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Preface

In This Book
This book will guide you from being a user of R packages to being a creator of R
packages. In Chapter 1, Introduction, you’ll learn why mastering this skill is so
important, and why it’s easier than you think. Next, you’ll learn about the basic struc‐
ture of a package, and the forms it can take, in Chapter 2, Package Structure. The sub‐
sequent chapters go into more detail about each component. They’re roughly
organized in order of importance:

Chapter 3, R code
The most important directory is R/, where your R code lives. A package with just
this directory is still a useful package. (And indeed, if you stop reading the book
after this chapter, you’ll have still learned some useful new skills.)

Chapter 4, Package Metadata
The DESCRIPTION lets you describe what your package needs to work. If you’re
sharing your package, you’ll also use the DESCRIPTION to describe what it does,
who can use it (the license), and who to contact if things go wrong.

Chapter 5, Object Documentation
If you want other people (including “future you”!) to understand how to use the
functions in your package, you’ll need to document them. I’ll show you how to
use roxygen2 to document your functions. I recommend roxygen2 because it lets
you write code and documentation together while continuing to produce R’s
standard documentation format.

Chapter 6, Vignettes: Long-Form Documentation
Function documentation describes the nitpicky details of every function in your
package. Vignettes give the big picture. They’re long-form documents that show
how to combine multiple parts of your package to solve real problems. I’ll show

ix



you how to use Rmarkdown and knitr to create vignettes with a minimum of
fuss.

Chapter 7, Testing
To ensure your package works as designed (and continues to work as you make
changes), it’s essential to write unit tests that define correct behavior, and alert
you when functions break. In this chapter, I’ll teach you how to use the testthat
package to convert the informal interactive tests that you’re already doing to for‐
mal, automated tests.

Chapter 8, Namespace
To play nicely with others, your package needs to define what functions it makes
available to other packages and what functions it requires from other packages.
This is the job of the NAMESPACE file and I’ll show you how to use roxygen2 to
generate it for you. NAMESPACE is one of the more challenging parts of devel‐
oping an R package, but it’s critical to master if you want your package to work
reliably.

Chapter 9, External Data
The data/ directory allows you to include data with your package. You might do
this to bundle data in a way that’s easy for R users to access, or just to provide
compelling examples in your documentation.

Chapter 10, Compiled Code
R code is designed for human efficiency, not computer efficiency, so it’s useful to
have a tool in your back pocket that allows you to write fast code. The src/ direc‐
tory allows you to include speedy compiled C and C++ code to solve perfor‐
mance bottlenecks in your package.

Chapter 11, Installed Files
You can include arbitrary extra files in the inst/ directory. This is most commonly
used for extra information about how to cite your package, and to provide more
details about copyrights and licenses.

Chapter 12, Other Components
This chapter documents the handful of other components that are rarely needed:
demo/, exec/, po/, and tools/.

The final three chapters describe general best practices not specifically tied to one
directory:

Chapter 13, Git and GitHub
Mastering a version control system is vital for collaborating with others, and is
useful even for solo work because it allows you to easily undo mistakes. In this
chapter, you’ll learn how to use the popular Git and GitHub combo with RStudio.
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Chapter 14, Automated Checking
R provides useful automated quality checks in the form of R CMD check. Running
them regularly is a great way to avoid many common mistakes. The results can
sometimes be a bit cryptic, so I provide a comprehensive cheat sheet to help you
convert warnings to actionable insight.

Chapter 15, Releasing a Package
 The life cycle of a package culminates with release to the public. This chapter
compares the two main options (CRAN and GitHub) and offers general advice
on managing the process.

This is a lot to learn, but don’t feel overwhelmed. Start with a minimal subset of use‐
ful features (e.g., just an R/ directory!) and build up over time. To paraphrase the Zen
monk Shunryū Suzuki: “Each package is perfect the way it is—and it can use a little
improvement.”

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.
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This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://r-pkgs.had.co.nz/.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “R Packages by Hadley Wickham
(O’Reilly). Copyright 2015 Hadley Wickham, 978-1-491-91059-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers,
and business and creative professionals use Safari Books Online as their primary
resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
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McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/r-packages.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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PART I

Getting Started





CHAPTER 1

Introduction

In R, the fundamental unit of shareable code is the package. A package bundles
together code, data, documentation, and tests, and is easy to share with others. As of
January 2015, there were over 6,000 packages available on the Comprehensive R
Archive Network, or CRAN, the public clearing house for R packages. This huge vari‐
ety of packages is one of the reasons that R is so successful: chances are that someone
has already solved a problem that you’re working on, and you can benefit from their
work by downloading their package.

If you’re reading this book, you already know how to use packages:

• You install them from CRAN with install.packages("x").
• You use them in R with library(x).
• You get help on them with package?x and help(package = "x").

The goal of this book is to teach you how to develop packages so that you can write
your own, not just use other people’s. Why write a package? One compelling reason is
that you have code that you want to share with others. Bundling your code into a
package makes it easy for other people to use it, because like you, they already know
how to use packages. If your code is in a package, any R user can easily download it,
install it, and learn how to use it.

But packages are useful even if you never share your code. As Hilary Parker says in
her introduction to packages: “Seriously, it doesn’t have to be about sharing your code
(although that is an added benefit!). It is about saving yourself time.” Organizing code
in a package makes your life easier because packages come with conventions. For
example, you put R code in R/, you put tests in tests/, and you put data in data/. These
conventions are helpful because:
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They save you time
Instead of having to think about the best way to organize a project, you can just
follow a template.

Standardized conventions lead to standardized tools
If you buy into R’s package conventions, you get many tools for free.

It’s even possible to use packages to structure your data analyses, as Robert M. Flight
discusses in a series of blog posts.

Philosophy
This book espouses my philosophy of package development: anything that can be
automated should be automated. Do as little as possible by hand. Do as much as pos‐
sible with functions. The goal is to spend your time thinking about what you want
your package to do rather than thinking about the minutiae of package structure.

This philosophy is realized primarily through the devtools package, a suite of R func‐
tions that I wrote to automate common development tasks. The goal of devtools is to
make package development as painless as possible. It does this by encapsulating all of
the best practices of package development that I’ve learned over the years. Devtools
protects you from many potential mistakes, so you can focus on the problem you’re
interested in, not on developing a package.

Devtools works hand in hand with RStudio, which I believe is the best development
environment for most R users. The only real competitor is Emacs Speaks Statistics
(ESS), which is a rewarding environment if you’re willing to put in the time to learn
Emacs and customize it to your needs. The history of ESS stretches back over 20
years (predating R!), but it’s still actively developed and many of the workflows
described in this book are also available there.

Together, devtools and RStudio insulate you from the low-level details of how pack‐
ages are built. As you start to develop more packages, I highly recommend that you
learn more about those details. The best resource for the official details of package
development is always the official writing R extensions manual. However, this manual
can be hard to understand if you’re not already familiar with the basics of packages.
It’s also exhaustive, covering every possible package component, rather than focusing
on the most common and useful components, as this book does. Writing R exten‐
sions is a useful resource once you’ve mastered the basics and want to learn what’s
going on under the hood.
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Getting Started
To get started, make sure you have the latest version of R (at least 3.1.2, which is the
version that the code in this book uses), then run the following code to get the pack‐
ages you’ll need:

install.packages(c("devtools", "roxygen2", "testthat", "knitr"))

Make sure you have a recent version of RStudio. You can check that you have the
right version by running the following:

install.packages("rstudioapi")
rstudioapi::isAvailable("0.99.149")

If not, you may need to install the preview version. This gives you access to the latest
and greatest features, and only slightly increases your chances of finding a bug.

If you want to keep up with the bleeding edge of devtools development, you can use
the following code to access new functions as I develop them:

devtools::install_github("hadley/devtools")

You’ll need a C compiler and a few command-line tools. If you’re on Windows or
Mac and you don’t already have them, RStudio will install them for you. Otherwise:

• On Windows, download and install Rtools. Nnote: this is not an R package!
• On Mac, make sure you have either XCode (available for free in the App Store) or

the “Command-Line Tools for Xcode”. You’ll need to have a (free) Apple ID.
• On Linux, make sure you’ve installed not only R, but also the R development

tools. For example, on Ubuntu (and Debian) you need to install the Ubuntu r-
base-dev package.

You can check that you have everything installed by running the following code:

library(devtools)
has_devel()
#> '/Library/Frameworks/R.framework/Resources/bin/R' --vanilla CMD SHLIB foo.c 
#> 
#> clang -I/Library/Frameworks/R.framework/Resources/include -DNDEBUG 
#>   -I/usr/local/include -I/usr/local/include/freetype2 -I/opt/X11/include
#>   -fPIC  -Wall -mtune=core2 -g -O2  -c foo.c -o foo.o
#> clang -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup
#>   -single_module -multiply_defined suppress -L/usr/local/lib -o foo.so foo.o 
#>   -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework 
#>   -Wl,CoreFoundation
[1] TRUE

This will print out some code that I use to help diagnose problems. If everything is
OK, it will return TRUE. Otherwise, it will throw an error and you’ll need to investi‐
gate the problem.
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Conventions
Throughout this book I write foo() to refer to functions, bar to refer to variables and
function parameters, and baz/ to refer to paths. Larger code blocks intermingle input
and output. Output is commented so that if you have an electronic version of the
book (e.g., http://r-pkgs.had.co.nz), you can easily copy and paste examples into R.
Output comments look like #> to distinguish them from regular comments.

Colophon
This book was written in Rmarkdown inside RStudio. knitr and pandoc converted
the raw Rmarkdown to HTML and PDF. The website was made with jekyll, styled
with bootstrap, and published to Amazon’s S3 by travis-ci. The complete source is
available from GitHub. This version of the book was built with:

library(roxygen2)
library(testthat)
devtools::session_info()
#> Session info --------------------------------------------------------------
#>  setting  value                       
#>  version  R version 3.1.2 (2014-10-31)
#>  system   x86_64, linux-gnu           
#>  ui       X11                         
#>  language (EN)                        
#>  collate  en_US.UTF-8                 
#>  tz       <NA>
#> Packages ------------------------------------------------------------------
#>  package    * version    date       source                            
#>  bookdown     0.1        2015-02-12 Github (hadley/bookdown@fde0b07)  
#>  devtools   * 1.7.0.9000 2015-02-12 Github (hadley/devtools@9415a8a)  
#>  digest     * 0.6.8      2014-12-31 CRAN (R 3.1.2)                    
#>  evaluate   * 0.5.5      2014-04-29 CRAN (R 3.1.0)                    
#>  formatR    * 1.0        2014-08-25 CRAN (R 3.1.1)                    
#>  htmltools  * 0.2.6      2014-09-08 CRAN (R 3.1.2)                    
#>  knitr      * 1.9        2015-01-20 CRAN (R 3.1.2)                    
#>  Rcpp       * 0.11.4     2015-01-24 CRAN (R 3.1.2)                    
#>  rmarkdown    0.5.1      2015-02-12 Github (rstudio/rmarkdown@0f19584)
#>  roxygen2     4.1.0      2014-12-13 CRAN (R 3.1.2)                    
#>  rstudioapi * 0.2        2014-12-31 CRAN (R 3.1.2)                    
#>  stringr    * 0.6.2      2012-12-06 CRAN (R 3.0.0)                    
#>  testthat     0.9.1      2014-10-01 CRAN (R 3.1.1)
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CHAPTER 2

Package Structure

This chapter will start you on the road to package development by showing you how
to create your first package. You’ll also learn about the various states a package can be
in, including what happens when you install a package. Finally, you’ll learn about the
difference between a package and a library and why you should care.

Naming Your Package
“There are only two hard things in computer science: cache invalidation and naming
things.”
—Phil Karlton

Before you can create your first package, you need to come up with a name for it. I
think this is the hardest part of creating a package! (Not least because devtools can’t
automate it for you.)

Requirements for a Name
There are three formal requirements: the name can only consist of letters, numbers,
and periods (i.e., .); it must start with a letter; and it cannot end with a period.
Unfortunately, this means you can’t use either hyphens or underscores (i.e., - or _) in
your package name. I recommend against using periods in package names because it
has confusing connotations (i.e., file extension or S3 method).

Strategies for Creating a Name
If you’re planning on releasing your package, I think it’s worth spending a few
minutes to come up with a good name. Here are some recommendations for how to
go about it:
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• Choose a unique name that can easily be Googled. This makes it easy for poten‐
tial users to find your package (and associated resources) and for you to see who’s
using it. You can also check if a name is already used on CRAN by loading http://
cran.r-project.org/web/packages/[PACKAGE_NAME].

• Avoid using both upper- and lowercase letters: doing so makes the package name
hard to type and even harder to remember. For example, I can never remember if
it’s Rgtk2 or RGTK2 or RGtk2.

• Find a word that evokes the problem and modify it so that it’s unique:
— plyr is a generalization of the apply family, and evokes pliers.
— lubridate makes dates and times easier.
— knitr (knit + r) is “neater” than sweave (s + weave).
— testdat tests that data has the correct format.

• Use abbreviations:
— Rcpp = R + C++ (plus plus).
— lvplot = letter value plots.

• Add an extra R:
— stringr provides string tools.
— tourr implements grand tours (a visualization method).
— gistr lets you programmatically create and modify GitHub gists.

If you’re creating a package that talks to a commercial service, make sure you check
the branding guidelines to avoid problems down the line. For example, rDrop isn’t
called rDropbox because Dropbox prohibits any applications from using the full
trademarked name.

Creating a Package
Once you’ve decided on a name, there are two ways to create the package. You can
use RStudio:

1. Click File → New Project.
2. Choose New Directory, as shown in Figure 2-1.
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Figure 2-1. Creating a project from a new directory

3. Next, select R Package, which is the second option shown in Figure 2-2.

Figure 2-2. Creating a new R package

4. Finally, give your package a name and click Create Project (Figure 2-3).
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Figure 2-3. Naming the package and creating the project

Alternatively, you can create a new package from within R by running the following:

devtools::create("path/to/package/pkgname")

Whether you use RStudio or the command-line option, the result is the same—the
smallest usable package, one with three components:

1. An R/ directory, which you’ll learn about in Chapter 3
2. A basic DESCRIPTION file, which you’ll learn about in Chapter 4
3. A basic NAMESPACE file, which you’ll learn about in Chapter 8

The package will also include an RStudio project file, pkgname.Rproj, which makes
your package easy to use with RStudio, as described in the next section.

Don’t use package.skeleton() to create a package. Following that workflow requires
extra work because it creates extra files that you’ll need to delete or modify before you
can have a working package.

RStudio Projects
To get started with your new package in RStudio, double-click the pkgname.Rproj file
that we generated in the previous section using either RStudio’s graphical user inter‐
face (GUI) or the command-line option. This will open a new RStudio project for
your package. Projects are a great way to develop packages because:

• Each project is isolated; code run in one project does not affect any other project.
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• You get handy code navigation tools like F2 to jump to a function definition and
Ctrl-. to look up functions by name.

• You get useful keyboard shortcuts for common package development tasks.
You’ll learn about them throughout the book. But to see them all, press Alt-Shift-
K or use the Help → Keyboard shortcuts menu, shown in Figure 2-4.

Figure 2-4. Keyboard shortcuts menu

(If you want to learn more RStudio tips and tricks, follow @rstudiotips on Twitter.)

Both RStudio and devtools::create() will make an .Rproj file for you. If you have
an existing package that doesn’t include an .Rproj file, you can use dev

tools::use_rstudio("path/to/package") to add it. If you don’t use RStudio, you
can get many of the benefits by starting a new R session and ensuring the working
directory is set to the package directory.

What Is an RStudio Project File?
An .Rproj file is just a text file. The project file created by devtools looks like this:

Version: 1.0

RestoreWorkspace: No
SaveWorkspace: No
AlwaysSaveHistory: Default

EnableCodeIndexing: Yes
Encoding: UTF-8
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AutoAppendNewline: Yes
StripTrailingWhitespace: Yes

BuildType: Package
PackageUseDevtools: Yes
PackageInstallArgs: --no-multiarch --with-keep.source
PackageRoxygenize: rd,collate,namespace

You don’t need to modify this file by hand. Instead, use the friendly Project Options
dialog box, accessible from the Projects menu in the upper-right corner of RStudio
(see Figure 2-5 and Figure 2-6).

Figure 2-5. Accessing the Project Options dialog box
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Figure 2-6. The general pane of the project options window

What Is a Package?
To make your first package, all you need to know is what you’ve learned in the pre‐
ceding section. To master package development, particularly when you’re distributing
a package to others, it really helps to understand the five states a package can be in
across its life cycle: source, bundled, binary, installed, and in memory. Understanding
the differences between these states will help you form a better mental model of what
install.packages() and devtools::install_github() do, and will make it easier
to debug problems when they arise.

Source Packages
So far we’ve just worked with a source package: the development version of a package
that lives on your computer. A source package is just a directory with components
like R/, DESCRIPTION, and so on.
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Bundled Packages
A bundled package is a package that’s been compressed into a single file. By conven‐
tion (from Linux), package bundles in R use the extension .tar.gz. This means that
multiple files have been reduced to a single file (.tar) and then compressed using gzip
(.gz). While a bundle is not that useful on its own, it’s a useful intermediary between
the other states. In the rare case that you do need a bundle, call devtools:: build()
to make it.

If you decompress a bundle, you’ll see it looks almost the same as your source pack‐
age. The main differences between an uncompressed bundle and a source package are
as follows:

• Vignettes are built so that you get HTML and PDF output instead of Markdown
or LaTeX input.

• Your source package might contain temporary files used to save time during
development, like compilation artifacts in src/. These are never found in a
bundle.

• Any files listed in .Rbuildignore are not included in the bundle.

.Rbuildignore prevents files in the source package from appearing in the bundled
package. It allows you to have additional directories in your source package that will
not be included in the package bundle. This is particularly useful when you generate
package contents (e.g., data) from other files. Those files should be included in the
source package, but only the results need to be distributed. This is particularly impor‐
tant for CRAN packages (where the set of allowed top-level directories is fixed). Each
line gives a Perl-compatible regular expression that is matched, without regard to
case, against the path to each file (i.e., dir(full.names = TRUE) run from the pack‐
age root directory); if the regular expression matches, the file is excluded.

If you wish to exclude a specific file or directory (the most common use case), you
must anchor the regular expression. For example, to exclude a directory called notes,
use ^notes$. The regular expression notes will match any filename containing notes
(e.g., R/notes.R, man/important-notes.R, data/endnotes.Rdata, etc.). The safest way to
exclude a specific file or directory is to use devtools:: use_build_ignore("notes"),
which does the escaping for you.

Here’s a typical .Rbuildignore file from one of my packages:

^.*\.Rproj$         # Automatically added by RStudio,
^\.Rproj\.user$     # used for temporary files. 
^README\.Rmd$       # An Rmarkdown file used to generate README.md
^cran-comments\.md$ # Comments for CRAN submission
^NEWS\.md$          # A news file written in Markdown
^\.travis\.yml$     # Used for continuous integration testing with travis

12 | Chapter 2: Package Structure

www.allitebooks.com

http://www.allitebooks.org


I’ll mention when you need to add files to .Rbuildignore whenever it’s important.

Binary Packages
If you want to distribute your package to an R user who doesn’t have package devel‐
opment tools, you’ll need to make a binary package. Like a package bundle, a binary
package is a single file. But if you uncompress it, you’ll see that the internal structure
is rather different from a source package:

• There are no .R files in the R/ directory. Instead, there are three files that store the
parsed functions in an efficient file format. This is basically the result of loading
all the R code and then saving the functions with save(). (In the process, this
adds a little extra metadata to make things as fast as possible.)

• A Meta/ directory contains a number of Rds files. These files contain cached met‐
adata about the package, like what topics the help files cover and parsed versions
of the DESCRIPTION files. (You can use readRDS() to see exactly what’s in those
files.) These files make package loading faster by caching costly computations.

• An html/ directory contains files needed for HTML help.
• If you had any code in the src/ directory there will now be a libs/ directory that

contains the results of compiling 32-bit (i386/) and 64-bit (x64/) code.
• The contents of inst/ are moved to the top-level directory.

Binary packages are platform specific: you can’t install a Windows binary package on
a Mac or vice versa. Also, while Mac binary packages end in .tgz, Windows binary
packages end in .zip. You can use devtools::build(binary = TRUE) to make a
binary package.

The diagram in Figure 2-7 summarizes the files present in the root directory for
source, bundled, and binary versions of devtools.
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Figure 2-7. Important files found in source, bundled, and binary packages, and how they
are related

Installed Packages
An installed package is just a binary package that’s been decompressed into a package
library (described momentarily). The diagram in Figure 2-8 illustrates the many ways
a package can be installed. This diagram is complicated! In an ideal world, installing a
package would involve stringing together a set of simple steps: source → bundle, bun‐
dle → binary, binary → installed. In the real world, it’s not this simple because there
are often (faster) shortcuts available.
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Figure 2-8. Five ways to install a package

The tool that powers all package installation is the command-line tool R CMD

INSTALL, which can install a source, bundle, or a binary package. Devtools functions
provide wrappers that allow you to access this tool from R rather than from the com‐
mand line. devtools::install() is effectively a wrapper for R CMD INSTALL. dev
tools::build() is a wrapper for R CMD build that turns source packages into
bundles. devtools::install_github() downloads a source package from GitHub,
runs build() to make vignettes, and then uses R CMD INSTALL to do the install. dev
tools::install_url(), devtools::install_gitorious(), and devtools::

install_bitbucket() work similarly for packages found elsewhere on the Internet.

install.packages() and devtools::install_github() allow you to install a
remote package. Both work by downloading and then installing the package. This
makes installation very speedy. install.packages() is used to download and install
binary packages built by CRAN. install_github() works a little differently—it
downloads a source package, builds it, and then installs it.

You can prevent files in the package bundle from being included in the installed
package using .Rinstignore. This works the same way as .Rbuildignore, described ear‐
lier. It’s rarely needed.

In-Memory Packages
To use a package, you must load it into memory. To use it without providing the
package name (e.g., install() instead of devtools::install()), you need to attach
it to the search path. R loads packages automatically when you use them. library()
and require() load, then attach an installed package:
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# Automatically loads devtools
devtools::install()
    
# Loads and _attaches_ devtools to the search path
library(devtools)
install()

The distinction between loading and attaching packages is not important when you’re
writing scripts, but it’s very important when you’re writing packages. You’ll learn
more about the difference and why it’s important in “Search Path” on page 82.

library() is not useful when you’re developing a package because you have to install
the package first. In future chapters you’ll learn about devtools::load_all() and
RStudio’s “Build & Reload,” which allows you to skip install and load a source package
directly into memory (Figure 2-9).

Figure 2-9. Three ways to load a package into memory

What Is a Library?
A library is simply a directory containing installed packages. You can have multiple
libraries on your computer. In fact, almost everyone has at least two: one for packages
you’ve installed, and one for the packages that come with every R installation (like
base, stats, etc.). Normally, the directories with user-installed packages vary based on
the version of R that you’re using. That’s why it seems like you lose all of your pack‐
ages when you reinstall R—they’re still on your hard drive, but R can’t find them.

You can use .libPaths() to see which libraries are currently active. Here are mine:

.libPaths()
#> [1] "/Users/hadley/R"                                               
#> [2] "/Library/Frameworks/R.framework/Versions/3.1/Resources/library"
lapply(.libPaths(), dir)
#> [[1]]
#>   [1] "AnnotationDbi"   "ash"             "assertthat"     
#>   ...      
#> [163] "xtable"          "yaml"            "zoo"            
#> 
#> [[2]]
#>  [1] "base"         "boot"         "class"        "cluster"     
#>  [5] "codetools"    "compiler"     "datasets"     "foreign"     
#>  [9] "graphics"     "grDevices"    "grid"         "KernSmooth"  
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#> [13] "lattice"      "MASS"         "Matrix"       "methods"     
#> [17] "mgcv"         "nlme"         "nnet"         "parallel"    
#> [21] "rpart"        "spatial"      "splines"      "stats"       
#> [25] "stats4"       "survival"     "tcltk"        "tools"       
#> [29] "translations" "utils"

The first lib path is for the packages I’ve installed (I’ve installed at lot!). The second is
for so-called “recommended” packages that come with every installation of R.

When you use library(pkg) to load a package, R looks through each path in .lib
Paths() to see if a directory called pkg exists. If it doesn’t exist, you’ll get an error
message:

library(blah)
#> Error in library(blah): there is no package called 'blah'

The main difference between library() and require() is what happens when a
package isn’t found. While library() throws an error, require() prints a message
and returns FALSE. In practice, this distinction isn’t important because when building
a package you should never use either inside a package. See “Dependencies: What
Does Your Package Need?” on page 34 for what you should do instead.

When you start learning R, it’s easy to get confused between libraries and packages
because you use library() to load a package. However, the distinction between the
two is important and useful. For example, one important application is packrat,
which automates the process of managing project-specific libraries. With packrat,
when you upgrade a package in one project, it only affects that project, not every
project on your computer. This is useful because it allows you to play around with
cutting-edge packages without affecting other projects’ use of older, more reliable
packages. This is also useful when you’re both developing and using a package.
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CHAPTER 3

R Code

The first principle of using a package is that all R code goes in R/. In this chapter,
you’ll learn about the R/ directory, my recommendations for organizing your func‐
tions into files, and some general tips on good style. You’ll also learn about some
important differences between functions in scripts and functions in packages.

R Code Workflow
The first practical advantage to using a package is that it’s easy to reload your code.
You can either run devtools::load_all(), or in RStudio press Ctrl/Cmd-Shift-L,
which also saves all open files, saving you a keystroke.

This keyboard shortcut leads to a fluid development workflow:

1. Edit an R file.
2. Press Ctrl/Cmd-Shift-L.
3. Explore the code in the console.
4. Rinse and repeat.

Congratulations! You’ve learned your first package development workflow. Even if
you learn nothing else from this book, you’ll have gained a useful workflow for edit‐
ing and reloading R code.

Organizing Your Functions
While you’re free to arrange functions into files as you wish, the two extremes are
bad: don’t put all functions into one file and don’t put each function into its own sep‐
arate file. (It’s OK if some files only contain one function, particularly if the function
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is large or has a lot of documentation.) Filenames should be meaningful and end
in .R:

# Good
fit_models.R
utility_functions.R

# Bad
foo.r
stuff.r

Pay attention to capitalization, because you, or some of your collaborators, might be
using an operating system with a case-insensitive filesystem (e.g., Microsoft Win‐
dows). Avoid problems by never using filenames that differ only in capitalization.

My rule of thumb is that if I can’t remember the name of the file where a function
lives, I need to either separate the functions into more files or give the file a better
name. (Unfortunately, you can’t use subdirectories inside R/. The next best thing is to
use a common prefix—for example, abc-*.R.)

The arrangement of functions within files is less important if you master two impor‐
tant RStudio keyboard shortcuts that let you jump to the definition of a function:

• Click a function name in code and press F2.
• Press Ctrl-., and then start typing the name (Figure 3-1).

Figure 3-1. The code navigation popup

After navigating to a function using one of these tools, you can go back to where you

were by clicking the back arrow at the upper-left of the editor ( ), or by press‐
ing Ctrl/Cmd-F9.

Code Style
Good coding style is like using correct punctuation. You can manage without it, but it
sure makes things easier to read. As with styles of punctuation, there are many possi‐
ble variations. The following guidelines describe the style that I use (in this book and
elsewhere). They are based on Google’s R Style Guide, with a few tweaks.
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You don’t have to use my style, but I strongly recommend that you use a consistent
style and document it. If you’re working on someone else’s code, don’t impose your
own style. Instead, read their style documentation and follow it as closely as possible.

Good style is important because while your code only has one author, it will usually
have multiple readers. This is especially true when you’re writing code with others. In
that case, it’s a good idea to agree on a common style up front. Because no style is
strictly better than another, working with others may mean that you’ll need to sacri‐
fice some preferred aspects of your style.

The formatR package, by Yihui Xie, makes it easier to clean up poorly formatted
code. It can’t do everything, but it can quickly get your code from terrible to pretty
good. Make sure to read the notes on the website before using it. It’s as easy as:

install.packages("formatR")
formatR::tidy_dir("R")

A complementary approach is to use a code linter. Rather than automatically fixing
problems, a linter just warns you about them. The lintr package by Jim Hester checks
for compliance with this style guide and lets you know where you’ve missed some‐
thing. Compared to formatR, it picks up more potential problems (because it doesn’t
have to fix them), but you will still see false positives. Here’s how to use it:

install.packages("lintr")
lintr::lint_package()

Object Names
Variable and function names should be lowercase. Use an underscore (_) to separate
words within a name (reserve . for S3 methods). Camel case is a legitimate alterna‐
tive, but be consistent! Generally, variable names should be nouns and function
names should be verbs. Strive for names that are concise and meaningful (this is not
easy!). Here are a few examples:

# Good
day_one
day_1

# Bad
first_day_of_the_month
DayOne
dayone
djm1

Where possible, avoid using names of existing functions and variables. This will cause
confusion for the readers of your code. For example:

# Bad
T <- FALSE
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c <- 10
mean <- function(x) sum(x)

Spacing
Put spaces around all infix operators (=, +, -, <-, etc.). The same rule applies when
using = in function calls. Always put a space after a comma, and never before (just
like in regular English):

# Good
average <- mean(feet / 12 + inches, na.rm = TRUE)

# Bad
average<-mean(feet/12+inches,na.rm=TRUE)

There’s a small exception to this rule: :, ::, and ::: don’t need spaces around them.
(If you haven’t seen :: or ::: before, don’t worry—you’ll learn all about them in
Chapter 8.) Here are a couple examples:

# Good
x <- 1:10
base::get

# Bad
x <- 1 : 10
base :: get

Place a space before left parentheses, except in a function call:

# Good
if (debug) do(x)
plot(x, y)

# Bad
if(debug)do(x)
plot (x, y)

Extra spacing (i.e., more than one space in a row) is OK if it improves alignment of
equals signs or assignments (<-). For example:

list(
  total = a + b + c, 
  mean  = (a + b + c) / n
)

Do not place spaces around code in parentheses or square brackets (unless there’s a
comma, in which case refer to the previous rule):

# Good
if (debug) do(x)
diamonds[5, ]
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# Bad
if ( debug ) do(x)  # No spaces around debug
x[1,]   # Needs a space after the comma
x[1 ,]  # Space goes after comma not before

Curly Braces
An opening curly brace should never go on its own line and should always be fol‐
lowed by a new line. A closing curly brace should always go on its own line, unless it’s
followed by else.

Always indent the code inside curly braces:

# Good

if (y < 0 && debug) {
  message("Y is negative")
}

if (y == 0) {
  log(x)
} else {
  y ^ x
}

# Bad

if (y < 0 && debug)
message("Y is negative")

if (y == 0) {
  log(x)
} 
else {
  y ^ x
}

It’s OK to leave very short statements on the same line:

if (y < 0 && debug) message("Y is negative")

Line Length
Strive to limit your code to 80 characters per line. This fits comfortably on a printed
page with a reasonably sized font. If you find yourself running out of room, this is a
good indication that you should encapsulate some of the work in a separate function.

Indentation
When indenting your code, use two spaces. Never use tabs or mix tabs and spaces.
Change these options in the code preferences pane (Figure 3-2).
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Figure 3-2. RStudio’s code preference pane

The only exception is if a function definition runs over multiple lines. In that case,
indent the second line to where the definition starts:

long_function_name <- function(a = "a long argument", 
                               b = "another argument",
                               c = "another long argument") {
  # As usual code is indented by two spaces.
}

Assignment
Use <-, not =, for assignment:

# Good
x <- 5
# Bad
x = 5

Commenting Guidelines
Comment your code. Each line of a comment should begin with the comment symbol
and a single space: #. Comments should explain the why, not the what.
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Use commented lines of - and = to break up your file into easily readable chunks:

# Load data ---------------------------

# Plot data ===========================

Top-Level Code
Up until now, you’ve probably been writing scripts, R code saved in a file that you load
with source(). There are two main differences between code in scripts and packages:

• In a script, code is run when it is loaded. In a package, code is run when it is
built. This means your package code should only create objects, the vast majority
of which will be functions.

• Functions in your package will be used in situations that you didn’t imagine. This
means your functions need to be thoughtful in the way that they interact with the
outside world.

The next two sections expand on these important differences.

Loading Code
When you load a script with source(), every line of code is executed and the results
are immediately made available. Things are different in a package, because it is loaded
in two steps. When the package is built (e.g., by CRAN), all the code in R/ is executed
and the results are saved. When you load a package with library() or require(),
the cached results are made available to you. If you loaded scripts in the same way as
packages, your code would look like this:

# Load a script into a new environment and save it
env <- new.env(parent = emptyenv())
source("my-script.R", local = env)
save(envir = env, "my-script.Rdata")

# Later, in another R session
load("my-script.Rdata")

For example, take x <- Sys.time(). If you put this in a script, x would tell you when
the script was source()d. But if you put that same code in a package, x would tell you
when the package was built.

This means that you should never run code at the top-level of a package: package
code should only create objects, mostly functions. For example, imagine your foo
package contains this code:

library(ggplot2)

show_mtcars <- function() {
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  qplot(mpg, wt, data = mtcars)
}

If someone tries to use it:

library(foo)
show_mtcars()

The code won’t work because ggplot2’s qplot() function won’t be available:
library(foo) doesn’t re-execute library(gpplot2). The top-level R code in a pack‐
age is only executed when the package is built, not when it’s loaded.

To get around this problem you might be tempted to do the following:

show_mtcars <- function() {
  library(ggplot2)
  qplot(mpg, wt, data = mtcars)
}

That’s also problematic, as you’ll see in a moment. Instead, describe the packages your
code needs in the DESCRIPTION file, as you’ll learn in “Dependencies: What Does
Your Package Need?” on page 34.

The R Landscape
Another big difference between a script and a package is that other people are going
to use your package, and they’re going to use it in situations that you never imagined.
This means you need to pay attention to the R landscape, which includes not just the
available functions and objects, but all the global settings. You have changed the R
landscape if you’ve loaded a package with library(), changed a global option with
options(), or modified the working directory with setwd(). If the behavior of other
functions differs before and after running your function, you’ve modified the land‐
scape. Changing the landscape is bad because it makes code much harder to
understand.

There are some functions that modify global settings that you should never use
because there are better alternatives:

Don’t use library() or require()
These modify the search path, affecting what functions are available from the
global environment. It’s better to use DESCRIPTION to specify your package’s
requirements, as described in the next chapter. This also makes sure those pack‐
ages are installed when your package is installed.

Never use source() to load code from a file
source() modifies the current environment, inserting the results of executing the
code. Instead, rely on devtools::load_all(), which automatically sources all
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files in R/. If you’re using source() to create a dataset, instead switch to data/, as
described in Chapter 9.

Other functions need to be used with caution. If you use them, make sure to clean up
after yourself with on.exit():

• If you modify global options() or graphics par(), save the old values and reset
when you’re done:

old <- options(stringsAsFactors = FALSE)
on.exit(options(old), add = TRUE)

• Avoid modifying the working directory. If you do have to change it, make sure to
change it back when you’re done:

old <- setwd(tempdir())
on.exit(setwd(old), add = TRUE)

• Creating plots and printing output to the console are two other ways of affecting
the global R environment. Often you can’t avoid these (because they’re impor‐
tant!), but it’s good practice to isolate them in functions that only produce output.
This also makes it easier for other people to repurpose your work for new uses.
For example, if you separate data preparation and plotting into two functions,
others can use your data prep work (which is often the hardest part!) to create
new visualizations.

The flip side of the coin is that you should avoid relying on the user’s landscape,
which might be different than yours. For example, functions like read.csv() are dan‐
gerous because the value of the stringsAsFactors argument comes from the global
option stringsAsFactors. If you expect it to be TRUE (the default), and the user has
set it to be FALSE, your code might fail.

When You Do Need Side Effects
Occasionally, packages do need side effects. This is most common if your package
talks to an external system—you might need to do some initial setup when the pack‐
age loads. To do that, you can use two special functions: .onLoad() and .onAttach().
These are called when the package is loaded and attached. You’ll learn about the
distinction between the two in Chapter 8. For now, you should always use .onLoad()
unless explicitly directed otherwise.

Some common uses of .onLoad() and .onAttach() include the following:

• To display an informative message when the package loads. This might make
usage conditions clear, or display useful tips. Startup messages is one place where
you should use .onAttach() instead of .onLoad(). To display startup messages,
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always use packageStartupMessage(), not message() (this allows suppressPack
ageStartupMessages() to selectively suppress package startup messages):

.onAttach <- function(libname, pkgname) {
  packageStartupMessage("Welcome to my package")
}

• To set custom options for your package with options(). To avoid conflicts with
other packages, ensure that you prefix option names with the name of your pack‐
age. Also be careful not to override options that the user has already set.
I use the following code in devtools to set up useful options:

.onLoad <- function(libname, pkgname) {
  op <- options()
  op.devtools <- list(
    devtools.path = "~/R-dev",
    devtools.install.args = "",
    devtools.name = "Your name goes here",
    devtools.desc.author = 'person("First", "Last", 
      "first.last@example.com", role = c("aut", "cre"))'
    devtools.desc.license = "What license is it under?",
    devtools.desc.suggests = NULL,
    devtools.desc = list()
  )
  toset <- !(names(op.devtools) %in% names(op))
  if(any(toset)) options(op.devtools[toset])

  invisible()
}

Then devtools functions can use getOption("devtools.name"), for example, to
get the name of the package author, and know that a sensible default value has
already been set.

• To connect R to another programming language. For example, if you use rJava to
talk to a .jar file, you need to call rJava::.jpackage(). To make C++ classes
available as reference classes in R with Rcpp modules, you call Rcpp::loadRcpp
Modules().

• To register vignette engines with tools::vignetteEngine().

As you can see in the examples, .onLoad() and .onAttach() are called with two
arguments: libname and pkgname. They’re rarely used (they’re a holdover from the
days when you needed to use library.dynam() to load compiled code). They give the
path where the package is installed (the “library”), and the name of the package.

If you use .onLoad(), consider using .onUnload() to clean up any side effects. By
convention, .onLoad() and friends are usually saved in a file called zzz.R. (Note
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that .First.lib() and .Last.lib() are old versions of .onLoad() and .onUnload()
and should no longer be used.)

S4 Classes, Generics, and Methods
Another type of side effect is defining S4 classes, methods, and generics. R packages
capture these side effects so they can be replayed when the package is loaded, but they
need to be called in the right order. For example, before you can define a method, you
must have defined both the generic and the class. This requires that the R files be
sourced in a specific order. This order is controlled by the Collate field in the
DESCRIPTION. This is described in more detail in “S4” on page 52.

CRAN Notes
If you plan to submit your package to CRAN, you must use only ASCII characters in
your .R files. You can still include Unicode characters in strings, but you need to use
the special Unicode escape format (e.g., "\u1234"). The easiest way to do that is to
use stringi::stri_escape_unicode():

x <- "This is a bullet •"
y <- "This is a bullet \u2022"
identical(x, y)
#> [1] TRUE

cat(stringi::stri_escape_unicode(x))
#> This is a bullet \u2022

Each chapter concludes with some hints for submitting your pack‐
age to CRAN. If you don’t plan to submit your package to CRAN,
feel free to ignore these notes!
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CHAPTER 4

Package Metadata

The job of the DESCRIPTION file is to store important metadata about your package.
When you first start writing packages, you’ll just use this metadata to record what
packages are needed to run your package. However, as time goes by and you start
sharing your package with others, the metadata file becomes increasingly important
because it specifies who can use it (the license) and whom to contact (you!) if there
are any problems.

Every package must have a DESCRIPTION. In fact, it’s the defining feature of a pack‐
age (RStudio and devtools consider any directory containing DESCRIPTION to be a
package). To get you started, devtools::create("mypackage") automatically adds a
bare-bones description file. This allows you to start writing the package without hav‐
ing to worry about the metadata until you need to. The minimal description will vary
a bit depending on your settings, but should look something like this:

Package: mypackage
Title: What The Package Does (one line, title case required)
Version: 0.1
Authors@R: person("First", "Last", email = "first.last@example.com",
                  role = c("aut", "cre"))
Description: What the package does (one paragraph)
Depends: R (>= 3.1.0)
License: What license is it under?
LazyData: true

(If you’re writing a lot of packages, you can set global options via dev

tools.desc.author, devtools.desc.license, devtools.desc.suggests, and dev
tools.desc. See package?devtools for more details.)

DESCRIPTION uses a simple file format called the Debian control format (DCF). You
can see most of the structure in the simple example shown here. Each line consists of
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a field name and a value, separated by a colon. When values span multiple lines, they
need to be indented:

Description: The description of a package is usually long,
    spanning multiple lines. The second and subsequent lines
    should be indented, usually with four spaces.

This chapter will show you how to use the most important Description fields.

Dependencies: What Does Your Package Need?
It’s the job of the Description to list the packages necessary for your package to
work. R has a rich set of ways of describing potential dependencies. For example, the
following lines indicate that your package needs both ggvis and dplyr to work:

Imports:
    dplyr,
    ggvis

Conversely, the lines here indicate that while your package can take advantage of
ggvis and dplyr, they’re not required to make it work:

Suggests:
    dplyr,
    ggvis,

Both Imports and Suggests take a comma-separated list of package names. I recom‐
mend putting one package on each line, and keeping them in alphabetical order. That
makes it easy to skim.

Imports and Suggests differ in their strength of dependency:

Imports

Packages listed in Imports must be present for your package to work. In fact, any
time your package is installed, those packages will, if not already present, be
installed on your computer (devtools::load_all() also checks that the pack‐
ages are installed).

Adding a package dependency here ensures that it’ll be installed. However, it
does not mean that it will be attached along with your package (i.e., library(x)).
The best practice is to explicitly refer to external functions using the syntax pack
age::function(). This makes it very easy to identify which functions live out‐
side of your package. This is especially useful when you read your code in the
future.

If you use a lot of functions from other packages, this is rather verbose. There’s
also a minor performance penalty associated with :: (on the order of 5µs, so it
will only matter if you call the function millions of times). You’ll learn about
alternative ways to call functions in other packages in “Imports” on page 88.
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Suggests

Your package can use these packages, but doesn’t require them. You might use
suggested packages for example datasets, to run tests, build vignettes, or maybe
there’s only one function that needs the package.

Packages listed in Suggests are not automatically installed along with your pack‐
age. This means that you need to check if the package is available before using it
(use requireNamespace(x, quietly = TRUE)). There are two basic scenarios:

# You need the suggested package for this function    
my_fun <- function(a, b) {
  if (!requireNamespace("pkg", quietly = TRUE)) {
    stop("Pkg needed for this function to work. Please install it.",
      call. = FALSE)
  }
}

# There's a fallback method if the package isn't available
my_fun <- function(a, b) {
  if (requireNamespace("pkg", quietly = TRUE)) {
    pkg::f()
  } else {
    g()
  }
}

When developing packages locally, you never need to use Suggests. When releasing
your package, using Suggests is a courtesy to your users. It frees them from down‐
loading rarely needed packages, and lets them get started with your package as
quickly as possible.

The easiest way to add Imports and Suggests to your package is to use dev
tools::use_package(). This automatically puts them in the right place in your
DESCRIPTION, and reminds you how to use them. For example:

devtools::use_package("dplyr") # Defaults to imports
#> Adding dplyr to Imports
#> Refer to functions with dplyr::fun()
devtools::use_package("dplyr", "Suggests")
#> Adding dplyr to Suggests
#> Use requireNamespace("dplyr", quietly = TRUE) to test if package is 
#>  installed, then use dplyr::fun() to refer to functions.
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Versioning
If you need a particular version of a package, specify it in parentheses after the pack‐
age name:

Imports:
    ggvis (>= 0.2),
    dplyr (>= 0.3.0.1)
Suggests:
    MASS (>= 7.3.0)

You almost always want to specify a minimum version rather than an exact version
(MASS (== 7.3.0)). Because R can’t have multiple versions of the same package
loaded at the same time, specifying an exact dependency dramatically increases the
chance of problems.

Versioning is most important when you release your package. Usually people don’t
have exactly the same versions of packages installed that you do. If someone has an
older package that doesn’t have a function your package needs, they’ll get an unhelp‐
ful error message. However, if you supply the version number, they’ll get an error
message that tells them exactly what the problem is: an out-of-date package.

Generally, it’s always better to specify the version and to be conservative about which
version to require. Unless you know otherwise, always require a version greater than
or equal to the version you’re currently using.

Other Dependencies
There are three other fields that allow you to express more specialized dependencies:

Depends

Prior to the rollout of namespaces in R 2.14.0, Depends was the only way to
“depend” on another package. Now, despite the name, you should almost always
use Imports, not Depends. You’ll learn why, and when you should still use
Depends, in Chapter 8.

You can also use Depends to require a specific version of R (e.g., Depends: R (>=
3.0.1)). As with packages, it’s a good idea to play it safe and require a version
greater than or equal to the version you’re currently using. devtools::create()
will do this for you.

In R 3.1.1 and earlier, you’ll also need to use Depends: methods if you use S4.
This bug is fixed in R 3.2.0, so methods can go back to Imports where they
belong.
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LinkingTo

Packages listed here rely on C or C++ code in another package. You’ll learn more
about LinkingTo in Chapter 10.

Enhances

Packages listed here are “enhanced” by your package. Typically, this means you
provide methods for classes defined in other packages (a sort of reverse
Suggests). But it’s hard to define what that means, so I don’t recommend using
Enhances.

You can also list things that your package needs outside of R in the SystemRequire
ments field. But this is just a plain-text field and is not automatically checked. Think
of it as a quick reference; you’ll also need to include detailed system requirements
(and how to install them) in your README.

Title and Description: What Does Your Package Do?
The title and description fields describe what the package does. They differ only in
length:

• Title is a one-line description of the package, and is often shown in the package
listing. It should be plain text (no markup), and follow headline-style capitaliza‐
tion; it should not end in a period. Keep it short: listings will often truncate the
title to 65 characters.

• Description is more detailed than the title. You can use multiple sentences but
you are limited to one paragraph. If your description spans multiple lines (and it
should!), each line must be no more than 80 characters wide. Indent subsequent
lines with four spaces.

The Title and Description for ggplot2 are as follows:

Title: An implementation of the Grammar of Graphics
Description: An implementation of the grammar of graphics in R. It combines 
    the advantages of both base and lattice graphics: conditioning and shared 
    axes are handled automatically, and you can still build up a plot step 
    by step from multiple data sources. It also implements a sophisticated 
    multidimensional conditioning system and a consistent interface to map
    data to aesthetic attributes. See the ggplot2 website for more information, 
    documentation and examples.

A good title and description are important, especially if you plan to release your
package to CRAN, because they appear on the CRAN download page, shown in
Figure 4-1.
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Figure 4-1. The CRAN download page for ggplot2

Because Description only gives you a small amount of space to describe what your
package does, I also recommend including a README.md file that goes into much
more depth and shows a few examples. You’ll learn about that in “README.md” on
page 171.

Author: Who Are You?
To identify the package’s author, and whom to contact if something goes wrong, use
the Authors@R field. This field is unusual because it contains executable R code rather
than plain text. Here’s an example:

Authors@R: person("Hadley", "Wickham", email = "hadley@rstudio.com",
  role = c("aut", "cre"))

This command says that both the author (aut) and the maintainer (cre) is Hadley
Wickham, and that his email address is hadley@rstudio.com. The person() function
has four main arguments:

• The name, specified by the first two arguments, given and family (these are nor‐
mally supplied by position, not name). In Western cultures, given (first name)
comes before family (last name), but this convention does not hold in many
Eastern cultures.

• The email address.
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• A three-letter code specifying the role. There are four important roles:

cre

The creator or maintainer, the person you should bother if you have
problems.

aut

Authors, those who have made significant contributions to the package.

ctb

Contributors, those who have made smaller contributions, like patches.

cph

Copyright holder. This is used if the copyright is held by someone other than
the author, typically a company (i.e., the author’s employer).

(The full list of roles is extremely comprehensive. Should your package have a
woodcutter (wdc), lyricist (lyr), or costume designer (cst), rest comfortably that
you can correctly describe that person’s role in creating your package.)

If you need to add further clarification, you can also use the comment argument and
supply the desired information in plain text.

You can list multiple authors with c():

Authors@R: c(
    person("Hadley", "Wickham", email = "hadley@rstudio.com", role = "cre"),
    person("Winston", "Chang", email = "winston@rstudio.com", role = "aut"))

Every package must have at least one author (aut) and one maintainer (cre); they
might be the same person. The creator must have an email address. These fields are
used to generate the basic citation for the package (e.g., citation("pkgname")). Only
people listed as authors will be included in the autogenerated citation. There are a few
extra details if you’re including code that other people have written. This typically
occurs when you’re wrapping a C library, so it’s discussed in Chapter 10.

In addition to your email address, it’s a good idea to list other resources available for
help. You can list URLs in URL. Multiple URLs are separated with a comma. BugRe
ports is the URL where bug reports should be submitted. For example, knitr has:

URL: http://yihui.name/knitr/
BugReports: https://github.com/yihui/knitr/issues

You can also use separate Maintainer and Author fields. I prefer not to use these
fields because Authors@R offers richer metadata.
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On CRAN
The most important thing to note is that your email address (i.e., the address of cre)
is the address that CRAN will use to contact you about your package. Make sure you
use an email address that’s likely to be around for a while. Also, because this address
will be used for automated mailings, CRAN policies require that this be for a single
person (not a mailing list) and that it does not require any confirmation or use any
filtering.

License: Who Can Use Your Package?
The License field can be either a standard abbreviation for an open source license,
like GPL-2 or BSD, or a pointer to a file containing more information, file LICENSE.
The license is really only important if you’re planning on releasing your package. If
you don’t, you can ignore this section. If you want to make it clear that your package
is not open source, use License: file LICENSE and then create a file called
LICENSE, containing, for example:

Proprietary 

Do not distribute outside of Widgets Incorporated.

Open source software licensing is a rich and complex field. Fortunately, in my opin‐
ion, there are only three licenses that you should consider for your R package:

YEAR: <Year or years when changes have been made>
COPYRIGHT HOLDER: <Name of the copyright holder>

MIT
This is a simple and permissive license, similar to the BSD 2- and 3-clause licen‐
ses. It lets people use and freely distribute your code subject to only one restric‐
tion: the license must always be distributed with the code. The MIT license is a
“template,” so if you use it, you need License: MIT + file LICENSE, and a
LICENSE file.

GPL-2 or GPL-3
These are “copy-left” licenses. This means that anyone who distributes your code
in a bundle must license the whole bundle in a GPL-compatible way. Addition‐
ally, anyone who distributes modified versions of your code (derivative works)
must also make the source code available. GPL-3 is a little stricter than GPL-2,
closing some older loopholes.

CC0
This license relinquishes all your rights on the code and data so that it can be
freely used by anyone for any purpose. This is sometimes called putting it in the
public domain, a term that is neither well defined nor meaningful in all
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countries. This license is most appropriate for data packages. Data, at least in the
United States, is not copyrightable, so you’re not really giving up much. This
license just makes this point clear.

If you’d like to learn more about other common licenses,  GitHub’s chooseali‐
cense.com is a good place to start. Another good resource is tldrlegal.com/, which
explains the most important parts of each license. If you use a license other than the
three I suggest, make sure you consult the “Writing R Extensions” section on
licensing.

If your package includes code that you didn’t write, you need to make sure you’re in
compliance with its license. This occurs most commonly when you’re including C
source code, so it’s discussed in more detail in Chapter 10.

On CRAN
If you want to release your package to CRAN, you must choose a standard license.
Otherwise, it’s difficult for CRAN to determine whether or not it’s legal to distribute
your package! You can find a complete list of licenses that CRAN considers valid at
https://svn.r-project.org/R/trunk/share/licenses/license.db.

Version
Formally, an R package version is a sequence of at least two integers separated by
either . or -. For example, 1.0 and 0.9.1-10 are valid versions, but 1 or 1.0-devel are
not. You can parse a version number with numeric_version:

numeric_version("1.9") == numeric_version("1.9.0")
#> [1] TRUE
numeric_version("1.9.0") < numeric_version("1.10.0")
#> [1] TRUE

For example, a package might have a version 1.9. This version number is considered
by R to be the same as 1.9.0, less than version 1.9.2, and all of these are less than ver‐
sion 1.10 (which is version “one point ten,” not “one point one zero”). R uses version
numbers to determine whether package dependencies are satisfied. A package might,
for example, import package devtools (>= 1.9.2), in which case version 1.9 or
1.9.0 wouldn’t work.

The version number of your package increases with subsequent releases of a package,
but it’s more than just an incrementing counter—the way the number changes with
each release can convey information about what kind of changes are in the package.

I don’t recommend taking full advantage of R’s flexiblity. Instead, always use . to sep‐
arate version numbers.
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A released version consists of three numbers, <major>.<minor>.<patch>. For version
number 1.9.2, 1 is the major number, 9 is the minor number, and 2 is the patch num‐
ber. Never use versions like 1.0; instead, always spell out the three components (i.e.,
1.0.0).

An in-development package has a fourth component: the development version. This
should start at 9000. For example, the first version of the package should be
0.0.0.9000. There are two reasons for this recommendation: first, it makes it easy to
see if a package is released or in-development, and second, the use of the fourth place
means that you’re not limited to what the next version will be. 0.0.1, 0.1.0, and 1.0.0
are all greater than 0.0.0.9000.

Increment the development version (e.g., from 9000 to 9001) if you’ve added an
important feature that another development package needs to depend on.

If you’re using svn, instead of using the arbitrary 9000, you can embed the sequential
revision identifier.

The advice here is inspired in part by Semantic Versioning and by the X.Org version‐
ing schemes. Read them if you’d like to understand more about the standards of ver‐
sioning used by many open source projects.

We’ll come back to version numbers in the context of releasing your package in “Ver‐
sion Number” on page 163. For now, just remember that the first version of your
package should be 0.0.0.9000.

Other Components
A number of other fields are described elsewhere in the book:

• Collate controls the order in which R files are sourced. This only matters if your
code has side effects (most commonly because you’re using S4). This is described
in more depth in “S4” on page 52.

• LazyData makes it easier to access data in your package. Because it’s so impor‐
tant, it’s included in the minimal description created by devtools. It’s described in
more detail in Chapter 9.

There are actually many other rarely used fields. A complete list can be found in the
“The DESCRIPTION file” section of the R extensions manual. You can also create
your own fields to add additional metadata. The only restrictions are that you
shouldn’t use existing names, and that, if you plan to submit to CRAN, the names you
use should be valid English words (so a spell-checking NOTE won’t be generated).
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CHAPTER 5

Object Documentation

Documentation is one of the most important aspects of a good package. Without it,
users won’t know how to use your package. Documentation is also useful for “future
you” (so you remember what your functions were supposed to do), and for develop‐
ers extending your package.

There are multiple forms of documentation. In this chapter, you’ll learn about object
documentation, as accessed by ? or help(). Object documentation is a type of refer‐
ence documentation. It works like a dictionary: while a dictionary is helpful if you
want to know what a word means, it won’t help you find the right word for a new
situation. Similarly, object documentation is helpful if you already know the name of
the object, but it doesn’t help you find the object you need to solve a given problem.
That’s one of the jobs of vignettes, which you’ll learn about in the next chapter.

R provides a standard way of documenting the objects in a package: you write .Rd
files in the man/ directory. These files use a custom syntax, loosely based on LaTeX,
and are rendered to HTML, plain text, and PDF for viewing. Instead of writing these
files by hand, we’re going to use roxygen2, which turns specially formatted comments
into .Rd files. The goal of roxygen2 is to make documenting your code as easy as pos‐
sible. It has a number of advantages over writing .Rd files by hand:

• Code and documentation are intermingled so that when you modify your code,
you’re reminded to also update your documentation.

• Roxygen2 dynamically inspects the objects that it documents, so you can skip
some boilerplate that you’d otherwise need to write by hand.

• It abstracts over the differences in documenting different types of objects, so you
need to learn fewer details.
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As well as generating .Rd files, roxygen2 can also manage your NAMESPACE and the
Collate field in DESCRIPTION. This chapter discusses .Rd files and the Collate
field. Chapter 8 describes how you can use roxygen2 to manage your NAMESPACE,
and why you should care.

The Documentation Workflow
In this section, we’ll first go over a rough outline of the complete documentation
workflow. Then, we’ll dive into each step individually. There are four basic steps:

1. Add roxygen comments to your .R files.
2. Run devtools::document() (or press Ctrl/Cmd-Shift-D in RStudio) to convert

roxygen comments to .Rd files. (devtools::document() calls roxygen2::rox
ygenise() to do the hard work.)

3. Preview documentation with ?.
4. Rinse and repeat until the documentation looks the way you want.

The process starts when you add roxygen comments to your source file: roxygen
comments start with #' to distinguish them from regular comments. Here’s docu‐
mentation for a simple function:

#' Add together two numbers.
#' 
#' @param x A number.
#' @param y A number.
#' @return The sum of \code{x} and \code{y}.
#' @examples
#' add(1, 1)
#' add(10, 1)
add <- function(x, y) {
  x + y
}

Pressing Ctrl/Cmd-Shift-D (or running devtools::document()) will generate a man/
add.Rd that looks like:

% Generated by roxygen2 (4.0.0): do not edit by hand
\name{add}
\alias{add}
\title{Add together two numbers}
\usage{
add(x, y)
}
\arguments{
  \item{x}{A number}

  \item{y}{A number}
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}
\value{
The sum of \code{x} and \code{y}
}
\description{
Add together two numbers
}
\examples{
add(1, 1)
add(10, 1)
}

If you’ve used LaTeX, this should look familiar, because the .Rd format is loosely
based on it. You can read more about the .Rd format in the R extensions manual.
Note the comment at the top of the file: it was generated by code and shouldn’t be
modified. Indeed, if you use roxygen2, you’ll rarely need to look at these files.

When you use ?add, help("add"), or example("add"), R looks for an .Rd file con‐
taining \alias{"add"}. It then parses the file, converts it into HTML, and displays it.
Figure 5-1 shows what the result looks like in RStudio.

Figure 5-1. The final rendered documentation for add(), as displayed by RStudio
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You can preview development documentation because devtools
overrides the usual help functions to teach them how to work with
source packages. If the documentation doesn’t appear, make sure
that you’re using devtools and that you’ve loaded the package with
devtools::load_all().

Alternative Documentation Workflow
The first documentation workflow is very fast, but it has one limitation: the preview
documentation pages will not show any links between pages. If you’d like to also see
links, use this workflow:

1. Add roxygen comments to your .R files.

2. Click  in the build pane or press Ctrl/Cmd-Shift-B. This completely
rebuilds the package, including updating all the documentation, installs it in your
regular library, then restarts R and reloads your package. This is slow but thor‐
ough.

3. Preview documentation with ?.
4. Rinse and repeat until the documentation looks the way you want.

If this workflow doesn’t seem to be working, check your project options in RStudio
(Figure 5-2). Old versions of devtools and RStudio did not automatically update the
documentation when the package was rebuilt.
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Figure 5-2. Documentation configuration in RStudio

Roxygen Comments
Roxygen comments start with #' and come before a function. All the roxygen lines
preceding a function are called a block. Each line should be wrapped in the same way
as your code, normally at 80 characters.

Blocks are broken up into tags, which look like @tagName details. The content of a
tag extends from the end of the tag name to the start of the next tag (or the end of the
block). Because @ has a special meaning in roxygen, you need to write @@ if you want
to add a literal @ to the documentation (this is mostly important for email addresses
and for accessing slots of S4 objects).

Each block includes some text before the first tag. This is called the introduction, and
is parsed specially:

• The first sentence becomes the title of the documentation. That’s what you see
when you look at help(package = mypackage) and is shown at the top of each
help file. It should fit on one line, be written in sentence case, and end in a full
stop.

• The second paragraph is the description: this comes first in the documentation
and should briefly describe what the function does.
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• The third and subsequent paragraphs go into the details: this is a (often long) sec‐
tion that is shown after the argument description and should go into detail about
how the function works.

All objects must have a title and description. Details are optional.

Here’s an example showing what the introduction for sum() might look like if it had
been written with roxygen:

#' Sum of vector elements.
#' 
#' \code{sum} returns the sum of all the values present in its arguments.
#' 
#' This is a generic function: methods can be defined for it directly or via the
#' \code{\link{Summary}} group generic. For this to work properly, the arguments
#' \code{...} should be unnamed, and dispatch is on the first argument.
sum <- function(..., na.rm = TRUE) {}

\code{} and \link{} are formatting commands that you’ll learn about in “Text For‐
matting Reference Sheet” on page 56. I’ve been careful to wrap the roxygen block so
that it’s less than 80 characters wide. You can do that automatically in Rstudio with
Ctrl/Cmd-Shift-/ (or from the menu, code → re-flow comment).

You can add arbitrary sections to the documentation with the @section tag. This is a
useful way of breaking a long details section into multiple chunks with useful head‐
ings. Section titles should be in sentence case, must be followed by a colon, and they
can only be one line long:

#' @section Warning:
#' Do not operate heavy machinery within 8 hours of using this function.

There are two tags that make it easier for people to navigate between help files:

@seealso

@seealso allows you to point to other useful resources, either on the web
(\url{http://www.r-project.org}), in your package (\code{\link{functioname}}), or
another package (\code{\link[packagename]{functioname}}).

@family

If you have a family of related functions where every function should link to
every other function in the family, use @family. The value of @family should be
plural.

For sum, these components might look like this:

#' @family aggregate functions
#' @seealso \code{\link{prod}} for products, \code{\link{cumsum}} for cumulative
#'   sums, and \code{\link{colSums}}/\code{\link{rowSums}} marginal sums over
#'   high-dimensional arrays.
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Three other tags make it easier for the user to find documentation:

@aliases alias1 alias2 ...

This adds additional aliases to the topic. An alias is another name for the topic
that can be used with ?.

@keywords keyword1 keyword2 ...

This adds standardized keywords. Keywords are optional, but if present, must be
taken from a predefined list found in file.path(R.home("doc"), "KEYWORDS").

Generally, keywords are not that useful except for @keywords internal. Using
the internal keyword removes the function from the package index and disables
some of their automated tests. It’s common to use @keywords internal for func‐
tions that are of interest to other developers extending your package, but not
most users.

Other tags are situational: they vary based on the type of object that you’re document‐
ing. The following sections describe the most commonly used tags for functions,
packages, and the various methods, generics, and objects used by R’s three object-
oriented (OO) systems.

Documenting Functions
 Functions are the most commonly documented object. As well as the introduction
block, most functions have three tags: @param, @examples, and @return. 

@param name description

This tag describes the function’s inputs or parameters. The description should
provide a succinct summary of the type of the parameter (e.g., string, numeric
vector), and if not obvious from the name, what the parameter does.

The description should start with a capital letter and end with a full stop. It can
span multiple lines (or even paragraphs) if necessary. All parameters must be
documented.

You can document multiple arguments in one place by separating the names with
commas (no spaces). For example, to document both x and y, you can write
@param x,y Numeric vectors.

@examples

This tag provides executable R code showing how to use the function in practice.
This is a very important part of the documentation because many people look at
the examples first. Example code must work without errors because it is run
automatically as part of R CMD check.
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For the purpose of illustration, it’s often useful to include code that causes an
error. \dontrun{} allows you to include code in the example that is not run. (You
used to be able to use \donttest{} for a similar purpose, but it’s no longer rec‐
ommended because it actually is tested.)

Instead of including examples directly in the documentation, you can put them
in separate files and use @example path/relative/to/packge/root to insert
them into the documentation.

@return description

This tag describes the output from the function. This is not always necessary, but
is a good idea if your function returns different types of output depending on the
input, or if you’re returning an S3, S4, or RC object.

We could use these new tags to improve our documentation of sum() as follows:

#' Sum of vector elements.
#'
#' \code{sum} returns the sum of all the values present in its arguments.
#'
#' This is a generic function: methods can be defined for it directly
#' or via the \code{\link{Summary}} group generic. For this to work properly,
#' the arguments \code{...} should be unnamed, and dispatch is on the
#' first argument.
#'
#' @param ... Numeric, complex, or logical vectors.
#' @param na.rm A logical scalar. Should missing values (including NaN)
#'   be removed?
#' @return If all inputs are integer and logical, then the output
#'   will be an integer. If integer overflow
#'   \url{http://en.wikipedia.org/wiki/Integer_overflow} occurs, the output
#'   will be NA with a warning. Otherwise it will be a length-one numeric or
#'   complex vector.
#'
#'   Zero-length vectors have sum 0 by definition. See
#'   \url{http://en.wikipedia.org/wiki/Empty_sum} for more details.
#' @examples
#' sum(1:10)
#' sum(1:5, 6:10)
#' sum(F, F, F, T, T)
#'
#' sum(.Machine$integer.max, 1L)
#' sum(.Machine$integer.max, 1)
#'
#' \dontrun{
#' sum("a")
#' }
sum <- function(..., na.rm = TRUE) {}

Indent the second and subsequent lines of a tag so that when scanning the documen‐
tation it’s easy to see where one tag ends and the next begins. Tags that always span
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multiple lines (e.g., @example) should start on a new line and don’t need to be
indented.

Documenting Datasets
 See “Documenting Datasets” on page 93.

Documenting Packages
You can use roxygen to provide a help page for your package as a whole. This is
accessed with package?foo, and can be used to describe the most important compo‐
nents of your package. It’s a useful supplement to vignettes, as described in the next
chapter.

There’s no object that corresponds to a package, so you need to document NULL, and
then manually label it with @docType package and @name <package-name>. This is
also an excellent place to use the @section tag to divide up a page into useful
categories:

#' foo: A package for computating the notorious bar statistic.
#'
#' The foo package provides three categories of important functions:
#' foo, bar and baz.
#' 
#' @section Foo functions:
#' The foo functions ...
#'
#' @docType package
#' @name foo
NULL

I usually put this documentation in a file called <package-name>.R. It’s also a good
place to put the package-level import statements that you’ll learn about in “Imports”
on page 88.

Documenting Classes, Generics, and Methods
It’s relatively straightforward to document classes, generics, and methods. The details
vary based on the object system you’re using. The following sections give the details
for the S3, S4, and RC object systems.

S3
S3 generics are regular functions, so document them as such. S3 classes have no for‐
mal definition, so document the constructor function. It is your choice whether or
not to document S3 methods. You don’t need to document methods for simple
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generics like print(). But if your method is more complicated or includes additional
arguments, you should document it so people know how it works. In base R, you can
see examples of documentation for more complex methods like predict.lm(), pre
dict.glm(), and anova.glm().

Older versions of roxygen required explicit @method generic

class tags for all S3 methods. From version 3.0.0 onward, this is no
longer needed as roxygen2 will figure it out automatically. If you
are upgrading, make sure to remove these old tags. Automatic
method detection will only fail if the generic and class are ambigu‐
ous. For example, is all.equal.data.frame() the equal.

data.frame method for all, or the data.frame method for
all.equal? If this happens, you can disambiguate with @method
all.equal data.frame.

S4
Document S4 classes by adding a roxygen block before setClass(). Use @slot to
document the slots of the class in the same way you use @param to describe the
parameters of a function. Here’s a simple example: 

#' An S4 class to represent a bank account.
#'
#' @slot balance A length-one numeric vector
Account <- setClass("Account",
  slots = list(balance = "numeric")
)

S4 generics are also functions, so document them as such. S4 methods are a little more
complicated, however. Unlike S3, all S4 methods must be documented. You document
them like a regular function, but you probably don’t want each method to have its
own documentation page. Instead, put the method documentation in one of three
places:

In the class
You should use this option if the corresponding generic uses single dispatch and
you created the class.

In the generic
This option is most appropriate if the generic uses multiple dispatch and you
have written both the generic and the method.

In its own file
If the method is complex, or if you’ve written the method but not the class or
generic, you should go with this option.
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Use either @rdname or @describeIn to control where method documentation goes.
See “Documenting Multiple Functions in the Same File” on page 55 for details.

Another consideration is that S4 code often needs to run in a certain order. For exam‐
ple, to define the method setMethod("foo", c("bar", "baz"), ...), you must
already have created the foo generic and the two classes. By default, R code is loaded
in alphabetical order, but that won’t always work for your situation. Rather than rely‐
ing on alphabetic ordering, roxygen2 provides an explicit way of saying that one file
must be loaded before another: @include. The @include tag gives a space-separated
list of filenames that should be loaded before the current file:

#' @include class-a.R
setClass("B", contains = "A")

Often, it’s easiest to put this at the top of the file. To make it clear that this tag applies
to the whole file, and not a specific object, document NULL:

#' @include foo.R bar.R baz.R
NULL

setMethod("foo", c("bar", "baz"), ...)

Roxygen uses the @include tags to compute a topological sort, which ensures that
dependencies are loaded before they’re needed. It then sets the Collate field in
DESCRIPTION, which overrides the default alphabetic ordering. A simpler alterna‐
tive to @include is to define all classes and methods in aaa-classes.R and aaa-
generics.R, and rely on these coming first, as they’re in alphabetical order. The main
disadvantage is that you can’t organize components into files as naturally as you
might want.

Older versions of roxygen2 required explicit @usage, @alias, and
@docType tags for document S4 objects. However, as of version
3.0.0, roxygen2 generates the correct values automatically so you
no longer need to use them. If you’re upgrading from an old ver‐
sion, you can delete these tags.

RC
Reference classes are different than S3 and S4 because methods are associated with
classes, not generics. RC also has a special convention for documenting methods: the
docstring. The docstring is a string placed inside the definition of the method which
briefly describes what it does. This makes documenting RC simpler than S4 because
you only need one roxygen block per class:

#' A Reference Class to represent a bank account.
#'
#' @field balance A length-one numeric vector.
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Account <- setRefClass("Account",
  fields = list(balance = "numeric"),
  methods = list(
    withdraw = function(x) {
      "Withdraw money from account. Allows overdrafts"
      balance <<- balance - x
    }
  )
)

 Methods with docstrings will be included in the “Methods” section of the class docu‐
mentation. Each documented method will be listed with an automatically generated
usage statement and its docstring. Also note the use of @field instead of @slot.

Special Characters
There are three characters that need special handling if you want them to appear in
the final documentation:

@

This character usually marks the start of a roxygen tag. Use @@ to insert a literal @
in the final documentation.

%

This character usually marks the start of a LaTeX comment that continues to the
end of the line. Use \% to insert a literal % in the output document. The escape is
not needed in examples.

\

This character usually marks the start of a LaTeX escape. Use \\ to insert a literal
\ in the documentation.

Do Repeat Yourself
There is a tension between the DRY (don’t repeat yourself) principle of programming
and the need for documentation to be self-contained. It’s frustrating to have to navi‐
gate through multiple help files in order to pull together all the pieces you need.
Roxygen2 provides two ways to avoid repetition in the source, while still assembling
everything into one documentation file:

• The ability to reuse parameter documentation with @inheritParams
• The ability to document multiple functions in the same place with @describeIn

or @rdname
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Inheriting Parameters from Other Functions
You can inherit parameter descriptions from other functions using @inheritParams
source_function. This tag will bring in all documentation for parameters that are
undocumented in the current function, but documented in the source function. The
source can be a function in the current package, via @inheritParams function, or
another package, via @inheritParams package::function. For example, the follow‐
ing documentation:

#' @param a This is the first argument
foo <- function(a) a + 10

#' @param b This is the second argument
#' @inheritParams foo
bar <- function(a, b) {
  foo(a) * 10
}

is equivalent to:

#' @param a This is the first argument
#' @param b This is the second argument
bar <- function(a, b) {
  foo(a) * 10
}

Note that inheritance does not chain. In other words, the source_function must
always be the function that defines the parameter using @param.

Documenting Multiple Functions in the Same File
You can document multiple functions in the same file by using either @rdname or
@describeIn. However, it’s a technique best used with caution: documenting too
many functions in one place leads to confusing documentation. You should use it
when functions have very similar arguments, or have complementary effects (e.g.,
open() and close() methods).

@describeIn is designed for the most common cases:

• Documenting methods in a generic
• Documenting methods in a class
• Documenting functions with the same (or similar arguments)

It generates a new section, named “Methods (by class),” “Methods (by generic),” or
“Functions.” The section contains a bulleted list describing each function. They’re
labeled so that you know what function or method it’s talking about. Here’s an exam‐
ple, documenting an imaginary new generic:
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#' Foo bar generic
#'
#' @param x Object to foo.
foobar <- function(x) UseMethod("foobar")

#' @describeIn foobar Difference between the mean and the median
foobar.numeric <- function(x) abs(mean(x) - median(x))

#' @describeIn foobar First and last values pasted together in a string.
foobar.character <- function(x) paste0(x[1], "-", x[length(x)])

An alternative to @describeIn is @rdname. It overrides the default filename generated
by roxygen and merges documentation for multiple objects into one file. This gives
you the complete freedom to combine documentation as you see fit.

There are two ways to use @rdname. You can add documentation to an existing
function:

#' Basic arithmetic
#'
#' @param x,y numeric vectors.
add <- function(x, y) x + y

#' @rdname add
times <- function(x, y) x * y

Or you can create a dummy documentation file by documenting NULL and setting an 
informative @name:

#' Basic arithmetic
#'
#' @param x,y numeric vectors.
#' @name arith
NULL

#' @rdname arith
add <- function(x, y) x + y

#' @rdname arith
times <- function(x, y) x * y

Text Formatting Reference Sheet
Within roxygen tags, you use .Rd syntax to format text. This vignette shows you
examples of the most important commands. The full details are described in
R extensions.

Note that \ and % are special characters in the Rd format. To insert a literal % or \,
escape them with a backslash (i.e., use \% or \\, respectively).
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Character Formatting
• \emph{italics}: italics.
• \strong{bold}: bold.
• \code{r_function_call(with = "arguments")}: r_function_call(with =

"arguments")

Links
To other documentation:

• \code{\link{function}}: Function in this package
• \code{\link[MASS]{abbey}}: Function in another package
• \link[=dest]{name}: Link to dest, but show name
• \linkS4class{abc}: Link to an S4 class

To the web:

• \url{http://rstudio.com}: A URL
• \href{http://rstudio.com}{Rstudio}: A URL with custom link text
• \email{hadley@@rstudio.com} (note the doubled @): An email address

Lists
• Ordered (numbered) lists:

#' \enumerate{
#'   \item First item
#'   \item Second item
#' }

• Unordered (bulleted) lists:
#' \itemize{
#'   \item First item
#'   \item Second item
#' }

• Definition (named) lists:
#' \describe{
#'   \item{One}{First item}
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#'   \item{Two}{Second item}
#' }

Mathematics
You can use standard LaTeX math (with no extensions). Choose between either inline
or block display:

• \eqn{a + b}: Inline equation
• \deqn{a + b}: Display (block) equation

Tables
Tables are created with \tabular{}. It has two arguments:

• Column alignment, specified by letter for each column (l = left, r = right, c =
center.)

• Table contents, with columns separated by \tab and rows by \cr.

The following function turns an R data frame into the correct format (it ignores col‐
umn and row names, but should get you started):

tabular <- function(df, ...) {
  stopifnot(is.data.frame(df))

  align <- function(x) if (is.numeric(x)) "r" else "l"
  col_align <- vapply(df, align, character(1))

  cols <- lapply(df, format, ...)
  contents <- do.call("paste",
    c(cols, list(sep = " \\tab ", collapse = "\\cr\n  ")))

  paste("\\tabular{", paste(col_align, collapse = ""), "}{\n  ",
    contents, "\n}\n", sep = "")
}

cat(tabular(mtcars[1:5, 1:5]))
#> \tabular{rrrrr}{
#>   21.0 \tab 6 \tab 160 \tab 110 \tab 3.90\cr
#>   21.0 \tab 6 \tab 160 \tab 110 \tab 3.90\cr
#>   22.8 \tab 4 \tab 108 \tab  93 \tab 3.85\cr
#>   21.4 \tab 6 \tab 258 \tab 110 \tab 3.08\cr
#>   18.7 \tab 8 \tab 360 \tab 175 \tab 3.15
#> }
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CHAPTER 6

Vignettes: Long-Form Documentation

A vignette is a long-form guide to your package. Function documentation is great if
you know the name of the function you need, but it’s useless otherwise. A vignette is
like a book chapter or an academic paper: it can describe the problem that your pack‐
age is designed to solve, and then show the reader how to solve it. A vignette should
divide functions into useful categories, and demonstrate how to coordinate multiple
functions to solve problems. Vignettes are also useful if you want to explain the
details of your package. For example, if you have implemented a complex statistical
algorithm, you might want to describe all the details in a vignette so that users of your
package can understand what’s going on under the hood, and be confident that you’ve
implemented the algorithm correctly.

Many existing packages have vignettes. You can see all the installed vignettes with
browseVignettes(). To see the vignette for a specific package, use the argument
browseVignettes("packagename"). Each vignette provides three things: the original
source file, a readable HTML page or PDF, and a file of R code. You can read a spe‐
cific vignette with vignette(x), and see its code with edit(vignette(x)). To see
vignettes for a package you haven’t installed, look at its CRAN page (e.g., http://
cran.r-project.org/web/packages/dplyr).

Before R 3.0.0, the only way to create a vignette was with Sweave. This was challeng‐
ing because Sweave only worked with LaTeX, and LaTeX is both hard to learn and
slow to compile. Now, any package can provide a vignette engine, a standard interface
for turning input files into HTML or PDF vignettes. In this chapter, we’re going to use
the R markdown vignette engine provided by knitr. I recommend this engine
because:
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• You write in Markdown, a plain-text formatting system. Markdown is limited
compared to LaTeX, but this limitation is good because it forces you to focus on
the content.

• It can intermingle text, code, and results (both textual and visual).

• Your life is further simplified by the rmarkdown package, which coordinates
Markdown and knitr by using pandoc to convert Markdown to HTML and by
providing many useful templates.

Switching from Sweave to R Markdown had a profound impact on my use of
vignettes. Previously, making a vignette was painful and slow and I rarely did it. Now,
vignettes are an essential part of my packages. I use them whenever I need to explain
a complex topic, or to show how to solve a problem with multiple steps.

Currently, the easiest way to get R Markdown is to use RStudio. RStudio will auto‐
matically install all of the necessary prerequisites. If you don’t use RStudio, you’ll
need to:

1. Install the rmarkdown package with install.packages("rmarkdown").
2. Install pandoc.

Vignette Workflow
To create your first vignette, run:

devtools::use_vignette("my-vignette")

This will:

1. Create a vignettes/ directory.
2. Add the necessary dependencies to DESCRIPTION (i.e., it adds knitr to the Sug

gests and VignetteBuilder fields).
3. Draft a vignette, vignettes/my-vignette.Rmd.

The draft vignette has been designed to remind you of the important parts of an R
Markdown file. It serves as a useful reference when you’re creating a new vignette.

Once you have this file, the workflow is straightforward:

1. Modify the vignette.

2. Press Ctrl/Cmd-Shift-K (or click ) to knit the vignette and preview the
output.
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There are three important components to an R Markdown vignette:

• The initial metadata block
• Markdown for formatting text
• Knitr for intermingling text, code, and results

These are described in the following sections.

Metadata
The first few lines of the vignette contain important metadata. The default template
contains the following information:

---
title: "Vignette Title"
author: "Vignette Author"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{Vignette Title}
  %\VignetteEngine{knitr::rmarkdown}
  \usepackage[utf8]{inputenc}
---

This metadata is written in YAML, a format designed to be both human and com‐
puter readable. The basics of the syntax is much like the DESCRIPTION file, where
each line consists of a field name, a colon, then the value of the field. The one special
YAML feature we’re using here is >. It indicates the following lines of text are plain
text and shouldn’t use any special YAML features.

The fields are:

Title, author, and date
This is where you put the vignette’s title, author, and date. You’ll want to fill these
in yourself (you can delete them if you don’t want the title block at the top of the
page). The date is filled in by default: it uses a special knitr syntax (explained
later) to insert today’s date.

Output
This tells rmarkdown which output formatter to use. There are many options
that are useful for regular reports (including HTML, PDF, slideshows, …), but
rmarkdown::html_vignette has been specifically designed to work well inside
packages. See ?rmarkdown::html_vignette for more details.

Vignette
This contains a special block of metadata needed by R. Here, you can see the leg‐
acy of LaTeX vignettes: the metadata looks like LaTeX commands. You’ll need to
modifiy the \VignetteIndexEntry to provide the title of your vignette as you’d like
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it to appear in the vignette index. Leave the other two lines as is. They tell R to
use knitr to process the file, and that the file is encoded in UTF-8 (the only
encoding you should ever use to write vignettes).

Markdown
R Markdown vignettes are written in Markdown, a lightweight markup language.
John Gruber, the author of Markdown, summarizes the goals and philosophy of
Markdown:

Markdown is intended to be as easy-to-read and easy-to-write as is feasible.
Readability, however, is emphasized above all else. A Markdown-formatted document
should be publishable as-is, as plain text, without looking like it’s been marked up with
tags or formatting instructions. While Markdown’s syntax has been influenced by sev‐
eral existing text-to-HTML filters—including Setext, atx, Textile, reStructuredText,
Grutatext, and EtText—the single biggest source of inspiration for Markdown’s syntax
is the format of plain text email.
To this end, Markdown’s syntax is comprised entirely of punctuation characters, which
punctuation characters have been carefully chosen so as to look like what they mean.
E.g., asterisks around a word actually look like emphasis. Markdown lists look like,
well, lists. Even blockquotes look like quoted passages of text, assuming you’ve ever
used email.

Markdown isn’t as powerful as LaTeX, reStructuredText, or DocBook, but it’s simple,
easy to write, and easy to read even when it’s not rendered. I find Markdown’s con‐
straints helpful for writing because it lets me focus on the content, and prevents me
from messing around with the styling.

If you’ve never used Markdown before, a good place to start is John Gruber’s Mark‐
down syntax documentation. Pandoc’s implementation of Markdown rounds off
some of the rough edges and adds a number of new features, so I also recommend
familiarizing yourself with the pandoc readme. When editing a Markdown docu‐
ment, RStudio presents a drop-down menu via the question mark icon, which offers a
Markdown reference card.

The following sections show you what I think are the most important features of pan‐
doc’s Markdown dialect. You should be able to learn the basics in under 15 minutes.
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Sections
Headings are identified by #:

# Heading 1
## Heading 2
### Heading 3

Create a horizontal rule with three or more hyphens (or asterisks):

--------
********

Lists
Basic unordered lists use *:

* Bulleted list
* Item 2
    * Nested bullets need a 4-space indent.
    * Item 2b

If you want multiparagraph lists, the second and subsequent paragraphs need addi‐
tional indenting:

  
  * It's possible to put multiple paragraphs of text in a list item. 

    But to do that, the second and subsequent paragraphs must be
    indented by four or more spaces. It looks better if the first
    bullet is also indented.

Ordered lists use 1.:

1. Item 1
1. Item 2
1. Items are numbered automatically, even though they all start with 1.

You can intermingle ordered and bulleted lists, as long as you adhere to the four
space rule:

1.  Item 1.
    *  Item a
    *  Item b
1.  Item 2.

Definition lists use a colon (:):

Definition
  : a statement of the exact meaning of a word, especially in a dictionary.
List 
  : a number of connected items or names written or printed consecutively, 
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    typically one below the other. 
  : barriers enclosing an area for a jousting tournament.

Inline Formatting
Inline format is similarly simple:

_italic_ or *italic*
__bold__ or **bold**    
[link text](destination)
<http://this-is-a-raw-url.com>

Tables
There are four types of tables. I recommend using the pipe table, which looks like
this:

| Right | Left | Default | Center |
|------:|:-----|---------|:------:|
|   12  |  12  |    12   |    12  |
|  123  |  123 |   123   |   123  |
|    1  |    1 |     1   |     1  |

Notice the use of the : in the spacer under the heading. This determines the align‐
ment of the column.

If the data underlying your table exists in R, don’t lay it out by hand. Instead, use
knitr::kable(), or look at printr or pander.

Code
For inline code, use `code`.

For bigger blocks of code, use ```. These are known as “fenced” code blocks:

```
# A comment
add <- function(a, b) a + b
```

To add syntax highlighting to the code, put the language name after the backtick:

```c
int add(int a, int b) {
  return a + b;
}
```

(At time of printing, languages supported by pandoc were: actionscript, ada, apache,
asn.1, asp, awk, bash, bibtex, boo, c, changelog, clojure, cmake, coffee, coldfusion,
common lisp, cpp, cs, css, curry, d, diff, djangotemplate, doxygen, doxygenlua, dtd,
eiffel, email, erlang, fortran, fsharp, gnuassembler, go, haskell, haxe, html, ini, java,
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javadoc, javascript, json, jsp, julia, latex, lex, literatecurry, literatehaskell, lua, make‐
file, mandoc, matlab, maxima, metafont, mips, modula2, modula3, monobasic, nasm,
noweb, objectivec, objectivecpp, ocaml, octave, pascal, perl, php, pike, postscript, pro‐
log, python, r, relaxngcompact, rhtml, ruby, rust, scala, scheme, sci, sed, sgml, sql,
sqlmysql, sqlpostgresql, tcl, texinfo, verilog, vhdl, xml, xorg, xslt, xul, yacc, yaml. Syn‐
tax highlighting is done by the Haskell package highlighting-kate; see the website for
a current list.)

When you include R code in your vignette, you usually won’t use ```r. Instead, you’ll
use ```{r}, which is specially processed by knitr, as described next.

Knitr
Knitr allows you to intermingle code, results, and text. Knitr takes R code, runs it,
captures the output, and translates it into formatted Markdown. Knitr captures all
printed output, messsages, warnings, errors (optionally), and plots (basic graphics,
lattice and ggplot, and more).

Consider this simple example (note that a knitr block looks similar to a fenced code
block, but instead of using r, you use {r}):

```{r}
# Add two numbers together
add <- function(a, b) a + b
add(10, 20)
```

This generates the following Markdown:

```r
# Add two numbers together
add <- function(a, b) a + b
add(10, 20)
## [1] 30
```

Which, in turn, is rendered as:

# Add two numbers together
add <- function(a, b) a + b
add(10, 20)
## 30

Once you start using knitr, you’ll never look back. Because your code is always run
when you build the vignette, you can rest assured knowing that all your code works.
There’s no way for your input and output to be out of sync.
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Options
You can specify additional options to control the rendering:

• To affect a single block, add the block settings:
```{r, opt1 = val1, opt2 = val2}
# code
```

• To affect all blocks, call knitr::opts_chunk$set() in a knitr block:
```{r, echo = FALSE}
knitr::opts_chunk$set(
  opt1 = val1,
  opt2 = val2
)
```

The most important options are:

• eval = FALSE prevents evaluation of the code. This is useful if you want to show
some code that would take a long time to run. Be careful when you use this:
because the code is not run, it’s easy to introduce bugs. (Also, your users will be
puzzled when they copy and paste code and it doesn’t work.)

• echo = FALSE turns off the printing of the code input (the output will still be
printed). Generally, you shouldn’t use this in vignettes because understanding
what the code is doing is important. It’s more useful when writing reports
because the code is typically less important than the output.

• results = "hide" turns off the printing of code output.
• warning = FALSE and message = FALSE suppress the display of warnings and

messages.
• error = TRUE captures any errors in the block and shows them inline. This is

useful if you want to demonstrate what happens if code throws an error. When‐
ever you use error = TRUE, you also need to use purl = FALSE. This is because
every vignette is accompanied by a file code that contains all the code from the
vignette. R must be able to source that file without errors, and purl = FALSE
prevents the code from being inserted into that document.

• collapse = TRUE and comment = "#>" are my preferred way of displaying code
output. I usually set these globally by putting the following knitr block at the start
of my document:
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```{r, echo = FALSE}
knitr::opts_chunk$set(collapse = TRUE, comment = "#>")
```

• results = "asis" treats the output of your R code as literal Markdown. This is
useful if you want to generate text from your R code. For example, if you want to
generate a table using the pander package, you’d do:

```{r, results = "asis"}
pander::pandoc.table(iris[1:3, 1:4])
```

That generates a Markdown table that looks as follows:
--------------------------------------------------------
 Sepal.Length   Sepal.Width   Petal.Length   Petal.Width 
-------------- ------------- -------------- -------------
     5.1            3.5           1.4            0.2     

     4.9             3            1.4            0.2     

     4.7            3.2           1.3            0.2     
---------------------------------------------------------

Which makes a table that looks like this:

Sepal.Length Sepal.Width Petal.Length Petal.Width

5.1 3.5 1.4 0.2

4.9 3 1.4 0.2

4.7 3.2 1.3 0.2

• fig.show = "hold" holds all figures until the end of the code block.
• fig.width = 5 and fig.height = 5 set the height and width of figures (in

inches).

Many other options are described at http://yihui.name/knitr/options.

Development Cycle
Run code a chunk at a time using Cmd-Alt-C. Rerun the entire document in a fresh R
session using Knit (Ctrl/Cmd-Shift-K).

You can build all vignettes from the console with devtools::build_vignettes(),
but this is rarely useful. Instead, use devtools::build() to create a package bundle
with the vignettes included. RStudio’s “Build & Reload” does not build vignettes to
save time. Similarly, devtools::install_github() (and friends) will not build
vignettes by default because they’re time consuming and may require additional
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packages. You can force building with devtools::install_github(build_

vignettes = TRUE). This will also install all suggested packages.

Advice for Writing Vignettes
“If you’re thinking without writing, you only think you’re thinking.”
—Leslie Lamport

When writing a vignette, you’re teaching someone how to use your package. You
need to put yourself in the readers’ shoes, and adopt a “beginner’s mind.” This can be
difficult because it’s hard to forget all of the knowledge that you’ve already internal‐
ized. For this reason, I find teaching in person a really useful way to get feedback on
my vignettes. In addition to receiving immediate feedback, it’s also a much easier way
to learn what people already know.

A useful side effect of this approach is that it helps you improve your code. It forces
you to re-see the initial onboarding process and to appreciate the parts that are hard.
Every time that I’ve written text that describes the initial experience, I’ve realized that
I’ve missed some important functions. Adding those functions not only helps my
users, but it often also helps me! (This is one of the reasons that I like writing books.)

You should also check out the following resources:

• I strongly recommend literally anything written by Kathy Sierra. Her old blog
Creating Passionate Users is full of advice about programming, teaching, and
how to create valuable tools. I thoroughly recommend reading through all the
older content. Her new blog, Serious Pony, doesn’t have as much content, but it
has some great articles.

• If you’d like to learn how to write better, I highly recommend Style: Lessons in
Clarity and Grace by Joseph M. Williams and Joseph Bizup. It helps you under‐
stand the structure of writing so that you’ll be better able to recognize and fix bad
writing.

Writing a vignette also makes a nice break from coding. In my experience, writing
uses a different part of the brain from programming, so if you’re sick of program‐
ming, try writing for a bit. (This is related to the idea of structured procrastination.)

Organization
For simpler packages, one vignette is often sufficient. But for more complicated pack‐
ages, you may actually need more than one. In fact, you can have as many vignettes as
you like. I tend to think of them like chapters of a book—they should be self-
contained, but still link together into a cohesive whole.
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Although it’s a slight hack, you can link various vignettes by taking advantage of how
files are stored on disk: to link to vignette abc.Rmd, just make a link to abc.html.

CRAN Notes
Note that because you build vignettes locally, CRAN only receives the HTML/PDF
and the source code. However, CRAN does not rebuild the vignette. It only checks
that the code is runnable (by running it). This means that any packages used by the
vignette must be declared in the DESCRIPTION. But this also means that you can use
R Markdown (which uses pandoc) even though CRAN doesn’t have pandoc installed.

Some common problems include the following:

• The vignette builds interactively, but when checking, it fails with an error about a
missing package that you know is installed. This means that you’ve forgotten to
declare that dependency in the DESCRIPTION (usually it should go in
Suggests).

• Everything works interactively, but the vignette doesn’t show up after you’ve
installed the package. One of the following may have occurred. First, because
RStudio’s “Build & Reload” doesn’t build vignettes, you may need to run dev
tools::install() instead. Next, check the following:
— Is the directory called vignettes/ and not vignette/?
— Have you inadvertently excluded the vignettes with .Rbuildignore?
— Do you have the necessary vignette metadata?

• If you use error = TRUE, you must use purl = FALSE.

You’ll need to watch the file size. If you include a lot of graphics, it’s easy to create a
very large file. There are no hard-and-fast rules, but if you have a very large vignette,
be prepared to either justify the file size or to make it smaller.

Where to Go Next
If you’d like more control over the appearance of your vignette, you’ll need to learn
more about R Markdown. The R Markdown website is a great place to start. There
you can learn about alternative output formats (like LaTex and PDF) and how you
can incorporate raw HTML and LaTeX if you need additional control.

If you write a nice vignette, consider submitting it to the Journal of Statistical Software
or The R Journal. Both journals are electronic only and peer reviewed. Comments
from reviewers can be very helpful for improving the quality of your vignette and the
related software.
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CHAPTER 7

Testing

Testing  is a vital part of package development. It ensures that your code does what
you want it to do. Testing, however, adds an additional step to your development
workflow. The goal of this chapter is to show you how to make this task easier and
more effective by doing formal automated testing using the testthat package.

Up until now, your workflow probably looked like this:

1. Write a function.
2. Load it with Ctrl/Cmd-Shift-L or devtools::load_all().
3. Experiment with it in the console to see if it works.
4. Rinse and repeat.

Although you are testing your code in this workflow, you’re only doing it informally.
The problem with this approach is that when you come back to this code in three
months’ time to add a new feature, you’ve probably forgotten some of the informal
tests you ran the first time around. This makes it very easy to break code that used to
work.

I started using automated tests because I discovered I was spending too much time
refixing bugs that I’d already fixed before. While writing code or fixing bugs, I’d per‐
form interactive tests to make sure the code worked. But I never had a system that
could store those tests so I could rerun them as needed. I think that this is a common
practice among R programmers. It’s not that you don’t test your code, it’s that you
don’t automate your tests.

In this chapter, you’ll learn how to graduate from using informal ad hoc testing, done
at the command line, to formal automated testing (aka unit testing). While turning
casual interactive tests into reproducible scripts requires a little more work up front,
it pays off in four ways:
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Fewer bugs
Because you’re explicit about how your code should behave, you will have fewer
bugs. The reason why is a bit like the reason double entry bookkeeping works:
because you describe the behavior of your code in two places, both in your code
and in your tests, you are able to check one against the other. By following this
approach to testing, you can be sure that bugs that you’ve fixed in the past will
never come back to haunt you.

Better code structure
Code that’s easy to test is usually better designed. This is because writing tests
forces you to break up complicated parts of your code into separate functions
that can work in isolation. This reduces duplication in your code. As a result,
functions will be easier to test, understand, and work with (it’ll be easier to com‐
bine them in new ways).

Easier restarts
If you always finish a coding session by creating a failing test (e.g., for the next
feature you want to implement), testing makes it easier for you to pick up where
you left off: your tests will let you know what to do next.

Robust code
If you know that all the major functionality of your package has an associated
test, you can confidently make big changes without worrying about accidentally
breaking something. For me, this is particularly useful when I think I have a sim‐
pler way to accomplish a task (usually the reason my solution is simpler is that
I’ve forgotten an important use case!).

If you’re familiar with unit testing in other languages, you should note that there are
some fundamental differences with testthat. This is because R is, at heart, more a
functional programming language than an object-oriented (OO) programming lan‐
guage. For instance, because R’s main OO systems (S3 and S4) are based on generic
functions (i.e., methods belong to functions not classes), testing approaches built
around objects and methods don’t make much sense.

Test Workflow
To set up your package to use testthat, run the following:

devtools::use_testthat()

This will:

1. Create a tests/testthat directory.
2. Add testthat to the Suggests field in the DESCRIPTION.
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3. Create a file tests/testthat.R that runs all your tests are when R CMD check runs.
(You’ll learn more about that in Chapter 14.)

Once you’re set up, the workflow is simple:

1. Modify your code or tests.
2. Test your package with Ctrl/Cmd-Shift-T or devtools::test().
3. Repeat until all tests pass.

The testing output looks like this:

Expectation : ...........
rv : ...
Variance : ....123.45.

Each line represents a test file. Each . represents a passed test. Each number repre‐
sents a failed test. The numbers index into a list of failures that provides more details:

1. Failure(@test-variance.R#22): Variance correct for discrete uniform rvs -----
VAR(dunif(0, 10)) not equal to var_dunif(0, 10)
Mean relative difference: 3

2. Failure(@test-variance.R#23): Variance correct for discrete uniform rvs -----
VAR(dunif(0, 100)) not equal to var_dunif(0, 100)
Mean relative difference: 3.882353

Each failure gives a description of the test (e.g., “Variance correct for discrete uniform
rvs”), its location (e.g., “@test-variance.R#22”), and the reason for the failure (e.g.,
“VAR(dunif(0, 10)) not equal to var_dunif(0, 10)”). The goal is to pass all the tests.

Test Structure
A test file lives in tests/testthat. Its name must start with test. Here’s an example of a
test file from the stringr package:

library(stringr)
context("String length")

test_that("str_length is number of characters", {
  expect_equal(str_length("a"), 1)
  expect_equal(str_length("ab"), 2)
  expect_equal(str_length("abc"), 3)
})

test_that("str_length of factor is length of level", {
  expect_equal(str_length(factor("a")), 1)
  expect_equal(str_length(factor("ab")), 2)
  expect_equal(str_length(factor("abc")), 3)
})
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test_that("str_length of missing is missing", {
  expect_equal(str_length(NA), NA_integer_)
  expect_equal(str_length(c(NA, 1)), c(NA, 1))
  expect_equal(str_length("NA"), 2)
})

Tests are organized hierarchically: expectations are grouped into tests, which are
organized in files:

• An expectation is the atom of testing. It describes the expected result of a compu‐
tation: Does it have the right value and right class? Does it produce error mes‐
sages when it should? An expectation automates visual checking of results in the
console. Expectations are functions that start with expect_.

• A  test groups together multiple expectations to test the output from a simple
function, a range of possibilities for a single parameter from a more complicated
function, or tightly related functionality from across multiple functions. This is
why they are sometimes called unit, as they test one unit of functionality. A test is
created with test_that().

• A file groups together multiple related tests. Files are given a human-readable
name with context().

Expectations are described in detail in the next section.

Expectations
An expectation is the finest level of testing. It makes a binary assertion about whether
or not a function call does what you expect. All expectations have a similar structure:

• They start with expect_.
• They have two arguments: the first is the actual result, the second is what you

expect.
• If the actual and expected results don’t agree, testthat throws an error.

While you’ll normally put expectations inside tests inside files, you can also run them
directly. This makes it easy to explore expectations interactively. There are almost 20
expectations in the testthat package. The most important are discussed here.

There are two basic ways to test for equality: expect_equal() and expect_identi
cal(). expect_equal() is the most commonly used; it uses all.equal() to check for
equality within a numerical tolerance:

expect_equal(10, 10)
expect_equal(10, 10 + 1e-7)
expect_equal(10, 11)
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#> Error: 10 not equal to 11
#> Mean relative difference: 0.09090909

If you want to test for exact equivalence, or need to compare a more exotic object like
an environment, use expect_identical(). It’s built on top of identical():

expect_equal(10, 10 + 1e-7)
expect_identical(10, 10 + 1e-7)
#> Error: 10 is not identical to 10 + 1e-07. Differences: 
#> Objects equal but not identical

expect_match() matches a character vector against a regular expression. The
optional all argument controls whether all elements or just one element needs to
match. This is powered by grepl() (additional arguments like ignore.case = FALSE
or fixed = TRUE are passed on down):

string <- "Testing is fun!"

expect_match(string, "Testing") 
# Fails, match is case-sensitive
expect_match(string, "testing")
#> Error: string does not match 'testing'. Actual value: "Testing is fun!"

# Additional arguments are passed to grepl:
expect_match(string, "testing", ignore.case = TRUE)

Three variations of expect_match() let you check for other types of result:
expect_output() inspects printed output; expect_message() inspects messages;
expect_warning() inspects warnings; and expect_error() inspects errors. For
example:

a <- list(1:10, letters)

expect_output(str(a), "List of 2")
expect_output(str(a), "int [1:10]", fixed = TRUE)

expect_message(library(mgcv), "This is mgcv")

With expect_message(), expect_warning(), and expect_error() you can leave the
second argument blank if you just want to see if a message, warning, or error is cre‐
ated. However, it’s normally better to be explicit, and provide some text from the
message:

expect_warning(log(-1))
expect_error(1 / "a") 

# But always better to be explicit
expect_warning(log(-1), "NaNs produced")
expect_error(1 / "a", "non-numeric argument")

# Failure to produce a warning or error when expected is an error
expect_warning(log(0))
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#> Error: log(0) no warnings given
expect_error(1 / 2) 
#> Error: 1/2 code did not generate an error

expect_is() checks that an object inherit()s from a specified class:

model <- lm(mpg ~ wt, data = mtcars)
expect_is(model, "lm")
expect_is(model, "glm")
#> Error: model inherits from lm not glm

expect_true() and expect_false() are useful catchalls if none of the other expecta‐
tions do what you need.

Sometimes you don’t know exactly what the result should be, or it’s too complicated
to easily re-create in code. In that case, the best you can do is check that the result is
the same as last time. expect_equal_to_reference() caches the result the first time
it’s run, and then compares it to subsequent runs. If for some reason the result does
change, just delete the cache (*) file and retest.

Running a sequence of expectations is useful because it ensures that your code
behaves as expected. You could even use an expectation within a function to check
that the inputs are what you expect. However, they’re not so useful when something
goes wrong. All you know is that something is not as expected. You don’t know the
goal of the expectation. Tests, described next, organize expectations into coherent
blocks that describe the overall goal of a set of expectations.

Writing Tests
Each test should have an informative name and cover a single unit of functionality.
The idea is that when a test fails, you’ll know what’s wrong and where in your code to
look for the problem. You create a new test using test_that(), with the test name
and code block as arguments. The test name should complete the sentence “Test that
…”. The code block should be a collection of expectations.

It’s up to you how to organize your expectations into tests. The main thing is that the
message associated with the test should be informative so that you can quickly nar‐
row down the source of the problem. Try to avoid putting too many expectations in
one test—it’s better to have many smaller tests than a small handful of larger tests.

Each test is run in its own environment and is self-contained. However, testthat
doesn’t know how to clean up after actions affect the R landscape:

• The filesystem: Creating and deleting files, changing the working directory, and
so on

• The search path: library(), attach()
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• Global options: options() and par()

When you use these actions in tests, you’ll need to clean up after yourself. While
many other testing packages have setup and teardown methods that are run automat‐
ically before and after each test, these are not so important with testthat because you
can create objects outside of the tests and you can rely on R’s copy-on-modify seman‐
tics to keep them unchanged between test runs. To clean up other actions, you can
use regular R functions.

What to Test
“Whenever you are tempted to type something into a print statement or a debugger
expression, write it as a test instead.”
—Martin Fowler

There is a fine balance to writing tests. Each test that you write makes your code less
likely to change inadvertently; but it also can make it harder to change your code on
purpose. It’s hard to give good general advice about writing tests, but you might find
these points helpful:

• Focus on testing the external interface to your functions—if you test the internal
interface, then it’s harder to change the implementation in the future because as
well as modifying the code, you’ll also need to update all the tests.

• Strive to test each behavior in one and only one test. If a particular behavior
changes at a later point, you only need to update a single test.

• Avoid testing simple code that you’re confident will work. Instead, focus your
time on code that you’re not sure about, and code that is fragile or has compli‐
cated interdependencies. That said, I often find I make the most mistakes when I
falsely assume that the problem is simple and doesn’t need any tests.

• Always write a test when you discover a bug. You may find it helpful to adopt the
test-first philosophy. There you always start by writing the tests, and then write
the code that makes them pass. This reflects an important problem-solving strat‐
egy: start by establishing your success criteria, how you know if you’ve solved the
problem.

Skipping a Test
Sometimes it’s impossible to perform a test—you may not have an Internet connec‐
tion or you may be missing an important file. Unfortunately, another likely reason
follows from this simple rule: the more machines you use to write your code, the
more likely it is that you won’t be able to run all of your tests. In short, there are times
when, instead of getting a failure, you just want to skip a test. To do that, you can use
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the skip() function—rather than throwing an error it simply prints an S in the
output:

check_api <- function() {
  if (not_working()) {
    skip("API not available")
  }
}

test_that("foo api returns bar when given baz", {
  check_api()
  ...
})

Building Your Own Testing Tools
As you start to write more tests, you might notice duplication in your code. For
example, the following code shows one test of the floor_date() function from
library(lubridate). There are seven expectations that check the results of rounding
a date down to the nearest second, minute, hour, and so on. There’s a lot of duplica‐
tion (which increases the chance of bugs), so we might want to extract common
behavior into a new function:

library(lubridate)
test_that("floor_date works for different units", {
  base <- as.POSIXct("2009-08-03 12:01:59.23", tz = "UTC")

  expect_equal(floor_date(base, "second"), 
    as.POSIXct("2009-08-03 12:01:59", tz = "UTC"))
  expect_equal(floor_date(base, "minute"), 
    as.POSIXct("2009-08-03 12:01:00", tz = "UTC"))
  expect_equal(floor_date(base, "hour"),   
    as.POSIXct("2009-08-03 12:00:00", tz = "UTC"))
  expect_equal(floor_date(base, "day"),    
    as.POSIXct("2009-08-03 00:00:00", tz = "UTC"))
  expect_equal(floor_date(base, "week"),   
    as.POSIXct("2009-08-02 00:00:00", tz = "UTC"))
  expect_equal(floor_date(base, "month"),  
    as.POSIXct("2009-08-01 00:00:00", tz = "UTC"))
  expect_equal(floor_date(base, "year"),   
    as.POSIXct("2009-01-01 00:00:00", tz = "UTC"))
})

I’d start by defining a couple of helper functions to make each expectation more con‐
cise. That allows each test to fit on one line, so you can line up actual and expected
values to make it easier to see the differences:

test_that("floor_date works for different units", {
  base <- as.POSIXct("2009-08-03 12:01:59.23", tz = "UTC")
  floor_base <- function(unit) floor_date(base, unit)
  as_time <- function(x) as.POSIXct(x, tz = "UTC")
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  expect_equal(floor_base("second"), as_time("2009-08-03 12:01:59"))
  expect_equal(floor_base("minute"), as_time("2009-08-03 12:01:00"))
  expect_equal(floor_base("hour"),   as_time("2009-08-03 12:00:00"))
  expect_equal(floor_base("day"),    as_time("2009-08-03 00:00:00"))
  expect_equal(floor_base("week"),   as_time("2009-08-02 00:00:00"))
  expect_equal(floor_base("month"),  as_time("2009-08-01 00:00:00"))
  expect_equal(floor_base("year"),   as_time("2009-01-01 00:00:00"))
})

We could go a step further and create a custom expectation function:

base <- as.POSIXct("2009-08-03 12:01:59.23", tz = "UTC")

expect_floor_equal <- function(unit, time) {
  expect_equal(floor_date(base, unit), as.POSIXct(time, tz = "UTC"))
}
expect_floor_equal("year", "2009-01-01 00:00:00")

However, if the expectation fails, this doesn’t give very informative output:

expect_floor_equal("year", "2008-01-01 00:00:00")
#> Error: floor_date(base, unit) not equal to as.POSIXct(time, tz = "UTC")
#> Mean absolute difference: 31622400

Instead, you can use a little nonstandard evaluation to produce something more
informative. The key is to use bquote() and eval(). In the following bquote() call,
note the use of .(x)—the contents of () will be inserted into the call:

expect_floor_equal <- function(unit, time) {
  as_time <- function(x) as.POSIXct(x, tz = "UTC")
  eval(bquote(expect_equal(floor_date(base, .(unit)), as_time(.(time)))))
}
expect_floor_equal("year", "2008-01-01 00:00:00")
#> Error: floor_date(base, "year") not equal to as_time("2008-01-01 00:00:00")
#> Mean absolute difference: 31622400

This sort of refactoring is often worthwhile because removing redundant code makes
it easier to see what’s changing. Readable tests give you more confidence that they’re
correct:

test_that("floor_date works for different units", {
  as_time <- function(x) as.POSIXct(x, tz = "UTC")
  expect_floor_equal <- function(unit, time) {
    eval(bquote(expect_equal(floor_date(base, .(unit)), as_time(.(time)))))
  }

  base <- as_time("2009-08-03 12:01:59.23")
  expect_floor_equal("second", "2009-08-03 12:01:59")
  expect_floor_equal("minute", "2009-08-03 12:01:00")
  expect_floor_equal("hour",   "2009-08-03 12:00:00")
  expect_floor_equal("day",    "2009-08-03 00:00:00")
  expect_floor_equal("week",   "2009-08-02 00:00:00")
  expect_floor_equal("month",  "2009-08-01 00:00:00")
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  expect_floor_equal("year",   "2009-01-01 00:00:00")
})

Test Files
The highest-level structure of tests is the file. Each file should contain a single con
text() call that provides a brief description of its contents. Just like the files in the R/
directory, you are free to organize your tests any way that you like. But again, the two
extremes are clearly bad (all tests in one file, one file per test). You need to find a
happy medium that works for you. A good starting place is to have one file of tests for
each complicated function.

CRAN Notes
CRAN will run your tests on all CRAN platforms: Windows, Mac, Linux, and Solaris.
There are a few things to bear in mind:

• Tests need to run relatively quickly—aim for under a minute. Place
skip_on_cran() at the beginning of long-running tests that shouldn’t be run on
CRAN—they’ll still be run locally, but not on CRAN.

• Note that tests are always run in the English language (LANGUAGE=EN) and with C
sort order (LC_COLLATE=C). This minimizes spurious differences between
platforms.

• Be careful about testing things that are likely to be variable on CRAN machines.
It’s risky to test how long something takes (because CRAN machines are often
heavily loaded) or to test parallel code (because CRAN runs multiple package
tests in parallel, multiple cores will not always available). Numerical precision can
also vary across platforms (it’s often less precise on 32-bit versions of R), so use
expect_equal() rather than expect_identical().
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CHAPTER 8

Namespace

The package namespace (as recorded in the NAMESPACE file) is one of the more
confusing parts of building a package. It’s a fairly advanced topic, and by and large,
not that important if you’re only developing packages for yourself. However, under‐
standing namespaces is vital if you plan to submit your package to CRAN. This is
because CRAN requires that your package plays nicely with other packages.

When you first start using namespaces, it’ll seem like a lot of work for little gain.
However, having a high-quality namespace helps encapsulate your package and
makes it self-contained. This ensures that other packages won’t interfere with your
code, that your code won’t interfere with other packages, and that your package
works regardless of the environment in which it’s run.

Motivation
As the name suggests, namespaces provide “spaces” for “names.” They provide a con‐
text for looking up the value of an object associated with a name.

Without knowing it, you’ve probably already used namespaces. For example, have
you ever used the :: operator? It disambiguates functions with the same name. For
example, both plyr and Hmisc provide a summarize() function. If you load plyr, then
Hmisc, summarize() will refer to the Hmisc version. But if you load the packages in
the opposite order, summarize() will refer to the plyr version. This can be confusing.
Instead, you can explicitly refer to specific functions: Hmisc::summarize() and
plyr::summarize(). Then the order in which the packages are loaded won’t matter.

Namespaces make your packages self-contained in two ways: the imports and the
exports. The imports defines how a function in one package finds a function in
another. To illustrate, consider what happens when someone changes the definition
of a function that you rely on—for example, the simple nrow() function in base R:
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nrow
#> function (x) 
#> dim(x)[1L]
#> <bytecode: 0x1f681a0>
#> <environment: namespace:base>

It’s defined in terms of dim(). So what will happen if we override dim() with our own
definition? Does nrow() break?

dim <- function(x) c(1, 1)
dim(mtcars)
#> [1] 1 1
nrow(mtcars)
#> [1] 32

Surprisingly, it does not! That’s because when nrow() looks for an object called dim(),
it uses the package namespace, so it finds dim() in the base environment, not the
dim() we created in the global environment.

The exports helps you avoid conflicts with other packages by specifying which func‐
tions are available outside of your package (internal functions are available only
within your package and can’t easily be used by another package). Generally, you
want to export a minimal set of functions; the fewer you export, the smaller the
chance of a conflict. Although conflicts aren’t the end of the world (because you can
always use :: to disambiguate), they’re best avoided where possible because it makes
the lives of your users easier.

Search Path
To understand why namespaces are important, you need a solid understanding of 
search paths. To call a function, R first has to find it. R does this by first looking in the
global environment. If R doesn’t find it there, it looks in the search path, the list of all
the packages you have attached. You can see this list by running search(). For exam‐
ple, here’s the search path for the code in this book:

search()
#>  [1] ".GlobalEnv"        "package:methods"   "package:bookdown" 
#>  [4] "package:rmarkdown" "package:stats"     "package:graphics" 
#>  [7] "package:grDevices" "package:utils"     "package:datasets" 
#> [10] "Autoloads"         "package:base"

There’s an important difference between loading and attaching a package. Normally
when you talk about loading a package you think of library(), but that actually
attaches the package.

Loading an installed package will load code, data, and any DLLs; register S3 and S4
methods; and run the .onLoad() function. After loading, the package is available in
memory, but it’s on the search path. That means you can’t access its components
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without using ::. There are two ways to load a package. The most common is to
use ::, which automatically loads a package if needed. It’s also possible to explicitly
load a package with requireNamespace() or loadNamespace(), but this is rarely
needed.

Attaching a loaded package puts it in the search path. The most common way to
attach a package is with library() or require(), which automatically load the pack‐
age if needed. You can see the currently attached packages with search().

If a package isn’t installed, loading (and hence attaching) will fail with an error.

To see the differences more clearly, consider two ways of running expect_that()
from the testthat package. If we use library(), testthat is attached to the search path.
If we use ::, it’s not:

old <- search()
testthat::expect_equal(1, 1)
setdiff(search(), old)
#> character(0)
expect_true(TRUE)
#> Error in eval(expr, envir, enclos): could not find function "expect_true"
    
library(testthat)
expect_equal(1, 1)
setdiff(search(), old)
#> [1] "package:testthat"
expect_true(TRUE)

There are four functions that make a package available, as listed in the following
table. They differ based on whether they load or attach, and what happens if the pack‐
age is not found (i.e., throws an error or returns FALSE):

 Throws error Returns FALSE

Load loadNamespace("x") requireNamespace("x", quietly = TRUE)

Attach library(x) require(x, quietly = TRUE)

Of the four, you should only ever use two:

• Use library(x) in data analysis scripts. It will throw an error if the package is
not installed, and will terminate the script. You want to attach the package to save
typing. Never use library() in a package.

• Use requireNamespace(x, quietly = TRUE) inside a package if you want a spe‐
cific action (e.g., throw an error) depending on whether or not a suggested pack‐
age is installed.
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You never need to use require() (requireNamespace() is almost always better), or
loadNamespace() (which is only needed for internal R code). You should never use
require() or library() in a package: instead, use the Depends or Imports fields in
the DESCRIPTION.

Now’s a good time to come back to an important issue that we glossed over earlier.
What’s the difference between Depends and Imports in the DESCRIPTION? When
should you use one or the other?

Listing a package in either Depends or Imports ensures that it’s installed when
needed. The main difference is that where Imports just loads the package, Depends
attaches it.There are no other differences. The rest of the advice in this chapter applies
whether or not the package is in Depends or Imports.

Unless there is a good reason otherwise, you should always list packages in Imports,
not Depends. That’s because a good package is self-contained, and minimizes changes
to the global environment (including the search path). The only exception is if your
package is designed to be used in conjunction with another package. For example, the
analogue package builds on top of vegan. It’s not useful without vegan, so it has vegan
in Depends instead of Imports.

Now that you understand the importance of the namespace, let’s dive into the nitty-
gritty details. The two sides of the package namespace, imports and exports, are both
described by the NAMESPACE file. You’ll learn what this file looks like in the next
section. In the section after that, you’ll learn the details of exporting and importing
functions and other objects.

The NAMESPACE
The following code is an excerpt of the NAMESPACE file from the testthat package:

# Generated by roxygen2 (4.0.2): do not edit by hand
S3method(as.character,expectation)
S3method(compare,character)
export(auto_test)
export(auto_test_package)
export(colourise)
export(context)
exportClasses(ListReporter)
exportClasses(MinimalReporter)
importFrom(methods,setRefClass)
useDynLib(testthat,duplicate_)
useDynLib(testthat,reassign_function)

You can see that the NAMESPACE file looks a bit like R code. Each line contains a
directive: S3method(), export(), exportClasses(), and so on. Each directive

84 | Chapter 8: Namespace

https://github.com/gavinsimpson/analogue
https://github.com/vegandevs/vegan


describes an R object, and says whether it’s exported from this package to be used by
others, or if it’s imported from another package to be used locally.

In total, there are 10 namespace directives. Five describe exports:

export()

Export functions (including S3 and S4 generics)

exportPattern()

Export all functions that match a pattern

exportClasses() and exportMethods()
Export S4 classes and methods

S3method()

Export S3 methods

And five describe imports:

import()

Import all functions from a package

importFrom()

Import selected functions (including S4 generics)

importClassesFrom() and importMethodsFrom()
Import S4 classes and methods

useDynLib()

Import a function from C (this is described in more detail in Chapter 10)

I don’t recommend writing these directives by hand. Instead, in this chapter, you’ll
learn how to generate the NAMESPACE file with roxygen2. There are three main
advantages to using roxygen2:

• Namespace definitions live next to their associated functions, so when you read
the code it’s easier to see what’s being imported and exported.

• Roxygen2 abstracts away some of the details of NAMESPACE. You only need to
learn one tag, @export, which will automatically generate the right directive for
functions, S3 methods, S4 methods, and S4 classes.

• Roxygen2 keeps NAMESPACE tidy. No matter how many times you use @import
From foo bar, you’ll only get one importFrom(foo, bar) in your NAMESPACE.
This makes it easy to attach import directives to every function that needs them,
rather than trying to manage in one central place.

Note that you can choose to use roxygen2 to generate just NAMESPACE, just man/
*.Rd, or both. If you don’t use any namespace-related tags, roxygen2 won’t touch
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NAMESPACE. If you don’t use any documentation-related tags, roxygen2 won’t touch
man/.

Workflow
Generating the namespace with roxygen2 is just like generating function documenta‐
tion with roxygen2. You use roxygen2 blocks (starting with #') and tags (starting
with @). The workflow is the same:

1. Add roxygen comments to your .R files.
2. Run devtools::document() (or press Ctrl/Cmd-Shift-D in RStudio) to convert

roxygen comments to .Rd files.
3. Look at NAMESPACE and run tests to check that the specification is correct.
4. Rinse and repeat until the correct functions are exported.

Exports
For a function to be usable outside of your package, you must export it. When you
create a new package with devtools::create(), it produces a temporary NAME‐
SPACE that exports everything in your package that doesn’t start with . (a single
period). If you’re just working locally, it’s fine to export everything in your package.
However, if you’re planning on sharing your package with others, it’s a really good
idea to only export needed functions. This reduces the chances of a conflict with
another package.

To export an object, put @export in its roxygen block. For example:

#' @export
foo <- function(x, y, z) {
  ...
}

This will then generate export(), exportMethods(), exportClass(), or S3method()
depending on the type of the object.

You export functions that you want other people to use. Exported functions must be
documented, and you must be cautious when changing their interface—other people
are using them! Generally, it’s better to export too little than too much. It’s easy to
export things that you didn’t before; it’s hard to stop exporting a function because it
might break existing code. Always err on the side of caution, and simplicity. It’s easier
to give people more functionality than it is to take away stuff they’re used to.

I believe that packages that have a wide audience should strive to do one thing and do
it well. All functions in a package should be related to a single problem (or a set of

86 | Chapter 8: Namespace



closely related problems). Any functions not related to that purpose should not be
exported. For example, most of my packages have a utils.R file that contains many
small functions that are useful for me, but aren’t part of the core purpose of those
packages. I never export these functions:

# Defaults for NULL values
`%||%` <- function(a, b) if (is.null(a)) b else a

# Remove NULLs from a list
compact <- function(x) {
  x[!vapply(x, is.null, logical(1))]
}

That said, if you’re creating a package for yourself, it’s far less important to be so disci‐
plined. Because you know what’s in your package, it’s fine to have a local “misc” pack‐
age that contains a passel of functions that you find useful. But I don’t think you
should release such a package.

The following sections describe what you should export if you’re using S3, S4, or RC.

S3
If you want others to be able to create instances of an S3 class, @export the construc‐
tor function. S3 generics are just regular R functions, and you can @export them like
functions.

S3 methods represent the most complicated case, because there are four different
scenarios:

A method for an exported generic
In this case, export every method.

A method for an internal generic
Technically, you don’t need to export these methods. However, I recommend
exporting every S3 method you write, because it’s simpler and makes it less likely
that you’ll introduce hard-to-find bugs. Use devtools::missing_s3() to list all
S3 methods that you’ve forgotten to export.

A method for a generic in a required package
You’ll need to import the generic (described in “Imports” on page 88), and export
the method.

A method for a generic in a suggested package
Namespace directives must refer to available functions, so they cannot reference
suggested packages. It’s possible to use package hooks and code to add this at
runtime, but this is sufficiently complicated that I currently wouldn’t recommend
it. Instead, you’ll have to design your package dependencies in a way that avoids
this scenario.
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S4
For S4 classes, if you want others to be able to extend your class, @export it. If you
want others to create instances of your class but not to extend it, @export the con‐
structor function, not the class. For example:

# Can extend and create with new("A", ...)
#' @export
setClass("A")

# Can extend and create with new("B", ...). You can use B()
# to construct instances in your own code, but others cannot
#' @export
B <- setClass("B")

# Can create with C(...) and new("C", ...), but can't create
# a subclass that extends C
#' @export C
C <- setClass("C")

# Can extend and create with D(...) or new("D", ...)
#' @export D
#' @exportClass D
D <- setClass("D")

For S4 generics, @export if you want the generic to be publicly usable.

Finally, for S4 methods, you only need to @export methods for generics that you did
not define. But I think it’s a good idea to @export every method: that way you don’t
need to remember whether or not you created the generic.

RC
The principles used for S4 classes also apply for RC. Note that due to the way that RC
is currently implemented, it’s typically impossible for your classes to be extended out‐
side of your package.

Data
As you’ll learn in Chapter 9, files that live in data/ don’t use the usual namespace
mechanism and don’t need to be exported .

Imports
NAMESPACE also controls which external functions can be used by your package
without having to use ::.

It’s confusing that both DESCRIPTION (through the Imports field) and NAME‐
SPACE (through import directives) seem to be involved in imports. This is just an
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unfortunate choice of names. The Imports field really has nothing to do with func‐
tions imported into the namespace: it just makes sure the package is installed when
your package is. It doesn’t make functions available. You need to import functions in
exactly the same way regardless of whether or not the package is attached.

Depends is just a convenience for the user: if your package is attached, it also attaches
all packages listed in Depends. If your package is loaded, packages in Depends are
loaded, but not attached, so you need to qualify function names with :: or specifi‐
cally import them.

It’s common for packages to be listed in Imports in DESCRIPTION, but not in
NAMESPACE. In fact, this is what I recommend: list the package in DESCRIPTION
so that it’s installed, then always refer to it explicitly with pkg::fun(). Unless there is
a strong reason not to, it’s better to be explicit. It’s a little more work to write, but a lot
easier to read when you come back to the code in the future. The converse is not true.
Every package mentioned in NAMESPACE must also be present in the Imports or
Depends fields.

R Functions
If you are using just a few functions from another package, my recommendation is to
note the package name in the Imports: field of the DESCRIPTION file and call the
function(s) explicitly using :: (e.g., pkg::fun()).

If you are using functions repeatedly, you can avoid :: by importing the function 
with @importFrom pgk fun. This also has a small performance benefit, because ::
adds approximately 5 µs to function evaluation time.

Alternatively, if you are repeatedly using many functions from another package, you
can import all of them using @import package. This is the least recommended solu‐
tion because it makes your code harder to read (you can’t tell where a function is
coming from), and if you @import many packages, it increases the chance of conflict‐
ing function names.

S3
S3 generics are just functions, so the same rules for functions apply. S3 methods
always accompany the generic, so as long as you can access the generic (either implic‐
itly or explicitly), the methods will also be available. In other words, you don’t need to
do anything special for S3 methods. As long as you’ve imported the generic, all the
methods will also be available.
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S4
To use classes defined in another package, place @importClassesFrom package

ClassA ClassB ... next to the classes that inherit from the imported classes, or next
to the methods that implement a generic for the imported classes.

To use generics defined in another package, place @importMethodsFrom package
GenericA GenericB ... next to the methods that use the imported generics.

Because S4 is implemented in the methods package, you need to make sure it’s avail‐
able. This is easy to overlook because while the method package is always available in
the search path when you’re working interactively, it’s not automatically loaded by
Rscript, the tool often used to run R from the command line. There are two ways to
do so based on the version of R you’re targeting:

• Pre R 3.2.0: Depends: methods in DESCRIPTION
• Post R 3.2.0: Imports: methods in DESCRIPTION

You’ll be using a lot of functions from methods, so you’ll probably also want to import
the complete package with:

#' @imports methods
NULL

Or you might just want to import the most commonly used functions:

#' @importFrom methods setClass setGeneric setMethod setRefClass
NULL

Here I’m documenting NULL to make it clear that these directives don’t apply to just
one function. It doesn’t matter where they go, but if you have package docs, as
described in “Documenting Packages” on page 51, that’s a natural place to put them.

Compiled Functions
To make C/C++ functions available in R, see Chapter 10.

90 | Chapter 8: Namespace



CHAPTER 9

External Data

It’s often useful to include data in a package.  If you’re releasing the package to a
broad audience, it’s a way to provide compelling use cases for the package’s functions.
If you’re releasing the package to a more specific audience, interested either in the
data (e.g., NZ census data) or the subject (e.g., demography), it’s a way to distribute
that data along with its documentation (as long as your audience is R users).

There are three main ways to include data in your package, depending on what you
want to do with it and who should be able to use it:

• If you want to store binary data and make it available to the user, put it in data/.
This is the best place to put example datasets.

• If you want to store parsed data, but not make it available to the user, put it in R/
sysdata.rda. This is the best place to put data that your functions need.

• If you want to store raw data, put it in inst/extdata.

A simple alternative to these three options is to include it in the source of your pack‐
age, either creating by hand, or using dput() to serialize an existing dataset into R
code.

Each possible location is described in more detail in the following sections.

Exported Data
The most common location for package data is (surprise!) data/. Each file in this
directory should be an .RData file created by save() containing a single object (with
the same name as the file). The easiest way to adhere to these rules is to use dev
tools::use_data():
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x <- sample(1000)
devtools::use_data(x, mtcars)

It’s possible to use other types of files, but I don’t recommend it because .RData files
are already fast, small, and explicit. Other options are described in data(). For larger
datasets, you may want to experiment with the compression setting. The default is
bzip2, but sometimes gzip or xz can create smaller files (typically at the expense of
slower loading times).

If the DESCRIPTION contains LazyData: true, then datasets will be lazily loaded.
This means that they won’t occupy any memory until you use them. The following
example shows memory usage before and after loading the nycflights13 package. You
can see that memory usage doesn’t change until you inspect the flights dataset stored
inside the package:

pryr::mem_used()
#> 23.9 MB
library(nycflights13)
pryr::mem_used()
#> 24.1 MB

invisible(flights)
pryr::mem_used()
#> 59.4 MB

I recommend that you always include LazyData: true in your DESCRIPTION. dev
tools::create() does this for you.

Often, the data you include in data/ is a cleaned-up version of raw data you’ve gath‐
ered from elsewhere. I highly recommend taking the time to include the code used to
do this in the source version of your package. This will make it easy for you to update
or reproduce your version of the data. I suggest that you put this code in data-raw/.
You don’t need it in the bundled version of your package, so also add it to .Rbuil‐
dignore. You can do all this in one step with:

devtools::use_data_raw()

You can see this approach in practice in some of my recent data packages. I’ve been
creating these as packages because the data will rarely change, and because multiple
packages can then use them for examples:

• babynames
• fueleconomy
• nasaweather
• nycflights13
• usdanutrients
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Documenting Datasets
Objects in data/ are always effectively exported (they use a slightly different mecha‐
nism than NAMESPACE’s but the details are not important). This means that they
must be documented. Documenting data is like documenting a function, with a few
minor differences. Instead of documenting the data directly, you document the name
of the dataset. For example, the roxygen2 block used to document the diamonds data
in ggplot2 looks something like this:

#' Prices of 50,000 round cut diamonds
#'
#' A dataset containing the prices and other  
#' attributes of almost 54,000 diamonds
#'
#' @format A data frame with 53940 rows and 10 variables:
#' \describe{
#'   \item{price}{price, in US dollars}
#'   \item{carat}{weight of the diamond, in carats}
#'   ...
#' }
#' @source \url{http://www.diamondse.info/}
"diamonds"

There are two additional tags that are important for documenting datasets:

@format

This gives an overview of the dataset. For data frames, you should include a defi‐
nition list that describes each variable. It’s usually a good idea to describe vari‐
ables’ units here.

@source

This provides details of where you got the data, often a \url{}.

Never @export a dataset.

Internal Data
Sometimes functions need precomputed data tables. If you put these in data/, they’ll
also be available to package users, which is not appropriate. Instead, you can save
them in R/sysdata.rda. For example, two color-related packages, munsell and dichro‐
mat, use R/sysdata.rda to store large tables of color data.

You can use devtools::use_data() to create this file with the argument internal =
TRUE:

x <- sample(1000)
devtools::use_data(x, mtcars, internal = TRUE)
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Again, to make this data reproducible, it’s a good idea to include the code used to
generate it. Put it in data-raw/.

Objects in R/sysdata.rda are not exported (they shouldn’t be), so they don’t need to be
documented. They’re only available inside your package.

Raw Data
If you want to show examples of loading/parsing raw data, put the original files in
inst/extdata. When the package is installed, all files in inst/ are moved to the top-level
directory (so they can’t have names like R/ or DESCRIPTION). To refer to files in inst/
extdata (whether installed or not), use system.file(). For example, the testdat pack‐
age uses inst/extdata to store a UTF-8 encoded CSV file for use in examples:

system.file("extdata", "2012.csv", package = "testdat")
#> [1] "/usr/local/lib/R/site-library/testdat/extdata/2012.csv"

Beware: if the file does not exist, system.file() does not return an error—it just
returns the empty string:

system.file("extdata", "2010.csv", package = "testdat")
#> [1] ""

Other Data
Two other uses of data are:

Data for tests
It’s OK to put small files directly in your test directory. But remember unit tests
are for testing correctness, not performance, so keep the size small.

Data for vignettes
If you want to show how to work with an already loaded dataset, put that data in
data/. If you want to show how to load raw data, put that data in inst/extdata.

CRAN Notes
Generally, package data should be smaller than a megabyte—if it’s larger, you’ll need
to argue for an exemption. This is usually easier to do if the data is in its own package
and won’t be updated frequently. You should also make sure that the data has been
optimally compressed:

1. Run tools::checkRdaFiles() to determine the best compression for each file.
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2. Rerun devtools::use_data() with compress set to that optimal value. If you’ve
lost the code for re-creating the files, you can use tools::resaveRdaFiles() to
resave in place.
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CHAPTER 10

Compiled Code

R is a high-level, expressive language. But that expressivity comes at a price: speed.
That’s why incorporating a low-level, compiled language like C or C++ can power‐
fully complement your R code. Although C and C++ often require more lines of code
(and more careful thought) to solve the same problem, they can be orders of magni‐
tude faster than R.

Teaching you how to program in C or C++ is beyond the scope of the book. If you’d
like to learn, start with C++ and the Rcpp package. Rcpp makes it easy to connect C+
+ to R. I’d also recommend using RStudio because it has many tools that facilitate the
entire process. Start by reading my “High Performance Functions with Rcpp”, a freely
available book chapter from Advanced R: it gently introduces the language by trans‐
lating examples of familiar R code into C++. Next, check out the Rcpp book and the
other resources listed in learning more.

C++
To set up your package with Rcpp, run the following:

devtools::use_rcpp()

This will:

• Create an src/ directory to hold your .cpp files.
• Add Rcpp to the LinkingTo and Imports fields in the DESCRIPTION.
• Set up a .gitignore file to make sure you don’t accidentally check in any compiled

files (learn more about this in Chapter 13).
• Tell you the two roxygen tags you need to add to your package:
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#' @useDynLib your-package-name
#' @importFrom Rcpp sourceCpp
NULL

Workflow
Once you’re set up, the basic workflow should now be familiar:

1. Create a new C++ file, as illustrated in Figure 10-1.

Figure 10-1. Creating a new C++ file

The default template looks like this:
#include <Rcpp.h>
using namespace Rcpp;

// Below is a simple example of exporting a C++ function to R. You can
// source this function into an R session using the Rcpp::sourceCpp 
// function (or via the Source button on the editor toolbar)

// For more on using Rcpp click the Help button on the editor toolbar

// [[Rcpp::export]]
int timesTwo(int x) {
   return x * 2;
}

It includes a basic function and some instructions to get started. The two most
important parts are the header #includes, and the special attribute //

[[Rcpp::export]].
2. Generate the necessary modifications to your NAMESPACE by documenting

them with Ctrl/Cmd-Shift-D.
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3. Click Build & Reload in the build pane, or press Ctrl/Cmd-Shift-B. You can con‐
tinue to use the standard devtools::load_all() process, but it is more risky.
Because you’re loading and unloading C code, the chances of corrupting memory
are high, and you’re better off with the safer, but slower, Build & Reload, which
installs the package and then restarts R.

4. Run timesTwo(10) from the console to check that it works.

Behind the scenes, Build & Reload is doing a lot of work for you. Specifically, it does
the following:

• Sets up your R environment to compile code and warn you if you’re missing nec‐
essary pieces.

• Calls Rcpp::compileAttributes(). This inspects your .cpp functions looking for
attributes of the form // [[Rcpp::export]]. When it finds one, it generates the
code needed to make the function available in R, and creates src/RcppExports.cpp
and R/RcppExports.R. You should never modify these files by hand.

• Builds a dynamically linked library (DLL) and makes it available to R.

Documentation
Each exported C++ function automatically gets a wrapper function (it will be located
in R/RcppExports.R). For example, the R timesTwo() function looks as follows:

timesTwo <- function(x) {
  .Call('timesTwo', PACKAGE = 'mypackage', x)
}

This uses the base function .Call() to execute the C function timesTwo provided by
mypackage. You can use roxygen2 to document this like a regular R function. But
instead of using #' for comments, use //', the C++ convention:

//' Multiply a number by two
//' 
//' @param x A single integer.
//' @export
// [[Rcpp::export]]
int timesTwo(int x) {
   return x * 2;
}

That generates roxygen comments in R/RcppExports.R:

#' Multiply a number by two
#' 
#' @param x A single integer.
#' @export
timesTwo <- function(x) {
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  .Call('timesTwo', PACKAGE = 'mypackage', x)
}

The distinctions between the two export directives is important:

• [[Rcpp::export]] makes the C++ function available to R. If you have trouble
remembering the exact details, note that everything comes in twos: two \s, two
[s, two :s, and two ]s.

• @export makes the R wrapper function available outside your package by adding
it to the NAMESPACE.

Exporting C++ Code
To make your C++ code callable from C++ code in other packages, add the following:

// [[Rcpp::interfaces(r, cpp)]]

This will generate a header file called inst/include/mypackage.h that can be included
by other packages (the low-level details are described in “Exporting C Code” on page
104). See “Rcpp Attributes” for more details, including how to combine handwritten
and automatically generated header files.

Importing C++ Code
To use C++ code from another package, follow these steps:

1. In DESCRIPTION, add LinkingTo: otherPackage. Confusingly, this has noth‐
ing to do with the linker. It’s called LinkingTo because it adds otherPackage/
include to the include path, allowing you to dynamically “link to” other code via
the headers.

2. In the C++ file, add the following:
#include <otherPackage.h>

3. C++ functions from otherPackage will be included in the otherPackage name‐
space. Use otherPackage::foo() to access functions, or make them available
globally with using namespace otherPackage.

Best Practices
Here are some best practices to keep in mind:

• To print output, use Rcout << ... (not cout << ...). This prints to the right
place, which might be a GUI console or a file (if sink() is active).
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• In long-running loops, regularly run Rcpp::checkUserInterrupt(). This aborts
your C++ if the user has pressed Ctrl-C or Escape in R.

• Use the .h extension for headers and include files. (If you don’t, R CMD check will
complain.)

• Follow Martyn Plummer’s recommendations on Portable C++ for R Packages.
• Whenever you use C++ code in your package, you need to clean up after yourself

when your package is unloaded. Do this by writing an .onUnload() function that
unloads the DLL:

.onUnload <- function (libpath) {
  library.dynam.unload("mypackage", libpath)
}

• Use clang instead of gcc to compile your C++ code: it gives much better error
messages. You can make clang the default by creating an .R/Makevars file (Linux
and Mac) or an .R/Makevars.win file (Windows) in your home directory that
contains:

CXX=clang++

(If you don’t know where your home directory is, path.expand("~") will tell
you.)

• To speed up compilation on Linux or Mac, install ccache, then replace ~/.R/
Makevars with the following:

CC=ccache clang -Qunused-arguments
CXX=ccache clang++ -Qunused-arguments
CCACHE_CPP2=yes

C
If you’re writing new compiled code, it’s almost always better to use Rcpp. It’s less
work, more consistent, better documented, and it has better tools. However, there are
some reasons to choose C:

• You’re working with an older package that already uses the C API.
• You’re binding to an existing C library.

There are two ways to call C functions from R: .C() and .Call(). .C() is a quick-
and-dirty way to call a C function that doesn’t know anything about R, because .C()
automatically converts between R vectors and the corresponding C types. .Call() is
more flexible, but more work: your C function needs to use the R API to convert its
inputs to standard C data types.
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Getting Started with .Call()
To call a C function from R, you first need a C function! In an R package, C code lives
in .c files in src/. You’ll need to include two header files:

#include <R.h>
#include <Rinternals.h>

(Yes, including <Rinternals.h> seems like bad form. On top of that, doing so doesn’t
actually give you access to the “internal” internal API unless you set some additional
flags. The default just gives you access to the “public” internal API, which is both nec‐
essary and done for safety’s sake. Yes, this is confusing.)

These headers allow you to access R’s C API. Unfortunately, this API is not well docu‐
mented. I’d recommend starting with my notes at R’s C interface. After that, read
“The R API” in “Writing R Extensions.” A number of exported functions are not doc‐
umented, so you’ll also need to read the R source code to figure out the details.

Here’s the bare minimum you need to know: C functions that talk to R must use the
SEXP type for both inputs and outputs. SEXP, short for S expression, is the C struct
used to represent every type of object in R. A C function typically starts by converting
SEXPs to atomic C objects, and ends by converting C objects back to a SEXP. (The R
API is designed so that these conversions often don’t require copying.) The following
table lists the functions that convert length one R vectors to and from C scalars:

R type C type R -> C C -> R

Integer int asInteger(x) ScalarInteger(x)

Numeric double asReal(x) ScalarReal(x)

Logical int asLogical(x) ScalarLogical(x)

Character const char* CHAR(asChar(x)) mkString(x)

We now have enough information to write a simple C function that can add two
numbers:

#include <R.h>
#include <Rinternals.h>

SEXP add_(SEXP x_, SEXP y_) {
  double x = asReal(x_);
  double y = asReal(y_);
  
  double sum = x + y;
  
  return ScalarReal(sum);
}

We call this from R with .Call():
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#' @useDynLib mypackage add_
add <- function(x, y) .Call(add_, x, y)

Where does the first argument to .Call(), add_, come from? It comes from @useDyn
Lib, which creates a line in the NAMESPACE that looks like this:

useDynLib(mypackage, add_)

This directive instructs R to create an object called add_, which describes a C function
pointer:

mypackage:::add_
#> $name
#> [1] "add_"
#> 
#> $address
#> <pointer: 0x107be3f40>
#> $package
#> NULL
#> 
#> attr(,"class")
#> [1] "NativeSymbolInfo"

.Call() takes the pointer to a C function and calls it. All R objects have the same C
type (the SEXP); you need to make sure the arguments are of the type you expect.
Either do that in the R function, in the C function, or just accept that R will crash
every time you accidentally supply the wrong type of input.

The most complicated part of working with the .Call() interface is memory man‐
agement. Whenever you create an R-level data structure, you must PROTECT() it so
the garbage collector doesn’t try and free it, then UNPROTECT() it at the end of the
function. This topic is beyond the scope of this chapter, but you can learn more about
it at the “Creating and modifying vectors” section of “R’s C interface”.

Getting Started with .C()
.C() is simpler than .Call() and can be useful if you already have standard C code.
Because you never create R objects in .C(), you never need to worry about memory
management. To use it, you first write a void C function, using in-place modification
of function parameters to return values:

void add_(double* x, double* y, double* out) {
  out[0] = x[0] + y[0];
}

Then like .Call(), you create an R wrapper:

#' @mypackage src.c add_
add <- function(x, y) {
  .C(add_, x, y, numeric(1))[[3]]
}
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(Here we extract the third element of the result because that corresponds to the out
parameter.)

.C() automatically converts back and forth between R vectors and their C equiva‐
lents. The following table shows the R types and their C equivalents:

R type C type

Logical int*

Integer int*

Double double*

Character char**

Raw unsigned char*

Note that .C() assumes your function doesn’t know how to deal with missing values
and will throw an error if any arguments contain an NA. If it can correctly handle
missing values, set NAOK = TRUE in the call to .C().

You can learn more about .C() in its help, ?.C, or in R-extensions.

Workflow
The usual workflow still applies:

1. Modify the C code.
2. Build and reload the package with Ctrl/Cmd-Shift-B.
3. Experiment at the console.

The first time you add @useDynLib, you’ll also need to run devtools::document()
(Ctrl/Cmd-Shift-D) and reload the package.

Exporting C Code
R packages need to provide DLLs that can be relocated (i.e., DLLs that work regard‐
less of where they live on disk). This is because most R users don’t build packages
from source. Instead, they get binaries from CRAN that can get installed in many dif‐
ferent places. This need for relocatable DLLs adds a few more steps to the job of
importing and exporting C code for R packages (the same problem arises for C++,
but Rcpp attributes automate the manual steps described here).

R solves this problem using function registration. To export a .Call() C function, you
register it with R_RegisterCCallable(). To import a .Call() C function, you get a
pointer to it with R_GetCCallable(). Similar techniques are available for .C() C
functions, but are beyond the scope of this book. As we’ll see momentarily, a
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user-friendly package will do both these tasks, so users of the package can ignore the
details and simply include a header file.

Confusingly, there’s another type of function registration. Instead
of registering C functions using the namespace (i.e., @useDynLib
pkg fun), you can register them with R_registerRoutines() and
@useDynLib mypackage, .registration = TRUE. To learn the
details, read the “Registering native routines” section of “Writing R
extensions”.

To register a function, call R_RegisterCCallable(), defined in <R_ext/Rdynload.h>.
Function registration should be done in a function called R_init_<mypackage>. This
function is called automatically when the “mypackage” DLL is loaded. R_RegisterC
Callable() has three arguments:

• A pointer to the DLL
• The name of the function
• A pointer to the function, cast as DL_FUNC (i.e., a dynamically loaded function)

The following code registers the add() function defined earlier:

#include "add.h"
#include <R_ext/Rdynload.h>

void R_init_mypackage(DllInfo *info) {
  R_RegisterCCallable(info, "add_",  (DL_FUNC) &add_)
}

It doesn’t matter where this code lives, but it’s usually put in a file called src/
mypackage-init.c.

To access a registered function from another package, call R_GetCCallable(). It has
two arguments, the function name and the package name. It returns a function
pointer. The function pointer has no type information, so it should always be wrap‐
ped in a helper function that defines the inputs:

#include <R_ext/Rdynload.h>
#include <R.h>
#include <Rinternals.h>

SEXP add_(SEXP x, SEXP y) {
  static SEXP(fun*)(SEXP, SEXP) = NULL;
  if (fun == NULL)
    fun = (SEXP(*)(SEXP, SEXP)) R_GetCCallable("add", "mypackage");
  return fun(x, y);
}
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Rather than relying on each package that imports your C code to do this correctly,
you should instead do it for them. Write inst/include/mypackageAPI.h, which pro‐
vides a wrapper function for each exported function. A popular package that does
that is xts. Download the source package and look in the include/ directory to see
what it does.

Importing C Code
Using C code from another package varies based on how the package is implemented:

• If it uses the system described previously, all you need is LinkingTo: otherPack
age in the DESCRIPTION, and #include otherPackageAPI.h in the C file. 
(Remember LinkingTo is not about the linker, but actually affects the include
path.)

• If it registers the functions, but doesn’t provide a header file, you’ll need to write
the wrapper yourself. Because you’re not using any header files from the package,
use Imports and not LinkingTo. You also need to make sure the package is
loaded. You can do this by importing any function with @importFrom mypackage
foo, or by adding requireNamespace("mypackage", quietly = TRUE)

to .onLoad().
• If it doesn’t register the functions, you can’t use them. You’ll have to ask the

maintainer nicely or even provide a pull request.

Best Practices
Writing C code in R is a little different from writing C code outside of R. Here are
some best practices to keep in mind:

• Avoid calls to assert(), abort(), and exit(): these will kill the R process, not
just your C code. Instead, use error(), which is equivalent to calling stop() in R.

• To print output, use Rprintf(), not printf(). Doing so always prints to the right
place, whether it’s the GUI console or a file (if sink() is active).

• In long-running loops, regularly call R_CheckUserInterrupt() to allow the user
to interrupt the C code.

• Don’t use C’s random number generators (like rand() or random()). Instead, use
the C API to R’s rngs: unif_rand(), norm_rand(), etc. Note the caveats in
“Random number generation”—you must call GetRNGstate() before and PutRNG
state() after.

• Use the R macros ISNAN(x) and R_FINITE(x) to check for NaNs and infinite val‐
ues. These work on more platforms than the C99 isnan() and isfinite().
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• Like with C++, whenever you use C code in your package, you should unload the
DLL when the package is unloaded:

.onUnload <- function (libpath) {
  library.dynam.unload("mypackage", libpath)
}

• Use clang instead of gcc to compile your C code: it gives much better error mes‐
sages. You can make clang the default by creating an ~/.R/Makevars file that con‐
tains the following:

C=clang

Debugging Compiled Code
It’s possible, with a little extra work, to use an interactive debugger to debug your
C/C++ in the same way that you can use browser() and debug() to debug your R
code. Unfortunately, you won’t be able to use RStudio; you’ll have to run R from the
command line.

Open a shell (e.g., with Tools → Shell…) and start R by typing:

# If you compile with clang
R --debugger=lldb
# If you compile with gcc
R --debugger=gdb

This will start either lldb or gdb, the debuggers that work with code produced by
clang or gcc, respectively. Like R, lldb and gdb provide a run-eval-print loop (REPL)
in which you enter commands and then look at the results. In the examples that fol‐
low, I’ll show the results of lldb, which is what I use (the output from gdb is similar).
For each interactive command, I’ll tell you the explicit, but long, lldb command and
the short, but cryptic, gdb command. Because lldb understands all gdb commands,
you can choose to be explicit or terse.

Once you’ve started the debugger, start R by typing process start (lldb) or run
(gdb). Now when your C/C++ code crashes, you’ll be dumped into an interactive
debugger instead of getting a cryptic error message and a crash.

Let’s start with a simple C++ function that writes to memory it doesn’t “own”:

Rcpp::cppFunction("
bool mistake() {
  NumericVector x(1);
  int n = INT_MAX;
  x[n] = 0;
  return true;
}
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", plugins = "debug", verbose = TRUE, rebuild = TRUE)
mistake()

Use devtools::load_all() to load the current package. Then copy and paste the
code that creates the bug. Here’s a crash report from a package that I was working on:

Process 32743 stopped
* thread #1: tid = 0x1f79f6, 0x... gggeom.so...`
   frame #0: 0x0.. gggeom.so`vw_distance(x=..., y=...) + ... at vw-distance.cpp:54
   51        int prev_idx = prev[idx];
   52   
   53       next[prev[idx]] = next_idx;
-> 54       prev[next[idx]] = prev_idx;
   55       prev[idx] = -1;
   56       next[idx] = -1;
   57

It tells us that the crash occurred because of an EXC_BAD_ACCESS—this is one of the
most common types of crash in C/C++ code. Helpfully, lldb shows exactly which
line of C++ code caused the problem: vw-distance.cpp:54. Often, just knowing
where the problem occurs is enough to fix it. But we’re also now at an interactive
prompt. There are many commands you can run here to explore what’s going on.
These are the most useful:

• See a list of all commands: help.
• Show your location on the callstack with thread backtrace or bt. This will print

a list of calls leading up to the error, much like traceback() does in R. Navigate
the callstack with frame select <n> or frame <n>, or up and down.

• Evaluate the next expression with thread step-over or next, or step into it with
thread step-in or step. Continue executing the rest of the code with thread
step-out or finish.

• Show all variables defined in the current frame with frame variable or info
locals, or print the value of a single variable with frame variable <var> or p
<var>.

Instead of waiting for a crash to occur, you can also set breakpoints in your code. To
do so, start the debugger and run R. Then follow these steps:

1. Press Ctrl-C.
2. Type breakpoint set --file foo.c --line 12 or break foo.c:12.
3. Type process continue or c to go back to the R console. Now run the C code

you’re interested in, and the debugger will stop when it gets to the specified line.
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Finally, you can also use the debugger if your code is stuck in an infinite loop. Press
Ctrl-C to break into the debugger and you’ll see which line of code is causing the
problem.

Makefiles
Although makefiles are beyond the scope of this book, they are a useful tool. A good,
gentle introduction with a focus on reproducible research is Karl Broman’s “minimal
make”.

Generally, R packages should avoid a custom Makefile. Instead, use Makevars. Make
vars is a makefile that overrides the default makefile generated by R (which is located
at file.path(R.home("etc"), "Makeconf")). This allows you to take advantage of
R’s default behavior (it’s over 150 lines, and battle tested across many years and many
systems, so you want to!) while being able to set the flags you need. These are the
most commonly used flags:

PKG_LIBS

Linker flags. A common use is PKG_LIBS = $(BLAS_LIBS). This allows you to use
the same BLAS library as R.

PKG_CFLAGS and PKG_CXXFLAGS
C and C++ flags. Most commonly used to set define directives with -D.

PKG_CPPFLAGS

Preprocessor flags (not C++ flags!). Most commonly used to set include directo‐
ries with -I. Any package listed in the LinkingTo field in the DESCRIPTION will
be automatically included—you do not need to explicitly add it.

To set flags only on Windows, use Makevars.win. To build a Makevars with config
ure, use Makevars.in.

By default, R will use the system make, which is not always GNU compatible (i.e., on
Solaris). If you want to use GNU extensions (which are extremely common), add Sys
temRequirements: GNU make to DESCRIPTION. If you’re not sure if you’re using
GNU extensions, play it safe and add it to the system requirement.

Other Languages
It is possible to connect R to other languages, but the interfaces are not as nice as the
one for C++:

Fortran
It’s possible to call Fortran subroutines directly with .Fortran(), or via C or C++
with .Call(). See ?.Fortran and the R extensions manual for more details.
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Java
The rJava package makes it possible to call Java code from within R. Note that
unlike with C and C++, passing an R object to a Java call will involve a copy oper‐
ation, something that has serious performance implications.

Licensing
Because it’s common to use other people’s libraries when writing compiled code, you
need to make sure that your package license is compatible with the licenses of all
included code:

• The simplest solution is to use the same license as the included code. You can’t
relicense someone else’s code, so you may need to change your license.

• If you don’t want to use the same license, it’s best to stick with common cases
where the interactions are well known. For example, Various Licenses and Com‐
ments about Them describes what licenses are compatible with the GPL license.

In this case, your description should contain License: <main license> + FILE
license where <main license> is a license that is valid for the entire package (both
R and compiled code), and the license file describes the licenses of individual
components.

For nonstandard cases, you’ll need to consult a lawyer.

In all cases, make sure you include copyright and license statements from the original
code.

Development Workflow
When developing C or C++ code, it’s usually better to use RStudio’s Build & Reload
instead of devtools::load_all(). Your C objects persist between reloads with
`load_all()`, so if you change the way that data is stored in memory, then the old
objects won’t work with new code, and you’re likely to crash R.

CRAN Issues
Packages with compiled code are much more likely to have difficulties getting on
CRAN than those without. The reason? Your package must build from source on all
major platforms (Linux, Mac, and Windows). This is hard! Here are some tips:

• CRAN provides an automated service for checking R packages on Windows:
win-builder. You can easily access this by running devtools::build_win(),
which builds and uploads a package bundle.
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• I’ve tried to include the most important advice in this chapter, but I’d recommend
reading the entire section on writing portable C and C++ code in “Writing R
Extensions”.

• In exceptional circumstances, like binding to Windows-only functionality, you
may be able to opt out of the cross-platform requirement, but be prepared
to make a strong case for it.

The interface between CRAN’s automated and manual checking can be particularly
frustrating for compiled code. Requirements vary from submission to submission,
based on which maintainer you get and how much free time they have. The rules are
inconsistently applied, but if your package doesn’t pass, it’s better to bite the bullet
and make the change rather than trying to argue about it:

• Sometimes you will need to list all authors and copyright holders of included
code in the DESCRIPTION.

• Sometimes your package will need to work on Solaris. But due to the difficulty of
accessing a computer running Solaris, fixing Solaris issues can be hard. However,
you will be in a stronger negotiating position if the package has no problems on
other platforms.
One common gotcha: the gcc/clang flags -Wall, -pedantic, and -O0, do not
work with the default compiler on Solaris.
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CHAPTER 11

Installed Files

When a package is installed, everything in inst/ is copied into the top-level package
directory. In some sense inst/ is the opposite of .Rbuildignore—where .Rbuildignore
lets you remove arbitrary files and directories to the top level, inst/ lets you add them.
You are free to put anything you like in inst/ with one caution: because inst/ is copied
into the top-level directory, you should never use a subdirectory with the same name
as an existing directory. This means that you should avoid inst/build, inst/data, inst/
demo, inst/exec, inst/help, inst/html, inst/inst, inst/libs, inst/Meta, inst/man, inst/po,
inst/R, inst/src, inst/tests, inst/tools, and inst/vignettes.

This chapter discusses the most common files found in inst/:

• inst/AUTHOR and inst/COPYRIGHT: If the copyright and authorship of a pack‐
age is particularly complex, you can use plain-text files inst/COPYRIGHTS and
inst/AUTHORS to provide more information.

• inst/CITATION: How to cite the package, see “Package Citation” on page 114 for
details.

• inst/docs: This is an older convention for vignettes, and should be avoided in
modern packages.

• inst/extdata: Additional external data for examples and vignettes. See “Raw Data”
on page 94 for more detail.

• inst/java, inst/python, etc.: See “Other Languages” on page 115.

To find a file in inst/ from code use system.file(). For example, to find inst/extdata/
mydata.csv, you’d call system.file("extdata", "mydata.csv", package =

"mypackage"). Note that you omit the inst/ directory from the path. This will work if
the package is installed, or if it’s been loaded with devtools::load_all().
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Package Citation
The CITATION file lives in the inst/ directory and is intimately connected to the cita
tion() function, which tells you how to cite R and R packages. Calling citation()
without any arguments tells you how to cite base R:

citation()
#> 
#> To cite R in publications use:
#> 
#>   R Core Team (2014). R: A language and environment for
#>   statistical computing. R Foundation for Statistical Computing,
#>   Vienna, Austria. URL http://www.R-project.org/.
#> 
#> A BibTeX entry for LaTeX users is
#> 
#>   @Manual{,
#>     title = {R: A Language and Environment for Statistical Computing},
#>     author = ,
#>     organization = {R Foundation for Statistical Computing},
#>     address = {Vienna, Austria},
#>     year = {2014},
#>     url = {http://www.R-project.org/},
#>   }
#> 
#> We have invested a lot of time and effort in creating R, please
#> cite it when using it for data analysis. See also
#> 'citation("pkgname")' for citing R packages.

Calling it with a package name tells you how to cite that package:

citation("lubridate")
#> 
#> To cite lubridate in publications use:
#> 
#>   Garrett Grolemund, Hadley Wickham (2011). Dates and Times Made
#>   Easy with lubridate. Journal of Statistical Software, 40(3),
#>   1-25. URL http://www.jstatsoft.org/v40/i03/.
#> 
#> A BibTeX entry for LaTeX users is
#> 
#>   @Article{,
#>     title = {Dates and Times Made Easy with {lubridate}},
#>     author = {Garrett Grolemund and Hadley Wickham},
#>     journal = {Journal of Statistical Software},
#>     year = {2011},
#>     volume = {40},
#>     number = {3},
#>     pages = {1--25},
#>     url = {http://www.jstatsoft.org/v40/i03/},
#>   }

114 | Chapter 11: Installed Files



To customize the citation for your package, add an inst/CITATION that looks like
this:

citHeader("To cite lubridate in publications use:")

citEntry(entry = "Article",
  title        = "Dates and Times Made Easy with {lubridate}",
  author       = personList(as.person("Garrett Grolemund"),
                   as.person("Hadley Wickham")),
  journal      = "Journal of Statistical Software",
  year         = "2011",
  volume       = "40",
  number       = "3",
  pages        = "1--25",
  url          = "http://www.jstatsoft.org/v40/i03/",

  textVersion  =
  paste("Garrett Grolemund, Hadley Wickham (2011).",
        "Dates and Times Made Easy with lubridate.",
        "Journal of Statistical Software, 40(3), 1-25.",
        "URL http://www.jstatsoft.org/v40/i03/.")
)

You need to create inst/CITATION. As you can see, it’s pretty simple: you only need to
learn one new function, citEntry(). The most important arguments are:

entry

This is the type of citation—for example, “Article,” “Book,” “PhDThesis,” and so
on.

The standard bibliographic information
This includes information like title, author (which should be a personList()),
year, journal, volume, issue, pages, and so on.

A complete list of arguments can be found in ?bibentry.

Use citHeader() and citFooter() to add additional exhortations.

Other Languages
Sometimes a package contains useful supplementary scripts in other programming
languages. Generally, you should avoid these, because it adds an extra dependency,
but it may be useful when wrapping substantial amounts of code from another lan‐
guage. For example, gdata wraps the Perl module Spreadsheet::ParseExcel to read
Excel files into R.

The convention is to put scripts of this nature into a subdirectory of inst/ (e.g., inst/
python, inst/perl, inst/ruby, etc.). If these scripts are essential to your package, make
sure you also add the appropriate programming language to the SystemRequirements
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field in the DESCRIPTION. (This field is for human reading, so don’t worry about
exactly how you specify it.)

Java is a special case because you need to include both the source code (which should
go in java/ and be listed in .Rinstignore), and the compiled .jar files (which should go
in inst/java). Make sure to add rJava to IMPORTS.
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CHAPTER 12

Other Components

There are four other directories that are valid, top-level directories. They are rarely
used:

demo/
For package demos. These were useful prior to the introduction of vignettes, but
are no longer recommended. See the following section for more information.

exec/
For executable scripts. Compared to other directories, files in exec/ are automati‐
cally flagged as executable.

po/
Translations for messages. This is useful but beyond the scope of this book. See
the Internationalization chapter of “R extensions” for more details.

tools/
Auxiliary files needed during configuration, or for sources that need to generate
scripts.

Demos
A demo is an .R file that lives in demo/. Demos are like examples but tend to be
longer. Instead of focusing on a single function, they show how to weave together
multiple functions to solve a problem.

You list and access demos with demo():

• To show all available demos, use demo().
• To show all demos in a package, use demo(package = "httr").
• To run a specific demo, use demo("oauth1-twitter", package = "httr").
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• To find a demo, use system.file("demo", "oauth1-twitter.R", package =
"httr").

Each demo must be listed in demo/00Index in the following form: demo-name Demo
description. The demo name is the name of the file without the extension (e.g.,
demo/my-demo.R becomes my-demo).

By default, the demo asks for human input for each plot: “Hit to see next plot:” This
behavior can be overridden by adding devAskNewPage(ask = FALSE) to the demo
file. You can add pauses by adding readline("press any key to continue").

Generally, I do not recommend using demos. Demos are not automatically tested by
R CMD check. This means that they can easily break without your knowledge. Instead,
consider writing a vignette. Vignettes have both input and output, so readers can see
the results without having to run the code themselves. Longer demos need to mingle
code with explanation, and R Markdown is better suited to that task than R com‐
ments. Vignettes are listed on the CRAN package page, which makes it easier for new
users to discover them.
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Best Practices





CHAPTER 13

Git and GitHub

If you’re serious about software development, you need to learn about Git. Git is a
version control system, a tool that tracks changes to your code and shares those
changes with others. Git is most useful when combined with GitHub, a website that
allows you to share your code with the world, solicit improvements via pull requests,
and track issues. Git/GitHub is the most popular version control system for develop‐
ers of R packages (witness the thousands of R packages hosted on GitHub).

Git and Github are generally useful for all software development and data analysis,
not just R packages. I’ve included it here because it is so useful when you’re making a
package. There’s no way I could be as productive without Git and GitHub at my back,
enabling me to rapidly spot mistakes and easily collaborate with others.

Why use Git/GitHub?

• It makes sharing your package easy. Any R user can install your package with just
two lines of code:

install.packages("devtools")
devtools::install_github("username/packagename")

• GitHub is a great way to make a bare-bones website for your package. Readers
can easily browse code and read documentation (via Markdown). They can
report bugs, suggest new features with GitHub issues, and propose improvements
to your code with pull requests.

• Have you ever tried to collaboratively write code with someone by sending files
back and forth via email or a Dropbox folder? It takes a lot of effort just to make
sure that the two of you aren’t working on the same file and overwriting each
other’s changes. With Git, both of you can work on the same file at the same
time. Git will either combine your changes automatically, or it will show you all
the ambiguities and conflicts.
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• Have you ever accidentally pressed S instead of Cmd-S to save your file? I do it all
the time! It’s very easy to accidentally introduce a mistake that takes a few
minutes to track down. Git makes this problem easy to spot because it allows you
to see exactly what’s changed and undo any mistakes.

You can do many of these same things with other tools (like Subversion or Mercurial)
and other websites (like GitLab and Bitbucket). Git is most useful in conjunction with
GitHub, and vice versa, so I’ll make no effort to distinguish between features that
belong to Git and those that belong to GitHub. But I think Git/GitHub is the most
user-friendly system (especially for new developers), not least because its popularity
means that the answer or solution to every possible question or problem can be
found on StackOverflow.

This is not to say that Git is easy to learn. Your initial experiences with Git will be
frustrating and you will frequently curse at the strange terminology and unhelpful
error messages. Fortunately, there are many tutorials available online, and although
they aren’t always well written (many provide a lot of information but little guidance
about what to do with it or why you need to care), you can absolutely master Git with
a little practice. Don’t give up! Persevere and you’ll unlock the super power of code
collaboration.

RStudio, Git, and GitHub
RStudio makes day-to-day use of Git simpler. Once you’ve set up a project to use Git,
you’ll see a new pane and toolbar icon. These provide shortcuts to the most com‐
monly used Git commands. However, because only a handful of the 150+ Git com‐
mands are available in RStudio, you also need to be familiar with using Git from the 
shell (aka the command line or the console). It’s also useful to be familiar with using
Git in a shell because if you get stuck, you’ll need to search for a solution with the Git
command names.

The easiest way to get to a shell from RStudio is Tools → Shell. This will open a new
shell located in the root directory of your project. (Note: on Windows, this opens up a
bash shell, the standard Linux shell, which behaves a little differently from the usual
cmd.exe shell.)

Don’t worry if you’ve never used the shell before, because it’s very similar to using R.
The main difference is that instead of functions, you call commands, which have a
slightly different syntax. For example, in R you might write f(x, y = 1), where in
the shell you’d write f x --y=1 or f x -y1. Also, while shell commands are even less
regular than R functions, you fortunately only need to be familiar with a few. In this
chapter, you won’t be doing much in the shell apart from running Git commands.
However, it’s a good idea to learn the three most important shell commands:
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pwd

Stands for print working directory. This command tells you which directory
you’re currently in.

cd <name>

This command changes the directory. Use cd .. to move up the directory
hierarchy.

ls

This command lists all the files in the current directory.

If you’ve never used the shell before, I recommend playing Terminus. It’s a fun way to
learn the basics of the shell. I also recommend taking a look at Philip Guo’s Basic
Unix-like command line tutorial videos, Michael Stonebank’s Unix tutorial, and
Brennen Bearnes’s Userland.

Initial Setup
If you’ve never used Git or GitHub before, start by installing Git and creating a Git‐
Hub account. Then, link the two together:

1. Install Git:

• Windows: http://git-scm.com/download/win.
• OS X: http://git-scm.com/download/mac.
• Debian/Ubuntu: sudo apt-get install git-core.
• Other Linux distros: http://git-scm.com/download/linux.

2. Tell Git your name and email address. These are used to label each commit so
that when you start collaborating with others, it’s clear who made each change. In
the shell, run the following:

git config --global user.name "YOUR FULL NAME"
git config --global user.email "YOUR EMAIL ADDRESS"

(You can check if you’re set up correctly by running git config --global --
list.)

3. Create an account on GitHub. (The free plan is fine.) Use the same email address
as before.

4. If needed, generate an SSH key. SSH keys allow you to securely communicate
with websites without a password. There are two parts to an SSH key: one public,
one private. People with your public key can securely encrypt data that can only
be read by someone with your private key.
You can check if you already have an SSH key pair by running:

file.exists("~/.ssh/id_rsa.pub")

Initial Setup | 123

http://bit.ly/1GyJI4R
http://pgbovine.net/command-line-tutorial.htm
http://pgbovine.net/command-line-tutorial.htm
http://bit.ly/1GyJNp7
https://p1k3.com/userland-book/
http://git-scm.com/download/win
http://git-scm.com/download/mac
http://git-scm.com/download/linux
https://github.com/


If that returns FALSE, you’ll need to create a new key. You can either follow the
instructions on GitHub or use RStudio. To use RStudio, go to the RStudio
options, choose the Git/SVN panel, and click “Create RSA key…” (Figure 13-1).

Figure 13-1. RStudio’s Git options

5. Give GitHub your SSH public key: https://github.com/settings/ssh. The easiest way
to find the key is to click “View public key” in RStudio’s Git/SVN preferences 
pane.

Creating a Local Git Repository
Now that you have installed and configured Git, you can use it! To use GitHub with
your package, you’ll need to initialize a local repository, or repo for short. This creates
a .git directory that stores configuration files and a database that records changes to
your code. A new repo exists only on your computer; you’ll learn how to share it with
others shortly.

To create a new repo:

1. In RStudio, go to project options, then to the Git/SVN panel. Change “Version
control system” from “None” to “Git” (Figure 13-2).
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Figure 13-2. Creating a new repo in RStudio

2. You’ll then be prompted to restart RStudio. In a shell, run git init. Restart
RStudio and reopen your package.

Once Git has been initialized, you’ll see two new components: the Git pane, at the
upper right, shows you what files have changed and includes buttons for the most
important Git commands (Figure 13-3).
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Figure 13-3. RStudio’s Git pane

The Git drop-down menu, found in the toolbar, includes Git and GitHub commands
that apply to the current file (Figure 13-4).

Figure 13-4. RStudio’s Git options

Seeing What’s Changed
The first benefit of Git is that you can easily see the changes you’ve made. I find this
really helpful, as I often accidentally mistype keyboard shortcuts, leaving stray
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characters in my code. The RStudio Git pane lists every file that’s been added, modi‐
fied, or deleted. The icon describes the change:

• , Modified. You’ve changed the contents of the file.

• , Untracked. You’ve added a new file that Git hasn’t seen before.

• , Deleted. You’ve deleted a file.

You can get more details about modifications with a “diff ” by clicking . This
opens a new window showing the detailed differences (Figure 13-5).

Figure 13-5. An example diff (additions in red, deletions in green)

The background colors tell you whether the text has been added (green) or removed
(red). (If you’re colorblind, you can use the line numbers in the two columns at the
far left as a guide: a number in the first column identifies the old version, a number in
the second column identifies the new version.) The gray lines of code above and
below the changes give you additional context.

In the shell, use git status to see an overview of changes and git diff to show
detailed differences.
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Recording Changes
The fundamental unit of work in Git is a commit. A commit takes a snapshot of your
code at a specified point in time. Using a Git commit is like using anchors and other
protection when rock climbing. If you’re crossing a dangerous rock face, you want to
make sure there’s protection in case you fall. Commits play a similar role: if you make
a mistake, you can’t fall past the previous commit. Coding without commits is like
free climbing: you can travel much faster in the short term, but in the long term, the
chances of catastrophic failure are high! Like rock climbing protection, you want to
be judicious in your use of commits. Committing too frequently will slow your pro‐
gress; use more commits when you’re in uncertain or dangerous territory. Commits
are also helpful to others, because they show your journey, not just the destination.

There are five key components to every commit:

• A unique identifier called a secure hash algorithm (SHA)
• A changeset that describes which files were added, modified, and deleted
• A human-readable commit message
• A parent, the commit that came before this one (there are two exceptions to this

rule: the initial commit, which doesn’t have a parent, and merges, which have two
parents; you’ll learn about merges later)

• An author

You create a commit in two stages:

1. You stage files, telling Git which changes should be included in the next commit.
2. You commit the staged files, describing the changes with a message.

In RStudio, staging and committing are done in the same place, the commit window,
which you can open by clicking  or by pressing Ctrl-Alt-M (Figure 13-6).
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Figure 13-6. RStudio’s commit window shows you what files have been modified, and
exactly what’s changed in the seclted file

The commit window is made up of three panes:

• The upper-left pane shows the current status of each file. It’s the same as the Git
pane in the main RStudio window.

• The bottom pane shows the diff of the currently selected file.
• The upper-right pane is where you’ll enter the commit message, a human-

readable message summarizing the changes made in the commit. We’ll discuss
that in more detail momentarily.

(Yes, this is exactly the same window you see when clicking !)

To create a new commit:

1. Save your changes.

2. Open the commit window by clicking  or pressing Ctrl-Alt-M.
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3. Select files. To stage (select) a single file for inclusion, tick its checkbox. To stage
all files, press Ctrl/Cmd-A, then click .
As you stage each file, you’ll notice that its status changes. The icon will change
columns from right (unstaged status) to left (staged status), and you might see
one of two new icons:

Added: 
After staging an untracked file, Git now knows that you want to add it to the
repo.

Renamed: 
If you rename a file, Git initially sees it as a deletion and addition. Once you
stage both changes, Git will recognize that it’s a rename.

Sometimes you’ll see a status in both columns (e.g.,  ). This means that you
have both staged and unstaged changes in the same file. This happens when
you’ve made some changes, staged them, and then made some more. Clicking the
staged checkbox will stage your new changes, clicking it again will unstage both
sets of changes.

4. Stage files, as before.
5. Write a commit message (upper-right panel) that describes the changes you’ve

made. The first line of a commit message is called the subject line and should be
brief (50 characters or less). For complicated commits, you can follow it with a
blank line and then a paragraph or bulleted list providing more detail. Write
messages in imperative, like you’re telling someone what to do: “fix this bug,” not
“fixed this bug” or “this bug was fixed.”

6. Click Commit.

Staging files is a little more complicated in the shell. You use git add to stage new
and modified files, and git rm to stage deleted files. To create the commit, use git
commit -m <message>.

Best Practices for Commits
Ideally, each commit should be minimal but complete:

Minimal
A commit should only contain changes related to a single problem. This will
make it easier to understand the commit at a glance, and to describe it with a
simple message. If you happen to discover a new problem, you should do a sepa‐
rate commit.

130 | Chapter 13: Git and GitHub



Complete
A commit should solve the problem that it claims to solve. If you think you’ve
fixed a bug, the commit should contain a unit test that confirms you’re right.

Each commit message should:

Be concise, yet evocative
At a glance, you should be able to see what a commit does. But there should be
enough detail so you can remember (and understand) what was done.

Describe the why, not the what
You can always retrieve the diff associated with a commit, so the message doesn’t
need to say exactly what changed. Instead, it should provide a high-level sum‐
mary that focuses on the reasons for the change.

If you follow these best practices, you’ll benefit in the following ways:

• It will be easier to work with others. For example, if two people have changed the
same file in the same place, it will be easier to resolve conflicts if the commits are
small and it’s clear why each change was made.

• Project newcomers can more easily understand the history by reading the com‐
mit logs.

• You can load and run your package at any point along its development history.
This can be tremendously useful for tools like bisectr, which allows you to use
binary search to quickly find the commit that introduced a bug.

• If you can figure out exactly when a bug was introduced, you can easily under‐
stand what you were doing (and why!).

You might think that because no one else will ever look at your repo, writing good
commit messages is not worth the effort. But keep in mind that you have one very
important collaborator: “future you”! If you spend a little time now polishing your
commit messages, “future you” will thank you if and when it’s necessary to do a post‐
mortem on a bug.

Remember that these directives are aspirational. You shouldn’t let them get in your
way. If you look at the commit history of my repositories, you’ll notice a lot of them
aren’t that good, especially when I start to get frustrated that I still haven’t managed to
fix a bug. Strive to follow these guidelines, and remember it’s better to have multiple
bad commits than to have one perfect commit.

Ignoring Files
Often, there are files that you don’t want to include in the repository. They might be
transient (like LaTeX or C build artifacts), very large, or generated on demand. Rather
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than carefully not staging them each time, you should instead add them to .gitignore.
This will prevent them from ever being added. The easiest way to do this is to right-
click the file in the Git pane and select Ignore (Figure 13-7).

Figure 13-7. Access the ignore files dialog by right-clicking a filename

If you want to ignore multiple files, you can use a wildcard “glob” like *.png. To learn
more about the options, see Ignoring Files in Pro-Git.

Some developers never commit derived files (i.e., files that can be generated automat‐
ically). For an R package, this would mean ignoring the files in the NAMESPACE and
man/ directories because they’re generated from comments. From a practical per‐
spective, it’s better to commit these files: R packages have no way to generate .Rd files
on installation, so ignoring derived files means that users who install your package
from GitHub will have no documentation.

Undoing Mistakes
The best thing about using commits is that you can undo mistakes. RStudio makes it
particularly easy:

• To undo the changes you’ve just made, right-click the file in the Git pane and
select “revert.” This will roll any changes back to the previous commit. Beware:
you can’t undo this operation!
You can also undo changes to just part of a file in the diff window. Look for a
“Discard chunk” button above the block of changes that you want to undo:

. You can also discard changes to individual lines or
selected text.

• If you committed changes too early, you can modify the previous commit by
staging the extra changes. Before you click commit, select .
(Don’t do this if you’ve pushed the previous commit to GitHub—you’re
effectively rewriting history, which should be done with care when you’re doing it
in public.)
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If you didn’t catch the mistake right away, you’ll need to look backwards in history
and find out where it occurred:

1. Open the history window by clicking  in the Git pane (Figure 13-8).

Figure 13-8. The history pane shows all the commits in your at top, and the details
of the selected commit at bottom

The history window is divided into two parts. The top part lists every commit to
your repo. The bottom part shows you the commit: the SHA (the unique id), the
author, the date, the parent, and the changes in the commit.

2. Navigate back in time until you find the commit where the mistake occurred.
Write down the parent SHA: that’s the commit that occurred before the mistake,
so it will be good.

Now you can use that SHA in the shell:

• See what the file looked like in the past so you can copy and paste the old code:
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git show <SHA> <filename>

• Or copy the version from the past back in to the present:
git checkout <SHA> <filename>

In both cases, you’ll need to finish by staging and committing the files.

It’s also possible to use Git as if you went back in time and preven‐
ted the mistake from happening in the first place. This is an
advanced technique called rebasing history. As you might imagine,
going back in time to change the past can have a profound impact
on the present. It can be useful, but it needs to be done with
extreme care.

If you’re still stuck, try Seth Robertson’s “On undoing, fixing, or removing commits in
git” or Justin Hileman’s “Git pretty”. They give step-by-step approaches to fixing
many common (and not so common!) problems.

Synchronizing with GitHub
So far we’ve only been working locally, using commits to track the progress of a
project and to provide safe checkpoints. However, Git really shines when you start
sharing your code with others on GitHub. While there are other choices, I recom‐
mend GitHub because it is free for open source projects, it has all the features you’ll
need, and is a popular choice in the R world.

To publish, or push, your code to GitHub:

1. First, create a new repo on GitHub. Give it the same name as your package, and
include the package title as the repo description. Leave all the other options as is,
then click Submit.

2. Open a shell, then follow the instructions on the new repo page. They’ll look
something like this:

git remote add origin git@github.com:hadley/r-pkgs.git
git push -u origin master

The first line tells Git that your local repo has a remote version on GitHub, and
calls it “origin.” The second line pushes all your current work to that repo.
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Now let’s make a commit and verify that the remote repo updates:

1. Modify DESCRIPTION to add URL and BugReports fields that link to your new
GitHub site. For example, dplyr has:

URL: http://github.com/hadley/dplyr
BugReports: http://github.com/hadley/dplyr/issues

2. Save the file and commit (with the message “Updating DESCRIPTION to add
links to GitHub site”).

3. Push your changes to GitHub by clicking . (This is the same as running
git push in the shell).

4. Go to your GitHub page and look at the DESCRIPTION.

Usually, each push will include multiple commits. This is because you push much less
often than you commit. How often you push versus commit is completely up to you,
but pushing code means publishing code. So strive to push code that works.

To ensure your code is clean, I recommend always running R CMD check before you
push (a topic you’ll learn about in Chapter 14, which covers automated checking). If
you want to publish code that doesn’t work (yet), I recommend using a branch, as
you’ll learn about later in “Branches” on page 139.

Once you’ve connected your repo to GitHub, the Git pane will show you how many
commits you have locally that are not on GitHub:

. This message indicates that I have one commit
locally (my branch) that is not on GitHub (“origin/master”).

Benefits of Using GitHub
Here’s a quick rundown of the benefits of using GitHub:

• You get a decent website. The GitHub page for your project—that is, the GitHub
repo for testthat (e.g., https://github.com/hadley/testthat)—lists all the files and
directories in your package. .R files will be formatted with syntax highlighting,
and .md/.Rmd files will be rendered as HTML. And, if you include a
README.md file in the top-level directory, it will be displayed on the home page.
You’ll learn more about the benefits of creating this file in “README.md” on
page 171.

• It makes it easy for anyone to install your package (and to benefit from your hard
work):

devtools::install_github("<your_username>/<your_package>")

• You can track the history of the project in the commit view (e.g., https://
github.com/hadley/testthat/commits/master). When I’m working on a package
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with others, I often keep this page open so I can see what they’re working on.
Individual commits show the same information that you see in the Commit/Diff
window in RStudio.

• It’s easy to see the history of a file. If you navigate to a file and click History, you’ll
see every commit that affected that file. Another useful view is Blame; it shows
the last change made to each line of code, who made the change, and the commit
the change belongs to. This is tremendously helpful when you’re tracking down a
bug.

• You can jump directly to these pages from RStudio with the Git drop-down in
the main toolbar (Figure 13-9).

•
Figure 13-9. The RStudio git dropdown shows actions related to the current file

• You can comment on commits. To comment on the commit as a whole, use the
comment box at the bottom of the page. To comment on an individual line, click
the plus sign that appears when you mouse over a line number, . This is a
great way to let your collaborators know if you see a mistake or have a question.
It’s better than email because it’s public so anyone working on the repo (both
present and future) can see the conversation.
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Working with Others
You use push to send your changes to GitHub. If you’re working with others, they also
push their changes to GitHub. But to see their changes locally, you’ll need to pull their
changes from GitHub. In fact, to make sure everyone is in sync, Git will only let you
push to a repo if you’ve retrieved the most recent version with a pull.

When you pull, Git first downloads (fetches) all of the changes and then merges them
with the changes that you’ve made. A merge is a commit with two parents. It takes
two different lines of development and combines them into a single result. In many
cases, Git can do this automatically: for example, when changes are made to different
files, or to different parts of the same file. However, if changes are made to the same
place in a file, you’ll need to resolve the merge conflict yourself.

In RStudio, you’ll discover that you have merge conflict when:

• A pull fails with an error.

• In the Git pane, you see a status like .

RStudio currently doesn’t provide any tools to help with merge conflicts, so you’ll
need to use the command line. I recommend starting by setting your merge conflict
“style” to diff3. The diff3 style shows three things when you get a merge conflict:
your local changes, the original file, and the remote changes. The default style is
diff2, which only shows your changes and the remote changes. This generally makes
it harder to figure out what’s happened.

• If you’ve encountered your first merge conflict, do the following:
# Abort this merge
git merge --abort
# Set the conflict style
git config --global merge.conflictstyle diff3
# Retry the merge
git pull

• If you’re not in the middle of a merge conflict, just run this:
git config --global merge.conflictstyle diff3

To resolve a merge conflict, you need to open every file with the status . In each
file, you’ll find a conflict marker that looks like this:
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<<<<<<< HEAD

||||||| merged common ancestors

=======

>>>>>>> remote

This shows all three versions of the conflicting code:

• At the top, your local code.
• In the middle, the code from the last commit before the split between the two

lines of development. (This is missing in the default conflict style, so if you don’t
see it, follow the instructions from before.)

• At the bottom, the remote code that you pulled down from GitHub.

You need to work through each conflict and decide either which version is better, or
how to combine both versions. Then, before you stage the file, make sure you’ve
deleted all the conflict markers. Once you’ve fixed all conflicts, make a new commit
and push to GitHub.

A couple of pointers when fixing text generated by roxygen:

• Don’t fix problems in man/*.Rd files. Instead, resolve any conflicts in the under‐
lying roxygen comments and redocument the package.

• Merge conflicts in the NAMESPACE file will prevent you from reloading or redo‐
cumenting a package. Resolve them enough so that the package can be loaded,
then redocument to generate a clean and correct NAMESPACE.

Handling merge conflicts is one of the trickier parts of Git. You may need to read a
few tutorials before you get the hang of it. Google and StackOverflow are great
resources. If you get terribly confused, you can always abort the merge and try again
by running git merge --abort then git pull.

Issues
Every GitHub repo comes with a page for tracking issues. Use it! If you encounter a
bug while working on another project, jot down a note on the issues page. When you
have a smaller project, don’t worry too much about milestones, tags, or assigning
issues to specific people. Those are more useful once you get over a page of issues
(>50). Once you get to that point, read the GitHub guide on issues.

A useful technique is closing issues from a commit message. Just put Closes #<issue
number> somewhere in your commit message and GitHub will close the issue for you
when you next push. The best thing about closing issues this way is that it makes a
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link from the issue to the commit. This is useful if you ever have to come back to the
bug and want to see exactly what you did to fix it. You can also link to issues without
closing them; just refer to #<issue number>.

As you’ll learn about in “NEWS.md” on page 172, it’s a good idea to add a bullet to
NEWS.md whenever you close an issue. The bullet point should describe the issue in
terms that users will understand, as opposed to the commit message, which is written
for developers.

Branches
Sometimes you want to make big changes to your code without having to disturb
your main stream of development. Maybe you want to break it up into multiple sim‐
ple commits so you can easily track what you’re doing. Maybe you’re not sure what
you’ve done is the best approach and you want someone else to review your code. Or,
maybe you want to try something experimental (you can merge it back only if the
experiment succeeds). Branches and pull requests provide powerful tools to handle
these situations.

Although you might not have realized it, you’re already using branches. The default
branch is called master; it’s where you’ve been saving your commits. If you synchron‐
ize your code to GitHub, you’ll also have a branch called origin/master: it’s a local
copy of all the commits on GitHub, which gets synchronized when you pull. git
pull is shorthand for two actions:

• git fetch origin master to update the local origin/master branch with the lat‐
est commits from GitHub.

• git merge orgin/master to combine the remote changes with your changes.

It’s useful to create your own branches when you want to (temporarily) break away
from the main stream of development. You can create a new branch with git check
out -b <branch-name>. Names should be in lowercase letters and numbers, with -
used to separate words.

Switch between branches with git checkout <branch-name>. For example, to return
to the main line of development, use git branch master. You can also use the
branch switcher at the upper-right of the Git pane (Figure 13-10).
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Figure 13-10. In Rstudio, you can switch between branches using the drop-down at the
upper-right of the Git pane

If you’ve forgotten the name of your branch in the shell, you can use git branch to
list all existing branches.

If you try to synchronize this branch to GitHub from inside RStudio, you’ll notice
that push and pull are disabled: . To enable them, you’ll need to first tell
Git that your local branch has a remote equivalent:

git push --set-upstream origin <branch-name>

After you’ve done that once, you can use the pull and push buttons as usual.

If you’ve been working on a branch for a while, other work might have been going on
in the master branch. To integrate that work into your branch, run git merge mas
ter. You will need to resolve any merge conflicts (discussed earlier). It’s best to do this
fairly frequently—the less your branch diverges from the master, the easier it will be
to merge.

Once you’re done working on a branch, merge it back into the master, then delete the
branch:

git checkout master
git merge <branch-name>
git branch -d <branch-name>

Git won’t let you delete a branch unless you’ve merged it back into
the master branch. If you do want to abandon a branch without
merging it, you’ll need to force delete with -D instead of -d. If you
accidentally delete a branch, don’t panic. It’s usually possible to get
it back.

Making a Pull Request
A pull request is a tool for proposing and discussing changes before merging them
into a repo. The most common use for a pull request is to contribute to someone
else’s code: it’s the easiest way to propose changes to code that you don’t control.

Here you’ll learn about pull requests to make changes to your own code. This may
seem a bit pointless because you don’t need them, as you can directly modify your
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code. But pull requests are surprisingly useful because they allow you to get feedback
on proposed changes. We use them frequently in RStudio to get feedback before
merging major changes.

GitHub has some good documentation on using pull requests. In this chapter, I’ll
focus on the basics you need to know to use pull requests effectively, and show you
how they fit in with the Git commands you’ve learned so far.

To create a pull request, you create a branch, commit code, then push the branch to
GitHub. When you next go to the GitHub website, you’ll see a header that invites you
to submit a pull request. You can also do it by following these steps:

1. Switching branches (Figure 13-11).

Figure 13-11. On GitHub, switch between branches using the Branches drop-down
on the upper-left

2. Clicking .

This will create a page that looks like Figure 13-12.
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Figure 13-12. Sample issue page on GitHub

This pull request, which fixes a couple of small problems, is one that was submitted to
this book’s GitHub site.

There are three parts to a pull request:

• A conversation, , where you can discuss the changes as a whole.

• The commits view, , where you can see each individual commit.

• The file changes, , where you see the overall diff of the commits, and
you can comment on individual lines.

Once you’re done discussing a pull request, you either choose to merge it or delete it.
Merging it is equivalent to running git merge <branchname> from the shell; deleting
is equivalent to git branch -r <branchname>.

Submitting a Pull Request to Another Repo
To submit a pull request to a repo that you don’t own, you first need to create a copy
of the repo that you can own, called a fork, and then clone that fork on your own
computer:

1. Fork the original repo by going to the repo on GitHub and clicking . This
creates a copy of the repo that belongs to you.
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2. Clone the forked repo to create a local copy of the remote repo. It’s possible to do
this within RStudio (using “Create New Project” from “Version Control”) but I
think it’s easier to do it from the shell:

git clone git@github.com:<your-name>/<repo>.git
cd <repo>

A fork is a static copy of the repo: once you’ve created it, GitHub does nothing to
keep it in sync with the upstream repo. This is a problem because while you’re work‐
ing on a pull request, changes might occur in the original repo. To keep the forked
and the original repo in sync, start by telling your repo about the upstream repo:

git remote add upstream git@github.com:<original-name>/extrafont.git
git fetch upstream

Then you can merge changes from the upstream repo to your local copy:

git merge upstream/master

When working on a forked repo, I recommend that you don’t work on the master
branch. Because you’re not really working on the main line of development for that
repo, using your master branch makes things confusing.

If you always create pull requests in branches, you can make it a little easier to keep
your local repo in sync with the upstream repo by running:

git branch -u upstream/master   

Then you can update your local repo with the following code:

git checkout master
git pull

Changes may occur while you’re working on the pull request, so remember to merge
them into your branch with:

git checkout <my-branch>
git merge master

A pull request (PR) is a one-to-one mapping to a branch, so you can also use this
technique to make updates based on the pull request discussion. Don’t create a new
pull request each time you make a change; instead, you just need to push the branch
that the PR is based on and the PR web page will automatically update.

The diagram in Figure 13-13 illustrates the main steps of creating a pull request and
updating the request as the upstream repo changes.
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Figure 13-13. Workflows for creating a new pull request and updating an existing pull
request

Reviewing and Accepting Pull Requests
As your package gets more popular, you’re likely to receive pull requests. Receiving a
pull request is fantastic. Someone not only cares about your package enough to use it,
but they’ve actually read the source code and made an improvement!

When you receive a pull request, I recommend reviewing it using the three-step
approach described by Sarah Sharp. I’ve summarized the three phases here, but I
highly recommend reading the full article:

144 | Chapter 13: Git and GitHub

http://sarah.thesharps.us/2014/09/01/the-gentle-art-of-patch-review/
http://sarah.thesharps.us/2014/09/01/the-gentle-art-of-patch-review/


Is it a good idea?
If you don’t think the contribution is a good fit for your project, it’s polite to let
the contributor know as quickly as possible. Thank them for their work, and
refocus them on a better area to work on.

Is the overall approach sound?
At this point, you want to focus on the big picture: have they modified the right
functions in the right way? Avoid nitpicking minor style problems (that’s the final
phase); instead, just provide a pointer to your style preferences (e.g., http://r-
pkgs.had.co.nz/style.html).

Is it polished?
In the final review phase, make sure that the noncode parts of the PR are pol‐
ished. Prompt the contributor to update the documentation, point out spelling
mistakes, and suggest better wording. I recommend asking the contributor to
include a bullet point in NEWS.md, briefly describing the improvement and
thanking themselves with their GitHub username. More details to follow in “Pre‐
pare for Next Version” on page 175.

After discussion is complete, you can incorporate the changes by clicking the merge
button. If the button doesn’t work, GitHub provides some instructions on how to do
it from the command line. Although you’ve seen all the pieces before, it’s useful to
read through this just so you understand what exactly is happening:

# Create a new branch, and sync it with the pull request
git checkout -b <branch> master
git pull https://github.com/<user>/<branch>.git patch-3

# Merge the changes into the main line of development
git checkout master
git merge --no-ff <branch>
# Resolve conflicts, stage and add.

# Sync your local changes with GitHub
git push origin master

Learning More
Git and GitHub are a rich and powerful set of tools, and there’s no way this chapter
has taught you everything you need to know. However, you should now have the
basic knowledge to be effective, and you should be in a good position to learn more.
Some good resources are:

• GitHub help not only teaches you about GitHub, but also has good tutorials on
many Git features.
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• If you’d like to learn more about the details of Git, read Pro Git by Scott Chacon
and Ben Straub (Apress).

Finally, StackOverflow is a vital part of Git—when you have a problem that you don’t
know how to solve, StackOverflow should be your first resource. It’s highly likely that
someone has already had the same exact problem as you, and that there will be a vari‐
ety of approaches and solutions to choose from.
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CHAPTER 14

Automated Checking

An important part of the package development process is R CMD check, which auto‐
matically checks your code for common problems. It’s essential if you’re planning on
submitting to CRAN, but it’s useful even if you’re not because it automatically detects
many commons problems that you’d otherwise discover the hard way.

R CMD check will be frustrating the first time you run it—you’ll discover many prob‐
lems that need to be fixed. The key to making R CMD check less frustrating is to
actually run it more often: the sooner you find a problem, the easier it is to fix. The
upper limit of this approach is to run R CMD check every time you make a change. If
you use GitHub, you’ll learn precisely how to do that with “Checking After Every
Commit with Travis” on page 160.

Workflow
R CMD check is the name of the  command you run from the terminal. I don’t recom‐
mend calling it directly. Instead, run devtools::check(), or press Cmd-Shift-E in
RStudio. In contrast to R CMD check, devtools::check():

• Ensures that the documentation is up to date by running devtools::document().
• Bundles the package before checking it. This is the best practice for checking

packages because it makes sure the check starts with a clean slate: because a pack‐
age bundle doesn’t contain any of the temporary files that can accumulate in your
source package (e.g., artifacts like .so and .o files that accompany compiled code),
you can avoid the spurious warnings such files will generate.

• Sets the NOT_CRAN environment variable to TRUE. This allows you to selectively
skip tests on CRAN. (See ?testthat::skip_on_cran for details.)
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The workflow for checking a package is simple, but tedious:

1. Run devtools::check(), or press Ctrl/Cmd-Shift-E.
2. Fix the first problem.
3. Repeat until there are no more problems.

R CMD check returns three types of messages:

ERRORs
Severe problems that you should fix regardless of whether or not you’re submit‐
ting to CRAN.

WARNINGs
Likely problems that you must fix if you’re planning to submit to CRAN (and a
good idea to look into even if you’re not).

NOTEs
Mild problems. If you are submitting to CRAN, you should strive to eliminate all
NOTEs, even if they are false positives. If you have no NOTEs, human intervention is
not required, and the package submission process will be easier. If it’s not possi‐
ble to eliminate a NOTE, you’ll need to describe why it’s OK in your submission
comments, as described in “The Submission Process” on page 166. If you’re not
submitting to CRAN, carefully read each NOTE, but don’t go out of your way to fix
things that you don’t think are problems.

Checks
R CMD check is composed of over 50 individual checks, described in the following
sections. For each check, I briefly describe what it does, what the most common prob‐
lems are, and how to fix them. When you have a problem with R CMD check and can’t
understand how to fix it, use this list to help figure out what you need to do. To make
it easier to understand how the checks fit together, I’ve organized them into sections
roughly corresponding to the chapters in this book. This means they will be in a
somewhat different order to what you’ll see when you run check().

This list includes every check run in R 3.1.1. If you’re using a more recent version,
you may want to consult the most recent online version of this chapter: http://r-
pkgs.had.co.nz/check.html. Please let me know if you encounter a problem that this
chapter doesn’t help with: hadley@rstudio.com.

Check Metadata
R CMD check always starts by describing your current environment. I’m running R
3.1.1 on OS X with a UTF-8 charset:
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• Using log directory ‘/Users/hadley/Documents/web/httr.Rcheck’
• Using R version 3.1.1 (2014-07-10)
• Using platform: x86_64-apple-darwin13.1.0 (64-bit)
• Using session charset: UTF-8

Next, the description is parsed and the package version is printed. Here I’m checking
httr version 0.5.0.9000 (you learned about that weird version number in “Version” on
page 41):

• Checking for file ‘httr/DESCRIPTION’
• This is package ‘httr’ version ‘0.5.0.9000’

Package Structure
The package structure checks ensure that the files and directories inside the package are
organized correctly. If you’ve been following the advice in this book, you’re unlikely to see
these problems:

Checking package directory.
The directory you’re checking must exist; devtools::check() protects you
against this problem.

Checking if this is a source package.
You must check a source package, not a binary or installed package. This should
never fail if you use devtools::check().

Checking for executable files.
You must not have executable files in your package: they’re not portable, they’re
not open source, and they are a security risk. Delete any executables files from
your package. (If you’re not submitting to CRAN, you can silence this warning
by listing each executable file in the BinaryFiles field in your DESCRIPTION.)

Checking for hidden files and directories.
On Linux and OS X, files with a name starting with . are hidden by default, and
you’ve probably included them in your package by mistake. Either delete them,
or if they are important, use .Rbuildignore to remove them from the package bun‐
dle. R automatically removes some common directories like .git and .svn.

Checking for portable filenames.
R packages must work on Windows, Linux, and OS X, so you can only use file‐
names that work on all platforms. The easiest way to do this is to stick to letters,
numbers, underscores, and dashes. Avoid non-English letters and spaces. Fix this
check by renaming the listed files.
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Checking for sufficient/correct file permissions.
If you can’t read a file, you can’t check it. This check detects the unlikely occur‐
rence that you have files in the package that you don’t have permission to read.
Fix this problem by fixing the file permissions.

Checking whether package ‘XYZ’ can be installed.
R CMD check runs R CMD install to make sure that it’s possible to install your
package. If this fails, you should run devtools::install() or RStudio’s Build &
Reload and debug any problems before continuing.

Checking installed package size.
It’s easy to accidentally include large files that blow up the size of your package.
This check ensures that the whole package is less than 5 MB and each subdirec‐
tory is less than 1 MB. If you see this message, check that you haven’t accidentally
included a large file.

If submitting to CRAN, you’ll need to justify the size of your package. First, make
sure the package is as small as it possibly can be: try recompressing the data and
minimizing vignettes. If it’s still too large, consider moving data into its own
package.

Checking top-level files.
Only specified files and directories are allowed at the top level of the package
(e.g., DESCRIPTION, R/, src/). To include other files, you have two choices:

• If they don’t need to be installed (i.e., they’re only used in the source pack‐
age), add them to .Rbuildignore with devtools::use_build_ignore().

• If they need to be installed, move into inst/. They’ll be moved back to the
top-level package directory when installed.

Checking package subdirectories.
• Don’t include any empty directories. These are usually removed automati‐

cally by R CMD build so you shouldn’t see this error. If you do, just delete the
directory.

• The case of files and directories is important. All subdirectories should be
lowercase, except for R/. A citation file, if present, should be in inst/CITA‐
TION. Rename as needed.

• The contents of inst/ shouldn’t clash with top-level contents of the package
(like build/, R/, etc.). If they do, rename your files/directories.

Checking for leftover files.
Remove any files listed here. They’ve been included in your package by accident.
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Description
When submitting your package to CRAN, it’s important that the metadata about your
package (as recorded in the DESCRIPTION), is correct. It’s not possible to check all of the
data automatically, but R CMD check at least looks for the most common problems:

Checking DESCRIPTION meta-information.
• The DESCRIPTION must be valid. You are unlikely to see this error, because
devtools::load_all() runs the same check each time you reload the
package.

• If you use any non-ASCII characters in the DESCRIPTION, you must also
specify an encoding. There are only three encodings that work on all plat‐
forms: Latin 1, Latin 2, and UTF-8. I strongly recommend UTF-8: Encoding:
UTF-8.

• The License must refer to either a known license (a complete list can be
found at https://svn.r-project.org/R/trunk/share/licenses/license.db), or it must
use file LICENSE and that file must exist. Errors here are most likely to be
typos.

• You should either provide Authors@R or Authors and Maintainer. You’ll get
an error if you’ve specified both, which you can fix by removing the one you
didn’t want.

Checking package dependencies.
• All packages listed in Depends, Imports, and LinkingTo must be installed,

and their version requirements must be met; otherwise, your package can’t
be checked. An easy way to install any missing or outdated dependencies is
to run devtools::install_deps(dependencies = TRUE).

• Packages listed in Suggests must be installed, unless you’ve set the environ‐
ment variable _R_CHECK_FORCE_SUGGESTS_ to a false value (e.g., with
check(force_suggests = FALSE). This is useful if some of the suggested
packages are not available on all platforms.

• R packages cannot have a cycle of dependencies (i.e., if package A requires B,
then B cannot require A; otherwise, which one would you load first?). If you
see this error, you’ll need to rethink the design of your package. One easy fix
is to move the conflicting package from Imports or Depends to Suggests.

• Any packages used in the NAMESPACE must be listed in one of Imports
(most commonly) or Depends (only in special cases). See “Search Path” on
page 82 for more details.

• Every package listed in Depends must also be imported in the NAMESPACE
or accessed with pkg::foo. If you don’t do this, your package will work when
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attached to the search path (with library(mypackage)) but will not work
when only loaded (e.g., mypackage::foo()).

Checking CRAN incoming feasibility.
These checks only apply if you’re submitting to CRAN:

• If you’re submitting a new package, you can’t use the same name as an exist‐
ing package. You’ll need to come up with a new name.

• If you’re submitting an update, the version number must be higher than the
current CRAN version. Update the Version field in DESCRIPTION.

• If the maintainer of the package has changed (even if it’s just a change in
email address), the new maintainer should submit to CRAN, and the old
maintainer should send a confirmation email.

• You must use a standard open source license, as listed in https://svn.r-
project.org/R/trunk/share/licenses/license.db. You cannot use a custom license,
as CRAN does not have the legal resources to review custom agreements.

• The Title and Description must be free from spelling mistakes. The title of
the package must be in title case. The title and description should not
include the name of your package or the word “package.” Reword your title
and description as needed.

• If you’re submitting a new package, you’ll always get a NOTE. This reminds
the CRAN maintainers to do some extra manual checks.

• Avoid submitting multiple versions of the same package in a short period of
time. CRAN prefers at most one submission per month. If you need to fix a
major bug, be apologetic.

Namespace
Working with the namespace by hand is a painful experience, and it’s easy to accidentally
introduce errors. Fortunately, you’re using roxygen2 to generate your NAMESPACE, so
you’ll never see most of these problems:

Checking if there is a namespace.
You must have a NAMESPACE file. Roxygen2 will create this for you as described
in Chapter 8.

Checking package namespace information.
The NAMESPACE should be parseable by parseNamespaceFile() and valid. If
this check fails, it’s a bug in roxygen2.
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Checking whether the package can be loaded with stated dependencies.
Runs library(pkg) with R_DEFAULT_PACKAGES=NULL, so the search path is empty
(i.e., stats, graphics, grDevices, utils, datasets, and methods are not attached like
usual). Failure here typically indicates that you’re missing a dependency on one
of those packages.

Checking whether the namespace can be loaded with stated dependencies.
Runs loadNamespace(pkg) with R_DEFAULT_PACKAGES=NULL. Failure usually indi‐
cates a problem with the namespace.

R Code
Problems in this section represent likely problems with your R code:

Checking R files for non-ASCII characters.
For maximum portability (i.e., so people can use your package on Windows) you
should avoid using non-ASCII characters in R files. It’s OK to use them in com‐
ments, but object names shouldn’t use them, and in strings you should use uni‐
code escapes. See “CRAN Notes” on page 31 for more deatils.

Checking R files for syntax errors.
Obviously your R code must be valid. You’re unlikely to see this error if you’re
been regularly using devtools::load_all().

Checking dependencies in R code.
Errors here often indicate that you’ve forgotten to declare a needed package in
the DESCRIPTION. Remember that you should never use require() or
library() inside a package—see “Imports” on page 88 for more details on best
practices.

Alternatively, you may have accidentally used ::: to access an exported function
from a package. Switch to :: instead.

Checking S3 generic/method consistency.
S3 methods must have a compatible function signature with their generic. This
means that the method must have the same arguments as its generic, with one
exception. If the generic includes ... the method can have additional arguments.

A common cause of this error is defining print methods, because the print()
generic contains...:

# BAD
print.my_class <- function(x) cat("Hi")

# GOOD
print.my_class <- function(x, ...) cat("Hi")
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# Also ok
print.my_class <- function(x, ..., my_arg = TRUE) cat("Hi")

Checking replacement functions.
Replacement functions (e.g., functions that are called like foo(x) <- y), must
have value as the last argument.

Checking R code for possible problems.
This is a compound check for a wide range of problems:

• Calls to library.dynam() (and library.dynam.unload()) should look like
library.dynam("name"), not library.dynam("name.dll"). Remove the
extension to fix this error.

• Put library.dynam() in .onLoad(), not .onAttach(); put packageStartup
Message() in .onAttach(), not .onLoad(). Put library.dynam.unload()
in .onUnload(). If you use any of these functions, make sure they’re in the
right place.

• Don’t use unlockBinding() or assignInNamespace() to modify objects that
don’t belong to you.

• codetools::checkUsagePackage() is called to check that your functions
don’t use variables that don’t exist. This sometimes raises false positives with
functions that use nonstandard evaluation (NSE), like subset() or with().
Generally, I think you should avoid NSE in package functions, and hence
avoid this note, but if you cannot, see ?globalVariables for how to
suppress it.

• You are not allowed to use .Internal() in a package. Either call the R wrap‐
per function, or write your own C function. (If you copy and paste the C
function from base R, make sure to maintain the copyright notice, use a
GPL-2 compatible license, and list R-core in the Author field.)

• Similarly, you are not allowed to use ::: to access nonexported functions
from other packages. Either ask the package maintainer to export the func‐
tion you need, or write your own version of it using exported functions.
Alternatively, if the licenses are compatible, you can copy and paste the
exported function into your own package. If you do this, remember to
update Authors@R.

• Don’t use assign() to modify objects in the global environment. If you need
to maintain state across function calls, create your own environment with e
<- new.env(parent = emptyenv()) and set and get values in it:

e <- new.env(parent = emptyenv())

add_up <- function(x) {
  if (is.null(e$last_x)) {
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    old <- 0
  } else {
    old <- e$last_x
  }

  new <- old + x
  e$last_x <- new
  new
}
add_up(10)
#> [1] 10
add_up(20)
#> [1] 30

• Don’t use attach() in your code. Instead, refer to variables explicitly.
• Don’t use data() without specifying the envir argument. Otherwise, the

data will be loaded in the global environment.
• Don’t use deprecated or defunct functions. Update your code to use the latest

versions.
• You must use TRUE and FALSE in your code (and examples), not T and F.

Checking whether the package can be loaded.
R loads your package with library(). Failure here typically indicates a problem
with .onLoad() or .onAttach().

Checking whether the package can be unloaded cleanly.
Loads with library() and then detach()es. If this fails, check .onUnload()
and .onDetach().

Checking whether the namespace can be unloaded cleanly.
Runs loadNamespace("pkg"); unloadNamespace("pkg"). Check .onUnload()
for problems.

Checking loading without being on the library search path.
Calls library(x, lib.loc = ...). Failure here indicates that you are making a 
false assumption in .onLoad() or .onAttach().

Data
There are a handful of checks related to data in the data/ directory:

Checking contents of data/ directory.
• The data/ directory can only contain file types described in “Exported Data”

on page 91.
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• Data files can only contain non-ASCII characters if the encoding is not cor‐
rectly set. This usually shouldn’t be a problem if you’re saving .Rdata files. If
you do see this error, look at the Encoding() of each column in the data
frame, and ensure none are “unknown.” (You’ll typically need to fix this
somewhere in the import process.)

• If you’ve compressed a data file with bzip2 or xz you need to declare at least
Depends: R (>= 2.10) in your DESCRIPTION.

• If you’ve used a suboptimal compression algorithm for your data, recom‐
press with the suggested algorithm.

Documentation
You can run the most common of these outside devtools::check() with dev
tools::check_doc() (which automatically calls devtools::document() for you). If
you have documentation problems, it’s best to iterate quickly with check_doc(),
rather than running the full check each time.

Checking Rd files.
This checks that all man/*.Rd files use the correct Rd syntax. If this fails, it indi‐
cates a bug in roxygen2.

Checking Rd metadata.
Names and aliases must be unique across all documentation files in a package. If
you encounter this problem you’ve accidentally used the same @name or @aliases
in multiple places; make sure they’re unique.

Checking Rd line widths.
Lines in Rd files must be less than 90 characters wide. This is unlikely to occur if
you wrap your R code, and hence roxygen comments, to 80 characters. For very
long URLs, use a link-shortening service like bit.ly.

Checking Rd cross-references.
Errors here usually represent typos. Recall the syntax for linking to functions in
other packages: \link[package_name]{function_name}. Sometimes I acciden‐
tally switch the order of \code{} and \link{}: \link{\code{function}} will not
work.

Checking for missing documentation entries.
All exported objects must be documented. See ?tools::undoc for more details.

Checking for code/documentation mismatches.
This check ensures that the documentation matches the code. This should never
fail because you’re using roxygen2, which automatically keeps them in sync.
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Checking Rd \usage sections.
All arguments must be documented, and all @params must document an existing
argument. You may have forgotten to document an argument, forgotten to
remove the documentation for an argument that you’ve removed, or mispelled an
argument name.

S3 and S4 methods need to use special \S3method{} and \S4method{} markup in
the Rd file. Roxygen2 will generate this for you automatically.

Checking Rd contents.
This checks for autogenerated content made by package.skeleton(). Because
you’re not using package.skeleton() you should never have a problem here.

Checking for unstated dependencies in examples.
If you use a package only for an example, make sure it’s listed in the Suggests
field. Before running example code that depends on it, test to see if it’s available
with requireNamespace("pkg", quietly = TRUE):

#' @examples
#' if (requireNamespace("dplyr", quietly = TRUE)) {
#'   ...
#' }

Checking examples.
Every documentation example must run without errors, and must not take too
long. Exclude failing or slow tests with \donttest{}. See “Documenting Func‐
tions” on page 49 for more details.

Examples are one of the last checks run, so fixing problems can be painful if you
have to run devtools::check() each time. Instead, use devtools::run_exam
ples(): it only checks the examples, and has an optional parameter that tells it
which function to start at. That way once you’ve discovered an error, you can
rerun from just that file, not all the files that lead up to it.

Note: you can’t use unexported functions and you shouldn’t open new graphics
devices or use more than two cores. Individual examples shouldn’t take more
than 5s.

Checking PDF version of manual.
Occasionally, you’ll get an error when building the PDF manual. This is usually
because the PDF is built by LaTeX and you’ve forgotten to escape something.
Debugging this is painful—your best bet is to look up the LaTeX logs and com‐
bined tex file and work back from there to .Rd files then back to a roxygen com‐
ment. I consider any such failure to be a bug in roxygen2, so please let me know.
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Demos
If you use demos, you need to make sure every demo is listed in an index file:

Checking index information.
If you’ve written demos, each demo must be listed in demos/00Index. The file
should look like this:

demo-name-without-extension  Demo description
another-demo-name            Another description

Compiled Code
R CMD check includes some checks to make sure that your compiled code is as portable as
possible:

Checking foreign function calls.
.Call(), .C(), .Fortran(), and .External() must always be called either with a
NativeSymbolInfo object (as created with @useDynLib) or use the .package
argument. See ?tools::checkFF for more details.

Checking line endings in C/C++/Fortran sources/headers.
Always use LF as a line ending.

Checking line endings in Makefiles.
As above.

Checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS).
Errors here indicate an issue with your use of BLAS and LAPACK.

Checking compiled code.
Checks that you’re not using any C functions that you shouldn’t. See details in
“Best Practices” on page 106.

Tests
R CMD check must be able to run the tests (i.e., you’ve listed all the dependencies they
need), and all tests must succeed:

Checking for unstated dependencies in tests.
Every package used by tests must be included in the dependencies.

Checking tests.
Each file in tests/ is run. If you’ve followed the instructions in Chapter 7, you’ll
have at least one file: testthat.R. The output from R CMD check is not usually that
helpful, so you may need to look at the logfile package.Rcheck/tests/testthat.Rout.
Fix any failing tests by iterating with devtools::test().
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Occasionally, you may have a problem where the tests pass when run interac‐
tively with devtools::test(), but fail when in R CMD check. This usually indi‐
cates that you’ve made a faulty assumption about the testing environment, and it’s
often hard to figure it out.

Vignettes
Obviously R CMD check can’t check the contents of your vignettes, but it does its best to
check the code in them:

Checking build directory.
build/ is used to track vignette builds. I’m not sure how this check could fail
unless you’ve accidentally used .Rbuildignore on the build/ directory.

Checking installed files from inst/doc.
Don’t put files in inst/doc; vignettes now live in vignettes/.

Checking files in vignettes.
Problems here are usually straightforward—you’ve included files that are already
included in R (e.g., jss.cls, jss.bst, or Sweave.sty), or you have leftover LaTeX com‐
pilation files. Delete these files.

Checking for sizes of PDF files under inst/doc.
If you’re making PDF vignettes, you can make them as small as possible by run‐
ning tools::compactPDF().

Checking for unstated dependencies in vignettes.
As with tests, every package that you use in a vignette must be listed in the
DESCRIPTION. If a package is used only for a vignette, and not elsewhere, make
sure it’s listed in Suggests.

Checking package vignettes in inst/doc.
This checks that every source vignette (i.e., .Rmd) has a built equivalent
(i.e., .html) in inst/doc. This shouldn’t fail if you’ve used the standard process out‐
lined in Chapter 6. If there is a problem, start by checking your .Rbuildignore.

Checking running R code from vignettes.
The R code from each vignette is run. If you want to deliberately execute errors
(to show the user what failure looks like), make sure the chunk has error =
TRUE, purl = FALSE.

Checking rebuilding of vignette outputs.
Each vignette is reknit to make sure that the output corresponds to the input.
Again, this shouldn’t fail in normal circumstances.
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To run vignettes, the package first must be installed. That means check():

1. Builds the package.
2. Installs the package without vignettes.
3. Builds all the vignettes.
4. Reinstalls the package with vignettes.

If you have a lot of compiled code, this can be rather slow. You may want to add --
no-build-vignettes to the commands list in the Build Source Packages field in the 
project options (Figure 14-1).

Figure 14-1. You can save time by not building vignettes when you build the package; see
this option in project options

Checking After Every Commit with Travis
If you use Git and GitHub, as described in Chapter 13, I highly recommend learning
about Travis. Travis is a continuous integration service, which means that it runs
automated testing code every time you push to GitHub. For open source projects,
Travis provides 50 minutes of free computation on an Ubuntu server for every push.
For an R package, the most useful code to run is devtools::check().

To use Travis, follow these steps:

1. Run devtools::use_travis() to set up a basic .travis.yml config file.
2. Navigate to your Travis account and enable Travis for the repo you want to test.
3. Commit and push to GitHub.
4. Wait a few minutes to see the results in your email.

With this setup in place, every time you push to GitHub, and every time someone
submits a pull request, devtools::check() will be automatically run. You’ll find out
about failures right away, which makes them easier to fix. Using Travis also encour‐
ages me to check more often locally, because I know if it fails I’ll find out about it a
few minutes later, often once I’ve moved on to a new problem.

Basic Config
The Travis config is stored in yaml file called .travis.yml. The default config created by
devtools looks like this:
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yaml
language: r
warnings_are_errors: true

R has recently become a community supported language on Travis and you can read
the documentation at http://docs.travis-ci.com/user/languages/r/.

There are two particularly useful options:

r_github_packages
A list of R packages to install from github. This allows you to test against the
development version of your depedencies.

r_binary_packages
A list of precompiled R packages to install from ubuntu. This allows you to
reduce your the build time. You can see if a binary version of a package is avail‐
able by searching on http://packages.ubuntu.com for r-cran-lowercasename. For
example, searching for r-cran-xml reveals that you can get a binary version of
XML package.

Other Uses
Because Travis allows you to run arbitrary code, there are many other things that you
can use it for:

• Republishing a book website every time you make a change to the source (like
this book!).

• Building vignettes and publishing them to a website.
• Automatically building a documentation website for your package.

To learn more, read about the many deployment options provided by Travis.

Checking After Every Commit with Travis | 161

http://docs.travis-ci.com/user/languages/r/
http://packages.ubuntu.com
http://docs.travis-ci.com/user/deployment/




CHAPTER 15

Releasing a Package

If you want your package to have significant traction in the R community, you need
to submit it to CRAN. Submitting to CRAN is a lot more work than just providing a
version on GitHub, but the vast majority of R users do not install packages from Git‐
Hub, because CRAN provides discoverability, ease of installation, and a stamp of
authenticity. The CRAN submission process can be frustrating, but it’s worthwhile,
and this chapter will make it as painless as possible.

To get your package ready to release, follow these steps:

1. Choose a version number.
2. Run and document R CMD check.
3. Check that you’re aligned with CRAN policies.
4. Update README.md and NEWS.md.
5. Submit the package to CRAN.
6. Prepare for the next version by updating version numbers.
7. Publicize the new version.

Version Number
If you’ve been following the advice in “Version” on page 41, the version number of
your in-development package will have four components, major.minor.patch.dev,
where dev is at least 9000. The number 9000 is arbitrary, but provides a strong visual
signal there’s something different about this version number. Released packages don’t
have a dev component, so now you need to drop that and pick a version number
based on the changes you’ve made. For example, if the current version is 0.8.1.9000,
will the next CRAN version be 0.8.2, 0.9.0, or 1.0.0? Use this advice to decide:
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For a patch, increment patch (e.g., 0.8.2)
A patch is used when you’ve fixed bugs without adding any significant new fea‐
tures. I’ll often do a patch release if, after release, I discover a showstopping bug
that needs to be fixed ASAP. Most releases will have a patch number of 0.

For a minor release, increment minor (e.g., 0.9.0)
A minor release can include bug fixes, new features, and changes in backward
compatibility. This is the most common type of release. It’s perfectly fine to have
so many minor releases that you need to use two (or even three!) digits (e.g.,
1.17.0).

For a major release, increment major (e.g., 1.0.0)
This is best reserved for changes that are not backward compatible and that are
likely to affect many users. Going from 0.b.c to 1.0.0 typically indicates that
your package is feature complete with a stable API.

In practice, backward compatibility is not an all-or-nothing threshold. For exam‐
ple, if you make an API-incompatible change to a rarely used part of your code, it
may not deserve a major number change. But if you fix a bug that many people
depend on, it will feel like an API breaking change. Use your best judgment.

Backward Compatibility
The big difference between major and minor versions is whether or not the code is
backward compatible. This difference is a bit academic in the R community because
the way most people update packages is by running update.packages(), which
always updates to the latest version of the package, even if the major version has
changed, potentially breaking code. While more R users are becoming familiar with
tools like packrat, which capture package versions on a per-project basis, you do need
to be a little cautious when making big backward-incompatible changes, regardless of
what you do with the version number.

The importance of backward compatibility is directly proportional to the number of
people using your package: you are trading your time for your users’ time. The harder
you strive to maintain backward compatibility, the harder it is to develop new fea‐
tures or fix old mistakes. Backward-compatible code also tends to be harder to read
because of the need to maintain multiple paths to support functionality from previ‐
ous versions. Be concerned about backward compatibility, but don’t let it paralyze
you.

There are good reasons to make backward-incompatible changes—if you made a
design mistake that makes your package harder to use, it’s better to fix it sooner
rather than later. If you do need to make a backward-incompatible change, it’s best to
do it gradually. Provide interim version(s) between where you are now and where
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you’d like to be, and provide advice about what’s going to change. Depending on what
you’re changing, use one of the following techniques to let your users know what’s
happening:

• Don’t immediately remove a function. Instead, deprecate it first. For example,
imagine your package is version 0.5.0 and you want to remove fun(). In version
0.6.0, you’d use .Deprecated() to display a warning message whenever some‐
one uses the function:

# 0.1.0
fun <- function(x, y, z) {
  .Deprecated("sum")
  x + y + z
}

fun(1, 2, 3)
#> Warning: 'fun' is deprecated.
#> Use 'sum' instead.
#> See help("Deprecated")
#> [1] 6

Then, remove the function once you get to 0.7.0 (or if you are being very strict,
once you get to 1.0.0 since it’s a backward-incompatible change).

• Similarly, if you’re removing a function argument, first warn about it:
bar <- function(x, y, z) {
  if (!missing(y)) {
    warning("argument y is deprecated; please use z instead.", 
      call. = FALSE)
    z <- y
  }
}

bar(1, 2, 3)
#> Warning: argument y is deprecated; please use z instead.

• If you’re deprecating a lot of code, it can be useful to add a helper function. For
example, ggplot2 has gg_dep, which automatically displays a message, warning,
or error, depending on how much the version number has changed:

gg_dep <- function(version, msg) {
  v <- as.package_version(version)
  cv <- packageVersion("ggplot2")

  # If current major number is greater than last-good major number, or if
  # current minor number is more than 1 greater than last-good minor number,
  # return an error.
  if (cv[[1,1]] > v[[1,1]]  ||  cv[[1,2]] > v[[1,2]] + 1) {
    stop(msg, " (Defunct; last used in version ", version, ")",
      call. = FALSE)
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  # If minor number differs by one, give a warning
  } else if (cv[[1,2]] > v[[1,2]]) {
    warning(msg, " (Deprecated; last used in version ", version, ")",
      call. = FALSE)

  # If only subminor number is greater, provide a message
  } else if (cv[[1,3]] > v[[1,3]]) {
    message(msg, " (Deprecated; last used in version ", version, ")")
  }

  invisible()
}

• Significant changes to an existing function requires planning, including making
gradual changes over multiple versions. Try to develop a sequence of transforma‐
tions where each change can be accompanied by an informative error message.

• If you want to use functionality in a new version of another package, don’t make
it a hard install-time dependency in the DESCRIPTION (forcing your users to
upgrade that package might break other code). Instead, check for the version at
runtime:

if (packageVersion("ggplot2") < "1.0.0") {
  stop("ggplot2 >= 1.0.0 needed for this function.", call. = FALSE)
}

This is also useful if you’re responding to changes in one of your dependencies—
you’ll want to have a version that will work both before and after the change.
This will allow you to submit it to CRAN at any time, even before the other pack‐
age. Doing this may generate some R CMD check notes. For example:

if (packageVersion("foo" > "1.0.0")) {
  foo::baz()
} else {
  foo::bar()
}

If baz doesn’t exist in foo version 1.0.0, you’ll get a note that it doesn’t exist in
foo’s namespace. Just explain that you’re working around a difference between
versions in your submission to CRAN.

The Submission Process
To manually submit your package to CRAN, you create a package bundle (with dev
tools::build()) then upload it to http://cran.r-project.org/submit.html, along with
some comments that describe the process you followed. This section shows you how
to make submission as easy as possible by providing a standard structure for those
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comments. Later, in “Release” on page 173, you’ll see how to actually submit the
package with devtools::release().

When submitting to CRAN, remember that CRAN is staffed by volunteers, all of
whom have other full-time jobs. In a typical week, there are over 100 submissions and
only three volunteers to process them all. The less work you make for them, the more
likely you are to have a pleasant submission experience.

I recommend that you store your submission comments in a file called cran-
comments.md. This file should be checked into Git (so you can track it over time),
and listed in .Rbuildignore (so it’s not included in the package). As the extension sug‐
gests, I recommend using Markdown because it gives a standard way of laying out
plain text. However, because the contents will never be rendered to another format,
you don’t need to worry about sticking to it too closely. Here is the cran-comments.md
file from a recent version of httr:

## Test environments
* local OS X install, R 3.1.2
* ubuntu 12.04 (on travis-ci), R 3.1.2
* win-builder (devel and release)

## R CMD check results
There were no ERRORs or WARNINGs. 

There was 1 NOTE:

* checking dependencies in R code ... NOTE
  Namespace in Imports field not imported from: 'R6'

  R6 is a build-time dependency.

## Downstream dependencies
I have also run R CMD check on downstream dependencies of httr 
(https://github.com/wch/checkresults/blob/master/httr/r-release). 
All packages that I could install passed except:

* Ecoengine: this appears to be a failure related to config on 
  that machine. I couldn't reproduce it locally, and it doesn't 
  seem to be related to changes in httr (the same problem exists 
  with httr 0.4).

This layout is designed to be easy to skim, and easy to match up to the R CMD check
results seen by CRAN maintainers. It includes three sections:

Test environments
This describes where I checked the package. I always check on three platforms:
my Mac, “Checking After Every Commit with Travis” on page 160, and
win-builder.
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Check results
I always state that there were no errors or warnings. Any NOTEs go in a bulleted
list. For each NOTE, I include the message from R CMD check and a brief descrip‐
tion of why I think it’s OK. If there were no NOTEs, I’d say “There were no
ERRORs, WARNINGs, or NOTEs.”

Downstream dependencies
If there are downstream dependencies, I run R CMD check on each package and
summarize the results. If there are no downstream dependencies, keep this sec‐
tion, but say: “There are currently no downstream dependencies for this
package.”

These are described in more detail in the following sections.

Test Environments
When checking your package you need to make sure that it passed with the current
development version of R and it works on at least two platforms. R CMD check is con‐
tinuously evolving, so it’s a good idea to check your package with the latest develop‐
ment version, R-devel. You can install R-devel on your own machine:

• For Mac, install from http://r.research.att.com.
• For Windows, install from http://cran.r-project.org/bin/windows/base/rdevel.html.
• For Linux, either build it from source, or better, learn about Docker containers

and run the R-devel container from https://github.com/rocker-org/rocker.

It’s painful to manage multiple R versions, especially because you’ll need to reinstall
all your packages. Instead, you can run R CMD check on CRAN’s servers with dev
tools::build_win(). This builds your package and submits it to the CRAN win-
builder. Approximately 10–20 minutes after submission, you’ll receive an email
telling you the check results.

CRAN runs on multiple platforms: Windows, Mac OS X, Linux, and Solaris. You
don’t need to run R CMD check on every one of these platforms, but it’s a really good
idea to do it on at least two. This increases your chances of spotting code that relies
on the idiosyncrasies of a specific platform. If you’re on Linux or the Mac, use dev
tools::build_win() to check on Windows. If you’re on Windows, use Travis, as
described in “Checking After Every Commit with Travis” on page 160, to run checks
on Linux.

Debugging code that works on your computer but fails elsewhere is painful. If that
happens to you, either install a virtualization tool so that you can run another operat‐
ing system locally, or find a friend to help you figure out the problem. Don’t submit
the package and hope CRAN will help you figure out the problem.
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Check Results
You’ve already learned how to use R CMD check and why it’s important in Chapter 14.
Compared to running R CMD check locally, there are a few important differences
when running it for a CRAN submission:

• You must fix all ERRORs and WARNINGs. A package that contains any errors or
warnings will not be accepted by CRAN.

• Eliminate as many NOTEs as possible. Each note requires human oversight, which
is a precious commodity. If there are notes that you do not believe are important,
it is almost always easier to fix them (even if the fix is a bit of a hack) than to
persuade CRAN that they’re OK. See “Checks” on page 148 for details on how to
fix individual problems.
If you have no NOTEs, it is less likely that your package will be flagged for addi‐
tional human checks. These are time consuming for both you and CRAN, so are
best avoided if possible.

• If you can’t eliminate a NOTE, document it in cran-comments.md, describing why
you think it is spurious. Your comments should be easy to scan, and easy to
match up with R CMD check. Provide the CRAN maintainers with everything
they need in one place, even if it means repeating yourself.

There will always be one NOTE when you first submit your package.
This reminds CRAN that this is a new submission and that they’ll
need to do some extra checks. You can’t eliminate this, so just men‐
tion in cran-comments.md that this is your first submission.

Reverse Dependencies
Finally, if you’re releasing a new version of an existing package, it’s your responsibility
to check that downstream dependencies (i.e., all packages that list your package in the
Depends, Imports, Suggests, or LinkingTo fields) continue to work. To help you do
this, devtools provides devtools::revdep_check(). This:

1. Sets up a temporary library so it doesn’t clobber any existing packages you have
installed.

2. Installs all of the dependencies of the downstream dependencies.
3. Runs R CMD check on each package.
4. Summarizes the results in a single file.

Run use_revdep() to set up your package with a useful template.
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If any packages fail R CMD check, you should give package authors at least two weeks
to fix the problem before you submit your package to CRAN (you can easily get all
maintainer email addresses with revdep_maintainers()). After the two weeks is up,
rerun the checks, and list any remaining failures in cran-comments.md. Each package
should be accompanied by a brief explanation that either tells CRAN that it’s a false
positive in R CMD check (e.g., you couldn’t install a dependency locally) or that it’s a
legitimate change in the API (which the maintainer hasn’t fixed yet).

Inform CRAN of your release process: “I advised all downstream packages maintain‐
ers of these problems two weeks ago.” Here’s an example from a recent release of 
dplyr:

Important reverse dependency check notes (full details at 
https://github.com/wch/checkresults/tree/master/dplyr/r-release);

* COPASutils, freqweights, qdap, simPH: fail for various reasons. All package 
  authors were informed of the upcoming release and shown R CMD check issues 
  over two weeks ago.

* ggvis: You'll be receiving a submission that fixes these issues very shortly
  from Winston.

* repra, rPref: uses a deprecated function.

CRAN Policies
As well as the automated checks provided by R CMD check, there are a number of
CRAN policies that must be checked manually. The CRAN maintainers will typically
look at this very closely on a package’s first submission.

I’ve summarized the most common problems in the following list:

• It’s vital that the maintainer’s email address is stable, because this is the only con‐
tact information CRAN has for you, and if there are problems and they can’t get
in touch with you, they will remove your package from CRAN. So make sure it’s
something that’s likely to be around for a while, and that it’s not heavily filtered.

• You must have clearly identified the copyright holders in DESCRIPTION: if you
have included external source code, you must ensure that the license is compati‐
ble. See “License: Who Can Use Your Package?” on page 40 and “Licensing” on
page 110 for more details.

• You must “make all reasonable efforts” to get your package working across multi‐
ple platforms. Packages that don’t work on at least two will not normally be
considered.
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• Do not make external changes without explicit user permission. Don’t write to
the filesystem, change options, install packages, quit R, send information over the
Internet, open external software, or make other similar changes.

• Do not submit updates too frequently. The policy suggests a new version once
every 1–2 months at most.

I recommend following the CRAN Policy Watch Twitter account, which tweets when‐
ever there’s a policy change. You can also look at the GitHub repository that powers it.

Important Files
You now have a package that’s ready to submit to CRAN. But before you do, there are
two  important files that you should update: README.md, which describes what the
package does, and NEWS.md, which describes what’s changed since the previous ver‐
sion. I recommend using Markdown for these files, because it’s useful for them to be
readable as both plain text (e.g., in emails) and HTML (e.g., on GitHub or in blog
posts). I recommend using GitHub-flavored Markdown for these files.

README.md
The goal of the README.md is to answer the following questions about your
package:

• Why should I use it?
• How do I use it?
• How do I get it?

On GitHub, the README.md will be rendered as HTML and displayed on the repos‐
itory home page.

I normally structure my README as follows:

1. A paragraph that describes the high-level purpose of the package.
2. An example that shows how to use the package to solve a simple problem.
3. Installation instructions, giving code that can be copied and pasted into R.
4. An overview that describes the main components of the package. For more com‐

plex packages, this will point to vignettes for more details.

README.Rmd
If you include an example in your README (a good idea!) you may want to generate
it with R Markdown. The easiest way to get started is to use devtools::
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use_readme_rmd(). This creates a template README.Rmd and adds it to .Rbuil‐
dignore. The template looks like:

---
output:
  md_document:
    variant: markdown_github
---

<!-- README.md is generated from README.Rmd. Please edit that file -->

```{r, echo = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "README-"
)
```

This:

• Outputs Github-flavored Markdown.
• Includes a comment in README.md to remind you to edit README.Rmd, not

README.md.
• Sets up my recommended knitr options, including saving an image to README-

chunkname.png (which is automatically .Rbuildignored.)

You’ll need to remember to re-knit README.Rmd each time you modify it. If you
use Git, use_readme_rmd() automatically adds the following “pre-commit” hook:

#!/bin/bash
if [[ README.Rmd -nt README.md ]]; then
  echo "README.md is out of date; please re-knit README.Rmd"
  exit 1
fi 

This prevents git commit from succeeding unless README.md is more recent than
README.Rmd. If you get a false positive, you can ignore the check with git commit
--no-verify. Note that Git commit hooks are not stored in the repository, so every
time you clone the repo, you’ll need to run devtools::use_readme_rmd() to set it up 
again.

NEWS.md
The  README.md is aimed at new users. The NEWS.md is aimed at existing users: it
should list all the API changes in each release. There are a number of formats you can
use for package news, but I recommend NEWS.md. It’s not supported by CRAN (so
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you’ll need to run devtools::use_build_ignore("NEWS.md")), but it’s well sup‐
ported by GitHub and is easy to repurpose for other formats.

Organize your NEWS.md as follows:

• Use a top-level heading for each version (e.g., # mypackage 1.0). The most
recent version should go at the top.

• Each change should be included in a bulleted list. If you have a lot of changes,
you might want to break them up using subheadings (e.g., ## Major changes, ##
Bug fixes, etc.). I usually stick with a simple list until just before releasing the
package, when I’ll reorganize into sections, if needed. It’s hard to know in
advance exactly what sections you’ll need.

• If an item is related to an issue in GitHub, include the issue number in parenthe‐
ses (e.g., (#10)). If an item is related to a pull request, include the pull request
number and the author (e.g., (#101, @hadley)). Doing this makes it easy to nav‐
igate to the relevant issues on GitHub.

The main challenge with NEWS.md is getting into the habit of noting a change as you
make a change.

Release
You’re now ready to submit your package to CRAN. The easiest way to do this is to
run devtools::release(). This:

• Builds the package and runs R CMD check one last time.
• Asks you a number of yes/no questions to verify that you followed the most com‐

mon best practices.
• Allows you to add your own questions to the check process by including an

unexported release_questions() function in your package. This should return
a character vector of questions to ask. For example, httr has:

release_questions <- function() {
  c(
    "Have you run all the OAuth demos?",
    "Is inst/cacert.pem up to date?"
  )
}

This is useful for reminding you to do any manual tasks that can’t otherwise be
automated.

• Uploads the package bundle to the CRAN submission form including the com‐
ments in cran-comments.md.
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Within the next few minutes, you’ll receive an email notifying you of the submission
and asking you to approve it (this confirms that the maintainer address is correct).
Next, the CRAN maintainers will run their checks and get back to you with the
results. This normally takes around 24 hours, but occasionally can take up to 5 days.

On Failure
If your package does not pass R CMD check or is in violation of CRAN policies, a
CRAN maintainer will email you and describe the problem(s). Failures are frustrat‐
ing, and the feedback may be curt and may feel downright insulting. Arguing with
CRAN maintainers will likely waste both your time and theirs. Instead:

• Breathe. A rejected CRAN package is not the end of the world. It happens to
everyone. Even members of R-core have to go through the same process and
CRAN is no friendlier to them. I have had numerous packages rejected by
CRAN. I was banned from submitting to CRAN for two weeks because too many
of my existing packages had minor problems.

• If the response gets you really riled up, take a couple of days to cool down before
responding. Ignore any ad hominem attacks, and strive to respond only to tech‐
nical issues.

• If a devtools problem causes a CRAN maintainer to be annoyed with you, I am
deeply sorry. If you forward me the message along with your address, I’ll send
you a handwritten apology card.

Unless you feel extremely strongly that discussion is merited, don’t respond to the
email. Instead:

• Fix the identified problems and make recommended changes. Rerun dev
tools::check() to make sure you didn’t accidentally introduce any new
problems.

• Add a “Resubmission” section at the top of cran-comments.md (this should
clearly identify that the package is a resubmission, and list the changes that you
made):

## Resubmission
This is a resubmission. In this version I have:

* Converted the DESCRIPTION title to title case.

* More clearly identified the copyright holders in the DESCRIPTION
  and LICENSE files.

• If necessary, update the check results and downstream dependencies sections.
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• Run devtools::submit_cran() to resubmit the package without working
through all the release() questions a second time.

Binary Builds
After the package has been accepted by CRAN it will be built for each platform. It’s
possible this may uncover further errors. Wait 48 hours until all the checks for all
packages have been run, then go to the check results package for your package
(Figure 15-1).

Figure 15-1. To find the check results for your package, go to its CRAN page and click
“[packagename] results”

Prepare a patch release that fixes the problems and submit using the same process as
before.

Prepare for Next Version
Once your package has been accepted by CRAN, you have a couple of technical tasks
to do:
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• If you use GitHub, go to the repository release page. Create a new release with tag
version v1.2.3 (i.e., “v” followed by the version of your package). Copy and
paste the contents of the relevant NEWS.md section into the release notes.

• If you use Git, but not GitHub, tag the release with git tag -a v1.2.3.
• Add the .9000 suffix to the Version field in the DESCRIPTION to indicate that

this is a development version. Create a new heading in NEWS.md and commit
the changes.

Publicizing Your Package
Now you’re ready for the fun part: publicizing your package. This is really important.
No one will use your helpful new package if they don’t know that it exists.

Start by writing a release announcement. This should be an R Markdown document
that briefly describes what the package does (so people who haven’t used it before can
understand why they should care), and what’s new in this version. Start with the con‐
tents of NEWS.md, but you’ll need to modify it. The goal of NEWS.md is to be com‐
prehensive; the goal of the release announcement is to highlight the most important
changes. Include a link at the end of the announcement to the full release notes so
people can see all the changes. Where possible, I recommend showing examples of
new features: it’s much easier to understand the benefit of a new feature if you can see
it in action.

There are a number of places you can include the announcement:

• If you have a blog, publish it there. I now publish all package release announce‐
ments on the RStudio blog.

• If you use Twitter, tweet about it with the #rstats hashtag.
• Send it to the r-packages mailing list. Messages sent to this list are automatically

forwarded to the R-help mailing list.

Congratulations!
You have released your first package to CRAN and made it to the end of the book!
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loading packages, 82-84
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code, 64
inline formatting, 64
knitr and, 65-67
lists, 63
Markdown syntax documentation, 62
overview of, 62
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collate controls, 42
dependencies, 34-37
LazyData, 42
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package states, 11-16

binary packages, 13
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source packages, 11

package structure, 5-17
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RStudio projects, 8-11
types of packages (see package states)
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overview, 1
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submitting to CRAN, 166-170

(see also release process)
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skipping a test, 77
test files, 80
unit testing, 74
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Colophon
The animal on the cover of R Packages is a kaka, or nestor parrot (Nestor meridiona‐
lis), found in native forests of New Zealand. Generally heard before they are seen,
kaka are very gregarious and move in large flocks.

Kaka are obligate forest birds that obtain all their food from trees. They are adept fli‐
ers, capable of weaving through trunks and branches, and can cover long distances,
including over water. They consume seeds, fruit, nectar, sap, honeydew, and tree-
dwelling invertebrates.

Although forest clearance has destroyed all but a fraction of the kaka’s former habitat,
the biggest threat to their survival is introduced mammalian predators, particularly
the stoat, but also the brush-tailed possum.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com
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