yes

Symbian/S60 Yes

Nokia Series 40 No before 6th edition

webOS Yes

BlackBerry No before 4.6

Coding JavaScript for Mobile Browsers | 243

http://

Browser/platform Support for changing properties

NetFront Yes

Internet Explorer Partial

Motorola Internet Browser Yes

Opera Mobile Yes

Opera Mini Yes (on the server)

Changing content

The most common usage of Dynamic HTML is to change the content of an element
using the innerHTML property (or the simpler innerText). For example, you may want
to use it to replace content in or add content to an element. Table 8-17 shows which
browsers currently support this property.

Table 8-17. innerHTML property compatibility table

Browser/platform Support for innerHTML

Safari Yes

Android browser Yes

Symbian/S60 Yes

Nokia Series 40 No before 6th edition

webOS Yes

BlackBerry No before 4.6

NetFront Yes

Internet Explorer Yes

Motorola Internet Browser Yes

Opera Mobile Yes

Opera Mini Yes (on the server)

Preloading images

It is common in Dynamic HTML documents to preload images in memory if we are
going to use them later in the same document (e.g., in the previous image gallery). This
is typically done using code like the following:

var image = new Image(100,25);
image.src = "image_url";

Then, when we use the same src in another image, the resource should already be
present in the cache. Table 8-18 shows which devices support preloading.

244 | Chapter 8: JavaScript Mobile

http://

Table 8-18. Preloading images compatibility table

Browser/platform Support for preloading images

Safari Yes

Android browser Yes

Symbian/S60 Yes

Nokia Series 40 No before 6th edition

webOS Yes

BlackBerry No before 4.6

NetFront Yes

Internet Explorer Yes

Motorola Internet Browser No

Opera Mobile Yes

Opera Mini Yes

Adding and removing elements

The alternative to using innerHTML to insert elements inside another element is to use
DOM methods to add objects as children. The next script will remove all of a list item’s
children and replace them with a link:

var items = document.getElementsById("li");
for (int i=0; i<items.length; i++) {
 for (int j=0; j<items[i].childNodes; j++) {
 items[i].removeChild(items[i].childNodes[j]);
 }
 var a = document.createElement("a");
 a.href = "go.html";
 a.innerHTML = "Item " + i;
 items[i].appendChild(a);
}

Table 8-19 shows how this works in mobile browsers.

Table 8-19. Adding and removing elements in DOM compatibility table

Browser/platform Support for appendChild and removeChild

Safari Yes

Android browser Yes

Symbian/S60 Yes

Nokia Series 40 No before 6th edition

webOS Yes

BlackBerry No before 4.6

NetFront Yes

Internet Explorer Yes

Coding JavaScript for Mobile Browsers | 245

http://

Browser/platform Support for appendChild and removeChild

Motorola Internet Browser No

Opera Mobile Yes

Opera Mini Yes

For the best mobile performance, use innerHTML instead of using DOM
methods for adding, moving, and removing elements.

Scripting Styles
Changing content with JavaScript is useful, but sometimes it’s easier to use styles from
JavaScript to make things appear and disappear and change their appearance.

Changing styles

With DOM support, we can read and dynamically change every inner CSS style using
style and its subproperties, like backgroundColor, textAlign, and margin. We can also
change CSS styles using the className property of every element. Table 8-20 explores
which browsers support changing the class, removing the class, and applying multiple
classes using a space (e.g., class1 class2).

Table 8-20. Changing CSS dynamically compatibility table

Browser/platform Support for changing styles and classes dynamically

Safari Yes

Android browser Yes

Symbian/S60 Yes

Nokia Series 40 No before 6th edition

webOS Yes

BlackBerry No before 4.6

NetFront Yes

Internet Explorer Yes

Motorola Internet Browser Partial

Opera Mobile Yes

Opera Mini Yes

Showing and hiding styles

Table 8-21 shows which browsers support showing and hiding block content using
element.style.display='none' or element.style.display='block'. We can also use

246 | Chapter 8: JavaScript Mobile

http://

style.visibility, but in this case the block will still occupy the box without showing
its contents.

Table 8-21. Showing and hiding elements compatibility table

Browser/platform Support for showing/hiding content

Safari Yes

Android browser Yes

Symbian/S60 Yes

Nokia Series 40 No before 6th edition

webOS Yes

BlackBerry No before 4.6

NetFront Yes

Internet Explorer Yes

Motorola Internet Browser No

Opera Mobile Yes

Opera Mini Yes

Event Handling
One of the most frequently used features of JavaScript is event handling, whether we
define it inside the HTML document or by using code. Let’s see how mobile browsers
work with this way to execute script code.

Managing events

We can define event handling in scripts using the following methods, browser support
for which is listed in Table 8-22:

• Using HTML attributes, like onclick="alert('sample')"

• Using the JavaScript object property, element.onclick = function() {}

• Using the DOM addEventListener method

Microsoft uses the attachEvent property of the element instead of the
DOM addEventListener method in Internet Explorer.

Coding JavaScript for Mobile Browsers | 247

http://

Table 8-22. Event registration compatibility table

Browser/platform HTML attribute Object property addEventListener

Safari Yes Yes Yes

Android browser Yes Yes Yes

Symbian/S60 Yes Yes Yes

Nokia Series 40 Yes No before 4.6 No before 4.6

webOS Yes Yes Yes

BlackBerry Yes No before 4.6 No

NetFront Yes Yes No

Internet Explorer Yes No No

Motorola Internet Browser Yes No No

Opera Mobile Yes Yes Yes

Opera Mini Yes, with server

postback

Load and unload events

The famous onload event is available for any HTML element, but it is best used in the
body element. We’ll test compatibility over different types of elements.

The onunload event is less famous. In theory it should work for every element, but again
the most useful usage is applied to the body element (document object) to detect when
the user is navigating away from our document.

In modern browsers, the onunload event does not work as we might want (I remember
many battles against the onunload event when a new pop-up was opened every time I
closed one), and it has been replaced by the nonstandard onbeforeunload. The
onbeforeunload event is useful for alerting the user about unfinished work so she doesn’t
lose any changes she’s made on the page before going back or browsing to another
URL. To do this, it is generally used with a confirm dialog.

Table 8-23 reports on the compatibility of all of these events across browsers.

Table 8-23. Load events compatibility table

Browser/platform body (load) body (unload) body (beforeunload) img (load)

Safari Yes Yes No Yes

Android browser Yes Yes Yes Yes

Symbian/S60 Yes Yes No Yes

Nokia Series 40 Yes No No No before 6th edition

webOS Yes Yes Yes Yes

BlackBerry Yes No No Yes

248 | Chapter 8: JavaScript Mobile

http://

Browser/platform body (load) body (unload) body (beforeunload) img (load)

NetFront Yes Yes No Yes

Internet Explorer Yes Yes No Yes

Motorola Internet Browser No No No No

Opera Mobile Yes No No Yes

Opera Mini Yes No No No

Click events

The onclick event is the most-used event on the Web. In mobile sites, we have to test
it to see where it can best be used. We know that there are focus-based, touch-based,
and cursor-based browsers. The last ones are the simplest for click events: every time
the user moves the cursor arrow and then presses FIRE or any other similar key, an
onclick event is generated. In focus-based browsers, it is recommended to use the
onclick event only in clickable elements, such as links or buttons, because the focus
will not be active on other elements (such as div, p, or li elements).

The input type button should be used with care when developing for
low-end devices. Some Series 40 devices require a form tag for every
input to be rendered, and some Motorola devices use these buttons as
submit buttons, so pressing them causes the form to be submitted.

For touch devices, the behavior is simple, too: every touch (finger- or stylus-based) is
transferred as a click over the screen. Table 8-24 reports on how different devices sup-
port these events.

Table 8-24. Click event compatibility table

Browser/platform a img div li

Safari Yes Yes Yes Yes

Android browser Yes Yes Yes Yes

Symbian/S60 Yes on touch and cursor browsing

Nokia Series 40 No before 6th edition

webOS Yes Yes Yes Yes

BlackBerry Yes No No before 4.6 No

NetFront Yes Yes Yes Yes

Internet Explorer No No No Yes

Motorola Internet Browser Yes, they are all converted to buttons

Opera Mobile Yes Yes Yes Yes

Opera Mini Yes Yes Yes Yes

Coding JavaScript for Mobile Browsers | 249

http://

If the user is using a finger to touch the screen, you need to be aware
that the click coordinates can change during the touch (depending on
how the user presses the screen), and the precision will not be good. Use
big areas as clickable ones.

On touch devices, if you want to detect a double-tap gesture, you shouldn’t
use the nonstandard ondblclick event; in most cases it will not work and it will also
fire an onclick. The best solution (also compatible with non-touch devices) is to im-
plement a tap–double tap detection pattern using the following code sample:

var doubletapDeltaTime_ = 700;
var doubletap1Function_ = null;
var doubletap2Function_ = null;
var doubletapTimer = null;

function tap(singleTapFunc, doubleTapFunc) {
 if (doubletapTimer==null) {
 // First tap, we wait X ms to the second tap
 doubletapTimer_ = setTimeout(doubletapTimeout_, doubletapDeltaTime_);
 doubletap1Function_ = singleTapFunc;
 doubletap2Function_ = doubleTapFunc;
 } else {
 // Second tap
 clearTimeout(doubletapTimer);
 doubletapTimer_ = null;
 doubletap2Function_();
 }
}

function doubletapTimeout() {
 // Wait for second tap timeout
 doubletap1Function_();
 doubleTapTimer_ = null;
}

We can use the previous library like this:

supposing tapOnce and tapTwice are two previously declared global functions.

In general, in a nonclickable element no events will be generated, while
in clickable elements events are fired in the order onmouseover, onmouse
down, onmouseup, onclick.

Alternatively, we can use it from JavaScript as follows:

element.onclick = function() {
 tap(
 function() {
 // This is the code for the first tap
 },

Double tap.

250 | Chapter 8: JavaScript Mobile

http://

 function() {
 // This is the code for the second tap
 }
);
}

Remember that implementing touch and hold (or long press) handling
can cause problems in some touch browsers because the browser is al-
ready capturing this event for contextual menus. You can only apply it
in text blocks with user-selectable disabled.

Safari as of iOS 2.0 has multitouch support. The user can
touch the screen with up to five fingers at the same time (11 fingers on the iPad) and
the JavaScript code will receive the event for this. For multitouch detection, we should
not use the standard onclick event. Instead, we should replace it with the following
nonstandard events:

• ontouchstart

• ontouchmove

• ontouchend

• ontouchcancel

The Android browser also supports these touch events, but the multi-
touch support depends on the hardware and software implementation.

When we capture these events, we will receive them both for single touches and mul-
titouches. Every time the user presses a finger on the screen, ontouchstart will be exe-
cuted; if she moves one or more fingers, ontouchmove will be the event to capture; and
when the user removes her fingers, ontouchend will be fired. What about ontouchcan
cel? A touch cancel event is executed if any external event with more priority than our
website (e.g., an alert window, an incoming call, or a push notification) cancels the
operation.

If you are creating a game, a drawing application, or some other solution
capturing touches, it is very important to remember the ontouchcancel
event and to pause or stop the touch behavior when this event fires.

The four multitouch events receive the same event object (TouchEvent) as a parameter.
It contains a touches array representing the coordinates of each touch on the page; each
array element is an object with pageX and pageY properties. If the device is not multi-
touch-enabled, you will receive an array of only one element.

Touch and multitouch events.

Coding JavaScript for Mobile Browsers | 251

http://

A typical scenario, then, will be:

<div
 ontouchstart="touchStart(event);"
 ontouchmove="touchMove(event);"
 ontouchend="touchEnd(event);"
 ontouchcancel="touchCancel(event);">
</div>

A touch sequence begins with the first finger and ends with the last
finger. The touch events will be delivered to the same object that re-
ceived the ontouchstart, no matter where the current touches are
located.

The first thing we may want to do in all events is to cancel the default behavior of Safari
for the gesture the user is doing. This can be done with the TouchEvent parameter:

event.preventDefault();

The TouchEvent object supports the array collections shown in Table 8-25.

Table 8-25. TouchEvent collections

TouchEvent attribute Description

touches All the touches actually on the screen

targetTouches Only the touches inside the target element of the event

changedTouches Only the touches that changed since the last event call (useful in ontouchmove and ontou

chend or to filter only new or removed touches)

When the user lifts a finger from the screen, that touch will be available in
changedTouches but not in the other collections. In Android, the removed touch is also
available in the touches collection.

Every Touch object has the properties outlined in Table 8-26.

Table 8-26. Properties of the Touch object

Touch attribute Description

clientX, clientY Touch coordinates relative to the viewport

screenX, screenY Touch coordinates relative to the screen

pageX, pageY Touch coordinates relative to the whole page, including the scroll position

identifier A number for identifying the touch between event calls

target The original HTML element where the event was originated

The following sample will show a blue 20px circle below each finger touching the
screen:

252 | Chapter 8: JavaScript Mobile

http://

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>iPhone Multitouch</title>
<meta name="viewport" content="width=device-width; initial-scale=1.0;
 maximum-scale=1.0; user-scalable=0;">
<style type="text/css">
 .point {
 width: 20px;
 height: 20px;
 position: absolute;
 -webkit-border-radius: 10px;
 background-color: blue;
 }

</style>
<script type="text/javascript">
function touch(event) {
 event.preventDefault();
 for (var i=0; i<event.touches.length; i++) {
 var top = event.touches[i].pageY-10;
 var left = event.touches[i].pageX-10;
 var html = "<div class='point' style='left: " + left +
 "px ; top: " + top + "px'></div>";

 document.getElementById("container").innerHTML += html;
 }
}

function clean() {
 document.getElementById("container").innerHTML = "";
}

</script>

</head>

<body>

<div ontouchstart="touch(event)" ontouchend="clean()" id="container"
 style="background-color:red; width: 300px; height: 300px">

</div>

</body>
</html>

Focusable and form events

Table 8-27 shows support for the onfocus, onblur, onchange, and onsubmit (only for
forms) events on different mobile browsers.

Coding JavaScript for Mobile Browsers | 253

http://

Table 8-27. Form events compatibility table

Browser/platform onfocus onblur onchange onsubmit

Safari Yes Yes Yes Yes

Android browser Yes Yes Yes Yes

Symbian/S60 Yes Yes Yes Yes

Nokia Series 40 Yes No No Yes

webOS Yes Yes Yes Yes

BlackBerry Yes Yes Yes Yes

NetFront Yes Yes Yes Yes

Internet Explorer Yes No Yes Yes

Motorola Internet Browser No No No No

Opera Mobile Yes Yes Yes Yes

Opera Mini No Yes No Yes

Over events

The over events include mouseover and mouseout and are typically used for creating a
hover effect when the cursor is over an element. Usage of these events in mobile websites
is discouraged for must-have features, because they will only work on cursor-based
browsers. Touch and focus devices don’t have an “over” state; it should be replaced by
an active state or a focus one for focus-based browsers.

Safari on iOS also supports the onmousewheel event when the user is
scrolling the element using two fingers at the same time.

Resizing, scrolling, and orientation change events

When the user activates scrolling over the document, some browsers fire the
onscroll event from the document as a whole. Others also support the onresize event,
which fires when the window size is changed. Users cannot resize mobile browser win-
dows in the way they can resize desktop application windows, but a resize can be
generated if the orientation of the device changes from portrait to landscape or vice
versa.

Using percentage values for widths is a good mobile design practice. It
automatically works on all devices and allows your application to re-
adapt automatically to any orientation. Unfortunately, some devices
(like the Nokia N70) have some bugs with percentage values so the block
still wraps around content, creating an awful horizontal scroll.

254 | Chapter 8: JavaScript Mobile

http://

As of iOS 2.0, Safari also offers the onorientationchange window event and an orien
tation property. This property has a value of 0 in portrait mode, 90 in landscape mode,
and −90 in inverse landscape mode. We can use this to make changes in the DOM or
use the body class pattern mentioned in Chapter 12 to change the whole layout:

if (window.onorientationchange) {
 window.onorientationchange = function() {
 var orientation = window.orientation;
 switch(orientation) {
 case 0: // Portrait
 break;
 case 90: // Landscape to the left
 break;
 case −90: // Landscape to the right
 break;
 }
 }
}

Nokia N97 home screen widgets are just web documents that fire the
onresize event when going from full screen to home screen mode and
vice versa.

If the device isn’t an iPhone and supports onresize, we can detect the change using the
following code:

if (window.onresize) {
 if (screen.width>screen.height) {
 // Landscape
 } else {
 // Portrait
 }
}

Table 8-28 lists the browsers’ compatibility with the onscroll and onresize events.

Table 8-28. Scroll and resize events compatibility table

Browser/platform onscroll onresize

Safari Yes Yes

Android browser Yes Yes

Symbian/S60 Yes Yes, also when the toolbar hides

Nokia Series 40 No No

webOS Yes Yes

BlackBerry No In some devices

NetFront No No

Internet Explorer No No

Coding JavaScript for Mobile Browsers | 255

http://

Browser/platform onscroll onresize

Motorola Internet Browser No No

Opera Mobile No Yes

Opera Mini No No

Key events

Key events—onkeypress, onkeyup, and onkeydown—allow us to detect keypresses over
the whole page (body) or in one element (generally, a text input). On compatible mobile
devices, this can be useful for many situations:

• To provide keyboard shortcuts

• To provide navigation or movement in a game or application

• To enable form submission on Enter or another keypress

• To disallow some characters in a text input

If we are going to prevent a key from being used, we should be very careful. Remember
that devices can have very different keyboards. Some devices have only virtual key-
boards, some numeric, and some QWERTY, and key code management across plat-
forms can be a little tricky.

Table 8-29 shows the compatibility of key events over the body and in a text input.

Table 8-29. Key events compatibility table

Browser/platform Support for onkeypress, onkeyup, and onkeydown
Support for onkeypress in a text
input

Safari No Yes

Android browser Yes, but it also opens address bar Yes

Symbian/S60 Yes Yes

Nokia Series 40 Yes No

webOS Yes, but it also opens address bar Yes

BlackBerry Yes No

NetFront No No

Internet Explorer Yes No

Motorola Internet Browser No No

Opera Mobile No Yes

Opera Mini No No

If the device has a QWERTY keyboard we can also detect some modifier
keys (if they exist), like Ctrl, Alt, or Shift, using the event properties.

256 | Chapter 8: JavaScript Mobile

http://

A simple test for getting key codes can be created using the following code:

<script type="text/javascript">
window.onkeyup = function(event) {
 // charCode depends on modifiers (as shift), keyCode not
 var code = event.keyCode ? event.keyCode : event.charCode;
 alert("code: " + code +
 " - ASCII value: " + String.fromCharCode(code));
};
</script>

In Safari on iOS, while the focus is inside a text input with the
keyboard visible onscreen, we can capture every key pressed using only keyCode. Ta-
ble 8-30 shows some important codes.

Table 8-30. Useful keyCodes in Safari

Key keyCode

Backspace/Del 127

Enter 10

Space 32

There are Android and webOS (Palm) devices with physical keyboards, and others
without them. The possible special key values for all these devices are shown in Ta-
ble 8-31.

Table 8-31. Android and webOS useful keyCodes

Key keyCode

Backspace/Del 8

Enter 13

Space 32

The Nokia N97 has a full QWERTY keyboard, but the letters don’t provide the correct
ASCII values unless the user presses the Shift key at the same time. For example, the
H and I keys provide the same keyCode (56) but different charCodes. The default Unicode
values for the charCodes are the numeric or symbol values of the keys (typically used
with the Sym key). If the user is using the onscreen keyboard (only available as a pop-
up window when a form has focus), every character typed is delivered (regardless of
whether it was entered on the numeric keyboard, by touch recognition, or by predictive
text). Table 8-32 shows the common codes.

Useful keys for some devices.

Coding JavaScript for Mobile Browsers | 257

http://

Table 8-32. Symbian 5th edition useful keyCodes

Key keyCode charCode

Backspace 8 8

Enter 13 13

Space 32 32

Up 38 63497

Down 40 63498

Left 37 63495

Right 39 63496

Fire N/A 63557

Even if we can capture keypresses, remember that special keys (Menu,
Call, End, Volume) are generally out of our scope as web developers.
We cannot detect those keys.

Symbian 3rd edition devices (including the Nokia N95, E61, and so on) are non-touch
devices with numeric keypads. The few keys we can capture on such devices are shown
in Table 8-33.

Table 8-33. Symbian 3rd edition useful keyCodes

Key keyCode charCode

Clear 8 8

Send N/A 63586

Cursor and Fire N/A N/A

Preventing default behavior

For almost every event, we can prevent the default behavior by using the event.pre
ventDefault method or capturing the event and returning false. This is commonly done
with the onsubmit event, to cancel the submission when something doesn’t validate, or
to cancel a link. For example:

Go to news

The preceding code is a standard link to news.html, but if JavaScript is supported we
can capture the onclick event, call a local function (that can get the news by Ajax), and
cancel the normal behavior of the link by returning false. This avoids a page load and
reduces network traffic.

We can also prevent a key from being used by cancelling the onkeyup event. This feature
must be used very, very carefully, and only on tested devices.

258 | Chapter 8: JavaScript Mobile

http://

Table 8-34 shows which browsers support these three common scenarios.

Table 8-34. Preventing default event behavior compatibility table

Browser/platform onsubmit onclick on links onkeyup

Safari Yes Yes Partial

Android browser Yes Yes No

Symbian/S60 Yes Yes Partial

Nokia Series 40 Yes Yes No

webOS Yes Yes Partial

BlackBerry Yes Yes No

NetFront Yes Yes Yes

Internet Explorer Yes Yes No

Motorola Internet Browser Yes Yes No

Opera Mobile Yes Yes No

Opera Mini Yes Yes No

Touch Gestures
A gesture is a way of combining finger movements over the screen to fire an action,
instead of using a simple touch or click. A complete touch (or mouse) move-capturing
feature is required in order for gestures to be registered, and to be perfectly honest,
today only mobile Safari and the Android browser offer good support.

If the users need to use a gesture in your web application, it is important to train them
in what to do by showing a help message, a sample animation, or some other kind of
hint, as shown in Figure 8-5.

Swipe gesture

The swipe (also known as flip) gesture is a touch-based browser technique typically
used for going forward and backward. For example, it is used in many photo galleries
to change the currently displayed image, and in presentations to move from slide to
slide. The gesture is simply a finger moving across the x-axis from left to right or right
to left (a horizontal swipe) or along the y-axis from top to bottom or bottom to top (a
vertical swipe). It is a one-finger gesture, so it is compatible with almost any touch
device.

There is no standard event that captures the swipe action, so we need to emulate it
using standard events.

Coding JavaScript for Mobile Browsers | 259

http://

On Symbian 5th edition touch devices, strange behavior results for the
mouse down, move, and up events when a finger is used instead of the
cursor. The onmousemove event is fired only once in a finger drag opera-
tion, and the onmouseup event doesn’t fire if the finger is moved from the
original mouse-down coordinates. So, different approaches are needed
for swipe detection.

The steps will be:

1. Capture onmousedown (or ontouchstart for iPhone and compatible browsers) and
start a gesture recording.

2. Capture onmousemove (or ontouchmove for iPhone and compatible browsers) and
continue the gesture recording if the move is on the x-axis (or y-axis), within a
certain threshold. Cancel the gesture if the move is on the other axis.

3. Capture onmouseup (or ontouchend for iPhone and compatible browsers) and, if the
gesture was active and the difference between the original and final coordinates is
greater than a predefined constant, define a swipe to one direction.

Figure 8-5. Google Fast Flip is a news reviewer that uses gestures on iPhone and Android devices. On
the left, you will see the alert dialog with instructions on how to use it. You will see the instructions
only once.

260 | Chapter 8: JavaScript Mobile

http://

The last item can be replaced with an on-the-fly verification of the gesture inside the
onmousemove event.

If you use jQuery, there is a free plug-in available at http://plugins.jquery
.com/project/swipe to detect horizontal swiping on iPhone devices.

We can create an unobtrusive, object-oriented library for swipe detection compatible
with iPhone, Android, and other devices with the following code:

/**
 Creates a swipe gesture event handler
*/
function MobiSwipe(id) {
 // Constants
 this.HORIZONTAL = 1;
 this.VERTICAL = 2;
 this.AXIS_THRESHOLD = 30; // The user will not define a perfect line
 this.GESTURE_DELTA = 60; // The min delta in the axis to fire the gesture

 // Public members
 this.direction = this.HORIZONTAL;
 this.element = document.getElementById(id);
 this.onswiperight = null;
 this.onswipeleft = null;
 this.onswipeup = null;
 this.onswipedown = null;
 this.inGesture = false;

 // Private members
 this._originalX = 0
 this._originalY = 0
 var _this = this;
 // Makes the element clickable on iPhone
 this.element.onclick = function() {void(0)};

 var mousedown = function(event) {
 // Finger press
 event.preventDefault();
 _this.inGesture = true;
 _this._originalX = (event.touches) ? event.touches[0].pageX : event.pageX;
 _this._originalY = (event.touches) ? event.touches[0].pageY : event.pageY;
 // Only for iPhone
 if (event.touches && event.touches.length!=1) {
 _this.inGesture = false; // Cancel gesture on multiple touch
 }
 };

 var mousemove = function(event) {
 // Finger moving
 event.preventDefault();
 var delta = 0;

Coding JavaScript for Mobile Browsers | 261

http://plugins.jquery.com/project/swipe
http://plugins.jquery.com/project/swipe
http://

 // Get coordinates using iPhone or standard technique
 var currentX = (event.touches) ? event.touches[0].pageX : event.pageX;
 var currentY = (event.touches) ? event.touches[0].pageY : event.pageY;

 // Check if the user is still in line with the axis
 if (_this.inGesture) {
 if ((_this.direction==_this.HORIZONTAL)) {
 delta = Math.abs(currentY-_this._originalY);
 } else {
 delta = Math.abs(currentX-_this._originalX);
 }
 if (delta >_this.AXIS_THRESHOLD) {
 // Cancel the gesture, the user is moving in the other axis
 _this.inGesture = false;
 }
 }

 // Check if we can consider it a swipe
 if (_this.inGesture) {
 if (_this.direction==_this.HORIZONTAL) {
 delta = Math.abs(currentX-_this._originalX);
 if (currentX>_this._originalX) {
 direction = 0;
 } else {
 direction = 1;
 }
 } else {
 delta = Math.abs(currentY-_this._originalY);
 if (currentY>_this._originalY) {
 direction = 2;
 } else {
 direction = 3;
 }
 }

 if (delta >= _this.GESTURE_DELTA) {
 // Gesture detected!
 var handler = null;
 switch(direction) {
 case 0: handler = _this.onswiperight; break;
 case 1: handler = _this.onswipeleft; break;
 case 2: handler = _this.onswipedown; break;
 case 3: handler = _this.onswipeup; break;
 }
 if (handler!=null) {
 // Call to the callback with the optional delta
 handler(delta);
 }
 _this.inGesture = false;
 }

 }
 };

262 | Chapter 8: JavaScript Mobile

http://

 // iPhone and Android's events
 this.element.addEventListener('touchstart', mousedown, false);
 this.element.addEventListener('touchmove', mousemove, false);
 this.element.addEventListener('touchcancel', function() {
 _this.inGesture = false;
 }, false);

 // We should also assign our mousedown and mousemove functions to
 // standard events on compatible devices
}

This is a simple example of usage of our last library, swipe.js, with a div with horizontal
swipe detection and another div with vertical swipe detection:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Swipe Gesture Detection</title>
<meta name="viewport" content="width=device-width; initial-scale=1.0;
 maximum-scale=1.0; user-scalable=0;">
<script type="text/javascript" src="swipe.js"></script>
<script type="text/javascript">

window.onload = function() {
 var swipev = new MobiSwipe("vertical");
 swipev.direction = swipev.VERTICAL;
 swipev.onswipedown = function() { alert('down'); };
 swipev.onswipeup = function() { alert('up'); };

 var swipeh = new MobiSwipe("horizontal");
 swipeh.direction = swipeh.HORIZONTAL;
 swipeh.onswiperight = function() { alert('right'); };
 swipeh.onswipeleft = function() { alert('left'); };
}

</script>

</head>

<body>

<div style="width: 100%; height: 150px; background-color: blue" id="vertical">
Vertical Swipe
</div>
<div style="width: 100%; height: 150px; background-color: red" id="horizontal">
Horizontal Swipe
</div>

</body>
</html>

Coding JavaScript for Mobile Browsers | 263

http://

Many touch devices use the drag gesture to scroll inside the page con-
tents and don’t support the preventDefault feature (see “Preventing de-
fault behavior” on page 258 earlier in this chapter). That is why we
should consider other ways to navigate instead of swipe gestures.

Zoom and rotate gestures

One of the coolest features of the iPhone when it was presented as a new phone was
the zoom and rotate gesture. Using a pinching gesture with two fingers, the user can
zoom in and zoom out on content (generally a picture), and using two fingers moving
in a circle, he can rotate that picture.

For non-multitouch devices, we should provide zoom features using
normal floating buttons or with a slider.

Fortunately, from iOS 2.0, Safari allows us to detect these gestures without using low-
level math in the touch events. There are three WebKit extensions available as events,
listed in Table 8-35. The Android browser has also added support for these events.

Table 8-35. Events available for touch handling

Event Description

ongesturestart Fired when the user starts a gesture using two fingers

ongesturechange Fired when the user is moving her fingers, rotating or pinching

ongestureend Fired when the user lifts one or both fingers

The same events are used for rotate and zoom gestures. All three events receive a
GestureEvent parameter. This parameter has typical event properties, and the addi-
tional properties scale and rotation.

The scale property defines the distance between the two fingers as a floating-point
multiplier of the initial distance when the gesture started. If this value is greater than
1.0 it is a pinch open (zoom in), and if it is lower than 1.0 it is a pinch close (zoom out).

The rotation value gives the delta rotation from the initial point, in degrees. If the user
is rotating clockwise we will get a positive degree value, and we’ll get a negative value
for a counter-clockwise rotation.

I know what you’re thinking right now: “Great! Rotation and zoom. But we’re working
in HTML, so what we can do with that?” CSS extensions for Safari on iOS (and other
compatible browsers) come to our help with one attribute, -webkit-transform, and two
functions available for manipulating its value: rotate and scale.

264 | Chapter 8: JavaScript Mobile

http://

The rotate function receives a parameter in degrees, and we need to define the deg unit
after the number (e.g., rotate(90deg)). We can define it from a script using ele
ment.style.webkitTransform.

Let’s look at a simple sample:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Gesture Management</title>
<meta name="viewport" content="width=device-width; initial-scale=1.0;
 maximum-scale=1.0; user-scalable=0;">

<script type="text/javascript">
function gesture(event) {
 // We round values with two decimals
 event.target.innerHTML = "Rotation: " + Math.round(event.rotation*100)/100
 + " Scale: " + Math.round(event.scale*100)/100;
 // We apply the transform functions to the element
 event.target.style.webkitTransform = "rotate(" + event.rotation%360 + "deg)" +
 " scale(" + event.scale + ")";
}

</script>

</head>

<body>

<div ongesturechange="gesture(event)" style="background-color:silver; width: 300px;
 height: 300px">

</div>

</body>
</html>

The sample works as shown in Figure 8-6. You can rotate and scale the div (with all its
contents) using two fingers on compatible devices. What’s the only problem? The
transform style is always applied to the original element. So, if we apply a scale of 2.0
to the element and later apply a second scale of 0.5, the new scale value will be 0.5 and
not 1.0, as we might expect.

For typical zoom-rotate relative behavior, we should change our function to the
following:

<script type="text/javascript">
var rotation = 0;
var scale = 1;

function gesture(event) {
 event.target.innerHTML = "Rotation: " +
 Math.round((event.rotation+rotation)*100)/100

Coding JavaScript for Mobile Browsers | 265

http://

 + " Scale: " + Math.round((event.scale*scale)*100)/100;
 event.target.style.webkitTransform = "rotate(" + (event.rotation+rotation)%360
 + "deg)" + " scale(" + event.scale*scale + ")";
}

function gestureend(event) {
 rotation = event.rotation+rotation;
 scale = event.scale*scale;
}

</script>

</head>

<body>

<div ongesturechange="gesture(event)" ongestureend="gestureend(event)"
 style="background-color:silver; width: 100%; height: 300px">

</div>

Figure 8-6. Combining touch events with CSS transformations, you can have rotation and scale
features in your website.

266 | Chapter 8: JavaScript Mobile

http://

CHAPTER 9

Ajax, RIA, and HTML 5

Wow! Ajax, HTML 5, and RIA? How do these things fit together on a mobile device?
We all know that Ajax is just a JavaScript technique, so that part is obvious. For mobile
browsers, HTML 5 is also more or less a JavaScript thing, with some bonus markup
features (the new technologies borrowed by the mobile browsers from the HTML 5
draft are almost all new JavaScript APIs that will work with HTML). Rich Internet
Application development also involves the implementation of some JavaScript UI pat-
tern designs.

Ajax Support
Ajax is especially important for mobile devices. The ability to download only the data
to be updated and avoid unnecessary page loads is key for mobile browsers. However,
Ajax is not part of the official standards, and support can vary from device to device.

If your mobile website gets content using Ajax, you should implement
Google’s proposal for search engine optimization (SEO). You can find
more information about this at http://code.google.com/web/ajaxcrawl
ing.

Let’s first verify the browsers’ support for the XMLHttpRequest native object (see
Table 9-1). Cross-domain requests are not compatible with mobile browsers today
because of supposed security problems, but you can bypass this problem with a simple
proxy on your server.

267

http://code.google.com/web/ajaxcrawling
http://code.google.com/web/ajaxcrawling
http://

Table 9-1. XMLHttpRequest support compatibility table

Browser/platform XMLHttpRequest support

Safari Yes

Android browser Yes

Symbian/S60 Yes since 3rd edition

Nokia Series 40 No before 6th edition

webOS Yes

BlackBerry No before 4.6

NetFront No before 3.5

Internet Explorer Yes since Windows Mobile 5

Motorola Internet Browser No

Opera Mobile Yes since 8.0

Opera Mini Yes since 3.0

When we say that the object is available, we are talking about full support for the
following properties and methods:

• open

• abort

• send

• onreadystatechange

• readyState

• status

• responseText

XML Parsing
The property (standard in desktop Ajax) we left out from the previous list is
responseXML. That is because XML parsing is a more complex mechanism inside the
browser and can have some problems. The first difference we need to verify is how the
browsers treat whitespace inside tags. Let’s look at a simple example:

<node>
 <subnode />
</node>

Some browsers understand that the previous code is a node with only one child, the
subnode. Other XML parsers believe that there are three children: a text node with
spaces (and a newline character), the subnode, and another text node. This difference
can be a little difficult to debug if we are not aware of it. Table 9-2 shows which browsers
support XML parsing, and the nature of that support.

268 | Chapter 9: Ajax, RIA, and HTML 5

http://

Table 9-2. XML parsing compatibility table

Browser/platform XML parsing support Spaces as children

Safari Yes Yes

Android browser Yes Yes

Symbian/S60 Yes Yes

Nokia Series 40 No before 6th edition Yes

webOS Yes Yes

BlackBerry No before 4.6 Yes

NetFront Yes from 3.6 Yes

Internet Explorer Yes No

Motorola Internet Browser No Yes

Opera Mobile Yes Yes

Opera Mini Yes, on the server Yes

JSON Parsing
JavaScript Object Notation (JSON) is the most lightweight solution for Ajax because
it allows us to use dot notation for object access, rather than the DOM parsing required
for other techniques, such as XML. We receive the JSON as text with responseText and
convert it to an object using eval. So, the first question is: how well does eval work on
mobile devices?

We need to test eval support for JSON objects using the strict standard and the de
facto standard used on and compatible with most browsers. The differences between
the two are shown in this code, and Table 9-3 reports on whether they worked:

// Strict standard
var obj = {
 'name': 'John',
 'surname': 'Doe'
}
// De facto standard
var obj = {
 name: 'John',
 surname: 'Doe'
}

Table 9-3. JSON parsing compatibility table

Browser/platform eval with JSON (strict and de facto standards)

Safari Yes

Android browser Yes

Symbian/S60 Yes

Nokia Series 40 No before 6th edition

Ajax Support | 269

http://

Browser/platform eval with JSON (strict and de facto standards)

webOS Yes

BlackBerry No before 4.6

NetFront Yes

Internet Explorer Yes

Motorola Internet Browser Yes

Opera Mobile Yes

Opera Mini Yes

For low- and mid-end devices with Ajax support it is not recommended
to create more than two connections to the server at the same time. If
possible, try to keep the number of simultaneous connections to the
minimum.

JSONP and Lazy Loading
JSON with Padding (JSONP) is a very modern technique for accessing a third-party
domain’s content without the cross-domain problems of Ajax requests. Many public
web services are offering this new way of communicating with third-party servers.

JSONP uses a script tag generated by JavaScript to a URL with a parameter we define,
generally for a local callback function to be called when the script (and the data it
fetches) is downloaded and executed.

A very similar technique is used for scripting code: you download only a subset of the
scripts in the initial download, and then you download the other scripts that you will
need later.

JSONP needs one feature to be working on the browser: the ability to insert a script
dynamically from JavaScript. If this feature works, the browser should detect the new
DOM script element and automatically download and execute this new resource. As
this script will call your function with the data, you will be able to receive data from a
third-party server.

Modern JavaScript libraries such as jQuery support JSONP requests
without dealing with DOM. You can use $.getJSON with a parameter to
replace an Ajax query with a JSONP query.

Generally, the third-party server offers some URL to use JSONP as format. For example:

http://api.thirdpartyserver.domain/<jsonp_script>?<callback>=<our_function>

The server will respond with something like this:

270 | Chapter 9: Ajax, RIA, and HTML 5

http://

<our_function>({<json_data>});

We can test if a mobile browser detects the dynamic creation of script elements using
the following code:

function doJSONP() {
 var head = document.getElementsByTagName('head')[0];
 var script = document.createElement('script');
 script.type = 'text/javascript';
 script.src = 'http://mobilexweb.com/tests/jsonp?cb=finished';
 head.appendChild(script);
}

Table 9-4 shows how well this works on the different browsers. Some browsers support
an onload event that can be applied to the script and will be executed when the script
is ready. JSONP doesn’t need this event because of the callback definition in the same
URL, but for lazy loading it can be useful on compatible browsers.

Table 9-4. Dynamic script loading compatibility table

Browser/platform Dynamic script loading support onload support

Safari Yes Yes

Android browser Yes Yes

Symbian/S60 Yes Yes

Nokia Series 40 No before 6th edition

webOS Yes Yes

BlackBerry Yes from 4.6 No

NetFront Yes No

Internet Explorer No

Motorola Internet Browser No No

Opera Mobile Yes Yes, and onreadystatechange

Opera Mini No

Comet Techniques
Comet is a new web application model that provides an alternative to the polling design
pattern used for making periodical checks for news on a server and similar tasks. With
this model, we can send long-lived HTTP requests that remain open until the server
has a response to give to the client.

For example, if we are showing a mailbox, we might want to check whether there are
new messages every x seconds. A Comet technique allows us to emulate a kind of push
technology where instead of us making a request every x seconds, we make only one
request and the server holds that request open until it has new data for us. This can
result in HTTP connections being held open for a very long time. This is only one kind
of Comet technique; there are others available, but they are not very reliable.

Ajax Support | 271

http://

Palm, BlackBerry, and Apple offer push services for developers: that is,
we can push messages or content from our servers to their servers, and
they will push the information to the devices. Unfortunately, these fea-
tures are not available for web applications in Palm and Apple’s solu-
tions.

These techniques are not recommended for mobile browsers yet. The main problem
will be 3G and 2.5G network connections: even if the server accepts them, Internet
gateways are not prepared for long-lived HTTP connections, and the proxies will ter-
minate the connections after a period of time.

If you are using a hung connection at the server as a Comet solution, be
aware that only Symbian 5th edition, mobile Safari, Windows Mobile
6.5, and Android give predictable results. On Series 40 6th edition and
other devices, the browser hangs with the request, so the user cannot
even click on a link.

There are also some Adobe Flash solutions that work by opening sockets to receive
news from the server. This will only work when Flash Player 10.1 has become wide-
spread, though, and using WiFi. 3G networks will not be reliable for these situations.
We will also need to be careful about battery consumption.

JavaScript Libraries
The life of a JavaScript programmer has changed radically since 2006, with the ap-
pearance of Ajax and hundreds of libraries that help us work better with this language.
Many of these libraries modify or add complete new behaviors to the language, creating
new languages inside (or over) JavaScript.

If the libraries are based on JavaScript, and mobile browsers support JavaScript, why
do we care? The answer is that many of these libraries rely on some not-so-clear things
in the standard, and while they have been prepared and tested on well-known desktop
browsers (Internet Explorer, Firefox, Safari, Chrome, Opera), they have not been tested
on all the mobile browsers. And as we’ve already seen, some DOM features (for ex-
ample) are missing in many mobile browsers.

That is the first reason why we need to be careful about using big JavaScript libraries.
The second (no less important) reason is the impact on download and execution times.
As mentioned earlier, these libraries modify the language and the behavior of objects,
and even if we don’t use any (or very little) of a library’s code, the library will need to
load itself completely, which takes time. This can lead to performance problems in
some browsers, so we are going to test the time that typical libraries take to initialize
themselves on mobile browsers.

272 | Chapter 9: Ajax, RIA, and HTML 5

http://

Some libraries, in their complete form, are larger than 600 KB. We need
to be very careful about performance when using that code, as it will
increase network traffic, memory consumption, and execution time. If
you can, avoid those big libraries, or use only the code you need.

Table 9-5 shows the results for the jQuery, Prototype, Yahoo! UI, and Dojo libraries.
Remember that execution time will depend a lot on the hardware and CPU. These tests
are just intended to make you aware of the average time that including a library can take.

Table 9-5. JavaScript libraries average execution/load times in seconds

Browser/platform jQuery Prototype Yahoo! UI Dojo

Safari 1.8 0.2 0 0.1

Android browser 4 2.5 0.4 4.6

Symbian/S60 1.7 0.9 0.2 0.7

Nokia Series 40 Cannot be calculated

webOS 0.2 0.5 0.1 0.4

BlackBerry 6.2 5 0.8 7

NetFront 8 13.6 3.7 11.1

Internet Explorer 2 3 0.4 2

Motorola Internet Browser Not compatible

Opera Mobile 1.4 0.3 0.1 0.4

Opera Mini It can not be calculated, executed on the server

The conclusion is that you should avoid these libraries if you can. If you cannot avoid
them, use them only for smartphones, and be aware that some features and plug-ins
may not work properly.

Mobile Libraries
The good news is that many developers have released alternative libraries that are
geared for mobile devices and are lighter than the previous ones. There are also full
frameworks for mobile application development (mostly prepared for iPhone) that we
will cover later, like jQTouch, iUI, iWebKit, and Webapp.Net. These frameworks will
take care of the visualization, events, and interaction of our websites.

There are also other libraries that can replace jQuery and the others on mobile devices.
They are very light libraries that provide basic DOM, event, and Ajax support.

JavaScript Libraries | 273

http://

baseJS

baseJS is a lightweight library (8 KB) compatible with mobile Safari and other WebKit-
based browsers, available at http://paularmstrongdesigns.com/projects/basejs. It has only
been fully tested on Safari, from iOS 1.0 to 3.0.

baseJS provides a selector similar to jQuery’s, $(selector), and some similar methods,
like each, addClass, hasClass, removeClass, toggleClass, getXY, fire, and some Ajax
methods.

XUI

XUI is a simple JavaScript framework for building mobile websites that takes up only
6.7 KB compressed. It is available for free from http://xuijs.com and has been fully tested
on WebKit-based browsers and Opera Mobile. The developers are working on adding
support for IE Mobile and BlackBerry.

XUI is also similar to jQuery, but it is more powerful than baseJS. XUI uses x$ as the
main selector object and includes the methods listed in Table 9-6.

Table 9-6. XUI common methods for a selector query

Method Description

html(code) or html(loca

tion, code)

Defines the inner HTML (or other location, using the second option) of the elements. The

location is a string and can be one of the following: inner, outer, top, bottom,

before, after, or remove.

on(event, function) Registers an event listener. The event name can also be used directly as the method name

(e.g., click rather than on('click')). The events compatible are: click, load,

touchstart, touchmove, touchend, touchcancel, gesturestart,

gesturechange, gestureend, and orientationchange.

setStyle(property,

value)

Defines a CSS style.

getStyle(property,

optional_callback)

Reads the value of a property. If the selector has multiple elements, the callback will be

fired.

addClass(class_name) Adds a class to the elements.

removeClass(class_name) Removes a class from the elements.

css(object) Defines CSS styles using a JSON-style object having properties with values.

tween(object) Animates one or more CSS properties from one value to another defined in the object.

So, for example, we can capture an onclick for buttons with a class with the following
code:

x$('input.button').on('click', function(e){ alert('Ouch!') });

or with code like this, chaining the methods à la jQuery:

x$('input.button').click(function(e){ alert('Ouch!') })
 .html('Press Me! ').css({color: 'blue'});

274 | Chapter 9: Ajax, RIA, and HTML 5

http://paularmstrongdesigns.com/projects/basejs
http://xuijs.com
http://

For Ajax, XUI provides global xhr and xhrjson functions to create requests with options.

WebKit CSS Extensions
Safari on iOS is the most complex mobile browser at the time of this writing. As men-
tioned in Chapter 7, from version 2.0 of iOS it supports a great (and strange) group of
CSS extensions that allow us to use hardware-accelerated animations, transitions, and
even 3D effects in our websites. Some of these extensions also work with the Android
and webOS browsers, depending on the operating system version.

WebKit Functions
Many CSS attributes accept a function as a parameter. These functions are WebKit
extensions and are all hardware-accelerated.

The gradient-related functions listed here are not officially supported in
iOS, according to the Safari Reference Library. However, they work
properly from OS 3.0, and on older devices they will just use a plain
background.

The functions available for iPhone devices are listed in Table 9-7 (there are others, but
they work only in Safari for desktop). Some of these functions, such as scale and
rotate, are also available for the Android and webOS browsers.

Table 9-7. CSS functions available in Safari on iOS

Function Description

cubic-beizer(p1x, p1y, p2x,

p2y)

Specifies a cubic bezier timing function.

matrix(m11, m12, m21, m22, tX,

tY)

Specifies a matrix transformation of six values with two translation elements.

matrix3d(m00, m01, m02, m03,

m10, m11, m12, m13, m20, m21,

m22, m23, m30, m31, m31, m33)

Specifies a 3D matrix transformation of 4×4.

perspective(depth) Maps a viewing cube onto a pyramid whose base is far away from the viewer.

rotate(angle) Defines a 2D rotation around the origin of the element.

rotate3d(x, y, z, angle) Defines a 3D rotation with [x,y,z] as the direction vector of the rotation.

rotateX(angle) Specifies a clockwise rotation around the x-axis.

rotateY(angle) Specifies a clockwise rotation around the y-axis.

rotateZ(angle) Specifies a clockwise rotation around the z-axis.

scale(scaleX, [scaleY]) Performs a 2D scale operation.

WebKit CSS Extensions | 275

http://

Function Description

scale3d(scaleX, scaleY,

scaleZ)

Performs a 3D scale operation.

scaleX(value) Scales along the x-axis.

scaleY(value) Scales along the y-axis.

scaleZ(value) Scales along the z-axis.

skewX(angle) Performs a skew transformation around the x-axis.

skewY(angle) Performs a skew transformation around the y-axis.

translate(deltaX, [deltaY]) Specifies a 2D translation vector.

translate3d(deltaX, deltaY,

deltaZ)

Specifies a 3D translation vector.

translateX(value) Performs a translation around the x-axis.

translateY(value) Performs a translation around the y-axis.

translateZ(value) Performs a translation around the z-axis.

from(color) Specifies the initial color in a sequence.

to(color) Specifies the final color in a sequence.

color-stop(stop_percentage,

color)

Specifies an intermediate color to be used at the stop_percentage value in a

sequence.

-webkit-gradient(linear,

start_function, end_func

tion, [stop_function, ...])

Defines a linear gradient using a start point, a final point, and optional intermediate

points. This can be used in place of any image in CSS. Available from iOS 3.0.

-webkit-gradient(radial,

inner_center, inner_radius,

outer_center, outer_radius,

[stop_function, ...])

Defines a radial gradient with a center point (inner) and another point (outer) with

colors determined by a series of color-stop functions. Available from iOS 3.0.

CSS functions are not a new feature of CSS; they are available for every
browser. In fact, you are probably already familiar with some of the
standard functions, such as url(url_string) or rgba(red, green, blue,
alpha) for defining colors.

Gradients
From iOS 3.0, Safari supports CSS gradient extensions as functions anywhere we can
use an image (for a background, for example). Instead of using the url function to
provide the URL of the image, we can use the -webkit-gradient function to define a
linear or radial gradient to use as the background. This technique enables us to create
really nice backgrounds for titles, containers, and cells with minimal code. The same
code also works on the Android browser.

Some samples of gradient definitions include:

276 | Chapter 9: Ajax, RIA, and HTML 5

http://

/* Sun effect from top-right corner */
body {
 background: -webkit-gradient(radial, 50% −50, 0, 50% 0, 300, from(#676767),
 to(black)) black;
}

body {
 background: -webkit-gradient(radial, 100% −10, 50, 70% 0, 200,
 from(yellow), to(white)) #FFC;
}

/* Simple linear gradient */
li {
 background: -webkit-gradient(linear, 0% 0%, 0% 100%, from(#369), to(#3FF))
 #369;
}

/* Simple 3D effect */
h1 {
 background: -webkit-gradient(linear, 0% 0%, 0% 100%, from(#369), to(#369),
 color-stop(0.5, #58B));
}

For position values, we can use percentages, absolute values (without px), or the con-
stant values top, bottom, right, and left. For example, we can use top right as the
second parameter of the CSS function instead of 0% 0%. Figure 9-1 shows what these
examples might look like in the browser.

As of version 6.0, Mobile Internet Explorer supports filters and transi-
tions, using CSS extensions with the filter style. You can create alpha,
chroma, shadow, glow, mask, and other effects. For more information,
see http://www.mobilexweb.com/go/iefilter.

Reflection Effects
Reflection or mirror effects are among the most-used effects in Web 2.0 designs. They
can be used on any content, including images. Remember, though, that we are design-
ing for mobile screens and we don’t want to waste too much space.

The reflection image doesn’t change the layout or the size of the ele-
ment’s original content box. It is only part of the container’s overflow.

To create a reflection effect in Safari on iOS, use the -webkit-box-reflect attribute with
the following syntax:

-webkit-box-reflect: direction offset <mask-box-image>;

WebKit CSS Extensions | 277

http://www.mobilexweb.com/go/iefilter
http://

The direction can be above, below, left, or right; the offset is the distance (in px or
%) from the original element at which the reflection should appear; and the optional
mask-box-image is generally a gradient function that will work as a mask for the reflec-
tion image. If no mask image is defined, a normal mirror will be used.

The type of reflection effect typically seen on Web 2.0 websites has the following at-
tribute values:

-webkit-box-reflect: below 3px -webkit-gradient(linear, left top, left bottom,
from(transparent), color-stop(0.5, transparent), to(white));

Masked Images
As of iOS 3.0, we have access to a typical graphic design feature that has been missing
for years in web development: masked images. We can use a masked image to apply
any regular or irregular crop to the original image or, if using an alpha mask (or even
a gradient function), to create a really nice visual effect over any image, like a fuzzy
border. The mask properties are analogous to the background properties. For applying

Figure 9-1. With just CSS you can create different gradient effects for iPhone, iPod Touch, iPad, and
Android devices.

278 | Chapter 9: Ajax, RIA, and HTML 5

http://

a mask, we have a shortcut property, -webkit-mask, and specific properties for the
position.

The syntax of the shortcut version with all the optional parameters is:

-webkit-mask: attachment, clip, origin, image, repeat, composite, box-image;

Of course, we also have access to all the properties separately, like -webkit-mask-
attachment, -webkit-mask-clip, and so on. There are a lot of possibilities, but typically
an image (alpha or not, PNG or SVG) or a gradient function is used as the image value.
For example:

<img src="london.png" style="-webkit-mask-image:
 -webkit-gradient(linear, left top, left bottom, from(rgba(0,0,0,1)),
 to(rgba(0,0,0,0))); " />

Transitions
A transition is just an automatic animation that takes place when a CSS property’s value
changes. The property must be defined by the browser as able to animate (typically this
applies to position and size properties). There isn’t an official list of properties that
animations will work on, but the general policy is that any attribute with numerical or
color values should be animated using transitions. There are also a few exceptions, like
the visibility discrete property.

Remember, these transitions are defined entirely using CSS: we are not
using JavaScript or any other technique to create the animations. This
may sound a bit strange, but it is a simple and powerful technique.

The transitions framework is available for Safari (from iOS 2.0) and the Android
browser, and transitions have enhanced performance on these devices.

To create a transition, we should:

1. Define the transition properties (duration, delay, where to apply, timing function)
in the element(s) we want to animate.

2. Change the values of the attributes of the element(s) to animate using JavaScript,
or apply classes to or remove them from the element.

3. Verify that the animation is working.

Sounds simple, right? Let’s do it.

Animation properties

An animation can be defined using the shortcut property -webkit-transition, with the
following syntax:

WebKit CSS Extensions | 279

http://

-webkit-transition: property duration timing_function delay [, ...];

We can also use the specific properties listed in Table 9-8.

Table 9-8. WebKit transition properties

Property Description

-webkit-transition-property Defines which property or properties to animate. We can use a comma-

separated list, or the constant value all.

-webkit-transition-duration Defines the duration of the transition. The value can be 0 (no animation)

or a positive value in seconds (using s as the unit) or milliseconds (using

ms as the unit). If we want to define different timings for each property,

we can use a list of comma-separated values in the same order as the

-webkit-transition-property value.

-webkit-transition-delay Defines the offset delay of the animation beginning from the time when

the property was changed. This can be defined in seconds or milliseconds,

and the default value is 0. If a negative value is used, the animation starts

immediately but with some of the animation already done.

-webkit-transition-timing-function Defines the function used to calculate intermediate values from the initial

to the finish value of the property. You can use the CSS cubic-bez

ier function, or any of the following constants: ease, linear, ease-

in, ease-out, and ease-in-out (the most commonly used.)

For example, the following code produces a fade-in, fade-out animation:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Fade Sample</title>
<style>

#box {
 width: 200px;
 height: 200px;
 background-color: red;
 -webkit-transition: opacity 2s;
}

.hide {
 opacity: 0;
}

</style>
<script type="text/javascript">
function fade() {
 var box = document.getElementById("box");
 box.className = (box.className=="hide") ? "" : "hide";
 box.innerHTML = box.className;
}

280 | Chapter 9: Ajax, RIA, and HTML 5

http://

</script>

</head>
<body>

<h1>Fading</h1>
<input type="button" onclick="fade()" value="Hide-Show" />
<div id="box">
</div>
</body>
</html>

We can do similar transitions for resizing, relocation, color changes, or even 3D tran-
sitions using the transform properties that we will see in a minute.

Transition ending

The transition ending can be listened for from JavaScript just like any other DOM event,
using addEventListener. You can then initiate another transition or do something else
when you are sure that the animation has finished. The event to listen for is called
webkitTransitionEnd.

We can listen for it using the following code:

box.addEventListener('webkitTransitionEnd', function(event) {
 alert("Finished transition");
});

Animations
Transitions are great and are the simplest way to create animations for iPhone- and
Android-based devices. If you need finer animation control at the keyframe level, you
can do this using the CSS animation framework. To be completely honest, I thought
this was too much to be handled only by CSS, a nonprocedural and non-markup lan-
guage, but it works great.

WebKit animations are done with the shortcut property -webkit-animation, which has
the following syntax:

-webkit-animation: name duration timing_function delay iteration_count
direction

As you’ve probably guessed, there are also specific properties for each possible value,
listed in Table 9-9.

WebKit CSS Extensions | 281

http://

Table 9-9. WebKit animation CSS properties

Property Description

-webkit-animation-name Provides the name of the animation to be used by the keyframes.

-webkit-animation-duration Specifies the duration of the animation, in seconds or milliseconds.

-webkit-animation-timing-function: Defines the function used to calculate intermediate values between the

initial and final values of the property. You can use the CSS cubic-

bezier function or any of the following constants: ease, linear,

ease-in, ease-out, and ease-in-out (the most commonly used.)

-webkit-animation-delay Defines the offset delay of the animation beginning from the time when

the property was changed. This can be defined in seconds or milliseconds,

and the default value is 0. If a negative value is used, the animation starts

immediately but with some of the animation already done.

-webkit-animation-iteration-count Defines how many times the animation will be repeated. This can be 1

(the default value), any integer value, the special constant infinite,

or a float value.

-webkit-animation-direction Defines whether the animation will play in forward direction (normal)

or in alternate mode, playing forward on even iterations and in reverse

on odd iterations.

After reading this list of properties you are probably asking yourself, where is the ani-
mation defined? What will be animating? For these, the WebKit keyframe extensions
come into play.

If you are moving or scaling an object and you want it to be animated,
it is better to use the performance-accelerated -webkit-transform prop-
erty rather than the properties specified in the CSS standards.

Keyframe at-rule

To define how the animation will work and what it will do, we need to define a special
CSS at-rule called @-webkit-keyframes. This rule is followed by the animation name
(the one specified in -webkit-animation-name).

Inside the keyframe at-rule, we need to specify as many selectors or animation groups
as keyframes we want. The selector is defined by a percentage value or the constants
from (equivalent to 0%) and to (equivalent to 100%). Inside each selector, we define
all the properties and values that we want at that point in the animation. We can also
define the timing to use in every animation group using -webkit-transition-timing-
function.

When the animation finishes, the original values are restored. The ele-
ments will not maintain the last keyframe values after the animation
stops.

282 | Chapter 9: Ajax, RIA, and HTML 5

http://

For example, the following sample moves a div in a square path:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Fade Sample</title>
<style>

#box {
 width: 200px;
 height: 200px;
 background-color: red;
 position: absolute;
 top: 0px;
 left: 0px;
}

.squareAnimation {
 -webkit-animation-name: squarePath;
 -webkit-animation-duration: 4s;
 -webkit-animation-timing-function: linear;
 -webkit-animation-iteration-count: infinite;
}

@-webkit-keyframes squarePath {

 /* We can use 0% or "from" as selector */
 from {
 top: 0px;
 left: 0px;
 }

 25% {
 top: 0px;
 left: 100px;
 }

 50% {
 top: 100px;
 left: 100px;
 }

 75% {
 top: 100px;
 left: 0px;
 }

 /* We can use 100% or "to" as selector */
 100% {
 top: 0px;
 left: 0px;
 }

}

WebKit CSS Extensions | 283

http://

</style>
<script type="text/javascript">
 function start() {
 // When we apply the -webkit-animation attributes, the animation starts
 document.getElementById("box").className = "squareAnimation";
 }
</script>

</head>
<body onload="start()">

<h1>Moving over a square path</h1>
<div id="box">
</div>
</body>
</html>

If we define the -webkit-animation attributes in the element from the
beginning, the animation will begin when the page loads. The best
solution is to define animations as classes and, when we want to start
an animation, apply that class to the element.

So, to start the animation we apply the class, and if we want to stop it before it reaches
the ending value we should assign an empty value to the -webkit-transform-name prop-
erty.

We can define one animation that changes several properties, or use different anima-
tions with different names at the same time, each changing a single property.

Animation events

As with transitions, we can listen for the events webkitAnimationStart,
webkitAnimationIteration, and webkitAnimationEnd. When fired, they will send a
WebKitAnimationEvent object as a parameter. There is no event to capture each keyframe
change.

The event object has the special properties animationName and elapsedTime, whose value
is given in seconds.

Transformations
The last group of WebKit CSS extensions we’ll look at are the transformation functions.
We can apply these functions to any element to generate visual effects without using
images, canvas, or SVG. The transformation functions work in the Safari, Android, and
webOS browsers as of this writing.

The usage is very simple: we use the CSS property -webkit-transform, applying as a
value any of the CSS functions that we saw earlier in this section—for example, rotate,
scale, or translate3d (only for Safari).

284 | Chapter 9: Ajax, RIA, and HTML 5

http://

We can change the origin point of the transformation with the -webkit-transform-
origin property. The default value is the middle of the element (a value of 50% 50%).

Perspective

Setting a 3D perspective can be done using the perspective transformation function or
the special CSS property -webkit-perspective, which takes a value in pixels defining
the distance from the viewer’s perspective. If we use the latter option the perspective
will be applied to the children of the element, and if we use the transformation function
it will be applied to the element itself.

Transform style

The transformation can act differently with regard to its nested elements. We can con-
trol this behavior with the -webkit-transform-style attribute, which has two possible
values: float and preserve-3d. If float is used, the nested elements are flattened as if
they were an image and the perspective is applied to that image. With preserve-3d every
nested element will have its own 3D perspective, as seen in Figure 9-2.

Backface visibility

Backface? What? An element in HTML has a backface? It can in mobile Safari, for 3D
transformations defining the -webkit-backface-visibility CSS property. It is not what
you might think (two faces in the same element), but the effect can easily be
implemented.

3D transformations do not work on Android- and webOS-based devi-
ces; we should use them only when designing for the iPhone, iPod
Touch, or iPad.

The backface visibility property can be defined as hidden or visible. If hidden, when
we define a rotation of the y-axis of more than 180 degrees the element will disappear,
and we can make another element showing a backface appear in its place.

All transformations can also be applied using JavaScript, by changing
CSS styles or by using the WebKitCSSMatrix JavaScript class and defining
a couple of objects. The most simple and quick way is to define the
transformation as a string and apply it to element.style.webkitTrans
form.

The CardFlip pattern

This is one of the most “wow” visual features of Safari on iOS. The CardFlip pattern
allows us to show an element in a rectangular area and, when some event occurs,

WebKit CSS Extensions | 285

http://

perform a transformation that flips the element as if it were a poker card and shows
another element of the same size and in the same position as the backface.

Apple provides a full sample that can be used as the base template for designing this
kind of animation. You can download it from http://www.mobilexweb.com/go/cardflip.

A simplified version of the CardFlip sample looks like this:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Card Flip</title>
<style>
body {
 margin: 0px;
 -webkit-user-select: none;
}

Figure 9-2. Sample of transformations provided by Apple in the Safari Visual Effects Guide at http://
developer.apple.com/safari.

286 | Chapter 9: Ajax, RIA, and HTML 5

http://www.mobilexweb.com/go/cardflip
http://developer.apple.com/safari
http://developer.apple.com/safari
http://

#container {
 height: 356px;
 width: 320px;
 background-color: rgba(56,108,179, 0.5);

 /* Disable tap highlighting */
 -webkit-tap-highlight-color: rgba(0,0,0,0);

 /* Give some depth to the card */
 -webkit-perspective: 600;
}

.card {
 position: absolute;
 height: 300px;
 width: 200px;
 left: 60px;
 top: 28px;

 -webkit-transform-style: preserve-3d;
 -webkit-transition-property: -webkit-transform;
 -webkit-transition-duration: 1.5s;
}

.card.flipped{
 -webkit-transform: rotateY(180deg);
}

/* Styles the card and hides its "back side" when the card is flipped */
.face {
 position: absolute;
 height: 300px;
 width: 200px;
 -webkit-border-radius: 10px;
 -webkit-box-shadow: 0px 2px 6px rgba(0, 0, 0, 0.5);
 -webkit-backface-visibility: hidden;
}

.face > p {
 margin-top: 36px;
 margin-bottom: 0;
 text-align: center;
 font-size: 92px;
}

.front {
 color: rgb(78,150,249);
 background-color: rgb(34,65,108);
}

.back {
 color: rgb(34,65,108);
 background-color: rgba(78,150,249,0.5);
 /* Ensure the "back side" is flipped already */

WebKit CSS Extensions | 287

http://

 -webkit-transform: rotateY(180deg);
}
</style>
<script type="text/javascript">
function flip(event) {
 var element = event.currentTarget;
 /* Toggle the setting of the classname attribute */
 element.className = (element.className == 'card') ? 'card flipped' : 'card';
}
</script>

</head>
<body>
 <div id="container">
 <div id="card" class="card" onclick="flip(event)">
 <div id="front" class="front face">
 <p>♠ Ƈ
 ♣ Ɔ</p>
 </div>
 <div id="back" class="back face">
 <p>Ƈ ♠
 Ɔ ♣</p>
 </div>
 </div>
 </div>
</body>
</html>

Analyzing the code, we see two div elements inside a container called card. One div is
the “front” face and the other the “back” face. Both faces are positioned in the exact
same position (as absolute elements), and the back side starts with a y-axis rotation of
180 degrees. Both faces also define themselves as hidden when backfaced.

When the user clicks the card container (with either the front or back face displayed
on the screen), via JavaScript we apply (or not) the flipped CSS class, which rotates
both elements 180 degrees around the y-axis. And voilà! Only one face will be at the
front at any given time; the other will be automatically hidden. This process is done
with a beautiful, smooth animation, which you can’t quite see in Figure 9-3.

Mobile Rich Internet Applications
We are all comfortable with the RIA (Rich Internet Application) concept in the desktop
web and Web 2.0, but we can also create mobile RIAs. Some of the techniques used
are the same, and others are not: while all the Ajax pieces (strictly about network re-
quests) are the same, some UI and richness controls need to be redesigned for the mobile
world.

A mobile RIA is also called webapp, a term often used to define iPhone
web applications that emulate the native UI behavior and can include
offline work and home screen icon support.

288 | Chapter 9: Ajax, RIA, and HTML 5

http://

Problems with the devices, including lack of a big screen and lack of mouse support
(and the various kinds of mouse events), have made mobile RIA development more
tricky than we might have hoped. However, the richness in services (e.g., autosave
mechanisms for large text inputs) can be developed in the same way regardless of
whether the application is targeting desktop or mobile users.

Some UI design pattern concepts that work great in mobile RIAs include:

• Accordion

• Tab navigation

• Menu bars

• In-place editors

For other concepts we need to think twice and ponder alternative solutions. Imple-
menting the following can be more complex:

• Drop-down calendars for non-touch devices

• CSS modal pop-ups

• Flash-based interactions and menus

• WYSIWYG editors

• Rich datagrids

JavaScript UI Libraries
There are dozens of JavaScript UI libraries for implementing rich controls. The great
question is: do they work on mobile browsers? Table 9-10 show the results for six
libraries:

Figure 9-3. With 3D flipping you can use a beautiful 3D effect to display the backface of an element.

Mobile Rich Internet Applications | 289

http://

• Yahoo! UI (http://developer.yahoo.com/yui)

• jQuery UI (http://www.jqueryui.com)

• Sencha (formerly Ext JS) (http://www.sencha.com)

• Microsoft Ajax Control Toolkit (http://ajax.asp.net)

• Google Web Toolkit (http://code.google.com/webtoolkit)

• Adobe Spry (included in Adobe Dreamweaver; http://labs.adobe.com/technologies/
spry)

Table 9-10. UI libraries compatibility table

Browser/platform Yahoo! UI jQuery UI Sencha Control Toolkit GWT Adobe Spry

Safari Yes Yes Yes Yes Yes Yes

Android browser Yes Yes Partial Yes Yes Yes

Symbian/S60 Yes Yes Yes Yes Partial Yes

Nokia Series 40 No before 6th edition Yes Yes Yes Yes

webOS Yes Yes No Yes Yes Yes

BlackBerry No before 5.0 Yes Yes Yes Yes

NetFront No Yes Yes Yes Yes Yes

Internet Explorer No Yes Yes Yes Yes Yes

Motorola Internet Browser No Yes Yes Yes Yes Yes

Opera Mobile Partial Yes Yes Yes Yes Yes

Opera Mini Yes Yes Partial Partial Yes Yes

Mobile-specific UI libraries

Many UI libraries have appeared on the market in the past few years to facilitate mobile
RIA development. Unfortunately, most of them were designed for specific platforms,
but with minor changes or incompatibilities many of them should work on any device.

The browser with the most specific platform is mobile Safari, and lots of libraries allow
us to create rich applications emulating native control behaviors for iOS. Common UI
libraries for iPhone include:

• iUI (http://code.google.com/p/iui)

• jQTouch (http://jqtouch.com) and Sencha Touch (http://www.sencha.com/prod
ucts/touch)

• iWebKit (http://iwebkit.net)

• WebApp.Net (also officially compatible with Android; http://webapp-net.com)

• ciUI (a C-NET alternative to iUI; http://code.google.com/p/ciui-dev)

• Universal iPhone UI Kit: (http://code.google.com/p/iphone-universal)

• Magic Framework (http://www.jeffmcfadden.com)

290 | Chapter 9: Ajax, RIA, and HTML 5

http://developer.yahoo.com/yui
http://www.jqueryui.com
http://www.sencha.com
http://ajax.asp.net
http://code.google.com/webtoolkit
http://labs.adobe.com/technologies/spry
http://labs.adobe.com/technologies/spry
http://code.google.com/p/iui
http://jqtouch.com
http://www.sencha.com/products/touch
http://www.sencha.com/products/touch
http://iwebkit.net
http://webapp-net.com
http://code.google.com/p/ciui-dev
http://code.google.com/p/iphone-universal
http://www.jeffmcfadden.com
http://

• Safire (http://code.google.com/p/safire)

The only official Android libraries are WebApp.Net and Sencha Touch. The others
should work with Android, too, but there may be some bugs in animations and effects
(because of the Apple extensions in Safari).

Symbian devices have a new library that is optimized for widgets (discussed in Chap-
ter 12) but also works on browser-based documents for some of the controls available.
It is called the Guarana UI and is a jQuery UI–based library for the Symbian WRT
browser. The library is available at http://wiki.forum.nokia.com and a control UI tester
(for desktop browsers) can be found at http://www.jappit.com/m/guaranabrowser.

An updated list of UI libraries for mobile browsers can be found at http:
//www.mobilexweb.com/go/ui.

Let’s take a closer look at the two most often used libraries for iPhone: iUI and jQTouch,
shown in Figure 9-4.

Figure 9-4. With simple code we can create iPhone-like experiences like the ones shown here, using
iUI (left) or jQTouch (right).

Mobile Rich Internet Applications | 291

http://code.google.com/p/safire
http://wiki.forum.nokia.com
http://www.jappit.com/m/guaranabrowser
http://www.mobilexweb.com/go/ui
http://www.mobilexweb.com/go/ui
http://

iUI was one of the first libraries developed for iPhone-style application develop-
ment. It was developed by Joe Hewitt (http://www.joehewitt.com), member of the Face-
book developer’s team and author of the popular Firefox plug-in FireBug.

iUI is a very simple to use, nonintrusive JavaScript library, including CSS and assets
(generally backgrounds) that emulate the native iPhone application controls, anima-
tions, and application workflow.

The main features are:

• No JavaScript coding required

• Extends the behavior of standard HTML markup

• Overrides links and forms with Ajax requests

• Updates the page with smooth iPhone transitions with no code

The library uses the master-detail navigation method, copied from the UITableView
control from Cocoa Touch. UITableView is a native control in iPhone.

The main structure of an iUI website is just a simple HTML file that includes CSS and
JavaScript files and contains a div for the top toolbar and one ul for each “list page”
we want to show:

<!-- Leave this toolbar div with no changes -->
<div class="toolbar">
 <h1 id="pageTitle"></h1>

</div>
<!-- This is the home screen -->
<ul id="home" title="Home Page" selected="true">
 First
 Second
 Third
 Loaded by AJAX
 More...

<ul id="first" title="Other Screen">
 ... other options ...

... other pages

iUI uses the child element with selected="true" as the home screen when the page
loads the first time, and every link with a hash (#) is a link to another screen that loads
on the same page and is identified by the ID after the hash, à la WML card.

The toolbar is always present and the Back button works automatically, restoring the
previous screen’s title and using a smooth swipe animation to go back.

To reference an external file, we can use a normal link: it will load via Ajax and be
inserted below the toolbar. The external file should only have a ul or div element with-
out any other root tag.

iUI.

292 | Chapter 9: Ajax, RIA, and HTML 5

http://www.joehewitt.com
http://

We can also implement an in-site pagination design pattern using target="_replace".
This will load the href document using Ajax and insert its contents where the li with
the replace link is defined. This document should only have lis without any other root
element, and it should end with another replace link if there are more elements to
paginate.

Other advanced features that iUI supports include:

• Modal dialog pop-ups

• Form designs

• Emulation of native form controls

• Stripped tables

• Right toolbar button

You can find more samples of iUI usage at http://www.mobilexweb.com/go/iui.

jQTouch is a jQuery plug-in for iPhone web development that produces similar
results to iUI, but with more powerful graphics and animations. It is also unobtrusive,
but it does require some JavaScript code to initialize the page.

With some visual differences, it also works on the Android and webOS browsers.

The supported features include:

• Native WebKit animations using jQuery methods

• Callback events

• Flexible themes

• Swipe detection

• Extensions: floaty bar, geolocation, offline capability

• Visual controls

• Animations

To use jQTouch we need to first load jQuery 1.3.2 and then the jQTouch script with
two CSS files: the base file (jqtouch.min.css) and the visual theme we want to load. For
example:

<script type="text/javascript" src="http://www.google.com/jsapi"></script>
<!-- We load jQuery using the Google AJAX API -->
<script type="text/javascript"> google.load("jquery", "1.3.2"); </script>
<script type="text/javascript" src="jqtouch/jqtouch.min.js"></script>
<style type="text/css" media="screen">@import "jqtouch/jqtouch.min.css";</style>
<style type="text/css" media="screen">@import "themes/jqt/theme.min.css";</style>

To initialize the page, we can use:

<script type="text/javascript">
$.jQTouch({
 icon: 'iphone-icon.png',
 preloadImages: [

jQTouch.

Mobile Rich Internet Applications | 293

http://www.mobilexweb.com/go/iui
http://

 'themes/jqt/img/chevron_white.png',
 'themes/jqt/img/bg_row_select.gif',
 'themes/jqt/img/back_button_clicked.png',
 'themes/jqt/img/button_clicked.png'
]
});
</script>

There are dozens of properties we can define at the initialization. You can find a list at
http://code.google.com/p/jqtouch/w.

Chapter 12 will talk about how we can work in full-screen mode on an
iPhone, eliminating the mobile Safari UI and allowing our web appli-
cations to be first-class citizens of the iPhone’s home screen menu.

As in iUI, the main markup is done using top-level elements (in this case, div) with
ids and links with hashes for linking in the same document. For example:

<div id="home" class="current">
 <div class="toolbar">
 <h1>jQTouch</h1>
 About
 </div>
 <ul class="rounded">
 <li class="arrow">User Interface <small
 class="counter">4</small>
 <li class="arrow">Animations <small
 class="counter">8</small>
 <li class="arrow">AJAX <small
 class="counter">3</small>
 <li class="arrow">Callback Events <small
 class="counter">3</small>
 <li class="arrow">Extensions <small
 class="counter">4</small>
 <li class="arrow">Demos <small
 class="counter">2</small>

 <h2>External Links</h2>
 <ul class="rounded">
 <li class="forward"><a href="http://www.jqtouch.com/"
 target="_blank">Homepage
 <li class="forward"><a href="http://www.twitter.com/jqtouch"
 target="_blank">Twitter
 <li class="forward"><a href="http://code.google.com/p/jqtouch/w/list"
 target="_blank">Google Code

</div>

294 | Chapter 9: Ajax, RIA, and HTML 5

http://code.google.com/p/jqtouch/w
http://

JavaScript Mobile UI Patterns
Mobile devices have had to develop alternate paths for handling common tasks.

Clear text box button

In their native UIs, touch devices have added a very nice feature to text boxes: the
possibility of clearing all the text by touching a small X at the righthand side of the box
(as shown in Figure 9-5). This is especially useful because of the lack of a keyboard.
We can emulate this UI pattern easily by combining an image (or, as we’ll see later, a
canvas tag) and a little JavaScript code.

Figure 9-5. You can see this pattern implemented in the Yahoo! website for touch devices like the
iPhone.

To implement the clear button, we can use a 20×20-pixel image (great for inline images
in compatible devices) with the following CSS style. The image can be shown as a
div with a background image from the beginning, or only when the user starts typing.
It is important to add a right padding to the input box so the X is not overlapped by text:

Mobile Rich Internet Applications | 295

http://

<style type="text/css">
div.clearx {
 background: transparent url('clearx.png') no-repeat right;
 height: 20px;
 width: 20px;
 margin-top: −26px;
 position: absolute;
 left: 235px;
}
input.clearx {
 padding: 2px 40px 2px 10px;
 width: 200px;
 height: 24px;
}

</style>

The HTML should look like this:

<input type="text" id="search" placeholder="Enter your search"
 class="clearx" />
<div class="clearx"
 onclick="document.getElementById('search').value=''"></div>

Autogrowing textarea

This UI pattern was created by the Google Mobile team and is currently used in Gmail.
The problem is that if we have a large amount of text in a textarea, scrolling inside it is
very painful in some browsers (Safari on iOS is one of them). The solution is to grow
the textarea to fit the contents, so the user can use the normal page scrolling instead of
the textarea’s.

All of these JavaScript UI patterns can be created using a nonintrusive,
object-oriented approach with a little JavaScript work.

We can capture the onkeyup event and grow the textarea if necessary. We also need to
capture onchange, because pasting in iOS doesn’t generate an onkeyup event.

The complete solution is available at http://www.mobilexcode.com/go/autogrowing. The
code, borrowed from the Google Code Blog with a few changes, is:

<script>
// Value of the line-height CSS property for the textarea.
var TEXTAREA_LINE_HEIGHT = 13;

function grow(event) {
 var textarea = event.target;
 var newHeight = textarea.scrollHeight;
 var currentHeight = textarea.clientHeight;

296 | Chapter 9: Ajax, RIA, and HTML 5

http://www.mobilexcode.com/go/autogrowing
http://

 if (newHeight > currentHeight) {
 textarea.style.height = newHeight + 5 * TEXTAREA_LINE_HEIGHT + 'px';
 }
}
</script>
<textarea onkeyup="grow(event);" onchange="grow(event);" >
</textarea>

The Google Mobile team are doing a great job with mobile web UI pat-
terns and optimizations, and they release all the tips to the public in
their blog: http://googlecode.blogspot.com.

Floating bar

Scrolling a large mobile page just to access a button or a link at the top of the document
can be very painful. A floating bar is a great solution for avoiding this problem. A
floating bar is just a full toolbar, a drop-down menu, or a mixture of both that always
remains at the top (or bottom) of the page when the user scrolls the content.

It is not suitable for focus-based browsers, because there will be usability issues when
the user is tabbing between links.

We need to create a custom floating bar solution because of the lack of
position: fixed support in almost every mobile browser.

For floating bars to work, the browser needs to support the onscroll event. If the
browser supports this event the toolbar moving can be done automatically, using a
smooth animation on some browsers. You can decide whether to have the floating bar
appear at the beginning of the navigation or only after scrolling.

The steps to create a floating bar (also known as floaty bar) are:

1. Create a div with the content of the floaty bar.

2. Define it as hidden off the screen with negative top values.

3. Define a WebKit transition animation (this will work only on compatible devices).

4. Capture onscroll.

5. If the value of window.scrollY (the top position of the scroll) is near zero, hide or
move the div off the screen; if not, move the div (changing the top value) to the
scrollY position.

Mobile Rich Internet Applications | 297

http://googlecode.blogspot.com
http://

For mobile Safari, there is a solution that will have better performance:
instead of using a transition animation and changing the top value, we
can use the translateY function and do a transformation animation.
Transformations use hardware implementations for improved
performance.

The following code produces a floaty bar with animation for compatible devices, similar
to the one shown in Figure 9-6:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"><html
 xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Mobile Web Test Suite</title>
<style>

 p {
 font-size: xx-large;
 }

 #floaty {
 width: 200px;
 text-align: center;
 border: 2px solid red;
 -webkit-border-radius: 5px;
 background-color: silver;
 right: 0px;
 position: absolute;
 top: −50px;
 -webkit-transition: top 0.2s ease-out;
 }

</style>
<script type="text/javascript">
window.onscroll = function() {
 var floaty = document.getElementById("floaty");
 if (window.scrollY<10) {
 // It is near the top, so we can hide the floaty bar
 floaty.style.top = "-50px"; // out of the screen
 } else {
 floaty.style.top = window.scrollY + "px";
 }
}
</script>

</head>
<body>

<h1>Floaty Bar</h1>
<div id="floaty">
 This is a floaty bar

298 | Chapter 9: Ajax, RIA, and HTML 5

http://

</div>

<!-- Document goes here -->
</body>
</html>

Figure 9-6. Here you can see my Gmail spam folder with a nice floaty toolbar at the top-right corner.

Cascading menu

A cascading menu should be used for large toolbars and only for touch devices. It can
also be used in cursor-based browsers, but remember that in these browsers it may take
the user a while to get the desired zone of the screen using the navigation keys.

As these menus will typically be used on touch devices, we should not use mouseover
events to open and close the menu bar, and it is best to use onclick for both the opening
and closing actions. We can also hide the menu when the user selects an option, scrolls
the page, and moves the focus to another object.

A simple div show/hidden interaction with JavaScript will work, or (with care) you can
use a JavaScript library for this purpose.

Mobile Rich Internet Applications | 299

http://

Autocomplete

An autocomplete (or autosuggest) feature to reduce the user’s typing, like the one in
Figure 9-7, is a great feature, but it is not as simple to implement in a mobile site as it
is in a desktop site. There are two kinds of autocompletes: preloaded and Ajax-based.
The preloaded ones involve downloading all the possible values to suggest (not rec-
ommended for more than 2,000 values) and storing them in JavaScript variables and
then, if offline storage is available, storing them in the device for future usage.

Figure 9-7. Google.com autocomplete on an Android device.

The first problem is the issue of network latency and consumption. If the user is using
2G technologies (GPRS, EDGE), the latency for going to the server or for preloading
all the possible values can be long and costly. The second problem is the UI design, for
a few reasons: generating a floating div over other elements can be problematic in many
mobile browsers, and browsing between suggestions in non-touch devices can be
difficult.

If you are going to use a JavaScript-based autocomplete solution, re-
member to deactivate the browser’s standard autocomplete feature us-
ing autocomplete="off" in the text input.

All that aside, if we can save the users a lot of typing, we will be their heroes.

300 | Chapter 9: Ajax, RIA, and HTML 5

http://google.com
http://

So, the first conclusion is that this solution is recommended only for touch-enabled
smartphones, which we suppose are connected using WiFi or a 3G network. Next, we
need to think about the design. The recommendation is not to use a floating div over
other content, and instead to use a hidden div that replaces or pushes down the previous
content. This div will appear just below the text box, and there must be a close button
at the top-right corner.

Another thing to keep in mind for touch devices without QWERTY keyboards is that
when the user has the focus in the text box (and our autocomplete feature is working),
the virtual keyboard will be on the screen and there will not be much space available.
One solution that will ensure that as much space as possible is available for the sug-
gestion list is to scroll the document to the text box position when the user focuses in
the text box. This will leave the text input just at the top of the screen, and with the
keyboard at the bottom the middle will be open for our suggestion list (as we can see
in Figure 9-7).

For BlackBerry 5.0, we can create local autocomplete solutions using
the new HTML 5 datalist element, which we’ll cover later in this chap-
ter.

HTML 5
HTML 5 may not be finished yet, but it’s already transforming a wide variety of mobile
web development tasks.

The Standard
At the time of this writing, HTML 5 is a draft for the future standard for website markup.
It will replace both XHTML 1.1 and HTML 4.0, adding new markup, deprecating some
existing tags (like font and center), and adding some new JavaScript APIs. You can
find the latest documentation at http://dev.w3.org/html5.

Mobile browsers are very hungry for new features in web applications, and this hunger
has driven these browsers to have partial support of HTML 5 before it’s available in
desktop browsers. Many of the new elements that have been proposed (remember,
HTML 5 is still a draft and in discussion) are semantic tags intended to reduce divitis
(the abuse of the div tag). To this end, the draft standard includes new tags such as
section, article, footer, nav, video, audio, canvas, and command.

It also adds support for new types of form controls, including tel, search, url, email,
datetime, date, month, week, time, number, range, and color. For input tags, it also defines
the attributes placeholder, autofocus, required, autocomplete, and pattern. (We’ve al-
ready discussed many of these new attributes, in Chapter 6.)

HTML 5 | 301

http://dev.w3.org/html5
http://

Although this is not an HTML or JavaScript basics book, we are going
to get deeper into some of the new HTML 5 features because they are
new for almost every web developer. There are some new books ap-
pearing on the market for this new technology: visit http://www.oreilly
.com/css-html for the latest books in this area.

Unfortunately, with a few exceptions (as shown in Table 9-11), the HTML 5 support
in mobile browsers today is not about markup and attributes. It primarily includes the
JavaScript API additions.

However, many of the new semantic tags (e.g., section, article, or footer) can still be
used in smartphone browsers; they will just be ignored until support for them is added,
and in the meantime we can emulate the incompatible tags and event behavior using
CSS styles and JavaScript.

On compatible devices, the video and audio tags allow users to play the media object
defined using the src attribute without having Adobe Flash Player or any other plug-
in installed. This object can be managed through JavaScript (playing/pausing/stopping
and volume control). A great way to use progressive enhancement here is that the tags
allow us to insert children for noncompatible devices, and we can use another player
solution there:

<video src="video.avi" controls>
 <!-- This will be rendered on noncompatible browsers -->
 <object data="player.swf" type="application/x-shockwave-flash">
 <param value="video.flv" name="movie"/>
 </object>
</video>

Table 9-11 reports on browser support for HTML 5 tags, tag emulation, and form
controls.

Table 9-11. HTML 5 compatibility table

Browser/platform Official tag support Tag emulation Form compatibility

Safari canvas, audio, video Yes Partial: email, tel, phone, and number

input types

Android browser canvas Yes No

Symbian/S60 No Yes No

Nokia Series 40 No Yes No

webOS canvas Yes No

BlackBerry No Yes Yes, multiple input types from 5.0, datalist

support

NetFront canvas from 3.5 No No

Internet Explorer No Yes No

Motorola Internet Browser No No No

302 | Chapter 9: Ajax, RIA, and HTML 5

http://www.oreilly.com/css-html
http://www.oreilly.com/css-html
http://

Browser/platform Official tag support Tag emulation Form compatibility

Opera Mobile canvas Yes No

Opera Mini canvas Yes No

Editable Content
HTML 5 introduces an attribute called contenteditable that allows almost any text
HTML element to be edited by the user. For example:

<p contenteditable="true"> </p>
<div contenteditable></div>

The element will respond to text input events, like blur or focus. Almost all desktop
browsers support this attribute, including Internet Explorer 6, because it was originally
an extension of that browser. It has been used in many online tools for documents,
spreadsheets, and presentation management.

No mobile web browsers currently support the contenteditable attribute, but WebKit-
based browsers like Android and Safari can emulate this behavior using a textarea with
a -webkit-appearance of none:

<textarea style="-webkit-appearance: none"></textarea>

The CSS style will remove the default visual design of the textarea, including borders.

New Input Types
As Chapter 6 mentioned, HTML 5 adds new form input types that can be used on
compatible devices. Incompatible browsers will generally show a typical text input
instead.

The new input types include number, email, search, url, color, date, datetime, time,
week, month, and range.

Even when the new fields invite the user to insert dates and numbers, we will always
read the value as a string. The only difference from type="text" is some kind of visual
hint to help the user with filling in the field: for example, when the input is defined as
email the virtual onscreen keyboard changes to include an @, with range the user gets
a slider, and select lists are provided for date inputs.

At the time of this writing, only BlackBerry 5.0 has full support for these new input
types. Safari on iOS partially supports some of them, and it is very possible that other
platforms will add this support soon.

The types that have specific attributes are date and range (and other date-related types,
like month), which add two new attributes for limits: min and max. For example:

<input type="date" min="2010-01-01" max="2020-01-01" id="date" />
<input type="range" min="21" max="110" id="age" />

HTML 5 | 303

http://

These new controls also accept the step attribute—for example, showing every 10
minutes in a time input control—but it seems that at the time of this writing no mobile
browsers support it.

Data Lists
HTML 5 also adds a new datalist tag that is useful for autocomplete features. As of
this writing, only the BlackBerry browser included with version 5.0 or newer of the
operating system supports it.

We can define a data list with an ID and a set of child option elements:

<datalist id="dataCountries">
 <option>France</option>
 <option>Portugal</option>
 <option>Spain</option>
</datalist>

Then, we can use that list for suggestions in a text input, matching the list attribute
with the data list’s id:

<input type="text" id="txtCountry" list="dataCountries" />

The data list will not have any UI if it is not associated with one or more form elements.
When the user focuses on an associated text input, the browser will suggest options
regarding the data list.

On noncompatible browsers, the user may see the option’s values. We can replace
<option>value</option> with <option label="value" /> to avoid this problem.

The canvas Element
The possibility of a drawing API was the dream of every web designer in the ’90s, but
it has only recently become available in browsers. canvas is an HTML element that
defines a rectangular area where we can draw using a JavaScript API. The drawings are
not vector-based, and we cannot browse through them using DOM or any other mech-
anism. canvas is not a competitor for SVG; it’s just another way to generate dynamic
graphics in a browser window.

canvas was originally defined by Apple in WebKit, and it is the oldest
HTML 5 feature in the web developers’ world. You will find a lot of
resources on the Web on the usage of this element.

The only mandatory attributes are an id and the dimensions width and height:

<canvas width="300" height="300" id="canvas">
Here goes text, images, or other tags for noncompatible browsers
</canvas>

304 | Chapter 9: Ajax, RIA, and HTML 5

http://

The context

Once we have defined a canvas we get what is called a 2D context: a JavaScript object
that we can use for drawing bitmaps over that canvas.

Some desktop browsers add support for a very experimental 3D context,
where we can draw in 3D coordinates and the browser renders the
graphics. This is not available yet in mobile browsers.

We can get the context pointer using the following code, with the code checking for
API support first:

var canvas = document.getElementById('canvas');
if (canvas.getContext) {
 // canvas is supported
 var context = canvas.getContext('2d');
}

Lines and strokes

Once we have the context, we can define the line type using the color properties fill
Style and strokeStyle and the integer property lineWidth. Then we can start drawing.

Drawing methods

The available drawing methods of the 2D context are listed in Table 9-12.

Table 9-12. Drawing methods in the HTML 5 canvas context

Method Description

fillRect(x, y, width, height) Draws a filled rectangle with the current styles.

strokeRect(x, y, width, height) Draws a stroked rectangle with a transparent fill.

clearRect(x, y, width, height) Clears the area and makes it transparent.

beginPath() Begins a path drawing.

closePath() Closes the shape by creating a line from the first path line to the ending path line.

moveTo(x, y) Moves the pen to the coordinates for the next line in the path.

lineTo(x, y) Draws a line from the current pen coordinates to the ones provided.

arc(x, y, radius, startAngle,

endAngle, anticlockwise)

Draws an arc with its center at x, y and with the defined radius. The anti

clockwise parameter is a Boolean value. Angles are defined in radians.

quadraticCurveTo(controlx,

controly, x, y)

Draws a quadratic bezier curve.

bezierCurveTo(control1x,

control1y, control2x,

control2y, x, y)

Draws a cubic bezier curve.

stroke() Draws the path defined since the last beginPath().

HTML 5 | 305

http://

Method Description

fill() Closes the path defined since the last beginPath() and fills it.

drawImage(x, y) Draws an image (Image JavaScript object) on the canvas. Other optional pa-

rameters also exist.

createImageData(width, height) Creates an ImageData object with a data attribute that is an array of pixels to

be manipulated as integers.

getImageData(x, y, w, h) Gets an ImageData object from the current drawing to be manipulated.

putImageData(image_data, x, y) Puts an ImageData object into the drawing.

strokeText(string, x, y) Draws a stroked string.

fillText(string, x, y) Fills a string.

An excellent example of drawing curves on a canvas is provided by Mozilla’s docu-
mentation, which shows how to draw a dialog box with the following code:

context.beginPath();
context.moveTo(75,25);
context.quadraticCurveTo(25,25,25,62.5);
context.quadraticCurveTo(25,100,50,100);
context.quadraticCurveTo(50,120,30,125);
context.quadraticCurveTo(60,120,65,100);
context.quadraticCurveTo(125,100,125,62.5);
context.quadraticCurveTo(125,25,75,25);
context.stroke();

Remember that angles in the Canvas API are defined in radians, not
degrees. To make the conversion we can use the formula (Math.PI/
180)*degrees.

Advanced features

Some other advanced features for canvases include text shadowing, gradients, image
scaling, transparency, fonts, line styles, patterns, and other drawing methods. Not all
presently work with all canvas-compatible browsers, so running tests like the one
shown in Figure 9-8 is important.

Canvas compatibility

Table 9-13 lists browser support for basic canvas functionality. For more information,
samples, and code for canvas, visit http://www.mobilexweb.com/go/canvas.

306 | Chapter 9: Ajax, RIA, and HTML 5

http://www.mobilexweb.com/go/canvas
http://

Table 9-13. HTML 5 canvas compatibility table

Browser/platform Canvas support

Safari Yes

Android browser Yes

Symbian/S60 No

Nokia Series 40 No

webOS Yes, with partial text support

BlackBerry No

NetFront No

Internet Explorer No

Motorola Internet Browser No

Opera Mobile Yes

Opera Mini Yes, rendered on the server

Figure 9-8. A nice canvas drawing sample created using only a few lines of code.

HTML 5 | 307

http://

Offline Operation
HTML 5 allows us to create offline-capable websites using a mechanism known as
AppCache. The concept is very simple. The user first opens the website in normal online
mode, and it provides the browser with a predefined text file called the manifest file,
which lists all the resources (images, stylesheets, JavaScript, etc.) we want to be cached
for offline navigation in the future.

The next time the user visits the page, the browser will try to download the manifest
file again to see if it has changed. If it has not changed or there is no Internet connection,
the HTML document is loaded from the cache as well as all the resources in the
manifest.

Google Gears (available in Android) supports a LocalServer API that
emulates the offline manifest file with a JavaScript API. It will be re-
placed over time by HTML 5 in newer Android devices.

The architecture of our website will be exactly the same as if all the resources had been
downloaded from the server. Images, stylesheets, and JavaScript scripts will be loaded,
but they will be sourced from the cache instead of the server.

The manifest file

The manifest is a text file, served as text/cache-manifest and defined as the manifest
attribute of the html element:

<html manifest="oursite.manifest">

The file has to start with the line CACHE MANIFEST. This line can be followed by a series
of relative or absolute URLs that we want to be cached for offline availability. We can
comment lines by using a hash at the beginning of the line:

CACHE MANIFEST
This is a comment
ourscript.js
images/logo.gif
images/other_image.jpg
ourstyles.css

After the initial page load the only request the browser will send is for the manifest file,
to see if it has changed. If even a single character has changed, all the resources will be
downloaded again so the current versions are available for the next load or for a reload
action.

To ensure that the browser gets the most recent versions when any internal changes
are made to the listed resources as well as when files are added to or removed from the
list, the best and simplest way to update the manifest file is to use a comment with the

308 | Chapter 9: Ajax, RIA, and HTML 5

http://

last modified date, a version number, or a hash calculated from all the resources’
contents:

CACHE MANIFEST
Updated 2010-08-01

The standard also defined two subgroups inside the manifest file, but they do not work
very well today on mobile browsers. The three groups are the CACHE—the implicit group
we defined earlier—and the NETWORK and FALLBACK subgroups. In the network group we
can define a series of folders, domains, or files that will always be fetched from the
server, and in the fallback group we list a series of prefix (folder or resource) pairs. If
the browser fails to download any resource from the server, it will use the other folder
or resource defined in the same line.

Remember that the resources in the manifest will not be downloaded
again until we update the manifest file or invalidate the AppCache.

These groups are defined as follows:

CACHE MANIFEST
resources
NETWORK:
resources
FALLBACK:
folder_first_option folder_if_fail
CACHE:
This list is continuing the first resource list

Cache detection

window.applicationCache is the object JavaScript offers representing the AppCache en-
gine. It has a status property that tells us what is happening with the cache. The possible
values are listed in Table 9-14.

Table 9-14. Status of applicationCache object

Value Constant Description

0 UNCACHED This is the first load of the page, or no manifest file is available.

1 IDLE The cache is idle.

2 CHECKING The local manifest file is being checked against the server’s manifest file.

3 DOWNLOADING The resources are being downloaded.

4 UPDATEREADY The cache is ready.

To use AppCache, we should use the HTML 5 DOCTYPE (<!DOCTYPE
html>) in the HTML file.

HTML 5 | 309

http://

If the application cache status is 0 our document is loaded from the network; otherwise,
it is loaded from the application cache.

We can manually invoke the cache update process using the
applicationCache.update() method. However, the new resources will not be served
from the cache until the page is reloaded or we use the applicationCache.swapC
ache() method.

If your offline application needs to store custom images that are only
for one user (for example, pictures of the user’s contacts), you can create
a manifest file dynamically for each user or, even better, store the images
in base64 in offline storage for usage as inline images later.

Cache events

The applicationCache object supports many events, listed in Table 9-15.

Table 9-15. Events available for applicationCache

Event property Description

oncached Executed after the first update process finishes

onchecking Fired when the update process begins

ondownloading Executed when the resources begin downloading

onerror Fired when an error occurs in the cache

onnoupdate Executed when the update process has finished but the manifest file hasn’t changed from the previous load

onprogress Fired when each resource starts downloading

onupdateready Executed when the cache is ready after a new update process was started on an existing application cache

Debugging AppCache on iPhone
Debugging AppCache issues can be problematic at the beginning. To clear the cache
in iPhone, go to Settings→Safari→Clear Cache.

If you want to see what AppCache has inside, you can find a SQLite database in the
iPhone Simulator at /Library/Application Support/iPhone Simulator/User/Library/
Caches/com.apple.WebAppCache/ApplicationCache.db.

More information on AppCache debugging can be found at http://www.mobilexweb
.com/go/appcache.

Table 9-16 reports on browser compatibility with AppCache.

310 | Chapter 9: Ajax, RIA, and HTML 5

http://www.mobilexweb.com/go/appcache
http://www.mobilexweb.com/go/appcache
http://

Table 9-16. AppCache compatibility table

Browser/platform AppCache support

Safari Yes

Android browser Yes, from 2.0 (Gears before 2.0)

Symbian/S60 No

Nokia Series 40 No

webOS Yes

BlackBerry No

NetFront No

Internet Explorer No

Motorola Internet Browser No

Opera Mobile No

Opera Mini No

Web Workers is a possible HTML 5 feature that allows JavaScript to
execute different threads at the same time. At the time of this writing,
no mobile browser implements it.

Client Storage
Working offline is great, but there’s a problem: where should a web application store
vital statistics and other information when the device is not connected to the Internet?
And if the device is not connected to the Internet, how can our applications access
helpful databases or information? Client storage solutions come to our assistance, in
two flavors: key/value storage and SQL databases (yes, from JavaScript, without server
interaction).

Of course, we also have cookies, but they are simpler (only string storage), and we know
they are not guaranteed to survive in the browser.

Key/value storage

HTML 5 defines a key/value store through two objects: localStorage and sessionStor
age. They are pretty much the same, but the scopes are different: while the local store
is used for long-term storage, the session store doesn’t persist after the user closes the
tab or window.

We should use try/catch blocks when saving items, in case problems
occur with the storage or the maximum available space is exceeded.

HTML 5 | 311

http://

Both stores are used in the same way:

// Save an object or variable in the store
localStorage.setItem("name_in_the_storage", object_to_store);

// Read an object from the store
var object = localStorage.getItem("name_in_the_storage");

We can also delete all the objects using clear or delete one key using removeItem. There
is also a storage event that we can listen for with window.addEventListener that will be
fired when the contents of the local or session stores have changed.

SQL database

Having a relational database available in JavaScript sounds powerful. The main method
that defines the availability of the JavaScript SQL database is the window.openData
base method. This method has the following signature:

var db = window.openDatabase(shortName, version, displayName, sizeExpectable);

If we use a try/catch, we can capture errors during the operation. This method opens
the database if it exists and creates it if it is the first time we’ve used it. To execute non-
recordset sentences (CREATE TABLE, INSERT, etc.) we can use a transaction using the
transact method, which receives a function as parameter. As a transaction, if one sen-
tence fails, the others will not execute:

db.transact(function(t)) {
 t.executeSql('CREATE TABLE countries (id INTEGER NOT NULL PRIMARY KEY
 AUTOINCREMENT, name TEXT NOT NULL)', [], function() {}, errorHandler);
});

The array parameter after the query string is an array of parameters to be replaced in
the query (using ? inside), the next parameter is the data handler function (not used in
a non-recordset query), and the last parameter is a function handler for errors in the
query.

HTML 5 doesn’t define which database engine should be used. Mobile
browsers use SQLite, the open source database engine, so check the
SQLite documentation for data type and SQL syntax support.

To create a typical SELECT statement with recordset looping, we can use the following
template:

db.transact(function(t)) {
 t.executeSql('SELECT * FROM countries', [], countriesHandler, errorHandler);
});

function countriesHandler(transaction, data) {
 var record;
 var id;
 var name;

312 | Chapter 9: Ajax, RIA, and HTML 5

http://

 for (var i=0; i<data.rows.length; i++) {
 // We get the current record
 record = data.rows[i];
 id = record['id'];
 name = record['name'];
 // Do something with record information
 }
}

function errorHandler(transaction, error) {
 alert('Error getting results');
}

JavaScript databases support versioning, allowing us to change schema
on newer versions of our applications and detect what the current ver-
sion installed on the client is, to create a migration procedure.

If you were working offline you should implement a synchronization method, using
Ajax to download changes from and upload them to the server.

Safari on iOS accepts up to 5 MB in offline storage without user inter-
vention. If you try to save more than 5 MB, the user will need to approve
it (an automatic alert will appear).

Google Gears (http://code.google.com/apis/gears) is an open source project
that enhances web browsers and JavaScript with more functionality, much of which is
part of the HTML 5 draft. Android 1.X supports only Gears, and we can also use SQL
databases with Gears. The normal usage is simple and synchronous, as the following
sample demonstrates:

<script type="text/javascript" src="gears_init.js"></script>
<script type="text/javascript">
var db = google.gears.factory.create('beta.database');
db.open('countries');
db.execute(CREATE TABLE countries (id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
 name TEXT NOT NULL)');

var rs = db.execute('SELECT * FROM countries');

while (rs.isValidRow()) {
 var id = rs.field(0);
 var name = rs.field(1));
 // Do something
 rs.next();
}
rs.close();
</script>

Gears storage.

HTML 5 | 313

http://code.google.com/apis/gears
http://

Fortunately, Google is working on an open source project that gives us an abstraction
layer for both HTML 5 databases and Gears databases using the same code. The project
is called the Web Storage Portability Layer and it is available at http://code.google.com/
p/webstorageportabilitylayer.

Safari on iOS allows you to view stored databases and delete them from
the device using Settings→Safari→Databases.

With this new layer, we can use the following code for select queries in both frame-
works:

var database = google.wspl.DatabaseFactory.createDatabase('countries',
 'http://yourdomain/dbworker.js');
var statement = google.wspl.Statement('SELECT * FROM countries;');

database.createTransaction(function(tx) {
 tx.executeAll([statement], {onSuccess: function(tx, resultSet) {
 // Statement succeeded

 for(; resultSet.isValidRow(); resultSet.next()) {
 var id = resultSet.getRow()['id'];
 var name = resultSet.getRow()['name'];
 }
 }, onFailure: function(error) {
 // Statement failed
 }});
}, {onSuccess: function() {
 // After transaction commits, before any other starts
}, onFailure: function(error) {
 // After transaction fails, before any other starts
}});

Client JSON store

Prepared for mobile devices, Lawnchair is a local client JSON store that uses HTML 5
features behind a very simple API. You can download the library from http://brianleroux
.github.com/lawnchair.

To create a store, we just use code like this:

var countries = new Lawnhair('countries');

Then, we can save an object synchronously:

countries.save({id: 5, name: 'Spain'});
// Object saved

or asynchronously:

314 | Chapter 9: Ajax, RIA, and HTML 5

http://code.google.com/p/webstorageportabilitylayer
http://code.google.com/p/webstorageportabilitylayer
http://brianleroux.github.com/lawnchair
http://brianleroux.github.com/lawnchair
http://

countries.save({id: 5, name: 'Spain'}, function() {
 // Object saved
});

We can also save it using a key/value mechanism for easy retrieval:

countries.save({key: 5, value: 'Spain'});

var spain = countries.get(5);

And we can easily get all the documents using:

countries.all(function(country) {
 // We receive every country in this function
});

We can also remove documents, clear all the storage, and create iterators for easy
filtering.

Web Compatibility Test
In 2010, the W3C created a test to score mobile browsers in terms of their RIA, Ajax,
and HTML 5 support. The Web Compatibility Test for Mobile Browsers, available at
http://www.w3.org/2010/01/wctmb2, verifies compatibility with Ajax, the canvas
HTML tag, the contenteditable attribute, geolocation, HTML 5 input forms, the off-
line AppCache, the video and audio HTML 5 tags, Web Workers, local storage, session
storage, and @font-face. There are currently no mobile browsers that score 100%.

Some results are:

• iPhone 3.0: 83%

• Firefox 3.5 for Maemo: 83%

• Bada Browser: 75%

• Android 1.6–2.1: 67%

• Opera: 33%

• Symbian 5th edition: 17%

• webOS: 17%

• NetFront 3.5: 8.33%

HTML 5 | 315

http://www.w3.org/2010/01/wctmb2
http://

http://

CHAPTER 10

Server-Side Browser Detection
and Content Delivery

Until now, this book has only discussed the client side of mobile web development.
Server-side development has an especially important part to play here, though, not only
because of all we know about dynamic content generation, but because the server is
the only place where we can easily make decisions about what content to send to which
devices.

In this chapter we will look at device detection and content delivery, and introduce the
creation of a content store. The server also manages the MIME types of content, a very
important feature we need to define for good compatibility in the mobile world.

We can use any server-side platform, server, and/or programming lan-
guage. For the purposes of clarity our samples will use PHP, although
this chapter will provide short tips for ASP.NET and Java as well. You
can easily export these techniques to any other server platform.

Mobile Detection
Before talking about detection of mobile devices and services on the server, we need to
go back a bit and consider an old friend: the HyperText Transfer Protocol, also known
as HTTP. Knowing a bit about its internals will help us determine what we can do in
terms of mobile web development.

There are no special server requirements for mobile websites; you can
just use the same Apache, Internet Information Server (IIS), or other
server you are currently using for desktop websites.

317

http://

HTTP
HTTP is a protocol originally defined in 1991 for document transportation over TCP/
IP networks. It has two main versions: 1.0 and 1.1 (the last and current version of the
protocol, defined in 1996). This same protocol is the one that we need to use from the
server side in mobile web development.

Actually, the last sentence isn’t strictly true if we consider WAP 1.1, where the device
communicates with the WAP gateway and the WAP gateway is the one connecting to
our server via HTTP. A similar approach is used in proxied browsers, like Opera Mini
and Bolt (see Figure 10-1). However, from the server’s point of view the requests coming
in will always be HTTP requests.

Figure 10-1. When the user is accessing our website via a proxied browser or a transcoder, we will
not receive the request directly from the user’s mobile device.

The request

An HTTP request involves a client (the browser) sending a request to a server using its
IP address (previously converted from a domain name). That request has a header and
an optional body. The body is generally sent when we are doing a POST request. The
most common request type is a GET, requesting a document or a file from the server.

Verizon uses an Optimized View enhancement (a transcoder) for mobile
websites that are not on one of the mobile addressing standards
(.mobi, wap., m., etc.). If you want to avoid transcoding of your site you
can make an opt-out request at http://vzwdevelopers.com/aims/public/
OptimizedViewOptout.jsp.

The server responds with a response status code (hopefully not the famous 404), a
header, and an optional (but generally sent) body. The body is the requested file.

Why are we taking this two-minute networking class? Because it illustrates many of the
techniques we will use in server-side detection.

318 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://vzwdevelopers.com/aims/public/OptimizedViewOptout.jsp
http://vzwdevelopers.com/aims/public/OptimizedViewOptout.jsp
http://

The request header

The request header has many attributes defined by the browser and sent to the server
(if no proxy, gateway, or transcoder is in the middle). Some of the attributes that we
will find useful are listed in Table 10-1.

Table 10-1. Most common HTTP request headers

Header Description

User-Agent The name of the browser or platform that originated the request

Accept A comma-separated values (CSV) list of MIME types accepted by the browser

Accept-Charset A CSV list of charsets accepted by the browser (e.g., ISO-8859-1, UTF-8)

Accept-Language A CSV list of preferred languages in the browser

Accept-Charset A CSV list of compression methods available for the response (e.g., gzip, deflate)

Every mobile browser supports HTTP authentication, showing a modal
window for username and password entry so the user can log into the
website.

The following is the header of a real request from a mobile device to a server:

GET / HTTP/1.1
Host: mobilexweb.com
Accept: application/vnd.wap.wmlscriptc, text/vnd.wap.wml,
application/vnd.wap.xhtml+xml, application/xhtml+xml, text/html, multipart/mixed, */*
Accept-Charset: ISO-8859-1, US-ASCII, UTF-8; Q=0.8, ISO-10646-UCS-2; Q=0.6
Accept-Language: en
DRM-Version: 2.0
Cookie2: $Version="1"
Accept-Encoding: gzip, deflate
User-Agent: Nokia5300/2.0 (03.50) Profile/MIDP-2.0 Configuration/CLDC-1.1
x-wap-profile: "http://nds1.nds.nokia.com/uaprof/N5300r100.xml"

Many mobile browsers send */* as the list of accepted MIME types to
avoid the server prefiltering the content that it can deliver using the
Accept header. Other mobile browsers have known bugs in the MIME
type lists that they provide.

The user agent

The user-agent string identifies the browser. It has had a complex history, with the
result that today there are browsers that identify themselves as six different browsers
at the same time in the same string. This somewhat complicates browser detection.
There is an excellent history of the user-agent string, presented in a very funny way, at
http://webaim.org/blog/user-agent-string-history.

Mobile Detection | 319

http://webaim.org/blog/user-agent-string-history
http://

In brief, as in the beginning of the web era developers often looked for a particular
string in the User-Agent header to determine what content to deliver, many browsers,
starting with Microsoft Internet Explorer, started using a hack that today has resulted
in user agent hell. The hack was for Internet Explorer to identify itself as Mozilla (the
way that the Netscape browser, IE’s main competitor, was identified). After this initial
identification, it clarified that it was not actually Mozilla, but rather a compatible
browser (IE). Microsoft also added other information to the user-agent string, like the
operating system and details on the plug-ins and languages supported. The end result
was a very complex user agent syntax with no standards.

In the mobile world, the situation is even worse. Some browsers use the IE hack and
identify themselves as Mozilla (with some clarification), others identify themselves with
the correct browser name, and still others send the device brand and model number in
the User-Agent header. Even the same device may provide a different user-agent string
depending on the OS version or the firmware used. This makes device detection using
this string a bit complex.

If you don’t want your site to be transcoded, you can use Cache-Control:
no-transform both in the HTML document and in the HTTP headers.
Some transcoders use this information to decide whether or not to
transcode a document, but there is no guarantee that this will work.

The following is a list of some mobile user-agent strings provided by a Nokia N95, a
Nokia 3510, a Motorola v3, a BlackBerry, an iPhone 3.0, a Windows Mobile device,
and a Japanese phone from the carrier Au:

• Mozilla/5.0 (SymbianOS/9.2; U; Series60/3.1 NokiaN95/20.0.015 Profile/

MIDP-2.0 Configuration/CLDC-1.1) AppleWebKit/413 (KHTML, like Gecko)

Safari/413

• Nokia3510i/1.0 (05.30) Profile/MIDP-1.0 Configuration/CLDC-1.0

• MOT-V3i/08.B4.34R MIB/2.2.1 Profile/MIDP-2.0 Configuration/CLDC-1.1

• BlackBerry8100/4.2.0 Profile/MIDP-2.0 Configuration/CLDC-1.1 VendorID/125

• Mozilla/5.0 (iPhone; U; CPU like Mac OS X; en) AppleWebKit/420+ (KHTML, like

Gecko) Version/3.0 Mobile/1A538a Safari/419.3

• Mozilla/4.0 (compatible; MSIE 4.01; Windows CE; PPC; 240×320)

• UP.Browser/3.04-TS14 UP.Link/3.4.4

As you can see, there is no standard for this string. So, the initial approach is to search
for some term—for example, “iPhone” or “Symbian”—to try to determine which de-
vice or platform a request has originated from. Don’t worry if this sounds nightmarish,
though; in a few pages we will talk about a better solution.

320 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://

iPad or iPhone?
When the iPad (the Apple tablet) came to the market, many thought that servers would
automatically redirect iPad users to the iPhone versions of websites, if they existed.
That is because the iPad uses iOS, just like the iPhone itself and the iPod Touch.

However, the iPad User-Agent header looks something like this:

Mozilla/5.0 (iPad; U; CPU OS 3_2 like Mac OS X; en-us) AppleWebKit/531.21.10
(KHTML, like Gecko) version/4.0.4 Mobile/7B367 Safari/531.21.10

As you can see, it doesn’t contain the word “iPhone,” and that is one of the ways that
developers detect usage of iPhone-based devices. It does include the word “Mobile,”
though, so if you are looking for that word you will be able to tell that the user is on a
mobile device.

That said, because the iPad has a larger screen and can show more content than a mobile
device, mobile websites are not ideal. Some big sites have created special iPad versions
using mobile Safari extensions; these are neither the mobile nor the desktop web ver-
sions, but somewhere in between.

The iPod Touch does include “iPhone” in the user-agent string, because it is so similar
(in terms of the operating system and screen size) to the iPhone itself.

What we can identify

Identification is useful for context definition. We need to remember that the user is a
mobile user, and for these users the context is very important. We want to get all the
information we can about that context, so we can provide the most useful experience
possible.

The mobile browser doesn’t send information about:

• The International Mobile Equipment Identity (IMEI) or serial number to identify
the device uniquely

• The type of network used (WiFi, 3G, GPRS, EDGE, CDMA)

• The carrier (operator) providing service to the device

• The country of the user

• If the user is roaming

• The phone number of the user

• The device’s brand and model number (not directly)

Some of this information (carrier, brand, and model number) can be inferred, but the
other identification data will not be available. That is why we cannot identify users
automatically without a login, as in desktop web applications.

Mobile Detection | 321

http://

If you are working closely with the carrier for your mobile website, you
may be able to have yourself added to the WAP gateway’s URL whitelist.
You will then be able to receive a customer ID or phone number in a
new nonstandard header.

Here’s what we can glean from the device headers:

• The carrier and country, from the IP address of the request (if it is using a 2G or
3G network).

• The country (and maybe city or even location), from the IP address of the request
(if it is using a WiFi network).

• The brand and model number, inferred from the User-Agent header.

• The language in which the operating system is defined.

• What markups and document types are accepted, if the header is not defined as
/.

I can guess what you’re thinking right now…. What about everything
you told me in the last few chapters? How can we tell if the device sup-
ports CSS3 or Ajax? Wait a few pages, and you will have the answer.

The User Agent Profile

The UAProf (User Agent Profile) is a voluntary standard defined by the Open Mobile
Alliance (formerly WAP Forum). It takes the form of an XML file defining the abilities
of the device, including its screen size, download features, and markup support.

The XML is defined by the manufacturer or the carrier, and a link to the XML is defined
in a header (typically x-wap-profile). If you look back at the sample headers we saw
earlier in this chapter, you’ll see it:

x-wap-profile: "http://nds1.nds.nokia.com/uaprof/N5300r100.xml"

This URL will have been defined when the browser was created, which may have been
several years before. If the URL is still working, we should get XML like the following
extract:

<prf:ImageCapable>Yes</prf:ImageCapable>
<prf:Keyboard>Qwerty</prf:Keyboard>
<prf:Model>BlackBerry 8100</prf:Model>
<prf:NumberOfSoftKeys>0</prf:NumberOfSoftKeys>
<prf:PointingResolution>Character</prf:PointingResolution>
<prf:PixelAspectRatio>1x1</prf:PixelAspectRatio>
<prf:ScreenSize>240x260</prf:ScreenSize>
<prf:ScreenSizeChar>26x18</prf:ScreenSizeChar>

UAProf files have many problems. First, we need to download the XML for each re-
quest, process it, and either extract the properties we want or make a local copy on our

322 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://

server. Second, the community has found lots of bugs and problems in this official
information. Some devices (the iPhone, for example) don’t define a UAProf file, and
they don’t define the same properties. Also, UAProf does not have the right granularity
of information; for example, you can read that Flash is supported, but no information
is there about which version.

So, another problem added to our list.

Detecting the Context
We’ve already seen how the network protocol works, and what information is provided
and not provided in a mobile browser request. Now let’s get some data and information
from the context.

How to read a header

The specifics depend on the language, but all server-side platforms offer a way to read
the request’s header. Some languages use the same header as the parameter (for exam-
ple, Accept-Charset), and others use a larger version with the syntax HTTP_X, where X is
the header name in all uppercase and with the - replaced by _ (for example,
HTTP_ACCEPT_CHARSET).

Some Nokia devices expose a custom HTTP header that defines the
connection type. The header is x-nokia-musicshop-bearer and the pos-
sible values are WLAN or GPRS/3G. We can try to read this header and, if it
exists, get more information about the context.

In Java Servlets or JSP, we read a header using:

request.getHeader("header_key")

In ASP 3, we use this:

Request.ServerVariables("header_key_large")

And in PHP:

$_SERVER["header_key_large"]

In ASP.NET with C# or Visual Basic, we have a Headers collection and public members
for most of the common headers:

// This is the C# version
Request.Headers["header_key"]

' This is the VB version
Request.Headers("header_key")

Mobile Detection | 323

http://

Remember that BlackBerry devices have many browsers, as we saw in
Chapter 2. These devices also expose a custom HTTP via header that
can be used to see which browser is being used. For example, if the value
contains an MDS string, the user may be connected via the BlackBerry
Browser through the corporate server; if it contains BISB the user is using
the Internet Browser connecting through the carrier; and if the value is
not defined, the user may be using the WiFi Hotspot Browser.

How to read the IP address

The IP address from which the request originated can be read with the following code:

// In Java
String address = req.getRemoteAddr();

// In PHP
$address = $_SERVER["REMOTE_ADDR"];

// In C#
String address = Request.UserHostAddress;

What we can do with the IP address? The next chapter will talk about geolocation.
However, if we want to define the user’s carrier and country right now, we need to get
an updated list of the IP ranges assigned to each carrier. The carriers distribute this
information to their partners, and it can also be found in forums and communities or
through commercial services.

Massive’s Operator Identification Platform is a community-based da-
tabase service that allows us to determine visitors’ countries and net-
work operators, if detected, using a simple HTTP service request. You
can request an account at http://www.werwar.com. It is free for non-
commercial sites, and commercial licenses start at $10 per month.

Opera Mini

As mentioned earlier, there are some proxied browsers on the market (Opera Mini is
the most widely installed), and we need to take care of differences in the headers in
such browsers. Even on a well-known device, such as a BlackBerry or a Nokia N97, if
Opera Mini is in use the requests we receive on our servers will come from the Opera
Mini proxy and not from the device itself. So, the client IP address will be Opera’s server
address, and the user-agent string will be the proxy’s one. On any device, the Opera
Mini 5 user-agent string looks like this:

Opera/9.80 (J2ME/MIDP; Opera Mini/5.0.16823/1126; U; en) Presto/2.2.0

Fortunately, Opera Mini offers the original IP address and the original user-agent string,
along with other information, in new headers (listed in Table 10-2) that we can read
using the techniques we have already seen.

324 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://www.werwar.com
http://

Opera Mini has a developer site at http://www.opera.com/mini/devel
oper that offers tips and technical information about Opera Mini web-
site development. Other intermediates are not as developer-friendly as
Opera Mini and remove all the original headers, so we are blind in de-
tecting the device and its origin.

Table 10-2. Opera Mini additional HTTP headers

Header Description

X-OperaMini-Phone-UA Provides the user-agent string identifying the device that downloaded the Opera Mini client

(or the current device’s user-agent string if not available).

X-OperaMini-Phone Provides the device’s brand and model, separated by a hash (<brand>#<model>).

X-Forwarded-For Provides a CSV list of all the proxy servers in the chain that have forwarded the request from

the device to Opera Mini’s proxy. Opera recommends using the last IP address listed for geo-

location purposes.

X-OperaMini-Features Provides a CSV list of phone features, from the following list:

• basic (Java MIDP 1.0 device, low resources)

• advanced (Java MIDP 2.0 device, high resources)

• camera (camera detected, so we can provide a file upload input for pictures)

• file_system (Java filesystem support detected, so the user can download and upload

files)

• folding (content folding option is enabled)

• secure (connection between phone and proxy is encrypted)

Content folding in Opera Mini refers to the ability of the browser to
group a series of links into a menu that can be closed and opened to gain
space on the screen.

Mobile detection

If you only want to know whether the user is browsing from a desktop or a mobile
device (perhaps for doing a redirection), the quickest way to find out is to check for
some different well-known strings (iPhone, iPod, Nokia, etc.) inside the User-Agent
header. Based on their presence or absence, you can make an educated guess about
whether or not the user is on a mobile device.

There is an excellent collection of mobile-specific User-Agent headers at
http://mobiforge.com/developing/blog/useful-x-headers.

Mobile Detection | 325

http://www.opera.com/mini/developer
http://www.opera.com/mini/developer
http://mobiforge.com/developing/blog/useful-x-headers
http://

Andy Moore has developed a very simple but powerful PHP script for detecting mobile
user agents and browsers. The latest version (free for non-profit purposes) can be
downloaded from http://detectmobilebrowsers.mobi.

You can find similar scripts in different languages at http://www.mobilexweb.com/go/
detection.

Some devices support multipart document delivery. A multipart docu-
ment includes XHTML and resources (images, CSS) in the same HTTP
response, enhancing the download performance. To determine whether
a device supports multipart documents, check for the multipart/mixed
or application/vnd.wap.multipart MIME type in the Accept header.
Visit http://www.mobilexweb.com/go/multipart for more information.

Transcoders
With WAP 1.1, operator gateways were required to precompile WML and make it
lighter and more easily parsable by devices with limited memory/CPU resources. Gate-
ways were also relied upon to manage cookies on behalf of the devices (which did not
have enough memory) and for integration with the operator’s backend (for example,
the gateway was able to inject the users’ phone numbers into HTTP headers, so that
authorized content providers could recognize them and bill them for services).

With WAP 2 precompilation was no longer needed, but other aspects of gateways were
and still are today, to some extent. In a lot of different contexts, the presence of a WAP
gateway is beneficial to developers and content providers.

Around 2002, some companies started selling tools to “mobilize” web content. That
is, users could type a URL into a field, and the transcoder/content reformatter would
chop it up into pages that could be viewed by mobile devices.

Around 2006, some kind of genetic mutation happened: transcoder vendors realized
that transcoders could be deployed in proxy mode and the whole Web could be trans-
coded behind the backs of the users and content providers, regardless of the presence
of a mobile-optimized experience for any given site. This dangerous move posed a
serious threat to the mobile ecosystem

To help us to understand this problem, I contacted Luca Passani, CEO of WURFL-Pro
and creator of the WURFL libraries we will analyze later in this chapter. He kindly
answered my questions to keep us updated about this topic. The rest of this section
was entirely written by Luca. For more information on this topic, see http://wurfl.sour
ceforge.net/manifesto.

What is a transcoder?

Defining transcoders requires a bit of care. Not only has the term “transcoders” been
used in other industries, but there are also other terms in the mobile world that identify

326 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://detectmobilebrowsers.mobi
http://www.mobilexweb.com/go/detection
http://www.mobilexweb.com/go/detection
http://www.mobilexweb.com/go/multipart
http://wurfl.sourceforge.net/manifesto
http://wurfl.sourceforge.net/manifesto
http://

mobile-web transcoders and what they do: notably, content transformation and content
adaptation. Content transformation is basically a synonym for “transcoding,” but con-
tent adaptation can also refer to development techniques that, while they bear some
similarities to transcoding, are more traditional (and legitimate) approaches to the cre-
ation of mobile websites.

When you say “transcoders” to mobile web developers, they’ll most likely think of the
proxies (from companies such as Novarra, InfoGin, Openwave, and ByteMobile) that
network operators (Vodafone, Verizon, Sprint, etc.) install in their networks to inter-
cept desktop web pages on their way to mobile devices and “reformat” them. By “re-
formatting,” I mean one or more of the following:

• Splitting a full page into several smaller pages (which are supposedly more man-
ageable for mobile devices)

• Replacing the original graphics with images of lower size (and lower quality)

• Adding an operator navigation bar on every page

• Injecting advertising from unknown sources

• Disabling mechanisms to detect successful download of applications, Java ME
MIDlets, and other downloadable content

A less obvious effect of transcoders is that they often intercept and modify HTTP re-
quests, removing the UAProf and/or the original user-agent string (which is key to
recognizing devices and their capabilities).

I sometimes refer to transcoding as content transformation, but I never use “content
adaptation” in this context because it would be very likely to generate confusion.

It is important to observe that WAP gateways are also proxies, but typ-
ically they do not interfere with the content that goes through them.

Why are transcoders a problem?

If you are a content provider or you build mobile websites, transcoders will make you
furious. As soon as an operator deploys a transcoder, you will notice that you are unable
to recognize devices using that operator’s network and its transcoder. If you have in-
vested time and money in installing a framework to recognize mobile devices, all of
your work will be lost: all you will see are web browser requests hitting your server.
But that’s not all. Your branding is very likely to be disrupted, and so is your business
model if, for example, you are no longer able to bill your customers directly, or if the
ad banners you were injecting into your pages get discarded. These are things that have
happened in practice and driven people mad. The icing on the cake was when operators
started injecting their own advertising into other people’s content, trying to monetize

Mobile Detection | 327

http://

other people’s efforts. It is no surprise that this has caused huge uproar amongst trans-
coder “victims.”

Parties involved in the transcoding problem

There are two main culprits behind the mess caused by transcoders: operators and
transcoder vendors. Transcoder vendors have been guilty of telling operators, “Look,
we have this fantastic technology that will bring the entire Web to all of your users.
Loads of fantastic content you don’t need to pay for. Isn’t this great? And who cares if
people who have invested millions in creating mobile sites complain…We are the future,
after all!” This was deeply irresponsible, but of course part of the blame goes to the
operators who actually believed this story, decided to deploy transcoders, and were
flooded by a wave of complaints and thrown into disrepute. Of course, I had a role in
making mobile developers focus on the problem in detail, but there were thousands of
irritated developers who backed me instantly when I blogged about the issue.

What was the response from carriers after receiving complaints?

Officially, the carriers were silent. After all, these are huge organizations, and getting
anyone to stand up and talk on behalf of their employees is simply not realistic. Behind
the scenes, I got loads of support from people working for operators (particularly Vo-
dafone Global, Germany, and UK). They recognized that I was right and that the de-
cisions taken at the top floors were wrong.

Practical tips

There are some practical tips to be given, such as using XHTML MP as the markup or
adding the Cache-Control: no-transform header to all your HTTP responses. They are
all contained in the “Manifesto for Responsible Reformatting” at http://wurfl.source
forge.net/manifesto. Yet, I don’t think that these alone are enough.

I firmly believe (and so do virtually all developers I have talked to) that developers have
a right to a “clean” HTTP. They have the right to see HTTP headers as sent by the
devices, and they have the right to insist that transcoders keep their dirty hands off
other people’s content. Therefore, the main practical tip I want to give is not actually
a very technical one: make noise. Complain. Blog and tell the world that operator X or
Y is doing something wrong. Get a lawyer to send a letter to the operator and complain
about copyright infringement. Using a metaphor, mugging someone to steal his wallet
is a more serious offence than simple pickpocketing, yet pickpocketing is still a crime
that should be prosecuted, and advice such as “stay home,” “hire a bodyguard,” or
“don’t carry your wallet in your pocket” just doesn’t cut it! We have the right to live
and work in a better ecosystem; transcoders are the law of the jungle.

328 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://wurfl.sourceforge.net/manifesto
http://wurfl.sourceforge.net/manifesto
http://

Operator whitelists

Some operators offer whitelists where you can explicitly opt your site out of transcod-
ing. Whitelists are not the way to go, though. Accepting whitelists means accepting the
law of the jungle. If we were to agree to whitelisting our sites with each and every
operator around the planet, we would effectively be giving operators a right they do
not have (and must not have). The network and HTTP must be the same for everyone,
or this would represent a giant step back for the whole mobile industry. Just think of
what the Web would be today if website creators had to “register” their websites with
different ISPs around the globe….

Making content transformation a standard

Transcoding is stealing. How do you standardize stealing? There is only one answer:
you don’t. Stealing is illegal and must remain that way. Of course, transcoding vendors
(mainly Novarra Inc., now part of Nokia) are trying to convince the W3C to create
“quasi-standards” that allow transcoding in some instances, which in real deployments
will naturally translate into “whenever the heck we want.” The problem here is that
the corporations who sit at the W3C table call the shots in their own interests.

Nokia acquired Novarra Inc. in 2010, and at the time of this writing
there is no information about how the Novarra transcoding politics will
evolve.

For those who are curious, Novarra’s attempt at getting the W3C to ratify its way of
doing transcoding (its Guidelines for Web Content Transformation) is available online
at http://www.w3.org/TR/ct-guidelines.

Transcoder detection

There is an ongoing battle between transcoder vendors and the rest of the mobile eco-
system. There are ways to recognize a transcoder, by checking certain headers (either
their values, or simply checking for their presence). Again, the Manifesto has more
information. The problem is that the business model of transcoder vendors (transcode
as much as you can) is in direct conflict with the business model of content owners
(protect your content as well as you can). For this reason, transcoders are progressively
making it harder for others to detect them, by removing those hints from HTTP re-
quests. A day may come when developers will need to maintain a list of IP ranges to
identify transcoders and treat requests coming from them specially (again, don’t forget
to complain loudly if you spot one).

Mobile Detection | 329

http://www.w3.org/TR/ct-guidelines
http://

What to do after detection

Assuming you have detected a transcoder, adopting the Cache-Control: no-trans
form header and using mobile-specific MIME types and DTDs (XHTML Mobile Profile,
for example) is your best bet to prevent your content from being touched. Serving your
content from a hostname with a pattern such as m.*, wap.*, or *.mobi will usually also
help.

I say “help” because this is not a guarantee. Your content is still at the mercy of the
operators’ transcoder policies, and nobody will go after them on your behalf if they
decide not to respect your directives.

Novarra and InfoGin are the two largest companies in the transcoding
field. Other names include Openwave, ByteMobile, and Volantis.

Device Libraries
As we’ve discussed, just looking at the HTTP headers and the UAProf will not give us
enough useful information about the mobile devices that are accessing our websites.
This is where device libraries come to our help. Device libraries are offline databases
(or online web services) that take a user-agent string (or all of the request headers) and
return to us dozens of properties about the detected device, from screen size, to Java
ME compatibility, to Ajax support and video codec compatibility.

WURFL

Wireless Universal Resource File (known as WURFL) is a community-based, open
source device capabilities repository created and maintained by the developer Luca
Passani (http://passani.it), a fellow member of the Forum Nokia Champion program
and author of the preceding section on transcoders.

The library is available in the form of an XML file. While updates to WURFL data
happen every day on the WURFL DB, a publicly available “snapshot” of the DB is
produced and published about once per month on the WURFL website.

WURFL can be downloaded for free from http://wurfl.com, and any suggestions, ques-
tions, or bugs can be discussed in the mailing list, http://tech.groups.yahoo.com/group/
wmlprogramming.

If you are having doubts about how to pronounce WURFL, you can find
a WURFL pronunciation link on the library’s home page, where you
can listen to the word in English and Italian.

330 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://passani.it
http://wurfl.com
http://tech.groups.yahoo.com/group/wmlprogramming
http://tech.groups.yahoo.com/group/wmlprogramming
http://

The sources of information include official technical information published by manu-
facturers, UAProf files, and data collected by the community after testing on real de-
vices. Today, the WURFL database contains thousands of devices (11,000 profiles,
7,000 of which have a unique brand and model), with information on subversions,
operating systems, firmware and hardware variations, and hundreds of attributes that
we can query for each one.

WURFL groups the devices into a hierarchy of devices and attributes. Some
devices are equivalent to other devices from the same series, possibly with some new
features, so there is a fallback mechanism in WURFL allowing a device to extend the
features of another one. The same applies for different models in the same brand or
even different brands with the same operating system.

Also, there is a feature called “actual device root” that manages multiple subversions
(different firmware) of the same device, so the information is not duplicated in two
records; the subversion will be based on the main record with any added or different
abilities noted.

The WURFL database has a root fallback device called “generic device” that is matched
when the device, the brand, and the series can’t be determined.

What should you do if you need to make changes to the WURFL XML,
whether to identify new devices or bugs that you’ve found or to add new private or
public capabilities to be queried? Changing the original WURFL XML would be im-
practical, because you would have problems in the future when you wanted to down-
load updates from the site.

That is why a patch file is included in the WURFL architecture. A patch is like a mini-
WURFL (similar syntax, but typically a lot smaller in size). The WURFL API will merge
the patch information with the information in the WURFL database when the service
starts.

If you find a bug, new devices, or capabilities that aren’t private to your
development, report them to the WURFL team or apply to become a
WURFL contributor.

You can register to become a contributor by following the instructions
at http://db.wurflpro.com/static/become_a_contributor.htm. You will be
required to study religiously the WURFL conventions, available at http:
//db.wurflpro.com/static/top.htm.

Remember, this is a community project, and we are all part of the com-
munity.

WURFL is intended for use on mobile websites; that is why this library does not detect
desktop browsers, or if they are detected misidentifies them as some fallback mobile.
If users may access your mobile website from their desktops and you want to be able
to detect that using WURFL, you can download a web patch that will detect desktop

Architecture.

Patch file.

Mobile Detection | 331

http://db.wurflpro.com/static/become_a_contributor.htm
http://db.wurflpro.com/static/top.htm
http://db.wurflpro.com/static/top.htm
http://

web browsers like Firefox and Internet Explorer. You’ll need to merge this patch with
the main XML.

If you find a generic_device, this is a device that is not included in the
WURFL database. It’s good practice to log and report this information
and the user agent received so it can be investigated and recognized in
the future.

Every ability, property, or attribute is called a capability in the WURFL
world. Capabilities are organized into groups. Each capability for each device has an
optional string value (taken from the device itself, or from the fallback mechanism).
That value can be converted to a Boolean, a number, a string, or an empty string.

The most useful groups at the time of this writing are shown in Table 10-3.

Table 10-3. Most useful WURFL capability groups

Group name Capabilities related to

product_info Device information, such as the brand, model, operating system, and browser

wml_ui WML rendering, including soft key support, WTAI support, and table support

chtml_ui cHTML rendering

xhtml_ui XHTML rendering, including tel URI scheme support, accesskey support, iframe support, and file

upload support

ajax Ajax and DOM support, including support for getElementById, innerHTML, and CSS manipulation

markup Markup compatibility

cache Cache support

display The screen and display (physical dimensions, resolution, line rows, etc.)

image_format Image formats, including support for Animated GIF and SVG

wta WTAI, including voice call support

security Encryption, including HTTPS support

bearer Networks, including WiFi and VPN support

storage Limits (e.g., max URL length)

object_download Formats and object downloading support for each typical format

streaming Audio and video streaming per format and codec

wap_push WAP Push attribute support

j2me Java ME configuration and profile versions and API compatibility

mms MMS support

sms SMS support

sound_format Support for audio codecs and formats

flash_lite Flash support on the browser, for standalone applications, and for wallpaper or screensavers

Capabilities.

332 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://

Group name Capabilities related to

css CSS properties

transcoding Whether the client is detected as a transcoder

rss RSS support

pdf PDF viewing support

playback Formats that can be played by the device

As you can see, the information that the XML provides is really complete. If you want
to browse all the capabilities, you can browse the XML with any reader or use the tools
that come with the Java API. You can check the first device definition, as the generic
device and fallback for all devices. If any property is not defined in the generic device,
there will be no fallback value to use if the device does not define it.

Table 10-4 shows the most important capabilities we can query, based on the compat-
ibility problems outlined in the preceding chapters. Remember that there are dozens
of other properties that you can query; take a look at the library so you’ll have an idea
of all the possibilities.

Table 10-4. Most useful WURFL capabilities

Capability name Type Indicates...

brand_name String The device’s brand name (e.g., Apple, Nokia, or HTC)

model_name String The device’s model name (e.g., iPhone, N97, Nexus One)

marketing_name String The device’s marketing name, including the brand, model, and possibly

another part of the name (e.g., Pearl, Touch)

is_wireless_device Boolean Whether the device is a mobile device (true) or a desktop/notebook

pointing_method String Which pointing method is accepted (joystick, stylus, touchscreen,

clickwheel, or the empty string)

has_qwerty_keyboard Boolean Whether the device has a QWERTY keyboard (virtual or physical)

nokia_series Integer The series (40, 60), for Nokia devices

nokia_edition Integer The edition of the series, for Nokia devices

nokia_feature_pack Integer The feature pack of the series, for Nokia devices

device_os String The name of the operating system

device_os_version String The version of the OS

mobile_browser String The name of the browser

mobile_browser_version String The version of the browser

resolution_width Integer The screen width in pixels

resolution_height Integer The screen height in pixels

max_image_width Integer The display’s usable width in pixels

max_image_height Integer The display’s usable height in pixels

Mobile Detection | 333

http://

Capability name Type Indicates...

xhtml_support_level Integer The level of XHTML compatibility, from −1 to 4:

• −1: No support

• 0: Basic support (poor or no CSS support, basic form support,

basic or no table support)

• 1 and 2: Advanced basic support (basic CSS and table support)

• 3: Medium support, including excellent CSS support)

• 4: Advanced support, including Ajax support

preferred_markup String The markup best supported by the device (even if it supports a newer

one)

xhtml_format_as_css_property Boolean Whether -wap-input-format is available

xhtml_make_phone_call_string String The prefix preferred for making phone calls in a URL

xhtml_send_sms_string String Whether and how the device supports triggering the SMS client from

a link (can be sms:, smsto:, or the empty string, meaning not

supported)

xhtml_file_upload String Whether the device allows file uploading (returns not_suppor

ted, supported, or supported_user_intervention)

xhtml_supports_iframe String Whether the device supports iframes (returns none, partial, or

full)

ajax_supports_javascript Boolean Whether the device supports JavaScript with basic operations (dialogs,

form values, timers, and document.location)

ajax_supports_getelementbyid Boolean Whether document.getElementById works on the device

ajax_xhr_type String Which syntax to use when creating an XMLHTTPRequest object

(none, standard for the native XHR object, msxml2 for the normal

Microsoft ActiveX object, and legacy_microsoft for the older

one)

ajax_support_inner_html Boolean Whether we can change the innerHTML property dynamically

ajax_manipulate_dom Boolean Whether typical DOM methods are available

ajax_support_event_listener Boolean Whether the browser allows event registration through event listeners

html_wi_oma_xhtmlmp_1_0 Boolean Whether the browser supports XHTML MP 1.0

html_web_3_0 Boolean Whether the browser supports HTML 3

html_web_4_0 Boolean Whether the browser supports HTML 4

gif_animated Boolean Whether Animated GIF is supported

svgt_1_1 Boolean Whether SVG 1.1 is supported

svgt_1_1_plus Boolean Whether SVG 1.1+ is supported

flash_lite_version String Which version of Flash is supported

fl_browser Boolean Whether the browser supports Flash content

is_transcoder Boolean Whether a transcoder was detected as a proxy from the real device

334 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://

Capability name Type Indicates...

transcoder_ua_header String Which header we can find the original device’s user-agent string in, if

a transcoder was detected

multipart_support Boolean Whether the browser supports multipart documents

WURFL usage

You can use WURFL by browsing the file as you would any other XML file and match-
ing user-agent strings, but the wheel has already been invented, and on the same website
where you can download the XML you will find APIs for the most common server
platforms: Java, PHP, and .NET (in beta at the time of this writing). Generally speaking
you should use the new APIs available on the website, but for compatibility purposes
you can still find old APIs to download.

These APIs allow us to use WURFL in a couple of lines, with many advantages:

• Automatic device detection using the header information

• Two-step user agent analysis (optimized and clever user-agent searching inside the
XML)

• Detection of transcoders and proxies, and matching of the correct user agent and
device information

• Merging of the static XML provided by WURFL with patches (the web patch or
your own), providing a simple and unique way to query capabilities

• Caching of the XML parsing for the best performance on every request

To use WURFL in PHP, you should download the PHP API from
http://wurfl.sourceforge.net/nphp and extract the contents of the GZIP file. The package
contains documentation, examples, resources, unit tests, and a WURFL folder where
the API resides.

The PHP WURFL API allows us to save persistence and cache infor-
mation using memcache instead of using the filesystem.

To make it work, follow these steps:

1. Copy the WURFL folder into your web server root folder.

2. Copy the resources or examples/resources folder into your web server root folder
(you can change the name).

3. Download the latest wurfl-<version>.zip file from the website and copy it to the
new resources folder (along with the web_browsers_patch.xml file, if you need it).

4. Create a cache folder inside the resources folder (or in another place, with a different
name if you like) and verify that it PHP scripts have write permissions for this folder.

PHP API installation.

Mobile Detection | 335

http://wurfl.sourceforge.net/nphp
http://

5. Edit the resources/wurfl-config.xml file and check that the <main-file> tag matches
the name of the ZIP file containing the main XML repository. It can also be a
decompressed XML file.

6. Edit the resources/wurfl-config.xml file, go to the persistence node, and check that
the <params> tag matches the name of the cache folder, as in <params>dir=cache</
params>. The path needs to be relative to the config XML folder.

Once WURFL is installed, we can create our first PHP script that uses the repository.
Using version 1.0 of the API, the code will be:

<?php

require_once('WURFL/WURFLManagerProvider.php');
$configFile='resources/wurfl-config.xml';

$wurflManager=WURFL_WURFLManagerProvider::getWURFLManager($configFile);

$device=$wurflManager->getDeviceForHttpRequest($_SERVER);

?>

In API 1.1, the objects were changed and WURFLManagerProvider was deprecated. So,
the preceding code should be:

<?php
define("WURFL_DIR", dirname(__FILE__) . 'WURFL/');
require_once(WURFL_DIR . 'Application.php');
$configFile='resources/wurfl-config.xml';

$wurflConfig=new WURFL_Configuration_XmlConfig($configFile);
$wurflManagerFactory=new WURFL_WURFLManagerFactory($wurflConfig);

$wurflManager=$wurflManagerFactory->create();

$device=$wurflManager->getDeviceForHttpRequest($_SERVER);

?>

If you run this file on your web server (local or remote), you will need to wait 1 or 2
minutes the first time while it creates the cache folder to enable quick detection in future
requests. If you receive a blank page, great! If you get an error, you need to check all
the steps again.

If you’re working on a local server and are going to upload your website
to another server using FTP or some other protocol, it will be better to
not upload the cache folder because it will contain thousands of files. It
is better to leave the server to recreate them locally.

The PHP API is an object-oriented API. Once you have the
WURFLManager object, regardless of whether you are using version 1.0 or 1.1 of the API,
you can use it.

Using the PHP API.

336 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://

If your server is too loaded, you may get a timeout error when processing
WURFL the first time. If this happens, ask your server provider how to
increase the maximum script time limit or change the PHP.ini file.

A typical usage is getting a device object using the manager’s methods:

• getDeviceForHttpRequest($_SERVER)

• getDeviceForUserAgent($user_agent)

• getDevice($deviceId)

If you want to access the capabilities of the current device accessing your website, the
first option is the best one. If you want to get properties for other devices, you can use
the user_agent method or the deviceId method. Every device in WURFL has an ID that
we can store in our databases for statistics or logs. We can then look for its capabilities
later, after the mobile request.

You can browse the WURFL devices database using the free online tool
Tera-WURFL Explorer, available at http://www.tera-wurfl.com/explore.

You can also get all the possible groups and capabilities using getListOfGroups() and
getCapabilitiesNameForGroup(groupId), both methods of the manager.

Once you have the device object, you can get all properties with the getAllCapabili
ties() method or query for one particular feature with getCapability($capability
Name).

If you are using the desktop web patch, you can determine whether the client is a
desktop or a mobile device:

if ($device->getCapability('is_wireless_device')==false) {
 // It is not a mobile device
 header('Location: http://yourdomain.com');
}

To detect if it is an iPhone or iPod Touch, use:

if ($device->getCapability('brand_name')=='Apple') {
 // It is an iPhone, redirect to a prepared version
 header('Location: http://yourdomain.com/iphone');
}

With the capability, you can then decide whether or not to provide some feature. For
example:

if ($device->getCapability('xhtml_file_upload')=='supported') {
 echo '<input type="file" />';
}

Mobile Detection | 337

http://www.tera-wurfl.com/explore
http://

A great option if you are offering content is to explicitly display to the user his phone
model in the marketing information:

echo 'Download compatible content for your ' .
 $device->getCapability('marketing_name');

If you want to test whether your WURFL code is working on your desk-
top browser, you can use Firefox and the free plug-in User Agent
Switcher that allows Firefox to change its user-agent string to that of
any other device of your liking. We will cover this plug-in in Chapter 13.

A lot of related tools, utilities, and frameworks are available at
http://wurfl.sourceforge.net. These include:

• Device Thumbnails (a repository of device images for thumbnails on websites)

• Image Server (a Java servlet for dynamic conversion, scaling, and delivery of images
to mobile devices)

• Tera-WURFL (a PHP and MySQL implementation of the WURFL repository)

• GAIA Image Transcoder

• PHP Image Rendering Library (works with an old version of the PHP API)

• Apache Mobile Filter

The Apache Mobile Filter is an open source solution for redirecting users
to different versions using filters in an Apache module that looks into
the WURFL database. It also supports image resizing. The project is
available at http://sourceforge.net/projects/mobilefilter.

DeviceAtlas

In February 2008 (many years later than WURFL), the dotMobi company, which owns
the .mobi top-level domain, launched its own device database that is similar in many
ways to WURFL.

DeviceAtlas is a commercial product (with a free testing version for developers) avail-
able at http://deviceatlas.com that has partnerships with many data providers. Accord-
ing to dotMobi, this is not only the largest but also the most accurate device database
on the market.

The main features are:

• Monthly, weekly, daily, or constant updates to the database, depending on your
license

• A data explorer to browse the database from the Web

• JSON data format support

WURFL-related products.

338 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://wurfl.sourceforge.net
http://sourceforge.net/projects/mobilefilter
http://deviceatlas.com
http://

• APIs for PHP, Java, .NET, Python, and Ruby

• Apache server module (with the enterprise license)

At the time of this writing, the basic license costs $99 per server per year and includes
monthly updates but excludes the possibility to merge private data and other options
available in higher license options.

You can apply for a free developer evaluation version at the website or buy
a commercial version and then download the data and API from http://deviceatlas.com/
downloads. You will receive by email the license key, which is valid for one year. You
will also receive the direct links to download the data file (in JSON format) in ZIP
format.

The W3C is trying to standardize the device database repositories in the
Device Descriptions Working Group, currently in draft at http://www
.w3.org/TR/DDR-Simple-API. DeviceAtlas is offering its database in this
new format as a preview.

You can get an automatic update of the JSON file using the URL https://deviceatlas.com/
getJSON.php?licencekey=<license>&format=zip (inserting your license key in the
URL).

The data available in DeviceAtlas is segmented into categories. The most
important properties per category are:

• Device name: vendor, model

• Hardware: displayHeight, displayWidth, mobileDevice, touchScreen

• Environment: developerPlatform, developerPlatformVersion, osAndroid, osLinux,
osOsx, osProprietary, osRim, osSymbian, osWindows, osVersion

• Web browser: markup.xhtmlMp10, memoryLimitMarkup, uriSchemeSms, uriSchemeSm
sTo, uriSchemeSmsTel, vCardDownload, usableDisplayWidth, usableDisplayHeight

• Network protocols: EDGE, GPRS, HDSPA

• JavaVM: cldc, jsr118, jsr139, jsr30, jsr37, midp

• AudioPlayer: aac, amr, mp3

• Streaming: stream.3gp.aac.lc, stream.3gp.h263, stream.3gp.h264.level1,
stream.mp4.aac.lc

• VideoPlayer: 3gp.h263, 3gp.h264.level1, mp4.aac.lc, wmv

• DRM: drmOmaCombinedDelivery, drmOmaForwardLock, drmOmaSeparateDelivery

You can browse all the data available with your license at http://deviceatlas.com/ex
plorer.

Installation.

Properties.

Mobile Detection | 339

http://deviceatlas.com/downloads
http://deviceatlas.com/downloads
http://www.w3.org/TR/DDR-Simple-API
http://www.w3.org/TR/DDR-Simple-API
http://deviceatlas.com/explorer
http://deviceatlas.com/explorer
http://

Remember that if you have a developer account your database file will
not be updated if you download it again, and if you have a basic license
with monthly downloads a new file will not be available until 30 days
from when you downloaded the previous version.

Inside the PHP API package you will find a doc folder containing PHPDoc
documentation, a sample folder containing examples of usage, and a Mobi folder con-
taining the API. The PHP API requires PHP version 5.2.3 with JSON support.

You need to copy the Mobi folder with all of its content into your website root, but you
can put the JSON data file in any place you want. In your PHP file, you must include
the file Mobi/Mtld/DA/Api.php.

A typical project will look like the following:

<?php
include('Mobi/Mtld/DA/Api.php');
// We get a tree object loading the JSON
$tree = Mobi_Mtld_DA_Api::getTreeFromFile("deviceatlas.json");
// We get all the properties for the User Agent
$properties = Mobi_Mtld_DA_Api::getProperties($tree,
 $_SERVER['HTTP_USER_AGENT']);
// Or we can get one property at a time using
$value = Mobi_Mtld_DA_Api::getProperty($tree, $ua, 'some-property');
?>

If you want a cache implementation, you’ll need to do it yourself or have memcache
installed on the server and save the entire tree as the sample provided by the API. The
Java and .NET APIs have better support for caching techniques.

The ASP.NET Mobile Device Browser File

If you work with the ASP.NET platform, you can find an open source mobile browser
database at http://mdbf.codeplex.com, released by the Mobile Browse Platform Team at
Microsoft. This file is attached to the current ASP.NET browser detection mechanism
and is updated frequently. The sources of the information include WURFL, UAProf
files, contributions from the community, and others.

To use it, all you need to do is download the mobile.browser file from the website, create
a folder called App_Browsers (if you don’t already have one) with a mobile subfolder,
and copy the downloaded file into that folder. That’s it!

The ASP.NET Mobile Device Browser File is only compatible with .NET
Framework 2.0 and newer versions.

You can use the existing Request.Browser object in ASP to get information
about the requesting device. IsMobileDevice will tell you whether or not it is a mobile
browser, Platform will tell you the operating system, ScreenPixelsWidth and

PHP API.

340 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://mdbf.codeplex.com
http://

ScreenPixelsHeight will tell you the screen dimensions, and you can query any other
property using Request.Browser as a Collection.

Here is an example in C#:

if (Request.Browser.IsMobileDevice) {
 Response.Write("This is a " + Request.Browser.Platform + " device");
 if (Request.Browser["SupportsTouchScreen"]) {
 // It is a touch-based device
 }
}

A full list of capabilities can be found at http://mdbf.codeplex.com/wikipage
?title=capabilities, but the most important are included in Table 10-5. There are capa-
bilities for each video, audio, and image property.

Table 10-5. Common capabilities of the ASP.NET Mobile Device Browser File

Capability Return class Indicates…

AcceptsImageSVG Boolean Whether the device supports SVG 1.1

AjaxCanManipulateCss Boolean Whether we can change CSS properties from JavaScript

AjaxSupportsFullDom Boolean Whether we can use full DOM methods

AjaxSupportsGetElementByID Boolean Whether we can use getElementById from JavaScript

AjaxSupportsInnerHtml Boolean Whether we can use innerHTML without problems

AjaxXmlHttpRequestConstruc

torSyntax

String Which syntax to use when creating an XMLHTTPRequest object

(none for no Ajax support, standard for the native XHR object,

or msxml2 for IE syntax)

InputType String Which input type is supported (keyboard, telephoneKey

pad, or virtualKeyboard)

IsMobileDevice Boolean Whether or not the current device is a mobile device

JavaScript Boolean Whether the device supports JavaScript

MobileDeviceManufacturer String The device’s brand name

MobileDeviceModel String The device’s model name

PreferredRenderingMime String The preferred MIME type for XHTML content

SupportedFlashVersion String Which Flash version is supported (none or the version number)

SupportsAccesskeyAttribute Boolean Whether the device supports the accesskey value

SupportsCssBackgroundImage Boolean Whether the device supports defining background images

SupportsEmbeddedFlashInWeb

Pages

Boolean Whether the device supports embedding a SWF file

SupportsTouchScreen Boolean Whether the device is touch-based

SupportsWapPush Boolean Whether the device supports WAP Push

SupportsXhtmlRendering Boolean Whether the device supports XHTML

Capabilities.

Mobile Detection | 341

http://mdbf.codeplex.com/wikipage?title=capabilities
http://mdbf.codeplex.com/wikipage?title=capabilities
http://

Service-based solutions

You may not want to write all this yourself. Services are available to help; we’ll look at
a few of them here.

Movila Detection (http://www.moviladetection.com) is a server-side
Java solution to detect in 500 microseconds which device is using an embedded
repository. It also works as a tool for URL rewrites. However, Movila’s most-used
feature is the free service called DetectFree.

DetectFree is a free light version of the service available for PHP and JavaScript (and
for any other platform that sends HTTP requests) that allows you to detect whether
the connecting device is a mobile device. You can find samples and documentation at
http://www.moviladetection.com/detectfree. Just to illustrate how easy it is to use, the
following sample is a JavaScript detection mechanism:

<script src="http://detectfree.moviladetection.com/detectfree.js"
 type="text/javascript"></script>

<script type="text/javascript">
if (is_mobile) {
 alert("This is a mobile device");
}
</script>

DetectRight is a detection engine, device database, analytics engine, and
API/SDK with both service-based and dedicated server options. Free noncommercial/
developer licenses are available, and a shared-service license begins at 399 euros per
month. It features SOAP and REST access, unique custom identification, country-level
geolocation, and profiles in WURFL, DeviceAtlas, UAProf, DetectRight, and Java ME
Polish–compatible formats. It features over 20,000 devices at the time of this writing.

If you want easy and quick mobile detection, at http://www.detectmobi
lebrowsers.mobi you will find a little PHP code that allows you to de-
termine whether the user is using a mobile browser without any
repository, database, or service call.

If you register at http://www.detectright.com, you will receive via email a key that enables
you to access a variety of PHP, .NET, and SOAP samples and APIs.

Remember that this is a service-based solution, so you don’t need to download or
update any database on your server. Every request will be sent over the Internet to the
DetectRight servers.

Remember that when using service-based solutions, your mobile web-
site’s performance will depend on the reliability of the third-party server
to which you are connecting.

Movila DetectFree.

DetectRight.

342 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://www.moviladetection.com
http://www.moviladetection.com/detectfree
http://www.detectmobilebrowsers.mobi
http://www.detectmobilebrowsers.mobi
http://www.detectright.com
http://

You can download the PHP or .NET API for easy usage for those platforms.

In PHP, once you’ve downloaded the API you can use the service as shown in the
following sample:

include_once("detectRight.php");

DetectRight::$druser = '<detectright.com username>';
DetectRight::$drpassword = '<detectright.com password>';
// possible values: DR, WURFL, W3C, UAProfile, J2MEPolish
DetectRight::$defaultSchema = 'DR';

$profile=DR_Customer::deduceCustomer($_SERVER);
$value = $profile['<property>'];

The API can also be used to download lists of manufacturers and handsets, and to
request individual ones by manufacturer/model name.

Content Delivery
A common situation in the mobile web world is content delivery. Java applications,
widgets, music, video, wallpapers, and any other content can be delivered to compatible
devices, but this requires a bit of explanation and expertise.

Defining MIME Types
MIME types, many of which are listed in the Appendix, are a key element for content
delivery. Many mobile browsers don’t care about the file extension; they decide
whether or not to accept the content based on the MIME type delivered by the server.
Remember that the MIME type travels with the HTTP header response.

Static definition

The simplest way to define the right MIME types is to statically define them on your
web server. If you are working with a shared hosting service, the control panels often
allow you to define document MIME types. If you manage your own server, you can
set them up with the following instructions.

In Apache, the simplest way is to open the mime.types file located in the conf
folder of the Apache root. In your favorite text editor, you can add one row per MIME
type to be configured.

You will find hundreds of MIME type declarations. The first thing to do is to look for
the following line and change the MIME type to the correct one for mobile XHTML
documents:

text/html html htm

As you can see, each line contains a MIME type followed by a series of spaces or tabs
and a space-separated list of file extensions.

Apache.

Content Delivery | 343

http://

This technique applies these changes to all the websites on the server.
If you want to make changes to only one website or one folder of a
website, you should create or edit the .htaccess file in the appropriate
folder and use the AddType procedure:

AddType text/x-vcard vcf

You can find an Apache configuration file to download and use with all the important
mobile web MIME types at http://www.mobilexweb.com/go/mime.

Configuring MIME types in Microsoft IIS can be done via the
UI (as opposed to in Apache, where you need to edit a text file). To configure the MIME
types in IIS 6.0 on Windows XP or Windows Server 2003:

1. Go to IIS Manager.

2. Right-click the whole server, a website, or a folder and select Properties.

3. On the HTTP Headers tab, click MIME Types.

4. Click New, type the file extension and MIME type, and press OK to finish.

In IIS 7.0 for Windows Vista/7 and Windows 2008 Server:

1. Go to IIS Manager.

2. Navigate to the level you want to manage.

3. In Features View, double-click on MIME Types.

4. In the Actions pane, click Add.

5. Type the file extension and MIME type and press OK to finish.

In IIS, you can also manage MIME types from the command line. Check
the documentation for more information.

In IIS 7.0, it is also possible to define static MIME type declarations in the web.config
file in your ASP.NET folder. The syntax is:

<configuration>
 <system.webServer>
 <staticContent>
 <mimeMap fileExtension=".mp4" mimeType="video/mp4" />
 <mimeMap fileExtension=".vcf" mimeType="text/x-vcard" />
 </staticContent>
 </system.webServer>
</configuration

Internet Information Server.

344 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://www.mobilexweb.com/go/mime
http://

Dynamic definition

The other possible way to declare MIME types is to use dynamic header declarations
in your server script code.

In PHP, you should define the MIME type before any other output using the header
function:

header('Content-Type: application/xhtml+xml');

If you are delivering downloadable content (not markup), like a video, you should also
define a filename. If not, when the file is saved it will have a .php extension and it will
not work.

Remember that it is better to serve XHTML MIME types to mobile
websites. You can define them either statically or, if you are using a
server-side language, dynamically. You can also query WURFL or an-
other library to check what the preferred MIME type to deliver is and
use it to define the header.

To define the name of the file we use the Content-disposition header, as shown in the
following sample:

$path = '/videos/video.mp4';
header('Content-Type: video/mp4');
header('Content-disposition: attachment; filename=video.mp4');
// We serve the file from our local filesystem
header("Content-Length: " . filesize($path));
readfile($path);

ASP.NET has a Response.ContentType property that we can define:

// This is C# code
Response.ContentType = "application/xhtml+xml";

The filename should also be defined if it is downloadable content, using
Response.AddHeader.

In a Java servlet or JSP, you should define the headers using the setContentType method
of the response object:

response.setContentType("application/xhtml+xml");

When you are serving non-markup content using a dynamic script, if
an error occurs you will not see the error details and the content will be
broken (imagine a JPEG with a PHP error as the contents). You should
capture any error, send yourself an email or log the error details, and
replace the output with generic content.

Content Delivery | 345

http://

File Delivery
To deliver a file, there are three models:

• Direct linking

• Delayed linking

• OMA Download

You can use any of these three methods to deliver the files, either using the physical file
(video, audio, game, etc.) directly or via a script (PHP, ASPX, etc.). If you use a script
to deliver a file, you can log, secure, and even charge for every download. If the file is
available directly through the web server, anyone with the URL can download the file.

The installation of files using HTTP is also called OTA (Over-the-Air)
provisioning. Some low-end devices don’t have a web browser but do
have the ability to download files (e.g., ringtones, applications, or im-
ages) using HTTP. We can offer files to those devices, but we must send
the download URLs by WAP Push using SMS.

Direct linking

Direct linking is the simplest way to deliver content. A direct link is just a link to the
file (with the right MIME type defined), a link to a script that will deliver the file, or a
link to a script that will redirect the user to the file. For example:

Download This Game
Download This Game

The download.php script can save the download to the database, check permissions,
and then deliver the content using the appropriate MIME type, writing the file to the
response output or redirecting the browser to the file:

<?php
if ($everything_ok) {
 header('Location: game.jad');
} else {
 header('Location: download_error.php');
}

Delayed linking

Delayed linking is a technique often used in download sites for desktop browsers. It
allows us to show a landing page before the download starts. This landing page will
also be the document the user will see after the download has finished or, if the browser
supports background downloading, while it is downloading.

346 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://

Some devices also look for the type attribute in a link to decide how to
manage the link before downloading the response from the server. For
example, we can define a link as a Java ME JAD file using:

<a href="game.jad"
 type="application/vnd.sun.j2me.app-descriptor"> Download This Game

The technique involves linking to an XHTML document that will show the user some
information and will use a refresh metatag to redirect the user to the direct link in X
seconds (more than 5 for mobile devices).

So, the download page will redirect to:

Download This Game

And download.html will contain code like the following:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="refresh" content="5;game.jad" />
<title>Download File</title>
</head>

<body>
<h1>Your game is being downloaded</h1>
<p>If the file is not downloaded in 5 seconds,
 click here

<h2>Brought to you by "Your favourite ad here"</h2>

<p>Trouble downloading this game? Send us an SMS
Call Us</p>

More Downloads
</body>
</html>

OMA Download

OMA Download is a standard defined in 2004 by the Open Mobile Alliance to allow
us more control over the delivery of media objects. It also has support for Digital Rights
Management (DRM) in two versions, OMA DRM 1.0 and OMA DRM 2.0. The spec-
ification was used as the basis for the Java ME MIDlet OTA installation method that
we will see later in this chapter, so the two are very similar.

Content Delivery | 347

http://

Many browsers support the download of Multimedia Messaging
Services (MMS) templates using a format called the Synchronized Mul-
timedia Integration Language (SMIL). This is useful if you are offering
templates like postcards. You can create messages using Nokia tools
available at http://www.mobilexweb.com/go/mms.

OMA Download adds two phases to the download process: before download and after
download.

The before download process involves a description file downloaded using HTTP be-
fore the real file is downloaded. This description file is an XML file containing meta-
information for the operating system and instructions for doing the download. This
process gives the user an opportunity to see information about the content (name,
compatibility, size) before accepting it, as shown in Figure 10-2.

Using OMA DRM you can protect a file from being sent by MMS, Blue-
tooth, or any other method after it has been installed on the device. This
is to avoid piracy of video, music, Flash Lite, and other multimedia
content. Nokia, Sony Ericsson, and Motorola devices are known to have
support for this standard.

The after download process involves an HTTP request posted to your web server from
the operating system, confirming the final status of the download. This allows you to
confirm that the file has been correctly downloaded and installed.

Figure 10-2. With OMA Download we can give the user more information about the content before
she downloads it.

348 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://www.mobilexweb.com/go/mms
http://

OMA DRM supports the ability to define the right to play, display, or execute a media
object or a file a limited number of times. DRM should be managed with care, and you
need to test compatibility with the devices you’re targeting before using it.

Sprint, a U.S. carrier, uses a similar format called General Content De-
scriptor (GCD). A GCD file is a text file with a .gcd extension that is very
similar to the JAD file in Java ME.

The descriptor is an XML-based file that should be served using the
MIME type application/vnd.oma.dd+xml.

Here’s a simple example of this file:

<?xml version="1.0"?>
<media xmlns="http://www.openmobilealliance.org/xmlns/dd">
 <name>The first man on the moon</type>
 <type>video/mp4</type>
 <objectURI>http://mobilexweb.com/video.mp4</objectURI>
 <size>230</size>
 <installNotifyURI>http://mobilexweb.com/download/notify.php?id=3333
 </installNotifyURI>
</media>

These are the typical attributes: name, the user-readable name of the content file; type,
the MIME type of the file; objectURI, the absolute URL of the file; size, the file size
expressed in KB; and installNotifyURI, the URL that will receive the after-download
status (this can have GET parameters defined dynamically to log whether or not the
download was saved).

Additional properties are also available, like nextURL (the URL of a website to visit after
the download has finished), description (a short description of the media file),
vendor (the organization providing the file), and iconURI (an optional icon to be shown
with the file information).

There are good resources and tools on the Forum Nokia, Sony Ericsson,
and Adobe websites about OMA Digital Rights Management. You can
find more information at http://www.mobilexweb.com/go/drm.

If you define the installNotifyURI in the download descrip-
tor, you will receive a POST request to that URL when the download finishes. This URL
will receive as the POST body an integer code with a status message. The important thing
is that this request does not come in the normal URL-encoded way, so you can’t use
the typical $_FORM or Request.Form. To read the status code, you’ll need to read the
request body in a low-level format. Table 10-6 lists the most common OMA Download
status codes to read in our scripts.

Download descriptor.

Post-download status report.

Content Delivery | 349

http://www.mobilexweb.com/go/drm
http://

Table 10-6. OMA Download status codes

Code Message Description

900 Success The object was downloaded and installed.

901 Insufficient Memory The device has no space to download or install the file.

902 User Cancelled The user cancelled the download.

903 Loss of Service The device lost the network connection while downloading the file.

905 Attribute Mismatch The file doesn’t match the download descriptor (e.g., the MIME type). The file will be

rejected.

906 Invalid Descriptor The download descriptor is invalid.

951 Invalid DDVersion The download descriptor version is invalid.

952 Device Aborted The device aborted the installation process. This can occur for different reasons.

953 Non-Acceptable Content The device cannot use the file.

954 Loader Error The URL of the file is not working.

To read the OMA Download response from a PHP script, you can use the following
sample code:

<?php
// We get the post body from the input
$post = file_get_contents('php://input');
// We get the first three characters without spaces
$status = substr(trim($post), 0, 3);

if ($status==900) {
 // Download OK, save information to the database
} else {
 // Some error happens, save information to the database
 // to allow the same user to download it again
}

?>

If you are delivering premium content that the user has paid for, if the download fails
you should deliver the same content without forcing the user to pay again. Even if the
download has succeeded, many carriers insist that the content be made available free
of charge for 24 hours (or even up to a week). Some new application stores also allow
the users to download the premium content again even if they change their mobile
devices.

Remember that you can check for OMA Download compatibility using
WURFL, DeviceAtlas, or another library before using this download
mechanism.

Table 10-7 reports on browser compatibility with OMA Download.

350 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://

Table 10-7. OMA Download compatibility table

Browser/platform OMA Download compatibility

Safari No

Android browser No

Symbian/S60 Yes

Nokia Series 40 Yes

webOS No

BlackBerry Depends on the device

NetFront Yes

Openwave (Myriad) Yes

Internet Explorer Depends on the device

Motorola Internet Browser Depends on the device

Opera Mobile No

Opera Mini No

Application and Games Delivery
In the beginning, the mobile content delivery world centered around ringtones and
wallpapers. To deliver this kind of content, we should rely on what we have seen before:
if we deliver the proper MIME type, the file will be saved by the mobile phone. For
current devices, ringtones are generally MIDI or MP3 files, while there are other audio
formats suitable for low-end and older devices. A wallpaper can be a JPG, an animated
GIF, or even a Flash Lite file for compatible devices.

You can use any dynamic image resizing library to generate a wallpaper
with the right dimensions for the device. The best solution is to have
three templates of the same image to avoid deformation: a vertical, a
horizontal, and a square version of the same image, in a large size. Then,
using the WURFL properties, you can use the correct version and resize
it as needed.

The next content that appeared on the market was games, followed by applications
(the difference is not technical).

Applications delivery can be useful:

• If you are creating a game or application store

• If you are developing a mobile website for a current application

• If you have a richer version of your mobile website available as a widget or
application

• If you are providing a shortcut for your website embedded as an application

Content Delivery | 351

http://

The formats that you can deliver from a website are:

• Java ME (formerly J2ME)

• Flash Lite

• Symbian native applications

• Widgets

• Android applications

• Windows Mobile applications

• BlackBerry applications

We cannot deliver iOS native applications for iPhone, iPad, or iPod directly to users,
as the App Store is the unique public way to install and deliver applications for this OS.
However, we can link to the App Store native application with the app we want the
user to buy or download onscreen.

There are similar restrictions on delivering webOS applications.

For widgets and Android, Symbian, and Windows Mobile applications, we just need
to use the right MIME type when delivering the file. No special mechanism is used.

Charging for Content
You may be wondering how you can charge for content using the user’s bill or available
credit. There is no simple or standard solution for this; to do it universally you would
have to have a contract with every carrier in every country in which you wish to sell
your content, and every carrier has its own charging method.

The classic method is to send an HTTP request to the carrier’s server with an XML or
any other standard file defining the user’s ID or phone number, the content type, and
the amount to charge for the content. The server responds with a status code indicating
whether the payment has gone through or if there has been a problem. This method
implies that we receive the user’s ID or phone number in a header.

More modern methods involve sending a redirect with parameters from your website
to the carrier’s site, where the user will be prompted to pay for the content. If the
payment goes through, the user will then be redirected again back to your server, where
you provide the content.

The GSM Association’s OneAPI is trying to standardize this process across carriers.
More information about this API can be found at http://gsma.securespsite.com/access.

You can, of course, use other classic payment methods, like PayPal or credit card pro-
cessing. PayPal offers Mobile Checkout, an API for mobile commerce. If you have a
PayPal account, go to API Permissions and enable mobile checkout. More information
is available at http://www.mobilexweb.com/go/paypal.

Google Checkout is also available for mobile devices, and it requires no additional setup
if you already have an account: it will work with mobile devices automatically.

352 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://gsma.securespsite.com/access
http://www.mobilexweb.com/go/paypal
http://

Bango (http://www.bango.com) also offers mobile billing through operators, even for
users connecting via WiFi, in over 150 countries.

In Chapters 12 and 14, we will explore how you can monetize your website with other
options, such as store distribution or advertising for mobile websites.

Java ME
Java ME was the preferred language for games and applications for years. Its usage is
declining, but it is still the most widespread platform in the world. It is compatible with
Nokia, non-Android Motorola, LG, Samsung, Sony Ericsson, BlackBerry, and many
other devices.

A Java ME project is shipped as a JAR (Java ARchive) file, which is just a ZIP file
containing the application (compiled classes and resources). It must be delivered using
the MIME type application/java-archive. Many phones accept this file type directly,
although the best (and 100% compatible) way of delivering Java ME games or apps is
to first deliver a JAD (Java Application Descriptor) file. The JAD file is just a text file
served with the MIME type text/vnd.sun.j2me.app-descriptor that contains metadata
about the application, similar to OMA Download’s download descriptor files (in fact,
OMA download took this approach from Java).

So, the device first downloads the JAD file and shows the information to the user (name
of the application, size, format, etc.). If the user accepts, the JAR file is then downloaded
and installed. The Java ME developer usually generates the JAD file, and we receive it
in its final state. However, as it is a text file, we can generate it ourselves or change it
using a server-side script.

If you are delivering games or advanced applications, it is common to
create different versions for different device sets, to deal with portability
problems and differences between platforms. In this situation, you will
need to be sure to deliver the right JAD and JAR file versions for the
current device, if they exist.

At the time of this writing, there are two major versions of the Java ME platform for
mobile devices: MIDP 1.0 and MIDP 2.0. There are more subversions and differences
in APIs and configurations, but this is beyond the scope of this book. If we’re providing
the same application or game in both versions (e.g., basic and advanced versions), we
should first check the device’s compatibility with Java ME and then deliver the correct
JAD and JAR files. WURFL has properties to check if MIDP 1 or MIDP 2 is available.

Serving JAD files

Let’s analyze a part of the MIDP 1.0 version of the JAD file sent to the device when a
user tries to download Opera Mini 3:

Content Delivery | 353

http://www.bango.com
http://

MIDlet-Version: 3.1
MIDlet-1: Opera Mini 3, /i.png, Browser
MIDlet-Data-Size: 10240
MIDlet-Description: Opera Mini
MIDlet-Icon: /i.png
MIDlet-Info-URL: http://mini.opera.com/
MIDlet-Install-Notify: http://mini.opera.com/n/13045Bviprdome_en
MIDlet-Jar-Size: 58800
MIDlet-Jar-URL: opera-mini-3.1.13045-basic-en.jar
MIDlet-Name: Opera Mini 3
MIDlet-Vendor: Opera Software ASA
Content-Folder: Applications
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0

The emphasized parts of the code are the ones that we need to care about when deliv-
ering Java ME applications.

There are a lot of other standard and vendor-specific JAD attributes that
can be defined, from virtual keyboard support on touch-screen devices
to digital signatures.

MIDlet-Jar-URL defines the relative or absolute URL of the JAR file. We can insert the
JAR file directly here, or, if we want to secure and log the download, we can use a URL
to a dynamic script including a URL parameter included in the JAD generation.

MIDlet-Install-Notify is the same as the installNotifyURI parameter in OMA Down-
load. It is an optional parameter that defines a URL that will receive by POST the same
codes as in OMA Download (from 900 to 906), as seen in Table 10-6.

There is another optional JAD attribute, MIDlet-Delete-Notify, that de-
fines a URL that will receive by POST a notification when the user deletes
the application from the device. Using this attribute is not recommen-
ded; it is not reliable, and the user may not want to connect to the Web
when deleting an application.

Starting with MIDP 2.0 (the version compatible with almost all Java ME devices on the
market today), the standard added new codes that we can receive in the MIDlet-
Install-Notify URL. The added status codes are shown in Table 10-8.

Table 10-8. Additional MIDP 2 status codes

Code Message Description

907 Invalid JAR The JAR (executable package) is invalid and could not be installed.

908 Invalid Configuration or Profile The device is not compatible with the versions of the libraries used in the

package.

909 Application Authentication Failure A security problem has occurred.

354 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://

Code Message Description

910 Application Authorization Failure A security problem has occurred.

911 Push Registration Failure A push notification registered in the JAD file is invalid.

912 Deletion Notification The user has deleted the application from the device (used when MIDlet-

Delete-Notify was defined).

913 Required Package Not Supported by

the Device

A package or API marked as required by the application is not available on

the device.

In the MIDlet-Icon and MIDlet-1 parameters, you can find an icon URL (the same path
appears twice). This deserves an explanation.

A Java ME application (called a MIDlet, because it is a MIDP application)
can define an icon to be placed in the applications menu of the mobile device once it
has been installed. This icon is placed inside the JAR archive, and we define it in the
JAD file. What’s the problem? Every platform has its own preferred icon size. Even on
different devices based on the same OS, the icon size can change. In addition, the
developer wants the user to have the best possible experience (as do we), and a broken,
small, or pixelated icon creates a bad user experience.

There are two solutions:

• The Java developer creates n packages for each device or group of devices.

• The Java developer creates one or more packages with all the possible icon sizes
inside the JAR and then we, as the web developers, use a device library to dynam-
ically define in the JAD which icon is the best for the current device.

Custom properties

Java ME allows us to define custom properties in the JAD file as string values. Each
property can then be read by the Java ME application when it’s executed. A custom
property is just a key: value line in the JAD file. This technique must be coordinated
with the Java ME developer. These values cannot be changed by the user and are fixed
with the application until it is deleted or updated.

This can be useful for providing any of the following:

• A download ID for future identification

• User agent or device information that the server knows but Java ME does not

• A username or user ID for transactions

• Key codes for nonstandard keys that the server knows but Java ME does not

• IP or server addresses

• Other useful or dynamic parameters

Icon definition.

Content Delivery | 355

http://

Java ME for BlackBerry

Newer BlackBerry devices accept the same JAD and JAR files that we’ve been exam-
ining. However, the most compatible way to serve Java ME files on these devices is to
use BlackBerry’s own format for JAR files: COD files.

BlackBerry uses the same JAD files, with two new mandatory attributes: RIM-COD-URL
and RIM-COD-Size. The COD file must be served as application/vnd.rim.cod, and it is
generated using a free tool from RIM that converts a JAR into a COD file.

Flash Lite Content
Flash Lite movies, games, or applications are just SWF files. The problem with this
format is that a SWF file is not “an installed application”; it is managed like any other
document on the device, as a file in the filesystem. For Flash Lite content to be installed
as an application, it should be contained in another format, such as:

Nokia Flash Lite (NFL)
Nokia provides a packager for Flash Lite for Series 40 devices.

Symbian SIS
There are many Flash packagers for Symbian that can embed Flash content in a
Symbian native format.

Widget for Symbian
For compatible devices, you can embed a Flash application in a widget. We will
cover this technology in Chapter 12.

Capuchin
The Capuchin Project is an API compatible with Sony Ericsson devices that allows
the usage of a SWF file inside a Java ME application.

The NFL format is just a ZIP file with a .nfl extension, served as application/
vnd.nokia.flashlite-archive, with a minimum of three files inside: a SWF, an icon
file, and a descriptor.inf text file. The contents of the text file look something like this:

FL-Version: 1.0
FL-Icon: image.png
FL-Name: Super Game
FL-Root: supergame.swf

An XML-based file that represents a bookmark is available on some
Nokia, LG, and Sony Ericsson devices. Check for support in the
Accept header by looking for the MIME type application/x-wap-
prov.browser-bookmarks.

356 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://

iPhone Applications
If you have your own application that has already been accepted for distribution via
the App Store, or if you want to provide users with a link to buy or download an
application, game, ebook, music file, movie, or TV show, you can use a special iTunes
link that will open iTunes or the App Store automatically, displaying the desired
content.

You can create one of these links using the web service iTunes Link Maker, available at
http://www.apple.com/itunes/linkmaker. You can select which country’s App Store to
look for the content in, and then search for the content you want to link.

Android Market, one of the application stores for the Android OS, has
its own URL scheme for linking to an application or searching the store
from a website. The format is market://search?q=<search>, using the
application name in the <search> field.

For example, to provide a link that the user can visit to buy the movie Terminator
Salvation, we can use the code provided by the iTunes Link Maker:

<a href="http://itunes.apple.com/WebObjects/MZStore.woa/wa/viewMovie?id=338372479
&s=143441&uo=6" target="itunes_store"><img height="15" width="61" alt=
"Terminator Salvation (Director's Cut)" src="http://ax.phobos.apple.com
.edgesuite.net/images/badgeitunes61x15dark.gif" />

Multimedia and Streaming
Serving audio and video content to mobile devices is very important for many portals
and content providers. Unfortunately, there are so many formats and distribution
methods and the landscape is changing so fast that it’s difficult to provide up-to-date
information in this book.

We can provide multimedia content in three formats:

• Downloadable content

• On-demand streaming content

• Live streaming content

For downloadable content, there are many formats and codecs that we can use. Not
all devices support all of them, so we should check the documentation for our target
devices or use WURFL properties to check for support on the fly.

Video and audio files come with two technologies: a container format and one or more
codecs inside. The most compatible container formats for mobile devices are 3GP and
3GP2, created by the 3GPP organization (formed with 3G companies). They are very
similar to the MPEG-4 (MP4) format, so many devices support both.

Multimedia and Streaming | 357

http://www.apple.com/itunes/linkmaker
http://

There are also devices with support for MPEG, Flash Video, AVI, Real Audio, Real
Video, MOV, and Windows Media Audio/Video containers. Most devices support the
H.263 and H.264 codecs.

In the audio world, the most standard formats today are MP3 and MIDI, but some
devices also support MP4, Real Audio, WAV, AAC, and other audio formats.

Delivering Multimedia Content
If we want to deliver multimedia content, we need to first look at the Accept header or
WURFL properties to determine whether the device supports the format we’re using.
If so, we can use the delivery methods defined earlier. Depending on the device’s ca-
pabilities, it may download the entire file before playing it or it may try to play it while
downloading using HTTP streaming techniques.

Multimedia files are generally large. If we deliver noncompatible files,
the user will be paying for non-useful traffic and will not be happy with
us.

For the best HTTP streaming technique, we need the server to support partial down-
loads. If your server doesn’t support it, there is a great PHP script available at http://
www.mobilexweb.com/go/phppartial.

The direct download technique works in almost every compatible phone: Symbian,
iPhone, Android, Nokia Series 40, etc.

Embedding Audio and Video
Not all devices support embedded multimedia in web pages. On some devices, the
display and CPU constraints make this feature impossible.

Flash Video

Flash Lite (from version) 3.0 and Flash Player for mobile devices support Flash Video
format (FLV). For the compatible devices (see Table 6-20 in Chapter 6), like Symbian
devices from 3rd edition FP1, you can embed any Flash content, although it is better if
you compile your SWFs for Flash Player 8. In fact, the YouTube desktop version works
well on Flash Lite 3–enabled devices (it’s a bit slow on some devices, but it works).

Object embedding

You can use an object tag to include a video in a web page:

<object data="video.mp4" type="video/mp4" width="300" height="300" />

358 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://www.mobilexweb.com/go/phppartial
http://www.mobilexweb.com/go/phppartial
http://

Safari will show an image with a play button. When the user presses play, the video
will open in a full-screen QuickTime Player window instead of being embedded in the
browser.

An alternative is the embed tag, preferred for iOS 1 and 2.X:

<embed src="poster.jpg" href="video.m4v" type="video/x-m4v" />

The object tag also works on Symbian devices.

HTML 5

Although at the time of this writing they are only compatible with some mobile brows-
ers, such as Safari on iOS 3.0 and later, the audio and video tags defined in HTML 5
can also be used to embed multimedia content. The behavior is similar to using the
object tag. The video element supports the usage of a source child tag that allows us
to define different media files in different codecs and bit rates for best compatibility.
The normal syntax is:

<video src="url"
 poster="some_optional_picture.png"
 controls="true"
 width="320"
 height="240" />

Safari supports the formats 3GP, MOV, and MPEG-4, and the H.264 and AAC-LC
codecs.

Reference movies for iPhone

Safari on iOS also supports “reference movies,” created with QuickTime Pro or a similar
tool. A reference movie provides a list of movie URLs with different bit rates (for ex-
ample, for WiFi, 3G, or EDGE), so QuickTime can select the correct one for the device.
In our embed or video tag, we point to this new file.

At http://www.mobilexweb.com/go/refmovie you can find an Objective-
C Mac tool provided by Apple to generate iPhone reference movie files
from the command line.

Streaming
Streaming audio or video is a difficult solution if we want to be compatible with all
devices. Different platforms support different streaming technologies.

Some devices, including Symbian, Windows Mobile, and BlackBerry devices, support
the Real Time Streaming Protocol (RTSP). When a link with this protocol is used (e.g.,
rtsp://server/content), the default media player—Real Player, Windows Media, etc.

Multimedia and Streaming | 359

http://www.mobilexweb.com/go/refmovie
http://

—is opened. The content can be a file to be streamed (a prerecorded audio or video
file) or a live event (radio or TV show, sports event, etc.).

RTSP is an open standard for establishing and controlling sessions be-
tween two points. Most platforms use the Real-time Transport Protocol
(RTP) for media streaming (audio and video) and can deliver either live
events or on-demand multimedia content.

We should expect more Flash streaming services for mobile devices when the full Flash
Player is available for mobile devices. Today, Flash Lite 3.0 devices should work with
Adobe Flash Media Server or the Red5 open source alternative (http://www.osflash.org/
red5).

For general audio and video streaming there are also other streaming solutions, like the
commercial Helix Media Delivery Platform (http://www.realnetworks.com) and Quick-
Time Streaming Server (http://www.apple.com/quicktime/streamingserver).

Apple also maintains an open source alternative called Darwin Streaming Server. (http:
//developer.apple.com/opensource/server/streaming).

A streaming server uses TCP or UDP but generally does not use HTTP. Some proxies
may have problems redirecting the server’s TCP or UDP packages, so HTTP has some
advantages. However, it also has more overhead than TCP or UDP and it is not prepared
for live streaming events. Some mobile devices that use HTTP have to download the
entire file before playing it. Other devices will start playing the file while downloading
it.

HTTP Live Streaming

Apple has created a new way to deliver live streaming using HTTP, called HTTP Live
Streaming, which it has presented to the IETF as a proposed Internet standard. It is
supported by iOS 3.0 and allows the transmission of live events using the same HTTP
protocol we know. In fact, this is the only streaming solution that works on the iPhone.

Implementing HTTP Live Streaming requires some changes on the web server end. The
simplified explanation of the protocol is that on the server, the live stream is buffered
in little packages sent to the client. It’s like transmitting a live radio show by sending a
series of 10-second MP3s.

The well-known Akamai application acceleration service provider offers
live streaming services for the iPhone from http://iphone.akamai.com.
Influxis (http://www.influxis.com) also offers mobile streaming services
as a shared hosting solution, for the iPhone/iPad and BlackBerry and
Android devices.

360 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://www.osflash.org/red5
http://www.osflash.org/red5
http://www.realnetworks.com
http://www.apple.com/quicktime/streamingserver
http://developer.apple.com/opensource/server/streaming
http://developer.apple.com/opensource/server/streaming
http://iphone.akamai.com
http://www.influxis.com
http://

HTTP Live Streaming supports the H.264 codec for video and AAC or MP3 for live
audio streaming, as well as a bandwidth switcher for different qualities. However, the
best feature is that it passes any firewall or proxy because it is HTTP-based.

Carson McDonald has developed an open source Ruby and C solution
for doing HTTP Live Streaming from a server, and even using Amazon
S3 services. You can check out his blog at http://www.ioncannon.net or
read more about the project at http://www.mobilexweb.com/go/httplive.

Apple offers a prerelease toolkit for this solution called HTTP Live Streaming Tools.
You need to be part of the Apple Developer Connection to download it. The open
source IceCast Server also supports iPhone streaming, from version 2.3.2. You can find
more information at http://www.icecast.org.

For Android, iPhone, and Flash Lite 3 or Flash Player 10 devices, we can
safely upload video content to YouTube and embed it in our websites.
The devices will render this content properly using the internal Flash
Player or a native YouTube application.

Content Adaptation
Content adaptation is a technique for changing the markup delivered by the server
depending on the device’s capabilities. The alternative solution is content splitting,
where you redirect the user to different folders or domains depending on the device
used.

Once we know how to detect capabilities and how to deliver content to the client, we
need to decide how we are going to do the content adaptation. Content adaptation has
the great advantage that the same source code can be used for all devices; the framework
takes care of the adaptation. Therefore, making updates is a one-place modification.

Custom solutions are the most adaptable. My suggestions if you want to develop your
own framework are:

• Create or use a master page or template framework. You will need to define several
master pages (e.g., for low-end devices, mid-end devices, smartphones, and per-
haps the iPhone).

• Create standard markup templates for the content of each page. Use headers,
paragraphs, unordered lists, and whatever other standard markup you need.

• Create a different CSS file for each master page.

• Create a different JavaScript controller file for each master page. Some templates
may not have any JavaScript.

Content Adaptation | 361

http://www.ioncannon.net
http://www.mobilexweb.com/go/httplive
http://www.icecast.org
http://

• Create a different JavaScript controller file for the iPhone, using a specific UI
library.

• For the iPhone and other smartphones, change and add behavior using JavaScript
in the onload event. If you will create a very different experience for iPhone (and
perhaps Android) devices, you will need to create separate content files.

• For Ajax-compatible devices, use a JavaScript onclick handler to override normal
links with Ajax compatibility.

• Make special methods or classes to deliver the best markup for some noncompat-
ible features, like call-to links and file upload.

• Make your best effort to maintain your content in one source code file.

• Make one different WML version for WML-only devices. If you use only ul, p, and
header tags, you even can use the same content files and only change the master
page.

Adaptation Frameworks
There are some different solutions for content adaptation on the market. These solu-
tions generally involve not using full markup, but rather using some special markup
that will be translated to XML, HTML, XHTML, or some version thereof.

WALL Next Generation

The existence of a Next Generation (a very Trekkie phrase) implies that there was an
older version. That is the case with WALL (the Wireless Abstraction Library by Luca).
The WALL framework, a JSP library created in 2003 by Luca Passani (whom you may
remember from earlier in this chapter; he is also the developer behind WURFL), allows
developers to write mobile applications using a generalized markup. Then, by querying
WURFL capabilities, WALL transparently determines the best markup to send to the
requesting device—WML, XHTML MP, or cHTML (for i-mode devices)—and gener-
ates the appropriate markup.

It is still available, but has now been deprecated. You can find it at http://sourceforge
.net/projects/wurfl/files/WALL.

There is a PHP implementation of WALL (the older version) that works
pretty similarly, but because it’s a bit older it doesn’t provide good
markup for modern smartphones. Wall4PHP can be found at http://wall
.laacz.lv.

WALL Next Generation (WNG) is an update to the platform that adds support for
more recent devices (iPhone, Android, etc.) and heavy-CSS sites, while maintaining
fallback support for legacy platforms. In WNG, every tag is also a component (an ob-

362 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://sourceforge.net/projects/wurfl/files/WALL
http://sourceforge.net/projects/wurfl/files/WALL
http://wall.laacz.lv
http://wall.laacz.lv
http://

ject) that you can use in any situation—even to create pages programmatically without
tags.

WNG markup can be used to generate WML, simple XHTML MP, and advanced
XHTML MP. The controls render differently depending on which markup is selected
for delivery to the requesting device. A typical WNG document looks like this:

<%@ taglib uri="http://wurfl.sourceforge.net/wng" prefix="wng"%>
<%@ tag lib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<wng:document>
 <wng:head>

 </wng:head>
 <wng:body>

 </wng:body>
</wng:document>

CSS styles are also defined in WNG tags or components. For example:

<wng:css_style>
 <wng:css selector="body">
 <wng:css_property name="margin" value="0" />
 <wng:css_property name="border" value="0" />
 <wng:css_property name="font-family" value=" serif" />
 <wng:css_property name="color" value="#8AE" />
 </wng:css>

This declaration may be rendered differently on different devices. Furthermore, because
of some bugs and known problems in some browsers, the rendered CSS may include
some hacks and additional styles that will reduce the impact of those bugs and produce
a result similar to the one desired. Of course, the WML version will have no CSS
declarations.

The WNG package can be downloaded from http://wurfl.sourceforge
.net/wng and installed on every Java server platform. A Tutorial and a
Reference Guide are also available on the same website.

The component library in WNG has support for many tags. The most common of these
are listed in Table 10-9.

Table 10-9. Most common WNG component tags

Tag (with wng: prefix) Description

br Like in HTML

banner_row Page header with images and optional links

billboard Banner advertisement

css Advanced CSS style management

document Main tag of the document (equivalent to HTML or WML)

Content Adaptation | 363

http://wurfl.sourceforge.net/wng
http://wurfl.sourceforge.net/wng
http://

Tag (with wng: prefix) Description

form Like in HTML

grid_menu Menu or icons organized in a matrix (depending on the width of the device)

head Like in HTML

hr Like in HTML

illustrated_item An image with a caption and text below

input Like in HTML

link Hyperlink

listItem Link with styles and with optional text below

navigation_bar Textual navigation bar to use at top or bottom of the website

select/option Like in HTML

rack_menu Two-dimensional list of links

text Text container without styling or markup rendering

textarea Like in HTML

textblock Text block for large contents

title Similar to billboard

Microsoft ASP.NET Mobile Controls
With ASP.NET 1.1, Microsoft created a really comfortable solution for mobile website
creation. Similarly to WALL, this framework allows us to create WML, XHTML, and
cHTML content from a single source, called a Mobile Form.

The best thing about Mobile Controls is that it has design support in Visual Studio.
The main problem is that this framework was deprecated in 2005, in favor of using the
main ASP.NET framework and control adapters. That is why you will not find it in
Visual Studio 2008 or 2010 amongst the New Website templates. Mobile Controls also
does not work with ADO.NET 2.0 and the great additions of .NET Framework 2.0.

ComponentOne has a suite of commercial ASP components to create
visual iPhone applications using ASP.NET, available at http://www.com
ponentone.com/SuperProducts/StudioiPhone.

If you want, you can still use it, and you can find more information at http://www.asp
.net/mobile. Microsoft has not offered an alternative adaptation solution, and if you are
using ASP.NET you should probably look at creating an MVC application for better
markup management.

364 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://www.componentone.com/SuperProducts/StudioiPhone
http://www.componentone.com/SuperProducts/StudioiPhone
http://www.asp.net/mobile
http://www.asp.net/mobile
http://

mobileOK Pythia
mobileOK Pythia (http://www.w3.org/2009/11/mobileOKPythia) is a W3C tool for PHP
to create mobileOK-compatible content. mobileOK is a W3C test that we will cover in
Chapter 13.

mobileOK Pythia includes open source plug-ins for Joomla!, WordPress, and Moodle
for e-learning, as well as AskPythia, a WURFL implementation using the Device De-
scription Repository Simple API W3C Recommendation.

It also includes TransPythia, a transcoding tool that adapts content to fit the properties
of the requesting device. It uses actions as components that we can reuse. These actions
include image resizing, content pagination, script suppression for noncompatible de-
vices, table support adaptation, and CSS adaptation. You create an HTML string and
the actions will transcode it to be compatible with the current device.

Here is some sample code for using this library:

// Prerequisites: Prepare AskPythia
$service = ServiceFactory::newService(
 'WURFL',
 'http://www.w3.org/2008/01/ddr-core-vocabulary',
 array('wurfl_path'=>'[path to WURFL]'));
$evidence = $service->newHTTPEvidenceM($_SERVER);

// Step 1: Create the transcoder
$transcoder = new Transcoder($service);

// Step 2: Add required transcoding actions
$trans = $transcoder->newTranscodingAction('ResizeIMG');
$transcoder->addTranscodingAction($trans);

$trans = $transcoder->newTranscodingAction('DeletePopup');
$transcoder->addTranscodingAction($trans);

$trans = $transcoder->newTranscodingAction('LinearTables');
$trans->setOption('layout', true);
$transcoder->addTranscodingAction($trans);

// Step 3: Apply transcoder to HTML content
// $content should have all the HTML we want to use
$adaptedContent = $transcoder->apply($content, $evidence);

Yahoo! Blueprint
Yahoo! offers an open self-adapted mobile development platform that includes not only
a new markup language, but hosting and advertisement services, too. Blueprint (http:
//mobile.yahoo.com/developers) is an XML-based solution that converts your code to
the proper markup for thousands of devices.

Content Adaptation | 365

http://www.w3.org/2009/11/mobileOKPythia
http://mobile.yahoo.com/developers
http://mobile.yahoo.com/developers
http://

To start, you can download the SDK from http://mobile.yahoo.com/devcenter/down
loads and extract the contents of the ZIP package. The package includes samples, tem-
plates, XML schemas to validate your website, and a PHP class to generate valid markup
for Blueprint.

If you want to use your own domain name for your Blueprint website,
you can add a CNAME DNS entry in your domain for m.domain.com
pointing to <widget-id>.bpapps.com, where <widget-id> is the ID re-
ceived by Yahoo! when publishing your package.

Visitors will be able to access your site from the browser, as a mobile widget for Yahoo!
Go 3.0 (the richer experience for mobile browsers), and also as a standalone mobile
application using the Blueprint Runtime for Mobile Apps (in preview at the time of this
writing).

Creating and publishing a Blueprint site is free, and log reports analyzing the usage of
your website are available.

A Blueprint application is a ZIP package consisting of a config.xml file containing
metadata information about your site (including your server URL for sending requests),
a gallery.xml file containing metadata information to help users find your site via
Yahoo! Go and the search engine, and all the image files.

The content file will be hosted on your own server, so it will not be inside
the package to be published. Yahoo! offers a PHP builder for easy web-
site generation.

The user connects to the Yahoo! servers, which connect to your server using normal
HTTP requests. Your script should receive different actions and parameters and re-
spond with a Blueprint page served with the MIME type application/x-blueprint+xml.

There is not enough space in this book to talk about all the features of Blueprint, but
you should know that it supports components of different kinds—containers, visual
controls, helper elements, and inline elements—all in an XML file served by your server
statically or using the PHP Writer class. Using Blueprint, you can localize the user,
define actions, capture events, define form elements, map visualizations, and more.

Mobilizing WordPress and Other CMSs
If you are using a commercial or open source Content Management System (CMS), you
probably don’t have easy support for integrating mobile detection and adaptation
techniques. Here are some plug-ins that will automatically add mobile support to your
website.

366 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://mobile.yahoo.com/devcenter/downloads
http://mobile.yahoo.com/devcenter/downloads
http://

WordPress
For the popular WordPress blog engine, there are several mobile plug-ins available.

One of the most useful ones is the WordPress Mobility Pack, available at http://word
press.org/extend/plugins/wordpress-mobile-pack. This is a free plug-in that automati-
cally switches mobile users to a mobile version of your blog, like the one shown in
Figure 10-3. There are clear installation instructions and steps on the website.

If you want to provide an installable widget for your blog that will work
on many devices, you can create a free widget using only your blog URL
at http://www.widgen.com.

Figure 10-3. A blog in Spanish about web development using WordPress and the plug-in for mobile
device adaptation.

Mobilizing WordPress and Other CMSs | 367

http://wordpress.org/extend/plugins/wordpress-mobile-pack
http://wordpress.org/extend/plugins/wordpress-mobile-pack
http://www.widgen.com
http://

The main features of the WordPress Mobility Pack are:

• Mobile switcher, to change versions from desktop to mobile and vice versa

• Image rescaling

• Mobile ads and analytics support

• QR code (called the Barcode widget) in the desktop site for easy access

• XHTML MP 1.0–compatible markup

• Page splitting for large articles

Another good solution is to use the free Mobile Press (http://mobilepress.co.za), which
allows you to customize the stylesheet for every platform.

There are some automatic mobilizing solutions available, even as Word-
Press plug-ins, that can redirect the user to another server that analyzes
your desktop website in real time and creates a mobile version, like a
transcoder. I don’t recommend this solution, though, as you don’t have
much control over the rendering engine or the server.

Joomla!

Joomla! is a more complex CMS that also implements many mobile solutions. You can
find a full list at http://extensions.joomla.org/extensions/core-enhancements/mobile.

One of the most complete is OSMOBI (http://www.osmobi.com), which also works with
the Drupal CMS. Free and premium commercial versions are available.

Other Joomla! mobile plug-ins can be found at http://sourceforge.net/projects/joomla
mobileplu.

phpBB

There is a mobile compatibility plug-in for the forum phpBB available at http://source
forge.net/projects/phpbbmobileaddo.

If you are working with another CMS, check in the plug-ins directory
for a mobile solution. If you don’t find one, it’s an opportunity to create
one!

368 | Chapter 10: Server-Side Browser Detection and Content Delivery

http://mobilepress.co.za
http://extensions.joomla.org/extensions/core-enhancements/mobile
http://www.osmobi.com
http://sourceforge.net/projects/joomlamobileplu
http://sourceforge.net/projects/joomlamobileplu
http://sourceforge.net/projects/phpbbmobileaddo
http://sourceforge.net/projects/phpbbmobileaddo
http://

CHAPTER 11

Geolocation and Maps

One of the great features of mobile devices is that they can go everywhere with us. That
is why the where is a very important context to be considered by our websites. Knowing
the user’s location can help us to show useful contextual information. If I live in Lon-
don, why should I receive a banner promotion from a shop in New York? Likewise, if
I am on holiday in Singapore and I search for “pizza,” I would like to receive relevant
information about where I can get it.

Location-based services (LBS) are one of the key features of modern mobile web ap-
plications. From our mobile websites, we can get the user’s location using many tech-
niques. Mapping and LBS services are very popular right now, so it is easy to find web
services and APIs from different providers and integrate them into our mobile websites.

Location Techniques
There are different techniques that we can use to determine the geographical location
of a device, based on the platform, the browser, the operator, and so on. Most tech-
nologies involve server detection, but others depend on client detection, and we may
even rely on the user’s input.

Accuracy
Every location technology has some accuracy error. This is usually specified in a dis-
tance metric, like meters or kilometers, but in some techniques accuracy is defined
according to levels such as city accuracy or country accuracy.

Indoor Location
When we think about geolocation, we tend to think about the outside location—that
is, where on the planet the user is located. Recently, there has been some interest in
services that will locate a user inside a building (for example, a shopping mall or an
office building). The idea is that we can offer better services for the users inside the

369

http://

building if we can pinpoint what floor they are on or what department they are in.
These services may be local services on the Internet, or even services provided on an
intranet with the user using a Wireless LAN connection.

Augmented Reality, the Promise
Augmented Reality (AR) is a very popular technology today. It involves the usage of
the camera preview with additional information on the screen about the objects and
places we are seeing. One of the AR solutions is geographical-based, allowing us to see,
for example, the camera preview and a tag over every building and Point of Interest
(POI), with more information displayed about those places.

This solution involves accelerometer, high-accuracy geolocation (e.g., GPS), digital
compass, and camera support. Unfortunately, a web application cannot access all of
these features from the mobile device, so we cannot create AR web applications right
now. Such applications must be created as native apps, like an Objective-C application
for iPhone or a Java application for Android.

Client Techniques
Devices support a wide variety of approaches to figuring out where they are. Different
approaches may yield different results.

GPS

The Global Positioning System (GPS) is the first technique most people think of when
location detection is mentioned. GPS was created by the United States government as
a system for locating devices, using between 24 and 32 satellites orbiting the Earth.
Many mobile devices come with a built-in GPS receiver that can read satellite data to
determine location information (data must be received from a minimum of four satel-
lites). In mobile devices, the accuracy error is between 2m and 100m. The user needs
to have a sky view (outside), and it can take between 5 seconds and 5 minutes to cal-
culate the location.

A-GPS

Assisted GPS is a software-based system available for mobile phones connected to car-
rier networks that can help the devices to determine their locations. The assistance can
be in the form of helping the device to find a better satellite signal, or providing less-
accurate information about the location of the user until the GPS has connected suc-
cessfully.

In 2006, I started to use a Nokia N95 with GPS support. In my city, it took 5 minutes
to get my location using GPS (with an accuracy error of 10 meters). A firmware update
later added A-GPS support to the same hardware, allowing the same device in the same
city to connect in 10 seconds, with an initial accuracy error of 100 meters.

370 | Chapter 11: Geolocation and Maps

http://

Cell information

Using the operator network’s cellular towers, the carrier can triangulate the position
of a mobile device. The accuracy will depend on how many cells are in range (the more
densely populated your location is, the more towers will be in range and the more
accurate the reading will be). The carrier knows every cell tower’s position, so it can
make the calculations to detect the device’s location.

Even knowing which cell tower a device is connected to can provide an idea of its
location (near the location of the tower). This might be accurate to within a block, or
up to some kilometers in rural areas.

Getting the Cell Location Without the Carrier’s Assistance
It is possible to detect a mobile device’s position using cell information without the
cooperation of the carrier. OpenCellID (http://www.opencellid.org) is an open source
project aiming to create a complete database of cell IDs worldwide. If we can get the
IDs of every cell in range and calculate the distances to those cells, we can triangulate
the device’s position.

For example, Google Maps can locate even non-GPS-equipped devices anywhere in the
world, and with some carrier agreements for cell detection.

WiFi Positioning System

If you have a notebook with WiFi and Google Chrome 2.0 or Firefox 3.5 or newer, go
to http://maps.google.com and click on the blue circle. If you are in a large city, you will
probably be located very accurately. You were just geolocated, and unless you have a
3G netbook chances are your notebook doesn’t have GPS. This technique also works
on a WiFi-connected iPod Touch. But how?

The WiFi Positioning System (WPS) is a very clever technique that detects your location
using the list of wireless routers that are available in your area (even if you are not
connected to them). This method relies on a pre-existing database of routers and their
geographical locations. Skyhook Wireless (http://skyhookwireless.com) is the leading
provider, offering developer programs for most mobile and desktop platforms. Google
has its own database and is the provider used by Firefox.

The main problem for us is that as yet there are no mobile browsers that give us the
hotspot list.

Server Techniques
On the server, we can get the HTTP request headers. This is our opportunity to locate
the user without using any client technology such as GPS, and in a way that works even
for low-end devices.

Location Techniques | 371

http://www.opencellid.org
http://maps.google.com
http://skyhookwireless.com
http://

IP address

The main server technique for locating a user is reading the client’s IP address. However,
this is not as straightforward as it may sound. Depending on the user’s connection type
(2G, 3G, WiFi), the IP address we receive may be the operator’s WAP gateway address,
a dynamic IP address in the operator’s range, or the IP address of the WiFi connection.

To further complicate our work, we need to bear in mind proxied browsers (discussed
in Chapter 2). These browsers use a proxy server to connect to the Internet and to our
servers. For example, if the user is browsing using Opera Mini, we will receive the
requests from the Opera server instead of from the user’s device. Likewise, if the user
has a BlackBerry device and is using a corporate Internet connection, we will receive
the requests from that connection, which could be based thousands of miles from the
actual user’s location.

What should we do with the IP address? There are public lists of operators’ IP addresses,
and there are public and commercial solutions for determining the location of an IP
address. The accuracy of this method can be country-level to city-level, although in
some special situations, like when the user is using a public WiFi network, we can
pinpoint the exact location.

Carrier connection

Some worldwide operators offer developer programs (both open and private) for web
portals that allow any request made from a user to your web server to carry additional
headers containing information about the user (e.g., identity, location, and billing
services). The GSM Association, which encompasses almost all the operators around
the world, has launched an initiative called OneAPI that aims to provide web applica-
tions with access to all this carrier information through its APIs.

Language

A less-accurate mechanism is to use the accepted language of the browser. If the user
has set up his device correctly, it should send a header indicating the preferred language,
from which we can infer the country of the user (for example, the browser may send
us en-CA as the accepted language, meaning English from Canada). This results in at
best country-level accuracy.

Indoor location

When users are connecting via WiFi hotspots in a single building, we can configure
our routers to be queried about those users. Every WLAN user has a unique IP address
in the network, so we can tell which hotspot a given user is connected to. With that
information, we can identify the floor and zone where the user is located.

Nokia set up the first indoor location implementation trial in the Kamppi shopping
center in Finland, shown in Figure 11-1. Anyone inside the shopping center can access

372 | Chapter 11: Geolocation and Maps

http://

indoor maps, information, vouchers, and even their friends’ locations by going to a
website using any mobile browser from an S60 device.

Asking the User
If you need to offer web-based location-based services, the last location mechanism
available if all the others fail is to ask the user. Even if you have identified the location
using another algorithm, you may be able to increase the accuracy by asking the user,
as shown in Figure 11-2.

The user may know her location, or not. For example, if the user is
visiting a foreign city, she may not know her current location.

So, what should we be asking users? We should allow them to select from a closed list,
or to type the location in an open text box. We can query our databases for city names,
addresses, POIs (like parks, hotels, or restaurants), or zip codes. We can also query
public databases using web APIs like Yahoo! PlaceMaker and Yahoo! GeoPlanet. To
pinpoint the location, we can then use a geocoding query to convert the string into a
latitude/longitude pair.

Figure 11-1. Nokia was one of the first providers offering indoor position detection from a web
browser, in a shopping center in Finland.

Location Techniques | 373

http://

We should allow the users to select their current location from amongst the following:

Home
If the users need to log into the website, we can ask them where they live when
they install the application and store this information in our database for future use.

Favorite places
We can make a user’s favorite places database.

History
We can allow the users to select places where they have been recently, ordering the
list by frequency.

Records of all of these locations may be stored in a database on our server attached to
the user’s credentials (for login-based solutions), in a cookie on the client, or even in
client storage in supported devices.

Figure 11-2. Google Local Search uses automatic geolocation if available; if not, it tries to determine
your location by IP, your location history, and a search feature to define it manually.

374 | Chapter 11: Geolocation and Maps

http://

Detecting the Location
Let’s take a look at some samples of the different techniques, and a multiplatform
solution that will work for almost all devices. Table 11-1 analyzes browser compatibility
with the different client techniques.

Table 11-1. Client geolocation API support list

Browser/platform Client geolocation support

Safari W3C Geolocation API from iOS 3.0

Android browser Gears from Android 1.5

W3C Geolocation API from Android 2.0

Symbian/S60 No support (available in widgets)

Nokia Series 40 No support

webOS No support (available in offline applications)

BlackBerry BlackBerry Location since 4.1

Gears since 5.0

W3C Geolocation API announced from 6.0

NetFront No support

Openwave (Myriad) No support

Internet Explorer No support (Gears optionally, if it’s installed)

Motorola Internet Browser No support

Opera Mobile No support (Gears optionally, if it’s installed)

Opera Mini No support

W3C Geolocation API
The World Wide Web Consortium is working on a standard way to query the user’s
position from JavaScript, called the Geolocation API. The API is still in draft at the time
of this writing, but the draft status has not stopped some providers from using it: it has
been implemented in Firefox since version 3.5, in mobile Safari since iOS version 3.0,
and in the Android browser since 2.0. We should expect it to be implemented in more
browsers in the future.

The Geolocation API doesn’t rely on one location technology. Instead, it allows the
browser to decide which method it will use.

With this API implemented in a mobile browser, the navigator object in JavaScript will
have a read-only property called geolocation that will allow us to interact with the API.

Detecting the Location | 375

http://

The Iris Browser (recently acquired by BlackBerry), the Bondi Widgets
1.0 API, the Nokia JavaScript Platform 2.0, the webOS DoJo framework,
and Safari on iOS 3.0 are the mobile platforms currently supporting the
W3C Geolocation API.

Location querying is an asynchronous process. It can take some time to get the user’s
location (like in GPS); that’s why the API relies on callback functions to give us the
latitude and longitude.

The user will need to give the site permission to obtain the geolocation data using the
API, as shown in Figure 11-3.

Figure 11-3. We cannot get the user’s location unless permission was granted the first time we tried
to get it.

Getting the position

The first way to use the Geolocation API is to get the user’s location, using the getCur
rentPosition function of the geolocation object. It receives two callbacks: the function
that will receive the position, and an error-handling function. The latter is optional.

Optionally, it may also receive an object that configures some additional properties;
this third parameter will be discussed shortly.

376 | Chapter 11: Geolocation and Maps

http://

Let’s look at an example:

navigator.geolocation.getCurrentPosition(userLocated, locationError);

The first callback will receive one parameter as the position object with a coordinate
property. The error callback will receive an error code:

function userLocated(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 var timeOfLocation = position.timestamp;
}

function locationError(error) {
 alert(error.code);
}

The coords property has the following attributes, defined in the W3C standard:

• latitude

• longitude

• altitude (optional)

• accuracy

• altitudeAccuracy (optional)

• heading (optional) in degrees clockwise

• speed (optional) in meters per second

Handling error messages

The parameter received in the error handler is an object of class PositionError having
a code and a message (useful for logging). The class also has some constant values to be
compared with the code property. The constants are shown in Table 11-2.

Table 11-2. PositionError constants in the W3C Geolocation API

Error constant Description

UNKNOWN ERROR The location couldn’t be retrieved.

PERMISION_DENIED The user has denied permission to the API to get the position.

POSITION_UNAVAILABLE The user’s position couldn’t be determined due to a failure in the location provider.

TIMEOUT The user’s position couldn’t be determined before the timeout defined in the options.

To use these constants, we should make a switch for each value:

function locationError(error) {
 switch(error.code) {
 case error.PERMISSION_DENIED:
 // error handling
 break;
 case error.POSITION_UNAVAILABLE:

Detecting the Location | 377

http://

 // error handling
 break;
 case error.TIMEOUT:
 // error handling
 break;
 }
}

Tracking the location

The second way to use the W3C Geolocation API is to track the user’s location. With
tracking support, we can receive notifications about location changes. For instance, we
can make a sports website that tracks the user’s steps, make speed and distance calcu-
lations, and store this information either locally or on our server using Ajax.

For this to work, the user needs to keep the website open in the browser.
Many browsers also stop JavaScript execution when the browser is in
the background.

The tracking process involves the watchPosition method of the navigator.geoloca
tion object, which receives two handlers (for location detection and error management)
and returns a watchId. The handler function will receive the same parameter as the
getCurrentPosition function that we saw earlier. To stop the location tracking we can
call clearWatch, passing the previously received watchId:

// Global variable to store the watch ID
var watchId = false;

// This function may be called by an HTML element
function trackingButtonClick() {
 if (watchId==false) {
 // Tracking is off, turn it on
 var watchId = navigator.geolocation.watchPosition(userLocated,
 locationError);
 } else {
 // Tracking is on, turn it off
 navigator.geolocation.clearWatch(watchId);
 watchId = false;
 }
}

Detecting API availability

Detecting whether the W3C Geolocation API is available is as simple as querying
whether the navigator.geolocation object exists. For example:

if (navigator.geolocation==undefined) {
 alert("Geolocation API is not present");
}

378 | Chapter 11: Geolocation and Maps

http://

Defining optional attributes

The third parameter of the getCurrentPosition and watchPosition functions can receive
an object with the optional properties outlined in Table 11-3.

Table 11-3. Optional properties for getCurrentPosition and watchPosition

Property Type Default value

enableHighAccuracy Boolean false

timeout Long (in milliseconds) Infinity

maximumAge Long (in milliseconds) 0

If the enableHighAccuracy property is defined as true, the provider should force the best
accuracy in determining the user’s location.

The maximumAge attribute is useful for using location data cached on the device. If the
device has recently acquired a location, we can get that location using this property,
defined as the maximum milliseconds we want. If the property is defined as 0 (the
default value), the device must acquire a new location. A typical usage might look like
this:

navigator.geolocation.getCurrentPosition(userLocated, locationError,
 {timeout:10000, maximumAge: 30000, enableHighAccuracy:false});

Google Gears
Google Gears is a browser plug-in preinstalled on some devices and optionally available
on others. It is just a stopgap and will become obsolete as soon as HTML 5 becomes a
standard. In the mobile world, we can find Google Gears in the Android browser from
version 1.5 of the OS, in Opera Mobile from version 9.5, in Windows Mobile as an
optional download for Internet Explorer, and in BlackBerry devices since version 5.0
of the OS.

Getting the position

Gears includes a Geolocation API that is similar to the W3C’s. To use the Gears API,
first we need to load it into JavaScript using the script tag:

<script type="text/javascript" src="gears_init.js"></script>

We can then query the location using the getCurrentPosition method of a previously
created geolocation object. This method receives a handler for success, a handler for
failure, and a third optional parameter (discussed in the upcoming section “Custom-
izing location preferences” on page 380):

var geolocation = google.gears.factory.create('beta.geolocation');
geolocation.getCurrentPosition(userLocated, locationError);

Detecting the Location | 379

http://

The first callback receives one parameter as the position object with latitude and
longitude properties. The error callback receives an error code:

function userLocated(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 var altitude = position.coords.altitude;
 var timeOfLocation = position.timestamp;
}

function locationError(error) {
 alert(error.message);
}

Once the location has been obtained, we can access it again using the lastPosition
object (it will be null if the location has not previously been queried):

var lastPosition = geolocation.lastPosition;

Obtaining permission

As with the W3C Geolocation API, the user has to give permission to a website to use
this feature. However, Gears offers us a way to query the user at any time, as shown in
Figure 11-4, using the geolocation object created using the google.gears.factory
method. This object has a hasPermission property that we can query to see whether the
user has already granted us permission.

To get permission we can use the getPermission method, which receives three optional
parameters: the siteName, an imageURL, and an extraMessage used to give the user in-
formation in the pop-up window. This method returns true if the user has granted
access and false if not:

hasPermission = Geolocation.getPermission("Geolocation.com", "images/logo.gif",
"Give us permission to filter your results based on your location");

Customizing location preferences

As with the W3C API, we can define an optional third parameter that can receive an
object with the attributes shown in Table 11-4.

Table 11-4. Google Gears optional attributes for geolocation

Property Type Default value

enableHighAccuracy Boolean false

timeout Int (in milliseconds) Infinity

maximumAge Int (in milliseconds) 0

gearsRequestAddress Boolean false

gearsAddressLanguage String Default language

gearsLocationProviderUrls String[] null

380 | Chapter 11: Geolocation and Maps

http://

As you can see, Gears supports the same properties as the W3C API, and three other
attributes prepared for reverse geocoding. If gearsRequestAddress is defined as true,
Gears will try to add address information to the position by performing a reverse geo-
coding, converting the latitude and longitude into address information (street, city,
country). The gearsAddressLanguage property defines an RFC 3066 string language
code, like "en-GB" for British English or "es-MX" for Mexican Spanish, to use for the
address information. By default Gears uses Google as the provider for the reverse geo-
coding service, but we can provide our own provider URLs using the gearsLocation
ProviderUrls array.

The BlackBerry browser has supported the Gears Geolocation API for
high-accuracy requests since OS 5.0. Alternatively, we can use the pro-
prietary blackberry.location object, which is faster and less battery-
intensive but provides less accuracy and information than Gears. We’ll
look at the BlackBerry Location API shortly.

Figure 11-4. The Android browser showing the permission dialog for geolocation using Gears. The
Gears Geolocation API allows for more customization of the permission dialog than the W3C one
used in iPhone devices.

Detecting the Location | 381

http://

Reading the address

If we turn on reverse geocoding, the position object received in the handler will have a
gearsAddress attribute with the following string properties:

• street

• streetNumber

• premises

• city

• region

• country

• countryCode

• postalCode

This sample gives the street information to the user:

function userLocated(position) {
 if (position.gearsAddress!=null) {
 var address = position.gearsAddress;
 alert("You are located at " + address.streetNumber +
 " " + address.street + " " + address.city);
 } else {
 alert("Your address couldn't be determined");
 }
}

Handling errors

Gears only supports the following W3C error codes in the error handler parameter:

• PositionError.POSITION_UNAVAILABLE

• PositionError.TIMEOUT

Remember that we can find out whether the user has granted permission by querying
the hasPermission property of the geolocation object.

Tracking the location

We can also track the user’s location over time using the same technique as the W3C
API. The only difference is that the watchPosition method has an optional third pa-
rameter allowing us to select optional preferences, just like the third parameter for the
getCurrentLocation method.

BlackBerry Location API
Since Device Software version 4.1, the BlackBerry browser has included a proprietary
blackberry.location object. To determine whether a BlackBerry device has GPS sup-
port, we should check the Boolean property blackberry.location.GPSSupported.

382 | Chapter 11: Geolocation and Maps

http://

The best way to get the user’s location is to use the onLocationUpdate(callback, string
Callback) method, which receives a callback function as the first parameter and a string
for callback information as the second.

In BlackBerry software before 4.6 the callback method in onLocationUp
date must be passed as a string.

The removeLocationUpdate(callback) method will remove the callback, and
refreshLocation requests an update of the location by calling the previously defined
onLocationUpdate callback method.

Once we receive a callback call, we can read the position using blackberry.loca
tion.latitude and blackberry.location.longitude.

We can define the method to obtain the GPS location using blackberry.loca
tion.setAidMode(mode), using one of the following modes:

• Cellsite (mode 0), the fastest and least accurate mode

• Assisted (mode 1), using some kind of A-GPS

• Autonomous (mode 2), using only GPS

Therefore, for tracking the user’s location, the following sample will be useful:

if (blackberry.location!= undefined) {
 // It's a Blackberry with Location support
 blackberry.location.onLocationUpdate(userLocated);
}

function userLocated() {
 var latitude = blackberry.location.latitude;
 var longitude = blackberry.location.longitude;
 var timeOfLocation = blackberry.location.timestamp;
}

Widget APIs
Almost all widget APIs (covered in Chapter 12) have geolocation support from Java-
Script. Remember that in these cases the user will not be using the browser explicitly.

GSMA OneAPI
OneAPI is a cross-operator API organized by the GSM Association. At the time of the
writing of this book, the API is still under development, and fewer than 10 operators
worldwide are connected. With this API we can access the user’s location from our
servers, using his phone number. The website to register as a developer and obtain a
token to access the OpenAPI web services is http://oneapi.aepona.com. The API sup-
ports SOAP Web Services and REST using HTTP.

Detecting the Location | 383

http://oneapi.aepona.com
http://

One of the services supported by OpenAPI is geolocation. With the Location API, we
can get a user’s longitude and latitude using the mobile operator’s cells’ positions. To
use the API we need to get a key from the website. Then, if we want to use REST, we
can create an HTTP request to a URL like the following:

https://developer.aepona.com/TerminalLocationService/Proxy/REST/<key>?address=
tel:<tel>&accuracy=coarse

where <key> is the key assigned to our developer account and <tel> is the international
number of the phone we want to geolocate. If the request is successful, we will receive
a response like the following:

<response timestamp="2010-06-06T12:31:07.014Z" longitude="10.22244"
 latitude="54.601505" altitude="10.0" accuracy="200"/>

The list of supported operators is on the website, and the goal is to have all the operators
worldwide using the same API.

Loki.com offers an API for developers based on a geolocation plug-in
for desktop browsers and an IP Geolocation service that can be used
from a mobile device.

Multiplatform Geolocation API
geo-location-javascript is a multiplatform framework designed for mobile browsers. It
is available as an open source project hosted in Google Code (http://code.google.com/
p/geo-location-javascript/).

The framework is compatible with the iPhone and other devices that use the W3C
Geolocation API, devices that use the Google Gears Geolocation API (including An-
droid and Windows Mobile devices), and BlackBerry devices. It also works with the
Nokia Web Runtime widget engine, Palm Pre for webOS, and other browsers with less
market share.

This framework allows us to use the same code for all platforms. To use the framework,
we just need to download the JavaScript file, host it on our servers, and include it in
our websites:

<script src="http://code.google.com/apis/gears/gears_init.js"
 type="text/javascript"></script>
<script src="geo.js" type="text/javascript"></script>

To support Gears on compatible devices, we must insert the gears_init
script in the HTML document. We can create a function that inserts this
script only on compatible devices using DOM.

The API creates a global variable called geo_position_js with an init method that
returns a Boolean indicating whether the device is compatible with geolocation.

384 | Chapter 11: Geolocation and Maps

http://code.google.com/p/geo-location-javascript/
http://code.google.com/p/geo-location-javascript/
http://

Once we are sure that geolocation is available we should call getCurrentPosition, pass-
ing two callbacks (the position handler and the error handler):

if (geo_position_js.init()){
 geo_position_js.getCurrentPosition(userLocated, locationError);
} else{
 alert("GeoLocation not available");
}

The callback parameters are aligned with the W3C API, so we can use the same
handlers:

function userLocated(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 var timeOfLocation = position.timestamp;
}

function locationError(error) {
 alert(error.code);
}

If the real implementation supports other options (like altitude), we can read them in
the callback parameter.

Simulating movement

To assist us in development phase, the framework also allows us to simulate users
moving without a real device actually moving. To simulate movement we should insert
a second script:

<script src="js/geo_position_js_simulator.js" type="text/javascript"
 charset="utf-8"></script>

Then, we can create an array of locations and initiate the simulation:

var simulation=new Array();

// These are Barcelona's positions from the simulator sample
simulation.push({ coords:{latitude:41.399856290690956,
 longitude:2.1961069107055664}, duration:5000 });
simulation.push({ coords:{latitude:41.400634242252046,
 longitude:2.1971797943115234}, duration:5000 });
simulation.push({ coords:{latitude:41.40124586762545,
 longitude:2.197995185852051}, duration:5000 });

// Initiate the simulation
geo_position_js_simulator.init(simulation);

The framework does not support a tracking system, so if we want to use
it to track users’ movements we should implement a setTimeout or
setInterval timer to call getCurrentPosition frequently.

Detecting the Location | 385

http://

IP Geolocation
There are a lot of free and commercial IP address geolocation services available for use
on our servers. When using such a solution, we need to remember that a BlackBerry
can browse through a corporate network, so the IP address will be the network IP
address and not the user’s. The same applies to proxied browsers like Opera Mini.

Reading the IP address

We can read the IP address from the host using the appropriate mechanism for the
server platform. For example, in PHP we read the address using:

$IP = $_SERVER['REMOTE_ADDR'];

However, we must remember that this IP address may belong to a renderer proxy. For
example, when an Opera Mini user accesses our website the IP address will be always
the same, because the client contacting our server is actually the Opera Mini server.
Fortunately, Opera Mini servers offer us another HTTP header that provides the actual
IP address of the requesting mobile device: the X-Forwarded-For header contains a CSV
list of the IP addresses of all the proxy servers the request has passed through on its
way from the device to the Mini proxy. The last IP address will be the address of the
original requestor (the mobile device).

Once we have the IP address to query, we can use a web service to get the country/city
details, or download the Geo-IP open source database from http://software77.net/geo
-ip.

We need to keep in mind that IP geocoding is useful only to get the user’s
country for devices connected to the Internet via 2.5G or 3G, because
what we’ll receive is the operator’s gateway IP address. If the user is
using WiFi, depending on the zone, we can usually get more accurate
details.

Google’s ClientLocation object

Google provides a set of Ajax APIs (Maps, Search, etc.) that can be used to create
feature-rich dynamic websites. Whenever one of these APIs is loaded on a client, the
Ajax API loader attempts to geolocate the user using the device’s IP address.

To use the Ajax APIs, we need to get an API key, freely available from the website http:
//code.google.com/apis/ajaxsearch/signup.html. Once we have an API key, we need to
insert this script:

<script type="text/javascript"
 src="http://www.google.com/jsapi?key={key}"></script>

To use the client location feature, we must then load an API. For example:

386 | Chapter 11: Geolocation and Maps

http://software77.net/geo-ip
http://software77.net/geo-ip
http://code.google.com/apis/ajaxsearch/signup.html
http://code.google.com/apis/ajaxsearch/signup.html
http://

<script type="text/javascript">
 google.load("search", "1");
</script>

Once we’ve loaded the API, the google.loader.ClientLocation object will be populated
with properties like the following:

• latitude

• longitude

• address.city

• address.country

• address.country_code

• address.region

This technique works only on compatible devices and should be used
only if we are going to make use of one of the Ajax APIs (Ajax Search,
Maps, Ajax Feeds, Earth, Data, Visualization, Friend Connect, or Ajax
Language).

Showing a Map
Once we have located the user (via a client or server solution), we may want to display
a map showing the user’s position, and/or a list of points of interest or other information
superposed on the map.

To do this, we should use one of the available public maps APIs: Google Maps, Bing
Maps from Microsoft, Yahoo! Maps, or OVI Maps from Nokia. However, if we analyze
mobile compatibility, there is really only one choice: Google Maps. Compatibility for
the others may increase in the future, but at present Google’s API is by far the best
supported.

There are actually two Google APIs that are useful for mobile browsers: the Google
Maps API v3 and the Google Maps Static API. The first one is the same service that we
can find in any website using Google Maps. However, it is currently compatible only
with iPhone and Android devices; on other devices, this API will not work properly.
The Static API will allow us to show a static map compatible with any mobile browser.

Yahoo! APIs will be compatible if we use the Point of Interest (POI)
search or even the geocoding services. Microsoft also offers Bing Maps
Web Services with similar solutions.

Showing a Map | 387

http://

Google Maps API v3
If we are sure that the device is an iPhone or Android device, we should use the Google
Maps API version 3, as shown in Figure 11-5.

Figure 11-5. Here we can see the Google Maps API on an iPhone showing the user’s current location
using the multiplatform framework.

To use the API, we first need to include the script loader:

<script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=true">

The sensor value must be true if the device has geolocation support via the operating
system (this is the case on both iPhone and Android devices). We should check whether
the device is compatible either on the server, as discussed in Chapter 10, or using
JavaScript.

Then, we need to create a div tag in our HTML and define its dimensions as 100%:

function showMap() {
 var useragent = navigator.userAgent;
 var divMap = document.getElementById("map");

 if (useragent.indexOf('iPhone') != −1 || useragent.indexOf('Android') != −1 ||
 useragent.indexOf(iPod) != −1) {

388 | Chapter 11: Geolocation and Maps

http://

 divMap.style.width = '100%';
 divMap.style.height = '100%';
 // ...
 } else {
 // Google Maps not compatible with this mobile device
 }
}

We should use the Google Maps API only for iPhone or Android devices.
On other devices, this will not work and we will need to use the Google
Maps Static API instead.

The other requirement for iPhone and Android from version 1.5 is to define the meta
tag to work without user zooming and with an initial scale of 1.0. This is necessary to
avoid usability problems with the map zooming. So, in the head we should add:

<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />

A full sample looks like this:

<html>
<head>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
<script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=true"></script>
<script type="text/javascript">
 function init() {
 var useragent = navigator.userAgent;
 var divMap = document.getElementById("map");

 if (useragent.indexOf('iPhone') != −1 ||
 useragent.indexOf('Android') != −1 ||
 useragent.indexOf('iPod') != −1) {
 divMap.style.width = '100%';
 divMap.style.height = '100%';
 position = getPosition(); // This needs to be implemented
 var latlng = new google.maps.LatLng(position.latitude,
 position.longitude);
 var options = {
 zoom: 7,
 center: latlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById("divMap"),
 options);
 } else {
 // Google Maps not compatible with this mobile device
 }
}

</script>
</head>
<body onload="init()">
 <div id="divMap"></div>

Showing a Map | 389

http://

</body>
</html>

To see the full Google Maps API documentation, go to http://code.google.com/apis/
maps/documentation/v3.

Google Maps Static API
If we need compatibility with all mobile devices, even the ones without JavaScript sup-
port, we can use the free Google Maps Static API, which allows us to show a map as a
static image without any automatic interaction.

To use this API you will need to sign up for a free API key at http://code
.google.com/apis/maps/signup.html.

This API is very simple and doesn’t require any JavaScript or server code. We will use
it inside an HTML image tag, in the source URL. The URL will look like this:

http://maps.google.com/maps/api/staticmap?parameters

To use this API we need to get the location from the server or the client and generate
the image URL dynamically using JavaScript on compatible devices. We need to re-
member that we may not want to show the user’s location, but rather a map of some
other place.

With the Google Maps Static API we can show a map on any mobile
phone on the market, even those without JavaScript or Ajax support.

The common parameters include:

sensor

Must be true for a mobile device.

center

May be a position using latitude,longitude, or a city name.

zoom

The level of zoom required, from 0 (world view) to 21 (building view).

size

The size in pixels of the image required (e.g., 220×300). We should get the device’s
screen size from the server or from JavaScript.

format

Accepts GIF, JPEG, or PNG. The default is PNG, which is suitable for mobile devices.

390 | Chapter 11: Geolocation and Maps

http://code.google.com/apis/maps/documentation/v3
http://code.google.com/apis/maps/documentation/v3
http://code.google.com/apis/maps/signup.html
http://code.google.com/apis/maps/signup.html
http://

mobile

Marking this parameter as true creates different rendering images optimized for
viewing on mobile devices. Google suggests using false in the case of iPhone or
Android devices.

The API is more complex, and it can even show marks and routes over
the map. To see the full documentation, go to http://code.google.com/
apis/maps/documentation/staticmaps/.

For example, if we are using PHP and we just have the latitude and longitude (acquired
by any method), we should use:

<?php
// $latitude and $longitude already acquired
$url = "http://maps.google.com/maps/api/staticmap?center=$latitude,
$longitude&zoom=14&size=220x300&sensor=true&key=API_KEY";
?>
<img src="<?php echo $url ?>" width="220" height="300" />

Following LBS
Location-based services are great. We can create very useful applications combining
maps, places (Points of Interest), the user’s location, and even other users’ locations.
Some good books about LBS and geographical services are available for marketers and
developers. I encourage you to look more deeply into this topic, so you can create better
mobile web experiences.

Showing a Map | 391

http://code.google.com/apis/maps/documentation/staticmaps/
http://code.google.com/apis/maps/documentation/staticmaps/
http://

http://

CHAPTER 12

Widgets and Offline Webapps

Mobile websites can run like native installed applications on any platform. This tech-
nique is present today in every vendor’s roadmap, and many devices are already com-
patible with some kind of solution for this.

The mobile community hasn’t settled on a single name for this kind of application yet;
some platforms call them “widgets” and others “offline applications,” “JavaScript ap-
plications,” “mobile web applications,” “HTML 5 apps,” or simply “webapps.” I per-
sonally like the term “mobile widget,” but there is no common agreement on this yet.
The only disadvantage I see of using the term “widget” is that it is always related to a
small application, and as this platform evolves we may prove to be underestimating it.

All that said, to simplify our discussion of this kind of application in this chapter, from
here on out I will refer to them as widgets (call it the power of the author).

The W3C is working on some recommendations for mobile web appli-
cation development, available at http://www.w3.org/TR/mwabp.

Alex Nicolaou, Engineering Manager at Google Mobile, said this in the Google Mobile
blog about mobile web application design:

A growing number of mobile devices ship with an all-important feature: a modern web
browser. And this is significant for two reasons:

1. As an engineering team, we can build a single app with HTML and JavaScript, and
have it “just work” across many mobile operating systems. The cost savings are
substantial, not to mention the time you can re-invest in user-requested features.

2. Having a web application also means we can launch products and features as soon
as they’re ready. And for users, the latest version of the app is always just a URL and
a refresh away.*

* http://googlemobile.blogspot.com/2009/12/iterative-web-app-feature-rich-and-fast.html.

393

http://www.w3.org/TR/mwabp
http://googlemobile.blogspot.com/2009/12/iterative-web-app-feature-rich-and-fast.html
http://

Of course, this also introduces some practical problems, but Nicolaou recognized that
they could work on those issues to create a better version of Gmail for modern browsers.

Mobile Widget Platforms
We’ll define a mobile widget as an application entirely developed using web technol-
ogies (HTML, CSS, JavaScript, Ajax) that is installed on the device’s home screen or in
the applications menu and that the user can use when offline as well as online. The
usage of web technologies is invisible to the user, and the application can work just like
any other software installed on the device.

If you are working with Android native applications and webOS appli-
cations, the term “widget” is used for another purpose: to define visual
controls we can use on the screen.

Pros and Cons
Widgets are the future for most mobile applications, for a number of reasons:

1. The mobile world is fragmented and will be more fragmented in the future. Chap-
ter 1 covered all the platforms available today and likely to be available in the future.
Java ME is no longer the king of portability; today, if you want wide coverage you
need to create an iPhone, an Android, a Palm Pre, a Windows Mobile, a Symbian,
a Bada, and also a Java ME application, and you still won’t be covering all the
platforms.

2. The Web 2.0 environment demands speed to market: we cannot wait months be-
fore releasing our mobile application clients. Widgets can be developed quickly.

3. Every vendor roadmap has a widget or similar technology implemented or slated
to be implemented in the near future.

4. The majority of a widget’s code can be shared between all operating systems.

5. A widget can be a great addition to a mobile website, sharing the same code as the
“mobile client” version but offering different possibilities, such as integration with
the device.

6. Widgets can be on the users’ screens all the time, without requiring them to open
the browser and type a URL.

7. Carriers are also entering the widget development world with their own platforms.

8. Widgets are built using well-known technologies (HTML, JavaScript, CSS, and
Ajax) for which a lot of human and technical resources are available.

9. We can use any Web 2.0 API for widget development, without waiting for mobile
APIs to appear.

10. Porting is less painful with widgets than with native applications.

394 | Chapter 12: Widgets and Offline Webapps

http://

11. It is easy to port mobile widgets from and to desktop widgets (Adobe AIR, Win-
dows Vista Gadgets and others).

12. We can distribute widgets freely or sell them in vendors’ stores.

13. They can be self-updated.

14. We can access platform services through new JavaScript APIs not available in mo-
bile web browsers.

However, not everything is golden, and we will face some problems when using this
technology:

1. Porting is required between platforms.

2. Debugging is painful.

3. Widgets are not native applications, so the performance will not be the best com-
pared to other solutions.

4. Widgets are not suitable for all kinds of applications and games.

5. Widgets are not simple websites, but complete applications using JavaScript; best
practices and good programming techniques are mandatory.

6. On most platforms, we cannot create background applications.

7. 3D effects are not possible (or at least, not recommended).

8. It is difficult or impossible today to implement CPU-intensive processes, like image
recognition, augmented reality, or voice recognition, in mobile widgets.

9. Have I said yet that there are too many platforms? Certainly more than we want!

Architecture
We can define the architecture of a mobile widget application as described in Fig-
ure 12-1.

Meta configuration

Every platform has some kind of meta configuration file where we generally define the
name of the application, the icon to be used for the applications menu, the main HTML
or JavaScript file to load when the widget is launched, and other metainformation.

There are widget/webapp platforms using all of the following for meta configuration:

• meta tags

• XML files

• JSON files

• Property list (.plist) files

Mobile Widget Platforms | 395

http://

Platform access

Platform access refers to the ability to connect to platform services using JavaScript
APIs. Depending on the device platform, our code may be able to access any of the
following:

• Messaging

• Calendar and events

• Filesystem

• Camera

• Geolocation

• Home screen

• Battery and signal level

• Accelerometer

• Installed applications

Data storage

Widgets are not simple mobile websites; they are applications. And like all applications,
they need to store information—databases, configurations, login data, statistics, or
whatever else—in some sort of persistent store.

We have several data-storage options, including:

Figure 12-1. Architecture of mobile widget development.

396 | Chapter 12: Widgets and Offline Webapps

http://

• HTML 5 storage

• Google Gears

• JavaScript API extensions

Network access

To access the Internet we can use standard Ajax requests, just like any JavaScript code,
or any other similar solution, like JSONP requests. Most widget platforms accept cross-
platform Ajax requests (to any web server, regardless of the origin of the widget code).
For some platforms, we may need a proxy for third-party servers; we’ll discuss proxies
further in the next chapter.

Logic

The entire model, the controller, and the UI logic will be JavaScript code, and using
best practices and high-performance object-oriented code will be mandatory. If you
want to learn about JavaScript internals, hacks, and how you can write better code, I
strongly suggest that you read the excellent book JavaScript: The Good Parts (O’Reilly),
written by Douglas Crockford (http://crockford.com), a JavaScript architect at Yahoo!.

The first fear about this is, if the source code is plain JavaScript, can’t other people look
at and even steal our code? The answer is yes, but it shouldn’t be a problem. Every Ajax
website today (Gmail, Facebook, Hotmail) is JavaScript code that anyone can look at.
Nothing stops us from using typical obfuscating techniques for our JavaScript code
before we package it up, so it will be the same as unpacking a Java ME JAR file or an
iPhone native application and trying to decompile the classes. Widgets are no less se-
cure than native applications.

User interface

The user interface will be defined using all the technologies we’ve already talked about
in this book: XHTML, CSS, images, canvas, SVG, and even Flash on supported devices.
Some mobile widget platforms will offer us some kind of UI library to create native-like
controls from JavaScript.

Some platforms also allow us to define native menus to be used, just like in any other
installed application.

Package

Every platform offers some kind of package system where we will include all the static
assets for our widgets: HTML, JavaScript, CSS, images, text files, configuration files,
and any other required resources. Most packages are just ZIP files with a different
extension and MIME type. Some platforms can embed a mobile web application inside
a native application, and some others will use the HTML 5 offline behavior (the man-
ifest file) to define a virtual package.

Mobile Widget Platforms | 397

http://oreilly.com/catalog/9780596517748/
http://crockford.com
http://

Distribution

Finally, when we have our package ready to distribute, we can deliver it to users. Op-
tions include Over-the-Air (OTA) delivery (with the appropriate MIME type applied),
providing a URL from which the user can access the application for downloading, or
distributing it in stores. (As we’ll see later in this chapter, many stores are now accepting
mobile widgets for free delivery or for sale.)

Standards
The standards in this area are still emerging, but we can identify some official and de
facto standards in the mobile widget world.

Packaging and Configuration Standards
First, for packaging and for the configuration file, the W3C has the Widget Packaging
and Configuration standard, defined at http://www.w3.org/TR/widgets (not only for
mobile widgets). The W3C standard defines a ZIP file as the package format, with a
configuration file and an optional icon included in the root folder of the package.

The configuration file must be named config.xml. Here’s a sample file:

<?xml version="1.0" encoding="UTF-8"?>
<widget xmlns="http://www.w3.org/ns/widgets"
 id="http://mobilexweb.com/widget">
 <name short="Example 2.0">
 The example Widget!
 </name>
 <description>
 A sample widget to demonstrate some of the possibilities.
 </description>
 <icon src="icons/example.png"/>
 <content src="myWidget.html"/>
</widget>

The other de facto standard is the Apple Dashboard Widget, used for Mac OS X widget
development. It also uses a ZIP file, and a property list file (info.plist) is used for con-
figuration.

The property list format stores serialized objects in a file with a .plist extension. The
contents are in XML format, but without the typical XML tag usage.

In a property file, objects are stored along with their properties. Each property can be
a string, a number, a Boolean, an array, a key/value dictionary, or some other type,
depending on the system. For each property, we define the name as one key tag and
the value as another tag, depending on the type. For example:

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
 <dict>
 <key>Numeric Property</key>

398 | Chapter 12: Widgets and Offline Webapps

http://www.w3.org/TR/widgets
http://

 <integer>2010</integer>

 <key>String Property</key>
 <string>Value</string>

 <key>Boolean Property</key>
 <true/>
 </dict>
</plist>

Platform Access
For mobile platform access standards, we have already talked about HTML 5, Google
Gears, and the W3C Geolocation API. To that list, we can add the BONDI standard,
the de facto PhoneGap standard, and a proposed standard by Nokia called Nokia Plat-
form Services.

BONDI

BONDI (http://bondi.omtp.org) is a standard for mobile platform access from JavaScript
including security policies defined and published by the Open Mobile Terminal Plat-
form (OMTP) organization, now taken into the Wholesale Applications Community
(WAC) and integrated with JIL and GSMA OneAPI. BONDI is supported by many
companies, including ACCESS (NetFront), Myriad (Openwave), Sony Ericsson, LG,
Opera, T-Mobile, Orange, and Vodafone. It supports access from a widget or even the
browser.

Devices supporting the BONDI platform for widget development began entering the
market in 2010. At the time of this writing there are two versions of the standard, 1.0
and 1.1, and the full API can be found on the website.

An open source independent SDK provided by the LiMo foundation is available at http:
//bondisdk.limofoundation.org, and every vendor should provide its own SDK (like LG,
as we will see in the following pages). The LiMo SDK is Eclipse-based and includes a
Phone View with some kind of BONDI emulator, as well as an incorporated debugger.
This SDK also includes a debugger for testing WRT-based widgets (the Symbian for-
mat).

Remember that mobile widgets are just like any other HTML, CSS, and
JavaScript code. We can even create something like a product catalog
or a small data application that synchronizes with the server using Ajax
without using any special API.

A BONDI widget is a ZIP package following the W3C widget standard, so it includes
a config.xml file, a startup HTML file, and all the required resources. In order to be
recognized as a BONDI widget, the ZIP file extension must be changed to .wgt and the
file must be served as application/widget.

Standards | 399

http://bondi.omtp.org
http://bondisdk.limofoundation.org
http://bondisdk.limofoundation.org
http://

The API defined in the 1.0 and 1.1 standards manages all functionality with a bondi
global object that is available in compatible devices. It includes the modules described
in Table 12-1. You can access a module if you define it in the feature tag of the con-
fig.xml file. This is to allow the user to know what features you will use when installing
the widget.

Table 12-1. BONDI widget modules

Module name Module object Allows us to...

Application Launcher bondi.applauncher Launch any application installed, including standard ones (browser,

email, phone, SMS, or media player)

Messaging bondi.messaging Send SMS, MMS, and email messages

User Interaction bondi.ui Define navigation mechanisms, configure soft keys and native me-

nus, access effects (vibration, sounds, and lights), change the ori-

entation, and fire some application events

File System bondi.filesystem Browse and manage files in known folders (documents, images,

videos) or in any path in local or external memory

Gallery bondi.gallery Access media files on the device

Device Status bondi.devicestatus Access properties of the device

Application Configuration bondi.appconfig Change and read application settings defined by the developer

Geolocation location Implement the W3C Geolocation API

Camera bondi.camera Access video recording and photo snapshot capabilities

Communication Log bondi.commlog Access the list of recent messages and calls

Contact bondi.contact Access the SIM card and stored phone contacts

Calendar bondi.pim.calendar Access the device’s calendars

Task bondi.pim.task Access the device’s tasks list

Many methods support event listeners and JSON-style object parameters.

For example, the JavaScript code for sending an email with attachments taken from the
filesystem from a BONDI widget would look like this:

<script type="text/javascript">
function send() {

 var file=bondi.filesystem.resolve("/Photo.jpg");
 var email = bondi.messaging.createEmail({
 from: "info@mobilexweb.com",
 to: document.getElementById("email"),
 subject: "Sent from a widget",
 body: "Hi! This is our message from a widget with an attachment",
 attachments: file
 });
 bondi.messaging.sendEmail(function() {
 // Sent handler
 alert('Your message was sent');

400 | Chapter 12: Widgets and Offline Webapps

http://

 }, function() {
 // Error handler
 }, email);
}

For testing purposes, you can download a widget from the BONDI Ref-
erence Implementation, a Windows Mobile 6.x official implementation.
You can also download testing SDKs and emulators for other vendors,
such as LG.

The BONDI JavaScript API should also work in the future on normal browser-based
websites, but we may first ask for permission using bondi.requestFeature(success_call
back, error_callback, module_name). The browser usage is not yet implemented on any
platform.

At the time of this writing LG, Samsung, and Sony Ericsson are starting to support
BONDI widgets. There are also some wrappers and open source projects to make them
work on Symbian, Android, and other devices.

PhoneGap

If you know about PhoneGap, you may wonder why I am talking about it here, in the
API standards section. PhoneGap (http://www.phonegap.com) is an open source frame-
work for creating mobile web applications in HTML and JavaScript while still taking
advantage of the core features of native applications in some platforms. It is becoming
a de facto standard for iPhone, Android, and BlackBerry devices and is entering into
the webOS, Symbian, Maemo, and Windows Mobile world.

Other similar projects are RhoMobile (http://rhomobile.com) and Tita-
nium Mobile (http://appcelerator.com).

PhoneGap has two main features:

1. A JavaScript API for usage in our code

2. The ability to embed our web applications in native projects

PhoneGap applications are native applications that open a full-screen embedded
browser with our mobile web code running inside. This framework provides a bridge
between JavaScript and the native runtime, providing support for additional features
not available in JavaScript.

Standards | 401

http://www.phonegap.com
http://rhomobile.com
http://appcelerator.com
http://

You can create PhoneGap-like projects easily for every platform by using
the web browser control that each platform offers in its native environ-
ment, and opening your HTML code inside. The disadvantage of not
using PhoneGap is that you will not have access to any mobile-specific
JavaScript APIs.

PhoneGap supports several new JavaScript native objects when you are running inside
a PhoneGap project. The objects are listed in Table 12-2.

Table 12-2. PhoneGap native objects

Object Description

Geolocation Provides similar functionality to the W3C Geolocation API

Accelerometer Provides listeners for the accelerometer

Camera Provides access to the camera

Notification Provides access to sound, vibrate, and other notification options

Contacts Allows you to manage contacts from the user’s agenda

File Enables you to read, write, and manage files on the filesystem

SMS Lets you send SMS messages

Phone Lets you make a call

Maps Allows you to open a map

Audio Allows you to record and play audio files

Settings Gets information about the device

HTTP Makes a GET request to an URL

For example, to take a picture we will use a code similar to this:

function takePicture() {
 navigator.camera.getPicture(function(image) {
 // This function is called with the picture data in base64 format
 document.getElementById("img").src="data:image/base64;" + image;
 }, null, {quality: 8});
}

Nokia Platform Services 2.0

Nokia has developed its own standard based on the Symbian WRT widget engine,
which we will look at in the next section. This standard is an easy-to-use JavaScript API
for accessing device services and is intended to be a future standard for many other
vendors.

402 | Chapter 12: Widgets and Offline Webapps

http://

Apple Dashboard

Apple Dashboard, as one of the first widget engines for desktops, is the de facto
standard for a global widget object in JavaScript. The most widely compatible methods
are openURL, for opening the browser, and the persistent storage methods preference
ForKey and setPreferenceForKey, which we will cover later.

Platforms
Widgets come in a lot of different varieties, as the technology has emerged from dif-
ferent vendors and organizations at different times.

Symbian/Nokia
We will start with Nokia and Symbian Foundation devices, because they are the ones
with the oldest mobile widget platform and the most experience in this field. Since
Series 60 3rd edition Feature Pack 2 (and for some FP1 devices with a firmware update),
every Nokia device supports a version of the Web Runtime (WRT) engine. These de-
vices hit the market starting in 2007.

WRT is a first-class citizen mobile widget engine. When a WRT widget is installed it
appears like any other Symbian or Java ME installed application, and might look like
Figure 12-2. From the user’s perspective, there is no difference between widgets and
native installed applications. And, of course, the widgets are created entirely using web
technologies.

As a Symbian technology, WRT is also available in non-Nokia devices, such as Samsung
and Sony Ericsson devices.

At the time of this writing, the platform is divided into the following versions:

• WRT 1.0 for Series 60 3rd

• WRT 1.1 for Series 60 5th

• WRT 7.1 with optional home screen support (Nokia N97, N97 Mini)

• WRT 7.2 with optional multipage home screen support (Nokia N8)

Home screen support (also known as MiniView) refers to the ability of a widget to stay
on the device’s home screen all the time, with visual updates possible. This is an ex-
cellent solution for applications related to social media, news, or any other information
that can benefit from being regularly updated on the user’s home screen.

The 7.1 and 7.2 numbers come from the version of the browser that is installed on those
devices.

The platform access JavaScript API does not follow any of the standards we have seen
so far, but it has many similarities to Apple’s Dashboard Widget API.

Platforms | 403

http://

WRT Using Another JavaScript API
As JavaScript is a dynamic language, it is easy (almost magical) to create JavaScript
wrappers to translate some other API into a WRT one. That is why we can find many
wrappers for WRT for compatibility with other technologies. To use them, you have
to include a script that will create all the global wrapper objects:

• For BONDI on WRT, you can use the BONDI JavaScript standard API (not the
package standard) inside a Symbian widget.

• For PhoneGap on Symbian, there is a PhoneGap API for WRT 1.1.

• For Nokia Platform Services 2.0 for WRT 1.X, there is an optional library for WRT
that simplifies the usage of the platform’s JavaScript API.

You can find all these libraries for WRT at http://www.mobilexweb.com/go/wrt.

Figure 12-2. A WRT widget looks like any other application. It even has native menu support created
using JavaScript.

404 | Chapter 12: Widgets and Offline Webapps

http://www.mobilexweb.com/go/wrt
http://

Package

A WRT widget is a ZIP file with a .wgz extension, served as application/x-nokia-
widget. The configuration file follows the Apple Dashboard standard, so it is a property
list (info.plist) with some mandatory information:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Nokia//DTD PLIST 1.0//EN"
 "http://www.nokia.com/NOKIA_COM_1/DTDs/plist-1.0.dtd">
<plist version="1.0">
<dict>
 <key>DisplayName</key>
 <string>Widget Name</string>
 <key>Identifier</key>
 <string>com.mobilexweb.widget_unique_id</string
 <key>MainHTML</key>
 <string>Main.html</string>
 <key>Version</key>
 <string>1.0</string>
 <key>AllowNetworkAccess</key>
 <false/>
 <key>MiniViewEnabled</key>
 <true/>
</dict>
</plist>

The DisplayName is the name that the user will see on the screen; the Identifier is an
inverse-URL mechanism to identify an application inside the device; the MainHTML is the
first HTML file that will be opened with the application; the Version is used by the
Application Manager when the user is downloading the application again; and if we
define AllowNetworkAccess as false, we will not have any access to the Web (Ajax or
resource loading). MiniViewEnabled is for compatible devices only.

The icon must be in PNG format (the recommended size for the best compatibility is
88×88 pixels), must be named icon.png, and must be located in the root folder of the
package.

Nokia also offers a map widgets platform called App on Maps. App on
Maps widgets are small web applications that can be installed in OVI
Maps (the map solution from Nokia) and can interact with a map. More
information can be found at http://forum.nokia.com/ovi.

Features

The Forum Nokia Library (http://library.forum.nokia.com) has great documentation on
WRT, in the section Web Developer’s Library→Web Runtime widgets. WRT creates
three new global objects: widget, device, and menu.

Platforms | 405

http://forum.nokia.com/ovi
http://library.forum.nokia.com
http://

WRT allows you to define multilanguage applications; the version cor-
responding to the user’s defined language will automatically be selected.

In WRT 1.0 we also have a sysinfo object to access the System Information API, which
allows us to access properties from battery, network information, lights, vibration, beep
tone, memory, and filesystem information and system language information services.
WRT 1.0 doesn’t have access to other APIs.

Platform Services 2.0 supports was added as a firmware update for No-
kia N97 and Nokia N97 Mini and is included in newer devices. For other
devices, we can add support by including the library.

The device object allows us to use the Platform Services API library in WRT 1.1. The
standard version of Platform Services is 1.0; if we are using Platform Services 2.0, we
can use some new APIs. Table 12-3 lists the available APIs.

Table 12-3. Nokia Platform Services APIs

API Allows us to…

AppManager List applications and launch a specific application or the default handler for a document type.

Calendar Create, access, and manage Calendar entries.

Contact Create, access, and manage Contact entries. In Platform Services 2.0, you can also access Contact Groups.

Landmarks Create, access, and manage Landmark entries that are used by many map applications inside the device.

Location Retrieve information about the user’s location.

Logging Retrieve information about call, messaging, and data logs.

Media Management Retrieve information about media files stored on the device.

Messaging Send and receive messages.

Sensors Access physical sensors on the device (like the accelerometer)

System Information Retrieve system information (similar to WRT 1.0’s System Information API).

Camera (2.0) Launch the camera application and retrieve information on pictures taken (Platform Services 2.0 only).

Landmarks (2.0) Access to the Landmarks local database.

In Platform Services 1.0, you have access to an API using the device.getServiceOb
ject method. It receives the API name and an interface that every API defines in the
documentation. For example:

var so = device.getServiceObject("Service.Messaging", "IMessaging");

// Get all messages from the Inbox
var criteria = new Object();

406 | Chapter 12: Widgets and Offline Webapps

http://

criteria.Type = 'Inbox';
criteria.Filter = new Object();
criteria.Filter.MessageTypeList = new Array();
criteria.Filter.MessageTypeList[0] = 'MMS';
criteria.Filter.MessageTypeList[1] = 'SMS';

var result = so.IMessaging.GetList(criteria);

var iterator = result.returnValue;
iterator.reset();
var item;
while ((item = iterator.getNext()) != undefined){
 // Access every message's properties using item
}

As you can see, it is a bit hard to implement simple actions. That is why Platform
Services 2.0 was developed.

Every Platform Services 1.0 API call should be enclosed in a try/catch
expression to handle error situations.

If you are targeting devices with WRT 1.X, you can add support for Platform
Services 2.0. To do that, download the API and include a platformservices.js file in your
package and code. You will then be able to access any API using the shortcut
nokia.device.load(interface_name).

You can create hybrid applications for Symbian and Maemo devices
using the QtWebKit project. You can find information about porting
WRT widgets to QtWebKit at http://wiki.forum.nokia.com.

For example:

var calendar = nokia.device.load("calendar");

The same SMS list sample is much simpler in 2.0:

var so = nokia.device.load("messaging");
transactionid = so.getList(listHandler, {type: "sms"},
 so.SORT_BY_DATE, so.SORT_ASCENDING, errorHandler);

function listHandler(iterator) {
 while (var sms = iterator.getNext())
 {
 var message = sms.message;
 var sender = sms.sender;
 }
}

Platforms | 407

http://wiki.forum.nokia.com
http://

JavaScript API

The widget object has the following methods and properties:

Table 12-4. Methods and properties of the native widget object

Method/property Description

openURL(url) Opens the specified URL in a browser window, leaving our widget in the background.

setPreferenceFor

Key(value, key)

Stores a persistent object (the value) for a specific key that can be read by the same

widget anytime. Note that the parameter order is value, key.

preferenceForKey(key) Retrieves a stored preference for a key, or returns undefined if the key doesn’t exist.

prepareForTransi

tion("fade")

Blocks any update on the UI until performTransition is invoked. This is useful if we

are going to change the UI for some controls and we don’t want a flick effect.

performTransition() Updates the UI with the changes made since the prepareForTransition call.

setNavigationEnabled

(Boolean)

Toggles the navigation mode between the default (cursor-based with a pointer on the

screen) and focus (tabbed) navigation.

setNavigationType(mode) Changes the navigation mode (you can select cursor, tabbed, or none). If none is

selected, all the key events can be handled by our code. Available since WRT 7.1.

openApplication(uid,

param)

Launches an S60 application, identified by its hexadecimal number. There is a list of

common UIDs in the documentation.

setDisplayLandscape() Changes the UI to the landscape orientation.

setDisplayPortrait() Changes the UI to the portrait orientation.

onshow Fired when the application comes to the foreground.

onhide Fired when the application goes to the background.

onexit Fired when the user presses Exit.

isrotationsupported Boolean indicating whether we can change the orientation on this device.

With the menu object and the MenuItem class we can create native menus, and we can
define the label and handler for the left soft key with menu.setLeftSoftkeyLa
bel(label, handler). The right soft key is by default handled by the platform with an
“Exit” label, but after WRT 7.1 you can override it using menu.setRightSoftkeyLa
bel(label, handler). You can also hide and show the soft key labels using showSoft
keys() and hideSoftkeys().

It is expected that WRT will support HTML 5 in the future, and that
MeeGo/Maemo devices will support WRT widgets.

The onShow event of the menu object will fire when the user opens the menu.

408 | Chapter 12: Widgets and Offline Webapps

http://

If you don’t define a left soft key, by default it will be an “Options” submenu displaying
the native menu you created. A MenuItem can have a label, an id for finding the element,
an onSelect event, and optionally child MenuItem objects for submenus. For example:

// We define a label and a menu ID
var option1 = new MenuItem("Refresh", 2);
var option2 = new MenuItem("New item", 3);

// We can use the same handler and use the ID to know
// which one was pressed
option1.onSelect = menuSelected;
option2.onSelect = menuSelected;

// We append the first option
menu.append(option1);

// We create a third option with a submenu
menu.append(new MenuItem("Submenu", 4));
// We can search for a MenuItem using the ID
menu.getMenuItemById(4).append(option2);

function menuSelected(id) {
 switch (id) {
 // We can query the id to decide what to do
 }
}

After WRT 1.1, the widget object has a wrt property that we can query
for getting information about the current device and platform, including
widget.wrt.version, widget.wrt.platform.model and widget.wrt.plat
form.romVersion.

MiniView

The MiniView, or home screen widget, allows us to display a widget’s content (con-
tinuously updated) on the user’s device home screen, as shown in Figure 12-3. On
compatible devices (Nokia N97, N97 Mini and N8 at the time of this writing), the
widget is installed as normal, but if the MiniViewEnabled property is defined as true in
the info.plist file the user can opt to add it to the home screen.

Platforms | 409

http://

Figure 12-3. With the MiniView, users can add our mobile web content to their home screens. Using
JavaScript, the information displayed in the widget can be updated on a regular basis.

When a widget is displayed on the home screen, it shows the same HTML file it would
if it were being viewed as a full-screen application. It is up to us to detect the window
size change and maybe show and hide a div depending on the situation. At the time of
this writing, the MiniView size is 312×82 pixels, so we can use a div with those pro-
portions when we detect that our widget is being displayed on the home screen. When
the user clicks on the widget in the home screen it will change to a full-screen display,
and when the user exits the widget it will again become small (without actually exiting).
The script will be running all the time, so to save the device’s battery we should keep
our background code to the minimum.

When the user adds a widget to the home screen, he will receive a con-
firmation dialog that will allow the widget to make any API call at any
time in the future without new confirmation dialogs. So, we can safely
use any API (with care, please) in the background.

To update the home screen UI, we can have a timer defined in JavaScript that updates
the UI by querying a server via Ajax, or we can use any other API available on the device
(like Location).

You can use the onshow, onhide, and onresize events to detect whether the widget is in
full or MiniView mode.

410 | Chapter 12: Widgets and Offline Webapps

http://

Some devices, like the Nokia N8, allow multipage home screen support,
so the user has more space to add widgets to the home screen.

Tools and libraries

We can use any tools to create WRT widgets, starting with any text editor and a ZIP
packager. However, Nokia offers free plug-ins for the most used IDEs in the web world
that will help us with JavaScript API code hinting, emulation, and widget packaging.

Keep in mind that the emulation environments provided for widgets are
really just Safari or Firefox modified to work with the APIs. The ren-
dering engine and the JavaScript runtime are not exactly the same, and
you should expect differences on real devices. You can use any S60 em-
ulator in Windows environments for widget testing, too.

Plug-ins are available for:

• Aptana Studio

• Adobe Dreamweaver

• Visual Studio

Symbian Foundation also released an Eclipse-based IDE called WRT Tools available
for free for Windows, Linux and Mac.

All of these can be found at http://www.mobilexweb.com/go/widgets.

From Aptana Studio you can use the Install Additional Features dialog, selecting the
Nokia WRT plug-in.

We’ve already discussed the usage of Ajax UI libraries, and their shortcomings. For
example, jQuery effects don’t have smooth results on the WRT engine. For that pur-
pose, Nokia has developed two libraries: WRTKit and Guarana UI.

WRT supports widget localization to provide content in different lan-
guages, switching automatically to the right language. To take advant-
age of this you should provide image and string alternatives in a
xx.lproj folder, with xx being the language code (for example, pt.lproj
for Portuguese). You can find more information at http://wiki.forum.no
kia.com.

WRTKit is the most suitable for WRT 1.0 devices (non-touch), and it allows us to avoid
using HTML and CSS for the application design. We can instead use a library of controls
that we create and define in JavaScript, like a Java SE application.

Platforms | 411

http://www.mobilexweb.com/go/widgets
http://wiki.forum.nokia.com
http://wiki.forum.nokia.com
http://

The wiki from Forum Nokia (http://wiki.forum.nokia.com) has several
articles about porting different widget technologies to WRT, with
samples.

For newer devices, Guarana UI is a better solution. It is a jQuery UI–based solution
that works perfectly with WRT widgets and also has support for creating nice home
screen widgets.

Both libraries are available for free at http://wiki.forum.nokia.com (you can find direct
links at http://www.mobilexweb.com/go/widgets).

The APIBridge runtime

Nokia guys don’t rest when it comes to widget runtime evolution. They have recently
developed APIBridge (http://wiki.forum.nokia.com/index.php/APIBridge_Web_Run
time_API), a Symbian native application that opens an HTTP server locally that we can
contact using Ajax from our widget code. They also provide a JavaScript API file that
does that work for us and have added the following widget capabilities (valid in all
versions of WRT):

• File upload support

• Enhanced file service

• File reading

• Image resizing

• Image thumbnail creation

• Logging service

• Location service

• Media management

The only disadvantage is that a widget created with APIBridge needs to be packed as a
native SIS file that will include the server required for this API to work. A SIS file must
be signed before it can be installed on the device, and this requires a bit of Symbian
knowledge.

Widget distribution

A WRT widget can be distributed in many ways, including OTA installation from your
own server, offline installation from a desktop, and distribution for free or as a premium
application in the Ovi Store.

The Ovi Store is the official Nokia distribution channel, where any registered developer
can sell and promote applications in different formats: Symbian, Java ME, Flash Lite,
Maemo, and WRT widgets. Once you’ve published a widget to the store you can select
which markets you want to distribute it in, the price (can be free), and the compatible

412 | Chapter 12: Widgets and Offline Webapps

http://wiki.forum.nokia.com
http://wiki.forum.nokia.com
http://www.mobilexweb.com/go/widgets
http://wiki.forum.nokia.com/index.php/APIBridge_Web_Runtime_API
http://wiki.forum.nokia.com/index.php/APIBridge_Web_Runtime_API
http://

devices, and after a short QA revision period your widget will be available to anyone
who visits http://store.ovi.com or uses the Ovi Store application that comes with all new
Nokia devices.

Nokia Series 40 devices do not currently support any widget technolo-
gies, unless you consider the Nokia Flash Lite (NFL) packages, which
also use web technologies (Flash), as a kind of widget. You will need to
use Java ME to develop shortcuts or little widget applications for these
devices. You can also use my free service, Widgen (http://www.widgen
.com), for creating small applications.

If you want to publish your widgets to the Ovi Store, you should get a Publisher account
at http://publish.ovi.com. The initial fee at the time of this writing is 50 euros. Users can
pay for premium content by credit card or, in some countries, via their operators’ billing
systems. You will receive 70% of the revenue if the user pays with a credit card and
about 40-50% of the revenue if the user pays with operator billing.

Widgets available through the Ovi Store have the potential to reach a large audience.
As an example, without any promotion or marketing budget I’ve received more than
60,000 downloads in a couple of months for Widgen, a dynamic widget generation
engine that I developed and have made available for free through the store.

iPhone, iPod, and iPad
To create widgets or JavaScript applications for the iOS, we have two possible solutions:

• Create a webapp.

• Create a hybrid solution (e.g., a PhoneGap or similar native project).

A hybrid is a mix between a web and a native application, having the
best of both worlds available at the same time.

Webapp creation

The advantages of a webapp are:

• We don’t need a Mac-based computer.

• We can host, manage, and change the webapp whenever we want.

• We can create any kind of application, including those that Apple doesn’t accept
as native applications (for example, adult content or private corporate applications
for small- and medium-size companies).

• The application will have an icon in the Home menu.

Platforms | 413

http://store.ovi.com
http://www.widgen.com
http://www.widgen.com
http://publish.ovi.com
http://

• The application will be full-screen, and the user will never know it is a web
application.

• We can use all the HTML 5, geolocation, and CSS extensions we’ve already seen.

However, there are also some cons:

• We cannot distribute or sell a webapp through the App Store (the official Apple
store).

• We will not have access to the accelerometer, camera, or filesystem.

• It is not easy to determine whether a webapp is already installed on the system.

• Many users still don’t know how to install webapps.

With iOS 4.0, Apple created iAd, an advertising program for iOS native
applications. The ads are created using HTML 5 and some JavaScript
extensions. If we want to create these kinds of ads we can use iAd JS, a
JavaScript library available at http://developer.apple.com/iad.

A webapp is just a typical iPhone website that can be used offline (using AppCache,
discussed in Chapter 9) and is included in the Home menu. Some new meta tags for
full-screen mode are available for webapps. The new meta tags are available in iPhone
OS 2.1 and later; for lower versions the webapp will just work as a website with the
Safari toolbar.

If you create a webapp, you can submit it to the Apple Webapp Gallery
at http://www.apple.com/webapps for free promotion.

First, we must use the viewport and webclip tags to provide a 1-scale
interface and an icon for the home screen:

<meta name="viewport" content="width=device-width; initial-scale=1.0;
 maximum-scale=1.0; user-scalable=0;" />
<link rel="apple-touch-icon" href="/Icon.png" />

To hide the entire Safari interface when the application is opened from the home screen,
we can use the apple-mobile-web-app-capable metatag:

<meta name="apple-mobile-web-app-capable" content="yes" />

This tag will make no difference if the site is opened in the browser. We can query the
window.navigator.standalone JavaScript object to see if we are working in standalone
mode (true) or in browser mode (false). Another possibility is to check the window
size, as in standalone mode the height will be either 460 or 480 pixels (depending on
whether the status bar is transparent or not) in iPhone or iPod Touch. The standalone
and browser versions of the VoiceCentral webapp are shown in Figure 12-4.

Full-screen metatags.

414 | Chapter 12: Widgets and Offline Webapps

http://developer.apple.com/iad
http://www.apple.com/webapps
http://

We cannot hide the 20-pixel-high top status bar (40-pixel-high in iPhone 4 and other
high-DPI devices), but we can change the appearance to be compatible with our design.
We do this with the new apple-mobile-web-app-status-bar-style metatag. This tag
allows values of black, default, or black-translucent, and it only works if we have
already defined a standalone mode with the previous metatag.

When black or white, our website will have a height of 460 pixels in low DPI devices,
like iPhone 3GS. If we use the black-translucent value we will have the entire 480
pixels available, and the toolbar will be at the top of the website with an alpha value in
the first 20 pixels of the page. Dimensions are different if we are targeting other iOS
devices, like iPad.

Apple offers a free IDE for webapp creation, including a JavaScript li-
brary, along with the iPhone SDK. The tool is DashCode, and you can
use it for free if you have Mac OS X.

Figure 12-4. VoiceCentral is a webapp that detects if the user has accessed it using the browser or the
home screen icon. This is the same HTML file, but the version on the right (the version opened from
the home screen) looks like any other native app.

Platforms | 415

http://

From iOS 3.0, Safari also supports a startup image, which is a 320×460-pixel (for
iPhone/iPod), or a 1004×768-pixel (for iPad) PNG to be used as the initial image before
the HTML and JavaScript loads. We should detect on the server which device is to
deliver the right image. The application launcher also uses it for the zoom-in animation
when you click on the icon. If you don’t supply a startup image, it will use a screenshot
from the last time the app was used:

<link rel="apple-touch-startup-image" href="/startup.png" />

As a webapp is a normal web application with AppCache support, the user
will not “install” it as such; the “installation” just involves adding the website to the
home screen. However, it is still useful to provide a Setup assistant.

Remember that there are people who don’t use English as the main
language. If you are going to give instructions to the user for widget
installation, try to provide different language versions, as is done for the
device menus.

First, we need to decide if we are going to accept usage of the webapp from the browser
or only as a standalone application. If the last option is our objective, we should provide
a single HTML file that detects where the user is accessing it from and either presents
the installation link or the app itself, depending on whether it’s accessed from the
browser or the home screen.

In the webapp HTML file, we first check whether the user is accessing it from the
browser or not. If so, we provide instructions for installing the application. For
example:

• Press the + button.

• Use the “Add to Home Screen” option.

• The application will be installed on your home screen for future usage.

The webapp HTML will include:

• All the metatags provided before

• An offline manifest file

• A short title, for use as the application name on the home screen

We can use any iPhone UI library (like iUI or jQTouch) to provide a native-like interface
inside the webapp.

Remember that when in standalone mode, the user will not have access
to the Back, Forward, or Reload buttons, or to the address bar. There-
fore, you should provide all of these navigation items in your design.

Distribution.

416 | Chapter 12: Widgets and Offline Webapps

http://

PastryKit: The Hidden Gem
We’ve already covered many iPhone UI libraries, including iUI and jQTouch. They
provide native-like Cocoa Touch controls and enable easy navigation between views
using a top toolbar. There is only one problem—the top toolbar scrolls with the con-
tents and doesn’t stay fixed at the top (like a frame), as it would in a native application.

Then someone spotted that the URL http://help.apple.com/iphone/3/mobile (seen from
an iPhone) uses very smooth scroll visualization, and the top toolbar stays anchored at
the top. Developers discovered that it was using a (up to this writing) hidden official
Apple library called PastryKit. The JavaScript API is obfuscated, but many developers
have started analyzing it, figuring out how it works, and even incorporating ideas from
it into their own projects.

PastryKit implements its own object-oriented framework, has JavaScript objects for
many CSS extensions, includes inline images in a JSON file for icons and other data,
and implements a very complex set of modules and classes emulating the Objective-C
Cocoa Touch framework, changing the original UI prefix to a PK prefix (i.e., UITable
ViewCell is here PKTableViewCell).

PastryKit is the best library for creating an iPhone webapp experience. There is no
official documentation or license information available at this time, but unofficial doc-
umentation and samples created by various developers can be found at http://www
.mobilexweb.com/go/pastrykit.

Apple also appears to have developed an iPad-only JavaScript library, internally called
AdLib, for creating native-like interfaces for websites.

PhoneGap projects

A PhoneGap iPhone project has the ability to work like a standalone webapp, but it is
really a native application with a full-screen Safari inside. The benefit of using Phone-
Gap is that you can use the PhoneGap JavaScript API to access features that a normal
webapp can’t, like the accelerometer, the camera, or the filesystem.

To create a PhoneGap project, you need an Intel-based Mac OS computer. Download
the SDK at http://github.com/phonegap/phonegap and use the iphone folder inside the
package.

You will need to download the iPhone SDK for Mac OS X (you’ll already have it if
you’ve installed the iPhone Simulator) and use the IDE XCode to open the Phone-
Gap.xcodeproj file.

You can replace the two files inside the www subfolder with all your HTML, CSS,
JavaScript, and image resources. You don’t need to use HTML 5’s manifest file inside
a PhoneGap project, as any files are already in offline mode.

In your main HTML file you should include the PhoneGap library with the following
script tag (you don’t need to have the .js file):

Platforms | 417

http://help.apple.com/iphone/3/mobile
http://www.mobilexweb.com/go/pastrykit
http://www.mobilexweb.com/go/pastrykit
http://github.com/phonegap/phonegap
http://

<script type="text/javascript" src="phonegap.js"></script>

You can change all of the project’s properties as needed in the PhoneGap.plist file and
then build your project. Building an iPhone native application for delivery is a more
complicated topic and is outside the scope of this book.

Jo is a lightweight JavaScript framework designed for HTML 5 webapps
and works well with PhoneGap for iPhone. You can use it for free by
downloading the library from http://grrok.com/jo.

To distribute your PhoneGap application, you need to join the iPhone De-
veloper Program (http://developer.apple.com/iphone/program). A standard account
costs $99 per year, and a corporate account (open to companies with 500+ iPhones)
costs $299 per year. Without an account, your application will only work on the
Simulator.

Once your membership has been approved you will have the ability to test your appli-
cation on real devices, or you can define up to 100 beta testers.

If you apply for a standard account, you will also have the ability to digitally sign your
application to be published to the App Store, as a free or premium application. For
premium applications, you will receive 70% of the revenue received.

webOS
The new webOS created by Palm (acquired by HP) is the first operating system where
all possible native applications are developed using web technologies. Every application
on a webOS device is created using HTML, CSS, and JavaScript, possibly with C and
C++ plug-ins using the Plug-in Development Kit (PDK).

You can download the SDK, the PDK, and all the documentation from http://developer
.palm.com. You’ll also find an Eclipse-based plug-in for code hinting and help in the
design of these applications here.

webOS has the only web-based IDE solution for creating mobile appli-
cations. Ares (http://ares.palm.com/Ares/about.html) is a free mobile de-
velopment environment with code support where you can visually de-
sign webOS applications.

A native web application for webOS is also called a Mojo application. Mojo is a Java-
Script UI library based on the popular Dojo library that is generally used for creating
webOS applications.

Every webOS application has a main HTML base file, an icon file, a configuration file
(appinfo.json), a list of source files (sources.json), and an app folder with all the contents

Distribution.

418 | Chapter 12: Widgets and Offline Webapps

http://grrok.com/jo
http://developer.apple.com/iphone/program
http://developer.palm.com
http://developer.palm.com
http://ares.palm.com/Ares/about.html
http://

of each scene. A scene is a screen that shows information to the user, divided into an
assistant (a JavaScript file for the behavior) and the view (an HTML file).

The appinfo.json file looks like this:

{
 "id": "com.mystuff.hello",
 "version": "1.0.0",
 "vendor": "My Company",
 "type": "web",
 "main": "index.html",
 "title": "Hello World",
 "icon": "icon.png"
}

Every application is packaged in an .ipk file, created either with the Eclipse plug-in or
using the palm-package command-line tool provided by the SDK.

Dojo application development is a big topic, and we don’t have the space
to cover it in detail in this book. If you want to get deeper into this web
technology, look at Mitch Allen’s Palm webOS (O’Reilly).

Mojo allows JavaScript applications to have access to all the features of the phone using
the Service APIs: Accelerometer, Accounts, Alarms, Application Manager, Audio,
Browser, Calendar, Camera, Contacts, Document Viewers, Download Manager,
Email, GPS, Maps, Messaging, People Picker, Photos, System Properties, Video, and
more.

If you don’t like the Mojo framework, you can use other frameworks
for the UI. There is even a PhoneGap implementation for Palm webOS
with instructions available at http://wiki.phonegap.com.

The Mojo framework also includes many UI controls designed for optimal visualization
in the operating system. You can use it using an empty div with the x-mojo-element
attribute. For example:

<div x-mojo-element="ToggleButton" id="button"></div>

Distribution

You cannot serve an IPK package from your own website. The end-user devices can
only install applications from a trusted source, such as the official store. To publish an
application in the store, you will first need to apply for a Palm Developer Program
account (free for open source projects and with a $99 fee for a full account).

Once you have an account, you can publish your applications to the App Catalog, the
official webOS store. The applications can be distributed as free or premium content.

Platforms | 419

http://oreilly.com/catalog/9780596155261/
http://wiki.phonegap.com
http://

If you want to distribute an application from your own website instead, you can use
the Web Distribution mechanism, which allows you to publish your IPK file without
Palm review approval. You will receive a unique URL to give to users on your website
to install the application. Again, the application can be distributed as either free or
premium content, but there is no fee associated with this publishing method.

For premium content, you will receive 70% of the revenue generated by your applica-
tion. You will be paid through PayPal. All the application links are offered as public
RSS files to anyone that wants to integrate them in their websites.

HTML 5 applications

For the webOS browser, you can also create HTML 5 applications that the user can
add as favorite websites without any Palm Developer Program subscription needed.
These applications will not have access to the Mojo toolkit or the other advantages of
full native applications. However, they will be able to use AppCache, offline storage,
and possibly geolocation features.

Remember to use a short title for the webapp. You should encourage the user to add
the webapp to the Launcher using Web→Page→Add to Launcher. Unfortunately,
webOS does allow us to define an icon; it will use the title and a little top-left corner
screenshot of the website to identify it. You can insert an icon there to emulate icon
definition. When the user has added your webapp, it will be available as an icon in the
applications menu.

There is no way to know if the user has already added the webapp to
the Launcher, or if it was opened using that icon or the URL.

The user can also use the Bookmark feature, which displays a screenshot of the page
as the icon.

Android
Android devices don’t yet have an iPhone-similar way to create full-screen webapps
using only markup. So, for mobile widget development, we have two options:

• Create an HTML 5 webapp that will finally open inside the browser.

• Use a hybrid solution like PhoneGap.

HTML 5 webapp

Creating a webapp for Android devices is similar to creating one for Palm devices: you
can develop an HTML 5 application that uses AppCache, offline storage, and maybe
some Google Gears APIs, and the user can add it to the bookmarks. Once it’s been
bookmarked, we can provide instructions to the user to add the application’s icon to

420 | Chapter 12: Widgets and Offline Webapps

http://

the home screen. The instructions vary depending on the Android version. For Android
1.x devices:

1. Add this page to bookmarks using Menu→Bookmarks→Add to Bookmark.

2. Long press the new bookmark entry and select “Add shortcut to Home.”

For Android 2.X devices, like the Motorola Droid or Nexus One:

1. Add this page to bookmarks using the bookmark icon (you can even provide a
visual icon to the user) and select Add Bookmark.

2. Long press the new bookmark entry and select “Add shortcut to Home.”

The home screen shortcut will use the icon specified in the apple-touch-icon-precom
posed link tag as the first option for the high-quality icon or the favicon, as described
in Chapter 6.

In Chapter 14 we will talk about a shortcut technique that creates a
simple-to-install solution for opening webapps that will work on An-
droid, Java ME, and other devices.

PhoneGap solution

If you want to use PhoneGap, you should download the package and download the
Android SDK, as discussed in Chapter 4. In Eclipse (with the Android plug-in already
installed), go to File→New Project→Android and point it to the android folder in the
PhoneGap package.

Copy all your HTML, CSS, JavaScript, and image files to the android_asset folder (you
can leave the demo files already in that folder or replace them).

Then, edit the /res/value/strings.xml file and change the value of the url field to file:///
android_asset/index.html.

Build and test your application.

Android also supports home widgets as applications that run in the
background and show their contents on the home screen, similar to the
home screen widgets in Symbian. These are not web applications, but
rather Android Java applications, available since version 1.5.

You can distribute your PhoneGap Android application via your own web-
site, serving the .apk file with the right MIME type: application/vnd.android.package-
archive.

You can also distribute your application in the Android Market, the official store from
Google. Other stores will be available soon, from other companies like Motorola.

Distribution.

Platforms | 421

http://

You can apply for an Android Market account at http://market.android.com/publish;
the initial fee is $25. You will be able to publish free applications from anywhere and
premium applications if you are located in one of the available premium application
countries (the U.S. and the UK, at the time of this writing). You will receive 70% of the
revenue from your premium web applications.

You can also distribute your Android applications via Motorola’s official store,
Shop4Apps. You can create a free publisher account at http://developer.motorola.com/
shop4apps.

Windows Mobile
Microsoft added official support for widgets in Windows Mobile 6.5. For Windows
Mobile 5.X and 6.0, we can create hybrids using PhoneGap or a simple web view .NET
project.

Sony Ericsson offers the XPERIA Panels as a widget platform for
XPERIA devices with Windows Mobile. You can download the SDK at
http://www.mobilexweb.com/go/xperia.

Widgets

When creating widgets, you can download a Windows Mobile 6.5 emulator to test
them. Windows Mobile widgets support the W3C widget standard for packaging and
configuration file support. So, we will use the config.xml file and an icon file, and we
will zip all the content into a package with a .widget extension. The standard supports
localization for multiple language support and a JavaScript API for platform access.
The MSDN documentation is available at http://msdn.microsoft.com/en-us/library/
dd721906.aspx. ActiveX plug-ins such as Adobe Flash and Windows Media Player are
also supported.

The widget can be used with touch navigation or using the D-pad avail-
able on some devices. There is a bug in the D-pad navigation, though,
that forces us to add a tabindex attribute to every element that we want
to be focusable by the keys. Without this attribute, the navigation will
not work.

The global widget JavaScript object allows us to read information from the config.xml
file and access other useful information, like the width, height, and menu of the device.
A systemState object is also available, exposing properties like DisplayRotation (por-
trait or landscape), PhoneRoaming, PhoneSignalStrength, and PhoneBatteryStrength.

We can use the widget.menu object to create a menu and to assign it to one of the soft
keys:

422 | Chapter 12: Widgets and Offline Webapps

http://market.android.com/publish
http://developer.motorola.com/shop4apps
http://developer.motorola.com/shop4apps
http://www.mobilexweb.com/go/xperia
http://msdn.microsoft.com/en-us/library/dd721906.aspx
http://msdn.microsoft.com/en-us/library/dd721906.aspx
http://

// We create a menu with an ID for future identification
var option = widget.menu.createMenuItem(1001);
option.text = "Refresh";
option.onSelect = menuHandler;

// This assigns the menu to the soft key
widget.menu.setSoftKey(option, menu.leftSoftKeyIndex);

// This assigns the menu option to the Menu submenu
Widget.menu.append(option);

function menuHandler(id) {
 // Do something
}

Windows Mobile 6.5 supports native XMLHttpRequest, so in widgets you
don’t need to create ActiveX objects.

The persistent storage mechanism is the same as in Symbian WRT widgets: we use
widget.setPreferenceForKey and widget.preferenceForKey. There is a limit of 4,000
bytes per key. The widget object also supports the onshow and onhide events to be
handled.

This platform doesn’t have any other API to access Platform Services, but we can create
an ActiveX plug-in if we want to use it. In fact, the BONDI team has developed an
ActiveX alpha plug-in that enables the use of BONDI features on Mobile Internet
Explorer.

Widget files allows cross-domain Ajax requests to any server. The
widget ID will be included in the User-Agent header, if you want to check
on your server that the connection was from your widget.

Distribution of Windows Mobile widgets can be done through Windows
Marketplace for Mobile, the official online store for Microsoft. You can apply for a
Marketplace publisher account at http://developer.windowsphone.com; there is a fee of
$99 per year cost, and a cost per application submission ($99 at the time of this writing).

The operating system doesn’t support Over-the-Air installation and doesn’t detect
the .widget file as an installation package. However, Microsoft does provide detailed
information in the documentation about how to install widgets, by copying
the .widget file and changing a Registry entry for automatic widget installation using
the wmwidgetinstaller.exe application provided by the OS. I hope future updates of the
operating system will support a better way to install widgets without the store.

Distribution.

Platforms | 423

http://developer.windowsphone.com
http://

Hybrid solutions

The other solution for creating a mobile web application for Windows Mobile 5 or 6
is to use a hybrid approach. You can create a full web view project or download
PhoneGap.

To compile a .cab .NET application for Windows Mobile, you need Visual Studio Pro-
fessional. Using PhoneGap is experimental at the time of this writing. You should
download the PhoneGap project and use the winmo folder to store your C# classes and
WebForm design. In the www folder, you will put all the HTML, JavaScript, and re-
source classes.

These solutions can be distributed as .cab files in any store or from your own website.

BlackBerry
BlackBerry launched a new widget engine in 2009 as a first-class citizen of the operating
system, starting in Device Software 5.0. For older devices (and newer ones), you can
also use a hybrid PhoneGap solution.

The BlackBerry widget engine is similar to all the others mentioned in this chapter, with
a Widget API for extending normal JavaScript capabilities. You can download the
BlackBerry Widget SDK, including a packager, an emulator, and sample code, from
http://blackberry.com/developers/widget free of charge.

The BlackBerry Packager (included in the SDK) creates the final .cod file (the package)
and an .alx distribution file. You can also download and use a free IDE for web devel-
opment that will help in the whole process (the BlackBerry Web Plug-in for Eclipse).
The COD file must be signed to be installed on a device.

With BlackBerry Web Signals, a push technology that we will cover in
Chapter 14, you can insert an icon and an associated text on the device’s
home screen.

A BlackBerry widget is a .zip file containing a configuration file, an icon, an HTML file,
and any other resources that the widget uses. We can use Google Gears APIs inside the
widget, with the exception of LocalServer, which is not fully supported. The BlackBerry
Widget API can also be used to access some resources and to install a widget on the
user’s home screen. Some APIs require signatures from a BlackBerry Signing Authority
Tool.

Widget API

The Widget API supports the features listed in Table 12-5, if they have previously been
defined in the permissions area of the configuration file (in the feature tag). To this

424 | Chapter 12: Widgets and Offline Webapps

http://blackberry.com/developers/widget
http://

API we should add Gears and the normal BlackBerry API browser extensions discussed
earlier.

Table 12-5. BlackBerry Widget API objects

Feature Object Allows us to...

Application blackberry.app Access functions and properties for the application, like the background and

foreground and home screen support

File I/O blackberry.io Access to files and directories

Identity blackberry.identity Access user identification information (IMEI, PIN, phone number)

Invoke blackberry.invoke Interact with other installed applications

Messaging blackberry.messaging Send email

PIM blackberry.pim Manage the Calendar, Contacts, Tasks, and Memos

Push blackberry.push Manage the listener for information pushed from the server

System blackberry.system Get and set system information and event listeners

User Interface blackberry.ui Manage new JavaScript dialogs and native menus

Utility blackberry.utils Access useful utility functions like blob converters or URL parsers

For example, to add an item to the native menu, we should use:

var item = new blackberry.ui.menu.MenuItem(false, 1, "Refresh", menuHandler);
blackberry.ui.menu.addMenuItem(item);

Configuration file

The configuration file is a config.xml file that follows the W3C widget standard, with
some additions. This file must have an access tag for each Internet domain that we are
going to contact using AJAX or some other resource request and a feature tag for each
API that we are going to use:

<?xml version="1.0" encoding="utf-8" ?>
<widget xmlns="http://www.w3.org/ns/widgets"
 xmlns:rim="http://www.blackberry.com/ns/widgets"
 version="1.0.0">
 <name>This is a widget</name>
 <description>BlackBerry Widget</description>
 <author href="http://www.mobilexweb.com" email = "yourname@email.com">
 Maximiliano Firtman
 </author>
 <content src="index.html" />
 <feature id="blackberry.system" />
 <access url="http://mobilexweb.com" subdomains="true" />
</widget>

Distribution

You can distribute a widget just as you would any other Java application (in fact, they
are both .cod files). You can push it from the BlackBerry Enterprise Server, you can

Platforms | 425

http://

make an offline installation, you can serve the file from your server, or you can distribute
it via the official BlackBerry store, App World.

BlackBerry offers an Application Web Loader, which is an Internet Ex-
plorer ActiveX plug-in that allows a website to deploy an application or
widget to a BlackBerry device from a desktop computer.

To publish applications in App World, you’ll need to create an account at http://na
.blackberry.com/eng/developers/appworld. Paying a $200 administrative fee will allow
you to make 10 application submissions (a new version counts as a new submission).
When you reach this limit, you can pay another $200 for 10 more submissions.

PhoneGap

The other solution for BlackBerry is to use a hybrid approach, such as PhoneGap. This
also works with some BlackBerry devices running Device Software versions prior to
5.0. You’ll need to have the BlackBerry JDE IDE installed and the PhoneGap package
downloaded, and then you can follow similar steps to those used with the other plat-
forms. You can find more information on the Community tab of the PhoneGap site.

Motorola WebUI was a widget platform created by Motorola before its
Android movement. It was a great platform, but it is now unofficially
deprecated, with only two devices on the market. If you want more
information on this platform, see http://developer.motorola.com/plat
forms/webui.

LG Mobile
Starting in 2010, LG Mobile is offering on its devices a widget platform supporting the
W3C widget standard, a subset of the BONDI APIs, and some LG proprietary APIs.

You can download an SDK at http://developer.lgmobile.com. The SDK includes a project
creator, a widget validator, a packager, and a widget emulator. The emulator allows us
to configure emulation data for the device API, like the gallery or contact list. It also
supports a DOM Inspector, JavaScript debugger, and Memory Viewer, as any Firebug
developer will want.

An LG widget includes the typical files (HTML, icon, and config.xml files), and a man-
datory wgt.dat file for persistent storage. The best way to create them is using the SDK.
The LG extensions support the widget object with the preferenceForKey and
setPreferenceForKey methods we’ve seen in other platforms. It also supports the open
URL method to open the browser, and a localized string framework for multiple
languages.

426 | Chapter 12: Widgets and Offline Webapps

http://na.blackberry.com/eng/developers/appworld
http://na.blackberry.com/eng/developers/appworld
http://developer.motorola.com/platforms/webui
http://developer.motorola.com/platforms/webui
http://developer.lgmobile.com
http://

The additions to the BONDI APIs include:

• Call support

• Camera support

• Access to the media player

• Speed dial manager

• Contact groups

Distribution

A wgt package can be distributed for free via the LG Widget Gallery, available on the
developer website, or you can upload it to the Business Proposals section to see if LG
knows how to make money from your widget.

Samsung Mobile
Samsung is a pioneer in widget development, providing widget support from all of its
TouchWiz UI devices. TouchWiz is a toolbar on the left side of the home screen where
all widgets are installed, as shown in Figure 12-5. When the user drags your widget to
an empty space in the home screen it will appear as a non-full-screen application, shar-
ing the screen with other widgets. If you need more space to show details, you can resize
the widget or open a mobile website in the browser. You can see how widgets will be
displayed at http://www.yourwidgetworld.com.

The widget platform is cross-compatible between Symbian, Windows Mobile, and
proprietary OS Samsung devices. It may also be compatible with the new Bada plat-
form.

The widget platform is based on the W3C package specification and has different
property support in Windows Mobile and in the other platforms. Check the docu-
mentation for details.

Every widget has an icon that can be one of the following:

• Long vertical

• Long horizontal

• Square

This icon will be available in the lefthand scrolling list of widgets. Every widget also
has a first depth size (the normal size when the user activates the widget) and an optional
second depth size (for more detailed information). You can update the information
displayed using a timer and maybe an AJAX request to a server.

Samsung’s widget platform supports the widget object with some known features, such
as the key/value storage we’ve already discussed, the openURL mechanism, and a

Platforms | 427

http://www.yourwidgetworld.com
http://

widget.window.resizeWindow(w, h) method to resize the widget so there is more space
on the screen.

Starting with Samsung Mobile Widget SDK 1.2 the platform supports full BONDI APIs,
so it will be easier to port between platforms.

If the Samsung widget is running on the Symbian OS, it also has full
support for WRT APIs for calling all the Platform Services. These are
not compatible with the Windows Mobile and Samsung OS devices on
which the same widget can run.

Distribution

The .wgt file can be served from your code as application/vnd.samsung.widget or can
be installed by any other offline method. You can also distribute Samsung widgets in
the U.S. and Europe via the Samsung Apps official store, by registering as a seller at
http://seller.samsungapps.com for a fee of $1 (yes, one dollar). You will receive a 70%
revenue share.

If your widget is free, you can offer it globally using the “More Widgets” feature avail-
able on every compatible device. You can also submit a proposal to the Market.Dev
section of the website to receive business feedback from Samsung.

Figure 12-5. Samsung widgets can be dragged to the home screen and they share the available space
with other widgets.

428 | Chapter 12: Widgets and Offline Webapps

http://seller.samsungapps.com
http://

JIL
Joint Innovation Lab (JIL) is a joint-venture company created by China Mobile, Soft-
Bank (Japanese carrier), Vodafone, and Verizon Wireless, covering more than 1 billion
customers worldwide. The company has created a widget engine that works on a variety
of devices.

JIL offers a widget porting engine to automatically port Symbian, Opera,
and Dashboard widgets to the JIL widget standard, uploading your
original package to the website.

You can download the SDK for Windows or Linux from the official website, http://jil
.org. Each operator should use its own trademark for widget development; for example,
Vodafone 360 uses http://360.com as the end-user website and http://jil.vodafone-devel
oper.com for the developer SDK and documentation.

JIL uses a modified W3C widget API package standard with a .wdgt or a .wgt extension
served as application/widget. It supports the Dashboard Widget object with the
cross-platform methods and some widget event handlers. JIL also supports the Opera
CSS conditional query extensions and a new conditional for touch devices, -o-touch.

A typical config.xml file will look like this:

<?xml version="1.0" encoding="utf-8" ?>
<widget xmlns="http://www.jil.org/ns/widgets" id="http://jil.org/myWidget"
 version="01.00.Beta" height="150" width="100">
 <name>Widget Example</name>
 <icon src="icon.png"/>
 <access network="true" localfs="true" remote_scripts="false"/>
 <content src="main.html"/>
 <feature name="http://jil.org/apis/api.DeviceInfo" required="true"/>
 <feature name="http://jil.org/apis/api.CalendarItem" required="false"/>
 <billing required="true"/>
</widget>

The widget engine supports a JIL JavaScript API with the following modules:

• Telephony

• PIM

• Multimedia

• Device (including File and Application)

• Messaging

The framework includes a Charging API for payment processing and usage authoriza-
tion. You can distribute your widget for free or as premium content. You can also use
the JIL Advertising Program for monetizing.

Platforms | 429

http://jil.org
http://jil.org
http://360.com
http://jil.vodafone-developer.com
http://jil.vodafone-developer.com
http://

At the end of 2009 many vendors announced that they would support JIL, including
RIM, LG, Samsung, and Sharp.

At the time of this writing, JIL widgets can be distributed in the Vodafone Store for free
or as premium content. The widgets will soon be available in the other operators’ stores,
and possibly other independent application stores. You can sign the application from
the JIL website before posting it to the stores.

Opera Widgets
The Opera browser also has a widget engine that works in desktop and mobile envi-
ronments using the same widget package. An Opera widget in the mobile environment
works with Opera Mobile (Windows Mobile and Symbian) and with the optional run-
time (Widget Manager). In 2010, Opera announced that the widgets will also work
under the Opera Mini engine, so widgets should soon work on almost every device on
the market, from low-end devices to smartphones.

Some operators use this platform to offer widgets to their users along with the runtime
or browser that comes preinstalled on devices purchased from those operators. That is
the case with T-Mobile, for which Opera has developed a widget engine with additional
APIs, including integration with the idle (home) screen and access to the devices’ fea-
tures.

You can download the Opera Widgets SDK and the T-Mobile Developer SDK from
http://dev.opera.com/sdk, and you will find the documentation at http://dev.opera.com/
articles/widgets.

Opera uses a ZIP package file with .wgt extension, served as application/x-opera-
widgets. Its config.xml configuration file is very similar to the W3C standard:

<widget>
 <widgetname>
 First Opera Widget
 </widgetname>
 <width>
 300
 </width>
 <height>
 300
 </height>
</widget>

In JavaScript, the widget object exists with the now well-known openURL and the pref
erenceForKey/setPreferenceForKey storage mechanism. It also supports a user notifi-
cation mechanism and the onshow and onhide events.

430 | Chapter 12: Widgets and Offline Webapps

http://dev.opera.com/sdk
http://dev.opera.com/articles/widgets
http://dev.opera.com/articles/widgets
http://

The Opera Widgets SDK supports a CSS extension for conditional me-
dia queries to define different styles depending on the running mode of
the widget—application, docked, or fullscreen—using the -o-widget-
mode condition.

Distribution

You can distribute the widget via your own server, in the Opera widget gallery, or
through some operators’ stores (like T-Mobile’s). There is also an autodiscover mech-
anism that works when the user is browsing your website using Opera and you want
to share a widget. If you define a link in the head, the browser should detect the widget
and suggest the download to the user:

<link type="application/x-opera-widgets" rel="alternate"
 href="http://mobilexweb.com/widget.wgt"
 title="Mobile Web Client" />

Operator-Based Widget Platforms
Many providers offer widget engines to operators to serve content to their end users.
Two classic browser companies, ACCESS (NetFront) and Myriad (Openwave), offer
widget engines for operators and manufacturers, like Opera Mobile.

NetFront Widgets (http://widgets.access-company.com) is a widget platform whose
player is currently available for Windows Mobile 5.X/6.X and Symbian S60 3rd edition
devices and will support new platforms in the future. Download the NetFront Widgets
Content Development Tools, including a packager and a viewer, from the website.

Myriad also offers a widget engine for low-end devices (available at http://www.myr
iadgroup.com/Mobile-Operators/Mobile-Widgets.aspx), but no information is available
for developers at the time of this writing.

Qualcomm Plaza (http://plaza.qualcomm.com) is a multiplatform widget engine for
operators (actually already available through some carriers) that uses the W3C widget
standard and a free distribution channel for end users.

Obigo (http://obigo.com) created the widget framework that is the base for the LG
widget platform.

Finally, Orange created Djinngo (http://publisher.djinngo.com), a Java ME client to in-
stall widgets created using JavaScript and a VRML language.

Widget Design Patterns
Widget development requires new design patterns to solve the challenges presented.
We need to think of a widget as an application, not a website, so some of the techniques
we’ve used for websites will not be useful in these applications.

Widget Design Patterns | 431

http://widgets.access-company.com
http://www.myriadgroup.com/Mobile-Operators/Mobile-Widgets.aspx
http://www.myriadgroup.com/Mobile-Operators/Mobile-Widgets.aspx
http://plaza.qualcomm.com
http://obigo.com
http://publisher.djinngo.com
http://

Multiple Views
The first problem stems from the lack of a browser’s toolbar for navigation. We will
not talk about pages; we will talk about screens or views. Typical web links are bad
practice because the user will see a flicker effect, and the back feature needs to be
implemented by us.

Widgets are JavaScript-based applications, so you should create simple
code and avoid highly complex algorithms and high-frequency timers.

That is why in a widget, we will generally have only one HTML file and then, using
JavaScript, will change the view, using static hidden divs, dynamic content generated
by code, AJAX replacements, or other similar solutions.

We will generally use one of the following multiview mechanisms:

• Tab navigation (top or bottom)

• Top toolbar for going back

• Key and touch paginating for sequential views (like a slideshow)

Layout
Even if we are working with only one widget platform, we need to support different
screen sizes, orientation modes, and physical screen dimensions. We’ll need to decide
whether to use a fixed or a liquid design.

Input Method
The same problem as in the mobile web appears here: the devices on which our widgets
are used can have a variety of input methods (touch, keyboards, pads, etc.), and we
will need to handle all of this by code, supporting all the possible input methods and
perhaps changing the layout if it is a touch device (for larger components).

One-View Widget
A one-view widget is the simplest (and sometimes the most powerful) kind of widget
that we can create. It generally has an information view and, optionally, a second view
for configuring the details for the main view. This is suitable for weather, financial,
social networking, news, and corporate indicators.

432 | Chapter 12: Widgets and Offline Webapps

http://

Dynamic Application Engine
As JavaScript is a dynamic language, we can easily execute code received by a server
(using eval or a JSONP request). With this in mind, we can easily create a widget that
is only a little engine (like a web browser) that will receive instructions from our server.

All the code (including access to private APIs) can be delivered from the server and
optionally cached locally in persistent storage. Thus, we can create a self-updating
widget mechanism so that no intervention is required from the user to receive the latest
version of the application.

There are some security risks and problems, but for most platforms we can easily create
a self-update mechanism.

Multiplatform Widgets
In theory, the widget is a multiplatform application, but we have already seen that there
are a lot of engines, each one following different (but similar) approaches for the same
purposes. The lack of a standard affects the portability of the widgets.

Widgen is a free service-based solution for dynamic mobile widget gen-
eration, available at http://www.widgen.com.

However, as we are talking about dynamic languages, it is possible to reuse almost all
the code for all the platforms, creating a multiplatform widget engine. We need to use
a JavaScript wrapper API to access the core features for all the platforms, create all the
possible configuration files, and create every package dynamically, changing the ex-
tension and serving it using the right MIME type (or the right meta tags and JavaScript
code for iPhone, Android, and Palm webapps).

The body class pattern allows us to define (using JavaScript) a class for
the body tag that will be used by the CSS file to define different styles for
platform and orientation variants. Another solution is to have one base
CSS file and other different CSS files for each platform, to avoid having
a big CSS file to be rendered all at once with all the platforms’ styles.

It is possible, in theory, to create a multiplatform widget generator engine using both
server-side and client-side detection mechanisms. Follow the blog at http://www.mobi
lexweb.com for news about this kind of multiplatform solution.

Widget Design Patterns | 433

http://www.widgen.com
http://www.mobilexweb.com
http://www.mobilexweb.com
http://

http://

CHAPTER 13

Testing, Debugging, and Performance

Testing, debugging, and performance optimization are the three scariest activities in
the mobile web development world, but don’t worry. There are lots of ways to tame
them.

Testing and Debugging
In Chapter 4, we talked about emulators and simulators and how can they help us to
see how our websites will be rendered on real devices. These tools are very useful and
provide a simple, fast, and fairly accurate testing solution. If it doesn’t work in the
emulator, it probably will not work on the real device, and if it works in the emulator,
it probably will work on the real device (probably, again probably!).

There are some problems with this testing approach, though. For one thing, there are
hundreds of differences between real devices, and hundreds of bugs. Furthermore, there
are several platforms without emulation. That is why real device testing is mandatory.

But how can we get access to multiple real devices? Here are a few suggestions:

• Acquire as many friends as you can (with different devices, if possible).

• Buy or rent devices. Some vendors offer promotions for buying or renting devices
for developers and their partners.

• Use a testing house company. This is an expensive solution and not recommended
for mobile web developers; we need to be as close as possible to the devices.

Mob4Hire (http://www.mob4hire.com) is a mobile social network aimed
at joining testers with mobile devices around the world and developers
who want to test applications or websites using a payment service. You
can search for testers by country, operator, and device to access the
devices you want.

435

http://www.mob4hire.com
http://

• Create a beta tester program, for receiving feedback.

• Use a remote lab.

The last item of the previous list sounds good: a remote lab. What is this?

Remote Labs
“Any sufficiently advanced technology is indistinguishable from magic,” said sci-fi
writer Arthur C. Clarke in 1961. When I demonstrate some of these remote labs in my
classes, I see a lot of astonished faces.

A remote lab is a web service that allows us to use a real device remotely without being
physically in the same place. It is a simple but very powerful solution that gives us access
to thousands of real devices, connected to real networks all over the world, with a single
click. You can think of it as a remote desktop for mobile phones.

There are three kinds of remote lab solutions for mobile devices:

• Software-based solutions, using a resident application on the device that captures
the screen, sends it to the server, and emulates keyboard input or touches on the
screen.

• Hardware-based solutions, using some technology (magic, I believe) to connect
the server to the hardware components of the device (screen, touchscreen, keypad,
lights, audio, etc.).

• Mixed solutions, having some hardware connection, some software additions, and
maybe a video camera for screen recording.

As these are real devices, only one user can make use of them at any
given time. As such, the devices are a limited resource.

Let’s take a look at some of the remote lab solutions currently on the market.

Remote Device Access

Forum Nokia offers a free (yes, free!) remote lab solution for Symbian and Maemo
devices called Remote Device Access (RDA), shown in Figures 13-1 and 13-2. To use
the service, you can access http://www.mobilexweb.com/go/rda (you’ll need to have al-
ready created a Forum Nokia account). You will need Java Runtime 5.0 or newer,
because RDA is a WebStart Java application.

At present, usage is limited to eight hours per day. The main features are:

• Complete usage of the device

• 3G and WiFi connection support

436 | Chapter 13: Testing, Debugging, and Performance

http://www.mobilexweb.com/go/rda
http://

• Application installation

• Device rebooting

• Changing screen orientation

• Browser and widget WRT support

• Reservation of devices for future usage

• Usage of devices with SIM cards connected in Europe

• Saving screenshot images

• Incoming calls and SMS available

At the time of this writing, there are more than 50 devices available. There is no audio
or accelerometer support, and depending on your network bandwidth you can select
the video quality you want.

Figure 13-1. Remote Device Access is a free and simple way to test on real Symbian and Maemo
devices.

Testing and Debugging | 437

http://

There is a bug in the display recording mechanism in RDA that doesn’t
show the cursor arrow over non-touch devices. This makes web brows-
ing difficult. You can include the meta tag to apply focus navigation (as
seen in Chapter 6) to solve this problem.

Samsung Lab.Dev

Samsung also offers a free remote lab web service, using the same solution provider as
Nokia’s RDA, called Lab.Dev. It includes some Windows Mobile devices. Depending
on your membership with Samsung (free or partner) you will have access to more du-
plicated devices for testing purposes.

Using some commercial products (http://www.projectaphone.com) and
even using a simple webcam and following some instructions (http://
www.gotomobile.com/archives/diy-gotomobiles-mobile-cam), you can
create a small testing lab with real devices that can take screenshots and
save videos of a real mobile screen. There are also some software-based
solutions.

Lab.Dev has the same features as RDA, so you can test web applications and widgets
using this solution. The devices don’t have SIM cards, though, so you can only test
WiFi connections (not 3G).

You can access this remote lab from http://www.mobilexweb.com/go/labdev.

Figure 13-2. The devices are connected to real 3G networks (you can even call them), so you can
accurately test speeds and transfers.

438 | Chapter 13: Testing, Debugging, and Performance

http://www.projectaphone.com
http://www.gotomobile.com/archives/diy-gotomobiles-mobile-cam
http://www.gotomobile.com/archives/diy-gotomobiles-mobile-cam
http://www.mobilexweb.com/go/labdev
http://

DeviceAnywhere

DeviceAnywhere is the leader and pioneer in remote lab solutions for mobile testing.
It offers a hardware solution that allows any device (low-end, mid-end, or smartphone,
from any vendor) to plug into the architecture.

DeviceAnywhere is the selected provider for this book’s testing suites,
and for some of the screenshots taken.

This is a commercial solution, with different price models depending on the package.
DeviceAnywhere Test Center offers more than 2000 devices (iPhone, Android, Nokia,
Motorola, Sony Ericsson, Samsung, BlackBerry, LG, Sanyo, Sharp, HTC, and more)
connected to 50 live networks all over the world.

You can apply for a free trial at http://www.deviceanywhere.com. The IDE (Device Any-
where Studio) is a Java application, so it should work on any OS. Easy-to-install pack-
ages are available for Windows and Mac OS X, as shown in Figure 13-3. The company
offers a special plan prepared for mobile web testing.

Figure 13-3. With DeviceAnywhere you can use thousands of devices with pixel-perfect resolution,
and optionally with a DOM Inspector and an HTTP headers sniffer.

Testing and Debugging | 439

http://www.deviceanywhere.com
http://

The solution includes:

• Access to the registered packages and devices from DA Studio

• Access to all hardware features (lock/unlock, close and open, change orientation,
power off and on)

• Ability to place calls, send and receive SMS messages, access the carrier’s portal,
and buy premium content (as the devices are on live networks)

• Pixel-based perfect image rendering, so you can save screenshots and videos of
your testing for offline review (audio is also supported as an optional feature)

• Ability to manage multiple devices at the same time

• Virtual onscreen keyboard, and shortcuts to use your own desktop keyboard for
testing

• Team management for testing a device and sharing the screen with other users

• DOM Inspector and HTTP headers viewer using an included proxy

Many manufacturers and carriers have selected DeviceAnywhere as the official testing
solution for their Virtual Developer Labs (VDLs). Some of the Virtual Lab solutions
include:

• Forum Nokia VDL (Series 40 and S60)

• Sony Ericsson VDL

• Palm VDL (Palm OS, Windows Mobile, and webOS)

• Motorola VDL (Motorola OS, Windows Mobile, and Android)

• BlackBerry VDL

• Symbian VDL (Nokia, Motorola, Samsung, Sanyo, Sony Ericsson)

If you want to access VDL websites, you can see a list at http://www.mobilexweb.com/
go/vdl.

To use DeviceAnywhere, you’ll need to subscribe to one or more packages. On top of
the monthly subscription fee (averaging $100), you will pay on a per-hour-basis or
subscribe to a prepaid plan. On a per-hour-basis, the maximum price is $16/hr. There
are also other promotions available on the website, and different manufacturers’ VDLs
can have different pricing models.

If you apply for a free trial, you will get 3 or 5 hours of free usage and
you will have to enter valid credit card details. It is safe to add this in-
formation, and it is a requirement because this is a live network where
you can buy premium content.

The time spent on the system is calculated beginning from when you open a device and
finishing when you release it, in 6-minute-minimum time slots.

440 | Chapter 13: Testing, Debugging, and Performance

http://www.mobilexweb.com/go/vdl
http://www.mobilexweb.com/go/vdl
http://

Package options include:

Carrier package
You select a carrier and a country (for example, Verizon in the U.S. or Orange in
France), and you will have access to all the devices available.

Manufacturer package
You select a vendor, and you will have access to several devices from that
manufacturer.

Official VDL
You select a vendor or a carrier’s official package.

Web Developer package
This is a special package for web developer testing. You can select U.S. or Europe-
based devices (from a range of manufacturers).

For independent developers, there is a special package called the Inde-
pendent Developer Plan that provides access to iPhone and Android
devices. The fee is $30 per month, and $20 per hour.

As DeviceAnywhere uses real devices from different manu-
facturers, you will need to learn to use every operating system interface to access the
web browsers. You will generally find an icon in the home or applications menu labeled
“Browser,” “Internet,” or even the name of the carrier’s online service (for example,
“MediaNET,” the AT&T Wireless service).

When in the mobile browser you will need to type your URL using the phone’s features:
a numeric keyboard, a QWERTY keyboard, or an onscreen touch keyboard.
DeviceAnywhere also offers a feature where you can type or paste any URL and then
press a button to automatically generate all the keypresses required on the hardware
to type the URL.

In numeric keypad devices the URL typing process can be slow, so it’s better if you first
minimize the URL using a shortener service, like http://www.mobiletinyurl.com.

For mobile web debugging purposes, DeviceAnywhere includes an excellent proxy-
based browsing solution that brings into the IDE an HTTP sniffer and a DOM Inspector
so you can see what markup is actually rendered on the device.

Remember that these are real devices on real networks. If you want to
test an application or installable widget you will need first to upload it
to a web server (DA offers a solution) and then access the URL from the
browser, typing it or sending it by SMS to the device.

Usage for mobile web testing.

Testing and Debugging | 441

http://www.mobiletinyurl.com
http://

DeviceAnywhere offers many advanced features. One of them is test-
ing automation, a premium service that allows you to create testing scripts and schedule
them to be tested on several devices automatically. You can then access the results via
a web report.

Perfecto Mobile

Perfecto Mobile (http://www.perfectomobile.com) is a new company offering a software/
hardware hybrid solution for mobile testing, shown in Figure 13-4. Perfecto Mobile
uses a video camera for screen recording. A good point for Perfecto Mobile is that the
whole environment is built on top of the Adobe Flash Player, so you don’t need to
install anything, and it works from any desktop browser. You can try the system by
registering for a free trial; it will be activated in minutes.

Figure 13-4. With Perfecto Mobile you can manage real phones (here, a Nexus One and a Motorola
Droid) with a Flash-compatible browser. The images are from cameras pointing at the devices.

With this service, you have access to the whole list of devices and carriers from the
same pricing policy. The devices are on real networks in Canada, Israel, the U.S., the
UK, and France. The company also has an agreement with the French company PACA
Mobile Center (http://www.pacamobilecenter.com), where you can access 1100 devices
connected to French operators with a 10-hour trial promotion.

If you are using non-touch devices, for website scrolling it is better to
have a key pressed down for a long time. You can emulate this using the
Control key on your desktop keyboard.

Testing automation.

442 | Chapter 13: Testing, Debugging, and Performance

http://www.perfectomobile.com
http://www.pacamobilecenter.com
http://

Perfecto Mobile has a simple pricing model. There is no monthly fee or
other package costs, and you can access the full cloud of devices from $16/hr, or with
a prepaid plan starting at $12/hr. There is also an Android-only option (the Droid
Cloud) that you can access at a rate of $9/hr, or $99 for 20 hours (without the hours
expiring). The charging is done in 1-minute time slots.

In both DeviceAnywhere and Perfecto Mobile you can use two or more
devices at the same time. Your per-minute charges will be counted sep-
arately, so you will be spending two or more minutes at a time.

The main features of Perfecto Mobile for mobile web testing are:

• When you take screenshots it uses the real screen image, not the camera one.

• You can record videos and share or embed them easily.

• You can send an SMS or invoke a call to the device from the UI.

• You can transfer files to the device (if file transfer is supported).

• There is an OTA mechanism where you can upload your app or widget and the
device will receive an SMS link to download it within a 15-minute timeslot.

• You can easily share a URL, so customers and coworkers can see what you are
doing with the device via live streaming. The only requirement for the other parties
is that they use a browser with Adobe Flash Player support.

• You can request Automation, a macro-like recording feature that supports ad-
vanced actions and wait conditions using screen recognition and OCR (for exam-
ple, “go to this URL, wait for the word “Hello” to appear on the screen, then take
a snapshot”).

• In Automation, there is a ScriptOnce technology that includes multiplatform tem-
plates for common actions.

• You can test how your mobile website is rendering on multiple devices at the same
time without your intervention. This feature, called Website Validation, is shown
in Figure 13-5.

Server-Side Debugging
To debug server-side detection, adaptation, or content delivery scripts, we can use some
HTTP tools before turning to real devices. The most useful tool is the User Agent
Switcher, a free plug-in for Firefox that you can install from http://www.mobilexweb
.com/go/uaswichter (see Figure 13-6).

Pricing structure.

Main features.

Testing and Debugging | 443

http://www.mobilexweb.com/go/uaswichter
http://www.mobilexweb.com/go/uaswichter
http://

The User Agent Switcher doesn’t emulate all the headers of a mobile
device, including the accepted MIME types, so you should not rely on
this plug-in for testing this kind of detection. You can use other plug-
ins, such as Tamper Data or Modify Headers, to change HTTP headers.

Figure 13-5. This is what the Website Validation report looks like in the Perfecto Mobile service.

Figure 13-6. With the User Agent Switcher you can test websites using any mobile user agent.

444 | Chapter 13: Testing, Debugging, and Performance

http://

When you’ve installed this plug-in, you will find a new submenu in the Tools menu of
Firefox using the name of the current user agent (it starts with “Default User Agent”).
The plug-in changes the user-agent string that Firefox uses for making HTTP requests
to the server. It comes with some user agents preinstalled, such as iPhone 3.0, and you
can add as many others as you want using the Edit User Agent option.

I’ve created a list of mobile user-agent IDs that you can import when
editing the list. You can also download this list from http://www.mobi
lexweb.com/go/uaswichter.

You can then browse to any website and see how the server manages the user agent
and which content it serves. Remember to go back to the default user agent after fin-
ishing the debug session, or you may encounter problems in your browser.

Opera and Safari for desktop also offer native features to change the user
agent without any plug-ins required.

When using real devices, it will be useful while debugging to store in some log all the
request and response headers from the server-side code, so you can see the data the
device is sending and receiving. DeviceAnywhere includes a solution for this purpose
for all devices, or you can use any emulator that supports HTTP sniffing, like the Nokia
and BlackBerry emulators (see Figure 13-7).

If you work with the ASP.NET platform on the server, you can activate the remote
tracing mechanism and you will see every header and response from your mobile
devices.

Markup Debugging
There is no automatic way to debug XHTML. This is a manual operation on every
emulator, device, or remote device you can access. Safari on iOS has a console window
that we can check for markup errors (we’ll cover it in a minute), but before doing this
it is a good practice to validate the code using one of the online tools available for mobile
markup.

W3C mobileOK Checker

The W3C offers a mobile markup checker that you can use for free at http://validator
.w3.org/mobile. You can upload a file, copy and paste the code, or use a URL if you
already have your mobile site on your server.

Testing and Debugging | 445

http://www.mobilexweb.com/go/uaswichter
http://www.mobilexweb.com/go/uaswichter
http://validator.w3.org/mobile
http://validator.w3.org/mobile
http://

Mobile Interactive Testing Environment (MITE) is a piece of software
from Keynote for testing, validating, and monitoring mobile websites
using thousands of simulated devices. You can download it from http:
//mite.keynote.com.

This markup checker is based on best practices published in the Mobile Web Best
Practices standard defined at http://www.w3.org/TR/mobile-bp. It doesn’t guarantee
that your code will work perfectly on all mobile devices if it passes; it is just intended
to help you find possible problems in your code and areas that don’t conform to best
practices.

The checker validates:

• HTTP headers

• MIME types and DOCTYPEs

• Markup (against XHTML Basic 1.1 and XHTML MP 1.2)

Figure 13-7. The Nokia emulator has a Diagnostics tool where we can see the HTTP headers and
markup.

446 | Chapter 13: Testing, Debugging, and Performance

http://mite.keynote.com
http://mite.keynote.com
http://www.w3.org/TR/mobile-bp
http://

• Cache usage

• Tag usage

• Image, table, and frame usage

ready.mobi

The dotMobi team has created a free validator that includes the W3C mobileOK
Checker tests and some others, plus some emulators and detailed error reports with
suggestions. The validator is available at http://www.ready.mobi. You can use it for a
single document by providing a URL or copying and pasting the code, or to report on
an entire site, including site-wide testing (registration is required for this last function).
You can see a sample in Figure 13-8.

Figure 13-8. ready.mobi is a good service for markup validation, although it may not have the best
score for an HTML 5 or iPhone webapp.

Testing and Debugging | 447

http://www.ready.mobi
http://

As an advanced feature, you can specify the user agent that we want the checker to use,
and a list of accepted MIME types.

dotMobi offers, through the Prometric testing service, a mobile web
developer certification that will certify your mobile web knowledge. You
can take the exam from anywhere in the world. More information can
be found at http://prometric.com/dotMobi.

After analyzing your document, ready.mobi will assign you a score on a scale of 1 (very
bad) to 5 (excellent). It will also report on the size of your document and resources and
the estimated time and download costs for the user.

Firefox plug-ins

There is a plug-in for Firefox that will allow this browser to support the XHTML MP
MIME type (not supported by default). You can download the plug-in from http://
xhtmlmp.mozdev.org.

Client-Side Debugging
JavaScript debugging is one of the most painful activities in mobile web development.
Every browser has a different JavaScript engine, and sometimes code that works on one
device doesn’t work on another.

Typical desktop JavaScript techniques should be used first to debug logic problems in
our code. This includes using the developer tools from Chrome, Safari, or Internet
Explorer, or the classic Firebug for Firefox (http://getfirebug.com). But just because
everything works in a desktop browser doesn’t mean that it will work in a mobile
browser. Rich Internet Application techniques are the worst problem areas.

One problem we will have is that if a JavaScript error is encountered,
many devices don’t show any notice and the code simply ends its exe-
cution.

Browser-based solutions

Some mobile browsers offer developer tools for JavaScript debugging or console logging
features.

There is a free and simple web application that allows us to evaluate
JavaScript on a mobile browser for testing purposes. To try it, just point
your browser to http://www.jsconsole.com.

448 | Chapter 13: Testing, Debugging, and Performance

http://prometric.com/dotMobi
http://xhtmlmp.mozdev.org
http://xhtmlmp.mozdev.org
http://getfirebug.com
http://www.jsconsole.com
http://

Safari includes a debugging console that we can activate (both
in simulators and on real devices) by going to Settings→Safari→Developer→Debug
Console. With the debug console activated, you will find a new 60-pixel-high toolbar
below the top toolbar of the browser.

The Symbian browser has script error logging disabled by default. You
can activate it from the Settings menu inside the browser.

Clicking this toolbar opens a full-screen Console window, as shown in Figure 13-9,
where you can see advice, warnings, errors, and console output, which you can filter
into HTML, JavaScript, and CSS categories. For better detail reading, use landscape
orientation.

Figure 13-9. When you activate the debug console you will see the console toolbar (left), which you
can click on to access a details list (right).

From JavaScript, you can send messages to the console using the log, warn, error, and
info methods of the console global object available in the iPhone browser. All of these
methods receive a string. The difference between them is the icon used to show the
text. For example:

Safari on iOS Debug Console.

Testing and Debugging | 449

http://

console.log("This text will appear on the Console");

From Opera Mobile 9.5, we can debug mobile web applications using
the remote debugging tool Dragonfly. To use this tool you will need Opera 9.5 or later
on your desktop. You can open Dragonfly by going to Tools→Advanced→Developer
Tools and checking the Remote Debug option.

When you’re done, enter opera:debug in your Opera Mobile browser and specify your
desktop IP address (public or private, if you are connected using WiFi to the same
LAN). You will then have access to the same debugging features (DOM, CSS, and
JavaScript) that you would if you were debugging a local desktop file.

You can also debug Opera widgets with this tool. Complete instructions and tips can
be found at http://www.mobilexweb.com/go/dragonfly.

Android doesn’t have as nice a console output as Safari on iOS, but
we can still read the console errors and even use the same console object using the
Android Debug Bridge (adb). adb is a command-line application available in the tools
folder of your SDK.

You can find more information on how to use this console at http://www.mobilexweb
.com/go/adb.

BlackBerry offers two plug-ins that can be used to de-
velop and also to debug, profile, and package web applications. Both provide JavaScript
debugging with breakpoints, Ajax requests visibility, and time-to-load reporting for
web content. You can download the BlackBerry Web Plug-in for Eclipse and BlackBerry
Web Plug-in for Visual Studio from http://www.mobilexweb.com/go/bbdebug.

The BONDI SDK for widgets offers a remote debugging feature that
can be used from the Google Chrome Developer Tools. WRT plug-ins for Aptana Stu-
dio and Visual Studio also support debugging over the emulator (remember that it is
not the real engine). The LG SDK and the BlackBerry web development tools have great
debugging tools for widgets, too.

JavaScript solutions

There are some scripts that work as a kind of debugger, including DOM and CSS in-
spectors and some that work for JavaScript debugging, too. The mobile compatibility
for these tools is complicated, though, because of the lack of space on the screen to
show all the information. There are also some Ajax-based solutions that will work
better, allowing you to view the debug results and panes from a desktop.

Creating a simple log console is easy, using a floating div or another visual element to
show messages sent by a console.log call.

Using alert windows for logging and debugging is annoying and a bit
intrusive. Try to use another solution.

Opera Dragonfly.

Android Debug Bridge.

BlackBerry web development tools.

Widget debuggers.

450 | Chapter 13: Testing, Debugging, and Performance

http://www.mobilexweb.com/go/dragonfly
http://www.mobilexweb.com/go/adb
http://www.mobilexweb.com/go/adb
http://www.mobilexweb.com/go/bbdebug
http://

For example:

if (console==undefined) {
 var console = new Object();
 console.log = function(text) {
 if (document.getElementById("console")==undefined) {
 document.getElementsByTagName("body")[0].innerHTML =
 "<div id='console'></div>";
 }
 document.getElementById("console").innerHTML += "<p>" + text + "</p>";
 }
}

With some CSS to the console and console p selectors, you can see a console. With
some scripts, you can also create an object browser and a console JavaScript execution
engine using eval.

You can check whether window.onerror is available and catch every error
before blocking all the rest of the script.

The JavaScript Debug Toolkit (JSDT) is an Ajax-based JavaScript debugging tool that
works with mobile devices as a desktop standalone application or an Eclipse plug-in.
It is available at http://code.google.com/p/jsdt.

Another option is Firebug Lite (http://getfirebug.com/lite.html), a plug-in that makes
some Firebug tools available on non-Firefox browsers if you add a JavaScript file and
a CSS file on your website. It works in many mobile browsers and widget engines
(including Symbian, Safari, Android, and Palm), but the navigation is very complicated
when the Firebug Lite view is open.

Performance Optimization
Performance is the key to mobile web success. People want high-performance websites.
We hate to wait on our desktops, and the situation is far worse on mobile devices, with
their constrained resources. I could write a whole book about mobile web performance,
but for now I will just try to distill some best practices and share some hacks that you
can easily apply to enhance your website’s performance.

Performance has recently become a hot topic in the desktop web world. In general
mobile web developers should follow the same practices, but there are some new ones
to keep in mind as well, and some desktop web best practices that will not work on
these devices.

Performance Optimization | 451

http://code.google.com/p/jsdt
http://getfirebug.com/lite.html
http://

If you’re just getting started with performance optimization, the first
thing you should do is read two excellent books from Steve Souders
(http://stevesouders.com), High Performance Websites and Even Faster
Websites, both from O’Reilly. Then, you should follow the Yahoo! and
Google performance team blogs at http://developer.yahoo.com/perform
ance and http://code.google.com/speed.

Mobile browsers aren’t the same as desktop web browsers, and not all mobile browsers
are created equal. Specifically, the quantity of resources that can be downloaded in
parallel and the cache functionality differ. Nevertheless, it is better to approach mobile
performance optimization from here than from the ground.

If you want to know more about high-performance mobile websites and
mobile browser behavior, check out http://www.mobilexweb.com/go/
performance.

Measurement
The first thing we need to do is to measure. If we cannot measure, we cannot optimize.
However, measuring mobile websites is not easy. Typical desktop measurement and
profiling tools don’t work for mobile devices, and HTTP sniffers are difficult to imple-
ment for mobile browsers.

Nokia provides a free tool for profiling the battery energy used by an
application. You can download the Nokia Energy Profiler for free from
http://forum.nokia.com.

Advanced memory and process profiling for JavaScript is still more of a dream than a
reality. However, Yahoo! has created a simple JavaScript profiler called the Yahoo! UI
Profiler, available at http://developer.yahoo.com/yui/profiler, that will work on any
A-grade browser (Symbian, iPhone, Android), and you can always use new Date().get
Milliseconds() to get the time differences between two moments in your JavaScript
code.

If you are using an emulator or a real device with WiFi capabilities, you can use any
HTTP sniffer proxy, configuring the emulator and your device with your desktop IP
address and port as the proxy for navigation. There are dozens of tools for doing this,
but the one I like best is called the Charles Web Debugging Proxy. A full-featured free
trial for Windows, Mac, and Linux is available at http://www.charlesproxy.com.

Once you’ve installed it, you can use the proxy (by default on port 8888) in your mobile
emulator or device, and you will see every request, including the headers and the order

452 | Chapter 13: Testing, Debugging, and Performance

http://stevesouders.com
http://oreilly.com/catalog/9780596529307/
http://oreilly.com/catalog/9780596522315/
http://oreilly.com/catalog/9780596522315/
http://developer.yahoo.com/performance
http://developer.yahoo.com/performance
http://code.google.com/speed
http://www.mobilexweb.com/go/performance
http://www.mobilexweb.com/go/performance
http://forum.nokia.com
http://developer.yahoo.com/yui/profiler
http://www.charlesproxy.com
http://

and simultaneity of requests made on each browser to optimize the final download time
for resources. You can also see Ajax requests with JSON and XML browser support.

If you have a dedicated server (or even your own development computer with full in-
bound access to port 80), you can install one of these proxies and a web server and
browse your website from any phone on any network to analyze how is it rendering
and requesting resources.

Nokia emulators (Series 40 and Symbian) also have a great network sniffer that enables
you to see all the requests that the browser is making, including the headers.

Best Practices
Here are some global best practices you should always have in mind:

• Keep it simple.

• Reduce the HTTP requests to the minimum possible.

• Implement Ajax requests if you can, and if the device supports them.

• Make the cache your friend.

HTTP request headers are generally larger in mobile websites because
of the large User-Agent, Accept, and other headers. Remember that these
headers are sent with each and every request your page makes. That is
why it is important to keep the number of requests to the minimum.

Reducing requests

There are plenty of tips for reducing network requests:

• Use only one CSS and JavaScript external link per page.

• If the script and/or CSS is only for one document, don’t use external code; instead,
embed it in the page.

• Use inline images whenever you can.

• Use CSS Sprites.

• Reduce the use of images for effects, titles, and text. Try to meet all of these needs
using only CSS.

• Use multipart documents when compatible.

• Download only the initially required code and resources and then, after the
onload event, download all the rest on Ajax devices (lazy loading).

Every mobile browser supports a cache for resources and you should
definitely use it, with a long-lived expiry for each static resource. Analyze
how the cache works (this is outside the scope of this book) and make
it your friend, not your enemy!

Performance Optimization | 453

http://

Compressing

Compression is a necessity, and there are different techniques you can use for it:

• Minimize your XHTML files, removing spaces, comments, and non-useful tags.

• Minimize your CSS files, removing spaces and comments.

• Minimize your JavaScript files, removing spaces and comments and obfuscating
the code.

• Use HTTP 1.1 compression for delivering static and dynamic text-based files
(XHTML, JavaScript, CSS, XML, JSON).

• Use a cookie-free domain (or alias domain) for static content files.

For minimizing files, there are plenty of online and offline tools, like JSMin (http://
crockford.com/javascript/jsmin) and YUI! Compressor (http://developer.yahoo.com/yui/
compressor).

Going Beyond JavaScript Compression
There are plenty of good JavaScript obfuscators and minimizing tools out there, but
Google has taken an extra step and created Closure Compiler, a new concept in Java-
Script programming. It is not just a minimizing and obfuscating tool, but it is also a
compiler: it compiles JavaScript code into better JavaScript code and it is very helpful
for mobile websites.

You can download the compiler at http://code.google.com/closure/compiler or use the
web application compiler at http://closure-compiler.appspot.com.

The code will be rewritten to be lighter and quicker to execute. The resulting code will
not be suitable for human reading because it will not use good programming practices,
but that is not the goal. We are not going to edit the resulting code; we will always work
with the original code (with comments and all the best practices) and recompile it before
sending it to the server.

HTTP compression

HTTP 1.1 added compression (using GZIP and deflate) as an optional possibility when
delivering a file to the client. Using this option is strongly recommended for text-based
files on most mobile devices, because it will reduce the traffic between the server and
the client by up to 80%. It will add some overhead on the client (to uncompress the
content), but it’s well worth it. Network traffic will be one of our worst problems if the
user is not connected to a WiFi network. Even with 3G connections, the network can
have latency problems.

454 | Chapter 13: Testing, Debugging, and Performance

http://crockford.com/javascript/jsmin
http://crockford.com/javascript/jsmin
http://developer.yahoo.com/yui/compressor
http://developer.yahoo.com/yui/compressor
http://code.google.com/closure/compiler
http://closure-compiler.appspot.com
http://

If you work with ASP.NET Web Forms, you should be careful about
the usage of the ViewState, which generates big hidden input tags in the
HTML. Deactivate the ViewState on the controls where you won’t use it.

You will find plenty of resources on the Web about how to configure HTTP compres-
sion for Apache, Internet Information Server, and other products. The most important
thing you need to remember is to also compress dynamic scripts delivering markup,
like PHP scripts, which by default do not use HTTP compression in Apache.

Other tips

Here are some other tips to keep in mind:

• Compress images and choose the best format and color palette. You can use the
free online tool Smush.it from Yahoo!, available at http://www.smushit.com.

• Deliver small images for small screens. You can use a dynamic resizing tool, or the
free online service at http://www.tinysrc.net.

• Keep files under 25k because, if not, they will have problems to be cached on some
devices.

• Reduce the initial load time as much as possible. You want the web application to
be ready as soon as possible.

• Minimize DOM access and simplify your document structure.

• Use HTML 5 storage for caching data and resources in base64.

• Flush the buffer early, using flush() in PHP or Response.Flush() in ASP.NET, after
</header> and after big blocks of visual components.

• Avoid redirects between pages, especially in the home page.

• Create a quick and simple home page.

• Put script tags at the bottom to avoid resource download delays.

• Use a content delivery network or a static server for static content if you have a lot
of images or other static content.

• Remove any non-useful headers from the server responses (like server identification
or “powered by”).

Performance Optimization | 455

http://www.smushit.com
http://www.tinysrc.net
http://

Deferred JavaScript Evaluation
The Gmail team, in conjunction with Charles Jolley (http://blog.sproutcore.com), has
created a very clever and simple way of reducing the initial payload time of JavaScript
execution. The solution is to deliver the JavaScript code inside a comment block (/*
*/). This means the JavaScript isn’t executing while loading, and it doesn’t freeze the
UI or block other resources.

When you need to execute that library or code, you just get the script by ID, get its
content, remove the comment characters, and make an eval of that code. Pretty smart,
isn’t it? On iPhone OS 2.2, 200 KB of JavaScript code adds 2.6 seconds to the initial
page load time, while if it is comment it adds just 240 ms. After all the initial loading
is done (or later, whenever you need it) you can parse it.

JavaScript performance

Again, keep your code simple. Here are some other specific tips for mobile JavaScript
coding:

• Don’t use try/catch expressions for expensive code.

• Avoid using eval, even in situations where you might not think about it being used,
like when using a string in setTimeout instead of a function.

• Avoid using with.

• Minimize the usage of global variables.

• Minimize the number of changes in the DOM, and make the changes in the same
operation. Many browsers repaint the whole screen on each change.

• Implement a timeout for Ajax calls.

• Compress (and if you want, compile with Closure Compiler) your code.

You can find an excellent article about JavaScript performance tips for mobile browsers
at http://wiki.forum.nokia.com/index.php/JavaScript_Performance_Best_Practices. You
should also check out Nicholas Zakas’s High Performance JavaScript (O’Reilly).

456 | Chapter 13: Testing, Debugging, and Performance

http://blog.sproutcore.com
http://wiki.forum.nokia.com/index.php/JavaScript_Performance_Best_Practices
http://oreilly.com/catalog/9780596802806
http://

CHAPTER 14

Distribution and Social Web 2.0

So, you’ve finished your mobile web application and you are ready to go to market (or
so you think). However, your work isn’t over yet. In this chapter, we are going to analyze
some search engine optimization tips, and talk about how to get users to actually visit
our mobile websites and encourage them to come back again and again.

We will also explore how to monetize mobile websites using advertising and how to
merge our applications with some social features, such as SMS, RSS, and social
networks.

Mobile SEO
Search engine optimization (SEO) refers to a set of best practices that you can follow
to allow your website to be in the best possible place in a search engine.

In general, typical desktop SEO techniques apply to mobile websites, too, but some
extra care must be taken. As we’ve already discussed, generating too much code
(metadata) and too much text for keyword crawling is not the best solution for the
mobile web.

The first thing we need to understand is that mobile search users are not the same as
desktop search users. Mobile users are typically searching for something very specific,
and we should do our best to facilitate access to those resources.

Mobile search engines (Google, Yahoo!, Bing) localize the search results, so if your
service is location-based, you should make sure that your location is properly defined
in your text and code. In mobile search engines, the user only types a few characters
and the engine tries to suggest the best possible results based on location and previous
results, with mobile-specific content given priority.

457

http://

If your mobile website gets content using Ajax, you should implement
Google’s proposal for making the content being indexed crawlable. You
can find more information about this at http://code.google.com/web/
ajaxcrawling.

Search engines like Google will try to serve mobile-specific content first, but if someone
is looking for the exact name of your application and Google doesn’t know that you
have a mobile website, the user will be redirected to your desktop site or to a transcoded
mobile version of it produced by a Google server.

If you appear in the search engine’s databases, you will also be found using the native
applications that many search engines are developing, including voice-powered search
applications.

Spiders and Discoverability
The first problem is how to make your mobile website known to the search engines.
This can be different depending upon whether you already have a desktop website that
has been crawled or not.

If you already have a desktop website, you can give search engines the URL of your
mobile site using the alternate link method:

<link rel="alternate" media="handheld" href="http://m.yoursite.com" />

You can also add your mobile site manually, using these URLs:

• Yahoo! (http://siteexplorer.search.yahoo.com/mobilesubmit)

• Bing (http://bing.com/webmaster)

• Google (http://google.com/addurl)

Mobile Sitemaps

Google has created an extension to the Sitemap protocol (http://sitemaps.org) for mobile
web content discoverability, called Mobile Sitemaps. After creating an account in Goo-
gle Webmaster Central (http://www.google.com/webmasters), you can add your mobile
site to Google’s database. You will need to verify that you are the owner of the site, by
inserting a temporal metatag or HTML file in your site.

Googlebot-Mobile uses the Accept HTTP header to determine whether
a site delivers mobile content types. If you want to be sure that the bot
can access your site, you can also check that the User-Agent header con-
tains Googlebot-Mobile. Some sites will only allow access to mobile de-
vices, and while Googlebot-Mobile tries to emulate such a device it is
not always successful in gaining access unless it is specifically allowed.

458 | Chapter 14: Distribution and Social Web 2.0

http://code.google.com/web/ajaxcrawling
http://code.google.com/web/ajaxcrawling
http://siteexplorer.search.yahoo.com/mobilesubmit
http://bing.com/webmaster
http://google.com/addurl
http://sitemaps.org
http://www.google.com/webmasters
http://

Once your site has been validated, you can submit a Sitemap for it. If your mobile site
is targeted to only one country using a non-country top-level domain (like .com
or .mobi), you can also define the geographic target for which your mobile site is
prepared.

Check the Sitemaps documentation at http://sitemaps.org for full tag and
option support.

A Mobile Sitemap is an XML file, based on the Sitemap standard, that lists the mobile
URLs for your site (XHTML, XHTML MP, WML, cHTML). You can provide URLs
for both mobile and non-mobile versions depending on the headers, but you should
not list non-mobile-only URLs. A sample Sitemap file looks like this:

<?xml version="1.0" encoding="UTF-8" ?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"
 xmlns:mobile="http://www.google.com/schemas/sitemap-mobile/1.0">
 <url>
 <loc>http://m.yourdomain.com/</loc>
 <mobile:mobile/>
 </url>
</urlset>

You should provide one url element for each mobile URL and page, including the
mobile:mobile empty tag. If you have many versions using different URLs (for iPhone,
WML, etc.), you should provide them all in the same file.

To check whether your website is listed in Google Mobile, visit http://
m.google.com with a mobile device and use the search operator
site:your_domain.

The Google Webmaster Team also suggests detecting Googlebot-Mobile in your desk-
top site and redirecting it to the mobile-specific version of the same page. For example,
for information about a product X in your desktop site, you should redirect the bot to
the mobile URL displaying information about that product. Otherwise, Google will use
a transcoder on the desktop page, as shown in Figure 14-1.

How Users Find You
Search engines are not the only way for users to discover your mobile website. Obvi-
ously, offline marketing is always welcome, but there are also other online features we
should implement to facilitate discoverability. These include advertising the new mo-
bile website to your current desktop visitors and implementing newsletters and feed
readers.

Mobile SEO | 459

http://sitemaps.org
http://m.google.com
http://m.google.com
http://

The first problem to tackle is simplifying the user’s first access to the mobile website.
Many mobile users still don’t know how to go to a URL if it is not on the carrier’s home
page, and many others will not want to type a long URL on a numeric keypad device.

SMS invitation

A good solution is to include in your desktop website a form to collect the user’s phone
number and then send him a WAP Push or an SMS link. A WAP Push is a special
message with a URL inside. This is generally a premium SMS, and some carriers don’t
allow sending them from a website.

An SMS link is just a normal SMS with a link inside. Almost every modern device with
a browser will autodetect a URL inside a text message if it begins with www or http://
and will convert the URL into a link that the user can click after receiving the SMS (see
Figure 14-2).

The big question, is how do we send an SMS from a website? The answer is not what
you might expect—there isn’t a simple or free way to do it. We have to use an SMS
provider or gateway that, with a simple web service call, will send the message to users
in one country or worldwide. We will have to pay for that SMS, but depending on the
business, a new mobile web user will probably be worth the small expense.

Some SMS gateway providers also allow inbound SMS messages that
will be routed to your scripts or will be accessible via an API. This could
be an excellent solution to receive queries by SMS to your service.

Figure 14-1. If you don’t provide a mobile version of your website, Google will use its transcoder for
users with low- or mid-end devices. Here is the O’Reilly home page transcoded.

460 | Chapter 14: Distribution and Social Web 2.0

http://

Some SMS gateway providers include:

• Lleida (http://www.lleida.net)

• Clickatell SMS Gateway (http://www.clickatell.com)

• BulkSMS (http://www.bulksms.com)

Alternatively, you can install a 3G or GPRS modem on your server or in any machine
and develop a little SMS gateway of your own, with a corporate or personal account.
A widget or an application on your device could also work, although this is not the
preferred way.

Zeep Mobile (http://www.zeepmobile.com) offers a free, ad-supported
SMS API for sending and receiving messages, but it only works in the
United States at the time of this writing. You can also pay for an ad-free
plan.

Figure 14-2. Modern devices detect URLs inside an inbound SMS and allow the user to access them
with a click.

Mobile SEO | 461

http://www.lleida.net
http://www.clickatell.com
http://www.bulksms.com
http://www.zeepmobile.com
http://

You can also use carrier developer networks and the up-and-coming OneAPI to send
messages to known networks.

Email invitation

For newer smartphones with email support, an alternative to SMS is to send the user
a free email message containing the mobile URL.

Mobile Tiny URL

To enable the user to type your URL easily, you can use the free service Mobile Tiny
URL (http://www.mobiletinyurl.com), shown in Figure 14-3. It converts any URL into
a short form that can be typed with only 13 keypresses on a numeric keypad. By default
the generated short URL doesn’t work in desktop browsers or on iPhone devices, but
you can add desktop and iPhone support. These short URLs are useful for publication
on desktop websites and in printed advertising.

Figure 14-3. With the Mobile Tiny URL service, developed in 2009, you can generate valid web address
that can be entered using only the first characters of a numeric keypad.

For example, instead of typing m.safaribooksonline.com, a mobile user can type ad.ag/
admtgp (saving 57 keypresses). As you can see, the generated URL uses only the first
letters associated with every key on the keypad, to speed up entry. Even apparently
simple URLs like google.com will require 37 keypresses on a mobile phone, and you
can save 24 by using the compressed URL (ad.ag/tgtmjg).

462 | Chapter 14: Distribution and Social Web 2.0

http://www.mobiletinyurl.com
http://m.safaribooksonline.com
http://google.com
http://

The Mobile Tiny URLs aren’t intended to be URLs that you will re-
member; they are intended for you to have in front of you while you are
typing them in.

QR codes

A QR code is a two-dimensional barcode (also called a matrix code) that allows the
storage of several bytes in a graphic. These codes have many uses, one of which is to
provide a URL that can be read by devices with bar code readers. Many Nokia and
Android devices come with these readers preinstalled, but on other devices, users will
need to download one. A sample QR code is shown in Figure 14-4.

Figure 14-4. Google Maps created the Favorite Places campaign, sending stickers like this one to
businesses (like restaurants) that the users can scan with their mobile devices to access information,
reviews, etc. Today, the service is known as Google Places.

A QR code can contain 4296 alphanumeric characters, or 2953 bytes
for binary data. Some devices also support other data inside, like contact
information (for example, a vCard file).

They are well known in mobile advertising; many campaigns use these codes in news-
papers, on street signs, and even on t-shirts.

Mobile SEO | 463

http://

To create a QR code, you can use any of these free services:

• http://qrcode.kaywa.com

• http://createqrcode.appspot.com

• http://mobilecodes.nokia.com

• http://www.mobiletinyurl.com

If you need to generate a QR code dynamically, there are libraries for almost all server-
side platforms that will generate the right image for you.

The free Google Chart API (http://code.google.com/apis/chart) allows you to generate
free QR codes using an XHTML img tag with parameters.

There is also WordPress plug-in (http://wordpress.org/extend/plugins/qr-code-tag) that
creates a QRCode widget for inserting in your blog).

User Fidelizing
Once you’ve gotten a user to your mobile website, how do you encourage her to come
back and maintain an interest in your service? If you are not providing a must-use service
(such as online banking or email), you may want to implement some of the following
techniques to “fidelize” your users:

• Encourage the user to add your site to her bookmarks, or to the home screen on
selected browsers (like iPhone or Android).

• Offer the user a widget or mobile client with richer features.

• Offer the user a shortcut to download for the applications or home menu.

• Offer the user a home widget on supported devices, with automatic updates.

• Create a mobile RSS news feed.

• Provide an SMS alert subscription.

Creating a widget for your mobile website (as discussed in Chapter 12) could be the
key to getting the user back, via the icon in her applications menu. This can be useful
even if the widget is just a void container for the same website.

A great feature to incorporate into a widget or mobile client is friend
recommendation using the Contacts and SMS APIs available on some
platforms.

Web shortcuts

A web shortcut is a native application or widget that has an icon in the menu that
launches the browser when it is activated, like the one shown in Figure 14-5. Adding

464 | Chapter 14: Distribution and Social Web 2.0

http://qrcode.kaywa.com
http://createqrcode.appspot.com
http://mobilecodes.nokia.com
http://www.mobiletinyurl.com
http://code.google.com/apis/chart
http://wordpress.org/extend/plugins/qr-code-tag
http://

a shortcut is better than adding a bookmark, because it will be installed just like any
other application.

You can create Java ME, Windows Mobile, BlackBerry, and widget versions to cover
all the possible shortcut platforms.

You can create a free shortcut for your website using the free http://www
.widgen.com service.

RSS

Some browsers (Opera, Bolt, NetFront, Symbian) detect feed metatags and offer the
user the option to subscribe to the feeds to get updates on the sites that provide them.
To offer this service, you should provide an RSS file with a mobile web link inside:

<link rel="alternate" type="application/rss+xml" title="Mobile RSS"
 href="http://mobilexweb.com/rss.xml" />

If you have an RSS file for your mobile content, you can create a free mobile client
reader at http://www.widgen.com and offer it as a download from your site.

Open Search

If your website provides a search engine, you should supply an Open Search description
protocol file that will allow users of compatible devices to add your engine to the list
of possible search engines. Not too many mobile browsers support this format at the

Figure 14-5. In Gmail, you can access the mobile website or download a richer client (“Get faster
Gmail”). The same technique is used for downloading a shortcut.

Mobile SEO | 465

http://www.widgen.com
http://www.widgen.com
http://www.widgen.com
http://

time of this writing, but a mobile extension is in draft by the Open Search organization
(http://opensearch.org).

To define an Open Search declaration for discoverability, use the following link tag:

<link rel="search" type="application/opensearchdescription+xml"
 href="http://mobilexweb.com/opensearch.xml" />

The Open Search descriptor file will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/">
 <ShortName>Mobile Web Search</ShortName>
 <Description>Search in our mobile web</Description>
 <Url type="text/html"
 template="http://mysite.com/?q={searchTerms}"/>
 <Image height="64" width="64" type="image/png">
 http://example.com/icon.png
 </Image>
 <Language>en-us</Language>
</OpenSearchDescription>

BlackBerry Web Signals

RIM offers a push service called Web Signals that can push real-time information to
BlackBerry devices. The customer has to follow an opt-in process to subscribe to your
content. When you want to push information you send an icon and a URL to the RIM
servers, and they deliver the information to the subscribed users. The mechanism can
be used for public information for end users (news, weather, traffic) or for private
information (corporate alerts).

To see more information and start providing Web Signals to users, go to http://www
.mobilexweb.com/go/websignals.

Apple, Android from 2.2, and Palm offer push service notifications for
applications distributed in their stores. We can also use these if we pro-
vide hybrid web applications.

Mobile Web Statistics
With your website online, you will want to gather some statistics about usage, visitors,
and even mobile browsers accessing your site. Typical desktop web statistics systems
don’t work well with mobile sites, because they don’t have mobile user agents in mind
when analyzing logs and don’t work on non-JavaScript devices or other kinds of
services.

However, there are some free and commercial solutions available for mobile web
statistics.

466 | Chapter 14: Distribution and Social Web 2.0

http://opensearch.org
http://www.mobilexweb.com/go/websignals
http://www.mobilexweb.com/go/websignals
http://

Google Analytics for Mobile
Google Analytics is one of the most used (and most powerful) free web statistics tool
for mobile websites, but it is based on JavaScript code that, in the mobile world, only
works on high-end devices.

Google Analytics for Mobile Websites (http://code.google.com/mobile/analytics/docs/
web/) works on all web-enabled browsers, with or without JavaScript support. The
technology supports script code for PHP, ASP.NET, Perl, and JSP.

Google Analytics is also available for Android and iPhone native appli-
cations, supporting tracking of pages and events.

To use the mobile service, you should apply for a normal Google Analytics account at
http://www.google.com/analytics. Create a new Website Profile and, in the Advanced
section, select “A site built for a mobile phone,” select your server language, and follow
the instructions.

Yahoo! Web Analytics
Yahoo! Web Analytics (http://web.analytics.yahoo.com) supports mobile devices, giv-
ing the following statistics about your mobile users:

• Mobile device manufacturer

• Mobile device model

• Model device screen size

• Carrier name

You will find these statistics in the Mobile Reports section.

Mobilytics
Mobilytics (http://www.mobilytics.net) provides free and premium metric and visual
indicators about your mobile web visitors. Mobilytics offers scripts for PHP, ASP.NET,
JSP, and other server-side platforms. Transcoder detection, mobile device detection,
and other capabilities are available in premium plans.

Motally Web Analytics
Motally (http://www.motally.com) offers mobile web analytic services with a patent-
pending algorithm to track mobile user visits. It provides statistics about the devices,
operators, and location of your users, and detects the use of proxies and transcoders.

Mobile Web Statistics | 467

http://code.google.com/mobile/analytics/docs/web/
http://code.google.com/mobile/analytics/docs/web/
http://www.google.com/analytics
http://web.analytics.yahoo.com
http://www.mobilytics.net
http://www.motally.com
http://

Motally is available in a free community version and a commercial version with more
advanced features. There are server-side code snippets for PHP, JSP, ASP.NET, Perl,
and Ruby on Rails.

Pion for Mobile Web
Atomic Labs offers a commercial service for mobile web logging and statistics including
mobile session replay, where you can see exactly what your users are doing on your
mobile website. More information can be found at http://www.atomiclabs.com/pion
-web-analytics/mobile-web-analytics.php.

Mobile Web Advertising
You’ve put a lot of work into build your site. How can you make a return on that
investment? One solution could be advertising.

Monetizing Your Website
If you have a free mobile website and you want to monetize it with advertisements,
there are a few solutions that you can use.

For more information about mobile advertising, visit the Mobile Mar-
keting Association at http://www.mmaglobal.com.

Google AdSense for mobile content

With Google AdSense, you can easily insert mobile-optimized ads for mobile devices.
To use it, log in or sign up at http://www.google.com/adsense and select “AdSense for
Mobile Content” on the Account Setup tab.

When you define a mobile campaign for Google AdWords, you can use
the Keyword tool to access information about mobile searches in the
Google ecosystem.

It is possible to select only advertisements for iPhone and high-end devices, or for all
devices (including ads in XHTML, cHTML, and WML format), using server-side code.
When you add the server code (for example, PHP) you should start seeing mobile
advertisements on your site within 48 hours.

468 | Chapter 14: Distribution and Social Web 2.0

http://www.atomiclabs.com/pion-web-analytics/mobile-web-analytics.php
http://www.atomiclabs.com/pion-web-analytics/mobile-web-analytics.php
http://www.mmaglobal.com
http://www.google.com/adsense
http://

The standard Google AdSense account also works on smartphones with
HTML and JavaScript support.

AdMob
AdMob is the pioneer in mobile web advertisement, and as Google acquired it in 2009
it will probably be joining the AdSense service soon. AdMob offers multiple ad formats
to use in mobile websites, inserted using simple codes. To sign up, register for an ac-
count at http://www.admob.com/publish.

Other Companies
Other companies offering mobile advertising solutions include DeckTrade (http://www
.decktrade.com), AdModa (http://www.admoda.com), and Quattro Wireless (http://
www.quattrowireless.com).

If you want to promote your mobile web application to mobile users
and you have a marketing budget to spend, you can create a mobile
campaign through Google AdWords (http://www.google.com/adwords),
AdMob (http://www.admob.com), GetJAR (http://developer.getjar.com),
or GameJump (http://www.gamejump.com) You will begin receiving
visits from mobile applications, games, and search engines within
minutes.

Mobile Web Social Features
Your mobile website will not be complete if you don’t add some social features to it.
In the current Web 2.0 and social networking era, social integration is a must-have
feature to implement.

Facebook
Facebook offers Facebook Connect for Mobile Web, a PHP library that lets our appli-
cations log users in using their Facebook accounts. With this API you can:

• Create a login mechanism easily.

• Get user session data.

• Call methods from the Facebook Platform API and prompt for extended permis-
sions (access friends list, send private messages).

• Post on the Facebook stream.

Mobile Web Social Features | 469

http://www.admob.com/publish
http://www.decktrade.com
http://www.decktrade.com
http://www.admoda.com
http://www.quattrowireless.com
http://www.quattrowireless.com
http://www.google.com/adwords
http://www.admob.com
http://developer.getjar.com
http://www.gamejump.com
http://

To use it, you will need to get an API key at http://developer.facebook.com and configure
your mobile web settings and URLs for callbacks. Once you’ve done this, you can
download the API for PHP (including sample code), create the MySQL table, and use
the API.

Your application can also be integrated into the mobile Facebook website (http://m
.facebook.com) like a desktop Facebook application. The mobile version is a subset of
the desktop one, and you can use Facebook Markup Language (FBML) to create it.
This is a whole new topic and is outside the scope of this book, but you can get more
information at http://wiki.developer.facebook.com.

Share Content
For any content you are serving in your mobile website, you can offer a Share service
to publish the URL via Twitter, Facebook, and other social networks.

For most social networks, you should use the same URL you would use for the desktop
website. On the server, the social network scripts will redirect users to the mobile
website.

For Twitter, you can use a link like this:

http://twitter.com/home?status=<your message here>

Remember that Twitter has a limit of 140 characters, including an optional URL using
http://, which should be URL-encoded in the status variable. For long URLs, you should
use a shortener service API.

In Chapter 6 we discussed how to open any installed native Facebook
or Twitter applications on iPhone and Android devices.

For Facebook, you can share a link using:

http://m.facebook.com/sharer.php?u=<url to share>&t=<title of content>

You can also use the AddThis service, shown in Figure 14-6, which is compatible with
mobile browsers when you use the standard button and not the JavaScript button.
AddThis offers sharing links and icons for dozens of sharing services. It includes a
special design for most mobile devices and for iPhone devices. To create your own code
for sharing services, go to http://www.addthis.com.

470 | Chapter 14: Distribution and Social Web 2.0

http://developer.facebook.com
http://m.facebook.com
http://m.facebook.com
http://wiki.developer.facebook.com
http://www.addthis.com
http://

Figure 14-6. The free service AddThis detects mobile phones and offers an optimized interface for
sharing links.

Mobile Web Social Features | 471

http://

http://

APPENDIX

MIME Types for Mobile Content

Markup and Script MIME Types
Table A-1. Markup and script MIME types

Format Typical extension MIME type

WML .wml text/vnd.wap.xml

WMLScript .wmls text/vnd.wap.wmlscript

HTML 3/4/5 .html text/html

cHTML .html text/html

XHTML .html, .xhtml application/xhtml+xml, text/xml, text/html

XHTML MP .html, .xhtml application/vnd.wap.xhtml+xml, application/xhtml

+xml, text/xml, text/html

JavaScript .js text/javascript, application/ecmascript, applica

tion/javascript

CSS2, CSS3, WAP CSS, and CSS

MP

.css text/css

Multipart document multipart/mixed, application/vnd.wap.multi

part.mixed

Image MIME Types
Table A-2. Image MIME types

Format Typical extension MIME type

GIF .gif image/gif

JPEG .jpeg, .jpg image/jpeg, image/jpg

PNG .png image/png

SVG .svg image/svg+xml

473

http://

Format Typical extension MIME type

Compressed SVG .svgz image/svg+xml

WBMP .wbmp image/vnd.wap.wbmp

Nokia Wallpaper image/vnd.nok-wallpaper

Mobile Content MIME Types
Table A-3. Mobile content MIME types

Format Typical extension MIME type

Java ME Application

Descriptor

.jad text/vnd.sun.j2me.app-descriptor

Java ME Archive .jar application/java-archive

BlackBerry Archive .cod application/vnd.rim.cod

Android Application .apk application/vnd.android.package-archive

Windows Mobile Application .cab application/cab

Garnet OS Application (old

Palm devices)

.prc application/vnd.palm

Symbian Application .sis application/vnd.symbian.install

Symbian Application .sisx x-epoc/x-sisx-app

vCalendar .vcalendar

iCalendar .icalendar

Nokia Flash Format .nfl

Adobe Flash Movie .swf application/x-shockwave-flash

XML .xml text/xml

JSON .json application/json, text/json, text/javascript

RSS .rss, .xml application/rss+xml

Open Search Description .xml application/opensearchdescription+xml

Mobile Sitemap .xml text/xml

Multimedia Message .mms, .smil application/vnd.wap.mms-message

Bookmark application/x-wap-prov.browser-bookmarks

Sony Ericsson MMS Template .tpl application/vnd.sonyericsson.mms-template

OMA Download application/vnd.oma.dd+xml

474 | Appendix: MIME Types for Mobile Content

http://

Audio and Video MIME Types
Table A-4. Audio and video MIME types

Format Typical extension MIME type

3GPP .3gp, .3gpp video/3gpp

3GPP 2 .3gp2, .3gpp2 video/3gpp2

QuickTime MOV .mov video/quicktime

Windows Media Video .wmv video/x-ms-wmv

Windows Media Audio .wma audio/x-ms-wma

Real Video .rv video/vnd.rn-realvideo

Real Audio .ra, .ram audio/x-pn-realaudio

MP3 .mp3 audio/mp3

Flash Video .flv video/x-flv

Widget and Webapp MIME Types
Table A-5. Widget and webapp MIME types

Format Typical extension MIME type

Symbian WRT widget .wgz application/x-nokia-widget

Samsung widget .wgt application/vnd.samsung.widget

JIL widget .wgt application/widget

Opera widgets .wgt application/x-opera-widgets

Manifest file .manifest text/cache-manifest

Yahoo! Blueprint response .xml application/x-blueprint+xml

Widget and Webapp MIME Types | 475

http://

http://

Index

A
A-GPS (Assisted GPS), 370
absolute/floating positions, 197
ACCESS, 29, 51
access keys, 114, 139, 153
ActionScript, 219
active pseudoclass, 200
adaptation frameworks, 362
AddThis, 470
AdMob, 469
Adobe

vs. Apple, 171
Device Central, 89
Flash, 171
Flash Lite, 19, 90, 356
Flex for Mobile, 173

AdSense (Google), 468
advertising, 468
Ajax, 66, 221, 267–272
alignment, text, 191
alternative text, 132
Amazon Kindle, 9
Android, 26

browser, 49, 251
Debug Bridge, 450
emulator, 77
intents, 148
platform, 420

animation, 132, 279–288
Apache, 343
AppCache, 308–311
Apple

vs. Adobe, 171
Dashboard, 398, 403

iPad, 9, 17, 321, 413–418
iPhone

content application delivery, 357
CSS extensions, 217
mobile widgets webapps, 413–418
OS, 17
Photo Picker, 159
simulators, 82, 92
text adjustment, 196
version 4, 13

iPod, 5, 9, 143
iTunes, 17
Newton, 30

Apple, iPhone
form extensions, 165
version, 182

Apple, iPhone WebClip con, 123
application installations, over the air, 15
applications, detecting, 148
AR (Augmented Reality), 370
AskPythia, 365
ASP.NET

components, 364
Mobile Controls, 364
Mobile Device Brower File, 340
Visual Studio on mobile emulator, 89

aspect ratio, 13
Assisted GPS (A-GPS), 370
AU, 50
Augmented Reality (AR), 370
autocomplete/autosuggest, 166, 300
autofocus, 162
autogrowing textarea, 296
autoupdate (Ajax), 129

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

477

http://

B
backface visibility, 285
background operation alerts, 66
backgrounds, 202
Bada, 23
Bango, 353
Barnes & Noble Nook, 9
base64 encoding, 132, 310
baseJS, 274
Basic Pictograms, 135
basic zoom, 41
best practices, 453

coding of document body, 128
design, 66
JavaScript and battery life, 232, 235
titles, 122

BlackBerry, 22
borders/padding issues, 187
browser, 49
CSS stylesheets on, 180
direct messaging, 144
extensions, 165
iDEN devices, 142
Java ME for, 356
location API, 382
meta tags, 125
MIME lists, 158
offline form submission, 152
phone number/email autodetection, 142
simulators, 85
web development tools, 450
Web Signals, 466
widget platform, 424–426

Blueprint (Yahoo!), 365
Bolt, 53
BONDI, 399–402, 450
Booklet 3G (Nokia), 11
Bookmarker, 146
bookmarklets, 224
border image, 212–216
box borders, 211
brands

Apple, 16
BlackBerry, 22
HTC, 26
LG Mobile, 25
Motorola, 24
Nokia, 18–22
other, 31

Palm, 28
Samsung, 23
Sony Ericsson, 24
Symbian Foundation, 30
Windows Mobile, 27

break code
, 98, 109
browsers, 53

browsing types, 40
direct vs. proxied, 43
preinstalled, 45–51
user-installable, 51–53

BulkSMS, 461
bullets, 204
buttons, 157, 295

C
caching

application cache, 310
base64 image files, 134, 310
control metatag, 129
resource, 453

calendar, updating, 147
canvas tag, 178, 304–306
card, wml, 98
CardFlip pattern, 285–288
cascading menus, 299
cell information, 371
Champeon, Steven, 63
charset encoding, 108
checkboxes, 152, 157
Chromium, 53
cHTML (compact HTML), 102
city accuracy location, 369
clear tag, 197
clear text box button, 295
click events, 249
Clickatell SMS Gateway, 461
client storage, 311–315
ClientLocation object (Google), 386
Closure Compiler, 454
Cocoa Touch framework, 17
Comet techniques, 271
compact HTML (cHTML), 102
compatibility tables

access key testing, 115
Adobe Flash, 173
AppCache, 310
border image, 215
call-to action, 143

478 | Index

http://

changing properties dynamically, 243
client-side cookies, 240
contacts and calendar integration, 147
CSS, 181, 183, 198, 201, 203, 209, 242,

246
cursor, 205
custom font techniques, 190
document download, 150
document.write, 228
DOM, 241, 245
dynamic script loading, 271
events, 247, 248, 249, 253, 255, 256, 259
file upload, 159
focus and scrolling, 235
frames, 169
HTML, 107, 302, 306
icon display, 124
image format, 134
innerHTML property, 244
JavaScript, 222, 230
JSON parsing, 269
marquee testing, 118
messaging actions, 145
multiple lines/scrolling text in alerts, 227
OMA Download, 350
opening links in new windows, 139
pictograms, 136
preloading images, 244
redirection, 232
regular expressions, 240
rounded corners, 199
screen properties/events, 231
script execution, 224
select list, 156
showing/hiding elements, 247
standard dialog support, 226
SVG, 175
table display, 168
text alignment, 191
text effects, 193, 195, 212
text input format, 163
timers support, 237
title lengths, 121
UI libraries, 289
viewport usage, 127
window.open, 233
WML support testing, 100
XHTML testing, 107
XML parsing, 267, 268

ComponentOne commercial ASP components,
364

compression, 454
condensed URL, 462
content adaptation, 361–366
content application delivery

iPhone, 357
content attribute, 203
content delivery

applications and games, 351–356
charging for, 352
defining MIME types, 343–345
files, 346–350
Flash Lite, 356
multimedia and streaming, 357–361
streaming, 359

content folding, 325
content transformation/content adaptation,

327
contenteditable attribute, 303
cookie management, 240
country accuracy location, 369, 372
Crockford, Douglas, 397
CSS

animations, 281
backgrounds, 202
box model, 187
bugs in, 69
content attribute, 203
display properties, 197–205
forms extensions, 118
gradients, 276
media filtering, 180–183
for mobile, 114
mobile standards, 114
pseudoclasses, 200
reset files, 185
reset styles, 185
Sprites, 205–211, 243
Sprites alternatives, 210
text format in, 187–196
text overflow, 193
text shadows, 192
titles, 200
transformations, 284
transitions, 279
WebKit extensions for, 211–218, 275–288
where to insert, 179

.css extension, 104

Index | 479

http://

Cufón, 190
cursor management, 40, 204
custom fonts, 189

D
Darwin Streaming Server, 360
Dashboard (Apple), 398, 403
data URI, 132
datalist tag, 304
Debug Bridge (Android), 450
debugging (see testing and debugging)
deck, wml, 98
default events, 258
deferred JavaScript evaluation, 456
definition list (dl, dt, dd tags), 138
delayed linking, 346
design and usability, 65–73
Design4Mobile, 68
detecting

context, 323–326
features, 225, 331
installed applications, 148
mobile devices, 317
platforms, 229, 325

DetectRight, 342
device libraries, 330–341
DeviceAnywhere, 439–442
DeviceAtlas, 338
different version approach, 64
direct browsers, 43
direct linking, 346
distribution (see marketing)
div tag, 130
DMTF tones, 140
DoCoMo, 20, 50, 88, 170, 188
DOCTYPE (Document Type Declaration), 98,

105, 107, 108
document downloads, 149
Document Type Definition (DTD), 98
DOM (document object model), 220, 241–

246
domains, 93
dotMobi, 57
double tap events, 250
Dragonfly (Opera), 450
Dreamweaver (Adobe), 75, 99
DTD (Document Type Definition), 98
dynamic header declarations, 345

E
ebook readers, 9
80/20 law, 61
email, sending, 143
embedded multimedia, 358
Emoji pictograms, 135
emulators/simulators, 75–92
error management, 93
ESMP (ECMAScript Mobile Profile), 219
Even Faster Websites (Souders), 452
event handling, 247–259
Expansion Pictograms, 135
extensions, 170–177

F
Facebook, 57, 94, 469
favicon.ico files, 122, 124
feature detection, JavaScript, 225
“fidelizing” users, 464–466
fieldset tags, 153
file upload, 158
fill, text, 211
Fire Mobile Simulator, 89
Firebug Lite, 451
Firefox, 50, 52, 443, 448
firewalls, 11, 361
Flash (Adobe), 171
Flash Lite (Adobe), 19, 90, 356
Flash Video, 358
Flex for Mobile (Adobe), 173
Fling, Brian, 68
flip (swipe gesture), 259–264
floating bar, 297
floating/absolute positions, 197
Flowella, Nokia, 70
focus, 40, 200, 234
fonts, 188–191
forms

design of, 152
file upload, 158
HTML 5 input types, 303
option groups, 155
radio buttons and checkboxes, 157
select lists, 153–155
text input, 159–166

frames, 169
fully connected devices, 5

480 | Index

http://

G
Garnet OS, 29, 49
Gartner 2012 market predictions, 35
General Packet Radio Service (GPRS), 55
geolocation and maps

asking the user, 373
BlackBerry location API, 382
client techniques, 370
defined, 15
Google Gears, 379–382
Google Maps Static API, 390–391
GSMA OneAPI, 383
IP geolocation, 372, 386–387
open source geolocation API, 384
overview, 369
server techniques, 371–373
showing a map, 387–391
table of API support, 375
W3C Geolocation API, 375–379

gestures, 259–265
GetJar.com, 33
Global Positioning System (GPS), 370
Glyphish, 69
go to top navigation, 130
Google

AdSense, 468
Analytics, 467
and Android, 26
Checkout, 352
ClientLocation object, 386
Closure Compiler, 454
Earth/Maps, 149
Gears, 308, 313, 379
Maps, 58
Maps API v3, 388
Maps Static API, 390–391
meta tags, 125
Mobile Sitemaps, 458
Web Storage Portability Layer, 314

Gordon, 173
GPRS (General Packet Radio Service), 55
GPS (Global Positioning System), 370
gradients, 276
graphics (see images)
Guarana UI (Symbian), 291

H
HandSpring, 28

HDML (Handheld Device Markup Language),
95

headers, how to read, 323
Hewitt, Joe, 292
hibernation, 238
hidden fields, 157
High Performance Websites (Souders), 452
high-end mobile devices, 7, 12, 65
history management, 231
hotspots, locating users via, 372
hover, 201, 254
HP, 29
href attribute, 139, 231
HTC, 26
HTML

features, 359
HTML DOCTYPE, 104
HTML MIME type, 104

history, 95
tags available in XHTML MP/Basic, 109
version 5 API, 221
version 5 features, 301–315

.html extension, 104
HTTP (HyperText Transfer Protocol)

compression, 454
Live Streaming, 360
overview, 317–323
Redirect, 93
request headers for geolocation, 371

HTTPS connections, 93
HVGA (Half VGA), 12

I
i-Mode format, 140
i-mode HTML simulator, 88
i-mode XHTML, 170
iCalendar, 147
icons

background operation, 66
for iOS, 123
for the mobile web, 122
free, 69
Java ME, 355

iDen networks, 142
iEmoji, 135
iframes, 169
IIS (Internet Information Server), Microsoft,

344
images, 131–138

Index | 481

http://

border, 212–216
formats, 123, 132
inline, 132, 210
maps, 210
masked, 278
preloading, 244
with canvas, 304
with SVG, 174

img tag, 131, 137
indoor geolocation, 369, 372
innerHTML property, 244
input masks, 162
input methods, 14
intents, 148
Internet Explorer Mobile, 46, 125, 182
Internet Information Server, Microsoft (IIS),

344
iOS (see Apple)
IP address, 324, 372, 386–387
iPad/iPod/iPhone (see Apple)
iScroll, 198

J
Japanese mobile web, 50
Java ME, 19, 353–356
JavaScript

battery consumption using, 232, 235
code execution, 223
code visible to user, 224
compatibility, 222, 225–228
compression, 454
cookie management, 240
debugging scripts, 450
deferred evaluation, 456
document.write function, 228
DOM and, 241–246
event handling, 247–259
focus and scroll management, 234
history and URL management, 231
key events, 256–259
libraries, 272–275, 289–294
manipulating windows, 232
platform detection, 229
regular expressions, 239
scripting styles, 246
supported technologies, 220
timers, 235–239
touch gestures, 259–265
UI patterns, 295–301

waking up, 238
JavaScript Object Notation (JSON), 221, 269,

270, 314
JavaScript: The Good Parts (Crockford), 397
JIL (Joint Innovation Lab), 429
Jo, 418
join images, 210
Joomla!, 368
jQTouch, 293
JScript, 219
JSON (JavaScript Object Notation), 221, 269,

270, 314

K
Kamppi shopping center, 372
key events, 256–259
key/value storage, 311
keypads, types of, 14
Kindle (Amazon), 9

L
Lab.Dev (Samsung), 438
label tag, 152
language, user, 108, 372, 381, 416
Lawnchair, 314
lazy loading, 270
LBS (location-based services), 369, 391
legend tags, 153
LG Mobile, 9, 25, 426
limited connected devices, 5
LiMo SDK, 399
line breaks
, 98, 109
links

document downloads, 149
Integrating with other applications, 147
navigation lists, 140
opening new window, 139
sending email, 143
to phone features, 140
updating phonebook, 145

Linux, 82
lists, 138, 204
Lleida, 461
loading/unloading events, 248
local pictograms, 135
location-based services (LBS), 369, 391
long-press actions, 73
low-end mobile devices, 6

482 | Index

http://

design, 68
features, 65
screen resolution, 12

M
Mac OS X, 82
Maemo/MeeGo (Nokia), 22, 50, 82
mailto: protocol, 143
manifest file, 308
manufacturer extensions to standards, 104
Maps API v3 (Google), 388
marketing

advertising, 468
facilitating discoverability, 459–466
gathering statistics, 466
SEO (search engine optimization), 457–

459
social features, 469

markup
compatible templates, 111
delivering, 104–109
heading structure, 121–128
mobile-specific additions, 112

marquees, 116–118
masked images, 278
Massive Operator Identification Platform, 324
matrix codes, 463
media filtering, CSS, 180–183
media queries, 181
MeeGo for netbooks, 82
meta tags, 124–128
MIB (Motorola Mobile Internet Browser), 48
MicroB (Maemo browser), 50
mid-end mobile devices, 7

design, 68
features, 65
screen resolution, 12

MIME types, 100, 105–109, 343–345, 473–
475

Mini Map Browser, 48
mirror effects, 277
MMS (Multimedia Messaging Service), 15,

145
MOAPS, 20
Mob4Hire, 435
.mobi domains, 93
mobile browsing

current coding standards, 102
mobile web eras, 54–60

on different devices, 39–43
Mobile Controls, 364
Mobile Design and Development (Fling), 68
Mobile Device Browser File, 340
mobile device categories, 6
mobile ecosystem, 4
mobile libraries, 273
mobile phones, 6
Mobile Safari (see Safari on iOS)
Mobile Sitemaps (Google), 458
Mobile Tiny URL, 100, 462
Mobile Web 2.0, 56
Mobile WordPress plug-in, 368
mobileOK Checker, 445
mobileOK Pythia, 365
MobiOne emulator, 83
Moore, Andy, 326
Motally web analytics, 467
Motorola, 24, 48, 78
Movila DetectFree, 342
Mozilla Foundation, 52
MP3 players, 20
Multimedia Messaging Service (MMS), 15,

145
multipage experience, 43
multiple cards design pattern, 99
multiple standards, managing, 104
multitouch, 41
Myriad browser, 45, 431
myths of the mobile web, 1–4

N
navigation

architecture, 61
changing the method, 128
link menus, 130

.NET Compact Framework, 27
netbooks, 10
NetFront browser, 45, 431
network requests, reducing, 453
Newton (Apple), 30
Nicolaou, Alex, 393
Nielsen, Jakob, 160
Nokia, 18

Booklet 3G, 11
emulators, 80
Flowella, 70
indoor location implementation trial, 372
Maemo/MeeGo, 22, 50, 82

Index | 483

http://

markup/CSS templates, 186
Platform Services 2.0, 402
Series 40, 19, 47
Series 60, 20, 48
Symbian mobile widgets platform, 403–

413
non-mobile future web standards, 104
non-mobile web standards, 103
non-phone mobile devices, 9
Nook (Barnes & Noble), 9
notebooks, 10
Novarra Inc., 329

O
Obigo browser, 48, 431
object tag, 137, 358
ODP (On-Device Portals), 58
official noncompatible features, 111
official UI guidelines, 73
offline operation, 308–311
offline webapps (see widgets, mobile)
ol tag, 140
OMA (Open Mobile Alliance), 102, 107, 110,

347–350
On-Device Portals (ODP), 58
OneAPI (GSM Association), 352, 372
online simulators, 91
opacity, 203
Open Handset Alliance, 26
Open Mobile Alliance (OMA), 102, 107, 110,

347–350
OpenCellID, 371
Openwave, 45, 51, 89, 137
Opera

Dragonfly, 450
Mini, 51, 188, 324
Mobile, 51, 89
widgets, 430

Operator Identification Platform, Massive,
324

opt-out requests, 318
optimization, 451–456
option groups, 155
ordered list (ol tag), 138
orientation change events, 254
orientation media query, 182
outline property, CSS, 187
overflow, 202

P
Palm, 28, 49, 83, 418
Palm webOS (Allen), 29
Panorama UI, 72
parameters, passing, 148
Passani, Luca, 121, 130, 326, 330, 362
password text input, 160
PastryKit, 417
PayPal Mobile Checkout, 352
Perfecto Mobile, 442
performance optimization, 451–456
perspective, 3D, 285
phone features, links to, 140
phone number international format, 141
phonebook, 145
PhoneGap, 401, 417, 421
PHP base64 conversion, 133
.php extension, 104
phpBB, 368
pictograms, 135
PIE (Pocket Internet Explorer), 46
Pion analytics, 468
placeholders, 160
platform extensions, JavaScript, 222
platforms, 16–31
plug-ins and extensions, 170–177
POI (Point of Interest), 370
politics of mobile web, 102
portability, 12
preinstalled browsers, 45–51
production environment, 92
progressive enhancement, 63
properties, changing, 243
proxied browsers, 43, 372
pseudoclasses, 200

Q
QR codes, 463
Qualcomm Plaza, 431
QVGA (Quarter VGA), 12
QWERTY keyboard, 14, 153, 159, 164, 256

R
radio buttons, 157
RDA (Remote Device Access), 436
ready.mobi, 447
Real Time Streaming Protocol (RTSP), 359
reference movies, 359

484 | Index

http://

reflection effects, 277
reflow engines, 42
refresh metatag, 129
regular expressions, 239
Remote Device Access (RDA), 436
remote labs, 436
request header, HTTP, 319
resolution, screen, 12
retina display, 13
RIA (Rich Internet Applications), 288–301
rich clients, 58
RIM (Research in Motion), 22
Rohrl, Cathy, 97
rotate gesture, 264–265
rotation capabilities, 13
rounded corners, 199
RTSP (Real Time Streaming Protocol), 359

S
Safari on iOS, 47

CSS functions available, 275
debugging console, 449
extensions, 164, 217
form extensions, 164
icons, 123
iOS URL schemes, 147
multitouch support, 251
phone number/email detect, 142
zooming action, 196

Samsung, 23
Lab.Dev, 438
WebKit browser, 50
widgets platform, 427

Scalable Inman Flash Replacement (sIFR), 189
Schneider, Tobias, 173
screen design patterns, 68
screen size vs. resolution, 12
scripting styles, 246
scroll management, 234, 254
SDK (software development kit), 76
select tag, 153
selectors, CSS, 183, 242, 274
self-closed tags, 98
sending email, 143
SEO (search engine optimization), 457–459
shadows, text, 192
Share services, 470
Short Message Service (SMS), 144
sIFR (Scalable Inman Flash Replacement), 189

Silverlight, Microsoft, 174
simulators, 76, 85–92
size

font, 190
screen, 12
window, 230, 254

SkyFire, 53
Skyhook Wireless, 371
Small Personal Object Technology (SPOTs), 9
smart zoom, 41
Smartphone Simulators, BlackBerry, 85
smartphones, 8, 12, 36, 65
SMS (Short Message Service), 144, 460
Softbank, 50
Sony ebook readers, 9
Sony Ericsson, 24, 47
Souders, Steve, 452
spiders, 458
SPOTs (Small Personal Object Technology), 9
Sprint, 349
SQL database, 312
Standard Vector Graphics (SVG), 174–177
statistics, 94

market, 32–37
top mobile websites, 107

streaming audio/video, 359
stroke and fill, 211
subdomains, 93
Sun VirtualBox, 83
SVG (Standard Vector Graphics), 174–177
swipe gesture (flip), 259–264
Symbian

browser, 48
Foundation, 20, 30, 148
Guarana UI, 291

T
tables, 166
tablets, 10
testing and debugging

client-side, 448–451
markup checkers, 445–448
remote labs, 435–443
server-side, 443–445

Thomas, Neil, 238
301 HTTP Redirect, 93
timers/hibernation, 235–239
titles, 122, 200, 239
touch design patterns, 70

Index | 485

http://

touch devices, 9, 12
Touch Gesture Reference Guide (Wroblewski),

70
touch navigation, 41
touch/multitouch events, 251
transcoders, 129, 320, 326–330
transformations, 284–288
transition animations, 279–281
TransPythia, 365
Treo devices, 29
Twidroid pop-ups, 149
Twitter, 148, 470

U
UAProf (User Agent Profile), 322
UC Browser, 52
UI, 289–301, 417
UIQ, 20
Unicode, 135
unordered list (ul tag), 138
Unwired Planet, 95
URL management, 231
URLs to online resources/documentation

Andy Moore mobile browser detectors,
326

author blog, 100
base64 converters, 133
BlackBerry offline form submission, 152
BlackBerry simulators, 85
Carson McDonald open source project,

361
coding guidelines/best practices, 121
design resources, 68
emulator downloads, 77
fixed positioning issue, 198
Google map API documentation, 391
history of user-agent string, 319
HTML 5 standard, 301
iOS URL schemes, 148
Jakob Nielsen blog, 160
Luca Passani on transcoder reformatting,

130
Luke Wroblewski blog, 36
major developer sites, 31
Manifesto for Responsible Reformatting,

328
market statistics, 37
mobile CSS compatibility, 192
Mobile Firefox (Fennec) alpha releases, 52

mobile-specific User-Agent headers, 325
multipart document delivery, 326
Novarra’s Guidelines for Web Content

Transformation, 329
official UI guidelines, 73
partial downloads, 358
performance blogs, 452
pictograms, 135
placeholder/autofocus library, 162
PPI/DPI calculator, 13
Readability bookmarklet, 224
sIFR, 189
SMS gateway providers, 461
testing suite for this book, 100
tools for MMS templates, 348
W3C on Content Transformation

Landscape, 130
W3C on mobile webapps, 393, 398
W3C online mobile validator, 109
W3C Web Compatibility Test, 315

use cases, defining, 61
User Agent Profile (UAProf), 322
User Agent Switcher, 443
user agent, HTTP, 319
user-installable browsers, 51–53
USRobotics, 28

V
validation, text input, 161–163
VBScript, 220
vCard files, 146
video calls, 142
viewports, 125–128
visibility property, 204
Visual Studio, 87

W
W3C

on Content Transformation Landscape,
130

Geolocation API, 375–379
on mobile web apps, 393, 398
mobile web standards, 103
mobileOK Checker, 445
online mobile validator, 109
Web Compatibility Test, 315

waking up, 238

486 | Index

http://

WALL (Wireless Abstraction Library by Luca),
362

WAP (Wireless Application Protocol), 54–58,
100, 219, 322

WAP Push, 460
watchphones, 9
WBMP (Wireless Bitmap) format, 100
WCSS extensions, 114–119
Weather Channel, WML usage of, 97
Web Compatibility Test, 315
web hosting, 93
Web Storage Portability Layer, 314
Web Workers, 311
webapp, 288–301
WebClip icons, 123
WebKit, 22, 44, 48, 211–218, 275–288
webOS browser, 49
website architecture, 61–65
whitelists, 322, 329
widgets, mobile

Android platform, 420
architecture, 395–398
BlackBerry platform, 424–426
debugging, 450
definitions of, 394
design patterns, 431–433
geolocation support APIs, 383
iPhone/iPod/iPad platform, 413–418
JIL platform, 429
LG Mobile platform, 426
packaging and configuration standards,

398
platform access, 399–403
pros and cons of, 394
Samsung platform, 427
Symbian/Nokia platform, 403–413
webOS platform, 418
Windows Mobile 6.5 platform, 422–424

WiFi Positioning System (WPS), 371
Windows Mobile, 27, 87, 422–424
Windows Phone, 27, 88
Wireless Abstraction Library by Luca (WALL),

362
Wireless Telephony Application Interface

(WTAI), 140, 142, 145
Wireless Universal Resource File (WURFL),

326, 330–338
WML, 96–101, 219
WNG (WALL Next Generation), 362

WordPress, 367
WPS (WiFi Positioning System), 371
Wroblewski, Luke, 36, 70
WRT widget engine, 403
WTAI (Wireless Telephony Application

Interface), 140, 142, 145
WURFL Wireless Universal Resource File, 326,

330–338

X
XHTML

and HTML 5, 301
basic coding, 130
i-mode, 170
markup debugging, 445
Mobile Profile and Basic, 106, 109–111,

130
XML parsing, 268
XMLHttpRequest, 221
XUI, 274

Y
Yahoo!

Blueprint, 365
GeoPlanet, 373
Go, 58
PlaceMaker, 373
Web Analytics, 467

Z
z-index, 198
Zeep Mobile, 461
zoom and rotate gesture, 264–265
zoom experience, 41

Index | 487

http://

http://

About the Author
Maximiliano Firtman is a developer focused on mobile and Web 2.0 development.
He is a professor of web and mobile technologies, and founder of ITMaster Professional
Training. He is the author of many books in Spanish, including books on Java ME,
ASP.NET, Ajax, and iPhone development.

He has been a Forum Nokia Champion since 2006, and has developed many mobile
projects, including MobileTinyURL.com and widgen, a mobile widget generator. He
has also created http://www.mobilexweb.com/, a blog for mobile web developers.

Maximiliano has spoken at conferences in Spanish and English (including
InsideMobile, Mobile Monday, Nokia Developers Day, and Velocity) and has pub-
lished dozens of articles in magazines and blogs.

He is an expert in Ajax, Java for Mobile, Widgets for Mobile, and Android and iPhone
development. He is also founder and manager of ARFUG, an official Adobe User Group
covering many web 2.0 technologies.

His personal homepage is http://www.firt.mobi/ and his personal Twitter account is
@firt.

Colophon
The animal on the cover of Programming the Mobile Web is a jerboa, a small jumping
rodent of the family Dipodidae. The 33 species of jerboa are found in deserts of Asia
and North Africa. They feed on the leaves and roots of desert plants; many species also
eat insects. They extract water from their food so efficiently that they do not need to
drink.

Jerboas’ powerful hind legs may be four times longer than their front legs and enable
them to hop up to three meters. Their tails, which are often tufted, are longer than their
bodies and are used for balance. Their ears vary from species to species—they may be
small and mouselike or broad and rabbitlike.

Jerboas are well adapted to their harsh desert environments. They are nocturnal and
hide in burrows, which they may plug for protection against the elements, during the
day. Some jerboas living in hot regions enter a state of torpor (estivation) during the
hottest months; jerboas living in cold regions hibernate during the winters.

The cover image is from Riverside. The cover font is Adobe ITC Garamond. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font
is LucasFont’s TheSansMonoCondensed.

http://www.mobilexweb.com/
http://www.firt.mobi/
http://twitter.com/@firt
http://

http://

	Table of Contents
	Preface
	Who This Book Is For
	Who This Book Is Not For
	What You’ll Learn
	Other Options
	If You Like (or Don’t Like) This Book
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Acknowledgments

	Chapter 1. The Mobile Jungle
	Myths of the Mobile Web
	It’s Not the Mobile Web; It’s Just the Web!
	You Don’t Need to Do Anything Special About Your Desktop Website
	One Website Should Work for All Devices (Desktop, Mobile, TV, etc.)
	Mobile Web Is Really Easy; Just Create a WML File
	Just Create an HTML File with a Width of 240 Pixels, and You Have a Mobile Website
	Native Mobile Applications Will Kill the Mobile Web
	People Are Not Using Their Mobile Browsers

	The Mobile Ecosystem
	What Is a Mobile Device?
	Portable
	Personal
	Companion
	Easy usage
	Connected device

	Mobile Device Categories
	Mobile phones
	Low-end mobile devices
	Mid-end mobile devices
	High-end mobile devices
	Smartphones
	Non-phone devices
	Small Personal Object Technology (SPOTs)
	Tablets, netbooks, and notebooks

	Mobile Knowledge
	Display
	Resolution
	Physical dimensions
	Aspect ratio
	Input methods
	Other features

	Brands, Models, and Platforms
	Apple
	Nokia
	Series 40
	S60
	Maemo/MeeGo

	BlackBerry
	Samsung
	Sony Ericsson
	Motorola
	LG Mobile
	HTC
	Android
	Windows Mobile
	Palm
	Symbian Foundation
	Other Platforms

	Technical Information
	Market Statistics

	Chapter 2. Mobile Browsing
	The Mobile Browsing Experience
	Browsing Types
	Zoom Experience
	Reflow Engines
	Direct Versus Proxied Browsers
	Multipage Experience
	The WebKit Engine
	Preinstalled Browsers
	NetFront
	Myriad
	Internet Explorer
	Safari on iOS
	Nokia Series 40 browser
	Sony Ericsson browsers
	Obigo browser
	Motorola Mobile Internet Browser (MIB)
	Symbian browser
	Android browser
	webOS browser
	BlackBerry browser
	Samsung WebKit browser
	MicroB (Maemo browser)

	User-Installable Browsers
	Opera Mobile
	Opera Mini
	Firefox for mobile
	UC Browser
	SkyFire
	Bolt
	Chromium

	Browser Overview

	Mobile Web Eras
	WAP 1
	WAP 2.0
	The dotMobi era
	On-Device Portals and rich clients

	Mobile Web 2.0

	Chapter 3. Architecture and Design
	Website Architecture
	Navigation
	Context
	Progressive Enhancement
	Different Version Approach

	Design and Usability
	Touch Design Patterns
	Official UI Guidelines

	Chapter 4. Setting Up Your Environment
	Setting Up a Development Environment
	Working with Code
	Emulators and Simulators
	Android emulator
	Nokia emulators
	iPhone simulator
	Palm emulator
	BlackBerry simulators
	Windows Mobile emulators
	Windows Phone emulator
	i-mode HTML simulator
	Opera Mobile emulator
	Openwave simulator
	Adobe Device Central
	Comparison
	Online simulators
	Opera Mini Simulator
	ready.mobi

	Production Environment
	Web Hosting
	Domain
	Error Management
	Statistics

	Chapter 5. Markups and Standards
	First, the Old Ones
	WML
	WML was not alone
	Serving WML

	Current Standards
	Politics of the Mobile Web
	Managing multiple standards

	Delivering Markup
	Top mobile websites
	Charset encoding
	Conclusion about MIME types and DOCTYPEs

	XHTML Mobile Profile and Basic
	Available Tags
	Official Noncompatible Features
	Creating Our First Compatible Template
	Markup Additions

	CSS for Mobile
	WCSS Extensions
	Access key
	Marquee
	CSS form extensions

	Confusion

	Chapter 6. Coding Markup
	Heading Structure
	Icons for the Mobile Web
	Hey! I’m Mobile Friendly
	Defining the viewport
	Viewport compatibility

	Changing the navigation method

	The Document Body
	Main Structure
	Go to top

	Images
	Tag usage
	Formats
	Inline images
	Local pictograms
	Using images effectively

	Lists
	Links
	New windows
	Navigation lists
	Linking to phone features
	Making a call
	Sending email
	Sending an SMS
	Adding a contact to the phonebook

	Integrating with other applications
	iOS URL schemes
	Symbian local applications
	Android intents

	Document download

	Forms
	Form design
	Select lists
	Option groups
	Select list compatibility

	Radio buttons and checkboxes
	Buttons
	Hidden fields
	File upload
	Text input
	Placeholder
	Text input validation
	Safari extensions
	BlackBerry extensions

	Tables
	Frames

	Plug-ins and Extensions
	Adobe Flash
	Flash on the iPhone? Yes, you can!

	Microsoft Silverlight
	SVG
	Tools for SVGT
	SVG for beginners
	Embedding the SVG

	Canvas

	Chapter 7. CSS for Mobile Browsers
	Where to Insert the CSS
	Media Filtering
	Desktop websites
	Media queries

	Selectors
	CSS Techniques
	Reset CSS Files
	Box Model
	Text Format
	Font family
	Custom fonts

	Font size
	Text alignment
	Other standard text styles
	Text shadows
	Text overflow
	iPhone text adjustment

	Common Patterns
	Display Properties
	Absolute and floating positions
	Rounded corners
	Titles
	Pseudoclasses
	Backgrounds
	Overflow
	Content
	Opacity
	List design
	Visibility
	Cursor management

	CSS Sprites
	Samples and Compatibility
	CSS Sprites Alternatives
	Inline images
	Join images
	Box borders

	WebKit Extensions
	Text Stroke and Fill
	Border Image
	Safari-Only Extensions

	Chapter 8. JavaScript Mobile
	Supported Technologies
	Document Object Model
	Ajax
	JSON
	HTML 5 APIs
	Platform Extensions

	Coding JavaScript for Mobile Browsers
	Code Execution
	JavaScript Mobile Compatibility
	Feature detection
	Standard dialogs
	Writing to the document
	Platform detection
	Window size
	History and URL management
	Manipulating windows
	Focus and scroll management
	Timers
	Waking up
	Changing the title
	Regular expressions
	Cookie management

	DOM
	Versions
	Browsing
	Query selectors
	Changing properties
	Changing content
	Preloading images
	Adding and removing elements

	Scripting Styles
	Changing styles
	Showing and hiding styles

	Event Handling
	Managing events
	Load and unload events
	Click events
	Double tap
	Touch and multitouch events

	Focusable and form events
	Over events
	Resizing, scrolling, and orientation change events
	Key events
	Useful keys for some devices

	Preventing default behavior

	Touch Gestures
	Swipe gesture
	Zoom and rotate gestures

	Chapter 9. Ajax, RIA, and HTML 5
	Ajax Support
	XML Parsing
	JSON Parsing
	JSONP and Lazy Loading
	Comet Techniques

	JavaScript Libraries
	Mobile Libraries
	baseJS
	XUI

	WebKit CSS Extensions
	WebKit Functions
	Gradients
	Reflection Effects
	Masked Images
	Transitions
	Animation properties
	Transition ending

	Animations
	Keyframe at-rule
	Animation events

	Transformations
	Perspective
	Transform style
	Backface visibility
	The CardFlip pattern

	Mobile Rich Internet Applications
	JavaScript UI Libraries
	Mobile-specific UI libraries
	iUI
	jQTouch

	JavaScript Mobile UI Patterns
	Clear text box button
	Autogrowing textarea
	Floating bar
	Cascading menu
	Autocomplete

	HTML 5
	The Standard
	Editable Content
	New Input Types
	Data Lists
	The canvas Element
	The context
	Lines and strokes
	Drawing methods
	Advanced features
	Canvas compatibility

	Offline Operation
	The manifest file
	Cache detection
	Cache events

	Client Storage
	Key/value storage
	SQL database
	Gears storage

	Client JSON store

	Chapter 10. Server-Side Browser Detection and
 Content Delivery
	Mobile Detection
	HTTP
	The request
	The request header
	The user agent
	What we can identify
	The User Agent Profile

	Detecting the Context
	How to read a header
	How to read the IP address
	Opera Mini
	Mobile detection

	Transcoders
	What is a transcoder?
	Why are transcoders a problem?
	Parties involved in the transcoding problem
	What was the response from carriers after receiving complaints?
	Practical tips
	Operator whitelists
	Making content transformation a standard
	Transcoder detection
	What to do after detection

	Device Libraries
	WURFL
	Architecture
	Patch file
	Capabilities

	WURFL usage
	PHP API installation
	Using the PHP API

	DeviceAtlas
	WURFL-related products
	Installation
	Properties

	The ASP.NET Mobile Device Browser File
	PHP API
	Capabilities

	Service-based solutions
	Movila DetectFree
	DetectRight

	Content Delivery
	Defining MIME Types
	Static definition
	Apache
	Internet Information Server

	Dynamic definition

	File Delivery
	Direct linking
	Delayed linking
	OMA Download
	Download descriptor
	Post-download status report

	Application and Games Delivery
	Java ME
	Serving JAD files
	Custom properties
	Icon definition

	Java ME for BlackBerry

	Flash Lite Content
	iPhone Applications

	Multimedia and Streaming
	Delivering Multimedia Content
	Embedding Audio and Video
	Flash Video
	Object embedding
	HTML 5
	Reference movies for iPhone

	Streaming
	HTTP Live Streaming

	Content Adaptation
	Adaptation Frameworks
	WALL Next Generation

	Microsoft ASP.NET Mobile Controls
	mobileOK Pythia
	Yahoo! Blueprint

	Mobilizing WordPress and Other CMSs
	WordPress
	Joomla!
	phpBB

	Chapter 11. Geolocation and Maps
	Location Techniques
	Accuracy
	Indoor Location
	Client Techniques
	GPS
	A-GPS
	Cell information
	WiFi Positioning System

	Server Techniques
	IP address
	Carrier connection
	Language
	Indoor location

	Asking the User

	Detecting the Location
	W3C Geolocation API
	Getting the position
	Handling error messages
	Tracking the location
	Detecting API availability
	Defining optional attributes

	Google Gears
	Getting the position
	Obtaining permission
	Customizing location preferences
	Reading the address
	Handling errors
	Tracking the location

	BlackBerry Location API
	Widget APIs
	GSMA OneAPI
	Multiplatform Geolocation API
	Simulating movement

	IP Geolocation
	Reading the IP address
	Google’s ClientLocation object

	Showing a Map
	Google Maps API v3
	Google Maps Static API
	Following LBS

	Chapter 12. Widgets and Offline Webapps
	Mobile Widget Platforms
	Pros and Cons
	Architecture
	Meta configuration
	Platform access
	Data storage
	Network access
	Logic
	User interface
	Package
	Distribution

	Standards
	Packaging and Configuration Standards
	Platform Access
	BONDI
	PhoneGap
	Nokia Platform Services 2.0
	Apple Dashboard

	Platforms
	Symbian/Nokia
	Package
	Features
	JavaScript API
	MiniView
	Tools and libraries
	The APIBridge runtime
	Widget distribution

	iPhone, iPod, and iPad
	Webapp creation
	Full-screen metatags
	Distribution

	PhoneGap projects

	webOS
	Distribution
	HTML 5 applications

	Android
	HTML 5 webapp
	PhoneGap solution
	Distribution

	Windows Mobile
	Widgets
	Distribution

	Hybrid solutions

	BlackBerry
	Widget API
	Configuration file
	Distribution
	PhoneGap

	LG Mobile
	Distribution

	Samsung Mobile
	Distribution

	JIL
	Opera Widgets
	Distribution

	Operator-Based Widget Platforms

	Widget Design Patterns
	Multiple Views
	Layout
	Input Method
	One-View Widget
	Dynamic Application Engine
	Multiplatform Widgets

	Chapter 13. Testing, Debugging, and Performance
	Testing and Debugging
	Remote Labs
	Remote Device Access
	Samsung Lab.Dev
	DeviceAnywhere
	Usage for mobile web testing

	Perfecto Mobile
	Testing automation

	Server-Side Debugging
	Markup Debugging
	W3C mobileOK Checker
	ready.mobi
	Firefox plug-ins

	Client-Side Debugging
	Browser-based solutions
	Safari on iOS Debug Console

	JavaScript solutions
	Opera Dragonfly
	Android Debug Bridge
	BlackBerry web development tools
	Widget debuggers

	Performance Optimization
	Measurement
	Best Practices
	Reducing requests
	Compressing
	HTTP compression
	Other tips
	JavaScript performance

	Chapter 14. Distribution and Social Web 2.0
	Mobile SEO
	Spiders and Discoverability
	Mobile Sitemaps

	How Users Find You
	SMS invitation
	Email invitation
	Mobile Tiny URL
	QR codes

	User Fidelizing
	Web shortcuts
	RSS
	Open Search
	BlackBerry Web Signals

	Mobile Web Statistics
	Google Analytics for Mobile
	Yahoo! Web Analytics
	Mobilytics
	Motally Web Analytics
	Pion for Mobile Web

	Mobile Web Advertising
	Monetizing Your Website
	Google AdSense for mobile content

	AdMob
	Other Companies

	Mobile Web Social Features
	Facebook
	Share Content

	Appendix. MIME Types for Mobile Content
	Markup and Script MIME Types
	Image MIME Types
	Mobile Content MIME Types
	Audio and Video MIME Types
	Widget and Webapp MIME Types

	Index

